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ABSTRACT

We are entering an age of large surveys where hundreds of Strong Lensing (SL)

galaxy clusters will be detected, allowing for complete statistical analyses of these

sources. Galaxy clusters are prime candidates as cosmic laboratories to learn about

the evolution of structure in the Universe, constrain cosmological parameters, and

explore the properties of baryonic matter, dark matter, and dark energy. The con-

centration mass relation of galaxy clusters across cosmic time describes the evolution

of matter distribution and test predictions from the Λ Cold Dark Matter (ΛCDM)

paradigm using state-of-the-art simulations.

My dissertation describes the combination of the mass at the core from SL and a

mass estimate from the outskirts (well established in all wavelengths) of galaxy clus-

ters to constrain the mass distribution and compute the concentration. For this work,

we utilize the Outer Rim cosmological simulations to characterize efficient methods

to measure the mass at the cores of galaxy clusters and compute the prediction of

the concentration-mass relation for strong lensing galaxy clusters.

Two efficient methods to measure the core mass from the strong lensing evidence

are the mass enclosed by the Einstein radius and the use of Single-Halo Lens Models

(SHM). The mass enclosed by the Einstein radius assumes the projected mass distri-

bution to be spherically symmetric. We establish and apply an empirical correction

resulting with a measured scatter of 10.9% and a bias of −0.3% between the mass

enclosed by the Einstein radius and the “true” mass from the simulation. The SHM

use Lenstool to compute a lens model with a single large scale dark matter halo.

SHM benefit from a visual inspection to identify and exclude models which fail to

xvi



reproduce the lensing configuration. For the SHM that pass the visual inspection, we

measure a scatter of 3.3% and bias of 0.3% between the mass estimate and the “true”

mass from the simulation. We establish recommendations for applying these two ef-

ficient methods to large samples of SL galaxy clusters. Last, we apply these methods

to a sample of 67 SL galaxy clusters from the Sloan Giant Arc Survey (SGAS), Clus-

ter Lensing And Supernova with Hubble (CLASH), Hubble Frontier Fields (HFF),

and Reionization Lensing Cluster Survey (RELICS) and compare the mass estimate

results to those from the publicly available detailed lens models (DLM). Compared

to the DLM, the mass enclosed by the Einstein radius has a scatter of 18.1% with

−7.1% bias, while the mass from the SHM has a scatter of 9.0% with 1.0% bias. We

conclude, if other uncertainty errors dominate the desired analysis, these two methods

become powerful tools particularly when applied to large samples.

For the concentration mass relation work presented in this thesis, we use a sample

of 51 strong lensing South Pole Telescope galaxy clusters observed through a Large

Hubble Space Telescope Snapshot program. This unique sample of strong lensing

galaxy clusters spans a broad redshift and mass range. We constrain the concentra-

tion mass relation using the simulations and observations to within 9.3% and 5.7%,

respectively, find significant evidence at the level of 4.5–sigma for an exponential re-

lation between the mass and the concentration, and cannot make any conclusion to

the evolution of the concentration with respect to redshift with this sample. Last, we

compare the prediction from the simulation to the observed data and find no tensions

with ΛCDM.
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CHAPTER I

Introduction

1.1 Galaxy Clusters

Galaxy clusters are the largest gravitational bound structure in the universe,

making them ideal cosmological laboratories. Galaxy clusters matter composition

is roughly 80% DM and 20% baryonic matter. The baryonic component is further

subdivided: ∼ 15% in hot plasma (107 − 108K) located in the intracluster medium

(ICM) and ∼ 5% in stars. As a result, their detection and characterization uses a di-

versity of observational technique spanning the light spectrum, from the X-ray to the

optical to the sub-millimeter. The combination of multi-wavelength observations of

galaxy clusters allows for a more comprehensive analyses of the galaxy clusters, their

mass components, and their distribution across the range of cluster-centric scales.

1.1.1 Cosmological Probes / Indicators

The matter distribution of the Universe is not random, but rather a complex

structure of over-densities and under-densities. The cosmic structure has been named

the cosmic web, with filaments leading to knots of high density of matter. Galaxy

clusters are harbored at these knots of the cosmic web. Under-dense regions are called

voids. An example of the matter distribution from The Last Journey (Heitmann

et al., 2021) cosmological simulations is shown in Figure 1.1 representing a large
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portion of the Universe. The complex distribution of the cosmic structure is one

of the constrains for cosmological models. The current concordance cosmological

model is Λ − Cold Dark Matter (Λ − CDM). As part of this cosmological frame

work the energy density of the Universe is roughly distributed: 70% Dark Energy,

25% Dark Matter, and 5% baryonic matter. Baryons are a composition of an odd

number of quarks, most familiar are protons and neutrons making up most of the mass

visible in the universe and found at the nucleus of atoms. Dark Matter (DM) is a

weakly interacting matter for which properties have been inferred by its gravitational

effect (e.g., Zwicky 1933; Mantz et al. 2014), where “Cold” refers to the slow moving

property of the matter. Last, Dark Energy is a necessary mathematical term to

explain the current accelerated expansion rate of the Universe (e.g., Riess et al. 1998;

Perlmutter et al. 1999).

Galaxy Clusters serve as an observational constraint of the matter distribution of

the Universe and their abundance can be used to distinguish between different cos-

mological models. Huterer & Shafer (2018) predict the galaxy cluster abundance for

different cosmological models in a simulated survey area of 5, 000 deg2 of the sky se-

lecting galaxy clusters with a total mass larger than 1014 M� h−1, shown in Figure 1.2.

The galaxy cluster total mass units are solar masses ( M� ) normalized by h−1, where

h= H(z)/100 kpc/s/Mpc and H(z) is the expansion rate of the Universe at redshift

z. In the figure, the galaxy cluster counts are plotted against cosmological redshift.

Each of the curves indicates a different cosmological model and it clearly shows the

potential of using galaxy clusters to distinguish between these models. Observational

work to complement the simulations and constrain cosmological models, requires the

identification of galaxy clusters and a measurement of their mass allowing for a di-

rect comparison between the measurement from observations and predictions from

simulations.

In addition to the galaxy cluster abundance, their radial mass distribution allows

2



Figure 1.1: The Last Journey Cosmological Simulation Matter Distribution.
From Heitmann et al. (2021). Visualization of the dark matter distribution at different
scales in the cosmological simulation. The large scale structure of matter is called the
cosmic web.
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Figure 1.2: Galaxy Cluster Abundance as an Observational Constrain of
Cosmological Models. From Huterer & Shafer (2018). Predicted galaxy cluster
counts, dN/dz, for a survey covering 5, 000 deg2 of the sky with a minimum cluster
mass of 1014 M� h−1. The y-axis indicates the cosmological redshift. The solid black
line represents the fiducial ΛCDM cosmological model and the rest of the curves show
different cosmological models.
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Figure 1.3: Galaxy Cluster Radial Density Distribution. From Robertson
et al. (2019). Tests of different dark matter properties from the BAHAMAS-SIDM
(McCarthy et al., 2017; Robertson et al., 2017) of stacked galaxy cluster radial density
profiles at z = 0 for a cluster mass ∼ 1015 M� . The solid lines represent the radial
profile with all matter components, dashed lines represent the dark matter only, and
the stars represent the stellar density profile. The vertical dashed line represents the
convergence radius meaning the resolution limit from the simulations. Each color
indicates a different prescription for dark matter.

for a detailed study of baryonic and Dark Matter properties. Simulations provide

us with a prediction of the shape of the density distribution of galaxy clusters for

a variety of DM properties, see Figure 1.3 from Robertson et al. (2019). While the

density distribution for the different prescriptions for dark matter matches at the very

large scales, there are clear distinctions at the cores of galaxy clusters indicating that

the use of observational data can be leveraged to distinguish between DM properties.

This study highlights the importance of measuring the galaxy cluster mass on a broad

range of cluster-centric radial scales from the core to the outskirts of the cluster.

As it has been indicated the galaxy cluster mass is key and provides a connection

between the observables and the underlying cosmology (e.g., Evrard et al. 2002).

Galaxy cluster mass estimates are dependent on observable astrophysical quantities
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making paramount the understanding of systematic errors and assumptions employed

in the mass estimation process (e.g., Evrard et al. 2002; Allen et al. 2011; Huterer &

Shafer 2018). Also, critical to these works is the use of large samples of galaxy clusters

with well characterized selections functions and implicit bias in the observational

techniques employed in their detection.

1.1.2 The Mass Distribution of Galaxy Clusters

The radial density profile of galaxies clusters follows a Navarro-Frenk-White (NFW)

profile (Navarro et al., 1996, 1997) established using simulations:

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
, (1.1)

where rs is the scale radius and ρs is the scale density. The scale density can then

be defined as ρs(z) = ρcrit(z)δc, where ρcrit(z) is the critical density of the universe

and δc is the density scaling factor defined further below. The critical density of the

universe is as follows:

ρcrit(z) =
3H(z)2

8πG
, (1.2)

where G is the gravitational constant and H(z) is the expansion rate of the Universe

at redshift z. The concentration of a galaxy cluster is then established as the ratio of

a radius of interest and the scale radius:

c∆ =
r∆

rs
, (1.3)

where the radius of interest, r∆, is described as the radius for which the averaged

enclosed density is ∆ times the critical density of the Universe at this redshift:

M∆

4/3πr3
∆

= ρcrit(z)∆, (1.4)
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and M∆ is the corresponding enclosed mass within r∆. Typical numbers for ∆ used in

the literature related to galaxy clusters are ∆ = 2500, 500, 200 (e.g., r200 is the radius

for which the averaged enclosed density is 200 times ρcrit(z) and the corresponding

mass is M200).

The mass enclosed by a sphere of radius R can be computed using the definition

of the NFW density profile:

MNFW(R) =

R∫
0

2π∫
0

π∫
0

ρNFW(r)r2 sin (φ) dφdθdr

= 4π

R∫
0

ρNFW(r)r2dr

= 4πρcrit(z)δcr
3
s

[
ln

(
1 +

R

rs

)
− R/rs

1 +R/rs

]
,

(1.5)

and then this mass from the NFW profile, MNFW(r∆), can be set equal to the mass

M∆ (Equation 1.4) to establish the form of the density scaling factor δc and its

dependence on ∆, r∆, and rs:

MNFW(r∆) = M∆

4πρcrit(z)δcr
3
s

[
ln

(
1 +

r∆

rs

)
− r∆/rs

1 + r∆/rs

]
= ρcrit(z)∆

4

3
πr3

∆

δc =
∆

3

(
r∆

rs

)3 [
ln

(
1 +

r∆

rs

)
− r∆/rs

1 + r∆/rs

]−1

.

(1.6)

Substituting Equation 1.6 in the NFW density profile (Equation 1.1) results as follows:

ρNFW(r) =
ρcrit(z)

(r/rs)(1 + r/rs)2

∆

3

(
r∆

rs

)3 [
ln

(
1 +

r∆

rs

)
− r∆/rs

1 + r∆/rs

]−1

(1.7)
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where ρNFW(r) is then dependent on the scale radius and several observational pa-

rameters: the redshift (z), the radius of interest (r∆), and ∆. The NFW profile,

ρNFW, is shown in the top panel of Figure 1.4 and the enclosed mass by the sphere,

MNFW(r), in the top panel of Figure 1.5. Additional useful forms of the NFW profile

include the surface density, ΣNFW(r) (Golse & Kneib, 2002):

ΣNFW(r) = 2ρcirt(z)δcrsf(r/rs), (1.8)

where:

f(r/rs) =



1
(r/rs)2−1

(
1− 1√

1−(r/rs)2
arccosh 1

r/rs

)
(r/rs < 1)

1
3

(r/rs = 1)

1
(r/rs)2−1

(
1− 1√

(r/rs)2−1
arccos 1

r/rs

)
(r/rs > 1)

and the average enclosed surface density, ΣNFW(r):

ΣNFW(r) = 4ρcirt(z)δcrs

(rs
r

)2

g(r/rs), (1.9)

where:

g(r/rs) =



ln r
2rs

+ 1√
1−(r/rs)2

arccosh 1
r/rs

(r/rs < 1)

1 + ln 1
2

(r/rs = 1)

ln r
2rs

+ 1√
(r/rs)2−1

arccos 1
r/rs

(r/rs > 1).

Both ΣNFW(r) and ΣNFW(r) are plotted on the middle and bottom panels of Figure 1.4,

respectively. The NFW projected enclosed mass, MNFW−2D(r) = πr2ΣNFW(r), is

shown in the bottom of Figure 1.5. These figures clearly show that galaxy clusters

have a higher density at the core and it decreases towards the outskirts of the galaxy

cluster.
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Figure 1.4: NFW Density, Surface Density, and Average Surface Density
Profiles. The top panel shows the NFW mass density radial profile, ρNFW(r), the
middle panel shows the NFW surface density, ΣNFW(r), and the bottom panel shows
the averaged NFW surface density, ΣNFW(r), for a galaxy cluster with a mass of
M200 = 1 × 1015 M� h−1 at z = 0.5. Each color represents a different concentration,
c200 = r200/rs. and the dotted vertical lines indicate the location of the scale radius
for each case. The solid black line shows the radius of interest, r200 = 1.359 Mpc h−1.
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Figure 1.5: Spherical and Projected Enclosed NFW Mass. The top panel
shows the spherical enclosed NFW mass, MNFW(< r), and the bottom panel shows
the projected enclosed NFW mass, MNFW−2D(< r). The conventions of the colors
and lines are the same as described in Figure 1.4.
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The concentration of galaxy clusters, c∆, can be directly measured in both simula-

tions (e.g., Duffy et al. 2008; Bhattacharya et al. 2013; Meneghetti et al. 2014; Child

et al. 2018) and observations (e.g., Okabe et al. 2010; Oguri et al. 2012; Sereno et al.

2015; Merten et al. 2015), making it feasible to compare predictions and observations.

The result of this comparison is informative as the concentration of galaxy clusters

provides characterization of the distribution of matter in galaxy clusters and its evo-

lution. A combination of mass estimates from the core and the outskirts of the galaxy

cluster serves as leverage when constraining the mass distribution and computing the

concentration.

The concentration-mass (c-M) relation represents a connection between the galaxy

cluster mass and its mass distribution. In Figure 1.6, from Child et al. (2018), the

c-M relation for individual galaxy clusters is shown, where the black line indicates the

prediction from simulations and the grey area its uncertainty. The points represent

observational measurements. The comparison indicates good agreement between ob-

servations and predictions from simulations within errors; however, the sample size

is small. A main goal of this thesis work is to increase the number of galaxy clusters

for which the concentration is measured spanning a broader galaxy cluster redshift

and mass range. The increase in galaxy cluster sample size with a broader mass and

redshift coverage will allow for a better population study of the concentration-mass

relation through cosmic time.

1.1.3 Astronomical Surveys of Galaxy Clusters

Current and upcoming large astronomical surveys are discovering tens of thou-

sands of galaxy clusters. These surveys use different observational techniques for se-

lection and characterization of clusters, resulting in different selection functions. The

use of complementary data in the same sky area also provides a multi-wavelength

view of the these galaxy clusters and their properties. Galaxy cluster catalogs are
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Figure 1.6: Concentration-Mass Relation in Simulations and Observations.
From Child et al. (2018). Comparison between the prediction of the c-M relation and
individual observed galaxy clusters. The y-axis, c200c , is the concentration and M200c

is the total mass of the galaxy cluster. The black line is the predicted c-M relation
from the individual halos from the Outer Rim cosmological simulations (Heitmann
et al., 2019) and the grey shaded region indicates the 1σ. The symbols represent
measurements of individual observed galaxy clusters.

drawn from large surveys including the South Pole Telescope (SPT-SZ 2500 deg2,

Bleem et al. 2015, in the sub-mm wavelength), the Atacama Cosmological Telescope

(ACT, Hilton et al. 2018, in the sub-mm wavelength), the Dark Energy Survey (DES,

Abbott et al. 2018, in the optical wavelength), the Sloan Digital Sky Survey (SDSS,

Rykoff et al. 2014, in the optical wavelength), and ROSAT All-Sky Survey (RASS,

Ebeling et al. 1998, in the X-ray wavelength). The future also brings incredible oppor-

tunities with surveys like SPT-3G (Benson et al., 2014), the Vera Rubin Observatory

Legacy Survey of Space and Time (LSST, LSST Science Collaboration et al. 2009),

and eROSITA (Pillepich et al., 2018). In Figure 1.7, we show the Mass-Redshift

distribution of galaxy clusters from some of the current large astronomical surveys.

The large samples of galaxy clusters serve as cosmological indicators to constrain

cosmological parameters. In addition to the detection and characterization of tens of

thousands of galaxy clusters, a portion of these will have gravitational lensing evidence

(see Figure 1.8 from LSST Science Collaboration et al. 2017). Strong gravitational
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Figure 1.7: Galaxy Cluster Samples. The mass - redshift distribution of some large
samples of galaxy clusters from different surveys. M500 is the mass of an aperture
with radius r500 for which the average enclosed density is 500 the critical density of
the Universe at that redshift. The colors indicate the different parent surveys from
which the clusters were identified: Atacama Cosmological Telescope (ACT; Hilton
et al. 2018, Planck (Planck Collaboration et al., 2016), Rosat All-Sky-Survey (RASS;
Ebeling et al. (1998, 2000)), South Pole Telescope (SPT-SZ 2500 deg2; Bleem et al.
2015, SPT-Pol 100 deg2; Huang et al. 2020, and SPT-ECS; Bleem et al. 2020).
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Figure 1.8: LSST Prediction on the Numbers of Strong Gravitational Lens-
ing Galaxy Clusters. From LSST Science Collaboration et al. (2017). The esti-
mated number of strong gravitational lenses with large Einstein radius (θE > 10.′′0)
for galaxy clusters with a total mass > 1014 M� . The expected number of clusters to
be discovered in the survey is ∼ 103.

lensing, defined in the next section, provides a unique opportunity to learn about the

galaxy cluster itself and the magnified background universe.

1.2 Gravitational Lensing

Gravitational lensing occurs when light from a source is deflected due to a grav-

itational potential of a massive object. This results in distorted, magnified, single

or multiple images of the background source. Gravitational lensing then provide an

opportunity as cosmological telescopes magnifying the background universe. At the

same time, the lensing evidence can be used to create a detailed characterization

of the lens mass distribution. For further review please see Narayan & Bartelmann

(1996); Kochanek (2006).
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1.2.1 Strong Gravitational Lensing Theory

Einstein’s General Theory of Relativity (Einstein 1911) describes the motion of

light particles through spacetime, traveling at speed c in all reference frames, thus

following a geodesic. When the geodesics are solved for the Schwarzchild metric, the

deflection of light by a point mass, M , results in the following:

α =
4GM

c2b
(1.10)

when GM/c2r << 1, where α is the deflection angle and b is the impact parameter

(see Figure 1.9). The lensing equation (Equation 1.11) traces the observed image-

plane (also referred to as lens-plane) positions of the lensed sources to the source-plane

location in the background. When multiple solutions of the lens equation exist, this

results in multiple images of the same background source, defining the strong lensing

regime. The lensing equation is defined as follows:

−→
β =

−→
θ −−→α (

−→
θ ),

−→α (
−→
θ ) =

DLS(zL, zS)

DS(zS)
α̂(
−→
θ ),

(1.11)

where
−→
β is the lensed source position in the source-plane,

−→
θ is the image position

in the image-plane, −→α (
−→
θ ) is the deflection angle, DLS(zL, zS) is the angular diameter

distance between the lens and the source, DS(zS) is the angular diameter distance

between the observer and the source, zL is the redshift of the lens, and zS is the

redshift of the source. Due to the large cosmological distance involved between the

observer and the lens (DL(zL)), the lens and the source (DLS(zL, zS)), and the observer

and the source (DS(zS)), it is common to use the “thin lens approximation” which

assumes an instantaneous deflection of the light at the lens-plane. The geometry of

the system is shown in Figure 1.9 from Johnson (2018).
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Figure 1.9: Gravitational Lensing Geometry. From Johnson (2018). Diagram
describing the geometry of the gravitational lensing system including the definition of
angles and angular diameter distances utilized in the lensing equation (Equation 1.11).

The magnification, µ, due to the gravitational lens can be computed for the com-

plete field of view as the determinant of the magnification matrix, A:

µ−1 = det(A−1) = (1− κ)2 − γ2, (1.12)

where κ is the convergence and γ is the shear. Loci in the image plane where µ−1 = 0

formally results in infinite magnification and are called the tangential and radial

critical curve, named to indicate the primary direction in which the arcs are magnified.

The magnification in the tangential and radial directions are the eigenvectors of A,

defined as follows:

µ−1
T = 1− κ− γ (1.13)

and

µ−1
R = 1− κ+ γ. (1.14)

16



Last, we re-write γ and κ as mathematical transformations from the deflection

angle, α(θ):

γ1 =
1

2

(
∂α1

∂θ1

− ∂α2

∂θ2

)
,

γ2 =
∂α1

∂θ2

=
∂α2

∂θ1

,

γ2 = γ2
1 + γ2

2 ,

(1.15)

and

κ =
1

2
∇ijαij =

Σ

Σcrit

(1.16)

where Σ is the projected surface mass density and Σcrit is the critical surface mass

density defined as follows:

Σcrit(zL, zS) =
c2

4πG

DS(zS)

DLS(zL, zS)DL(zL)
. (1.17)

The connection between the mass of the object responsible for the lensing and the

deflection angle is clear, with more massive objects resulting in greater deflections

and in the case of strong gravitational lensing wide-separation multiply-imaged lensed

sources. Fritz Zwicky proposed in his 1937 work “Nebulae as Gravitational Lenses”

(Zwicky, 1937) that galaxies could themselves act as lenses and allow for an easier

detection of the gravitational lensing effect. It was not until 1979 that the first strong

gravitational lens was identified by Walsh et al. (1979) named the “Twin Quasar” and

due to the similarity in the redshift and spectral energy distribution of the quasar it

was deduced that they had to be two images of the same background object (Chang

& Refsdal, 1979; Porcas et al., 1979; Weymann et al., 1979).
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1.2.2 Strong Gravitational Lensing by Galaxy Clusters

Galaxy clusters being the largest gravitational bound structures in the Universe,

are great candidates as gravitational lenses. The total mass, mass distribution, and

concentration properties of the galaxy cluster correlate with its ability to be a strong

gravitational lens (e.g., Fox et al. 2021). Studies utilizing strong lensing by galaxy

clusters have encompassed a variety of topics including Dark Matter properties (e.g.,

Bradač et al. 2006; Diego et al. 2018), galaxy cluster concentration (e.g., Oguri et al.

2012; Merten et al. 2015), and constrain cosmological parameters (e.g., Acebron et al.

(2017)). When using galaxy clusters as cosmic telescopes to magnify the background

universe, strong lensing provides unique opportunities to study in high resolution

galaxy properties (e.g., Johnson et al. 2017b; Rigby et al. 2018) at the epoch of

cosmic noon (z ∼= 2, when most of the stars of the Universe were created), and it

has allowed for the identification and characterization of high-redshift (z ∼ 5 − 9)

galaxies (e.g., Salmon et al. 2020; Strait et al. 2020).

The unique opportunity created by strong gravitational lensing by galaxy clusters,

has resulted in multiple samples with a variety of selection functions and approaches

to learn about the Universe. Some of these strong lensing samples include the Sloan

Giant Acr Survey (SGAS1; Hennawi et al. 2008; Sharon et al. 2020) which selected

strong gravitational lensing clusters by visually inspecting thousands of color images

from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7; Abazajian et al. 2009)

with the main goal of characterizing in detail highly magnified giant arcs; the Clus-

ter Lensing and Supernovae Survey with Hubble (CLASH2; Postman et al. 2012),

designed to study the dark matter distribution in galaxy clusters, to perform super-

nova searches, and to detect and characterize high-redshift galaxies; the Reionization

Lensing Cluster Survey (RELICS3; Coe et al. 2019), designed primarily to find high-

1https://archive.stsci.edu/pub/hlsp/sgas/
2https://www.stsci.edu/ postman/CLASH/index.html
3https://relics.stsci.edu/index.html
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redshift (z ∼ 6− 8) lensed galaxy candidates; and the Hubble Frontier Fields (HFF4;

Lotz et al. 2017) with the goal of expanding our understanding of the high-redshift

universe and laying the ground work for future observations of the early universe.

The HFF program resulted in the second deepest observations with HST and the

extensive community investment in follow-up has allowed for some of the most de-

tailed studies of strong gravitational lensing galaxy clusters. The HFF galaxy clusters

are shown in Figure 1.10 as extraordinary examples of strong gravitational lensing

by galaxy clusters. RELICS, CLASH, and particularly HFF have created a unique

opportunity to study the systematic and statistical uncertainties of the detailed lens

models computed for these galaxy clusters.

Strong gravitational lens models use the positions in the image plane of the

multiply-imaged sources and their redshift to constrain the underlying mass distri-

bution and reproduce the observed lensing configuration. There exists a variety of

lensing algorithms, which use different techniques and assumptions to model the un-

derlying mass distribution of the lens. In the next few paragraphs, we provide a brief

overview of strong gravitational lens models, their uses and limitations.

Detailed lens models are usually grouped into three groups: parametric, non-

parametric (“free-form”), and hybrid, based on the parametrization employed to

model the mass distribution of the lens. Parametric models utilize a variety of ana-

lytical parametric density profiles to describe the mass of the lens. Non-parametric

algorithms make no assumption on the functional form of the mass distribution of the

lens. Last, hybrid algorithms employ a combination of these two forms. The diversity

in algorithms allows for testing a variety of lens properties, including the degree to

which the mass distribution is correlated with the observed light distribution. Direct

comparisons between the lens models produced for the HFF clusters has revealed

great agreement between the different methods (e.g., Remolina González et al. 2018;

4https://outerspace.stsci.edu/display/HPR/HST+Frontier+Fields
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Figure 1.10: Hubble Frontier Fields (HFF) Galaxy Clusters. Hubble Space Tele-
scope images for the six HFF galaxy clusters utilizing Director’s Discretionary time
(Lotz et al., 2017). The galaxy clusters are A) Abell 2744, B) MACS J0416.5−2403,
C) MACS J1149.5+2223, D) MACS J0717+3745, E) Abell 370, and F) Abell S1063
(RXC J2248.7−4431). The images for panels A, B, C, and D are taken from Lotz
et al. (2017) and represent the full-depth HST data. The images of panels E and F
use the full depth of the HST imaging and are credited to NASA, ESA, and STScI.
The field of view for all the images is 1.5′ × 1.5′. These are some of the best stud-
ied strong gravitational lensing galaxy clusters thanks to the extensive community
investment on the observations and follow-up.
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Raney et al. 2020b) and shown the reliability of the lens model outputs.

The detailed lens models can be highly complex, adding the flexibility required

for detailed studies of galaxy cluster properties and their environment, un-correlated

structure along the line-of-sight, the background universe, and cosmology. The large

number of free-parameters in the detailed lens models require a large quantity of

constraints in the form of multiply-imaged lensed sources, whose availability and

identification becomes a limiting factor of the modeling process. As part of the

modeling process care is needed in the construction and evaluation of the lens models,

statistical assessments are utilized to select between lens models (e.g., Lagattuta et al.

2019; Mahler et al. 2019). High-fidelity lens models for clusters with rich strong

lensing evidence require an extensive investment from the community including the

telescope follow-up, computational resources, and human time. In most cases multiple

iterations of the lens models are needed to achieve the final products and models get

revised as new observational evidence becomes available (e.g., Sharon et al. 2012;

Jauzac et al. 2015). The large investment required is a clear limitation in the lens

modeling process, particularly when looking at the future with thousands of galaxy

clusters with strong gravitational lensing evidence being discovered.

1.2.3 Simulated Strong Gravitational Lensing by Galaxy Clusters

To complement the assessment of detailed lens models using observations, simula-

tions of strong gravitational lensing by galaxy clusters have been used to characterize

the accuracy and precision of the different lensing algorithms. In a lens modeling

comparison project by Meneghetti et al. (2017), all HFF lens modeling teams were

asked to compute detailed lens models for two simulated strong lensing galaxy clusters

created to mimic the observations of a HFF-like galaxy cluster. This work resulted

in a direct comparison between the methods, and evaluation of the strengths and

weaknesses of each lens modeling team’s approach. Overall, the detailed lens models
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recover the mass distribution at the core of the galaxy clusters with high accuracy

and precision. The magnification computed from the lens model outputs reveals clear

differences between the different lensing algorithms. A large magnification variance

of 50% or higher for extreme magnification (µ ∼ 30 and higher) and a variance of

∼ 10% − 30% for regions of high magnification (µ ∼ 3 − 10) is reported between

the lensing algorithms. Simulations of strong gravitational lensing by galaxy clusters

also introduce a unique opportunity to assess other efficient methods to measure the

strong lensing cluster core mass by leveraging the strong lensing evidence.

Detailed lens models, while very accurate and precise, are inefficient when applied

to large samples of strong lensing galaxy clusters. There is a need to employ other

efficient and accurate methods to measure the core mass of galaxy clusters that lever-

age the strong lensing evidence. Simulated strong lensing by galaxy clusters allow

for the assessment of two alternative methods to estimate the mass at the core of

galaxy clusters, as described in Chapter II and Chapter III of this dissertation. The

assessment of these two methods allow for their application to large samples of strong

lensing galaxy cluster and estimate the mass at the cores of strong lensing galaxy

clusters with accuracy and precision while taking a fraction of the time and resources

than that of a detailed lens model.

Last, cosmological simulations of strong gravitational lensing galaxy clusters are

used perform direct comparisons between the simulated and observable Universe.

Some of the predictions include number of expected strong lensing galaxy clusters

identified in a survey, the distribution of the cluster-centric distance of the multiple-

images, and the mass density profile of strong gravitational lenses. An example of

a strong lensing simulation by Li et al. (2016) mimicking the observations from a

ground base observatory is shown in Figure 1.11. As part of this work our goal is

to compare the predictions of the concentration-mass relation of strong gravitational

lenses to that of observations and characterize the evolution through cosmic time of
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Figure 1.11: Comparison between a Simulated and Observed Galaxy Clus-
ter. From Li et al. (2016). Left panel shows a South Pole Telescope galaxy clus-
ter, SPT−CLJ0307−5042, observed with the ground-based MegaCam instrument
mounted on the Magellan Clay Telescope. The field of view is 3′ × 3′ and the fil-
ters used are g, r, and i. Right panel shows a simulated galaxy cluster with strong
lensing evidence from the Outer Rim cosmological simulation using the Pipeline for
Images of Cosmological Strong lensing (PICS) pipeline (Li et al., 2016) which mimics
the observations taken utilizing MegaCam. The performance of the PICS pipeline
are illustrated by the similarities between the observed and simulated strong lensing
galaxy cluster image including the lensed arc magnification, flexure, galaxy cluster
members, interloper sources along the line of sight, bright stars, imaging defects, and
the instrument point spread function.

this relation.

1.3 The South Pole Telescope

The South Pole Telescope5 (SPT) is a 10-meter microwave, millimeter, and sub-

millimeter telescope located at the Amundsen-Scott South Pole research station (see

Figure 1.12). The location has an ideal atmospheric environmental conditions en-

abling high sensitivity at millimeter and sub-millimeter wavelengths. The telescope

employs state-of-the-art detectors which have been used to map a portion of the

southern sky in the millimeter wavelength. The telescope capabilities and large col-

5https://pole.uchicago.edu/public/Home.html
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Figure 1.12: South Pole Telescope (SPT). Photo credit: Keith Vanderlinde. Im-
age of the 10-meter South Pole Telescope located at the Amundsen-Scott South Pole
research station.

laboration effort has resulted in the identification of over a thousand galaxy clusters

(see Figure 1.13) using the Sunyaev Zel’dovich effect.

1.3.1 The Thermal Sunyaev Zel’dovich effect

In 1970’s Sunyaev and Zel’dovich, proposed that the cosmic microwave background

(CMB) could be used to detect galaxy clusters by using the CMB as back-light. The

galaxy clusters leave a shadow when observed due to the interaction between the

hot cluster gas and the CMB photons. The thermal Sunyaev-Zel’dovich effect (SZe;

Sunyaev & Zeldovich 1972) describe an up-scatter in the energy of a CMB photon as

it interacts with highly energetic electrons in the hot plasma located in the galaxy

cluster intracluster medium. Only ∼ 1% of CMB photons get up-scattered by the

galaxy cluster, their energy shifts the CMB spectrum, and the effect can be observed

in the maps from the CMB (see Figure 1.14). With advancements in the detectors

and the increase in their numbers used to map the CMB, the resolution and precision
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Figure 1.13: SPT Galaxy Cluster Samples. Mass redshift distributions for three
galaxy cluster samples from the South Pole Telescope: SPT-SZ 2500 deg2 (Bleem
et al., 2015), SPT-Pol 100 deg2 (Huang et al., 2020), and SPT-ECS (Bleem et al.,
2020). A total of over 1, 000 galaxy clusters were identified and cataloged in these
works.
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CMB Spectrum

SZ Spectrum

Figure 1.14: Cosmic Microwave Background, CMB, and Sunyaev-Zel’dovich
effect, SZe, Energy Spectrum. From Bleem 2017 University of Michigan Collo-
quium obtained by private communication and credited to Tom Crawford and Brad
Benson. The top panel shows the CMB spectrum in red and the shift due to the up-
scatter of energy in the CMB photons after interacting with the galaxy cluster hot
plasma. The bottom panel then shows the difference between the CMB and the SZe
spectrum. The 3 regions indicate observing bands that are used to identify sources
utilizing the SZe technique.

of the CMB observations have made the SZe a unique method to detect thousands of

galaxy clusters from both space- and ground-based observatories like Planck, ACT,

and SPT. In Figure 1.15, a 50 deg2 patch of the sky observed in the 150GHz frequency

by SPT is shown. Highlighted in it are different sources of interest particularly the

galaxy clusters which can be identified as darker regions where the photon energy has

shifted due to its interaction with the galaxy cluster.

