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Abstract 

 

Injuries to the neuromusculoskeletal systems often result in muscle weakness, abnormal 

coordination strategies, and gait impairments. Functional resistance training during walking—

where a patient walks while a device increases loading on the leg—is an emerging approach to 

combat these symptoms. While simple passive devices (i.e., ankle weights and resistance bands) 

can be applied for this training, rehabilitation robots have more potential upside because they can 

be controlled to treat multiple gait abnormalities and can be monitored by clinicians. However, 

the cost of conventional robotic devices limits their use in the clinical or home setting. Hence, in 

this dissertation, we designed, developed, and tested passive and semi-passive wearable 

exoskeleton devices as low-cost solutions for providing controllable/configurable functional 

resistance training during walking. 

We developed and tested two passive exoskeleton devices for providing resistance to 

walking and tested their effects on able-bodied participants and stroke survivors. First, we 

created a patented device that used a passive magnetic brake to provide a viscous (i.e., velocity-

dependent) resistance to the knee. The resistive properties of the device could be placed under 

computer control (i.e., made semi-passive) to control resistance in real-time. Next, we created a 

passive exoskeleton that provided an elastic (i.e., position-dependent) resistance. While not 

controllable, this device was highly configurable. Meaning it could be used to provide resistance 

to joint flexion, extension, or to both (i.e., bidirectionally). Human subjects testing with these 

devices indicated they increased lower-extremity joint moments, powers, and muscle activation 
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during training. Training also resulted in significant aftereffects—a potential indicator of 

therapeutic effectiveness—once the resistance was removed. A separate experiment indicated 

that individuals often kinematically slack (i.e., reduce joint excursions to minimize effort) when 

resistance is added to the limb. We also found that providing visual feedback of joint angles 

during training significantly increased muscle activation and kinematic aftereffects (i.e., reduced 

slacking). 

With passive devices, the type of passive element used largely dictates the muscle 

groups, types of muscle contraction, joint actions, and the phases of gait when a device is able to 

apply resistance. To examine this issue, we compared the training effects of viscous and elastic 

devices that provided bidirectional resistance to the knee during gait. Additionally, we compared 

training with viscous resistances at the hip and knee joints. While the resistance type and targeted 

joint altered moments, powers, and muscle activation patterns, these methods did not differ in 

their ability to produce aftereffects, alter neural excitability, or induce fatigue in the leg muscles. 

While this may indicate that the resistance type does not have a large effect on functional 

resistance training during walking, it is possible that an extended training with these devices 

could produce a different result.  

Lastly, we used musculoskeletal modeling in OpenSim to directly compare several 

strategies that have been used to provide functional resistance training to gait in the clinic or 

laboratory setting. We found that devices differed in their ability to alter gait parameters during 

walking. Hence, these findings could help clinicians when selecting a resistive strategy for their 

patients, or engineers when designing new devices or control schemes. 
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Collectively, this dissertation introduces a new class of wearable devices for functional 

resistance training during walking and establishes the biomechanical and neurophysiological 

effects and the clinical potential of these devices in able-bodied and stroke survivors. 
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Chapter 1  

Functional Resistance Training During Walking: Review of Devices and their Effects on 

Muscle Activation, Neural Control, and Gait Mechanics 

 

Abstract 

Objective: Injuries to the neuromusculoskeletal system often result in muscle weakness 

and abnormal coordination strategies, which can lead to gait impairments. Functional resistance 

training (FRT) during walking—where a patient walks while a device increases loading on the 

leg—is an emerging approach to combat these symptoms. There are many different strategies 

and devices that can be used to convey resistance to the patient, ranging from simple weighted 

cuffs to sophisticated rehabilitation robots. This review highlights the different devices used in 

FRT and characterizes how they alter muscle activation and gait biomechanics with acute 

training. Methods: We performed a literature search to identify studies that have performed acute 

FRT during walking and examined how each resistive strategy altered joint moments and muscle 

activation during training, kinematic and spatiotemporal aftereffects following training, and 

neural control of walking. We also examined the potential financial and practical trade-offs of 

different training strategies. Results: We found that muscle activation, gait biomechanics, and 

kinematic aftereffects varied based on the strategy used for training. There were no clear 

consistent effects on neural control of walking. Conclusion: Resistive strategies can be selected 

to target patient-specific strength deficits and gait impairments, but this selection should also 

account for affordability and ease of use of the device. Significance: This information can help 
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inform clinicians when selecting a strategy for FRT that is appropriate for their patients while 

remaining feasible for use in their clinic or home, as well as engineers developing new devices 

for this purpose. 

1.1 Introduction 

Walking is a motor skill that is intrinsically learned at a young age; however, this 

seemingly basic skill is actually carried out by a complex network of interdependent pathways in 

the neural and muscular systems. Hence, damage to these systems due to neurological or 

orthopedic conditions (e.g., stroke, spinal cord injury, cerebral palsy, osteoarthritis, etc.) often 

results in gait abnormalities or disability (Chen et al., 2005; Duffell et al., 2017; Perry et al., 

1995; Pietrosimone et al., 2018). Unfortunately, current trends in public health—such as the 

increase in the ageing population—suggest that the prevalence of many of the conditions will 

grow (Pollock et al., 2014). 

Individuals with these neurological or orthopedic conditions typically exhibit motor 

impairments, with the most common being muscle weakness (Harvey, 2016; Olney & Richards, 

1996; Williams et al., 2014). Strength is highly correlated with functional activity performance 

(Bohannon, 2007; Hsu et al., 2003; Pouliot-Laforte et al., 2020), and therapists frequently 

prescribe resistance training with the goal of improving walking (Cramp et al., 2006; Flansbjer et 

al., 2008; Harvey, 2016; Teixeira-Salmela et al., 1999). While resistance training alone can 

improve walking function (e.g., increased walking velocity or endurance) (Cramp et al., 2006; 

Flansbjer et al., 2008; Lima et al., 2013; Liu & Latham, 2009; Pak & Patten, 2008), it has also 

been shown that resistance training has limited transfer to functional activities (Krebs et al., 

2007; Sullivan et al., 2007). Rather, functional activities, such as walking, are better improved 

using task-specific training (e.g., training patients to walk by specifically practicing walking 
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overground or on a treadmill) (Carroll et al., 2001; Krebs et al., 2007; Sullivan et al., 2007). This 

is not surprising considering that task-specific training is a key determinant for inducing plastic 

changes in the nervous system (Carroll et al., 2001; Harvey, 2009; Kleim & Jones, 2008; Maier 

et al., 2019). Given the unique contributions that task-specific and resistive training offer for gait 

rehabilitation, therapeutic interventions that combine these two training types may be more 

effective than either training type by itself (Eng & Tang, 2007). 

Functional resistance training (FRT) is essentially a fusion of resistive and task-specific 

training principles, and is administered by having a patient perform a task-specific training 

against an applied resistance. As such, it is specifically designed to improve functional ability by: 

1) increasing voluntary muscle force throughout the range of motion for a task and 2) modulating 

force in muscle groups appropriate for the activity being trained (Cooke et al., 2010; Donaldson 

et al., 2009). Historically, FRT principles have been widely applied for training sport 

performance, such as when a sprinter trains by running with a parachute attached to their waist. 

By comparison, these training techniques have only recently been adapted by the rehabilitation 

community for gait training. In this context, FRT during walking is applied by having the patient 

walk with a resistance applied to their lower-extremity. Resistance can be applied to the legs 

using many different strategies, which vary based on the type of device used, how that device 

interfaces with the user, and the type of resistance that the device supplies. Notably, the 

characteristics of the resistance—such as the force profile, the timing relative to the gait cycle, 

and the muscles that are targeted—vary greatly depending on strategy that is being used. 

Ultimately, the resistive strategy selected for FRT during walking could greatly affect the 

outcomes of the training. 
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This introductory chapter is a literature review that highlights the types of devices that 

have been used to apply external loads for FRT during walking, as well as the characteristics of 

the unique resistances provided by each device. It also discusses potential trade-offs and the 

different effects that may occur due to acute training with these various resistive strategies. 

Specifically, it reviews how FRT has been applied during walking to alter joint moments and 

muscle activation, how training has elicited kinematic and spatiotemporal aftereffects once 

resistance is removed, and how it has altered neural control of walking. Throughout the review, 

attention is given to many areas where future research is required to advance our understanding 

of FRT. 

1.2 Methods 

1.2.1 Literature Search 

The literature search was performed in PubMed using the following permutations of the 

text and keyword combinations (Figure 1.1). Relating to the functional task we searched for 

“gait” and “walking”, along with the type of training being “resistance”. The search was also 

conducted based on the variables measured, which included “electromyography”, “kinematics”, 

"transcranial magnetic stimulation", “spatiotemporal”, “spatial”, and “temporal” along with 

relevant abbreviations. The references found from this computerized search were manually 

inspected to identify other potential studies that fit our inclusion criteria. All databases were 

searched for relevant articles up until August 4, 2020. 
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Figure 1.1 Flow diagram depicting study identification. 

We found 699 articles that matched these criteria. From these articles, we selected those 

that met a more stringent criteria. Mainly, studies were included if they were original 

investigations related to FRT during walking (see Functional Resistance Training Operational 

Definition), published as peer-reviewed journal articles (i.e., excluding conference proceedings), 

and designed to measure the acute effects/adaptations (i.e., excluding clinical trials) of FRT 

during walking on adult human subjects (i.e., excluding trials on infants or animals). 

Additionally, studies were only included if they had appropriate statistical analysis (i.e., 

excluding case studies and series). Eligible articles were reviewed to see if they collected at least 

one of the following variables: muscle activation or joint moments before and during training; 

spatiotemporal gait parameters or kinematic variables before training and after removing the 
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resistance (i.e., aftereffects from washout periods or catch trials); or transcranial magnetic 

stimulation variables before and during training, or before and after training. Additional articles 

were excluded because they only measured from the unresisted leg or presented variables as 

asymmetries. In total, 38 articles met all of our criteria (See Appendix A). 

From these articles, we extracted the population that was trained, the type of device that 

was used to apply resistance (i.e., whether it was a passive device or an active motorized robot), 

the mode that was used to apply the resistance (i.e., tethered to a point on the participant [point-

based] or directly to the participant’s joint [joint-based]), the resistance type (e.g., whether the 

resistance was inertial, elastic, viscous, etc.), and the movement that the device was resisting. For 

all of our variables of interest (muscle activations, joint moments, kinematics, spatiotemporal 

gait parameters, and transcranial magnetic stimulation), we report all of the statistically 

significant findings relative to baseline (i.e., normal walking) and indicate the direction of 

change with an arrow pointing upwards (variable increased) or downwards (variable decreased). 

1.2.2 Functional Resistance Training Operational Definition 

During screening, studies were excluded based on whether they performed FRT during 

walking. We defined this based on whether the study used a device to increase the loading 

experienced by the leg during walking beyond what would be experienced during normal 

unassisted walking. We would like to note that many abstractions of existing therapies could be 

viewed as FRT but were not included in this review. Examples include body-weight supported 

treadmill training, split-belt treadmill training, stair climbing, inclined walking, electrical 

stimulation, perturbation research, and prosthesis research. Lastly, we have not reviewed many 

studies that examined the effects of ankle-foot orthoses because these studies often aim to assist 

the user, report the net moments from both the user and device, and do not make comparisons to 
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walking without the device. Additionally, the biomechanical effects of walking with compliant 

ankle-foot orthoses have been reviewed elsewhere (Totah et al., 2019). 

1.3 Results 

1.3.1 Populations Being Researched 

While FRT during walking is often motivated for use in populations with neurological 

injuries, a majority of this acute research has actually been performed on able-bodied individuals 

(29/38 studies). This is likely due to the ease of recruiting able-bodied participants, and the need 

to validate methods before testing on patients. The remainder of the studies were performed on 

individuals with neurological injuries, including spinal cord injuries (5/38 studies), strokes (4/38 

studies), and cerebral palsy (3/38 studies). A single study was performed in individuals with knee 

osteoarthritis, an orthopedic condition. 

1.3.2 Devices for Functional Resistance Training 

The devices that have been applied for FRT during walking range from simple passive 

devices to advanced active rehabilitation robots (Figure 1.2). We refer to these devices as active 

or passive based on how energy flows between the device and user. Active rehabilitation robots 

use active actuators (e.g., motors), which add external energy to the user in order to provide 

resistance. Meanwhile, passive devices—including weighted cuffs/vests, elastic bands, and 

brakes—do not add external energy to the user. Rather, resistance is produced in passive devices 

when the user exerts their own internal energy on the device. In some cases, the energy put into 

the device can be stored and returned to the user; however, this is not external power as it was 

originally input by the user.  



  

8 
 

We found that most studies performed FRT during walking using passive devices (21/38 

studies). This majority likely stems from the accessibility and affordability of these devices, 

many of which are already possessed by rehabilitation clinics (e.g., weighted cuffs and resistance 

bands). However, several studies have also used active robots (17/38 studies). Typically, these 

studies have used custom devices built for research purposes or programmed commercially 

available rehabilitation robots to be resistive. 

 
Figure 1.2 The spectrum of devices used for functional resistance training during gait and their approximate costs. Active robots 
provide exceptional control over the rehabilitation setting but are also the most expensive to acquire. Meanwhile, passive devices 
(e.g., weighted cuffs/belts, elastic bands, and passive braces) are the most cost-effective option but offer no real-time control. 
While not widely studied in functional resistance training, semi-passive robots utilize controllable passive elements (e.g., 
controllable brakes) in order to provide a limited set of controls but at a modest price. 

1.3.3 Modes of Interfacing with the Limb 

Within each of these classes of devices (i.e., active robots and passive devices), there are 

two separate modes that can be used to interface with the limb. By modes, we are referring to 

whether the resistance is applied at a point on the user (i.e., attached externally to a segment on 

the body, as is typically done with weights, resistance bands, or tethered robots; sometimes 

referred to as an end-effector based) or directly to the joints of the user (as is common with 

wearable braces or exoskeleton robots). Ultimately, the differences between these two modes can 

affect how a device is able to resist the user during training, as point loads make it more difficult 
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to target specific joints (Figure 1.3). Despite this, we found that most studies applied resistance 

through point loads (27/38 studies), while only 14 studies used joint loads. 

 
Figure 1.3 Schematic depicting how a point-based resistance applied to the shank translates to torques at the hip and knee (i.e., 
joint-based resistances) during the swing phase. Equations can describe the relationship between point- and joint-based 
resistances, and indicate that the resulting torques depend on the limb lengths and joint angles. Additionally, the torques at the hip 
and knee are coupled with one another. The notation f(ϴ) denotes a function of ϴ. 

1.3.4 Types of Resistance 

While the mode of applying the resistance dictates how the device is attached to the user, 

the type of resistance largely dictates the characteristics of the resistance. Generally, resistances 

can be characterized as inertial, elastic, viscous, frictional, or any combination thereof. In passive 

devices, the type of resistance is inherent to the type of passive element that the device uses (e.g., 

mass, spring, damper, etc.). In active robots, the motors can potentially be programmed to 

emulate any of these resistance types, or provide customized (i.e., user-defined) resistances that 

are not possible with passive elements. All of these resistance types will provide different 

resistance profiles based on the mechanics of the movement: inertial resistance depends on 

acceleration, elastic resistance scales based on position, viscous resistance depends on velocity, 

and friction provides a constant resistance (Figure 1.4A). Notably, the resistance type employed 

by the device will also determine the type of muscle contraction (i.e., concentric or eccentric) 
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that can be trained (Figure 1.4B). While most devices can engage the user’s muscles 

concentrically, eccentric contractions can only be elicited by a device that can exert energy on 

the user (i.e., active robots, or inertial and elastic devices returning stored energy to the user).  

 
Figure 1.4 (A) Resistance types and the resulting forces when they are applied to a one-dimensional motion. The left panel 
characterizes this simple motion. Maintaining these characteristics, the right panel shows the force F that would be required to: 
lift a weight with mass m against gravity g; deform an elastic spring with stiffness k; deform a viscous damper with a damping 
coefficient b; or move along a surface with a coefficient of friction μ. Most passive devices will provide one of these resistance 
types, and active robots can emulate these components or provide customized resistances. (B) Resistances types differ in the 
types of muscle contractions (e.g., concentric and eccentric) that they can elicit. During the seated knee extension/flexion task 
depicted, inertial and elastic resistances elicit concentric contraction when extending the leg and eccentric contraction when 
flexing the leg. During the same task, viscous and friction-based resistances require concentric contraction during both extension 
and flexion. 

We found that most of the studies we examined used inertial resistances (13/38 studies) 

by attaching a weight at some point on the body. In comparison, 7 studied elastic resistances and 

6 studies used viscous resistances. Several studies also examined customized robotic resistances 

(12/38 studies). Many of these studies used the robot to emulate a system of passive devices 

(creating a viscoelastic resistance), while others used closed-loop control to create a constant 

resistance or one that was proportional to some other variable. 

1.3.5 Joint Moments and Muscle Activation During Training 

It is important to note that the mode and type of resistance cannot be viewed 

independently—every resistive device must utilize both—and the combination of these factors 
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determines the resistance that the patient experiences. Further, because gait is a repetitive task 

with stereotypical kinematics, each resistive strategy is going to be stereotypical in its ability to 

resist the user. Hence, the FRT strategy largely dictates the muscles groups, types of muscle 

contraction, joint action, and the phase of gait when a device is able to apply resistance. This 

section examines all of the studies that have measured muscle activation or joint moments while 

providing FRT (Table 1.1). In total, we found 24 studies measured muscle activation while only 

7 measured joint moments. 

1.3.5.1 Inertial Point Resistances 

Typically, point-based inertial resistances have been administered by placing weights on 

the foot/shank, thigh, pelvis, or torso. When attached to the foot/shank, weighted cuffs increased 

hip extension and flexion moments during the stance phase, as well as hip flexion and knee 

flexion moments during the swing phase (Browning et al., 2007; Duclos et al., 2014; Noble & 

Prentice, 2006). This strategy also increased muscle activation of the quadriceps at the transition 

between stance and swing (Browning et al., 2007), the hamstrings during swing (Lam et al., 

2008), and the triceps surae during stance (Browning et al., 2007). Weighted cuffs attached to the 

thigh or pelvis had no significant effects on joint moments; however, triceps surae activation 

increased during the stance phase (Browning et al., 2007; McGowan et al., 2008). Weights 

attached to the torso (e.g., using a backpack) (Chow et al., 2005; Krupenevich et al., 2015; 

Kubinski & Higginson, 2012; Silder et al., 2013; Simpson et al., 2011) significantly increased 

hip extension, knee flexion and extension, and ankle dorsi and plantarflexion moments during 

the stance phase (Chow et al., 2005; Krupenevich et al., 2015; Silder et al., 2013). This strategy 

also increased muscle activation of the quadriceps, hamstrings, and triceps surae during the 

stance and swing phases (Silder et al., 2013; Simpson et al., 2011). Inertial resistance pulling 
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backwards on the shank increased muscle activation of the quadriceps during the pre-swing 

phase of gait (Savin et al., 2010). 

Table 1.1 Summary of how resistance during walking altered muscle activation and internal joint moments.  

Reference Pop Device Mode Type Resisting Significant Findings [Variable (Phase of Gait)] 
Browning et al. (2007) AB Passive  Point Inertial Foot MA: RF (PSw) ↑, TA (TSw) ↑, MG (MSt–TSt) 

↑, Sol (MSt–TSt) ↑ 
Moment: H Ext (MSt) ↑, H Flex (TSt–Isw, 
TSw) ↑, K Flex (TSw) ↑, A Dorsi (ISw) ↑ 

Lam et al. (2008) SCI Passive  Point Inertial Shank MA: LH (Sw) ↑ 
Duclos et al. (2014) Stroke Passive  Point Inertial Shank Moment: H Ext (LR,TSw) ↑, H Flex (TSt–

PSw) ↑, K Flex (LR,TSw) ↑  
Browning et al. (2007) AB Passive  Point Inertial Shank MA: MG (MSt–TSt) ↑ 

Moment: No Effect 
Noble & Prentice 
(2006) 

AB Passive  Point Inertial Shank Moment: H Flex (ISw) ↑, H Ext (TSw) ↑, K 
Ext (ISw) ↑, K Flex (TSw) ↑ 

Savin et al. (2010) AB Passive  Point Inertial Shank Back MA: RF (ISw) ↑ 
Browning et al. (2007) AB Passive  Point Inertial Thigh MA: MG (MSt–TSt) ↑, Sol (MSt–TSt) ↑ 

Moment: No Effect 
Browning et al. (2007) AB Passive  Point Inertial Pelvis MA: MG (MSt–TSt) ↑, Sol (MSt–TSt) ↑ 

Moment: No Effect 
McGowan et al. (2008) AB Passive  Point Inertial Pelvis MA: MG (LR–PSw) ↑, Sol (LR–PSw) ↑ 
Kubinski & Higginson 
(2012) 

Knee 
OA 

Passive  Point Inertial Torso Moment: No Effect 

Chow et al. (2005) AB Passive Point Inertial Torso Moment: H Flex (PSw) ↑, H Abd (St) ↑, H Int 
(St) ↑, H Ext (St) ↑, K Ext (St) ↑, K Val (St) ↑, 
A Plant (St) ↑ 

Krupenvich et al. (2015) AB Passive  Point Inertial Torso Moment: K Ext (St) ↑, A Plant (St) ↑ 
Kubinski & Higginson 
(2012) 

AB Passive  Point Inertial Torso Moment: No Effect 

Silder et al. (2013) AB Passive  Point Inertial Torso MA: RF (St, Sw) ↑, VM (LR–MSt, TSw) ↑, VL 
(LR–MSt, TSw) ↑, MH (MSw–TSw) ↑, LH 
(LR–MSt, MSw–TSw) ↑, MG (MSt–PSw) ↑, 
Sol (MSt–PSw, Sw) ↑ 
Moment: H Ext (LR - MSt) ↑, K Ext (MSt) ↑, 
K Flex (PSw), A Dorsi (LR) ↑, A Plant (PSw) ↑ 

Simpson et al. (2011) AB Passive  Point Inertial Torso MA: VL (LR, TSw) ↑, MG (TSt–PSw) ↑ 
Blanchette & Bouyer 
(2009) 

AB Passive  Point Elastic Foot Front MA: LH (PSw–MSw) ↑, MH (PSw–MSw) ↑ 

Blanchette et al. (2012) AB Passive  Point Elastic Foot Front MA: LH (PSw–MSw) ↑, MH (PSw–MSw) ↑ 
Gottschall & Kram 
(2003) 

AB Passive  Point Elastic Pelvis Back MA: MG (TSt–PSw) ↑, Sol (TSt–PSw) ↑   

Shin et al. (2014) CP Passive  Point Elastic Shank Front MA: Hst (LR–MSt) ↓ 
Shin et al. (2014) AB Passive  Point Elastic Shank Front MA: Hst (LR–MSt) ↓ 
Mun et al. (2017) AB Active  Point Constant Pelvis Back MA: RF (St) ↑, VM (St) ↑, TA (St) ↑, GMax 

(St) ↑, AdL (St) ↑ 
Vashista et al. (2016) AB Active  Point Constant Pelvis Down MA: No Effect 
Tang et al. (2019) CP Active  Point Viscoelastic Shank Back MA: No Effect 
Yen et al. (2013) SCI Active  Point Viscoelastic Shank Back MA: TA (Psw–ISw) ↑ 
Barthélemy et al. (2012) AB Passive  Joint Elastic Ankle Dorsi MA: TA (Sw) ↑ 
Houldin et al. (2011) SCI Active  Joint Viscous Hip Bi MA: RF (Sw) ↑ 
Houldin et al. (2011) AB Active  Joint Viscous Hip Bi MA: RF (Sw) ↑ 
Houldin et al. (2012) AB Active  Joint Viscous Hip Bi MA: RF (Sw) ↑, TA (Sw) ↑ 
Lam et al. (2008) SCI Active  Joint Viscous Hip+Knee 

Bi 
MA: No Effect 

Klarner et al. (2013) AB Active  Joint Viscous Hip+Knee 
Bi 

MA: RF (ISw–MSw) ↑ 

Lam et al. (2006) AB Active  Joint Viscous Hip+Knee 
Bi 

MA: RF (MSw) ↑, MH (PSw, MSw) ↑, LH 
(PSw) ↑, TA (MSw) ↑ 

Diaz et al. (1997) AB Active  Joint Constant Knee Ext MA: RF ↑, VM ↑, VL ↑ 
Diaz et al. (1997) AB Active  Joint Constant Knee Flex MA: VM ↓ 
Blanchette et al. (2011) AB Active  Joint Custom Ankle Dorsi MA: TA (PSw–MSw) ↑ 
Conner et al. (2020) CP Active Joint Custom Ankle 

Plantar 
MA: TA (St) ↓, Sol (St) ↑ 
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Population abbreviations: Pop (population), AB (able-bodied), SCI (spinal cord injury), CP (cerebral palsy), OA (osteoarthritis); muscle 
activation (MA) abbreviations: AdL (adductor longus), GMax (gluteus maximus), GMed (gluteus medius), Hst (hamstring), LH (lateral 
hamstring), MH (medial hamstring), MG (medial gastrocnemius), RF (rectus femoris), Sol (soleus), TA (tibialis anterior), VL (vastus 
lateralis), VM (vastus medialis); resistance and internal moment abbreviations: H (hip), K (knee), A (ankle), Flex (flexion), Ext (extension), 
Abd (abduction), Val (valgus), Int (internal), Plant (plantar flexion), Dorsi (dorsiflexion), Bi (Bidirectional [e.g., Flex & Ext]); gait phase 
abbreviations: St (stance), Sw (swing), LR (loading response), MSt (mid-stance), TSt (terminal stance), PSw (pre-swing), ISw (initial-swing), 
MSw (mid-swing), TSw (terminal swing). Front/Back/Down indicate the direction the device is pulling. ↑ Indicates that the variable 
significantly increased during training, while ↓ indicates a significant decrease. Note, many studies had additional variables that were reported 
but that did not show significance. 

1.3.5.2 Elastic Point Resistances 

Pulling forward on the foot/shank with an elastic resistance band increased muscle 

activation of the hamstrings during the early–mid swing phase (Blanchette & Bouyer, 2009; 

Blanchette et al., 2012). However, when the band was placed proximally on the shank, hamstring 

activation decreased during the stance phase (Shin et al., 2014). Pulling backwards on the pelvis 

increased muscle activation of the triceps surae muscles during the terminal stance and pre-swing 

phases of gait (Gottschall & Kram, 2003). 

1.3.5.3 Custom Point Resistances 

An active robotic cable device that pulled backwards on the shank with a viscoelastic 

resistance (Tang et al., 2019; Yen et al., 2013) increased muscle activation of the tibialis anterior 

during the swing phase (Yen et al., 2013), and it would likely increase quadriceps activation as 

well if tested on less impaired individuals. A robotic walker that pulled backwards on the pelvis 

with a constant force (Mun et al., 2017) increased muscle activation of the quadriceps, tibialis 

anterior, gluteus maximus, and adductor longus muscles during the stance phase of gait. Yet 

another motorized cable device pulled downwards on the pelvis with a constant force (Vashista 

et al., 2016); however, this strategy did not significantly alter muscle activation. 

1.3.5.4 Elastic Joint Resistances 

An ankle orthosis with elastic tubing between the heel and calf has been used to resist to 

ankle dorsiflexion during walking (Barthélemy et al., 2012). This strategy increased muscle 
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activation of the tibialis anterior muscle during pre- and initial-swing (Barthélemy et al., 2012). 

Future research in this area has large potential given the availability of elastic ankle-foot 

orthoses. 

1.3.5.5 Viscous Joint Resistances 

Viscous resistances have been applied to the hip and/or knee joints using active robotic 

exoskeletons (i.e., the Lokomat) (Houldin et al., 2012; Houldin et al., 2011; Klarner et al., 2013; 

Lam et al., 2006; Lam et al., 2008). In each instance, the resistance has been applied to both 

flexion and extension of the joint (i.e., bidirectionally). When applied to the hip, this strategy 

increased muscle activation of the rectus femoris and tibialis anterior during the swing phase of 

gait (Houldin et al., 2012; Houldin et al., 2011). Applying viscous resistance to both the hip and 

knee increased muscle activation of the hamstrings during pre-swing, and the rectus femoris, 

medial hamstring, and tibialis anterior during mid-swing (Klarner et al., 2013; Lam et al., 2006). 

These effects were absent when tested in individuals with spinal cord injury (Lam et al., 2008). 

1.3.5.6 Custom Joint Resistances 

Several active robotic exoskeletons have been programmed to provide custom 

resistances. One device provided a constant torque to resist either knee flexion or extension 

(Diaz et al., 1997). With this device, resisting extension increased activation of the quadriceps 

muscles and resisting flexion reduced activation of the vastus medialis (Diaz et al., 1997). An 

electrohydraulic ankle foot orthosis has also been programmed resist to ankle dorsiflexion during 

the early swing phase (Blanchette et al., 2011). This strategy increased muscle activation of the 

tibialis anterior muscle from pre- to mid-swing (Blanchette et al., 2011). Lastly, a wearable, soft 

robot has been used to resist ankle plantar flexion (Conner et al., 2020). The resistance provided 

by this robot was unique because the torque was proportional to the real-time ankle moment; 
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thus, mimicking normal joint loading. During training, this strategy increased muscle activation 

of the soleus while decreasing muscle activation of the tibialis anterior during the stance phase 

(Conner et al., 2020). 

1.3.6 Aftereffects Following the Removal of Resistance 

Aftereffects are typically measured when studying motor adaptation. Motor adaptation 

occurs when a movement (in this case, walking) is practiced in the presence of a perturbation 

(Bastian, 2008; Martin et al., 1996), such as the extra loading presented by a resistive device. 

During practice with the perturbation, one's perception of the movement gets altered and the 

nervous system gradually creates a new set of controls for the movement. Finally, once the 

perturbation is removed, some aspects of the modified movement persist, which are referred to as 

aftereffects. These aftereffects contain information about how the nervous system is being driven 

to adapt (Morton & Bastian, 2006; Shadmehr & Mussa-Ivaldi, 1994) and may indicate potential 

gains a particular training can produce, as aftereffects have been seen to transfer to overground 

walking after training (Gama et al., 2018; Reisman et al., 2009; Savin et al., 2014; Yen et al., 

2012). We found that 12 studies measured kinematic aftereffects while 18 studies measured 

spatiotemporal aftereffects. In this section, we examine how different strategies for FRT during 

walking have produced kinematic and spatiotemporal aftereffects (Table 1.2). 

1.3.6.1 Inertial Point Resistances 

Aftereffects have been measured with inertial resistances by placing weighted cuffs on 

the shank (Gama et al., 2018; Lam et al., 2008; Noble & Prentice, 2006). Once resistance was 

removed with this strategy, individuals walked with increased knee flexion (Lam et al., 2008). 

Spatiotemporally, this resulted in increased overground gait speed and step length (Gama et al., 

2018) and foot clearance when walking on a treadmill (Noble & Prentice, 2006). Pulling 
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backwards on the shank with an inertial resistance (Savin et al., 2014; Savin et al., 2010; Savin et 

al., 2013) increased hip flexion and reduced hip extension once the resistance was removed 

(Savin et al., 2010). Spatiotemporally, this strategy increased step length and single leg support 

time while reducing swing time (Savin et al., 2010; Savin et al., 2013). It also increased 

overground gait speed and stride length (Savin et al., 2014). 

Table 1.2 Summary of how strategies produce spatiotemporal and kinematic aftereffects 

Reference Population Device Mode Type Resisting Significant Aftereffects [Variable (Phase of Gait)] 

Gama et al. 
(2018) 

AB Passive  Point Inertial Shank Spatiotemporal: OG Gait Speed ↑, OG Step Length 
↑ 

Noble & 
Prentice 
(2006) 

AB Passive  Point Inertial Shank Spatiotemporal: Foot Clearance ↑ 
Kinematic: No Effect 

Lam et al. 
(2008) 

SCI Passive  Point Inertial Shank Kinematic: K Flex (Sw) ↑ 

Savin et al. 
(2010) 

AB Passive  Point Inertial Shank Back Spatiotemporal: Step Length ↑, Swing Time ↓ 
Kinematic: Hip Flexion (Sw) ↑, Hip Extension (St) 
↓ 

Savin et al. 
(2014) 

AB Passive  Point Inertial Shank Back Spatiotemporal: OG Gait Speed ↑, OG Stride 
Length ↑  

Savin et al. 
(2014) 

Stroke Passive  Point Inertial Shank Back Spatiotemporal: OG Gait Speed ↑, OG Stride 
Length ↑ 

Savin et al. 
(2013) 

Stroke  Passive  Point Inertial Shank Back Spatiotemporal: Step Length ↑, SLS Time ↑  

Blanchette & 
Bouyer 
(2009) 

AB Passive  Point Elastic Foot Front Spatiotemporal: Foot Speed (Sw) ↓ 

Blanchette et 
al. (2012) 

AB Passive  Point Elastic Foot Front Spatiotemporal: Foot Speed (Sw) ↓ 

Vashista et 
al. (2013) 

AB Passive  Point Elastic Pelvis Down Kinematic: Pelvis Displacement ↑ 

Tang et al. 
(2019) 

CP Active  Point Viscoelastic Shank Back Spatiotemporal: Step Length ↑ 

Yen et al. 
(2013) 

SCI Active  Point Viscoelastic Shank Back Spatiotemporal: Stride Length ↑ 

Yen et al. 
(2014) 

SCI Active Point Viscoelastic Shank Back Spatiotemporal: Stride Length ↑ 

Yen et al. 
(2015) 

Stroke Active Point Viscoelastic Shank Back Spatiotemporal: Step Length ↑ 

Yen et al. 
(2012) 

SCI Actve Point Viscoelastic Thigh Back Spatiotemporal: OG Gait Speed ↑, OG Stride 
Length ↑, Stride Length ↑, Stance Time ↑ 

Vashista et 
al. (2016) 

AB Active  Point Custom Pelvis Down Spatiotemporal: Stance Time ↑ 
Kinematic: No Effect 

Barthélemy 
et al. (2012) 

AB Passive  Joint Elastic Ankle Dorsi Kinematic: A Exc ↑ 

Houldin et al. 
(2011) 

AB Active  Joint Viscous Hip Bi Spatiotemporal: Foot Clearance ↑ 
Kinematic: H Flex (Sw) ↑, K Flex (Sw) ↑ 

Houldin et al. 
(2012) 

AB Active  Joint Viscous Hip Bi Spatiotemporal: Foot Clearance ↑ 
Kinematic: H Flex (Sw) ↑, K Flex (Sw) ↑ 

Houldin et al. 
(2011) 

SCI Active  Joint Viscous Hip Bi Spatiotemporal: Step Length ↑ 
Kinematic: H Flex (Sw) ↑ 

Lam et al. 
(2006) 

AB Active  Joint Viscous Hip+Knee Bi Kinematic: H Flex (Sw) ↑, K Flex (Sw) ↑ 

Lam et al. 
(2008) 

SCI Active  Joint Viscous Hip+Knee Bi Kinematic: No Effect 

Blanchette et 
al. (2011) 

AB Active   Joint Custom Ankle Dorsi Kinematic: A Dorsi (MSw) ↑ 
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Reference Population Device Mode Type Resisting Significant Aftereffects [Variable (Phase of Gait)] 

Cajigas et al. 
(2017) 

AB Active Joint Custom Shank Back Spatiotemporal: Step Length ↑ 

Severini et al. 
(2020) 

AB Active Joint Custom Shank Back Spatiotemporal: Step Length ↑ 

A full list of abbreviations can be found in Table 1.1. Additional abbreviations: Exc (excursion), OG (overground), SLS (single leg support). 
If not specified as overground, variables were measured over a treadmill; many studies had additional variables that were reported but that did 
not show significance or were not variables of interest for this review. 

1.3.6.2 Elastic Point Resistances 

Pulling forward on the foot with an elastic resistance band decreased foot velocity once 

the resistance was removed (Blanchette et al., 2012). A passive device that pulled downward on 

the pelvis did not have an effect on sagittal plane hip, knee, or ankle kinematics (Vashista et al., 

2013). 

1.3.6.3 Custom Point Resistances 

Several studies have provided a viscoelastic resistance using a cable robot to pull 

backwards on the shank (Tang et al., 2019; Yen et al., 2013, 2014; Yen et al., 2015) and thigh 

(Yen et al., 2012). While none of these studies have measured kinematic aftereffects, 

spatiotemporally, this strategy increased overground gait speed (Yen et al., 2012) and step/stride 

length (Tang et al., 2019; Yen et al., 2013, 2014; Yen et al., 2012; Yen et al., 2015). Another 

active robot has been used to pull downward on the pelvis with a custom force (Vashista et al., 

2016). With this strategy, hip range of motion and cadence were unchanged once the resistance 

was removed; however, the stance phase duration increased. 

1.3.6.4 Elastic Joint Resistances 

Walking with resistance to ankle dorsiflexion during the swing phase (Barthélemy et al., 

2012) resulted in an aftereffect of increased ankle range of motion. 
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1.3.6.5 Viscous Joint Resistances 

A bidirectional viscous resistance at the hip produced a kinematic aftereffect of increased 

hip and knee flexion (Houldin et al., 2012; Houldin et al., 2011). Spatiotemporally, these 

aftereffects presented as increased stride length and foot clearance (Houldin et al., 2012; Houldin 

et al., 2011). When applied to the hip and knee concurrently, viscous resistances produced a 

kinematic aftereffect of increased hip and knee flexion (Lam et al., 2006). However, knee angle 

was unchanged when this strategy was applied on individuals with spinal cord injury (Lam et al., 

2008). 

1.3.6.6 Custom Joint Resistances 

Walking with an active ankle-foot orthosis that resisted ankle dorsiflexion during the 

swing phase significantly increased ankle dorsiflexion angle during the mid-swing phase once 

the resistance was removed (Blanchette et al., 2011). Joint-based resistances that emulated 

pulling backwards on the shank were found to increase step length (Cajigas et al., 2017; Severini 

et al., 2020). 

1.3.7 Neural Adaptations to Functional Resistance Training  

Although neural adaptation is a motivator for providing FRT during walking, only a few 

studies that have directly investigated the neural effects of this training (Barthélemy et al., 2012; 

Bonnard et al., 2002; Chisholm et al., 2015; Zabukovec et al., 2013). A majority of these studies 

have analyzed neural adaptation using transcranial magnetic stimulation (TMS)—a noninvasive 

brain stimulation technique, where an electromagnet (referred to as a coil) is placed over the 

scalp to stimulate the superficial brain cortex. TMS can be used to assess neural excitability of 

the motor system by stimulating over a motor “hotspot” of a muscle (i.e., the area of the brain 

that corresponds to that muscle) then recording the output from the muscle (i.e., a motor evoked 
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potential [MEP]) using electromyography or dynamometry. Therefore, comparing MEPs before, 

during, or after training can indicate an increase or decrease in excitability in the neurons that 

control that muscle.  

TMS has been used to evaluate neural excitability both during training (i.e., stimulating 

the brain as the participant walked on the treadmill) and directly after training (i.e., with the 

participant seated in a chair) in able-bodied participants. Bonnard et al. (Bonnard et al., 2002) 

measured neural excitability during training, which consisted of walking with an elastic band 

attached between the subject’s feet and shoulders (i.e., a point-based resistance pulling upwards 

on the foot). They found that neural excitability (i.e., the size of the MEPs) increased in the 

rectus femoris and lateral hamstring during the late swing phase while training. Barthélemy et al. 

(Barthélemy et al., 2012) measured changes in neurological excitability both during and after 

training with an elastic ankle-foot orthosis (i.e., a joint-based strategy) that provided resistance to 

ankle dorsiflexion during the swing phase. They found that excitability increased in the tibialis 

anterior during the swing phase while training, but did not see any significant changes following 

training. Lastly, Zabukovec et al. (Zabukovec et al., 2013) applied a joint-based viscous 

resistance to the hip and knee joints and measured the neural excitability after training; however, 

they did not see any significant changes in neural excitability. Hence, these studies have typically 

found that excitability increases during training (Barthélemy et al., 2012; Bonnard et al., 2002), 

but that these effects are not present following training (Barthélemy et al., 2012; Zabukovec et 

al., 2013). 

1.4 Discussion 

FRT during walking is an emerging technique for rehabilitation following 

neuromusculoskeletal injury. As such, there are several different strategies that have been used to 
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apply resistance, which vary based on the type of device used, how the device interfaces with the 

user, and the type of resistance that the device supplies. Hence, we examined the different 

strategies that have been used to apply FRT during walking, and how the characteristics of each 

resistive strategy altered the acute effects of training. Specifically, we reviewed how FRT has 

been applied during walking to alter joint moments and muscle activation, how training has 

elicited kinematic and spatiotemporal aftereffects once resistance is removed, and how it has 

altered neural control of walking. In this section, we will discuss the significance of our findings, 

as well as any potential trade-offs to consider when applying this training. 

1.4.1 Patient Populations that May Benefit 

While the majority of acute research on FRT during walking was performed on able-

bodied individuals, these studies were often motivated for individuals with neurological injuries, 

including spinal cord injury, stroke, and cerebral palsy. This is understandable, as FRT is largely 

based on principles of experience dependent neural plasticity (Carroll et al., 2001; Harvey, 2009; 

Kleim & Jones, 2008; Maier et al., 2019). However, we found that training strategies often had 

more evident effects in able-bodied participants than individuals with neurological injuries (Lam 

et al., 2006; Lam et al., 2008; Tang et al., 2019; Yen et al., 2013). This may have occurred 

because many participants with neurological injuries were too impaired to overcome the 

resistance. Hence, it has been suggested that patients with severe impairments following injuries 

could be better served with assistive training rather than FRT (Wu et al., 2012).  

Notably, patients with orthopedic injuries are underrepresented in this research. We only 

found a single study trained individuals with osteoarthritis (Kubinski & Higginson, 2012). 

However, following orthopedic injury or reconstructive surgery, most patients present with 

muscle weakness, altered neural control, and functional impairments, which often extend to gait 
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(Garcia, Curran, et al., 2020; Pietrosimone et al., 2018; Rodriguez et al., 2020). Hence, we feel 

that individuals with orthopedic injuries could be prime beneficiaries of this training, and 

recommend that future studies be performed on these patient groups. Indeed, preliminary 

evidence from pilot clinical trials indicate that FRT during walking could have positive effects in 

individuals with anterior cruciate ligament (ACL) injuries (Brown et al., 2021; Rocchi et al., 

2020). 

1.4.2 Types of Devices for Functional Resistance Training 

We found that most studies have either used active rehabilitation robots or passive 

devices to apply FRT during walking. While there are benefits to both types of devices, there are 

also several trade-offs that must be considered when selecting a device for training. In this 

section, we will discuss this broad spectrum of devices (Figure 1.2) and the practicality of their 

application for FRT during walking. Additionally, we will introduce a third type of device that 

has the potential to alter how this training is applied. 

1.4.2.1 Active Robots 

We will first consider active rehabilitation robots; we refer to this set of robots as active 

because they use active actuators capable of either assisting or resisting movement. There is 

large potential for training with active robots because the motors can be controlled to provide 

unique force environments to the user. Additionally, sensors on the robot allow for a therapist to 

track the progress of a patient throughout training and offer opportunities to provide real-time 

feedback to the user in the form of interactive games. Given this upside, it is not surprising that 

active robots have been widely applied for FRT during walking.  

However, a major issue with most of these active robots is that they are not very 

accessible for patients or clinicians. First, a majority of these robots are custom-built, and 
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building such devices requires an investment and expertise. Second, commercially available 

robots are also very expensive, which prevents their widespread use in-home or in small clinics 

(Lu et al., 2011). Lastly, the commercial versions of these devices are typically used for assistive 

training on heavily impaired individuals, and resistance settings are not available for routine 

clinical use. For these reasons, clinicians are more likely to use the more cost-effective passive 

devices instead of active robots. 

