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ABSTRACT

The Greenland Ice Sheet (GrIS) is of tremendous importance for climate change

projections. The GrIS has contributed an estimated 10.8 mm to sea level rise since

1992, and that contribution is expected to increase in the coming decades. It is there-

fore essential to make routine measurements of ice, meltwater, and snow over the GrIS

using satellite and airborne observations. Two prominent methods for ice sheet moni-

toring include lidar altimetry and hyperspectral imaging. Lidar altimetry is typically

used to make fine-scale estimates of ice sheet surface height, whereas hyperspectral

imaging is commonly utilized to infer snow or ice surface composition. In this disser-

tation, I use data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and

the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG)

to examine light transmittance over the Greenland Ice Sheet. I first utilize ICESat-

2 photon-counting data for the development of a retrieval algorithm for supraglacial

lake depth, with validation from the Operation IceBridge airborne mission. This work

was performed to support other depth retrieval efforts that struggle with attenuation

in deep water. I then use hyperspectral radiative transfer models to perform a sensi-

tivity analysis on snow grain size retrievals. Snow grain size is an important metric

for snowpack evolution, but there are limited efforts to quantify potential errors in

an existing inversion algorithm. Lastly, I used a combination of Operation IceBridge

altimetry and AVIRIS-NG hyperspectral data to assess the impacts of snow grain size

on surface heights derived from lidar altimetry.

Results from the three studies indicate that lidar signals and ice reflectance in the

near-infrared are highly sensitive to changes in surface media. Because it operates at

xiii



532 nm, the ICESat-2 laser penetrates through liquid water with minimal signal loss,

but volumetric scattering within a snowpack may induce significant errors in surface

heights derived from Operation IceBridge, especially at large snow grain sizes. The

ICESat-2 laser is susceptible to noise from clouds and rough surface topography, so

additional work is needed to accurately identify supraglacial lake beds and volumetric

scattering caused by snow. Also, the near-infrared spectrum of snow is highly sen-

sitive to changes in solar geometry and to the presence of dust, therefore increasing

uncertainties in snow grain size retrievals. Co-dependencies between snowpack per-

turbations were not considered, but I speculate that snow particle shape and snow

impurities will impact the angular distribution of radiation reflected from a snowpack.

I expect that the research presented here will motivate the development of improved

algorithms for supraglacial lake depth, snow grain size, and lidar altimetry bias.

xiv



CHAPTER I

Introduction

1.1 Fundamentals of Remote Sensing

1.1.1 Reflectance

In earth science, there is frequently a need for measurements with routine coverage

of the Earth’s surface over time. Field observations are insufficient for this purpose, so

airborne and satellite remote sensing is utilized to improve spatiotemporal coverage.

Remote sensing is performed by measuring electromagnetic radiation that is reflected

or emitted by the Earth’s surface or atmosphere. Depending on (a) the wavelength of

the radiation measured and (b) the radiative quantity measured, we can infer aspects

of the climate system and monitor changes over time.

In this thesis, we consider reflected radiance (or simply ”reflectance”), which is

the amount of sunlight that is reflected by the Earth to space. Reflectance (R) is

mathematically represented through:

R =
F ↑

F ↓
(1.1)

where F ↑ and F ↓ represent the radiative flux that moves away from and toward

the surface, respectively. A radiative flux considers radiation that is integrated across

all angles across a hemisphere, so it is also referred to as a ”hemispheric” quantity. In
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Figure 1.1: A schematic showing the reflectance quantities relevant to Chapters 3 and
4. The arrows represent sunlight moving toward or away from the surface.

most realistic scenarios, incident and reflected radiance vary in direction and intensity,

depending on solar geometry and the state of the atmosphere and surface. Therefore,

we may consider a ”directional” reflectance that is represented by an azimuth angle

and a zenith angle. However, it is difficult to measure purely directional radiance

with current remote sensing techniques, so the term ”conical” reflectance is often used

to denote observed directional reflectance. Radiative transfer models are required to

estimate directional reflectance from conical or hemispherical quantities (Schaepman-

Strub et al., 2006; Nicodemus et al., 1977).

A reflectance is defined on whether we consider directional or hemispheric radi-

ation for incident and reflected light. If purely directional or hemispheric radiation

is considered, then the corresponding reflectance is known as bidirectional and bi-

hemispherical, respectively. We may also use different quantities for the incident

and reflected light. For instance, a reflectance with directional sunlight and hemi-

spherical reflected light is known as directional-hemispherical reflectance (Schaepman-

Strub et al., 2006). In Chapters 3 and 4, we derive bidirectional and directional-

hemispherical reflectances from radiative transfer and Monte Carlo models to infer
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the state of a snowpack. A graphical representation of these two quantities is given

in Figure 1.1.

The characterstics of an observed surface have a strong impact on the distribu-

tion of reflected radiation across a hemisphere. A common assumption in radiative

transfer modeling and remote sensing is that a surface reflects radiation equally in all

directions, independent of topography or solar geometry (Liou, 2002; Petty , 2006).

A surface with this property is also known as a Lambertian or isotropic surface. In

the top example in Figure 1.1, the hemispheric reflectance is a simplified example of

Lambertian reflectance. Because reflected radiation is equally distributed among all

azimuth and zenith angles, directional intensity (I↑) and hemispheric irradiance (F ↑)

for a Lambertian surface are related through the equation

F ↑ = πI↑ (1.2)

and the directional irradiance observed at viewing angle θv obeys Lambert’s cosine

law:

I(θv) = I(0)cos(θv) (1.3)

The Lambertian assumption is most accurate for surfaces that are highly reflec-

tive or compose of isotropically-scattering particles near midday, where the incident

sunlight is directly overhead (i.e., solar zenith angle is 0◦). Freshly fallen snow is an

example surface that is commonly assumed to be a Lambertian surface in radiative

transfer applications, given its high reflectivity and low surface roughness. However,

snow darkens and coarsens as it ages, so it becomes less of a Lambertian reflector, so

reflected radiation will preferentially scatter in a single direction. Non-Lambertian,

or anisotropic, surfaces preferentially scatter radiation in a single direction, and it be-

comes prominent for rough surfaces and large solar zenith angles. If left unchecked,
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anisotropic reflectance may have significant consequences on reflectance quantities

measured by remote sensing platforms, particularly if Lambertian reflectance is as-

sumed. (Dumont et al., 2010; Liou, 2002; Petty , 2006).

1.1.2 Spectral Dependence of Reflectance

When the reflectivity of a surface is considered, a common metric to use in earth

science is the surface’s broadband albedo. Broadband albedo is defined as the hemi-

spheric reflectivity of a surface across a range of wavelengths over the electromag-

netic spectrum (Petty , 2006). Spaceborne sensors such as the Clouds and the Earth’s

Radiant Energy System (CERES) may be used to measure broadband albedo for

shortwave and longwave radiation directly (Rutan et al., 2009). Broadband albedo

may also be estimated by performing a weighted integration of multispectral or hy-

perspectral reflectance, as is obtained from sensors such as the Moderate Resolution

Imaging Spectrometer (Liang , 2000).

Broadband albedo is most useful for modeling efforts that require simplified ra-

diative transfer calculations, such as climate projections and boundary layer meteo-

rology (Dickinson, 1983; Stull , 1988; Hartmann, 2016). However, it is less effective

for monitoring changes in surfaces that experience significant changes in reflectivity

over time. Figure 1.2 shows an example with snow of different optical grain sizes,

where increasing grain size indicates aging of the snowpack. The left plot shows that

the broadband albedo of snow decreases asymptotically from 0.872 to 0.755 as the

snow ages, whereas the right figure demonstrates the spectral dependence of changes

in albedo. There is only a notable decrease in reflectivity at red wavelengths in the

visible spectrum, with green and blue wavelengths showing little change with grain

size. The near-infrared spectrum of the snow is more sensitive to aging and grain size

increases, and prominent absorption features may be observed at 1.03 µm and 1.3

µm. This information is lost if only a broadband albedo is considered.
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Figure 1.2: (Left) Broadband albedo estimates for a snowpack of 5 optical grain sizes:
50 µm, 250 µm, 450 µm, 650 µm, and 850 µm. (Right) Spectral albedo
for the wavelength range 0.3-2.5 µm given the same conditions.

Hyperspectral instruments and models offer the opportunity to exploit spectral

information of a surface by recording reflected radiation at hundreds of wavelengths.

For example, the reflectances in Figure 1.2 were derived using the Snow, Ice and

Aerosol Radiative (SNICAR) model, a hyperspectral radiative transfer model that

uses 480 wavelengths to simulate snowpack reflectance in response to changes in

incident sunlight and the addition of light-absorbing particles (Flanner et al., 2007).

Another example is the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), a

hyperspectral sensor that obtains reflectance measurements of the Earth’s surface over

224 bands (Green et al., 1998). Information obtained from hyperspectral methods is

useful for surface classification and composition analysis in remotely sensed data. We

utilize hyperspectral data to estimate snow grain size using SNICAR and AVIRIS in

Chapters 3 and 4.

1.1.3 Active Remote Sensing

The reflectance quantities described in Section 1.1.2 are observed with passive

remote sensing, where a sensor detects radiation that originated from the Sun or the

Earth. The instrument does not produce its own signal to illuminate the Earth, so

passive measurements of reflectance in the visible spectrum are difficult to perform

5



at night. To observe the Earth’s surface in the visible spectrum without solar illumi-

nation, a sensor that actively generates its own signal is required. An active sensor

transmits a signal toward the surface, and a small portion of backscattered energy

returns to the receiver of the sensor. The backscatter is then used to determine

information about the surface (Ulaby et al., 1986).

Airborne and spaceborne active sensors utilize signals at specific wavelengths to

limit attenuation by the atmosphere. The two most common types of active sen-

sor are radar and lidar, which generate signals in the microwave and the visible or

near-infrared, respectively. Radar is most frequently used for operational weather

forecasting, for precipitation and large cloud layers are the only aspects of the atmo-

sphere that significantly impact microwave signals (Ulaby et al., 1986). A specialised

form for radar known as synthetic aperture radar (SAR) may be used to generate

topographic maps and to penetrate ice sheets (Zhou et al., 2009). Lidars transmit

their signals at high repetition frequencies, so they are also useful for topographic

information. Lidar also has a small footprint relative to radar and passive sensors

(centimeters to meters, compared to meters to kilometers), so it has been applied for

cloud and aerosol monitoring and forest management (Liu et al., 2004; Neuenschwan-

der et al., 2009). Its high spatial resolution has also made it an effective tool to obtain

snow depth and shallow-water bathymetry (Deems et al., 2013; Brock et al., 2002).

The received signal of a lidar includes two critical attributes: the time at which

the backscatter was received, and the strength of the received signal (Liang , 2018).

The received time (trx) is compared to the transmittance time (ttx) to estimate the

distance between the sensor and the surface. Assuming that the signal travels at the

speed of light (c), the sensor-surface distance (or range, r) is given by:

r =
1

2
c(trx − ttx) (1.4)

where the one-half term accounts for the signal traveling between the sensor and
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Figure 1.3: An example lidar pulse over ice from the Airborne Topographic Mapper
represented using waveforms. The left waveform is the laser pulse trans-
mitted by ATM, whereas the right waveform is the energy received by the
detector.

the surface twice. When applied to a modeled ellipsoid of Earth, lidar ranges are

converted to fine-scale estimates of elevation above the surface. The signal strength

may then be used to infer information about the backscatter target(s), such as the

surface composition or the type of atmospheric aerosol.

Lidar beams may have one of two configurations: continuous wave lidar and pulsed

lidar. A continuous wave lidar emits a laser pulse continuously, and the signal is

processed as a sinusoidal wave. The sensor-surface range is calculated by measuring

the phase difference between the transmitted and received pulses. A pulsed lidar

transmits its signal in discrete photon pulses at a designed repetition frequency. Each

lidar pulse provides a sample of the Earth’s surface, with overlap possible between

laser pulses depending on the beam footprint size and pulse repetition frequency

(Wehr and Lohr , 1999). Continuous wave lidars are infrequently used in earth science,

so we focus on pulsed lidar systems in this thesis.

Raw lidar data are typically processed using waveforms, which represent the

change in amplitude of a signal over time. An example waveform profile is given

7



in Figure 1.3 for the Airborne Topographic Mapper (ATM), an airborne lidar used

for ice and coastal surveys (Brock et al., 2002). The amplitude, or relative strength,

of the waveforms are used to determine time of transmitted energy and received en-

ergy by taking the median or centroid of each waveform (Dong and Chen, 2017). To

reduce noise, a threshold may be applied to the digitized waveform. The centroid

or median times of the transmitted and received waveforms then serve as input to

Equation 1.4 to estimate range. For example, the transmitted and received pulses

in Figure 1.3 have centroid times of 408.75 ns and 3311.75 ns, respectively. Using

Equation 1.4, we calculate a range of 435.45 m for the given lidar shot.

The shape of the received waveform is highly sensitive to surface features and

terrain. If the surface is highly reflective on a cloud-free day, then the received signal

may be stronger than the transmitted pulse (Figure 1.3). Conversely, a surface with

rough terrain may broaden the width of the received pulse and produce a slight

delay in the received time estimate (Dong and Chen, 2017). More complex surfaces,

such as a tree or pressure ridges on sea ice, will produce multiple pulse echoes that

correspond with each layer of the surface feature. Therefore, waveform lidar is useful

for quantifying biomass in forests, for it allows discrimination between the tree canopy

and the surface (Neuenschwander et al., 2009).

An emerging technology for lidar is a photon-counting system. Instead of using

waveforms, photon clusters are time-tagged relative to the last transmitted signal.

The time tag is then used to calculate sensor-target range through Equation 1.4. Re-

ceived photons are classified as signal or background noise, based on the calculated

range relative to a digital elevation model. Although the photon-counting approach

produces greater noise from the solar background, it also has improved resolution

of surface features and terrain (Popescu et al., 2018; Spinhirne, 1993). A modern

example of a photon-counting lidar is the Ice, Clouds, and land Elevation Satellite-2

(ICESat-2), which takes elevation measurements of the surface at a wavelength of 532
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nm. It has a spatial resolution of ∼0.7 m and centimeter-level accuracy (Neumann

et al., 2019b), allowing for fine-scale estimates of land ice height, sea ice freeboards,

and vegetation canopy height (Smith et al., 2019; Kwok et al., 2020; Neuenschwander

and Pitts , 2019). The photon-counting system in ICESat-2 is also useful for bathy-

metric applications (Chapter 2), though it also introduces subsurface noise that often

requires additional detection and attribution (Chapter 4).

1.2 Relevant Components of the Cryosphere

The cryosphere contains all aspects of the Earth’s surface that concern frozen

water, including sea ice, glaciers and ice sheets, and snow. In this section, we discuss

the components of the cryosphere relevant to this thesis, i.e. ice sheets and snow, and

highlight why they are important to monitor using remotely sensed data.

1.2.1 Ice Sheets

The Greenland Ice Sheet (GrIS) is the second largest ice sheet in the world, with

1.71 million km2 of ice. The thickness of the ice ranges between 2-3 km for most

of the ice sheet (Morlighem et al., 2017), and a complete melting of the GrIS would

result in 7.2 m (24 ft) of sea level rise (Vaughan et al., 2013). The GrIS extends

between 60◦- 85◦N, and at these latitudes the ice sheet receives a limited quantity of

sunlight throughout the year. Surface temperatures over the ice sheet are therefore

below freezing in non-summer months (Shuman et al., 2001). Temperatures approach

or exceed the melting point of ice in Northern Hemisphere summer, so the GrIS expe-

riences melting and ice loss during this period (also known as the ”melting season”).

The GrIS has lost 150 ± 13 Gt yr-1 since 1992, contributing a total of 10.8 ±

0.9 mm yr-1 to sea level rise (The IMBIE Team, 2020). Ice loss has been observed

among all regions of the ice sheet, with the greatest loss taking place along the

western margin. Dynamical processes such as calving were the primary contributor
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Figure 1.4: Ice mass loss and sea level rise estimates based on observations over Green-
land (left) and Antarctica (right). Ice loss estimates are divided into in-
dividual processes (Greenland) or regions (Antarctica). Courtesy of The
IMBIE Team (2020) and The IMBIE Team (2018).

to GrIS mass loss at the start of the satellite record, but meltwater runoff has become

an increasingly important factor in the past decade (Figure 1.4, left). Ice melt is

particularly important in the ice sheet interior, where accumulation exceeds ablation

(loss) in the non-summer months, but melting may take place in summer if the air

temperature warms sufficiently. In recent years, changes in climate and atmospheric

circulation has resulted in ice melt propagating further inland near the Greenland

summit (Bevis et al., 2019).