SPT is one of the telescopes taking the most advantage of the SZe effect to iden-

tify galaxy cluster across cosmic time. In addition to detecting galaxy clusters, the

integrated SZe signal correlates well with the galaxy cluster mass at large scales (Motl
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Figure 1.15: SPT observations of the CMB. From Bleem 2017 University of
Michigan Colloquium obtained by private communication and credited to the SPTpol
collaboration. 150 GHz observation of the CMB with SPT. In the image different
features are identified. Galaxy clusters appear as shadows in this image.
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et al., 2005). The combination of the detection and mass estimate makes the SPT

galaxy cluster sample of particular interest for a variety of studies including cosmol-

ogy, galaxy cluster properties, and their evolution through cosmic time.

1.3.2 South Pole Telescope Galaxy Cluster Sample

The South Pole Telescope galaxy cluster catalogs are of high completeness and

purity. Three galaxy cluster catalogs were publicly released6 to date. The three

galaxy cluster catalogs are: the SPT-SZ 2500deg2 with 516 galaxy clusters (Bleem

et al., 2015), the SPT Extended Cluster Survey (SPT-ECS) with 448 galaxy clusters,

and the SPTpol 100deg2 with 79 galaxy clusters for a grand total of 1043 galaxy

clusters, shown in Figure 1.13 is their mass and redshift. The SPT galaxy clusters

cover a broad range in the mass and redshift space making these cluster samples useful

for studies of galaxy cluster properties and their evolution through cosmic time. Of

particular interest is the selection function of these samples, which is almost redshift

independent and mass limited.

In addition to the large samples of galaxy clusters form SPT, extensive optical

imaging and spectroscopic follow-up has been pursued by the collaboration. Space-

based optical observations from HST for around 200 galaxy clusters (see top panels

of Figure 1.16 for examples from HST GO:15837, PI:Mahler) complements a uniform

optical follow-up program undertaken with the ground-base Magellan Telescopes us-

ing the Parallel Imager for Southern Cosmology Observations (PISCO) resulting in

observations of over 700 galaxy clusters (see bottom panels of Figure 1.16 for examples

from the PISCO ground-based imaging). This work has allowed for the optical con-

firmation of the galaxy clusters, estimation of galaxy cluster photometric redshifts,

and the identification of strong gravitational lensing evidence.

6https://pole.uchicago.edu/public/data/sptsz-clusters/
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A B

C D

Figure 1.16: Imaging of SPT Strong Lensing Galaxy Clusters. Top panels
are examples of SPT strong lensing galaxy clusters A) SPT−CL 0310−4647 and
B) SPT−CL 1141−2127 imaged with the Parallel Imager for Southern Cosmology
Observations (PISCO) instrument mounted on the Magellan Telescopes. The color
images are created using the g, r, and z filters. The bottom panels are examples of SPT
strong lensing galaxy cluster C) SPT−CL 0512−3848 and D) SPT−CL 2325−4111
imaged with the Hubble Space Telescope (GO:15837, PI: Mahler). The HST color
images are created using the F140W, F814W, and F606W filters. The field of view
for all the images is 1.5′ × 1.5′.
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Figure 1.17: Strong Lensing SPT Galaxy Clusters. Similar to Figure 1.13, where
the blue circles indicate the SPT galaxy clusters for which strong lensing evidence
has been identified.

1.3.3 The SPT Strong Lensing Galaxy Clusters

From the extensive optical follow-up by the SPT collaboration a total of 193 galaxy

clusters have been identified for having some strong lensing evidence. In Figure 1.17,

I show all of the SPT galaxy clusters that have been catalogued and indicate the

strong lensing galaxy clusters. The strong lensing galaxy clusters identified by SPT

are unique due to the large number of clusters identified and their broad mass and

redshift distributions. The identification of the multiply imaged lensed sources serve

as important positional constraints for the lens modeling and estimating the mass at

the cores of these galaxy clusters. In addition of the arcs locations in the sky, the

redshift of the background sources and the lens are needed to estimate the different

distance allowing us to constrain the geometry of the system, assuming a cosmology.

The most reliable redshifts are measured from spectroscopic observations of sources

of interest.

The University of Michigan has been one of the leads in the spectroscopic follow-
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Figure 1.18: Magellan Clay Telescope and Its Primary Mirror. The Magellan
Clay Telescope in combination with the Low Dispersion Survey Spectrograph (LDSS-
3C) instrument are extensively utilized for the spectroscopic follow-up of strong grav-
itational lensing evidence and clusters (PI: Remolina González). The left panel shows
the telescope dome and the right panel shows the primary 6.5 meter primary mirror.

up of SPT strong lensing galaxy clusters, and I have been the PI of this effort for the

past four years (see Appendix D). This program employs the Low Dispersion Survey

Spectrograph - 3C (LDSS-3C) mounted on the Magellan Clay Telescope (Figure 1.18

shows on the left panel an image of the Magellan Clay Telescope and on the right

panel an image of the 6.5 meter primary mirror with me standing in-front of it for

scale). This instrument’s high efficiency, throughput, and broad wavelength coverage

is highly compatible for this work. Multi object slit masks provide increased efficiency

by targeting multiple objects in the 8.3′ × 6.4′ field of view. In addition to targeting

the strong lensing evidence, the galaxy cluster members are also targeted enabling us

to acquire precise spectroscopic redshifts for the galaxy cluster itself. We were able

to achieve a success rate of nearly 90% by complementing the LDSS-3C data with

spectroscopy in the near infrared (NIR) spectroscopy program from The University

of Chicago utilizing the Folded-port InfraRed Echellette (FIRE) instrument on the

Magellan Baade Telescope.
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The positional information from the optical imaging and the spectroscopic mea-

surements from the spectroscopic follow-up program result in the constraints needed

to compute the galaxy cluster core mass. The efficient and accurate methods of

the mass enclosed by the Einstein radius (see Chapter II) and the core mass from

a Single-Halo Lens Model (see Chapter III) are useful for this work and computing

the core mass for a large sample of strong gravitational lensing galaxy clusters. The

combination of the core mass estimate from strong lensing and the SZe mass in the

outskirts of the cluster serve to constrain the density profile of the galaxy cluster and

measure their concentration.

The concentration-mass relation of the SPT strong lensing galaxy clusters will

be using the largest sample of strong lensing galaxy clusters with a well-understood

selection function, spanning a broad mass and redshift range. The comparison be-

tween the simulated predictions and the large sample of strong lensing galaxy clusters

identified by SPT is a unique opportunity to explore the concentration-mass relation

for a broad range of galaxy cluster masses through cosmic time.

1.4 Dissertation Overview

The goal of this dissertation is to measure the concentration-mass relation across

cosmic time. To facilitate this measurement in a large sample of clusters, I developed

two fast methods to compute the mass at the core of strong lensing galaxy clusters and

assess their efficiency, accuracy, and precision using a cosmological simulation. We

demonstrate the application of these two methods in observational data by comparing

the mass estimate to that from publicly available detailed lens models, and apply

them to a sample drawn from the SPT galaxy clusters. We combine a mass estimate

from the core and outskirts of simulated and observed galaxy clusters to constrain

the radial, mass, density profile and measure the concentration-mass relation across

cosmic time. The dissertation is composed of five chapters.
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Chapter II describes the assessment of the mass enclosed by the Einstein radius

as a zeroth order efficient method to measure the mass at the cores of strong lensing

galaxy clusters. This work utilizes the Outer Rim cosmological simulation for which

over a thousand of simulated strong lensing images were created. As part of the

assessment, an empirical correction is developed to help debias the mass measurement

and a set of recommendations are presented for the application of this method to large

samples of observed strong lensing galaxy clusters. This chapter is published in ApJ

as Remolina González et al. (2020), ApJ, 902, 44.

Chapter III describes the assessment of the mass enclosed by the effective Einstein

radius computed from a Single-Halo Lens Model as a first order efficient method to

estimate strong lensing galaxy clusters’ core mass. Similar to the work from the

previous chapter, the Outer Rim cosmological simulation is used. The Single-Halo

Lens Models (SHM) uses the well-established lensing algorithm Lenstool (Jullo et al.,

2007). The assessment of the SHM performance is undertaken through a quick visual

inspection of the lens model outputs and the effect of the strong lensing configuration.

This chapter is published in ApJ as Remolina González et al. (2021a), ApJ, 910, 144.

Chapter IV builds on the previous two chapters. In this chapter the two efficient

methods are applied to a large sample of 62 observed galaxy clusters from the SGAS,

CLASH, HFF, and RELICS samples. For our comparison the publicly available

detailed lens models are utilized. This work directly showed the benefit of applying

these two methods on large samples of observed strong lensing clusters. This chapter

is submitted and under peer-review by ApJ. It is available through the arXiv e-prints

as Remolina González et al. (2021b) arXiv:104.03883.

Chapter V describes the measurement of the concentration-mass relation through

cosmic time for strong lensing galaxy clusters from the South Pole Telescope. The

Outer Rim simulation is utilized to test the modeling procedures and predict the c-M

relation for strong lensing clusters. The SPT strong lensing sample is unique for its
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large number of clusters, well understood selection function, and broad coverage of

the mass and redshift space. We measure the mass at the core of the galaxy clusters

using the strong lensing evidence leveraging the methods developed in the previous

chapters. We combine it with the SZe mass measured at the outskirts of the cluster

to constrain the mass density profile from which the concentration is measured. This

chapter is under preparation and will go through the SPT collaboration manuscript

review process before being submitted to ApJ.

Chapter VI provides a summary of the main results from the work presented as

part of this dissertation. A description of future extensions of this work to include

other strong lensing samples. Last a brief discussion of new methods being devel-

oped to identify and characterize strong gravitational in the era of large astronomical

surveys.

34



CHAPTER II

Efficient Mass Estimate at the Core of Strong

Lensing Galaxy Clusters Using the Einstein Radius

Preface

This chapter has been adapted from a paper of the same title published in the

Astrophysical Journal, Volume 902, Page 44 (Remolina González et al., 2020), with

co-authors K. Sharon, B. Reed, N. Li, G. Mahler, L. E. Bleem, M. D. Gladders,

A. Niemiec, A Acebron, and H. Child. The paper is adapted and partially repro-

duced here under the non-exclusive rights of republication granted by the American

Astronomical Society to the paper authors.

For this project, I utilized already created strong lensing simulations to character-

ize the accuracy, precision, and sources of uncertainty of a fast method to measure the

mass at the core of strong lensing galaxy clusters, the mass enclosed by the Einstein

radius. I performed all of the analysis shown with the feedback from the co-authors

and the anonymous referee. I produced all of the figures and tables presented in the

paper. I wrote nearly the whole text with the feedback and suggestions from the

co-authors and the anonymous referee.
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Abstract

In the era of large surveys, yielding thousands of galaxy clusters, efficient mass

proxies at all scales are necessary in order to fully utilize clusters as cosmological

probes. At the cores of strong lensing clusters, the Einstein radius can be turned into

a mass estimate. This efficient method has been routinely used in literature, in lieu

of detailed mass models; however, its scatter, assumed to be ∼ 30%, has not yet been

quantified. Here, we assess this method by testing it against ray-traced images of

cluster-scale halos from the Outer Rim N-body cosmological simulation. We measure

a scatter of 13.9% and a positive bias of 8.8% in M(< θE), with no systematic cor-

relation with total cluster mass, concentration, or lens or source redshifts. We find

that increased deviation from spherical symmetry increases the scatter; conversely,

where the lens produces arcs that cover a large fraction of its Einstein circle, both the

scatter and the bias decrease. While spectroscopic redshifts of the lensed sources are

critical for accurate magnifications and time delays, we show that for the purpose of

estimating the total enclosed mass, the scatter introduced by source redshift uncer-

tainty is negligible compared to other sources of error. Finally, we derive and apply

an empirical correction that eliminates the bias, and reduces the scatter to 10.1%

without introducing new correlations with mass, redshifts, or concentration. Our

analysis provides the first quantitative assessment of the uncertainties in M(< θE),

and enables its effective use as a core mass estimator of strong lensing galaxy clusters.

2.1 Introduction

Located at the knots of the cosmic web, galaxy clusters trace regions of over-

density in the large-scale structure of the universe, making them ideal cosmic labo-

ratories. As cosmological probes (see review articles Allen et al. 2011; Mantz et al.

2014), clusters have been used to study dark energy (e.g., Frieman et al. 2008; Heneka
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et al. 2018; Bonilla & Castillo 2018; Huterer & Shafer 2018) and dark matter (e.g.,

Bradač et al. 2006; Clowe et al. 2006; Bradač et al. 2008a; Diego et al. 2018), constrain

cosmological parameters (e.g., Gladders et al. 2007; Dunkley et al. 2009; Rozo et al.

2010; Mantz et al. 2010, 2014; de Haan et al. 2016; Bocquet et al. 2019), measure the

baryonic fraction (e.g., Fabian 1991; Allen et al. 2008; Vikhlinin et al. 2009) and the

amplitude of the matter power spectrum (e.g., Allen et al. 2003). Crucial to cosmo-

logical studies using galaxy clusters is a large well-defined sample with a complete

characterization of the selection function of the observations (e.g., Hu 2003; Khedekar

& Majumdar 2013).

The mass distribution of galaxy clusters (cluster mass function) provides a con-

nection between the observables and the underlying cosmology, and can constrain

structure formation models (e.g., Jenkins et al. 2001; Evrard et al. 2002; Corless &

King 2009). The galaxy cluster dynamical and non-linear hierarchical merging growth

process (Bertschinger, 1998) introduces variance in the astronomical measurements

(Evrard et al., 2002; Allen et al., 2011; Huterer & Shafer, 2018). Understanding the

systematic errors and assumptions made when estimating the mass of galaxy clus-

ters is paramount as they depend on observable astrophysical quantities (e.g., Evrard

et al. 2002; Huterer & Shafer 2018).

With the advent of recent and upcoming large surveys spanning a broad wave-

length range, thousands of strong lensing galaxy clusters will be detected out to red-

shift of z ∼ 2 with a high completeness and purity. Examples include the surveys from

the South Pole Telescope (SPT-3G, Benson et al. 2014; SPT-SZ 2500 deg2, Bleem

et al. 2015), Atacama Cosmological Telescope (ACT, Marriage et al. 2011; Hilton

et al. 2018), Cerro Chajnantor Atacama Telescope (CCAT, Mittal et al. 2018), Dark

Energy Survey (DES, Abbott et al. 2018), Euclid (Laureijs et al., 2011; Boldrin et al.,

2012), Vera Rubin Observatory Legacy Survey of Space and Time (LSST, LSST Sci-

ence Collaboration et al. 2009), ROSAT All-Sky Survey (RASS, Ebeling et al. 1998,
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2000), and eROSITA (Pillepich et al., 2018). A thorough characterization of the selec-

tion function and bias implicit in the observations and detections is key. In addition,

multi-wavelength coverage of some galaxy clusters will allow for an extensive study

of their physical components.

Studies of the mass profile of galaxy clusters can provide us with information

related to evolution of structure, formation and feedback processes, and dark matter

properties. The methods used to estimate the mass of galaxy clusters include X-ray

(e.g., Vikhlinin et al. 2009; Ettori et al. 2019; Mantz et al. 2018), Sunyaev-Zel’dovich

effect (SZ, Sunyaev & Zeldovich 1972, 1980; e.g., Reichardt et al. 2013; Sifón et al.

2013; Planck Collaboration et al. 2016), richness (e.g., Yee & Ellingson 2003; Koester

et al. 2007; Rykoff et al. 2016), dynamics (e.g., Gifford & Miller 2013; Foëx et al. 2017),

and gravitational lensing (e.g., Kneib & Natarajan 2011; Hoekstra et al. 2013; Sharon

et al. 2015, 2020). Gravitational lensing (weak and strong) is the best technique to

probe the total projected (baryonic and dark matter) mass density, independent of

assumptions on the dynamical state of the cluster or baryonic physics. At the cores

of galaxy clusters, strong gravitational lensing measures mass at the smallest radial

scales and most extreme over-densities; when coupled with a mass proxy at a large

radii, strong lensing can constrain global properties of the mass profile, including the

concentration parameter.

Advances in strong lens (SL) modeling, including better understanding of SL sys-

tematics (Johnson & Sharon, 2016), its effects on constraining cosmological parame-

ters (Acebron et al., 2017), magnification (Priewe et al., 2017; Raney et al., 2020b),

consequences due to the number of constraints (Mahler et al., 2018), and the use of

spectroscopic and photometric redshifts (Cerny et al., 2018), make strong lens mod-

eling a robust technique to study galaxy clusters and the background universe they

magnify. A detailed lens model requires extensive follow-up: (1) imaging to identify

multiple images and (2) spectroscopy of the lensed images to obtain spectroscopic
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redshifts of the sources (e.g., Johnson et al. 2014; Zitrin et al. 2014; Diego et al. 2016;

Kawamata et al. 2016; Lotz et al. 2017; Strait et al. 2018; Lagattuta et al. 2019;

Sebesta et al. 2019; Sharon et al. 2020). The location of the multiple images and the

spectroscopic redshifts are used as constraints when computing the SL models. Typi-

cally, a detailed SL model for a rich galaxy cluster can take weeks to finalize, and it is

not an automated process. Given the large numbers of strong lensing galaxy clusters

expected from coming surveys, an accurate, fast, and well-characterized method of

extracting basic strong lensing information is needed.

In this chapter, we evaluate the use of the geometric Einstein radius to estimate

the mass at the core of SL galaxy clusters. We determine the uncertainties in the

mass estimate, identify its limitations, investigate dependencies on the shape of the

projected mass distribution, and find a possible empirical correction to de-bias the

mass estimate. We base our analyses on the state-of-the-art, dark matter only, ‘Outer

Rim’ simulation (Heitmann et al., 2019). The Outer Rim contains a large sample of

massive dark matter halos, and has sufficient mass resolution to enable precise and

accurate ray-tracing of the strong lensing due to these halos.

This chapter is organized as follows. In Section 2.2, we describe the lensing for-

malism, including a detailed description of the assumptions of the Einstein radius

method to compute the enclosed mass. In Section 2.3, we summarize the properties

of the ‘Outer Rim’ simulation, the halo sample used in our analysis, and the cosmo-

logical framework. In Section 2.4, we detail how we measure the Einstein radius from

the ray-traced images and compute both the inferred mass enclosed by the Einstein

radius and the true mass from the simulation. In Section 2.5, we present our analysis

of the mass estimate and the systematics that contribute to the scatter and bias. In

Section 2.6, we investigate the effect of not having the redshift information of the

background sources (zS) on the mass estimate. In Section 2.7, we propose an empir-

ical correction to de-bias the mass estimate. Lastly, we present our conclusions and
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offer a prescription for applying our findings to real data in Section 2.8.

For consistency with the simulations, we adopt a WMAP -7 (Komatsu et al., 2011)

Flat ΛCDM cosmology in our analysis ΩΛ = 0.735, ΩM = 0.265, and h = 0.71. The

large scale masses are reported in terms of MNc, where MNc is defined as the mass

enclosed within a radius at which the average density is N times the critical density

of the universe at the cluster redshift.

2.2 Background: Strong Gravitational Lensing

Gravitational lensing (see Schneider 2006; Kneib & Natarajan 2011 for reviews

about gravitational lensing) occurs when photons deviate from their original direction

as they travel to the observer through a locally curved space-time near a massive

object, as described by Einstein’s General Theory of Relativity. The lensing equation

(2.1) traces the image-plane position of images of lensed sources to the source plane

location of the background sources. When multiple solutions to the lensing equation

exist, multiply-imaged systems are possible, defining the strong lensing regime. The

lensing equation is written as:

β = θ −α(θ),

α(θ) =
DLS(zL, zS)

DS(zS)
α̂(θ),

(2.1)

where β is the position of the lensed source in the source plane, θ is the image

plane location of the images, α(θ) is the deflection angle, DLS(zL, zS) is the angular

diameter distance between the lens and the source, DS(zS) is the angular diameter

distance between the observer and the source, zL is the redshift of the lens (in our case

the redshift of the galaxy cluster), and zS is the redshift of the background source.

The deflection angle depends on the gravitational potential of the cluster projected

40



along the line-of-sight.

The magnification, µ, of a gravitational lens can be expressed as the determinant

of the magnification matrix:

µ−1 = det(A−1) = (1− κ)2 − γ2, (2.2)

where κ is the convergence and γ is the shear. The locations of theoretical infinite

magnification in the image plane are called the tangential and radial critical curves,

naming the primary direction along which images (arcs) are magnified.

For a circularly symmetric lens with the origin centered at the point of symmetry,

the angles α(θ) and β are collinear with θ. Then the lens equation (eq. 2.1) becomes

one-dimensional, β = θ − α(θ), and the deflection angle is:

α(θ) =
2

θ

θ∫
0

θdθκ(θ)

=
4GM(< θ)

c2θ

DLS(zL, zS)

DL(zL)DS(zS)

= 〈κ(θ)〉θ,

(2.3)

where DL(zL) is the angular diameter distance from the observer to the lens, c is

the speed of light, and G is the gravitational constant. We can then substitute the

deflection angle into the one-dimensional lens equation:

β = θ(1− 〈κ(θ)〉), (2.4)

where the critical region, defined as 〈κ(θ)〉 = 1, defines the tangential critical curve.

In this circularly symmetric case, α(θ) = θ, Equation 2.3 becomes
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θ2 =
4GM(< θ)

c2

DLS(zL, zS)

DL(zL)DS(zS)
. (2.5)

Last, substituting the critical surface density, Σcr(zL, zs),

Σcr(zL, zS) =
c2

4πG

DS(zS)

DL(zL)DLS(zL, zS)
, (2.6)

we obtain the expression of the Einstein radius (Narayan & Bartelmann, 1996; Schnei-

der, 2006; Kochanek, 2006; Bartelmann, 2010; Kneib & Natarajan, 2011):

θ2
E =

M(< θE)

πΣcr(zL, zS)D2
L(zL)

. (2.7)

Re-arranging Equation 2.7, the total projected mass enclosed by the Einstein radius

of a circularly symmetric lens can be computed as:

M(< θE) = Σcr(zL, zS) π [DL(zL)θE]2. (2.8)

An Einstein ring results from the exact alignment of the source, lens, and observer,

as well as the circular symmetry of the lens. This causes an observed ring-like feature

to appear around the lens. However, the three-dimensional mass density distribution

of both simulated halos and observed clusters is better described by a triaxial ellip-

soid (Wang & White, 2009; Despali et al., 2014; Bonamigo et al., 2015). Complete

Einstein rings are not often observed around clusters due to the more complex mass

distribution; nevertheless, authors often use the clustercentric projected distance to a

giant arc as a proxy for the Einstein radius. The mass calculated using Equation 2.8

is useful for the study of galaxy clusters, since it provides a quick estimate of the

mass within the Einstein radius. It was estimated to produce a scatter of ∼ 30% with

respect to the true mass enclosed (Bartelmann & Steinmetz, 1996; Schneider, 2006).
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This uncertainty was adopted in the literature extensively when estimating the total

projected mass enclosed by the Einstein radius (e.g., Allam et al. 2007; Belokurov

et al. 2007; Werner et al. 2007; Diehl et al. 2009; Bettinelli et al. 2016; Dahle et al.

2016; Nord et al. 2016), despite limited quantification of its accuracy and precision.

2.3 Data: Simulated Lenses

2.3.1 The Outer Rim Simulation

To assess the accuracy and precision of the enclosed mass inferred from the Ein-

stein radius, we use the state-of-the-art, large-volume, high-mass-resolution, gravity-

only, N-body simulation ‘Outer Rim’ (Heitmann et al., 2019) with the HACC frame-

work (Habib et al., 2016) carried out at the Blue Gene/Q (BG/Q) system Mira at

Argonne National Laboratory. The cosmology used assumes a Flat-ΛCDM model,

with parameters adopted from WMAP-7 (Komatsu et al., 2011), h = 0.71 and

ΩM = 0.264789. The size of the simulation box on the side is L = 3000 Mpc h−1

and it evolves 10, 2403 ≈ 1.1 trillion particles with a mass resolution of mp =

1.85× 109 M� h−1 and a force resolution in co-moving units of 3 kpc h−1.

The large volume of the simulation run allows for many massive halos to be

included in the same simulation box, covering the redshift range of interest (z ∼

0.1− 0.7), and the high mass resolution provides excellent projected mass profile dis-

tributions of the individual clusters. The large number of massive halos allows for a

rigorous statistical analysis, representative of the universe and is sufficient to enable

strong lensing computations without the need of re-simulation. In previous simula-

tion efforts when small numbers of massive halos were present in the simulation box,

re-simulation of those halos was done to increase the sample to better the statistics

(Meneghetti et al., 2008, 2010). The Outer Rim, amongst other applications, was

used to study dark matter halo profiles and the concentration-Mass relation (Child
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et al., 2018) and to construct realistic strong lensing simulated images (Li et al.,

2016).

The majority of the mass in galaxy clusters is in the form of dark matter. Baryons

contribute mostly at the core of the galaxy cluster, where the brightest cluster galaxy

(BCG) and the hot intra-cluster medium (ICM) reside. Studies have found non-

negligible baryonic effects from subhaloes of satellite galaxies as well as the BCG

at small θE scale (Meneghetti et al., 2003; Wambsganss et al., 2004; Oguri, 2006;

Hilbert et al., 2007, 2008; Wambsganss et al., 2008; Oguri & Blandford, 2009). Fully

accounting for these baryonic effects awaits for simulations that include baryonic

physics in large cosmological boxes.

2.3.2 Simulated SPT-like Strong Lensing Sample

Galaxy cluster halos were identified in the simulation using a friends-of-friends

algorithm with a unit-less linking length of b = 0.168 (Heitmann et al., 2019). The

surface mass density was then computed using a density estimator. Extensive testing

by Rangel et al. (2016) showed that the mass resolution is robust enough to compute

strong lensing for halos with masses M500 > 2× 1014 M� h−1. Following an SPT-like

selection function, the halos with a mass larger than M500 > 2.1× 1014 M� h−1 were

selected to form the cluster sample.

The simulated halo masses (M500, M200) and concentrations (c200) that we use in

this work were calculated by Li et al. (2019) and Child et al. (2018). We adopt the

dynamical state values and definitions from Child et al. (2018); a dynamically-relaxed

cluster is identified where the distance between the dark matter halo center and the

spherical over-density center is smaller than 0.7R200. When referring to the dynamical

state of the galaxy cluster, the center was defined as the center of the potential from

all the particles in the simulation corresponding to the particular dark matter halo.

To select SL clusters out of the mass-limited sample, we first compute κ(θ) for a
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background source redshift of z = 2 for each line of sight. We then identify strong

lensing clusters as all lines of sight for which the Einstein radius of the critical region

that satisfies 〈κ(θ)〉 = 1 is larger than a few arcseconds. The resulting sample of SPT-

like simulated strong lenses includes 74 galaxy cluster halos spanning the redshift

range of zL ∼ 0.16− 0.67.

In Figure 2.1, we summarize some of the halo properties of the mass-limited sample

and the SL sample. The first three panels show the distributions of redshifts, masses,

and concentrations. As can be seen in these panels, the distribution of strong lensing

clusters peaks at higher total mass, higher concentration, and lower redshift than the

mass-limited sample. Similar trends have been identified in both simulations (Oguri

& Hamana, 2011; Giocoli et al., 2014) and observations (Gralla et al., 2011; Oguri

et al., 2012).

In the forth panel, we plot the mass-redshift distribution of the simulated clusters

and that of the observed clusters from the SPT-SZ 2500 deg2 survey (Bleem et al.,

2015).

As can be seen in the right panels of Figure 2.1, the Bleem et al. (2015) strong

lensing sample extends to higher cluster redshifts than our simulated sample. The

effective redshift cut in the simulated sample is imposed by the selection of cluster-

scale lenses by their lensing efficiency for a zS = 2 source plane. On the other hand,

the observational SL clusters have been identified using imaging data from various

ground- and space-based observatories. We note that while our simulated sample

is statistically inconsistent with the full Bleem et al. (2015) strong lensing sample,

considering only lenses at zL < 0.7 a Kolmogorov-Smirnov (KS) test does not reject

the hypothesis that the simulated and observed SL samples are drawn from the same

underlying distribution (KS-statistic 0.264, p-value 0.159). Regardless, the results

presented in this work are not dependent on these samples being drawn from the

same underlying distribution.
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Figure 2.1: Properties of the Simulated Sample. Top-Left : the total mass
(M200), Top-Right : redshift (z), and Bottom-Left : concentration (c200) distributions
of the simulated halos. The mass-limited sample is shown in blue, and strong lenses
are in orange. The masses and concentrations were computed by Li et al. (2019)
and Child et al. (2018). The counts are normalized by the total number of halos
in each sample. Bottom-Right : the mass-redshift distribution (M500 - z). Orange
squares indicate the Outer Rim strong lensing cluster halos; grey crosses are observed
clusters from the 2500-Square-Degree SPT-SZ Survey (Bleem et al. 2015). The green
circles, and the green dotted line in the Right panels, are strong lensing galaxy clusters
from Bleem et al. (2015), which were identified from very heterogeneous imaging data
and are likely not representative of all the strong lenses in the SPT sample.
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The redshift range of the simulated SL sample, zL ∼ 0.16−0.67, is similar to that

of the Sloan Giant Arc Survey (SGAS; M. Gladders et al., in preparation; Bayliss

et al. 2011a; Sharon et al. 2020), which identified lensing clusters from giant arcs

in shallow optical SDSS imaging. Future studies will extend to higher redshifts to

complement surveys with samples of galaxy clusters out to z = 1.75 such as the

SPT-SZ 2500-Square-Degree survey (Bleem et al., 2015).

2.3.3 Ray Tracing and Density Maps

The ray-traced images and the projected mass distributions of the galaxy clusters

have a size of 2048 × 2048 pixels and a resolution of dx = 0.′′09 per pixel. For more

details of the exact procedure to obtain the lensing maps and the ray-traced images,

refer to Li et al. (2016). Using the surface density distributions of these clusters,

we compute all of the lensing maps, including the deflection angle (α) using Fourier

methods, the convergence (κ), the shear (γ), the magnification (µ), and the tangential

and radial critical curves.

We draw redshifts for 1024 background sources from a distribution ranging from

z ∼ 1.2 to z ∼ 2.7, following the observed distribution of Bayliss et al. (2011a) (shown

in Figure 2.2). The image plane of each cluster was generated multiple times, resulting

in 5− 24 ray-tracing realizations for each cluster halo. The background sources were

randomly placed in areas of high magnification to produce highly magnified (total

magnification > 5) arcs easily detected from ground based observations (e.g., Bayliss

et al. 2011a; Sharon et al. 2020).

We note that the ray-tracing did not take into account structures along the line-of-

sight. Structure along the line-of-sight can boost the total number of lenses observed

by increasing the SL cross-section of individual clusters, having a larger effect on

the less massive primary lensing halos (Puchwein & Hilbert, 2009; Bayliss et al.,

2014; Li et al., 2019). The magnification of the arcs is also affected by the structure
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Figure 2.2: Simulated Background Source Redshifts, zS. The distribution is
centered at z = 2, consistent with the observed redshift distribution of highly magni-
fied giant arcs (Bayliss et al., 2011a).

along the line-of-sight requiring particular care when studying the background source

properties (Bayliss et al., 2014; D’Aloisio et al., 2014; Chiriv̀ı et al., 2018) and using

strong lensing clusters for cosmological studies (Bayliss et al., 2014). A statistical

analysis of how the measurement of the core mass is affected by line of sight structure

is left for future work.

We use the ray-traced images to compute the mass enclosed by the Einstein radius,

and the surface density maps as “true” mass to characterize the efficacy of this mass

estimate.
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2.4 Methodology

Our methodology attempts to mirror the procedures that would be used in SL

analyses of real data. Even in large surveys such as SPT, this includes a significant

component of manual inspection and identification of SL evidence. Manual inspection

is also required for targeted spectroscopic follow-up.

2.4.1 Einstein Radius Measurement

The first step is to measure an Einstein radius from the positions of the lensed

images (arcs). To locate the arcs, we examine each of the ray-traced images by eye to

identify sets of multiple images using their morphology and expected lensing geometry,

mimicking the process of finding multiply-imaged lensed systems in observational

data. If multi-band information is available lens modelers also take advantage of

color information of the lensed images, but in this particular case, color information

is not available from the ray-traced images.

Using this process, we created a catalog with flags identifying the tangential and

radial arcs, corresponding to the tangential and radial critical curves, respectively (see

Section 2.2). Identified lensed images whose classification (radial or tangential) is un-

clear were noted. The radial distribution of the identified arcs is shown in Figure 2.3.

We find that the distribution of tangential and radial arcs match our expectations

from lensing geometry, the radial arcs are found near the center while the tangen-

tial arcs are typically found farther out. The distribution we find is qualitatively

consistent with Florian et al. (2016).

Since the Einstein radius is a representation of the tangential critical curve (Bartel-

mann, 2010; Kneib & Natarajan, 2011), we only include the tangential arcs when

finding the Einstein radius. We fit a circle to the tangential arcs as explained below;

the radii of the resulting circles shall be our Einstein radii, θE.