1.4.2.2 Passive Devices 

A majority of the studies in this review used passive devices for training. This is likely 

because passive devices are very practical—they have the inherent ability to provide large 

resistances at a fraction of the cost of a robot (Chang et al., 2018). Moreover, they can be 

purchased at a local sporting goods store, which increases the feasibility of in-home use by the 

patient. The downside to these passive devices is that they are not controllable, so resistance 

must be scaled by manually adjusting the device. Further, these devices are not typically 

instrumented with encoders and load cells, which limits a clinician's ability to monitor the 

patient’s compliance or recovery throughout the training process, especially if the device is being 

used at home. Without these capabilities, patients must be intrinsically motivated to train. Some 

of these issues could potentially be remedied if the devices were instrumented in order to track 

movement (e.g., using encoders or inertial sensors) or, as we will see in the next section, if the 

passive elements were made controllable. 

1.4.2.3 Semi-Passive Robots 

There is another class of devices that exist in the middle ground between active robots 

and passive devices, which we refer to as semi-passive rehabilitation robots (Chang et al., 2018). 

These robots draw inspiration from passive rehabilitation devices by employing passive elements 
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to provide resistance to the patient; however, like with active robots, the passive elements can be 

controlled by a computer. Thus, the resulting robotic devices are able to balance the cost and 

portability of passive devices, while still allowing for patient monitoring and interactive 

treatment. Although this will typically sacrifice the ability to assist the user during training, semi-

passive robots may offer a cost-effective way to provide FRT. To date, this principle has only 

been applied in upper-extremity rehabilitation robots to re-train reaching (Chang et al., 2018; 

Haraguchi & Furusho, 2013; Stienen et al., 2007), and it has not been widely used for FRT 

during walking. Hence, there is great potential to develop devices in this area.  

1.4.3 Differences in Modes of Interfacing with the Limb 

In this review, we distinguished devices based on how they interfaced with the limb. That 

is, if they attached the resistive element to a point on the user (i.e., a point-based resistance), or if 

the resistance was applied as a torque directly at the joint (i.e., a joint-based resistance). From a 

mechanical viewpoint this distinction is largely semantic, as point resistances can be applied to 

emulate a desired joint-based resistance (i.e., torques) and vice versa (Figure 1.3). However, in 

practice, the differences between these two modes can have a profound effect on how a device is 

able to resist the user during training and how exercise using that device should be administered.  

Joint-based resistances have a large upside because they can be easily applied to target 

patient-specific weaknesses. In the rehabilitation field, strength is typically measured at the joint 

level using dynamometry or graded scales such as manual muscle testing (Bohannon, 2001). 

Hence, with a joint-based approach, muscle weakness can be detected at a specific joint and a 

resistive torque can be prescribed to target the weakened muscle group. While targeted resistance 

is still possible with a point-based approach, it is more difficult. First, the torques experienced at 

the joints due to a point-based resistance are often coupled with one another. For example, the 
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point-based resistance applied to the ankle in Figure 1.3 produces torques at both the knee and 

hip joints. Hence, any distal joint cannot be targeted without also loading the more proximal 

joints of the leg. Second, joints located further away from the point where the resistance is 

applied often experience more resistance (due to a larger lever arm), which makes these joints 

more likely to fatigue faster. Third, the resistances experienced at the joints under a point-based 

resistance are more dependent on anatomy and gait kinematics, as the torque is a function of 

segment lengths and joint angles. Despite these limitations, devices that apply point-based 

resistance can still provide utility for FRT. Additionally, we found that a majority of the studies 

in this review actually applied point-based resistances (27/38 studies). Hence, there are other 

factors to be considered when distinguishing between these two modes. 

Point and joint-based resistances can also differ based on their cost and ease of use. 

Devices that provide point-based resistances are typically lower cost and easier to set up than 

joint-based devices, especially if they are passive devices. This stems from how they attach to 

the user with a simple strap/cuff; hence, more time can be spent on training and a single device 

can be used on multiple patients. This is in contrast to the braces and exoskeletons, as care must 

be taken to fit the device to the patient, or it will not perform as intended. For these reasons, 

clinicians may choose to train their patients using devices that apply point- rather than joint-

based resistances. Hence, while there are some differences between how training can be applied 

with these two modes, ultimately, the decision of which to apply may be based on pragmatic 

choices. 

1.4.4 How the Type of Resistance Could Affect Training 

While numerous types of resistive loads were identified by this review, it is difficult to 

make comparisons between studies due to differences in the methods and variables analyzed. As 
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such, it is still unclear how altering the type of resistance affects training outcomes. Undoubtedly 

there are differences in the resistance profiles that are generated by different types of resistive 

elements (Figure 1.4A), but only a single study in this review tested multiple resistance types 

(inertial and viscous) (Lam et al., 2008). Without a larger number of acute studies, computer-

based analyses, or even randomized controlled clinical trials, the role of resistance type for FRT 

will remain unclear. 

We do know that the type of resistance dictates the type of muscle contractions that can 

be elicited during training (Figure 1.4B) and how the resistance feels to the user. Inertial, elastic, 

and customized robotic resistances permit concentric, eccentric, and even isometric muscle 

contractions during training, while friction and viscous resistances only permit concentric muscle 

contraction. The ability to provide eccentric training may be an advantage, as eccentric training 

can better promote strength when compared with concentric training (Kaminski et al., 1998; 

Lepley et al., 2017; Lepley et al., 2015; Roig et al., 2009). However, strength also increases 

when training involves concentric muscle contractions (Higbie et al., 1996). It has been 

speculated that viscous resistances could benefit power training, as the peak force requirements 

when using a viscous resistance coincide with the peak velocity profile of the movement (Figure 

1.4A) (Stoeckmann et al., 2009). While FRT during walking is generally regarded as safe, the 

same mechanism that allows for eccentric contractions also poses a potential safety risk, as the 

momentum of the weight, recoil of the spring, or unvalidated programming in a robot could 

hyperextend the user’s limb during training. For this reason, viscous resistance is also seen as the 

safest option.  

The feeling of the resistance (i.e., the haptics) also affects how widely a device will be 

adopted. While inertial, elastic, and viscous devices all feel different to the user, they are all said 
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to feel smooth because the resistance scales with the mechanics of the movement. Notably, none 

of the studies in this review applied friction-based resistance training during walking. This is 

likely because friction-based resistance feels jerky due to instability at the beginning and end of a 

movement (often referred to as stiction) (Figure 1.4A). Stiction occurs because the coefficient of 

friction (the constant that determines the magnitude of the resistance) is different when an object 

is at rest (where the coefficient is larger) or in motion. In order to avoid this unpleasant feeling, 

friction is often minimized in mechanical systems. However, the haptics of resistance types is a 

potential area for future research, and it is possible that all resistance types have a role to play. 

1.4.5 Applying Biomechanics and Aftereffects Results 

The main goal of this review was to examine different strategies that have been used to 

apply resistance during walking and how these strategies alter the outcomes of acute training. 

Generally, we found that different resistive strategies varied in their ability to alter gait 

biomechanics (i.e., muscle activations and moments) during training and aftereffects following 

the removal of the resistance. Given that muscle strength and functional deficits vary between 

patients, we do not believe that there is a single resistive strategy that can be applied uniformly. 

Instead, clinicians must select a resistive strategy that will work for their patient given their 

current impairments (e.g., strength deficits and kinematic abnormalities) and functional goals 

(e.g., to reduce fall risk or increase gait speed), while remaining feasible for use in their clinic or 

home. We hope the information within this review can serve as a reference to inform these 

decisions.  

Interpreting biomechanics data is relatively straightforward. When prescribing FRT 

during walking, we would suggest that a strategy be applied based on patient-specific strength 

deficits. While strength can be measured using dynamometry or clinical metrics, it could also be 
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measured more functionally in a gait-lab setting (i.e., integrated kinematics and kinetics). Once 

strength deficits are identified, we would suggest applying a resistive strategy that has been 

shown to increase the joint moment of the specific action that is weakened, or in the muscles that 

contribute to that joint moment (Table 1.1). A similar logic can be applied to aftereffects. That is, 

we would suggest that any kinematic or spatiotemporal deficits be identified using either motion 

capture, inertial measurement units, a gait mat, etc. Once the desired outcome is identified, Table 

1.2 can be used to identify a resistive strategy has produced increases in that particular outcome. 

When referring to the tables in this review, please note that all variables were not measured by 

each study. Hence, it is possible that a resistive strategy could have an effect that is not indicated 

simply because it has not been measured.  

We must note that using aftereffects to predict the outcomes for rehabilitation is still an 

active area of research. As such, it is not yet certain whether the aftereffects observed after an 

acute training are retained in the patient’s normal walking pattern following an intervention 

(Roemmich & Bastian, 2018). While acute aftereffects have been seen to persist in overground 

walking following training (Gama et al., 2018; Reisman et al., 2009; Savin et al., 2014; Yen et 

al., 2012), the patient typically deadapts eventually once the resistance is removed. A few 

clinical trials have trained adaptation paradigms over several weeks to see if the patient’s normal 

movement strategy begins to resemble the aftereffect (Reisman et al., 2013; Rode et al., 2015; 

Ten Brink et al., 2017). While these trials have found that these aftereffects can persist for 

months following training (Reisman et al., 2013; Rode et al., 2015), it is also unclear if motor 

adaptation paradigms provide any benefit beyond the standard of care (Ten Brink et al., 2017). 

However, this information is still incomplete and researchers are still searching for ways to 

supplement adaptation training to produce more robust effects (Roemmich & Bastian, 2018). At 
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the very least, aftereffects are a surrogate variable that represents the muscles that generate the 

desired motion. For example, pulling backwards on the shank increased muscle activation from 

the rectus femoris during training, and this produced an aftereffect of increased step length 

(Savin et al., 2010). Hence, even if aftereffects do not represent the cumulative gains from a 

training, they still indicate that the muscles integral to that task are being trained. 

1.4.6 Interpreting Neural Adaptations using TMS 

Surprisingly, there were very few studies that have examined the effects of FRT during 

walking on neural excitability. Without such information, we can only discuss the methods that 

have been used to measure neural excitability, highlight potential problems with interpreting 

these data, and stress the importance of creating larger datasets to better understand the neural 

mechanisms of recovery. 

The results from the limited number of studies suggest that neural excitability is altered 

during training but not following training. However, the methods that were used to measure 

neural excitability were very different in these two instances. During training, TMS was 

performed functionally (i.e., as the participant walked on the treadmill), but following the 

training, TMS was applied more conventionally, with the subject in a seated posture. While 

functional TMS is potentially a powerful technique, it is not widely used because there are 

several factors that must be controlled when performing TMS, and it is difficult to control for 

these factors during functional tasks. The finding that neural excitability remained unchanged 

when measured in a seated posture following training does not necessarily indicate that neural 

excitability is unchanged in the entire motor system; rather, there may not be a net change in 

excitability. TMS is a measure of the entire corticospinal tract—which includes the motor cortex, 

midbrain, brainstem, spinal cord, and all of the connections in between—as well as peripheral 
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motor neurons and muscles. Hence, it is possible that an increase in cortical excitability is being 

masked by a decrease somewhere else in the system. However, techniques that are more targeted 

within the corticospinal tract (e.g., transcranial electrical stimulation, cervicomedullary 

stimulation, Hoffmann's reflex) would be required to test this theory.  

It is also important to mention that an increase in excitability is not necessarily a 

desirable outcome, while a decrease in excitability is not necessarily undesirable. For example, 

decreased neural excitability has been found following strength training in uninjured subjects 

(Carroll et al., 2002). This does not mean that strength training should be avoided, but that an 

adaptive change (presumably inhibitory) is happening somewhere along the corticospinal tract, 

which could potentially have therapeutic value. Indeed, patients with overactive spinal reflexes 

(i.e., hyperreflexia), as is often seen following neurological injury, could potentially benefit from 

a training that induces inhibitory effects (Nielsen et al., 2007). Ultimately, the desired neural 

outcome will need to be defined by the condition being tested. Unfortunately, it is still not well 

understood how specific neural changes correlate with functional outcomes. 

1.4.7 Feedback during Training 

Feedback has rarely been provided when performing FRT during walking, however, this 

may be a crucial component to induce positive outcomes after an intervention. Feedback can be 

used to increase the intensity or ensure the participant walks with normal kinematics. Typically, 

when a resistance is applied to the leg, subjects have a tendency to alter their walking in order to 

take “the path of least resistance”; but feedback can help to alert the subject that they are using 

an abnormal gait strategy. The few studies that have provided feedback have typically provided 

the subject with a real-time depiction of their kinematics or spatiotemporal gait parameters 

(Houldin et al., 2012; Klarner et al., 2013; Zabukovec et al., 2013). While these methods require 
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some sort of instrumentation, a similar effect could also be obtained through verbal coaching or 

having the patient avoid/clear an obstacle while walking (Reid & Prentice, 2001). 

1.5 Summary 

This review examined the strategies that have been used to apply FRT during walking, 

and characterized how resistive strategies altered the acute effects of training—including 

biomechanics during training, aftereffects once resistance was removed, and neural excitability. 

We found that strategies varied in their ability to alter gait biomechanics (i.e., muscle activations 

and moments) during training and aftereffects following the removal of the resistance. Too few 

studies examined neural adaptations due to FRT to determine how these can be affected by the 

resistance strategy. Overall, we believe that resistive strategies can be selected to target patient 

specific strength deficits and gait impairments. When interfacing resistance to the user, joint-

based approaches (such as wearable braces/exoskeletons) permit resistance that is more targeted 

to patient weaknesses as measured clinically and can be used outside the clinic, while point-

based approaches are often more cost effective and easier to implement in the clinic. This review 

also indicates that more research is needed to determine how the type of resistance (i.e., inertial, 

elastic, viscous, or custom) affects functional resistance training during walking. Lastly, more 

research is needed to characterize how this training can be used to alter gait biomechanics, 

aftereffects, and neural control of walking. 

1.6 Organization of Thesis 

This introductory review was performed to better educate our understanding of how 

different resistive strategies can be used to facilitate functional resistance training during 

walking. However, it can be difficult to make comparisons between resistive strategies because 

they often use different modes of interfacing with the limb, types of resistance, and resist 



  

31 
 

different joints/actions. Additionally, studies rarely measure the same variables as one another. 

Thus, this dissertation attempts to determine how resistive strategies can be used to facilitate 

FRT during walking though device design, human subjects research, and musculoskeletal 

modeling.  

In Chapter 2 we designed and developed a passive device that provided a bidirectional 

joint-based viscous resistance to the knee and tested that device on able-bodied individuals. This 

work was previously published in the Annals of Biomedical Engineering (Washabaugh et al., 

2016) In Chapter 3 we did a preliminary evaluation of the acute effects of training with this 

device on stroke survivors. This work was previously published in Restorative Neurology and 

Neuroscience (Washabaugh & Krishnan, 2018). 

In our previous experiments we noted that participants often reduced their joint 

excursions when walking with resistance, which we believed to be a form of motor slacking. 

Hence, in Chapter 4 we ran an experiment to determine if participants were slacking during 

training, and if visual feedback could be used to augment the training and reduce any slacking 

behavior. This chapter also introduces a controllable semi-passive version of the viscous brace 

developed in chapter 2.  

In Chapter 5, we designed and developed a passive device to provide joint-based elastic 

resistance to the knee, then tested this device on an able-bodied individual. This device was 

unique in that it could be configured to resist either joint flexion, extension, or both. 

Additionally, peak torque for each joint action could be tailored to the individual’s strength. This 

work was published in IEEE Transactions on Biomedical Engineering (Washabaugh, 

Augenstein, Ebenhoeh, et al., 2020). 
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In Chapter 6, we compared how these viscous and elastic devices differed in their ability 

to alter gait biomechanics during and after training, as well as muscle fatigue and neural 

excitability after training. We also these variables where altered when using the viscous device to 

resist the knee or both the hip and knee together.  

In Chapter 7, we used a biomechanical simulation-based analyses to comprehensively 

evaluate how several strategies for functional resistance training during walking that are 

commonly used in clinics and research could alter gait biomechanics and muscle activation. This 

work was published in Gait and Posture (Washabaugh, Augenstein, & Krishnan, 2020). 

Chapter 8 is a conclusion chapter, where we summarize the many findings represented by 

this work and discuss future directions that could be pursued to advance research in this field.  
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Chapter 2  

Eddy Current Braking for Functional Resistance Training During Walking 

 

Abstract 

Functional resistance training is becoming increasingly popular when rehabilitating 

individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during 

walking is provided using cable robots or weights that are secured to the distal shank of the 

subject. However, there are few devices that are wearable and capable of providing resistance 

across the joint, allowing over ground gait training. In this study, we created a lightweight and 

wearable device using eddy current braking to provide resistance to the knee. We then validated 

the device by having subjects wear it during a walking task through varying resistance levels. 

Electromyography and kinematics were collected to assess the biomechanical effects of the 

device on the wearer. We found that eddy current braking provided resistance levels suitable for 

functional resistance training of leg muscles in a package that is both lightweight and wearable. 

Applying resistive forces at the knee joint during gait resulted in significant increases in muscle 

activation of many of the muscles tested. A brief period of training also resulted in significant 

aftereffects once the resistance was removed. These results support the feasibility of the device 

for functional resistance training during gait. Future research is warranted to test the clinical 

potential of the device in an injured population. 
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2.1 Introduction 

Many patients with stroke, cerebral palsy, and other neurological conditions have 

significant limitations in walking, and experience limited mobility for the rest of their life 

(Damiano & Abel, 1998; Duncan et al., 2007; van der Krogt et al., 2010). Lack of mobility 

significantly affects functional independence, and consequently results in greater physical 

disability (Hesse, 2001). Facilitating gait recovery, therefore, is a key goal in rehabilitation. With 

the growing elderly population, the prevalence of many of the neurological conditions is 

expected to increase worldwide, and the need for interventions to address gait dysfunction will 

grow (Pollock et al., 2014). Appropriately designed rehabilitation devices can assist in meeting 

this imminent heightened demand for care. 

Task-specific training is recognized as the preferred method for gait training following 

neurological injury because the motor activity seen in this type of rehabilitation is known to 

facilitate neural plasticity and functional recovery (Dobkin, 2008; Langhorne et al., 2011; Plautz 

et al., 2000). However, current task-oriented gait training approaches seldom focus on improving 

muscle strength and impairment, which are also critical for motor recovery and plasticity (Corti 

et al., 2012; Nadeau et al., 2013; Platz, 2004). For example, incorporating strengthening 

exercises into rehabilitation interventions can counteract muscle weakness and improve function 

in individuals with a wide variety of neuromuscular disorders (Pak & Patten, 2008; Patten et al., 

2004; Scandalis et al., 2001). Numerous studies have also demonstrated a link between the 

ability to produce adequate force in the muscles of lower limbs and gait speed following 

neurological injury (Damiano & Abel, 1998; Kim & Eng, 2003). Additionally, resistance training 

may result in adaptive changes in the central nervous system (Carroll et al., 2011). However, the 

benefits of strength training may not translate maximally into improvements in gait function 
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unless the training incorporates task-specific elements (Eng & Tang, 2007). This task-specific 

loading of the limbs–termed as functional resistance training–is gaining popularity when 

rehabilitating individuals with neurological injury (Mares et al., 2013; Yang et al., 2006). 

Devices do exist to provide functional resistance training during walking. The simplest of 

which applies resistance by placing a weight on the lower limb. Research indicates that this 

intervention can increase the metabolic rate of healthy subjects (Browning et al., 2007) as well as 

increase power of the hip and knee and muscle activation during walking in neurologically 

injured populations (Duclos et al., 2014). While this method of functional resistance training is 

simple and practicable, it is hindered by a low torque-to-weight ratio: making large resistances 

unobtainable without excessively large weights. Cable driven devices, such as that created by 

Wu et al (2011), address this issue by locating the heavy force generating elements (actuators 

and cable spools) away from the patient. This device resists ankle translation during the swing 

phase of gait, and studies have found that it can potentially improve step length symmetry (Yen 

et al., 2015) and gait speed following stroke (Wu, Landry, et al., 2014). However, methods that 

resist the user through cables will be difficult to use in over-ground training. 

The majority of the existing methods for functional resistance training apply resistance to 

the end effector region of the leg (i.e., foot or ankle). Because of this, the resistance may be 

irregularly distributed between the hip and knee joints, and compensatory strategies could be 

promoted as weaker muscles are not specifically targeted in the training. The magnitude of 

resistance applied to the leg could also change as a function of limb position. Further, the 

resistance in these applications is usually unidirectional, which would assist movement during 

certain phases of gait. Bidirectional resistance is possible, but only obtainable with 

supplementary equipment (additional actuators and cables) and controls that utilize gait 
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detection. For these reasons, providing resistance in the joint space (i.e., across the joint) may be 

beneficial for training and other biomechanical evaluations. However, making a device that is 

lightweight and wearable while still providing high bidirectional torque requires a unique 

approach. Therefore, the goal of this study was to develop a gait-training device that is capable 

of providing variable levels of resistance across the knee during walking and to test the 

biomechanical effects of this device on the wearer by studying muscle activation patterns and 

sagittal plane kinematics during treadmill walking.  

2.2 Materials and Methods 

This study consisted of two phases: (1) development of a lightweight wearable device 

that provides resistance to the leg during walking and (2) evaluation of the effects of that device 

in a study involving healthy human subjects. 

2.2.1 Eddy Current Braking for Functional Resistnace Training 

A device was created with the goal of providing resistance across the joint during 

concentric flexion and extension of the knee. In order to accomplish this, we created a benchtop 

viscous damping device in the form of an eddy current disc brake, and later adapted it for a 

commercially available knee brace (T Scope Premier Post-Op Knee Brace, Breg, Grand Prairie, 

TX). Eddy current brakes convert kinetic energy into electrical currents with the motion of a 

conductor through a magnetic field. Eddy currents, which are localized circular electric currents 

within the conductor, slow or stop a moving object by dissipating kinetic energy as heat, thus 

providing a non-contact dissipative force that is proportional and opposite to the velocity of the 

movement (Figure 2.1a). Eddy current braking has been widely used in applications such as 

trains, roller-coasters, and even some exercise equipment (i.e., stationary bikes); however, to the 

authors’ knowledge, it has not been miniaturized and made wearable for rehabilitation purposes. 
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We selected this method of resistance because it provides a smooth, contact free, and frictionless 

means of generating loads applied directly to the knee that can further be engineered into a 

compact and lightweight device. 

 

Figure 2.1 (a) Diagram showing the basis of force generation during eddy current braking. As the disc rotates through a magnetic 
field (B) with angular velocity (ω), eddy currents (I) form within the disc. In accordance with Lorentz force equation and the right 
hand rule, the resulting force always opposes the angular velocity.  (b) Principles that affect the magnitude of the torque 
experienced during braking based on equation (Equation 2.1). (c) Experimental set-up of benchtop testing. 

The most widely studied configuration of eddy current braking is that of a rotational disc. 

Previous research performed over the past several decades has determined many of the 

parameters that govern the phenomenon (Simeu & Georges, 1996; Wouterse, 1991). This work 

was elegantly summarized by Gosline and Hayward(Gosline & Hayward, 2008) for eddy current 

braking as it applies to haptic devices (Equation 2.1). 

𝜏𝜏 = 𝜎𝜎 ∗ 𝐴𝐴 ∗ 𝑑𝑑 ∗ 𝐵𝐵2 ∗ 𝑅𝑅2 ∗ 𝜔𝜔 

Equation 2.1 

In this equation, resistive torque τ depends on the conductivity of the disc material σ, area 

of the disc exposed to the magnetic field A, the thickness of the disc d, the magnitude of the 

magnetic field strength B, the effective radius of the disc R, and the angular velocity of the disc 

rotation ω, as shown in Figure 2.1b. This means that simply changing the area of the aluminum 

disc exposed to the magnetic field can change the resistive properties of the device.  
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In the design of our benchtop device, two pairs of permanent magnets (DX08B-N52, KJ 

Magnetics, Pipersville, Pa) mounted on a ferromagnetic backiron were used to create the 

magnetic field. Eddy currents were induced within a non-ferrous, 10.16 cm (4 in) diameter 

aluminum disc (6061 aluminum alloy). Aluminum was chosen as the disc material because it is 

both lightweight and conductive. The disc was also interchangeable, which allowed us to test the 

effect of disc thickness (1 mm, 3 mm, and 5 mm) on the resistive torque generated by the device. 

The device was outfitted with a gearbox (227 g, 2 stage, planetary) (P60, BaneBots, Loveland, 

CO) with a 26:1 ratio in order to amplify angular velocity of the disc as well as the torque 

applied to the leg.  

The benchtop device was then characterized for its resistive torque profile using an 

isokinetic dynamometer (System Pro 4, Biodex, Shirley, NY). A custom built jig was used to 

rigidly attach the device to the input arms of the dynamometer (Figure 2.1c). Care was taken to 

ensure that the axis of the dynamometer was aligned with the rotational center of the benchtop 

device. The dynamometer was then programmed to operate in the isokinetic mode, where the 

input arm rotates at a specified angular velocity (10, 20, 30, and 45 degrees/s), while the resistive 

torque was logged using the dynamometer’s built-in functionality. Between trials, the area of 

magnetic field exposed to the disc was set to full exposure, half exposure, or no exposure to 

cover a range of resistive settings possible with the device. We then exchanged the disc for one 

of a different thickness and repeated the testing. Five trials were performed at each angular 

velocity and the average was used in further analysis. After characterizing the resistive properties 

of the device, we tuned the parameters (magnet size, number, etc.) to optimize wearability while 

maintaining a high resistance. The device was then fitted to an orthopedic knee brace that can fit 
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across a wide range of patient sizes (5’ to 6’7”).The entire assembly weighed 1.6 kg (Figure 2.2) 

and cost about $2100 for fabrication (including the brace). 

 

Figure 2.2 (a) Three-dimensional CAD rendering of the eddy current braking device. A slider allows us to change the area of 
magnetic field exposed to the disc, thus providing a variable torque. (b) A close-up view of the actual device showing the details 
of its attachment to a commercially available adjustable knee brace. (c) A subject wearing the device as it was in the experimental 
setup. 

2.2.2 Human Subject Experiment 

During phase two, the biomechanical effects of the wearable resistive device were tested 

on human subjects during a brief walking exercise under various loading conditions. Subjects (n 

= 7) with no signs of neurological or orthopedic impairment participated in the study. All 

experiments were carried out in accordance with the University of Michigan Human Subjects 

Institutional Review Board. Prior to the experiment, three 19 mm diameter retroreflective 

markers were placed over the subject’s right greater trochanter, lateral femoral epicondyle, and 

lateral malleolus. Additionally, eight surface electromyographic (EMG) electrodes (Trigno, 

Delsys, Natick, MA) were placed over the muscle bellies of vastus medialis (VM), rectus 

femoris (RF), medial hamstring (MH), lateral hamstring (LH), tibialis anterior (TA), medial 

gastrocnemius (MG), soleus (SO), and gluteus medius (GM) according to the established 
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guidelines (www.seniam.org) (Krishnan et al., 2013; Ranganathan & Krishnan, 2012). The EMG 

electrodes were tightly secured to the skin using self-adhesive tapes and cotton elastic bandages. 

The quality of the EMG signals was visually inspected to ensure that the electrodes were 

appropriately placed. The participant then performed maximum voluntary contractions (MVCs) 

of their hip abductors, knee extensors, knee flexors, ankle dorsiflexors, and ankle plantar flexors 

against a manually imposed resistance (Krishnan et al., 2013). The EMG activities obtained 

during the maximum contractions were used to normalize the EMG data obtained during 

walking.  

The EMG and kinematic data were collected using custom software written in LabVIEW 

2011 (National Instruments Corp., Austin, TX, USA). EMG data were recorded at 1000 Hz, and 

the kinematic data were recorded at 30 Hz using a real-time tracking system described elsewhere 

(Krishnan et al., 2015). Briefly, retroreflective markers placed on the hip, knee, and ankle joints 

were tracked using an image processing algorithm written in LabVIEW Vision Assistant. A 

three-point model was then created from the hip, knee, and ankle markers to obtain sagittal plane 

hip and knee kinematics using the following equations (Equation 2.2): 

𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻 =  arctan2�[𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 − 𝑥𝑥ℎ𝐻𝐻𝐻𝐻]�[𝑦𝑦ℎ𝐻𝐻𝐻𝐻 − 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘]� 

𝜃𝜃𝐾𝐾𝑘𝑘𝑘𝑘𝑘𝑘 = (90 − 𝐻𝐻𝐻𝐻𝐻𝐻 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) − �arctan2([𝑦𝑦𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘 − 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘]|[𝑥𝑥𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘])� 

Equation 2.2 

Where 𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻 (relative to the vertical trunk) and 𝜃𝜃𝐾𝐾𝑘𝑘𝑘𝑘𝑘𝑘 represent the anatomical joint 

angles, 𝑥𝑥ℎ𝐻𝐻𝐻𝐻, 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑥𝑥𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘 represent the x-coordinates, and 𝑦𝑦ℎ𝐻𝐻𝐻𝐻, 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑦𝑦𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘 represent 

the y-coordinates of the markers over the respective anatomical landmarks. 

http://www.seniam.org/
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Figure 2.3 Schematic of the experimental protocol. 

2.2.3 Experimental Protocol 

A schematic of the experimental protocol is given in Figure 2.3. Testing began by having 

the subject walk on a treadmill (Woodway USA, Waukesha, WI) at 2 mph. A two-minute warm-

up period was provided, after which the subject performed a baseline walking trial (pre-BW) for 

one minute. The subject then wore the resistive brace (with a marker on its joint axis) on their 

right leg and performed nine walking trials, with each trial lasting one minute. A one-minute rest 

period was provided between each trial. With the device, the subject first performed one baseline 

walking with no resistance (pre-BWNR) to characterize the transparency of the device. The 

subject then performed two more baseline walking trials where the device was set to provide 

either medium (BWMR) or high resistance (BWHR). Following which, the subject performed 

three target matching (TM) trials where they viewed the ensemble average of their pre-BWNR 

foot trajectory on the monitor and attempted to match their foot trajectory with the target. The 

foot trajectory refers to the x-y position of the lateral malleolus with respect to the subject’s 

greater trochanter in the sagittal plane (Figure 2.4), and was computed using a forward-kinematic 

model that used hip and knee joint angles and the segment lengths of the thigh and shank (Banala 

et al., 2009; Krishnan et al., 2013). The target matching trials were performed for two reasons: 
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(1) matching the template ensured that their hip and knee kinematics were similar to their 

unresisted baseline walking kinematics and (2) it allowed us to evaluate the feasibility of 

combining functional resistance training with a motor learning task. During the three target 

matching trials, the resistance was set to low, medium, or high (corresponding to a quarter, half, 

and full magnetic exposure to the disc) to study the biomechanical effects of the device over a 

range of resistance settings. These trials were accordingly named as target matching with low 

resistance (TMLR), target matching with medium resistance (TMMR), and target matching with 

high resistance (TMHR). Following the target matching trials, the subject repeated the baseline 

walking with no resistance (post-BWNR) and baseline walking with no device (post-BW) trials. 

These trials were performed to see if there were any sustained changes in kinematics (i.e., 

aftereffects). 

 

Figure 2.4 Sample ankle trajectories from a participant while walking on the treadmill under different loading conditions. The 
trajectories are x-y position of the lateral malleolus with respect to the greater trochanter of the hip in the sagittal plane. Ankle 
trajectories were computed using a forward-kinematic model that used hip and knee joint angles and the segment lengths of the 
thigh and shank. The leg’s position on the plot corresponds to the mid-swing phase of gait. The pre-BWNR refers to baseline 
walking with no resistance condition prior to the target matching conditions. The BWMR refers to baseline walking with medium 
resistance condition. Here, the height of the ankle trajectory (i.e., Ankle Y) was observed to reduce due to torque exerted by the 
device. The TMMR refers to target matching with medium resistance condition. During target matching, the participant viewed 
their pre-BWNR trajectory on the monitor and attempted to match their foot trajectory with the target. The TMMR trajectory was 
very similar to that of pre-BWNR, indicating the participant was able to match the target without any difficulty. Note that for 
clarity purposes, only three conditions are shown in the figure. 
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2.2.4 Data Analysis 

2.2.4.1 Electromyography 

The device’s effect on muscle activation was evaluated through the changes in EMG 

amplitude between walking conditions. The recorded raw EMG data were band-pass filtered 

(20–500 Hz), rectified, and smoothed using a zero phase-lag low-pass Butterworth digital filter 

(8th order, 6 Hz Cut-off) (Krishnan et al., 2013). The resulting EMG profiles for baseline and 

target matching conditions were normalized using MVC contractions and ensemble averaged 

across strides to compute mean EMG profiles during each condition (EMG data of soleus muscle 

from one subject were excluded from the analysis due to electrode malfunction). Gait events 

were identified using accelerometer data collected from the TrignoTM EMG sensors. Ensemble 

averages of the gait cycle were then divided into two bins corresponding to the stance and swing 

phases of gait, and the average EMG activity was computed during each phase. 

2.2.4.2 Kinematics 

The kinematic data were ensemble averaged across strides and subjects to compute 

average profiles for each walking condition. The hip and knee excursions during baseline and 

target matching trials were calculated for each stride and averaged to determine the effect of 

resistive walking on sagittal plane kinematics, and to test the feasibility of target tracking during 

resisted walking. The hip and knee excursions during the first ten strides of the initial and final 

baseline walking conditions (i.e., pre-BW, pre-BWNR, post-BW, and post-BWNR) was 

averaged to recognize any short-lived aftereffects following the brief training with the resistive 

brace. Additionally, the instantaneous angular velocity of the knee joint during the target 

matching trials was calculated to estimate the resistance felt by the knee throughout the gait 

cycle. 
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2.2.4.3 Statistical Analysis 

All statistical analyses were performed using SPSS for windows version 22.0 (SPSS Inc., 

Chicago, IL, USA). Descriptive statistics were computed for each variable and for assessing the 

results of benchtop testing. Prior to statistical analysis, the EMG data were log transformed 

(logeEMG) to minimize skewness and heteroscedasticity (Duschau-Wicke et al., 2010; Krishnan 

et al., 2013). To examine the effect of the device on subjects’ muscle activation and joint 

kinematics during baseline walking, a linear mixed model analysis of variance (ANOVA) with 

trial (pre-BWNR, BWLR, BWMR, and BWHR) as a fixed factor and subject as a random factor 

was performed for each muscle during each time bin (Collins et al., 2015; Duschau-Wicke et al., 

2010; West et al., 2014). A significant main effect was followed by post-hoc analyses using 

paired t-tests with Šídák-Holm correction for multiple comparisons to compare resisted baseline 

walking trials (i.e., BWMR and BWHR) with the unresisted baseline walking trial (i.e., pre-

BWNR). To examine the effect of the device on subjects’ muscle activation and joint kinematics 

during target matching trials, another linear mixed model ANOVA with trial (pre-BWNR, 

TMLR, TMMR, TMHR) as a fixed factor and subject as a random factor was performed for each 

muscle during each time bin. A significant main effect was followed by post-hoc analyses using 

paired t-tests with Šídák-Holm correction for multiple comparisons to compare resisted target 

matching trials (i.e., TMLR, TMMR, and TMHR) with the unresisted baseline walking trial (i.e., 

pre-BWNR). In order to evaluate the transparency of the device, paired t-tests were used to 

compare differences in muscle activation and joint kinematics between baseline walking with no 

device and baseline walking with no resistance trials (i.e., pre-BW and pre-BWNR). Paired t-

tests were also used to compare differences in hip and knee joint excursions during the first ten 

strides between the pre-baseline and post-baseline walking trials (i.e., pre-BW vs. post-BW and 
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pre-BWNR vs. post-BWNR) to identify significant aftereffects. A significance level of α = 0.05 

was used for all statistical analyses. 

2.3 Results 

2.3.1 Benchtop Testing 

The results of bench top testing verified that eddy current braking torque scaled linearly 

with velocity at the speeds used in this study (Figure 2.5). The resistive torque was also 

proportional to the area of magnetic field exposed to the disc and the thickness of the disc; 

however, torque appeared to plateau after 3 mm of disc thickness (Figure 2.5). Additionally, the 

maximum resistive torque attained using this small, portable form of eddy current braking was 

substantially large (26.85 N·m at 45 degrees per second using a 5mm thick disc; Figure 2.5). 

This observation suggested that the benchtop device was capable of generating a peak torque of 

about 180 N·m during normal gait because the peak angular velocity of the knee during normal 

gait can exceed 300 degrees per second (Goldberg et al., 2003). This meant that the size and 

strength of the magnets used in the device, and therefore the weight, could be greatly reduced 

while still providing sufficient torque for functional resistance training. For this reason, the 

number of magnetic pairs used for braking was reduced from two to one, while the strength of 

the magnets was reduced by about half (DX04B-N52, KJ Magnetics, Pipersville, Pa) before 

fitting the device to the leg brace. The new brake was thus capable of providing about 56 N·m of 

torque during normal gait. 
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Figure 2.5 Plots showing the results of benchtop testing performed on a Biodex isokinetic dynamometer with the eddy current 
braking device. The torques generated at various velocities were evaluated for three different discs (1 mm, 3 mm, and 5 mm) at 
three different exposure levels (no exposure, half exposure, and full exposure). As expected, the resistive torque scaled linearly 
with the velocity of the disc. The resistive torque was also proportional to the area of magnetic field exposed to the disc. The 
thickness of the disc also scaled the torque; however, torque appeared to plateau after 3 mm of disc thickness. 

2.3.2 Human Subjects Experiment 

2.3.2.1 Electromyographic Changes during Baseline Walking 

The muscle activation profiles observed during baseline walking trials are summarized in 

Figure 2.6. There was a significant main effect of trial on EMG activity of vastus medialis 

[F(2,12) = 7.823; p = 0.007], medial gastrocnemius [F(2,12) = 17.696; p < 0.001], and soleus 

[F(2,10) = 5.021; p = 0.031] during the stance phase of gait. Post-hoc analysis indicated that the 

EMG activity of vastus medialis was significantly higher during resisted walking than during 

unresisted walking [BWMR: p = 0.020; BWHR: p = 0.006]. On the contrary, the medial 

gastrocnemius and soleus had significantly lower activation during resisted walking [MG 

BWMR: p = 0.046; MG BWHR: p < 0.001; SO BWHR: p = 0.021]. There was a significant 

main effect of trial on EMG activity of tibialis anterior [F(2,12) = 4.026; p = 0.046] and soleus 

[F(2,10) = 4.187; p = 0.048] during the swing phase of gait. Post-hoc analysis showed a 

significant increase in soleus activation [BWHR: p = 0.032] and a trend towards significantly 
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higher tibialis anterior activation [BWMR: p = 0.056; BWHR: p = 0.063] during resisted 

walking. 

 

Figure 2.6 Average electromyographic activity of each muscle during the baseline walking conditions. Traces show the mean 
ensemble averaged activation profiles (across all participants) during each walking condition, while bars show the average 
activation during the stance and swing phase of each condition. Note that muscle activation increased for many of the muscles 
tested. Error bars show the standard error of the mean. Daggers indicate significant differences between pre-baseline walking 
(pre-BW) and pre-baseline walking with no resistance (pre-BWNR) trials, and asterisks indicate significance in comparison with 
the pre-baseline walking with no resistance (pre-BWNR) trial.  BW: baseline walking; BWNR: baseline walking with no 
resistance; BWMR: baseline walking with medium resistance; BWHR: baseline walking with high resistance; VM: vastus 
medialis; RF: rectus femoris; MH: medial hamstring; LH: lateral hamstring; TA: tibialis anterior; MG: medial gastrocnemius; 
SO: soleus; GM: gluteus medius. 



  

48 
 

2.3.2.2 Kinematic Changes during Baseline Walking  

There was a significant main effect of trial on knee joint excursion during baseline 

walking [F(2,12) = 96.327; p < 0.001] with the device; however, no changes were observed for 

the hip joint [F(2,12) = 0.593; p = 0.568] (Figure 2.7). Post-hoc analysis showed a significant 

reduction in knee joint excursion during resisted walking than during unresisted walking 

[BWMR: −28.6 ± 8.0°, p < 0.001; BWHR: −37.1 ± 8.3°, p < 0.001].  

 

Figure 2.7 Average kinematic data of the hip and knee joints during baseline walking conditions (top) and target matching 
conditions (bottom). Traces show the mean ensemble averaged joint angles (across all participants) during each walking 
condition. Note that knee flexion was greatly decreased during resisted baseline walking, but approached the level of baseline 
walking without resistance when subjects were given a target matching task. BW: baseline walking; BWNR: baseline walking 
with no resistance; BWMR: baseline walking with medium resistance; BWHR: baseline walking with high resistance; TMLR: 
target matching with low resistance; TMMR: target matching with medium resistance; TMHR: target matching with high 
resistance. 
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2.3.2.3 Electromyographic Changes during Target Matching  

The muscle activation profiles observed during target matching trials are summarized in 

Figure 2.8. There was a significant main effect of trial on EMG activity of vastus medialis 

[F(3,18) = 14.086; p < 0.001], rectus femoris [F(3,18) = 6.672; p = 0.003], medial hamstring 

[F(3,18) = 4.034; p = 0.023], lateral hamstring [F(3,18) = 7.268; p = 0.002] and gluteus maximus 

[F(3,18) = 6.619; p = 0.003] during the stance phase of gait. Post-hoc analysis indicated that the 

EMG activity was significantly greater during resisted target matching trials for the vastus 

medialis [TMMR: p < 0.001; TMHR: p < 0.001], rectus femoris [TMMR: p = 0.016; TMHR: p = 

0.006], lateral hamstring [TMHR: p = 0.011], and gluteus medius [TMMR: p = 0.028; TMHR: p 

= 0.005] muscles. There was a significant main effect of trial on EMG activity of all the muscles 

during the swing phase of gait [F(3,18) = 4.871 to 27.519; p = 0.015 to p < 0.001]. Post-hoc 

analysis indicated the EMG activity was significantly greater during resisted target matching 

trials when compared with the unresisted baseline walking for all the muscles tested [p = 0.036 

to p < 0.001; Figure 2.8]. 
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Figure 2.8 Average electromyographic activity of each muscle during the target matching conditions. Traces show the mean 
ensemble averaged activation profiles (across all participants) during each walking condition, while bars show the average 
activation during the stance and swing phase of each condition. Note that muscle activation increased several folds for many of 
the muscles during both stance and swing phase of the gait. Error bars show the standard error of the mean and asterisks indicate 
significance in comparison with the pre-baseline walking with no resistance (pre-BWNR) trial. BWNR: baseline walking no 
resistance; TMLR: target matching with low resistance; TMMR: target matching with medium resistance; TMHR: target 
matching with high resistance; VM: vastus medialis; RF: rectus femoris; MH: medial hamstring; LH: lateral hamstring; TA: 
tibialis anterior; MG: medial gastrocnemius; SO: soleus; GM: gluteus medius. 

2.3.2.4 Kinematic Changes during Target Matching  

There was a significant main effect of trial on hip [F(3,18) = 6.907; p = 0.003] and knee 

joint excursions [F(3,18) = 23.420; p < 0.001] during resisted target matching (Figure 2.7). Post-
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hoc analysis showed that the hip joint excursions were greater during the target matching trials 

(TMMR: 4.5 ± 3.7°, p = 0.003; TMHR: 4.5 ± 3.1°, p = 0.002), but the knee joint excursions were 

smaller (TMLR: −7.8 ± 5.1°, p = 0.004; TMMR: −12.0 ± 7.2°, p < 0.001; TMHR: −16.4 ± 4.9°, 

p < 0.001) during the target matching trials when compared with baseline walking with no 

resistance. 

