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ABSTRACT

Improving the fuel economy of light-duty vehicles (LDV) is a compelling solution to

stabilizing Greenhouse Gas (GHG) emissions and decreasing the reliance on fossil fuels.

Over the years, there has been a considerable shift in the market of LDVs toward powertrain

electrification, and plug-in hybrid electric vehicles (PHEVs) are considered to be the most

cost-effective in avoiding GHG emissions. Meanwhile, the development of connected and

automated vehicle (CAV) technologies permits energy-efficient driving with access to accurate

trip information that integrates traffic and charging infrastructure. This thesis aims at developing

optimization-based algorithms for controlling powertrain and vehicle longitudinal dynamics

to fully exploit the potential for reducing fuel consumption of individual PHEVs by utilizing

CAV technologies.

For a human-driven PHEV, a predictive equivalent minimization strategy (P-ECMS) is

proposed to adjust the co-state based on the difference between the future battery state-of-

charge (SOC) obtained from short-horizon prediction and a future reference SOC from SOC

node planning. The SOC node planning which generates battery SOC reference waypoints,

is performed using a simplified speed profile constructed from segmented traffic information,

typically available from mobile mapping applications.

The PHEV powertrain, consisting of engine and electric motors, is mathematically modeled

as a hybrid system as the state is defined by the values of the continuous variable, SOC, and

discrete modes, hybrid vehicle (HV) and electric vehicle (EV) modes with the engine on/off.

As a hybrid system, the optimal control of PHEVs necessitates a numerical approach to solving

a mixed-integer optimization problem. It is of interest to have a unified numerical algorithm

xv



for solving such mixed-integer optimal control problems with many states and control inputs.

Based on a Discrete Maximum Principle (DMP), a Discrete Mixed-Integer Shooting (DMIS)

algorithm is proposed. The DMIS is demonstrated in successfully addressing the cranking fuel

optimization in the energy management of a PHEV. It also serves as the foundation of the

co-optimization problem considered in the remaining part of the thesis.

This thesis further investigates different control designs with an increased vehicle automa-

tion level combining vehicle dynamics and powertrain of PHEVs in within-a-lane traffic flow.

This thesis starts with a sequential (or decentralized) optimization and then advances to direct

fuel minimization by simultaneously optimizing the two subsystems in a centralized manner.

When shifting toward online implementation, the unique challenge lies in the conflict between

the long control horizon required for global optimality and the computational power limit. A

receding horizon strategy is proposed to resolve the conflict between the horizon length and

the computation complexity, with co-states approximating the future cost. In particular, the

co-state is updated using a nominal trajectory and the temporal difference (TD) error based on

the co-state dynamics.

The remaining work aims to develop a unified model predictive control (MPC) framework

from the powertrain (PT) control of a human-driven to the combined vehicle dynamics (VD)

and PT control of an automated PHEV. In the unified framework, the cost-to-go (the fuel

consumption as the economic cost) is represented by the co-state associated with the battery

SOC dynamics. In its application to automated PHEVs, a control barrier function (CBF)

is augmented as an add-on block to modify the vehicle-level control input for guaranteed

safety. This unified MPC framework allows for systematically evaluating the fuel economy

and drivability performance of different levels and structures of optimization strategies.

xvi



CHAPTER 1

Introduction

1.1 Background

The transportation sector is responsible for 28% of the total U.S. Greenhouse Gas (GHG)
emissions [6], 83% of which are emitted from vehicles, with the Light Duty Vehicle (LDV)
segment being the largest contributor [7]. On the other hand, in 2018, the United States
imported about 11% of the petroleum it consumed. Improving the fuel economy of LDVs is a
compelling solution to stabilizing GHG emissions and decreasing the reliance on fossil fuels
because transportation accounts for nearly three-fourths of total U.S. petroleum consumption.
Over the years, there has been a considerable shift in the market of LDVs toward more efficient
powertrains, especially powertrain electrification.

Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and Battery
Electric Vehicles (BEVs) are examples of efforts in powertrain electrification for reducing GHG
emissions. Over the years, the global EV industry continues to expand rapidly, as shown in
Fig. 1.1. Electic vehicle sales grew to more than two million units globally in 2018: an increase
of 63% on a year-on-year basis and at a rate slightly higher compared to previous years. The
ratio of battery EVs (BEVs) to plug-in hybrid EVs (PHEVs) held relatively steady from 2017
[1]. HEVs and PHEVs typically use less fuel than conventional vehicles because they employ
electric-drive technologies to boost efficiency. PHEVs and BEVs are both capable of being
powered solely by electricity produced in the U.S. from natural gas, coal, nuclear energy, and
renewable resources. PHEVs and BEVs can reduce fuel costs dramatically because of the high
efficiency of electric-drive components.

Figure 1.2a shows that more considerable GHG reductions for LDVs are achieved with low-
carbon fuels, and vehicle efficiency improvement [8]. Gasoline HEVs can reduce C2G GHG
emissions to below 350g CO2e/mi, as can other advanced vehicle technologies, such as PHEVs,
BEVs, and FCEVs. However, today’s BEVs have the disadvantage of a shorter range (per
charge) than comparable conventional vehicles have (per tank of gas). The efficiency and driving
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range of BEVs vary substantially based on driving conditions. Also, there are environmental
problems since BEVs are not the best in cold weather and on rural routes. Therefore, consumer
acceptance of FCEVs and BEVs may be slowed by refueling inconvenience (scarcity of
hydrogen stations, limited range, and long charging time with batteries). Given the wide
availability of gasoline and diesel stations, the burden to find an alternative fuel source is an
important barrier to market penetration [8]. Although the global BEVs market is amped up and
on the rise, especially in China and Europe [9, 1, 10], the momentum is slowed down in the
United States since the fuel price remains low [9].

Figure 1.1: The global market for electric vehicles has grown at about 60% per year, reaching
2.1 million in 2018 [1].

Among all the modern production vehicles, PHEVs are hybrids with high-capacity batteries
that can be charged by plugging them into an electrical outlet or charging station. They can
store enough electricity to reduce their petroleum use under typical driving conditions [11].
There are two main benefits with PHEVs among production vehicles that are well accepted by
consumers, as highlighted in Fig. 1.2. On the one hand, among all the current technologies,
PHEVs are shown to have the potential to emit less greenhouse gas, as shown in Fig. 1.2a. On
the other hand, as seen from Fig. 1.2b, PHEVs are predicted to be the most cost-effective in
avoiding GHG emissions. Combining the potential in reducing GHG emissions and the cost
efficiency associated with avoided GHG emissions, PHEVs are still considered an important
part of the conventional automotive industry, despite the drastic advancement in pure BEVs.

In the meantime, for PHEVs with two energy sources comes naturally the need for proper

2



(a) C2G GHG emissions of various vehicle-fuel pathways. Analysis was
performed using GREET2014, and vehicle and fuel pathways are constrained
to those deemed scalable to approximately 10% of the LDV fleet [8].

(b) Cost of avoiding GHG emissions by vehicle-fuel pathway for the future
technology, high volume case (2013$), relative to the future technology gaso-
line ICEV [8].

Figure 1.2: Two main benefits with PHEVs compared to vehicles with different types of
technologies.