The Antarctic Ice Sheet (AIS) is the world’s largest ice sheet and the largest

freshwater reservoir, spanning 14 million km2 around the South Pole. Because of its

large size, the AIS is commonly separated into three regions: the East Antarctic Ice

Sheet (EAIS), the West Antarctic Ice Sheet (WAIS), and the Antarctic Peninsula Ice

Sheet (APIS). The EAIS is the coldest and least documented region. It is also the

largest portion of Antarctica, with enough ice to raise sea levels by 53 m (Fretwell

et al., 2013). The WAIS is a marine ice sheet, meaning that the bed of the ice sheet

is situated below sea level. Although smaller than the EAIS, a complete loss of the

WAIS would be sufficient to contribute 3.3 m to sea level rise (Bamber et al., 2009).

The APIS is the smallest Antarctic ice mass, with a sea level rise potential of 0.24 m

(Pritchard and Vaughan, 2007). It is also the warmest region in Antarctica, so it is
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more likely to experience ice loss than the other regions.

Although the AIS is larger than the GrIS, its contribution to recent sea level

rise is smaller. The AIS has contributed 7.6 ± 3.9 mm to sea level rise since 1992,

though there is substantial interannual and regional variability. The WAIS was the

only significant contributor until the last decade, and approximately 85% of current

Antarctic ice loss is from the WAIS. Recent warming trends over the APIS have

resulted in enhanced ice loss over the peninsula, and it currently contributes ∼15%

to Antarctic ice loss (Figure 1.4, right). Over the EAIS, satellite observations indicate

a slight increase in ice in the past decade on average. However, the limited observation

record shows significant interannual variability, so there is substantial uncertainty in

accumulation rates and ice loss estimates over the EAIS (The IMBIE Team, 2018).

A critical component of ice sheet mass balance is meltwater, or the melting of ice

into liquid water. In large quantities, meltwater accumulates into topographic depres-

sions and forms supraglacial lakes and streams (Echelmeyer et al., 1991). Meltwater

in these basins may penetrate through the underlying ice and induce hydrofracture, a

mechanism that cracks surrounding ice and leads to accelerated mass loss (Das et al.,

2008). Upon reaching the ice bed, meltwater can lubricate the ice-rock interface and

facilitate ice movement and eventual discharge (Zwally et al., 2002).

The development of meltwater is governed by the surface energy balance of an ice

sheet or glacier:

Rnet = S↓ + S↑ + L↓ + L↑ +H + E (1.5)

In Equation 1.5, the radiative terms are S and L, where S is shortwave radiation

(sunlight) and L is Earth’s emitted longwave radiation. The terms H and E are the

turbulent terms that represent sensible heat flux and latent heat flux, respectively.

Sensible heat flux refers to the transfer of thermal energy between the surface and at-

mosphere through convection, whereas latent heat flux is surface-atmosphere energy
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exchanges through phase changes of water. The arrows indicate the direction of prop-

agation for the radiative quantity: downward or ”downwelling” radiation is emitted

towards the Earth’s surface, whereas upward or ”upwelling” radiation is emitted to

space. The upwelling terms in Equation 1.5 are negative quantities, for they cause

the surface to lose energy. The turbulent terms can be positive or negative depending

on the local state of the troposphere, but generally both terms are negative when

there is energy transferred from the surface to the atmosphere. If Rnet is positive,

the surface has a net gain of energy and warms. Conversely, a negative Rnet implies

a loss of energy and cooling at the surface.

The individual terms of the energy balance equation have an influence on the

development and refreezing of meltwater on ice sheets. In late-spring and summer,

an ice sheet or glacier will experience a greater amount of incident solar radiation (S↓).

A portion of it will be reflected back to space (S↑) due to the high reflectivity of ice,

and the Earth’s longwave radiation (L↑) will partially compensate for the increase

in sunlight. However, the upwelling radiation may be insufficient to offset incident

radiation, so regions of the ice will experience a positive Rnet that initiates melting

of the ice. Melting continues until fall, where the decrease in daylight hours will

render Rnet negative and refreeze standing meltwater. Clouds in early fall may absorb

upwelling longwave radiation and emit it back to the surface (L↓), thereby delaying

meltwater refreezing by a few days (Bennartz et al., 2013; Van Tricht et al., 2016).

Otherwise, downwelling longwave radiation plays a small role in the ice sheet energy

balance. The influence of the turbulent heat fluxes is also small at the regional scale,

though meltwater may serve as a latent heat reservoir at micro-scales (Humphrey

et al., 2012). Warm air temperatures in the melting season may also generate a

significant transfer of sensible heat to a snow or ice surface, thereby enhancing melt

rates.
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Figure 1.5: The simulated evolution of snow albedo (green) and snow grain size
(black) over a period of two weeks, given four snow densities. Courtesy
of Flanner and Zender (2006).

1.2.2 Snow

Seasonal snow is a critical aspect of climate, ecology, and hydrology. It reflects

a significant fraction of incident sunlight back to space, thereby slowing warming

rates of the surface. Snow also functions as an effective insulator for underlying

vegetation and soil in otherwise harsh winter conditions (Zhang , 2005). In the warm

season, runoff from melting snow accumulates in rivers and basins that account for

a significant portion or the world’s freshwater supply (Bales et al., 2006). Many

animal and plant species also depend on the snow cover for insulation or camouflage,

so the timing of snowfall and snowmelt has a major impact on regional ecosystems

(Penczykowski et al., 2017). The duration and extent of seasonal snow is particularly

sensitive to a warming climate (Barnett et al., 2005), and there are concerns that

current warming trends will have a profound impact on snow-dependent systems. It

is for these reasons that the 2017 Decadal Survey lists snow accumulation and melt as

factors of critical importance for future science missions (National Academies, 2018).

The state of a snowpack is best described by its age, or the length of time be-

tween precipitation and snow melt. When snow is freshly fallen, it starts in the ”dry”
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regime with low snowpack density and small snow grains. The snow will transition

into a ”wet” regime if the snow surface temperature exceeds the melting point for a

significant duration of time. In the wet regime, the snow density and grain size grad-

ually increase as the snow melts, with both processes decreasing broadband albedo,

as seen in Figure 1.5. The snowpack warms more efficiently as the albedo decreases,

generating a component of the snow albedo feedback (Aoki et al., 1999; Flanner and

Zender , 2006). The snow albedo feedback may be further enhanced by the presence

of light-absorbing particles or the angle of incident sunlight.

In snow modeling studies, a snowpack is commonly represented as a porous

medium composed of an ice structure with air pores (Figure 1.6). The snow is not

a continuous medium, but rather is an aggregate of many ice particles. The snow

particles are not represented as individual snowflakes in models, as precise estimates

and processing of snow grain radius is difficult. Instead, snow modeling studies use

a quantity known as the optically-equivalent snow grain size, also referred to as the

effective snow grain size (reff ). The effective grain size represents individual snow

particles as spheres that have the same optical properties as nonspherical particles of

equivalent size (Warren, 1982; Grenfell et al., 1994; Aoki et al., 1999). Studies have

shown that the spherical particle assumption is valid for bulk snow albedo calcula-

tions (Grenfell and Warren, 1999; Grenfell et al., 2005), though it is less effective at

accurately reproducing snowpack microphysical processes and directional reflectance

(Kokhanovsky and Zege, 2004).

A snowpack is not always a clean medium, and frequently contains light absorbing

impurities (LAPs) such as dust or black carbon (soot). LAPs may be transported

hundreds to thousands of kilometers and deposit onto a snow surface. Once de-

posited, snow impurities can dramatically alter snowpack albedo even in small quan-

tities, though the influence is spectrally-dependent. Albedo in the visible spectrum

is especially sensitive to the presence of LAPs (Wiscombe and Warren, 1980), and
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Figure 1.6: A simple schematic of sunlight propagation through a snowpack of spher-
ical snow grains. The light may be reflected from the snow surface (a),
scatter through the snowpack before reflection (b), or transmit through
the snow after scattering (c).

it decreases significantly as LAP content increases. In sufficient quantities, LAPs in

the surface snow layer may lead to an enhanced snow albedo feedback in the melting

season (Flanner and Zender , 2006). In contrast, large quantities of impurity are re-

quired to impact near-infrared albedo, which can actually increase in the presence of

dust.

The angle of incident sunlight, also known as solar zenith angle or illumination

angle, plays an important role in determining the reflectivity of a snowpack. The

reflectance of a snowpack is lowest when the Sun is near-zenith and highest when the

Sun is close to the horizon, due to forward scattering by ice particles and shallower

penetration of sunlight (Warren and Wiscombe, 1980). The solar zenith angle also

has a major influence on the direction at which radiation is reflected from a snowpack.

At low illumination angles (i.e., near-zenith), reflected radiance is distributed isotrop-

ically, or equally in all directions. Reflectance is preferentially scattered in the forward
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direction at larger illumination angles, therefore increasing observed reflectance near

the horizon and decreasing it at other viewing angles (Dumont et al., 2010). We

examine the impacts of solar geometry and anisotropic reflectance in greater detail

in Chapter 3.

1.3 Outline of Thesis

The vital role of ice and snow in the climate system necessitates the development

and calibration of retrieval methods using remote sensing. In this dissertation, we use

a fusion of hyperspectral radiance data and lidar altimetry to answer questions about

ice and snow. Chapter 2 uses lidar altimetry to estimate meltwater depth over both

the Greenland and Antarctic Ice Sheets. We examine the feasibility of satellite and

airborne altimeters for this purpose. We also discuss what is needed in creating an

automated algorithm for supraglacial lake depth retrievals. Chapter 3 examines how

solar geometry and changes to the snowpack may affect retrievals of snow grain size.

We simulated snowpack perturbations using the radiative transfer model SNICAR

and a Monte Carlo photon tracking model. The snowpack variables we considered

included aspherical ice particles and the addition of LAPs. Chapter 4 utilizes both

lidar altimetry and snow grain size retrievals to analyze the effects of snow on lidar

signals. We quantify bias in an airborne lidar altimeter with the expectation that

the results will be applicable to spaceborne altimetry measurements. Snow grain size

retrievals from an airborne hyperspectral imager are used to attribute altimetry errors

to volumetric scattering in snow.
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CHAPTER II

Supraglacial Lake Depth Retrievals

As Published In: Fair, Z., M. Flanner, K. M. Brunt, H. A. Fricker, and A.

Gardner (2020), Using ICESat-2 and Operation IceBridge altimetry for supraglacial

lake depth retrievals, The Cryosphere, 14, 4253–4263, doi:10.5194/tc-14-4253-2020.

Abstract. Supraglacial lakes and melt ponds occur in the ablation zones of

Antarctica and Greenland during the summer months. Detection of lake extent,

depth, and temporal evolution is important for understanding glacier dynamics. Pre-

vious remote sensing observations of lake depth are limited to estimates from passive

satellite imagery, which has inherent uncertainties, and there is little ground truth

available. In this study, we use laser altimetry data from the Ice, Cloud, and land

Elevation Satellite-2 (ICESat-2) over the Antarctic and Greenland ablation zones

and the Airborne Topographic Mapper (ATM) for Hiawatha Glacier (Greenland) to

demonstrate retrievals of supraglacial lake depth. Using an algorithm to separate lake

surfaces and beds, we present case studies for 12 supraglacial lakes with the ATM

lidar and 12 lakes with ICESat-2. Both lidars reliably detect bottom returns for lake

beds as deep as 7 m. Lake bed uncertainties for these retrievals are 0.05-0.20 m for

ATM and 0.12-0.80 m for ICESat-2, with the highest uncertainties observed for lakes

deeper than 4 m. The bimodal nature of lake returns means that high-confidence pho-

tons are often insufficient to fully profile lakes, so lower confidence and buffer photons
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are required to view the lake bed. Despite challenges in automation, the altimeter

results are promising, and we expect them to serve as a benchmark for future studies

of surface meltwater depths.

2.1 Introduction

The ice sheets of Antarctica and Greenland modulate rates of sea level rise, con-

tributing 14.0 ± 2.0 mm (Antarctica) and 13.7 ± 1.1 mm (Greenland) since 1979

(Mouginot et al., 2019; Rignot et al., 2019). Current trends indicate greater melt in

the coming decades, leading to the contributions from both ice sheets to overtake the

contribution of thermal expansion to sea level rise (Vaughan et al., 2013). Meltwater

plays vital roles in ice sheet evolution (e.g., van den Broeke et al., 2016), including

aggregation on ice sheets as supraglacial lakes, many of which are several meters deep

(Echelmeyer et al., 1991). When unfrozen, these lakes exhibit a lower albedo than

that of the surrounding ice, allowing them to absorb more incoming solar radiation

and melt ice more efficiently, thus generating a positive feedback (Curry et al., 1996).

Supraglacial lakes are significant reservoirs of latent heat (Humphrey et al., 2012), and

their spectral emissivity in the IR spectrum also differs from bare ice (Chen et al.,

2014; Huang et al., 2018), which can lead to potentially significant impacts on the

surface energy balance of ice sheets.

A substantial portion of meltwater eventually drains into supraglacial streams

or moulins (drainage channels), where it can flow to the ice bed (Banwell et al.,

2012; Catania et al., 2008; Selmes et al., 2011). During catastrophic lake drainage

events, meltwater penetration into the ice can also lead to hydrofracture, a mechanism

through which meltwater facilitates full ice fracture as a result of the stresses induced

by the density contrast between liquid water and ice (Das et al., 2008). Meltwater

injection to the bed can also modify basal water pressures which in turn modify

the resistance to ice flow and thus can impact sliding velocity and ice discharge.
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(Parizek and Alley , 2004; Zwally et al., 2002). Hydrofracture can lead to significant

ice loss for outlet glaciers and ice shelves (Banwell et al., 2013). Current observations

and modeling efforts indicate a propagation of supraglacial lakes farther inland as

the climate warms (Howat et al., 2013; Leeson et al., 2015; Lüthje et al., 2006),

raising further concerns for accelerated mass loss. For these reasons, knowledge of

supraglacial lakes is important for our understanding of ice sheet evolution.

Previous studies developed techniques for detecting supraglacial lakes and re-

trieving depth, areal coverage, and volume. In-situ observations employed sonar and

radiometers to approximate lake depth and albedo (Box and Ski , 2007; Tedesco and

Steiner , 2011). However, the harsh conditions of Antarctica and Greenland, the

transience of meltwater, and the sheer size of the ice sheet ablation zones restrict

the potential for extensive in-situ measurements, encouraging lake depth and areal

coverage estimates from passive remote sensing data such as Landsat-8, MODIS,

and Sentinel-2 A/B. Supraglacial water is darker than surrounding ice in visible and

IR bands, allowing the use of band ratios between blue and red reflectance (Stumpf

et al., 2003). The normalized water difference index (NWDI) and dynamic threshold-

ing techniques have also been considered for lake detection (Fitzpatrick et al., 2014;

Liang et al., 2012; Moussavi et al., 2016; Pope, 2016; Williamson et al., 2017; Mous-

savi et al., 2020). Other methods implemented radiative transfer models (Georgiou

et al., 2009) or positive degree day models (McMillan et al., 2007) to estimate lake

albedo and meltwater volume, respectively. By comparing surface reflectance data

of supraglacial water to that of ice and optically deep water, empirical relationships

have been derived to approximate lake depth (Philpot , 1989; Sneed and Hamilton,

2007).

Image-based empirical techniques rely on approximations of lake bed albedo and

an attenuation parameter, both of which are subject to uncertainties from lake het-

erogeneity and cloud cover (Morassutti and Ledrew , 1996). Furthermore, Pope et al.
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(2016) found that band ratios were insensitive to lakes deeper than 5 m, leading to

errors that may exceed 1 m. Parameter fitting in the empirical equations requires

supplementary depth retrievals, often from in-situ sources. More accurate methods

for supraglacial lake detection are needed to improve image-based estimates.

In September 2018, the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) with

the primary objective of obtaining laser altimetry measurements of the polar regions

(Abdalati et al., 2010; Markus et al., 2017; Neumann et al., 2019b). Observations

using the Airborne Topographic Mapper (ATM) and Multiple Altimeter Beam Ex-

perimental Lidar (MABEL) indicated the potential for shallow water profiling with

laser altimetry (Brock et al., 2002; Brunt et al., 2016; Jasinski et al., 2016), and

ICESat-2 applications were recently demonstrated by Ma et al. (2019) and Parrish

et al. (2019). In this study, we identify test cases from ICESat-2 and ATM altimetry

data and use these pilot cases to develop an algorithm for detecting supraglacial lakes

and retrieving lake depth. The algorithm is designed as a semi-automatic method to

find supraglacial lakes within select altimetry granules.