2.3.2.5 Transparency of the Device during Baseline Walking 

The EMG profiles observed during baseline walking with no resistance were relatively 

similar to those observed during baseline walking without the device (Figure 2.6). However, 

paired t-tests indicated small, but significantly greater activation of the rectus femoris (0.96 ± 

1.03%; p = 0.035) and soleus (1.87 ± 1.76%; p = 0.030) muscles during the stance phase, and of 

the rectus femoris (1.0 ± 1.24%; p = 0.038), tibialis anterior (1.95 ± 1.94%; p = 0.017), and 

gastrocnemius (1.83 ± 3.64%; p = 0.029) muscles during the swing phase of the gait. There were 

no differences in hip (36.2 ± 2.8° and 39.1 ± 4.9°; p = 0.15) or knee (65.0 ± 2.5° and 69.6 ± 8.7°; 

p = 0.08) joint excursions during baseline walking and baseline walking with no resistance trials.  

2.3.2.6 Kinematic Aftereffects of Resisted Target Matching 

A brief period of training with the device resulted in significant increases in knee joint 

excursions during baseline walking with no device (4.2 ± 2.6°; p = 0.005) and baseline walking 

with no resistance trials (5.4 ± 4.7°; p = 0.023) (Figure 2.9a). Training also resulted in a 

significant increase in hip joint excursion during the baseline walking with no resistance trial 

(2.6 ± 1.6°; p = 0.005); however, no differences were observed in the baseline walking trial (−0.1 

± 1.4°; p = 0.825) (Figure 2.9b). 
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Figure 2.9 Plots showing changes in (a) knee joint and (b) hip joint excursions following a brief period (4 minutes) of training 
with the resistive brace. Note that hip and knee excursions increased after training; however, these aftereffects appear to be short-
lived and reduced over time. BW: baseline walking; BWNR: baseline walking with no resistance. 

2.4 Discussion 

The aim of this study was to develop a wearable device that is capable of providing 

resistance across the knee joint for functional resistance training of gait. We found that eddy 

current braking is a feasible option for this application, as our benchtop testing indicated that it 

can generate the torque required for functional resistance training at a relatively small size and 

weight. Additionally, with the incorporation of a linear slider, we were able to obtain an 

adjustable resistance that can be regulated based on a subject’s impairment level and functional 

capacity. The results from the human subjects experiment also indicated that the device was 

largely transparent, as there were minimal alterations in hip/knee kinematics (3° to 5°) and lower 

extremity muscle activation (< 2% MVC). However, once the resistance was added, knee 

excursions reduced substantially. This was expected because the nervous system is known to 

optimize metabolic and movement related costs during walking or reaching movements 

(Bertram, 2005; Ranganathan et al., 2013). Interestingly, despite the reduction in knee joint 
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excursions during resisted baseline walking, muscle activation still increased in some of the 

muscles. More importantly, when subjects performed target tracking to minimize kinematic 

slacking (i.e., a phenomenon where the motor system reduces muscle activation levels and 

movement excursions to minimize metabolic and movement related costs (Marchal-Crespo & 

Reinkensmeyer, 2009; Reinkensmeyer et al., 2009)) during resisted walking, the EMG activation 

increased several-fold in many of the muscles used in gait. Further, the aftereffects observed in 

hip and knee kinematics after a brief period of resisted target matching suggest that the device 

may have meaningful clinical potential, albeit further research is required to verify this premise.  

The eddy current braking device is unique because it provides bidirectional resistance 

across the knee joint–as opposed to the endpoint–of the subject's leg. Accordingly, muscle 

activation during target matching scaled largest around the knee joint. Interestingly, we also 

found that providing a resistance across the knee elicited increased activity of muscles spanning 

the hip and the ankle joints. These findings are consistent with previous studies (Krishnan et al., 

2013) and suggest that performing a motor learning task with the proposed device requires 

coordinated inputs from multiple muscles in the lower limb. The increased activation of the non-

targeted muscles is potentially due to the synergistic and-or biarticular nature of some of the leg 

muscles (e.g. medial gastrocnemius), and recruitment of these muscles may have assisted in the 

process of overcoming the applied resistance (Clark et al., 2010; Krishnan et al., 2013). 
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Figure 2.10 Data showing resistive torques applied by the device throughout the gait cycle during target matching. Resistive 
torques were estimated using the velocity profiles calculated from the kinematic data. TMLR: target matching with low 
resistance; TMMR: target matching with medium resistance; TMHR: target matching with high resistance. 

The eddy current brake in this study produced large resistive forces when compared to 

other wearable devices (Sulzer et al., 2009). The estimated resistive torques during the target 

matching trials ranged between 10 to 45 N·m (Figure 2.10), which are quite large considering the 

weight of the device. Also, changes in EMG activation were larger in comparison to those 

observed during walking with a 4 or 8 kg weight attached to the foot (Browning et al., 2007). 

These results suggest that eddy current braking is a suitable alternative to loading the lower limb 

muscles during walking. However, it is important to note that subjects reduced their joint 

excursions during resisted walking. As a result, the changes in muscle activation were subtle 

during simple resisted walking (i.e., baseline resisted walking): with some muscles showing 

lower activation. Incorporating a target tracking task effectively minimized the kinematic 

slacking observed during resisted baseline walking. Further, muscle activation increased several-

fold during target tracking trials. These findings emphasize the importance of kinematic 

feedback during functional resistance training, and failure to address kinematic slacking could 

reduce the effectiveness of functional resistance training and promote compensatory movements. 

The kinematic feedback could also assist in minimizing off-plane motions (e.g., increased hip 
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abduction/adduction) because the device in itself does not constrain those movements. In our 

experience, the device-induced off-plane motions were minimal (< 1°) in healthy subjects; 

however, certain patient populations (e.g., stroke) may behave differently due to abnormal 

synergistic coupling of motions across joints (Krishnan & Dhaher, 2012). 

While testing the clinical benefits of this device was not the focus of this study, the 

proposed device may have value in physical rehabilitation. Past research indicates that an ideal 

rehabilitation device should (1) encourage activities specific to daily living, (2) be able to be 

taken home, (3) have adjustable resistance to meet client needs, (4) have the potential to provide 

biofeedback to the clients, and (5) cost under $6000 (Lu et al., 2011). The device in this study 

meets all these clinical guidelines. Additionally, functional resistance training with this device is 

advantageous because it is not confined to treadmill training. Instead, training can take place 

over-ground, where the behavior is more specific to tasks encountered during daily living. 

Appropriate feedback can be administered during over-ground walking in the form of 

instructor/auditory feedback (Duncan et al., 2007; Zanotto et al., 2013), obstacle training 

(Duncan et al., 2007), or even kinematic tracking using inertial measurement units (Rebula et al., 

2013). Given that the device is lightweight and portable, it could also be taken home to greatly 

amplify the dosage of therapy outside the clinical setting or in remote areas where rehabilitative 

care is not readily available. The device is also inherently safe because eddy current brakes are 

passive actuators that dissipate energy, as opposed to active motors that add energy to the 

system‒with an active device, if there is a malfunction or error in the controls, unexpected 

motions could bring serious injuries to the user. Further, the clinical relevance of the device may 

extend outside of therapy for neurological injury. For example, because thigh muscle strength is 

critical for adequate lower limb function and quality of life (Christiansen et al., 2013; Decker et 



  

56 
 

al., 2004; Palmieri-Smith & Lepley, 2015; Shelburne et al., 2005), we believe that the device 

could be beneficial for many subjects recovering from serious knee injuries, such as anterior 

cruciate ligament injury or repair, where thigh muscle strength deficits are profound (Lepley, 

2015). 

There were many design challenges faced while creating the device. Eddy current 

braking is capable of providing large levels of resistance, but these are generally coupled with 

high inertias (Gosline & Hayward, 2008). This limits the transparency of the device, as the 

resistive torque is dependent on the thickness, radius, and angular velocity of the disc, all of 

which increase rotational inertia. For this reason, we used a cable capstan coupling in our initial 

prototypes, as it allowed for a compact design with zero backlash during torque transmission, 

which provided a smoother feel to the user. However, the cable capstan was unable to withstand 

repeated wear. A planetary gearbox not only solved this issue, but also made the device modular 

(i.e., the gear ratios can be changed if necessary). However, we found that the set screws were 

prone to back off the gear shaft during repetitive loading. Adding an additional key on the 

gearing shaft and a through pin to the rotating shaft resolved this issue and kept the interfaces 

rigid without slipping. Further, by making the protruding arms of the device identical to those of 

the brace, the device fit seamlessly into the commercial leg brace. This proved to be a better 

option than superposing the device onto the brace, as it left the adjustability intact and reduced 

weight.  

Further improvements are possible for better utilization of the device. The resistance 

setting of the current device is manually controlled using a linear slider. In the future, simple 

extensions to the design could be used to realize a computer-controlled resistance, with 

resistance programmed to be a function of time, gait kinematics, or muscle activations. For 
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example, a small motor in conjunction with microprocessor control could be added to modulate 

the area of the magnet exposed on the aluminum disc. Besides keeping the device passive (as the 

motors would not directly act on the subject’s leg), it would also enable the therapist to modulate 

the resistance levels dynamically based on a subject’s rehabilitation needs. Moreover, 

bidirectional resistance may not be appropriate for all patient groups, such as those that have 

muscle imbalances across a joint. The addition of computer control or even a simple ratcheting 

mechanism, where the disc could be engaged and disengaged based on the direction of the 

movement, would enable the device to provide unidirectional resistance. This would allow the 

device to resist the weak agonist while not loading the stronger antagonist. 

A key limitation is that some of the kinematic changes observed may have been due to 

marker movements and kinematic model (vertical pelvis/trunk) used in this study. However, 

prior research indicates that sagittal plane motions are less affected due to marker movements 

and sagittal plane pelvic motions are minimal (<2°) during normal gait (Benoit et al., 2006; 

Castelli et al., 2015). Thus, we believe that the changes observed in this study are much larger 

than the anticipated errors due to marker movements and kinematic model. Future research 

should consider incorporating a better kinematic model and 3D camera system to elucidate fully 

the biomechanical effects of the device on the wearer, particularly when testing patient 

population. 

In summary, we fabricated a lightweight yet high torque eddy current brake and packaged 

it into a commercially available knee brace to create a wearable device that is capable of 

providing resistance across the knee joint for functional resistance training. We also showed that 

the device increased muscle activation in many of the key muscles used in gait. Further, we 

demonstrated that a brief period of training with the resistive device induced positive kinematic 
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aftereffects in both the hip and knee joints. These results demonstrate that the resistive device 

described in this study is a feasible and promising approach to actively engage and strengthen the 

key muscles used in gait. However, further testing in an injured population is warranted to 

determine the therapeutic benefits (e.g., strength, coordination, and neural plasticity) that could 

emerge from this unique application of functional resistance training. 
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Chapter 3  

A Wearable Resistive Robot Facilitates Locomotor Adaptations in Individuals with Stroke  

 

Abstract 

Background: Resisted treadmill walking is a form of task-specific training that has been used to 

improve gait function in individuals with neurological injury, such as stroke, spinal cord injury, 

or cerebral palsy. Traditionally, these devices use active elements (e.g., motors or actuators) to 

provide resistance during walking, making them bulky, expensive, and less suitable for 

overground or in-home rehabilitation. We recently developed a low-cost, wearable brace that 

generates resistive torques across the knee joint using a simple magnetic brake. However, the 

possible effects of training with this device on gait function in a clinical population are currently 

unknown. Objective: The purpose of this study was to test the acute effects of resisted walking 

with this device on kinematics, muscle activation patterns, and gait velocity in chronic stroke 

survivors. Methods: Six stroke survivors wore the resistive brace and walked on a treadmill for 

20 minutes (4 × 5 minutes) at their self-selected walking speed while simultaneously performing 

a foot trajectory-tracking task to minimize stiff-knee gait. Electromyography, sagittal plane gait 

kinematics, and overground gait velocity were collected to evaluate the acute effects of the 

device on gait function. Results: Resisted treadmill training resulted in a significant increase in 

quadriceps and hamstring EMG activity during walking. Significant aftereffects (i.e., improved 

joint excursions) were also observed on the hip and knee kinematics, which persisted for several 

steps after training. More importantly, training resulted in significant improvements in 
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overground gait velocity. These results were consistent in all the subjects tested. Conclusion: 

This study provides preliminary evidence indicating that resisted treadmill walking using our 

knee brace can result in meaningful biomechanical aftereffects that translate to overground 

walking. 

3.1 Introduction 

Individuals with stroke often experience significant walking dysfunction that limits their 

ability to safely and effectively ambulate in the community (Michael et al., 2005). Indeed, 

current evidence indicates that reduced gait speed is a significant predictor of falls and mobility 

outcomes after stroke (Michael et al., 2005; Ng et al., 2017). Thus, regaining locomotor function 

is a major goal of post-stroke rehabilitation (Teasell et al., 2003), and therapists often place a 

considerable amount of time and effort in restoring gait function after stroke.  

Treadmill training and progressive resistance training are the two most commonly used 

techniques to improve locomotor function after stroke (Leon et al., 2017; Manella & Field-Fote, 

2013; Pak & Patten, 2008; Polese et al., 2013; Seo et al., 2017; Visintin et al., 1998). These 

interventions have demonstrated improvements in gait performance, although outcomes are 

known to vary between studies, particularly for resistance training (Lamberti et al., 2017; Lund 

et al., 2017; Mehta et al., 2012; Nadeau et al., 2013; Park et al., 2015; Vahlberg et al., 2017). It is 

to be noted that resistance training is typically performed in a “nonfunctional” manner (e.g., 

exercises performed in seated or standing positions); whereas, it is known that training should be 

functional (i.e., specific to the task being targeted) to address sensorimotor deficits during 

functional tasks, such as walking because of practice specificity (Barnett et al., 1973; Dobkin, 

2004; El Amki et al., 2017; Henry, 1968; Kleim & Jones, 2008; Manini et al., 2007; Proteau et 

al., 1992; Schmidt & Lee, 1988; Takahashi et al., 2008; Williams et al., 2014). Further, such 
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training of isolated muscle groups (without any functional context) does not facilitate the 

synchronized activation of multiple muscles (i.e., coordination), which is critical for gait 

recovery after stroke. Thus, interventions that collectively address strength and coordination 

deficits during walking could be beneficial for improving gait function after stroke. 

Task-specific loading of the limbs—termed as functional resistance training or functional 

strength training—combines elements of resistance training and task-specific training for gait 

rehabilitation. Here, resistance is applied to the subject’s limb during walking such that multiple 

muscles are engaged in a coordinated fashion (Gama et al., 2018; Washabaugh et al., 2016). A 

number of studies have evaluated the benefits of functional resistance training in healthy as well 

as neurologically impaired individuals. These studies collectively demonstrate that functional 

resistance training can (1) improve metabolic rate, (2) increase lower-extremity muscle 

activation, joint power, and kinematics, and (3) improve skilled overground walking 

performance (e.g., gait speed, endurance, balance, symmetry, etc.) (Browning et al., 2007; 

Duclos et al., 2014; Houldin et al., 2011; Klarner et al., 2013; Lam et al., 2015; Lam et al., 2011; 

Wu, Kim, et al., 2014; Wu, Landry, et al., 2014; Wu et al., 2012; Wu, Landry, et al., 2011; Yen 

et al., 2012). However, functional resistance training is often performed using devices with 

active elements, such as motors or actuators, to control the resistive forces/torques, which makes 

them bulky, expensive, and less suitable for overground or in-home rehabilitation. Further, these 

training methods typically do not incorporate any kinematic feedback during resisted walking, 

which is critical to incentivize participants to increase effort and maintain optimal spatiotemporal 

coordination. 

To address these issues, we recently developed a low-cost, wearable knee brace that is 

capable of producing scalable resistive torques using a simple magnetic brake (Washabaugh et 
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al., 2016), and tested the biomechanical effects of this device on healthy, unimpaired individuals 

during treadmill walking. The training also incorporated a foot trajectory-tracking paradigm to 

ensure that subjects maintained appropriate hip/knee kinematics during resisted walking. The 

results of this study demonstrated that resisted walking significantly increased muscle activation 

of the lower-extremity muscles and induced kinematic aftereffects once the resistance was 

removed. However, the possible effects of training with this device on gait function in a clinical 

population—which is critical to understand the clinical potential of this device—are currently 

unknown. Therefore, this study tested the acute effects of resisted treadmill walking on 

quadriceps and hamstring muscle activation patterns, sagittal hip/knee kinematics, and 

overground gait velocity in chronic stroke survivors. We hypothesized that resisted treadmill 

walking will significantly increase muscle activation, hip and knee excursion, and gait velocity: 

these hypotheses were based on our prior experience with healthy adults (Washabaugh et al., 

2016) and on existing literature in neurologically impaired individuals (Lam et al., 2011; Wu et 

al., 2012; Yen et al., 2012). 

3.2 Materials and Methods 

3.2.1 Participants 

Six (3 males and 3 females) chronic stroke survivors (Age: 58.0 ± 8.5 years, Height: 1.70 

± 0.14 m, Weight: 76.0 ± 23.6 Kg, Time since stroke onset: 3.0 ± 2.7 years, Lower-extremity 

Fugl-Meyer score: 27.8 ± 6.2 [maximum possible = 34]) participated in this research study. 

Stroke subjects were included in this study if they 1) were between 18 and 75 years of age, 2) 

had a unilateral stroke at least 6 months prior to participation, 3) had a cortical or sub-cortical 

lesion that was documented by radiological (CT or MRI) or clinical findings, 4) were community 

ambulators and indicated that they can walk at least 20 minutes on a treadmill, and 5) had some 
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ability to bend their hip and knee. Exclusion criteria included: 1) a history of a recent lower-

extremity injury, fracture, or surgery, 2) uncontrolled diabetes or hypertension, 3) Mini-Mental 

State Exam score < 22, and 4) a history of unstable or untreated cardiovascular diseases. All 

subjects provided written informed consent to participate in the study using a form that was 

approved by the University of Michigan Institutional Review Board. 

3.2.2 Wearable Brace 

Functional resistance training was performed using a resistive brace that was engineered 

with an eddy current brake. An in depth description of this device can be found in the previous 

chapter (Chapter 2). Briefly, eddy current brakes are non-contact brakes that utilize the motion of 

a conductive material through a magnetic field (an act that creates eddy currents within the 

conductive material) to generate dissipative resistance to that motion. The magnitude of the 

resistive torques generated by an eddy current disk brake (as used in this device) is governed by: 

τ= 𝜎𝜎 × 𝐴𝐴 × 𝑑𝑑 × 𝐵𝐵2 × 𝑅𝑅2 × 𝜔𝜔 (Gosline & Hayward, 2008). In this equation, the resistive torque τ 

depends on the conductivity of the disc material σ, area of the disc exposed to the magnetic field 

A, the thickness of the disc d, the magnitude of the magnetic field strength B, the effective radius 

of the disc R, and the angular velocity of the disc rotation ω (Figure 3.1a). Hence, magnitude of 

the resistance can be augmented by altering the area of the magnetic field exposed to the disk 

(i.e. greater magnetic exposure will result in greater resistive torques).  

The eddy current brake of our device consists of two permanent magnets (DX04B-N52, 

KJ Magnetics, Pipersville, Pa) mounted on a ferromagnetic backiron, a planetary gearbox (P60, 

Banebots, Loveland, CO), and an aluminum disc (0.5 cm thickness, 10.16 cm diameter). The 

magnets and backiron are fixed to a linear slider, which allows us to control the magnitude of the 

resistance (Figure 3.1b). To properly convey the resistive torques to the user, the brake interfaces 
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with a commercially available knee brace (Figure 3.1c) (T Scope Premier Post-Op Knee Brace, 

Breg, Grand Prairie, TX). When this brace is worn, flexion or extension of the knee spins the 

aluminum disc and generates resistive torque to oppose this motion (via eddy currents) based on 

how the magnets are exposed to the disk. 

 

Figure 3.1 (a) Schematic showing the basis of resistive torque generation in an eddy current brake. As the disc rotates through a 
magnetic field (B) with angular velocity (ω), eddy currents (I) form within the disc. This results in a resistive force that always 
opposes the angular velocity. The resulting resistance τ is also dependent on the conductivity of the disc material σ, area of the 
disc exposed to the magnetic field A, the thickness of the disc d, the magnitude of the magnetic field strength B, the effective 
radius of the disc R, and the angular velocity of the disc rotation ω (b) Computer-aided design rendering of the eddy current 
brake. (c) A close-up view of the knee brace embedded with eddy current brake. 

3.2.3 Experimental Protocol 

The schematic of the experimental protocol is provided in Figure 3.2. Prior to the 

experiment, three 19 mm diameter retroreflective markers were placed over the subject’s hip, 

knee, and ankle joints. Additionally, eight surface electromyographic (EMG) electrodes (Trigno, 

Delsys, Natick, MA) were placed over the muscle bellies of the vastus medialis (VM), rectus 

femoris (RF), medial hamstring (MH), and lateral hamstring (LH) according to the established 

guidelines (www.seniam.org) (Ranganathan & Krishnan, 2012; Ranganathan et al., 2016). The 

EMG electrodes were tightly secured to the skin using self-adhesive tapes and cotton elastic 

bandages. The quality of the EMG signals was visually inspected to ensure that the electrodes 

http://www.seniam.org/
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were appropriately placed. After which, two inertial measurement units (IMUs) (Opal sensors, 

APDM, Inc., Portland, OR) were secured to the dorsum of both feet, which were used to 

minimize bias and objectively measure the overground gait speed of the subject prior to and after 

training. We chose to place the IMUs on the feet as opposed to ankle, as prior research has 

indicated that foot configuration is more accurate for measuring gait velocity (Washabaugh et al., 

2017). The subject then performed two 3-second maximum voluntary contractions (MVCs) of 

their knee extensors and flexors in a seated position against a manually imposed resistance 

(Krishnan et al., 2013; Washabaugh et al., 2016). The peak EMG activities (i.e., the maximum of 

the two trials) obtained during the maximum contractions were used to normalize the EMG data 

obtained during walking. 

 

Figure 3.2 Schematic of the experimental protocol. 

The experiment consisted of three phases: (1) pre-test phase, (2) training phase, and (3) 

post-test phase. During the pre-test phase, the subject’s baseline overground walking speed and 

hip and knee gait kinematics were established. The 10-m walk test (10MWT) was used to 

evaluate the baseline walking speed. The 10MWT is a psychometrically robust measure of 

walking and mobility (Lin et al., 2010), and has excellent test-retest reliability (ICC > 0.9) 

(Lewek & Randall, 2011; Washabaugh et al., 2017). The subject performed three trials of the 
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10MWT at their self-selected pace and the average of the three trials was used in the analysis. 

The subject then walked on a motorized treadmill (Woodway USA, Waukesha, WI) with their 

hands placed over a custom-built treadmill rail system. After a 2-minute warm-up period, 

baseline kinematic data were recorded for one minute.  

During the training phase, the subject first wore the resistive brace and walked over the 

treadmill at their comfortable walking speed without any resistance (no resistance – NR) for one 

minute. After which, the resistive properties of the device were adjusted based on the subject’s 

self-reported ability and comfort level—i.e., resistance was set as the maximum comfortable 

resistance that the subject could walk with for the duration of the 5-minute block and was 

adjusted based on their feedback (forces on average were ~12% of their body-weight) (Wu et al., 

2012; Yen et al., 2012). The subject then performed four 5-minute blocks of resisted walking 

while simultaneously attempting to match their foot trajectory to a template foot trajectory that 

was projected on a computer monitor placed in front of them for visual feedback. The template 

was created by scaling (10%-30% based on their ability) the ensemble average of their baseline 

hip/knee kinematics. This was performed to minimize stiff-knee gait and ensure that the subject 

was bending their hip and knee adequately during resisted walking (Krishnan et al., 2013; 

Washabaugh et al., 2016). Our previous research has shown that this type of training is effective 

in engaging the hamstring muscles (Washabaugh et al., 2016) and promotes locomotor recovery 

after stroke (Krishnan et al., 2012). The foot trajectory refers to the x–y position (𝑋𝑋𝑎𝑎 and 𝒀𝒀𝒂𝒂) of 

lateral malleolus with respect to the subject’s greater trochanter in the sagittal plane, and was 

computed using a forward-kinematic model (Equation 3.1) that used hip (𝛩𝛩ℎ) and knee (𝛩𝛩𝑘𝑘) 

joint angles and the segment lengths of the thigh (𝐴𝐴1) and shank (𝐴𝐴2) (Krishnan et al., 2015; 

Saner et al., 2017). 
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Equation 3.1 

During the post-test phase, the brace was removed and the subject’s overground walking 

speed and hip and knee gait kinematics were recorded again in an identical fashion to those 

during the pre-test phase. 

3.2.4 Data Analysis 

The device’s effect on muscle activation patterns was evaluated using the EMG data 

collected during treadmill walking with and without resistance. The raw EMG data were band-

pass filtered (20–500 Hz), rectified, and smoothed using a zero phase-lag low-pass Butterworth 

digital filter (8th order, 6 Hz Cut-off) (Krishnan et al., 2013). The resulting EMG profiles were 

normalized to MVC data and ensemble averaged across strides using gait events generated from 

the accelerometer of the Trigno EMG sensors. The ensemble averaged EMG data were then 

divided into two bins corresponding to the stance and swing phases of gait, and the peak EMG 

activity was computed during each phase. The device’s effect on Locomotor adaptations and 

aftereffects to resistance during walking was evaluated by comparing the changes in hip/knee 

kinematics (first 30 strides) and overground walking speed before and after the training. 

3.2.5 Statistical Analysis 

All statistical analyses were performed using SPSS for windows version 22.0 (SPSS Inc., 

Chicago, IL, USA). Wilcoxon signed-rank test was used to examine the effect of the device on 

subjects’ muscle activation during the stance and swing phases of the gait—EMG data were 

compared between the no resistance trial (training NR) and final training trial (training block 4). 

Wilcoxon signed-rank test was also used to compare differences in hip and knee excursions and 

overground walking speed between pre-test and post-test walking trials. Spearman’s rank 



  

68 
 

correlation test was used to determine if changes in hamstring muscle activation during training 

(EMGblock 4 − EMGNR) were related to the kinematic aftereffects induced by the training 

(Kinematicspost-BW − Kinematicspre-BW). A significance level of α = 0.05 was used for all 

statistical analyses and all tests were two-sided. 

3.3 Results 

The muscle activation profiles during resisted treadmill walking are provided in Figure 

3.3. Resisted treadmill walking significantly increased EMG activity of the vastus medialis (p = 

0.028), medial hamstring (p = 0.028) and lateral hamstring (p = 0.028) muscles during the swing 

phase of the gait. Wilcoxon signed-rank test also indicated that 20 minutes of resisted walking 

significantly increased the hip (2.6° ± 0.6°, p = 0.028; Figure 3.4) and knee (6.4° ± 1.4°, p = 

0.028; Figure 3.4) joint excursions and overground gait velocity (0.05 ± 0.01 m/s, p = 0.028) of 

stroke survivors. Spearman’s rank correlation test indicated a significant positive correlation 

between increase in hamstring muscle activation and kinematic aftereffects (ρ = 0.89, p = 0.017) 

at the knee, but not at the hip (ρ = 0.53, p = 0.277). 
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Figure 3.3 Traces showing the mean ensemble averaged EMG activation profiles (across all subjects) of each muscle during no 
resistance walking and the final (4th) block of resisted walking. Bars next to the traces show the peak activation of the respective 
muscle during the stance and swing phases of the gait. Error bars indicate the standard error of the mean. 

 

Figure 3.4 Traces showing the mean ensemble averaged (first 30 strides) sagittal plane hip and knee joint angles (across all 
subjects) before and after 20-minutes of resisted walking. 

3.4 Discussion 

This study pilot-tested the acute effects of resisted treadmill walking with a novel 

wearable knee brace on kinematics, muscle activation patterns, and gait velocity of stroke 

survivors. The results of this study indicate that robotic-resisted treadmill walking significantly 

increased the EMG activity of several of the key gait muscles during walking. Most notably, the 
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hamstring muscles, which were the primary muscles targeted during training, showed almost 5- 

to 7-fold increase in muscle activity. The increase in hamstring activity was also paralleled by 

significant improvements in hip and knee gait kinematics and overground gait velocity–a 

consistent finding that was observed in all the subjects (n = 6) tested in this study. These results 

provide preliminary evidence supporting that resisted walking with our knee brace induces 

meaningful biomechanical aftereffects that translates to overground walking, making it a feasible 

approach to improving locomotor functions after stroke. 

A growing body of evidence indicates that resisted gait training improves the locomotor 

ability of individuals with various neurological conditions (e.g., stroke, cerebral palsy, and spinal 

cord injury) (Lam et al., 2015; Wu, Landry, et al., 2014; Wu et al., 2012; Wu, Landry, et al., 

2011). The basic premise underlying this approach is that the functional benefits of strength 

training (e.g., gait function) are augmented when combined with task-specific training, and the 

combination may facilitate motor learning and neural plasticity (Kleim & Jones, 2008; Lam et 

al., 2006; Lam et al., 2015; Wu et al., 2012). When provided through a robotic interface, this 

training has the benefit of flexibility through the robotic controls (i.e., resistive forcefields can be 

easily scaled and redirected to be patient-specific based on deficits). However, robot based 

systems often utilize active actuators/motors to provide resistance—making them bulky, limited 

to use on a treadmill, and too expensive to be used in most rehabilitation settings (small clinic 

and home based). For these reasons, therapists often sacrifice controllability in order to cut costs 

and apply resistance using ankle weights or resistance bands (Lam et al., 2009), but these 

alternatives only allow rigid training schema (e.g., ankle weights have difficulty targeting the 

hamstring muscles and large resistive forces are only possible with excessively large weights). 

Our eddy current braking device was created as an intermediate step between active robots and 
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their passive alternatives—offering basic control in a package that is lightweight, useable 

overground, and inexpensive (< $2000). The forcefield provided by our device is very similar to 

how a Lokomat robot has been used to perform resistive gait training (Lam et al., 2015), but at a 

fraction of cost of the Lokomat ($3K vs $400K). Previous research indicates that the cumulative 

increase in gait speed after several weeks of resisted gait training is approximately 0.05-0.1 m/s 

(Hornby et al., 2008; Lam et al., 2015; Lam et al., 2011; Wu, Landry, et al., 2014), whereas the 

acute increase (i.e., within a single session) with our device was 0.05 m/s. Additionally, we saw a 

5- to 7-fold increase in hamstring muscle activity with our device (that weighs only ~1.6kg) with 

only 1/4th of maximum possible resistance, which is several times larger than walking with an 

8kg weight or Lokomat-resisted walking (Browning et al., 2007; Houldin et al., 2011; Lam et al., 

2008). Critically, this increase in hamstring muscle activity was strongly associated with the 

kinematic aftereffects (i.e., increase in knee joint excursion) observed at the knee joint, suggests 

that larger hamstring activity during resisted walking is crucial for inducing kinematic changes 

with training. Although our training primarily focused on the weaker hamstring muscles, we note 

that training can be easily customized to the quadriceps muscle group, either by incorporating a 

ratcheting joint into the brace or with servo control over the linear slider. Hence, low-cost 

passive robots such as our eddy current braking device could represent a substantial step forward 

in gait rehabilitation.  

From a clinical standpoint, a key question that emerges is whether the improvements in 

hip/knee kinematics and overground gait speed observed in this study are clinically significant. 

First, we note that the reported improvements were seen within a single-session of training. 

Thus, we anticipate that repeated training would result in cumulative benefits that are larger than 

those observed in the current study. Further, the changes in hip and knee joint excursions and 
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overground gait velocity were indeed larger than the MDC values established (Perera et al., 

2006; Saner et al., 2017) after accounting for the sample size of the group (𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐻𝐻 =

𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑘𝑘𝑖𝑖𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑔𝑔𝑎𝑎𝑎𝑎 √𝐴𝐴⁄ ) (de Vet et al., 2001; Lu et al., 2008; Washabaugh et al., 2017). Most 

importantly, the changes observed in overground gait speed falls in the substantial meaningful 

change category for stroke survivors (Perera et al., 2006). 

The low sample size is a key limitation of this study. However, as noted before, the 

positive outcomes observed in this study were very consistent across all subjects (6 out of 6) for 

EMG, kinematics, and gait speed, suggesting that a larger sample size would not have changed 

the study results. Another limitation is that we only chose moderate-to-high functioning 

individuals, which limits the generalizability to individuals with more severe impairments. We 

intentionally chose these subjects because prior research indicates that robotic-resisted training is 

particularly beneficial for individuals with relatively high function (Wu et al., 2012). Thus, it is 

likely that assistive therapy (rather than resistive therapy) may be more suitable for individuals 

with significant impairments. Finally, the therapeutic benefits of this device are not currently 

known, as this study was not designed to study the cumulative effects of training with the device. 

Future clinical trials will potentially inform us on the clinical potential of this device.  

In summary, this study tested the immediate effects of resisted treadmill walking using a 

wearable knee brace on gait function in individuals with stroke. We found that training with the 

brace resulted in significant improvements in EMG, kinematics, and overground gait velocity. 

Importantly, this finding was very consistent across subjects, indicating that this type of training 

may have a significant clinical potential for gait training after stroke. To our knowledge, this is 

the first study to show that a wearable untethered exoskeleton device can induce meaningful 

locomotor adaptations in stroke subjects, which could also potentially translate to in home or 
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community based rehabilitation programs. However, further testing is required to verify the 

cumulative benefits of resistive gait training with this device. 
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Chapter 4  

Providing Kinematic Feedback as a Means to Reduce Motor Slacking during Functional 

Resistance Training of Walking 

 

Abstract 

Background: Functional resistance training is frequently applied to rehabilitate individuals with 

neuromusculoskeletal injuries. It is performed by applying resistance in conjunction with a task-

specific training, such as walking. However, the benefits of this training may be limited by motor 

slacking. As the body reduces its motor output in response to the added resistance, it limits 

intensity. While techniques like feedback could reduce one's tendency to minimize effort during 

training, they are seldom used during training.   

Research Question: Does functional resistance training during walking lead to motor slacking, 

and can techniques such as visual feedback be used to reduce these effects? 

Methods: Fourteen able-bodied individuals participated in this experiment. Participants were 

trained by walking on a treadmill while a bidirectional resistance was applied to the knee using a 

robotic knee exoskeleton. During training, participants were either instructed to walk in a manner 

that felt natural or were provided real-time visual feedback of their kinematics. 

Electromyography and knee kinematics were measured to determine if adding resistance to the 

limb induced slacking and if feedback could reduce slacking behavior. Kinematic aftereffects 

were measured after training bouts to gauge adaptation. 
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Results: Functional resistance training without feedback significantly reduced knee flexion when 

compared to baseline walking, indicating the participants were slacking. This reduction in knee 

flexion did not improve with continued training. Providing visual feedback of knee joint 

kinematics during training significantly increased knee muscle activation and kinematic 

aftereffects. 

Significance: These indicate that individuals are susceptible to motor slacking during functional 

resistance training, which could affect outcomes of this training. However, motor slacking can be 

reduced if training is provided in conjunction with a feedback paradigm. This finding 

underscores the importance of using additional methods that externally motivate motor 

adaptation when the body is not intrinsically motivated to do so. 

4.1 Introduction 

Injuries to the neuromuscular and skeletal systems can result in gait impairments and 

disability (Chen et al., 2005; Kuo et al., 2007; Pietrosimone et al., 2018). Often, these 

impairments are related to deficits in strength and altered motor control (Harvey, 2016; Olney & 

Richards, 1996). Hence, rehabilitation of these individuals requires some combination of strength 

training to improve force-generating capacity in the lower-extremity muscles and task-oriented 

training to promote re-learning of functional tasks like walking. However, it has been shown that 

when these training types have been implemented independently from one another, increases in 

one may not transfer to the other (Bohannon, 2007; Krebs et al., 2007; Sullivan et al., 2007). 

This disconnect has led to the development of new training methods that work to combine 

strength training with task oriented training.   
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One such method is functional resistance training, where a resistive exercise is applied in 

conjunction with a task-specific training (Donaldson et al., 2009; Yang et al., 2006). When 

functional resistance training is applied during walking, additional devices (e.g., leg braces, 

weighted cuffs, bands, or rehabilitation robots) are placed on the leg as means to provide 

resistance to the muscles used in the task. While this training technique has shown promise in its 

ability to increase functional metrics, such as walking speed (Alabdulwahab et al., 2015; Lam et 

al., 2009; Lam et al., 2015; Wu et al., 2017; Wu et al., 2012), studies that have analyzed strength 

have shown minimal improvements (Wu et al., 2012). This lack of strength gains may indicate 

that training is often not intense enough to improve force-generating capacity in the lower-

extremity muscles.  

Intensity may be reduced during training due to a phenomenon known as motor slacking, 

where the motor system reduces muscle activation levels and movement excursions as a means 

to minimize metabolic and movement-related costs (Reinkensmeyer et al., 2009). Indeed, studies 

on other functional tasks, such as reaching, have found that the body attempts to minimize 

movement-related costs in the presence of resistances (Izawa et al., 2008; Liu & Reinkensmeyer, 

2004; Washabaugh et al., 2018). It is possible that motor slacking is less prominent during gait 

training, as there is some evidence to suggest that joint excursions reduce when the resistance is 

first added but improve with prolonged exposure (Lam et al., 2006; Savin et al., 2010). However, 

these studies often show that the kinematics rarely return to baseline levels. Thus, there is a 

critical need to determine if motor slacking occurs during training. It must also be ascertained 

whether additional methods, such as providing kinematic feedback, can improve muscular effort 

and movement excursions during functional resistance training. 
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Therefore, the purpose of this study was to determine how adding resistance to the leg 

during walking contributes to motor slacking. It also evaluated how motor slacking can be offset 

by including visual feedback of kinematics during the training. Resistance was provided using a 

knee brace that was fitted with a controllable brake, such that it provided resistance to knee 

flexion and extension during the swing phase of walking. To measure motor slacking during 

training, we evaluated changes in muscle activation and peak knee flexion during walking. We 

also measured kinematic aftereffects in knee angle, to determine if resisted walking with and 

without feedback altered adaptation. We hypothesized that functional resistance training without 

feedback would significantly reduce peak knee flexion during training. Additionally, the 

provision of kinematic feedback would significantly increase muscle activation and kinematic 

aftereffects during gait. 

4.2 Materials and Methods 

Fourteen able-bodied individuals participated in the study. However, one participants' 

data was excluded because they misunderstood training instructions. Analysis was performed on 

the remaining 13 participants (7 females; age: 21.0 ± 2.5 years; height: 171.9 ± 9.1 cm; mass: 

67.2 ± 12.0 kg; self-selected walking speed: 1.46 ± 0.21 m/s; knee extensor strength: 185.7 ± 

58.5 Nm; knee flexor strength: 106.2 ± 33.2 Nm [mean ± standard deviation]). Prior to the study, 

each participant reviewed and signed an informed consent document approved by the University 

of Michigan Institutional Review Board (HUM00093673, approved on 5/24/2018). 
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Figure 4.1 Schematic of the resistive device and experimental protocol. (A) A leg brace provides resistance to the knee via a 
controllable magnetic brake. Knee and hip angles are measured with encoders on the device and resistance is controlled by 
moving the magnets radially relative to the disc with a servomotor. (B) During the experiment, participants wore the device and 
trained while walking on a treadmill with resistance. Trainings varied based on the participants received kinematic feedback. 
Following each training session, resistance and feedback were removed during catch trials as we measured kinematic aftereffects. 
(C) Diagram of the real-time visual feedback paradigm. Participants walked and were encouraged to match their joint excursions 
to those measured from the baseline trial.   

4.2.1 Experiment 

In a separate session before training, we measured knee strength and self-selected gait 

speed. Knee strength was measured at 45 degrees of flexion in an isokinetic dynamometer 

(System Pro 4, Biodex, Shirley, NY). Participants were seated and secured into the device, 

warmed up with three submaximal contractions, then instructed to kick out or pull back 

maximally three times for each direction. Rest (120 s) was given between contractions. Self-

selected walking speed was measured as the average of three 10-meter walk tests.    

During the training session, intensity was measured using electromyography (EMG). We 

placed EMG sensors (Trigno Avanti, Delsys, Natick, MA, US) over the vastus medialis (VM), 

vastus lateralis (VL), rectus femoris (RF), medial hamstring (MH), and lateral hamstring (LH) 

muscles according to SENIAM guidelines. We assisted the participant in donning a controllable 

knee exoskeleton on their right leg (Figure 4.1 A) (Washabaugh et al., 2016; Washabaugh & 

Krishnan, 2018). We then measured the participant’s baseline walking (B) over an instrumented 
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treadmill (Bertec, Columbus, OH, US) for 120 s at 60% of their self-selected walking speed 

without resistance (Figure 4.1 B). During baseline, encoders on the device measured knee 

angular velocity to calculate the device controls required to provide a bidirectional resistance 

(i.e., resisting both flexion and extension) with a magnitude of 15–20% of the participant’s 

strength (Equation 4.1).  

For training trials, participants walked for 300 s with resistance. The first trial was 

performed without visual feedback (TNF) and participants were instructed to walk in a manner 

that felt natural. After this trial, the resistance was removed and participants underwent a 30 s 

catch trial (CNF). During catch trials, participants were instructed to walk naturally as we 

measured the aftereffects of the training. During the second training trial, participants walked as 

they received visual feedback (TF) of their hip and knee joint angles as measured with the 

encoders on the device. Lastly, feedback and resistance were removed and participants 

performed another catch trial (CF).  

Feedback consisted of bar plots for the hip and knee joints that displayed the average 

maximum and minimum joint angles from the baseline trial along with a cursor of the real-time 

joint angle (Figure 4.1 C). Participants were encouraged to reach peak knee flexion/hip extension 

during early swing and peak knee extension/hip flexion when they approached heel-strike. 

Feedback was created using a custom LabVIEW vi (v2013, National Instruments Corp., Austin, 

TX, US) and displayed on a monitor in front of the treadmill.  

4.2.2 Device 

Resistance was provided to the knee joint during training using a wearable exoskeleton 

device previously developed in our lab (Washabaugh et al., 2016). During operation, movement 

of the joint spins an aluminum disk and permanent magnets are exposed to the disk to provide 
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resistance (greater magnet exposure increases resistance) (Figure 4.1 A). In previous versions of 

the device, the resistance had to be manually controlled; however, the device was modified to be 

servo-controlled (1207 TG, Power HD, Pololu Corporation, Las Vegas, US). This allowed us to 

provide different resistances to the knee flexors and extensors according to: 

𝑇𝑇 = −𝛽𝛽�̇�𝜃, 

𝑤𝑤ℎ𝐴𝐴𝑒𝑒𝐴𝐴 𝛽𝛽 =
0.17

1 + 𝐴𝐴−
(𝑥𝑥−0.56)
0.16

 

such that |𝑇𝑇| =  �
% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥, if �̇�𝜃 =  max (�̇�𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥)
% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑥𝑥𝑒𝑒, if �̇�𝜃 =  max (�̇�𝜃𝑘𝑘𝑥𝑥𝑒𝑒)

 . 

Equation 4.1 

In this equation, T was the torque generated by the device, β was the damping coefficient 

(units: Nm s deg-1), and �̇�𝜃 was the angular velocity of the joint. β was characterized using a 

dynamometer that measured torque over a range of movement velocities and magnet exposures 

(x); these data were then fit to a sigmoid curve. During training, magnet exposure was 

determined separately for flexion and extension. When �̇�𝜃 was equal to the extrema of the average 

knee velocity profile measured during baseline trials [i.e., max (�̇�𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥) or max (�̇�𝜃𝑘𝑘𝑥𝑥𝑒𝑒)], the 

magnitude of T was equal to a percentage of the participants strength. 

The device was fitted to hip-knee orthosis consisting of a custom pelvis and thigh 

segments (Newport Bilateral MC & Newport Universal Thigh; Orthomerica Products, Inc.; 

Orlando, FL, US) and a modified orthopedic knee brace (T-Scope Premier Post-Op Knee Brace; 

Breg, Inc.; Carlsbad, CA, US). A freely moving joint was fit between the pelvis and thigh 

segments. Optical encoders were placed on each joint of the device (E4T-360, US Digital, 

Vancouver, WA, US) and used to measure joint angles and velocities during use. Data were 
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logged and devices were controlled using a custom LabVIEW program that communicated with 

a microprocessor (Arduino UNO, Arduino, Somerville, MA, US). 

