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ABSTRACT

Abnormalities of cardiac rhythms are correlated with significant morbidity. For

example atrial fibrillation, affecting at least 2.3 million people in the United States,

is associated with an increased risk of both stroke and mortality; supra-ventricular

tachycardia, detected in approximately 90,000 cases annually in the United States,

results in hospitalization in about 25% of all emergency department visits for supra-

ventricular tachycardia; ventricular arrhythmias cause 75% to 80% of the cases of

sudden cardiac death; bradyarrhythmias and other forms of conduction disease may

cause syncope, fatigue from chronotropic incompetence, or sudden death from asystole

or ventricular tachycardia. Due to the time-sensitive nature of cardiac events, it is

of utmost importance to ensure that medical intervention is provided in a timely

manner, which could benefit greatly from a cardiac arrhythmia monitoring system

that can detect and preferably also predict the abnormal cardiac events.

In recent years, with the development of cardiac and other types of medical mon-

itoring devices, vast amounts of physiological signal data have been collected and

become available for analysis. Physiological signals such as electrocardiogram (ECG)

have many clinical applications in cardiac arrhythmia, including diagnosis confirma-

tion, drug effect monitoring and rate control. However, the extraction of the relevant

information from physiological signals—despite its great value—is hindered by the

complexity and variability within signal morphology, which leads to vague definitions

and ambiguous guidelines, causing difficulties even for a well-trained medical expert.
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Such variability-related issues are ubiquitous and manifested in different ways: via

the ECG signals themselves, the measurements derived from such signals, and the

diagnostic interpretations based on such measurements.

In order to address the variability-related issues, most traditional methods for

physiological signal analysis depend heavily on pre-processing to identify specific mor-

phology types (such as R peaks in ECG) and extract the related features. Despite

many successes, one of the drawbacks of these methods is that they often require signal

data of high quality and tend to be less effective in the presence of noise which could

significantly distort the signal morphology. Although not an issue in almost noise-

less situations such as bedside ECG monitoring, such pre-processing–based methods

have become insufficient with the advent of portable arrhythmia monitoring devices

in recent years capable of collecting physiological signals in real time, albeit with

more noise. Therefore, in order to enable automated clinical decision making using

such ECG sources, it is desirable to introduce new methods that require minimal

pre-processing prior to analysis and are robust to noise.

This thesis aims to develop a cardiac arrhythmia monitoring and prediction sys-

tem applicable to portable arrhythmia monitoring devices. The analysis is based

on a novel algorithm which does not rely on the detailed morphological information

contained within each heartbeat, thus minimizing the impact of noise. Instead, the

method works by analyzing the similarity and variability within strings of consecu-

tive heartbeats, relying only on the broad morphology type of each heartbeat and

utilizing the computer’s ability to store and process a large number of heartbeats be-

yond humanly possible. The novel algorithm is based on deterministic probabilistic

finite-state automata which have found great success in the field of natural language

processing by studying the relation among different words in a sentence rather than

the detailed structure of the individual words.

The proposed algorithm has been employed in experiments on both detection

xvi



and prediction of various cardiac arrhythmia types, and has achieved an Area un-

der the ROC Curve (AUC) in the range of 0.70 to 0.95 for detection and prediction

of different types of cardiac arrhythmias and cardiac events including atrial fibril-

lation, supraventricular tachycardia, ventricular arrhythmia, ventricular tachycardia,

bradycardia, and rapid ventricular rates with publicly available benchmark databases,

hospital bedside database and data collected from portable devices. Comparing with

other well-established methods, the proposed algorithm has achieved equal or better

classification results, even though in some cases the advantage might not be statis-

tically significant. In addition, the performance of the proposed algorithm is almost

identical with or without any pre-processing on the data.

The work in the thesis could be deployed as a cardiac arrhythmia monitoring

and severe event prediction system which could alert patients and clinicians of an

impending event, thereby enabling timely medical interventions.

xvii



CHAPTER I

Introduction

1.1 Motivation and Background

The long-term goal of this thesis is to develop a cardiac arrhythmia monitoring

system that not only detects but also predicts abnormal cardiac events.

Abnormalities of cardiac rhythms are correlated with significant morbidity. Atrial

fibrillation, supra-ventricular tachycardia, ventricular arrhythmia and bradycardia

are all common types of cardiac arrhythmia. Atrial fibrillation is the most common

sustained cardiac arrhythmia occurring in 1-2 % of the general population Camm

et al. (2010), the percentage will likely keep growing between 2012 and 2050, when

the United States will experience considerable growth in its elder population Jan-

uary et al. (2014); Ortman et al. (2014). Atrial fibrillation (AFib) affects at least

2.3 million people in United States and is associated with an increased risk of stroke

and mortality. Supraventricular tachycardia (SVT) is a general term describing a

subgroup of arrhythmias whose mechanism involves or originates above the atrioven-

tricular node. About 90,000 cases of SVT are detected annually in the United States

and about 25% of all emergency department visits for SVT result in hospitalization.

Ventricular arrhythmia (VA) encompasses a spectrum of abnormal heart rhythms

originating from the ventricles, the heart’s lower chambers. VA causes 75% to 80%

of cases of sudden cardiac death. Bradyarrhythmias and other forms of conduction

1



disease may cause syncope, fatigue from chronotropic incompetence, or sudden death

from asystole or ventricular tachycardia. Therefore it is crucial to develop a cardiac

arrhythmia monitoring system that can not only detect the abnormal cardiac events

but also predict these events.

Physiological signals such as ECG have many clinical applications in cardiac ar-

rhythmia, including diagnosis confirmation, monitoring drug effects, and rate control

Lankveld et al. (2014). In recent years, with development of cardiac monitoring de-

vices, more physiological signals are obtained and digitalized and available for anal-

ysis. Despite its great value, it is often challenging to extract relevant information

from physiological signals, even for a well-trained medical expert, due to variability

in signal morphology. Such variability is ubiquitous and manifests itself in different

ways: via the ECG signals themselves, the measurements derived from such signals,

and the diagnostic interpretations based on such measurements Schijvenaars et al.

(2008).

1.2 Current Approaches and Challenges

Most traditional methods for physiological signal analysis depend heavily on pre-

processing to identify specific morphology (such as R peaks in ECG). As a result, these

methods tend to be less effective on noisy data. In recent years, with the advent of

portable arrhythmia monitoring devices, it has become possible to collect ECG data

in real time, albeit with more noise. Therefore, in order to enable automated clinical

decision making using such ECG sources, it is desirable to introduce new methods

that require minimal pre-processing prior to analysis.

In this thesis, we aim to develop a cardiac arrhythmia monitoring and prediction

system with a novel deterministic probabilistic finite-state automata (DPFA) based

approach. The method transforms physiological signals into probabilistic strings over

an alphabet which contains a list of symbols. Each symbol of the alphabet corre-
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sponds to a broad morphology type which is present in the physiological signal in

question. Using these probabilistic strings obtained from the physiological signals via

symbolization, the algorithm seeks to extract the information related to the patterns

and sequences of the symbols contained in the probabilistic string. This is achieved

by constructing a DPFA from the probabilistic string, after which the DPFA serves

as the primary means of classification. This approach frees the resultant classification

algorithm from relying on the identification of specific morphological information such

as the location of R peaks in ECG. The proposed approach does not rely on extensive

clinical knowledge regarding the specific morphology of the signals, and is robust to

noise in the signals.

1.3 Outline of Thesis Study

This thesis aims to develop a cardiac arrhythmia monitoring and prediction sys-

tem. The central component is a novel DPFA-based algorithm which is developed

and tested on different types of data. The rest of this thesis is organized as follows.

Chapter II provides an extensive literature review of the background and current

development and applications of arrhythmia classification and prediction algorithms,

together with various types of arrhythmia that are considered in our detection and

prediction experiments, using physiological signals such as ECG and accelerometer

data.

Chapter III contains the detailed information on the various algorithms used in

this thesis. These include the automated annotation algorithms for different types of

arrhythmia and cardiac events, which are used in experiments where there is no an-

notations done by clinicians, the pre-processing, noise detection and event extraction

algorithms involved in various auxiliary steps of the experiments, and most impor-

tantly the DPFA algorithm.

Chapter IV describes data sources that have been used for this thesis. There is
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a total of six databases, each has been experimented on for different purposes of the

study. Database 1 (DB1) is used in the earlier stages of the thesis for algorithm

development and events detection. Database 2 (DB2) is collected in-hospital from

bed-sides devices and used for arrhythmia prediction. Database 3 (DB3) has not

been collected as planned and eventually combined with Database 4 (DB4). DB4

and Database 5 (DB5) are prospective databases with portable devices for hospi-

tal discharged patients and healthy controls. These two databases have been used

for arrhythmia predictions. Database 6 (DB6) is a database with signals collected

from portable devices on AFib patients. This dataset is also used for cardiac event

prediction.

Chapter V presents the results of all the experiments conducted during the thesis

study. These include detection and prediction of AFib, SVT, VA, bradycardia and

rapid ventricular rates (RVR) with low activities. Discussions and limitations for the

monitoring and prediction events are also presented in this chapter.

1.4 Conclusion

This thesis presents a new method for classifying and predicting cardiac arrhyth-

mia events based on a novel DPFA algorithm. The proposed method takes a proba-

bilistic string extracted from physiological signals as input, and constructs the under-

lying state space and transition probabilities of the DPFA model, directly from the

input data via frequency analysis. Experiments have been performed on physiologi-

cal signals collected from different sources such as public databases, hospital bed-side

devices and portable devices to detect and predict different types of cardiac arrhyth-

mia events. The proposed algorithm requires minimal pre-processing and is robust to

noise. The work in the thesis could be deployed as a cardiac event prediction system

which could patients and clinicians of an impending cardiac event, thereby enabling

timely medical intervention.
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CHAPTER II

Review of Literature

2.1 Introduction

This chapter contains a background literature review conducted in three aspects.

Firstly, a review in different types of arrhythmia, including atrial fibrillation, supraven-

tricular tachycardia, ventricular arrhythmia and bradycardia. Secondly, a review in

physiological signals and ECG in particular as ECG data is the main data used in

the study for experiments. Finally a review in arrhythmia classification algorithms.

2.2 Types of Arrhythmia

One of the project objectives is to construct a reliable prediction system for car-

diac arrhythmia, specifically AFib, SVT, VA and bradycardia as they are the most

prevalent types of arrhythmia. In the sections below we will introduce different types

of arrhythmias and their significance.

2.2.1 Atrial Fibrillation

AFib is the most common sustained cardiac arrhythmia occurring in 1-2 % of

the general population Camm et al. (2010), the percentage will likely keep growing

between 2012 and 2050, when the United States will experience considerable growth
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in its elder population January et al. (2014); Ortman et al. (2014). AFib is the most

common sustained cardiac arrhythmia. As of 2014, between 2.7 million and 6.1 million

American adults were affected by AFib January et al. (2014). AFib is a major cause of

many life-threatening diseases and adversely impacts quality of life. It is associated

with a 5-fold increased risk of stroke Wolf et al. (1991), a 3-fold increased risk of

heart failure, and a 2-fold increased risk of both dementia and mortality January

et al. (2014); Wang et al. (2003); Kannel et al. (1998); Camm et al. (2010).

2.2.2 Supraventricular Tachycardia

SVT is a general term describing a subgroup of arrhythmias whose mechanism

involves or originates above the atrioventricular node. The incidence of SVT is ap-

proximately 35 cases per 100,000 patients with a prevalence of 2.25 cases per 1,000

in the general population Sohinki and Obel (2014). SVT has different arrhythmia re-

lated symptoms ranging from nonexistent to severe. Symptoms include palpitation,

fatigue, light-headedness, chest discomfort and dyspnea, while on the other extreme

certain paroxysmal SVT could also be asymptomatic.

2.2.3 Ventricular Arrhythmia

VA encompasses a spectrum of abnormal heart rhythms originating from the ven-

tricles, the heart’s lower chambers. These types of arrhythmia have rates of over 100

beats per minute Al-Khatib et al. (2018). Types of VA include ventricular tachy-

cardia (VT), ventricular flutter (VFlutter), and ventricular fibrillation (VF). Serious

ventricular arrhythmia is associated with ischemic heart disease and can contribute to

sudden cardiac death (SCD) events. These events constitute approximately 230,000

to 350,000 deaths annually in the United States and 50% of all cardiovascular deaths

Myerburg (2001); Myerburg and Junttila (2012). Approximately half of SCD events

can be attributed to VT or VF John et al. (2012). Therefore, monitoring and detect-
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ing VT and VF is critical for the prevention of SCD events.

2.2.4 Bradycardia

Among various types of arrhythmia, tachycardia refers to a fast heart beat gen-

erally with a resting heart rate greater than 100 beats-per-minute (BPM), whereas

bradycardia, on the other hand, refers to a slow heart beat commonly defined as

having a heart rate of less than 60 BPM Kusumoto et al. (2019). Despite the general

definition, a slow heart rate does not always indicate an underlying disease, since

there is considerable variation in the resting heart rate among the healthy, asymp-

tomatic population Mangrum and DiMarco (2000) such as the example of people

with a family history of slow heart beats, or athletes and physically active individ-

uals. However, bradycardia can cause inadequate blood flow to tissues and organs

leading to symptoms such as fatigue, dizziness or heart failure Mangrum and DiMarco

(2000).

2.3 Physiological Signals

Physiological signals reflect the functionality of various physiological systems. A

trained medical expert can retrieve valuable information about the structure of the

organ by examining the physiological signals generated by its electrical conduction

system. This knowledge has far reaching impact in decision making in diagnosis,

treatment monitoring, drug efficacy tests and quality of life Faust et al. (2018).

The ECG is a type of physiological signal with many clinical applications in car-

diac arrhythmia, including diagnosis confirmation, monitoring drug effects, and rate

control Lankveld et al. (2014). Despite its great value, it is often challenging to ex-

tract relevant information from ECG signals, even for a well-trained medical expert,

due to variability in signal morphology. Such variability is ubiquitous and manifests

itself in different ways: via the ECG signals themselves, the measurements derived
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from the signals, and the diagnostic interpretations based on such measurements.

2.4 Arrhythmia Classification Algorithms

Arrhythmia classification using ECG signals typically involves three major tasks:

signal pre-processing in order to remove noise and baseline wandering, feature extrac-

tion in time and/or frequency domains, and classification of the signals into different

arrhythmia types according to the features extracted, often through the training of

classifiers via machine learning algorithms.

In the literature, numerous feature extraction techniques have been proposed to

analyze and classify ECG signals. These techniques include: heart rate variabil-

ity (HRV) Asl et al. (2008); Mei et al. (2018), independent component analysis (ICA)

Yu and Chou (2009); Jiang et al. (2006); Naseri et al. (2019), principal component

analysis (PCA) Ceylan and Özbay (2007); Martis et al. (2012), wavelet transform

Mahmoodabadi et al. (2005); Zhao and Zhang (2005); Ashtiyani et al. (2018), con-

volutional neural network (CNN) Acharya et al. (2017a); Kiranyaz et al. (2016).

These feature extraction techniques are used together with learning algorithms for

arrhythmia detection and classification. Each feature extraction technique focuses

on different aspects of the signal, e.g., HRV features put emphasis on the features of

heart beats, while ICA, PCA, and wavelet transform focus on the morphology of the

signal. All of these methods have their unique strengths and drawbacks.

The machine learning algorithms used for arrhythmia classification include: sup-

port vector machine (SVM) Ye et al. (2010); Nasiri et al. (2009); Song et al. (2005);

Ozcan and Gurgen (2010); Bazi et al. (2013), auto-regressive modeling Ge et al.

(2002), hidden Markov model (HMM) Coast et al. (1990); Andreao et al. (2006);

Gomes et al. (2010), a set of rules as determined by cardiologists Tsipouras et al.

(2002); Exarchos et al. (2005), optimal path forest Luz et al. (2013), and artificial

neural networks Ceylan and Özbay (2007); Jadhav et al. (2011); Özbay et al. (2006);
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Elhaj et al. (2016). In the past two years, many studies have adopted recurrent neu-

ral network (RNN) or long short-term memory (LSTM) as the learning algorithms

of choice Oh et al. (2018); Chauhan and Vig (2015); Yildirim (2018); Zhang et al.

(2017); Warrick and Homsi (2017). A number of studies have also applied deep learn-

ing methods for the classification of ECG signals Acharya et al. (2017a); Rajpurkar

et al. (2017); Acharya et al. (2017b). In general these algorithms do not require

specific signal pre-processing, QRS detection, or feature extraction steps. However,

this advantage comes with the cost of requiring larger training datasets. This can be

challenging as arrhythmia cases are relatively rare in comparison to healthy control

cases.

Contrary to the above, to the best of our knowledge few studies have applied

DPFA-based methods in the analysis of physiological signals, and especially not in

arrhythmia detection and prediction using ECG signals. DPFA are finite-state au-

tomata in which every state is assigned a probability to each distinct letter in a

fixed finite alphabet, which then determines a unique new state. More generally, in

probabilistic finite-state automata (PFA), given a letter and current state, multiple

transitions are allowed to other states with potentially different probabilities Vidal

et al. (2005). PFA have the same expressive power as HMM Vidal et al. (2005), de-

spite the fact that only the latter has found wide application in ECG signal analysis.

Due to its deterministic assignment of transitions to the alphabet for a given

state, DPFA have less expressive power than PFA. On the other hand, it is much

easier to estimate the parameter values of DPFA than PFA Vidal et al. (2005). As

a result, DPFA will likely perform better when running the algorithm in real-time.

Some well-developed special cases of DPFA include: n-grams with smoothing Ney

et al. (1997), Markov chains built by aggregating or mixing n-grams Saul and Pereira

(1997), and probabilistic suffix trees (PST) Esposito et al. (2002). These algorithms

have found applications in natural language processing Brown et al. (1992); Hakki-
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nen and Tian (2001) as well as in biomedical research such as protein structural

analysis and sequence analysis Dorohonceanu and Nevill-Manning (2000); Oğul and

Mumcuoğlu (2006).

2.4.1 Arrhythmia Prediction

As detailed above, many algorithms and methods exist for the detection or classi-

fication of cardiac arrhythmias. A more challenging application of machine learning

in this context is the prediction of cardiac events or arrhythmias before they occur.

A reliable cardiac event prediction system could alert patients and clinicians alike

of an impending event, thereby enabling timely intervention. However, prediction of

arrhythmic events well before their onset is still an open research problem Rizwan

et al. (2020).
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CHAPTER III

Methodology

3.1 Introduction

This chapter contains a detailed description of the methodologies. There are

four major sections in this chapter. In the first section, the DPFA algorithm is

explained in detail including training method, symbolization, DPFA generation and

classification method. In the second section, the annotation algorithms for different

types of arrhythmia and cardiac events are described. In the third section, the pre-

processing steps and prediction event extractions steps are illustrated. In the last

section, several existing methods are listed and explained for comparison.

3.2 Deterministic Probabilistic Finite-State Automata

3.2.1 Training Method

A schematic diagram of the proposed method is illustrated in Figure 3.1. The

training dataset consists of annotated ECG signals. From these the algorithm extracts

windows that are indicative of future arrhythmia events and others that are not. The

positive ECG signals (i.e., pre-arrhythmia) are symbolized into probabilistic strings,

which are then fed into the DPFA Generation module that constructs the positive

DPFA M+. The same is done for the negative ECG windows (i.e., regions that are
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Figure 3.1: DPFA training, A schematic diagram depicting the training and testing
steps for the proposed method.

neither arrhythmia nor pre-arrhythmia), producing the negative DPFA M−. The

Symbolization module is detailed in Section 3.2.2 and the DPFA Generation module

is described in Section 3.2.3.

3.2.2 Symbolization

In this study, ECG signals are symbolized into strings of ternary words, but the

method can be extended to larger alphabets. Let g(t) be the input ECG signal, where

t is time in seconds, 0 ≤ t ≤ L, and L is the length of the ECG recording. g(t) can

be thought of as a continuous signal, but in implementation it is generally discrete

with a high frequency (typically ≥ 200 Hz) depending on the ECG source. The

symbolization process for a sample of ECG signal with normal rhythm is illustrated

in Figure 3.2 and a sample of ECG signal with VA is illustrated in Figure 3.3.

A brief description of the main steps of the symbolization process is below, with

pseudocode provided in Algorithm 1:

(a) The first step is to capture morphological features of width less than the dura-
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Figure 3.2: DPFA symbolization, an example of ECG signal symbolization into a
ternary alphabet: {p1,p2,q}.

Figure 3.3: DPFA symbolization, an example of VA ECG signal symbolization into
a ternary alphabet: {p1,p2,q}.

tion of a typical QRS-complex: this is achieved by first subtracting the moving

average 1
2h0

∫ t+h0

t−h0
g(r)dr over intervals of width 2h0. The signal is then smoothed
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by convolving with the triangle function Λh0(t) = max{h0 − |t|, 0} and normal-

ized by dividing by the local L2 norm

∣∣∣∣∣∣
t+h1∫

t−h1

g2 ∗ Λh1(r)dr

∣∣∣∣∣∣
1
2

over intervals of width 2h1.

The parameter h0 controls the window size for baseline removal, while h1 con-

trols the length of the filter whose purpose is to capture the variability of mag-

nitudes among adjacent heartbeats, while ensuring comparable average magni-

tudes over longer intervals. Therefore h0 should be approximately the duration

of a heart beat. Since a normal heart rate is around 60-100 beats per minute,

so h0 was chosen to be 2 seconds. h1 needs to be longer than the duration

of two or three heartbeats, but not too large as to reduce the local nature of

normalization, so h1 was chosen to be 5 seconds. Both parameters can also

be tuned during the training steps for the purpose of facilitating the capture

of local information for use by the DPFA algorithm. For different applications

these parameters may need to be modified.

Finally a piecewise linear filter is applied by forming the convolution

g ∗ φ(t) = g(−2) ∗ φ(2)(t),

where g(−2) denotes the second antiderivative of the signal g(t) and φ(2)(t) de-

notes the second derivative of the piecewise linear function φ(t). The expression

on the right hand side has the advantage that φ(2) is a sum of delta functions,

which is better behaved when working with discrete signals.
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(b) The second step is to apply downsampling to discretize the signal into x1x2 . . . xn

by

xi = max
{
g(t)

∣∣∣ (i− 1)w ≤ t ≤ iw
}
,

where w is the downsampling window size tuned during the training step and

n = bL/wc.

(c) The next step is to locally normalize the discrete signal by dividing xi by the

local maximum max{xi−bh2/wc, . . . , xi+bh2/wc} over intervals of width 2h2, where

h2 = 1 second. h2 was chosen to be long enough to cover several QRS complexes.

(d) In the final step, the probabilities pi1, pi2 and qi are obtained from the normal-

ized signal x̃1x̃2 . . . x̃n via soft-thresholding


pi1 = ψ1(x̃i)

pi2 =
(
1− ψ1(x̃i)

)
· ψ2(x̃i)

qi = 1− pi1 − pi2,

where the soft-thresholding functions are chosen to be piecewise linear functions

ψ1, ψ2 : [0, 1]→ [0, 1] of the form

ψj(x) =


1 if x > bj

x−aj
bj−aj if aj ≤ x ≤ bj

0 if x < aj

The parameters a1, b1, a2, b2 are all different and tuned within the training step

for different studies. A grid search was performed for a1 and b1 with a1 < b1 from

0.1 through 0.9 with 0.1 increment. A grid search for a2 and b2 was performed

in a similar manner. The parameter values used in this study were selected

tuned with training and validation data.
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In summary, pi1, pi2, and qi represent the probability of dominant patterns and local

shapes depending on values of a1, b1, a2, and b2.