We explore three alternatives for the centering of the circle; in the first method
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Figure 2.3: Radial Distribution of the Identified Arcs. Radial distances are
measured with respect to the pixel with the highest projected mass density of the
simulated galaxy cluster. We display the distribution of the tangential arcs with an
orange dashed line, radial arcs with a green dashed-dotted line, and those images
for which we are unsure with a red dotted line. The distribution of the radial and
tangential arcs matches our expectation from lensing geometry, having radial arcs
closer to the center while tangential arcs are found farther out.
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(hereafter fixed center) we fix the center of the circle to the point of highest surface

density of the projected mass from the simulated halo. Since in observations we

do not a priori know where the center of the dark matter halo is located, in the

second method we set the center as a free parameter (hereafter free center) with a

conservative uniform prior of ±13.′′5 from the projected 3-D potential center of the

halo. Because the free center requires two more free parameters, the free center

minimization was only performed on the cases where 3 or more multiple images were

identified as tangential arcs. In the observational realm, the BCG can be, and often

is, used as a proxy for the cluster center. The third method (hereafter fixed center

with BCG offset) mimics fixing the center to an observed BCG. Since the Outer

Rim simulation does not include baryonic information, we cannot determine the BCG

position directly from it. We therefore turn to studies that investigate the BCG offset

from the dark matter center. Harvey et al. (2019) explores the radial offset between

the BCG and the dark matter (DM) center as an observable test of self-interacting

dark matter (SIDM) models with different dark matter cross-sections. They find that

the BCG-DM offset follows a log-normal distribution, with the offsets in the cold

dark matter (CDM) case being the smallest (µ = 3.8 ± 0.7 kpc) and increases with

increasing dark matter cross section. We use the distribution of the SIDM model

with a DM cross-section of 0.3 cm2/g. This value represent a reasonable/conservative

upper boundary according to recent analysis (Pardo et al., 2019; Sagunski et al.,

2021). Following this rationale, we fix the center of the circle to a point offset from

the center of the dark matter halo, with a radial offset drawn from a log-normal

distribution with µ = 6.1± 0.7 kpc, in a random direction.

For the fitting procedure, we use an ensemble sampler Markov chain Monte Carlo

(MCMC) implemented for python using the libraries emcee1 (Foreman-Mackey et al.,

2013) and lmfit2 (Newville et al., 2014) method to fit a circle to the tangential arcs.

1Python emcee https://emcee.readthedocs.io/en/stable/
2Python lmfit https://lmfit.github.io/lmfit-py/index.html
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The fitting method minimizes the distance between the 2-D position of the arcs (vi-

sually identified morphological features that can be matched between the multiple

images) and the nearest point to it on the circle. We use a uniform prior in the

radius fitting parameter of 2.′′25 < θE < 45.′′0 for all three of our fitting methods. We

note that the cases where only a single arc is identified, the distance between the

fixed center and the arc is used to determine the radius of the circle and no scatter

is measured.

The distribution of the measured θE is shown in Figure 2.4 and the distribution

of the standard deviation, σ(θE), computed from the covariance matrix of the fit

is shown in Figure 2.5. Since the free center fitting procedure is significantly more

flexible, the standard deviation on the fitted θE for the free center is about 20 times

higher compared to that of the fixed center and fix center with BCG offset fit.

2.4.2 Inferred Mass

Taking the Einstein radius from Section 2.4.1 and the corresponding lens and

source redshifts (Section 2.3.2), we compute the enclosed projected mass, M(< θE),

via Equation 2.8. For our comparison, we use the projected mass distribution from

the simulation to measure the true mass enclosed within the same aperture. We refer

to this as the “true” mass, Msim(< θE). An example of this procedure is shown in

Figure 2.6.

2.4.3 Statistical approach to Correctly Represent the Universe

Our simulated sample consists of a total of 1024 ray tracing realizations through

74 strong lensing galaxy clusters, resulting with 5-24 ray-tracing realizations for each

cluster. Each ray-traced simulated realization includes one of the 74 cluster halos

and a single background source at a unique redshift. In addition, in some of the

realizations multiple distinct structures (clumps) were identified and used to measure
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Figure 2.4: Distribution of the Einstein Radius Fitted to the Simulations.
The fits to the identified tangential arcs utilizing the fixed center (blue), fixed center
with BCG offset (orange) and free center (green).
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Figure 2.5: Distribution of the Standard Deviation of the Measured Einstein
Radii, σ(θE). σ(θE) is measured in units of percentage utilizing the fixed center
(left), fixed center with BCG offset (middle), and free center (right). We find that
the standard deviation of the free center method is about 20 times higher than that
of the fixed center and fixed center with BCG offset methods.
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Figure 2.6: Example of the Simulated Images to Illustrate our Methodology.
Left : ray-traced image; the identified lensed images are indicated with magenta sym-
bols, with circles on tangential arcs and squares with a slash through on radial arcs.
We fixed the center to the highest surface density point from the projected mass dis-
tribution and fit a circle to the tangential arcs of radius of θE = 15.′′2, shown in green.
The mass inferred from the Einstein radius is M(< θE) = 3.38 x 1013 M�h−1. Right :
projected mass density distribution of the simulated galaxy cluster where the green
circle is the same aperture from the lensed image. The color-bar is in units of M�
Mpc−2 h. The “true” projected mass enclosed is Msim(< θE) = 3.00 x 1013 M�h−1.
We perform our analysis utilizing these two masses, the inferred (M(< θE)) and the
“true” (Msim(< θE)).
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more than one Einstein Radius for that particular realization. For this reason the ray-

trace realizations and Einstein Radius for a specific galaxy cluster are not independent

from each other.

To establish a robust analysis that represents the universe, includes the statistical

uncertainty of the fitted Einstein radius, and allows for the application to observa-

tional data, we weight each galaxy cluster to equal one. The ray-traced realizations

are then evenly weighted by a factor of one over the total number of realizations

for the specific cluster, and similarly the Einstein radii were weighted per ray-traced

image. For each galaxy cluster, we select, at random, one ray-traced image from that

cluster and one Einstein radius measurement for that realization. We then sample

the selected Einstein radius using a normal distribution with the mean as the best

fit Einstein radius and standard deviation equal to the uncertainty of the fitted Ein-

stein radius. We repeat this process 1, 000 times per cluster and use this sample with

74, 000 points for our statistical analysis.

2.5 Analysis of Results

In this section, we compare the mass inferred from the Einstein radius (M(< θE))

to the true mass (Msim(< θE)), measured from the surface density maps within the

same aperture (Figure 2.6); measure the scatter of this mass estimate; and explore

any dependence on the galaxy cluster properties, as well as observational information

available from the ray-traced images.

In Figure 2.7, we show a direct comparison between M(< θE) and Msim(< θE)

for the fixed center (left panel), fixed center with BCG offset (middle panel), and free

center (right panel) cases. We find that M(< θE) overestimates Msim(< θE) in all

cases, especially at large masses.

We measure an overall scatter of 13.9% and bias of 8.8% for the fixed center,

scatter of 14.8% and bias of 10.2% for the fixed center with BCG offset, and scatter
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Figure 2.7: Mass Comparison Between the M(< θE) and Msim(< θE). The
mass comparison for the fixed center (left), fixed center with BCG offset (middle),
and free center (right) are shown. Msim(< θE) and M(< θE) are given in units of
M� h

−1 and the solid black line is where Msim(< θE) = M(< θE). The bottom plots
show the ratio of the masses, M(< θE) / Msim(< θE). The total number of counts is
the 74, 000 sampled data points (Section 2.4.3) used in the analysis of the scatter and
bias of the M(< θE) compared to Msim(< θE). We find that M(< θE) overestimates
Msim(< θE) in all cases, especially at large masses, and the scatter is smallest for the
fixed center method and highest for the free center method.
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of 27.4% and bias of 20.2% for the free center. The scatter is defined as half the

difference between the 84th percentile and the 16th percentile of the distribution and

the bias is determined using the median of the distribution. We note that previous

estimates of the uncertainty associated with this measurements state ∼ 30% (Bartel-

mann & Steinmetz, 1996; Schneider, 2006), however, it is unclear how the uncertainty

is defined.

Comparing the results of the three methods, we find that the free center method is

the least reliable in recovering the true mass. Its measured θE statistical uncertainty

is 20 times higher than those of the fixed center (Figure 2.5), and the scatter and

bias in M(< θE) / Msim(< θE) are significantly higher (Figure 2.7). In addition, the

free center method is limited to cases where 3 or more tangential arcs are identified.

For these reasons, we do not recommend that the free center method be utilized to

measure the Einstein radius and the mass enclosed by the Einstein radius. The fixed

center with BCG offset shows that the additional scatter due to the offset between

the BCG and dark matter center is small, justifying the use of the observed BCG as

the fixed center of the Einstein radius. For the rest of the chapter we are only going

to consider the fixed center and the fixed center with BCG offset.

To explore the dependence of this mass estimate on lens properties, we consider

the ratio of inferred to true mass, M(< θE)/Msim(< θE), and group the measurements

into bins of equal number of points. We plot M(< θE)/Msim(< θE) with respect to

the Einstein radius in Figure 2.8. This figure shows clearly that the M(< θE) mass

estimate is not randomly scattered about the true mass, and that it overestimates the

true mass at all radii. In Section 2.7, we describe an empirical correction to de-bias

the measurement of the mass enclosed by the Einstein radius.

In the following sections, we explore possible causes, and identify observable indi-

cators of the scatter and bias of M(< θE).
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Figure 2.8: Ratio of inferred to “true” mass, M(< θE)/Msim(< θE), with
respect to θE. The fixed center (blue square) and fixed center with BCG offset center
(orange diamond), are shown. The symbol marks the median of the distribution of
the mass ratio, the horizontal error bars indicate the bin size, and the vertical error
bars represent the 16th and 84th percentile. We find a positive bias in all of the bins
and that both fixed center and fixed center with BCG offset yield a similar θE.
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2.5.1 Possible causes and indicators of the scatter in the M(< θE) mass

estimate

We explore possible dependence of the scatter and bias on M(< θE) with respect

to galaxy cluster properties, background source, and lensing geometry. The galaxy

cluster properties used in our analysis include: galaxy cluster redshift (zL), total

mass (M200), concentration (c200), dynamical state, and the shape of the tangential

critical curve. The total mass, concentration, and dynamical state information for the

simulated cluster sample are adopted from Child et al. (2018). From the background

source, we have the redshift information (zS) and from the lensing geometry, we

measure how much of the Einstein circle is covered by the arcs (φ), as we explain

below.

Lens and Source Redshifts The redshifts of the lens and the source determine

the lensing geometry of the system through the angular diameter distances (Equa-

tion 2.1). Redshifts can be determined observationlly, when spectroscopic or exten-

sive photometric information is available. The redshift distribution of the simulated

clusters (zL) from the Outer Rim and background source redshift (zS) are shown in

Figure 2.1 and Figure 2.2, respectively.

Total Mass and Concentration M200 and c200 are adopted from Child et al.

(2018). The distribution of the simulated galaxy cluster total mass and concentration

are shown in the left panels of Figure 2.1. We note that M200 and c200 are not directly

available from the imaging data at the core of the cluster where the strong lensing

evidence is present. However, since our aim is to use the core mass to inform the mass-

concentration relation, it is important to test whether this mass estimator introduces

correlated bias.
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Cluster Deviation from Spherical Symmetry Since galaxy clusters do not have

a circular projected mass distribution, we expect differences between Msim(< θE)

and M(< θE) due to deviations from the assumed circular symmetry. To assess the

deviation of the lens from spherical symmetry, we use the tangential critical curves

derived from the simulation as a proxy for the shape of the projected mass distribution

at the core of the cluster.We sample the tangential critical curves with a few hundred

to thousands of points by using the python library matplotlib.contour 3 setting a

contour level at 0 for the inverse magnification due to the tangential critical curve.

Using the technique described in Fitzgibbon et al. (1996), we fit an ellipse to each

tangential critical curve corresponding to every background source redshift. We then

use the resultant ellipticity, defined as ε = (a2 − b2)/(a2 + b2), where a is the semi-

major axis and b is the semi-minor axis. In Figure 2.9, we show three examples of the

ellipse fits to the tangential critical curve, over-plotted on the projected mass density

distribution.We plot the distribution of ellipticity of the tangential critical curve in

Figure 2.10. This characterization of the projected shape of the galaxy cluster is not

accessible directly from the observational data prior to a detailed SL model which

this method aims to avoid.

Galaxy Cluster Relaxation State We tested whether the relaxation state of the

galaxy clusters (see Section 2.3.2 for the simulated sample dynamical state descrip-

tion) can be used as a proxy for the deviation from spherical symmetry. Observa-

tionally, this can be determined from X-ray imaging (e.g., Mantz et al. 2015). In

Figure 2.10, we plot ε separated by the relaxation state of the galaxy cluster. We

perform a two sample Kolmogorov-Smirnov test to quantify the difference between

the two samples with a confidence level of 99.7%. The KS-statistic is 0.0896 with a

p-value of 0.0402. With this test, we cannot reject the null hypothesis that the two

samples are drawn from the same continuous distribution. From our KS test and

3Python matplotlib.contour https://matplotlib.org/3.1.0/api/contour api.html

60



Figure 2.9: Examples of the ellipticity (ε) of the tangential critical curve
(TCC) as a proxy for the cluster deviation from spherical symmetry. We
show as example three simulated clusters with different projected ellipticities. The
red line is the tangential critical curve for a particular background source redshift zS.
The dashed black line indicates the ellipse fitted to the tangential critical line, from
which we compute the ellipticity, ε. The lines are plotted over the projected mass
distribution of the corresponding simulated galaxy clusters. The x- and y- axes are
in units of arcseconds. The color bar indicates the surface density value in units of
M�h/Mpc2.
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Figure 2.10: Dynamical State and Deviation from Circular Symmetry. Dis-
tribution of the tangential critical curve (TCC) ellipticity, ε. The overall distribution
is indicated by the black line and the contributions from the dynamical (relaxed or
un-relaxed) state of the simulated galaxy clusters (from Child et al. (2018)) is indi-
cated by the shaded bars. We observe that the dynamical state information is not an
indicator of deviations from spherical symmetry of the simulated galaxy cluster.

Figure 2.10, we find no correlation between the dynamical state and ε.

The fraction of the Einstein circle covered by arcs of an individual lensed

source φ represents the fraction of the Einstein circle that is covered by arcs of a

given source. This property is easily accessible from the imaging data. In Figure 2.11,

we show three examples of lensed images plotted with their corresponding Einstein

circles fitted using the identified tangential arcs for both the fixed center (blue) and

an example of one of the realizations of a fixed center with BCG offset (orange). We

plot in Figure 2.12 the distribution of φ for both the fixed center (blue) and fixed

center with BCG offset (orange).
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Figure 2.11: The fraction of circle covered by the arcs (φ) for three examples
cases. The Einstein radius fitted to the identified tangential arcs for both the fixed
center (blue) and one example of the fixed center with BCG offset (orange) are plotted;
the corresponding centers of the circles are indicated by the crosses. The BCG offset
was determined by drawing a radial offset between the BCG and dark matter halo
from a log-normal distribution with µ = 6.1 ± 0.7 kpc (Harvey et al., 2019) and an
angle from a uniform distribution form 0 to 359 degrees. The fraction of the circle
covered by the arcs for the fixed center and fixed center with BCG offset is shown in
the legend. The x- and y-axis are in units of arcseconds.

2.5.2 Results of the Analysis of Systematics

We split the measurements of M(< θE) into equal bins of M200, c200, ε, zL, zS, and

φ and check whether the bias and scatter in the M(< θE) mass estimate depend on

these properties. We find that the scatter and bias of M(< θE)/Msim(< θE) do not

depend on four of these properties: the total mass, concentration, cluster redshift, and

source redshift, showing flat and uniform progression in panels A–D of Figure 2.13.

We also note, we find no difference in the bias and scatter of M(< θE)/Msim(< θE)

between the relaxed and un-relaxed clusters nor a correlation between the relaxation

state and the bias and scatter of M(< θE)/Msim(< θE).

Conversely, there are strong correlations between the scatter and bias with respect

to the ellipticity of the tangential critical curve (ε) and the fraction of the circle covered

by arcs (φ). As can be seen in panel E of Figure 2.13, as ε increases both the scatter

and bias increase. The dependence on the ellipticity is expected, since one of the main
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Figure 2.12: Distribution of the fraction of the circle covered by arcs (φ) for
a given source.
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Figure 2.13: Ratio of Inferred to “True” Mass (M(< θE)/Msim(< θE)) Binned
by Galaxy Cluster Properties, Background Source, and Lensing Geometry.
Mass ratio binned by total mass (M200, panel A), concentration (c200, panel B), cluster
redshift (zL, panel C), background source redshift (zS, panel D), tangential critical
curve ellipticity (ε, panel E), and fraction of circle covered by arcs (φ, panel F).
We show results for both the fixed center (blue square) and the fixed center with a
BCG offset (orange diamond). The symbol marks the median of the distribution, the
horizontal and vertical error bars indicate the bin size and scatter (the 16th and 84th
percentile of the distribution), respectively. We find that there is a positive bias in all
of the bins. We observe a clear trend with ε, where both the scatter and bias increase
with increasing ε, and φ, where both the scatter and bias decrease as φ increases.
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assumptions in the M(< θE) formalism is circular symmetry (ε = 0.0). Unfortunately,

the measurement of the ellipticity of the tangential critical curve cannot be determined

until after a lens model has been computed.

The scatter and bias of M(< θE) decrease with increasing φ (Figure 2.13, panel

F). This trend matches our expectation; lenses with φ closer to 1.0 are typically more

circular. Unlike the ellipticity, the fraction of the fitted circle covered by arcs is readily

available from the same data used for analysis of observed clusters. It is therefore

a useful estimator of lens-dependent uncertainty. For convenience, we tabulate the

information displayed in Panel F of Figure 2.13, in Table A.1 in the Appendix.

2.6 The Effect of Background Source Redshift

The redshifts are a piece of information that ideally would be available to the

lensing analysis, coming from spectroscopic follow-up (e.g., Sharon et al. 2020) or

using photometric redshifts (e.g., Molino et al. 2017; Cerny et al. 2018) from exten-

sive multi-band photometry. However, this may not always be the case, especially

considering future large surveys where follow-up may be incomplete. We therefore

investigate the additional scatter in the mass estimate due to an unknown source

redshift. In this analysis, we assume that we know the underlying distribution of the

background source redshifts (Bayliss et al., 2011a).

To evaluate this case, we use the Einstein radius from Section 2.4.1 and the lens

redshift from Section 2.3.2, but instead of using the actual source redshifts, we draw

10, 000 source redshifts from a normal distribution with µ = 2.00 and σ = 0.2.

We repeat the analysis in Section 2.5 with this set of drawn background source

redshifts. In Figure 2.14, we plot the ratio of the inferred to “true” mass in bins of

Einstein radius (left panels) and true background source redshift (right panels). We

plot the results for both the fixed center (top panels) and the fixed center with BCG

offset (bottom panels). For comparison, we over-plot the results from Section 2.5.2.

66



0.8

1.0

1.2

1.4

1.6

1.8

M
as

s R
at

io

zS Known (Fixed Center)
zS Unknown (Fixed Center)

0 10 20 30 40 50
E [arcsec]

0.8

1.0

1.2

1.4

1.6

1.8

M
as

s R
at

io

1.25 1.50 1.75 2.00 2.25 2.50
zS

zS Known (Fixed Center
w/ BCG Offset)
zS Unknown (Fixed Center
w/ BCG Offset)

Figure 2.14: The Effect of Source Redshift Uncertainty on the Results. The
blue square symbols and orange diamonds represent the fixed center and fixed center
with BCG offset, and are the same as Figure 2.8 and Figure 2.13, Panel D, respectively.
The ratio of the inferred to “true” mass for the unknown source redshift are indicated
with up-pointing, green, triangles and down-pointing, magenta, triangles. We find
that the uncertainty in source redshift has small effects on the results. As expected,
when binned by source redshift (right), we find that the inferred mass is low at
zS < 2.0 and high at zS > 2.0.

We compute a scatter of 13.8% (18.2%) and bias of 9.0% (8.5%) for the fixed center

(fixed center with BCG offset).

As can be seen in the left panel of Figure 2.14 and the scatter and bias of the

fixed center, not knowing the exact background redshift and assuming a normal dis-

tribution with µ = 2.00 and σ = 0.2 for typical giant arcs introduces a negligible

uncertainty, particularly when compared to the magnitude of the systematics pre-

sented in Section 2.5. Split by bins of background source redshift, the scatter remains

the same, however, the inferred mass is higher if zS > 2 and lower if zS < 2.
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It is important to note that precise source redshifts are critical for most appli-

cations of strong lensing (e.g., magnification, time delay, and detailed mass maps).

They become negligible in this case because the total enclosed mass is a particularly

robust measurement, and the goal is determining the mass of a statistical sample.

For mass estimates of individual systems, since the dependence on redshift is straight

forward (see Equation 2.8) the uncertainties can be easily determined.

2.7 Empirical Corrections

As can be seen in Figures 2.8 and 2.14, the scatter and bias of this estimator

shows dependence on θE. We explore the use of an empirical correction to un-bias

the mass estimate and reduce the scatter obtained from the Einstein radius method.

We bin the 74, 000 data points into 25 bins with equal number of data points

per bin, using the Doane’s formula (Doane, 1976) to determine the number of bins

for a non-normal distribution. We fit a linear, quadratic, and cubic models to the

median of the mass ratio (M(< θE)/Msim(< θE)) in each bin and the center of the

bin, using the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963).

We compute the Bayesian Information Criterion (BIC) for each model (Schwarz,

1978; Liddle, 2007). The results of the fits can be found in Table 2.1 including the

scatter and bias of the resulting empirically corrected data. The BIC results for

the fixed center (fixed center with BCG offset) are −125.7 (−126.5) for the linear,

−152.1 (−157.2) for the quadratic, and −150.7 (−156.9) for the cubic model. Based

on this criterion, the quadratic fit, which has the lowest BIC, is clearly preferred over

linear and slightly over cubic fits. We therefore use the quadratic fit to determine an

empirical correction:

M(< θE)

Msim(< θE)
= Bθ2

E + CθE + D ≡ f(θE), (2.9)
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where B, C, and D are the fit parameters.
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We choose not to include φ in our empirical correction because the parameter is

dependent on the resolution of the telescope, depth of the observations, and observing

conditions. The value of φ varies from observation to observation and therefore having

a coarser estimate using the binned value in Table A.1 is more appropriate. We correct

the measured M(< θE) by dividing it by the corresponding value computed from the

parabolic equation evaluated at θE:

Corrected M(< θE) = Measured M(< θE)/f(θE). (2.10)

We plot in Figure 2.15 the empirically corrected values of M(< θE) and show the

results from Figure 2.8 for reference. With the mass enclosed by the Einstein radius

corrected using the empirical correction, the overall scatter (half of the difference

between the 84th and the 16th percentile of the distribution) reduces to 10.1% (10.9%)

and the bias to −0.4% (−0.3%) for the fixed center (fixed center with BCG offset).

We then perform similar analyses as those in Section 2.5. We explore the sys-

tematics in the mass enclosed by the Einstein radius when the empirical correction

is applied, and plot the results in Figure 2.16. The blue and orange are the same

from Figure 2.13 and are plotted for reference, while the green and red indicate the

empirically corrected values.

We observe in Figure 2.16 that overall the measurement of the mass enclosed by

the Einstein radius becomes un-biased. The scatter of M(< θE) is reduced in all the

bins when compared to the analysis without empirical correction for the total mass,

concentration, lens redshift, and background redshift. Using the empirical correction

reduces the scatter in the highest-scatter bins, i.e., at high and low Einstein radius,

small arc fraction, and large ellipticity of the tangential critical curve.
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Figure 2.15: Empirically Corrected Mass Ratio M(< θE)/Msim(< θE) Binned
by θE. The blue and orange are from the analysis in Figure 2.8, while the green
and magenta represent the empirically corrected values, using Equation 2.10. The
symbols and error bars are the same as Figure 2.8. We find that using the empirical
correction un-biases and reduces the scatter of M(< θE).
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Figure 2.16: Empirically-Corrected Inferred Mass Binned by Galaxy Cluster
Properties, Background Source, and Lensing Geometry. Same as Figure 2.13,
but using Equation 2.10 to empirically correct the mass estimates. The blue and or-
ange points are from the analysis in Figure 2.13, while the green and purple represent
the empirically corrected values. We find overall that using the empirical correction
un-biases the results and reduces the scatter of M(< θE). The empirical correction
does not introduce significant correlation with total cluster mass, concentration, or
redshifts. It does not eliminate the trend due to deviation from circular symmetry,
as can be seen in Panel E.
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2.8 Conclusions

With current and future large surveys discovering tens of thousands of clusters

and groups, with thousands expected to show strong lensing features, an efficient

method to estimate the masses at the cores of these systems is necessary. The mass

enclosed by the Einstein radius is a quick zeroth-order estimate. Studies that use

this method quote an uncertainty of ∼ 30% (e.g., Bartelmann & Steinmetz 1996;

Schneider 2006), although this uncertainty has not been thoroughly quantified. In

this work, we conduct a detailed analysis of the efficacy of the mass enclosed by the

Einstein radius as core mass estimator, using the Outer Rim cosmological simulation.

When measuring the Einstein radius, we explore three centering assumptions: fixed

center, free center, and a observationally-motivated centering that mimics fixing the

center to the BCG. We measure the scatter and bias of M(< θE), identify sources of

systematic errors, and explore possible indicators available from imaging data at the

cores of galaxy clusters. The results of our work are summarized below:

• In the fixed center approach, the center of the circle is fixed to the highest sur-

face density point and a circle is fitted to the tangential arcs. The statistical

uncertainty in the measured Einstein radius is small (see Figure 2.5). We mea-

sure an overall scatter of 13.9% with a bias of 8.8% in the mass enclosed by the

Einstein radius with no correction applied.

• In the free center approach, the center of the circle is a free parameter in the

fit. The statistical uncertainty of the Einstein radii fitted with the method is 20

times higher than that of fixed center and the fixed center with BCG offset (see

Figure 2.5). With this method, the overall scatter is 27.4% with a bias of 20.2%

in the mass enclosed by the Einstein radius with no correction applied. We do

not recommend the use of the free center method to measure the mass enclosed

by the Einstein radius due to the large scatter in the mass measurement, high
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uncertainty in the Einstein radius, and restriction of a minimum of 3 or more

identified tangential arcs.

• With the intention to apply this to observational data, we investigate the effect

of using the BCG as the fixed center. We move the fixed center from the point

of highest density by a random offset, following the log-normal distribution

(µ = 6.1 ± 0.7 kpc) of BCG offsets found by Harvey et al. (2019). This offset

increases the scatter to 14.8%, and the bias to 10.2% in the mass enclosed by

the Einstein radius when compared to the fixed center method.

• We find that the scatter and bias of M(< θE) with respect to Msim(< θE) does

not depend on the total cluster mass, concentration, lens redshift, or source

redshift (Figure 2.13).

• We explore how the deviation from circular symmetry affects the measurement

ofM(< θE). The tangential critical curve ellipticity (ε) stems from the deviation

from spherical symmetry of the projected mass distribution at the core of the

cluster. We find that the bias and scatter correlate with ε (Figure 2.13), where

larger deviations from circular symmetry lead to a larger bias and scatter of

M(< θE) when compared to Msim(< θE).

• The fraction of the circle covered by arcs of a single lensed source (φ), can be di-

rectly accessed from the imaging data. This observable correlates strongly with

the scatter and bias, with both scatter and bias decreasing with an increasing

fractional coverage by the arcs (Figure 2.13). φ can be used as an observational

indicator to estimate the field-specific scatter and bias of M(< θE) (Table A.1).

• Other possible sources of systematic errors exits. While the Outer Rim sim-

ulation has a large volume and high mass resolution needed for this work, we

are limited by the lack of baryonic information in the simulation and missing
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the structure along the line-of-sight in the simulated ray-traced images. For

example, the structure along the line-of-sight, particularly in the case of low

mass systems, will have an effect on this measurement (Bayliss et al., 2014; Li

et al., 2019). We leave this investigation for future work.

• We evaluated the case when the background source redshift measurement is not

available, using instead the distribution of the background source redshifts.

While an accurate source redshift is critical for several lensing applications

(e.g., magnifications, time delays, mass distribution) for the relatively well-

constrained enclosed core mass, the scatter introduced by the uncertainty in the

background source redshift is negligible compared to that of other systematics

(Figure 2.14), if the underlying source redshifts distribution can be accurately

estimated. In addition the dependence on the zS is predictable and matches our

expectations, Section 2.6 and Figure 2.14.

• We derive an empirical correction to un-bias and reduce the scatter of the

measurement of M(< θE) using a quadratic equation fitted to the mass ra-

tio (M(< θE)/Msim(< θE)) with respect to the Einstein radius. The scatter

of the empirically corrected masses enclosed by the Einstein radius reduces to

10.1% and 10.9% respectively for fixed center and fixed center with a BCG

offset. The empirical correction does not introduce correlation between the

inferred mass and other cluster or background source properties, which is im-

portant for application of this method in measuring cluster properties such as

the concentration-mass relation as a function of redshift.

2.8.1 Application

In this section we provide a recipe for applying the results of this work to observa-

tional data, to statistically correct the bias in M(< θE) and estimate its uncertainty.
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We note that a more accurate estimate of the field-specific uncertainty can be

achieved by using the fraction of the Einstein circle covered by arcs as an indicator

of deviation from circular symmetry. We provide instructions for both choices.

1) Starting with a cluster lens field in which lensing evidence has been detected,

identify all the secure multiple images (arcs) of the lensed source. Each lensed image

should be classified as either tangential or radial. Only the tangential arcs are used

to estimate M(< θE).

2) Measure the exact coordinates of a morphological feature (e.g., a bright emission

clump) that repeats in each of the arcs.

3) Fit a circle to the list of coordinates. If the cluster has a distinct BCG, we

recommend fixing the center of the fitted circle to the position of the BCG. The radius

of the fitted circle defines θE.

4) Measure φ, the fraction of the circle covered by the arcs of a single lensed

source, by summing the angles subtended by the extent of the arcs that overlap with

the Einstein circle, and dividing the sum by 360◦. An example of three cases of

different φ values is shown in Figure 2.11.

5) Calculate M(< θE), the projected mass density enclosed in θE, by evaluating

Equation 2.6 and Equation 2.8 for the cluster and source redshifts, and the measured

θE.

If the spectroscopic redshift of the source is unknown, it can be approximated from

photometric redshifts or a probability distribution function of source redshifts. we find

that for the purpose of a statistical measurement of the enclosed mass, the increase

in uncertainty due to a small error in the source redshift is negligible compared to

other sources of uncertainty.

6) Evaluate whether an empirical correction is beneficial: If φ & 0.5 (i.e., the arcs

of an individual lensed source cover at least half of the Einstein circle), the measured

M(< θE) is fairly unbiased and an empirical correction is not necessary. In all other
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cases, or if the choice is to not use φ as an indicator, proceed to apply the empirical

correction as follows.

7) Calculate f(θE), the empirical correction factor, by evaluating Equation 2.9 for

θE (see Table 2.1 for coefficient values). We recommend using the fixed circle with

BCG offset method. For Einstein radii in the range of θE < 30.′′0, we recommend using

the quadratic fit. Apply the correction to the measured M(< θE) using Equation 2.10.

8)Determine the uncertainty. The field-specific uncertainty decreases as the frac-

tion of the Einstein circle covered by arcs (φ) increases. The numerical values of the

scatter as well as the 16th and 84th percentiles (lower and upper limit) for five φ

bins are tabulated in Table A.1 in Appendix A. If the φ estimator is not used, one

can assume an overall uncertainty in the corrected M(< θE) of 10.1% (10.9%) for the

fixed center (fixed center with BCG offset).

With the characterization of the mass enclosed by the Einstein radius presented

in this work — including the application of indicators of the scatter and bias —

measuring the mass at the cores of strong lensing galaxy clusters can be performed

in large samples in a very efficient manner. The estimation of the mass at the core

can be used to determine the mass distribution profile of the galaxy cluster, the

concentration parameter (when combined with a mass estimate at larger radius), and

provide information about the baryonic and dark matter properties at the core of

galaxy clusters.
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CHAPTER III

Core Mass Estimates in Strong Lensing Galaxy

Clusters Using a Single-Halo Lens Model

Preface

This chapter has been adapted from a paper of the same title published in the

Astrophysical Journal, Volume 910, Page 144 (Remolina González et al., 2021a), with

co-authors K. Sharon, N. Li, G. Mahler, L. E. Bleem, M. D. Gladders, and A. Niemiec.

The paper is adapted and partially reproduced here under the non-exclusive rights of

republication granted by the American Astronomical Society to the paper authors.

For this project, I utilized already created strong lensing simulations to character-

ize the accuracy, precision, and sources of uncertainty of a fast method to measure the

mass at the core of strong lensing galaxy clusters, the mass enclosed by the effective

Einstein radius computed from a Sing-Halo Lens Model. I computed 938 Single-Halo

Lens Models and visually inspected the outputs of each model. I performed all of the

analysis shown with the feedback from the co-authors and the anonymous referee. I

produced all of the figures presented in the paper. I wrote nearly the whole text with

the feedback and suggestions from the co-authors and the anonymous referee.
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Abstract

The core mass of galaxy clusters is an important probe of structure formation.