coordination between fuel and electricity. Table. 1.1 illustrates some of the available PHEVs
in the U.S. The average battery-only range is 22.6 miles. It means that for a typical daily
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commute without battery recharging in the middle, eventually, at some point in the day, fuel
consumption would be inevitable [12]. For most of the production PHEVs, a charge-depleting
charge-sustaining (CDCS) strategy is used, where the battery provides all the power needed
(CD) until the battery charge is low before consuming fuel. The ICE then performs most
of the propulsion in a Charge Sustaining (CS) mode for the remainder of the trip. The CS
mode makes sure to keep a minimum level of battery charge and may involve occasional
electric propulsion if enough energy is regenerated from braking [13]. This way, fuel will not
be consumed when the trip is short. When the trip is long enough that it exceeds the pure
EV range, knowing the fuel is only consumed because the battery has been fully depleted is
more acceptable from a consumer point of view. The battery SOC trajectory with CDCS is
conceptually illustrated in Fig. 1.3a. However, as identified in the literature, often, CDCS is
not the most fuel-efficient energy management strategy. Charge blending (CB) strategies where
the engine is used together with the battery throughout the entire trip, if designed properly, can
lead to better fuel economy. The battery SOC trajectory with CB is conceptually illustrated
in Fig. 1.3a. Figure 1.3b presents the offline optimization results under a scenario where the
trip is long and exceeds the PHEVs’ pure EV range. As can be seen from the first subplot, the
initial and final SOC are the same in both cases. However, as seen from the second subplot, the
total fuel consumed over the considered trip, even with optimized CS operation, still exceeds
that with optimal charge blending (OCBD) strategy.

Although the potential of CB is realized through offline fuel minimization over a given trip,
proper online CB strategies are still not mature for mass production. The following two main
reasons are intertwined:

• Uncertainties: accurate information on the exact trip in advance may not be available.
As indicated from the offline optimal CB strategy, CB strategies are only effective when
considering the entire trip. Therefore, uncertainties in the future will inevitably degrade
the performance of CB strategies.

• Inadequate battery depletion: A CDCS strategy uses battery first as needed. When the
trip is long and exceeds the total battery range, the battery will be depleted to a low level
before using any fuel. By comparison, it is nontrivial to prevent battery under-depletion
for a CB strategy affected by future uncertainties. The battery under-depletion might
lead to worse fuel economy than those with CDCS strategies.

The utilization of traffic information can benefit CB energy management strategies for electrified
vehicles. Large-scale traffic monitoring systems would allow for the computation of a reference
battery SOC trajectory with periodic updates based on new traffic information. The reference
SOC can be used to solve the vehicle energy management in a receding horizon manner with
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Table 1.1: Some examples of estimated EV mode range of available PHEVs

MAKE/MODEL RANGE (MILE)
Chevrolet Volt 53
Honda Clarity PHEV 47
Chrysler Pacifica Hybrid 33
BMW 530e 30
Hyundai Sonata PHEV 27
Toyota Prius Prime 25
Ford Fusion Energi PHEV 21
Porsche Panamera 4 E-Hybrid 16
Mercedes C350e 11

increased confidence in forecasting future driving velocities. For instance, authors in [14] show
that battery SOC planning level based on realtime traffic data with dynamic updates can achieve
nearly 6% fuel economy gain compared to CDCS strategy.

Meanwhile, the automotive industry has witnessed a huge shift toward vehicle connectivity
and automation, prompt to increase safety, driving comfort, and time-saving potential. With
much easier access to information, increased processing power, and precision control, they also
offer unprecedented opportunities for energy-efficient driving [15]. Specifically, connectivity
to other vehicles and infrastructure allows better anticipation of upcoming events, such as
hills, curves, slow traffic, state of traffic signals, and the movement of neighboring vehicles.
Automation will enable vehicles to adjust their motion more precisely in anticipation of
upcoming events and save energy [15, 16]. On the one hand, on-board or mobile navigation
systems enabled by connectivity can receive the latest traffic information and road closings
and adjust their route recommendations accordingly. Therefore, connectivity between cars
and infrastructure can make much more information available to each vehicle. As a result,
together with an increased level of automation, individual vehicles have the potential to
drive with improved road safety and energy efficiency compared to a pure reactive human
driver. Furthermore, in a connected vehicle world, automated vehicles can cooperate rather
than compete with the exchange of intentions [15, 16]. Figure 1.4 schematically illustrates
an example of the anticipative car following. Human drivers are often pure reactive when
following other vehicles. By comparison, with additional information of the intent of preceding
vehicles via V2V communication, a more anticipative car following can be achieved to maintain
a safe following distance to the preceding vehicle. Enabled by automation, the inter-vehicular
distance gap can be properly utilized to improve vehicle energy efficiency.