Algorithm 1 ECG Symbolization

Require: g(t), 0 ≤ t ≤ L . ECG
h0, h1, h2 > 0 . time parameters
φ(t), supported locally near t = 0 . piecewise linear filter
w > 0 . downsampling window size
ψ1, ψ2 : [0, 1]→ [0, 1] . soft-thresholding functions

Ensure: P = p1p2 . . .pn =

p11

p12

q1

p21

p22

q2

 · · ·
pn1

pn2

qn

 . probabilistic string

for all t ∈ [0, L] do

g(t)← g(t)− 1
2h0

∫ t+h0

t−h0
g(r)dr . subtract moving average

g(t)← g ∗ Λh0(t) . triangular smoothing

g(t)← |
∫ t+h1

t−h1
g2 ∗ Λh1(r)dr|−

1
2 g(t) . normalization

g(t)← g(−2) ∗ φ(2)(t) . piecewise linear filter
end for
n← bL/wc . length of P
for i← 1, n do

xi ← max{g(t) | (i− 1)w ≤ t ≤ iw} . downsampling
end for
for i← 1, n do

x̃i ← xi/max{xj | i− bh2/wc ≤ j ≤ i+ bh2/wc} ∈ [0, 1]
. local normalization

pi1 ← ψ1(x̃i)
pi2 ← (1− ψ1(x̃i))ψ2(x̃i)
qi ← 1− pi1 − pi2 . soft-thresholding

end for

3.2.3 DPFA Generation

The output of the symbolization module is a probabilistic string over the alpha-

bet Σ. Such a probabilistic string defines a word distribution, for which the DPFA

generation module produces a DPFA that best approximates this distribution. The

DPFA is constructed in two steps: first by building a frequency prefix tree (FPT)

and then performing state merging within the FPT.
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3.2.3.1 The Word Distribution Defined by a Probabilistic String

Given the alphabet Σ = {a1, . . . , ad} consisting of d symbols, let Σ∗ denote the

set of all words aj1aj2 . . . ajm of finite length, with ε representing the empty word. A

word distribution is defined to be a function f : Σ∗ → R such that

(a) f(w) ≥ 0, and

(b) f(w) =
∑d

j=1 f(waj)

for all w ∈ Σ∗.

Let P = p1p2 . . .pn be a probabilistic string of length n consisting of d-dimensional

probability vectors

pi =


pi1
...

pid

 , pij ≥ 0 and
d∑

j=1

pij = 1;

where pij denotes the probability that the ith letter of the probabilistic string is equal

to aj ∈ Σ. Then the probabilistic string defines a word distribution fP by

fP(aj1aj2 . . . ajm) =
n−m+1∑

i=1

i+m−1∏
k=i

pijk (3.1)

for all non-empty aj1aj2 . . . ajm ∈ Σ∗ and fP(ε) = n (see Algorithm 2).

3.2.3.2 Constructing the FPT

A frequency prefix tree (FPT) is a tree-like automaton T = 〈Q0,Σ, ε,Freq〉 with

alphabet Σ, state space Q0 ⊂ Σ∗, and initial state ε ∈ Q0, which is also equipped

with a frequency function Freq : Q0 → R. Here the transition function is given by

concatenation of words, which assigns qaj ∈ Σ∗ to (q, aj) ∈ Q0×Σ whenever qaj ∈ Q0.
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Algorithm 2 Word Distribution of a Probabilistic String

Require: P = p1p2 . . .pn . probabilistic string
Ensure: fP(w) ∈ R . w = aj1aj2 . . . ajm ∈ Σ∗

w ← ε
pn+1(w)← 0
for i← 1 to n do

pi(w)← 1
end for
for k ← 0 to m− 1 do

w ← ajm−k
w

pi(w)← pijm−k
pi+1(w)

end for . pi(w) = P(w occurs at the ith position of P)
fP(w)←

∑n
i=1 pi(w)

In particular, a word distribution f : Σ∗ → R on the alphabet Σ defines an FPT

with full state space Q0 = Σ∗ and frequency function Freq = f . In general, such

FPTs have infinite state spaces. However, in the special case when Freq(w) = 0 for

all but finitely many w ∈ Σ∗, the FPT can be restricted to the finite state space

Q0 = {w ∈ Σ∗ | Freq(w) 6= 0}

without losing any information.

One such special case is when the word distribution f arises from a probabilistic

string P over the alphabet Σ with finite length. This is because fP(w) = 0 for all

words w ∈ Σ∗ whose length exceeds the length of P.

3.2.3.3 Cutoff and State Merging

A deterministic probabilistic finite-state automaton (DPFA) is an automaton M =

〈Q,Σ, ε, P, T 〉 with state space Q, alphabet Σ, initial state ε ∈ Q and transition

function T : Q × Σ → Q, which is also equipped with a probability function P :

Q× Σ→ R such that

(a) P (q, aj) ≥ 0, and
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(b)
∑d

j=1 P (q, aj) = 1

for all q ∈ Q.

Given an FPT T = 〈Q0,Σ, ε,Freq〉, one can construct a DPFA M = 〈Q,Σ, ε, P, T 〉

by the largest suffix merging (LSM) algorithm (Algorithm 3); a brief description of

which is provided below:

(a) the algorithm requires a cutoff parameter C such that 0 < C < Freq(ε);

(b) the state space Q of the DPFA consists of all q ∈ Q0 which have frequency

Freq(q) > C;

(c) the alphabet Σ and initial state ε ∈ Q are the same as the FPT;

(d) the probability function is defined to be

P (q, aj) =
Freq(qaj)

Freq(q)

for all q ∈ Q, which is well-defined since Freq(q) > C > 0;

(e) if Freq(qaj) > C, then the transition function is defined to be T (q, aj) = qaj ∈

Q;

(f) otherwise T (q, aj) = s ∈ Q is defined to be the largest suffix s of qaj with

Freq(s) > C.

In summary, the LSM algorithm selects those states q ∈ Q0 of T with sufficiently high

frequency to be in the state space M , and then defines the transition state T (q, aj)

to be the largest suffix of qaj that is itself contained in the state space of M .

Figure 3.4 provides an example of an FPT, while Figure 3.5 depicts the DPFA

constructed by the LSM algorithm. For example, in Figure 3.5 the transition state

T (a, aba) is the largest suffix of abaa contained in the state space. Since abaa and

aba are not in the state space, T (a, aba) = aa.
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The mechanism for state merging in the LSM algorithm reflects the time-dependent

nature of the underlying data (i.e., ECG signals). In particular, the transition state

T (q, aj) is found by repeatedly deleting the left-most letter from the string qaj, which

represents the process of forgetting information from the most distant past, in order

to update the system to the current state.

Algorithm 3 Largest Suffix Merging

Require: T = 〈Q0,Σ, ε,Freq〉 . FPT
0 < C < Freq(ε) . cutoff parameter

Ensure: M = 〈Q,Σ, ε, P, T 〉 . DPFA
Q← {ε} . initial state
for all q ∈ Q0 do

while Freq(q) > C do
for j ← 1, d do

P (q, aj)←
Freq(qaj)

Freq(q)
. probability function

T (q, aj)← qaj
while Freq

(
T (q, aj)

)
≤ C do

T (q, aj)← largest suffix of T (q, aj)
end while . transition function
Q← Q ∪ {T (q, aj)} . state space

end for
end while

end for

3.2.3.4 Implementation

When training the DPFA MP from the input probabilistic string P, there is no

need to construct the states of the FPT TP with frequency less than C, and the

LSM algorithm is executed to merge the states of TP immediately after they are

constructed.

The combined algorithm has computational complexity O(dns) and needs total

memory O(nl), where d is the size of the alphabet Σ, n is the length of the probabilistic

string P, s is the size of the state space Q, and l is the length of the longest word in

the state space Q. Both s and l depend on the cutoff parameter C.
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Figure 3.4: DPFA generation, an example of FPT

FPT - The DPFA generation module searches through the tree. The yellow words have frequency
at least C, while the red words have frequency less than C. This example will generate a DPFA
with 8 states.

Figure 3.5: DPFA generation, an example of transition states

The DPFA generated from the previous figure. The transition state T (a, aba) is the largest suffix of
abaa contained in the state space. Since abaa and aba are not in the state space, T (a, aba) = aa.

3.2.4 Classification Method

The classification scheme contains the training phase and the testing phase. By

the end of the training phase, the algorithm has already learned the DPFA M+ and

M− for the “positive ECG signals” and “negative ECG signals” classes respectively.

Then to classify a given ECG signal g(t) from the testing dataset, we first symbolize
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the signal into a probabilistic string Pg, and then compare the goodness-of-fit between

Pg and M+ versus Pg and M−. The goodness-of-fit is measured using the expected

likelihood between word distributions.

3.2.4.1 The Word Distribution Defined by a DPFA

Let M = 〈Q,Σ, ε, P, T 〉 be a DPFA, then M defines a word distribution fM :

Σ∗ → R on the alphabet Σ by

fM(aj1aj2 . . . ajm) =
m∏
k=1

P (qk−1, ajk) (3.2)

for all non-empty aj1aj2 . . . ajm ∈ Σ∗ and fM(ε) = 1, where the state qk ∈ Q is defined

recursively by q0 = ε and qk = T (qk−1, ajk) (see Algorithm 4).

Algorithm 4 Word Distribution of a DPFA

Require: M = 〈Q,Σ, ε, P, T 〉 . DPFA
Ensure: fM(w) ∈ R . w = aj1aj2 . . . ajm ∈ Σ∗

w ← ε
q ← ε
fM(w)← 1
for k ← 1,m do

fM(w)← fM(w)P (q, ajk)
w ← wajk
q ← T (q, ajk)

end for

3.2.4.2 Compute Expected Likelihood

The expected likelihood EL(fP, fM) is defined as the expected value EfP [L(fM)]

of the likelihood function L(fM |w) over all words w ∈ Σ∗:

EL(fP, fM) =
∑

w∈Σ∗,fP(w)6=0

L(fM | w)fP(w) =
∑

w∈Σ∗,fP(w)6=0

fM(w)fP(w), (3.3)

which is computed with respect to the word distribution fP(w).
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The summation in (3.3) is well-defined as there are only finitely many words

w ∈ Σ∗ with fP(w) 6= 0 since P is a probabilistic string of finite length. As a measure

of goodness-of-fit, a greater value of expected likelihood implies a better fit between

the word distributions.

3.2.4.3 Classification

If EL(fPg , fM+) > EL(fPg , fM−), then the ECG signal g(t) is classified as “positive

ECG signal”, otherwise it is classified as “negative ECG signal”.

3.2.4.4 Implementation

The likelihood values L(fM±|w) can be calculated simultaneously with the word

distribution fPg(w) as the algorithm searches through all the words w ∈ Σ∗ until

fPg(w) = 0. Once the values L(fM± |w) and fPg(w) are found for all relevant w ∈ Σ∗,

one then applies formula (3.3) to compute the expected likelihoods EL(fPg , fM±).

The values EL(fPg , fM±) can be extremely small, which can lead to rounding

errors. Thus, log EL(fPg , fM±) is used instead of EL(fPg , fM±).

3.3 Arrhythmia and Event Annotation

Annotations of different types of arrhythmia are needed for using as labels in de-

tection and prediction experiments. Databases in DB1 has their own annotations,

most of them are annotated by clinicians. DB2 which is the retrospective database

collected in UMHS, does not have any annotations. We have designed an automated

annotation for different types of arrhythmia to encompass this difficulty. Continu-

ous ECG signals recorded with Bodyguardian for DB4 and DB5 are annotated by

Preventice’s own BeatLogic platform which is a commercially available FDA-cleared

system. The BeatLogic platform consists of 2 deep-learning models, BeatNet and

RhythmNet, the results of which are consolidated using rules-based logic to produce
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a single contiguous annotation file. We used Preventice’s annotation in DB4 and DB5

labels. The Preventice annotation included three types of AFib, AFib normal (heart

rate (HR) 60-100 BPM), AFib slow (HR < 60 BPM) and AFib rapid (HR > 100

BPM). All three types of AFibs for our analysis in DB4 and DB5 have been anno-

tated with Preventice with > 0.75 confidence. Please note that the AFib slow and

AFib normal might be less severe forms of AFib which were not included according

to our own annotations in DB2.

In the sections below, automated annotations are used and described below in

sections below for different types of arrhythmias used for labeling data in DB2.

3.3.1 AFib Annotation

To label the unannotated signals, annotation algorithms have been developed

based on the combination of heart rate and duration. Signals with extremely high

heart rate that last for a short period of time and signals with relatively lower heart

rate that last for a longer period of time are both considered to be indication for

symptomatic AFib. Using a single heart rate and duration might not capture all of

the symptomatic AFib events. Here we propose a heart rate-duration criteria region

in terms of a linear inequality that involves the values of heart rate recorded during

different duration periods.

3.3.1.1 AFib Annotation Algorithm

The annotation algorithm consists of 6 major parts: pre-processing of signal, R

peak detection, noise detection, heart rate and duration calculation, grid search on

combinations of heart rate and duration, and labelling signals according to the heart

rate-duration criteria:

1. During the signal pre-process step, we used a double median filter on the raw

ECG signals to remove baseline wandering and applied a Butterworth band
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pass filter to remove noises.

2. For R peak detection, we applied the Pan Tompkins algorithm for peak detection

Pan and Tompkins (1985).

3. Noise detection is performed by using 3 criteria. First, the percentage of missing

signal in a defined time window (set to 300s) is calculated, with the window be-

ing classified as noise if the missing signal percentage is above a certain threshold

(set to 15%). Secondly, if the signal passes the first criteria then we will check

for missing peaks by total variation analysis. Thirdly, if the signal passes both

the first and the second criteria, the third criteria will check if the percentage

of missing R peaks is above a certain threshold (set to 15%) in the current

window. The window of signal will be classified as noisy if it fails any of the

three criteria. Noisy signals will not be used for subsequent annotation.

4. Heart rate is calculated based on R peaks in a certain time interval. Duration

is calculated by counting the number of consecutive intervals that a particular

heart rate spans. The time interval is set to be 30 seconds and count up to 6

intervals, which gives us a range from 30 to 180 seconds.

5. A grid search on different combinations of heart rate and duration is performed,

for example using heart rates from 100 to 200 with an increment of 10 beats

at each step and duration from 30 to 180 with an increment of 30 seconds will

give us 66 different combinations.

6. Portions of signals with extreme high heart rate y2 that lasts for a short time

period x1 and a relative lower heart rate y1 that lasts for a longer time period x2

are both considered to be indication for symptomatic AFib. Using the straight

line passing through the points (x1,y2), (x2,y1), we check the heart rates between

durations x1,x2, if any of the heart rates on the duration grid is above the heart
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Figure 3.6: AFib annotation, an example of Heart Rate/Duration Criteria line goes
through (30,180) and (180,100).

rate-duration criteria line, that point of the signal is classified as symptomatic.

Figure 3.6 shows an example of Heart Rate/Duration Criteria line goes through

(30, 180) and (180, 100). If the heart rate/duration is satisfied by any of the

six red points in the grid search, it is classified as AFib.

This annotation method aggregates criteria found within the clinical literature for

severe cardiac events, and enables us to determine the cardiac events wherein a patient

will be considered symptomatic. However, it may not capture other cardiac events

that, though less severe, may still be predictive of severe events to come. As such,

for each type of cardiac event we wish to predict, clinician in our research team has

helped in both verifying the symptomatic criteria and identifying additional portions

of the ECGs that are indicative of the underlying event, but do not fall within the
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above criteria. This will enable the research team to annotate the relevant portions

of the collected waveforms, as will ensure that the predictions made by our algorithm

are correlated with true events.

3.3.1.2 Self-Reported Symptom Analysis

To better understand the relationship between symptoms and it’s effect on heart

rates, we have performed an analysis with patient’s self reported symptom data. Pa-

tients were monitored at home and asked to report the severity of multiple symptoms.

Five measurements are included: shortness of breath, fatigue level, palpitations, chest

pain and dizziness. We calculated a summary score z as the sum of these five mea-

surements and normalized the score for each individual: zi = xi−min(x)
max(x)−min(x)

. We then

extracted the maximum heart rate that occurred within 5 minutes before the time

that the symptom was reported and calculated the duration of that maximum heart

rate period. The objective of this experiment is to use maximum heart rate and its

duration to classify signals with high versus low symptom score z. The high symptom

score group consists of signals with z above the median of the normalized summary

score and low symptom score is defined as below the median of the normalized sum-

mary score. However, we did not find a clear correlation between symptomatic scores

and heart rate and duration. This may be due the unreliability of the self-reported

data, as different participants grade levels of discomfort and pain differently.

3.3.1.3 Literature Review

An extensive literature review has been conducted to identify severe AFib episodes.

AFib is defined by Calkins et al. (2012) to be a cardiac arrhythmia with three charac-

teristics: ’absolutely’ irregular RR intervals, no distinct P waves, and variable atrial

cycles of length < 200ms (> 300bpm).

An episode is considered significant when it lasts for at least 30 seconds January
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Table 3.1: The relationship between durations of AFib episodes and cardiovascular
health.

Duration of an AFib episodes Notes

30 seconds
Definition of AFib lasts for at least 30 seconds
ECG at least 30 seconds for accepted estimation of HR.

3 minutes
Considered as severe AFib episodes
by cardiologist in expert interview.

5 to 6 minutes Associated with increased risk of stroke.
5 minutes to >24 hours Associated with increased risk of stroke.
prolonged episodes of AFib Higher AFib density given same AFib burden

Figure 3.7: AFib annotation duration, a graphical depiction of the relationship be-
tween AFib duration and cardiovascular health.

et al. (2014), thus 30 seconds can be used as the lower limit for severe AFib in terms

of duration. AFib duration anywhere from 5 minutes to > 24 hours is associated

with increased stroke risk Passman and Bernstein (2016). Data from implantable

electronic cardiac devices also suggest that even relatively short AFib episodes (5-

6 minutes) are associated with an increased risk of stroke Passman and Bernstein

(2016). Given the same AFib burden, a patient with a small number of prolonged

episodes of AFib has a higher AFib density than a patient with many brief episodes

of AFib Passman and Bernstein (2016). Table 3.1 and Figure 3.7 demonstrate the

relationship between durations of AFib episodes and cardiovascular health.

In a nationwide community cohort of patients with permanent AFib, nearly all

patients had resting heart rate < 110 bpm (99%) and the majority (70%) were < 80

BPM. Atrial rates above a certain cut-off (typically 170–220 BPM) can be categorized

as atrial high rate episodes (AHRE). AHRE can be triggered by any of the atrial

tachyarrhythmias, including AFib, atrial flutter, or atrial tachycardia, with AFib

28



Table 3.2: The relationship between heart rates of AFib episodes and cardiovascular
health

Resting Heart Rate Notes

80 bpm
Majority of participants with permanent AFib
70% were <80 bpm Steinberg et al. (2013).

100 bpm
CCS guidelines define the resting heart rate
target as <100 bpm, >100 bpm were associated
with adverse outcomes in AFFIRM and RACE trials Macle et al. (2016).

110 bpm

Nearly all participants had resting
heart rates <110 bpm (99%),
in a nationwide cohort with permanent AFib Macle et al. (2016).
Effective treating target for AFib Van Gelder et al. (2010).

170-220 bpm Categorized as atrial high rate episodes Shuai et al. (2016).
>180 bpm Severe AFib episode by cardiologist interview

and atrial flutter representing the most common arrhythmias Shuai et al. (2016). In

the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM)

study, adequate rate control was defined as < 80 bpm at rest, < 110 bpm on moderate

exertion (6-minute walk test), and average and maximal heart rates of < 100 bpm

and < 100% of age-predicted maximum, respectively, on 24-hour Holter monitor

Olshansky et al. (2004). The CCS guidelines define the resting heart rate target as <

100 bpm Macle et al. (2016); Andrade et al. (2017), the rationale being the observation

that resting heart rates> 100 bpm were associated with adverse outcomes in AFFIRM

and RACE. Table 3.2 and Figure 3.8 demonstrate the relationship between heart rates

of AFib episodes and cardiovascular health.

A criteria region is constructed for severe AFib episodes based on literature reviews

for HR and duration. Figure 3.9 below shows the suggested severe AFib region by

combining Figure 3.7 and Figure 3.2. Episodes less than 30 seconds of duration

are considered ’No AFib’, since 2014 ACA guideline defines AFib episodes to be 30

seconds and greater, also study suggests that ECG as least 30 seconds is needed for

accepted estimation of HR. HR below 80 is considered as no AFib, since it is well

below the treating targets for AFib (100 BPM). A linear line was selected using

duration-HR points (0.5 minutes, 180 bpm) and (5 minutes, 80 bpm). 180 bpm is
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Figure 3.8: AFib annotation heart rates, a graphical depiction of the relationship
between heart rate and severity of AFib.

chosen because it is our expert reviewed HR for severe AFib and 5 minutes is chosen

because increased risk for stroke is associated for duration > 5 minutes. The block

bounded by HR 80 to 180 bpm and duration 30 seconds to 5 minutes is separated

by the line in half. The upper triangle is considered more likely to be severe AFib

episodes, since higher HR and longer duration is associated with higher severity.

3.3.2 SVT Annotation

To make predictions of SVT episodes waveforms from patients diagnosed with

SVT required annotation, as some of the databases we have used are unannotated

databases. An SVT annotation algorithm with input from cardiologists has been

developed. The portions of signal annotated as SVT by our algorithm were then

used predict SVT events. For the pre-processing of the data we applied a fourth-

order Butterworth bandpass filter with cutoff at 0.5 and 40 Hz to the raw ECG for

noise removal, and a double median filter with orders 0.2 and 0.6 times the sampling
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Figure 3.9: AFib annotation, combining duration and heart rates

Assessing the severity of AFib at rest using a combination of heart rate and duration.

frequency to remove baseline wandering. We have also excluded the regions of the

signal that are too noisy for analysis. An automated annotation algorithm was applied

to determine SVT episodes with the ECG signal. Time windows consisting of three

R-R intervals were annotated as SVT if they satisfied all of the following four SVT

annotation criteria. First, an automated annotation algorithm based on the heart

rate-duration criteria line was used to annotate high heart rate events. Portions

of signals with extremely high heart rate y2 that last for a short time period x1,

and a relatively lower heart rate y1 that last for a longer time period x2, are both

considered to be indicative of high heart rate events. Using a straight line passing

through the points (x1,y2) and (x2,y1), the lower bound for heart rates in the criteria

region between duration x1 and x2 are determined. If any of the heart rates on the

duration grid are above the heart rate-duration criteria line, then that portion of the

signal lies in the criteria region and will be classified as high heart rate. In the case of

SVT, the episodes lie above the heart rate-duration criterion line passing through the
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points (30, 150) and (180, 100). Secondly, the difference between three consecutive

R-R intervals should be less than 50 ms. Thirdly, there should be fewer than 4 P/T

like waves within the window. Finally, the cross-correlations with the 500 P-wave

templates extracted from the MIT-BIH P-wave database should be less than 0.85.

A portion of the annotated SVT episodes were randomly selected and reviewed by a

cardiologist to confirm the sensitivity of the annotation algorithm.

3.3.3 VT Annotation

To make prediction on VT episodes in our databases, waveforms diagnosed with

VT required annotation. Two criteria were first applied to filter out the intervals

that might contain VT episodes. The first criterion is the heart rate should be above

100 bpm and the second criterion is average width corresponding to half length of

the peaks should be wider than 40 ms. The second criterion is defined because VT

episodes have wide QRS complex (> 120 ms), with half length of the peaks > 40 ms,

the width QRS complex will likely to be at least > 80 ms. This criterion is set to be

lower than the 120 ms, to make sure that we capture all the possible VT episodes for

manual review. The last step of VT annotation requires manual review by clinician

of the episodes which satisfied the 2 criteria.