2.2 Data Description

2.2.1 ICESat-2

ICESat-2 is a polar orbiting satellite with an inclination of 92 degrees that carries

the Advanced Topographic Laser Altimeter System (ATLAS), a 532 nm micro-pulse

laser that is split into six distinct beams with names based on the ground track:

GT1L/R, GT2L/R, and GT3L/R. The beams are configured in pairs with a 90-meter

separation between beams within a beam-pair and 3.3-kilometers between pairs. With

an operational altitude of ∼500 km and a 10 kHz pulse repetition rate, ICESat-2

records a unique laser pulse approximately every 0.7 m along-track over a 91-day

repeat cycle.
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The ATLAS product used here is the ATL03 Global Geolocated Photon Data V002

(Neumann et al., 2019a), which consists of retrieved photons tagged with latitude,

longitude, received time, and elevation. Each photon pulse also carries a classification

as either signal or background (noise). The differentiation between signal and back-

ground is performed using a statistical algorithm outlined by Neumann et al. (2019b).

Signal photons are further classified by confidence level, such that photons labeled

as ”high confidence” are most likely to originate from the surface. Generally, cloudy

or variable profiles exhibit ”medium/low confidence” or noise photons, whereas low

slope surfaces, such as water and ice sheets, result in more ”high confidence” pho-

tons (Neumann et al., 2019b). In thin layers of water, high confidence photons are

observed from both the water surface and the underlying ice.

Our study focused on the central strong beam (GT2L), as the number of lakes was

deemed sufficient for our purposes. While we recognize that the other strong beams

could be useful for depth retrievals, we did not consider them here. We speculate that

the weak beams may avoid issues with multiple scattering and specular reflection, but

their power is too low to reliably detect lakes deeper than 4 m. Ground-based valida-

tion by Brunt et al. (2019b) indicates an accuracy of <5 cm in ATL03 photons over

ice sheet interiors. The use of medium, low, and “buffer” photons slightly decreases

measurement precision, but a less truncated transmit pulse gives better agreement

with ATL06 and ground-based data (Brunt et al., 2019b).

2.2.2 Airborne Topographic Mapper

The Operation IceBridge (OIB) campaign was designed to fill the gap in polar

altimetry between ICESat and ICESat-2. Its scientific payload included the Airborne

Topographic Mapper, a 532 nm lidar that has been used for ice sheet and shallow

water measurements since 1993. The ATM lidar conically scans at 20 Hz, providing

a 400 m swath width along-track (Brock et al., 2002; Krabill et al., 2002). The
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ATM Level-1B Elevation and Return Strength (ILATM1B) product converts analog

waveforms into a geolocated elevation product to emulate ATLAS data (Studinger ,

2018). Although it lacks a statistical confidence definition, ATM applies a centroid

model to digitized waveforms to retrieve high-confidence photons. Brunt et al. (2019a)

found that ATM errors were -9.5 to 3.6 cm relative to ground-based measurements.

Here, the ATM results presented serve as a proof of concept for the lake detection

algorithm.

2.3 Methods

2.3.1 Lake Detection

Supraglacial lake surfaces are much flatter than surrounding terrain. We thus

performed topography checks with the expectations that (i) lake surfaces would be

identifiable in photon histograms and (ii) lake beds may be found via statistical

inference in the region of the lake surface. To simplify the identification of lake

features, we separated them into two arrays: one for the surface and one for the

bed, which we refer to as “lake surface-bed separation” (LSBS). For both lidars, the

procedure for separation was identical, and is as follows (see Figure 2.1 for a schematic

view):

i. We divided each data granule into discrete along-track windows to reduce the

data volume to ∼104-105 photons per window. This photon count is equivalent

to ∼1-10 km in along-track distance for ICESat-2 and ∼0.15-1.5 km for ATM.

If a supraglacial lake appeared on the edge of the window, the window size was

adjusted to include the full observed water feature.

ii. Each data window was binned into elevation-based histograms. We assumed

that the lake surface dominates the total bin count within each window of

photons. We check the flatness of the window by computing the standard
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deviation (σ) of high-confidence signal photons within the upper 85th-percentile

of bin count. We define a “flat” surface for regions where σ ≤ 0.05 m for

ATL03 data, and ≤ 0.02 m for ILATM1B data. We selected these values by

comparing the “flatness” of lake surfaces to that of surrounding ice topography.

If data were within the appropriate flatness threshold, they were verified as

a lake surface using Landsat-8 OLI imagery. This step was included to filter

non-glacial features, such as ocean or fjords.

iii. If the satellite image(s) confirmed the presence of a lake, the data were assigned

to a new array for the height of the lake surface (hsfc). The horizontal extent

of the lake surface served as a constraint for where the lake bottom data could

be defined. Within these horizontal bounds, photons were defined as a lake

bottom if they satisfied the condition: hsfc − a σsfc ≤ h ≤ hsfc − b σsfc, where

σsfc is the standard deviation of lake surface photons. The constraints a and b

were derived through trial-and-error, such that a = 1.0(1.8) and b = 0.5(0.75)

for ICESat-2 (ATM). We set these constraints to reduce the impacts of multiple

scattering and specular reflection on depth estimates. If these conditions were

met, then the data were placed in an array for the height of the lake bottom,

hbtm.

iv. A series of filters were applied to improve surface/bed estimates. For ICESat-

2, lakes shallower than 1.3 m or smaller than 200 m in horizontal extent were

considered too noisy or ill-defined for further analysis (see Section 5.2 for more

details). To remove water bodies with deep bed returns (e.g., oceans or fjords) or

with no bed returns, the algorithm counted the number of bed photons present

for both lidars. If the number of bed photons was very small (100 or less), then

the scene was marked as a probable false positive.

v. If the data were obtained from ICESat-2, then we followed a photon refinement
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Figure 2.1: Schematic for the workflow of the lake surface-bed separation algorithm.

routine that is described in more detail in Sect. 3.2. Calculations for lake depth

were then performed for both ATM and ICESat-2 retrievals and corrected for

refraction (Sect. 3.3).

2.3.2 ATL03 Refinement

The above steps were sufficient to obtain lake profiles within the ATM data, but

melt lake bottoms observed by ICESat-2 were significantly noisier as a consequence

of higher background (noise) photon rates. After the initial LSBS procedure, we

manually assessed bed estimates for each lake. For lakes that did not pass qualitative

assessment, we adopted photon refinement procedures initially used for the ATL06

surface-finding algorithm (Smith et al., 2019). In short, ATL03 photon aggregates

within overlapping 40 m segments were used to estimate lake surfaces and beds with

greater precision via least-squares linear fitting applied to the aggregates. These

linear fits were used to approximate a window of acceptable surface or bed photons
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for every 20 m along-track. A more detailed description of the ATL06 algorithm is

given in Smith et al. (2019).

The linear regression in ATL06 accounts for all ATL03 photons (background or

signal), and the technique performs a background-corrected spread estimate to narrow

the range for acceptable photons. This is an iterative scheme; the refinement process

repeats its acceptable photon filter until no photons are removed. As a consequence,

the ATL06 algorithm assumes a single returning surface, so over a melt lake it will

compute a height for either the lake bottom or the lake surface, depending on their

return strengths.

The condition for acceptable surface photons in ATL06 is given by:

|r − rmed| < 0.5Hw (2.1)

Within a 40 m photon segment, r is the residual of a photon relative to the linear

regression, rmed is the median residual, and Hw is window height. The height of

the window is taken as the maximum of the observed photon spread, the window

height (if any) and 3 m, and photons within the window range are defined as the

surface. The LSBS algorithm follows a similar procedure, but the flatness of the

lake surface and relatively low photon density of the corresponding beds rendered

iterating unnecessary. The lake bed is then defined as photons not within the window

and below the surface. In other terms, lake bed photons satisfy the conditions:

|r − rmed| > 0.5Hw, h < hsfc (2.2)

As with the initial guess, the lake bottom was only defined within the horizontal

bounds of the lake surface, and the improved guesses were assigned to hsfc and hbtm.

As a final adjustment to lake photons, we applied a refraction correction algorithm

to account for slowing down of light as it enters water. The correction follows the
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methods utilized by Parrish et al. (2019) by approximating refractive biases as a

function of depth and beam elevation angle. The center strong beam for ICESat-

2 is near-nadir, so the horizontal offset was determined to be small relative to the

size of lakes (∼3 cm, far below the horizontal geolocation uncertainty for ICESat-

2). However, vertical offsets of 1 m or more were found for lakes ≥4 m in depth,

necessitating the use of refraction correction.

2.3.3 Lake Depth and Extent Estimations

Once we obtained hsfc and hbtm, lake depth from the altimeter signal (zs) was

estimated using:

zs = hsfc − hbtm (2.3)

where hsfc and hbtm represent the moving mean of the surface elevation and the

bottom elevation, respectively. The moving mean was used to account for signal

attenuation and scattering at the lake bottom, a problem most evident for ICESat-2

retrievals.

For deep or inhomogeneous lakes, attenuation of photon energy in water resulted

in fewer signal photons observed at lake bottoms (Figure 2.4). In these situations, we

fitted polynomial or spline fits to all lake profiles with bounds at the lake edges. Lakes

observed by ATM typically featured “bowl” shapes and attenuation at the deepest

parts, so 3rd-order polynomials were sufficient. In ICESat-2 data, the retrieved lake

beds showed greater complexity, so we tested polynomial fits and splines on a case-

by-case basis. Lake depths approximated with curve fitting were denoted as zp. We

compare zs and zp over lakes with well-defined bottoms, and show in Sect. 4 that the

two generally agree to within 0.88 m.

To test the limits of the algorithm relative to lake size, we utilized the great-

circle formula (ATM) or pre-defined along-track distance (ICESat-2) to approximate
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Figure 2.2: True-color Landsat-8 composites of Hiawatha Glacier on 18 July, 2017 (a),
the Amery Ice Shelf on 1 January, 2019 (b), and the western Greenland
ablation zone on 17 June, 2019 (c). Flight tracks for Operation IceBridge
(a) and ICESat-2 (b, c) are shown in dotted orange.

along-track extent L. We acknowledge the desire to retrieve lake volume from laser

altimetry, but we leave the development of such an algorithm for a future study.

For example, depth retrievals from ICESat-2 could potentially be combined with lake

radius and shape estimations determined from visible satellite imagery to derive water

volume.

2.3.4 Case Study Locations

We present cases over the Amery Ice Shelf on 2 January, 2019 (ICESat-2 Track

0081; 68.271-73.798◦S, 63.057-78.620◦E), the western Greenland ablation zone for 17

June, 2019 (ICESat-2 Track 1222; 66.575-69.582◦N, 48.284-49.239◦W), and Hiawatha

Glacier in 19 July, 2017 (ATM; 77.780-79.3119◦N, 65.279-67.484◦W) (Figure 2.2).

Comparisons between Landsat-8 imagery and ICESat-2/OIB flight tracks confirmed
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supraglacial lake overpasses for study. In Spring 2019, an early onset of the Arctic

melt season resulted in both ICESat-2 and Operation Icebridge surveying supraglacial

lakes near Jakobshavn Isbræ in May. However, there were no lakes sampled at the

time by both ICESat-2 and OIB.

2.4 Results

We detected 12 melt lakes with sufficient bed returns from the ATM data and 16

potential melt lake surfaces overall. The melt lake profiles are shown in Figure 2.3,

with maximum depths of 0.98-7.38 m and extents of 180-730 m. The algorithm

reliably distinguishes between lake surfaces and the surrounding ice terrain. The mean

spread among lake surface photons is 0.0087 m, or well within the flatness threshold

of 0.02 m. Lake bottoms are well-defined when ds < 8 m. Lake bottoms deeper than 8

m exhibit fewer signal returns, for the associated return signal is below the threshold

required to be digitized (Martin et al., 2012). The average depth estimate for the

lakes in Figure 2.3 was 1.95 m (Table 2.1), and lakes at this depth typically featured

adequate bed returns. In deeper lakes, the polynomial estimate produced reasonable

guesses for the lake bed location, with the most effective fitting seen in lakes 2.3e, 2.3g,

and 2.3h. With the polynomial-based depths, mean lake depth increased to 2.15 m,

and the maximum modeled depth was 8.83 m.

The spread in ATM lake bed photons is low (Table 1, Column 7), with a maximum

of 0.2 m for lake 2.3g. The highest uncertainties are observed for lake depths greater

than 3 m, perhaps influenced by low signal-to-noise ratios or the conical scanning

of the OIB lidar instrument. Polynomial estimation errors are 0.41 m on average.

Several depth errors are below this mean, but a strong standard error (1.03 m) in

lake 2.3g, due to difficulties in capturing its steep bed slope, slightly skews the mean

error. Excluding this value, the mean error among ATM polynomial estimates reduces

to 0.35 m.
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Table 2.1: Cumulative statistics for ATM supraglacial lakes explored in this study,
including mean and maximum signal-based depth (ds) and polynomial-
based depth (dp), along-track extent L, mean lake depth uncertainty (σd),
and mean polynomial estimation error (εp). Units are in meters.

Lake ds max(ds) dp max(dp) L σd εp
3a 0.98 1.69 0.91 1.51 270 0.08 0.31
3b 2.25 3.75 2.32 3.49 640 0.15 0.45
3c 1.33 2.39 1.33 2.24 440 0.09 0.25
3d 0.64 0.98 0.71 1.09 180 0.10 0.38
3e 1.81 2.98 2.37 4.11 520 0.05 0.42
3f 1.70 2.70 1.97 3.15 470 0.10 0.49
3g 4.32 7.38 5.50 8.83 630 0.20 1.03
3h 3.64 5.91 3.90 6.37 730 0.15 0.41
3i 1.56 2.38 1.48 2.37 510 0.12 0.15
3j 3.17 5.18 3.39 5.29 650 0.11 0.65
3k 0.60 1.06 0.55 0.97 350 0.09 0.21
3l 1.45 2.32 1.39 2.18 590 0.11 0.15

Mean 1.95 3.23 2.15 3.47 500 0.11 0.41

Table 2.2: As with Table 1, but for ICESat-2 tracks.
Track Lake ds max(ds) dp max(dp) L σd

0081

4a 2.32 4.57 2.62 4.00 3170 0.25
4b 1.48 2.67 1.48 1.70 8570 0.80
4c 2.02 2.86 2.08 2.41 3790 0.28
4d 1.39 2.32 1.46 1.96 3860 0.77

Mean 1.80 3.11 1.91 2.52 4850 0.53

1222

4e 2.24 3.43 2.28 2.98 1990 0.28
4f 2.31 5.22 2.66 3.44 2980 0.26
4g 3.52 7.15 3.76 5.78 1370 0.49
4h 1.22 1.47 1.24 1.50 211 0.12
4i 1.52 2.88 1.55 2.37 2070 0.23
4j 4.13 6.56 4.13 6.01 530 0.73
4k 1.65 3.13 2.04 3.08 780 0.22
4l 1.93 2.76 1.93 2.78 360 0.15

Mean 2.32 4.08 2.45 3.49 1290 0.31
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We examined an additional 12 supraglacial lakes with ICESat-2, eight in Green-

land and four on the Amery Ice Shelf in Antarctica. Three of the Antarctic melt

lakes ( 2.4a, 2.4b, 2.4d) are highlighted in Magruder et al. (2019) and Fricker et al.

(2021). The refined algorithm captures lake surfaces and beds reasonably well (Fig-

ure 2.4), with a mean uncertainty of 0.015 m for surface photons and 0.38 m for bed

photons. The lake edges partially account for the bed photon uncertainty, for the lim-

ited number of acceptable photons produces a slight bias in bed estimates. Antarctic

melt lakes were generally shallower than those seen on Greenland (Table 2.2) - only

lake 2.4a exceeded 3 m in depth, whereas the mean maximum depth over Greenland

was 4.08 m. Melt lakes on the Amery Ice Shelf were 3-8 km in extent, thus facilitating

detection in histograms. Greenland lakes exhibited a wider range of sizes, but the

algorithm successfully performed retrievals for lakes as small as 200 m in extent.

On average, the noisier data from ICESat-2 produces uncertainties greater than

0.2 m for the Antarctic lakes and 0.3 m for the Greenland lakes, as seen in Table 2.2,

Column 8. The inclusion of lower-confidence photons increases uncertainty despite

the restricted bed photon criteria, for the larger photon cloud increases the spread of

the entire lake profile. The curve fits improved depth estimates for lakes 2.4b, 2.4f,

and 2.4i. Of these lakes, only 2.4i used a polynomial estimate due to poor spline fit-

ting. The inclusion of interpolants increased the mean depth estimates of 2.4b, 2.4f,

and 2.4i by 0.08 m, 0.04 m, and 0.03 m, respectively. The spline fitting significantly

increased the maximum observed depth in lake 2.4b from 2.67 m to 3.27 m. The re-

maining lakes featured more complete bed profiles, meaning that the fitting estimates

were less important.
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Figure 2.3: ATM lake profiles from 17 July, 2017 fitted using lake surface-bed sepa-
ration, including the raw ILATM1B product, the lake surface signal, the
lake bottom signal, the polynomial-/spline-fitted bottom, and the point
of maximum depth. Along-track distance is relative to the start of a data
granule.