Here, we evaluate the use of a Single-Halo model (SHM) as an efficient method to

estimate the strong lensing cluster core mass, testing it with ray-traced images from

the ‘Outer Rim’ simulation. Unlike detailed lens models, the SHM represents the

cluster mass distribution with a single halo and can be automatically generated from

the measured lensing constraints. We find that the projected core mass estimated

with this method, MSHM, has a scatter of 8.52% and a bias of 0.90% compared to the

“true” mass within the same aperture. Our analysis shows no systematic correlation

between the scatter or bias and the lens-source system properties. The bias and

scatter can be reduced to 3.26% and 0.34%, respectively, by excluding models that

fail a visual inspection test. We find that the SHM success depends on the lensing

geometry, with single giant arc configurations accounting for most of the failed cases

due to their limiting constraining power. When excluding such cases, we measure a

scatter and bias of 3.88% and 0.84%, respectively. Finally, we find that when the

source redshift is unknown, the model-predicted redshifts are overestimated, and the

MSHM is underestimated by a few percent, highlighting the importance of securing

spectroscopic redshifts of background sources. Our analysis provides a quantitative

characterization of MSHM, enabling its efficient use as a tool to estimate the strong

lensing cluster core masses in the large samples, expected from current and future

surveys.

3.1 Introduction

Harbored at the high-density knots of the cosmic web, galaxy clusters trace the

large-scale structure formation of the universe, making them valuable cosmological

laboratories (see reviews by Allen et al. 2011 and Mantz et al. 2014). Their mass
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function, which connects their observational properties to the underlying cosmology

(e.g., Jenkins et al. 2001; Evrard et al. 2002; Corless & King 2009; Pratt et al. 2019;

Bocquet et al. 2020), is one of the ensemble properties that cluster-based cosmological

studies are pursuing. However, the efficacy of cluster-based cosmological studies is

sensitive to sample size and selection function (e.g., Hu 2003; Khedekar & Majumdar

2013; Bocquet et al. 2019) and requires a good understanding of the inherent system-

atic errors in the mass estimate due to the observed astrophysical properties (Evrard

et al., 2002; Allen et al., 2011; Huterer & Shafer, 2018). Other cluster properties

predicted by cosmological simulations include the radial profiles and concentrations

of dark matter halos (Duffy et al. 2008; Meneghetti et al. 2014; Child et al. 2018),

and can be directly tested with observations (e.g., Oguri et al. 2012; Merten et al.

2015). An accurate measurement of the mass profile slope of galaxy clusters requires

mass proxies that are sensitive to the total cluster mass, as well as mass proxies whose

resolution is high enough to probe the innermost hundreds of parsecs.

Gravitational lensing probes the total (dark and baryonic) matter distribution,

independent of baryonic physics and cluster dynamical state. Strong gravitational

lensing (SL) has the highest resolution at the core of galaxy clusters, where the strong

lensing evidence is present; Weak lensing (WL) gives an accurate measurement of the

total mass at large cluster-centric radii. By combining the mass estimate from SL at

the core with a mass estimate at large scales from WL or other mass proxies, we can

constrain the mass distribution profile from the core to the outskirts, and measure

profile parameters such as the concentration of the galaxy cluster (e.g., Gralla et al.

2011; Oguri et al. 2012; Merten et al. 2015). Tension between the observations and

theoretical expectation of the mass distribution profile of SL galaxy clusters has been

reported (e.g., Broadhurst & Barkana 2008; Gonzalez et al. 2012; Meneghetti et al.

2013), however, these studies are limited by small samples and complicated selection

functions.
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Thousands of SL galaxy clusters are being discovered with current and up-coming

large surveys, covering a broad wavelength range, detecting clusters out to z ∼ 2,

and addressing challenges due to small sample sizes. These include cluster surveys

based on observations with the South Pole Telescope (SPT; SPT-3G, Benson et al.

2014; SPT-SZ 2500 deg2, Bleem et al. 2015; Bocquet et al. 2019; SPT-Pol 100 deg2,

Huang et al. 2020; SPT-ECS, Bleem et al. 2020), the Atacama Cosmological Telescope

(ACT; Marriage et al. 2011; Hilton et al. 2018), the Cerro Chajnantor Atacama

Telescope (CCAT; Mittal et al. 2018), Euclid (Laureijs et al., 2011; Amendola et al.,

2018), Vera Rubin Observatory Legacy Survey of Space and Time (LSST, LSST

Science Collaboration et al. 2017), and eROSITA (Pillepich et al., 2018). We expect

that hundreds of the newly discovered clusters will be strong lenses (LSST Science

Collaboration et al., 2009). With an order of magnitude increase in sample sizes, an

efficient and accurate method will be required in order to measure the mass at the

cores of the SL clusters in a timely manner.

Strong lensing-based measurements of the mass distribution at the cores of galaxy

clusters typically rely on detailed lensing analyses. A detailed lens model of a cluster

with rich strong lensing evidence (e.g., the Frontier Fields; Lotz et al. 2017) can have

a high level of complexity requiring a large number of constraints, extensive follow-up

observations, computational resources, and multiple iterations to be finalized (e.g.,

Johnson et al. 2014; Zitrin et al. 2014; Diego et al. 2016; Kawamata et al. 2016; Lotz

et al. 2017; Strait et al. 2018; Lagattuta et al. 2019; Sebesta et al. 2019; Raney et al.

2020a). Due to the limited resources and small number of lensing constraints, which

is typical for all but the most massive strong lensing clusters (e.g., Sharon et al. 2020),

there is a need to investigate efficient methods to estimate the mass at the core of SL

galaxy clusters. Remolina González et al. (2020) presented an evaluation of the mass

enclosed by the Einstein radius as a zeroth-order method to estimate the mass at the

core of galaxy clusters (see Chapter II). The limiting factor when using the Einstein
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radius to estimate the core mass is the assumption of spherical symmetry inherent to

this method. In this chapter, we investigate a higher complexity first-order method,

which is more complex than the mass enclosed by the Einstein radius, but not as

expensive as computing a detailed lens model.

The goal of this chapter is to evaluate the use of the Single-Halo model (SHM) as

an efficient method to measure the mass at the core of SL galaxy clusters. We measure

the scatter and bias in the mass estimate, establish limitations in the use of the SHM,

and explore dependence of the scatter on the properties of the model and the lens-

source system. We use the state-of-the-art ‘Outer Rim’ simulation run (Heitmann

et al., 2019), which facilitates a robust statistical analysis that is representative of

the universe.

This chapter is organized as follows. In Section 3.2, we describe the lensing algo-

rithm used in our analysis, Lenstool, summarize the procedure employed in detailed

lens models, and present the Single-Halo model. In Section 3.3, we describe the

‘Outer Rim’ simulation and detail the simulated sample used in our analysis. In

Section 3.4, we describe the identification of constraints for the SHM, compute the

SHM, and measure the aperture mass enclosed within the effective Einstein radius,

MSHM. In Section 3.5, we measure the bias and scatter of MSHM, in comparison to

the true mass. In Section 3.6, we investigate the effects on the SHM of an unknown

background source redshift, the lensing geometry of the arc, and addition of a second

multiply-imaged source. Last, we present our conclusion and summary of the evalu-

ation of the Single-Halo models as a mass estimate at the core of galaxy clusters in

Section 3.7.

In our analysis, we adopt a WMAP -7 (Komatsu et al., 2011) flat ΛCDM cosmology

as in the ‘Outer Rim’ simulation: ΩΛ = 0.735, ΩM = 0.265, and h = 0.71. Masses

reported in terms of M∆c, are defined as the mass enclosed within a radius at which the

average density is ∆ times the critical density of the universe at the cluster redshift.
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3.2 Background: Lens Modeling

Strong lens modeling analyses use the positional and redshift measurements of

lensed galaxies (arcs) as constraints to model the underlying mass distribution. We

use the publicly available lens modeling algorithm Lenstool (Jullo et al., 2007), which

has been widely used (e.g., Johnson et al. 2014; Cerny et al. 2018; Paterno-Mahler

et al. 2018; Lagattuta et al. 2019; Jauzac et al. 2020; Mahler et al. 2020; Sharon et al.

2020) and its results are similar to other parametric models (Meneghetti et al., 2017;

Priewe et al., 2017; Remolina González et al., 2018; Raney et al., 2020b). Lenstool

uses a Monte Carlo Markov Chain (MCMC) method to explore the parameter space,

identify the best fit values, and estimate the statistical uncertainties in the model.

To characterize the mass density distribution we use a parameterized dual pseudo-

isothermal ellipsoid (dPIE, Eĺıasdóttir et al. 2007) with seven parameters: position

(α and δ), ellipticity (ε = (a2 − b2)/(a2 + b2)), where a and b are the semi-major

and semi-minor axis respectively), position angle (θ), velocity dispersion (σ), core

radius (Rcore), and truncating radius (Rcut). We fix the truncating radius (Rcut) to

1500 kpc, since it is far beyond the lensing region, and cannot be constrained using

the strong lensing evidence. We note that this range resembles the splashback radius

(e.g., Umetsu & Diemer 2017; Shin et al. 2019). In the next subsections we describe

the difference between “detailed” and Single-Halo models, and describe the selection

of constraints and priors used for the lens modeling procedure.

3.2.1 Detailed Lens Models

For in-depth description on the commonly used procedures in detailed parametric

lens modeling, we refer the reader to Verdugo et al. (2011) and Richard et al. (2011),

and examples by Mahler et al. (2018, 2020); Lagattuta et al. (2019); and Sharon et al.

(2020). Detailed lens models use the galaxy cluster redshift, and the position and

redshift of the arcs as constraints. One or more large cluster-scale profile(s) repre-
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sent the dark matter halo(s) of the cluster and correlated structure as needed, and

multiple galaxy-scale halos represent the galaxy cluster members mass contribution.

The galaxy-scale potentials positional parameters are usually fixed to their observed

values and a parameterized mass-luminosity relation is used to set or fit the other

parameters. The brightest cluster galaxy (BCG) may be modeled with a separate

halo as we do not expect BCGs to follow the same mass-luminosity relation as the

rest of the cluster members.

Compared to the Single-Halo models that will be introduced in the next section,

detailed lens models can be highly complex. The complexity adds the flexibility

needed in order to trace the substructure in the form of multiple dark matter halos,

filaments, contributions from cluster-member galaxies, and in some cases uncorrelated

structure along the line-of-sight. The versatility of these models has been shown to be

a successful tool for studying a broad range of sciences including cosmology, galaxy

clusters physics, and the highly magnified background universe (e.g., Johnson et al.

2017b; Acebron et al. 2017; Gonzalez et al. 2020. The flexibility of detailed lens

models also means the models are not unique and require care in the construction

and evaluation, often multiple statistical assessments to select between models (e,g.,

Acebron et al. 2017; Paterno-Mahler et al. 2018; Lagattuta et al. 2019; Mahler et al.

2020).

Detailed lens models for galaxy clusters with rich strong lensing evidence require

extensive follow-up observations, computational resources, and multiple iterations of

the modeling process. The high complexity of the models relies on a large number of

free parameters, requiring a large number of constraints, i.e., multiply-imaged lensed

galaxies, whose availability becomes a limiting factor in the modeling process.
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3.2.2 Single-Halo Models

Single-Halo models are similar to their detailed counterparts and use the same

type of constraints. The difference in the SHM modeling procedure is that the lens

plane is described by a single cluster-scale dark matter halo, while all secondary halos

and contribution from cluster member galaxies are neglected. The small number of

parameters requires only a handful of constraints, and the model can be computed

quickly and with limited human intervention.

We use the same dPIE halos described above, with six free parameters. We

use broad priors in the parameters of the dPIE potential: −8.′′0 < α, δ < 8.′′0 ;

0.0 < ε < 0.9 ; 0◦ < θ < 180◦ ; 50 kpc < Rcore < 150 kpc; and 500 km/s < σ < 1500

km/s.

The outputs of the lens models include the projected mass distribution (Σ), con-

vergence (κ), shear (γ), magnification (µ), critical curves, and predicted location of

multiple-images. The tangential critical curve (TCC) and radial critical curve (RCC)

are the theoretical lines of infinite magnification and name the primary direction along

which images (arcs) are magnified. The magnification in the tangential direction is

computed as follows: µ−1
t = 1−κ−γ. In this analysis, we measure the aperture mass

enclosed by the effective Einstein radius (eθE), defined as the radius of a circle with

the same area as the area enclosed by the tangential critical curves.

3.3 Simulated Data:

To evaluate the SHM method, we use the state-of-the-art, large volume, high-mass-

resolution, N-body simulation ‘Outer Rim’ (Heitmann et al., 2019) with the HACC

framework (Habib et al., 2016). The simulation was carried out at the Blue Gene/Q

system at Argonne National Laboratory. The large size simulation box (L = 3000

Mpc h−1 on the side) allows for many massive halos in the redshift range of interest
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(z ∼ 0.1−0.7) with detailed projected mass distribution profiles representative of the

universe.

The ‘Outer Rim’ simulation has been used to study the dark matter halo profiles

of galaxy groups and clusters (Child et al., 2018), evaluate the effects on lensing due

to line-of-sight (LOS) structure (Li et al., 2019), and to construct realistic strong

lensing ray-traced simulated images (Li et al., 2016). The simulation does not in-

clude the baryonic component; while baryons represent a small portion of the mass

content of the galaxy cluster, studies have shown that the baryonic component has

non-zero effects on the mass distribution and the lensing potential. For example,

the concentration of dark matter halos is higher when baryons are included in the

simulation (Meneghetti et al., 2003; Wambsganss et al., 2004; Oguri, 2006; Hilbert

et al., 2007, 2008; Wambsganss et al., 2008; Oguri & Blandford, 2009). The light

due to the baryonic component is also not depicted in the simulated images, i.e.,

the diffused light from intracluster medium, and stellar population of cluster mem-

ber galaxies. Fully accounting for these baryonic effects awaits for simulations that

include baryonic physics in large cosmological boxes.

The galaxy cluster halos used in the analysis were identified using a friends-of-

friends algorithm with linking length of b = 0.168 and the surface density was com-

puted using a density estimator. Rangel et al. (2016) showed that the high mass reso-

lution is robust enough to simulate strong lensing in halos with masses M500c > 2×1014

M� h−1. Following an SPT-like selection function, all halos with M500c > 2.1 × 1014

M� h−1 were selected. From this sample, the strong lenses are identified as those

having an Einstein radius of at least a few arcseconds, as measured from the average

convergence 〈κ(θ)〉 = 1.

The sample details are presented in Remolina González et al. (2020), see Chap-

ter II, and summarized here. The sample of simulated SPT-like strong lenses is made

of 74 galaxy cluster halos spanning a redshift range of z ∼ 0.16 − 0.67. The red-

87



shift range is similar to other strong lensing samples like that of the Sloan Giant Arc

Survey (SGAS, Gladders et al, in preparation; Sharon et al. 2020). Future studies

will extend the redshift range, z < 1.75, to better match surveys like the SPT-SZ

2500-Square-Degree survey (Bleem et al., 2015). We adopt the halo masses (M200c)

and concentrations (c200c) that were derived by Child et al. (2018).

The lensed simulated images were created through ray-tracing using the projected

mass distribution of the galaxy cluster following the procedure detailed in Li et al.

(2016). We draw redshifts for the background sources following the observed dis-

tribution of Bayliss et al. (2011a) leading to a simulated source range of z ∼ 1.2

to z ∼ 2.7. The image plane of each cluster field is generated 5 to 24 times, each

realization using a single redshift and unique background source location. A total of

1024 simulated ray-traced realizations were created from the 74 simulated SL galaxy

cluster halos. The simulated images have a resolution of 0.′′09 per pixel and a field of

view of 2048x2048 pixels. No additional noise or errors were added, as we use these

simulations to investigate the most ideal case rather than creating mock observations

that simulate a particular instrument. The background sources were preferentially

placed in areas of high magnification, as highly magnified (total magnification > 5)

arcs are easily detected from ground based observations. This strategy was chosen

in order to mock the selection function of lensing-selected samples, in which lensing

clusters were identified based on the appearance of a giant arc in visual inspection of

shallow observational data (e.g., Bayliss et al. 2011a; Nord et al. 2016, 2020; Sharon

et al. 2020; Khullar et al. 2021). The total magnification is defined as the ratio of the

area between the image-plane and source-plane of the lensed image. Only isolated

halo ray-tracing is used, no structure along the line-of-sight was included. Structure

along the line-of-sight is known to affect the lensing potential (e.g. Bayliss et al. 2014;

D’Aloisio et al. 2014; Chiriv̀ı et al. 2018; Li et al. 2019). A statistical analysis of the

line-of-sight effect and lensing systems without dominant giant arcs is left for future
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work.

We use the redshift and observed image plane positions of the arcs as our con-

straints for the lens models. We compare the model mass we derive from the SHM

method to the projected mass density from the simulation.

3.4 Methodology:

Our analysis of the simulated ray-traced lensed images is guided by the procedures

used with observational data. The images are inspected one at a time to identify the

multiply-imaged morphological features (emission knots) to be used as positional

constraints in the lens modeling process. In the case of observational data, visual

inspection is also required for spectroscopic follow-up observation of the arcs and

cluster members. Here, we assume that the redshifts of the arcs and the clusters have

been measured (see Section 3.3, Remolina González et al. 2020, and Chapter II). In

this section, we provide a description of the identification of the lensing evidence,

compute SHMs, and estimate the mass at the core of the galaxy cluster within the

eθE.

3.4.1 Arc Catalog Identification

Identical to the procedure described in Remolina González et al. (2020) and Chap-

ter II, we identify the lensing evidence and measure the positional constraints in the

simulated lensed images. Lens modelers take advantage of the expected lensing ge-

ometry, morphology, and color information to associate sets of multiple-images of

the same background source. In our analysis no color information was implemented,

so we rely on the morphology and expected lensing geometry for this identification.

For each line of sight, we compile a catalog including the positional locations of the

arcs (including identified emission knots within each arc) and their redshift. Each

identified set of n multiply imaged features contributes 2n− 2 constraints.
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3.4.2 The SHM Procedure

One of the advantages of the SHM is that it can be automatically computed

with minimal human intervention. It requires as input the cluster redshift, initial

center position (e.g., the BCG), and positions and redshifts of the arcs. The best fit

lens model is the one that minimizes the scatter between the observed and model-

predicted positions of the arcs in the image-plane. Since the single dPIE halo has six

free parameters, the SHM requires a minimum of six lensing constraints. We find that

of the 1024 simulated lensed images, 938 have enough constraints for a SHM to be

computed. We note that while this requirement is satisfied, it does not guarantee that

the lens model will be fully constrained and in some cases may result in unphysical

SHMs, as will be discussed in the next section.

3.4.3 Assessment of the SHM Success

A quick visual inspection of the resultant critical curve and model predictions with

respect to the lensing evidence can provide a critical quality assessment of the Single-

Halo models. We inspect each of the generated models, and find that in some cases

the Single-Halo model does not reproduce the lensing configuration, and/or predicts

multiple images in areas where no arcs are found. We flag these cases as “Failed Single-

Halo Models” (F-SHM); such models would not be trusted in a typical observational

analysis and would usually require a more involved lens modeling analysis, or more

constraints to improve the fidelity of the models.

We flagged 201 out of our 938 models as F-SHMs, leaving 737 that pass the visual

inspection (P-SHM); Figure 3.1 shows representative examples of P-SHMs (top row)

and F-SHMs (bottom row). Each of the 74 galaxy clusters still has at least one SHM

that passed the visual inspection, with most having 9 or more P-SHMs. We note

that due to the construction process of our simulated images, i.e., the background

sources were preferentially placed in order to produce highly magnified images, the
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SHM success rate we quote here does not represent the expected success rate in the

Universe; it is more tuned to resemble the success rate of modeling systems with

giant arcs (e.g., Johnson et al. 2017a; Rigby et al. 2018; Sharon et al. 2020; Remolina

González et al. 2021a). We use the fail/pass distinction in Section 3.5.

We investigate whether the image-plane root-mean-square (rmsi) can be used as

a quantitative quality indicator in lieu of a visual inspection. The rmsi is often used

to determine the goodness of fit of lens models; it measures the scatter between the

observed and model-predicted image-plane locations of lensed features, and in most

strong lens modeling algorithms it is used in the minimization process. We find that

the value of the model rmsi is only a weak predictor of the quality of the SHMs. As

can be seen in Figure 3.2, while the highest bins of rmsi are dominated by F-SHMs,

both P-SHMs and F-SHMs span the full range of low rmsi bins. This means that

a low rmsi is not a sufficient indicator of model quality. This finding is consistent

with previous studies. In an observational analysis of 37 lensing clusters, Sharon

et al. (2020) found that while the rmsi serves as a good statistical indicator when

comparing different lens models of the exact same system, it is not a good absolute

predictor of a lens model quality. Johnson & Sharon (2016) used simulations to

study the relationship between the rmsi, the number of constraints, and the accuracy

in recovering the mass and magnification. They found that as expected, the accuracy

of the magnification and mass recovered by the lens models improved with larger

numbers of constraints, however, the rmsi increases with number of constraints. We

therefore do not recommend relying on rmsi alone in order to determine which models

pass or fail.

3.4.4 Aperture Mass Enclosed by the eθE

We use the projected mass distribution (Σ) from the best fit lens model to compute

other outputs including the magnification (µ), convergence (κ), and shear (γ). We
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Figure 3.1: Examples of SHM outputs, overplotted on six ray-traced lensing im-
ages. The tangential and radial critical curves for the redshift of the background
source are plotted in red and yellow, respectively. The green circles mark the con-
straints, and the magenta circles show the model-predicted image locations. Each
image is 1.0 arcminute (except the Bottom-Left, which is 2.0 arcminutes) on the side
and a resolution of 0.′′09 per pixel. Top row : representative models that pass the
visual inspection test (P-SHM). Each of these models predicts lensed images at their
observed locations. Bottom row: models that fail to reproduce the lensing geometry
(F-SHMs). The primary reason for rejecting these models is as follows: Bottom-Left :
The lensing configuration, arc curvature, and the unrealistically high ellipticity of the
SHM halo suggest that there is a contribution from a secondary mass halo, which
cannot be well represented by a single halo model. Bottom-Middle: The SHM critical
curves are extremely large leading to an unphysical mass distribution for the lensing
configuration, also producing projections where no arcs are found outside the shown
field of view indicated by the magenta arrow. Bottom-Right : The SHM predicts
lensed images where no arcs are found.
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Figure 3.2: Distribution of Image-Plane Root-Mean-Square (rmsi) of the
Lens Models. The distributions of models that passed (P-SHM) or failed (F-SHM)
the visual inspection are shown in blue and orange, respectively. The F-SHM distri-
bution is skewed towards higher rmsi values, but both F-SHM and P-SHM can have
low rmsi values, making this an insufficient predictor of model quality.
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compute the magnification in the tangential direction (µt) and determine the location

of the TCC (µt → ∞). Next, we measure the eθE as the radius of the circle with

the same area as the area enclosed by the TCC. Last, we measure the aperture mass

centered at the center of the modeled dPIE dark matter halo and enclosed by the

effective Einstein radius, which we denote MSHM.

3.4.5 Statistics

To establish a robust statistical analysis using our simulated SL sample, we weight

each of the 74 SL galaxy cluster equally. We also weight each ray-tracing realization

by a factor of one over the total number of realizations with SHMs for each galaxy

cluster. Then for every simulated cluster, we randomly select oneMSHM representative

of a ray-tracing image. We repeat this process 1000 times for each of the 74 simulated

clusters for a total of 74, 000 mass measurements used in our statistical analysis.

3.5 Analysis of Results:

In this section, we compare the aperture mass enclosed by the effective Einstein

radius of the Single-Halo model (MSHM) and the “true” mass enclosed within the

same aperture from the simulation (MSIM). We compute the scatter and bias of MSHM

versus MSIM and explore whether the MSHM depends on the lens model parameters

and the simulated galaxy cluster properties.

For the statistics used in this analysis see Section 3.4.5. The scatter is computed

as half the difference between the 84th and 16th percentiles. The bias is computed as

bias = median(MSHM/MSIM)− 1. (3.1)

In Figure 3.3, we plot a direct comparison between MSHM and MSIM. We measure

an overall scatter of 8.52% about the 1:1 relation between MSHM and MSIM (drawn
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in Figure 3.3 to guide the eye), with a positive bias of 0.90%. Interestingly, at the

high-mass bin the core mass is highly overestimated; we explain this bias below.

In Figure 3.4, we separate the sample into two bins, according to their pass/fail

assessment (see Section 3.4.3). We find that the P-SHMs span a tighter core-mass

range compared to the F-SHMs, i.e., SHMs in the high and low mass bins are more

likely to fail. In all mass bins the core masses computed from the F-SHM models

are less accurate; in particular, the large scatter observed in the high mass bin in

Figure 3.3 is due entirely to F-SHM models. Overall, the mass estimate of the P-

SHMs has a scatter of 3.26% with a bias of 0.34% compared to the true mass. This

result implies that the larger scatter and bias of the whole sample are driven by the

failed-SHM lines of sight.

Further investigation of these catastrophic failures highlights the limitation of

SHM in recovering some under-constrained lensing configurations. We find that in

most of the high-mass, highly overestimated cases, the SHM converges on a solution

where the halo is oriented such that the single giant arc forms on a critical curve in

the direction of its semi minor axis, rather than in the direction of its semi major

axis. An example of such a failed model is shown in the bottom middle panel of

Figure 3.1. These models populate the highest core-mass bin in Figure 3.3 since they

produce a large eθE; and they overestimate the mass since the model converges on a

wrong solution, perpendicular to the underlying mass distribution. Fortunately, these

cases are easily identified in a visual inspection. In analyses of real data, these cases

can be flagged for a more involved analysis beyond the automated SHM. Manually

imposing more constrained priors, increasing the complexity of the model, or adding

constraints from secondary lensed system may resolve these cases.

All of these indicate that a quick visual inspection of the model outputs is benefi-

cial when estimating the mass at the cores of galaxy clusters, using the SHM method.
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Figure 3.3: Mass Comparison Between the MSHM and MSIM. Top panel: Direct
comparison between the aperture mass enclosed by the eθE (MSHM) and the “true”
aperture mass within the same aperture from the simulation surface density (MSIM).
The solid gray line is where MSHM = MSIM, plotted to guide the eye. Bottom panel:
The mass ratio, MSHM/MSIM. We find that on average, MSHM overestimates MSIM,
especially at the high mass bins (see Section 3.5).
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Figure 3.4: Comparison between the mass estimates of P-SHMs and F-
SHMs. Mass ratio (MSHM/MSIM) of the SHMs that passed the quick visual inspection
(P-SHMs) is plotted in the left panel, and of the ones that Failed (F-SHMs) is plotted
in the right panel. The P-SHMs span a somewhat smaller mass range than the F-
SHMs. Notably, on average the F-SHMs are biased high, and their spread about the
one-to-one line is is higher than the P-SHM, indicating that a quick visual inspection
of the SHM outputs can easily weed out most of the outliers.
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3.5.1 Possible causes of scatter and bias in the MSHM mass estimate

We explore possible dependencies in the scatter and bias of MSHM with respect

to MSIM against the SHM best fit parameters (velocity dispersion (σ), ellipticity (ε),

and core radius (Rcore)). The results are shown in Figure 3.5. When considering the

entire sample (including failed SHMs), we find that the scatter is larger at small and

large ε, eθE, and at large values of Rcore.

For the models that pass the visual inspection, P-SHM (plotted in orange for

comparison), we find no trends in the scatter or bias with any of the model parameters.

This plot clearly shows the reduction in the scatter and bias in the P-SHMs when

compared to all-SHMs.

The large scatter and high occurrence of F-SHM found in the extreme values of

the SHM fit parameters – σ, ε, and Rcore – indicate that during the minimization

process the best-fit model was found at the edge of the parameter space. These cases

require additional human attention, better parameter exploration, and possibly an

increase in the flexibility of the model. These interventions are not allowed in the

framework of automated SMH, but are common practice in detailed lensing analyses.

The increase in the complexity of the model is usually met with a need of additional

constraints. It is expected that the SHM will struggle to reproduce dark matter halos

with significantly disturbed morphology or mergers, and converge on, e.g., the highest

ellipticity allowed, as shown in the bottom-left panel of Figure 3.1.

We also test the results against the image-plane root-mean-square (rmsi), in order

to determine whether it could serve as a quantitative indicator of model quality (last

panel of Figure 3.6). As expected, we find large scatter and bias in the high rmsi bin,

attributed to F-SHMs. However, we also find that both all-SHMs and the P-SHMs

have high scatter in the lowest rmsi bin (rmsi≈ 1.′′0). This behavior is consistent

with previous studies. For example, Johnson & Sharon (2016) show that a larger

number of constraints lead to a better accuracy in recovering the underlying mass
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and magnification, while the rmsi becomes worse. The trend of increased scatter

with decreased rmsi, and the fact that some F-SHM have low rmsi, both indicate

that the rmsi does not provide a good indicator of model quality. However, high rmsi

values may be useful as an initial triage to remove some of the catastrophic failures

before visual inspection.

For reference, if excluding models with log(rmsi) > 0.5, the scatter and bias reduce

to 4.8% and 0.65%, respectively, better than the overall sample (8.52%, 0.90%), but

not as good as the P-SHM sample (3.26%, 0.34%).

Next, we explore whether the scatter and bias depend on properties of the simu-

lated galaxy cluster – total mass (M200c), concentration (c200c), cluster redshift (zL),

and background sources redshift (zS). The results are shown in Figure 3.6. We find

a flat trend in the scatter and bias with respect to all of the cluster and background

source properties for both the SHMs (including F-SHMs) and P-SHMs. This explo-

ration of the scatter and bias is crucial for future studies, that may use the MSHM

method to measure the core mass and combine it with a large scale mass proxy to

measure, e.g., the concentration of an ensemble of galaxy clusters. Based on this

result, we conclude that using MSHM to measure core masses will not bias such future

work.

3.6 The Effect of the Background Source Redshift and the

Lensing Configuration of the Arcs

In this section, we investigate the effect on the Single-Halo model and the aperture

mass enclosed by the effective Einstein radius of the SHM due to the background

source redshift, lensing configuration of the arcs, and addition of a second lensed

image system. Here we do not exclude the F-SHMs from the analysis.
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Figure 3.5: Mass Ratio (MSHM/MSIM) Binned by the SHM Best Fit Parame-
ters. Mass ratio, binned by the effective Einstein radius (eθE, panel A), dark matter
(DM) halo model velocity dispersion (σ, panel B), DM halo model ellipticity (ε,
panel C), DM halo model core radius (Rcore, panel D), and the image-plane root-
mean-square (rmsi, panel E). The symbol marks the median of the distribution of the
mass ratio, the horizontal error bars indicate the bin size (selected such that there
is an equal number of SHMs per bin), and the vertical error bars represent the 16th
and 84th percentile. We plot the results for all SHMs (blue) and only P-SHMs (or-
ange) for comparison. We find that the P-SHMs have no bias, and a smaller scatter
than un-inspected sample (all SHMs). Without eliminating the failed models, the
scatter is higher overall; it increases with the extreme (low and high) values of model
parameters. See Section 3.5.1 for discussion.
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Figure 3.6: Mass Ratio (MSHM/MSIM) Binned by the Lens-Background-
Source System Properties. The mass ratio binned by the total mass (M200c,
panel A), concentration (c200c, panel B), galaxy cluster redshift (zL, panel C), and
background source redshift (zS, panel D) are plotted for all SHMs (blue) and the P-
SHMs (orange). The symbol marks the median of the distribution of the mass ratio,
the horizontal error bars indicate the bin size (equal number of SHMs per bin), and
the vertical error bars represent the 16th and 84th percentile. We find no trend in the
scatter and bias with respect to any of the simulated cluster and background source
properties for neither all SHMs nor P-SHMs.
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3.6.1 Effects of the Background Source Redshift (zS) on MSHM

When a secure spectroscopic redshift of a lensed galaxy is not available, lens

modelers often leave the source redshift as a free parameter, sometimes using its

photometric redshift as prior. By leaving the background source redshift as a free

parameter in our test models, the number of degrees of freedom increases to seven,

requiring seven or more constraints. This is satisfied by 895 ray-traced images in our

overall simulated sample. We apply a broad uniform prior on the background source

redshift, 1 ≤ zS ≤ 5. From the computed models, we find that the model-predicted

redshifts are on average 1.9 times higher than the true redshifts. We measure a

scatter of 9.85% with a bias of −7.22% on the mass estimate MSHM. The MSHM,

when no background source redshift is known, underestimates the true aperture mass

enclosed by the effective Einstein radius and the scatter increases. This effect shows

the degeneracy between the derived mass and the background source redshift, and

highlights the importance of securing spectroscopic redshifts of background sources

for the accuracy of lens models.

3.6.2 Effects of the Lensing Configuration on MSHM

We explore the effect of the lensing configuration of the simulated images on

the accuracy of the SHMs, as different configurations provide different constraining

power. We inspect each of the simulated lensed images and sort them into eight

groups of similar lensing geometry. A representative example of each of the groups

is shown in Figure 3.7, along with the number of simulated images in each group.

Systems in Group A typically have five images: a merging pair forming a tangential

arc, a counter image, and a clearly observable pair of radial arcs. Systems in Group

B show a single merging tangential arc and a clearly observable pair of radial arcs.

Systems in Group C have a similar configuration to group A, without visible radial

arcs. Systems in Group D have a single arc similar to group B, but without visible

102



radial arcs. Systems in Group E, have a tangential arc made of a merging pair and

a counter image, but unlike group A only a single radial arc is identified. Group F

includes the Einstein ring configuration. Systems in Group G have a set of radial

and tangential arcs close to each other and an additional counter image. Group H

systems form a merging pair of radial arcs and a single tangential arc.