3.3.4 Bradycardia Annotation

In order to extract bradycardia events that have more clinical importance, several

criteria were employed in terms of heart rate, medical diagnosis and medication.

1. Only the events with a heart rate of less than 60 BPM for 10 consecutive heart

beats were considered. 60 BPM was chosen because the National Institutes

of Health defines bradycardia as a heart rate < 60 BPM in adults other than

well trained athletes Kusumoto et al. (2019). Some studies and guidelines have

suggested to use < 50 bpm for the definition. We have chose < 60 bpm over

32



< 50 bpm for because of first other additional criteria on co-morbidity and

medication have already been used filter the population, secondly with < 50

bpm there will be very limited bradycardia events for analysis (only 38 events

from 23 participants if < 50 bpm criteria was used). The choice of 10 consecutive

beats was made to eliminate short intervals of accidental low heart rate.

2. Patients without CHF were excluded. CHF makes the heart pump less effi-

ciently and effectively, thus causing symptomatic bradycardia.

3. The remaining population that satisfies both criteria is then separated according

to whether the patient is taking beta blockers or not. Beta blockers are a type

of medication used to manage abnormal heart rhythms including treatments of

tachycardia, myocardial infarction, CHF and other conditions. The effect of

beta blocker can result in a slower heart rate. The participants taking beta

blockers were excluded to eliminate low heart rates which were potentially due

to medication.

3.3.5 Activity Level

The raw accelerometer data are collected along three orthogonal axes in the device-

specific frame of reference. The continuous accelerometer data are collected using a

wireless monitoring device that adheres to patient’s chest (Preventice Solutions, Inc)

and sampled at 10 Hz. The accelerometer data were up-sampled to match the ECG

sampling rate. For the analysis, the accelerometer magnitude am(t) consisting of the

vector magnitude of the accelerometer data at each time point is used in analysis

together with the synchronized ECG signal.

am(t) =
√
x(t)2 + y(t)2 + z(t)2

= accelerometer magnitude at the time point t.

(3.4)
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The data is aggregated using mean amplitude deviation (MAD) which computes

the deviation of am(t) from its mean over the corresponding epoch, averaged over the

length of the annotated AF signal Bakrania et al. (2016).

MAD =
1

n
×

n∑
i=1

|am(ti)− am| (3.5)

where:

am(ti) = accelerometer magnitude at the ith time point

am = mean accelerometer magnitude within the time period of interest

n = length of the time period

The MAD ≤ 0.75 quantile relative to the measurements from the entire group

id designated as low activity and MAD > 0.75 quantile as high activity in order

to account for inter-individual differences in activity levels within the study group.

Threshold of 0.75 quantile for distinguishing activity levels is an arbitrary choice since

there is no well-established guideline for low vs. high activity level.

3.4 Pre-processing and Event Extraction

The aim of pre-processing is to remove noise from ECG signals. Methods focusing

on heartbeat segmentation within the ECG signal tend to require pre-processing Luz

et al. (2016). Automated annotation algorithms were used to annotate the arrhythmia

event and activity events as described in section 3.3.1. Pre-processing, noise removal,

and arrhythmia event extraction were performed in the same fashion for different

types of arrhythmia. The same pre-processing was applied to all methods in order to

make the results commensurable.

The following section describes the pre-processing and noise removal steps.
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3.4.1 Pre-processing

During the signal pre-processing step, a fourth-order Butterworth band-pass filter

with cutoff frequencies of 0.5 and 40 Hz is first applied to the raw ECG signal to

remove noise, after which a double median filter with orders equal to 0.2 and 0.6

times the sampling frequency is applied to remove baseline wandering. To calculate

heart rate and beat duration, the Pan–Tompkins algorithm for QRS detection is used

Pan and Tompkins (1985) Sedghamiz (2014).

3.4.2 Noise Removal

3.4.2.1 Noise Detection Algorithm 1

After R peak detection, a stepwise noise detection method is performed. There

are 3 criteria for noise detection. First, the method calculates the percentage of

missing signal in a defined time window (300 seconds) and checks if the missing

signal percentage is above a certain threshold (15%). If the percentage of the missing

signal is above the threshold, the signal is classified as being noisy by the first criteria.

Secondly, if the signal passes the first criterion then non-linear filter analysis is used

to determine missing peaks. If the signal passes both the first and the second criteria,

the third step determines if the percentage of missing R peaks is above a certain

threshold (15%) in the current window. The window of signal will be classified as

noisy if it fails any of these three criteria. Noisy signals will not be used for subsequent

annotation. Signals that occur too close to the noisy signal will also be excluded from

the analysis.

3.4.2.2 Noise Detection Algorithm 2

The ECG is then divided into time windows of 30 seconds each. R peaks are

found using the Pan-Tompkins algorithm Pan and Tompkins (1985). Three criteria
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are evaluated for each window based on cross-validated thresholds: high amplitude

artifacts, abnormal R peak distributions, and high amounts of distortion artifacts.

Distortion artifacts are characterized by clusters of critical points on the ECG curve.

Critical points are points on the ECG curve with a derivative of zero and an absolute

amplitude greater than 0.25 times the average R peak height within the window. A

high number of critical points indicates that the underlying waveform is hidden by

high frequency and high amplitude distortions that cannot be removed by simple

filtering.

3.4.3 Pre-event Signal Extraction

One of the aims of this study is to predict the onset of an cardiac event using

pre-event signals. In order to assess the predictive power of the method, events that

occurred too close to previous events were excluded, as the prediction interval should

not overlap with arrhythmia events. Events that occurred within defined length

of minutes of a noisy signal were also excluded, with the aim to ensure that the

prediction interval is out of the noisy signal range. Figure 3.10 shows an example

of an annotated ECG signal. After annotation, there is an annotated event A and

attendant prediction interval B, which is located tgap minutes before the annotated

event A with a length of tsignal minutes. The interval C classified as noise will be

excluded from the analysis, along with the neighboring intervals of defined length of

minutes.

In the prediction experiments, different combinations of tgap and tsignal for different

types of arrhythmia and cardiac events.

3.5 Comparison Method

In order to validate DPFA performance, several comparison algorithms have been

applied to the datasets. In most cases the algorithm outperforms the other more
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Figure 3.10: Prediction interval extraction.

Intervals of signal are extracted for use in prediction that are tgap minutes prior from the arrhythmia
event and several minutes away from detected noise.

traditional and well-established approaches, including a heart rate variability HRV

based method using SVM a method combining discrete wavelet transform (DWT),

PCA, a deep neural network (DNN), a CNN, and a CNN with LSTM.

Automatic detection of types of arrhythmia or cardiac conditions encompasses sev-

eral basic steps, including pre-processing/segmentation, feature extraction, followed

by a classifier Apandi et al. (2018). Machine learning (ML) approaches for arrhyth-

mia detection can be grouped into two main categories based on feature extraction

strategies Rizwan et al. (2020). The first group uses features extracted from the raw

ECG as input followed by classical ML algorithms such as SVM, KNN, and decision

trees as classifiers. Such ML algorithms require dimensionality reduction after fea-

ture extraction from the ECG signals. The second group uses raw ECG data as input

and does not require feature extraction. Information from the original physiological

signals can be directly processed by algorithms in this group Faust et al. (2020). ML
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algorithms like neural networks, including their basic and advanced versions, use the

raw data for model training and detection of arrhythmia types. Compared to the first

group, algorithms in this group generally have higher computational cost and require

larger datasets to achieve equal or greater performance. Our method belongs to the

second group, even though it is not based on neural networks.

In medical applications, datasets that are both sufficiently large and well-annotated

are not always available due to nature of the various diseases. Thus both groups have

their advantages and drawbacks. In this study we selected five methods from both

groups for comparison.

The first method is an SVM based arrhythmia classification algorithm with fea-

tures extracted from heart rate variability (HRV with SVM) by Asl et al. Asl et al.

(2008). Following Asl et al. (2008), time and frequency domain features were ex-

tracted from the signals. However, generalized discriminant analysis (GDA) for fea-

ture reduction was not utilized in this study since GDA would reduce the number of

features, and there are only two classes to begin with. The SVM model with radial

basis function (RBF) kernel was used for classification.

The second method for comparison uses the principal components of the DWT

coefficients as features and SVM as the classifier Martis et al. (2012).

The third comparison method is a DNN for arrhythmia prediction by Hannun

et al. (2019). The authors used a CNN to detect types of arrhythmia. The network

architecture has 34 layers, takes ECG signals as input and outputs arrhythmia classes.

The same experimental setup was used as in Hannun et al. (2019). The network was

trained de novo with random initialization and the Adam optimizer with default

parameters.

The fourth and the fifth comparison methods are both based on CNN techniques.

The fourth method, due to Acharya et al. (2017a), utilized a CNN algorithm to

automatically detect different ECG segments. The algorithm consists of an eleven-
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layer deep CNN. The fifth method, due to Tan et al. (2018), employed a LSTM (CNN

with LSTM) to classify ECG signals.

To compare the performance with alternative algorithms, the same training, cross

validation, and testing data sets were used.
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CHAPTER IV

Data Sources and Description

4.1 Introduction

A total of six databases have been constructed and collected for the project.

Database 1 (DB1) is comprised of several publicly available databases and has been

used for initial algorithm development. These are also benchmark databases that also

allow us to compare our algorithm with other existing methods. Database 2 (DB2)

is a retrospective database collected by UMHS, it containing previous UMHS car-

diac patients and non-cardiac control group. Clinicians have also reviewed DB2 and

annotated the waveforms, these annotations are the gold standard for classifying ar-

rhythmia types and can be used for further model training and prediction. Database

3 (DB3) is planned to be a prospective database that contains in-hospital data col-

lected from inpatients at UMHS. However, DB3 has not been collected due to patient

participation issues. Details about the collection difficulties can be found in section

4.4. Database 4 (DB4) consists of data collected from the patients after discharge,

at-home, in-vehicle and in other daily activities. DB4 contains data collected from

portable device and each participant has approximately 14 days of continuous ECG

data. Database 5 (DB5) contains data collected from healthy subjects, it serves a

control group. Each participant has approximately 7 days of continuous ECG data.

Database 6 (DB6) consists of a total of 45 patients with history of AF who presented
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Figure 4.1: Overview of databases, methods and prediction experiments.

to University of Michigan and are recruited in the study. The ECG and accelerometer

data were recorded continuously for up to 3 weeks. See Table 4.1 for a summary of the

characteristics of the databases and Figure 4.1 for an overview of databases, methods

and prediction experiments. Details of each database are described in sections below.

4.2 Database 1

DB1 is comprised of five external databases: PhysioNet/CinC 2017 Goldberger

et al. (2000), MIT-BIH Arrhythmia database Moody (1983), European ST-T Database

Taddei et al. (1992), PTB Diagnostic Database Bousseljot et al. (1995) , MIMIC-III

database Johnson et al. (2016). Among the five databases, PhysioNet/CinC2017,

MIT-BIH and European ST-T databases contain annotated signals. As the MIT-BIH

and European ST-T databases contain very few AFib patients and PhysioNet/CinC2017

consists only of isolated single episodes, all three databases are unsuitable for devel-

oping and testing for predictions. To have more data for supraventricular arrhythmia

and ventricular arrhythmia we have included three additional databases: MIT-BIH

supraventricular arrhythmia database Greenwald et al. (1990), MIT-BIH malignant

ventricular arrhythmia database Greenwald (1986) and Creighton university ventric-
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Table 4.1: Summary of the characteristics of the databases.

Database
Number of
Subjects

Source Data
Data
Collection
Environment

Experiment

DB1 Various
Publicly
available
databases

ECG
signals

Various
Arrhythmia
detection

DB2 1270
UM Hospital
Retrospective

ECG
signals

In-hospital
Arrhythmia
prediction

DB4 66 UM Hospital

Continuous
signals
from
Bodyguardian

At home,
in-vehicle,
others

Arrhythmia
prediction

DB5 80
Healthy
Subjects

Continuous
signals
from
Bodyguardian

At home,
in-vehicle,
others

Arrhythmia
prediction

DB6 45
AFib
Subjects

Continuous
signals
from
Bodyguardian

At home,
in-vehicle,
others

Arrhythmia
cardiac
event
prediction

ular tachyarrhythmia Nolle et al. (1986). These three databases have annotations for

SVT and VT and we used them for testing our algorithm’s performance on SVT and

VT detections. See Table 4.2 for a summary of the databases we have used in papers

and manuscripts.

In performing AFib detection on the PhysioNet/CinC2017 database, we correctly

classified 84.2% AFib cases and 93.3% non-AFb cases in the testing set, with an F1

score of 0.74 and AUC of 0.95. For SVT detection, we correctly identified 41/56 SVT

events (0.73 sensitivity) and 97/100 (0.97 specificity) non-SVT events. The AUC is

0.951 and F1 of 0.914. Details about the SVT detection are in section 5.3.1.

For VA detection, we correctly identified 243/261 (0.93 sensitivity) VA episodes

and 227/261 (0.87 specificity) non-VA episodes for 5-seconds long signals, with an

AUC of 0.96 and F1-score of 0.91. For 2-seconds long signals, the algorithm correctly

identified 625/662 (0.94 sensitivity) VA episodes and 600/662 (0.91 specificity) non-

VA episodes with an AUC of 0.97 and an F1-score of 0.93. Table 4.3 below summarizes
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Table 4.2: Database 1 Overview

Source

No. of
Recordings

/
Patients

Data
Length

of
Signal

Freq
-uency
(Hz)

Anno
-tation

Experi
-ment

PhysioNet
/CinC 2017

8582
/

NA

Single
lead

30 - 60
seconds

300 Yes
AFib

detection

Long-term
AF Database

84
/

NA

Holter
Recordings

various 128 Yes
SVT

detection

MIT-BIH
Arrhythmia

48
/
47

ML II,
modified
lead V1

30
seconds

360 Yes
SVT

detection

MIT-BIH
Ventricular
Arrhythmia
Database

22
/

NA

Single
lead

30
seconds

250 Yes
SVT

detection

Creighton
University
Ventricular

Tachy-
arrhythmia
Database

35
/

NA

Single
lead

8
minutes

250 Yes
SVT

detection

results based on DB1.

Arrhythmia prediction experiments were not tested in DB1, since most of the

recordings in the publicly available databases were of insufficient duration. DB1 was

mainly used for preliminary algorithm development, for prediction analysis we used

other databases. Details about the prediction analysis can be found in DB2, DB4,

DB5 and DB6.

4.3 Database 2

DB2 is a retrospective database containing previous UMHS cardiac patients and

a non-cardiac control group. It increases size of data for algorithm development and
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Table 4.3: DB1 Result summary for arrhythmia detection

Arrhythmia Sensitivity Specificity AUC F1

AFib Detection 0.84 0.93 0.95 0.74
SVT Detection 0.73 0.97 0.95 0.91
VA Detection 0.93 0.87 0.96 0.91

Table 4.4: Summary of DB2 by types of arrhythmia

Arrhythmia Number of Waveforms Number of Subjects

AFib 3540 514
Other 2464 355
VT 2156 309
VF 264 45

Block 1000 141
MI 1556 223

Brady 396 62
SVT 976 139
Total 8838 1270

training. One of our main objectives is to predict various types of arrhythmia. Length

of ECG is too short for predicting these events, DB2 on the hand has continuous

hospital bedside ECG recorded from cardiac patients. We used data for training the

prediction models.

The ECG waveforms in DB2 were collected from leads I, II, III and IV. There is a

total of 8838 waveforms from four leads from 1270 participants in DB2. Among these

8838 waveforms, there are 514 subjects with AFib episodes across 3540 waveforms.

The data quality is monitored by UM experts according to UM standards. A summary

of types arrhythmia contained in DB2 is shown in Table 4.4 below.

We have completed AFib prediction analysis, SVT prediction analysis and VT

prediction using DB2 with the DPFA algorithms. Our own annotation algorithms for

AFib, SVT and VT were applied to the waveforms in DB2 and used for classifying

events. For AFib predictions, the AUC is above 0.85 for all 2-minute long prediction

intervals. Prediction performances with 2-minute long signals are slightly better than
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Table 4.5: DB2 result summary for arrhythmia prediction

Arrhythmia
Gap

Interval
(min)

Prediction
Interval
(min)

AUC

AFib
Prediction

0.5 2 0.85
1 2 0.85

1.5 2 0.86
2 2 0.86

2.5 2 0.86
3 2 0.86

SVT
Prediction

0.5 2 0.85
1 2 0.84

1.5 2 0.83
2 2 0.83

2.5 2 0.82
3 2 0.83

VT
Prediction

0.5 2 0.78
1 2 0.77

1.5 2 0.76
2 2 0.75

2.5 2 0.75
3 2 0.76

1-minute long and 0.5-minute long signals. For the SVT prediction analysis, we

examined the predictive power of the DPFA algorithm with different pre-SVT lengths.

The AUC is above 0.80 for all 2 minute-long prediction intervals. As the time to

the SVT event increases, the mean prediction performance gradually declines while

variance increases. The AUC for VT prediction is around 0.75, which are not as

good as other types of arrhythmias like AFib or SVT. The lack of performance might

be due to the low number of participants having VT compared to other arrhythmia

types. Details about the prediction results can be found in sections in Chapter 6.
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4.4 Database 3 and Database 4

4.4.1 Database Construction Challenges

Database 3 (DB3) is planned to be a prospective database that will contain in-

hospital data collected from current inpatients at UMHS. It will contain continuous

ECG, blood pressure and patient clinical data. Database 4 (DB4) consists of a subset

of patients that will be included in DB3 with data collected after discharge, at-home

and during daily activities including driving. Prior to the start of patient recruitment,

several changes were made to the study protocol including the removal of the required

sensor, the addition of the blood pressure cuff, and recruiting from the Cardiovascular

Center (CVC) ICU instead of from the Emergency Department.

The purchase of additional devices required for the study was delayed. These

were later resolved and the devices were approved for purchase after which patient

recruitment started. However, the aforementioned recruitment strategy resulted in a

number of challenges for both databases. For potential patients planned to include in

DB3, due to their illness many of these patients were intubated and/or sedated and

were thus unable to consent to in-hospital monitoring. Additionally, the severity of

their illnesses curtailed patient interest in study participation. Due to these patient

participation concerns, DB3 has not been collected as planned.

There were numerous challenges for recruiting patients for the at-home database

DB4 as well. Many patients who were discharged from the CVC ICU had recently

closed wounds on their chests as a result of recent surgery. These wounds prevented

them from wearing the BodyGuardian monitor. Other potential patients were pre-

scribed a separate at-home monitor for clinical use, which prevented them from wear-

ing the BodyGuardian monitor. Finally, as UMHS serves as a regional referral hos-

pital, many patients lived two or more hours away, and were unwilling to travel back

to Ann Arbor to return equipment. These challenges resulted in only one study
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participant being successfully recruited from the CVC ICU.

In order to resolve these aforementioned recruitment issues, we revised our re-

cruitment strategy in consultation with our study coordinator and clinician. Rather

than recruiting from the CVC ICU, where patients meet our inclusion criteria with

respect to relevant arrhythmias but are often too sick to be recruited, we have been

recruiting patients who use the services provided by the CVC Device Clinic.

The CVC Device Clinic services patients with pacemakers, ICD, and other cardiac

equipment. These patients are at risk of developing life-threatening arrhythmias such

as severe AFib or SVT, VFib, and VT, making them ideal subjects for our study.

For Databases 3 and 4, 66 patients have been enrolled, 11 patients have exited the

study early or have no data. A total 55 patients have completed the study and have

data from BodyGuardian devices. Although we have enrolled less participants than

originally planned in the, each participant has a much longer monitoring time. For

each subject that completed the study we have approximately 14 days of continuous

ECG data compared to 3 - 4 days as planned. Table 4.6 below shows number of

participants with different diagnosis in DB4.

We have completed AFib prediction analysis, SVT prediction analysis using DB4

with the DPFA algorithms. Preventice annotation algorithm For AFib predictions,

the AUC is around 0.71 for various prediction intervals. For the SVT prediction

analysis, we examined the predictive power of the DPFA algorithm with different

pre-SVT lengths. The AUC is above 0.75 - 0.88 for various prediction intervals. As

the time to the SVT event increases, the mean prediction performance gradually

declines while variance increases.

4.5 Database 5

Database 5 consists with healthy control participants for the study. Similar to

DB4, participants in DB5 have data collected with Bodyguardian devices provided
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Table 4.6: Patients in Database 3 and Database 4 by diagnosis

Diagnosis Number of Participants

AFIB 9
AFIB, Non-sustained ventricular tachycardia 2
AFIB, VFIB 1
AT 1
AV block 2
Bradycardia 2
Hypertrophic cardiomyopathy 1
Heart Block 1
Implantable cardiac monitor/ complete heart block 1
Non-ST elevation myocardial infarction 1
Non-sustained ventricular tachycardia 5
Sinus brady 1
Tachy-Brady syndrome 1
VFIB 1
VFIB arrest 1
VT 23
VT, SVT 1
Wolff Parkinson white 1

by Preventice. A total of 80 subjects have been enrolled as planned, with 74 having

completed data collection. For each subject that completed the study we have ap-

proximately 7 days of continuous ECG data which is much longer than what we have

planned (2-3 hours each).

Table 4.7 below shows a summary of recorded time in DB4 and DB5. There is a

total of 721 ECG recorded over 13963 hours in DB4 and a total of 555 ECG recorded

over 10307 hours in DB5. 26328 AFib events for total of 364 hours are recorded in

DB4 and 348 AFib events over a total of 7 hours are recorded in DB5 with Preventice

annotations. Among the 55 participants in DB4, 16 of them had AFib events during

driving. There is a total of 13963.5 hours ECG recording time in DB4, with 873.7

(6.26%) hours of them recorded in vehicle. There is a total of 363.5 hours of AFib

recorded in DB4, with 16.4 (4.51%) hours of them recorded in vehicle. So there is

no evidence suggesting more AFib were recorded in vehicle. A total of 532 hours of

48



Table 4.7: Summary of recorded ECG time

DB4 DB5

Total number of ECG 721 555
Total ECG time (hrs) 13963.53 10306.73
Total number of AFib events 26328 348
Total AFib time (hrs) 363.52 7.56
Total Normal Sinus time (hrs) 4646.21 6201.41
Total in-vehicle AFib time (hrs) 16.41 0.01
Total in-vehicle time (hrs) 873.73 532.13

in-vehicle time is recorded in DB5, only 0.01 hours of AFib time is observed which is

expected since DB5 is the control group.

4.6 Database 6

Database 6 (DB6) consists a total of 45 patients with history of AF who presented

to University of Michigan are recruited in this database. All patients wore an event

recorder (Preventice solutions Inc) for up to three weeks. IRB approved the protocol

and written informed consent was obtained. The ECG and accelerometer data were

recorded continuously for up to 3 weeks. DB6 is used for prediction analysis of RVR

with low levels of activity, 18 participants are included in the prediction analysis.