2.5 Discussion

2.5.1 Algorithm Performance

The conical scanning of the ATM lidar produced oscillations in 1D elevation pro-

files that dampened over lake surfaces, so lakes generally were easier to identify

with the airborne retrievals. Flights conducted during the OIB campaign actively

avoided cloudy conditions, reducing attenuation sources and further simplifying the

lake-finding process over common melt regions. The data volume per granule was

lower than ATL03, resulting in less time needed to run the algorithm. However, the

number of retrievals possible with ATM is limited, so observations with the lidar best

serve as a validation and correction tool for ICESat-2 and other retrieval methods.

The laser power and detector sensitivity of the ATLAS instrument on board

ICESat-2 are sufficient to reliably detect lake beds, and a high along-track resolution
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Figure 2.4: Supraglacial lakes and melt ponds detected by ICESat-2 over the Amery
Ice Shelf (a-d) and western Greenland (e-l), using Tracks 0081 and 1222,
respectively.

will correspond to improved estimates of lake bed topography, water depth, and water

volume. Despite strong advantages, significant difficulties must be considered before

automatic lake detection is feasible. At its operational altitude, the ATLAS laser is

subject to first-photon-bias, solar background radiation, and scattering and absorp-

tion by blowing snow and clouds. Clouds are common over the fringes of Antarctica

and Greenland (Bennartz et al., 2013; Lachlan-Cope, 2010; Van Tricht et al., 2016),

and often their optical depth is sufficient to render the surface undetectable. Han-

dling the large data volumes in ATL03 granules also presents a significant challenge.

A single granule provides coverage over hundreds of kilometers, so the running time

of the algorithm increases relative to ATM granules. Lakes smaller than 1 km are

difficult to automatically detect with the algorithm, but LSBS may still be performed

for lakes as small as 200 m if the location of a lake is known through other means

(e.g., Landsat-8 imagery or ATM retrievals).

We observed differences in lake topography for ICESat-2 lakes, and we attribute
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them to the underlying ice surfaces. Supraglacial lakes on Greenland typically form

into smooth basins within depressions formed by the underlying bedrock, and their

location is independent of ice motion (Echelmeyer et al., 1991). In contrast, meltwater

on the Amery Ice Shelf originates from the blue ice zone, propagating along the

ice surface in streams. The location of lakes and ice topography are thus tied to

the flowlines of the ice shelf surface. These features are flooded in the Antarctic

melt season, producing melt lakes and streams up to 80 km in length (Mellor and

McKinnon, 1960; Phillips , 1998; Kingslake et al., 2017).

A potential issue for lake depth retrievals concerns specular reflection. When pho-

tons interact with a flat water surface, they may reflect directly back to the detector

with minimal energy loss. The excessive return energy produces a “dead time” in the

ATLAS detector, and the return signal is represented by multiple subsurface returns

below the actual surface (Neumann et al., 2020). An example of this phenomenon

may be seen in Figure 2.4f, where a prominent subsurface return 1 m below the true

surface is featured along the lake extent. However, because the subsurface echo is

smaller than the true surface when viewed through histograms, the LSBS algorithm

is able to avoid biases caused by specular reflection.

The success of this method for lake depth retrievals is governed by spatial and

temporal sampling of the instruments across the lakes when they are full. The meth-

ods presented here are most effective when the altimeter passes directly over the deep

part of a lake rather than at its edge. This provides a lake depth profile that is more

representative of the complete lake, allowing for improved estimates of lake depth and

extent. A complete lake profile also provides sufficient information to the LSBS algo-

rithm, reducing the risk of false negatives that occur with small lakes or incomplete

profiles. The temporal sampling of ICESat-2 and ATM is infrequent (every 91-days

for ICESat-2 and random for ATM), and so the same lakes will not always be present

every time these data are required. Therefore, coincident satellite imagery is desirable
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to simplify the lake-finding process.

2.5.2 Automation Challenges

The identification of lake beds in the LSBS algorithm is based on a window of

acceptable photons. The photon window is constrained by the coefficients a and b

(for ICESat-2, a = 1.0, b = 0.5). Lake beds detected in this manner had a height

uncertainty of 0.38 m (Table 2). The coefficients for ATM (a = 1.8, b = 0.75), resulted

in more accurate retrievals on an individual basis. However, implementing varying a

and b values proved difficult to automate, as other values may produce more accurate

depths.

The challenges in full automation are related to three key issues. First, the ob-

served extent of lakes varied considerably, especially over Greenland. The diversity

in lake sizes complicated attempts to derive a universal “flatness” check. Smaller

lakes present fewer lake surface photons, so a smaller data window (∼104 photons)

is required to prevent false positives. However, larger lakes may not be fully repre-

sented in smaller windows. A larger data window (∼105 photons) will fully capture

the largest lakes, but smaller lakes may then be overlooked.

Second, multiple scattering at the lake bed increases the photon spread and thus

also increases the uncertainty of depth retrievals. Most supraglacial lakes observed

by ATM featured smooth beds, so photons experienced one or few scattering events

before returning to the detector. The instrument digitizer automatically filters return

signals with low photon counts, reducing the spread of bed photons, at the cost of deep

lake bottom detection. In contrast, the lakes observed with ICESat-2 exhibited more

heterogeneous beds, leading to increased scattering events by photons and delays in

return pulses. In these cases, the given values for a and b may not produce the most

accurate bed solution. Furthermore, if the return is significant for a given photon

window, then it may lead to a false negative for a portion of the lake (Figure 2.4i).
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To reduce uncertainty in lake depth retrievals, future improvements in working with

ICESat-2 data should focus on identifying and filtering multiple scattering.

Finally, the ATL03 signal-finding algorithm is conservative in that it accepts false

positives (background photons classified as signal photons) to ensure that all signal

photons are passed to higher-level products. Thus, uncertainties in the ATL03 photon

classification contribute to noise in the water column and the lake bed. The classi-

fication algorithm uses pre-defined surface masks to allocate statistical confidence to

ATL03 photons for multiple surface types (e.g. “inland water”, “land ice”, “land”),

with overlap possible between masks (Neumann et al., 2020). Melt lakes are cate-

gorized as “land ice” (lake surface) and “land” (lake surface and bed). Because the

“land” classification also includes the bed, it includes more potential signal photons

than land ice, so our recommendation is to only use land photons for supraglacial

lake depth retrievals. It must be noted, however, that a lake bed profile is fully

resolved only with the inclusion of low-/medium- confidence and “buffer” photons.

The buffer photons ensure that all photons identified as surface signal are provided

to the appropriate upper-level data product algorithms. However, they can introduce

greater noise to the profile, so more sophisticated filtering techniques are needed to

distinguish between signal photons and the solar background.

2.6 Conclusions

We present a method to detect supraglacial lakes and estimate lake depth from 532

nm laser altimetry data. We establish test cases for lake detection over two regions

of Greenland (Hiawatha Glacier, 19 July, 2017 and Jakobshavn Isbræ, 17 June, 2019)

and East Antarctica (Amery Ice Shelf, 2 January, 2019), and our results demonstrate

that depth retrievals are possible using laser altimetry. Verification of lake detection

is given with lake surface flatness tests, where we observe low topographical variance

over lake surfaces relative to surrounding ice. Lake bottoms are easy to identify once
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lake surfaces are established, given that the lakes are not deeper than 7 m.

We introduce lake a surface-bed separation scheme for ATM and ICESat-2 geolo-

cated photon data to determine the maximum depth of lakes. Our results indicate

that altimetry signals reliably detect bottoms as deep as 7 m, after which absorp-

tion of the photons in water reduces the number of reflected photons. Heterogeneity

at the lake bed also produces attenuation, complicating retrieval attempts for lakes

with rough bed topography or with high impurity concentration. Additional work is

required to assess the impacts of lake impurities and geometry on altimetry signals

and to improve estimates for such cases. Despite these shortcomings, we anticipate

retrieval capability to improve as observations from the 2019 and 2020 Arctic melt

seasons are released.

We establish the feasibility for estimates of supraglacial lake depth over Antarctica

and Greenland. The high accuracy of 532 nm laser altimeters allow these results to

serve as a benchmark for future retrieval studies. Future studies need to examine the

accuracy of ICESat-2 lake retrievals relative to ATM where applicable, with additional

comparisons to depth estimates from passive imaging sensors.
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CHAPTER III

Sensitivity of Snow Grain Size Retrievals

Abstract. Snow effective grain size (reff ) can be derived from spaceborne and

airborne radiance measurements due to strong attenuation of near-infrared energy by

ice. Consequently, a snow grain size inversion technique that uses hyperspectral radi-

ances and exploits variations in the 1.03 µm ice absorption feature was developed for

use with airborne imaging spectroscopy. A suite of studies has since demonstrated the

effectiveness of the technique, though there has yet to be a quantitative assessment

of the retrieval sensitivity to other snowpack properties or solar geometry. In this

study, we use the Snow, Ice, and Aerosol Radiative (SNICAR) model and a Monte

Carlo photon tracking model to examine the sensitivity of snow grain size retrievals

to changes in dust and black carbon content, anisotropic reflectance, changes in so-

lar illumination angle (θ0), and scattering asymmetry parameter (g). Our results

show that changes in these variables can produce large grain size errors, especially

when reff ≥ 500 µm. Dust content of 1000 ppm induces errors exceeding 800 µm,

with the highest biases associated with small particles. Aspherical ice particles and

perturbed solar zenith angles produce maximum biases of ∼600 µm and ∼400µm re-

spectively, when spherical snow grains and ∆θ0 = 60◦ are assumed in the generation

of the retrieval calibration curve. Retrievals become highly sensitive to viewing an-

gle when reflectance is anisotropic, with biases exceeding 1000 µm in extreme cases.
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We demonstrate that knowledge of snowpack state and solar geometry are important

when determining snow grain size through hyperspectral remote sensing.

3.1 Introduction

The optical grain size of snow is a critical factor in the determination of snowpack

albedo and metamorphism. The term “optical grain size” does not refer to the actual

size of individual snowflakes, but instead represents the radius of snow particles as

simple shapes, such as spheres or rods. These simplified shapes have optical properties

that are similar to those of the actual snow grains (Warren, 1982). Snow grains

experience rapid changes in size and morphology after snowfall, notably once the

snowpack is warmed to its melting point. In dry snow, the gradual coarsening of

individual snow grains decreases albedo and enhances the warming process (Picard

et al., 2012). The presence of liquid water or light absorbing impurities also accelerates

snow metamorphism, leading to positive feedbacks between grain growth and snow

albedo (Skiles et al., 2017; Tuzet et al., 2017). Grain size has a limited impact on

albedo in the visible spectrum, but albedo in the near-infrared varies inversely with

optical grain size (Wiscombe and Warren, 1980). Thus, snow grain size is a vital

component of snowpack modeling.

The importance of snow grain size has led to the development of retrieval algo-

rithms from spectral reflectance and spectral imaging. Qualitative classifications of

grain size were presented by Dozier and Marks (1987), who used Landsat Thematic

Mapper data to sort snow into coarseness regimes. Nolin and Dozier (1993) intro-

duced the first quantitative approach using radiance data from a single spectral band

of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A more sophis-

ticated technique was developed by Nolin and Dozier (2000) that utilized multiple

AVIRIS bands centered at the ice absorption feature at 1.03 µm to generate an inver-

sion model. A suite of studies has applied the Nolin and Dozier method (henceforth
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referred to as ND2000) since its inception through contact and imaging spectroscopy

(Donahue et al., 2020; Dozier et al., 2009; Painter et al., 2007, 2013; Seidel et al.,

2016; Skiles et al., 2017).

Studies using the ND2000 retrieval algorithm often rely on three assumptions: (i)

individual ice particles are treated as spheres (Donahue et al., 2020; Painter et al.,

2007), (ii) the snowpack impurity content is negligible (Nolin and Dozier , 2000; Seidel

et al., 2016), and (iii) illumination and viewing angles need to be considered (Donahue

et al., 2020; Nolin and Dozier , 2000). Previous studies established that the spherical

particle assumption works for bulk albedo calculations (Grenfell et al., 2005; Grenfell

and Warren, 1999; Neshyba et al., 2003), but it overestimates the scattering asym-

metry parameter (g), leading to inaccuracies in snow radiative transfer models that

assume spheres (Dang et al., 2016; Kokhanovsky and Zege, 2004; Libois et al., 2013).

Furthermore, if dust content is sufficiently high, the dust may increase albedo at

near-infrared wavelengths and interfere with grain size retrievals (Nolin and Dozier ,

2000).

If a surface is a diffuse reflector (i.e. reflects light in all directions equally), it is

known as a Lambertian surface because reflectance can be described by Lambert’s

cosine law. Snow can be assumed to be a Lambertian surface when the solar illumi-

nation angle is near-nadir over flat surfaces. However, snow reflectance in the NIR

is anisotropic, preferentially scattering light in the forward direction at higher illumi-

nation angles (Dumont et al., 2010; Li , 2007; Picard et al., 2020). Because snow is

typically found at high latitudes or on sloped terrain, the illumination and viewing

angles must be considered when retrieving snow properties from spectral reflectance.

Therefore, a quantitative assessment of the potential impacts of solar geometry and

snowpack state on the ND2000 algorithm is needed.

In this study, we used radiative transfer models to examine the sensitivity of snow

grain size retrievals to changes in dust content and anisotropic reflectance. We per-
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Figure 3.1: The spectral dependence of snow directional-hemispherical albedo as a
function of effective snow grain size, as derived by SNICAR. The black
box highlights the domain used for grain size retrievals.

formed additional analyses for changes in solar zenith angle and scattering asymmetry

parameter to examine sensitivity to solar geometry and ice particle asphericity. The

paper is organized as follows: we first describe the methods we used to assess grain

size sensitivity, and the radiative transfer models used for this purpose. Section 3

shows the results of our sensitivity tests and discusses the implications for actual

grain size retrievals. Section 4 concludes the paper with recommendations for future

work.
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3.2 Methods

3.2.1 General description of grain size retrievals

The ND2000 technique estimates snow grain size using directional reflectance at

the ice absorption feature centered at 1.03 µm. Reflectance in this feature decreases

as snow grain size increases ( 3.1), leading to an increase in depth of the absorption

feature. Preliminary research by Nolin and Dozier (1993) demonstrated that band

depth at 1.04 µm could be used to derive snow grain size, though the method was

subject to sensor noise and uncertainties due to local topography. Nolin and Dozier

(2000) accounted for the latter issue by scaling band depth relative to continuum

reflectance, or the reflectance linearly interpolated between 0.95 µm and 1.09 µm.

This scaling generates a continuum-removed spectrum that is independent on the

magnitude of reflectance. The former issue was accounted for by instead deriving a

scaled band area:

Ab,s =

1.09µm∫
0.95µm

Rc −Rb

Rc

dλ (3.1)

where Rb is the spectral reflectance and Rc is the continuum reflectance. The

term inside the integrand of Equation 3.1 is the scaled band depth at each wavelength

within the absorption feature.

Band area is computed from an observation of spectral reflectance and best

matched to a band area within a lookup table or to a calibration curve of mod-

eled band areas. Previous studies derived lookup tables of scaled band area using

the Discrete-Ordinates Radiative Transfer (DISORT) model (Stamnes et al., 1988).

Here, we instead derived calibration curves using the SNICAR model (Flanner et al.,

2007) and a Monte Carlo photon tracking model (Schneider et al., 2019) to derive

hemispherical albedo and directional reflectance, respectively. We fitted a second-
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order polynomial to each calibration curve to relate grain size to band area for a

given set of solar zenith angles. We also used SNICAR and the Monte Carlo model to

produce synthetic observations of hyperspectral snow albedo to assess the influence

of snowpack variables. This allowed us to evaluate how these features affect grain size

retrievals when they are or are not considered in the creation of the retrieval function.

We quantified the bias of simulated grain size retrievals (∆r) as the difference

between retrieved grain size (r′) and the true grain size (r0):

∆r = r′ − r0 (3.2)

If ∆r is negative, then the retrieved grain size is smaller than the actual grain

size. Conversely, a positive ∆r implies a larger retrieved grain size than the actual

snow grain size.