The SL configuration group that has the most F-SHMs is group D (a single tan-

gential arc); out of the 161 lensed images with this configuration, 117 (∼ 73%) are

F-SHMs and 44 (∼ 27%) are P-SHMs. This group accounts for more than half of the

201 total F-SHMs. This lensing configuration, of a single giant arc, provides the least

geometrical constraining power, as it leaves regions of the lens plane with no con-

straints. Since the model is only locally constrained, lensing configurations in which

the single halo is oriented approximately perpendicular to the orientation of the un-

derlying mass distribution are allowed; models that have constrains only on one side

of the center of mass suffer from high degeneracy between the halo position, its ellip-

ticity, and velocity dispersion. Such low constraining power is also reported in some

observed systems with single giant arcs in Sharon et al. (2020). The low constraining

power can therefore result in unphysical SHMs and an unreliable measurement of the

mass enclosed by the effective Einstein radius. Excluding the 161 single-arc images

from the full sample, the scatter and bias reduce to 3.88% and 0.84% respectively, sig-

nificantly improving upon the scatter of the full sample (scatter: 8.52%, bias: 0.90%),

and close to the precision of the P-SHM only sample (scatter: 3.26%, bias: 0.34%).

Some of the challenges inherent to using a single giant arc as the only constraint

can be mitigated by obtaining more lensing constraints (see Section 3.6.3), which

often requires higher resolution or deeper imaging. Some of these failed cases can be

recovered with a more involved analysis, manual inspection of the parameter space,

inclusion of physically-motivated priors (such as an upper-limit on the velocity dis-

persion based cluster richness). As noted in Section 3.5.1, these interventions are
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Figure 3.7: Strong Lensing Geometric Configurations of Arcs. Examples of
the groups of the simulated SL geometric configurations of the arcs. Each image is
1.0 arcminute on the side. In the bottom left corner of every panel we indicate the
total number of simulated images in that group and in parenthesis the number of
SHMs that pass visual inspection. See Section 3.6.2 for a description of the different
groups.

beyond the framework of the quasi-automated SHM.

3.6.3 Constraining Power of Secondary Lensed Image Systems

Last, we investigate the constraining power of a secondary lensed source system.

The SHM benefits from the addition of a lensed system when these new constraints

complement the geometrical constraints of the primary image system and the mass

distribution. The increase in constraining power at the core of the galaxy cluster

benefits lensed systems with a single giant arc (Group D) where the arc coverage is

limited to one side of the cluster.

For example, when adding a secondary lensed system (of any non-D group) to

failed lens models of group D, 53% of these formerly F-SHM pass the visual inspection

and become P-SHM. This behavior illustrates the importance of identifying additional

lensed images to help constrain the lens models. On the other hand, about a third of
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the failed D models did not benefit from adding a secondary system, even though the

SHM produced a passing model when using only that second system as constraints.

A further inspection of these failed models indicates that in these particular cases,

the lensing geometry of the D arc was so hard for a single-halo model to reproduce

that it forced the model to converge on a failed solution. Such configurations will

likely require more involved lensing analysis, possibly with higher flexibility in the

lens model or imposing user-identified priors beyond the automated SHM process.

3.7 Conclusions

We explore the use of Single-Halo models as an automated tool to efficiently es-

timate the mass at the core of SL galaxy clusters. The SHM can be automatically

computed once the arcs have been identified and background source redshift mea-

sured. This method uses the parametric lensing algorithm Lenstool with a single

dark matter halo, represented by a dPIE. The constraints used are the lens redshift,

the positions of the lensed images, and their source redshift. An initial halo center

position (e.g. the BCG) is also needed as an input. To characterize the scatter and

bias in the estimator, we use ray-traced simulated images from the state-of-the-art

Outer Rim simulation. We compute the SHM, measure the aperture mass enclosed

by the effective Einstein radius (MSHM), and compare the mass estimate to the mass

from the simulation, measured within the same aperture, (MSIM). We conclude the

following:

• Considering the entire sample, the scatter of MSHM is 8.52% with a bias of

0.90% compared to the true mass, MSIM.

• A quick visual inspection of the single halo models reveals that some fail to

reproduce the lensing configuration or lead to unphysical lens models. Excluding

the failed SHMs (F-SHM) reduces the scatter and bias to 3.26% and 0.34%,
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respectively.

• We find that the scatter is larger at small and large values of the ellipticity (ε)

and effective Einstein radius (eθE), and large values of the core radius (Rcore).

Excluding the F-SHMs eliminates this trend.

• We find a weak increasing trend in the bias with the SHM velocity dispersion

(σ), and a larger scatter at larger σ. Excluding the F-SHMs eliminates this

trend.

• We find no significant dependence on the bias and scatter of MSHM with respect

to the properties of the lens-source system – total mass, concentration, lens

redshift, and source redshift. This exploration is crucial for future studies, that

may use the MSHM method to measure the core mass and combine it with a

large scale mass proxy to measure, e.g., the concentration of an ensemble of

galaxy clusters. Based on this result, we conclude that using MSHM to measure

core masses will not bias such future work.

• A high rmsi can be used to identify and eliminate some of the worst cases of F-

SHM, before the visual inspection; but on its own, it is an insufficient predictor

of the SHM model quality.

• When the background source redshift is unknown, lens modelers frequently use

priors on the source redshift and set the redshift as a free parameter in the

lens model. We use a broad uniform prior on the source redshift and find that

the model-predicted redshifts are overestimated, leading to an underestimate

of the mass. When the source redshift is unknown the scatter and bias MSHM

are 9.85% and −7.22% compared to MSIM respectively. Our analysis affirms

the importance of securing spectroscopic redshifts or high-quality photometric

redshifts for the lensing constraints, in order to obtain a precise and accurate
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mass measurement. This is consistent with findings by e.g., Caminha et al.

(2016); Johnson & Sharon (2016).

• The lensing configuration affects the efficacy of the SHM. We find that a single

arc configuration (group D) provides the least constraining power and accounts

for most of the extreme outliers. Excluding these systems, we compute a scatter

and bias on MSHM of 3.88% and 0.84% against MSIM, respectively.

• The addition of a second lensed source helps constrain the lens model and

particularly benefits lens models where the geometrical configuration of the

arcs has limited constraining power at the core of the SL galaxy clusters (group

D). It is therefore most cost-effective to follow-up systems with a single arc

with deeper or high resolution imaging, in order to secure additional lensing

constraints. However, some lensing configurations may require a more complex

lens modeling process than the SHM.

In the future, new tools will expedite the current manual process of strong lensing

analysis. Examples include the introduction of convolutional neural networks for

identification of strong lensing features (e.g., Petrillo et al. 2017; Jacobs et al. 2019;

Cañameras et al. 2020; Huang et al. 2021), and machine learning algorithms to model

the mass distribution of strong lenses (e.g., Bom et al. 2019; Pearson et al. 2019). We

look forward to the continuous development of these tools as the Single-Halo models

introduced in this work will greatly benefit from them.

The evaluation of MSHM presented in this work, facilitates the use of this efficient

mass estimate at the core of SL galaxy clusters, and enables an automated measure-

ment of the core mass in the large samples of strong lensing clusters from current and

future surveys.
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CHAPTER IV

Core Mass Estimates in Strong Lensing Galaxy

Clusters Comparing Detailed Lens Models,

Single-Halo Lens Models, and Einstein Radius

Preface

This chapter has been adapted from a paper of the same title submitted for peer-

review to the Astrophysical Journal, and made available through the arXiv (Remolina

González et al., 2021a), with co-authors K. Sharon, G. Mahler, C. Fox, C. A. Garcia

Diaz, K. Napier, L. E. Bleem, M. D. Gladders, N. Li, and A. Niemiec. The paper is

adapted and partially reproduced here under the non-exclusive license of republication

granted by the arXiv to the paper authors.

For this project, I take the work from the previous two chapters from simulations

to observations. I computed the core masses using the mass enclosed by the Einstein

radius and the Single-Halo Lens Model for a large sample of 67 observed strong lensing

galaxy clusters. I utilized 144 publicly available detailed lens model to compare the

mass estimates. I performed all of the analysis shown with the feedback from the

co-authors. I produced all of the figures and tables presented in the paper. I wrote

nearly the whole text with the feedback and suggestions from the co-authors.

Some of the High Level Science Products (HLSP) presented in this chapter were
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obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated

by the Association of Universities for Research in Astronomy, Inc., under NASA

contract NAS5-26555. We thank the HFF, RELICS, CLASH, and SGAS projects for

making their lens models publicly available.

Abstract

The core mass of galaxy clusters is both an important anchor of the radial mass dis-

tribution profile and probe of structure formation. With thousands of strong lensing

galaxy clusters being discovered by current and upcoming surveys, timely, efficient,

and accurate core mass estimates are needed. We assess the results of two efficient

methods to estimate the core mass of strong lensing clusters: the mass enclosed by

the Einstein radius (Mcorr(< θE); Remolina González et al. 2020; Chapter II), and

single-halo lens model (MSHM(< eθE); Remolina González et al. 2021a; Chapter III),

against measurements from publicly available detailed lens models (MDLM) of the

same clusters. We use publicly available lens models from the Sloan Giant Arc Survey,

the Reionization Lensing Cluster Survey, the Hubble Frontier Fields, and the Cluster

Lensing and Supernova Survey with Hubble. We find a scatter of 18.1% (9.0%) with

a bias of −7.1% (1.0%) between Mcorr(< θE) (MSHM(< eθE)) and MDLM. Last, we

compare the statistical uncertainties measured in this work to those from simulations.

This work demonstrates the successful application of these methods to observational

data. As the effort to efficiently model the mass distribution of strong lensing galaxy

clusters continues, we are in need of fast and reliable methods to advance the field.

4.1 Introduction

Galaxy clusters are harbored at the knots of the cosmic web and trace the large-

scale structure of the universe, making them ideal cosmic laboratories (see reviews by
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Allen et al. 2011 and Mantz et al. 2014). The galaxy cluster mass function connects

the underlying cosmology and the observational properties of galaxy clusters (e.g.,

Evrard et al. 2002; Pratt et al. 2019; Bocquet et al. 2020). Additional predictions

from cosmological simulations include the radial mass distribution of dark matter

halos (e.g., Duffy et al. 2008; Meneghetti et al. 2014; Child et al. 2018), which can be

directly tested against observations via the concentration measurement (e.g., Oguri

et al. 2012; Merten et al. 2015). An accurate account of the cluster mass distribution

requires mass estimates that are sensitive at the cores and at the outskirts of the

galaxy cluster. Crucial to all cluster-based cosmological studies are the sample size,

selection function, and good understanding of the systematic uncertainties of the

mass estimates coming from observed astrophysical properties (e.g., Evrard et al.

2002; Khedekar & Majumdar 2013; Huterer & Shafer 2018; Bocquet et al. 2019).

One of the methods to measure the total (dark and baryonic) mass distribution of

galaxy clusters is using gravitational lensing. Weak lensing (WL) measures the cluster

mass at large cluster-centric radii, while strong lensing (SL) has the highest resolution

at the core of the cluster where the SL evidence is present. The combination of the

core mass estimates from SL and outskirts mass estimates from WL or other large

scale mass proxies can constrain the mass distribution profile of a galaxy cluster, and

measure its concentration (e.g., Gralla et al. 2011; Oguri et al. 2012; Merten et al.

2015; Meneghetti et al. 2010). Comparisons between the predicted and observed

properties of SL galaxy clusters mass distribution have reported possible tension (e.g.,

Broadhurst & Barkana 2008; Gonzalez et al. 2012; Meneghetti et al. 2013; Killedar

et al. 2018), however these studies have been limited by complicated selection function

and small sample sizes.

Current and upcoming large surveys will discover thousands of SL clusters out

to z ∼ 2, using methods that span the wavelength spectrum. Some of these surveys

include the South Pole Telescope (SPT; SPT-3G, Benson et al. 2014; SPT-SZ 2500
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deg2, Bleem et al. 2015), Vera Rubin Observatory Legacy Survey of Space and Time

(LSST, LSST Science Collaboration et al. 2017), and eROSITA (Pillepich et al.,

2018). These large samples will require a method to timely, effectively, and accurately

measure the core mass of SL clusters.

Strong-lensing based mass measurements are typically based on detailed strong

lensing models (e.g., Kneib & Natarajan 2011). Detailed lens models for galaxy clus-

ters with rich strong lensing evidence, such as the Frontier Fields clusters (Lotz et al.,

2017) but also less extraordinary clusters, allow for the high degree of complexity

required to study substructure in the mass distribution of the cluster (e.g., Ebel-

ing et al. 2017; Mahler et al. 2018; Richard et al. 2020). They necessitate extensive

follow-up observations, computational resources, and multiple statistical assessments

for the best model selection. However, more typical SL clusters have a small number

of SL constraints, which limits the utility of detailed lens models (e.g., Smith et al.

2005; Sharon et al. 2020).

The large sample sizes of SL clusters being discovered calls for efficient methods

to estimate the mass at the core of galaxy clusters. Remolina González et al. (2020),

Chapter II, and Remolina González et al. (2021a), Chapter III, evaluated two methods

for efficiently estimating the mass within the core of SL clusters using the Outer Rim

cosmological simulation. Remolina González et al. (2020), Chapter II, evaluated the

mass estimate derived from the size of the Einstein radius; Remolina González et al.

(2021a), Chapter III, assessed results from simplified single-halo lens models. The

characterization of uncertainty and bias of these methods established them for the

application to large samples of SL galaxy clusters as efficient and accurate galaxy

cluster core mass estimators. The two simulation-calibrated methods take orders of

magnitude less time and human intervention than detailed lens models.

The goal of this chapter is to test, in real observed clusters, how well these first-

and second-order estimates of the core mass compare to detailed lens models. This
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chapter is organized as follows. In Section 4.2, we introduce the three strong lensing

cluster samples used in our chapter and describe our selection of the detailed lens

models. In Section 4.3, we briefly describe the publicly available lensing algorithms

used to compute the detailed lens models and summarize the single-halo lens model

and Einstein radius methods used as efficient estimates of the mass at the core of

galaxy clusters. In Section 4.4, we describe the strong lensing constraints and selection

of the brightest cluster galaxy (BCG), and compute the empirically-corrected mass

enclosed by the Einstein radius (Mcorr(< θE)) and the aperture mass enclosed by

the effective Einstein radius (MSHM(< eθE)) from the single-halo lens models that

passed a quick visual inspection. In Section 4.5, we measure the scatter and bias of

Mcorr(< θE) and MSHM(< eθE) compared to the mass enclosed by the same aperture

in the detailed lens model (MDLM) and explore any possible difference due to the

variety of lensing algorithms utilized to compute the detailed lens models. Last in

Section 4.6, we present our conclusions and summarize the application of efficient

methods to measure the core masses of galaxy clusters.

In our analysis, we adopt a flat ΛCDM cosmology: ΩΛ = 0.7, ΩM = 0.3, and

H0 = 70 km s−1 Mpc−1, which was used by most of the detailed lens models included

in our analysis. The GLAFIC detailed lens models of the RELICS clusters follow

a Wilkinson Microwave Anisotropy Probe Cosmology (Komatsu et al., 2011): ΩΛ =

0.728, ΩM = 0.727, and H0 = 70.4 km s−1 Mpc−1. The large scale masses are reported

in terms of M∆c, defined as the mass enclosed within a radius at which the average

density is ∆ times the critical density of the universe at the cluster redshift.

4.2 Observational Data

For this work, we use the data from four well-established strong lensing surveys

of clusters with different selections functions. First, the Sloan Giant Arcs Survey
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(SGAS1; Hennawi et al. 2008; Sharon et al. 2020) which identified highly magnified

lensed galaxies in the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009; Blan-

ton et al. 2017). Second, the Cluster Lensing and Supernova Survey with Hubble

(CLASH2; Postman et al. 2012), designed to study the dark matter distribution in

galaxy clusters, perform supernova searches, and detect and characterize high-redshift

lensed galaxy clusters. Third, the Hubble Frontier Fields Clusters (HFF3; Lotz et al.

2017) which are some of the best strong lensing clusters, taking advantage of deep

imaging and extensive spectroscopic follow-up. Fourth, the Reionization Lensing

Cluster Survey (RELICS4; Coe et al. 2019), designed primarily to find high-redshift

(z ∼ 6 − 8) lensed galaxy candidates. All four samples base their lensing analyses

on multiband Hubble Space Telescope (HST ) imaging. From these samples of lensing

galaxy clusters, we only include clusters with spectroscopically confirmed multiply

imaged lensed galaxies. Figure 4.1 shows the redshift-mass distribution of the galaxy

clusters used in our analysis. The large scale masses, M500c, are taken from Fox et al.

(2021), Merten et al. (2015), and references therein.

4.2.1 SGAS

Galaxy clusters where selected for the SGAS survey from the SDSS Data Release

7 (SDSS-DR7; Abazajian et al. 2009) using the cluster red-sequence algorithm by

Gladders & Yee (2000). Color images were created from imaging data in g, r, i,

and z centered on the detected cluster. The images were visually inspected and

scored according to the evidence of strong gravitational lensing. There has been

extensive ground- and space-based imaging leading to a multi-wavelength picture of

these clusters (e.g., 107 HST orbits of the SGAS-HST, GO13003 PI:Gladders; Sharon

et al. 2020). Spectroscopic follow-up of all the primary strong lensing arcs is complete,

1https://archive.stsci.edu/pub/hlsp/sgas/
2https://www.stsci.edu/ postman/CLASH/index.html
3https://outerspace.stsci.edu/display/HPR/HST+Frontier+Fields
4https://relics.stsci.edu/index.html
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Figure 4.1: Redshift-Mass (zL - M500c) distribution of the strong lensing galaxy clus-
ters used in our analysis.

and additional follow-up campaigns obtained redshifts of secondary arcs to improve

the fidelity of the lens models (e.g., Bayliss et al. 2011b; Johnson et al. 2017a; Sharon

et al. 2020, and references therein). Several high-impact targets out of this sample of

highly magnified arcs have been studied in detail (e.g., Koester et al. 2010; Bayliss

et al. 2014; Sharon et al. 2017; Rigby et al. 2018).

The SGAS clusters are unique due to the selection function employed to cre-

ate the sample, as they were selected uniquely based on the identification of bright

strong lensing features. This led to including some clusters with lower masses when

compared to the other three samples of galaxy clusters. Sharon et al. (2020) pub-

lished and released to the community detailed lens models for the 37 SGAS clusters

observed as part of HST -GO13003. Out of these 37 galaxy clusters with publicly

available lens models (Sharon et al., 2020), we only use 31 in this work. Three

clusters (SDSS J0004−0103,SDSS J1002+2031, and SDSS J1527+0652) are not in-
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cluded due to being poorly constrained (given a classification of C or lower; see

Sharon et al. (2020) for more details). Two galaxy clusters (SDSS J1156+1911 and

SDSS J1632+3500) lack any spectroscopically confirmed multiply imaged sources.

One galaxy cluster (SDSS J2243−0935), has one spectroscopically confirmed flat gi-

ant arc, located between two cluster cores, making it unsuitable for the methods used

here. In Table 4.1, the list of the SGAS clusters is shown with their corresponding

redshift, the right ascension (R.A.) and declination (Decl.) of the selected BCG, and

the number of strongly lensed background sources with spectroscopic redshifts that

are used as lens modeling constraints.

4.2.2 CLASH

The Cluster Lensing and Supernova Survey with Hubble (CLASH; Postman et al.

2012) multi-cycle treasury project observed 25 galaxy clusters for a total of 525 HST

orbits over a period of nearly three years utilizing 16 HST filters. The main sci-

ence goals included: studying the matter distribution of galaxy clusters, particularly

the mass concentration (e.g., Merten et al. 2015); detecting supernovae (e.g., Graur

et al. 2014); and detecting and characterizing high-redshift galaxies magnified by the

galaxy cluster (e.g., Coe et al. 2013). From the 25 galaxy clusters, 20 are X-ray

selected, dynamically relaxed (determined from their circularly symmetric X-ray sur-

face brightness distribution), and massive clusters (X-ray temperatures Tx > 5 keV).

The majority of these clusters showed strong lensing evidence from ancillary data.

The last five galaxy clusters were selected solely for being exceptional strong lenses.

Four of the galaxy clusters (Abell S1063, MACS J0416.1−2403, MACS J0717.5+3745,

and MACS J1149.5+2223) were later selected for the Hubble Frontier Fields (HFF;

see Section 4.2.3) and we only utilize the HFF lens models for these clusters. The

community follow-up effort has resulted in the identification of many lensing con-

straints with measured spectroscopic redshifts for the 13 galaxy clusters included in
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this work. Detailed lensing models by Zitrin et al. (2015) and Caminha et al. (2019)

have been made publicly available. In Table 4.1, we list the CLASH galaxy clusters

utilized in our analysis and their corresponding references.

4.2.3 HFF

The Hubble Frontier Fields (HFF; Lotz et al. 2017) project observed six galaxy

clusters and adjacent (“parallel”) fields using Director’s discretionary time, obtaining

extremely deep multi-band imaging (140 HST orbits per cluster for a total of 840

HST orbits of Director’s Discretionary Time) with the primary goal of studying the

magnified background universe. The clusters were selected for their observability

from space- (HST, Spitzer, and JWST ) and ground-based observatories, their lensing

strength, and the availability of pre-existing ancillary data. These galaxy clusters have

become some of the most studied galaxy clusters due to the community investment

in extensive multi-wavelength imaging and spectroscopic follow-up, resulting in large

numbers of strong lensing constraints identified and used in the detailed lens models

(Johnson et al. 2014; Zitrin et al. 2014; Diego et al. 2016; Jauzac et al. 2016; Limousin

et al. 2016; Caminha et al. 2017; Karman et al. 2017; Kawamata et al. 2018; Mahler

et al. 2018; Strait et al. 2018; Lagattuta et al. 2019; Sebesta et al. 2019; Vega-Ferrero

et al. 2019; Raney et al. 2020a; and references therein). The HFF program provides a

unique opportunity to study the statistical and systematic uncertainties in the lensing

outputs, due to the large number of diverse lensing algorithms that have computed

detailed lens models of these clusters (e.g., Meneghetti et al. 2017; Priewe et al. 2017;

Remolina González et al. 2018; Raney et al. 2020b compare different aspects of the

HFF lens models using different algorithms). In this work, we include the fourth

version of the public lens models, which is the most recent release. The clusters and

references to the models are listed in Table 4.1.
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4.2.4 RELICS

The RELICS program selected 41 galaxy clusters for shallow multi-band obser-

vation with HST for the primary goal to deliver a large sample of high-redshift

(z ∼ 6 − 8) galaxies (Salmon et al., 2018, 2020; Mainali et al., 2020; Strait et al.,

2020). 21 clusters where selected from a subsample of the most massive Planck clus-

ters (using the Sunyaev-Zeld́ovich effect, Sunyaev & Zeldovich 1970, to estimate their

mass; Planck Collaboration et al. 2016). The other 20 cluster were selected based

on a prior identification as prominent strong lenses in available imaging data. The

reasoning used for this selection is the expectation that the mass of the galaxy cluster

relates to its potential to have a large lensing cross-section, leading to an increase in

the chance to find high-redshift lensed sources.

The selection function employed for assembling the list of RELICS clusters ex-

plores the high-mass parameter space. In addition, the wider and shallower imaging

observing strategy (total of 188 HST orbits, GO 14096; PI Coe) is a clear example

of the challenges confronted by lensing surveys where only the primary and some of

the secondary arcs are readily identifiable, leading to a limited number of constraints

available for the lens modeling analysis (Acebron et al. 2018, 2019, 2020; Cerny et al.

2018; Cibirka et al. 2018; Paterno-Mahler et al. 2018; Mahler et al. 2019 and references

therein). From the 41 galaxy clusters observed, 34 have publicly available detailed

lens models and only 17 have publicly available spectroscopically confirmed multiple

imaged sources. Following Fox et al. (2021), we inspect the unpublished detailed

lens models and include in our analysis only models whose predicted lensed images

are within 1.′′5 of the observed lensing evidence, and do not produce critical curves

or masses that are not justified by the lensing constraints. In Table 4.1, we present

the list of the RELICS clusters used in our analysis with their corresponding lens

redshift, R.A. and Decl. of the selected BCG, and the number of background source

spectroscopic redshifts that were used to constrain Mcorr(< θE) and MSHM(< eθE) in
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this chapter.
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4.3 Lens Modeling And Einstein Radius

Strong lens modeling analyses use the positional and redshift measurements of

lensed galaxies (arcs) as constraints to model the underlying mass distribution. There

is a variety of well-established lensing algorithms that have been used extensively to

study both the galaxy cluster and the magnified background universe. Below, we pro-

vide a brief description of the lensing algorithms that were employed to compute the

publicly available detailed lens models used in our analysis. We also briefly describe

the Einstein Radius mass estimate, and single-halo lens models, which were recently

evaluated by Remolina González et al. (2020), Chapter II, and Remolina González

et al. (2021a), Chapter III, respectively, as methods to quickly and effectively measure

the mass at the core of strong lensing galaxy clusters.

4.3.1 Detailed Lens Models

Lensing algorithms are usually grouped into three categories: parametric, non-

parametric, and hybrid, based on the parametrization of the modeled mass distribu-

tion. Parametric models utilize a combination of parametric functions to describe the

mass distribution of the lens plane. Non-parametric or “free-form” algorithms make

no assumption on the functional form of the mass distribution. Hybrid models are a

combination of these two forms. The degree to which mass is assumed to be correlated

with the observed light distribution also varies among the different algorithms.

The parametric models that are used in this work include: GLAFIC (Oguri, 2010;

Ishigaki et al., 2015; Kawamata et al., 2016), GRAVLENS (Keeton, 2010; McCully et al.,

2014), and Lenstool (Kneib et al., 1996; Jullo et al., 2007; Jullo & Kneib, 2009;

Niemiec et al., 2020). These algorithms use a variety of analytical mass distributions

both for the cluster-scale dark matter halos and the contribution of the galaxy cluster

members. Light-Traces-Mass (LTM; Broadhurst et al. 2005; Zitrin et al. 2009, 2015)

assigns mass to a parameterized description of the light distribution, and LTM with
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elliptical NFW profiles (LTM+eNFW; Zitrin et al. 2009, 2015) combines this ap-

proach with analytical mass distributions as the parametric models. The “free-form”

algorithms include Strong and Weak Lensing United (SWUnited; Bradač et al. 2006,

2009) which performs an iterative minimization of a non-regular adaptive grid and

GRALE (Liesenborgs et al., 2006; Mohammed et al., 2014), which uses a genetic algo-

rithm to iteratively refine the mass distribution on a grid. Last, the hybrid algorithm

Weak & Strong Lensing Analysis Package (WSLAP+; Diego et al. 2005, 2007, 2016)

is a non-parametric algorithm with the addition of a parametrized distribution for the

cluster member contribution. Modeling algorithms also differ by their assumptions

on the extent of correlation between light and mass. A variety of techniques are em-

ployed to explore the parameter space and determine the model that best reproduces

the observed lensing configuration, and determine statistical uncertainties.

Detailed lens models (DLM) can be highly complex, adding the flexibility required

for detailed studies of galaxy cluster properties, their surrounding environment, un-

correlated structure along the line-of-sight, the magnified background universe, and

cosmology. This high complexity of the models relies on a large number of free param-

eters, requiring a large number of constraints, i.e., multiply-imaged lensed galaxies,

whose availability becomes a limiting factor in the modeling process. The versatility

of DLM also means the models are not unique and require care in the construction

and evaluation; statistical assessments are employed to select between models (e,g.,

Acebron et al. 2017; Paterno-Mahler et al. 2018; Lagattuta et al. 2019; Mahler et al.

2019). High-fidelity lens models of galaxy clusters with rich strong lensing evidence

require extensive follow-up observations, large investment of computational and hu-

man resources, and multiple iterations of the lensing analysis and modeling process

to revise the models as new observational evidence becomes available (e.g., Sharon

et al. 2012; Johnson et al. 2014; Jauzac et al. 2015).

To determine the statistical uncertainties of the public DLM used in this work,
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we use the “range” maps that are provided with them. The “range” maps are the

same lensing products as the best-fit products, except they are derived from sets of

parameters that sample the parameter space of each model, and provide a handle

on how the variation in model parameters affects the lensing-derived projected mass

density.

4.3.2 Single-Halo Lens Models

The single-halo lens models (SHM) computed in this analysis follows Remolina

González et al. (2021a), Chapter III. We use Lenstool to compute the SHM in

one lens plane with a single cluster-scale dark matter halo. The mass distribution is

parameterized using a dual pseudo-isothermal ellipsoid (dPIE, Eĺıasdóttir et al. 2007)

and no contribution from galaxy cluster members. Of the seven dPIE parameters (α

and δ are the R.A. and Decl.; ε is the ellipticity; θ is the position angle; rcore is the core

radius; rcut is the truncation radius; and σ is the effective velocity dispersion), only

six are optimized as we set the truncating radius to a fixed 1500 kpc as is typically

done in DLM in the literature (note that this projected radius is also similar to the

spashback radius; e.g., Umetsu & Diemer 2017; Shin et al. 2019). We use broad priors

in the six free parameters of the dPIE potential: −8.′′0 < α, δ < 8.′′0 ; 0.0 < ε < 0.9 ;

0◦ < θ < 180◦ ; 50 kpc < rcore < 150 kpc; and 500 km/s < σ < 1500 km/s. The small

number of free parameters calls for only a handful of constraints, with a minimum

of 6 constraints required. This can be satisfied with as little as 4 multiple images

of the same source, as each identified set of n multiple images contributes 2n − 2

constraints. With the image identification in hand (see Section 4.4.1), the models can

be computed quickly and with limited human intervention. Generally, the SHM can

be automatically computed once the cluster redshift, center initial position (e.g., the

brightest cluster galaxy - BCG), and position and redshift of the arcs are measured.
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Remolina González et al. (2021a), Chapter III, used the lensing products from the

SHM best fit model to compute the effective Einstein radius, eθE, and measure mass

enclosed by this aperture, MSHM(< eθE). The effective Einstein radius is defined as

the radius of a circle with the same area as the area enclosed by the tangential critical

curve. Remolina González et al. (2021a), Chapter III, found an overall scatter of 8.5%

with a bias of 0.9% in MSHM(< eθE). When a quick visual inspection is performed and

only the models that pass the inspection are used, the scatter and bias ofMSHM(< eθE)

improve to 3.3% and 0.3%, respectively. The visual inspection is conducted to identify

those single-halo lens models that fail to reproduce the observed lensing configuration

and predict arcs in regions where no multiple images are found.

4.3.3 Einstein Radius

The mass enclosed by the Einstein radius, M(< θE), is a quick method to estimate

cluster core mass, where strong lensing is detected:

M(< θE) = Σcr(zL, zS) π [DL(zL)θE]2, (4.1)

where Σcr(zL, zS) is the critical surface density, DL(zL) is the angular diameter dis-

tance from the observer to the lens, zL is the lens redshift, zS is the background

source redshift, and θE is the Einstein radius, which can be measured from the oc-

currence of arcs around the center of the lens. The main assumption of this method

is that the projected mass distribution of the lens is circularly symmetric (Narayan

& Bartelmann, 1996; Schneider, 2006; Kochanek, 2006; Bartelmann, 2010; Kneib &

Natarajan, 2011).

Remolina González et al. (2020), Chapter II, quantified the scatter and bias of

the mass enclosed by the Einstein radius and introduced empirical corrections based

on simulations. The method was calibrated for Einstein radii ≤ 30.′′0, for different

centering assumptions. The corrected mass enclosed by the Einstein radius, Mcorr(<
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θE), is reported to have no bias, and a scatter of 10.9% for the quadratic (12.1%

for the linear) corrected masses. Only the identified tangential arcs are used in this

method.

Following the recommendation and procedures established by Remolina González

et al. (2020), Chapter II, when applying this method to the observational data we

use the BCG of the galaxy cluster as our fixed center.

The projected arc radii in this work extend beyond the calibrated range (see

Figure 4.2). We therefore use caution when applying this method to our sample, and

investigate different choices in its application at large Einstein radii. We apply the

quadratic empirical correction for Einstein radii≤ 30.′′0, as recommended by Remolina

González et al. (2020), Chapter II, and the linear empirical correction for the rest.

In addition to the full sample, we report results for a subsample of ≤ 20.′′0, which is

better represented by the simulated data used by Remolina González et al. (2020),

Chapter II, to calibrate the method.

4.4 Methodology

In the following section, we describe the input constraints needed to compute

M(< θE) and MSHM(< eθE). Following the work by Remolina González et al. (2020),

Chapter II, and Remolina González et al. (2021a), Chapter III, we compute the core

mass for the sample of strong lensing galaxy clusters analysed in this work.

4.4.1 Arc Catalogs

We use the lensing constraints (arcs) that were identified and listed with the

public lens models. For this work, we only use constraints with spectroscopic redshifts

(reference for the arc catalogs are given in Section 4.2). We inspect the lensed galaxies

and determine if they are tangential or radial arcs depending on the direction of their

distortion. Only the tangential arcs are used for fitting the Einstein radius, but all of
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the arcs are included when computing the single-halo lens models.

4.4.2 BCG Selection

The position of the BCG serves as the initial position for the cluster-scale dark

matter halo in the single-halo lens models and as the fixed center in the Einstein

radius mass estimate. The BCGs were selected by their magnitude from a cluster

member catalog (see Postman et al. 2012 and Fox et al. 2021) and then confirmed by

visual inspection.

4.4.3 Computing MSHM(< eθE) and Mcorr(< θE)

Using the catalog of the arcs and the selected BCG, we compute the single-halo

lens models and measure the Einstein radii of the observed clusters. We compute a

SHM for each set (also known as “family”) of multiply-imaged background sources.