Table 4.8 describes the patient characteristics of DB6.
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Table 4.8: Characteristics of patients

Variable
All Participants

(n=45)
Participants in Prediction Analysis

(n=18)

Female 14 (31.82%) 5 (27.78%)
Age 66.36 (11.67%) 69.13 (7.31%)
BMI 31.30 (6.08%) 30.93 (5.66%)
Hypertension 26 (59.09%) 11 (61.11%)
History of Stroke 0 (0.00%) 0 (0.00%)
Diabetes 12 (27.27%) 5 (27.78%)
Coronary artery disease 11 (25.00%) 5 (27.78%)
Peripheral vascular disease 2 (4.54%) 2 (11.11%)
Beta Blockers 31 (70.45%) 13 (72.22%)
Calcium channel blockers 14 (31.82%) 4 (22.22%)
Antiarrhythmic drugs 9 (20.45%) 2 (11.11%)
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CHAPTER V

Presentation of Research

5.1 Introduction

This chapter presents the results for the experiments on the detection and predic-

tion of different types of arrhythmia and cardiac events followed by discussion and

limitation sections. The experiments include AFib detection based on DB1 with pub-

licly available databases, AFib prediction based on DB2 with hospital bed-side data

and DB4 and DB5 for data collected from portable devices and during driving; SVT

detection based on DB1 with publicly available databases, SVT prediction based on

DB2 with hospital bed-side data and DB4 and DB5 for data collected from portable

devices; VA detection based on DB1 with publicly available databases, VT prediction

based on DB2 with hospital bed-side data; Bradycardia prediction based on DB2 with

hospital bed-side data and RVR with low activity prediction based on data collected

on DB6 from portable devices.
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5.2 Atrial Fibrillation

5.2.1 AFib Detection on Benchmark Datasets

5.2.1.1 Data

PhysioNet/Cinc2017Goldberger et al. (2000) described in Section 4.2 was used

to help develop the algorithms. The dataset contains 738 AFib episodes and 7790

non-AFib episodes consists with normal, noisy or other episodes.

5.2.1.2 Method

Encoding and peak detection algorithms are applied to produce a training peak

probability vector for AFib cases and a training peak probability vector for non-AFib

cases. The DPFA algorithm is then applied to the training probability vectors to

obtain the transition matrices.

Encoding and peak detection algorithms are applied to the testing data to produce

a testing probability vector. By applying the results from AFib DPFA output and

non-AFib DPFA output to the testing probability vector, we can get a probability

matrix for AFib and non-AFib.

We take the logarithmic average of the two probability vectors and compare the

two results. The class with the higher average of the probability will be the predicted

class. The predicted class is then tested against the ’true’ label. The method is

described in Section 3.2.

5.2.1.3 Result

Two DPFA models are computed from the dataset:MA for class ’AFib’ with 5892

states and MN for class ’Other’ with 117058 states. We have correctly classified 84.2%

of AFib cases and 93.3% of non-AFib cases in the testing set with an F1 score of 0.74

and AUC of 0.95. The results are shown in Table 5.1 and Figure 5.1.

52



Table 5.1: AFib detection results on publicly available benchmark datasets

Class Classfied as ”AFib” Classified as ”Non-AFib” Accuracy

AFib 80 15 84.2%
Non-AFib 61 844 93.3%

Figure 5.1: AFib detection, ROC curve for AFib detection on publicly available
benchmark datasets (DB1).

Publicly available benchmark databases were used for algorithm development for

earlier stage of the study. The result has validated the possibility of using DPFA

algorithm to predict AFib events.

5.2.2 AFib Prediction on Hospital Bedside Dataset

Experiments for AFib predictions are performed on DB2 which consists of hos-

pital bedside data, Methods, result and discussion for AFib prediction with hospital

bedside dataset are described in details in sections below .
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5.2.2.1 Data

A retrospective database with ECG signals from Michigan Medicine cardiac pa-

tients with AFib was used in this study. After excluding recordings with pacemakers,

implantable cardioverter defibrillators (ICD), or ventricular assist devices (VAD),

there were 1210 lead II ECG recordings for patients with AFib. The recordings were

sampled at 240 Hz. Details about this dataset is described in Section 4.3.

5.2.2.2 Method

DB2 consists of data collected from hospital bedside and is used for prediction

experiment. DB2 does not have annotation, thus an automated annotation algorithm

has been developed to annotate the events with a combination of heart rate and

duration. Heart rate is calculated based on the R peaks within a time interval, which

were detected previously during test interval extraction. Duration is calculated by

counting the number of consecutive intervals that a particular heart rate spans. For

this study, the time interval was set to 30 seconds and counted up to 6 intervals,

which allows for the duration to range from 30 to 180 seconds.

The automated annotation algorithm based on the heart rate-duration criteria

region is described in detail in Section 3.3.1 to annotate AHRE events with different

heart rate and duration limits. The lower duration limit of 30 seconds is chosen in

accordance with the definition of an AFib event provided by the 2014 AHA guideline

January et al. (2014). The lower heart rate limit is set to 110 bpm, as this rate has

proven to be an effective treatment target for AFib Van Gelder et al. (2010). The

higher heart rate limit is set at 160 bpm since a rapid heart rate is more likely to

cause symptoms.

Rapid heart rate in AFib may also have an untoward effect on cardiac function,

resulting in tachycardia-induced cardiomyopathy Fuster et al. (2006). Using this

annotation method, it becomes possible to capture the portions of the signal that
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Figure 5.2: AFib prediction, data partitioning scheme used for AFib prediction in
hospital bedside database (DB2).

correspond to AHRE with sufficiently high severity, either in the form of extremely

high heart rate over a span of 30 seconds, or moderately high heart rate stretching

over 180 seconds. A heart rate-duration criteria region that lies above the line pass-

ing through the points (30, 160) and (180, 110) is used. These AHRE events were

annotated as surrogate for AFib.

A total of 417 AFib events were labeled by these criteria and a total of 7319 non-

AFib intervals were randomly selected from non-AFib regions of the signals. A total

of 353 of the AFib intervals were used in training with the remaining 64 intervals

being held out for testing. Within the training data set, 5-fold cross validation was

performed for parameter tuning (Figure 5.2). Training, cross validation, and testing

sets/folds were partitioned on a participant level, meaning that signals from the same

participant were only included in one set/fold so as to prevent over-fitting.

The five models (each with four folds of training data) with the best parameters

tuned during cross validation were then applied to the testing set.

5.2.2.3 Result and Discussion

Different combinations of signal intervals (i.e., tsignal = 0.5, 1.0, 2.0 minutes) and

gap intervals (i.e., tgap = 0.5, 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 minutes) up to 5 minutes

prior to the event were used for prediction. These prediction intervals were tested
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using the DPFA algorithm. Figure 5.3 depicts a summary of the performance. For the

AHRE DPFA, around 758× 3, 683× 3, and 582× 3 transition states were generated

for 0.5, 1.0 and 2.0-minute long AHRE prediction intervals based on the training data

set. For the non-AHRE, an average of 626 × 3 transition states were generated for

the models using 0.5-minute long signals, 642×3 transitions states for the 1.0-minute

long signal models, and 459×3 transition states for the 2.0-minute long signal models.

The AUC is above 0.80 for all prediction intervals. Performance is nearly steady

when gap length increases and the prediction interval moves further away from the

AHRE events. Prediction performances with 2-minute long signals are slightly better

than 1-minute long and 0.5-minute long signals (Figure 5.3). Longer signals contain

more local and global patterns and these information may have contributed to the

better performances.

The performance of DPFA on raw ECG data was compared with its performance

on data with pre-processing (Figure 5.3). The AUCs for prediction intervals are al-

most the same with or without pre-processing. Nor is there any statistically significant

difference between these results.

For AHRE prediction, the DPFA algorithm has a comparable performance to deep

learning with on average a 2% higher AUC. For the other comparison algorithms,

DPFA has a 17.9% higher AUC than HRV, 26.1% higher AUC than DWT, 15.4%

higher AUC than CNN and 10.3% higher AUC than CNN with LSTM. The results

for these experiments are shown in Figure 5.4.

The McNemar test was also performed to evaluate the performance of the alter-

native methods against the proposed DPFA algorithm. The McNemar test used a

1:11 ratio for the cost for the imbalance of data. Tables 5.2, 5.3, and 5.4 depict the

results for half-minute, 1-minute, and 2-minute long signals with various gap sizes,

respectively. p-values representing the statistical significance of the different perfor-

mance in terms of AUC (< .05) are shown in bold font in the referenced tables. The
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Figure 5.3: AFib prediction on hospital bedside database (DB2), A comparison of
AUC for AHRE prediction using the DPFA with and without pre-processing method
for various signal lengths and gap intervals.

57



Figure 5.4: AFib prediction on hospital bedside database (DB2), A comparison
of AUC for AHRE prediction for all models using various signal lengths and gap
intervals.
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Table 5.2: AFib prediction on hospital bedside database (DB2), a comparison of
AUC for AHRE Prediction with different gap lengths for half-minute long signals.

Gap
Length
(min)

DPFA
Deep

Learning
HRV

+ SVM
DWT
+ PCA

CNN
CNN

+ LSTM
Mean
(STD)

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

0.5
0.842

(0.007)
0.802

(0.015)
0.852

0.651
(0.028)

0.004
0.626

(0.015)
0.001

0.718
(0.044)

0.335
0.749

(0.004)
0.000

1.0
0.821

(0.006)
0.816

(0.012)
0.202

0.681
(0.027)

0.240
0.631

(0.008)
0.236

0.701
(0.020)

0.001
0.746

(0.005)
0.000

1.5
0.836

(0.009)
0.819

(0.017)
0.419

0.661
(0.016)

0.002
0.645

(0.025)
0.023

0.692
(0.020)

0.000
0.737

(0.006)
0.000

2.0
0.840

(0.007)
0.829

(0.020)
0.701

0.738
(0.015)

0.007
0.679

(0.018)
0.000

0.723
(0.019)

0.015
0.754

(0.007)
0.000

2.5
0.837

(0.010)
0.822

(0.020)
0.469

0.759
(0.011)

0.001
0.630

(0.038)
0.156

0.739
(0.013)

0.027
0.760

(0.004)
0.000

3.0
0.838

(0.006)
0.820

(0.012)
0.719

0.791
(0.019)

0.003
0.633

(0.014)
0.353

0.700
(0.029)

0.020
0.754

(0.011)
0.000

3.5
0.840

(0.009)
0.808

(0.024)
0.151

0.683
(0.021)

0.000
0.640

(0.011)
0.000

0.721
(0.048)

0.028
0.757

(0.008)
0.000

4.0
0.828

(0.007)
0.814

(0.015)
0.855

0.702
(0.037)

0.010
0.584

(0.023)
0.757

0.681
(0.034)

0.133
0.740

(0.007)
0.003

4.5
0.833

(0.008)
0.801

(0.009)
0.461

0.718
(0.009)

0.006
0.629

(0.009)
0.061

0.686
(0.051)

0.005
0.750

(0.007)
0.000

deep learning algorithm has no statistically significant difference in performance with

respect to the McNemar test. However, the DPFA algorithm has 40.1% lower vari-

ance than deep learning. On the other hand, HRV, CNN and DWT have much lower

AUC. The results for HRV with SVM were obtained after further excluding certain

cases. Two AHRE cases and 20 of control cases were excluded from the test dataset

because peak annotation could not be correctly applied to the signals. Although CNN

with LSTM has lower AUC than the DPFA model, there is no significant difference in

the McNemar test results for 1-minute and 2-minute long signals. CNN with LSTM

performs better than the CNN model.

5.2.3 AFib Prediction with Data Collected from Portable Devices

5.2.3.1 Data

In this experiment, analysis for AFib prediction was performed with data collected

from portable devices, (DB4 and DB5). Details about DB4 and DB5 are described

in details in Sections 4.4 and 4.5. For DB4 and DB5, the AF events were anno-
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Table 5.3: AFib prediction on hospital bedside database (DB2), a comparison of AUC
for AHRE Prediction with different gap intervals for 1 minute long signals.

Gap
Length
(min)

DPFA
Deep

Learning
HRV

+ SVM
DWT
+ PCA

CNN
CNN

+ LSTM
Mean
(STD)

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

0.5
0.827

(0.014)
0.810

(0.020)
0.751

0.749
(0.017)

0.000
0.713

(0.025)
0.005

0.739
(0.009)

0.056
0.759

(0.019)
0.780

1.0
0.825

(0.010)
0.830

(0.029)
0.104

0.664
(0.017)

0.004
0.701

(0.024)
0.232

0.732
(0.015)

0.345
0.763

(0.034)
0.803

1.5
0.837

(0.008)
0.832

(0.008)
0.105

0.671
(0.034)

0.083
0.724

(0.021)
0.080

0.730
(0.023)

0.081
0.768

(0.024)
0.830

2.0
0.847

(0.011)
0.841

(0.018)
0.265

0.736
(0.021)

0.000
0.694

(0.025)
0.000

0.750
(0.013)

0.101
0.777

(0.022)
0.822

2.5
0.845

(0.013)
0.837

(0.016)
0.297

0.771
(0.026)

0.190
0.701

(0.024)
0.080

0.738
(0.018)

0.562
0.771

(0.026)
0.902

3.0
0.850

(0.008)
0.828

(0.024)
0.385

0.707
(0.023)

0.062
0.705

(0.036)
0.176

0.742
(0.031)

0.023
0.769

(0.035)
0.377

3.5
0.848

(0.007)
0.808

(0.019)
0.720

0.727
(0.018)

0.007
0.647

(0.033)
0.000

0.750
(0.013)

0.217
0.775

(0.022)
0.620

4.0
0.841

(0.008)
0.819

(0.003)
0.294

0.724
(0.015)

0.000
0.715

(0.025)
0.005

0.729
(0.019)

0.007
0.763

(0.021)
0.366

Table 5.4: AFib prediction on hospital bedside database (DB2), a comparison of AUC
for AHRE Prediction with different gap intervals for 2 minute long signals.

Gap
Length
(min)

DPFA
Deep

Learning
HRV

+ SVM
DWT
+ PCA

CNN
CNN

+ LSTM
Mean
(STD)

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

0.5
0.851

(0.005)
0.841

(0.014)
0.219

0.670
(0.033)

0.174
0.695

(0.020)
0.001

0.746
(0.034)

0.071
0.772

(0.017)
0.658

1.0
0.852

(0.006)
0.850

(0.012)
0.102

0.727
(0.028)

0.000
0.700

(0.014)
0.000

0.745
(0.015)

0.096
0.778

(0.015)
0.812

1.5
0.855

(0.005)
0.846

(0.017)
0.961

0.696
(0.011)

0.001
0.684

(0.012)
0.000

0.764
(0.020)

0.602
0.777

(0.017)
0.949

2.0
0.858

(0.005)
0.847

(0.014)
0.208

0.750
(0.011)

0.006
0.686

(0.014)
0.001

0.760
(0.014)

0.175
0.784

(0.019)
0.828

2.5
0.856

(0.004)
0.846

(0.017)
0.449

0.747
(0.014)

0.005
0.668

(0.021)
0.005

0.761
(0.018)

0.211
0.776

(0.015)
0.715

3.0
0.855

(0.005)
0.840

(0.015)
0.434

0.756
(0.021)

0.006
0.666

(0.009)
0.000

0.755
(0.014)

0.190
0.779

(0.014)
0.957
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tated using the FDA-cleared BeatLogic algorithm. Preventice BeatLogic platform, a

comprehensive ECG annotation platform that leverages deep learning for beat and

rhythm detection/classification Teplitzky et al. (2020).

5.2.3.2 Result and Discussion

Four sets of analyses were performed on the patient population:

• AFib only (participant number=9, event number=70)

• AFib with or without other arrhythmia (participant number=12, event num-

ber=303)

• all types of arrhythmia (participant number=55, event number=589)

• DB4 and DB5 (participant number=129, event number=654)

Details about the patient diagnosis are described in Table 4.6. The AUC for all

arrhythmia group is around 0.71-0.73. The AUC for the AFib only group ranges

from 0.65-0.69 which is lower than the all arrhythmia group. This might be due to

the lower number of patients and episodes in the AFib only group. The AUC for the

AFib with/without other arrhythmia group ranges from 0.61-0.65. The lower AUC

in this group is due to these patients having AFib with other morbidities like VT or

Vfib. The AUC for DB4 and DB5 combined has lower performance than DB4 only.

We might need to further examine the events annotated in DB5, since it is the control

group with healthy patients. The experiment results of these analysis are depicted in

Table 5.5, Figures 5.5, 5.6, 5.7 and 5.8, which show the achieved AUC for different

arrhythmia populations.
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Figure 5.5: AFib predictions on data collected from portable devices (DB4, DB5),
AUC for AFib events prediction, AFib only (n=9).
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Figure 5.6: AFib prediction on data collected from portable devices (DB4, DB5),
AUC for AFib events prediction, All AFib (n=12).
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Figure 5.7: AFib predictions on data collected from portable devices (DB4, DB5),
AUC for AFib events prediction, All Arrhythmia (n=55)
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Figure 5.8: AFib predictions on data collected from portable devices (DB4, DB5),
AUC for AFib events prediction, DB4 and DB5 (n=129).
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Gap

Interval

(min)

Prediction

Interval

(min)

AFib

only

(n=9)

All

AFib

(n=12)

All

Arrhythmia

(n=55)

DB4 DB5

(n=129)

AUC

Mean

(STD)

ACC

Mean

(STD)

AUC

Mean

(STD)

ACC

Mean

(STD)

AUC

Mean

(STD)

ACC

Mean

(STD)

AUC

Mean

(STD)

ACC

Mean

(STD)

0.5 0.5
0.668

(0.122)

0.765

(0.035)

0.605

(0.007)

0.763

(0.013)

0.715

(0.010)

0.668

(0.026)

0.621

(0.021)

0.597

(0.010)

1 0.5
0.651

(0.127)

0.759

(0.016)

0.607

(0.008)

0.760

(0.005)

0.719

(0.009)

0.673

(0.022)

0.641

(0.024)

0.603

(0.030)

1.5 0.5
0.679

(0.096)

0.752

(0.012)

0.608

(0.004)

0.756

(0.006)

0.716

(0.010)

0.659

(0.031)

0.604

(0.019)

0.554

(0.025)

2 0.5
0.688

(0.098)

0.755

(0.010)

0.608

(0.005)

0.756

(0.002)

0.714

(0.011)

0.659

(0.029)

0.622

(0.032)

0.575

(0.025)

2.5 0.5
0.669

(0.090)

0.748

(0.006)

0.603

(0.011)

0.751

(0.004)

0.711

(0.009)

0.671

(0.004)

0.627

(0.030)

0.584

(0.013)

3 0.5
0.663

(0.099)

0.752

(0.006)

0.609

(0.006)

0.757

(0.005)

0.713

(0.009)

0.658

(0.010)

0.630

(0.029)

0.602

(0.055)

3.5 0.5
0.675

(0.102)

0.755

(0.010)

0.605

(0.009)

0.756

(0.004)

0.713

(0.010)

0.660

(0.013)

0.616

(0.036)

0.577

(0.020)

4 0.5
0.663

(0.102)

0.745

(0.000)

0.609

(0.009)

0.757

(0.003)

0.712

(0.010)

0.659

(0.014)

0.621

(0.033)

0.575

(0.053)

4.5 0.5
0.641

(0.105)

0.748

(0.006)

0.608

(0.007)

0.754

(0.001)

0.714

(0.008)

0.662

(0.008)

0.640

(0.039)

0.596

(0.044)

0.5 1
0.653

(0.119)

0.796

(0.031)

0.628

(0.011)

0.781

(0.010)

0.714

(0.008)

0.657

(0.030)

0.657

(0.025)

0.615

(0.006)

1 1
0.660

(0.106)

0.779

(0.036)

0.628

(0.013)

0.779

(0.009)

0.715

(0.007)

0.657

(0.031)

0.655

(0.025)

0.590

(0.025)

1.5 1
0.688

(0.099)

0.789

(0.026)

0.630

(0.020)

0.779

(0.009)

0.713

(0.008)

0.653

(0.027)

0.594

(0.041)

0.577

(0.026)

2 1
0.687

(0.100)

0.782

(0.016)

0.627

(0.020)

0.774

(0.005)

0.711

(0.008)

0.650

(0.024)

0.611

(0.044)

0.566

(0.045)
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Gap

Interval

(min)

Prediction

Interval

(min)

AFib

only

(n=9)

All

AFib

(n=12)

All

Arrhythmia

(n=55)

DB4 DB5

(n=129)

AUC

Mean

(STD)

ACC

Mean

(STD)

AUC

Mean

(STD)

ACC

Mean

(STD)

AUC

Mean

(STD)

ACC

Mean

(STD)

AUC

Mean

(STD)

ACC

Mean

(STD)

2.5 1
0.663

(0.106)

0.772

(0.006)

0.624

(0.020)

0.774

(0.001)

0.713

(0.008)

0.642

(0.019)

0.614

(0.053)

0.581

(0.063)

3 1
0.663

(0.104)

0.776

(0.010)

0.631

(0.016)

0.775

(0.003)

0.715

(0.008)

0.650

(0.028)

0.613

(0.055)

0.568

(0.064)

3.5 1
0.687

(0.103)

0.782

(0.006)

0.634

(0.017)

0.778

(0.001)

0.715

(0.010)

0.646

(0.028)

0.608

(0.036)

0.556

(0.041)

4 1
0.652

(0.104)

0.772

(0.016)

0.630

(0.010)

0.774

(0.005)

0.710

(0.005)

0.645

(0.015)

0.638

(0.040)

0.578

(0.025)

0.5 2
0.694

(0.153)

0.786

(0.035)

0.652

(0.007)

0.793

(0.011)

0.726

(0.021)

0.682

(0.041)

0.693

(0.024)

0.624

(0.043)

1 2
0.673

(0.156)

0.779

(0.024)

0.641

(0.010)

0.790

(0.011)

0.728

(0.021)

0.672

(0.040)

0.702

(0.028)

0.648

(0.032)

1.5 2
0.675

(0.151)

0.765

(0.027)

0.640

(0.011)

0.786

(0.010)

0.726

(0.019)

0.674

(0.030)

0.696

(0.030)

0.626

(0.034)

2 2
0.678

(0.152)

0.765

(0.027)

0.641

(0.006)

0.783

(0.010)

0.722

(0.013)

0.672

(0.037)

0.699

(0.031)

0.634

(0.050)

2.5 2
0.679

(0.152)

0.765

(0.027)

0.643

(0.011)

0.784

(0.012)

0.723

(0.015)

0.678

(0.032)

0.698

(0.031)

0.645

(0.034)

3 2
0.682

(0.153)

0.759

(0.016)

0.647

(0.007)

0.784

(0.012)

0.723

(0.013)

0.671

(0.038)

0.698

(0.030)

0.628

(0.035)

Table 5.5: AFib predictions on portable devices dataset (DB4, DB5), results sum-
mary for AFib events prediction on DB4 and DB5.
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5.2.4 AFib Prediction on In-vehicle Data

5.2.4.1 Data

Driving logs were collected from each study participant and were used to determine

the portion of collected ECG signals that were recorded in-vehicle. In the analysis

presented in this section, predictions were made on the annotated AFib events that

occurred during the in-vehicle time periods only. There is a total of 35 annotated

AFib episodes in all types of arrhythmia during driving from 7 patients. A total of

874 hours of in-vehicle time is recorded in DB4 with observing AFib evetns over 16

hours. A total of 532 hours of in-vehicle time is recorded in DB5, only 0.01 hours of

AFib time in DB5 as described in Table 4.7.

5.2.4.2 Result

Figure 5.9 and Table 5.9 below shows the performance in AUC for all arrhythmia

participants during driving. The performance of the algorithm on the in-vehicle only

dataset in AUC is very similar to AUC for the entire group. The 2-minute prediction

is lower than before; however the standard deviation for the 2-minute predictions are

also very large. This could be due to the low number of patients and events in this

analysis. We expect the performance to improve with more driving events.

5.3 Supraventricular Tachycardia

SVT detection and prediction experiments were performed on various databases.