3.2.2 Simulated snowpack perturbations

3.2.2.1 SNICAR

The Snow, Ice, and Aerosol Radiative (SNICAR) model incorporates a two-stream

radiative transfer solution derived by Toon et al. (1989) over a single-layer, semi-

infinite snowpack to simulate spectral reflectance at 10 nm resolution. By default, ice

particles are treated as spheres using Mie properties derived by Warren and Brandt

(2008). Solar zenith angle and snow impurity optics serve as inputs to the model,

allowing for estimates of spectral albedo given solar geometry or perturbed snowpack

conditions. The SNICAR model is less computationally expensive than the Monte

Carlo model, so we used it for case studies not focused on anisotropic reflectance,

which is not resolved by two-stream models like SNICAR. As a baseline, we generated

a calibration curve for snow grain sizes of 50-1000 µm at 50 µm intervals, assuming

a solar zenith angle of 60◦ and zero impurity content. We compared the grain size
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Figure 3.2: Spectral albedo of snow derived from SNICAR as a function of Saharan
dust content at near-infrared wavelengths, given four particle size distri-
butions and reff = 250 µm. The dashed lines indicate the bounds for
band area calculations.

retrievals of perturbed snowpacks to this baseline when SNICAR was used.

3.2.2.2 Snowpack perturbations

We assessed each snowpack variable independently to highlight their individual

effects on grain size retrievals. We assumed direct sunlight for all simulations. Spectra

were modeled for a range of solar zenith angles (θ0), asymmetry parameters, and LAP

concentrations. For our analysis on solar zenith angle, we considered angles at near-

horizon or near-zenith unlikely for most grain size retrieval conditions, so we restricted

our simulations to µ0 = cos θ0 = 0.3, 0.4, 0.5, 0.6, 0.7. To mimic the influence of

ice particle asphericity, we selected g values consistent with non-spherical particles

previously determined by Dang et al. (2016), i.e. g = 0.75, 0.78, 0.81, 0.84, 0.87. The

Mie properties used for spherical particles produce values of g = 0.88-0.9 over the

part of the spectrum used for retrievals. The ice absorption feature contains slight
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variations in g within this range, but these differences are negligible compared to

the modeled perturbations. For cases of perturbed asymmetry parameter, we held g

constant within the ice absorption feature. Grain size retrieval errors are calculated

relative to calibration functions that do not account for variations in solar zenith

angle or scattering asymmetry parameter.

We analyzed retrieval errors of contaminated snow with four different types of

light-absorbing particles: Saharan dust (Balkanski et al., 2007), San Juan dust (Skiles

et al., 2017), Greenland dust (Polashenski et al., 2015), and black carbon. The

Saharan and San Juan species were assessed at four size distributions: 0.05-0.5 µm,

0.5-1.25 µm, 1.5-2.5 µm, and 2.5-5.0 µm. The Greenland dust incorporated varying

levels of absorptive potential (low, central, or high), whereas black carbon (BC) was

analyzed for only one size distribution. We selected dust concentrations based on

their impact on near-infrared reflectance. Dust only affects NIR albedo when its

content is high (≥100 ppm), otherwise changes are restricted to the visible spectrum

(Figure 3.2). We therefore examined five concentrations for dust: 1 ppm, 10 ppm,

100 ppm, 500 ppm, and 1000 ppm. To account for its greater impacts on albedo, BC

concentrations are given in amounts of parts-per-billion (ppb) rather than parts-per-

million. Grain size retrieval errors are then calculated via calibration functions that

assume pure snow.

3.2.3 Anisotropic reflectance modeling

3.2.3.1 Monte Carlo model

To analyze the importance of anisotropic reflectance, we used a Monte Carlo model

originally developed by Schneider et al. (2019), which calculates azimuthally-averaged

bidirectional reflectance factors (BRF) for idealized snowpack configurations. In the

model, photons propagate through a highly scattering medium of ice particles until

they are terminated (absorbed) or escape (reflected). Ice particles are configured as
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spheres suspended in air, with their scattering asymmetry represented by the Henyey-

Greenstein phase function (van de Hulst , 1968). Given solar zenith angle (θ0) and

reflected/viewing angle (θv), the BRF is calculated using

BRF (θ0; θv) =

∫ 2π

0
Φr(θv, φv) dφv

2Φi(θ0)sin(θv)cos(θv)
(3.3)

where Φi(θ0) is the incident photon flux from solar angle θ0 and Φr(θv, φv) is the

photon flux received by a sensor at azimuth angle φv and elevation angle θv, assuming

that 0◦ is nadir. The azimuthally-averaged BRF is defined using Lambert’s cosine

law, so the averaging requires a weighting factor of ω(θv) = (2 sin θv cos θv)
−1. In this

form, the BRF represents a ratio between actual reflectance and reflectance over a

Lambertian surface.

3.2.3.2 Anisotropy configurations

We performed Monte Carlo simulations each with one million photons, which

offered a compromise between reduced noise and increased computational expense.

Photons that escaped from the top of the snowpack were used to estimate BRF using

Equation 3.3. The calculated reflectances were distributed among 30 bins of zenith

angle at 3◦resolution for five snow grain sizes: 50 µm, 250 µm, 450 µm, 650 µm, and

850 µm. Although using fewer grain sizes reduces the resolution of the calibration

curve, we deemed it a necessary step to reduce computational cost.

Spectral reflectance measurements are often made at near-nadir viewing angles

(Gao et al., 1993), so we tested for anisotropy at θv = 0-15◦, which we henceforth

refer to as the bidirectional reflectance or BRF. Directional reflectance calculated

with Monte Carlo techniques is subject to random photon noise, so we applied a

second-order polynomial fit to the spectral BRF output to smooth out noisy features.

Preliminary analysis shows that directional-hemispherical reflectance derived from

the Monte Carlo model agrees very closely with SNICAR hemispheric albedo at the
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Figure 3.3: Spectral (directional-hemispherical) reflectance of snow without impuri-
ties calculated using the SNICAR model (solid) and the Monte Carlo
model (dashed). The reflectances were derived for multiple grain sizes
using θ0 = 60◦.
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given snow grain sizes (Figure 3.3).

Previous studies by Nolin and Dozier (2000) and Donahue et al. (2020) estab-

lished that scaling band area relative to a continuum removes its dependence on the

magnitude of reflectance, thereby reducing the impact of illumination angle variabil-

ity. To validate this point, we performed additional anisotropy tests using unscaled

band area Ab,u, which is given by

Ab,u =

1.09µm∫
0.95µm

Rc −Rb dλ (3.4)

For both scaled and unscaled band area, we performed three tests dependent on

the reflectance quantities used for lookup table generation and for simulated retrievals.

The first test applied a calibration curve derived from hemispheric reflectance and

also assumed that hemispheric reflectance (i.e., albedo) is also the measured snow

reflectance quantity. This configuration is equivalent to the snow grain size retrievals

performed with SNICAR. The second test instead used BRF for the measured re-

flectance and left the calibration curve unchanged. Snow grain size retrievals per-

formed with this configuration demonstrated the effects of anisotropy without correc-

tions. The final test utilized BRF for both the calibration curve and the measured

reflectance and thus served as a correction for anisotropy.

3.3 Results and Discussion

3.3.1 Solar zenith angle

For this analysis, the band areas used to create both the calibration curves and

the modeled retrievals and the corresponding grain size errors were derived using

hemispheric albedo from SNICAR. Our results for the solar zenith angle sensitivity

study are given in Figure 3.4. Band area changes proportionally to the cosine of

the illumination angle (µ0), as reported by Donahue et al. (2020). Band area is most
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Figure 3.4: Band area as a function of grain size and solar zenith angle (a) and the
corresponding grain size biases (b). The term ”µ0” refers to the cosine
of the solar zenith angle. Biases are computed relative to the baseline
calibration function assuming θ0 = 60◦ (µ0 = 0.5)

sensitive to µ0 when the Sun approaches the horizon (µ0 = 0.3 case), where reflectance

is higher and less wavelength-dependent. When θ0 is close to our calibration baseline

of 60◦, biases remain reasonably low for all but the largest snow grain sizes (≥500

µm). Errors may exceed 300 µm as θ0 deviates from the baseline, but otherwise

remain within 100 µm.

When solar zenith angle changes, the likelihood of photon absorption within the

snowpack also changes. Incident sunlight penetrates into a snowpack more effectively

as θ0 approaches zenith, allowing for more opportunities for absorption or multiple

scattering and decreasing spectral albedo. To the retrieval algorithm, this “darker”

surface corresponds to a deeper absorption feature, increasing scaled band area and

apparent snow grain size. The opposite is true when θ0 approaches the horizon. The

biases described above illustrate the importance of incorporating solar zenith angle

into the retrieval of grain size when applying the ND2000 algorithm.

3.3.2 Scattering asymmetry parameter

The results for our scattering asymmetry parameter sensitivity study (Figure 3.5)

show a significant increase in bias when g deviates from values of spherical particles
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Figure 3.5: Same as Figure 3.4, but for changes in scattering asymmetry parameter.
Estimated biases are relative to g derived from Mie calculations of spheres
using Warren and Brandt (2008) ice refractive indices (”Mie, spheres” in
left figure).

and when particles are assumed in the creation of the calibration function. Differences

in band area are non-negligible between spherical and hexagonal (g = 0.75) particles.

The band area decreases notably between g = 0.87 and g = 0.84, but lower values

of g exhibit lower sensitivity. At 1000 µm, the difference in band area between g for

spherical ice particles and g = 0.87 is 0.24, compared to a difference of 0.09 between

g = 0.75 and g = 0.78. The biases are large for model grain sizes of 500 µm or higher

at all g values, with a maximum bias of 580 µm for g = 0.75. However, bias appears

to be significant only when model grain size is greater than 200 µm. At smaller grain

sizes, retrieval errors are less sensitive to particle asphericity.

When the asymmetry parameter changes value, it affects reflectance in ways sim-

ilar to solar zenith angle. Spherical particles scatter visible and NIR radiation in the

forward direction more strongly than other particle shapes, leading to a lower ob-

served albedo. As with near-nadir illumination angles, the lower albedo is interpreted

as a larger grain size by the algorithm. If the true particle shape is sufficiently non-

spherical, the albedo will increase in the ice absorption feature and reduce retrieved

snow grain size. In nature, freshly fallen snow generally begins as small, non-spherical

particles before aggregating into larger spheroids (Sturm and Benson, 1997). The
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Figure 3.6: Same as Figures 3.4 and 3.5, but for changes in black carbon content.
Grain size errors are calculated from calibration curves assuming no im-
purity content.

spherical particle assumption is therefore most valid for aged snow, whereas a fresh

snowpack may be less predictable due to the larger variety in grain shapes.

3.3.3 Black carbon and dust

Relative to a clean snow case, we found that a snowpack requires a high concen-

tration of black carbon to impact the 1.03 µm ice absorption feature. Relative to the

baseline with no impurity content, calibration curves with concentrations below 500

ppb show minimal effect on band area or grain size retrievals (Figure 3.6). Band area

decreases more efficiently when black carbon exceeds 500 ppb, implying that it begins

to supplant ice absorption at these levels. However, this circumstance only occurs for

coarse-grained snow. The maximum observed bias is 178 µm at 1000 ppb, but bias

decreases to below 100 µm or less for grain sizes smaller than 500 µm.

The three dust species show similar trends in band area and grain size bias for

all concentrations and particle size distributions (PSD). The results in Figures 3.7

and 3.8 therefore represent all species, despite slight differences in absorptivity. For

all PSD, band area is unperturbed when dust content is 10 ppm or less, and larger

PSD show further insensitivity at 100 ppm. The differences become more significant
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Figure 3.7: Band area sensitivity to modeled snow grain size and San Juan dust
content. Sensitivities are given for the four particle size distributions.

at larger concentrations, namely for large snow grain sizes and small PSD. Retrieval

biases become substantial in extreme situations, with 1000 pm of dust producing an

error of 829 µm for true grain size r0 = 1000 µm and particle radius = 0.05-0.5 µm.

When dust content is ≥500 ppm, biases are significant (∆r ≈ 200 µm) even at small

grain sizes. The bias diminishes with larger particles, though it still exceeds 300 µm

when 1000 ppm of dust is present. The decrease in band area with dust also appears

to saturate at large concentrations, as the ice absorption feature becomes obscured.

The impact of high dust content on dampening of the absorption feature was rec-

ognized by Skiles et al. (2017), but it was not quantitatively investigated. Both Seidel

et al. (2016) and Skiles and Painter (2019) also postulated that dust influences snow

grain size through enhanced metamorphic processes, an effect verified by Schneider

et al. (2019) in near-freezing, clear-sky conditions. The results here suggest that dust

“masks” the ice absorption feature by reducing albedo at the left shoulder. Dust

with small PSD also appears to increase albedo at 1.03 µm, therefore reducing band

area further. Although there is uncertainty in the refractive indices of dust and black

carbon, particularly in the near-IR, we expect any impurity in sufficient quantity to
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Figure 3.8: Grain size retrieval biases for San Juan dust of four size distributions.
Biases are relative to a clean snow case (i.e. Dust=0 ppm).

flatten the 1.03 µm ice absorption feature because this feature is unique to H2O.

The measured band area of a dirty snowpack will be small, leading to a strong neg-

ative bias in the retrieved grain size. The impacts are most severe for small particle

sizes, which cause greater extinction per unit mass of impurity than larger particles.

In worst case scenarios (e.g., Figure 3.8a), a retrieval performed over a snowpack

with r0 = 1000 µm would return a grain size of less than 200 µm. Prior knowledge

of snowpack impurity content is therefore essential to avoid biases when measuring

dirty, coarse-grained snow.

On a per-mass basis, black carbon exhibits a stronger influence on NIR reflectance

than dust. A snowpack with 1 ppm of dust shows no bias in grain size, whereas this

concentration of black carbon affects retrievals by 100 µm or more when r0 ≥ 500

µm. However, such concentrations of black carbon are uncommon in nature, only

occurring near heavy BC sources (Flanner et al., 2007). Natural BC concentrations

are typically much less than 100 ppb, which are shown in Figure 3.6 to have minimal

impact on grain size retrievals. Episodic dust deposits are more likely to generate

significant biases at regional scales, as evidenced by the 8000 ppm of dust observed
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by Skiles and Painter (2017) in the San Juan Mountains. Although dust deposited

on Greenland has the theoretical potential to induce errors, significant dust or black

carbon deposits are rare over the ice sheet (Polashenski et al., 2015; Ward et al.,

2018), so the risk is reduced relative to mid-latitude locations. However, parts of the

Greenland ablation zone are very dark due to algae and other organic matter (Cook

et al., 2020), so similar impurity-related biases could exist in these regions.

3.3.4 Anisotropic reflectance

Figure 3.9: Polar plots of azimuthally-averaged bidirectional reflectance factors
(BRF) of modeled snowpacks with various snow grain radii, six illumina-
tion angles, and λ = 1.035 µm.

The angular distribution of BRF is shown in Figure 3.9 for six illumination angles

at 1.035 µm: 0◦, 15◦, 30◦, 45◦, 60◦, and 75◦. When θ0 ≤ 30◦, the BRFs are effectively

isotropic for viewing angles up to 45◦ and small snow grain sizes, and the magnitude

of reflectance decreases as θv approaches the horizon. The BRF distribution is more

uniform at grain sizes of 650 µm and 850 µm, with BRF reductions occurring at θv ≥

60◦. Anisotropy becomes more pronounced at larger solar zenith angles. Reflectance

decreases at near-zenith angles and peaks near the horizon, meaning that forward
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Figure 3.10: Spectral reflectance integrated across a hemisphere (”Hemi. Mean”,
blue) and for the average BRF received at 0-15◦ (”BRF”, red) for reff =
250 µm at the prescribed illumination angles. The dashed lines represent
continuum reflectance for the corresponding spectral curves.

scattering peaks at large angles due to a shallower penetration depth. The BRF is

nearly 2.0 when θ0 = 75◦ and θv ≥ 75◦, suggesting that reflectance substantially

exceeds that of a white (or lossless) Lambertian reflector at these angles.

Spectral reflectance curves derived from hemispheric reflectance and BRF (Fig-

ure 3.10) shapes at the ice absorption feature, despite differences in reflectivity. The

BRF exceeds the hemispheric reflectance when illumination angle is near-zenith, as

seen in Figures 3.10a and 3.10b, and there is little change in reflectivity between the

two angles. At θ0 = 30◦, the reflectance curves are nearly identical, with slight overes-

timates in the hemispheric albedo at 0.95 µm and underestimates at 1-1.07 µm. The

continuum reflectance (the dotted lines in Figure 3.10) of BRF is higher for 0.95-1.07

µm before converging to the hemispheric mean at the right shoulder of the absorption

feature.