4.2.3 Data Processing 

Raw EMG and force plate data were collected in QTM at 2000 Hz. Using a custom 

LabVIEW program, EMG data were band-pass filtered (20-500 Hz) and rectified. Both EMG 

and force data were then smoothed using a zero phase-lag low-pass Butterworth digital filter 

(EMG: 8th order, 6 Hz; force: 6th order, 100 Hz). EMG data were then segmented at heel strike 

(20 N threshold from the vertical force data) and ensemble averaged across strides to compute 

mean EMG profiles during each trial. We normalized these profiles to the peak amplitude during 

the baseline trial (i.e., in units of %B), then calculated the maximum muscle activation for each 

trial. These values were then log transformed to minimize skewness and heteroscedasticity 

(Krishnan et al., 2013).  

During each trial, we measured knee angle using an encoder on the device at a rate of 

62.5 Hz using a custom LabVIEW program. For processing, these data were filtered using a zero 

phase-lag low-pass Butterworth digital filter (6th order, 100 Hz). We then calculated the 

maximum knee flexion angle for each stride and averaged these values across strides.  

4.2.4 Statistical Analysis 

Statistics were performed using JASP computer software (Version 0.14.1). During 

training, muscle activation was analyzed using a two-way repeated-measures ANOVA (muscle 

[5 levels: VM, VL, RF, MH, LH] × trial [3 levels: B, TNF, and TF]) while knee kinematics were 

measured with a one-way repeated measures ANOVA (3 levels: B, TNF, and TF). We also 

performed a planned comparison to see if knee flexion changed within the TNF trial, where we 

compared the knee joint angle of the first five strides with the last five strides with a paired t-test. 
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Kinematic aftereffects were analyzed using one-way repeated measures ANOVA (3 levels: B, 

CNF, and CF). Following significant ANOVA main effects, we performed post hoc pairwise 

comparisons using paired t-tests with Holm correction (α = 0.05). Note, to help with 

interpretation, we also report the non-transformed average difference for muscle activation data.  

 

Figure 4.2 (A) Average stride-by-stride maximum knee flexion angle throughout the experiment. For viewing purposes, stride-
by-stride data were interpolated so they could be plotted against time. The shaded region above and below the line corresponds to 
the standard error of the mean. (B) Knee angle during training: the knee angle reduced significantly when training without 
feedback, which would indicate participants were susceptible to motor slacking. (C) Knee angle during catch trials: there were 
significant aftereffects following training with feedback. (D) Log transformed muscle activation (MA) during training: muscle 
activation increased significantly during both training methods. However, amplitude was much larger when training with 
feedback. Bars represent the marginal means of the analysis. (E) Non-transformed muscle activation, presented to improve 
interpretation of how muscle activation changed during training. Error bars indicate the standard error of the mean. Symbols: * p 
< 0.05; ** p < 0.01; *** p < 0.001; † statistics were not run on these data, for visualization purposes only. 

4.3 Results  

Motor slacking was monitored throughout the study using knee joint angles and muscle 

activation. The average knee flexion angle throughout the experiment is displayed in Figure 4.2 

A. Analysis of the knee joint data during training indicated that there was a significant difference 

between trials [F(2,24) = 49.402, p < 0.001]. Post hoc comparisons indicated that the knee angle 

significantly reduced when training without feedback when compared with baseline [Δ = −17.0 

(95% CI = −21.4 – −12.5) degrees, p < 0.001, d = −2.299]. However, with feedback, peak joint 

angles matched closely with their baseline levels [Δ = 1.2 (95% CI = −3.2 – 5.7) degrees, p = 

0.548, d = 0.169] (Figure 4.2 B). When analyzing planned comparisons of joint angle within the 
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no feedback trial, we did not find that joint angle was changed between the beginning and end of 

the trial [Δ = 0.07 (95% CI = −2.12 – 2.25) degrees, p = 0.949, d = 0.018].  

Kinematic aftereffects (Figure 4.2 C) produced a significant main effect between trials 

[F(2,24) = 6.227, p = 0.007]. Post hoc comparisons indicated that there was a significant 

aftereffect of increased peak knee flexion following training with visual feedback [Δ = 3.9 (95% 

CI = 0.6 – 7.3) degrees, p = 0.037, d = 0.702], but not after training without feedback [Δ = −1.3 

(95% CI = −4.7 – 2.1) degrees, p = 0.396, d = −0.240]. The aftereffects from training with 

feedback were also larger than those from training without feedback [Δ = 5.3 (95% CI = 1.9 – 

8.7) degrees, p = 0.007, d = 0.942]. 

When analyzing muscle activation (Figure 4.2 D) there was a significant main effect for 

trial [F(2,24) = 43.713, p < 0.001]. Post hoc analysis indicated that muscle activation was 

significantly increased when training with visual feedback when compared with baseline [Δ = 

1.238 (95% CI = 0.937 – 1.539) log(%B), p < 0.001, d = 2.492; non-transformed: Δ = 336.0 

%B]. While muscle activation also significantly increased without feedback, this effect was 

much smaller [Δ=0.311 (95% CI = 0.01 – 0.612) log(%B), p = 0.034, d = 0.625; non-

transformed: Δ = 75.6 %B]. When comparing both training trials, the muscles were more 

activated when training with feedback than without [Δ = 0.928 (95% CI = 0.627 – 1.229) 

log(%B), p < 0.001, d = 1.867; non-transformed: Δ = 290.4 %B].  

4.4 Discussion 

This study investigated how functional resistance training during walking can be 

augmented using visual feedback. Specifically, we tested how knee joint kinematics and muscle 

activation were altered when a resistance was applied to the knee during walking, and how visual 

feedback could then be used to reduce the motor slacking associated with this training. We found 
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that: (1) the knee joint excursion was significantly reduced during functional resistance training, 

where resistive torques were applied to the knee extensors and flexors during gait; (2) the 

reduction in knee joint excursion did not improve with continued functional resistance training; 

and (3) minimizing motor slacking by providing visual feedback of knee joint kinematics 

significantly increased knee muscle activation and kinematic aftereffects. These results 

emphasize the importance of providing feedback during functional resistance training while 

walking. The increase in muscle loading and active engagement that feedback provides could 

greatly augment the outcomes of this training.  

A key finding of this study was that the intensity of functional resistance training was 

augmented when the training was provided in conjunction with a feedback paradigm. 

Specifically, while training with feedback there was an approximately three-fold increase in 

muscle activation when compared to training without feedback. Muscle activity during walking 

is correlated with metabolic cost (Hortobagyi et al., 2011). Hence, it appears that when feedback 

was not provided, the body worked to reduce the metabolic cost of walking with the added 

resistance to the knee. This effect was more evident when looking at the knee kinematics while 

walking, which were greatly reduced (~17 degrees) when walking without feedback. 

Importantly, this reduction in knee excursion persisted throughout the training period and did not 

reach the levels of baseline walking without resistance. Such motor slacking is problematic for a 

training like functional resistance training, where one of the main goals is to increase strength 

through greater loading of the muscles (Donaldson et al., 2009; Yang et al., 2006). While it is 

unclear if longer durations of training would help in minimizing the slacking that was observed 

in the no feedback condition, our results suggest that this issue can be effectively addressed by 

providing kinematic feedback.  
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The long-term effects of functional resistance training during walking in clinical 

populations have been somewhat conflicting. While some studies have shown there are benefits 

to applying resistance during walking as opposed to providing assistance (Wu et al., 2017; Wu et 

al., 2016), others have shown this training has a small or no-effect (Lam et al., 2009; Wu, 

Landry, et al., 2014). However, a majority of these trainings have been performed without 

feedback; hence, it is possible that patients were kinematically slacking and not exerting enough 

effort during training. Indeed, the results of our study showed that the thigh muscles were 

minimally engaged when feedback was not provided, but were substantially engaged when 

walking with visual feedback. Moreover, we found that participants adapted more during training 

with feedback, as aftereffects were only observed when training was performed with visual 

feedback. It is often believed that if a perturbation does not result in aftereffects, then the training 

is less valuable because the nervous system is not being engaged. This belief likely stems from 

how aftereffects have been seen to transfer to overground walking (Reisman et al., 2009; Savin 

et al., 2014; Wu et al., 2016). However, if reducing movement-related costs is the body’s 

predominant goal (Finley et al., 2013; Izawa et al., 2008; Ranganathan et al., 2013), then it is 

logical that the body would attempt to mitigate resistive perturbations and not correct the errors 

they introduce (Liu & Reinkensmeyer). As with any exercise, users will likely have to be 

externally motivated to train, and feedback may reprioritize the body’s control scheme to provide 

motivation that drives adaptation. While there are numerous ways that feedback can be applied 

during training (e.g., via coaching, visual feedback, object avoidance, or games), this study 

underscores the importance of using additional methods that externally motivate training to 

bolster both intensity and adaptation. 
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4.4.1 Limitations  

A primary limitation is related to the small sample size of this study. Although our 

sample size is consistent with many short-term motor adaptation studies (Blanchette & Bouyer, 

2009; Noble & Prentice, 2006; Savin et al., 2010), our overall sample size was limited due to 

COVID restrictions. Thus, it is unclear if we had adequate power to realize findings with small 

effect sizes. Further, we did not randomize the order that the conditions were presented in this 

study. We intentionally chose not to randomize because we felt that introducing participants to 

the visual feedback condition first would disproportionately confound their performance without 

feedback (i.e., reduce their ability to walk normally). Given that aftereffects were not present 

after training without feedback, we do not feel that the feedback condition was significantly 

confounded by the carryover effects from the no feedback condition. We also note that repeated 

exposure to resistance can reduce the magnitude of aftereffects (Blanchette et al., 2012); thus our 

testing order likely produced a more conservative estimate of the effects of visual feedback. 

However, additional insights may have been gained if feedback was a between-subjects factor. 

Next, most studies often allow aftereffects to wash out (i.e., prolonged walking until walking 

returns to normal) between trials. We did not provide wash out between the no feedback and 

feedback conditions. However, this again should not have affected our results because the no 

feedback condition did not produce significant aftereffects. Lastly, participants were only trained 

for five minutes in each condition. While this is a common duration for measuring acute 

aftereffects, and steady state adaptation often occurs after the first several steps (Emken & 

Reinkensmeyer, 2005; Lam et al., 2006), it is still a much shorter duration than would be 

provided during an intervention. Hence, it is possible that participants could become more 

engaged if training was provided for a longer duration. 



  

87 
 

4.5 Conclusion 

In conclusion, the results of this study indicate that individuals are susceptible to motor 

slacking during functional resistance training, which could affect outcomes of this training. 

However, motor slacking can be reduced if training is provided in conjunction with a feedback 

paradigm. We found that training while receiving visual feedback of gait kinematics increased 

intensity and produced larger aftereffects. Although training without feedback was slightly more 

intensive than normal walking, the aftereffects due to this training were not pronounced. This 

finding underscores the importance of using additional methods that externally motivate the user 

during functional resistance training, especially if the body is not intrinsically motivated to do so. 
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Chapter 5  

Design and Preliminary Assessment of a Passive Elastic Leg Exoskeleton for Resistive Gait 

Rehabilitation 

 

Abstract 

Objective: This study aimed to develop a unique exoskeleton to provide different types of 

elastic resistances (i.e., resisting flexion, extension, or bidirectionally) to the leg muscles during 

walking. Methods: We created a completely passive leg exoskeleton, consisting of counteracting 

springs, pulleys, and clutches, to provide different types of elastic resistance to the knee. We first 

used a benchtop setting to calibrate the springs and validate the resistive capabilities of the 

device. We then tested the device’s ability to alter gait mechanics, muscle activation, and 

kinematic aftereffects when walking on a treadmill under the three resistance types. Results: 

Benchtop testing indicated that the device provided a nearly linear torque profile and could be 

accurately configured to alter the angle where the spring system was undeformed (i.e., the resting 

position). Treadmill testing indicated the device could specifically target knee flexors, extensors, 

or both, and increase eccentric loading at the joint. Additionally, these resistance types elicited 

different kinematic aftereffects that could be used to target user-specific spatiotemporal gait 

deficits. Conclusion: These results indicate that the elastic device can provide various types of 

targeted resistance training during walking. Significance: The proposed elastic device can 

provide a diverse set of resistance types that could potentially address user-specific muscle 

weaknesses and gait deficits through functional resistance training. 
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5.1 Introduction 

Gait impairments are a prominent source of disability after neurological or orthopedic 

injuries (Chen et al., 2005; Kuo et al., 2007; Pietrosimone et al., 2018; Waite et al., 2000). For 

example, following a stroke—which is the leading cause of long-term disability in the United 

States (Mozaffarian et al., 2015)—only 50% of survivors are able to ambulate in the community 

following conventional therapy (Perry et al., 1995). Such impairment can greatly affect 

independence and quality of life (Brandes et al., 2008); hence, retraining gait following an injury 

is of the utmost importance. Applying functional resistance training during walking is an 

emerging method for treating individuals with gait impairments. This training is administered by 

having a patient perform a task-specific training (in this case, walking) while a load is applied to 

resist the movement (Cooke et al., 2010; Donaldson et al., 2009; Washabaugh et al., 2016). This 

works simultaneously to improve muscle strength and coordination, which are often underlying 

sources of gait impairment (Blackburn et al., 2016; Hsu et al., 2003; Kautz & Brown, 1998).  

Most studies have applied functional resistance training using simple rehabilitation 

equipment, such as ankle weights (Browning et al., 2007; Duclos et al., 2014; Lam et al., 2009; 

Simao et al., 2019). While these devices are low-cost and widely available in clinics, they are 

limited in their ability to target patient-specific muscle weakness during walking. This is because 

the load is tethered to the user's ankle (i.e., the distal end of the shank); hence, resistance is 

automatically coupled between the user’s hip and knee joints (Washabaugh, Augenstein, & 

Krishnan, 2020). This problem can be remedied by devices that directly resist the motion of the 

joint (i.e., a joint-space approach). Joint-space based devices include wearable leg braces and 

exoskeletons and allow resistance to be targeted to a single joint if desired. This is potentially 

beneficial for rehabilitation, as therapists often measure strength at the joint level using clinical 
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tests (e.g., manual muscle testing) or dynamometry (Bohannon, 2001). Hence, joint-space based 

devices can directly target these patient specific weaknesses while providing resistance during 

functional tasks. For this reason, there have been several joint-space devices developed in recent 

years for providing functional resistance training during walking (Blanchette et al., 2014; Conner 

et al., 2020; Lam et al., 2006; Martini et al., 2019; Noel et al., 2008; Washabaugh et al., 2016; 

Washabaugh & Krishnan, 2018).  

While all of these devices apply resistance in the joint space, they differ in the type of 

resistance that they are designed to provide. For example, a majority of these devices provide 

viscous loads to the participant during walking (Lam et al., 2006; Washabaugh et al., 2016; 

Washabaugh & Krishnan, 2018)), meaning their resistance is proportional and opposite the 

velocity of the joint (i.e. a negative power constraint). While there are several benefits to viscous 

resistances (Stoeckmann et al., 2009)—such as the ease of use, smoothness, and controllability 

of the device—this negative power constraint also means that this strategy can only target 

muscles during concentric contractions (i.e. the muscle shortens while in tension). This is a 

potential limitation, as many key elements of walking rely on eccentric loading (i.e. muscle 

lengthening while in tension). For example, the hamstrings work eccentrically to slow knee 

extension in preparation for heel-strike; however, viscous devices cannot provide this type of 

resistance. To study these potential resistive paradigms, we will need to develop strategies that 

can remove the negative power constraint by allowing energy to be exerted on the user. 

The type of actuator used to generate resistance determines whether a device can exert 

energy on the user. Most rehabilitation robots use active actuators (e.g., motors), which add 

external energy to the user in order to provide resistance. However, active actuators are typically 

expensive, bulky, and potentially unsafe if not programmed correctly. These issues can be 
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addressed by using passive actuators (e.g., masses, springs, and dampers), which are relatively 

cost-effective, light-weight, and inherently safe, as they do not add external energy to the user 

but convert/store the user’s own energy. Hence, we anticipate that passive devices are more 

feasible for small clinics or in-home use. Also, if the device is low-cost enough to be purchased 

by the patient there could be additional therapeutic benefits (Kleim & Jones, 2008), as this could 

increase the dosage of training and allow for more variable training that is specific to everyday 

life.  

Therefore, this study aimed to develop a unique, low-cost, and passive exoskeleton 

device that can provide different types of targeted elastic resistance during walking. An elastic 

resistance was desired because elastic elements (such as springs) store elastic potential energy 

when they are deformed (i.e. stretched or compressed), then return that energy back to the user as 

they recoil. Hence, with an elastic exoskeleton it is possible to engage the muscle during 

concentric contraction as the elastic element is deformed, and during eccentric contraction while 

the element recoils. While several passive elastic exoskeletons have been developed in the past 

(e.g., leg braces that incorporate leaf springs (Cherry et al., 2016), torsion springs (Cherry et al., 

2006; Mankala et al., 2009; Sulzer et al., 2009), extension springs (Collins et al., 2015), and 

compression springs (Shamaei et al., 2014, 2015)), these devices typically have been used to 

provide assistance to movement, whereas the purpose for our device was to apply resistance. Our 

device further differs from these past devices because it can alter the joint angle where the elastic 

element of the device is undeformed (i.e., the resting position); thus, allowing the device to resist 

any joint motion (i.e., joint flexion, extension, or both), and accommodate any restrictions in a 

patient’s range of motion. In this paper, we provide an overview of the governing principles and 
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design of this device. We also verify its use in a benchtop testing scenario and when worn on the 

knee during treadmill walking. 

 

Figure 5.1 An elastic leg brace for functional resistance training during walking. (Top Left) A rendering of the device. (Top 
Right) The device fit to the knee of a hip and knee orthosis. (Bottom) Schematic depicting the components of a spring-pulley-
clutch subassembly. When providing resistance, a ratcheting gear fixed to the joint engages a pawl; hence, rotation of the joint 
(clockwise in this depiction) rotates the pulley, which compresses the spring to provide a linear torque profile to the leg. 
Alternatively, a lead screw can actuate a detent, which disengages the pawl and removes the resistance. 

5.2 Methods 

5.2.1 Developing an Elastic Mechanism 

To obtain the level of functionality and adjustability that we desired from this device, we 

created a novel mechanism that used counteracting subassemblies containing springs, pulleys, 
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and clutches (Figure 5.1). A single subassembly could provide resistance to a single direction of 

motion (i.e., flexion or extension); hence, two subassemblies oriented in opposing directions 

permitted resistance to flexion and/or extension (i.e., unidirectional or bidirectional) with the 

single device. 

Each subassembly consisted of a compression spring housed within a cylinder along with 

a plunger that compressed the spring when pulled on by a custom nylon-coated cable assembly 

(2126SN6, Carl Stahl Sava Industries, Inc., Riverdale, NJ, US) (Figure 5.1 Bottom). The top end 

of the cable contained a threaded plug fitting that fastened to a countersunk nut atop the plunger. 

The bottom end of the cable contained a ball and shank fitting, which was routed through an 

opening in the cylinder’s end cap then fixed to a point along the edge of the pulley (Diameter: 

10.54 cm) using a quick-release mechanism. The pulley was centered on the joint of the device 

and provided a constant lever arm for the spring force, which permitted a linear relationship 

between the output torque and angle of the device. 

Within the pulley was a clutch mechanism that allowed us to select the angular position 

where the spring was uncompressed (i.e., the resting position). The clutch consisted of a 

ratcheting gear fixed to the device’s joint, a pawl, a ratchet spring, and a detent that traveled 

along a lead screw (Figure 5.1 Bottom). When the detent was retracted, the ratchet spring held 

the pawl engaged with the ratcheting gear. In this configuration, the device provided resistance 

because the pulley would rotate along with the user’s joint to pull the cable and compress the 

spring. However, the resistance could also be removed by disengaging the clutch. This was 

accomplished by turning the lead screw (using a hex key or thumb nut) so that the detent traveled 

to disengage the pawl.  
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With two of these subassemblies, the net resistive torque output by the device was the 

difference between their respective torques: 

Τ =  𝜏𝜏1 − 𝜏𝜏2, 

Equation 5.1 

where Τ was the net torque generated by the device (i.e., the device moment) and 𝜏𝜏𝐻𝐻  was the 

torque for each subassembly where the subscript (i.e., 1 or 2) indicates which spring-pulley-

clutch subassembly the variable was associated with. The net torque from the device could also 

be expressed based on the spring and pulley parameters: 

Τ = 𝑘𝑘1(𝜃𝜃 − 𝜃𝜃𝑔𝑔1) − 𝑘𝑘2(𝜃𝜃𝑔𝑔2 − 𝜃𝜃); where 𝜃𝜃𝑔𝑔1 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑔𝑔2. 

Equation 5.2 

In these equations 𝜃𝜃 was the current angle of the device, 𝑘𝑘𝐻𝐻  was the calibrated torsional stiffness 

of the spring in each subassembly, and 𝜃𝜃𝑔𝑔𝐻𝐻 was the angle where the clutch associated with that 

spring was engaged (i.e., where the spring becomes uncompressed). During operation, 𝜃𝜃 was 

measured using an encoder mounted atop the joint of the device (E4T-360, US Digital, 

Vancouver, WA, US) that communicated with a computer via an microprocessor (Arduino UNO, 

Arduino, Somerville, MA, US). The ratcheting gears allowed the clutch to be engaged in 15 deg 

increments. We constrained 𝜃𝜃 in these equations because, if 𝜃𝜃 exceeded those limits, the cable 

would lose tension and could come off the pulley. If there was no spring located in the cylinder 

or if one of the clutches was disengaged, the subassembly did not contribute to the output torque 

and the device provided unidirectional resistance. When both subassemblies were engaged, the 

device provided bidirectional resistance. 

The device was designed to permit quick alterations in resistive capability by exchanging 

springs of different stiffnesses. Springs could be exchanged by doing the following: with the 

clutch disengaged, the distal end of the cable could be disconnected from the pulley using the 
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quick-release mechanism. The end cap on the cylinder could then be removed by undoing the 

bayonet mount fastener (Figure 5.1 Bottom). With the end cap off, the spring would be easily 

accessible and could be replaced with a spring of a different stiffness. For this study, we 

purchased several stock compression springs (Acxess Spring, Colton, CA, US), meant to permit 

a range of resistances between approximately 5 and 50 Nm of peak torque for a joint excursion 

of about 70 deg. We selected compression springs because they have high stiffness and 

deflection capabilities, can be easily enclosed for safety, are less fragile than other types of 

springs (e.g., extension springs), and can be purchased as stock components for springs with the 

same form factor. The angular stiffness of these springs (𝑘𝑘) was measured during benchtop 

testing. 

The output torque of the device could also be expressed as a simple spring system: 

Τ = 𝑘𝑘𝑘𝑘𝑓𝑓𝑓𝑓(𝜃𝜃 − 𝜃𝜃𝑅𝑅), where 

Equation 5.3 

𝑘𝑘𝑘𝑘𝑓𝑓𝑓𝑓 = 𝑘𝑘1 + 𝑘𝑘2. 

Equation 5.4 

In this system, 𝑘𝑘𝑘𝑘𝑓𝑓𝑓𝑓 was the effective spring constant for the device and 𝜃𝜃𝑅𝑅 was the angular 

position where the spring system was at rest (i.e., the resting position). In our device, 𝜃𝜃𝑅𝑅  could be 

manually controlled based on the spring stiffnesses (𝑘𝑘𝐻𝐻) and the positions where the clutches 

were engaged (𝜃𝜃𝑔𝑔𝐻𝐻). Hence, when operating in bidirectional mode, we could control the position 

where the transition between flexion and extension resistance occurred. This position was 

calculated by finding where the net torque of the device was zero (i.e., the position that 

effectively negated pre-tensions in both subassemblies): 

0 = 𝑘𝑘1(𝜃𝜃𝑅𝑅 − 𝜃𝜃𝑔𝑔1) − 𝑘𝑘2(𝜃𝜃𝑔𝑔2 − 𝜃𝜃𝑅𝑅); thus, 

Equation 5.5 
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𝜃𝜃𝑅𝑅 =
𝑘𝑘1𝜃𝜃𝑔𝑔1 + 𝑘𝑘2𝜃𝜃𝑔𝑔2

𝑘𝑘1 + 𝑘𝑘2
𝑘𝑘1=𝑘𝑘2�⎯⎯�

𝜃𝜃𝑔𝑔1 + 𝜃𝜃𝑔𝑔2
2

. 

Equation 5.6 

If the 𝜃𝜃𝑔𝑔𝐻𝐻 required to pre-tension a spring was located within the user’s range of motion, 𝜃𝜃𝑔𝑔𝐻𝐻 

could be set by instructing the user to move their joint to the desired position before engaging the 

ratchet on each subassembly. However, for some values of 𝜃𝜃𝑔𝑔𝐻𝐻 (e.g., if 𝜃𝜃𝑅𝑅= 10, 𝜃𝜃𝑔𝑔1= −50 and 

𝜃𝜃𝑔𝑔2= 70) the clutches may need to be set outside the user’s anatomical range of motion. In our 

device, this was achieved safely by locking the joint, then placing a rod through a hole in the side 

of the pulley and into the tension support (Figure 5.1 Bottom), which gave us leverage to rotate 

the pulley to the desired position before engaging the clutch. 

The device was designed in SolidWorks 3D Design Software (v2019, SolidWorks Corp., 

Waltham, MA, US) so as to withstand 100 Nm of torque (i.e., a 2x safety factor) about the joint 

(verified through finite element analysis [FEA]). The device was custom fabricated primarily 

using aluminum (6061 and 7075) and polyoxymethylene (POM). POM was used in many 

sliding/bearing applications (e.g., plunger/cylinder) due to its low coefficient of friction with 

other surfaces. Information on parts, materials, costs, and machining techniques can be found at: 

http://neurro-lab.engin.umich.edu/downloads (Bill of Materials).  

To complete the exoskeleton, the elastic device was fitted to the knee joint of a custom 

hip-knee orthosis (Figure 5.1 Top Right), consisting of pelvis and thigh segments (Newport 

Bilateral MC & Newport Universal Thigh; Orthomerica Products, Inc.; Orlando, FL, US) and a 

modified orthopedic knee brace (T-Scope Premier Post-Op Knee Brace; Breg, Inc.; Carlsbad, 

CA, US). A freely moving joint was fit between the pelvis and thigh segments to eliminate 

sliding of the knee device, but the elastic device could potentially be fit between the pelvis and 

thigh to permit resistance at the hip joint. We selected the knee joint as a target for resistance 

http://neurro-lab.engin.umich.edu/downloads
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because of the following reasons: (1) the segments spanning the knee joint have relatively less 

soft tissue when compared with the hip joint, which makes it easier to convey resistance to the 

leg, (2) the inertia of the device at the knee would be lower than at the ankle, which reduces the 

confounding effects of inertia on gait mechanics and muscle activation, and (3) we wanted to 

address thigh muscle strength during walking as it has been linked to functional outcomes in 

various populations (Krishnan & Theuerkauf, 2015; Pak & Patten, 2008). Overall, the elastic 

device that was designed in this study (i.e., the resistive component) had a mass of 1.9 kg, while 

the mass of the entire exoskeleton (including braces) was approximately 4.4 kg. The mass of the 

individual springs used in the ranged from 75g (k=0.125) to 350g (k=0.605) for the benchtop 

experiment and from 75g (k=0.125) to 250g (k=0.501) during the human subject experiment. 

5.2.2 Benchtop Validation of the Device 

A benchtop setup was used to measure the stiffness of (i.e., calibrate) the springs and to 

validate our ability to alter the resting position of the device. In this setup, the upper and lower 

arms of the device (i.e., the portion of the device that interfaces with the leg brace) were rigidly 

attached to an isokinetic dynamometer (System Pro 4, Biodex, Shirley, NY) using a custom built 

jig (Figure 5.2 Left). Care was then taken to ensure that the axis of the dynamometer aligned 

with the joint of the elastic device. The dynamometer was programmed to cycle between 0 deg 

(defined as vertical) and 70 deg at an angular velocity of 1 deg s-1 while the torque and position 

were logged using the dynamometer’s built-in functionality. We used 0 and 70 deg to 

approximate the knee range of motion during walking. 

To calibrate the springs used in the device, individual springs were placed into the 

cylinder of the lower subassembly (Figure 5.2 Left; Cylinder 1) and the clutch was engaged at 0 

deg (i.e., 𝜃𝜃𝑔𝑔1= 0). Meanwhile, the upper cylinder was left empty. The program on the 
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dynamometer was executed twice to both measure the spring stiffness and to measure 

repeatability. 

To validate our ability to alter the resting position of the device, springs were loaded into 

the top and bottom cylinders of the device (i.e., 𝑘𝑘1= 𝑘𝑘2= 0.215 N m deg-1). To set the resting 

position of the device at different angles, the clutches of the counteracting subassemblies were 

engaged at various positions (𝜃𝜃𝑔𝑔1 and 𝜃𝜃𝑔𝑔2) in accordance with Equation 5.2 and Equation 5.6. 

The resting positions were set as follows: 𝜃𝜃𝑔𝑔1= −50 and 𝜃𝜃𝑔𝑔2= 70 for 𝜃𝜃𝑅𝑅= 10; 𝜃𝜃𝑔𝑔1= −30 and 𝜃𝜃𝑔𝑔2= 

70 for 𝜃𝜃𝑅𝑅= 20; 𝜃𝜃𝑔𝑔1= −10 and 𝜃𝜃𝑔𝑔2= 70 for 𝜃𝜃𝑅𝑅= 30; 𝜃𝜃𝑔𝑔1= 0 and 𝜃𝜃𝑔𝑔2= 70 for 𝜃𝜃𝑅𝑅= 35; 𝜃𝜃𝑔𝑔1= 0 and 

𝜃𝜃𝑔𝑔2= 80 for 𝜃𝜃𝑅𝑅= 40; 𝜃𝜃𝑔𝑔1= 0 and 𝜃𝜃𝑔𝑔2= 100 for 𝜃𝜃𝑅𝑅= 50; and 𝜃𝜃𝑔𝑔1= 0 and 𝜃𝜃𝑔𝑔2= 120 for 𝜃𝜃𝑅𝑅= 60 deg. 

Once the spring mechanism was set, the arm was relocated to the zero position and the 

dynamometer program was run. 

 

Figure 5.2 Schematic depicting benchtop and treadmill validation experiments. (Left) For benchtop testing the device was 
connected to a dynamometer to measure the stiffness of (i.e., calibrate) the springs and validate our ability to alter the resting 
position of the spring system. (Right) The device was worn over the knee to test its ability to convey forces to the leg during 
treadmill walking. Separate experiments were run to see (1) how the device performed under three different conditions (i.e., 
resisting knee flexion, extension, or bidirectionally) at multiple resistance levels and (2) how these conditions augment adaptation 
with the device, as we measured kinematics, kinetics, and muscle activation. 
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5.2.3 Evaluation of the Device during Treadmill Walking 

To evaluate the ability of the device to provide resistance during walking, the elastic leg 

brace was worn by a healthy participant (male, aged: 24 years, height: 185 cm, mass: 93 kg, 

dominant leg: right) during two validation experiments. The first experiment evaluated the 

device during walking under various loading conditions—including having the device provide 

resistance to knee flexion, extension, or bidirectionally—at several resistance intensities, as we 

measured electromyography (EMG), kinematics, and kinetics. The second experiment was 

devised to see how the device could influence motor adaptation by measuring the kinematic 

aftereffects that occurred after sustained walking under these loading conditions. In preparation 

for these experiments, the participant reviewed and signed an informed consent document 

approved by the University of Michigan Institutional Review Board (HUM00093673, approved 

on 5/24/2018). 

5.2.3.1 Experiment 1: Device Performance during Walking 

The protocol for experiment 1 (Figure 5.2 Right) was as follows: EMG sensors (Trigno 

Avanti, Delsys, Natick, MA, US) were placed over several lower extremity muscles used during 

walking (incl. the quadriceps [vastus medialis, VM; rectus femoris, RF], hamstrings [medial 

hamstring, MH; lateral hamstring, LH], tibialis anterior, medial gastrocnemius, soleus, and 

gluteus medius). Reflective markers were then placed for motion capture (Qualisys Track 

Manager [QTM], Qualisys, Göteborg, SE). Refer to Appendix B.1 for additional details about 

the experimental setup, such as marker placements. We then measured the participant’s static 

posture (see Appendix B.2.1 for details) without the device. Next, the participant performed a 

Baseline trial, where he walked on an instrumented split-belt treadmill (Bertec, Columbus, OH, 

US) at 1 m s-1 for a duration of 120s (note, this was the speed throughout all experiments). We 
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then assisted the participant in donning the device. Once the device was fitted properly, we 

performed a second static trial in case any marker clusters had shifted. The participant then 

walked on the treadmill while wearing the device with no resistance (i.e., with the clutches 

disengaged and without springs in the cylinders). From this trial, we measured the maximum 

knee flexion and extension angles (i.e., the range of motion limits: ROMmin = 0 degrees and 

ROMmax = 66 degrees) using the encoder on the device. These angles were used to provide real-

time feedback that encouraged the participant to walk with their normal range of motion during 

resisted trials (see Appendix B.3 for details). 

The participant then walked with the device providing resistance to their knee joint 

during three loading conditions (Resisting Flexion, Extension, and Bidirectional) at three 

intensities that used different spring stiffnesses (Low [𝑘𝑘𝐻𝐻= 0.215 N m deg-1, Medium [𝑘𝑘𝐻𝐻= 0.362 

N m deg-1], and High [𝑘𝑘𝐻𝐻= 0.501 N m deg-1]). For each condition, the participant walked for 120 

s with resistance, then was given 60 s of rest before progressing to the next intensity. To resist 

flexion,  the spring was inserted into the first cylinder (𝑘𝑘1) and the clutch for that cylinder was 

engaged while the participant’s leg was fully extended (𝜃𝜃𝑔𝑔1= ROMmin). To resist extension, the 

spring was inserted into the second cylinder (𝑘𝑘2) and the clutch was engaged while the 

participant’s leg was flexed to the peak flexion angle (𝜃𝜃𝑔𝑔2= ROMmax). To resist bidirectionally, 

the springs were placed into both cylinders (𝑘𝑘1 and 𝑘𝑘2) and the clutch on the first cylinder was 

engaged at ROMmin while the clutch for the second cylinder was engaged at ROMmax; hence, the 

resting position of the device was now located in the center of the range of motion 

(𝜃𝜃𝑅𝑅=(ROMmax−ROMmin)/2=33 deg) and the spring stiffness (𝑘𝑘𝑘𝑘𝑓𝑓𝑓𝑓) was doubled so that the peak 

device moments matched those of the flexion and extension conditions. 
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5.2.3.2 Experiment 2: Aftereffects Following Adaptation 

Experiment 2 occurred on a separate day; however, the protocol (Figure 5.2 Right) and 

experimental setup were very similar to the first experiment. Following the no resistance trial, we 

configured the device to resist knee flexion using a medium stiffness spring (𝑘𝑘= 0.362 N m deg-

1). The participant then walked on the treadmill for 300 s with resistance and visual feedback. 

Once 300 s had elapsed, we stopped the treadmill then removed the resistance and feedback. The 

participant was then instructed to walk in a manner that feels natural, and they walked for an 

additional 30 s while we measured the aftereffect. The participant then received a break (120 s), 

after which he walked again for 300 s without resistance to wash-out any lingering effects from 

the previous condition. Following the washout, we repeated this procedure for the Extension and 

Bidirectional configurations. 

5.2.4 Data Processing 

5.2.4.1 Benchtop Validation of the Device 

Throughout the benchtop validation experiments, torque and position data were recorded 

from the dynamometer at a frequency of 100 Hz. These data were then imported into MATLAB 

for processing (vR2019a, MathWorks, Natick, MA, US). For each spring, we performed a linear 

regression to find the slope relationship (i.e., spring stiffness 𝑘𝑘) between the output torque and 

the angle of the device. These measured values were then compared with those provided by the 

spring manufacturer. Additionally, we calculated Pearson’s correlation coefficient, and slope of 

the regression line, and coefficient of variation between the two sets of calibration data in order 

to measure repeatability (see Appendix B.4 for details). For validating our ability to alter the 

resting position of the device, the torque data were plotted against the angle of the device. We 
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then measured the angle at which the torque crossed zero and compared that with the predicted 

value determined using Equation 5.2. 

5.2.4.2 Evaluation of the Device During Treadmill Walking 

Electromyography 

The amplitude of surface EMG was used to determine how the device’s various loading 

configurations could alter muscle activation during walking. Raw EMG data were collected in 

Qualisys Track Manager (QTM) and sampled at 2000 Hz. Using a custom LabVIEW program, 

these raw data were band-pass filtered (20-500 Hz), rectified, and smoothed using a zero phase-

lag low-pass Butterworth digital filter (8th order, 6 Hz). The resulting EMG profiles were then 

normalized using maximum voluntary contractions; hence units were expressed as a percentage 

of this activation (% MVC). We ensemble averaged the EMG data across strides to compute 

mean EMG profiles during each trial. Strides were determined to begin at heel-strike. Processed 

EMG data for all muscles can be downloaded at: http://neurro-lab.engin.umich.edu/downloads 

(Experiment 1 EMG Data). 

Device Moments and Powers 

The torque and power that the device generated was calculated using the calibrated spring 

constants and the encoder data from the device. During each trial involving the leg brace, we 

collected the device angle from the encoder at a rate of 62.5 Hz using a custom LabVIEW 

program. For processing, we upsampled the encoder data to 2000 Hz, so that it matched the force 

plate data. We then performed a numerical derivative on the angle data to calculate the angular 

velocity. We used Equation 5.3 to estimate the output torque, then multiplied this torque by the 

http://neurro-lab.engin.umich.edu/downloads
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angular velocity to estimate power. These data were segmented into strides and ensemble 

averaged to yield a profile representing the average torque and power for each trial. 

 

Figure 5.3 Results from benchtop testing. (Left) The stiffness of the calibrated springs (𝒌𝒌) is indicated by the slope of a linear fit. 
(Right) The subassemblies were configured to alter the resting position (𝜽𝜽𝜽𝜽) of the device. The angle where the torque crossed 
zero using the lightest spring (𝒌𝒌=0.215 N m deg-1) is indicated with a vertical line extending down to the x-axis. In both plots, the 
y-axis indicates torque and the x-axis indicates the angle as measured with the dynamometer. 

Kinematics and Kinetics 

Motion capture and force plate data were collected using QTM and sampled at 200 Hz 

and 2000 Hz, respectively. Gaps in the motion capture data were filled and markers were labeled 

in QTM. These data were then exported to Visual3D (C-Motion Inc., Germantown, MD, US) for 

further processing (see Appendix B.2.3 for full details). Briefly, skeletal models were 

constructed from the static trials (see Appendix B.2.2 for details) and applied to the dynamic 

walking trials. The marker position data and force plate data were low-pass filtered using a zero 

phase-lag Butterworth digital filter (6 Hz) to remove motion artifacts and high frequency noise 

due to the treadmill motors, respectively. From these filtered data, we then computed the sagittal 

plane kinematics and kinetics (internal moments and powers) of the hip, knee, and ankle joints of 

the right leg (the leg that was wearing the brace). These data were segmented at heel-strike and 

ensemble averaged across strides. We then subtracted the average device moment and power 
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from the knee data to account for the device's contribution. Processed kinematics and kinetics 

data (for all joints) can be downloaded at: http://neurro-lab.engin.umich.edu/downloads 

(Experiment 1 Biomechanics Data). Note that only kinematics from the aftereffect trials were 

compared for experiment 2. 

5.3 Results 

5.3.1 Benchtop Validation of the Device 

Calibration curves for the individual springs can be found in Figure 5.3 (Left). These data 

are compared with theoretical stiffnesses (based on the factory spring calibrations) in Table B.1. 

Overall, the results indicated that the stiffness parameters (𝑘𝑘𝐻𝐻) of the device could be accurately 

altered in evenly spaced increments (approximately 0.112 N m deg-1 change in stiffness between 

springs). On average, the absolute percentage error in spring stiffness measured from the device, 

when compared with our theoretical calculations, was 9.8%. Interestingly, our measured 

stiffnesses were higher than theoretical for the smaller springs, and lower than theoretical for the 

larger (stiffer) springs. These errors likely occurred due to hysteresis caused by friction in the 

system, or deformation of the system, respectively (Figure B.3). Additionally, these 

characterization curves were repeatable over two cycles of loading (see Appendix B.4).  

Additionally, we validated the ability to change the resting position of the device (𝜃𝜃𝑅𝑅). A 

linear fit of these data can be found in Figure 5.3 (Right). We then compared our measured 

resting position with the theoretical resting position calculated based on Equation 5.6 (Table 

B.1). On average, the absolute difference between our measured values and the theoretical values 

was 1.9 deg. This is much smaller than the minimum increment of the ratchet gear, 15 deg. 

http://neurro-lab.engin.umich.edu/downloads
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Figure 5.4 Gait biomechanics and electromyography while walking with the device set to resist knee flexion. The device was 
configured to provide three levels (Low, Medium, and High) of resistance to the leg during flexion (i.e., the device was providing 
an extension torque). The diagram at the top left shows the sign convention for angles and moments. Positive knee powers 
indicate the joint was generating power (i.e., contracting concentrically) while negative powers indicate the joint was absorbing 
power (i.e., contracting eccentrically). Plots on the far right show the muscle activation of the quadriceps (vastus medialis [VM], 
rectus femoris [RF]) and hamstring muscles (medial hamstring [MH], and lateral hamstring [LH]). In all plots, the x-axis 
indicates the percentage of the gait cycle over a stride. Units: deg = degrees, Nm = newton meters, W = watts, %MVC = 
percentage of maximum voluntary contraction. 

5.3.2 Experiment 1: Device Performance during Walking 

5.3.2.1 Resisting Flexion 

Walking with the device set to provide no resistance did not have a large effect on any of the 

metrics measured in this experiment when compared with baseline walking (Figure 5.4). When 

resisting flexion, the device output max resistances of 14.1, 23.4, and 33.1 Nm for the low, 

medium, and high resistances, respectively. The peak resistance occurred during early swing, 

where knee flexion is typically the largest. Consequently, we found the knee flexion moment was 

increased during the swing phase. Surprisingly, the knee extension moment increased during the 

stance phase—a movement that should have been assisted during this condition. We believe this 

occurred because the knee was flexed at heel-strike; hence, knee extension had to counteract the 

bodyweight. Interestingly, we saw that the joint power was more negative (i.e., absorption 
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increased) during early stance and late swing. Meanwhile, joint power was more positive (i.e., 

generation increased) during the early swing phase. Muscle activation of the hamstrings was 

increased during late stance and throughout the swing phase of gait. Quadriceps muscle 

activation was slightly increased during early stance. 

 

Figure 5.5 Gait biomechanics and electromyography while walking with the device set to resist knee extension. The device was 
configured to provide three levels (Low, Medium, and High) of resistance to the leg during extension (i.e., the device was 
providing a flexion torque). The diagram at the top left shows the sign convention for angles and moments. Positive knee powers 
indicate the joint was generating power (i.e., contracting concentrically) while negative powers indicate the joint was absorbing 
power (i.e., contracting eccentrically). Plots on the far right show the muscle activation of the quadriceps (vastus medialis [VM], 
rectus femoris [RF]) and hamstring muscles (medial hamstring [MH], and lateral hamstring [LH]). In all plots, the x-axis 
indicates the percentage of the gait cycle over a stride. Units: deg = degrees, Nm = newton meters, W = watts, %MVC = 
percentage of maximum voluntary contraction. 