DB1 is constructed from publicly available databases and used for SVT detection

experiment. In DB1, we have correctly identified 41/56 SVT events (0.73 sensitivity)

and 97/100 (0.97 specificity). The AUC is 0.951 and F1 of 0.914. DB2 is a retro-

spective database from UMHS and used for SVT prediction experiment. There is a

total of 139 subjects with SVT diagnosis, 38 of them have SVT episode met with
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Table 5.6: AFib predictions on in-vehicle dataset (DB4, DB5), summary of results
for AFib events prediction, in-vehicle only

Gap
Interval
(min)

Prediction
Interval
(min)

AFib
only

(n=7)

AUC Mean
(STD)

ACC Mean
(STD)

0.5 0.5 0.704 (0.011) 0.668 (0.026)
1 0.5 0.709 (0.014) 0.673 (0.022)

1.5 0.5 0.720 (0.014) 0.659 (0.031)
2 0.5 0.726 (0.013) 0.659 (0.029)

2.5 0.5 0.715 (0.020) 0.671 (0.004)
3 0.5 0.726 (0.024) 0.658 (0.010)

3.5 0.5 0.717 (0.028) 0.660 (0.013)
4 0.5 0.713 (0.004) 0.659 (0.014)

4.5 0.5 0.690 (0.016) 0.662 (0.008)
0.5 1 0.668 (0.040) 0.657 (0.030)
1 1 0.666 (0.039) 0.657 (0.031)

1.5 1 0.680 (0.005) 0.653 (0.027)
2 1 0.684 (0.006) 0.650 (0.024)

2.5 1 0.704 (0.007) 0.642 (0.019)
3 1 0.702 (0.012) 0.650 (0.028)

3.5 1 0.683 (0.005) 0.646 (0.028)
4 1 0.663 (0.033) 0.645 (0.015)

0.5 2 0.611 (0.126) 0.682 (0.041)
1 2 0.642 (0.128) 0.672 (0.040)

1.5 2 0.645 (0.129) 0.674 (0.030)
2 2 0.645 (0.122) 0.672 (0.037)

2.5 2 0.648 (0.112) 0.678 (0.032)
3 2 0.637 (0.115) 0.671 (0.038)
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Figure 5.9: AFib predictions on in-vehicle dataset (DB4, DB5), AUC for AFib events
prediction, in-vehicle only (n=7).

70



annotation criteria as in Section 3.3.2. DPFA algorithm is applied for SVT predic-

tion with various prediction intervals and achieved an AUC greater than 0.75 for all

prediction intervals in DB2. DB4 contains participants diagnosed with various types

of arrhythmia while DB5 is the control group. There is a total of 27 SVT events that

met annotation criteria from 12 patients from DB4 included in the analysis. Non-

SVT events were randomly selected from all DB4 and DB5 episodes. The prediction

AUC values are in the range of 0.79-0.87 for DB4 and 0.78-0.92 for DB4 and DB5

combined. SVT predictions while in-vehicle experiment was not performed due to

the limited data size.

5.3.1 SVT Detection on Benchmark Datasets

5.3.1.1 Data

Three publicly available benchmark datasets in DB1 with SVT rhythm anno-

tations were used in this study. The first dataset was the MIT-BIH Arrhythmia

Database (mitdb) Goldberger et al. (2000), which contains 48 half-hour excerpts of

two-channel ambulatory ECG recordings, obtained from 47 subjects enrolled in the

study. The recordings were sampled at 360 per second. Two or more cardiologists

have independently annotated each recording. The second database was the long-

term AFib database (ltafdb) from physionet Goldberger et al. (2000); Petrutiu et al.

(2007). This database includes 84 long-term ECG recordings of subjects with parox-

ysmal or sustained atrial fibrillation (AF). Each recording contains two simultane-

ously recorded ECG signals sampled at 128 Hz with duration around 24 to 25 hours.

The third database was the MIT-BIH Malignant Ventricular Arrhythmia Database

(vfdb) Goldberger et al. (2000) sampled at 250 Hz. All three databases contain some

annotated SVT episodes other than AFib or atrial flutter.

Episodes of SVT were extracted from the three databases based on the rhythm

annotations. These SVT episodes were then separated into 10-second-long segments.
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We aim to detect these SVT events based only on the data contained within 10-

second-long intervals.

There was a total of 667 10-second intervals. Among these episodes 611 were

included in the training set and the remaining 56 episodes from a different patient

cohort were reserved for the testing set. Additionally, 800 of the non-SVT episodes

were randomly selected for the training set and 100 of non-SVT episodes were selected

for the testing set.

5.3.1.2 Method

Heart Rate Variability with Machine Learning Techniques is described in the sec-

tion below. Apart from the DPFA algorithm as described in Section 3.2, an algorithm

based on heart rate variability (HRV) was used as comparison. This section will de-

scribe the algorithm.

During the signal pre-processing step, a fourth-order Butterworth bandpass filter

with cutoff frequencies at 0.5 and 40 Hz was first applied to the raw ECG signal to

remove noise, after which a double median filter with orders equal to 0.2 and 0.6

times the sampling frequency was applied to remove baseline wandering.

The signals from mitdb or vfdb were then down-sampled to 128 Hz to be consistent

with ltafdb.

Episodes of SVT were extracted from the three databases based on the rhythm

annotations. These SVT episodes were then separated into 10-second-long segments.

The R-peaks and QRS complex were detected by the Pan–Tompkins algorithm

Pan and Tompkins (1985) Sedghamiz (2014). After identifying the R-peaks and QRS

complex, we extracted a total of 16 features from the 10-second intervals as shown in

Table 5.7.

Several machine learning algorithms including random forest (RF), support vector

machine (SVM), and k-nearest neighbors (KNN) on the training dataset with 5-fold
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Table 5.7: SVT detection, HRV features extracted for SVT detection on publicly
available benchmark datasets (DB1)

HRV features Description

ApEn
Approximate entropy, which measures the
regularity and complexity of a time series

HR Mean heart rate
SDHR Standard Deviation of heart rate
RR Mean RR interval
SDRR Standard deviation of RR intervals

CV RR
SDRR/meanRR intervals unitless scaled
with factor 100

QS Mean Q-S peak interval
SDQS Standard deviation of Q-S peak interval

NN50
pairs of adjacent RR intervals differing that
differ by more than 50 ms

pNN50
Percentage of successive RR intervals that
differ by more than 50 ms

RMSSD
Root mean square of successive RR
interval differences

SDSD
Standard deviation of differences between
adjacent RR intervals

Poincaré SD1
Poincaré plot standard deviation perpendicular
the line of identity

Poincaré SD2
Poincaré plot standard deviation along the line
of identity

Lorentz
OriginCount

Number of points (dRR(i-1),dRR(i)) within the
radius normal sinus rhythm mask

Lorentz
OriginCountRatio

Ratio between number of points (dRR(i-1),dRR(i))
within the radius normal sinus rhythm mask

cross validation. The cross validation procedure was performed on the training dataset

only, enabling parameter optimization with respect to area under ROC curve (AUC)

performance.

Among the three methods, RF seemed to have achieved the best result on the

training dataset (Figure 5.10).

Among the 16 HRV features, mean QS interval length, Poincaré SD2, mean RR

interval and mean HR had the highest importance based on the trained random forest

algorithm on the training dataset. Importance was calculated as the weighted average
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.

Figure 5.10: SVT detection on publicly available benchmark datasets, comparison
of machine learning algorithms on training data

of the differences between the prediction accuracies on the out-of-bag portion or the

entirety of the data. Regression was performed based on the weighted average of the

differences of the respective MSEs instead.

The RF model with the best AUC based on the training data was then applied

on the testing data for evaluation.

DPFA model was applied for SVT detection with a binary encoding. Details of

the algorithm can be found in Section 3.2.

5.3.1.3 Results

The result section begins by showing the algorithms’ ability to detect annotated

SVT episodes using HRV features and RF. Then we will also show the performance

of the DPFA for SVT detection.
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Figure 5.11: SVT detection on publicly available benchmark datasets, variable im-
portance on training data

.

There was a total of 667 10-second intervals. 611 of these episodes were included

in the training set and the remaining 56 episodes from a different patient cohort

were reserved for the testing set. The algorithm correctly classified 51 out of 56

SVT episodes with sensitivity of 91.1% and 100 out of 100 non-SVT episodes with

specificity of 100% in the testing set. The F1 score was 0.95 and the AUC was 0.995.

The results are described in Table 5.8 and Figure 5.12.

With the DPFA algorithm, we have correctly identified 41/56 SVT events (0.73

sensitivity) and 97/100 (0.97 specificity). The AUC was 0.951 and F1 score was 0.914.

Results are summarized in Table 5.9.
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Table 5.8: SVT detection on publicly available benchmark datasets, confusion matrix
for SVT Detection with HRV and RF

Annotated Label
Total

SVT Non-SVT

Prediction
SVT 51 0 51

Non-SVT 5 100 105
Total 56 100 156

Figure 5.12: SVT detection on publicly available benchmark datasets, ROC curve for
SVT Detection with HRV features and RF.

5.3.1.4 Discussion

In this part of the study, HRV features with RF successfully detected the SVT

episodes with 0.995 AUC and 0.95 F1 score. The DPFA algorithm was able to detect
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Table 5.9: SVT detection on publicly available benchmark datasets,,confusion Matrix
for SVT Detection with DPFA

Annotated Label
Total

SVT Non-SVT

Prediction
SVT 41 3 44

Non-SVT 15 97 112
Total 56 100 156

the SVT episodes with high AUC of 0.95 and F1 of 0.91. The performance of the HRV

features with RF is better than the DPFA algorithm. However, the DPFA algorithm

does not require calculation of hand-crafted features and can be applied easily on

real-time data collected from portable devices the DPFA algorithm is expected to

perform better with a larger dataset with more complex morphologies in signals.

One limitation of the study is the lack of annotated samples with good quality

labels. There are more databases with beat to beat annotations but not many of

them has rhythm labels. Without these rhythm labels it is hard to classify different

types of arrhythmia other than the beat types. We used the three publicly available

databases with well annotated rhythms, however the number of SVT episodes we

obtained from these records were still rather low. With limited amount of samples,

the trained DPFA and RF model are more prone to problems such as generalizability

and whether they can be directly applied to other datasets. Although in the testing

set, we tested the algorithms on a different patient population, more ECG data with

quality SVT labels are required to further validate the programs.

5.3.2 SVT Prediction on Hospital Bedside Dataset

5.3.2.1 Data

DB2 is used for SVT prediction. It is a retrospective database with ECG signals

from Michigan Medicine cardiac patients with SVT. After excluding recordings with

pacemakers, implantable cardioverter defibrillators (ICD), or ventricular assist devices
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(VAD), there were 181 lead II ECG recordings for patients with SVT. Details about

DB2 can be found in Section 4.3.

5.3.2.2 Method

After pre-processing and noise removal as described in Section 3.3.2, an automated

annotation algorithm was applied to determine SVT episodes with the ECG signal.

Time windows consisting of three R-R intervals were annotated as SVT if they satis-

fied all of the following four SVT annotation criteria. First, an automated annotation

algorithm based on the heart rate-duration criteria line was used to annotate high

heart rate events. The annotation criteria region is described in detail in Section

3.3.1. In the case of SVT, the episodes lie above the heart rate-duration criterion line

passing through the points (30, 150) and (180, 100). Secondly, the difference between

three consecutive R-R intervals should be less than 50 ms. Thirdly, there should be

fewer than 4 P/T like waves within the window. Finally, the cross-correlations with

the 500 P-wave templates extracted from the MIT-BIH P-wave database should be

less than 0.85.

A total of 149 SVT events were annotated by the algorithm and a total of 755

non-SVT intervals were randomly selected from the non-SVT regions of the signals.

A total of 119 (80%) of the SVT intervals were used in training with the remaining 30

intervals being held out for testing. Within the training data set, 5-fold cross valida-

tion was performed for parameter tuning (Figure 5.2). Training, cross validation, and

testing sets/folds were partitioned on a participant level, meaning that signals from

the same participant were only included in one set/fold so as to prevent overfitting.

The five models (each with four folds of training data) with the best parameters

tuned during cross validation were then applied to the testing set.

Parameters are tuned with training and validation data as described in Section

3.2.2, the optimal parameters are listed in 5.1.
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The parameters a1, b1, a2, b2 were all tuned in the training step and set at



a1 = 0.4

b1 = 0.8

a2 = 0.04

b2 = 0.06

(5.1)

The performance of DPFA model were compared with five comparison methods

described in Section 3.5. The McNemar test used a 1:5 ratio for the cost for the

imbalance of data.

5.3.2.3 Results

Different combinations of signal intervals (i.e., tsignal = 0.5, 1.0, 2.0 minutes) and

gap intervals (i.e., tgap = 0.5, 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 minutes) up to 5 minutes

before the event were used for prediction. These prediction intervals were tested

using the DPFA algorithm. Figure 5.13 shows a summary of the performance. The

AUC is above 0.75 for all prediction intervals. As the time to the SVT event increases,

the mean prediction performance gradually declines while variance increases. For the

SVT DPFA, an average of 114 × 3 transition states were generated for the models

using 0.5-minute long signals, 97× 3 transitions states for the 1.0-minute long signal

models, and 60 × 3 transition states for the 2.0-minute long signal models. For the

non-SVT DPFA, an average of 114×3 transition states were generated for the models

using 0.5-minute long signals, 95× 3 transitions states for the 1.0-minute long signal

models, and 56× 3 transition states for the 2.0-minute long signal models.

The performance of the DPFA on raw ECG data was compared with its perfor-

mance on pre-processed data (Figure 5.13). The AUC for all prediction intervals are

almost the same with or without pre-processing and there is no statistically signifi-

cant difference between these results. These results indicate that pre-processing does

79



not impact the performance of the DPFA algorithm.

The proposed DPFA algorithm has on average a 10.2% higher AUC than the deep

learning method, 32.9% higher than DWT with PCA, 33.3% higher than CNN and

26.4% higher than CNN with LSTM for various prediction intervals. The HRV with

SVM algorithm has comparable performance on SVT prediction, with a slightly lower

average AUC compared to DPFA. Figure 5.14 summarizes the performance of DPFA

together with the 5 alternative methods. The McNemar test was also performed

to evaluate the performance of the alternative methods against the proposed DPFA

algorithm. The McNemar test used a 1:5 ratio for the cost for the imbalance of

data. The results are shown in Tables 5.10, 5.11, and 5.12. p-values representing

the statistical significance of the different performances in terms of AUC (< .05)

are shown in bold font in the referenced tables. There is no statistically significant

difference between DPFA and the HRV method. DPFA is significantly better than the

deep learning algorithm for 1-minute long prediction signals. DPFA is significantly

better than the DWT, CNN and CNN with LSTM method for most of the prediction

intervals. It is also worth noting that the performance of the DPFA algorithm with

raw ECG as input is also higher than the deep learning, DWT, CNN, and CNN with

LSTM methods.

5.3.2.4 Discussion

Many studies have focused on arrhythmia classification, but very few studies have

attempted to predict the onset of an SVT event. As compared to other methods such

as HRV, DWT, and deep learning, the method based on the DPFA algorithm has

achieved around 0.8 AUC for all prediction intervals.

Remarkably, the proposed novel DPFA algorithm utilizes minimal pre-processing

and does not require specific peak identification. The prediction results with raw ECG

signals are almost the same as the results with pre-processing. This method represents
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Figure 5.13: SVT predictions with DPFA, AUC for SVT prediction using the DPFA
method with and without pre-processing for various signal lengths and gap intervals.
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Figure 5.14: SVT prediction, AUC for SVT prediction for all models using various
signal lengths and gap intervals.
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Table 5.10: A comparison of AUC for SVT prediction with different gap intervals
for half-minute long signals.

Gap
Length
(min)

DPFA
Deep

Learning
HRV

+ SVM
DWT

+ PCA
CNN

CNN
+ LSTM

Mean
(STD)

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

0.5
0.751

(0.008)
0.744

(0.040)
0.090

0.818
(0.004)

0.101
0.634

(0.068)
0.812

0.634
(0.059)

0.897
0.616

(0.069)
0.084

1.0
0.807

(0.026)
0.763

(0.041)
0.542

0.709
(0.012)

0.126
0.631

(0.075)
0.122

0.664
(0.069)

0.019
0.646

(0.093)
0.024

1.5
0.802

(0.019)
0.746

(0.045)
0.679

0.827
(0.005)

0.869
0.590

(0.068)
0.117

0.664
(0.069)

0.035
0.608

(0.070)
0.027

2.0
0.804

(0.022)
0.729

(0.036)
0.404

0.816
(0.025)

0.858
0.640

(0.070)
0.407

0.653
(0.050)

0.172
0.644

(0.076)
0.013

2.5
0.775

(0.020)
0.717

(0.052)
0.130

0.808
(0.006)

0.805
0.569

(0.075)
0.119

0.630
(0.079)

0.022
0.615

(0.106)
0.022

3.0
0.796

(0.021)
0.716

(0.035)
0.227

0.796
(0.004)

0.686
0.604

(0.064)
0.038

0.646
(0.087)

0.082
0.603

(0.067)
0.017

3.5
0.782

(0.022)
0.738

(0.063)
0.364

0.775
(0.009)

0.789
0.583

(0.058)
0.041

0.650
(0.066)

0.113
0.585

(0.055)
0.014

4.0
0.780

(0.019)
0.749

(0.048)
0.718

0.791
(0.006)

0.591
0.584

(0.068)
0.005

0.653
(0.072)

0.126
0.618

(0.064)
0.014

4.5
0.800

(0.023)
0.774

(0.029)
0.716

0.814
(0.005)

0.353
0.581

(0.076)
0.039

0.684
(0.053)

0.124
0.643

(0.094)
0.026

a valuable alternative to traditional methods that require heavy pre-processing and

feature extraction.

We have compared the DPFA algorithms with five other algorithms. The HRV

with SVM method has good performance on SVT prediction when the dataset is

relatively small. The performance drops when applied to AHRE prediction. More-

over, the automated annotation algorithm for both methods are directly related to

the HRV features, which might have unknowingly affected the results. Several cases

in AHRE prediction were excluded as a result of difficulties in peak annotation for

the HRV with SVM method. The proposed DPFA method, on the other hand, does

not require a peak annotation algorithm. As a consequence, the DPFA algorithm is

more likely to perform better on other classification problems, where peak locations

are not among the primary features.

Neural network based algorithms such as deep learning, CNN, and CNN with

LSTM are similar to the DPFA algorithm in that no specific pre-processing is re-
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Table 5.11: A comparison of AUC for SVT prediction with different gap intervals
for 1 minute long signals.

Gap
Length
(min)

DPFA
Deep

Learning
HRV

+ SVM
DWT

+ PCA
CNN

CNN
+ LSTM

Mean
(STD)

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

0.5
0.806

(0.008)
0.735

(0.031)
0.066

0.840
(0.004)

0.342
0.654

(0.072)
1.000

0.680
(0.068)

0.098
0.693

(0.094)
0.566

1.0
0.843

(0.006)
0.737

(0.037)
0.232

0.838
(0.004)

0.519
0.617

(0.061)
0.010

0.680
(0.069)

0.005
0.671

(0.090)
0.004

1.5
0.830

(0.005)
0.734

(0.039)
0.030

0.837
(0.002)

0.629
0.643

(0.054)
0.020

0.644
(0.076)

0.007
0.631

(0.077)
0.002

2.0
0.813

(0.003)
0.721

(0.044)
0.038

0.833
(0.003)

1.000
0.651

(0.070)
0.079

0.639
(0.075)

0.005
0.676

(0.074)
0.074

2.5
0.811

(0.008)
0.728

(0.069)
0.015

0.818
(0.002)

0.925
0.633

(0.072)
0.065

0.677
(0.098)

0.002
0.684

(0.084)
0.053

3.0
0.798

(0.011)
0.706

(0.043)
0.041

0.798
(0.003)

0.858
0.612

(0.060)
0.060

0.663
(0.069)

0.024
0.663

(0.088)
0.017

3.5
0.807

(0.007)
0.730

(0.035)
0.286

0.791
(0.007)

0.831
0.622

(0.066)
0.093

0.644
(0.064)

0.009
0.663

(0.084)
0.022

4.0
0.811

(0.008)
0.747

(0.022)
0.334

0.825
(0.002)

0.276
0.629

(0.065)
0.334

0.666
(0.086)

0.049
0.668

(0.090)
0.016

Table 5.12: A comparison of AUC for SVT prediction with different gap intervals
for 2 minute long signals.

Gap
Length
(min)

DPFA
Deep

Learning
HRV

+ SVM
DWT

+ PCA
CNN

CNN
+ LSTM

Mean
(STD)

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

Mean
(STD)

p
value

0.5
0.845

(0.009)
0.733

(0.069)
0.924

0.832
(0.004)

0.917
0.630

(0.029)
0.012

0.663
(0.076)

0.003
0.640

(0.083)
0.002

1.0
0.836

(0.008)
0.743

(0.057)
0.916

0.831
(0.004)

0.575
0.581

(0.024)
0.007

0.664
(0.073)

0.019
0.639

(0.083)
0.007

1.5
0.831

(0.009)
0.736

(0.060)
0.925

0.828
(0.003)

0.812
0.582

(0.024)
0.004

0.659
(0.070)

0.004
0.630

(0.076)
0.001

2.0
0.832

(0.013)
0.730

(0.040)
0.276

0.803
(0.004)

0.644
0.582

(0.033)
0.029

0.673
(0.086)

0.016
0.643

(0.083)
0.006

2.5
0.826

(0.005)
0.721

(0.062)
0.753

0.801
(0.005)

0.680
0.569

(0.029)
0.001

0.654
(0.102)

0.004
0.636

(0.077)
0.004

3.0
0.830

(0.007)
0.731

(0.050)
0.488

0.804
(0.003)

0.741
0.612

(0.031)
0.024

0.668
(0.092)

0.034
0.626

(0.069)
0.013
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quired. However, as shown in the experiments, they require a larger dataset for better

performance. The performances of these three algorithms are worse than DPFA and

HRV in SVT prediction due to the limited sample size.

There are several limitations of the study. The first limitation is the use of the

automated annotation algorithm. To validate the performance of the algorithm, the

positive cases were verified by a cardiologist, but not the negative cases. In a future

study, we aim to have the dataset annotated by clinicians, which is the gold standard

for annotations. The proposed DPFA model can be easily trained on other labeled

datasets. Secondly, extremely noisy sections of the ECG signals have been removed

from the beginning. These sections have been randomly checked by the clinicians

and most of them are not suitable for classifications. For the purpose of annotations

that rely on peak detection the signals were pre-processed and noisy sections were

excluded. In the future, using events manually annotated by clinicians, these noisy

sections can be included as an additional class for prediction instead of removing them.

Thirdly, the database used in this study is imbalanced, with many more negative cases

than arrhythmia cases. As a result, the costs and weights in the deep learning and

SVM models were adjusted accordingly to make the prediction more balanced. In the

future it is possible to employ additional data augmentation algorithms to increase the

positive cases, which may benefit both the deep learning and DPFA methods. Lastly,

the performance of the DPFA algorithm is still limited by the number of cases. Some

participants had substantially more cases than others, thus inter-patient ECG signal

variability may limit the performance of our algorithm as well as the other alternative

algorithms.

5.3.3 SVT Prediction with Data Collected from Portable Devices

DB4 and DB5 contains data with portable devices nad were used for SVT predic-

tion experiment. Details of DB4 and DB5 can be found in Section 4.4 and Section
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4.5. In DB4 and DB5, the SVT events were annotated using the FDA-cleared Beat-

Logic algorithm. Preventice BeatLogic platform, a comprehensive ECG annotation

platform that leverages deep learning for beat and rhythm detection/classification

Teplitzky et al. (2020).