With the rapid development of technologies in driving automation and vehicle connectivity,
it is possible to reduce the energy consumption of vehicles through energy-efficient driving
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(a) Conceptual comparison between CDCS and CB strategy.

(b) Comparison between the CDCS with optimized CS operation and
optimal charge blending (OCBD) on a stitched standard driving cycle.
The trip is long enough to exceed the PHEV’s pure EV range.

Figure 1.3: Comparison between CDCS and charge blending (CB).

[17]. Notably, for a PHEV with two energy sources (fuel and electricity), energy-efficient
driving can expand further the fuel economy benefit beyond what can be achieved with the
optimal power-split on an ordinary human driving. Efforts toward energy-efficient driving
for (P)HEVs in the literature include [17, 18, 16, 19, 20, 21], to name a few. Especially in
[16], comprehensive discussions are presented incorporating almost every aspect of CAVs for
vehicles with different energy sources. Combining optimized control of vehicle dynamics and
the optimized energy management strategy to maximize the overall system-level efficiency

6



becomes an active research topic and is under rapid development.

Figure 1.4: Schematic of an anticipative car following with speed forecasting method in [2].

1.2 Challenges in Plug-In Hybrid Vehicle Control

1.2.1 Online Fuel-Efficient Energy Management Strategy with Trip Pre-
view

A trip is defined as the distance between recharge opportunities and is long enough to
exceed its pure EV range in the sequel. Starting with a fully charged battery, ideally, the battery
is expected to be fully depleted upon reaching the next charging opportunity. As discussed in
the previous section, CDCS is not the optimal energy management strategy for considered trips
in most cases, compared to the offline optimized charge blending (OCBD) strategy. However,
this potential for further improvement in fuel optimality with OCBD can hardly be achieved
when the charge blending is implemented online because the trip is not known in advance. The
optimal energy management of PHEVs for minimizing fuel consumption is closely related to
determining the optimal trajectory of battery SOC, referred to as battery SOC planning [22].
This optimal SOC trajectory can be used to solve PHEVs’ energy management problem in a
receding horizon manner online with forecasted driving profiles [14]. For instance, the authors
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in [14] showed that approximately 6% fuel economy gain could be achieved by dynamic battery
SOC planning using realtime traffic data, compared to a CDCS strategy.

Charge station

In the morning

At night

Figure 1.5: Schematic of a typical trip, adapted from https://www.chargepoint.com/.

From an optimal control perspective, effective SOC planning ideally requires comprehen-
sive information about future driving conditions. Unfortunately, although large-scale traffic
monitoring systems offer plenty of high-resolution details to facilitate the SOC trajectory
planning over the entire trip, their accessibility is still limited. A more realistic scenario uses the
realtime rough traffic information available from mobile mapping services for SOC planning.
Although much less detailed on route segments, various traffic information is available from
these mobile mapping services, including average speeds, segment distances, estimated travel
time on each segment, and color codes indicating congestion levels. However, exploiting crude
traffic information for effective SOC planning and properly using SOC reference to achieve a
fuel-efficient CB strategy remains challenging.