There are cases were a galaxy cluster has multiple arc families although none of the

individual families satisfy the minimum number of 6 constraints needed. We therefore

compute one SHM for each cluster that uses all the families as constraints, thus the

minimum number of constrains needed is attained (the total number of constraints

for a given model is Σ(2ni − 2), where ni is the number of constrains for background

source i). All the SHM are inspected and only the ones that pass the quick visual

inspection are used in our analysis. From the total of 67 clusters, 62 (29 SGAS, 15

RELICS, 6 HFF, and 12 CLASH) have enough constraints to compute a SHM, i.e., 6

or more constraints. Following the visual inspection, only 54 (23 SGAS, 13 RELICS,

6 HFF, and 12 CLASH) clusters remain in our analysis.

We plot the distribution of effective Einstein radii measured from the single-halo

lens models that pass the visual inspection in Figure 4.2. The distribution of eθE from

the SHM generally follows the number of clusters in each survey, as most clusters

only have one or two independent SHM that could be computed and pass the visual
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inspection. We note that while the depth of the HFF data leads to an unprecedented

number of strongly lensed galaxies overall, many of the arc families do not have four

or more secure multiple images each. We find that SGAS models occupy the lower

end of the effective Einstein radius distribution, followed by RELICS, CLASH, and

HFF. The distributions of eθE emphasizes the difference in the selection function of

the strong lensing sample, as CLASH, HFF, and RELICS attempted to select clusters

with large lensing cross section, to increase the chances of observing magnified high

redshift galaxies. The resulting SHM outputs are used to compute MSHM(< eθE) as

described in Section 4.3.2.

Utilizing the same catalog of arcs and BCG positions, we geometrically fit this

data with a circle, following Remolina González et al. (2020), Chapter II. We measure

at least one Einstein radius per galaxy cluster. We plot the distribution of all θE

in Figure 4.2. Unlike the SHM case, the Mcorr(< θE) can be computed for any

number of multiple images of a given lensed source, resulting in a θE measurement for

each strongly-lensed source with spectroscopic redshift. The deep observations and

extensive spectroscopic followup of the 6 HFF clusters resulted in a large number of

lensed sources with spectroscopic redshifts, which extend to large cluster-centric radii.

In all the other fields, where only a few lensed sources per cluster have spectroscopic

redshifts, the number of measurements is driven by the number of clusters in each

sample, and the identified sources have smaller cluster-centric distances. The Einstein

radius is then used to compute Mcorr(< θE) as described in Section 4.3.3.

4.4.4 Statistics

Depending on the number of arcs and arc families available for each method, each

cluster enables up to 37 θE measurements and up to six SHM measurements. The

measurements in each cluster are expected to be correlated, and their distribution

can inform the statistical uncertainty. On the other hand, individual clusters are
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Figure 4.2: Distribution of θE and eθE as measured from the two different
mass estimate methods. The Einstein radius (θE; Left panel) is measured from the
geometric fit of a circle to the identified tangential arcs of a single background source
and the effective Einstein radius (eθE; Right panel) is measured as the radius of a circle
with the same area enclosed by the tangential critical curve of the single-halo lens
models that passed the visual inspection. Both θE and eθE have units of arcseconds.
The black dashed line represents the total counts and the colors denote the counts
from the four different surveys of strong lensing galaxy clusters. As expected from the
selection functions of these samples, SGAS clusters have lower θE and eθE, followed by
the RELICS, CLASH, and HFF galaxy clusters. The deep observation and extensive
followup of the six HFF clusters result in a large number of lensed sources with
spectroscopic redshifts, extending to large cluster-centric radii, which is reflected in
the distribution of θE. SGAS, CLASH (except for those that are also part of HFF),
and RELICS have only a few lensed sources per cluster with spectroscopic redshifts,
and are found at smaller cluster-centric distances.
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independent of each other.

To validate the robustness of our rapid measurements, we follow Remolina González

et al. (2020), Chapter II, and Remolina González et al. (2021a), Chapter III, to build

a statistical sample for each method (θE and SHM) to take into account multiple

mass estimates for a single galaxy cluster and set the statistical weight for each clus-

ter equal to one. For each galaxy cluster, we select at random an Einstein radius

and a effective Einstein radius from the measured Einstein radii and available single

halo lens models that passed visual inspection. For comparison to MDLM, if a cluster

has more than one detailed lens model (see Section 4.2), one DLM was selected at

random. Then, we sample the selected mass measurement from a normal distribution

centered at the best fit and standard deviation equal to the uncertainty. This process

is repeated 1, 000 times per cluster leading to a sample of 67, 000 Mcorr(< θE) points,

62, 000 points from all SHM, of which 54, 000 MSHM points are ones that passed the

quick visual inspection.

4.5 Analysis of Results

In the following section, we compare the galaxy cluster core mass measurement

between the Einstein radius, Mcorr(< θE), and the single halo lens models, MSHM(<

eθE), to the mass enclosed by the respective mass apertures from the detailed lens

models. We discuss the difference in the uncertainty measured in this work and the

scatter measured from simulations by Remolina González et al. (2020) , Chapter II,

and Remolina González et al. (2021a), Chapter III. Last, we compare the scatter of

two efficient mass methods, Mcorr(< θE) andMSHM(< eθE), to the statistical modeling

uncertainty of the detailed lens models. In this work the scatter is defined as half of

the difference between the 84th and 16th percentiles. The bias is determined from

the median of the distribution.
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4.5.1 Mass Enclosed by the Einstein Radius, Mcorr(< θE)

In Figure 4.3, we plot the direct comparison between the corrected mass enclosed

by the Einstein radius, Mcorr(< θE), and the mass enclosed by the same aperture from

the best-fit detailed lens model, MDLM, for all clusters. We measure an overall scatter

of 18.1% and bias of −7.1% in Mcorr(< θE) compared to MDLM. We find that the

distribution is biased low, particularly at large MDLM values. The observed negative

bias is reduced from systems with large Einstein radius (θE > 20.′′0). For Einstein

radius < 20.′′0 the scatter is 14.4% and bias of −4.3%. This bias could be possibly

addressed by extending the work of Remolina González et al. (2020), Chapter II, to

larger radii, by using simulations that include lower magnification lensed sources at

larger cluster-centric distances.

4.5.2 Mass Estimate from Single Halo Lens Models, MSHM(< eθE)

We assess the results of the entire SHM sample, and the results of the subsample of

models that passed the visual inspection. In Figure 4.4, we plot the direct comparison

between the aperture mass enclosed by the effective Einstein radius of the SHM

that passed the visual inspection, MSHM(< eθE), and the mass enclosed by the same

aperture in the best-fit DLM, MDLM. We measure an overall scatter of 9.0% and a

bias of 1.0% between MSHM(< eθE) and MDLM for the SHM that passed the quick

visual inspection. For the entire SHM sample,we measure an overall scatter of 12.5%

and a bias of 2.4% between the two masses.We find that the visual inspection helps

decrease the scatter and bias between MSHM(< eθE) and MDLM.

4.5.3 Comparison to the Statistical Uncertainty of the Detailed Lens

Models

To contextualize the scatter of the mass estimates assessed in this chapter, we

review it against the uncertainty typically attributed to detailed lens models. We
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Figure 4.3: Mass Comparison Between Mcorr(< θE) and MDLM. The top plot
shows the direct mass comparison between the masses and the bottom plot is the
mass ratio of the measurements. The total number of counts is the 62, 000 sampled
data points (see Section 4.4.4). The black lines indicate the one-to-one line, where
Mcorr(< θE) equals MDLM. We find that the distribution is biased low particularly at
large MDLM.
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Figure 4.4: Mass Comparison Between MSHM(< eθE) and MDLM. The top plot
shows the direct mass comparison and the bottom plot shows the mass ratio. The
total number of counts is the 52, 000 sampled data points (see Section 4.4.4). The
black lines indicate the one-to-one line, where MSHM(< eθE) equals MDLM. We find
that MSHM(< eθE) is unbiased compared to MDLM.
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plot the overall scatter in the Mcorr(< θE) and MSHM(< eθE) measurements against

the statistical uncertainty of the detailed lens models, σ(MDLM), normalized by the

best-fit DLM in Figure 4.5. The statistical uncertainty of the detailed lens models is

computed in the same way as the scatter (see Section 4.5), except the uncertainty of

each data point is drawn from the publicly available “range” maps provided by the

lensing teams, and represents a statistical sampling of the parameter space, typically

using MCMC. The aggregated statistical uncertainty over the entire sample from the

detailed lens models is σ(MDLM) = 1.1%.

However, the statistical DLM modeling uncertainty is likely underestimated. Com-

paring models of two simulated clusters that were computed by different DLM algo-

rithms, Meneghetti et al. (2017) conclude that detailed lens models are reliable when

recovering the enclosed mass in the inner 100.′′0 with a scatter of less than 10%. In

a recent comparison between DLM algorithms, Raney et al. (2020b) show that while

the mass measured by the detailed lens models is reliable, the statistical uncertainty

reported by the lensing algorithms underestimates the systematic uncertainty. Raney

et al. (2020b) estimate the systematic uncertainty at ∼ 5% for a circularly-averaged

mass computed from the most recent versions (v4) of the HFF lens models.

4.5.4 Comparison between Observations and Simulations

Remolina González et al. (2020), Chapter II, and Remolina González et al. (2021a),

Chapter III, measured the scatter and bias of Mcorr(< θE) and MSHM(< eθE) against

the “true” mass, from simulations. To compare the scatter found in this work to

Remolina González et al. (2020), Chapter II, and Remolina González et al. (2021a),

Chapter III, we need to account for the fact that detailed lens models are an ob-

servable measurement and while reliable are not the absolute truth. The expected

scatter should therefore be a combination of the intrinsic scatter of the mass estimate,

as measured from simulations, and the scatter attributed to the DLM measurement.
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Figure 4.5: The Scatter of the Efficient Mass Estimate Methods, Compared
to the Statistical Uncertainty of the Detailed Lens Models. We plot the
mass ratio between the mass estimate and the best-fit detailed lens model against
the statistical scatter of the detailed lens models, Mrange/MDLM, derived from the
publicly available “range” maps and normalized by the best-fit detailed lens model.
The crosses stand for the point (1.0,1.0) and the open circles indicate the median
of the distributions. Results for Mcorr(< θE) are shown in the top panel, and for
MSHM(< eθE) in the bottom panel, smoothed by a kernel of 5%. The black cross
indicates the location where Mcorr(< θE) and MSHM(< eθE) equal MDLM.
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We note that the scatter between the three mass estimates (Mcorr(< θE), MSHM(<

eθE), and MDLM) may be correlated. To fully characterize the correlations between

the masses will require the computation of detailed lens models for a large sample of

simulated strong lensing galaxy clusters, which awaits new large cosmological simu-

lations with baryonic information and will require an extensive amount of physical

and human resources.

With this in mind, we compute a lower limit in the expected scatter by assum-

ing that the scatter between the masses is un-correlated. We add in quadrature the

scatter of Mcorr(< θE) and MSHM(< eθE) from simulations (10.9% and 3.3%, respec-

tively, from Remolina González et al. 2020, Chapter II, and Remolina González et al.

(2021a), Chapter III) with a 5% scatter in MDLM (from Raney et al., 2020b). This

results in a expected scatter of 12.0% for Mcorr(< θE) and 6.0% for MSHM(< eθE)

that passed the visual inspection. In both cases, we find that the overall scatter mea-

sured in this work (18.1% and 9.0%) is larger than expected. The difference between

these scatters highlights some of the limitations in the simulation used by Remolina

González et al. (2020), Chapter II, and Remolina González et al. (2021a), Chapter III,

to account for the full range of scatter due to, e.g., baryonic effects, uncorrelated mass

along the line of sight, and shear from nearby structures.

4.6 Summary and Conclusions

A large number of strong lensing galaxy clusters is expected to be detected in

current and upcoming large surveys. Estimating the mass at the core of these galaxy

clusters will serve as one of the anchors to the radial mass distribution profile and

measurement of the concentration. Detailed lens models to analyze these strong lens-

ing clusters and measure the mass at the core of the galaxy cluster are limited by

the small number of constraints available from the identified multiply imaged lensed

sources and can take multiple weeks to be finalized. Timely, efficient, and accurate
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methods to measure the mass at the core of galaxy clusters in these large samples

are needed. Remolina González et al. (2020), Chapter II, assessed an empirically cor-

rected mass enclosed by the Einstein radius (Mcorr(< θE)) and Remolina González

et al. (2021a), Chapter III, assessed the aperture mass enclosed by the effective Ein-

stein radius from the single-halo lens models (MSHM(< eθE)) using simulated strong

lensing images from the Outer Rim (Heitmann et al., 2019). In this work, we applied

the two methods to observational data and used the publicly available detailed lens

models from the SGAS, CLASH, HFF, and RELICS strong lensing cluster samples

to evaluate the efficacy of the methods in measuring the core mass of galaxy cluster.

We conclude the following:

• The corrected mass enclosed by the Einstein radius, Mcorr(< θE), has an overall

scatter of 18.1% and bias of −7.1% compared to the detailed lens models. The

bias is reduced if large (θE > 20.′′0) Einstein radii are excluded. For Einstein

radii < 20.′′0 the scatter is 14.4% and the bias is −4.3%.

• The SHM aperture mass enclosed by the effective Einstein radius, MSHM(< eθE),

when computed over the entire sample, has an overall scatter of 12.5% and bias

of 2.4% compared to the DLM. A quick visual inspection of the SHM outputs

eliminates the SHM that fail to reproduce the lensing configuration, reducing the

scatter to 9.0% and the bias to 1.0%. We find that the quick visual inspection

is beneficial in reducing the scatter and bias between MSHM(< eθE) and MDLM,

and identify lines of sight that would benefit from a more detailed analysis.

• To compare the overall scatter from Mcorr(< θE) and MSHM(< eθE) to that of

simulations, we need to take into account the uncertainty in the detailed lens

models. While we expect correlations between all mass estimates (Mcorr(< θE),

MSHM(< eθE), and MDLM), computing this is out of the scope of this analy-

sis. We choose to compute a lower limit for the expected scatter by adding
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in quadrature 5%, which corresponds to the scatter of the mass from the de-

tailed lens models, to the scatter measured in the simulation of 10.9% (3.3%) for

Mcorr(< θE) (MSHM(< eθE) that passed the visual inspection). The resulting

expected scatter is 12.0% for the corrected mass enclosed by the Einstein radius

and 6.0% for the SMH that passed the visual inspection. The measured scatter

in this work for both cases, 18.1% in Mcorr(< θE) and 9.0% in MSHM(< eθE), is

higher than our estimated lower limit of the expected scatter. The difference is

then associated with limitations in the simulation used by Remolina González

et al. (2020), Chapter II, and Remolina González et al. (2021a), Chapter III,

including baryonic effects, line-of-sight structure, and shear due to nearby struc-

tures.

• Detailed lens models are considered to be the state of the art in measuring the

enclosed projected mass density within the cores of galaxy clusters. While likely

underestimated, the relative statistical lens modeling uncertainty of detailed

lens models, marginalized over the large sample we investigated here, is of order

1.1%. Systematic uncertainties are estimated in the literature (e.g., Meneghetti

et al., 2017; Raney et al., 2020b) at the 5−10% level. We show that the precision

toll of using the significantly-faster mass estimate methods is only a 9.0% or

18.1% increase over the detailed lens models. We conclude that if other, larger,

sources of error dominate the analysis, these fast and efficient mass estimate

methods become a powerful tool in analyses of large cluster samples.

Overall, this work demonstrates the successful application of these efficient meth-

ods to observational data as currently established, as well as their reliability to es-

timate the mass at the core of strong gravitational lensing galaxy clusters. We look

forward to improvements to these methods benefiting from identification of strong

lensing evidence by convolutional neural networks (e.g., Cañameras et al. 2020; Huang

et al. 2021; Morgan et al. 2021) and other machine learning algorithms to model the
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mass distribution of the SL clusters (e.g., Bom et al. 2019; Pearson et al. 2019).
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CHAPTER V

The concentration-Mass Relation of South Pole

Telescopes Strong Gravitational Lensing Galaxy

Clusters

Preface

This chapter has been adapted from a paper of the same title in preparation

with the plans to be submitted for peer-review to the Astrophysical Journal, with

co-authors K. Sharon, L. E. Bleem, S. W. Allen, L. F. Barrientos, M. Bayliss, B.A.

Benson, S. Bocquet, M. Brodwin, R. Canning, M. Florian, C. Fox, M. D. Gladders,

S. Habib, K. Heitmann, J. Hlavacek-Larrondo, T. L. Johson, G. Khullar, A. L. King,

N. Li, G. Mahler, A. Mantz, O. S. Matthews Acuña, M. McDonald, R. G. Morris, K.

Napier, A. Niemiec, E. Noordeh, B. Stalder, A. A. Stark, V. Strazzullo, A. von der

Linden and the South Pole Telescope Collaboration. The paper is presented here is in

progress and ready to go through review by the Clusters Group and full collaboration

of the South Pole Telescope.

For this project, I measure the concentration-Mass (c-M) relation for a large sam-

ple of South Pole Telescope (SPT) strong lensing galaxy clusters. I used simulations

to test the modeling procedures and predict the c-M relation for strong lensing clus-

ters. For the observations, I used a large sample of 51 strong lensing galaxy clusters
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identified from a Hubble Space Telescope Snapshot program that successfully observed

137 SPT galaxy clusters. This large sample of strong lensing clusters (about twice

as large as any previously studied samples) has a well understood selection function

and uniform imaging data making it useful for this study. I performed all of the

analysis shown with the feedback from the co-authors. I produced all of the figures

and tables presented in the paper. I wrote nearly the whole text with the feedback

and suggestions from the co-authors.

As part of SPT collaboration work with strong lensing galaxy clusters, I have been

the principal investigator of a multi-year spectroscopic follow-up of SPT strong lensing

program utilizing the Magellan Telescopes. The results of the program including the

spectroscopic redshifts for strong lensing evidence and galaxy cluster members will

be presented at a later time by the SPT collaboration. I present a description of the

observing program in Appendix D including a summary of the observations.

The work for this chapter is based on observations with the NASA/ESA Hubble

Space Telescope obtained at the Space Telescope Science Institute, which is operated

by the Association of Universities for Research in Astronomy, Incorporated, under

NASA contract NAS5 − 26555. These observations are associated with programs

GO−15307 and GO-15163. Support for Program GO−15307 was provided through

a grant from the STScI under NASA contract NAS5− 26555. The data used in this

chapter are available through the Mikulski Archive for Space Telescopes (MAST).

STScI is operated by the Association of Universities for Research in Astronomy, Inc.,

under NASA contract NAS5-26555.

Abstract

We present the measurement of the concentration-mass relation for a large sample

of 51 South Pole Telescope (SPT) strong lensing galaxy clusters, combining the mass

at the core from strong lensing and the Sunyaev Zel’dovich inferred mass estimated
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by SPT. The SPT strong lensing sample was selected from a uniform HST snapshot

program. The sample spans a mass range of 3.00 × 1014 M� h−1 < M500c < 1.00 ×

1015 M� h−1 with a median of 5.28 × 1014 M� h−1 and a redshift range of 0.207 <

z < 1.150 with a median of 0.580. We use the Outer Rim simulation and apply our

observational selection function to compute the prediction of the concentration-mass

relation for SPT-like strong lensing galaxy clusters. We constrain the normalization

of the c-M relation to within a 9.3% level in simulations and 5.7% in observations. We

find significant evidence at the 4.5-sigma level and higher for a relation between the

mass, M500c, and the concentration, c500c. We cannot constrain a possible evolution

of the concentration with redshift with these samples. Last, we report an agreement

between the predictions from simulations and the observed cluster and find no tensions

with ΛCDM.

5.1 Introduction

The concentration-mass (c-M) relation of galaxy clusters can directly compare the

predictions from cosmological simulations (e.g., Duffy et al. 2008; Prada et al. 2012;

Bhattacharya et al. 2013; Meneghetti et al. 2014; Child et al. 2018 and observational

measurements (e.g., Okabe et al. 2010; Oguri et al. 2012; Sereno et al. 2015; Merten

et al. 2015). The concentration can be computed from the Navarro, Frenk, and White

(NFW; Navarro et al., 1996, 1997) radial mass density profile, and to constrain it

requires measurements extending a broad range of cluster radii. Mass measurements

extending the broad radial range of galaxy clusters are needed and combinations of

various mass estimates have been employed to achieve this work (e.g., Oguri et al.

2012; Merten et al. 2015).

At the cores of galaxy clusters, strong gravitational lensing (SL), provides a highly

accurate total (dark and baryonic) mass estimates at the smallest radial scales and

largest over-densities. This makes galaxy clusters with strong lensing evidence of
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particular interest, as the strong lensing mass estimate at the cluster core (e.g., Sharon

et al. 2015; Remolina González et al. 2021a, Chapter III,) can be used to measure c-M,

when combined with a large scale mass proxy from weak lensing (e.g., Hoekstra et al.

2013; Merten et al. 2015), X-ray (e.g., Mantz et al. 2018; Ettori et al. 2019), richness

(e.g., Koester et al. 2007; Rykoff et al. 2016 ), dynamical techniques (e.g., Gifford &

Miller 2013), or the integrated Sunyaev Zel’dovich effect (SZ, Sunyaev & Zeldovich

1972, 1980; e.g., Planck Collaboration et al. 2016; Bleem et al. 2020). Comparisons

between observations and theoretical predictions of c-M in SL galaxy clusters have

reported some disagreement (e.g., Broadhurst & Barkana 2008; Gralla et al. 2011;

Gonzalez et al. 2012; Meneghetti et al. 2013; Killedar et al. 2018). However, the

sample size and selection functions are limitations in these studies.

In this work, we use a large sample of SL galaxy clusters (about twice as large as

samples used in previous studies) from the South Pole Telescope (SPT), which has

a selection function for galaxy clusters that is almost redshift independent and mass

limited (Bleem et al., 2015, 2020; Huang et al., 2020). This unique sample spans

a broad range in redshift and total mass. A large Hubble Space Telescope (HST )

Snapshot (SNAP) program has provided uniform imaging of over a hundred galaxy

clusters, with 55% of them showing some strong lensing evidence. The large sample

requires a fast and accurate method to measure the core mass of galaxy clusters in a

timely manner. Remolina González et al. (2020), Chapter II, and Remolina González

et al. (2021a), Chapter III, used simulations to assess the use of the mass enclosed by

the Einstein radius and the use of Single-Halo Lens Models, respectively, as efficient

and accurate mass estimators with recommendations on their application to large

samples of strong lensing galaxy clusters. The goal of this chapter is to combine the

mass at the core from strong lensing and the SZ mass from SPT to constrain their

NFW profile, measure the concentration-mass relation for SPT strong lensing galaxy

clusters in the uniformly-imaged sample provided by the HST SNAP program, and
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compare the observations against predictions from simulations. For the predictions

from simulations, we use the Outer Rim cosmological simulation (Heitmann et al.,

2019) and adopt the total halo mass, M500c, and concentration, c500c, measured by

Child et al. (2018) and Li et al. (2019).

The chapter is organized as follows. In Section 5.2, we describe the NFW density

profile and previous comparisons between simulations and observations of the c-M

relation. In Section 5.3, we describe the simulations used in the work to establish a

prediction for the c-M relation for SPT SL galaxy clusters. In Section 5.4, we describe

the SPT SL galaxy cluster sample used in this analysis and the strong lensing evidence

identified in these lines of sight. In Section 5.5, we describe the two efficient core mass

estimates using the strong lensing evidence, the mass enclosed by the Einstein radius

and the Single-Halo Lens Models. In Section 5.6, we describe the selection of strong

lensing constraints, the computation of the empirically-corrected mass enclosed by the

Einstein radius, the method used to fit the NFW density profile to the mass estimate

from strong lensing at the core and the large scale mass from SZ, validate our methods

for measuring the concentration using simulations, and describe the fitting procedure

for the c-M relation. In Section 5.7, we present the predictions of the c-M relation

from the simulated sample of strong lensing galaxy clusters, measure the c-M relation

of the observed SPT strong lensing galaxy clusters, and compare our predictions from

the simulation to our observations. Last in Section 5.8, we summarize our conclusions.

We adopt a flat ΛCDM cosmology throughout the chapter. For consistency with

measurements in the observed and simulated samples, we use ΩΛ = 0.7, ΩM = 0.3,

and H0 = 70 km s−1 Mpc−1 in measurements of the observed sample following the

analysis performed to measure the large scale masses from SPT clusters (Williamson

et al., 2011; Bleem et al., 2015, 2020; Bocquet et al., 2019; Huang et al., 2020). For

the simulations, we adopt the WMAP -7 parameters (Komatsu et al., 2011) ΩΛ =

0.735, ΩM = 0.265, and h = 0.71, as was implemented in the Outer Rim simulation
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(Heitmann et al., 2019).

The large scale masses are reported in terms of M∆c, defined as the mass enclosed

within a radius at which the average density is ∆ times the critical density of the

universe, ρcrit(z), at the cluster redshift, z:

M∆c = ∆ρcrit(z)× 4

3
πr3

∆c, (5.1)

where r∆c is the radius corresponding to M∆c.

5.2 The NFW Density Profile

The NFW profile (Navarro et al., 1996, 1997) describes the universal spatial mass

distribution of dark matter halos, derived from a functional fit to dark matter halos

identified in N-body cosmological simulations. The NFW profile is defined as follows:

ρNFW(r) =
ρcrit(z)δc(

r
rs

)(
1 + r

rs

)2 , (5.2)

where δc is the characteristic dimensionless density parameter and rs is the scale

radius of the halo. The characteristic dimensionless density parameter δc takes the

following form given r∆c (or equivalently M∆c) which is a useful implementation to

aid in the fitting process (see Section 5.6.4):

δc =
∆

3

(
r∆c

rs

)3

A(r∆c)
−1 (5.3)

where

A(r∆c) =

[
ln

(
1 +

r∆c

rs

)
−

r∆c

rs

1 + r∆c

rs

]
. (5.4)

The concentration is then defined as the ratio of a radius of interest and the scale

radius:
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c =
r

rs

. (5.5)

Traditionally the concentration has been measured in relation to r∆c for ∆ = 500 and

200 resulting with the corresponding concentration c∆c.

The mass enclosed by a sphere of radius r, is as follows:

MNFW(< r) = 4πρcrit(z)δcr
3
sA(r). (5.6)

As strong gravitational lensing measures the projected mass distribution, it is con-

venient to write the average surface density of the NFW profile (Golse & Kneib,

2002):

ΣNFW(< r) = 4ρcirt(z)δcrs

(rs

r

)2

F

(
r

rs

)
, (5.7)

where:

F

(
r

rs

)
=



ln
(

r
2rs

)
+ 1√

1−( r
rs

)
2 arccosh

(
rs
r

)
( r
rs
< 1)

1 + ln
(

1
2

)
( r
rs

= 1)

ln
(

r
2rs

)
+ 1√

( r
rs

)
2
−1

arccos
(
rs
r

)
( r
rs
> 1),

(5.8)

which is then used to compute the projected NFW mass enclosed by radius, r:

Mproj
NFW(< r) = ΣNFW(< r)πr2. (5.9)

A relation between the concentration and the mass has been identified in simula-

tions (e.g., Duffy et al. 2008; Bhattacharya et al. 2013; De Boni et al. 2013; Meneghetti

et al. 2014; Child et al. 2018) and observations (e.g., Okabe et al. 2010; Oguri et al.

2012; Merten et al. 2015). We adopt the following form of the concentration-Mass

relation:
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c∗∆c(M∆c, z) = α

(
M∆c

Mpivot

)β (
1 + zpivot

1 + z

)γ
, (5.10)

where Mpivot is the median mass and zpivot is the median redshift of the halos, α is the

normalization parameter, β and γ are the scaling exponents that define the power-law

dependence of the concentration on the mass, M∆c and the redshift, respectively.

This relation has a scatter of σ(c∆c) = c∆c/3 (Duffy et al., 2008; Bhattacharya

et al., 2013; Child et al., 2018). In simulations, the c-M relation has been measured

using different methods (e.g., Duffy et al. 2008; Prada et al. 2012; Bhattacharya et al.

2013; Meneghetti et al. 2014; Child et al. 2018). Some of disagreements among these

results have been found to be largely due to the fitting methods, binning choices, and

operational form of the definition of concentration (see Meneghetti et al. 2013; Dutton

& Macciò 2014). The shape of the concentration-Mass relation has been debated with

a diversity of results coming from simulations including: a power-law dependence for

all mass and redshift (e.g., Bhattacharya et al. 2013), a flattening concentration at

high mass (e.g., Duffy et al. 2008; Child et al. 2018), an increasing concentration with

increasing mass (e.g., Prada et al. 2012). The redshift dependence of the concentra-

tion has also been debated with simulations indicating a possible evolution. It is also

important to note that different cosmological parameters have an effect on the con-

centration mass measurement, with high-σ8 having higher concentrations at a given

mass (Child et al., 2018). Last, some of the difference found between the different

predictions from simulation have been found to depend on the selection function of

the sample of halos, i.e., relaxed halos versus full sample.

Strong lensing galaxy clusters are a unique sample which are not representative of

a mass limited sample of galaxy clusters. An example comparison using simulations

between a mass limited halo sample and strong lensing halos is shown in Figure 2.1 in

Chapter II. When looking particularly at the concentration, bottom left panel of the

previously mentioned figures, we clearly see that the distribution peak of concentra-
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tions of strong lensing clusters is higher than that of the mass limited sample. We also

note the difference in the distribution in the mass, with strong lensing clusters gen-

erally being more massive, and redshift distribution, which is selection dependent in

this particular case. The higher concentration in strong lensing clusters is a selection

function as halos with surface densities higher than the critical surface density are

required to observe strong gravitational lensing evidence. We expect clear differences

in the c-M relation between a mass limited and strong lensing halo sample, with the

strong lensing c-M relation having a steeper slope and higher normalization between

the concentration and total mass (e.g., Meneghetti et al. 2013).

The over-density of strong lensing galaxy clusters has been reported in observa-

tions (e.g., Oguri & Blandford 2009; Gralla et al. 2011). In observations, the c-M

relation has been measured in various samples of strong gravitational lensing galaxy

clusters (e.g., Oguri & Blandford 2009; Oguri et al. 2012; Okabe et al. 2010; Sereno

et al. 2015; Merten et al. 2015). Most of these samples consist of only a handful to

a few tens of galaxy clusters, with complicated selection functions, presenting a lim-

itation in the comparison between predictions and observations. In this chapter, we

employ the same observational selection function in our predictions from simulations.

The use of the same selection function in the simulations and observations allows for

a direct comparison of the concentration-mass relation. A large sample spanning a

broad mass and redshift range with a well defined selection function is also key of our

analysis.

5.3 Simulated Strong Lenses

A comparison between the observed and predicted c-M relation must take into

account that SL may be preferentially observed in a biased sub-sample of the cluster

population. To account for that, we apply the SNAP program selection function to

the catalog of simulated SL clusters from the Outer Rim (Heitmann et al., 2019)
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cosmological simulation, to generate a simulated sub-sample that follows a similar

selection function as the observed sample.

The Outer Rim is a large box (L = 3000 Mpc h−1 on the side), high-mass resolu-

tion, N-body simulation. The simulation adopts a WMAP -7 (Komatsu et al., 2011)

flat ΛCDM cosmology: ΩΛ = 0.735, ΩM = 0.265, and h = 0.71. The Outer Rim

was used by Child et al. (2018) to study the dark matter radial profiles of galaxy

cluster-scale and group-scale halos, and measured the c-M relation, using the full 3D

particle information. Li et al. (2019) used the simulation to evaluate the effect on

lensing due to line-of-sight structure and constructed realistic strong lensing images

(Li et al., 2016). For our analysis, we adopt the total halo masses (M500c) and the

concentrations (c500c) measured by Child et al. (2018) and Li et al. (2019).

The halos were identified using a friend-of-friends algorithm with a linking length

of b = 0.168. A density estimator is employed to measure the halo surface density and

Rangel et al. (2016) showed that the mass resolution for halos with a mass M500c >

2.00×1014 M� h−1 is robust for strong lensing studies. Following a SPT-like selection

function, all halos with M500c > 2.10×1014 M� h−1 were selected. From this SPT-like

sample, the average convergence was computed and strong lenses are identified where

〈κ〉 = 1, and an Einstein radius of a few arcseconds is measured. The simulated SPT-

like strong lensing sample is composed of 74 galaxy clusters spanning the redshift

range of z ∼ 0.160 − 0.670. The selection function to identify strong lensing galaxy

clusters in the simulation limits the identification of high-redshift (z > 0.700) clusters

as the lensing efficiency, DLS/DS, becomes small for increasing lens redshift and a

fixed background source redshift of zS = 2.000. For more information of the strong

lensing simulated sample we direct the reader to Remolina González et al. (2020),

Chapter II, and Remolina González et al. (2021a), Chapter III.

The simulated lensed images were produced following Li et al. (2016). Background

source redshifts were drawn from a normal distribution with µ = 2.0 and σ = 0.2

154



motivated by the observational analysis of Bayliss et al. (2011a). The image plane for

each line of sight was generate 5 to 24 times, each with a unique background source

redshift and position. A total of 1024 simulated lensed images were created with a

resolution of 0.′′09 and a field of view of 2048× 2048 pixels. No additional errors were

added to the images as it was created for the most ideal case instead of creating a

mock observations of a particular instrument. The background sources were placed in

areas of high magnification, as this strategy mocks the selection function of lensing-

selected samples (e.g., Bayliss et al., 2011b; Nord et al., 2016, 2020; Sharon et al.,

2020; Khullar et al., 2021). The redshift and image plane positions of the multiple

images are used to constraint the mass at the core of the galaxy cluster.