5.3.2.2 Resisting Extension 

During this condition, the device output maximum resistances of 11.4, 19.0, and 22.5 Nm 

for the low, medium, and high resistances, respectively (Figure 5.5). This peak occurred during 

the stance and late swing phases, where the knee is extended. Generally, the device increased the 

knee extension moment during the stance and the late swing phase. Joint power was more 

negative during the early stance phase (i.e., absorption increased). During late swing, a period of 

the gait cycle where the hamstrings usually act eccentrically, we saw less power absorption. 
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Muscle activations of the quadriceps muscles were greatly increased during early–mid stance and 

late swing. The hamstrings showed some increased muscle activation during late stance. 

 

Figure 5.6 Gait biomechanics and electromyography while walking with the device set to resist the knee bidirectionally (i.e., 
resisting both flexion and extension). The device was configured to provide three levels (Low, Medium, and High) of 
bidirectional resistance. The diagram at the top left shows the sign convention for angles and moments. Positive knee powers 
indicate the joint was generating power (i.e., contracting concentrically) while negative powers indicate the joint was absorbing 
power (i.e., contracting eccentrically). Plots on the far right show the muscle activation of the quadriceps (vastus medialis [VM], 
rectus femoris [RF]) and hamstring muscles (medial hamstring [MH], and lateral hamstring [LH]). In all plots, the x-axis 
indicates the percentage of the gait cycle over a stride. Units: deg = degrees, Nm = newton meters, W = watts, %MVC = 
percentage of maximum voluntary contraction. 

5.3.2.3 Resisting Bidirectionally 

During the bidirectional resistance condition, the device succeeded in providing both 

flexion and extension resistances (Figure 5.6). During this condition, the device output maximum 

extension torques (i.e., resisting flexion) of 13.9, 23.7, and 31.9 Nm, and maximum flexion 

torques (i.e., resisting extension) of 10.8, 14.4, and 16.4 Nm for the low, medium, and high 

resistances, respectively. On average, the bidirectional resistance was 10% below what was seen 

during the unidirectional resistance conditions, and these discrepancies were more pronounced 

when resisting extension. All springs elicited increases in knee extension moment during the 

early stance phase and knee flexion moment during early–mid swing. The extra knee extension 

moment during the stance phase led to more negative power (i.e., absorption increased) after 
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heel-strike, followed by an increase in positive power (i.e., increased generation) in early-mid 

stance. These were paralleled by increases in quadriceps muscle activation at these phases. At the 

beginning of the swing phase joint power was more positive (i.e., generation increased), which 

was paralleled by large increases in hamstring muscle activation. 

 

Figure 5.7 Kinematic aftereffects following the removal of resistance. Comparing the kinematics before and after a training 
allowed us to measure the aftereffects for each resistance configuration. The top three rows depict the sagittal hip, knee, and 
ankle joint angles. The y-axis indicates the angle in degrees, while the x-axis indicates the percentage of the gait cycle over a 
stride. The bottom row depicts the sagittal ankle trajectories (i.e., the path that the ankle traveled) relative to the hip and offset 
from ground. In these plots, the y-axis indicates movement in the vertical direction (in meters), while the x-axis indicates 
movement in the anterior-posterior direction. Hence, an increase in y means the foot was being lifted higher, while an increase in 
x-excursion could indicate a larger step length. 

5.3.3 Experiment 2: Aftereffects Following Adaptation 

Removing the resistance and visual feedback resulted in kinematic aftereffects that varied 

based on the type of resistance provided (Figure 5.7). After walking with resistance to knee 

flexion, hip and knee flexion angles increased and the ankle was more dorsiflexed throughout the 

swing phase when compared with the walking with no resistance. When viewed as an ankle 

trajectory, the participant was lifting their foot higher during the swing phase. Walking with 

resistance to knee extension resulted in increased knee extension and ankle plantarflexion during 

the stance phase of the aftereffect trial. The ankle trajectory aftereffect had a larger x-excursion, 
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indicating a longer step length. Walking with bidirectional resistance appeared to combine the 

effects seen in the flexion and extension conditions. Hip flexion, knee flexion, and ankle 

dorsiflexion increased during the swing phase, while knee extension and ankle plantarflexion 

increased during the stance phase. This resulted in an ankle trajectory where the foot was lifted 

higher and step length was larger. Notably, knee kinematics returned to the levels seen during the 

no resistance trial following the washout trials (Figure B.4). 

5.4 Discussion 

The goal of this research was to develop a unique exoskeleton device that could provide 

various types of elastic resistance during walking. Subsequently, we created a novel elastic 

mechanism then fit the resulting device to a hip and knee orthosis, so as to provide resistance to 

the knee. During benchtop validation, we found the elastic mechanism could provide a nearly 

linear torque profile, and the device could be configured to alter the resting position of the spring 

system with high accuracy; thus, permitting resistance to flexion, extension, or both (i.e., 

bidirectionally). When validating during treadmill walking, we found that these resistance 

configurations could be used to target preferentially knee flexion, extension, or both. Moreover, 

the device could be used to increase power absorption at the joint, which could be used to 

eccentrically load the leg muscles. Lastly, once the resistance was removed, the different 

resistance configurations elicited different kinematic aftereffects. Thus, elastic devices such as 

this could serve as a diverse tool for functional resistance training paradigms aimed at targeting 

specific weaknesses or kinematic outcomes. 

Through the treadmill walking validation experiment, we found that the resistance 

configurations could be used to target resistance to their respective joint motions. Specifically, 

while resisting knee flexion, the device increased knee flexion moment and hamstring activation 
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during the swing phase; while resisting knee extension, the device increased knee extension 

moments and quadriceps activation during the early stance and late swing phases; and under a 

bidirectional resistance, the device increased both flexion and extension moments and activated 

each muscle group at their respective times. These were exciting findings, as most elastic devices 

are not capable of providing this level of targeted resistance; instead, they are limited to resisting 

a single joint motion (Cherry et al., 2006; Cherry et al., 2016; Mankala et al., 2009; Shamaei et 

al., 2014; Sulzer et al., 2009). Additionally, we found this device could return energy to the user, 

which could be used to elicit eccentric contractions. This was clearly demonstrated during the 

late swing phase when the device was resisting knee flexion, as we found increased power 

absorption at the knee paired with increased hamstring activation. Hence, the hamstrings could 

have been acting eccentrically at that time.  

The second walking validation experiment measured the aftereffects produced after 

training with the device. Aftereffects are believed to contain information about how the nervous 

system is adapting (Gordon et al., 2013; Morton & Bastian, 2006; Shadmehr & Mussa-Ivaldi, 

1994) and may serve as a marker for potential therapeutic gains, as aftereffects have been seen to 

transfer to overground walking (Regnaux et al., 2008; Reisman et al., 2009). In our experiment, 

we measured the kinematic aftereffects (i.e., changes in hip and knee angles, and ankle 

trajectory) elicited by the three different resistance configurations as the user received visual 

feedback. We found that resisting flexion increased hip and knee flexion, which resulted in a 

higher step height; resisting extension increased knee extension, which resulted in an increased 

step length; and resisting bidirectionally combined these effects to produce a higher step with 

longer length. Hence, the different device configurations could be used to elicit different control 

strategies for walking, and perhaps, the device configuration could be selected to treat patient-
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specific gait deficits. However, we would like to note that the aftereffects we observed are likely 

a result of the combined resistance and visual feedback. Further, research on a larger group of 

patients would be needed to elucidate the added effects of visual feedback and to demonstrate the 

cumulative effects of repeated training with the device. 

While the device mostly performed as intended, we also saw that performance reduced 

when storing large amounts of energy. During use, the device stored up to 28.35 J of energy 

(equivalent to lifting a 100 kg mass 3 cm). Under such high-energy conditions, we saw (1) errors 

between the theoretical and measured stiffnesses of springs during benchtop testing, and (2) 

diminished device moments with stiff springs during treadmill walking. Concerning (1), some 

errors arose in the form of hysteresis during loading/unloading due to friction between the 

plunger and cylinder (Figure B.3). While only a small amount of friction was present at low 

loads, the problem was worse at high loads. This did not affect the functionality of the device, 

but friction could influence how the device feels to the user. Another source of error that could 

have contributed to (1) is the deformation of structural components within the device under large 

loads, which led to nonlinearity in the stiffness profile (and an underestimation of stiffness, 

Figure B.3). Regarding (2), deformation of the leg brace components (i.e., the custom orthoses) 

hindered the devices ability to convey forces to the leg during walking. This was especially 

prominent when the device was resisting extension (Figure 5.5). While walking, the large 

amount of energy stored by the device caused soft tissues and padding on the brace to compress, 

which caused the brace joint to shift relative to the participant’s leg. When this happened, the 

device was unable to output a torque that scaled relative to the spring stiffness. Hence, when 

resisting extension, although the spring stiffness scaled by 38% between the medium and high 
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stiffness conditions, the peak device moment only scaled by 18%. However, many of these 

problems can be addressed with future iterations of the device. 

While the current prototype provides a good starting point for this device, there are many 

alterations that could be incorporated into future iterations to improve general usability and 

expand the capabilities of the device. To improve usability, future iterations could minimize 

friction in the device, either by using a more rigid material for the cylinder or changing the type 

of spring so a cylinder is not needed (e.g., extension springs). However, we note that there are 

many benefits of compression springs (e.g., large force/deflection capability, small footprint, 

safety) that could outweigh the drawbacks of other types of springs (e.g., fragile, difficult to 

interface with, etc.). Additionally, the leg braces we used were never intended to convey external 

forces to the leg. Rather, they are typically used to limit range of motion after surgical 

procedures. Hence, forces could be better conveyed to the leg if the brace were designed to fit 

more snugly and contact bony places on the leg. Finally, there are a few alterations that could 

expand the capabilities of the device. First, the resistance of the device could be put under 

computer control. Typically, it is difficult to control elastic systems, as control is achieved by 

exchanging the spring or adding pre-tension, which requires a lot of power. This is a drawback to 

elastic devices and a reason why viscous devices are intriguing, as they offer more potential to be 

continuously controlled (Washabaugh et al., 2016; Washabaugh et al., 2019). However, with this 

elastic brace, computer control could be achieved by controlling the clutches similar to an elastic 

device that has been used to reduce knee loading (Shamaei et al., 2015). This modification would 

allow the device to remain passive (as power would not be introduced to the user) and would 

greatly increase the likelihood of the device being worn during everyday life. Lastly, the current 

device can be adapted to provide resistance to other joints and during other functional tasks. 
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Although providing resistance to walking was the goal of this paper, the potential for such a 

device is far-reaching. 

5.5 Conclusion 

In this study, we developed a unique exoskeleton device to provide elastic resistances to 

the knee during walking. The elastic mechanism we designed allowed us to alter the stiffness of 

the device and control the resting position of the spring system. Thus, the device could be 

configured to provide resistance to joint flexion, extension, or bidirectionally. During walking, 

these configurations were shown to target specific joint motions and muscle groups. 

Additionally, the device was able to increase power absorption at the joint, which is atypical for 

many resistive leg braces. Lastly, the different resistance configurations elicited different 

kinematic aftereffects. Hence, such elastic devices could serve as a diverse tool for functional 

resistance training paradigms. 
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Chapter 6  

Comparing how the Resistance Type and Targeted Joint Acutely Affects Functional 

Resistance Training during Walking 

 

Abstract 

Applying resistance to the leg during walking is an emerging approach that is being used 

to rehabilitate individuals with neuromuscular or orthopedic injuries. When this training is 

applied using a wearable exoskeleton or leg brace, resistance can be targeted to a weakened leg 

joint. However, the kinetics of training with these devices can vary greatly based on the type of 

resistance that is used. Hence, this study was designed to examine how functional resistance 

training of walking differs while using viscous and elastic resistances, or when targeting the hip 

or knee joints. Fourteen able-bodied individuals came into the lab on separate visits at least 96 

hours apart, where they were trained with either a device that provided viscous resistance to the 

knee, elastic resistance to the knee, or viscous resistance to the hip and knee in a bidirectional 

(i.e., targeting joint flexion and extension) manner. We measured gait biomechanics and muscle 

activation during training, as well as kinematic aftereffects and changes in peripheral fatigue and 

neural excitability after training. We found that the resistance type and targeted joints 

differentially altered gait kinetics during training. However, these differences did not translate to 

device-specific differences in aftereffects, peripheral fatigue, or neural excitability. Instead, each 

group showed similar changes in these variables. The results of this study demonstrated how 

different resistance types can be used to alter gait biomechanics during functional resistance 
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training. Although we did not find resistance-specific changes in neural adaptation following an 

acute training session, it is still possible that prolonged training could produce differential 

effects.  

6.1 Introduction 

Resistance training is a widely used approach for promoting strength and recovery during 

physical therapy (Cramp et al., 2006; Flansbjer et al., 2008; Lima et al., 2013; Liu & Latham, 

2009; Pak & Patten, 2008). However, there are many different types of resistive loads that can be 

used for strength training. For example, clinics may use free weights, elastic resistance bands, 

pneumatic/hydraulic exercise machines, or even pools to apply resistance during training 

(Stoeckmann et al., 2009). When training with these different methods, the kinetics of the 

training are going to vary greatly depending on the type of resistive element that is used 

(Stoeckmann et al., 2009). For example, free-weight-based resistances depend on the 

acceleration of the movement, elastic resistances scale based on the position, and viscous 

resistances depend on velocity. Undoubtedly, these types of elements yield resistances that differ 

in how they engage the muscles during use and how they feel to the user. Because of these 

differences, it is often debated which type of resistance is most beneficial for certain exercises or 

types of training (Aboodarda et al., 2016; Anderson et al., 2008; Brandt et al., 2013; Lima et al., 

2018; Stoeckmann et al., 2009).  

Functional resistance training is a technique that is frequently used in clinics to combat 

the strength deficits and functional limitations that follow ageing or neural and orthopedic 

injuries. It is administered by having patients perform a functional task (e.g., converting between 

a sit and a stand) while additional loading is used to make the task more difficult (Blundell et al., 

2003; Donaldson et al., 2009; Kerr et al., 2017; Lohne-Seiler et al., 2013; Yang et al., 2006). By 
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design, the task-specific nature of this training should reinforce neural circuits while the 

resistance strengthens the key muscles used in the task (Carroll et al., 2001; Donaldson et al., 

2009; Krebs et al., 2007; Sullivan et al., 2007). Recently this technique has been widely applied 

to retrain walking. Again, there are many different types of resistive loads, including basic 

resistive methods that are common in clinics (i.e., weighted cuffs and elastic bands) (Blanchette 

& Bouyer, 2009; Browning et al., 2007; Duclos et al., 2014; Gottschall & Kram, 2003; Noble & 

Prentice, 2006) and wearable leg braces/exoskeletons (Blanchette et al., 2014; Conner et al., 

2020; Lam et al., 2006; Martini et al., 2019; Noel et al., 2008; Washabaugh et al., 2016; 

Washabaugh & Krishnan, 2018). Wearable exoskeletons have large promise for this type of 

training because they can target the resistance to a weakened leg joint and give therapists greater 

control over the treatment. However, there are two important questions to be considered when 

using these devices: 1) what type of resistance should be applied and 2) to which joints should 

resistance be applied.  

While there are numerous types of resistances that can be applied for functional 

resistance training during walking, wearable exoskeleton devices have commonly provided 

resistances that behave as viscous (Lam et al., 2006; Washabaugh et al., 2016; Washabaugh & 

Krishnan, 2018) or elastic (Blanchette et al., 2014; Washabaugh, Augenstein, Ebenhoeh, et al., 

2020). The widespread use of viscous resistances is not surprising, as viscous resistances have 

the benefits of smoothness and safety. However, because viscous resistances are velocity-

dependent, they are only able to resist muscles during concentric contractions (i.e. the muscle 

shortens while in tension). Meanwhile, elastic resistances are position-dependent, which makes 

them capable of resisting both concentric and eccentric contractions (i.e. the muscle shortens 

while in tension) during functional resistance training (Washabaugh, Augenstein, Ebenhoeh, et 
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al., 2020). Such differences could alter several aspects of training. For example, when comparing 

concentric and eccentric training, concentric contractions have been found to acutely increase 

muscular fatigue (Pasquet et al., 2000), while the cumulative effects of eccentric training have 

been found to better promote strength (Kaminski et al., 1998; Roig et al., 2009). However, no 

studies have directly compared the effects of functional resistance training during walking with 

different types of resistances.  

There is a similar paucity of research examining the joint that is targeted for functional 

resistance training during walking. While there have been studies that have targeted the hip 

(Houldin et al., 2012; Houldin et al., 2011), knee (Diaz et al., 1997; Washabaugh, Augenstein, 

Ebenhoeh, et al., 2020; Washabaugh et al., 2016; Washabaugh & Krishnan, 2018), both the hip 

and the knee (Klarner et al., 2013; Lam et al., 2006; Zabukovec et al., 2013), and the ankle 

(Barthélemy et al., 2012; Blanchette et al., 2011; Conner et al., 2020), no studies have directly 

compared any of these training methods. Ultimately, the joint that is targeted could be of more 

importance than the type of resistance that is provided, as each joint has a specific role in the 

control of walking (Whittle, 2007). Moreover, neuromuscular injuries often affect one or many 

of these joints at a time. For example, individuals recovering from an anterior cruciate ligament 

injury will have greater weakness in the muscles surrounding the knee (Arangio et al., 1997; 

Palmieri-Smith & Lepley, 2015), while a neurological injury (such as stroke) may have 

weakness down the entire leg (Awad et al., 2020; Lomaglio & Eng, 2008; Mulroy et al., 2003). 

However, it can be difficult to convey large resistances to the leg using wearable exoskeleton 

devices. Hence, research in this area would help determine how specific injuries could be treated 

and identify future areas for resistive exoskeleton development.  
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In this study, we ran two experiments to compare different methods for functional 

resistance training during walking. In the first experiment, we compared how elastic and viscous 

resistive elements differ in their ability to provide bidirectional (i.e., resisting both flexion and 

extension) resistance to the knee during walking. In the second experiment, we compared 

training with different joint configurations of the viscous device—we provided bidirectional 

resistance to either the knee or both the hip and knee together. During both experiments, resistive 

strategies were compared acutely (i.e., after a single training session) based on how they altered 

gait biomechanics and muscle activation during training, as well as kinematic aftereffects, 

peripheral fatigue, and neural excitability after training. In both experiments, we hypothesized 

that the resistance type or device configuration would alter kinetics and muscle activation during 

training. Also, that kinematic aftereffects, peripheral fatigue, and neural excitability would be 

altered based on these training effects. Specifically, in experiment 1, we hypothesized the elastic 

resistance would resist the quadriceps during the stance phase when compared with training with 

the viscous resistance. Hence, the elastic device would produce greater peripheral fatigue and 

changes in neural excitability of this muscle group. In experiment 2, we hypothesized that the 

hip-knee configuration would increase the hip extension moment and hamstring activation 

during the stance phase and would also increase hip flexion moment and quadriceps activation 

during the swing phase when compared with the knee configuration. Hence, the hip-knee 

configuration would produce larger changes in aftereffects, peripheral fatigue, and neural 

excitability for these joint movements/muscle groups.  

6.2 Materials and Methods 

Fourteen healthy individuals participated in the study (Table 6.1). All participants were 

determined to be right leg dominant based on which leg they preferred to use to kick a ball 
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(Krishnan & Williams, 2014). Prior to the study, all participants reviewed and signed an 

informed consent document approved by the University of Michigan Institutional Review Board 

(HUM00093673, approved on 5/24/2018). After signing the informed consent, participants were 

required to complete four testing sessions.  

Table 6.1 Demographic information, strength, and overground gait velocity 

Participant Sex Age Height Mass Hip Ext Hip Flex Knee Ext Knee Flex 
Gait 

Speed 
    (yr) (cm) (kg) (Nm) (m/s) 

1 F 21 163 54 87.7 97.9 187.8 71.0 1.71 
2 F 20 168 64 80.6 86.8 148.6 88.1 1.36 
3* F 21 168 59 71.0 114.4 151.6 101.0 1.22 
4 M 22 173 74 97.8 103.8 201.1 125.8 1.32 
5 M 18 173 68 80.6 107.4 156.7 122.1 1.18 
6 F 22 175 68 74.0 92.6 137.4 70.3 1.33 
7 F 26 163 50 70.6 79.3 170.5 89.5 1.89 
8 F 20 160 68 92.8 123.1 170.1 99.3 1.26 
9 F 18 172 59 56.6 64.3 131.8 83.5 1.38 
10 F 20 158 53 64.6 72.6 100.5 54.8 1.36 
11* M 25 185 80 157.5 166.5 282.9 161.3 1.66 
12 M 24 185 93 126.5 151.4 299.2 142.3 1.39 
13 M 19 180 66 108.4 144.6 185.0 126.9 1.43 
14 M 22 180 77 133.4 119.4 242.6 145.1 1.65 
Average   21 172 67 93.0 108.9 183.3 105.8 1.44 
Average*   21 171 66 89.5 103.6 177.6 101.6 1.44 
* Participants were excluded from biomechanics data analysis because of either an equipment malfunction or 
the participant misunderstood instructions. 

6.2.1 Preliminary Session 

Prior to training, we measured the participant’s strength and self-selected walking speed. 

Strength of the right (training) leg was measured by having participants perform maximum 

voluntary isometric contractions (MVICs) of the knee and hip extensors and flexors while in a 

Biodex dynamometer (System Pro 4, Biodex, Shirley, NY). When measuring knee strength, 

participants were seated and fastened in the dynamometer with their hip at 85 degrees and their 

right knee fixed at 45 degrees of flexion. When measuring hip strength, participants stood 

upright as the arm of the dynamometer was aligned with their hip joint center and affixed to their 

thigh. During contractions, participants stabilized themselves by holding firmly to a rigid portion 

of the dynamometer. Participants warmed up by performing submaximal contractions of 25%, 
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50%, and 75% of their perceived maximum. Participants then performed three MVICs for each 

movement which were averaged to represent strength (Table 6.1). Between MVICs participants 

were given 120 s of rest.  

Self-selected walking speed was measured using the 10-meter walk test, where 

participants walked on a 12-meter straight walkway, while a stopwatch was used to time the 

intermediate 10-meter walk. The average of three 10-meter walk tests was used to calculate self-

selected walking speed (Table 6.1). Participants were given at least four days of rest between 

laboratory visits. 

 

Figure 6.1 Summary of the training protocol. Participants came to the lab for three training sessions that differed based on the 
resistive method that was used for functional resistance training during walking (Top Left), including a viscous resistance at the 
knee, elastic resistance at the knee, or viscous resistance to the hip and knee. All devices operated in a bidirectional manner (i.e., 
targeting joint flexion and extension). (Top Right) During the training protocol, we used electrical stimulation of the thigh 
muscles to measure peripheral fatigue (E-Stim) and transcranial magnetic stimulation (TMS) to measure neural excitability. We 
measured normal gait kinematics while the participant walked overground and during a baseline trial on the treadmill. The 
participant underwent four training trials, where they walked with resistance, that were interspersed with catch trials, where they 
walked with the resistance removed. (Bottom Right) During training trials 2–4 participants received visual feedback based on the 
joint angles as measured with encoders of the device. They were encouraged to use feedback of their current angle to match their 
average maximum and minimum joint angles as measured during the baseline trial. (Bottom Middle) A schematic indicating 
where markers were placed for motion capture, including physical markers and marker clusters, as well as virtual markers that 
were placed with a stylus if the device obstructed a bony landmark. (Bottom Left) A schematic indicating which blocks were 
used to identify how resistance type or device configuration would alter kinetics and muscle activation during training, as well as 
kinematic aftereffects, peripheral fatigue, and neural excitability following training.  
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6.2.2 Training Sessions 

Participants returned to the lab for three additional sessions where, during each session, 

we trained them using a different method for providing resistance during walking, including 

walking with a bidirectional viscous resistance at the knee, bidirectional elastic resistance at the 

knee, and a bidirectional viscous resistance at the hip and knee (Figure 6.1). The order in which 

participants were exposed to these trainings was pseudo-randomized to minimize the effect that 

training order could have when comparing the resistances. The protocol for these training 

sessions can be found in Figure 6.1.  

6.2.2.1 Electrical Stimulation 

At the beginning of each training session, we evaluated the mechanical properties (i.e., 

twitch tension) of the quadriceps and hamstring muscles using previously established procedures 

(Krishnan & Williams, 2011). The skin of the anterior and posterior right thigh was cleansed 

with alcohol swabs, then a pair of self-adhesive carbon electrodes were placed over the proximal 

and distal quadriceps (electrode dimensions: 2.75 × 5.0 in) and hamstring muscles (electrode 

dimensions: 2.0 × 3.5 in). Participants were seated in the dynamometer as they were during 

strength testing (Figure 6.2), and electrical pulses were delivered using a high-voltage, constant-

current electrical stimulator (DS7AH; Digitimer, Hertfordshire, U.K.). During the first session, 

the current intensity for each participant was determined by stimulating each muscle group at rest 

with singlet pulses (200-μs pulse duration, 400 V) in sequential steps until the evoked torque 

failed to increase, but decreased (Krishnan & Williams, 2011). For the quadriceps and 

hamstrings, sequential stimulations began at 100 mA and 80 mA and were stepped in 100 mA 

and 20 mA increments, respectively. Once the torque decreased, the current was then reduced by 

half the step magnitude and a final stimulation was provided. The current that elicited the largest 
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twitch amplitude was selected for the remainder of the study. Each muscle group was then 

stimulated with three sets of triplet pulse trains of 20 Hz and we measured the resulting twitch 

torque from the dynamometer.  

6.2.2.2 Electromyography 

We then placed electromyography (EMG) surface electrodes (Trigno Avanti, Delsys, 

Natick, MA, US) over the muscle bellies of several lower-extremity muscles: 1) quadriceps 

muscles (vastus medialis [VM], vastus lateralis [VL], and rectus femoris [RF]), 2) hamstring 

muscles (medial hamstring [MH], and lateral hamstring [LH]), 3) an ankle dorsiflexor muscle 

(tibialis anterior [TA]), 4) ankle plantar flexor muscles (medial gastrocnemius [MG], and soleus 

[SO]), and 5) a hip abductor muscle (gluteus medius [GM]). These sensors were placed on the 

right leg according to the established guidelines at www.seniam.org. Sensor positions were 

slightly altered from established guidelines if the leg brace hindered placement. EMG electrodes 

were tightly secured to the skin using self-adhesive tapes and cotton elastic bandages.  
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Figure 6.2 Schematic depicting how electrical stimulation and transcranial magnetic stimulation were used to measure peripheral 
fatigue and neural excitability, respectively.  

6.2.2.3 Transcranial Magnetic Stimulation 

Transcranial magnetic stimulation was then performed to get a baseline with which to 

compare neural excitability of the corticospinal tract (Figure 6.2). Again, participants were 

seated in the dynamometer and TMS was applied during both knee flexion and extension while 

participants performed a task to match 10% of their MVIC (i.e., a background contraction). 

Motor-evoked responses were elicited using a Magstim 2002 stimulator (Magstim Co Ltd, 

Whitland, UK) via a 110-mm diameter double-cone coil. The coil was oriented to induce a 

posterior-to-anterior current flow in the cortex. The hotspot location was determined by first 
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measuring 1.0 cm posterior and 2.0 cm lateral from the vertex, such that the hotspot was 

contralateral to the leg being tested. From this location, the coil was systematically moved to 

determine the location that elicited the largest and most consistent motor-evoked responses for 

both muscle groups (i.e., flexion and extension). This hotspot location was then registered using 

a stereotactic navigation system that located the coil relative to the participant’s scalp (Rodseth et 

al., 2017). Active motor threshold (AMT) was determined individually for each muscle group as 

the minimum intensity that elicited a motor-evoked response discernable from background noise 

with a 60% success rate (i.e., 3 out of 5 stimuli). We then performed 25 stimulations at an 

intensity of 140% AMT and measured the evoked torque for each muscle group.  

6.2.2.4 Motion Capture 

Prior to each session, we calibrated the capture volume of our motion capture system 

(Qualisys Track Manager [QTM], Qualisys, Göteborg, SE), which consisted of 12 infrared 

tracking cameras (Miqus M3) and two video cameras (Miqus Video), and performed an analog 

zeroing of our instrumented split-belt treadmill (Bertec, Columbus, OH, US). Following TMS, 

reflective markers were placed on the legs for motion capture (Figure 6.1); we used the CAST 

(calibrated anatomical systems technique) lower extremity marker set (Cappozzo et al., 1995). 

For both legs, individual markers were placed over the anterior and posterior iliac spine, medial 

and lateral femoral epicondyles, medial and lateral malleoli of the ankle, and at the 1st, 2nd, and 

5th metatarsals and calcaneus of the foot. Additionally, marker clusters were placed on the thighs 

and shanks. In our implementation, because the leg brace obstructed our ability to place physical 

markers over the iliac spine and right femoral epicondyles, several markers were placed virtually 

with a stylus; hence, an additional cluster was required on the back of the pelvis to aid in 

tracking of the virtual iliac spine markers (Washabaugh, Augenstein, Ebenhoeh, et al., 2020). All 
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individual markers were secured to the leg using self-adhesive tapes, whereas clusters were 

secured via hook-and-loop fastener elastic wraps (MediWrap, fabrifoam, Exton, PA, US).  

Once markers were placed, we collected a static trial where the participant stood upright 

and motionless on the treadmill as the cameras recorded the positions of the physical markers. 

With each static trial, we also performed a pointer trial, where the participant remained upright 

as we used a stylus (a calibrated rigid body) to indicate the positions for virtual markers. During 

this pointer trial, an event was created in the motion capture software (i.e., the time point was 

saved) when the stylus was in the correct position for each virtual marker.  

6.2.2.5 Overground Walking 

Participants walked overground as we measured gait kinematics to see if any aftereffects 

transferred to overground walking. Overground walking took place on a 6 m long walkway that 

was integrated with the instrumented treadmill. Participants traversed the walkway two times as 

we measured kinematics.  

6.2.2.6 Training 

We then assisted the participant in donning the resistive device for that session. Once the 

device was fitted properly, we performed a second static trial, then a baseline trial where the 

participant walked on the treadmill for a duration of 120 s while wearing the device with no 

resistance (i.e., with the magnet exposure removed from the disk or with the springs disengaged). 

The treadmill speed was set to 60% of the participant’s self-selected walking speed (Table 6.1) 

for all treadmill trials. For safety purposes, participants were permitted to rest their hands on the 

treadmill’s front railing but were instructed to apply minimal pressure.  

Finally, participants trained with the device. In total, there were four 300 s training trials 

interspersed with 30 s catch trials. During each training trial, the resistance of the device was set 
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for each joint action (i.e., flexion or extension) to be 15-20% of their MVIC. These resistance 

settings for the device were determined based on the average kinematics during the baseline trial 

(See Equation 6.1 and Equation 6.2). During the first training trial, participants were instructed to 

walk in a manner that felt natural and did not receive any additional feedback. During the 

remaining three training trials, participants walked as they received visual feedback of their hip 

and knee joint angles as measured with the encoders on the device. Feedback consisted of bar 

plots for each joint that displayed the average maximum and minimum joint angles from the 

baseline trial along with a cursor of the real-time joint angle (Figure 6.1). The participants were 

encouraged to reach peak flexion during early swing and peak extension when they approached 

heel-strike. Feedback was created using a custom LabVIEW vi (v2013, National Instruments 

Corp., Austin, TX, US) and displayed on a 177.8 cm (70 in) monitor located approximately 2.5 

m in front of the treadmill. 

After each the first three training trials, the feedback and resistance were quickly 

removed, and the participants walked on the treadmill for a 30 s catch trial. Before the catch trial, 

participants were again instructed to walk in a way that felt natural. These catch trials allowed us 

to monitor adaptation during the training session.  

After the last training trial, the experimenters helped the participants doff the device and 

repeated overground walking. We then performed a third static trial, removed all reflective 

markers, then repeated our procedures for transcranial magnetic stimulation and electrical 

stimulation.  

6.2.3 Devices for Providing Resistances 

Resistances were provided using wearable exoskeleton devices previously developed in 

our lab (Washabaugh, Augenstein, Ebenhoeh, et al., 2020; Washabaugh et al., 2016). The elastic 
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device operated using a pair of counteracting springs and pulleys. Calibrated compression 

springs were housed within the cylinders on the device and connected to the pulleys using cables. 

Within each pulley was a clutch mechanism that allowed us to create offsetting pre-tensions 

within each spring. For this study, the mechanism was configured to provide a bidirectional 

resistance (i.e., having both flexion and extension components) that varied linearly with joint 

angle according to: 

Τ𝑘𝑘 = 𝜏𝜏𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥 − 𝜏𝜏𝑘𝑘𝑥𝑥𝑒𝑒 = 𝑘𝑘𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥(max (𝜃𝜃𝑘𝑘𝑥𝑥𝑒𝑒) − 𝜃𝜃𝑘𝑘) − 𝑘𝑘𝑘𝑘𝑥𝑥𝑒𝑒�𝜃𝜃𝑘𝑘 − max (𝜃𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥)�, 

such that |T𝑘𝑘| =  �
% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥, if 𝜃𝜃𝑘𝑘 =  max (𝜃𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥)
% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑥𝑥𝑒𝑒, if 𝜃𝜃𝑘𝑘 =  max (𝜃𝜃𝑘𝑘𝑥𝑥𝑒𝑒)

 

Equation 6.1 

where Τ𝑘𝑘 was the net device torque about the knee and 𝜏𝜏𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥 and 𝜏𝜏𝑘𝑘𝑥𝑥𝑒𝑒 were the individual torque 

components that resisted flexion and extension, respectively. Within each of these components, 

𝑘𝑘𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥 was the stiffness of the spring that was resisting knee flexion, 𝑘𝑘𝑘𝑘𝑥𝑥𝑒𝑒 was the stiffness of the 

spring resisting extension (units: Nm deg-1), 𝜃𝜃𝑘𝑘 was the real-time knee angle, and max (𝜃𝜃𝑘𝑘𝑥𝑥𝑒𝑒) and 

max (𝜃𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥) were the maximum extension and flexion angles measured from the average knee 

angle profile during the baseline trial, and represent the angle where each clutch was engaged. 

Spring stiffnesses 𝑘𝑘𝑘𝑘𝑥𝑥𝑒𝑒 and 𝑘𝑘𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥 were selected in this study so that when 𝜃𝜃𝑘𝑘 was equal to either 

max (𝜃𝜃𝑘𝑘𝑥𝑥𝑒𝑒) or max (𝜃𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥), the magnitude of Τ𝑘𝑘 was equal to a percentage of the participants 

extension or flexion maximum voluntary isometric contraction (MVIC) as measured before 

training, respectively.  

The viscous device used a miniature magnetic disk brake in order to provide a velocity-

dependent resistance to the joint. Magnetic brakes provide resistance when a conductive material 

is moved through a magnetic field. In this instance, the conductor was an aluminum disk and the 

magnetic field was provided using permanent rare-earth magnets. The resistive capabilities of 
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this mechanism were altered by changing the area of the magnetic field that is exposed to the 

disk (i.e., more magnet exposure increased the damping coefficient). While the magnet exposure 

of our previous device had to be manually adjusted, the device in this experiment was modified 

so that we could specifically target the training needs of knee extensors or flexors. This was done 

by making the device semi-passive; hence, the manual mechanism was replaced with a servo-

controlled mechanism (1207 TG, Power HD, Pololu Corporation, Las Vegas, US). Thus, magnet 

settings could be adjusted based on the joint that the device was resisting and whether the joint 

was being flexed or extended. The torque of the device was set according to:  

Tℎ/𝑘𝑘 = −𝛽𝛽ℎ/𝑘𝑘�̇�𝜃ℎ/𝑘𝑘, 

𝑤𝑤ℎ𝐴𝐴𝑒𝑒𝐴𝐴 𝛽𝛽ℎ =   
0.42

1 + 𝐴𝐴−
(𝑥𝑥ℎ−0.59)

0.15

 

𝑎𝑎𝐴𝐴𝑑𝑑 𝛽𝛽𝑘𝑘 =
0.17

1 + 𝐴𝐴−
(𝑥𝑥𝑘𝑘−0.56)

0.16
 

such that �Tℎ/𝑘𝑘� =  �
% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥, if �̇�𝜃ℎ/𝑘𝑘 =  max (�̇�𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥)
% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑥𝑥𝑒𝑒, if �̇�𝜃ℎ/𝑘𝑘 =  max (�̇�𝜃𝑘𝑘𝑥𝑥𝑒𝑒)

. 

Equation 6.2 

In this equation, 𝛽𝛽 was the damping coefficient (units: Nm s deg-1), �̇�𝜃 was the angular velocity of 

the joint, and the subscripts h or k indicated whether the device was applied to the hip or knee 

joints. 𝛽𝛽 was characterized for each device using a dynamometer that measured torque over a 

range of movement velocities and magnet exposures (𝑥𝑥); these data were then fit to a sigmoid 

curve using the MATLAB Curve Fitting Toolbox. Note that 𝛽𝛽 was larger for the hip joint when 

compared with the knee joint [max (𝛽𝛽ℎ) =  .39 and max (𝛽𝛽𝑘𝑘) =  .16 Nm s deg-1] because that 

device had an additional pair of magnets to account for the joint’s slower movement velocities. 

During training, for each joint, magnet exposure was determined separately for flexion and 
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extension such that, when �̇�𝜃 was equal to the extrema of the average knee velocity profile 

measured during baseline trials [i.e., max (�̇�𝜃𝑓𝑓𝑎𝑎𝑘𝑘𝑥𝑥 ) or max (�̇�𝜃𝑘𝑘𝑥𝑥𝑒𝑒 )], the magnitude of T was equal 

to a percentage of the participants (MVIC) as measured before training.  

These devices were fitted to hip-knee orthosis consisting of a custom pelvis and thigh 

segments (Newport Bilateral MC & Newport Universal Thigh; Orthomerica Products, Inc.; 

Orlando, FL, US) and a modified orthopedic knee brace (T-Scope Premier Post-Op Knee Brace; 

Breg, Inc.; Carlsbad, CA, US). When resistance was only being applied to the knee, a freely 

moving joint was fit between the pelvis and thigh segments. Optical encoders were placed on 

each joint of the device (E4T-360, US Digital, Vancouver, WA, US) which were used to 

measure joint angles and velocities during use. Data were logged and devices were controlled 

using a custom LabVIEW program that communicated with a microprocessor (Arduino UNO, 

Arduino, Somerville, MA, US). 

6.2.4 Data Processing 

6.2.4.1 Electrical Stimulation 

Torque data and a sync signal corresponding to stimulation onset were sampled at a 

frequency of 2000 Hz. Using a custom LabVIEW processing software, the torque data were 

recursively filtered using a low-pass Butterworth filter (10 Hz, 4th order) (Garcia, Rodriguez, et 

al., 2020). The sync signal was used to automatically calculate the max amplitude of the evoked 

torque after stimulation (within 500 ms). The torque value at stimulation onset was then 

subtracted from the max amplitude. Note, the time window used to calculate the maximum 

torque amplitude was manually adjusted to account for volitional and reflex responses, which 

were monitored by comparing latencies within the trial and between time points (i.e., Pre to 

Post). These procedures were carried out for each stimulation, then the average amplitude was 
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calculated for each block. Between blocks, a decrease in the electrically stimulated torque 

indicated peripheral muscular fatigue and an increase indicated potentiation.  

6.2.4.2 Transcranial Magnetic Stimulation 

MEP data were collected from the torque sensor on the dynamometer at a frequency of 

2000 Hz, along with a sync signal that corresponded to stimulation onset. Processing was 

performed with a custom LabVIEW program. Raw data were segmented from 200 ms prior to 

the stimulation over a window of 500 ms for each of the 25 stimulations. These segmented data 

were then ensemble averaged to yield an average torque curve at each time point. From this 

curve, we measured the mean of the background contraction (i.e., the 80 ms prior to the stim) 

and the peak torque. For our measure of corticospinal excitability, the peak torque data were 

normalized to the background contraction (MEPT). In another analysis, to determine if alterations 

in corticospinal excitability were due to neural changes or just changes in the muscle properties 

(i.e., peripheral fatigue), the peak torque elicited during TMS was normalized to the peak torque 

elicited during electrical stimulation (MEPT/E).  

6.2.4.3 Electromyography 

EMG signals were processed so that we could evaluate muscle activation throughout the 

study. Raw EMG data were collected in Qualisys Track Manager (QTM) and sampled at 2000 

Hz. Using a custom LabVIEW program, these raw data were band-pass filtered (20-500 Hz), 

rectified, and smoothed using a zero phase-lag low-pass Butterworth digital filter (8th order, 6 

Hz). These data were segmented at heel strike (i.e., when the vertical axis of the force plate data 

exceeded 20N) then ensemble averaged across strides to compute mean EMG profiles for each 

trial. These profiles were then normalized to the peak amplitude of the EMG during the baseline 

trial.  
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6.2.4.4 Device Kinetics 

During each trial involving the leg brace, we collected the device angle from the encoder 

at a rate of 62.5 Hz using a custom LabVIEW program. For processing, we upsampled the 

encoder data to 2000 Hz, so that it matched the force plate data. We then performed a numerical 

derivative on the angle data to calculate the angular velocity. With the device angle and velocity, 

we used Equation 6.1 and Equation 6.2 to estimate the output torque, then multiplied this torque 

by the angular velocity to estimate power. These data were segmented into strides and ensemble 

averaged to yield a profile representing the average torque and power for each trial. 

6.2.4.5 Gait Kinematics and Kinetics 

Motion capture and force plate data were collected using QTM and sampled at 200 Hz 

and 2000 Hz, respectively. Gaps in the motion capture data were filled and markers were labeled 

in QTM. These data were then exported to Visual3D (C-Motion Inc., Germantown, MD, US) for 

further processing (see Appendix B.2.3 for full details). Briefly, skeletal models were 

constructed from the static trials (see Appendix B.2.2 for details) and applied to the walking 

trials. The marker position data and force plate data were low-pass filtered using a zero phase-lag 

Butterworth digital filter (6 Hz) to remove motion artifacts and high frequency noise due to the 

treadmill motors. From these filtered data, we then computed the sagittal plane kinematics and 

kinetics (internal moments and powers) of the hip, knee, and ankle joints. These data were 

segmented at heel-strike and ensemble averaged across strides. We then subtracted the average 

device moment and power from the hip and knee data to account for the device's contribution.  

6.2.5 Statistical Analysis  

For both experiments, all gait variables (i.e., kinematics, kinetics, and muscle activation) 

were analyzed using one-dimensional statistical parametric mapping (SPM1D, version 0.4, 
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https://spm1d.org/) in MATLAB (vR2019a, MathWorks, Natick, MA, US) over the full gait 

cycle. Specifically, for each comparison, we performed two-way ANOVAs (resistance type [2 

levels] × block [2 levels]) with repeated measures on both factors (see Figure 6.1 for specific 

blocks that were used in this model). SPM avoids many of the issues of conventional statistical 

procedures when performing time-series analysis (i.e., high error rates and loss of data) by using 

random field theory to generate a distribution and critical thresholds for hypothesis testing based 

on the smoothness of the data (Pataky et al., 2013). We note that during treadmill walking, two 

participants had to be removed from the analysis. In one instance there was an equipment 

malfunction and in the other the participant misunderstood instructions. For our analysis, all gait 

variables were piecewise linear length normalized (Helwig et al., 2011; Sadeghi et al., 2000) to 

align with distinctive features of the baseline kinematic profiles of the hip, knee, and ankle 

(Figure C.1). Muscle activation data were then log transformed to minimize skewness and 

heteroscedasticity (Krishnan et al., 2013). SPM{F} statistic curves were calculated at each time 

point of the gait cycle for both main effects and an interaction. We then identified significant 

clusters (i.e., groups of points along the time axis) that exceeded the critical threshold (α = 0.05). 

After a significant main effect, we reported the marginal means for each level over each cluster. 