Two sets of analyses were performed on this patient population:

• DB4 (participant number=55, SVT event number=27)

• DB4 and DB5 (participant number=129, SVT event number=27)

Details about the patient diagnosis are described in Table 4.6. The AUC for all

arrhythmia group in DB4 is around 0.79 - 0.87. The AUC for DB4 and DB5 combined

has is in the range of 0.78 - 0.92. The experiment results of these analysis are depicted

in Table 5.13 and Figure 5.15.

5.4 Ventricular Arrhythmia

Detection and prediction of ventricular arrhythmia events were performed on var-

ious databases. DB1 is constructed from publicly available databases and was used

VA detection experiment. Details of DB1 can be found in Section 4.2. For VA detec-

tion in DB1, the algorithm correctly identified 625/662 (0.94 sensitivity) VA episodes

and 600 /662 (0.91 specificity) non-VA episodes with an AUC of 0.97 and an F1-score

of 0.93 for the 2 seconds long signals. VT prediction experiment was performed with

DB2 using our own annotations. There are 77 reviewed episodes are obtained from

only 23 patients. The AUC for VT prediction is around 0.75. We did not perform

VT prediction in DB4/DB5 because we did not have any annotated events in these

2 databases.
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Figure 5.15: SVT prediction portable devices, AUC for SVT predictions.
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Table 5.13: SVT prediction on data collected from portable devices, summary of
results for SVT prediction with data from portable devices with DPFA.

Gap
Interval
(min)

Prediction
Interval
(min)

All
Arrhythmia

(n=55)

DB4 DB5
(n=129)

AUC
Mean
(STD)

ACC
Mean
(STD)

AUC
Mean
(STD)

ACC
Mean
(STD)

0.5 0.5 0.820(0.003) 0.974(0.001) 0.890(0.002) 0.904(0.019)
1 0.5 0.836(0.007) 0.959(0.007) 0.855(0.002) 0.875(0.007)

1.5 0.5 0.847(0.005) 0.946(0.003) 0.857(0.002) 0.909(0.003)
2 0.5 0.848(0.009) 0.966(0.002) 0.855(0.001) 0.882(0.007)

2.5 0.5 0.791(0.010) 0.977(0.010) 0.836(0.003) 0.885(0.011)
3 0.5 0.786(0.039) 0.979(0.002) 0.821(0.006) 0.838(0.019)

3.5 0.5 0.832(0.007) 0.953(0.025) 0.780(0.014) 0.864(0.017)
4 0.5 0.860(0.003) 0.976(0.004) 0.787(0.008) 0.862(0.004)

4.5 0.5 0.806(0.018) 0.974(0.003) 0.790(0.007) 0.842(0.048)
0.5 1 0.863(0.000) 0.961(0.014) 0.926(0.009) 0.934(0.005)
1 1 0.865(0.003) 0.970(0.004) 0.917(0.008) 0.936(0.007)

1.5 1 0.866(0.005) 0.959(0.007) 0.910(0.007) 0.925(0.008)
2 1 0.833(0.011) 0.972(0.001) 0.898(0.006) 0.927(0.005)

2.5 1 0.839(0.005) 0.974(0.017) 0.879(0.014) 0.921(0.010)
3 1 0.853(0.004) 0.965(0.007) 0.868(0.011) 0.902(0.025)

3.5 1 0.852(0.007) 0.948(0.014) 0.849(0.007) 0.908(0.015)
4 1 0.827(0.002) 0.975(0.001) 0.830(0.005) 0.906(0.007)

0.5 2 0.870(0.003) 0.968(0.016) 0.894(0.012) 0.919(0.002)
1 2 0.858(0.002) 0.973(0.001) 0.883(0.010) 0.903(0.001)

1.5 2 0.858(0.002) 0.960(0.014) 0.869(0.010) 0.912(0.012)
2 2 0.859(0.003) 0.952(0.006) 0.865(0.007) 0.877(0.034)

2.5 2 0.856(0.002) 0.955(0.013) 0.846(0.009) 0.878(0.026)
3 2 0.850(0.005) 0.949(0.008) 0.837(0.009) 0.868(0.041)

88



5.4.1 VA Detection on Benchmark Datasets

5.4.1.1 Data

Three publicly available data sets in DB1 with ventricular arrhythmia annotations

were used in the evaluation of the proposed method. As all three databases have been

examined by other algorithms, the proposed algorithm can be directly compared with

the performance of existing algorithms. The MIT-BIH Arrhythmia Database (mitdb)

contains 48 half-hour excerpts of two-channel ambulatory ECG recordings obtained

from 47 human subjectsGoldberger et al. (2000). The second database, the MIT-

BIH Malignant Ventricular Arrhythmia Database (vfdb), contains 22 half-hour ECG

recordings of subjects who experienced episodes of sustained VT, VFlutter, and VF

Goldberger et al. (2000). Lastly, the Creighton University Ventricular Tachycardia

Database (cudb) includes 35 8-minute long ECG recordings of human subjects who

experienced episodes of sustained VT, ventricular flutter, or VF Nolle et al. (1986).

The recordings from mitdb are sampled at 360 Hz, while those from vfdb and cudb

are sampled at 250 Hz.

5.4.1.2 Method

The vfdb and cudb databases are sampled at 250 Hz, while the mitdb database

is sampled at 360 Hz. Therefore, signals from mitdb were first re-sampled to 250

Hz. VA episodes including VT, ventricular flutter, and VF were extracted from the

re-sampled signals according to the ground-truth annotations. VA episodes from a

total of 28 patients were extracted. The signals from 22 ( 80%) patients were included

in the training data set and the remaining 6 patients were grouped into the testing

data set.

Signals were segmented into both 5-second and 2-second long episodes. A total

of 1409 5-second episodes were in the training data set and 261 episodes were in the
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testing data set. For the 2-second analysis, a total of 3667 episodes were in the training

data set and 662 episodes were in the testing dataset. Non-VA data was partitioned

in a similar way to ensure that the testing data set had a patient population disjoint

from the training data set.

Five-fold cross validation was performed at the patient level for parameter tuning

and to prevent over-fitting. The entire training data set was equally partitioned into 5

parts on the patient level. The first 4 parts were used as training data for generating

the Markov models and the last part was the validation data set. This process was

repeated five times. Average results for classification from all five experiments were

used to assess the performance. The sensitivity, specificity, F1-score, and AUC were

computed based on the training data set. The Markov model with the highest AUC

over the training data set was then applied to the testing data set to obtain the final

results.

5.4.1.3 Results

Performance was evaluated using 5-fold cross validation. Within the training data

set, the best result had an AUC of 0.92±0.05 and F1 score of 0.89±0.03 for 5-second

long episodes and AUC of 0.93 ± 0.03 and F1 score of 0.88 ± 0.04 for 2-second long

episodes.

The parameters in the model with highest AUC in the training data were then

applied to the testing data set. This testing set had a patient cohort separate from

the training data.

When evaluated over the testing data set, the proposed algorithm correctly identi-

fied 243 of 261 (0.93 sensitivity) VA episodes and 227 of 261 (0.87 specificity) non-VA

episodes for 5-second long signals. The AUC was 0.96 and the F1-score was 0.91

(Figure 5.16). For two-second long signals, the algorithm correctly identified 625 of

662 (0.94 sensitivity) VA episodes and 600 of 662 (0.91 specificity) non-VA episodes
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Figure 5.16: Ventricular arrhythmia detection on publicly available benchmark
datasets, ROC curves for VA detection (5 seconds) and VA detection (2 seconds)

(Table 5.14) with an AUC of 0.97 and an F1-score of 0.93 (Figure 5.16).

Table 5.14: Ventricular arrhythmia detection on publicly available benchmark
datasets, confusion matrix for VA vs Non-VA with DPFA.

Annotation 5 seconds Annotation 2 Seconds
Prediction VA Non-VA Total VA Non-VA Total

VA 243 34 277 625 62 687
Non-VA 18 227 245 37 600 637

Total 261 261 552 662 662 1324

5.4.1.4 Discussion

The presented DPFA algorithm did not require any pre-processing or peak anno-

tation of the signals. It was able to detect 5-second long VA episodes with a high

AUC of 0.96 and F1-score of 0.91, and with an AUC of 0.97 and F1-score of 0.93

using 2-second long signals. Table 5.15 provides a performance comparison between

our algorithm and other algorithms. Note that the precise conditions and set-up of

these studies are not exactly the same.

There are multiple advantages of the proposed method over traditional feature

extraction with machine learning algorithm based approaches. First, the proposed
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Table 5.15: Ventricular arrhythmia detection on publicly available benchmark
datasets, results comparison to other methods.

Author, (Year) Data Classification Length(s) Algorithm Performance

Jekova, 2004
AHAVF
vfdb

Non-shockable
vs.
Shockable
(VT >180 bpm + VF)

10
preprocess,
criteria based,
bandpass digital filtration

Sen=0.96
Spec=0.94

Alonso, 2014
mitbih
cudb
vfdb

VF
vs.
Non-VF

8
preprocess,
feature extraction,
SVM

Sen=0.92
Spec=0.97
AUC=0.987

Tripathy, 2016
mitbih
cudb
vfdb

Non-shockable
vs.
Shockable (VF/VT)

5
variational mode decomposition,
feature extraction,
random forest

Sen=0.96
Spec=0.98
AUC=0.97

Acharya,2018
mitbih
cudb
vfdb

Non-shockable
vs.
Shockable (VFL, VT, VF)

2 CNN
Sen=0.95
Spec=0.91

DPFA
mitbih
cudb
vfdb

VFL/VT/VF
vs.
all others

2 DPFA with Automatically Generated States
Sen=0.94
Spec=0.91
AUC=0.97

algorithm did not rely on the efficacy of any pre-processing algorithms to remove

noise and baseline wandering. Instead, the encoding algorithm uses filters and nor-

malizes the signals. Most pre-processing algorithms require prior knowledge of noisy

signals to build the best thresholds for filtering purpose. Our algorithm, by utilizing

a word distribution algorithm, is more adaptive to different types of noisy signals.

The second advantage was that the proposed algorithm did not require usage of an

ECG peak annotation algorithm. Thirdly, this algorithm did not need extensive prior

knowledge of the signals in order to build and extract features. Furthermore, even

though recent novel algorithms using CNNs do not require pre-processing or feature

extraction either, they still require longer training times and larger computational

resources. Finally, the proposed model was flexible, robust, and adaptable to other

types of arrhythmia like atrial fibrillation Li et al. (2018) and supraventricular tachy-

cardia. It has potential applications to portable devices that could perform detection

in real-time.

One limitation of the model was that it required a large number of good quality

annotated signals for training. However, for severe types of arrhythmia with low

prevalence such as VF, the number of annotated signals are limited.

Future work will utilize the proposed method to predict the onset of VA events
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several minutes in advance with real-time data from portable ECG devices.

5.4.2 VT Prediction on Hospital Bedside Dataset

5.4.2.1 Data

Waveforms in DB2 are used for VT predictions. After excluding recordings with

pacemakers, implantable cardioverter defibrillators (ICD) and ventricular assist de-

vices (VAD), there are 152 lead II ECG waveforms in the database from patients

diagnosed with VT.

5.4.2.2 Method

Each ECG recording could last up to several hours, we used 2 criteria to first filter

out the intervals that might contain VT episodes. The first criterion is the heart rate

should be above 100 bpm and the second criterion is average width corresponding to

half length of the peaks should be wider than 40 ms. The second criterion is defined

because VT episodes have wide QRS complex (> 120 ms), with half length of the

peaks > 40 ms, the width QRS complex will likely to be at least > 80 ms. We make

this criterion lower than the 120 ms, to make sure that we capture all the possible

VT episodes for manual review. Details about annotation algorithms in 3.3.1.

The last step of VT annotation requires manual review of the episodes which

satisfied the two criteria. There is a total of 77 VT episodes after review, 59 of them

were included in the training dataset and the remaining 18 episodes were included

in the testing dataset. Five-fold cross validation was performed on training data on

participant level for parameter tuning. The parameters with highest sensitivity was

then applied on the testing set.
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Table 5.16: VT prediction on hospital bedside dataset (DB2), result summary with
DPFA.

Gap
Interval
(min)

Prediction
Interval
(min)

AUC F1 Sensitivity Specificity Acc

0.5 2 0.78 0.55 0.67 0.84 0.84
1 2 0.77 0.50 0.56 0.84 0.79

1.5 2 0.76 0.50 0.50 0.85 0.72
2 2 0.75 0.52 0.33 0.86 0.76

2.5 2 0.75 0.48 0.44 0.85 0.72
3 2 0.76 0.52 0.56 0.85 0.81

5.4.2.3 Results and Discussion

The AUC for VT prediction is around 0.75, results on DB2 are shown in Table

5.16. The VT prediction results which are not as good as other types of arrhythmias

like AFib or SVT. The major limitation of VT prediction is the limited number of data

compares to other arrhythmia types. There are only 77 reviewed episodes obtained

from 23 patients.

5.5 Bradycardia

5.5.1 Bradycardia Detection on Benchmark Datasets

Comparing to other types of arrhythmias, bradycardia does not cause as severe

symptoms and have less research interests. Thus there are limited publicly available

databases built for bradycardia events. Bradycardia events in DB1 is limited and

experiments were not performed due to the small sample size.

5.5.2 Bradycardia Prediction on Hospital Bedside Dataset

Bradycardia in adults may cause complications in many kinds of chronic heart

disease. On the other hand, bradycardia is also linked to various kinds of emergencies

in situations such as when driving an automobile. It is thus crucial to monitor and
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make automated urgent detection, preferably even to predict these bradycardia events

in such situations. The aim of the study is to predict the onset of bradycardia

events in patients with congestive heart failure (CHF), with the purpose to inform

the development of an in-vehicle cardiac monitoring system.

Arrhythmia is a condition of improper beating of the heart, whether too fast or

too slow or irregularly, which occurs when the electrical impulses that coordinate the

heart beats are not working properly. Among various types of arrhythmia, tachycardia

refers to a fast heart beat generally with a resting heart rate greater than 100 beats-

per-minute (BPM), whereas bradycardia, on the other hand, refers to a slow heart

beat commonly defined as having a heart rate of less than 60 BPM Kusumoto et al.

(2019). Despite the general definition, a slow heart rate does not always indicate an

underlying disease, since there is considerable variation in the resting heart rate among

the healthy, asymptomatic population Mangrum and DiMarco (2000) such as the

example of people with a family history of slow heart beats, or athletes and physically

active individuals. However, bradycardia can cause inadequate blood flow to tissues

and organs leading to symptoms such as fatigue, dizziness or heart failure Mangrum

and DiMarco (2000). In more severe cases, certain symptomatic bradycardia could

be caused by a serious underlying medical condition known as congestive heart failure

(CHF), which is manifested by signs and symptoms of impaired cardiac ventricular

performance. The ten-year mortality rate for CHF is 54.4% for men and 23.8% for

women for the population with 25-74 years of age Schocken et al. (1992). Damage to

the heart from CHF and other heart problems may affect the heart’s electrical system,

making the heart pump less efficiently and effectively and causing bradycardia. Upto

5 million patients experience CHF in United States and sudden cardiac death remains

a significant problem in this population. Although most sudden deaths in CHF can

be attributed to ventricular arrhythmia, bradycardia is another prominent cause and

accounts for 42% of sudden deaths in hospital Sanders et al. (2004). In order to
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prevent the negative effects of bradycardia for patients with life threatening cardiac

disease such as CHF, it is crucial to not only make early detection, but also to predict

the onset of bradycardia events.

Many studies on bradycardia prediction have focused on the detection or pre-

diction of severe bradycardia including apnea bradycardia in premature newborns.

Various techniques have employed statistical methods and machine learning methods

such as nonparametric methods Das et al. (2019) and point process modeling Gee

et al. (2016) to extract statistical features, deep sequential auto-encoders and on-

line clustering Hosseini and Sarrafzadeh (2019), Kalman filter Ghahjaverestan et al.

(2015b), principal components analysis (PCA) and hierarchical ascending classifica-

tion (HAC) for clustering and classification Pravisani et al. (2003), hidden Markov

model Ghahjaverestan et al. (2015a, 2021); Altuve et al. (2011); Sadoughi et al. (2021),

system identification-based approach Bakshi et al. (2020) and fusion of different algo-

rithms Cruz et al. (2006). However, when it comes to bradycardia prediction in adults

there is limited research efforts, especially in patients with severe cardiac disease such

as heart failure. Therefore, this study aims to achieve two goals: from a methodology

perspective, to apply a new approach based on DPFA into the study of bradycardia

prediction; from a medical perspective, to fill the gap in adult bradycardia predic-

tion by developing such an algorithm for patients with underlying cardiac diseases.

For those who are not familiar with the definition, a DPFA is an automaton with

a finite number of states on a pre-determined finite alphabet consisting of possible

deterministic transitions, such that at each time the transition from one state to the

next is determined by a probability distribution on the alphabet depending only on

the current state. For further details please refer to Li et al. (2019, 2021), algorithm

related to bradycardia prediction is listed in Section 3.3.1.

In this part of the study, a DPFA based algorithm is proposed to monitor and

predict bradycardia events, with the goal to create a real-time, prospective system
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that can help clinical practice and prevent negative outcome due to sudden drop in

heart rates in CHF patients.

5.5.2.1 Data

The analysis is based on lead II electrocardiogram (ECG) recordings. The ECG

signals were extracted from a retrospective database from Michigan Medicine cardiac

patients with bradycardia diagnosis. Recordings from patients with pacemakers, im-

plantable cardioverter defibrillators (ICD), or ventricular assist devices (VAD) were

further excluded. The recordings were sampled at 240 Hz.

There was a total of 2156 lead II ECG recordings from 1251 bradycardia patients.

Among these 2156 recordings, 287 were from 173 CHF patients. After extracting

bradycardia events with annotation criteria, a total of 95 bradycardia intervals from

47 patients. Among these events, a total of 21 bradycardia annotated events from 11

patients did not take beta-blockers. The patients without beta-blockers were sepa-

rated out to test the severe bradycardia cases that were not related to beta-blockers.

Beta-blockers are commonly used in treatment for heart failure and arrhythmia. They

are thought to work by blocking the deleterious effects of adrenergic receptor stimu-

lation.This results in a slowing of the heart rate and reduces the force at which blood

is pumped around your body. Studies suggest that treatment to reduce resting heart

rate in patients with heart failure to < 65 bpm is associated with a better prognosis.

However, risk must increase with very low heart rates Cullington et al. (2012). Lead II

ECG was used because it shows the p-wave and is most commonly used to record the

rhythm strip. As a result, analyses based on hand-crafted clinical features mostly use

lead II ECG signals. Table 5.17 summarizes demographics of the 47 patients included

in the study and the sub-group with 11 patients with no beta-blockers. Among the

47 patients, 57% of them were males with an average of age of 64.7. All of them

were cardiac arrhythmia patients with congestive heart failure. Among them 30%
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Table 5.17: Bradycardia prediction on hospital bedside dataset(DB2), demographic
table.

Demographics Value
Frequency (%)

Total
(n=47)

Without Beta
(n=11)

Age <= 50 11 (23%) 3 (27%)
51-60 7 (15%) 1 (9%)
61-70 10 (21%) 3 (27%)
71-80 13 (28%) 3 (27%)
>80 6 (13%) 1 (9%)

Gender Female 20 (43%) 3 (27%)
Male 27 (57%) 8 (73%)

Cardiac Arrhythmia Yes 47 (100%) 11 (100%)
No 0 (0%) 0 (0%)

Chronic Pulmonary Disease Yes 14 (30%) 4 (36%)
No 33 (70%) 7 (64%)

Congestive Heart Failure Yes 47 (100%) 11 (100%)
No 0 (0%) 0 (0%)

Hypertension Complicated Yes 15 (32%) 2 (18%)
No 32 (68%) 9 (82%)

Hypertension Uncomplicated Yes 35 (74%) 8 (73%)
No 12 (26%) 3 (27%)

Diabetes Complicated Yes 11 (23%) 2 (18%)
No 36 (77%) 9 (82%)

Diabetes Uncomplicated Yes 17 (36%) 4 (36%)
No 30 (64%) 7 (64%)

Pulmonary Circulation Disorders Yes 18 (38%) 5 (45%)
No 29 (62%) 6 (55%)

had chronic pulmonary disease, 32% had complicated hypertension and 74% of them

had pulmonary circulation disorders.Among the 11 patients, 73% of them were males

with an average of age of 63.5. Among them 36% had chronic pulmonary disease, 18%

had complicated hypertension and 45% of them had pulmonary circulation disorders.

5.5.2.2 Method

In order to extract bradycardia events that have more clinical importance, sev-

eral criteria were employed in terms of heart rate, medical diagnosis and medication.
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Details about the bradycardia annotation algorithms are described in Section 3.3.4.

Pre-processing, noise removal and pre-event extractions are described in Section 3.4.1,

3.4.2.2 and 3.4.3. Details of the DPFA algorithm is described in Section 3.2. Sym-

bolization of the DPFA algorithm is described in Section 3.2.2, parameters are tuned

with training and validation data and the optimal parameters are listed in 5.2.

The parameters a1, b1, a2, b2 were all tuned in the training step and set at



a1 = 0.6

b1 = 0.8

a2 = 0.025

b2 = 0.05

(5.2)

For prediction of bradycardia in patients with or without beta blockers, five-fold

cross-validation was used for model training, testing and validation. A total of 80

prediction intervals from 38 patients were used in training with the remaining 18

intervals from 9 patients were held out for testing. Within the training data set, 5-

fold cross validation was performed for parameter tuning. Training, cross validation,

and testing sets/folds were partitioned on the participant level, meaning that signals

from the same participant were only included in one set/fold so as to prevent data

leakage. The training-testing process was repeated for 10 times to avoid biased results

due to randomness in training and testing data partition (Figure 5.17).

For prediction of bradycardia in patients without beta blockers, leave-five-out

cross-validation was used for training and testing the model performance. The choice

of leave-p-out instead of k-fold cross-validation was because of the limited sample

size. There was a total of 11 bradycardia participants without beta blockers. For

each iteration, 5 participants were chosen for the testing set and the remaining 6

participants were used to train the model (Figure 5.18). The choice of p = 5 ensures

enough bradycardia cases in both the training and the testing datasets. For p smaller
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Figure 5.17: Bradycardia prediction on hospital bedside dataset (DB2), training
scheme plot for five-fold cross validation.

Figure 5.18: Bradycardia prediction on hospital bedside dataset (DB2), training
scheme plot for leave-five-out cross-validation.

than 5, the results of the experiments were influenced by how the data was separated,

causing a larger variance. The same issues arose for p larger than 6 by symmetry.

Similar to five-fold cross-validation, the dataset was also split on the participant level

to prevent data leakage. A total of 11C5 = 426 iterations were performed to evaluate

the models and the final result was the average of all the iterations.
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5.5.2.3 Results

Different combinations of signal intervals (i.e., tprediction = 0.5, 1.0, 2.0 minutes)

and gap intervals (i.e., tgap = 0.5, 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 minutes) were used for

prediction. These prediction intervals were tested using the DPFA algorithm.

Figure 5.19 shows a summary of the performance for the overall group includ-

ing patients with beta-blockers. The overall average AUC is 0.67 with a standard

deviation of 0.05. The average AUC is 0.67 ± 0.05 for tprediction = 0.5, 0.68 ± 0.05

for tprediction = 1.0 and 0.68 ± 0.05 for tprediction = 2.0. The AUC is around 0.7 for

all prediction intervals. For the bradycardia-positive DPFA, the algorithm generated

an average of 607 × 3 transition states for the models using 0.5-minute long signals,

267×3 transitions states for the 1.0-minute long signal models, and 3867×3 transition

states for the 2.0-minute long signal models. For the bradycardia-negative DPFA, the

algorithm generated an average of 1949×3 transition states for the models using 0.5-

minute long signals, 2483× 3 transitions states for the 1.0-minute long signal models,

and 3037× 3 transition states for the 2.0-minute long signal models.