5.4 South Pole Telescope Strong Lensing Cluster Sample

The South Pole Telescope observations led to the identification of over 1000 galaxy

clusters (Williamson et al., 2011; Bleem et al., 2015, 2020; Huang et al., 2020). These

authors made the galaxy cluster catalogs publicly available1 including their mass

estimates M500c. In Figure 5.1, we plot the mass-redshift distribution of the SPT

galaxy clusters. The SPT selection function lends itself to galaxy cluster population

analyses as it is almost redshift independent and mass limited. This unique sample is

of particular interest to evolutionary studies, as we expect galaxy clusters to be less

massive at higher redshifts and evolve into more massive descedents at lower redshifts.

The M500c mass estimates reported in the cluster catalogs (Williamson et al., 2011;

Bleem et al., 2015, 2020; Huang et al., 2020) and additional work by Bocquet et al.

(2019) use a scaling relation to convert from the observed SZ significance to a mass.

The observable-mass scaling relation parameters were determined in Bocquet et al.

(2019) for a fixed flat ΛCDM cosmology and an observe cluster number count analysis

for a sample of SPT-SZ clusters with significance greater than five and redshifts

1https://pole.uchicago.edu/public/data/sptsz-clusters/
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greater than 0.25. In Bocquet et al. (2019), an additional mass estimate for galaxy

clusters in the SPT-SZ 2500 deg2 was performed which marginalized over cosmology

and scaling relation. These fully marginalized mass estimates are robust and found to

be systematically lower than the un-marginalized mass estimates by about 20%. As

the fully marginalized masses are not currently available for the complete sample of

SPT galaxy clusters, we use the un-marginalized mass estimates and test the effect of

a systematic difference in the large scale masses using simulations, see Appendix C.

We expect fully marginalized mass estimates for all of the galaxy clusters shortly,

which will enable their use in our analysis.

The large scale mass (M500c) and redshift used in our analysis are taken from

Williamson et al. (2011); Bocquet et al. (2019); Bleem et al. (2020); and Huang et al.

(2020). The SPT M500c were computed assuming a fixed cosmology and using the

best-fit scaling relations for the number count observed in SPT (approach adopted in

Bleem et al. 2015 and used in Bocquet et al. 2019; Bleem et al. 2020; Huang et al.

2020). In Table 5.2, we tabulate the galaxy clusters that are used in this analysis,

their SPT ID, brightest cluster galaxy (BCG) R.A. and Decl., M500c, and redshift.

A subset of the SPT cluster catalog was uniformly imaged with HST as part

of a snapshot program in Cycle 25, and extended into Cycle 26 (GO-15307, GO-

16017; PI:Gladders). The main goals of this program were to leverage the resolution

capabilities of HST to study: (1) the evolution of brightest cluster galaxies, (2) strong

lensing statistics and the concentration-mass relation of strong lensing clusters, and

(3) the active galactic nuclei (AGN) in galaxy cluster members.

HST Snapshot programs execute a fraction of a target list, typically ∼30%. Tar-

gets are selected for implementation by the scheduling algorithm, to fill short time

intervals that cannot be allocated to other proposals, thus maximizing the efficiency

of the observatory. The SNAP targets were therefore generally drawn at random from

a parent pool of clusters, which was constructed as follows.
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Clusters were selected from the SPT cluster catalog such that they have an equal

co-moving number density at 0.2 < z < 1. All the clusters at z ≥ 1 were included,

and a lower redshift limit was applied at z = 0.2, due to the small volume this redshift

bin samples and the extensive data already available for low-z clusters. We applied a

redshift-dependent lower limit mass threshold, anchored at M500c = 4 × 1014M�h
−1

at the median catalog redshift. This threshold selects lower-mass cluster at higher

redshifts, to foster evolutionary studies: the less-massive high redshift systems would

evolve with cosmic time, to become the high-mass systems of low redshift. A sample

of 387 SPT clusters satisfy these criteria. After removing fields which were previously

observed by HST, the final target list includes 293 clusters.

The execution rate of our SNAP program, 47%, was higher than typical due to

the extension of the program into Cycle 25, resulting in successful triggering of 137

targets. The shallow snapshot imaging of each of 137 SPT clusters were obtained with

the WFC3-IR camera through the F110W filter, and with the WFC3-UVIS camera

through the F200W filter, during a single shortened SNAP orbit. These two filters

were selected in order to optimize the throughput, as they provide the broadest UVIS

or IR wavelength coverage. The observations were configured to have one of three

total exposure lengths (short, medium, or long) depending on cluster redshift, where

higher redshift clusters were observed with a longer exposure time. The UVIS data

were taken with a 3-point line dither, and post-flash was applied in order to mitigate

charge transfer efficiency effects.

The data were reduced as follows. Prior to combining the calibrated single images

produced by the Mikulski Archive for Space Telescopes (MAST2) archive , we apply

two corrections. The first addresses a visible mismatch in sky levels in the F200LP

data between the two WFC3-UVIS chips. We rectify this issue by subtracting the

background sky on each chip, with the sky estimated by fitting an iterated Gaussian

2https://archive.stsci.edu/
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model, sigma-clipped on the high end, to the pixel values. This correction is purely

cosmetic with no effect on photometry, and is done to provide the best resulting data

for constructing two-band pseudo-color images for further visual examination.

In the IR/F110W data, we correct for the well-known ‘IR blobs’ (See Pirzkal et al.

2010) which overlap in many instances with important target objects (galaxy cluster

member galaxies and occasionally lensed arcs) observed in these data. Under normal

circumstances, the pixels affected by these features are flagged and not used in final

data products; in this program, because the data are minimal (three dithered images

only, due to the truncated SNAP orbit length and two filter observations within that

orbit) we aim to recover the areas affected by IR blobs by careful flat-fielding. To

do so we acquired several hundred additional F110W images of similar integration

time from the archive (from program GO-15163), which we then combined with most

of the F110W data described here3 using IRAF’s imcombine task, tuned to provide

robust rejection of the faint wings of object outliers in this large image stack. We

then used GALFIT (Peng et al., 2002, 2010) to build a model – using a combination

of Sersic profiles – of each identified IR blob across the stacked image. The composite

full image of all the fitted blob models is then used to flat-field these features in the

F110W data.

Data reduction of the WFC3 imaging with the F200LP and F110W filter – tuned

as above – then follows the standard procedures established by STScI, employing

the Python3 package Drizzlepac (Gonzaga et al., 2012). For astrometric matching of

images, sub-exposures taken with the same filter were aligned to the same reference

grid, using tweakreg operating on tuned catalogs extracted using Source Extractor

(Bertin & Arnouts, 1996); the two filters were also astrometrically matched. These

exposures were subsequently combined using astrodrizzle, using a Gaussian kernel,

3At the time that this calibration was computed, neither GO-15163 nor the program described
here were entirely complete, however we do not expect significant change in the IR-blobs over the
remaining data not directly used in creating this specialized flat-field.
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with nominal cosmic ray rejection, a final pixfrac= 1.0 and 0.8 (for the F110W and

F200LP, respectively) and pixel scale of 0.′′03 pixel−1.

A visual inspection of the 137 galaxy clusters results in the identification of pos-

sible lensing evidence in 77 clusters, of which 51 have unambiguous strong lensing

evidence. The 51 secure cluster lenses with HST SNAP imaging form the sample

used in this analysis. They are highlighted in Figure 5.1.

We note that some of the most lensing-rich fields were selected for further analysis

beyond this chapter, which may include computation of detailed lens models. As these

unpublished detailed lens modeling analyses are still in progress, such models are not

included in this work.

Spectroscopic follow up of SPT strong lensing clusters was conducted as part of

several multi-year observing programs using the Magellan telescopes (PI: Remolina

González, PI: Sharon, and PI: Gladders) and Gemini (PI: Bayliss). The main goal

of these programs is to measure redshifts of strongly lensed galaxies and confirm am-

biguous strong lensing candidates. A portion of the spectroscopic follow-up work was

published in Bayliss et al. (2016) and the rest will be presented in a future publica-

tion from the SPT collaboration. The positions and redshifts of the strongly lensed

systems are used as constraints in the strong lensing analysis in order to measure the

mass at the core of galaxy clusters.

5.5 Core Mass Estimates from Strong Lensing Evidence

The shallow data from the HST SNAP programs was sufficient to identify pri-

mary strong lensing evidence and a few secondary arcs. While detailed lens models

for the most spectacular of these galaxy clusters are being computed, this endeavor

is very time consuming and requires significant amount of computational resources

and human time. The large sample of SPT strong lensing clusters can take advantage

of fast an efficient methods to measure the mass at the core of the galaxy cluster.
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Figure 5.1: Mass-Redshift Distribution of SPT Galaxy Clusters and Simu-
lated Halos. The left plot shows the Galaxy clusters from the South Pole Telescope.
The galaxy cluster data are taken from the publicly available SPT cluster catalogs
of the SPT-SZ 2500 deg2 (Bleem et al., 2015) with updated masses and redshifts
from Bocquet et al. (2019), the SPTpol 100 deg2 from Huang et al. (2020), and the
SPT-ECS Bleem et al. (2020). The 1043 SPT galaxy clusters are shown in grey. The
sub-sample that was selected for the HST SNAP program is highlighted in color,
blue circles mark clusters with unambiguous identification of strong lensing evidence
from the HST SNAP program, green circles mark clusters that were observed but
show no clear SL evidence, and orange marks targets that were not observed (see
Section 5.4). This sample of SPT strong lensing clusters spans a broad range of mass
and redshift; the SNAP selection function (the redshift-dependent mass threshold,
red line) is motivated by enabling studies across cosmic time. The right plot shows
the mass and redshift information for the Outer Rim simulated cluster halos. The
grey circles indicate all the halos with a mass larger than 2.1 × 1014 M� h−1. The
strong lensing halos are indicated in color, where blue marks those that follow the
SPT SNAP selection function (red line) and pink the rest.
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Remolina González et al. (2020), Chapter II, assessed the use of the mass enclosed

by the Einstein radius as a zeroth-order method to measure the mass at the core of

large samples of strong lensing galaxy clusters. In Remolina González et al. (2021a),

Chapter III, an assessment of a slightly more complex, first-order method, was pre-

sented using a Single-Halo Lens Model to measure the mass at the core of SL clusters.

We provide a brief description below of the two methods.

5.5.1 Einstein Radius

The mass enclosed by the Einstein radius makes the main assumption that the

projected mass distribution of the lens is circularly symmetric (Narayan & Bartel-

mann, 1996; Schneider, 2006; Kochanek, 2006; Bartelmann, 2010; Kneib & Natarajan,

2011). The equation for the mass enclosed by the Einstein is as follows:

M(< θE) = Σcrit(zL, zS) π [DL(zL)θE]2, (5.11)

where Σcr(zL, zS) is the critical surface density, DL(zL) is the angular diameter dis-

tance from the observer to the lens, zL is the lens redshift, zS is the background source

redshift, and θE is the Einstein radius, which is measured between the arcs and the

cluster center. Only the tangential arcs are used in this method.

Remolina González et al. (2020), Chapter II, used the Outer Rim strong lensing

simulations to characterize the scatter and bias of the mass enclosed by the Einstein

radius, introduced an empirical correction, and provided a set of recommendations

for applying this method to large samples of observed strong lensing galaxy cluster.

As per the recommendations, we use the BCG as our fixed center and the quadratic

empirical correction is applied to the Einstein radii ≤ 30.′′0 for which a scatter of 10.9%

and no bias was reported. Following Remolina González et al. (2021b), Chapter IV,

who applied and tested this method in a large sample of observed strong lensing galaxy

clusters with a wider range of θE, we use caution and apply the linear empirical
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correction to the strong lensing masses where θE > 30.′′0 (see Figure 5.2 for the

distribution of observed θE in the SPT SL sample) with a scatter of 12.1% as reported

by Remolina González et al. (2020), Chapter II. As part of the work with simulations,

Remolina González et al. (2020), Chapter II, reported that while the background

source redshift is crucial for the magnification, time delays, and substructure analysis,

the lack of background source redshifts adds a negligible scatter, compared to others

sources of uncertainty. The cluster core mass is relatively well-constrained when

assuming a background source redshift distribution.

5.5.2 Single-Halo Lens Models

The Single-Halo Lens Models (SHM; Remolina González et al., 2021a), Chap-

ter III, uses Lenstool (Jullo et al., 2007) to compute a lens model with a single,

large-scale, dark matter halo with 6 free parameters and no additional mass compo-

nents. The SHM requires a minimum of 4 multiple images of the same background

source, and uses their locations and the source and cluster redshifts as constraints.

Remolina González et al. (2021a), Chapter III, assessed this method against the

same simulated data, and measured a lower scatter than the Einstein Radius method

of 8.5% (with bias of 0.9%), which further improves to scatter of 3.3% and bias of

0.3% when a visual inspection of the SHM outputs is employed. However, when a

background source redshift is not available, the SHM overestimate the background

source redshift and underestimate the mass, resulting in a scatter of 9.9% and bias

of −7.2%. The analysis by Remolina González et al. (2021a), Chapter III, reiterates

the importance of spectroscopic or high-quality photometric redshifts, consistent with

other work by e.g., Caminha et al. (2016); Johnson & Sharon (2016).

Which methods can be used to efficiently measure the core mass of the clusters de-

pends on the imaging and spectroscopy information available for the SPT SL clusters,

and the chance alignment of background sources which affects the lensing configu-
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ration. The Einstein Radius method can be applied to any field for which lensing

evidence is identified, with as little as one arc. The SHM method, although more

precise, requires a minimum set of constraints – which are not available for all fields –

and becomes less accurate when redshift information is lacking. For this analysis, we

therefore uniformly apply the Einstein Radius method for measuring the core mass.

An alternative approach could be to apply the best method that is practical for each

field, i.e., detailed lens model where possible, SHM where enough constraints and

spectroscopic redshifts are available, and Einstein Radius otherwise, taking advan-

tage of the growing database of spectroscopic redshifts. We leave such an analysis for

future work.

5.6 Methodology

In this section, we describe the procedures to compute the empirically corrected

mass enclosed by the Einstein radius, Mcorr(< θE), following the recommendations

by Remolina González et al. (2020), Chapter II. We detail the methodology we use to

fit the radial mass profile at the core from strong lensing and the mass at large radial

scales from SZ. Last, we describe the fitting procedure of the concentration-mass

relation.

5.6.1 Arc Catalogs

The positions and redshifts of the images of strongly-lensed galaxies are used

to constrain the core masses of the SL clusters. Lensing evidence was identified

through visual inspection in both the simulated sample and the observed sample,

using morphology and color information, where available. In several cases a few

morphological features (emissions knots) are clearly identified in the multiple images

of the same background source, providing additional positional constraints. The

catalog of simulated SL evidence is adopted from Remolina González et al. (2020),
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Chapter II. The results of the visual inspection of the SPT HST SNAP imaging

data are listed in Table B.1. The arcs are flagged as radial (R) or tangential (T),

which corresponds to the primary direction of distortion. For the mass enclosed by

the Einstein radius, only the tangential arcs are to be used.

5.6.2 Computing Mcorr(< θE)

The Einstein radius (θE) is measured by geometrically fitting a circle to the iden-

tified tangential arcs. We use the position of the BCG as a fixed center, following the

procedure recommended by Remolina González et al. (2020), Chapter II. The BCGs

were identified by their magnitudes, and confirmed through a visual inspection (see

Table 5.2) resulting with sub-arcsecond BCG position accuracy. The distribution of

the resulting Einstein radii of the observed sample are shown in Figure 5.2. We refer

the reader to Figure 2.4 in Chapter II or Figure 4 of Remolina González et al. (2020)

for the distribution of Einstein radii in the simulated sample. The mass enclosed by

the Einstein radius is calculated using Equation 5.11. The corrected Einstein radius

mass, Mcorr(< θE), is obtained by applying the quadratic empirical correction for

targets with θE ≤ 30.′′0 and the linear empirical correction otherwise (see Section 5.5

for details). As reported by Remolina González et al. (2020), Chapter II, the lack of

background source redshifts adds a negligible amount of scatter compared to other

sources of error. For the observed sample, we use the background source redshifts

when available and assume a background source redshift of zS = 2.0 for the rest.

5.6.3 Galaxy Cluster Sample Statistics

As each galaxy cluster can have more than one Einstein radius measurement,

these measurements are expected to be correlated. We follow the galaxy cluster sam-

pling statistics employed in Remolina González et al. (2020), Chapter II; Remolina

González et al. (2021a), Chapter III; and Remolina González et al. (2021b), Chap-
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Figure 5.2: Einstein Radius Distribution of the SPT SL SNAP sample. The
Einstein radius, in units of arcseconds, is measured from a geometric fit of a circle to
the identified positions of the strong lensing evidence and the BCG as fixed center.

ter IV. We take into account multiple mass estimates for each galaxy cluster by

setting the statistical weight for each cluster to be the same. For each galaxy cluster,

we select at random one of the measured Einstein radii for that cluster and take a

random sample from a normally distribution with a mean of the measured θE and un-

certainty from the geometric fit, σ(θE). We repeat this process 200 times per galaxy

cluster. This process results in 14, 800 points for the simulated sample and 10, 200

for the observational sample.

5.6.4 Fitting the NFW Profile and inferring the Concentration

To constrain the NFW profile, we combine the mass at the core from strong lensing

and the large scale mass estimate from SZ. We utilize the python ensemble sample

Markov chain Monte Carlo (MCMC) library emcee4 (Foreman-Mackey et al., 2013).

We express the posterior probability distribution as follows:

4Python emcee https://emcee.readthedocs.io/en/stable/
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p(rs,M0|θE,Mcorr(< θE),M∆c,∆c) ∝

p(rs)× p(M0)×

p(M∆c|M0)× p(Mcorr(< θE)|θE, rs,M0,∆c),

(5.12)

where p(rs)× p(M0) are our priors and p(M∆c|M0)× p(Mcorr(< θE)|θE, rs,M0) is the

likelihood. The prior of the scale radius in units of Mpc h−1:

p(rs) =


1

1.1
(0.1 < rs < 1.2)

0 (elsewhere),

(5.13)

and for the mass in units of 1014 M� h−1:

p(M0) =


1

29.1
(0.9 < M0 < 30)

0 (elsewhere).

(5.14)

The priors on the mass and scale radius have been selected to be broad, flat, and

conservative allowing for a broad range of fit parameter values. The likelihood is

then defined as follows:

p(M∆c|M0) =
1

σ(M∆c)
√

2π
×

exp

[
−1

2

(
M∆c −M0

σ(M∆c)

)2
]
,

(5.15)

where σ(M∆c) is the measured uncertainty of M∆c and
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p(Mcorr(< θE)|θE, rs,M0,∆c) =
1

σ(Mcorr(< θE))
√

2π
×

exp

−1

2

(
Mcorr(< θE)−Mproj

NFW(< θE, rs,M0,∆c)

σ(Mcorr(< θE))

)2
, (5.16)

where σ(Mcorr(< θE)) is the uncertainty measured in the empirically-corrected mass

enclosed by the Einstein radius and Mproj
NFW is the NFW projected mass within θE,

shown in Equation 5.9. The result of this fit is the scale radius, rs, and its uncertainty

σ(rs). Finally, the concentration is estimated as the ratio of the radius of interest,

r∆, and the scale radius, rs (Equation 5.5).

To propagate the uncertainties associated with the profile fit, to the computation

of c∆c and its uncertainty, we sample 10, 000 values of rs and r∆, normally distributed

around their respective mean value and width equal to their respective uncertainty.

The uncertainty for r∆ is derived from σ(M∆c). We fit the resulting 10, 000 con-

centration values with a log-normal distribution to measure the mean and standard

deviation. This is repeated for each of the 200 realizations of each cluster, and the

mean, and standard deviation of the resulting c∆c distribution are reported.

5.6.5 Validation of the Concentration Measurement Method

As a validation of the methods we employed here to measure the concentration,

we apply the same observationally-motivated methods to the simulated clusters, and

compare the resulting “observed” c500c values to those obtained from the full 3D

particle information.

We use the catalog of simulated arcs to fit θE and compute Mcorr(< θE) as done

in Section 5.6.2, then fit the NFW profile to Mcorr(< θE) and M500c to derive c500c

following the procedures detailed in Section 5.6.4. We assume that the large scale

mass has the same uncertainty as the median uncertainty measured from the obser-
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vations of all SPT galaxy clusters and reported in the galaxy cluster catalogs (Bleem

et al., 2015, 2020; Bocquet et al., 2019; Huang et al., 2020), which is about 20%, i.e.,

σ(M500c) = 0.2×M500c. In Figure 5.3, we plot the comparison between the “observed”

concentrations measured in our analysis for each of the 74 simulated SL cluster halos

and the concentrations that were measured for the same halos using the full 3D par-

ticle information, taken from Child et al. (2018) and Li et al. (2019). We measure a

scatter of 38.0% and a bias of 3.4% between the measured and “true” concentrations,

which is expected, as the uncertainty in the concentrations is measured in simulations

to be σ(c∆c) = c∆c/3.

5.6.6 Fitting the concentration-mass Relation

We fit the concentration-mass relation (Equation 5.10) to the data using the fol-

lowing posterior probability distribution:

p(α, β, γ|c∆c,M∆c, z) ∝

p(α)× p(β)× p(γ)×

p(c∆c|M∆c, z, α, β, γ),

(5.17)

where p(α) × p(β) × p(γ) are the priors and p(c∆c|M∆c, z, α, β, γ) is the likelihood.

We adopt broad, flat, conservative priors for α, β, and γ as follows:

p(α) =


1
6

(0 < α < 6)

0 (elsewhere),

(5.18)

p(β) =


1
4

(−2 < β < 2)

0 (elsewhere),

(5.19)

and
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Figure 5.3: Validation of the Concentration Measurement Methods, using
the Outer Rim Simulation. The concentration measured from the simulation
(x-axis) is taken from Child et al. (2018) and Li et al. (2019) and use the full 3D
particle information. The concentration modeled using the strong lensing evidence
is computed following the procedure outlined in Section 5.6.4. The total number of
counts is the 14, 800 sampled points (see Section 5.6.3) for the 74 simulated SPT-like
strong lensing galaxy clusters. The black line indicates the one-to-one relation.
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p(γ) =


1
10

(−5 < γ < 5)

0 (elsewhere).

(5.20)

The likelihood is then defined using a log-normal distribution as follows:

p(c∆c|M∆c, z, α, β, γ) =

1

c∆c

√
2π ln (1 + σ(c∆c)2/c∗∆c

2)
×

exp

−
(

ln (c∆c)− ln

(
c∗∆c√

1+σ(c∆c)2/c∗∆c
2

))2

2 ln
(
1 + σ(c∆c)2/c∗∆c

2
)

,
(5.21)

where c∗∆c = c∗∆c(M∆c, z, α, β, γ) is the concentration mass relation shown in Equa-

tion 5.10 and σ(c∆c) is the uncertainty measured in the concentration. We incorporate

the mass uncertainty in our MCMC process by drawing a mass, at every step of the

chains, from a random normal distribution with mean of M∆c and uncertainty of

σ(M∆c).

5.7 Results

In the following section, we present our results of the measurement of the c-

M relation. We establish the prediction for the c-M relation using the Outer Rim

simulation. We compute the concentration and c-M relation for the 51 SPT SL

galaxy clusters. Last, we compare the predictions to the observations.

5.7.1 The c-M Relation in the Outer Rim SL Cluster Halos

We use the Outer Rim N-body simulation to derive a theoretical prediction of

the c-M relation, following the procedures outlined in Section 5.6 for both simulated
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and observed fields. In order to produce a meaningful prediction, we first apply the

same selection function that was used to define the observed sample to the simulated

clusters (see Section 5.4). The selection function is designed to have an equal co-

moving number density at 0.2 < z < 1.0, all clusters above z = 1.0, and a lower limit

of z = 0.2. With the redshift-dependent mass threshold applied, the simulated sample

reduces from 74 to 23 cluster halos and our statistical sample (see Section 5.6.3)

reduces from 14, 800 to 4, 600. Figure 5.1 shows the distribution in mass and redshift

of all the Outer Rim cluster halos, the SL-selected halos, and the ones that match

the SNAP program selection function. In the right panel Figure 5.1, we can see

that there are no high-z (z > 0.700) strong lensing clusters. The selection function

employed to identify the strong lensing clusters is the limiting factor as the lensing

efficiency, DLS/ds, becomes smaller for increasing lens redshift and fixed background

source redshift at z = 2.000.

We compute the concentration-mass relation using c500c and σ(c500c) as measured

in Section 5.6.5, M500c from Li et al. (2019), σ(M500c) = 0.2 ×M500c, zpivot = 0.458,

Mpivot = 5.14×1014 M� h−1, and the lens redshift, zL, for each of the 23 simulated SL

clusters that match the observed selection function. In the left panels of Figure 5.4,

we show the posterior probability distribution of the c-M fit parameters, α, β, and γ.

The median and standard deviations of the fitted parameters, the χ2, and p-value are

listed in Table 5.1. We perform a Bayesian post-predictive test by using the fitted

results to perform a forward model and compare to the observations. We find good

agreement between the forward modeled and the observed data and report the median

absolute deviation (MAD) in Table 5.1. We constrain the normalization of the c-M

relation, α, to within 9.3%. We measure with significant evidence of 4.6 ×σ(β) a

relation between the mass and the concentration. Last, we find that γ has a large

uncertainty and is consistent with zero, meaning no conclusion can be drawn for a

relation between redshift and the concentration from this simulated sub-sample. In
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Figure 5.4: Posterior Probability Distribution of c-M Fit Parameters for the
Simulated and Observed Samples. The fit of the c-M relation (Equation 5.10)
at over-density of ∆c = 500c is computed for the simulated SPT-like halos (left pan-
els) that match the HST SNAP selection function (see Section 5.4) and the observed
(right panels). The posterior probability distribution for the c-M relation is defined
in Equation 5.17. We report the median and standard deviation of the fit parameters
in Table 5.1. We constrain the normalization, α, to within 9.3% and 5.7% for the sim-
ulations and observations respectively. We find significant evidence of 4.6×σ(β) and
7.2×σ(β), respectively, for a relation between the concentration and the mass. Last,
γ is consistent with zero with large uncertainty and cannot constrain any possible
evolution with redshift with these samples.

the left panels in Figure 5.5, we plot the concentration-mass relation for the simulated

clusters for the median redshift z = 0.458.
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Figure 5.5: c-M Relation Fit to the Simulated and Observed SL Clusters for
an Over-density of ∆c = 500c. The panels on the left are for the simulated halos
that match the SNAP program selection function (see Section 5.4) and the right are
for the observed SL clusters. The top plots shows the concentration computed using
the combination of strong lensing and a large scale mass. For the simulated halos
the mass measurements were computed by Li et al. (2019) and for the observations
were measured by SPT (Williamson et al., 2011; Bleem et al., 2015, 2020; Bocquet
et al., 2019; Huang et al., 2020). The grey error bars indicate the standard deviation
of the measurements (see Section 5.6.5 for a description of the uncertainties). The
solid line is the c-M fit plotted for the median redshift of the simulated clusters of
z =0.458 and for the observed SL clusters of z =0.580. The shaded regions represent
the uncertainty in the normalization fit parameter, α. The colors of the lines, shaded
regions, and points indicate their corresponding redshift. The bottom plots show the
ratio between the measurement and the fit at each cluster or halo redshift. The solid
orange line indicates the median ratio and the shaded region indicates the 16th and
84th percentiles of the distribution when taking into account the uncertainty from all
three fit parameters (α, β, and γ).
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5.7.2 The c-M Relation in Mass-Limited Vs. Strong Lensing Selected

Samples as Inferred from Simulations

In this subsection, we compare and contrast the predicted concentration-Mass

relation between mass-limited and strong lensing selected samples. For this compari-

son, we use the 14, 800 and 4, 600 statistical points from the Outer Rim strong lensing

simulated halos and those that follow the SPT SNAP selection function, respectively.

We also include the c-M prediction from Meneghetti et al. (2014) for strong lensing

halos. In addition to the strong lensing selected samples, we use three predictions of

the c-M relation in literature from simulations by Duffy et al. (2008); De Boni et al.

(2013); and Child et al. (2018). All of these works use a similar functional form of

the c-M relation as the one adopted in this analysis. In the following paragraphs we

provide a brief description of the simulations and identify which reported results are

used as comparisons.

Meneghetti et al. (2014) used the MUSIC-2 hydrodynamical simulations to mea-

sure the c-M relation of galaxy clusters. Particular to the analysis performed by

Meneghetti et al. (2014) is the incorporation of the selection function of The Cluster

Lensing and Supernova Survey with Hubble (CLASH; Postman et al. 2012). This work

included a focus on strong gravitational lensing clusters. We use the reported results

for the NFW profile, 2D analysis, and complete sample with a strong gravitational

lensing selection.

Duffy et al. (2008) computed the c-M relation using three large, N-body cosmo-

logical simulations of various sizes (25, 100, and 400 co-moving Mpc h−1) adopting

a WMAP-5. The simulated dark matter halos selected span the redshift range of

z = 0− 2 and a mass M200c = 1011 − 1015 M� h−1. For our comparison, we use the

reported results for the full sample, redshift z = 0− 2, and ∆c = 200c.

De Boni et al. (2013) used hydrodynamical simulations with five different dark

energy prescriptions. All clusters with masses above M200c > 1014 M� h−1 and a
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selected sub-sample going down to M200c > 1013 M� h−1 are used. The redshift range

explored was from z = 0− 1. We use the results reported for the ΛCDM cosmology

for the complete sample of clusters.

Child et al. (2018) used the dark matter only Outer Rim simulation (see Sec-

tion 5.3) to measured the c-M relation for galaxy groups and clusters. The con-

centrations and masses computed by Child et al. (2018) used the full 3D particle

information and are used as a comparison for the simulated SPT-like halo sample in

this work (see Section 5.6.5). In this Chapter, we use the reported c-M relation for

individual halos, for the complete sample, and with redshift range 0 < z < 1.

We plot in Figure 5.6 the six different concentration-mass relations. As mention

in Section 5.2, we expect to find differences between these c-M relations as they are

computed for different selection functions. Particularly important to note is that

strong lensing halos are not representative of a mass-limited sample of dark matter

halos. In this figure, we highlighted the different samples with blue the mass-limited

samples and in orange the strong lensing samples. we note that the selection functions

vary significantly in terms of redshift and mass limits, nevertheless, we clearly see

difference in the slope of the simulation predicted c-M relations with the strong lensing

samples being steeper than the mass-limited samples. The over-concentration of the

strong lensing galaxy clusters compared to predictions and mass-limited samples has

been reported in the literature (e.g., Oguri & Blandford 2009; Gralla et al. 2011).

5.7.3 The c-M Relation in Observed SL Clusters

We compute the concentration c500c for each of the 10, 200 statistically sampled

points from the SPT SL galaxy clusters that were observed in the SNAP program. We

follow the fitting procedures outlined in Section 5.6.4. The large scale mass, M500c,

is taken from the SPT catalogs (see Section 5.4). The uncertainty of the large scale

mass, σ(M∆c), was reported for an asymmetric normal distribution with an upper
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Figure 5.6: Comparison of Predicted c-M Relations of Mass-Limited Vs.
Strong Lensing Selected Samples. The predicted concentration-Mass relations
are shown for ∆c = 200c. In blue, we show the c-M relations for the mass-limited
samples and in orange the strong lensing selected samples. D08, DB13, C18, and
M14 represent the c-M relations from literature reported by Duffy et al. (2008); De
Boni et al. (2013); Child et al. (2018); and Meneghetti et al. (2014). The Outer Rim
SL represent all the strong lensing halos identified in the simulation (see Sections 2.3,
and 5.3) and the Outer Rim SL SNAP represents the Outer Rim strong lensing
halos that follow the observation selection function used for the HST SNAP program
(see Section 5.4). We note that the selection functions vary significantly in terms of
redshift and mass limits, nevertheless, in all cases of strong lensing selected samples
the predicted c-M relations are steeper compared those of the mass-limited samples.
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and lower error. In Equation 5.15, we therefore use the lower error if M0 ≤ M500c

and the upper error if M0 > M500c. The results for the 51 SPT clusters are listed in

Table 5.2.

We then proceed to fit the c-M relation following the procedure detailed in Sec-

tion 5.6.6 using c500c, σ(c500c), M500c and its asymmetric uncertainty, zpivot = 0.580,

Mpivot = 5.28 × 1014 M� h−1, and the lens redshift, zL. To incorporate the uncer-

tainty in the masses into our fitting procedure (see Section 5.6.6) we perform this

step by drawing a mass from the asymmetric normal distribution. In right panels

in Figure 5.4, we plot the posterior probability distribution of the c-M parameters

and report the median and standard deviation in Table 5.1. With the observational

data, we constrain the normalization of the c-M relation, α, to within a 5.7%. We

measure a 7.2×σ(β) significance of a relation between the mass and concentration.

Last, γ has large uncertainties and is consistent with zero, so no conclusion can be

made regarding a relation between redshift and concentration from this sample. In

the right panels in Figure 5.5, we show the concentration-mass relation for the SPT

SL cluster sample for a median redshift of z = 0.580.
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5.7.4 c-M relation: Comparison Between Simulations and Observations

In this subsection, we compare the results of the concentration-mass relation mea-

sured for the observed SNAP SPT SL sample and the simulated strong lensing clusters

from the Outer Rim. In Figure 5.7, we plot the concentration-mass relation from the

simulations (see Section 5.7.1) for the median redshift of the SPT SL clusters, z =

0.580. We perform a Pearson’s χ2 test with a null hypothesis that the prediction

from the simulated c-M relation is a good fit to the measured data from the observed

SPT SL sample. The result of the Pearson’s test are χ2 =40.85 and p-value of 0.72,

indicating that the prediction from simulations represents well the observed data.