If there was a significant interaction, we ignored all main effects that overlapped with the 

interaction and performed planned post hoc SPM1D paired t-tests (i.e., for each resistance type, 

comparing both blocks; for each block, comparing both resistance types) with Bonferroni 

correction (p < 0.0125). We then identified all significant clusters that overlapped with the 

interaction and reported the cell means over the cluster. To improve interpretation, we report 

muscle activation as non-log normalized values.  
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Our analyses of peripheral fatigue and corticospinal excitability were performed in SPSS 

for windows version 27.0 (SPSS Inc., Chicago, IL, USA). For each of these variables, we used a 

two-way ANOVA (resistance type [2 levels] × block [2 levels; Pre and Post]) model with 

repeated measures on both factors. Following significant main effects, we reported mean 

difference and standard error of the marginal means. If there was a significant interaction, we 

ignored the main effects and performed planned post hoc paired t-tests (see above) with Šidák 

correction and reported cell means. A significance level of α = 0.05 was used for these analyses. 

6.3 Results 

We ran two experiments to test how elastic and viscous resistances compare in their 

ability to resist the knee during walking, and how training with a viscous resistance at the knee 

joint differs from training with the resistances at the hip and knee joints. While we only present 

certain variables of interest in the results sections, additional results can be found in Appendix C. 

 

Figure 6.3 Experiment 1: profiles of the resistive moments that were provided to the knee by the viscous (V) and elastic (E) 
devices during experiment 1. Note that a positive moment meant the device was resisting knee flexion while a negative moment 
was resisting extension.  
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6.3.1 Experiment 1: Elastic vs. Viscous Resistance 

6.3.1.1 Training 

Resistance Characteristics 

While both resistance types successfully provided a bidirectional torque (i.e., resisting 

both extension and flexion) about the knee during training, the characteristics of the torque 

provided by each resistance type varied greatly (Figure 6.3). The Elastic device resisted knee 

extension throughout the stance phase and knee flexion during mid-swing, then returned to 

resisting extension during the terminal swing phase. Meanwhile, the Viscous device did not 

impart much resistance during the stance phase but resisted knee flexion during pre-swing and 

knee extension during mid swing. Overall, the peak flexion and extension resistances were 

12.4±5.1 (mean ± standard deviation) and 20.9±9.3 Nm for the Viscous device and 14.0±5.6 and 

13.1±5.3 for the Elastic device, respectively. We note that the devices were set so that the 

participant should have received a resistance that approximated 15–20% of their maximum 

voluntary isometric contraction during training. Hence, while the kinetics of the devices differed, 

the actual magnitude of the resistance during training underestimated the prescribed torque by 

approximately 36% for all conditions (i.e., for both resistance types and joint actions). After 

participants completed both the Viscous and Elastic training sessions, they were asked which of 

the resistance types they found to be more enjoyable to train with, and which one they found to 

be a better exercise. We found that most participants found the Viscous resistance to be more 

enjoyable (10/14 participants) while a similar proportion found the Elastic resistance provided a 

better exercise (9/14 participants).  
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Figure 6.4 Experiment 1: knee moment during training. (Top) Traces depict the internal knee moment profile over the gait cycle 
while walking with the viscous resistance (V) and the elastic resistance (E). Positive moments indicate joint extension while 
negative moments indicate flexion (Middle) SPM{F} statistics plotted over the gait cycle. Traces that exceed the threshold (red 
dashed line) are considered significant and are shaded gray. (Bottom) Table indicating the averages and significance of clusters 
that exceeded the threshold. For post hoc testing, mean 1 is the average of the first cell in the t-test, and mean 2 is the average for 
of the second cell. P-values are in bold if they are considered significant. 

Internal Joint Moment 

The two resistance types differed in their ability to augment knee joint moments during 

training, as shown by significant interactions throughout both the stance and swing phases 

(Figure 6.4). Post hoc testing indicated that, during the stance phase, the Elastic resistance 

significantly increased the knee extension moment. Notably, the Viscous device failed to alter 
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joint moments during the stance phase. At toe-off (i.e., pre- and initial-swing), the Viscous 

resistance elicited a significant increase in knee flexion moment, which was also larger than the 

Elastic resistance at this phase of the gait cycle. However, during mid-swing, these roles 

reversed: the Elastic device now resisted flexion while the Viscous device began targeting knee 

extension. During terminal swing, both resistance types elicited a significant increase in knee 

extension moment; however, they were not significantly different from one another. Note there 

were small differences between the devices during baseline walking when there was no 

resistance, but these differences were relatively small in magnitude (< 4 Nm; Figure 6.4). 

 

Figure 6.5 Experiment 1: knee power during training. (Top) Traces depict the power profile over the gait cycle while walking 
with the viscous resistance (V) and the elastic resistance (E). Positive power indicates power generation while negative indicates 
absorption. (Middle) SPM{F} statistics plotted over the gait cycle. Traces that exceed the threshold (red dashed line) are 
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considered significant and are shaded gray. (Bottom) Table indicating the averages and significance of clusters that exceeded the 
threshold. For resistance main effects, mean 1 is the average for the viscous device over the cluster, and mean 2 is the average for 
the elastic device over the cluster. For post hoc testing, mean 1 is the average of the first cell in the t-test, and mean 2 is the 
average for of the second cell. P-values are in bold if they are considered significant. 

Joint Power 

There were several significant differences in how these resistance types were able to 

augment knee power during walking, as shown by significant interactions throughout the swing 

phase (Figure 6.5). Post hoc testing indicated that the Viscous resistance began to elicit a 

significant increase in power generation at the knee as early as the pre-swing phase. Notably, 

when worn without resistance, this device also required more power absorption when compared 

with the Elastic device at this phase of the gait cycle. While the Elastic resistance significantly 

increased power generation during initial swing, this increase was not as large as the result that 

was seen with the Viscous resistance. During mid-swing, the Viscous resistance again began to 

significantly elicit increased power generation at the knee. Conversely, the Elastic resistance was 

promoting power absorption at that time. While both resistance types reduced the need for power 

absorption during terminal swing, they were not significantly different from one another over 

that phase. 
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Figure 6.6 Experiment 1: muscle activation of the thigh muscles during training. (Left) Traces depict the muscle activation over 
the gait cycle while walking with the viscous resistance (V) and the elastic resistance (E) as well as SPM{F} statistics plotted 
over the gait cycle. SPM{F} traces that exceed the threshold (red dashed line) are considered significant and are shaded gray. 
(Right) Table indicating the averages and significance of clusters that exceeded the threshold. For resistance main effects, mean 1 
is the average for the viscous device over the cluster, and mean 2 is the average for the elastic device over the cluster. For block 
main effects, mean 1 is the average over the cluster for the baseline block, and mean 2 is the average over the cluster for the 
training 4 block. For post hoc testing, mean 1 is the average of the first cell in the t-test, and mean 2 is the average for of the 
second cell. P-values are in bold if they are considered significant. Muscle abbreviations: VM (vastus medialis), VL (vastus 
lateralis), RF (rectus femoris), MH (medial hamstring), LH (lateral hamstring). 

Muscle Activation 

Thigh muscle activation (i.e., of the quadriceps [vastus medialis VM, vastus lateralis VL, 

and rectus femoris RF] and hamstrings [medial MH and lateral hamstrings LH]) showed 

differences in how it was altered in response to walking with the different types of resistance 

(Figure 6.6). The largest difference was in the quadriceps muscles during mid-stance, where 

significant interactions and post hoc testing indicated that, while both devices significantly 
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increased activation of these muscles, the effect was larger when walking with the Elastic 

resistance. Both resistance types significantly increased muscle activation of the quadriceps 

during the swing phase, as was shown by significant block main effects for each muscle. An 

interaction during mid-swing in the vastus lateralis muscle likely arose due to timing of when the 

muscle was active during swing. The Viscous resistance increased quadriceps activation earlier 

(initial – mid-swing) than the Elastic resistance (mid – terminal swing). Hamstring muscle 

activation was relatively unaffected for the first half the stance phase when walking with both 

resistance types. However, significant main effects for Block indicated that muscle activation 

began to increase for both resistance types during terminal stance. This increased activation was 

maintained well into the swing phase (mid-swing). While swing phase muscle activation was 

similar in the lateral hamstring for both resistance types, a significant interaction and post hoc 

testing in the medial hamstring indicated that the Elastic resistance maintained this heightened 

activation for longer.  

 

Figure 6.7 Experiment 1: knee kinematic aftereffects. Plots indicate kinematics when walking on the treadmill (Left) and 
overground (Right). For each joint, (Top) traces depict the kinematic profile over the gait cycle while walking with the viscous 
resistance (V) and the elastic resistance (E). Below the kinematic traces, SPM{F} statistics are plotted over the gait cycle. Traces 
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that exceed the threshold (red dashed line) are considered significant and are shaded gray. (Bottom) Tables indicating the 
averages and significance of clusters that exceeded the threshold. For resistance main effects, mean 1 is the marginal mean for the 
viscous resistance and mean 2 is the marginal mean for the elastic resistance. For block main effects over the treadmill, mean 1 is 
the marginal mean during Baseline over the cluster, and mean 2 is the marginal mean during Catch 3 over the cluster. For block 
main effects overground, mean 1 is the average over the cluster for the Pre Overground block and mean 2 is the average over the 
cluster for the Post Overground block. P-values are in bold if they are considered significant. 

6.3.1.2 Aftereffects 

Treadmill Walking Kinematics 

While walking on the treadmill, both resistance types elicited significant aftereffects for 

knee angle (as shown by a main effect for Block; Figure 6.7). However, we failed to find a 

significant interaction to indicate that participants adapted differently while walking with 

Viscous or Elastic resistances. From the significant block effect, we found that walking with 

resistance increased the knee extension angle during the stance phase and increased the knee 

flexion angle during the mid-swing phase. There was also a significant main effect for resistance 

during pre-swing. This occurred because participants started flexing their knee earlier while 

walking with the Viscous leg brace during both the baseline and catch trials, which could have 

been due to the slight increase in rotational inertia due to the spinning disk on this device.  

Overground Kinematics 

Some kinematic aftereffects for the knee angle were maintained once the resistance was 

removed and the participants walked overground (Figure 6.7). Specifically, there was a 

significant block effect that occurred during mid-swing, indicating that the knee was also more 

flexed at this phase of the gait cycle when walking overground. Notably, the increased knee 

extension during the stance phase that was seen while walking on the treadmill did not translate 

to overground walking. We also found a significant block effect during pre-swing, which 

indicated the knee was more flexed at this phase.  
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Figure 6.8 Experiment 1: results from electrical stimulation and transcranial magnetic stimulation procedures. Bar plots represent 
main effects for Block and line plots represent interactions (Block*Resistance). Electrical stimulation of the muscles indicated 
that knee extension was potentiated while knee flexion was fatigued. While there was a significant increase in extensor MEPT, 
this effect disappeared once transcranial magnetic stimulation evoked torque was normalized to electrical stimulation (MEPT/E). 
Note MEPT and MEPT/E are both normalized and do not have units. (*: p < 0.05).  

6.3.1.3 Electrical Stimulation 

We failed to find any significant interactions when analyzing the electrical stimulation 

data, which indicated that both resistance types had a similar effect on peripheral fatigue. 

However, we did find several significant main effects for block (i.e., Pre–Post) during both 

flexion and extension (Figure 6.8). During flexion, the evoked torque significantly decreased 

[F(1,13) = 10.34, p = 0.007, Δ = –2.03 ± 0.63 Nm (mean ± standard error)], indicating the 

hamstring muscles were fatigued. During extension, the evoked torque significantly increased 

[F(1,13) = 12.85, p = 0.007, Δ = 2.47 ± 0.63 Nm], indicating the quadriceps were potentiated.  

6.3.1.4 Neural Excitability 

Neural excitability appeared altered following training while walking under these 

different resistance types (Figure 6.8). During knee extension, there was a significant main effect 

for block [F(1,13) = 5.63, p = 0.034] when analyzing MEPT to indicate that excitability was 
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increased following training (Δ = 6.1 ± 2.6%) with both resistance types. During knee flexion, 

there was a significant interaction [F(1,13) = 7.11, p = 0.019] but post hoc testing did not reveal 

any differences between the blocks or resistance types (p > 0.161). However, once we 

normalized the MEPs to peripheral factors (i.e., the torque evoked during electrical stimulation 

[MEPT/E]) all significant effects disappeared (p > 0.40; Figure 6.8). Hence, all changes in 

excitability may have been attributable to changes at the muscle level and not the neural level.  

 

Figure 6.9 Experiment 2: profiles of the resistive moments that were provided to the hip and knee by the Knee (K) and Hip-Knee 
(HK) device configurations during experiment 2. Note that a positive moment meant the device was resisting flexion while a 
negative moment was resisting extension of the joint.  
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6.3.2 Experiment 2: Viscous Resistance at the Knee vs. at the Hip and Knee 

6.3.2.1 Training 

Resistance Characteristics 

With the Hip-Knee configuration, the device provided a resistance to hip flexion 

throughout the stance phase, extension from the loading response to terminal swing, then 

extension again at the end of the swing phase (Figure 6.9). The resistance provided at the knee 

joint during both configurations was relatively similar: while each configuration did not impart 

much resistance during the stance phase, they resisted knee flexion during pre-swing and knee 

extension during mid swing. Again, we saw that both configurations did not provide the correct 

prescribed torque during training. However, it was most pronounced with the Hip-Knee 

configuration at the hip joint. For the hip, the max flexion and extension torques were 8.8±3.9 

and 6.3±2.1 Nm, respectively. Hence, the prescribed torque was underestimated by 

approximately 56%.  
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Figure 6.10 Experiment 2: hip and knee internal moments during training. (Left) Traces depict the joint moment profile over the 
gait cycle while walking with the viscous device in the Knee configuration (K) and the Hip-Knee configuration (HK). Positive 
moments indicate joint extension while negative moments indicate flexion. Under each moment plot, SPM{F} statistics are 
plotted over the gait cycle. SPM traces that exceed the threshold (red dashed line) are considered significant and are shaded gray. 
(Right) Table indicating the averages and significance of clusters that exceeded the threshold. For block main effects, mean 1 is 
the average over the cluster for the Baseline block, and mean 2 is the average over the cluster for the Training 4 block. For post 
hoc testing, mean 1 is the average of the first cell in the t-test, and mean 2 is the average for of the second cell. P-values are in 
bold if they are considered significant. 

Internal Joint Moments 

The Hip-Knee configuration altered the internal hip joint moment during training beyond 

what was seen while walking with the Knee configuration, as shown by significant interactions 

during the loading response and mid-swing (Figure 6.10). However, post hoc testing indicated 

that the Hip-Knee configuration only significantly increased the hip flexion moment beyond the 

Knee configuration during mid-swing. Both configurations increased hip extension during the 

loading response. While hip extension during the loading response was increased more with the 

Hip-Knee configuration, this difference was not significant. At the knee, both configurations 

behaved similarly. This was shown by significant block effects during toe off and terminal swing 

that indicated internal knee flexion moments and extension moments increased during these 

periods, respectively.  
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Figure 6.11 Experiment 2: hip and knee power during training. (Left) Traces depict the joint power profile over the gait cycle 
while walking with the viscous device in the Knee configuration (K) and the Hip-Knee configuration (HK). Positive power 
indicates power generation while negative indicates absorption. Under each power plot, SPM{F} statistics are plotted over the 
gait cycle. SPM traces that exceed the threshold (red dashed line) are considered significant and are shaded gray. (Right) Table 
indicating the averages and significance of clusters that exceeded the threshold. For block main effects, mean 1 is the average 
over the cluster for the Baseline block, and mean 2 is the average over the cluster for the Training 4 block. For post hoc testing, 
mean 1 is the average of the first cell in the t-test, and mean 2 is the average for of the second cell. P-values are in bold if they are 
considered significant. 

Joint Power 

Both configurations augmented joint power by increasing power generation during 

walking (Figure 6.11). At the hip, a significant interaction indicated that the Hip-Knee 

configuration required more power generation than the Knee-configuration during the mid-swing 

phase of gait. However, both configurations actually decreased power generation during initial 

swing, as shown by a significant block effect. Given this effect applies to both configurations 

this could have been an artifact of the target-matching task that the participants performed. At the 

knee, both configurations increased power generation surrounding toe-off and during mid – 

terminal swing, as shown by significant block effects during these phases. While it appears 

slightly more power was generated with the Knee configuration—as shown by significant 

resistance effects and an interaction—the overall curves appear similar throughout the gait cycle.  
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Figure 6.12 Experiment 2: muscle activation of the thigh muscles during training. (Left) Traces depict the muscle activation over 
the gait cycle while walking with the viscous device in the Knee configuration (K) and the Hip-Knee configuration (HK) as well 
as SPM{F} statistics plotted over the gait cycle. SPM{F} traces that exceed the threshold (red dashed line) are considered 
significant and are shaded gray. (Right) Table indicating the averages and significance of clusters that exceeded the threshold. 
For block main effects, mean 1 is the average over the cluster for the baseline block, and mean 2 is the average over the cluster 
for the training 4 block. P-values are in bold if they are considered significant. Muscle abbreviations: VM (vastus medialis), VL 
(vastus lateralis), RF (rectus femoris), MH (medial hamstring), LH (lateral hamstring). 

Muscle Activation 

Muscle activation did not significantly differ between the two configurations (Figure 

6.12). Given that resistance was added to the hip in the Hip-Knee configuration, we would have 

expected several of the bi-articular muscles (i.e., the rectus femoris, and hamstrings muscles) that 

span the hip and knee joints would have been more activated with this configuration; however, 

there were no significant interactions. We did find several block main effects, indicating that the 

quadriceps were more active during both stance and swing phases. The hamstrings were more 

activated during the swing phase with both configurations. 
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Figure 6.13 Experiment 2: hip and knee kinematic aftereffects. Plots indicate kinematics when walking on the treadmill (Left) 
and overground (Right). For each joint, (Top) traces depict the kinematic profile over the gait cycle while walking with the 
viscous device in the Knee configuration (K) and the Hip-Knee configuration (HK). Below the kinematic traces, SPM{F} 
statistics are plotted over the gait cycle. Traces that exceed the threshold (red dashed line) are considered significant and are 
shaded gray. (Bottom) Tables indicating the averages and significance of clusters that exceeded the threshold. For resistance 
main effects, mean 1 is the marginal mean for the Knee configuration and mean 2 is the marginal mean for the Hip-Knee 
configuration. For block main effects over the treadmill, mean 1 is the marginal mean during Baseline over the cluster, and mean 
2 is the marginal mean during Catch 3 over the cluster. For block main effects during overground walking, mean 1 is the average 
over the cluster for the Pre Overground block and mean 2 is the average over the cluster for the Post Overground block. P-values 
are in bold if they are considered significant. 
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6.3.2.2 Aftereffects 

Treadmill Walking Kinematics 

While walking on the treadmill, both configurations elicited significant aftereffects for 

hip and knee angle (Figure 6.13). For the hip, significant block effects indicated that the hip was 

more extended at heel strike and throughout mid stance – initial swing. A significant resistance 

effect during mid-swing indicated that the addition of the resistance element at the hip 

(regardless of if it was set to provide resistance or not) made the joint less flexed during this 

phase. At the knee, significant block effects indicated that both configurations increased the knee 

extension angle at heel strike and during mid-stance, and knee flexion angle during mid-swing. 

Additionally, there was a significant main effect for resistance during mid-swing, which likely 

occurred because peak knee flexion was reduced with the Hip-Knee configuration during 

training and baseline walking.  

Overground Kinematics 

Interestingly, none of the effects that were observed during treadmill walking transferred 

to overground walking. Instead, at the hip, there was a block effect that indicated the hip was 

more extended during mid-swing with both configurations (Figure 6.13). While this was not seen 

during treadmill walking, this effect was also present during overground walking in experiment 1 

(Figure C.7). No significant effects were found for the knee when walking overground.  
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Figure 6.14 Experiment 2: results from electrical stimulation and transcranial magnetic stimulation procedures. Bar plots 
represent main effects for Block. Electrical stimulation of the muscles indicated that knee extension was potentiated while knee 
flexion was fatigued. While there was a significant increase in extensor MEPT, this effect disappeared once transcranial magnetic 
stimulation evoked torque was normalized to electrical stimulation (MEPT/E). Note MEPT and MEPT/E are both normalized and 
do not have units. (*: p < 0.05). 

6.3.2.3 Electrical Stimulation 

We failed to find any interactions when analyzing the electrical stimulation data. Hence, 

adding resistance to the hip did not significantly alter peripheral fatigue beyond what was found 

with the knee configuration. However, we still found several significant main effects for block 

during flexion and extension (Figure 6.14). During flexion, the evoked torque significantly 

decreased during [F(1,13) = 7.87, p = 0.015, Δ = –1.93 ± 0.69 Nm], indicating the hamstring 

muscles were fatigued. During extension, the evoked torque significantly increased [F(1,13) = 

7.18, p = 0.019, Δ = 2.33 ± 0.87 Nm], indicating the quadriceps were potentiated.  

6.3.2.4 Neural Excitability 

Our findings for neural excitability for experiment 2 closely matched what we found 

during experiment 1 (Figure 6.14). Again, during knee extension, there was a significant main 

effect for block [F(1,13) = 5.39, p = 0.037] to indicate that both resistance methods increased 
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excitability (Δ = 5.9 ± 2.6%). There were no significant effects during flexion (p > 0.060). Once 

MEPs were normalized to peripheral factors (MEPT/E) the significant effect for extension 

disappeared (p > 0.47). Hence, observed changes in excitability may have been attributable to 

changes at the muscle level and not the neural level of the corticospinal tract.  

6.4 Discussion 

In this study, we compared several different methods for providing functional resistance 

training during walking that varied based on the type of resistance that was used and to which 

joints the resistance was provided. Specifically, we compared how training differs between 

elastic and viscous resistive elements when providing bidirectional resistance to the knee, and 

how training with a device configured to resist the knee compares with resistance to the hip and 

knee. During training, as hypothesized, we found the viscous and elastic resistance types altered 

the magnitude, direction, and phase of gait where biomechanical changes occurred. However, 

contrary to our hypothesis, this training did not translate to resistance-specific differences in 

kinematic aftereffects, peripheral fatigue, or neural excitability. Similarly, training with a 

configuration that targeted the hip and knee joints altered the kinetics of training at the hip joint 

beyond what was seen when just targeting the knee joint. However, this did not translate to 

differences in kinematic aftereffects, peripheral fatigue, or neural excitability between the two 

configurations. Although we did not find different resistance types altered neural adaptation 

following an acute training session, it is still possible that prolonged training could produce 

differential effects. These findings provide new insight into how functional resistance training 

can be applied during walking.  

We found that the resistance type altered gait biomechanics during training. Mainly, we 

saw knee extensor moment and quadriceps activation were increased during the stance phase 
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when training with the elastic device, but not when training with the viscous device. 

Additionally, the viscous device increased power generation at the knee to a larger extent than 

the elastic device. However, there were phases (i.e., mid-swing) where the elastic device 

increased power absorption at the knee. These findings represent many of the key differences 

between these two resistance types. That is, because resistance scales with the joint velocity with 

the viscous device, it appears that a viscous resistance can better promote power generation. 

Also, because the elastic device is capable of storing energy, it was able to hold the muscles in 

tension during the stance and mid-swing phases and increase power absorption. Due to the fact 

that the quadriceps muscles were activated throughout the stance phase with the elastic device, 

we assumed that the elastic resistance would fatigue the quadriceps more than the viscous 

device. However, we did not see that the muscles were more fatigued after the elastic training.  

The intensity at which functional resistance training should be administered is a debated 

issue in this field (Akagi et al., 2020; Raymond et al., 2013; Schoenfeld et al., 2015). For 

conventional strength training, it is generally believed that high intensity (~70% of max strength) 

repetitions until fatigue are best for promoting strength (Izquierdo et al., 2006; Nobrega & 

Libardi, 2016). However, it would not be possible to provide this level of intensity during a 

functional task like walking (without substantially reducing the number of steps taken during 

training). Instead, we must rely on low intensity training, which has also been shown to augment 

strength when performed to fatigue (Schoenfeld et al., 2015). In this study, we applied a low 

intensity of resistance (15-20% of MVIC), which is comparable to what has been used in other 

studies (Houldin et al., 2011; Tang et al., 2019; Yen et al., 2014). One aspect that is unique to our 

study is that we used electrical stimulation to benchmark how training with these devices altered 

peripheral fatigue. We found that the hamstrings were fatigued after training, but the quadriceps 
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were actually potentiated. Hence, the intensity that we used may have been sufficient to train the 

hamstrings, but more resistance may have to be added to engage the quadriceps to the same 

extent.  

Our findings highlight several of the difficulties of designing wearable exoskeleton 

devices so that they can convey large resistances to the leg. During both of our experiments, we 

repeatedly saw that the actual resistance output by the device was lower than what we had 

prescribed. This issue was abundantly clear when we attempted to add resistance to the hip joint 

in experiment 2, as the torque at the hip underestimated the prescribed torque by approximately 

56%. Such diminished conveyance of resistance is common with wearable devices (Yandell et 

al., 2017), but this could have affected our results. Typically, the conveyance of resistance is 

hindered in wearable devices due to anatomical factors and the need to make the device 

comfortable. Resistive torques can easily be conveyed through rigid bodies, but anatomically, 

our rigid components (i.e., bones) are usually obstructed by several layers of pliable tissues (i.e., 

skin, fat, and muscle). Additionally, to increase comfort of the device, leg braces typically have a 

layer of foam padding that goes between the device and leg. Hence, under resistance, these soft 

and pliable components deform and the full resistance does not get conveyed to the leg. This is 

less of an issue when interfacing with the knee joint as the shin is relatively bony, but the hip 

appears to be a more difficult target, likely because the device must transfer resistance through 

the more pliable thigh and pelvis. We anticipated this issue and attempted to mitigate it by using 

a pelvis brace that extended up the torso. However, our results in experiment 2 were still 

affected—even though we saw significant differences in hip kinetics during training, this did not 

translate to increased muscle activation of the bi-articular rectus femoris or hamstrings when 

compared with the knee configuration. In the future, we would redesign the pelvis brace so that it 
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came in better contact with bony landmarks (e.g., the sacrum and anterior superior iliac spine) so 

that resistance is more directly transfers to the pelvis.  

During both experiments, we still found that training resulted in significant kinematic 

aftereffects once the resistance was removed. Aftereffects are typically measured to determine if 

motor adaptation—a form of motor learning where the nervous system gradually develops new 

movement commands in response to perturbations of movement—is taking place (Emken & 

Reinkensmeyer, 2005; Lam et al., 2006; Shadmehr & Mussa-Ivaldi, 1994). Many times, 

aftereffects have been seen to transfer to overground walking (Reisman et al., 2009; Savin et al., 

2014; Wu et al., 2016), or even persist for months following an intervention (Reisman et al., 

2013; Rode et al., 2015). In our studies, we perturbed walking by adding resistance to the leg 

joints. We found that walking with bidirectional resistance to the knee joint resulted in 

aftereffects of increased extension during the stance phase and flexion during the swing phase 

regardless of the type of resistance used. Moreover, the aftereffect of increased knee flexion 

during swing transferred to overground walking. Notably, adding resistance to the hip did not 

alter the aftereffects measured for the hip joint. This was unexpected based on the findings of 

other studies (Lam et al., 2006), but this discrepancy is likely stems from the hip braces inability 

to convey proper resistances during training. 

While aftereffects are believed to contain information about how the neural system is 

altered due to training, in this study, we also directly measured neural excitability using 

transcranial magnetic stimulation. We hypothesized that our findings from transcranial magnetic 

stimulation would match those of our aftereffects (i.e., an increase in knee extension and flexion 

in experiment 1). While this was not the case during knee flexion, we did find that neural 

excitability (MEPT) increased during knee extension. However, once we normalized the motor 
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evoked responses to the torque elicited during electrical stimulation (MEPT/E; i.e., removed the 

effects of muscle potentiation), there appeared to be no changes in neural excitability. This 

finding suggests that the neural excitability changes observed during knee extension were 

primarily mediated by peripheral changes in the quadriceps muscles. It is to be noted that we 

report only the acute effects of functional resistance training, and preliminary evidence from past 

research suggests that long-term training can result in sustained changes in neural excitability of 

the quadriceps muscles (Brown et al., 2021).  

6.4.1 Limitations 

A primary limitation of this study is related to the small sample size. Although our 

sample size is consistent with other studies that have done similar research (Blanchette & 

Bouyer, 2009; Noble & Prentice, 2006; Savin et al., 2010; Stoeckmann et al., 2009), our overall 

sample size was limited due to COVID restrictions. Thus, it is unclear if we had adequate power 

to realize findings with small effect sizes. Further, there are several considerations that must be 

made when comparing resistance types. Mainly we had to control for the joint motions that were 

being resisted and the magnitude of the resistance. We selected a bidirectional resistance because 

a majority of research on wearable exoskeleton devices has used viscous bidirectional resistances 

(Houldin et al., 2012; Houldin et al., 2011; Klarner et al., 2013; Lam et al., 2006; Washabaugh et 

al., 2016; Washabaugh & Krishnan, 2018; Zabukovec et al., 2013). However, we could have 

designed the study to target flexion or extension. It is possible that these resistance types would 

behave differently in these scenarios. Finally, we only tested the effects of these devices during a 

single training session. To truly understand how the resistance type can affect functional 

resistance training during walking will require comparing these devices during an intervention.   
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6.5 Conclusion 

This study compared how providing resistance to the leg during gait training is affected 

by the type of resistance used as well as the specific joints that are targeted. We compared 

training with viscous and elastic bidirectional resistance to the knee, and how having resistance 

at the knee compares with resisting the hip and knee together. The methods that we used 

differentially altered the joint kinetics and muscle activation during training. However, this did 

not translate to differences in adaptation, peripheral fatigue, or neural excitability once the 

resistance was removed. Rather, the body adapted similarly to the resistance in each experiment. 

This may indicate that the resistance type does not have a large effect on functional resistance 

training during walking. However, we note that this was only an acute study, and differences 

could arise due to the cumulative effects of training. Also, there are several factors, such as how 

the resistance is controlled, the intensity and dosage of the training, and the device’s ability to 

properly convey resistance to the leg that could alter our findings.  
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Chapter 7  

Functional Resistance Training During Walking: Using Musculoskeletal Modeling to 

Determine if the Method of Application Differentially Affects Gait Biomechanics and 

Muscle Activation Patterns 

 

Abstract 

Background: Task-specific loading of the limbs—termed as functional resistance 

training—is commonly used in gait rehabilitation; however, the biomechanical and 

neuromuscular effects of various forms of functional resistance training have not been studied 

systematically. This information is crucial for correctly selecting the appropriate method of 

applying functional resistance training when treating individuals with gait disorders. Research 

question: To comprehensively evaluate the biomechanical (i.e., joint moment and power) and 

muscle activation changes with different forms of functional resistance training that are 

commonly used in clinics and research using biomechanical simulation-based analyses. 

Methods: We developed simulations of functional resistance training during walking using 

OpenSim (Gait2354, 23 degrees of freedom and 54 muscles) and custom MATLAB scripts. We 

investigated five methods of applying functional resistance training that have been commonly 

used in clinics or in research: (1) a weight attached at the ankle, (2) an elastic band attached at 

the ankle, (3) a viscous device attached to the hip and knee, (4) a weight attached at the pelvis, 

and (5) a constant backwards pulling force at the pelvis. Lower-extremity joint moments and 

powers were computed using inverse dynamics and muscle activations were estimated using 
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computed muscle control while walking with each device under multiple resistance levels: 

normal walking with no resistance, and walking with 30, 60, and 90 Newtons of resistance. 

Results: The results indicate that the way in which resistance is applied during gait training 

differentially affects the internal joint moments, powers, and muscle activations as well as the 

joints and phase of the gait cycle where the resistance was experienced. Significance: The results 

highlight the importance of understanding the joints and muscles that are targeted by various 

methods of providing functional resistance training and carefully choosing the best method of 

training that meets the specific therapeutic needs of the patient. 

7.1 Introduction 

Injuries to the neuro-musculoskeletal system (e.g., stroke, spinal cord injury, lower-

extremity injuries, osteoarthritis, etc.) can result in profound gait deficits that can lead to reduced 

function and long-term health-related quality of life (Moseley et al., 1993; Naili et al., 2017; 

Pietrosimone et al., 2018). Leg muscle weakness has been consistently linked to abnormal gait 

patterns and poor biomechanical symmetry in these individuals (Blackburn et al., 2016; Lewek et 

al., 2002; Lindmark & Hamrin, 1995; Nakamura et al., 1985). Accordingly, rehabilitation efforts 

are often concentrated on restoring muscle strength and control. However, clinical interventions 

addressing muscle weakness are often performed in a non-functional manner (i.e., exercises 

performed in a seated or standing position), which may not be optimal for transfer of benefits of 

training to functional activities, such as walking, because of the phenomenon of “practice 

specificity” (Morrissey et al., 1995; Proteau et al., 1992; Williams et al., 2014). Task-specific 

loading of the limbs—commonly known as functional resistance training or functional strength 

training—has been purported as a potential approach to address this issue. Functional resistance 

training can be applied by having subjects perform weight-bearing exercises (e.g., sit-to-stand, 
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step-ups, etc.) (Blundell et al., 2003; Kerr et al., 2017; Lohne-Seiler et al., 2013), as well as by 

applying additional external loads to the limbs during walking (Chang et al., 2018; Duclos et al., 

2014; Lam et al., 2015; Wu et al., 2017). The key advantages of the latter approach are that it is 

more specific to walking and allows the resistance to be scaled according to the needs of the 

patient. In the past decade, a number of studies have evaluated the short-term and long-term 

effects of applying external resistive loads during walking on physiological, biomechanical, and 

clinical outcomes (Browning et al., 2007; Chang et al., 2018; Duclos et al., 2014; Klarner et al., 

2013; Lam et al., 2015; Washabaugh et al., 2016; Wu et al., 2017). Collectively, these studies 

have shown that functional resistance training during walking: (1) increases metabolic cost, (2) 

positively affects biomechanical outcomes, such as muscle activation, joint kinetics, and 

kinematics, and (3) improves gait function.  

It is to be noted, though, that functional resistance training during walking can be 

performed in multiple ways. For example, studies have used simple devices, such as ankle 

weights and weighted-vests, to more sophisticated active and passive robotic devices (Browning 

et al., 2007; Chang et al., 2018; Lam et al., 2015; Puthoff et al., 2006; Wu et al., 2017). More 

importantly, these devices can provide resistance directly to the joints or as end-point forces 

(e.g., weights tethered to the ankle) and during different phases of gait. Thus, the resulting 

human-device interactions and muscle activation patterns may differ considerably between these 

various modes of functional resistance training. Given that functional resistance training is 

becoming increasingly popular for gait rehabilitation, it is imperative to understand the 

differential effects of these devices on lower-extremity biomechanics and muscle activation 

patterns during gait. However, studying the biomechanical effects of these devices in human 

subjects is challenging because of experimental constraints such as matching resistive loads 
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between devices and subjects, controlling for the confounding effects of fatigue during testing, 

and studying muscle activation from a large number of lower-extremity muscles. 

Computer simulations that utilize musculoskeletal models can be a valuable tool for 

evaluating the biomechanical effects of different resistive exercises (Schellenberg et al., 2015). 

Previous researchers have used musculoskeletal modeling to compute muscle/joint forces and 

also to gain insight into how various musculoskeletal properties (e.g., muscle strength, limb 

lengths, muscle moment arms, etc.) affect biomechanical and functional outcomes (e.g. the 

kinematics, kinetics, muscle activation, joint loads, jump height, etc.) (Dorn et al., 2015; 

Escamilla et al., 2009; Fregly et al., 2015; Lewis et al., 2009; Pandy et al., 1990; Pluss et al., 

2018; Schellenberg et al., 2015). Such studies have helped in determining movement control 

during exercise and locomotion (Dorn et al., 2015; Pandy et al., 1990), appropriate kinematics 

for training (Escamilla et al., 2009; Fregly et al., 2015; Lewis et al., 2009; Pluss et al., 2018), and 

how different exercise schemes affect muscle activation (Dorn et al., 2015; Pluss et al., 2018). 

Although previous studies have used musculoskeletal modeling to answer biomechanical 

questions related to exercise and human locomotion, there are no studies that have 

comprehensively evaluated how different modes of applying functional resistance training affect 

gait biomechanics and muscle activation patterns, which may have meaningful implications for 

how therapy is prescribed in the clinic. Hence, in this study, we used a biomechanical simulation 

to evaluate the effects of different modes of functional resistance training on gait biomechanics 

and lower-extremity muscle activation patterns during gait. 
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Figure 7.1 A schematic of the simulation-based analysis used to estimate the biomechanical effects of walking under various 
modes of applying resistance. The simulation used the Gait2354 dynamic musculoskeletal model with OpenSim to first generate 
kinematics from marker trajectories. The kinematics and a file containing the external forces acting on the model were then input 
into MATLAB to generate time-varying force information for each resistive mode. An updated external force file and the 
kinematics were then used to run inverse dynamics to generate internal joint moments and power and used in the computed 
muscle control algorithm (CMC) to generate muscle activations. 

7.2 Methods 

For this study, we investigated five functional resistance training paradigms (i.e., 

methods) that have been commonly used in clinics or research: (1) a weight attached at the ankle 

(Browning et al., 2007; Lam et al., 2009), (2) an elastic band attached at the ankle (Wu et al., 

2017), (3) a viscous device attached to the hip and knee (i.e., a device that applies velocity-

dependent resistance to the hip and knee joints) (Chang et al., 2018; Lam et al., 2008), (4) a 
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weight attached at the pelvis (e.g. weighted vest) (Kubinski & Higginson, 2012; Puthoff et al., 

2006), and (5) a constant backwards pulling force at the pelvis (e.g. pulling a weighted sled) 

(Lawrence et al., 2013; Mun et al., 2017). To determine the effects of these various modes of 

functional resistance training, we devised a simulation-based analysis (Figure 7.1) to extract joint 

moments, powers, and muscle activations while walking with each device under multiple 

resistance levels: normal walking with no resistance, and walking with 30, 60, and 90 N of 

resistance. A simulation was ideal for this analysis because it allowed us to maintain exact 

kinematics across all modes and levels of resistance, monitor activation of muscles that are 

difficult to measure with surface electromyography, and perform a wide battery of tests without 

fatiguing a participant.  

7.2.1 Biomechanical Simulation in OpenSim 

The simulation was run in OpenSim (Version 3.3) using the Gait2354 dynamic 

musculoskeletal model (23 degrees of freedom and 54 muscles) and modeling tools (Delp et al., 

1990). We set up the analysis using two marker trajectory files and an external force file 

provided by OpenSim for this model: the first marker trajectory file tracked a participant 

(weighing 72.6 kg) standing in a static pose, the second tracked the participant walking over a 

treadmill for several seconds, and the external force file contained all forces acting on the model 

during walking (i.e., ground reaction forces). We used the Scale Tool with the static marker file 

to scale the model to the participant’s anthropometry. We then used the Inverse Kinematics Tool 

with the walking marker file to determine the participant’s kinematics during walking. The 

external force file was then modified based on the mode and level of the resistance (more details 

on this procedure are provided below). The kinematics and external force files were then fed into 

the Inverse Dynamics Tool to find joint moments and calculate power, as well as the Computed 
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Muscle Control (CMC) Tool (Thelen et al., 2003) to simulate lower-extremity muscle activation. 

The maximum isometric force of each muscle in the model was adjusted uniformly in order to 

prevent muscle activation from saturating during CMC while maintaining each muscle’s relative 

contribution to walking.  

7.2.2 Modeling Various Modes of Functional Resistance Training  

Custom MATLAB (version R2017b) programs were written in order to emulate the 

various modes of applying resistance and modify the external force file. For each mode of 

resistance, the programs modified the original external force file to (1) include the resistance that 

was added to the model and (2) adjust the ground reaction forces to balance new external forces. 

These programs used the kinematics and the governing physical principles of the resistance 

modes to generate time-varying force information during walking (Figure 7.1). The coefficients 

for each resistance mode (i.e., mass, stiffness, damping, and force constant) were set to provide 

either 30, 60, or 90 N of resistance to the model, determined as the average force added to the 

model over the gait cycle. Thus, the amount of resistance applied during walking was similar 

across all resistance modes. The methods used to calculate these resistances are detailed in 

Appendix D. To balance the external forces that were added to the model, a force equal and 

opposite to the external force was added to the ground reaction forces of the leg during stance. 

However, simply adding this balancing force to the ground reaction force resulted in large 

discrete events at heel strike and toe-off. To smoothen these discrete events, the balancing force 

was multiplied by a scalar that increased linearly from 0 (at heel strike) to 1 (at flat foot) and 

decreased linearly back to 0 at toe-off (i.e., trapezoidal windowing function). This force 

balancing was only necessary for the external forces added by the ankle weight, elastic band, 
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pelvis weight, and constant pelvis force. The resistive forces added by the viscous device were 

internal to the model, and therefore, did not alter ground reaction forces. 

 

Figure 7.2 Simulated joint moments, powers, and muscle activations resulting from common resistance types applied while 
walking. Plots depict the result of a 60N resistive force applied using a weight placed at the ankle, an elastic band located at the 
ankle, a viscous resistance at the hip and knee, a weight placed at the pelvis, and a constant force pulling backwards at the pelvis. 
Joint moments and powers are plotted against the percentage of the gait cycle, where solid lines represent walking with the load 
and dashed lines represent normal walking. Labels to the right of the moment plots indicate the direction for extension, flexion, 
plantarflexion, and dorsiflexion. Labels on the power plots indicate a power generation or absorption. Muscle activations are 
depicted as a heat map of the muscles and the phase of the gait cycle, and indicate a change in muscle activation between resisted 
and normal walking. Muscle abbreviations: RF (rectus femoris), VI (vastus intermedius), BFL (biceps femoris long head), BFS 
(biceps femoris short head), GMax (gluteus maximus), TA (tibialis anterior), MG (medial gastrocnemius), Sol (soleus), GMed 
(gluteus medius). Gait phase abbreviations: LR (loading response), MSt (mid-stance), TSt (terminal stance), PSw (pre-swing), 
ISw (initial-swing), MSw (mid-swing), TSw (terminal swing). 
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7.2.3 Variables Extracted from the Simulation 

For our analysis, we evaluated the internal joint moments and joint power of the right hip, 

knee, and ankle in the sagittal plane. In addition to the temporal representation of these variables, 

we measured the maximum and minimum moments and powers during the stance and swing 

phases of gait. We also evaluated the muscle activation of the rectus femoris (RF), vastus 

intermedius (VI), biceps femoris long head (BFL), biceps femoris short head (BFS), gluteus 

maximus (GMax), tibialis anterior (TA), medial gastrocnemius (MG), soleus (Sol), and gluteus 

medius (GMed) muscles. The model included three GMed and three GMax muscles, and we 

used the average activation of these muscles in our analyses. For visualization purposes, muscle 

activation data were depicted as heat maps that highlight the muscles and gait cycle segments 

where a muscle’s activation either increased or decreased when compared with normal walking. 

In order to highlight only meaningful changes from normal walking, heat maps included muscle 

activation data only when the product of the percentage change in muscle activation from normal 

walking and the difference between resisted and normal walking muscle activations exceeded a 

certain threshold (1.25) (e.g., a 25% increase from baseline with at least a change of 0.05 in 

activation). The gait cycle was divided into loading response (LR), mid-stance (MSt), terminal 

stance (TSt), pre-swing (PSw), initial-swing (ISw), mid-swing (MSw), and terminal swing 

(TSw) to better elucidate when each resistance mode is effective during gait.  