Figure 5.20 shows a summary of the performance for the group without beta-

blockers. The overall average AUC is 0.72 with a standard deviation of 0.13. The

average AUC is 0.71 ± 0.13 for tprediction = 0.5, 0.72 ± 0.14 for tprediction = 1.0 and

0.73 ± 0.12 for tprediction = 2.0. The AUC is around 0.7 for all prediction intervals.

For the bradycardia-positive DPFA, the algorithm generated an average of 19 × 3

transition states for the models using 0.5-minute long signals, 30×3 transitions states

for the 1.0-minute long signal models, and 61× 3 transition states for the 2.0-minute

long signal models. For the bradycardia-negative DPFA, the algorithm generated an

average of 58×3 transition states for the models using 0.5-minute long signals, 108×3

transitions states for the 1.0-minute long signal models, and 471× 3 transition states

for the 2.0-minute long signal models.

There are two major groups of arrhythmia detection algorithm based on ECG
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Figure 5.19: Bradycardia prediction on hospital bedside dataset (DB2), AUC for
various signal lengths and gap intervals.

Figure 5.20: Bradycardia prediction on hospital bedside dataset (DB2), AUC for
various signal lengths and gap intervals, without beta-blockers.
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Table 5.18: Bradycardia prediction on hospital bedside dataset(DB2), result for
bradycardia prediction with different gap intervals and lengths of signals, without
beta-blocker.

Gap
Interval
(min)

Prediction
Interval
(min)

AUC
Mean (Std)

Sensitivity
Mean (Std)

Specificity
Mean (Std)

0.5 0.5 0.732(0.12) 0.655(0.23) 0.637(0.20)
1 0.5 0.728(0.18) 0.565(0.25) 0.719(0.21)

1.5 0.5 0.737(0.11) 0.589(0.24) 0.696(0.21)
2 0.5 0.726(0.12) 0.765(0.26) 0.527(0.32)

2.5 0.5 0.717(0.14) 0.703(0.27) 0.596(0.23)
3 0.5 0.733(0.11) 0.577(0.25) 0.701(0.21)

3.5 0.5 0.744(0.14) 0.838(0.17) 0.510(0.28)
4 0.5 0.743(0.12) 0.811(0.20) 0.510(0.31)

4.5 0.5 0.743(0.12) 0.448(0.24) 0.778(0.17)
0.5 1 0.715(0.13) 0.835(0.18) 0.506(0.29)
1 1 0.731(0.13) 0.770(0.25) 0.544(0.31)

1.5 1 0.715(0.12) 0.561(0.26) 0.694(0.22)
2 1 0.707(0.12) 0.721(0.27) 0.571(0.25)

2.5 1 0.730(0.14) 0.767(0.24) 0.537(0.31)
3 1 0.743(0.12) 0.448(0.24) 0.778(0.17)

3.5 1 0.713(0.13) 0.751(0.28) 0.568(0.26)
4 1 0.699(0.13) 0.768(0.27) 0.512(0.33)

0.5 2 0.722(0.12) 0.538(0.24) 0.704(0.21)
1 2 0.674(0.14) 0.668(0.30) 0.561(0.28)

1.5 2 0.704(0.13) 0.752(0.26) 0.522(0.32)
2 2 0.700(0.13) 0.666(0.30) 0.621(0.26)

2.5 2 0.719(0.12) 0.736(0.28) 0.598(0.28)
3 2 0.702(0.13) 0.702(0.28) 0.595(0.27)

signals. The first group requires the extraction of hand-crafted features from time or

frequency domain, followed by a machine learning classifier. The second group does

not rely on hand-crafted features Faust et al. (2020), but instead uses deep learning

methods such as convolutional neural networks (CNN) or long short-term memory

(LSTM) recurrent neural networks (RNN) Acharya et al. (2017a); Rajpurkar et al.

(2017); Acharya et al. (2017b).

In order to evaluate the performance of the DPFA algorithm relative to the other

methods, the prediction experiments were performed with the same leave-five-out
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training-testing scheme using the following algorithms:

1. Heart rate variability (HRV) features with random forest (RF). A total of 22 fea-

tures were extracted from time-domain, frequency-domain and non-linear mea-

surements. Time-domain features include: HR, RR, SDNN, SDHR, RMSSD,

NN50, pNN50, SDSD, HRV TRI, and TINN. Frequency-domain features in-

clude: LF peak, HF peak, LF power, HF power, LFHF ratio, and VLF. Non-

linear measurements include: SD1, SD2, Lorenz OC, Lorenz OC ratio, ApEN,

and SampEn. See Table 5.19 for definition and full names of the variables Shaf-

fer and Ginsberg (2017); Sarkar et al. (2008); Hnatkova et al. (1995); Grant

et al. (2013).

RF was used with grid search on number of trees, number of features at every

split, maximum number of levels in trees, minimum number of samples required

to split a node and minimum number of samples required at each leaf node.

2. 1D-CNN model: 1D-CNN model with 2 layers with ReLU activation followed

by a dropout layer for regularization and a pooling layer. The learned features

were then flattened and passed to a fully connected layer.

3. CNN-based ResNet: ResNets use a skipping mechanism to connect non-adjacent

layers, thus making the features more robust to perturbations and improving

the accuracy of deeper networks Andreotti et al. (2017). A 34 layers ResNet was

applied to classify 30-seconds long single lead ECGs segments into 14 different

cardiac disease classes with raw ECG data Rajpurkar et al. (2017). A ResNet

with three residual blocks followed by a global average pooling layer and a

softmax layer was used in this study for comparison.

For the CNN-based models, architectures with fewer layers were chosen because

of the limited sample size.
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Table 5.19: Bradycardia prediction on hospital bedside dataset(DB2), table of fea-
tures used in HRV with RF approach.

Parameter Description

HR Mean heart rates
RR Mean of time elapsed between two successive R waves of the QRS signal
SDNN Standard deviation of NN intervals
SDHR Standard deviation of heart rates
RMSSD Root mean square of successive RR intervals

NN50
Number of adjacent NN intervals that differ from each other
by more than 50 ms requires a 2 min epoch

pNN50 Percentage of successive RR intervals that differ by more than 50 ms
SDSD Standard deviation of successive RR interval differences
HRV TRI Integral of the density of the RR interval histogram divided by its height
TINN Baseline width of the RR interval histogram
LF Peak Peak frequency of the low-frequency band (0.04-0.15 Hz)
HF Peak Peak frequency of the high-frequency band (0.15-0.4 Hz)
LF Power Absolute power of the low-frequency band (0.04-0.15 Hz)
HF Power Peak frequency of the high-frequency band (0.15-0.4 Hz)
LFHF ratio Ratio of LF-to-HF power
VLF Absolute power of the very-low-frequency band (0.0033-0.04 Hz)
SD1 Poincaré plot standard deviation perpendicular the line of identity
SD2 Poincaré plot standard deviation along the line of identity
Lorenz OC Number of points within the radius of normal sinus rhythm mask (80 ms)

Lorenz OC ratio
Ratio between number of points within the radius NSRmask to the
total number of points

ApEn Approximate entropy
SampEn Sample entropy
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The dataset in this study is imbalanced; in the total group there are 98 bradycardia

intervals with around 1000 non-bradycardia intervals, in the group without beta-

blockers there are 21 bradycardia cases with 371 non-bradycardia cases. A direct

application of deep learning methods might be ineffective since these typically require

much larger data sets and a more balanced class. In order to balance the two classes,

each comparison method was then applied together with the synthetic minority over-

sampling technique (SMOTE). SMOTE is a popular oversampling method proposed

by Chawla in 2002, it can produce synthetic minority samples instead of duplicating

samples Chawla et al. (2002). In the HRV with RF approach, the SMOTE method

was applied after the HRV feature extraction step, in order to amplify the features

extracted from the bradycardia group so as the achieve an equal number with the

non-bradycardia group. In the CNN based method, SMOTE was applied to the raw

training ECG to balance the number of the two classes.

In the total group including beta-blocker patients, the HRV with RF algorithm has

an average AUC of 0.54± 0.03, sensitivity of 0.12± 0.07 and specificity of 0.97± 0.02

over all prediction intervals. There was a slight improvement after data augmentation

with SMOTE, the algorithm achieved AUC of 0.57 ± 0.04, sensitivity of 0.24 ± 0.20

and specificity of 0.89 ± 0.04. Similarly in the group without beta-blocker patients

using HRV with RF, data augmentation with SMOTE also resulted in with an average

AUC of 0.55 ± 0.08 , sensitivity of 0.23 ± 0.20 and specificity of 0.87 ± 0.13. over

all the prediction intervals, a slight improvement over the otherwise AUC of 0.5.

However, there was not much improvement for CNN based methods, the AUC for

the prediction intervals were still around 0.5. The algorithms failed to classify the

minority class. This might due to the inherent requirement for larger datasets of deep

learning algorithms in order to achieve better classification results.
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5.5.2.4 Discussion

Despite active research in bradycardia prediction for premature infants, there have

been only a limited number of studies in the adult population with CHF. In this study,

lead II ECG signals were used to predict bradycardia events up to 5 minutes prior

to the onset of the event. The proposed algorithm uses DPFA models to predict

bradycardia events. The processed ECG is transformed to a probabilistic string of

symbols representing broad morphology types for model generation. The generated

models are then applied to the testing set for the prediction. An AUC of around 0.7

was achieved for all prediction intervals despite a relatively small sample size. To

investigate impact of beta-blockers, analysis performed on patients without taking

beta-blockers. With DPFA algorithm, there is a slightly increase in the prediction

performance, however the variance has increased as well.

The proposed method does not rely on the extraction of hand-crafted features

which requires extensive clinical knowledge. With a well-trained model, the algorithm

has the ability to predict the events in a real-time prospective manner. This will allow

time for medical attention for bradycardia events in patients with CHF. This will be a

significant step toward the development of an in-vehicle arrhythmia prediction system.

One of limitations of the study is the small sample size. Although the entire

bradycardia dataset consisted of 1251 bradycardia patients to start with, there were

only 47 patients that met all the criteria for inclusion and for the beta-blocker excluded

group there were only 11 patients. The strict criteria were imposed in order to focus

on patients who were not only with bradycardia episodes but also had CHF, since it

is also possible for healthy individuals such as athletes to have low heart rate but with

no significant health concerns. Patients taking beta blockers were also excluded due

to the medication effects on ECG signals. Although the goal was to include patients

that would benefit most from a clinical alert system, this approach also led to a

low number of patients thus limiting the ECG patterns that can be used for model
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training. The leave-five-out training method was applied for algorithm evaluation,

but a larger patient cohort could further help with algorithm training. The limited

sample size also made it difficult to compare the performance the DFPA algorithm

with any state-of-the-art deep learning algorithms, since the latter typically require

much larger training dataset. In future studies, more patients with ECG signals that

can be used for model training and evaluation will be enrolled.

5.6 Rapid Ventricular Rates with Low Activity

RVR are an important consequence of AFib January et al. (2014). A fast and ir-

regular heart rate decreases time spent in diastole which impairs myocardial perfusion,

ventricular diastolic filling, and cardiac output that in turn leads to greater symptom

burden and reduced left ventricular systolic function Skinner Jr et al. (1964); Kochi-

adakis et al. (2002). However, there are many reasons for RVR during episodes of

AF. In addition to inappropriate tachycardia due to the underlying disease, patients’

heart rates may rise in a normal compensatory response to keep up with physiological

demands during exercise or activities of daily living.

There is a need to not only detect and predict periods of AF with rapid ventric-

ular rates but also distinguish periods of inappropriate tachycardia with AF from

those associated with activity. Accelerometers are widely used in wearable sensors

and provide important data that can be used to estimate patients’ activity and move-

ment within their natural setting Godfrey et al. (2008). They can provide important

insights that are not available through investigating ECG alone. Therefore using raw

accelerometry data in combination with ECG has the potential to identify and predict

inappropriate tachycardia with AF. Accurate prediction of these episodes will allow

just-in-time interventions for patients with AF.

Traditional algorithms have focused on the detection of AF episodes and are able

to achieve this with high degree of accuracy Teplitzky et al. (2020). However, predic-
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tion algorithms have not been able to achieve sufficient lag time to allow for medical

or surgical interventions. There are several clinical scenarios where identifying rapid

AF at low levels of activity can be of clinical value, including ensuring appropriate

rate control for patients with AF, triggers for on-demand rhythm control approaches

to improve patient care and facilitate monitoring system for AF that could be treated

medically.

The aim of this part of study is to predict the onset of AF with RVR episodes

associated with low activity using pre-event ECG signals. The proposed approach

involves a DPFA-based algorithm that can predict episodes of AF with RVR that are

associated with low levels of activity.

5.6.1 Data

A total of 45 patients with history of AF who presented to University of Michigan

are recruited in the study. All patients wore an event recorder (Preventice solutions

Inc) for up to three weeks. IRB approved the protocol and written informed consent

was obtained. The ECG and accelerometer data were recorded continuously for up to

3 weeks. Thirteen patients are excluded because the length of the ECG is less than 5

minutes or there are no annotated AF events, 1 additional patient is excluded since no

accelerometer data. Thirteen patients with AF episodes of duration less 30 seconds

or less than 5 episodes of AF were further excluded. Finally a total of 18 patients are

included in the prediction analysis. A flow chart of the patient inclusion/exclusion

criteria is demonstrated in Figure 5.21. The characteristics of patients are summarized

in Table 5.20.
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Figure 5.21: RVR with low activity prediction, figure of patient flow.

5.6.2 Method

5.6.2.1 Accelerometer data

The raw accelerometer data are collected along three orthogonal axes in the device-

specific frame of reference. The continuous accelerometer data are collected using

a wireless monitoring device that adheres to patient’s chest (Preventice Solutions,

Inc) and sampled at 10 Hz. The accelerometer data were up-sampled to 256 Hz to

match the ECG sampling rate. For the analysis, the accelerometer magnitude am(t)

consisting of the vector magnitude of the accelerometer data at each time point is
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Table 5.20: RVR with low activity prediction, characteristics of patients.

Variable
All Participants

(n=45)
Participants in Prediction Analysis

(n=18)

Female 14 (31.82%) 5 (27.78%)
Age 66.36 (11.67%) 69.13 (7.31%)
BMI 31.30 (6.08%) 30.93 (5.66%)
Hypertension 26 (59.09%) 11 (61.11%)
History of Stroke 0 (0.00%) 0 (0.00%)
Diabetes 12 (27.27%) 5 (27.78%)
Coronary artery disease 11 (25.00%) 5 (27.78%)
Peripheral vascular disease 2 (4.54%) 2 (11.11%)
Beta Blockers 31 (70.45%) 13 (72.22%)
Calcium channel blockers 14 (31.82%) 4 (22.22%)
Antiarrhythmic drugs 9 (20.45%) 2 (11.11%)

used in analysis together with the synchronized ECG signal.

am(t) =
√
x(t)2 + y(t)2 + z(t)2

= accelerometer magnitude at the time point t.

(5.3)

The data is aggregated using MAD which computes the deviation of am(t) from

its mean over the corresponding epoch, averaged over the length of the annotated AF

signal Bakrania et al. (2016).

MAD =
1

n
×

n∑
i=1

|am(ti)− am| (5.4)

where:

am(ti) = accelerometer magnitude at the ith time point

am = mean accelerometer magnitude within the time period of interest

n = length of the time period

The MAD ≤ 0.75 quantile relative to the measurements from the entire group id des-
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ignated as low activity and MAD > 0.75 quantile as high activity in order to account

for inter-individual differences in activity levels within the study group. Threshold of

0.75 quantile for distinguishing activity levels is an arbitrary choice since there is no

well-established guideline for low vs. high activity level.

5.6.2.2 ECG data

ECG is acquired using a single lead event recorder (Preventice Solutions, Inc)

and sampled at 256 Hz. ECG data were collected with the same biopatch as the

accelerometer. Continuous single channel ECG signals were collected while wearing

the device. Arrhythmia classification was performed using the BeatLogic platform

that is cleared to identify AF episodes Teplitzky et al. (2020). Our clinician has

also reviewed 150 randomly selected AF events annotated by Beatlogic for further

validation, out of which 139 (93%) were confirmed to be AF events. A total of 961

AF events were annotated by the algorithm. Most of the participants had less than 50

episodes of AF events throughout the 3 weeks with several participants with higher

number of AF events. Figure 5.22 shows burden of AF for all participant and those

included in the prediction algorithm analysis.

In terms of HR, RVR episodes are defined as having HR > 110 BPM, and non-

RVR episodes with HR ≤ 110 BPM. Pre-processing, noise removal, and prediction

interval extraction were performed on the synchronized recordings of ECG and ac-

celerometer magnitude signals.

In the signal pre-processing step, a second-order Butterworth band-pass filter

was applied with cutoff frequencies of 0.5 and 40 Hz to the raw ECG signal for

noise removal. In the next step, a double median filter with orders equal to 0.2 and

0.6 times the sampling frequency was applied to remove baseline wandering. Peak-

detection algorithm was then applied to capture the R-peaks in the ECG signals.

Noise section of the signals was detected with annotations from BeatLogic platform.
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Events that occurred too close to previous events were excluded to avoid overlap

of prediction intervals with arrhythmia events. Events that occurred within 8 minutes

of a noisy signal were also excluded to ensure that the prediction interval is outside

the noisy signal range. We used the ECG signal to predict episodes of AF with RVR

and low activity level vs. all other AF episodes.

The gap interval tgap represents the interval in minutes before the event that is

used for prediction. The signal interval tsignal represents the length of the prediction

signals. For example, prediction intervals with tgap = 1 min, tsignal = 2 min are the

signals that span from 3 to 1 minutes before the annotated events. Figure 5.23 shows

an example of an annotated AF episode and prediction intervals.

5.6.2.3 DPFA Model

In this part study, we improved our algorithm and tested its ability to work

with different types of synchronized physiological signals (i.e synchronized ECG with

accelerometer magnitude signals) for arrhythmia events predictions. We used the

DPFA algorithm for predicting AF episodes with RVR and low activity level vs. other

AF episodes using ECG and accelerometer magnitude signals prior to the event.

Each DPFA is generated in two steps (see 3.2 for details of the algorithm):

First in the symbolization module, one begins with the training dataset which

consists of annotated ECG and accelerometer magnitude signals. From these, the

algorithm extracts windows that are indicative of imminent events and others that

are not. The positive (i.e., AF with RVR with low activity) and negative (i.e., all the

other regions) ECG and accelerometer magnitude signals are respectively combined

and transformed into probabilistic strings. Here the probabilistic strings consist of an

alphabet of nine symbols Σ = {α1β1, α2β1, α3β1, α1β2, α2β2, α3β2, α1β3, α2β3, α3β3}

where αi correspond to different activity levels and βj correspond to different ECG
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morphology types within each window, and the probabilities

p(αiβj) = p(αi)p(βj) (5.5)

are computed by assigning probabilities to αi and βj independently. The individual

probabilities p(αi) and p(βj) are obtained from the signal values xt over discrete time

windows t via soft-thresholding


p1 = ψ1(xt)

p2 =
(
1− ψ1(xt)

)
· ψ2(xt)

p3 = 1− p1 − p2,

(5.6)

where the soft-thresholding functions are chosen to be piecewise linear functions

ψ1, ψ2 : [0, 1]→ [0, 1] of the form

ψj(x) =


1 if x > bj

x−aj
bj−aj if aj ≤ x ≤ bj

0 if x < aj.

(5.7)

The parameters a1, b1, a2, b2 were all tuned in the training step and set at



a1 = 0.03

b1 = 0.05

a2 = 0.01

b2 = 0.02

for activity αi and



a1 = 0.5

b1 = 0.7

a2 = 0.025

b2 = 0.05

for ECG βj. (5.8)

based on a grid search while running the inner loops of the nested cross validation.

Then the DPFA generation module constructs the positive (AF with RVR and low

activity) DPFA M+ and the negative (all other AF episodes) DPFA M− respectively
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from the positive and negative probabilistic strings, by first constructing the frequency

prefix trees T+ and T−, followed by the largest suffix merging algorithm T+ → M+

and T− →M−. The frequency prefix trees are tree-like automata T = 〈Q0,Σ, ε,Freq〉

with initial state ε whose state space Q0 consists of strings in the alphabet Σ with

non-zero frequency, and transition function given by concatenation of strings. The

largest suffix merging algorithm selects those states q ∈ Q0 of the frequency prefix

tree T with sufficiently high frequency to be in the state space M , and then defines

the transition state T (q, αiβj) to be the largest suffix of qαiβj that is itself contained

in the state space of M . See 3.2 for further details.

The classification scheme contains a training phase and a testing phase. In the

training phase, the algorithm learns the DPFA M+ and M− for the positive and

negative classes respectively. Then in the testing phase, we classify a given synchro-

nized ECG-accelerometer magnitude signal from the test dataset by comparing the

goodness-of-fit with the DPFA M+ and M− to predict episodes of AF with RVR with

low activity Figure 5.24.

5.6.3 Data Partition

A total of 961 episodes of AF events were annotated for the analysis. We used 5

fold nested cross validation for parameter tuning. Figure 5.25 shows how data was

partitioned in the analysis. The 961 episodes were split into 5 folds, 4 folds were used

for training and the remaining fold was used for testing. Within the inner loop, the

training data had a total of 4 folds, 3 folds were used for parameter tuning and the

remaining fold for validations. In the outer loop, the DPFA models were generated

using all 4 folds of the training data with hyper-parameters tuned during the inner

loop. Predictions were performed on the testing data in each split and then averaged.
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5.6.4 Results

During the study period, we have recruited 45 patients with AF, of whom 31 had

both ECG and accelerometer data. We excluded patients with AF episode of duration

less 30 seconds and those with less than 5 episodes of AF. There was a total of 292

episodes of AF with RVR compared to 669 episodes of AF with controlled heart

rate. There were 116 episodes in > 75 percentile activity level in the RVR group

and 124 episodes in the non-RVR group based on MAD relative to total group. The

distribution of high activity based on heart rates above 110 BPM are summarized in

Table 5.21. The 45 participants in the study had a median of 22 days of total wear

time (range 2–31 days). The median overall AF burden was 38.4% (inter-quantile

range (IQR) 4.9%-86.0%).

Among the 961 annotated AF events, 292 of them met the criterion for RVR

episode, among which 176 episodes had low activity level and the remaining 116

episodes had high activity level based on MAD relative to the entire group activity

level. For the rest of the annotated AF events, 669 of them were non-RVR episodes,

among which 545 episodes had low activity and the remaining 124 episodes had

high activity level. Table 5.21 summarizes the number of annotated AF episodes by

activity and HR levels.

A total of 18 patients are included in the final DPFA model. They had a median

of 22 days of total wear time (range 6–31 days). The median overall AF burden for

the 18 patients was 19.7% (IQR 10.5%-62.3%). Two participants had an AF burden

> 90% over the duration of the study. The mean heart rate was 99.0 ± 19.4 BPM.

The burden of AF for study participants is summarized in Figure 5.22.

Different combinations of signal intervals (i.e., tsignal = 0.5, 1.0, 2.0 min and gap

intervals (i.e., tgap = 0.5, 1.0, 2.0, 2.5, 3.5, 4.0, 4.5 min) up to 5 minutes before the AF

events were used for prediction. For a given model based on various gap intervals,

the threshold can be adjusted to optimize different parameters, i.e., a more sensitive
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Table 5.21: AF episodes by activity level and HR level.

Low Activity High Activity Total

RVR 176 116 292
Non-RVR 545 124 669

Total 721 240 961

model vs a more specific model. In Table 5.22, we report the threshold, sensitivity,

specificity, precision, and other relevant data based on each gap interval.