The BRF decreases significantly at near-nadir viewing angles when anisotropy

increases, as suggested by Figures 3.9d-f. The unscaled band area at large illumina-

tion angles is similar between reflectance curves (Figure 3.11) despite differences in
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Figure 3.11: Calibration curves for band area vs. model grain radius, derived using
hemispheric reflectance (blue) and BRF (red) at six illumination angles.
Columns 1 and 3 use band area without continuum scaling (Equation
3.4) whereas Columns 2 and 4 are calculated using Equation 3.1.
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θ0
Model: Hemi. Mean

Retrieval: Hemi. Mean
Model: Hemi. Mean

Retrieval: BRF
Model: BRF

Retrieval: BRF
Non-normalized

0◦ 83.9 791.7 97.2
15◦ 74.3 641.5 99.6
30◦ 53.8 485.4 92.7
45◦ 38.5 266.7 8.8
60◦ 35.0 126.5 61.2
75◦ 19.1 101.9 14.1

Mean 50.8 402.3 62.3
Normalized

0◦ 4.6 158.5 2.7
15◦ 4.8 149.5 9.1
30◦ 1.6 170.6 6.9
45◦ 2.2 240.3 11.0
60◦ 4.0 464.8 7.5
75◦ 2.8 1053.0 17.0

Mean 3.3 372.8 9.0

Table 3.1: Root mean square errors of retrieved snow grain size using non-normalized
band area (top half) and normalized band area (bottom half). In the
header, ”Model” refers to the reflectance quantity used to generate the
lookup table, whereas ”Retrieval” is the type of reflectance assumed to be
measured.

absolute reflectance. Agreement in Ab,u between hemispheric reflectance and BRF

decreases as θ0 decreases, with the most significant differences occurring between 250

µm and 450 µm. However, Figure 3.11 also demonstrates that agreement in Ab,s

improves when θ0 < 45◦, with RMSE decreasing from 0.79 at 75◦ to 0.29 at 0◦. There

is little change in agreement between 0◦ and 30◦, which is expected given the results

from Figures 3.9 and 3.10.

The effects of anisotropy on grain size retrievals are given in Table 3.1 for the six

illumination angles. The errors shown in Columns 2 and 3 are with calibration curves

derived from hemispheric albedo, whereas Column 4 uses a calibration function de-

rived from directional reflectance. The RMSE range for the baseline simulation is

1.6-4.8 µm for scaled band area, implying that uncertainties inherent to the ND2000

method are small. The unscaled band area shows greater uncertainty at all angles
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Figure 3.12: Retrieval errors as a function of model grain size and illumination angle,
if using normalized band area. The errors assume that the inputs for
the calibration curve and the retrieval are hemispheric reflectance and
BRF, respectively.

but is smallest when θ0 is large. When the modeled retrieval implements BRF (Ta-

ble 3.1, Column 3), RMSE in grain size remains within 200 µm when reflectance is

nearly isotropic. The errors increase exponentially as anisotropy becomes more signif-

icant, with ∆r exceeding 1000 µm at illumination angle 75◦ for grain sizes ≥650 µm

(Figure 3.12). When the calibration curve was derived using BRF, errors dropped sig-

nificantly across all illumination angles. Figure 3.13 shows that the maximum RMSE

among the corrected retrievals is 17 µm at 75◦, corresponding with a maximum ∆r

of 23.2 µm at input grain size 250 µm.

The sensitivity of band area to anisotropic reflectance depends on the usage of

continuum scaling. Band area without scaling performs best at high solar zenith
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angles, where retrieval errors resulting from the Lambertian assumption remain low

even when no correction is applied. Reflectance spectra exhibit fewer differences in

curve shape, thereby reducing retrieval errors. In contrast, reflectance at smaller

illumination (zenith) angles is nearly isotropic. The hemispheric reflectance and BRF

generally agree to within 0.02, but because Ab,u is small, it is highly sensitive to

differences in BRF and consequently produces significant grain size errors even when

the correct retrieval scheme is used. When band area is scaled, grain size retrievals

become more accurate at lower illumination angles. Although small differences exist

between hemispheric reflectance and BRF, Ab,s is larger in magnitude than Ab.u, so it

is relatively insensitive to noise in isotropic profiles. Scattered radiation tends more

strongly to the horizon as illumination angle increases, leading to the large differences

seen in Figure 3.11.

For bothAb,u andAb,s, there is a dependence on illumination angle and model grain

size. As r0 increases, the potential bias in a retrieval also increases. Figure 3.12 shows

that errors originating from the Lambertian reflectance assumption at illumination

angle 0◦ start at 14.3 µm before gradually increasing to a peak of 260.5 µm at large

grain sizes. Errors remain within 75 µm when r0 = 50 µm at all illumination angles,

but increase exponentially with grain size and solar zenith angle. The increase in error

is greatest when solar zenith angle increases from 60◦ to 75◦, indicating a significant

change in the directionality of reflectance. Biases also increase significantly between

grain sizes at θ0 =75◦. When directional reflectance is used to generate the calibration

curve, biases are reduced drastically (Figure 3.13).

We attribute the significant errors in Ab,s at θ0 =75◦ to changes in continuum

reflectance. Figures 3.10f and 3.11f indicate that differences in unscaled band area

between hemispheric reflectance and BRF are small at large illumination angles. The

lack of disparity in Ab,u implies that spectral band depth is nearly equal for hemi-

spheric reflectance and BRF, so it can be concluded that anisotropy is not significantly
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Figure 3.13: Same as Figure 12 but instead using BRF as input for both the calibra-
tion curve and the retrieval.
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impacting the 1.03 µm ice absorption feature. Instead, a notable decrease in contin-

uum reflectance is observed for BRF at large illumination angles, so Ab,s will appear

much larger than that of hemispheric reflectance, despite similarities in band depth.

3.4 Conclusions

We examined the potential sensitivity of snow grain retrievals that exploit the 1.03

µm ice absorption feature to assumptions about solar illumination angle, snowpack

properties, and anisotropic reflectance. Simulations with the SNICAR model showed

that retrieval biases are normally small, but incorrect handling of illumination angle

and uncertainty in ice particle shape may lead to significant errors when the true grain

size is large. Black carbon has relatively minor impacts even at large concentrations,

despite its large influence on visible reflectance. Dust can produce large biases when

present in high concentration, so estimations of snow dust content may be needed

when attempting to retrieve snow grain size, especially in regions affected by large

episodic deposition events.

We also assessed the utility of directional reflectance into the retrieval lookup ta-

bles. Our results indicate that hemispheric mean reflectance is an acceptable input

into ND2000 at small snow grain sizes and near-zenith illumination angles, where

reflected radiation is nearly isotropic. However, errors become significant at large

illumination angles even for smaller grain sizes. Our Monte Carlo simulations suggest

that band depth is similar between hemispheric reflectance and BRF when anisotropy

is significant, but differences in continuum reflectance lead to anomalously large nor-

malized band area for BRF. The retrieval errors decrease substantially when direc-

tional reflectance is used to generate the lookup table, so it is imperative for future

snow grain size retrieval efforts to consider viewing angle, solar geometry, and local

topography.

The results presented here only apply simulated reflectances to evaluate retrieval
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biases and carry the benefit of having exact knowledge of the “true” grain size. Fu-

ture studies, however, should explore such retrieval biases with observed hyperspectral

data and coincidental in-situ measurements. We do not anticipate significant errors

for airborne and field retrievals in mid-latitude clean snow, for these collections oc-

cur during the day with nadir-viewing sensors. However, we expect that anisotropic

reflectance would contribute more significant errors to grain size retrievals over Green-

land, where solar zenith angle is high. Future hyperspectral satellite missions, such

as Surface, Biology and Geology (SGB) and the Copernicus Hyperspectral Imag-

ing Mission for the Environment (CHIME), may perform acquisitions at different

times of day, so anisotropic reflectance will also be a factor in spaceborne retrievals.

We considered each snow perturbation separately, so possible relationships and co-

dependencies between variables could be assessed in future studies. This is especially

true for anisotropic reflectance, where the presence of dust or aspherical particles may

further exacerbate retrieval errors.
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CHAPTER IV

Lidar Volumetric Scattering

4.1 Introduction

The Ice, Clouds, and Land Elevation Satellite-2 (ICESat-2) was launched in

September 2018 to perform altimetry measurements of surface height over glaciers and

ice sheets (Neumann et al., 2019b). Since then, ICESat-2 data products have been

developed to estimate land ice height, vegetation canopy height, and sea ice freeboard

(Smith et al., 2019; Kwok et al., 2019; Neuenschwander and Pitts , 2019). The sole

onboard instrument, the Advanced Topographic Laser Altimeter System (ATLAS),

operates at 532 nm to minimize attenuation by clouds and liquid water. The reduced

water attenuation allows for further applications of shallow water bathymetry over

coastal regions and supraglacial lakes (Parrish et al., 2019; Fair et al., 2020; Fricker

et al., 2021). These applications are facilitated by a high spatial resolution (17.4 m

footprint diameter and a 10 kHz pulse repetition frequency) and a mandated accuracy

of 0.4 cm yr-1 for ice sheet elevation change (Markus et al., 2017).

Ice and snow absorb weakly in the visible spectrum compared to the near-infrared

(Warren and Wiscombe, 1980), so a laser shot from ICESat-2 may experience multiple

scattering events within a snow layer before returning to the detector (Perovich, 2007).

The issue is greatest in clean, coarse-grained snow, where the increased path length

between scattering events will introduce a significant delay time in the returned laser
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pulse (Beaglehole et al., 1998). Over high-latitude ablation zones, snow impurity

content is relatively low during the melt season (Flanner et al., 2007), reducing the

absorption potential within snow and raising further concern for altimetry biases.

Previous studies have assessed the potential impacts of snow on ICESat-2 mea-

surements. Harding et al. (2011) found that return waveforms from an airborne 532

nm lidar experienced significant pulse broadening over snow, resulting in range bi-

ases on the order of a few centimeters. A modeling study by Kerekes et al. (2012)

found centimeter-level bias in a 532 nm laser when snow grain size was 500 µm or

more, and the amplitude of received waveforms was low relative to fine-grained snow

returns. Smith et al. (2018) simulated ICESat-2 measurements over a snow-covered

surface using a suite of surface height estimation techniques. The authors concluded

that elevation biases exceeded 0.45 m for clean, coarse-grained snow if the current

ICESat-2 surface height scheme is used, though biases could be mitigated if other

techniques were considered.

The above studies were published prior to the launch of ICESat-2, so a quantitative

assessment on bias in 532 nm lidar acquisitions is needed. At the time of writing,

the ICESat-2 mission has collected over 2 years of altimetry measurements over high-

latitude regions, yet there have been no documented efforts to quantify altimetry

bias over snow. As part of an extensive validation effort, Operation IceBridge (OIB)

launched a series of flight campaigns to Greenland late in the melt season. The flights

collected elevation measurements using the Airborne Topographic Mapper (Brock

et al., 2002), a lidar that collected surface height data at both 532 nm and 1064 nm

during the 2019 flights over Greenland. Near-coincident flights were performed with

the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG; Green et al.,1998)

to retrieve hyperspectral reflectance and snow grain size.

In this study, we use AVIRIS-NG hyperspectral data to attribute biases in ATM

altimetry measurements to volumetric scattering in snow. Snow grain sizes derived
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from AVIRIS-NG reflectance data serve as input to a Monte Carlo ray tracing model

to simulate expected bias over the Greenland ablation zone. In parallel, the trav-

eled distance (e.g., range) of received ATM pulses from the 532 nm laser are com-

pared to those from the 1064 nm laser to estimate observed bias. Waveforms derived

from the transmitted and returned laser energy are examined for features unique to

coarse-grained snow or rough topography. The findings presented here will serve as

a benchmark for an ICESat-2 bias assessment over snow-covered surfaces.

4.2 Data Description

4.2.1 Airborne Topographic Mapper

The Airborne Topographic Mapper (ATM) is an altimetry instrument that has

been used for high-latitude elevation measurements since 1993 (Brock et al., 2002;

Krabill et al., 2002). In recent years, it has been used to validate ICESat-2 surface

height estimates over sea ice and the 88◦S transect of Antarctica (Kwok et al., 2020;

Brunt et al., 2019b) as part of Operation IceBridge. The instrument suite is com-

posed of two laser altimeters that feature off-nadir scan angles of 15◦ and 2.5◦, which

correspond to swath widths of 245 m and 40 m at the typical flight altitude. The 2.5◦

altimeter, also known as the ”narrow swath” track, is a dual-color laser that operates

at 532 nm (green) and 1064 nm (NIR) simultaneously. The footprint diameter of the

1064 nm is 0.91 m, or 40% larger than the 532 nm beam (0.64 m).

Here, we used two Level-1B Narrow-Swath data products: the Elevation and

Return Strength with Waveforms (ILNSAW1B) and the Near-Infrared Waveforms

(ILNIRW1B). Both data products include information about waveforms derived from

ATM laser pulses, including the amplitude and pulse width for transmitted and re-

ceived waveforms. It also contains calibrated aircraft-surface range estimates derived

from the waveform parameters. Further information about how ATM ranges are
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calculated may be found in Appendix A. The ILNSAW1B data includes a geolo-

cated elevation product derived from digitized waveforms to emulate ICESat-2 data

(Studinger , 2018). The ILNIRW1B data lacks this product, so comparisons between

the two data sets must instead use the waveforms and range estimates. Brunt et al.

(2019a) found that the 532 nm laser agrees well with ground-based measurements over

the 88◦S transect of Antarctica, with centimeter-level bias relative to other elevation

estimates.

4.2.2 AVIRIS-NG

The AVIRIS-NG instrument is an airborne hyperspectral imager that has been

used to retrieve surface radiances since 1986 (Gao et al., 1993; Green et al., 1998).

Originally operating at 10 nm spectral resolution, the instrument now observes the

Earth’s surface at wavelengths between 380 nm and 2510 nm at a spectral resolution of

5 nm. By applying an atmospheric correction and orthocorrection to the radiances,

one can derive spectral reflectance of the Earth’s surface. Reflectances derived in

this manner generally have an accuracy within 2-5% (Thompson et al., 2019). The

spectrometer has been used for a suite of applications since its inception, including

vegetation mapping, trace gas identification, and snow grain size retrievals (Kokaly

et al., 2003; Thorpe et al., 2016; Nolin and Dozier , 2000).

We use AVIRIS-NG reflectances in this study to derive snow grain sizes for com-

parison against the altimetry data. Snow grain size is estimated using an inversion

algorithm derived by Nolin and Dozier (2000), which relates changes in spectral band

depth within the ice absorption feature centered at 1.03 µm to changes in snow grain

size. The retrieval algorithm assumes that the snow is composed of spherical ice

particles, the impurity content is negigible, and the reflectance has a dependence on

illumination and viewing geometry. Snow grain sizes derived in this manner have a

mean uncertainty of ∼50 µm. Although impurities and anisotropic reflectance may
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Figure 4.1: Landsat-8 real-color composite of the study location over Greenland on
September 6, 2019. The false color swath represents AVIRIS-NG snow
grain sizes. The orange line is the ATM flight path over the region,
segmented into five data tracks.

bias retrievals without proper consideration (Chapter 3), we assume that impurity

content in our region of interest is negligible and that directional reflectance is fac-

tored into the retrieval algorithm. We also assume that ice particle shape will have

negligible influence on the path lengths traveled by ATM signal photons.

4.3 Methods

4.3.1 Case Study Location

We performed a case study over the northwestern Greenland ablation zone on

September 6, 2019. The region is located at coordinates 75.316◦-75.438◦N, 56.528◦-

56.778◦W, as highlighted in Figure 1. This date and location correspond with a

significant overlap between ATM and AVIRIS-NG flights, with ∼100 km of OIB

flight data co-registering with AVIRIS-NG surveys. The ice surface features many

crevasses and refreezing supraglacial lakes during this time of year, several of which
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were observed by ATM and AVIRIS-NG. The lakes are characterized by anomalously

high snow grain sizes in the AVIRIS-NG data, whereas the ATM data in both lasers

exhibits a higher degree of noise over crevassed ice. These features are small relative

to the size of the data swaths, so we applied a moving mean filter with a window size

of 500 data samples to mitigate noise in the grain sizes and biases.

4.3.2 Bias Estimation and Attribution

4.3.2.1 Monte Carlo Modeling

We first generated modeled bias estimates using a combination of AVIRIS-NG

grain sizes and Monte Carlo modeling. The model fires photons into a simulated

semi-infinite snowpack and records their path length until they are absorbed or leave

the medium (Schneider et al., 2019). The snowpack is assumed to have spherical

ice particles and snow grain size and density prescribed by the user. The model has

additional inputs for solar zenith angle, surface roughness, and snowpack impurities,

but we assumed (i) the snow surface was smooth, (ii) there were no impurities within

the snow, and (iii) the solar zenith angle was equal to the mean solar geometry

observed by AVIRIS-NG at the time and location of flight. We used the Monte Carlo

model to make accurate estimates of lidar delay time in the snowpack.