7.3 Results 

Traces of the internal joint moments and joint powers, and heatmaps of muscle 

activations during the 60 N of resistance condition are depicted in Figure 7.2. Additionally, the 

maximum and minimum internal joint moments and powers and the average percent change in 

muscle activation during the stance and swing phases for all modes and levels of resistance are 



  

167 
 

provided in Table 7.1 and Table 7.2. The results for the 60N resistance condition are summarized 

below. Note that all percentages represent the percentage change of the variable with respect to 

normal walking with no resistance.  

Table 7.1 Maximum and minimum sagittal joint moments and powers for each mode of applying functional resistance training. 

Joint Moments (N∙m) 
  Hip Knee Ankle 
  Stance Swing Stance Swing Stance Swing 
Mode R Max Min Max Min Max Min Max Min Max Min Max Min 
NW − 55.1 −38.6 15.1 −8.5 35.2 −57.6 3.2 −19.1 125.4 −11.9 0.8 −2.5 

Ankle 
Weight 

30 54.8 −34.3 50.8 −15.1 35.4 −62.2 6.1 −35.7 130.7 −12.8 0.8 −2.3 
60 60.2 −35.0 87.1 −21.8 35.5 −66.7 9.1 −52.4 136.3 −13.9 0.8 −2.2 
90 88.8 −41.2 123.4 −31.9 35.7 −71.2 12.2 −69.0 141.8 −15.0 0.8 −2.2 

Elastic 
Band 

30 61.2 −38.9 −11.1 −33.8 29.3 −59.5 11.7 0.7 126.5 −7.5 0.8 −2.4 
60 67.7 −84.7 −15.0 −80.9 26.1 −60.8 27.9 3.8 127.2 −3.2 0.8 −2.4 
90 74.3 −130.6 −18.9 −128.4 46.8 −62.2 46.5 4.6 128.0 −1.1 0.8 −2.3 

Viscous 
Brace 

30 63.5 −53.4 19.1 −38.6 35.6 −58.7 12.1 −16.4 125.4 −11.9 0.8 −2.5 
60 72.0 −75.7 23.4 −68.7 36.5 −60.0 27.5 −22.6 125.4 −11.9 0.8 −2.5 
90 84.4 −104.3 27.8 −98.8 37.4 −61.5 43.6 −34.7 125.4 −11.9 0.8 −2.5 

Pelvis 
Weight 

30 59.0 −43.8 15.1 −8.9 36.5 −60.1 3.2 −19.1 130.8 −12.1 0.8 −2.4 
60 63.4 −49.1 15.1 −9.2 37.8 −62.6 3.2 −19.1 136.3 −12.3 0.8 −2.3 
90 67.8 −54.3 15.1 −9.6 39.3 −65.1 3.2 −19.1 141.8 −12.5 0.8 −2.3 

Pelvis 
Constant 

30 83.3 −17.4 15.1 −7.6 20.0 −73.1 3.2 −19.1 128.9 −9.3 0.8 −2.3 
60 111.6 −6.8 15.1 −6.8 4.7 −88.6 3.2 −19.1 132.5 −7.1 0.8 −2.2 
90 139.8 −3.2 15.1 −6.3 −2.6 −104.1 3.2 −19.1 136.1 −4.8 0.8 −2.3 

Joint Powers (Watts) 
  Hip Knee Ankle 
  Stance Swing Stance Swing Stance Swing 
Mode R Max Min Max Min Max Min Max Min Max Min Max Min 
NW − 73.4 −18.1 26.6 −0.1 100.2 −44.0 5.9 −86.7 163.3 −69.0 2.6 −2.6 

Ankle 
Weight 

30 82.6 −18.6 47.4 0.1 119.9 −46.1 11.1 −159.0 182.4 −71.9 2.6 −2.5 
60 102.3 −19.7 68.2 0.3 143.0 −48.1 16.2 −231.9 203.1 −74.8 2.6 −2.3 
90 122.9 −20.8 89.0 0.5 168.8 −50.2 21.4 −305.5 223.8 −77.7 2.6 −2.1 

Elastic 
Band 

30 74.7 −16.8 44.0 −13.2 103.7 −31.8 81.3 −15.3 165.0 −69.6 2.6 −2.6 
60 78.9 −16.1 64.7 −34.0 104.9 −35.6 204.7 −19.3 165.1 −70.0 2.6 −2.5 
90 87.7 −15.4 92.7 −54.9 106.1 −70.8 336.9 −23.7 165.2 −70.4 2.6 −2.5 

Viscous 
Brace 

30 143.4 −16.0 121.3 0.0 120.6 −36.4 84.6 −26.3 163.3 −69.0 2.6 −2.6 
60 234.2 −14.6 215.9 0.1 156.6 −29.9 199.2 −9.1 163.3 −69.0 2.6 −2.6 
90 329.1 −13.1 310.6 0.2 245.0 −26.7 317.5 −4.7 163.3 −69.0 2.6 −2.6 

Pelvis 
Weight 

30 85.3 −20.0 27.8 −0.1 102.3 −51.8 5.9 −86.7 172.7 −72.0 2.6 −2.5 
60 98.5 −22.4 29.1 −0.1 107.8 −72.1 5.9 −86.7 182.1 −75.0 2.6 −2.5 
90 111.8 −24.8 30.3 −0.1 117.7 −92.4 5.9 −86.7 191.5 −78.0 2.6 −2.4 

Pelvis 
Constant 

30 107.3 −22.3 24.0 −0.1 143.3 −41.4 5.9 −86.7 172.7 −71.0 2.6 −2.4 
60 160.6 −27.0 21.4 −0.1 193.7 −57.1 5.9 −86.7 182.8 −72.9 2.6 −2.2 
90 220.0 −44.1 18.7 −0.1 246.8 −76.2 5.9 −86.7 193.3 −74.9 2.6 −2.0 

Abbreviations: R (resistance level [N]), NW (normal walking with no resistance); Mass of the subject in the model: 72.6 [kg]. 
For hip and knee joint moments, (+) indicates extension and (−) indicates flexion. For the ankle moments, (+) indicates 
plantarflexion and (−) indicates dorsiflexion. For all powers, (+) indicates a concentric contraction (power generation) and (−) 
indicates an eccentric contraction (power absorption).  

 

The ankle weight mainly increased hip extension and knee flexion moments (477% and 

174%, respectively) and increased power absorption (167%) at the knee joint at the end of the 
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swing phase. The muscle activation of the hamstrings (biceps femoris long and short heads) was 

increased during the terminal swing (35% and 17%, respectively). This increased hamstring 

muscle activation corresponded to eccentric contraction of the hamstring muscles because the 

knee joint was absorbing power over this phase. Interestingly, the ankle weight also reduced the 

activation of a quadriceps muscle (vastus intermedius) during swing (−48%).  

The elastic band increased hip flexion and knee extension moments during the swing 

phase of gait (852% and 772%, respectively) when compared with normal walking with no 

resistance. The hip generated more power during the early swing phase (143%) then began 

absorbing more power towards the end of the swing phase (>1000%). The knee primarily 

showed an increase in power generation during the swing phase (>1000%). The muscle 

activation of the quadriceps muscles (rectus femoris and vastus intermedius) was increased 

during the swing phase (198% and 148%, respectively), while that of the hamstring muscles 

(biceps femoris long and short heads) was decreased during the swing phase (−22% and −9%, 

respectively). 

The viscous device increased hip extension moments during the stance phase (31%) and 

hip flexion moments during the swing phase (708%) when compared with normal walking with 

no resistance. In the knee, it increased flexion moments during early swing (18%) and increased 

extension moments during late swing (759%). The viscous device increased power generation at 

the hip during the stance and swing phases (219% and 712%, respectively), and also increased 

power generation at the knee during the swing phase (>1000%). The muscle activation of the 

hamstring muscles (biceps femoris long and short heads) was increased during the stance (59% 

and 32%, respectively) and initial swing phases (20% and 90%, respectively), and that of the 

quadriceps muscles (rectus femoris and vastus intermedius) was increased during the swing 
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phase (66% and 194%, respectively). These increased quadriceps and hamstring muscle 

activation corresponded to concentric contractions of these muscles because the hip and knee 

joints were generating power at these instances. 

Table 7.2 Average percentage change in muscle activation from normal walking for each mode of applying functional resistance 
training. 

Muscle Activation (% Change) 
Mode R Phase RF VI BFL BFS GMax TA MG Sol GMed 

Ankle Weight 

30 Stance −2 −3 4 0 −6 6 8 −1 −2 
Swing 30 −40 20 1 6 1 4 0 11 

60 Stance −11 −5 10 2 −6 12 14 2 −2 
Swing 46 −48 35 17 9 2 8 −1 31 

90 Stance −11 −4 18 7 −3 20 21 8 0 
Swing 69 −53 58 32 2 4 17 1 50 

Elastic Band 

30 Stance 2 −7 3 0 0 −11 1 2 −1 
Swing 108 75 −17 −2 −11 0 1 0 −12 

60 Stance 47 −10 17 6 9 −18 5 −4 1 
Swing 198 148 −22 −9 −10 0 1 0 −10 

90 Stance 70 −12 22 6 17 −24 8 −6 3 
Swing 281 208 −28 −11 −12 0 1 0 −19 

Viscous Brace 

30 Stance −26 15 30 20 11 −5 0 3 3 
Swing 42 114 22 45 6 0 1 −2 −4 

60 Stance −31 36 59 32 27 −5 0 3 8 
Swing 66 194 20 90 14 1 1 4 −1 

90 Stance −34 61 92 51 40 −4 1 5 15 
Swing 104 257 27 122 29 3 11 0 5 

Pelvis Weight 

30 Stance 2 1 −1 −1 1 1 3 4 2 
Swing 9 −2 5 1 0 0 1 1 −2 

60 Stance 5 3 −1 1 1 6 7 13 4 
Swing 9 3 8 4 −1 1 2 2 −1 

90 Stance 7 5 1 1 5 8 11 18 8 
Swing 13 0 12 0 −3 2 3 3 2 

Pelvis Constant 

30 Stance −31 −7 67 3 18 −5 6 −5 9 
Swing 4 0 −2 5 −1 0 3 −3 −5 

60 Stance −32 −4 156 7 38 −14 6 13 28 
Swing 5 0 0 −4 0 2 10 1 5 

90 Stance −32 −5 249 8 61 −28 5 21 47 
Swing 3 −2 −3 5 3 2 6 2 −3 

Abbreviations: R (resistance level [N]), RF (rectus femoris), VI (vastus intermedius), BFL (biceps femoris long head), BFS 
(biceps femoris short head), GMax (gluteus maximus), TA (tibialis anterior), MG (medial gastrocnemius), Sol (soleus), GMed 
(gluteus medius). The average percentage change in muscle activation was calculated as: ((resisted − normal)/normal)*100. 

 

The weight belt at the pelvis had a minimal effect on gait mechanics at the resistance 

levels studied in this experiment. The moments, powers, and muscle activation measured while 

applying resistance closely resembled those of normal walking with no resistance. The most 

notable change was an increase in knee absorption power during the stance phase (64%). 
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However, quadriceps muscle activation changes during the stance phase were minimal as a result 

of the added resistance (≤5%). 

The backwards force pulling on the pelvis resulted in increased hip extension and knee 

flexion moments during the stance phase (103% and 54%, respectively) when compared with 

normal walking with no resistance. Power generation increased at the hip for most of the stance 

phase (119%) but decreased during the pre-swing phase (−122%). The knee generated more 

power during the loading response (56%), absorbed more power during mid-stance (112%), then 

generated more power again during pre-swing (93%). This mode of resistance mostly increased 

muscle activation of hip extensor muscles (biceps femoris long head and gluteus medius) during 

the stance phase (156% and 28%, respectively). 

7.4 Discussion 

Functional resistance training is increasing in popularity for gait rehabilitation, and 

several devices have been used in clinics and research to provide resistance to the leg while 

walking. However, the resulting human-device interactions and muscle activation patterns may 

differ considerably based on the mode in which the resistance is applied. An understanding of the 

biomechanical and neuromuscular effects of different modes of functional resistance training is 

crucial for tailoring training to patient-specific needs. This is the first study to comprehensively 

characterize the effects of various modes of functional resistance training on lower-extremity 

biomechanics and muscle activation during gait using a complex biomechanical simulation-

based analysis. We specifically evaluated the effects of an ankle weight, an elastic band attached 

to the ankle, a viscous device attached to the hip and knee, a weight belt on the pelvis, and a 

constant backwards pulling force on the pelvis, which are the most commonly used methods in 

clinics and research. We found that the mode of applying resistance had differential effects on 
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the internal joint moments, powers, and muscle activations—greatly influencing the joints and 

phase of the gait cycle where the resistance was experienced, as well as the muscles that must 

counteract the applied resistance.  

Our results indicate that, when applying functional resistance training during gait, the 

mode of resistance can be chosen to account for specific strength deficits or walking 

impairments. Ankle weights primarily increased internal hip extension and knee flexion 

moments at the end of the swing phase and provided resistance to the hamstring muscles. An 

elastic band placed at the ankle increased internal hip flexion and knee extension at the end of 

the swing phase and provided resistance primarily to the quadriceps muscles. The viscous device 

at the hip and knee was able to provide resistance to the hamstring muscles over the stance phase 

and initial swing, and the quadriceps muscles during mid- and late-swing. A weight placed at the 

pelvis was not very effective at providing resistance during walking. The constant backwards 

pulling force on the pelvis was the most effective mode for resisting hip extension and knee 

flexion during stance. Overall, these findings were consistent with previous studies on human 

subjects (Browning et al., 2007; Chang et al., 2018; Duclos et al., 2014; Klarner et al., 2013; 

Lam et al., 2006; Lam et al., 2008; Lawrence et al., 2013; Mun et al., 2017; Savin et al., 2010; 

Washabaugh et al., 2016), albeit, with some exceptions. A key discrepancy was that a constant 

backwards pulling force on the pelvis has been shown to increase both quadriceps and hamstring 

activation during stance (Lawrence et al., 2013; Mun et al., 2017), whereas only the hamstring 

muscles were active in our study. We believe this occurred because participants typically are 

allowed to adjust their kinematics when walking against a resistance, whereas we constrained the 

kinematics to normal walking.  Thus, the increased hip, knee, and trunk flexion that are 
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commonly observed when walking with a constant backward pulling force could have resulted in 

more contribution from the quadriceps muscles (Mun et al., 2017).  

An important finding of this study was that a weight placed at the pelvis minimally 

altered joint moments and muscle activation during resisted walking. Other studies that have 

investigated this mode of resistance at similar resistance levels have also found that it is 

ineffective for altering the internal joint moments during walking (Browning et al., 2007; 

Kubinski & Higginson, 2012). It is possible that the mass used for these studies was too small to 

elicit meaningful effects, as studies that have applied much larger resistances (up to 40% of 

bodyweight) found increases in quadriceps muscle activation (Simpson et al., 2011). We did not 

apply resistances this large because we controlled for the amount of external force applied to the 

model to allow for proper comparison between resistive modes, and we feel masses that large 

would not be practical for training patients with gait impairments. Similar to a weight placed at 

the pelvis, a weight placed at the ankle only had a small effect on internal joint moments/powers 

even with a large mass. Additionally, the increases in internal moments and powers due to a 

weight placed at the ankle were mainly observed during the terminal swing, which greatly limits 

how this approach can be applied for functional resistance training during walking. 

In our simulation, we constrained the kinematics of the model to match a normal gait 

pattern without any resistance. Notably, this assumption does not account for kinematic 

adaptations that would typically occur when resistance is added during walking, which may lead 

to differences between the simulation results and what would be found through experiments on 

human subjects. However, there is a strong rationale for constraining the kinematics to normal 

walking. There is evidence that resisted walking leads to motor slacking (Washabaugh et al., 

2016), where the motor system reduces muscle activation levels and movement excursions to 
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minimize metabolic and movement-related costs (Reinkensmeyer et al., 2009). To reduce 

slacking during functional resistance training of gait, many studies instruct subjects to walk as 

normally as possible (Barthélemy et al., 2012; Lam et al., 2006; Lam et al., 2008) or provide 

kinematic feedback (Klarner et al., 2013; Washabaugh et al., 2016) when the resistance is 

applied. This helps ensure that the muscles are appropriately loaded so the benefits of functional 

resistance training can be fully realized. Moreover, studies have shown that, although 

participants reduce their hip and knee flexion angles during the early part of functional resistance 

training, they typically adapt to the applied resistance and resume walking with more normal 

flexion angles with continued training (Lam et al., 2006). From these aspects, the model 

adequately accounted for the effort that the participant will have to exert while walking with 

resistance and resembled the way in which functional resistance training is performed in the 

clinic or research. 

7.5 Limitations 

There are some potential limitations to this study. We used a generic musculoskeletal 

model based on healthy participants in our simulations, which limits the generalizability of the 

findings to clinical populations (e.g., stroke) that often present with altered biomechanics and 

muscle weakness. However, it is to be noted that clinical populations with gait deficiencies share 

many kinematic gait features with normal walking (e.g., the leg must swing forward and 

backward throughout the gait cycle to complete a stride); hence, we believe that many of the 

general findings presented in this study will carry over to clinical populations. Another limitation 

is that we do not know how much change in muscle activation or moment data is needed to 

induce meaningful physiological adaptations (e.g., increase in gait speed). However, the 

observed biomechanical changes are in general similar to or greater than those reported in the 
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literature (Browning et al., 2007; Houldin et al., 2011; Mun et al., 2017; Savin et al., 2010; Yen 

et al., 2013)—a change that has been shown to positively affect gait outcomes in patient 

populations after a course of an intervention (Lam et al., 2009; Lam et al., 2015; Wu et al., 

2017). There are also several assumptions made during musculoskeletal modeling. For example, 

biomechanical simulations typically rely on a minimum effort principle (e.g., the sum of the 

squared muscle activations, as done in this study) to simulate muscle activation. While this 

approximation of a human’s motor control objective may be reasonable for a healthy population, 

it may not hold when predicting the muscle activation of a pathological gait, which can be 

influenced by other factors such as pain or fatigue. In these cases, patients may alter their motor 

control to more heavily favor stability or preserve joint integrity by increasing antagonist muscle 

activity, which a minimum effort principle fails to predict (Bergmann et al., 2004; Schellenberg 

et al., 2015). As a result, caution should be exercised when generalizing the study results to a 

patient population. 

7.6 Conclusion 

In summary, using a simulation-based analysis we show that the mode of applying 

resistance greatly affects joint moments, powers, and muscle activation, as well as the phase of 

the gait cycle where the resistance was experienced. Specifically, we show that providing 

resistance via an elastic band at the ankle can be used to isolate and target the quadriceps 

muscles during the swing phase, whereas a viscous hip and knee device could be used to target 

both hip/knee flexors and extensors. A constant backward pulling force at the pelvis could be 

used to primarily target the hip extensors during the stance phase. A weight placed at the pelvis 

or at the ankle minimally altered joint moments and muscle activation during resisted walking. 

Thus, the detailed biomechanical and muscle activation changes described in this study can be 
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used to guide rehabilitation so that resistances for functional resistance training during gait can 

be prescribed to better account for patient-specific strength deficits or walking impairments. 
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Chapter 8  

Conclusion 

 

8.1 Summary 

This dissertation presents considerable work studying strategies for providing resistance 

to the leg for functional resistance training during walking. Overall, this research worked toward 

two common themes. In the first theme, we worked to compare how resistive gait strategies that 

have been commonly used in the literature could be used to target patient-specific weakness. In 

the second theme, we worked to develop new low-cost devices that could provide utility in the 

clinic and in home.  

In line with the first theme, our literature review in Chapter 1 identified several methods 

that have been used to provide resistance to the legs during walking and summarized how these 

methods have been able to augment the acute effects of training. Similarly, in Chapter 7, we used 

musculoskeletal modeling in OpenSim to directly compare several strategies that have been used 

to provide functional resistance training to gait in the clinic or laboratory setting. Our review 

may better represent how patients will naturally adapt to resistance. However, musculoskeletal 

modeling offered a unique environment to make these comparisons because it allowed us to 

closely match the magnitude of the resistance and controlled for the kinematics of the model 

(i.e., the model could not kinematically slack). In both instances, we found that devices differed 

in their ability to alter gait parameters during walking. Hence, we believe the information 

presented in these chapters could be of use to clinicians when selecting a resistive strategy 
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informed by their patient’s impairments and functional goals, while remaining feasible for use in 

their clinic or in the patient’s home. It could also be of use to engineers who are looking to 

design new rehabilitation strategies for providing resistance during walking.  

As for our second theme, we found that passive devices have been more commonly used 

for this type of training. This may be because passive devices (e.g., weighted cuffs and resistance 

bands) provide an extremely low-cost and easy-to-use option for providing resistance to the legs 

during walking. However, putting factors like cost and ease of use aside, it appears that wearable 

robotic exoskeleton devices have the most upside for this type of training. With a robotic 

exoskeleton, a single device can be used to resist a wide array of gait abnormalities and training 

can be easily controlled or monitored by the operator. Still, the large cost of these devices can 

disincentivize their widespread use in most clinical or home settings. To remedy this, we 

proposed the use of passive and semi-passive exoskeleton devices for this training, as they 

balance the affordability of passive devices with the controllability and patient monitoring 

capabilities of robotic devices. In Chapters 2 – 5 we developed and tested two passive wearable 

exoskeleton devices for providing resistance to the leg.  

Chapter 2 documented the design of our passive damper based device, which provided a 

viscous (i.e., velocity-dependent) resistance to the knee using a magnetic, eddy current brake. 

This device was unique because the resistive properties of the device (i.e., the damping 

coefficient) could be easily adjusted by altering the exposure of the magnets over the disk. 

Preliminary testing with this device on able-bodied participants (Chapter 2) and stroke survivors 

(Chapter 3) indicated that the device provided resistance levels suitable for functional resistance 

training in a package that was both lightweight and wearable. Walking with this device at the 

knee resulted in significant increases in activation of many of the muscles tested. A brief period 
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of training also resulted in significant aftereffects once the resistance was removed. In stroke 

survivors, this training resulted in significant improvements in overground gait velocity. These 

results supported the feasibility of this device for providing functional resistance training during 

walking. Notably, in Chapter 4 this device was then upgraded so that the brake could be 

controlled by a computer (i.e., made semi-passive).  

However, Chapter 4 had an additional purpose related to the application of training, 

which may also have design ramifications. In our previous experiments, we noted that 

participants often reduced their joint excursions when walking with resistance, which we 

believed to be a form of motor slacking. Hence, we ran an experiment to determine if 

participants were slacking during training, and if visual feedback could be used to augment the 

training and reduce any slacking behavior. We found that training without feedback significantly 

reduced knee flexion, indicating the participants were kinematically slacking. Also, providing 

visual feedback of knee joint kinematics during training significantly increased knee muscle 

activation and kinematic aftereffects (i.e., reduced slacking). These findings underscored the 

importance of using additional methods to externally motivate functional resistance training 

during walking. While there are many ways that feedback can be applied for this training (e.g., 

via coaching, visual feedback, object avoidance, or games), robotic devices are more likely to 

have the instrumentation required to provide more salient treatment.  

In Chapter 5, we designed a passive elastic exoskeleton and tested how it could be used 

to resist the knee of an able-bodied participant. We were interested in elastic resistances because 

elastic elements are capable of storing energy (when a spring is compressed) then returning that 

energy to the user (when the spring recoils). Exerting energy on the user is a minimum 

requirement for providing resistance for eccentric muscle contractions. Notably, viscous 
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resistances cannot exert energy on the user. While there have been several elastic exoskeletons 

that have been used to assist/resist gait, the device we designed was unique in that it was highly 

configurable, meaning it could be used to provide resistance to joint flexion, extension, or to both 

(i.e., bidirectionally). Hence, the device could be used to target patient-specific weaknesses 

based on the configuration. During testing, we found the different device configurations could be 

used to target resistance more towards the knee extensor or flexor muscles. Also, knee joint 

power absorption was increased at several points on the gait cycle, meaning the device was 

exerting energy on the user.  

Chapter 6 consisted of two experiments. The first compared functional resistance training 

while using the viscous and elastic knee braces to provide a bidirectional resistance at the knee. 

The second compared training with a resistance targeted to the knee with resistance targeted to 

both the hip and knee. In both experiments, we found that gait biomechanics were altered during 

training. Hence, the resistance type and targeted joint altered joint moments, powers, and muscle 

activation patterns. However, these training methods did not differ from one another in their 

ability to produce kinematic aftereffects, alter neural excitability, or fatigue the leg muscles 

during training. While this may indicate that the body is not very sensitive to the type of 

resistance that is used for training, there are several other ways that these devices could be 

controlled or configured that may change this interpretation. Additionally, differences may 

appear if we tested the cumulative effects of training with these two devices (i.e., in a clinical 

intervention). These experiments also provided new insight into how training can be dosed (i.e., 

how much resistance should be provided) during an intervention, as 15-20% of the participant’s 

isometric strength fatigued the hamstring muscles but not the quadriceps. However, the ability to 
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properly dose a training may be limited based on the leg braces ability to transfer resistances to 

the leg.  

In summary, we have examined how existing strategies for providing resistance during 

walking can be used to provide patient-specific treatments. Additionally, we have identified a 

gap within these strategies, and propose the use of passive and semi-passive exoskeleton devices 

for use in this training. We then designed two of these devices and tested their effects on able-

bodied individuals and a small sample of stroke survivors. While our results so far have been 

promising, there are several lines of research that must be explored to further the themes 

presented in this dissertation. 

8.2 Future Directions 

Areas of research that should be further explored include redesigning of leg brace devices 

and translation of this research into clinical populations. When redesigning these resistive 

devices, first, the resistive mechanisms can be made smaller and more compact. Currently, the 

devices use many off-the-shelf parts which makes them larger than necessary. Several parts 

could be customized to reduce the size of these devices. For example, the gear mechanism for the 

magnetic brake could be customized to be lower profile, which would make the device sit much 

closer to the leg. During this process, we could also re-configure the gear ratio, disk diameter, 

and number of magnets so that the rotational inertia of the device could be reduced. Likewise, 

the ratcheting system for the elastic brake largely dictates the size of the device. If the ratchet and 

pawl were smaller, we could likely use springs that have a smaller footprint but are stiffer. 

Hence, the size/weight of the whole device could potentially be reduced. 

Second, the wearable braces need to be revised so that they are better able to convey 

forces from the device to the leg. This was a major limiting factor in some of our studies. For 
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example, in Chapter 6, we attempted to apply 15-20% of the participant’s hip flexor and extensor 

torque but were only able to convey approximately half of the desired value. Although we used a 

custom configuration of leg braces in these studies, the brace was still comprised of off-the-shelf 

components. Further, these components were designed to limit range of motion and stabilize the 

joint. Hence, they were never intended to convey large resistances. In the future, we would 

redesign the pelvis and thigh braces so that they came in better contact with bony landmarks 

(e.g., the sacrum and anterior superior iliac spine). Further, it would improve the user experience 

if the device were easier for the patient to put on themselves.  

Third, we tested the effects of these devices at the knee and the hip, but we have not 

attempted to target the ankle. This decision was intentional, as many stroke survivors are 

prescribed an ankle foot orthosis and we did not want to disrupt this treatment. However, the 

ankle plays a very important role in gait and would be a worthwhile training target. Indeed, 

stroke survivors often have an impaired ability to generate ankle plantarflexion moment (i.e., are 

unable to push off) at the end of the stance phase (Olney & Richards, 1996). While the ankle can 

present additional design challenges (e.g., the weight of the device will add more inertia to the 

leg, as the ankle is further from the center of mass), it is likely that the viscous and elastic 

mechanisms could be modified for this purpose.  

Beyond device redesigns, there is a large need to translate this research into clinical 

populations. While the majority of research into functional resistance training is motivated to 

rehabilitate individuals with neurological injuries, only a small portion of research has been 

performed on these individuals. Even in this dissertation, we only tested the viscous device on a 

small group of stroke survivors. While we had intended to collect more data from stroke 

survivors, this was not possible because of research restrictions during the COVID pandemic. It 
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is important that more research be conducted on clinical populations because research on able-

bodied individuals may not translate into individuals with neurological injuries. For example, in 

Chapter 6 we tested how training was able to induce fatigue. While our results indicated that the 

training was likely not intense enough for the quadriceps muscles of able-bodied individuals, this 

may not be the case for patients that have clinical signs of muscle weakness and gait 

impairments. Testing in clinical populations will also be necessary to educate our device 

redesigns, as human factors and requirements for usability will likely be altered in these 

populations.   

Lastly, we have done substantial testing on the acute effects of functional resistance 

training with these devices; however, the findings from these studies must be substantiated 

through a clinical intervention. For example, in our studies, we tested how these devices could be 

used to alter internal joint moments, power, and muscle activation during walking. Ideally, an 

intervention with these devices would increase strength in these joints/muscles. However, that 

must still be verified. We also measured kinematic aftereffects. While it is often assumed that 

aftereffects measured during acute studies can be reinforced with continued training, this also 

must be verified. Clinical interventions on functional resistance training during gait should also 

work to determine if there are cumulative neural effects of this training, as such findings may 

elucidate clinical populations that could benefit from this training.  
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Appendices 

  

Chapter 1 Supplemental Materials 

Table A.1 Summary of all the studies in Chapter 1 and the variables they measured 

Reference Population Device Mode Type Resisting MA Moments Kinematics Spatiotemporal Neural 
Browning et al. 
(2007) 

AB Passive  Point Inertial Foot/Shank/Thigh/Pelvis Yes Yes 
   

Noble & Prentice 
(2006) 

AB Passive  Point Inertial Shank 
 

Yes Yes Yes 
 

Lam et al. (2008) SCI Passive/Active  Point/Joint Inertial/Viscous Shank/Hip+Knee Yes 
 

Yes 
  

Duclos et al. (2014) Stroke Passive  Point Inertial Shank 
 

Yes 
   

Savin et al. (2010) AB Passive  Point Inertial Shank Back Yes 
 

Yes Yes 
 

McGowan et al. 
(2008) 

AB Passive  Point Inertial Pelvis Yes 
    

Krupenvich et al. 
(2015) 

AB Passive  Point Inertial 
  

Yes 
   

Kubinski & 
Higginson (2012) 

AB/Knee OA Passive  Point Inertial Torso 
 

Yes 
   

Silder et al. (2013) AB Passive  Point Inertial Torso Yes Yes 
   

Simpson et al. 
(2011) 

AB Passive  Point Inertial Torso Yes 
    

Chow et al. (2005) AB Passive Point Inertial Torso  Yes    
Blanchette & 
Bouyer (2009) 

AB Passive  Point Elastic Foot Front Yes 
  

Yes 
 

Blanchette et al. 
(2012) 

AB Passive  Point Elastic Foot Front Yes 
  

Yes 
 

Shin et al. (2014) AB/CP Passive  Point Elastic Shank Front Yes 
    

Gottschall & Kram 
(2003) 

AB Passive  Point Elastic Pelvis Back Yes 
    

Tang et al. (2019) CP Active  Point Viscoelastic Shank Back Yes 
  

Yes 
 

Yen et al. (2013) SCI Active  Point Viscoelastic Shank Back Yes 
  

Yes 
 

Mun et al. (2017) AB Active  Point Constant Pelvis Back Yes 
    

Vashista et al. 
(2016) 

AB Active  Point Constant Pelvis Down Yes 
 

Yes Yes 
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Reference Population Device Mode Type Resisting MA Moments Kinematics Spatiotemporal Neural 
Barthélemy et al. 
(2012) 

AB Passive  Joint Elastic Ankle Dorsi Yes 
 

Yes 
 

Yes 

Houldin et al. 
(2011) 

AB/SCI Active  Joint Viscous Hip Bi Yes 
 

Yes Yes 
 

Houldin et al. 
(2012) 

AB Active  Joint Viscous Hip Bi Yes 
 

Yes Yes 
 

Klarner et al. (2013) AB Active  Joint Viscous Hip + Knee Bi Yes 
    

Lam et al. (2006) AB Active  Joint Viscous Hip + Knee Bi Yes 
 

Yes 
  

Diaz et al. (1997) AB Active  Joint Constant Knee Flex/Knee Ext Yes 
    

Blanchette et al. 
(2011) 

AB Active   Joint Custom Ankle Dorsi Yes 
 

Yes 
  

Conner et al. (2020) CP Active Joint Custom Ankle Plantar Yes 
    

Gama et al. (2018) AB Passive  Point Inertial Shank 
   

Yes 
 

Savin et al. (2014) AB/Stroke Passive  Point Inertial Shank Back 
   

Yes 
 

Savin et al. (2013) Stroke  Passive  Point Inertial Shank Back 
   

Yes 
 

Vashista et al. 
(2013) 

AB Passive  Point Elastic Pelvis Down 
  

Yes 
  

Yen et al. (2014) SCI Active Point Viscoelastic Shank Back 
   

Yes 
 

Yen et al. (2015) Stroke Active Point Viscoelastic Shank Back 
   

Yes 
 

Yen et al. (2012) SCI Active Point Viscoelastic Thigh Back 
   

Yes 
 

Cajigas et al. (2017) AB Active Joint Custom Shank Back    Yes  
Severini et al. 
(2020) 

AB Active Joint Custom Shank Back    Yes  

Zabukovec et al. 
(2013) 

AB Active Joint Viscous Hip + Knee Bi 
    

Yes 

Bonnard et al. 
(2002) 

AB Passive  Point Elastic Foot Up 
    

Yes 

Variable abbreviations: muscle activation (MA); population abbreviations: AB (able-bodied), SCI (spinal cord injury), CP (cerebral palsy), OA (osteoarthritis); resisting abbreviations: Flex 
(flexion), Ext (extension), Plant (plantarflexion), Dorsi (dorsiflexion), Bi (Bidirectional [e.g., Flex & Ext]); Front/Back/Down indicate the direction the device was pulling. Yes indicates that a 
variable was measured in the study. Note, many studies had additional variables that were not of interest to this study. 
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Chapter 5 Supplemental Materials 

B.1 Experimental Setup 

The setup was similar for both experiments. First, we calibrated the capture volume of the 

motion capture system (Qualisys Track Manager, Qualisys, Göteborg, SE), which consisted of 

12 infrared tracking cameras (Miqus M3) and two video cameras (Miqus Video). We then zeroed 

the force plates of the instrumented split-belt treadmill (Bertec, Columbus, OH, US).  

For experiment 1, we placed surface EMG electrodes (Trigno Avanti, Delsys, Natick, 

MA, US) over the muscle bellies of several quadriceps (vastus medialis [VM], and rectus 

femoris [RF]), and hamstring muscles (medial hamstring [MH], and lateral hamstring [LH]), and 

placed additional sensors on an ankle dorsiflexor muscle (tibialis anterior [TA]), ankle plantar 

flexor muscles (medial gastrocnemius [MG], and soleus [SO]), and a hip abductor muscle 

(gluteus medius [GM]). These sensors were placed on the right leg according to the established 

guidelines at www.seniam.org. Sensor positions were slightly altered from established guidelines 

if the leg brace hindered sensor placement. Once placed, the EMG electrodes were tightly 

secured to the skin using self-adhesive tapes and cotton elastic bandages. The quality of the 

EMG signals was visually inspected to ensure that the electrodes were appropriately placed. 

Finally, the participant performed two maximum voluntary contractions (MVCs) with each 

muscle group against a manually applied resistance, which were used later for normalization. 

Next, for both experiments we placed markers on the legs for motion capture (Figure 

B.1). To track gait kinematics, we used the CAST (calibrated anatomical systems technique) 
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lower extremity marker set (Cappozzo et al., 1995). In this marker set, for the right and left leg, 

individual markers were placed over the anterior and posterior iliac spine, medial and lateral 

femoral epicondyles, medial and lateral malleoli of the ankle, and at the 1st, 2nd, and 5th 

metatarsals and calcaneus of the foot. Additionally, marker clusters were placed on the thigh and 

shank. In our implementation, because the leg brace obstructed our ability to place physical 

markers over the iliac spine and right femoral epicondyles, several markers were placed virtually 

with a stylus; hence, an additional cluster was required on the back of the pelvis to aid in 

tracking of the virtual iliac spine markers. All individual markers were secured to the leg using 

self-adhesive tapes, whereas clusters were secured via hook-and-loop fastener elastic wraps 

(MediWrap, fabrifoam, Exton, PA, US). 

 

Figure B.1 Schematic depicting the locations where markers and marker clusters were located for motion capture. 



  

211 
 

B.2 Motion Capture 

B.2.1 Static Trials 

During static trials, we had the participant stand on the treadmill (either with or without 

wearing the device) motionless in an upright posture as the cameras recorded the positions of the 

physical markers. With each static trial, we also performed a pointer trial, where the participant 

remained upright as a study team member used a stylus (a calibrated rigid body) to indicate the 

positions for virtual markers. During this pointer trial, an event was created in the motion capture 

software (i.e., the time point was saved) when the stylus was in the correct position for each 

virtual marker. These events, along with the stylus position were later used to recreate virtual 

markers in Visual3D. 

B.2.2 Building the Model 

Using the CAST marker set, we created a model with pose estimation using six degrees 

of freedom segments to measure kinematics and kinetics during walking with the device. The 

pelvis segment was based on the CODA model (Charnwood Dynamics Ltd., UK), which uses the 

right and left iliac spine markers (these are virtual in our experiments) to estimate the location of 

the hip joint centers of the participant. The pelvis was tracked according to the cluster located on 

the posterior of the segment. The remainder of the segments were built using the standard 

Visual3D proximal and distal joint and radius definitions. Note if a radius is not specified, then it 

was automatically estimated based on medial and lateral markers of the joint. The thigh segments 

were defined proximally by the hip joint centers with radii of half the distance between the right 

and left hip joint centers. The distal definition of the thigh segments was the lateral and medial 

epicondyles of the femurs (these are virtual markers on the right leg in our experiments). The 

thighs were tracked according to the clusters placed anteriorly above the brace on the right thigh 



  

212 
 

segment and laterally on the left thigh segment. The shanks were defined proximally by the 

lateral and medial epicondyles of the femurs, and distally by the medial and lateral malleoli of 

the ankles. The shanks were tracked according to the clusters located anteriorly on the right 

segment and laterally on the left segment. The foot segments were defined proximally by the 

medial and lateral malleoli of the ankles, and distally by the 1st and 5th metatarsal markers on 

the feet. The foot segments were tracked using the 1st, 2nd, and 5th metatarsal markers, as well 

as the markers on the calcanei. 

In addition to the previously mentioned segments, we also created multiple kinematic 

segments (sometimes referred to as virtual segments) so that our measures of joint angles were 

more anatomical and relative to the static posture. All of the kinematic segments were tracked 

using the same clusters/markers as defined for the segments above. To create a kinematic pelvis, 

we first had to create landmarks for the iliac crests. The iliac crest landmarks were said to be 

located at a set distance (half the distance between anterior iliac spine markers) directly above 

(using the lab coordinate system) the hip joint centers. The kinematic pelvis was then defined 

proximally using the iliac spine markers, and distally using the hip joint centers. This ensured the 

pelvis was perpendicular to the ground during the static posture, rather than tilted forward as is 

seen in the CODA model. The kinematic thigh and shank segments were defined to be relative to 

the segments directly proximal to them. For the kinematic thigh, this meant it was defined 

relative to the pelvis; meaning, the proximal segment definitions (referring to what must be input 

to the Visual3D model type) were the iliac crest landmarks and the distal definitions were the hip 

joint centers. The kinematic shank was then defined relative to the thigh; meaning, the proximal 

segments were defined to be at the hip joint centers while the distal segments were defined as the 

lateral and medial epicondyles of the femur. Because these segments were tracked using their 
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respective clusters, this meant the hip and knee joint angles could be measured relative to the 

static posture (with static being zero). Finally, kinematic foot segments were created using the 

projected landmarks method. Briefly, to create these segments, new landmarks were created by 

projecting the malleoli, as well as 1st and 5th metatarsal markers onto the ground. The kinematic 

foot segments were then defined proximally by the floor-based malleoli landmarks, and distally 

by the floor-based metatarsal landmarks. This ensured that the foot segment was parallel to the 

floor during the static posture.  

B.2.3 Kinematics and Kinetics Processing 

Once gaps in the marker position data were filled and all markers were labeled in QTM, 

both the motion capture and force plate data were then exported to Visual3D (C-Motion Inc., 

Germantown, MD, US) for further processing. In Visual3D, skeletal models, which used the 

events from the pointer trials to place virtual markers, were built for both static trials (with and 

without the brace; see Building the Model for details). These models were applied to the dynamic 

walking trials. The height and weight of the participant were assigned to the models and tags 

were placed on each trial to allow us to process the trials individually. We ran a function to 

remove any offsets from the force plate data for each trial (FP_Auto_Baseline). Note this 

function also automatically sets the force plate minimum for calculating gait events (e.g., heel-

strike). The marker position data and force plate data were then low-pass filtered using a zero 

phase-lag Butterworth digital filter (6 Hz) to remove motion artifacts and high frequency noise 

due to the treadmill motors, respectively. These filtered (processed) data were used to compute 

the kinematics and kinetics.  

In order to see how the device performed when worn during walking, we calculated 

sagittal plane kinematics and kinetics (internal moments and powers) of the hip, knee, and ankle 
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joints of the right leg (the leg that was wearing the brace). These calculations were performed 

using the built-in functionality of Visual3D (Compute_Model_Based_Data). The hip joint angle 

was calculated as the angle between the kinematic thigh segment relative to the kinematic pelvis 

segment, the knee joint angle was calculated as the angle between the kinematic shank segment 

relative to the thigh segment, and the ankle joint angle was calculated as the angle between the 

kinematic foot segment and the shank segment. Using this same function, the hip moment and 

power were calculated for the thigh and resolved into the pelvis coordinate system, the knee joint 

moment and power were calculated for the shank and resolved in the thigh coordinate system, 

while the ankle joint moment and power were calculated for the foot and resolved into the foot 

coordinate system. Once the kinematics and kinetics were calculated, we ran the Visual3D 

automatic gait event detection function (Automatic_Gait_Events) to determine when heel-strike 

occurred based on the minimum force plate value determined by the FP_Auto_Baseline function. 

We then used these heel-strike events to segment the data based on strides and calculated the 

ensemble average across strides. 

 

Figure B.2 Throughout the experiment, the participant was given visual feedback of his knee angle while walking. A red bar 
indicated the knee joint range of motion as measured while wearing the device without resistance, while a blue cursor indicated 
the real-time knee angle. This feedback was provided to ensure the subject did not reduce his movement excursions while 
walking with resistance. 
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B.3 Visual Feedback 

Visual feedback was provided to the participant to encourage them to walk with their 

normal range of motion during trials with resistance. To create the visual feedback, we measured 

the participant’s knee joint range of motion as they walked during the No Resistance trial, then 

projected these values onto a bar plot along with the real-time knee angle as measured with the 

encoder on the device. Hence, the max flexion angle was located at the top of the plot and the 

minimum angle (or max extension angle) was at the bottom of the plot, while a cursor indicated 

their real-time knee angle (Figure B.2). As he walked, the participant was encouraged to reach 

peak flexion during early swing, and peak extension as he approached heel-strike. This visual 

feedback was created using a custom LabVIEW vi (v2013, National Instruments Corp., Austin, 

TX, US) and displayed on a 177.8 cm (70 in) monitor located approximately 2.5 m in front of the 

treadmill.  

We provided feedback in this validation experiment to ensure that the participant worked 

to overcome the resistance rather than just adapting a stiff knee walking strategy (Washabaugh et 

al., 2016). It has been found that, when walking under applied resistive loads, motor slacking 

occurs and individuals often reduce their movement excursions (Reinkensmeyer et al., 2009; 

Washabaugh et al., 2016). Hence, in these validation experiments, we chose to display the joint 

excursion using the participant’s range of motion. In the past, other studies have used verbal 

coaching, metronomes, or obstacle avoidance protocols to achieve the same effect (Houldin et 

al., 2012; Reid & Prentice, 2001). 