The top panel in Figure 5.7 shows the concentration and mass measurements of the

observed SPT SL galaxy clusters, with the color of each data point indicating the

cluster redshift. The solid line is not a fit, rather it represents the c-M prediction

from Section 5.7.1 for the median redshift of the SNAP SPT SL cluster sample; the

shaded region is the one-sigma uncertainty in the predicted normalization parame-

ter. The color of the solid line and shaded region indicate the median redshift. The

bottom plot shows the ratio between the concentration predicted for each cluster’s

mass and redshift by the c-M relation that was derived from the simulations, and

the observed concentration. The solid red line indicates the median and the shaded

region represents the 14th and 86th percentiles of the ratios.

5.8 Summary and Conclusions

In this work, we measure the concentration-mass relation of strong lensing galaxy

clusters in both the Outer Rim simulation and a large sample of strong lensing SPT

clusters, uniformly observed by HST, with a well-understood selection function. The

c-M relation can be used as a direct comparison between predictions from simulations

and measurements from observations. The concentration of galaxy clusters is com-
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Figure 5.7: c-M Relation Comparison Between the Predictions and Obser-
vations for an Over-density of ∆c = 500c. This figure follows the structure of
the panels in Figure 5.5. In the top panel the points represent the observational data,
while the line is the c-M relation measured in Section 5.7.1 for the median redshift
of the observations. The bottom plot shows the ratio between the prediction from
simulation and the observational data for the redshift of each SPT galaxy cluster.
The solid red line indicates the median of the distribution and the shaded region
indicates the 16th and 84th percentiles of the distribution when taking into account
the uncertainty from all three (α, β, and γ) fit parameters. We perform a Pearson’s
χ2 test resulting on a χ2 = 40.85 and a p-value of 0.72 meaning that the predictions
is a good representation of the observed data.
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puted after fitting the cluster’s mass density distribution with an NFW profile. To

constrain the NFW profile, we combine a core mass estimate from strong gravitational

lensing with a large scale SZ-inferred mass.

The SPT selection function, nearly mass limited and redshift independent, is of

particular interest to enable studies of galaxy clusters through cosmic time. SPT

has detected over a thousand galaxy cluster and measured their masses using the SZ

effect. A large, uniform, optical imaging, Hubble Space Telescope Snapshot program

observed 137 SPT galaxy clusters from which 51 clusters were identified for their

unambiguous strong lensing evidence. This sample of SPT strong lensing galaxy

clusters is unique due to its large sample size and broad mass and redshift range.

The SPT data provide a mass measurement at large scale cluster-centric radii

from the SZ effect. Here, we compute the mass at the core using the strong lensing

evidence. The large sample size of the SPT strong lensing galaxy clusters requires

the use of efficient and accurate mass estimates to perform this analysis in a timely

manner. Remolina González et al. (2020), Chapter II, used the Outer Rim cosmolog-

ical simulation to assess the mass enclosed by the Einstein radius as an efficient core

mass estimate and developed recommendations for its application to large samples

of galaxy clusters. Following the established recommendations, we measure the mass

enclosed by the Einstein radius of the galaxy clusters for the large sample of SPT SL

clusters.

We used the large box, N-body, Outer Rim cosmological simulation to test our

fitting procedures and compute the prediction of the c-M relation. We compare our

“observationally motivated” concentration measurements with those from Child et al.

(2018), who used the same simulation to measure the concentration-mass relation,

from the full 3D particle information. Last, we compare the results from the observed

sample to our measurement from the Outer Rim simulation, using the same selection

function that defined the observed target list to generate the simulated sample. We
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conclude with the following results:

• We perform a visual inspection of 137 SPT galaxy clusters observed through

the large HST SNAP program. The shallow HST imaging allows for the iden-

tification of the primary and a few secondary lensed arcs. 51 galaxy clusters

(see Table 5.2) were identified for unambiguous strong lensing evidence. The

strong lensing evidence is reported in Table B.1. The position information of the

lensing evidence is used as constraints to measure the core mass of the galaxy

clusters.

• Given the number of available source redshifts and constraints in each cluster,

we find that the best fast method for estimating the strong-lensing inferred

core mass is the mass enclosed by the Einstein radius, which was assessed by

Remolina González et al. (2020), Chapter II, as it requires a minimal number of

constraints. In particular, the lack of a background source redshift introduces

a negligible amount of uncertainty compared to other sources of error when a

background source redshift distribution is assumed. We assume a background

source redshift of z = 2, typical for giant arcs (Bayliss et al., 2011b).

• Using the Outer Rim simulation, we demonstrate that our method for measuring

the concentration, c500c, provides results that are consistent with those measured

using the full 3D particle information from Child et al. (2018). We find a scatter

of 38.0% and bias of 3.4% between these concentrations, which matches the

expectation from literature of σ(c∆c) = c∆c/3.

• We fit the c-M relation (Equation 5.10) to the simulated SL clusters and to

the observed SPT clusters for an over-density of ∆c = 500c. We constrain the

normalization of the c-M relation to within a 9.3% and 5.7%, respectively. We

find significant evidence of 4.6×σ(β) and 7.2×σ(β), respectively, for a relation
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between the concentration and the mass. Last, we find that γ has large un-

certainties and is consistent with zero in both simulations and observations,

so no conclusion can be made regarding the relation between the redshift and

concentration from this sample.

• We compare the predicted c-M relation from the simulated halos that match

our observational selection function to the observed SPT SNAP clusters. The

normalization parameter of the c-M relation, α, of the the simulated sample

(α =2.30±0.21) and observed sample (α =2.20±0.13) are consistent with each

other. We measure a scaling exponent between the mass and the concentration,

β, of −0.97± 0.21 in the simulations and −1.30± 0.18 in the observed sample.

These values are consistent to within 1.7 sigma of each other. Last, the expo-

nential scaling between the concentration and the redshift for the simulated and

observed sample are −0.24± 1.44 and 0.20± 0.46, respectively. These γ values

are consistent with each other and consistent with γ = 0.

• As a comparison tool between the prediction from the simulated sample and the

observed SPT SNAP SL clusters, we perform a Pearson’s χ2 test with the null

hypothesis that the prediction matches the observed data. We find a χ2 = 40.85

and a p-value = 0.72, meaning we do not reject our null hypothesis. The direct

comparison is shown in Figure 5.7 and the prediction is found to represent the

observed data.

The work presented here leverages the use of a large sample of strong lensing galaxy

clusters with a broad redshift and mass range to measure the concentration-mass re-

lation across cosmic time.We report an agreement between the c-M predictions from

the Outer Rim simulation and the observed clusters, i.e., we find no tensions with

ΛCDM. As more strong lensing galaxy clusters are going to be discovered and char-

acterized in large scale surveys, the simulations will need to span a broader redshift
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range extending to z ∼ 2, and larger cosmological volume to improve the statistics of

high-mass halos.
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CHAPTER VI

Future Directions and Conclusions

This collection of works shows the use of simulations and observations to measure

the concentration-Mass relation for a large sample of strong lensing galaxy clusters

extending through cosmic time with a well understood selection function. I combined

the mass estimates at the core from strong gravitational lensing and outskirts from

SZ to model the radial mass distribution of South Pole Telescope strong lensing

galaxy clusters and compute their concentration. I presented the assessment of two

efficient, accurate, and precise methods to measure the mass at the core of galaxy

clusters using the identified strong gravitational lensing evidence. In addition to the

assessment, recommendations on the application of these techniques were established

for their use on large samples of strong lensing galaxy clusters. I took the assessment

and recommendations of these two methods done in simulations and demonstrated

their application on a large sample of observed strong lensing galaxy clusters. In this

chapter, I summarize the work presented in this thesis and describe future directions

of this work as new large astronomical surveys come online.

6.1 Summary

Galaxy clusters, as the largest gravitationally bound objects in the universe, are

useful cosmological probes. Of particular interest is their mass distribution from which
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we can learn about properties of dark and baryonic matter. The concentration-Mass

relation can be directly measured in both state-of-the-art cosmological simulations

and observed galaxy clusters, making it useful for comparing theoretical predictions

and observations. A combination of mass estimates extending across the galaxy

cluster radial scales provides the best constraints. Here, we combined the mass at the

core from strong lensing with that at large scales measured by SPT using the SZ effect.

Strong gravitational lensing by galaxy clusters provides a unique opportunity to study

in detail the core mass distribution of galaxy clusters, as the observed strong lensing

evidence is highly-sensitive to the projected mass distribution. With thousands of

strong lensing galaxy clusters expected to be identified in current and upcoming large

astronomical surveys, fast and efficient methods to measure the mass at the core of

strong lensing galaxy clusters are needed. Detailed lens models can be highly complex

allowing for the flexibility required for studies of cosmology, the galaxy cluster matter

substructure, the uncorrelated structure along the line-of-sight, and the magnified

background universe. The versatility of detailed lens models requires a large number

of constraints and multiple statistical assessments to evaluate lens models. For a

rich strong lensing galaxy cluster, a high-fidelity lens model requires extensive follow-

up observations, significant amount of computer resources, modeling iterations, and

human time.

In Chapter II, I present the work to assess an efficient and accurate method to

measure the mass at the core of strong lensing galaxy clusters. The mass enclosed by

the Einstein radius is a zeroth-order technique which assumes the mass distribution of

the galaxy cluster is spherically symmetric. As part of this work (Remolina González

et al., 2020), we quantify the uncertainty and bias of the mass measurement for

three different centering hypothesis. We measure a scatter of 13.9% and bias of

8.8% for the fixed center on the highest surface density position, a scatter of 14.8%

and bias of 10.2% for a fixed center with a BCG offset, and a scatter of 27.4% and
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bias of 20.2% when letting the center be a free parameter. We characterize the

sources of errors including the galaxy cluster total mass, concentration, deviation

from spherical symmetry, lens redshift, and background source redshift. We find

that the deviation from spherical symmetry projected along the line-of-sight has the

most effect on the mass measurement, as expected. In addition, we find that the

scatter introduced to this robust mass measurement from a lack of a background

redshifts is negligible compared to other systematics when utilizing the underlying

background source redshift distribution. We develop an empirical correction to de-

bias the mass estimate and reduce the scatter in the mass estimate to 10.1% in the

fixed center and 10.9% in the fixed center with BCG offset. Last, we formulate a

set of recommendations for applying this method to large samples of strong lensing

galaxy clusters.

Increasing the complexity of the mass estimator, in Chapter III, I present an as-

sessment of the use of Single-Halo Lens Models (SHM) to measure the mass at the core

of strong lensing galaxy clusters (Remolina González et al., 2021a). This first-order

method uses the lensing algorithm Lenstool to model the underlying mass distribu-

tion. The SHM use a single, large scale, dark matter halo with no mass contribution

added from additional large scale halos, galaxy cluster member galaxies, uncorrelated

structure along the line-of-sight, nor shear from structures near the galaxy cluster.

The result is a lens model that requires a small number of constraints and is com-

puted in a fraction of the computational time compared to its detailed counterparts.

This method benefits from a quick visual inspection of the SHM outputs to iden-

tify un-physical lens models which fail to reproduce the strong lensing configuration.

The SHM that fail the visual inspection dominate the uncertainty and bias of the

measurement and will require additional iterations. When only using the SHM that

passed the visual inspection a scatter on the mass estimate of 3.3% and a bias of 0.3%

are measured. Last, we find that the lensing configuration has an effect on the SHM,
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where the strong lensing images with a single giant arc provide the least constraining

power and account for the majority of the SHM that fail the visual inspection.

In Chapter IV, I present the work taking the assessments and recommendations

of the mass enclosed by the Einstein radius and the SHM from simulations to obser-

vations (Remolina González et al., 2021b). We demonstrate their application on a

large sample of 67 observed strong lensing galaxy clusters with 144 publicly available

detailed lens models from SGAS, CLASH, HFF, and RELICS. We quantify the un-

certainty in the mass estimates between the two efficient methods and the mass from

the detailed lens models. Last, we compare the scatter of these two methods from

simulations and that measured against the detailed lens models. Overall, detailed lens

models are considered to be the state of the art in measuring the mass distribution at

the core of strong lensing galaxy cluster. We conclude that if other sources of error

dominate the analysis of interest, these two efficient mass estimates become powerful

tools for use on large samples of strong lensing galaxy clusters.

In Chapter V, I present the analysis of the concentration-Mass relation of South

Pole Telescope strong lensing galaxy clusters. The concentration of galaxy clusters

is computed after constraining their radial mass distribution by combining the mass

estimates at the core from strong lensing and the outskirts from SZ. We use simula-

tions to test the modeling procedures and predict the concentration-Mass relation for

strong lensing galaxy clusters. The large sample of 51 strong lensing clusters from

SPT with uniform HST SNAP imaging data is of particular interest for this analysis

as the sample is about twice as large as previous strong lensing c-M studies, the se-

lection function is well understood, and the sample has a broad coverage of the mass

and redshift parameter space. We find significant evidence for a relation between the

concentration and mass of the galaxy cluster, constrain the normalization of the c-M

relation to within ∼ 5%, and find that we cannot constrain a possible evolution of

the concentration with redshift with these samples. We find agreement between the
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observed c-M relation and the prediction from the Outer Rim N-body simulations,

using the same sample selection function in both, i.e., we report no tension with

ΛCDM.

6.2 Future Work with Strong Lensing South Pole Telescope

Galaxy Clusters and the Multi-Year Magellan Spectro-

scopic Follow-up Program

As was shown in Chapter V, the strong gravitational lensing galaxy clusters iden-

tified from the South Pole Telescope are a unique sample of particular interest for its

large number size and well understood selection function. In the work presented in

this thesis and the manuscript in preparation, only a sub-sample of all strong lensing

SPT clusters is used. The sample used for the analysis comes from a large HST SNAP

program for which a selection function of the co-moving number density count was

constant between 0.2 < z < 1.0 and mass limited for z > 1. The next steps are to

increase the sample size of strong lensing clusters used by adding the strong gravi-

tational lensing SPT clusters identified from a complementary ground-based uniform

imaging program using the Parallel Imager for Southern Cosmology Observations

(PISCO). The SPT PISCO program will identify strong lensing galaxy clusters via a

systematic visual inspection of all the lines-of-sight. The SPT SL clusters identified

through this method are also expected to include galaxy clusters at lower redshift

and mass compared to the SPT HST SNAP sample.

Complementary to the uniform imaging programs has been a multi-year spectro-

scopic follow-up program of SPT strong lensing galaxy clusters (see Appendix D).

The data from this program will provide a large amount of spectroscopic redshifts of

lensed sources, clusters, and cluster member galaxies. The redshift information of the

strong lensing evidence will enable the use of the SHM (Chapter III) for a majority of
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the strong lensing clusters resulting with a more accurate mass estimate at the galaxy

cluster core compared to the mass enclosed by the Einstein radius (Chapter II). The

recommended procedure once the SHM can be computed for the strong lensing clus-

ters is to use a tiered approach where the SHM is computed where possible, otherwise

the mass enclosed by the Einstein radius should be used.

Last, detailed lens models are under development for some of the most spectacular

strong lensing SPT galaxy clusters (e.g., Mahler et al. in prep). The detailed lens

models are going to benefit from the large number of spectroscopic redshifts coming

from the spectroscopic follow-up program. The detailed lens models have been shown

to provide the most accurate mass estimates of all the methods presented in this thesis

(see Chapter IV). When these detailed lens models are available, the suggestions is

to use them. This will reveal and additional level to the decision tree of which

method to use when measuring the mass at the core of strong lensing galaxy cluster.

The recommendation set forth is if a detailed lens model is available, use the detail

lens model to measure the core mass; else check if a Single-Halo Lens Model can be

computed, if that is the case estimate the core mass using the outputs of the Single-

Halo Lens Model; last if neither of the previous options are possible, then use the

mass enclosed by the Einstein radius.

We look forward to the maturity and results of the different imaging and spectro-

scopic programs which will enable additional analyses with large samples of strong

lensing galaxy clusters with a well-established selection function.

As noted above, the multi-year spectroscopic follow-up of SPT strong lensing ev-

idence (see Appendix D) has resulted in the observations of over a hundred galaxy

clusters. The multi-object slit spectroscopy approach that was employed in this pro-

gram allowed for the efficient observations of many sources of interest in the field of

view including the strong lensing evidence, galaxy cluster members, additional struc-

ture along the line-of-sight, and interlopers. The data are currently being processed
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and will be primarily used for the precise measurement of spectroscopic redshifts. As

part of the processing of the data, a new pipeline is being developed by collaborators

to help reduce the effect of artifacts due to the instrument equipment, LDSS3-C, and

result in a robust spectral energy distribution. Additional analyses enable by this

rich data set include the confirmation and measurement of spectroscopic redshifts of

galaxy clusters, additional mass estimate constraints using dynamical methods, char-

acterize the star formation history of galaxy cluster members through cosmic time,

galaxy cluster evolution studies, and identification of structures along the line-of-sight.

The legacy this data set will be far reaching with other future analyses across the

SPT collaboration and the community relying on these spectroscopic measurements.

6.3 Future of Strong Lensing Galaxy Clusters in Cosmolog-

ical Simulations

Improvements in the next generation of cosmological simulations will allow for

even more detailed studies with strong gravitational lensing by galaxy clusters. De-

tailed lens models will need simulations to fully quantify their precision and their

systematic uncertainties. The two efficient mass estimates at the core of strong lens-

ing galaxy clusters will also benefit the next generation of cosmological simulations

which incorporate some baryonic information, and the simulated strong lensing im-

ages will require the incorporation of structure along the line-of-sight and shear due

to nearby massive structures. These works with the next generation of cosmologi-

cal simulations have the potential to improve the characterization of the systematic

uncertainties on measured properties of strong lensing galaxy clusters.
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6.4 Future of Strong Lensing Galaxy Clusters in Large As-

tronomical Surveys

As emphasized throughout this thesis, current and upcoming large astronomical

surveys will discover thousands of strong lensing galaxy clusters. The large numbers

present various challenges from the start, including identification and follow-up. New

tools under development for the identification of strong gravitational lensing evidence

includes the use of convolutional neural networks (CNN). These methods require

training with large numbers of images of galaxy clusters with and without strong

lensing. Currently, the number of line-of-sight with strong lensing evidence is a small

sample, so we are relying on simulated strong lensing images in the training sets for

CNN. The hardware and algorithms used by these techniques are also under inves-

tigation to identify the best combination for the identification task. The advantage

of a fully trained CNN is when deployed it can look at pre-processed images taken

from the telescope in real-time and evaluate if there is strong lensing evidence in the

field of view. This automated tool is set to revolutionize current standard methods

of identification of strong gravitational lenses by human visual inspections of tens of

thousands of images (e.g., Petrillo et al. 2017; Jacobs et al. 2019; Cañameras et al.

2020).

The vast majority of the strong lensing galaxy clusters that will be identified are

not going to be extraordinary gravitational lenses like the Hubble Frontier Fields.

Depending on the imaging depth and resolution only the primary and possibly a

few secondary lensed images will be identified based on the morphology and color

(e.g., Sharon et al. 2020). The small number of constraints identified from the visual

inspection will be a limitation for detailed lens models. Additionally the identifi-

cation, follow-up and confirmation of strong lensing candidates with spectroscopic

observations will require an extensive commitment by the astronomical community.
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Spectroscopic observations of strong lensing with some of the largest ground base

telescopes requires hours of integration per target and this does not guarantee a

spectroscopic redshift measurement as the target might be too faint, not have bright

spectroscopic features in its spectral energy distribution, or the emission lines lay

outside its wavelength coverage. As the large astronomical surveys identifying strong

lensing are imaging based, photometric redshifts could be measured although they

are more uncertain and prone to catastrophic failures requiring care when being used

as constraints (e.g., Cerny et al. 2018).

The two efficient methods to measure the mass at the core of strong lensing galaxy

clusters presented in this thesis can be used in combination with these new tools.

For example, the CNN can identify that an image has strong gravitational lensing

and extract the locations of the strong lensing evidence. These positions can then

be used as the constraints of the mass enclosed by the Einstein radius assuming a

previously established background source redshift distribution. Other techniques of

modeling the mass distribution of strong lensing galaxy clusters utilizing machine

learning (e.g., Bom et al. 2019; Pearson et al. 2019) are being investigated as well.

Last, while these tools are meant to help with the large numbers of strong lensing

clusters, detailed lens models will continue to be needed to study complex and rich

strong lensing galaxy clusters. The analysis of strong gravitational lensing continues

to demonstrate the incredible potential to learn about cosmology, the lens, and the

magnified background Universe.
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APPENDIX A

Uncertainty Dependence on the Fraction of Circle

Covered by Arcs

Appendix of Chapter II

In this appendix we give numerical values of the field-specific uncertainty, which

depends on the deviation from circular symmetry, as indicated by the fraction of the

circle covered by arcs (φ). For the statistics used in our analysis see §2.4.3. The

scatter is defined as half the difference between the 84th percentile (upper) and the

16th percentile (lower) of the distribution and we compute the bias using the median

of the distribution. For convenience, we tabulate the numerical values that are plotted

in Figure 2.16 in Table A.1.
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Table A.1. Bias and uncertainty in M(< θE) as a function of φ.

M(< θE)/Msim(< θE)
φ bin Measured Corrected

median [min — max] median [lower — upper] median [lower — upper]

Fixed Center 0.06 [0.00 — 0.12] 1.17 [0.99 — 1.56] 1.00 [0.89 — 1.19]

0.19 [0.12 — 0.23] 1.13 [0.99 — 1.30] 1.01 [0.90 — 1.12]

0.28 [0.23 — 0.33] 1.13 [0.99 — 1.26] 1.01 [0.91 — 1.13]

0.39 [0.33 — 0.49] 1.10 [0.98 — 1.16] 1.01 [0.90 — 1.09]

0.66 [0.49 — 1.00] 1.02 [0.99 — 1.09] 0.96 [0.92 — 1.04]

Fixed Center 0.06 [0.00 — 0.11] 1.17 [1.00 — 1.59] 1.00 [0.89 — 1.18]

w/ BCG Offset 0.17 [0.11 — 0.22] 1.15 [1.00 — 1.37] 1.02 [0.89 — 1.15]

0.26 [0.22 — 0.31] 1.15 [1.00 — 1.29] 1.01 [0.90 — 1.13]

0.37 [0.31 — 0.46] 1.10 [0.99 — 1.19] 1.00 [0.90 — 1.09]

0.61 [0.46 — 1.00] 1.03 [0.99 — 1.12] 0.96 [0.91 — 1.05]

Note. — A quantitative form of the information displayed in Panel F of Figure 2.13 and
Figure 2.16. The median and boundaries of the bins of φ are tabulated in the first column;
the next columns tabulate the median, lower 16th percentile, and the upper 84th percentile of
M(< θE)/Msim(< θE), for the measured results (Figure 2.13) and corrected results (Figure 2.16).
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APPENDIX B

South Pole Telescope Strong Lensing Constraints

Appendix of Chapter V

In Table B.1, we show the strong lensing constrains identified in the visual in-

spection of the HST imaging (HST SNAP 15307 and HST SNAP 16017 programs).

The multiple-images R.A. and Decl. are indicated. the Flag (T or R) identified

which multiple-images are primarily distorted in the tangential or radial direction

respectively. The spectroscopic background source redshifts and references are also

shown.
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APPENDIX C

Analysis of Systematics from the Large Scale SPT

Mass

Appendix of Chapter V

As mentioned in Section 5.4, the M500c masses used in this analysis were computed

using a fixed cosmology and best-fit scaling relations for the number count of SPT

clusters. Bocquet et al. (2019) showed that when fully marginalizing over cosmology

and scaling relations parameter uncertainties, the SPT cluster masses are less massive,

compared to the mass estimates without these systematics taken into account. As

the fully marginalized masses are not currently available for the complete sample of

SPT clusters, we use the published M500c without systematics. In this section, we

use the simulations to estimate how a systematic overestimation of 20% in the large

scale mass would affect the measurement of the concentration-mass relation.

For this test, we perform the identical procedure describe in Section 5.6.5, in which

we validate the “observational” concentration measurement in the simulated SL fields

against the full 3-D partical information, except here we use a large scale mass equal

to 1.2 ×M500c. We measure a scatter of 33.7% between the concentration measured
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for 1.2 × M500c and that inferred from the 3-D particle information; the scatter is

similar to the scatter we measured in the main analysis. The bias we measure is

−10.5% i.e., when the large scale mass is overestimated by ∼ 20% the concentration

is underestimated, but consistent with the “true” concentration within errors. For

reference, the main analysis in Section 5.6.5 resulted in scatter of 38.0% and bias of

3.4%.

Next using the test concentration and overestimated mass, we fit the c-M relation

following the procedure in Section 5.7.1. The results of the c-M fit parameters for this

test using simulations are: α = 1.88±0.19, β =−0.75±0.21, and γ =−0.09±1.24. We

compare the results from this test and those presented in Section 5.7.1. We find that

β and γ are consistent with those measured in the main analysis. A clear difference is

observed between the normalization parameter α, with the test normalization being

about 18% smaller than the one measured in the simulations, α = 1.88 ± 0.19 vs.

2.30± 0.21, while their uncertainty is similar. This test demonstrates the effect that

a systematic error in the large scale mass has on the normalization value of the c-M

relation resulting in a normalization value which is smaller when no systematics are

taken into account.

The latest work on one of the South Pole Telescope galaxy cluster samples include

a mass estimation which fully marginalizes over cosmology and the scaling relations

used to compute the SZ mass of galaxy clusters (Bocquet et al., 2019). The result of

this work showed that the masses reported without taking into account this marginal-

ization are systematically higher by about 20%. We expect that fully marginalized

masses for all SPT clusters will be available in the near future. We intend to repeat

the measurements presented in Section 5.7.3 using the updated masses, when these

are available. In the meantime, we report that if a systematic 20% decrease is applied

to all the SPT masses, repeating the analysis presented in Section 5.7.3 results in α =

2.77± 0.15, β = −1.05± 0.18, and γ = 0.10± 0.44.
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APPENDIX D

Spectroscopic follow-up of SPT Strong Lensing

Galaxy Clusters

In this appendix, I describe the multi-year spectroscopic follow-up program of

South Pole Telescope strong lensing galaxy clusters. The program started in 2016A

under PI: K. Sharon and I became the PI since 2019A. The program mainly uses the

Low Dispersion Survey Spectrograph 3-C (LDSS3-C) instrument mounted on the Clay

Magellan Telescope located at Las Campanas Observatory in the Atacama region of

Chile. The program mainly used multi-slit masks to increase efficiency and target

multiple objects at the same time, with the use of long-slits when the production of

the multi-slits masks was not practical. The abstract of the latest observing semester

is copied below.

Abstract

“We request to continue our program for spectroscopy of lensed arcs in strong

lensing South Pole Telescope (SPT) clusters, selected via the Sunyaev-Zel’dovich (SZ)

effect, in an effort to obtain the spectroscopic redshifts of these arcs from (primarily)

emission features. SPT clusters have a well understood selection function, which
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makes this subsample of strong-lensing, SZ-selected clusters the most potent probe

we currently have for understanding the abundance and shapes of strong lensing dark

matter halos. The projected masses of these clusters can be well constrained within

the critical curves of the lensed arcs, which requires a robust measurement of the

redshift of the giant arc. Strong lensing features have been identified in clusters

from SPT follow-up ground and space based optical/IR imaging. PISCO imaging by

collaborators and our large HST SNAP program have revealed dozens more strong

lenses overall; our complementary spectroscopy with LDSS3 has so far been very

successful every semester since 2015. Complementary NIR spectroscopy program

using FIRE (Chicago time) has now occurred since 2018, targeting lensed sources for

which the initial LDSS3 spectroscopy did not yield a redshift; the combined success

rate is > 90%. Due to the current COVID-19 pandemic, our program has encounter

logistical challenges (e.g. no production of new multi-slit mask). We are planning

accordingly to mitigate expected losses while achieving our observing goals for 2021A.

The observations will be part of J. Remolina González’s PhD thesis, thesis prospectus

attached.”

D.1 Work as PI of the Spectroscopic Follow-up Program

As the PI of this program since 2019, I led the preparatory work prior to each

observing run, which was done with several collaborators at the University of Michi-

gan, University of Chicago, and Argonne National Laboratory. The preparatory work

includes identification of clusters for observation, identification of SL features, and,

if needed, computation of a preliminary lens model. We designed multi-slit masks

to target the lensing evidence as first priority, and cluster-member galaxies to be

targeted by the remaining available slits. Finally, a detailed observing plan for each

night and each run was developed, and contingency plans put in place to account for

varying weather conditions and priorities.
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I executed the observations during 9 of the observing runs. The COVID-19 world-

wide pandemic resulted in cancellation of several observing run in 2020, and transition

to remote observing once the observatory resumed limited operations.

All high-priority SPT SL clusters, which were identified up until 2021, were ob-

served. Preliminary analysis of the spectra of the highest-priority targets (typically,

the lensed features) took place during the observation, however since this preliminary

analysis is rarely fully calibrated we do not report its results here. A full uniform

reduction of the entire LDSS3−C SPT SL program is in progress, with results antic-

ipated in Fall 2021.

D.2 Observation Records

I report the observational records of the spectroscopic program. This record is

presented here as part of the legacy of this multi-year observational campaign, to

provide a reference database, and to inform future work. As part of my work, I

have kept track of the multi-object slit mask production and searched the archival

database1 for LDSS3−C and IMACS/GISMO to identify masks used on observing

runs prior to my involvement in the project. Table D.1 lists for each observation

the cluster ID, observing information (instrument, date, exposure time), and mask

identifier. In addition, this table lists multi-object slit masks that are available at the

observatory and have not been observed.

1http://masks.lco.cl/masks2/search/
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Coe, D., Salmon, B., Bradač, M., et al. 2019, ApJ, 884, 85

Corless, V. L., & King, L. J. 2009, MNRAS, 396, 315

Dahle, H., Aghanim, N., Guennou, L., et al. 2016, A&A, 590, L4

D’Aloisio, A., Natarajan, P., & Shapiro, P. R. 2014, MNRAS, 445, 3581

De Boni, C., Ettori, S., Dolag, K., & Moscardini, L. 2013, MNRAS, 428, 2921

de Haan, T., Benson, B. A., Bleem, L. E., et al. 2016, ApJ, 832, 95

Despali, G., Giocoli, C., & Tormen, G. 2014, MNRAS, 443, 3208

Diego, J. M., Broadhurst, T., Wong, J., et al. 2016, MNRAS, 459, 3447

Diego, J. M., Protopapas, P., Sandvik, H. B., & Tegmark, M. 2005, MNRAS, 360,
477

Diego, J. M., Tegmark, M., Protopapas, P., & Sand vik, H. B. 2007, MNRAS, 375,
958

Diego, J. M., Kaiser, N., Broadhurst, T., et al. 2018, ApJ, 857, 25

Diehl, H. T., Allam, S. S., Annis, J., et al. 2009, ApJ, 707, 686

Doane, D. P. 1976, The American Statistician, 30, 181

Duffy, A. R., Schaye, J., Kay, S. T., & Dalla Vecchia, C. 2008, MNRAS, 390, L64

Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, The Astrophysical Journal
Supplement Series, 180, 306
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Molino, A., Beńıtez, N., Ascaso, B., et al. 2017, MNRAS, 470, 95

Morgan, R., Nord, B., Birrer, S., Lin, J., & Poh, J. 2021, The Journal of Open Source
Software, 6, 2854

Motl, P. M., Hallman, E. J., Burns, J. O., & Norman, M. L. 2005, ApJ, 623, L63

Narayan, R., & Bartelmann, M. 1996, ArXiv e-prints, astro

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563

—. 1997, ApJ, 490, 493

Newman, A. B., Treu, T., Ellis, R. S., & Sand, D. J. 2011, ApJ, 728, L39

Newman, A. B., Treu, T., Ellis, R. S., et al. 2013, ApJ, 765, 24

Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. 2014, LM-
FIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python,
doi:10.5281/zenodo.11813

Niemiec, A., Jauzac, M., Jullo, E., et al. 2020, MNRAS, 493, 3331

Nord, B., Buckley-Geer, E., Lin, H., et al. 2016, ApJ, 827, 51

—. 2020, MNRAS, 494, 1308

Ofek, E. O., Seitz, S., & Klein, F. 2008, MNRAS, 389, 311

Oguri, M. 2006, MNRAS, 367, 1241

—. 2010, PASJ, 62, 1017

Oguri, M., Bayliss, M. B., Dahle, H., et al. 2012, MNRAS, 420, 3213

Oguri, M., & Blandford, R. D. 2009, MNRAS, 392, 930

Oguri, M., & Hamana, T. 2011, MNRAS, 414, 1851

257



Okabe, N., Takada, M., Umetsu, K., Futamase, T., & Smith, G. P. 2010, PASJ, 62,
811

Pardo, K., Desmond, H., & Ferreira, P. G. 2019, Phys. Rev. D, 100, 123006

Paterno-Mahler, R., Sharon, K., Coe, D., et al. 2018, ApJ, 863, 154

Pearson, J., Li, N., & Dye, S. 2019, MNRAS, 488, 991

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266

—. 2010, AJ, 139, 2097

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565

Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2017, MNRAS, 472, 1129

Pillepich, A., Reiprich, T. H., Porciani, C., Borm, K., & Merloni, A. 2018, MNRAS,
481, 613

Pirzkal, N., Viana, A., & Rajan, A. 2010, The WFC3 IR ’Blobs”, Space Telescope
WFC Instrument Science Report

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A27

Porcas, R. W., Booth, R. S., Browne, I. W. A., Walsh, D., & Wilkinson, P. N. 1979,
Nature, 282, 385
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