We ran a total of 160 Monte Carlo simulations for different permutations of photon

wavelength, snow density, and snow grain size. The simulations launched 105 photons

into a snowpack at wavelengths 532 nm and 1064 nm to simulate the ATM dual-

colored lidar pulse interacting with a snow-covered surface. We performed these

simulations for snow grain sizes 50-1000 µm at 50 µm intervals, after which we applied

a linear interpolation scheme to improve the resolution to 1 µm. This process was

executed for snow densities consistent with several stages of snow aging: ρs = 100,

200, 300, 400 kg m-3. We obtained the path length traveled by photons that escaped

from the top of the snowpack, and for each wavelength the median path length of
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escaped photons was calculated to replicate the reference photon technique employed

by ICESat-2 (Neumann et al., 2020). The median path length was treated as the

surface height offset from an unbiased measurement. If we treat the 532 nm path

lengths as biased heights (h532) and the 1064 nm path lengths as idealized height

measurements (h1064), then we can derive a modeled bias estimate of path length

(∆h):

∆h = h532 − h1064 (4.1)

In this configuration, a positive ∆h implies that 532 nm photons traveled a greater

median path length in the snowpack, which would suggest a negative bias in a surface

height estimate. Conversely, the 1064 nm path length (surface height) will be biased

high (low) if there is a negative ∆h. We then placed the biases into lookup tables,

depending on the density quantity used in the simulation. The result was four lookup

tables that each had 1000 bias estimates as a function of grain size. We consider

these lookup tables to be the biases that should be observed in ATM acquisitions

over idealized snowpacks, or the ”expected bias”.

4.3.2.2 Observed Bias

We look for bias in the ATM data by comparing calibrated range estimates be-

tween the two beams. In short, these ranges are derived using the centroid of digitized

waveforms from the transmitted and received signals. A more detailed description

of ATM waveforms and how they are used to derive range and surface height may

be found in Appendix A. The beams occasionally did not record laser pulses, so we

applied a co-registration algorithm to match data samples from both beams. Because

both beams fire simultaneously, the algorithm co-registers shots between beams us-

ing the time stamps recorded for each laser pulse. We speculate that crevasses and

melt ponds may impact the signals, for we found that signal loss was greater in flight
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tracks where rougher terrain is present. We recorded a maximum signal loss of 21%

in Track 1331, with a ∼17% signal loss in Tracks 1330 and 1332. In Tracks 1328-1329,

signal loss was lower at 4%. Calibrated ranges from the co-located lasers were used

to approximate observed bias using Equation 1. We also refer to this quantity as the

”actual bias”. Because ATM computes range and elevation using digitized waveforms,

we examined received waveforms to find differences in maximum amplitude and pulse

width over regions of large snow grain size.

Figure 4.2: Modeled (”expected”) laser bias derived using median path length esti-
mates as a function of snow grain size and snowpack density. Positive
values indicate greater penetration bias in a 532 nm laser.

To attribute altimetry bias to snow grain size, we needed to co-register ATM lidar

pulses with AVIRIS-NG grain size estimates. We extracted geographical information

from AVIRIS-NG files using ENVI, after which we matched ATM beam data with

the spectrometer pixel-by-pixel. We then mapped each pixel with an estimate for

expected bias by matching observed grain sizes with the closest values found in each
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lookup table. In other words, each AVIRIS-NG pixel co-registered with ATM had four

modeled bias estimates that corresponded with the different assumed snow densities.

The pixels were large relative to the shot rate of ATM, with each pixel containing up

to 200 ATM shots. We therefore took the average observed bias in each pixel to avoid

redundancy with modeled estimates. We note that ATM measurement variability

within an AVIRIS-NG pixel may be useful to analyze the effects of topography on

altimetry bias, but we leave this topic open for a future study.

The observed biases were compared to co-registered model biases at the four snow

densities. If the actual bias agreed with one of the modeled estimates, then we could

conclude that (i) the lidar biases are linked to the optical grain size of snow and (ii)

the bias is consistent with one of the given snow densities. If the two bias quantities

disagreed, then we examined the elevation and waveform data for other potential

sources of bias.

4.4 Results

Model-derived estimates of laser bias have a strong dependence on snow grain

size and density, as seen in Figure 4.2. At smaller grain sizes, bias has a smaller

dependence on the snow density unless ρs = 100 kg m-3. Biases show little sensitivity

to density changes at ρs ≥ 200 kg m -3 when snow grain size is 400 µm or less. Larger

grain sizes exhibit greater dependence on snow density, especially between 100 and

200 kg m-3. The largest biases occur for ρs = 100 kg m-3, up to a maximum of 23 cm

for reff = 1000 µm. The bias asymptotically approaches zero for all snow densities at

very small grain sizes, implying that little laser bias should be expected in fine-grained

snow or over a bare surface.

The AVIRIS-NG snow grain sizes co-registered with ATM are shown in Figure 4.3.

The southern regions of the flight track are characterized by grain sizes of ≤150 µm

that gradually increase near crevassed terrain. Grain size increases in the northern
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Figure 4.3: Snow grain sizes for AVIRIS-NG pixels co-registered with ATM footprints.
A moving mean filter was applied to mitigate noise. The dotted lines
indicate boundaries between flight tracks.

reaches of the region to 300-400 µm on average. This increase corresponds with a

gradual decrease in surface elevation (Figure 4.4), implying a possible relationship

between snow grain size and surface height. The northern tracks (e.g., ATM Tracks

1331 and 1332) exhibit sub-surface scattering several meters deep, indicating the

presence of heavy crevassing. As seen in Figure 4.1, a few instances where grain size

exceeds 700 µm appear most frequently near crevasses and melt ponds, where low

NIR reflectance may impact grain size estimates. Figure 4.1 also reveals significant

interpixel variability in grain size, suggesting that surface topography and variable

snow aging are significant factors at the pixel scale.

The co-registered snow grain sizes were then used to model altimetry bias of the

study region. We selected bias estimates at ρs = 200 kg m-3 as a baseline for com-

parison against the observations, given that snowpacks at this density are somewhat

aged or wet. Figure 4.5 shows that the small grain sizes in Tracks 1328 and 1329
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Figure 4.4: Two-dimensional elevation measurements obtained from the 532 nm ATM
laser. The surface heights were derived from received waveforms and
geolocated to imitate ICESat-2 measurements.

correspond with negligible model bias and low uncertainty. In regions with larger

grain sizes, the bias increases to 2.5-4 cm, though the uncertainty due to snow den-

sity also increases. The observed bias in the 532 nm ATM beam generally agrees

with modeled estimates. The trend in ATM bias closely follows that of the modeled

estimates in Tracks 1330-1332, particularly when snow grain size is at least 200 µm.

There are small underestimates relative to the model at 200 kg m-3, but the actual

bias generally shows consistency with expected bias at snow densities of 200-300 kg

m-3. The mean bias observed over Tracks 1330-1332 is 2.14 cm, with variable snow

densities causing a potential mean uncertainty of ±1.96 cm.

The agreement between observed and modeled bias weakens at small grain sizes

(i.e., reff ≤ 150 µm). In ATM tracks 1328 and 1329, there is a notable discrepancy

between the model and observations, regardless of snow density. The observed bias

appears to follow patterns in the grain size trend, but it becomes negative when grain
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Figure 4.5: Along-track ATM (observed, green) and modeled (blue) bias estimates.
AVIRIS-NG snow grain sizes were compared to the lookup table for ρs =
200 kg m-3 to derive modeled bias. The uncertainty shading represents
the modeled bias for ρs = 400 kg m-3 (lower bound) and ρs = 100 kg m-3

(upper bound).

size is 150 µm or lower, implying that the NIR beam is biased relative to the green

beam. We should expect negligible bias in the NIR beam over any snow surface, so

an instrument calibration issue may be present in the data (see Section 4.5.2 for more

details). The difference is most notable in Track 1328, where snow grain size is below

100 µm and laser bias approaches -3 cm. As seen in Figure 4.5, the modeled bias

decreases to zero over this region. The mean observed bias in Track 1328 is -1.74

cm, compared to a mean modeled bias of 0.5±0.38 cm, and the average observed and

modeled bias across Tracks 1328-1329 is -1.07 cm and 0.64±0.48 cm, respectively.

Despite these differences, the observed bias follows trends in the snow grain size in

all flight tracks.

Generally, the amplitudes should scale with surface reflectance, so regions of
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Figure 4.6: The maximum amplitude of received waveforms from the ATM beams
across the study region. The amplitudes represent signal strength relative
to a peak value of 255.

smaller grain size will have higher waveform amplitudes, particularly in the NIR

signal. As Figure 4.6 shows, the maximum received amplitudes appear to inversely

relate to snow grain size, given that the amplitudes in Tracks 1330-1332 are generally

lower than those observed in Tracks 1328-1329. The amplitudes in both ATM beams

peak in Track 1328 near the region of small grain size and negative bias. The 532 nm

amplitudes are larger than those of the 1064 nm beam in this region. The beginning

of Track 1329 exhibits a strong decrease in the amplitudes that corresponds with an

increase in snow grain size. The decrease is followed by an increase that introduces

a notable disparity between beam amplitudes and occurs with a negative observed

bias. The beam amplitudes show better agreement in Tracks 1330-1332, with the

green amplitudes slightly higher on average. It is unclear what produces the distinct

local maxima in the Track 1331 green waveforms, but we theorize that small melt

ponds or ice may be inducing specular reflection and increasing reflected laser energy.
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The pulse width is defined as the maximum width, in number of digitizer samples,

of a waveform above a prescribed noise threshold (Appendix A). The width of a re-

ceived waveform may be broadened in a medium that produces volumetric scattering,

such as over coarse snow or crevasses. Received waveform widths show similar pat-

terns to the amplitudes, as seen in Figure 4.7. The width of waveforms is positively

correlated with snow grain size and bias in Track 1328, with both the green and NIR

beams experiencing pulse broadening. The other tracks are less conclusive, but we

observe an overall increase in pulse width that matches with changes in grain size.

The green waveforms feature localized pulse broadening in Tracks 1329 and 1331,

and Figure 4.4 shows that these regions have crevassed terrain that may produce

volumetric scattering in the received waveforms. Otherwise, the green waveforms are

less sensitive to changes in terrain than the NIR waveforms, which show significant

small-scale variability in Tracks 1330-1332.

4.5 Discussion

4.5.1 532 nm Ranges and Waveforms

The relationship between snow grain size and altimetry bias is correlated with

the path length of signal photons incident upon a snow surface. When a lidar signal

interacts with snow, there are three potential outcomes. The first outcome is that

the signal is reflected from the surface with minimal subsurface scattering. This case

is most common for fine-grained snow, where ice particles are numerous enough to

efficiently scatter the signal away from the surface. In cases of near-surface reflection,

the altimetry bias is near-zero, as seen in the modeled results over Tracks 1328 and

1329. Received near-infrared signals are also generally reflected near to the surface,

as NIR photons that penetrate into a snowpack have a high probability of absorption.

In the second outcome, signal photons reflect from a snow surface after experi-
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Figure 4.7: The width of received waveforms from the ATM beams. Waveform pulse
width is taken as the number of digitized samples above the noise thresh-
old.

encing multiple scattering events within the snowpack. The optical grain size of the

snowpack is inversely related to its specific surface area, which determines the spacing

between individual ice particles. As specific surface area (grain size) decreases (in-

creases), the average distance traveled between refraction events increases, therefore

also increasing the path length and delay time experienced by a lidar signal. The

wavelength of the lidar signal influences the number of scattering events likely to

occur, with a 532 nm beam expected to scatter multiple times within a snowpack

before reflection or absorption. A 1064 nm beam is more likely to experience the

third outcome in coarse-grained snow, where the signal is lost due to absorption. We

observe this pattern in both the models and observations in Tracks 1330-1332, given

the consistently positive bias over the region.

A bias in the ATM ranges implies that there is a change in the amplitude and width
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of green waveforms. As shown by Smith et al. (2018), volumetric scattering by coarse

snow grains should lower the amplitude and increase the tails (e.g., pulse width) of

received waveforms. Our results indicate that snow grain size impacts the waveform

amplitude to an extent, but the pulse widths are less conclusive. We attribute the

lack of definitive change in ATM waveform width to the waveform tracking strategy

utilized by the lidar to estimate range. ATM uses a Gaussian-threshold model to filter

background noise and estimate range (Appendix A), and this approach ignores the

tails of waveforms unless the maximum amplitude is low or the pulse width is large.

Although we observe changes in amplitude that show consistency with grain size

trends, an increase in the waveform tail will only impact the pulse width parameter

for snow grain sizes exceeding ∼750 µm unless the snow is highly porous. Snow

grain sizes of this magnitude were rare over the study location, but we expect more

noticeable changes in received waveform shape where coarse-grained snow is located,

such as melting snow over mid-latitude mountain ranges.

4.5.2 1064 nm Range Bias

The NIR beam appears to have an inherent bias relative to the green beam that

is not calibrated and is dependent on surface type. To examine the potential errors

between the two beams over different surface media, we performed a brief case study

in northern Greenland on September 4, 2019 (ATM Track 1740; 76.6292-76.7005◦N,

69.0253-69.0801◦W). The surface is characterized as mostly deep water with a small

region of dark land at the start of the flight track (Figure 4.8). Although we should

expect negligible bias between the two beams over both surface types, Figure 4.8

demonstrates that NIR ranges were 3 cm larger than green ranges even over open

water. This observation implies that the NIR beam penetrates water surfaces deeper

than the green beam, despite the high absorptivity of near-infrared light by water.

Additional case studies were performed over different surface types (not shown), but
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Figure 4.8: (left) Landsat-8 image (September 4, 2019) of the secondary case study
location in Northern Greenland. The orange line indicates ATM flight
track 1740. (top right) 2-D elevation profile over the region of interest.
(bottom right) ATM laser bias over the flight track, where negative values
indicate bias in the NIR beam.

the biases were more variable, suggesting that the range bias is dependent on surface

media.

There have been no documented efforts prior to this study that perform an accu-

racy assessment between the two ATM beams. The exact cause for the NIR biases

over fine-grained snow is unknown, but we speculate that it partly originates from

the design of the ATM instrument suite. The two beams are transmitted simultane-

ously, but the near-infrared beam has two important differences. First, the temporal

response of the NIR detector is slower than the green detector, and this slowed re-

sponse produces a delay time of ∼60 ns between recorded transmitted pulses (Man-

izade, 2020). Such a delay time would result in 9-10 m of altimetry bias, which is

not observed in the case studies considered here. The delay time is likely corrected in
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post-processing, though uncertainties may persist due to systematic errors (Martin

et al., 2012).

The NIR beam also features a footprint diameter of 0.91 m on the surface, com-

pared to the 0.64 m footprint of the green beam. The NIR beam therefore has twice

more surface areal coverage per laser pulse than the green beam. The larger foot-

print allows for slightly greater areal coverage per pulse, but it also decreases the

photon density of received signals, therefore also decreasing the signal-to-noise ra-

tio. In theory, the corresponding waveforms would have a lower maximum amplitude

and a larger pulse width relative to smaller-footprint lidars (Gatziolis and Andersen,

2008), but we observed greater pulse widths in the green beam. The NIR waveform

amplitudes are generally lower and more variable than those of the green waveforms,

so the bias may also be a consequence of NIR waveform sensitivity to surface media.

The NIR range bias has two important implications for the results presented here.

First, if the NIR bias is observed across all snow surfaces, then snow grain sizes of

100-150 µm will mitigate bias in the NIR beam. In other terms, a snowpack shortly

after snowfall will reflect ATM laser pulses at nearly equal intensity, independent of

wavelength or laser footprint. Conversely, an inherent negative bias suggests that

the observed biases in Figure 4.5 are ≤3 cm too small in coarse-grained snowpacks.

We do not anticipate a uniform 3 cm bias throughout the study location, though a

calibration of 1.5-3 cm in regions of small grain size would improve agreement with

the models. Additional research is needed to separate intrinsic ATM laser bias from

bias induced by coarse snow grains, but we speculate that a correction would produce

consistency between observations and models at snow densities 150-200 kg m-3.

4.5.3 Uncertainties in Grain Size and Signal Range

The conclusions by Smith et al. (2018) imply that bias could be significant in

clean, coarse-grained snow, though the severity of the errors depends on the lidar
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waveform processing approach used to estimate elevation. The ATM instrument

uses the centroid of each received waveform, for which Smith et al. (2018) found a

maximum bias of ∼14 cm, or 2-4 cm for the grain sizes generally found over our

study location. However, the modeling results by Smith et al. (2018) only consider a

constant snow density of 400 kg m-3. The trends in Figure 4.5 demonstrate that snow

density has a strong impact on potential altimetry bias. The spread in bias is low

at small grain sizes, for the altimetry signal is more likely to be scattered away from

the snow surface. For larger snow grain sizes, the density of a snowpack determines

the spacing between ice particles, so it is an important control on the path lengths

experienced by signal photons. Thus, the bias observed at large snow grain sizes is

highly sensitive to snow density.