B.4 Repeatability of Benchtop Calibration 

During the benchtop experiment, the software on the dynamometer was executed twice, 

which allowed us to perform repeatability analysis on the calibration curves. For this analysis, 
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we calculated Pearson’s correlation coefficient (r), the slope of a line of best fit, and the 

coefficient of variation [CV(%)] between the two sets of torque data for each spring stiffness 

(Table B.2). Overall, we found the two trials were highly correlated (r > 0.998) and that the slope 

was approximately 1 for all springs, meaning that the two data sets were highly correlated and 

that an increase of 1 Nm for the first data set corresponds to a similar increase in the second data 

set (as is required for repeatability). The coefficient of variation between the two data sets was 

also very low [CV < 2.12%], indicating high precision between the two measurements. Ideally, 

this repeatability analysis would have been performed over hundreds of cycles of loading, as this 

is how the device would typically be used for rehabilitation. However, we anticipate that the 

resistive properties of the device should not change so long as the spring is not deformed beyond 

its elastic range, which would typically be the case with our device. 
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Table B.1 Benchtop testing analysis comparing our measured values of spring stiffness and resting position with theoretical 
values based on the governing principles of the device. 

Theoretical Value Measured Value Difference (T-M) Difference (%) 

Spring Stiffness (k [N m deg-1])  

0.178 0.215 -0.036 -20.4 

0.356 0.362 -0.005 -1.4 

0.497 0.501 -0.004 -0.8 

0.675 0.605 0.071 10.5 

0.788 0.663 0.125 15.9 

Resting Position (ϴr [deg]) 

10.0 11.5 -1.5 - 

20.0 19.0 1.0 - 

30.0 28.1 1.9 - 

35.0 35.3 -0.3 - 

40.0 42.2 -2.2 - 

50.0 48.8 1.2 - 

60.0 54.9 5.1 - 

Note: difference was calculated as the theoretical minus measured (T−M). The Percentage difference was calculated as (T−M)×100/T. 
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Figure B.3 Differences between linear best-fit for spring stiffness and individual measurements. The stiffness traces in Figure 5.3 
are linear best-fit lines for the spring calibration data. Plotting the data for an individual spring (Top Left), there are two distinct 
sources of error between best-fit lines and measured data: (1) hysteresis due to friction between the plunger and cylinder and (2) 
deformation of the device under high loads. The effects of (1) are evident by an overestimation of stiffness as the spring is loaded 
and an underestimation of stiffness as the spring is unloaded. Which occurs because the friction force acts in the same direction 
as the spring force during loading and in the opposite direction during recoil (Top Right). The change in friction during the 
transition between loading and unloading is represented by the drop in torque depicted in the graph. Notably, the friction is larger 
for stiffer springs (indicated by increasing drop), which could be caused by misalignments between the cable and the plunger or 
deformation of the cylinder causing the plunger to be pinched at higher resistances. The effects of (2) are evident in the change in 
measured stiffness (Slope1 and Slope2) as torque increases, indicating deformation of the surrounding system. Slope1 and Slope2 
represent a linear best-fit for a subset of the data at the beginning and end of loading. (Bottom) Measured best-fit, slope, and drop 
for each of the springs used in this study. 
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Table B.2 Repeatability between two loading cycles of the spring calibration curves. 

Spring (N m deg-1) r Slope CV(%) 

𝑘𝑘=0.215 0.9985 0.9968 2.1125 

𝑘𝑘=0.362 0.9993 1.0034 1.8483 

𝑘𝑘=0.501 0.9991 0.9988 1.7380 

𝑘𝑘=0.605 0.9994 1.0045 1.6387 

𝑘𝑘=0.663 0.9997 0.9953 1.3295 

r: Pearson’s correlation coefficient, Slope: the slope of a linear fit, CV(%): the coefficient of 

variation 

 

 

 

 

Figure B.4 Knee kinematics measured at the end of the washout periods. During experiment 2, we collected kinematics over the 
last 30 s of the 300 s washout trials that occurred between trainings. After training, the largest aftereffects occurred at the knee; 
however, the knee angle returned to the level seen during the no resistance trial following the washout trials. Washout 1 occurred 
between the conditions resisting flexion and extension; Washout 2 occurred between conditions resisting extension and 
bidirectionally.
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Chapter 6 Supplemental Materials 

 

Figure C.1 Piecewise linear length normalization procedure. For all gait data, we identified several points of interest based on the 
baseline kinematics that data could be aligned to for statistical parametric mapping. Traces depict the average joint angle profiles 
during baseline walking. Red circles indicate the features that we identified as points of interest (POI) so that data could be 
resampled to have these POI align. Note, these same POI were used for the biomechanics and EMG data.  
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Figure C.2 Experiment 1: hip moment during training. (Top) Traces depict the hip moment profile over the gait cycle while 
walking with the elastic resistance (E) and the viscous resistance (V). (Middle) SPM{F} statistics plotted over the gait cycle. 
Traces that exceed the threshold (red dashed line) are considered significant and shaded gray. (Bottom) Table indicating the 
averages and significance of clusters that exceeded the threshold. For resistance main effects, mean 1 is the average for the 
viscous device over the cluster, and mean 2 is the average for the elastic device over the cluster. For block main effects, mean 1 is 
the average over the cluster for the baseline block, and mean 2 is the average over the cluster for the training 4 block. P-values 
are in bold if they are considered significant. 
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Figure C.3 Experiment 1: ankle moment during training. (Top) Traces depict the ankle moment profile over the gait cycle while 
walking with the elastic resistance (E) and the viscous resistance (V). (Middle) SPM{F} statistics plotted over the gait cycle. 
Traces that exceed the threshold (red dashed line) are considered significant and are shaded gray. (Bottom) Table indicating the 
averages and significance of clusters that exceeded the threshold. For resistance main effects, mean 1 is the average for the 
viscous device over the cluster, and mean 2 is the average for the elastic device over the cluster. For block main effects, mean 1 is 
the average over the cluster for the baseline block, and mean 2 is the average over the cluster for the training 4 block. P-values 
are in bold if they are considered significant. 
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Figure C.4 Experiment 1: hip power during training. (Top) Traces depict the hip power profile over the gait cycle while walking 
with the elastic resistance (E) and the viscous resistance (V). (Bottom) SPM{F} statistics plotted over the gait cycle. Traces that 
exceed the threshold (red dashed line) are considered significant.  

 

 
Figure C.5 Experiment 1: ankle power during training. (Top) Traces depict the ankle power profile over the gait cycle while 
walking with the elastic resistance (E) and the viscous resistance (V). (Bottom) SPM{F} statistics plotted over the gait cycle. 
Traces that exceed the threshold (red dashed line) are considered significant.  
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Figure C.6 Experiment 1: muscle activation of non-thigh muscles during training. (Left) Traces depict the muscle activation over 
the gait cycle while walking with the elastic resistance (E) and the viscous resistance (V) as well as SPM{F} statistics plotted 
over the gait cycle. SPM{F} traces that exceed the threshold (red dashed line) are considered significant and are shaded gray. 
(Right) Table indicating the averages and significance of clusters that exceeded the threshold. For resistance main effects, mean 1 
is the average for the viscous device over the cluster, and mean 2 is the average for the elastic device over the cluster. For block 
main effects, mean 1 is the average over the cluster for the baseline block, and mean 2 is the average over the cluster for the 
training 4 block. P-values are in bold if they are considered significant. Muscle abbreviations: TA (tibialis anterior), MG (medial 
gastrocnemius), SO (soleus), GM (gluteus medius). 
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Figure C.7 Experiment 1: hip and ankle angles during aftereffects. Plots indicate kinematics when walking on the treadmill 
(Left) and overground (Right). For each joint, (Top) traces depict the kinematic profile over the gait cycle while walking with the 
elastic resistance (E) and the viscous resistance (V). Below the kinematic traces, SPM{F} statistics are plotted over the gait cycle. 
Traces that exceed the threshold (red dashed line) are considered significant and are shaded gray. (Bottom) Tables indicating the 
averages and significance of clusters that exceeded the threshold. For block main effects over the treadmill, mean 1 is the 
marginal mean during Baseline block over the cluster, and mean 2 is the marginal mean during Catch 3 block over the cluster. 
For block main effects during overground walking, mean 1 is the average over the cluster for the Pre Overground block and mean 
2 is the average over the cluster for the Post Overground block. P-values are in bold if they are considered significant. 
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Figure C.8 Experiment 2: ankle moment during training. (Top) Traces depict the ankle moment profile over the gait cycle while 
walking with the viscous device providing resistance to the knee (K) or to both the hip and knee (HK). (Middle) SPM{F} 
statistics plotted over the gait cycle. Traces that exceed the threshold (red dashed line) are considered significant and are shaded 
gray. (Bottom) Table indicating the averages and significance of clusters that exceeded the threshold. For block main effects, 
mean 1 is the average over the cluster for the baseline block, and mean 2 is the average over the cluster for the training 4 block. 
P-values are in bold if they are considered significant. 
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Figure C.9 Experiment 2: ankle power during training. (Top) Traces depict the ankle power profile over the gait cycle while 
walking with the viscous device providing resistance to the knee (K) or to both the hip and knee (HK). (Middle) SPM{F} 
statistics plotted over the gait cycle. Traces that exceed the threshold (red dashed line) are considered significant and are shaded 
gray. (Bottom) Table indicating the averages and significance of clusters that exceeded the threshold. For block main effects, 
mean 1 is the average over the cluster for the baseline block, and mean 2 is the average over the cluster for the training 4 block. 
P-values are in bold if they are considered significant. 
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Figure C.10 Experiment 2: muscle activation of non-thigh muscles during training. Traces depict muscle activation profiles over 
the gait cycle while walking with the viscous device providing resistance to the knee (K) or to both the hip and knee (HK) as well 
as SPM{F} statistics plotted over the gait cycle. SPM{F} traces that exceed the threshold (red dashed line) are considered 
significant and are shaded gray. (Bottom Right) Table indicating the averages and significance of clusters that exceeded the 
threshold. For Block main effects, mean 1 is the average over the cluster for the baseline block, and mean 2 is the average over 
the cluster for the training 4 block. P-values are in bold if they are considered significant. Muscle abbreviations: TA (tibialis 
anterior), MG (medial gastrocnemius), SO (soleus), GM (gluteus medius). 
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Figure C.11 Experiment 2: ankle angles during aftereffects. Plots indicate kinematics when walking on the treadmill (Left) and 
overground (Right). (Top) Traces depict the kinematic profile over the gait cycle while walking with the viscous device 
providing resistance to the knee (K) or to both the hip and knee (HK). Below the kinematic traces, SPM{F} statistics are plotted 
over the gait cycle. Traces that exceed the threshold (red dashed line) are considered significant and are shaded gray. (Bottom) 
Tables indicate the averages and significance of clusters that exceeded the threshold. For block main effects during overground 
walking, mean 1 is the average over the cluster for the Pre Overground block and mean 2 is the average over the cluster for the 
Post Overground block. P-values are in bold if they are considered significant.



  

230 
 

  

Chapter 7 Supplemental Materials 

D.1 Computation of Time-varying Resistances Added to the Model 

1. For the ankle weight, we tracked the acceleration of a point slightly proximal to the right 

ankle over the gait cycle and determined the force that would be felt by carrying a mass 

at that location. We modulated the mass coefficient (m = 2.36, 4.72, and 7.08 kg) and 

added the resulting resistance to the right tibia of the model at that location.  

2. For the elastic band attached to the ankle, we tracked the position of a point slightly 

proximal to the right ankle over the gait cycle and used Hooke’s Law to determine the 

force that would be felt at that location due to an elastic band (unstretched length l = 0.68 

m with pretension = 5 N) anchored behind the model. We modulated the spring stiffness 

coefficient (k = 75, 165, and 255 N/m) and added the resulting resistance at the right tibia 

of the model.  

3. For the viscous device, we tracked the angular velocities of the right hip and knee joints 

in the sagittal plane and modulated the damping coefficients (bh = 0.17, 0.33, 0.5 and bk = 

0.04, 0.08, 0.12 N∙m∙s/degree). These coefficients were chosen such that the sum of the 

equivalent forces at the ankle caused by each joint torque was equivalent to the desired 

resistance level (Fa = bh(ωh/dha)+bk(ωk/dka); such that bh(ωh/dha) = bk(ωk/dka) = Fa/2, 

where d represents the distance in the sagittal plane between the joints). Counteracting 

torques for the hip were added to the right pelvis and femur at the hip joint center; 



  

231 
 

counteracting torques for the knee were added to the right femur and tibia at the knee 

joint center of the model.  

4. For the weight at the pelvis, we tracked the acceleration of the model’s center of mass 

over the gait cycle and determined the force that would be felt by carrying a mass at that 

location. We modulated the mass coefficient (m = 3.04, 6.07, 9.12 kg) and added the 

resulting resistance to the pelvis at the center of mass of the model. 

5. For the constant backwards pulling force at the pelvis, we tracked the position of the 

center of mass over the gait cycle and applied a constant force through a virtual cable 

(length l = 0.68 m) anchored behind the model. We modulated the force coefficient (f = 

30, 60, and 90 N) and added the resulting resistance to the pelvis at the center of mass of 

the model. 
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IRB Protocol 

Background 
A growing body of evidence indicates that resistive gait training improves the locomotor ability 
of individuals with various neurological or orthopedic conditions (e.g., stroke, cerebral palsy, 
spinal cord injury, and knee joint trauma, etc.).1–5 The basic premise underlying this approach is 
that the functional benefits of strength training (e.g., gait function) are augmented when 
combined with task-specific training, and the combination may facilitate motor learning and 
neural plasticity.1,3,6,7 In clinic, therapists often apply resistance using ankle weights or resistance 
bands.8 However, there are numerous ways in which resistance can be applied to motion (e.g., 
weights, resistance bands, springs, viscous dampers), and all of these methods are going to vary 
in how they engage the subject (i.e., elastic resistances are known to increase co-contraction 
during exercise when compared with weights or viscous resistances) (see Figure E.1).9 Hence, it 
is important to understand the biomechanical and physiological mechanisms that mediate the 
acute adaptation to resisted walking before it is applied as an intervention. Therefore, with this 
study, we would like to examine these mechanisms while subjects walk with different resistance 
types by measuring biomechanical and physiological changes that occur due to the applied 
resistance. While these methods are applicable to a wide variety of patient population, our initial 
testing in this study will be performed on three testing populations: healthy individuals, stroke 
survivors, and individuals with ACL injury/surgery. Understanding of the biomechanical and 
physiological mechanisms will also help in the designing of future interventions. 

Study Aims 
Aim: Determine how different methods/resistance types for resisting walking (e.g., ankle 
weights, elastic bands, elastic/viscous passive braces) promote biomechanical and 
neurophysiological adaptations in healthy and clinical populations.  
Hypothesis 1: Resisted walking with the various resistance types will significantly alter 
kinematics, muscle recruitment, and spatiotemporal gait parameters during and after the 
experiment, depending on the resistance type.  
Hypothesis 2: The different resistance types will differ in the muscles they are able to target 
during resisted walking.  
Hypothesis 3: Resisted walking will increase corticospinal excitability in the muscles to which 
the resistance is applied. 

Methods 
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Figure E.1 Examples of types of resistances and the equations that govern the resistive force. The force felt by the user will 
differ greatly based on the type of resistance, which could have an effect on physiological measures before during and after 
walking. 

Subjects and Recruitment: We will recruit 120 participants who are either diagnosed with stroke 
(n = 30), ACL injury/surgery (n = 30), or uninjured controls (n = 60) to participate in this study. 
Subjects will be recruited via face-to-face contact, email, public advertisements, posting on 
UMClinicalStudies.org website, or through a stroke registry (IRB: HUM00099109). 
Additionally, subjects may be recruited from subject pools created through existing IRBs 
(HUM00073356, HUM00081480, HUM00080244, HUM00133860, HUM00130845, and 
HUM00087962). Subjects may be pre-screened to ensure their eligibility before coming to the 
lab. 

Inclusion Criteria for Uninjured Controls: 
• age ≥ 18 years  

Exclusion Criteria for Uninjured Controls: 
• Uncontrolled Diabetes or Hypertension; 
• Any other medical condition that will significantly impact the study results 

Inclusion Criteria for Stroke Survivors: 
• age ≥ 18 years  
• Ischemic or hemorrhagic stroke confirmed by CT, MRI, or clinical criteria 
• No major deficits of sensation or proprioception 

Exclusion Criteria for Stroke Survivors: 
• Inability to provide written informed consent 
• Unable to think clearly and remember (Mini-Mental State Exam score < 22 and 

miniMOCA < 8); 
• Uncontrolled Diabetes or Hypertension; 
• Acute Lower limb orthopedic conditions, such as recent fracture or surgery that limit 

mobility 
• Severe limitations of joint range of motion 
• Severe spasticity and joint contractures 
• Severe aphasia 
• Unable to walk independently with or without assistive devices; 
• Any other medical condition that will significantly impact the study results 

Inclusion Criteria for ACL injured/surgically repaired Subjects: 
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• age ≥ 18 years 
• Suffered an ACL injury or have had an ACL surgery  

Exclusion Criteria for ACL injured/surgically repaired Subjects: 
• Inability to provide written informed consent 
• Significant pain that limits their ability to walk or exercise 
• History of recent significant knee injury (other than current ACL) or lower-extremity 

fracture 
• Uncontrolled diabetes or hypertension 

Exclusion Criteria for subjects exposed to Transcranial Magnetic Stimulation (TMS):  
• Unable to obtain reliable motor evoked potentials 
• Are pregnant or are actively trying to conceive 
• Have unexplained recurrent headaches 
• Have a recent history of seizure (epilepsy)  
• Taking medications that can reduce the seizure threshold 
• Have a history of repeated fainting spells or syncope 
• Have a history of skull fracture/head injury 
• Have metal implants in the skull 
• Have cardiac pacemakers 
• Have any other condition that could significantly affect the study results 

We do not plan to exclude subjects based on stroke severity/impairment or stroke location as a 
post-hoc analysis would inform us on appropriate patient population selection for future 
interventional studies. We note that the risks of participating in the study do not change based on 
the severity or location of the stroke,10,11 especially considering that the study involves only 
single or paired pulse TMS. There are no imaging requirements for the study subjects and 
interpretation (performed using chart reviews, medical records, or by the stroke physician) of the 
images (if available through medical records) will be used only to characterize the lesion 
location, severity, and type of injury for publication purposes. While magnetic fields rapidly 
attenuate with distance and there are no known short-term or long-term risks of TMS to the 
children of pregnant women,12–14 we would still exclude individuals who are pregnant or are 
actively trying to conceive as there are no direct benefits to them from this study. Similar to our 
other TMS studies, we will use a self-reported questionnaire for identifying individuals who may 
be pregnant. An a priori power analysis indicated that 30 individuals in each group will yield > 
80% power to detect statistically significant differences at α = 0.05 for a conservative effect size 
estimation of 0.6. Additional uninjured controls are included so that controls are age matched 
between clinical populations. 

Experimental Procedures  

The experiment will consist of about 5 sessions/visits depending on subject’s availability. Each 
session will last approximately 2 - 4 hours in duration. Subjects will be compensated $10 per 
hour for their time and effort. Additional compensation may be provided for subjects who may 
need travel assistance.   
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Screening and Informed Consent Visit: The subject will meet with authorized research personnel 
in the Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab). During this visit, 
the participant will be provided with detailed information about the study, the risks and benefits 
of participation, and the nature of study procedures, including orientation to various testing 
devices used in this study. A study member will screen the subjects for the eligibility criteria 
using screening questionnaires and health related assessments. For safety purposes, stroke 
subject’s eligibility to participate in the TMS experiment will be determined in consultation with 
the physician (Dr. Edward Claflin), particularly when the subject provides responses that could 
potentially increase the risk associated with the TMS procedure (e.g., prior history of seizure, 
medications that could reduce seizure threshold, etc.). A Folstein Mini-Mental State Examination 
(MMSE), which is a measure of individual’s cognitive status and awareness and Montreal 
Cognitive Assessment Test (Mini version), will also be used to screen stroke individuals. 
Subjects need to score a minimum of 22 (on a scale of 30) in MMSE/8 (on a scale of 12) in mini 
MOCA to be considered eligible for the study. Both MMSE and MOCA have been shown to be 
sensitive in judging a patient’s capacity to consent (e.g., 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717553/). We note that we will be doing a Mini 
MOCA as arm/hand impairments could affect their ability to perform the visuospatial and 
executive functions section of the questionnaire. The mini MOCA consists of selected subtests 
from the full MOCA, and includes a 5-word immediate and delayed memory test, a 6-item 
orientation task and a 1-letter phonemic fluency test (the letter F). The mini MOCA has been 
validated and recommended by NINDS and has been shown to be as sensitive as the full MOCA 
in individuals with cognitive impairment. (http://www.ncbi.nlm.nih.gov/pubmed/26713170). If 
the subject is found to be eligible to participate in the study and shows interest, an informed 
consent document will be provided. Subjects will then be familiarized to the testing procedures 
and instruments, and would be provided ample opportunity to ask questions regarding the study 
procedures, risks and benefits, and other study-related items. After consenting, the participant 
will then be scheduled for subsequent visits. 

Functional Ability Testing  

These tests are performed simply to gather clinical characteristics of the subjects participating in 
the study. Functional ability testing will be completed in approximately 1 to 1.5 hours and may 
be performed on the same day of the screening visit depending on subject’s availability. If the 
subject does not have enough time to complete both screening and functional ability testing on a 
single day, we will have them visit the laboratory on a separate day. The battery of functional 
measures is listed in detail below, and include objective assessments of the individual’s 
functional abilities including range of motion, balance, and strength. These tests may have to be 
performed on two different days to account for day-to-day variability. All the below tests have 
been validated in the testing populations and are commonly used, non-invasive 
functional/clinical measures. Subjects may complete the some or all of the following 
assessments:  

1. Movement Kinematics: Kinematics of movement (limb position and joint angle) using a 
motion capture camera system or wearable encoders/goniometers.  

2. Gait/balance assessment (e.g., gait speed, 2- or 6-minute walking test) using stopwatch, 
Mobility lab (APDM Inc.) – which measures temporal-spatial events and limb 
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accelerations. Additionally, we may use instrumented walkway/treadmill. To measure 
these parameters. 

3. Lower-extremity impairment and functional measures, such as Fugl-Meyer score. 
4. Modified Ashworth Scale: The modified Ashworth scale is a performance based body 

function test to measure muscle tone of subject. 
5. Muscle Strength & Activation: Manual muscle testing or strength testing in an 

instrumented dynamometer can be performed to assess strength. 
6. Self-reported questionnaires: Stroke impact scale, Tegner Activity Score, MARX activity 

score, Knee Injury and Osteoarthritis Outcome Score. 

Paradigms and Assessments 

The following tools will be used to quantify physiological effects of walking with resistance. All 
assessment tools are noninvasive and are of minimal risk to the subject. 

1. Muscle Activation and Coordination: The magnitude of muscle activation and co-
contraction of the antagonist muscles during testing will be measured using 
Electromyography (EMG) by means of noninvasive surface electrodes. Brands used in 
our lab include: (Trigno Wireless EMG, Delsys, Inc., Natick, MA, USA) and (Model 
MA-311, Motion Labs Systems, Inc., Baton Rouge, LA, USA). Previously accepted for 
use on human subjects in IRBs (HUM00081480, HUM00073356, HUM00130845, 
HUM00087962, and HUM00080244). 

2. Kinematics: The subject's movement patterns during the experiment will be evaluated 
using motion capture camera system or instruments (i.e., angle encoders or goniometers) 
and monitored over time to see how the subject walks under resistance. We will compare 
the subjects gait kinematics before the resistance is applied, while resisted, and while 
resistance is removed. Previously accepted for use on human subjects in IRB 
(HUM00073356, HUM00087962, and HUM00133860). 

3. Spatiotemporal Gait Parameters: Mobility lab (APDM Inc.) – which measures temporal-
spatial events and limb accelerations, or instrumented walkway/treadmill will be used to 
measure the subject’s spatiotemporal gait parameters (e.g., gait speed, cadence, stride 
length, stride duration, etc.) before, during, and after resisted walking. Previously 
accepted for use on human subjects in IRB (HUM00087962). 

4. Cortical Excitability: The changes in motor cortical excitability that occur due to resisted 
walking will be measured using single or paired pulse transcranial magnetic stimulation 
(TMS). Stimulation using TMS allows us to monitor brain plasticity by measuring 
muscle activation due to stimulating of the motor cortex. For example, we could measure 
intracortical inhibition (paired pulse stimulation), or corticospinal excitability of the 
primary motor cortex (single pulse stimulation). We will not be performing repetitive 
TMS (rTMS). (Magstim-Bistim2 magnetic stimulator, The Magstim Company Ltd, 
Whitland, Carmarthenshire, UK). Previously accepted for use on human subjects in IRB 
(HUM00081480, HUM00073356, HUM00087962, HUM00130845 and 
HUM00073356). 
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5. Changes in voluntary and electrically stimulated force output: Muscle strength (force 
output), voluntary activation (i.e., the ability to maximally activate a muscle during a 
contraction), and electrically evoked torque at different frequencies may be evaluated 
using isokinetic dynamometry and electrical stimulation techniques (Previously accepted 
for use on human subjects in IRB (HUM00080244, HUM00087962, HUM00130845, and 
HUM00133860).15,16 These measures would provide information on central and 
peripheral contributions to changes in force generating capacity.  

Experimental Paradigm 

Once screening and functional ability testing have completed, we will begin recording baseline 
measurements of the subject’s biomechanics and physiology.  

Beginning of the Session 

Using the methods and equipment noted above, we will measure the subject’s spatiotemporal 
gait parameters. We will also measure the subject’s baseline muscle strength and electrically 
evoked torque characteristics (i.e., muscle physiology) with electrical stimulation techniques, 
while the subject is seated on an instrumented dynamometer with their hips and knees flexed and 
their back supported. Self-adhesive or carbon impregnated rubber electrodes will be placed on 
the proximal and distal aspects of the quadriceps and hamstring muscles. We will also apply 
surface electromyography (EMG) sensors to many of the key muscles used in gait [e.g., vastus 
medialis (VM), rectus femoris (RF), medial hamstring (MH), lateral hamstring (LH), tibialis 
anterior (TA), medial gastrocnemius (MG), soleus (SO), and gluteus medius (GM)]. Typically, 
electrodes will be secured to the skin using self-adhesive tapes and cohesive flexible bandages. 
Electrode placement will be carried out according to the guidelines established by the 
international SENIAM initiative (www.seniam.org). Should electrode positions be occluded by 
the device, electrodes will be placed over non-occluded but similar synergist muscles. The 
quality of the EMG signals will be visually inspected to ensure that the electrodes were 
appropriately placed.  

For subjects undergoing TMS, we will then measure their cortical excitability using single or 
paired pulse paradigms. TMS is a noninvasive brain stimulation technique known to be safe in 
both children and adults and it will be used to test corticospinal excitability of neural circuits.17 
Unlike the repetitive TMS paradigms, single or paired pulse protocols do not have any 
therapeutic benefits, but can provide meaningful information about changes in corticospinal 
excitability and brain physiology. However, they are substantially safer than rTMS protocols and 
have been in existence for more than two decades.14 There is minimal risk of using these 
protocols even in individuals with neurological injury; further, single-pulse and paired-pulse 
TMS has been studied extensively in stroke survivors for more than 25 years with virtually no 
major or long-lasting side-effects.18 We note that we have active IRB applications with an 
approved use of TMS in human subjects, including stroke survivors (HUM00081480; 
HUM00073356; no more than minimal risk). We note that MD supervision is not required 
during TMS for our study since we are only using single or paired pulse TMS in a class 3 study 
(i.e., for studying brain physiology in patients and normal subjects).14 

http://www.seniam.org/
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TMS (1ms pulse width, ~100µs rise time – fixed by the manufacturer) will be performed over 
the primary motor area of the brain (M1), representing the muscles that will be under resistance. 
Stimulation will induce a muscle twitch and a motor evoked potential (MEP), which can be 
monitored using an EMG or force sensor. The site that produced the largest and most consistent 
MEPs will be marked and considered as the hotspot or target area for the stimulation.19,20 We 
will perform a range of stimulation intensities surrounding the subjects depolarization/motor 
threshold (~60-140% of motor threshold) and collect the corresponding MEPs or force 
output.20,21 The subject will be at rest or providing a background contraction during the 
stimulation. When determining changes in intracortical excitability, a subthreshold conditioning 
(i.e., < 100% of motor threshold) stimulus will precede (~1-30 ms) the test stimulus.22 MEP 
EMG data will be normalized to background activity and expressed as a percentage of 
maximum. MEP torque data will be normalized to twitches elicited from peripheral stimulation. 

 
Figure E.2 Schematic of a subject walking while wearing an ankle weight 

Treadmill Walking 

First, subjects will walk on the treadmill without resistance so that we can measure their normal 
biomechanics for approximately 5 minutes. While walking, all subjects will be told to hold onto 
a hand-rail to minimize any risk of tripping and falling. A body-weight supporting harness will 
be used as an additional support in case the participant has substantial motor impairments or 
feels unsecure without the provision of supporting harness. Next, resistance will be added to the 
subject’s leg. Resistance may be applied at the end-effector or at the joint levels involving one or 
more joints of the lower-extremity. Resistance forms include a mass attached to the subject’s leg 
(e.g., ankle weights), a band attached to their ankle (e.g., theraband), or subjects will wear a 
resistive leg brace that uses passive springs (e.g., https://springloadedtechnology.com/) or 
passive brakes that has previously been approved for use on human subjects (HUM00133860) 
(see Figure E.2, Figure E.3, and Figure E.4). Because the leg brace is passive (i.e., does not add 
energy to the subject’s movement, as a motor would) it is of minimal risk to the subject. Indeed, 

https://springloadedtechnology.com/
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this is safer than the elastic bands as it does not store energy. All of these methods for applying 
resistance would fall under a category of devices that are 510k exempt (21 CFR 890.5370, 
890.5380, and 890.3475). We also note that we are not testing for safety or efficacy, but applying 
these resistive tools to measure the physiology of walking with different types of resistance (see 
Figure E.1). For resisted walking, the resistance level will be set to about 5-30% of the subject’s 
MVC based on their comfort level.3,4,23,24 Resistance level can be adjusted during the experiment 
manually or using computer controls. We will also perform trials where the resistance is 
removed (i.e., catch trials) in order to gauge how the subject is adapting to the resistance.7,25,26 
During the session, subjects will perform approximately seven trials, each lasting approximately 
five minutes. This will allow us to measure any instant and slow adaptations that occur when 
walking with resistance.  While walking, subjects may be given feedback of their walking 
performance using kinematic measurement tools, such as we have done in: HUM00073356, 
HUM00087962, and HUM00133860.27,28 Throughout treadmill walking, we may monitor gait 
biomechanics (e.g., EMG, kinematics, spatiotemporal gait parameters). Additionally, we may 
use load cells to monitor the force applied to the user (see Figure E.3).  

End of the Session 

Following resisted walking, we will then repeat the measurements and methods that were carried 
out at the beginning of the session. Subjects will be asked to return to the lab for the subsequent 
sessions.  

 
Figure E.3 Schematic of a subject walking while their leg is attached via a cuff to an elastic band. Note that a load cell is 
measuring the force applied by the elastic band.  

Data Analyses 

Kinematics 
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In order to evaluate how the participant’s kinematics changed due to resisted walking, we will 
compute the subject’s lower extremity kinematics during each trial. The kinematic data will be 
ensemble averaged across strides to compute average profiles for each trial. We may also 
calculate the derivative of the joint angles to measure the velocity and acceleration. From these 
averaged profiles, we could then extract variables such as the min and max joint angle and 
excursion. Additionally, the trials could be further broken up in order to indicate early and late 
adaptation to walking with resistance.   

EMG Processing 

To measure muscle activation during the study, we will compute the mean EMG activation of 
muscles during treadmill walking. The recorded raw EMG data from study will be band-pass 
filtered (e.g, 20-500 Hz), rectified, and smoothed using a zero phase-lag low pass Butterworth 
digital filter (e.g., 8th order, 6 Hz Cut-off).29,30 The resulting EMG profiles for baseline and 
target-tracking trials will be normalized (using MVC contractions) and averaged across 
movement cycles and trials to compute mean EMG activity during these conditions.31 We may 
also divide the movement cycle into discrete phases and compute the average EMG activity 
during each phase to determine the approximate temporal distributions of EMG activation (i.e. 
separate times of co-contraction due to acceleration and deceleration of the limb, abnormal 
synergies, or discrete motions within functional task). EMG will be compared between trials as 
well as between sessions.  

TMS Processing 

An MEP window will be established by finding the onset latencies of large MEPs recorded from 
the target muscles. A window of identical width will be set prior to the TMS trigger pulses to 
determine background activity. The rectified root mean square within the MEP window and pre-
stimulus EMG/torque window will be used to calculate MEP amplitude and background activity, 
respectively. The mean MEP value will be expressed as a percentage of mean background 
activity and plotted against the corresponding stimulus intensity to obtain a subject-specific TMS 
input-output relationship. The slope of the TMS input-output relationship will be derived by 
fitting a Boltzmann curve. Additionally, we will monitor latency in the muscles response to TMS 
stimulus. Similarly, the MEPs obtained from the test pulses following the conditioning pulses 
will be ensemble averaged and normalized to the MEPs obtained without the conditioning 
pulses. 

Statistical Analyses 

The effect that resistance type has on kinematics, EMG, and spatiotemporal gait parameters 
during training will be evaluated using a two-way repeated measures ANOVA that includes the 
type of resistance applied to the subject (e.g., ankle weight, elastic band, and brace) and trials as 
within subject factors. Overground, TMS, and force output data will be analyzed using the same 
structural model, but instead of trials, we will compare before and after resisted walking. 
Significant main effects or interactions will be followed by post hoc analyses using paired t-tests 
with Bonferroni correction for multiple comparisons. A significance level of α = 0.05 will be 
used for testing statistical significance. 
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Figure E.4 Schematic of a subject walking while receiving resistance via a leg brace, where resistance is controlled using manual 
or controllable viscous brakes or springs.  

Safety Considerations 

The study procedures for this experiment are considered to be no greater than minimal risk. All 
procedures are noninvasive, the resistance methods are passive, and there are no children or 
vulnerable groups involved in this study. Almost all of the experimental testing procedures have 
been approved previously for use on human subjects (as a minimal risk procedure) in our other 
IRBs (HUM00133860, HUM00081480, HUM00073356, HUM00080244, HUM00130845, and 
HUM00087962). The potential risks for this study are described below: 

Potential Risks 

Surface EMG Related: 

• Allergic Reaction (infrequent): Subjects may experience allergic reactions from the 
application of electrode paste and adhesive tapes necessary for surface EMG recordings. 
We will use hypoallergenic tapes to minimize allergic reactions. If redness or excessive 
itching occurs, the area will be monitored closely by study staff and testing will be ended 
at their discretion or in accordance with the subject’s wishes.  

Walking Related: 

• Spasms (Infrequent): If subjects suffer from spasticity, the initial movement while 
walking with resistance may trigger muscle spasms. This will gradually settle down with 
time. The resistance will be adjusted if this occurs to ease the spasms. 

• Skin irritation (Infrequent): Subjects may experience some skin irritation from the cuffs 
due to bracing attached to the limbs. If subjects experience irritation, adequate padding 
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(coban or foam pads) will be provided between their skin and the cuffs to reduce the 
amount of irritation. 

• Tripping/Fall (Infrequent): Subjects may trip if walking with resistance, especially if the 
subject has weak muscles. To minimize risk, subjects will be able to hold hand-rails, 
which increases stability while walking. We will also provide them with an option of 
wearing a body weight supporting harness to improve the feeling of safety during some 
activities. However, in our experience many people do not prefer wearing a harness, as 
the harness may produce some amount of discomfort while walking (a feeling of tight 
compression). Subjects may also experience tripping or falling during functional 
evaluation. However, these risks are no more than what they would encounter in their 
day-today activities. For safety purposes, the subject will always be under close 
supervision of a researcher while undergoing functional evaluation. 

• Muscle or joint pain (Infrequent): During or following the experiment, subjects may feel 
temporary or persistent muscle aching or joint pain, or general fatigue. Any discomfort 
may be improved by adjusting the resistance, providing appropriate rest breaks at any 
time during the experiment, or using over-the-counter pain reliever. 

• Risk of fatigue (Likely): There is a risk that subjects can become fatigued from walking 
with resistance for prolonged periods of time. Subjects will be allowed to rest and can 
also choose to end the test at their own will at any time. As with any research study, there 
may be additional risks that are unknown or unexpected. As described above, these risks 
will be minimized by allowing subjects to rest as needed and withdraw from the study 
voluntarily at any time. A research assistant will stand near subjects during the tests and 
will actively observe the subject for any distress. All devices will be built to eliminate 
risks of irritation or severe discomfort.  

• Patellar tendinitis or effusion (Rare): It is possible that subjects could develop patellar 
tendonitis or an effusion during walking. While we believe these would be rare instances 
(other studies have not seen occurrences of these in an ACL repaired population even 
during high-intensity eccentric training), if a subject develops these issues, we would 
provide rest (~1 week) and then reschedule at a later time-point. If symptoms reoccur we 
will exclude the subject from the study. 

• Strength & Activation Testing Related:  

• Muscle Fatigue or Soreness (Infrequent): During measurement of muscle strength, 
subjects may experience temporary muscle fatigue and soreness. Although this soreness 
may persist for a period of several days following testing, this level of soreness is not 
greater than they would experience following a regular exercise session.  

• Discomfort from electrical pulses (Common): Subjects may experience discomfort from 
the electrical pulses applied to the muscles. The electrical pulses are similar to those that 
are experienced commonly during treatment in rehabilitation. However, the discomfort 
should be momentary and should be tolerable as the pulse duration of the stimuli will be 
much smaller (200 µs) in comparison to the conventional therapeutic interventions (e.g., 
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NMES or FES) in the clinic. An investigator will be present during all testing. Subjects 
will have the opportunity to inform the investigator regarding their discomfort any time 
during testing, and the electrical pulses can be stopped at the will of the subjects. 

• Fracture (Rare): There is a rare chance of patellar fracture in ACL-reconstructed 
individuals with patellar-tendon graft during strong quadriceps contractions, especially 
when there is a delayed healing of the graft harvesting site in the case of orthopedic 
injury. We will restrict strength and activation testing in ACL-reconstructed individuals 
to ≤ 60° of knee flexion and will avoid forceful isometric contractions beyond 60° of 
knee flexion in order to minimize axial strain and harmful bending moments on the 
patella. 

TMS Related:  

• Single and paired pulse TMS protocols (which will be used in this study) are extremely 
safe in healthy/neurologically intact individuals as well as stroke survivors (Rossi et al. 
2009, Krishnan et al. 2015, Groppa et al. 2012).14,17,18 These techniques have been in 
existence for more than two decades and are known to have little serious side-effects, if 
any. TMS has been studied extensively in stroke survivors for more than 25 years with 
virtually no major or long-lasting side-effects. The contribution of TMS in understanding 
of mechanisms of functional recovery after stroke has been enormous (Dimyan MA and 
Cohen LG, 2010).32 The TMS protocol used in this study are extremely safe as it is not 
known to alter the excitability of the brain. We would like to note that transcranial 
magnetic stimulation is considered as a nonsignificant risk by FDA as other devices with 
similar technology have been FDA approved for brain stimulation (e.g., 
http://www.eneura.com/tms.html, 
http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm378608.htm, 
http://neurostar.com/ or http://www.brainsway.com/). Because single pulse and paired 
pulse protocols do not alter excitability and are not used as a medical/therapeutic 
interventions, there is paucity in the literature for studies with a direct aim of studying 
safety of these procedures in stroke. However, there is safety data on repetitive TMS 
(rTMS) protocols in individuals with stroke and pediatric neurological conditions (e.g. 
Krishnan et al. 2015 and Allen et al. 2017).17,33 The existing data suggest that even rTMS 
paradigms (which are considered to have more risk than single or paired pulse protocols) 
are extremely safe when following the established guidelines (e.g., Rossi et al. 2009).14 
The known side-effects of TMS are as follows: 

• Clicking noise and muscle twitching (Common):  The subjects may feel twitches in their 
arms, face, and leg muscles. A loud clicking noise may be heard during the stimulus. 
They will have the opportunity to wear foam earplugs that can effectively prevent this 
discomfort.  

• Transient headache or scalp discomfort (Rare): There is also a small risk of temporary 
headaches after TMS. However, these are momentary and typically goes away after the 
completion of the procedure. 
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• Lightheadedness/dizziness (Rare): Although not common, the subject may experience 
lightheadedness or dizziness. In the event of such symptoms, the experiment will be 
stopped. The subject will have the ability to stop the study at any time by asking the study 
team to either give them a rest or if necessary, remove the device. To minimize this risk, 
we will exclude subjects with a history of repeated fainting spells or syncope. 

• Seizure (Rare): Rare cases have reported seizures during or immediately after magnetic 
brain stimulation, but these are particularly for repetitive TMS protocols that modulate 
cortical excitability and have not been reported for single or dual pulse stimulation 
procedures to our knowledge in the past 10 years. Indeed, single and paired pulse 
protocols have been known to be safe even in individuals with epilepsy (Hsu WY et al. 
2015, Badawy RA et al. 2015).34,35 To be extra-cautious, individuals who have a recent 
history of seizures (< 6 months) will be evaluated for their study participation in 
consultation with the physician (Dr. Edward Claflin) on this study and would be excluded 
from this research study if recommended. Dr. Claflin is a Board Certified Physician in 
PM&R and is an expert in neurorehabilitation, stroke, and electromyography and has a 
long history of collaboration with Dr. Krishnan. He has extensive clinical experience in 
rehabilitating individuals with Stroke and Traumatic Brain Injury. In addition, if the 
participant is taking certain types of medication known to substantially increase the risk 
of a seizure (as determined by the physician) they will not be allowed to participate in the 
study, unless approved by the physician. A screening questionnaire will be used to 
determine a subject’s exposure to risk factors for TMS.36 We are located in a building 
where there is an attending physician on call and reachable should there ever be an 
adverse event, which is consistent with the recommendations of Rossi for these 
protocols.14 The PI of this study is also an expert in TMS with knowledge about the 
principles, physiology, and side effects of the technique, and has published numerous 
TMS papers, including a recent safety paper on TMS (and other noninvasive brain 
stimulation procedures) in children.17 Indeed, this paper is used as a reference paper in 
several TMS courses that are conducted nationally. Further, any person performing TMS 
will be trained personally by Dr. Krishnan prior to their involvement in any study-related 
procedures. In the event that a subject has a serious adverse event (e.g., seizure), we 
would call the attending physician on call (via pager: 31380 or telephone: 3-4403, 6-
7189) to seek immediate medical attention. Our lab is located in close vicinity to 
physician’s offices and clinics; hence, we should not have any problem in receiving 
prompt medical care, if needed. If an attending physician is not available on call, we will 
call 911 for emergency care. 

• Other side-effects may include lightheadedness, nausea, syncope, hearing problems, 
general fatigue or pain, which have been reported in rTMS studies. These symptoms 
generally subside with the cessation of stimulation and/or taking an over the counter 
analgesic 

• As mentioned earlier, since there are no studies available to characterize the extent of 
single or paired pulse risk in stroke survivors, we are providing data from rTMS studies 
in individuals with stroke and pediatric neurological conditions for comparison purposes 
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only (please note that these are data from rTMS studies and not from single or dual pulse 
studies):  

• Data from 322 Children with neurological disorders (Krishnan et al. 2015): mild/transient 
headache (11.5%), scalp discomfort (2.5%), Twitching (1.2%), mood changes (1.2%), 
Fatigue (0.9%), tinnitus (0.6%), seizure/syncope (0.6%). 

• Data from 327 stroke survivors (Haoz et al. 2013): mild/transient headache (2.4%), 
anxiety (0.3%), syncope (0.6%), no reports of seizure. 

• Unforeseeable Risks (Rare): As with any research study, there may be additional risks 
that are unknown or unexpected. 
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