5.6.4.1 Results

We limited the events to those that lasted for at least 30 seconds to investigate the

effects of AF duration on predicting episodes of AF with RVR with low activity. As

the time to the event increases, the mean prediction performance gradually declines

while the variance increases. Using the MAD threshold relative to the whole group,

the average AUC for 0.5 minute-long prediction intervals is 0.71 ± 0.04, 1 minute-

long is 0.75± 0.03 and 2 minute-long is 0.77± 0.03 (Figure 5.26).The 2 minute-long

prediction intervals also showed the highest AUC around 0.75 with smallest standard

deviations. Prediction results for various gap intervals and prediction intervals are

shown in Table 5.22.

5.6.4.2 DPFA model interpretation

In addition to the superior performance, another major advantage of our approach

is the interpretability of the underlying DPFA models. Indeed the DPFA models could

be understood by first calculating the relative frequencies of the states, and then iden-

tifying the most prevalent rhythm patterns represented by the states within the DPFA

model constructed from each class. This could be achieved via standard techniques

by first extracting the normalized leading eigenvector of the transition matrix of the

DPFA model, and then taking the average of the relative frequencies across the five
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Table 5.22: Prediction results for various gap intervals and prediction intervals.

Gap
Interval
(min)

Prediction
Interval
(min)

AUC
Mean (Std)

Sensitivity
Mean (Std)

Specificity
Mean (Std)

Accuracy
Mean (Std)

0.5 0.5 0.735(0.026) 0.552(0.049) 0.808(0.104) 0.806(0.027)
1 0.5 0.700(0.050) 0.546(0.075) 0.797(0.085) 0.811(0.035)

1.5 0.5 0.725(0.041) 0.545(0.098) 0.804(0.078) 0.810(0.024)
2 0.5 0.706(0.064) 0.527(0.111) 0.810(0.084) 0.799(0.027)

2.5 0.5 0.729(0.048) 0.521(0.103) 0.845(0.065) 0.781(0.062)
3 0.5 0.703(0.035) 0.511(0.115) 0.790(0.091) 0.758(0.088)

3.5 0.5 0.673(0.049) 0.527(0.121) 0.742(0.092) 0.793(0.059)
4 0.5 0.701(0.051) 0.521(0.115) 0.802(0.110) 0.718(0.068)

4.5 0.5 0.691(0.038) 0.520(0.145) 0.790(0.073) 0.785(0.060)
0.5 1 0.768(0.031) 0.541(0.041) 0.850(0.081) 0.779(0.109)
1 1 0.756(0.046) 0.524(0.074) 0.838(0.097) 0.841(0.019)

1.5 1 0.753(0.019) 0.545(0.092) 0.838(0.104) 0.826(0.021)
2 1 0.751(0.054) 0.488(0.094) 0.864(0.073) 0.828(0.043)

2.5 1 0.753(0.012) 0.585(0.102) 0.805(0.135) 0.827(0.040)
3 1 0.734(0.026) 0.569(0.116) 0.767(0.128) 0.783(0.106)

3.5 1 0.730(0.030) 0.573(0.108) 0.809(0.117) 0.784(0.103)
4 1 0.742(0.043) 0.567(0.101) 0.819(0.132) 0.775(0.117)

0.5 2 0.776(0.029) 0.547(0.087) 0.838(0.074) 0.836(0.047)
1 2 0.769(0.011) 0.584(0.141) 0.824(0.117) 0.818(0.044)

1.5 2 0.780(0.047) 0.572(0.119) 0.869(0.088) 0.814(0.071)
2 2 0.761(0.034) 0.603(0.090) 0.782(0.150) 0.826(0.038)

2.5 2 0.766(0.017) 0.572(0.081) 0.820(0.098) 0.790(0.076)
3 2 0.746(0.044) 0.586(0.114) 0.777(0.129) 0.779(0.124)
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cross-validation folds. For example, by comparing the two DPFA models M+ and M−

with signal length = 0.5 (mins) and gap length = 0.5 (mins), this approach yields

the following five rhythm patterns as showing the most significant difference between

M+ and M−: $ff (which corresponds to the rhythm pattern [α3β2, α3β2], where α3β2

corresponds to a single window with activity level α3 and ECG type β2 as defined by

equation (5.5,5.6,5.7,5.8)), $ciic, $ici, $ffic, and $cii. Here for ease of presentation we

have switched to an alphabet consisting of single-letter symbols, the two alphabets

correspond to each other as follows

old alphabet α1β1 α2β1 α3β1 α1β2 α2β2 α3β2 α1β3 α2β3 α3β3

new alphabet a b c d e f g h i

and we use the $ symbol to denote the empty string. Please see Figure 5.28 for a

plot of the relative frequencies of all the states and the ten most significant rhythm

patterns with signal length = 0.5 (mins) and gap length = 0.5 (mins). Please also see

Table 5.23 for the five states with most difference between the relative frequencies in

DPFA M+ vs DPFA M− for various gap intervals and prediction intervals.

5.6.5 Discussion

This study in patients with AF showed that our novel DPFA algorithm can predict

the onset of AF with RVR associated with low levels of activity with AUC around

0.75 for intervals up to 4.5 minutes before the onset of the event. This is the first

study to evaluate the performance of prediction algorithms using the ECG along

with accelerometer data. Prediction of AF with rapid rates can result in personalized

treatment options for prevention and management of AF episodes that are likely to

be clinically significant. Our algorithm can help to distinguish between AF with

RVR episodes that occur unexpectedly at low levels of activity, thus more likely to

be clinically significant.

The machine learning techniques have shown impressive capability to analyze
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Table 5.23: Five states with most difference between the relative frequencies in DPFA
M+ vs. DPFA M− for various gap intervals and prediction intervals

Gap
Interval
(min)

Prediction
Interval
(min)

State1 State2 State3 State4 State5

0.5 0.5 $ff $ciic $ici $ffic $cii
1 0.5 $i $ciic $cii $icii $iffff

1.5 0.5 $iiiciici $iiiciii $ciic $icci $ciici
2 0.5 $ff $cii $ici $cifi $f

2.5 0.5 $ficific $ific $ificic $iiiciii $iffi
3 0.5 $fi $cii $ficific $ciic $icciic

3.5 0.5 $ficific $iccifici $iiiciicic $iccii $icific
4 0.5 $ff $cii $i $fi $icc

4.5 0.5 $cifici $icif $cific $cifi $fici
0.5 1 $iicciiiiciii $iicciiiic $iicciiiicii $iicciiiici $iicciiicii
1 1 $ificificifici $ificificific $iicifii $iicifiic $ciicicii

1.5 1 $ficifici $cific $ciici $cif $ficificificif
2 1 $ciic $cii $cific $ciii $iccii

2.5 1 $cific $ciii $icif $ciic $cicici
3 1 $ificiiic $ii $cificif $ficif $iccic

3.5 1 $i $ic $f $if $iiciici
4 1 $ificificifici $icci $iiccificii $iiccifii $ificificific

0.5 2 $ificificificifici $iiiiciiiicii $iiiiciiciicii $iiiiciiiiciii $ificific
1 2 $iiiiciicii $ificific $ifiic $ificificificif $ificificifici

1.5 2 $ificificifi $ificificificific $ii $ficifici $ificificificifici
2 2 $ici $icifi $icif $ffff $iccificifi

2.5 2 $iiccif $ificificific $iicc $iiccic $iiciiii
3 2 $iccii $fici $ficific $ficif $icif
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massive amounts of data and are an effective method for classification of arrhythmias

using ECG data. Despite being most commonly used in many areas, deep learning

algorithms have the drawback that their architecture represents a “Black Box” Topol

(2019). Their lack of transparency limits their clinical adoption, makes mechanistic

interpretation difficult and reduces their trustworthiness. Further, the disclosure of

meaningful details about medical treatment to patients requires the doctors to grasp

the fundamental inner workings of the devices they use to some degree Nagendran

et al. (2020). Explainability may also be required to justify the clinical validation

of machine learning algorithms in prospective studies and randomized clinical trials

Doshi-Velez and Kim (2017). Our DPFA model represents a novel and explainable

algorithm. This allows others to validate our algorithm in a diverse population of

patients and adopt it clinically if proven to be effective. Previous studies have used

the features extracted from the accelerometer data to give an overall impression of

patient activity over a period of time. However, these features can not fully capture

the variability in daily activity. It also misses the features within the activity signal

that can provide important physiological insights about the patient’s condition Yang

and Hsu (2010). Our approach shows that using the one-dimensional accelerometer

magnitude from the tri-axial raw accelerometer data can provide important infor-

mation that can augment the interpretation of the ECG and accelerometer signals

beyond the traditional features extracted from the signals.

Most methods for physiological data analysis depend heavily on pre-processing.

However, these methods tend to be less effective on noisy data, such as data collected

in real-time or in outpatient settings. Therefore, it is desirable to introduce new

methods that require minimal pre-processing to analyze such data, thus allowing

these insights to be applied to automated clinical decision making. In the previous

study, the DPFA method has showed to be particularly useful for the real-world noisy

data. Our algorithm does not rely on peak detection, requires minimal pre-processing
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and leads to good performance in the setting of noisy ECG signal. This provides a

significant advantage over existing algorithms when it is necessary to perform rapid

analysis in highly noisy environments. Thus DPFA algorithm can be useful for signals

captured by portable devices which are prone to noise.

Prediction can only be helpful if it results in specific action that can impact clinical

outcomes. In recent years, an increasing number of portable devices have been de-

veloped to monitor the physiological signals. Our algorithm provides a possibility for

real-time prediction of clinically meaningful arrhythmias using ECG signal together

with accelerometer signals with enough lag time for medical interventions.

This is the first algorithm that can identify features within the ECG that are capa-

ble of detecting and predicting periods of AF with RVR that are not associated with

high activity levels. This allows clinicians to distinguish between clinically significant

periods of AF and other periods. This has significant implications for the appropriate

treatment of patients with AF. Identifying physiologically significant episodes of AF

allows an opportunity to deliver just-in-time treatments that can be tailored for each

individual while avoiding the side effects related to daily medications.

5.6.6 Limitations

The first limitation of our study is the sample size. Our algorithm was validated

in a small subset of patients with AF. Although the number of patients included in

the study was small, there were numerous episodes available for training our algo-

rithm. The validity and generalizability of our algorithm needs to be tested in a wider

more diverse group of patients with AF. We sought to mediate the impact of patient

subtypes by leveraging a large number of episodes of AF in our patient population;

however, future work incorporating medication status, co-morbidities and other fac-

tors would allow for measuring algorithm performance within specific patient subsets

and ensure equal representation in the training dataset.
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The aim of our project was to predict AF with rapid ventricular rates and low

activity levels. Worsening AF symptom severity is associated with reduced daily

activity Semaan et al. (2020). The second limitation of the study is a lack of patient-

reported symptoms during periods of AF with RVR and low activity. Therefore, it

is difficult to ascertain symptom severity during these episodes. Future studies with

frequent momentary assessment of symptoms are needed to determine the relationship

between symptoms and AF with RVR episodes and low activity.

The third limitation is the interpretability of the activity threshold. In the study,

an arbitrary choice of 0.75 quantile MAD based on activity of the entire group is used

for classifying activity level. However, participants might have large differences in

activity level. To account for these differences, MAD threshold relative to individual

participants is also used for analysis. The average AUC for 0.5 minute-long prediction

intervals is 0.74±0.02, 1 minute-long is 0.75±0.01 and 2 minute-long is 0.78±0.01. The

2 minute-long prediction intervals showed most consistent results with AUC around

0.75 and smallest standard deviations. When tgap is less than 1.5 minutes, the AUC

ranges between 0.74 - 0.80. The AUC is above 0.69 for all prediction intervals. Figure

5.27 shows the prediction results based on activity events labeled based on participant

level MAD. We did not distinguish between different types of activity. It is possible

that certain forms of exercise (e.g., stationary cycling) may not be accounted for in the

present analysis. The MAD threshold used in the study is a relative MAD threshold

instead of an absolute MAD threshold. Studies have investigated different types of

activities with their MAD thresholds. However these studies Bakrania et al. (2016)

used accelerometer sensors attached to the hip or wrist regions while our sensors are

attached to the chest which make our MAD measurements incomparable with these

thresholds. There are several studies that investigate activity classification using chest

mounted tri-axial accelerometer devices Godfrey et al. (2011); Gjoreski et al. (2014);

Purwar et al. (2007); Gao et al. (2014) with signal processing and machine learning
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techniques, however they did not state thresholds of activities with MAD metric.

We tried to minimize this limitation by using both intra-individual and sample-level

activity distributions for the threshold. However, in the future if accelerometer data

can be collected with similar sensors and attached to wrists, the prediction results can

be better generalized. Both the accelerometer data and ECG data are collected as

continuous signals with timestamp when the device is attached to the participant, so

the non-wear time information is available and automatically removed, since our study

uses synchronized accelerometer and ECG signals. The non-wear time is unlikely to

affect our results on prediction of RVR with low activity level. But for future studies

it could be helpful to know the reason why the patient removed the device and if

it was a consequence of potential events. To this end, we plan to standardize and

automate the annotation process by intelligently mining the training data. We are

hopeful that such efforts will continue to improve of the performance of the algorithm

and further expand the scope of our approach.
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Figure 5.22: RVR with low activity prediction, AF Burden for all participant and
those included in the prediction of RVR with low activity.
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Figure 5.23: RVR with low activity prediction, prediction and gap intervals extrac-
tions.
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Figure 5.24: RVR with low activity prediction, classification of events using DPFA
model.
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Figure 5.25: RVR with low activity prediction, five-fold nested cross validation.

Figure 5.26: RVR with low activity prediction, AUC for RVR with low activity labeled
by group level MAD vs. Others with various prediction intervals.

AF duration of at least 30 seconds, trained with nested cross validation, activity
labeled by group level MAD.
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Figure 5.27: RVR with low activity prediction, AUC for RVR with low activity labeled
with participant level MAD vs. Others with various prediction intervals.

AF duration of at least 30 seconds, trained with nested cross validation, activity
labeled by participant level MAD.
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Figure 5.28: RVR with low activity, relative frequency of states for DPFA models.

Example, Signal Length = 0.5 (mins) , Gap Length= 0.5 (mins).

130



CHAPTER VI

Summary, Implications and Conclusion

In this paper a novel DPFA based method is presented to classify and predict

cardiac arrhythmia events. The proposed method takes a probabilistic string ex-

tracted from physiological signals such as ECG in the training set as input, and via

frequency analysis, constructs the underlying state space and transition probabilities

of the DPFA model, directly from the input data. When applying the DPFA algo-

rithm to classification and prediction problems, the decisions are based on comparing

goodness-of-fit between the testing signal and various DPFA constructed from the

training signals.

A collection of datasets have been constructed for this study, including pub-

licly available benchmark datasets (DB1) for algorithm development and arrhythmia

events detection; a retrospective database collected with data at hospital bed-side

(DB2); prospective databases (DB4 and DB5) with signals collected from portable

devices and database with AFib patients with signals with portable devices (DB6).

Detection and prediction experiments have been conducted on various cardiac

arrhythmia types. The proposed algorithm has achieved an AUC of 0.95 in DB1 for

AFib detection; for AFib prediction the algorithm has achieved greater than 0.80 in

DB2 prediction with hospital bed-side data, AUC results are in the range of 0.79

to 0.87 for data collected from portable devices and 0.61 to 0.73 with data collected
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while in-vehicle. The proposed algorithm has achieved an AUC of 0.95 in DB1 for

SVT detection; for SVT prediction the algorithm has achieved greater than 0.75 in

DB2 prediction with hospital bed-side data, AUC results in the range of 0.78 to 0.92

for data collected from portable devices. Prediction experiment for SVT has not been

performed with in-vehicle data due to limited sample sizes. The proposed algorithm

has achieved an AUC of 0.97 in DB1 for VA detection; for VT prediction the algorithm

achieved around 0.75 in DB2 prediction with hospital bed-side data. VT prediction

experiment has not been performed with data collected from portable devices due to

limited sample sizes. The proposed algorithm has achieved an AUC around 0.71 to

0.74 for 2-minute-long signals for bradycardia prediction with hospital bed-side data.

Bradycardia prediction experiment has not been performed with data collected from

portable devices due to limited sample sizes. For prediction of RVR with low activity

events the model has achieved an overall AUC around 0.70 to 0.80 depending on the

lengths and gap sizes of the prediction intervals.

Comparing with other well-established methods, the proposed DPFA algorithm

has achieved equal or better classification results, even though in some cases the

advantage might not be statistically significant. In addition, the performance of the

proposed DPFA algorithm is almost identical with or without any pre-processing on

the data.

One of the limitations of our study is the sample size. Lack of events, especially in-

vehicle arrhythmia events, has hampered the performance of the algorithm. Secondly,

a lack of clinician reviewed annotations in databases has weaken the generalizability

of the algorithms. To overcome the annotation issue, carefully reviewed and con-

ducted automated annotation algorithms have been developed for various types of

AFib events. For data collected from the portable devices, FDA cleared Preventice’s

annotations have been used as labels. In the future study, a dataset with a larger

number of clinician annotated events will be helpful to further validate and compare
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the monitoring system with existing methods. Also, in this thesis the prediction re-

sults have been presented with events upto 5 minutes prior to the events, in future

studies a wider range of prediction intervals should be considered. The prediction of

RVR with low activity level experiment uses synchronized ECG with accelerometer

signals. In future studies, more types of physiological signals could be used since our

algorithm could be adapted for different types of signals.

To conclude, The work in the thesis could be deployed as a cardiac arrhythmia

monitoring and severe event prediction system which could alert patients and clini-

cians of an impending event, thereby enabling timely medical interventions.
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human movement by accelerometry, Medical engineering & physics, 30 (10), 1364–
1386.

Godfrey, A., A. Bourke, G. Olaighin, P. Van De Ven, and J. Nelson (2011), Ac-
tivity classification using a single chest mounted tri-axial accelerometer, Medical
engineering & physics, 33 (9), 1127–1135.

Goldberger, A. L., et al. (2000), Physiobank, physiotoolkit, and physionet: com-
ponents of a new research resource for complex physiologic signals, Circulation,
101 (23), e215–e220.

138



Gomes, P. R., F. O. Soares, J. Correia, and C. Lima (2010), Ecg data-acquisition
and classification system by using wavelet-domain hidden markov models, in 2010
Annual International Conference of the IEEE Engineering in Medicine and Biology,
pp. 4670–4673, IEEE.

Grant, C. C., C. Murray, D. C. Janse Van Rensburg, and L. Fletcher (2013), A
comparison between heart rate and heart rate variability as indicators of cardiac
health and fitness, Frontiers in physiology, 4, 337.

Greenwald, S. D. (1986), The development and analysis of a ventricular fibrillation
detector, Ph.D. thesis, Massachusetts Institute of Technology.

Greenwald, S. D., R. S. Patil, and R. G. Mark (1990), Improved detection and clas-
sification of arrhythmias in noise-corrupted electrocardiograms using contextual in-
formation, IEEE.

Hakkinen, J., and J. Tian (2001), N-gram and decision tree based language identifi-
cation for written words, in IEEE Workshop on Automatic Speech Recognition and
Understanding, 2001. ASRU’01., pp. 335–338, IEEE.

Hannun, A. Y., P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia,
and A. Y. Ng (2019), Cardiologist-level arrhythmia detection and classification
in ambulatory electrocardiograms using a deep neural network, Nature medicine,
25 (1), 65.

Hnatkova, K., X. Copie, A. Staunton, and M. Malik (1995), Numeric processing
of lorenz plots of rr intervals from long-term ecgs: comparison with time-domain
measures of heart rate variability for risk stratification after myocardial infarction,
Journal of electrocardiology, 28, 74–80.

Hosseini, A., and M. Sarrafzadeh (2019), Unsupervised prediction of negative health
events ahead of time, in 2019 IEEE EMBS International Conference on Biomedical
& Health Informatics (BHI), pp. 1–4, IEEE.

Jadhav, S. M., S. L. Nalbalwar, and A. A. Ghatol (2011), Modular neural network
based arrhythmia classification system using ecg signal data, International Journal
of Information Technology and Knowledge Management, 4 (1), 205–209.

January, C. T., et al. (2014), 2014 aha/acc/hrs guideline for the management
of patients with atrial fibrillation: a report of the american college of cardiol-
ogy/american heart association task force on practice guidelines and the heart
rhythm society, Journal of the American College of Cardiology, 64 (21), e1–e76.

Jiang, X., L. Zhang, Q. Zhao, and S. Albayrak (2006), Ecg arrhythmias recognition
system based on independent component analysis feature extraction, in TENCON
2006. 2006 IEEE Region 10 Conference, pp. 1–4, IEEE.

139



John, R. M., U. B. Tedrow, B. A. Koplan, C. M. Albert, L. M. Epstein, M. O.
Sweeney, A. L. Miller, G. F. Michaud, and W. G. Stevenson (2012), Ventricular
arrhythmias and sudden cardiac death, The Lancet, 380 (9852), 1520–1529.

Johnson, A. E., et al. (2016), Mimic-iii, a freely accessible critical care database,
Scientific data, 3, 160,035.

Kannel, W. B., P. A. Wolf, E. J. Benjamin, and D. Levy (1998), Prevalence, incidence,
prognosis, and predisposing conditions for atrial fibrillation: population-based es-
timates 1, American Journal of Cardiology, 82 (7), 2N–9N.

Kiranyaz, S., T. Ince, and M. Gabbouj (2016), Real-time patient-specific ecg classi-
fication by 1-d convolutional neural networks, IEEE Transactions on Biomedical
Engineering, 63 (3), 664–675.

Kochiadakis, G., E. Skalidis, M. Kalebubas, N. Igoumenidis, S. Chrysostomakis,
E. Kanoupakis, E. Simantirakis, and P. Vardas (2002), Effect of acute atrial fibril-
lation on phasic coronary blood flow pattern and flow reserve in humans, European
heart journal, 23 (9), 734–741.

Kusumoto, F. M., et al. (2019), 2018 acc/aha/hrs guideline on the evaluation and
management of patients with bradycardia and cardiac conduction delay: a report of
the american college of cardiology/american heart association task force on clinical
practice guidelines and the heart rhythm society, Journal of the American College
of Cardiology, 74 (7), e51–e156.

Lankveld, T. A., S. Zeemering, H. J. Crijns, and U. Schotten (2014), The ecg as a
tool to determine atrial fibrillation complexity, Heart, 100 (14), 1077–1084.

Li, Z., H. Derksen, J. Gryak, H. Ghanbari, P. Gunaratne, and K. Najarian (2018), A
novel atrial fibrillation prediction algorithm applicable to recordings from portable
devices, in 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 4034–4037, IEEE.

Li, Z., H. Derksen, J. Gryak, M. Hooshmand, A. Wood, H. Ghanbari, P. Gunaratne,
and K. Najarian (2019), Markov models for detection of ventricular arrhythmia, in
2019 41st Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 1488–1491, IEEE.

Li, Z., H. Derksen, J. Gryak, C. Jiang, Z. Gao, W. Zhang, H. Ghanbari, P. Gu-
naratne, and K. Najarian (2021), Prediction of cardiac arrhythmia using determin-
istic probabilistic finite-state automata, Biomedical Signal Processing and Control,
63, 102,200.

Luz, E. J. d. S., T. M. Nunes, V. H. C. De Albuquerque, J. P. Papa, and D. Menotti
(2013), Ecg arrhythmia classification based on optimum-path forest, Expert Systems
with Applications, 40 (9), 3561–3573.

140



Luz, E. J. d. S., W. R. Schwartz, G. Cámara-Chávez, and D. Menotti (2016), Ecg-
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