Both snow density and grain size tend to increase as the snow ages, so we anticipate

that aged snow will exhibit altimetry biases comparable to modeled results at ρs =

200-300 kg m-3. The results in Figure 4.5 generally agree with this assessment. It is

more difficult to infer snow density when the snow grain size is small, for the observed

bias becomes smaller than modeled estimates at all snow densities.

Although there is a clear relationship between snow grain size and ATM bias, we

recognize that local topography and snow impurity content are important drivers of

uncertainty. For example, the study region features many crevasses and melt ponds,

both of which are darker than the surrounding ice. The snow grain size retrieval

algorithm implemented by AVIRIS-NG does not mask or correct for naturally dark

surfaces, so grain sizes near crevasses and melt ponds will appear larger and skew

modeled bias estimates. Similarly, the retrieval algorithm does not account for dust

or black carbon in the snow, and a significant quantity of either impurity would reduce

the retrieved grain size (Chapter 3). Black carbon in sufficient concentrations also

absorbs a 532 nm lidar signal more efficiently than clean snow, so contaminated snow

will have lower observed bias (Smith et al., 2018).
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Crevasses are significant volumetric scatterers for the lidar wavelengths considered

in this study. Figure 4.4 demonstrates that the study region is highly rugged with

many crevasses, particularly in Tracks 1331 and 1332. Volumetric scattering from

crevasses produces significant bias in observed ranges, and both beams may be scat-

tered by the walls of a crevasse. Because the effects of crevasses on altimetry signals

are less predictable than the effects of snow, further research is needed to discriminate

between these surface features.

4.5.4 Implications for ICESat-2

Based on the results in Figure 4.5, we anticipate that ICESat-2 bias over snow-

covered regions will be governed by the optical grain size of the snow. Studies by

Brunt et al. (2019a) and Brunt et al. (2019b) demonstrated that ICESat-2 and ATM

exhibit comparable biases over ice sheets, so we assume that snow-induced bias sig-

natures will also be similar between the two altimeters. ICESat-2 error trends over

the Greenland ablation zone will generally follow that of modeled snowpacks with

density ∼200 kg m-3, and biases will be 2-4 cm on average. We expect little to no

bias when snow grain size is small, e.g. ≤150 µm. Although these errors are within

the accuracy requirements of the mission (Neumann et al., 2019b), we cannot rule out

more significant errors produced by regions of porous, coarse-grained snow, especially

during the Northern Hemisphere melting season.

4.6 Conclusions

In this study, we used airborne altimetry data from ATM to quantify volumetric

scattering bias in lidar signals. A fusion of airborne snow grain size retrievals and

Monte Carlo modeling was used to predict altimetry bias over the western Greenland

ablation zone. The green ATM beam was compared to the near-infrared beam to

estimate observed bias. Despite an inherent range bias in the NIR beam, our re-
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sults demonstrate a positive correlation between the optical grain size of snow and

altimetry bias. The modeled bias shows that snowpack density is an important driver

for volumetric scattering, but observed biases in the study location generally remain

within 10 cm. We expect more significant biases near the peak of the Northern Hemi-

sphere melting season, when snow grain coarsening will enhance volumetric scattering

at all snow densities. Additional work is needed to assess ICESat-2 elevation mea-

surements over the study region, for it lacks the thresholding technique implemented

by ATM to filter noise.

The results presented here only consider the biases induced by volumetric scat-

tering within a snowpack. Further research is needed to identify changes in altimetry

bias due to snow impurities or crevasses. Dust and black carbon are difficult to

quantify without in-situ measurements, so there is a need for accurate airborne and

satellite retrievals of surface impurity content. Similarly, a correction for volumetric

scattering from crevasses is necessary, given that they impact both ATM beams and

introduce noise to trends in bias related to grain size. The ATM waveforms and

ICESat-2 photon classification scheme may prove useful in identifying and correcting

these issues.

82



CHAPTER V

Conclusions

5.1 Summary of Research Findings

The cryosphere has experienced unprecedented changes in ice mass balance and

snow cover in recent decades. Both the Greenland and Antarctic ice sheets have

contributed ∼27 mm to global sea level rise since the start of the satellite era, and

ice loss is expected to increase in the coming decades (Shepherd et al., 2019; Rignot

et al., 2019; Vaughan et al., 2013). Similarly, the seasonality of snow cover is sensitive

to current warming trends, with consequences for water resources and ecosystems

(Bales et al., 2006; Penczykowski et al., 2017). Although computer modeling is useful

to predict long term changes to the cryosphere, there is also a need for observations to

constrain the models and to assess the current state of ice and snow. Remote sensing

is therefore a powerful tool that allows for measurements of ice and snow at multiple

spatial and temporal scales. At the small scale, unmanned vehicles may be used

for fine-scale observations that may also support simultaneous in-situ measurements.

At larger scales, airborne and spaceborne instrumentation facilitates interseasonal

measurements of ice and snow.

A suite of technologies may be used to remotely sense the cryosphere, but here

we focus on lidar and hyperspectral imaging. The ICESat-2 and ATM instruments

are lidar altimeters with sub-meter level spatial resolution, allowing for precise mea-
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surements of ice sheets and sea ice. Both altimeters apply lasers with a 532 nm

wavelength, so there is the potential for meltwater bathymetry, as discussed in Chap-

ter 2. Hyperspectral radiative transfer and imaging is demonstrated as a tool for

determining the impacts of changes in solar geometry or impurity content over a

snowpack (Chapter 3). Together, dual-colored lidar and hyperspectral imaging may

be used to attribute altimetry bias to surface composition, such as changes in optical

snow grain size over Greenland (Chapter 4).

In Chapter 2, we posed the following science question: Can lidar altimetry be

used to approximate supraglacial lake depth over Antarctica and Greenland? We used

altimetry measurements from ICESat-2 and the Airborne Topographic Mapper to

search for lakes over Antarctica and Greenland in their respective melting seasons. An

algorithm was developed that detected supraglacial lakes using along-track histograms

of surface height. Lake surfaces and beds were then separated into individual data

sets through statistical inference, and depth was taken as the difference between

the surface and the bed. Through this algorithm, we retrieved the depths of 24

supraglacial lakes, 12 of which were observed by ATM and the remaining 12 seen by

ICESat-2. The algorithm profiled supraglacial lakes with reasonable accuracy, with

an average uncertainty of 0.11 m for ATM, 0.53 m for ICESat-2 Antarctic lakes, and

0.31 m for ICESat-2 Greenland lakes. Both altimeters were capable of consistently

detecting lake bottoms as deep as 7 m. Water bodies deeper than 7 m may be profiled

by ICESat-2 (Parrish et al., 2019), but the statistical confidence in received signal

photons decreases with depth. The ATM lidar is less effective at detecting lake beds

below 7 m, for the return signal is too weak to be recorded by the receiver. We

also outlined opportunities to improve supraglacial lake depth retrievals when using

altimetry data, including improved automation and the consideration of lake bed

impurities and rough topography.

We focused on snow and hyperspectral radiative transfer in Chapter 3. Two-
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stream radiative transfer modeling was used to answer the question: How does the

presence of light absorbing impurities, aspherical particles, or anisotropic reflectance

impact snow grain size retrievals? The ice absorption feature at 1.03 µm was exploited

to observe changes in snow grain size when solar geometry or snowpack impurity con-

tent were perturbed. We used the SNICAR model to generate spectral albedo curves

for simulated snowpacks with prescribed impurity contents, scattering asymmetry

parameters, and solar zenith angles, from which calibration curves were derived to

relate snow grain size to band area within the absorption feature. This same method

was applied to a Monte Carlo model to simulate anisotropic reflectance over snow-

covered surfaces. Our results indicate that incorrect handling of solar illumination

angle generates significant bias in snow grain size retrievals. The bias due to ice par-

ticle shape is somewhat mitigated due to larger snow grains becoming spherical as

they age, but fresh snow may introduce uncertainty due to the large variety in grain

shapes. Black carbon and dust are potentially large contributors to retrieval biases,

though the concentrations needed are generally rare in nature. However, episodic

dust events may deposit up to 8000 ppm of dust onto a snowpack, so retrieval er-

rors may be significant if the dust content is not properly accounted for. Finally,

we found that snowpack reflectance is nearly isotropic at near-zenith illumination

angles, but anisotropy becomes significant at larger angles. Grain size retrievals that

do not account for anisotropy may observe snow reflectances much lower than ex-

pected, thereby introducing substantial errors in snow grain size. Because of these

factors, knowledge of snowpack state and solar geometry are vital for snow grain size

retrievals.

Our work in Chapter 4 uses the experience and knowledge we gathered from

Chapters 2 and 3 to answer the question: What are the biases we observe in 532 nm

airborne altimetry data over Greenland, and how much originates from volumetric

scattering by snow? A fusion of lidar altimetry and hyperspectral imaging was used
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to attribute altimetry biases to snow grain size. Snow grain sizes from AVIRIS-NG

hyperspectral data served as input to the Monte Carlo model from Chapter 4, and

we estimated the median path length traveled by photons at 532 nm and 1064 nm

for 1000 snow grain sizes and four snow densities. The path lengths were converted

to modeled altimetry bias as a function of snow grain size. The modeled results

were compared to biases between the ATM 532 nm and 1064 nm beams over the

northwest Greenland ablation zone. Trends in the observed biases were similar to

those in AVIRIS-NG snow grain sizes, indicating a possible link between grain size

and altimetry bias. When compared to the modeled bias, the observations agreed best

for modeled snowpacks with density 200-250 kg m-3, particularly for larger snow grain

sizes, and we observed an average altimetry bias of 2.14 cm. We noted disagreement

between observations and the model when reff ≤ 150 µm, and subsequent analysis

revealed a centimeter-level range bias in the ATM NIR beam. Despite this issue, the

observations exhibited similar trends to grain size even with small snow grains, so

we expect similar trends in snowpacks coarser than those observed in Chapter 4. We

also anticipate that ICESat-2 biases will be comparable to those from the green ATM

beam over the study region, and we will pursue a follow-up study quantifying these

biases.

5.2 Future Research Directions

Our supraglacial lake study in Chapter 2 demonstrates that ICESat-2 may be used

for shallow water bathymetry. However, more work is needed to address automation

challenges and to reduce uncertainty from melt pond beds. The issue of volumetric

scattering at the beds of supraglacial lakes is particularly challenging, as the time

delays that signal photons may experience at a pond bed are not yet quantified. A

follow-on study may then use Monte Carlo modeling to simulate the interactions be-

tween signal photons, the melt pond, and the underlying ice. Other research may
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develop more sophisticated filtering techniques for photons at the pond bed, particu-

larly for ponds that exceed 7 m in depth. An improved filtering algorithm would also

be useful for surface detection, given that the LSBS algorithm struggles with ponds

that are too small. Other lake depth retrieval algorithms are highlighted by Fricker

et al. (2021), several of which also hold promise for automation improvements, though

we also speculate that machine learning may facilitate an improved photon filtering

process. A follow-on study also needs to compare depth retrievals between ICESat-

2 and ATM. Although such a comparison would be limited to the OIB 2018-2019

Greenland campaigns, it would be beneficial to directly compare the accuracy of the

altimeters over co-registered lakes.

The snow grain size retrieval study was exclusively a modeling effort, so further re-

search needs to assess retrievals using hyperspectral imaging or contact spectroscopy.

Observing changes in retrieved grain size will be difficult in typical field campaigns,

so laboratory experiments may be required to assess the perturbations considered

in Chapter 3. For instance, Donahue et al. (2020) assessed albedo and grain size

retrieval errors due to changes in illumination angle, where sunlight was simulated

using an artificial light source. A specialized radiometer could then be used to mea-

sure differences in hemispheric and directional reflectance. Conversely, Skiles et al.

(2017) observed a major dust deposition event within the San Juan snowpack, so

field measurements of dust-induced retrieval errors may be possible through contact

spectroscopy. Assessment of errors due to asymmetry parameter will be more diffi-

cult, but a follow-on study could predict snow grain shapes if the age of a snowpack

is known. If a modeling study were to be performed, then the possible relationships

and co-dependencies between snow perturbations should be considered, given that

a combination of perturbations may significantly reduce or increase snow grain size

retrieval errors.
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5.2.1 ICESat-2 Calibration Over Snow-Covered Surfaces

In Chapter 4, we examine the impacts of uncertainty in snow grain size on airborne

lidar altimetry. In a follow-up study, we expect to perform the same analysis for

satellite altimetry from ICESat-2. We will perform the bias assessment over the region

of Greenland analyzed in Chapter 4 (Figure 4.1). We will examine near-coincident

ICESat-2 overpasses, with tracks from September 7 and 11 as suitable candidates

for this analysis. ICESat-2 observations will need to be co-registered with ATM

and AVIRIS-NG data from September 6. Although there is a time delay between

the spaceborne and airborne data, we do not expect significant changes in surface

composition to have occured over the study area.

We will generate pseudo-waveforms from the co-registered ICESat-2 data using

surface height histograms derived from the ATL03 Global Geolocated Photon Prod-

uct (Neumann et al., 2019b). The pseudo-waveforms will be generated by aggregating

ATL03 signal photons into 20 m segments and creating a histogram for each segment.

We will then compare ATL03 pseudo-waveforms to ATM waveforms to identify com-

mon signatures from snow surface returns and to estimate bias. As in Chapter 4,

we will derive expected bias estimates using the Monte Carlo model developed by

Schneider et al. (2019) and AVIRIS-NG snow grain size data. We expect to develop a

bias correction algorithm after this analysis that will consider snow cover extent, den-

sity, and grain size. Ideally, the correction algorithm will be applicable to ICESat-2

height measurements over all snow surfaces.

If a bias correction algorithm is developed, we anticipate that ICESat-2 data could

be used for global snow depth measurements. Such a study would require validation

from airborne and in-situ sources, so initial snow depth retrievals could be performed

over regions where these studies were undertaken. For example, the NASA SnowEx

mission is a series of campaigns designed to answer questions related to snow, and it

includes useful snow depth measurements from locations across the western United
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States. The study could then be expanded to perform global measurements of snow

depth by using a mixture of satellite imagery and reanalysis data to retrieve snow

properties and constrain the bias correction algorithm. The ICESat-2 data (and

retrieved snow depths) could be further processed over forested regions by using the

ATL08 Land and Vegetation Height Product (Neuenschwander and Pitts , 2019).
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APPENDIX A

Deriving Surface Heights Using Airborne

Topographic Mapper Waveforms

Unlike ICESat-2, the raw data product from the Airborne Topographic Mapper

(ATM) does not compose of geolocated spot measurements of the surface. Instead,

the ATM instrument digitizes transmitted and received laser pulses into waveforms

based on the time of detection and the strength of the signal. Each waveform has a

series of digitized samples that are obtained every 0.25 ns, and each sample is assigned

a signal strength, or amplitude. The amplitude recorded by the receiver is capped at

a value of 255, so the true signal strength of a surface target may be lost. This issue

is most common over specular surfaces, such as water or fresh snow.

Figure A.1: An example ATM laser pulse digitized into a transmitted waveform (a)
and a received waveform (b). The signal threshold and centroid are
highlighted using dotted lines and stars, respectively.
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To derive surface heights from ATM waveforms, the digitized data is first time-

tagged and classified based on the time of transmittance. The data sometimes features

signal returns that originate from the aircraft windows, and these window reflections

are typically recorded before the transmitted and received waveforms. The trans-

mittance time and shape of the transmitted waveform is generally constant between

laser pulses, though imperfections in the design may result in slight differences in

the timing and the waveform amplitude. Figure A.1 shows sample transmitted and

received waveforms by the 532 nm detector. The waveforms were obtained over op-

tically deep water, so the received signal has a much weaker signal than the initial

pulse. From these waveforms, a threshold is determined to distinguish the signal from

background noise. The ATM detector uses a threshold of 35% of the maximum am-

plitude, as shown by the dashed lines in the example waveforms. The range is then

calculated using the centroid time of each waveform, with the waveforms assumed

to be quasi-Gaussian waves. The pulse width is taken as the maximum width, or

number of digitizer samples, of the waveform above the noise threshold. For instance,

both waveforms in Figure A.1 have a pulse width of 19 digitized samples.

In Figure A.1, the centroid time for the transmitted and received pulses is 343.125

ns and 5989.1 ns, respectively. Using Equation 1.4, we calculate an uncalibrated

aircraft-surface range of 846.9 m. This range is then calibrated relative to ground-

based instrument bias assessments. The calibrated range serves as input to a reference

geoid model along with the aircraft location and baseline pointing data to estimate

surface elevation from the lidar signal. In the given example, the calculated range

corresponds to a surface elevation of ∼476.7 m.
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