1.2.2 Engine Cranking and Chattering Behavior

One of the fundamental challenges in the optimal control of all hybrid electric vehicles,
including PHEVs, involves managing the engine on/off switching systematically. Minimizing
the cranking fuel during starting (engine on) addresses fuel economy and drivability degradation.
However, the powertrain operation determined from either the Hamiltonian minimization as
in PMP or the equivalent minimization strategy (ECMS) could jump arbitrarily (chattering
behavior) between HV and EV mode depending on the co-state or equivalence factor, which
results in a busy engine on/off. There are relatively fewer research efforts in optimizing
the transient engine behaviors than the abundant work where only quasi-static engine maps
are considered. In [23], a model predictive control (MPC) torque-split strategy is proposed,
where the transient engine characteristics are considered through an augmented weighted
cost related to the engine mode switch. However, the engine mode within the prediction
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horizon is determined heuristically. In [24], a control algorithm is proposed to regulate
the transitions between different operating points by using the battery to smooth the engine
transients. However, the problem essentially becomes a regularization problem since a hybrid
electric vehicle (HEV) is considered, where the SOC range is small. It is not applicable in the
PHEV application because the desired SOC reference requires solving the fuel minimization
problem first, where the busy engine cranking problem persists. In [25], an additional integer-
valued engine on/off state is considered, with engine cranking cost augmented in the cost
function. However, its numerical strategy is simplified by the constant co-state assumption,
and the solution is obtained by sequentially applying DP and convex optimization. It is hardly
applicable to the PHEV application, where the constant co-state assumption is not valid due to
the large SOC span.

1.2.3 Combined Vehicle Dynamics and Power-Split Optimization with
Connectivity and Automation

The combination of the VD with the PT control in a co-optimization framework for PHEVs
with a long trip1, in the presence of a lead vehicle, and a specified terminal battery SOC level
is challenging. Most of the existing work seeks to design the combination of PT-level and
VD-level control to be in a layered structure. The predominant roadblock in performing the
co-optimization originates from the difficulty in its numerical implementation. Concretely, the
complexity of the PHEV VD and PT co-optimization arises from the following four aspects.

1. The Mixed-Integer nature: The engine on/off decisions need to be made due to the need to
coordinate two power sources (fuel and electricity), making the problem a mixed-integer
nonlinear optimal control problem.

2. Increased input and control dimensions: Some of the existing work has used single
shooting to solve the (P)HEV energy management numerically based on continuous-time
PMP. However, its success is difficult to generalize because the battery SOC is the
only state considered, and its dynamics are slow. When the vehicle level dynamics
and powertrain level dynamics are considered simultaneously to achieve minimum fuel
consumption, the total number of states and controls increases, making the PMP-based
single shooting fragile [26].

3. Unstable vehicle-level dynamics: Not only does the number of states and controls
increase, but the dynamics of the vehicle-following subsystem as a double-integrator

1Longer than the battery range.
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are also unstable. As shown in [26], the unstable dynamics, combined with the state
constraints, pose further challenges in applying single shooting.

4. Long horizon problem: Co-optimizing the velocity and its powertrain operation of a
PHEV to achieve minimum fuel consumption has to be demonstrated in a long horizon
problem with a distance longer than the battery range. A reasonable problem horizon for
the considered PHEV is generally more prominent than one-hour2. Consequently, even
with an approximated Newton-type method [27], the problem dimension would become
prohibitive for executing the iterations.

1.2.4 Numerical Solution of Mixed-Integer Nonlinear Optimal Control
Problems

The challenges in effective PHEV control revolve around solving mixed-integer nonlinear
optimal control problems numerically from the previous discussions.

• The optimization problems considered in this thesis are not compatible with any of the
existing solvers for mixed-integer problems (MIP).

The fuel rate as the stage cost in the objective function of the direct minimum fuel
consumption problem consists of complicated lookup tables as a function of the engine
torque and speed. The system dynamics, when converted into equality constraints,
are nonlinear and involve many static maps. The nonlinearity in the state cost and
system dynamics does not fit the mixed-integer linear program (MILP) or mixed-integer
quadratic program (MIQP) solvable by available mixed-integer commercial solvers, like
CPLEX and Gurobi. Besides, these commercial solvers usually use branch and cut/bound
algorithms, which grow exponentially with the problem horizon.

• A direct and simultaneous method is not suitable for the optimization problems considered
in this thesis.

Essentially, the fuel-efficient control of PHEVs is formulated as an optimal control or
trajectory optimization problem, which needs to be solved numerically through suitable
numerical methods. Widely used numerical methods include direct shooting (converting
the trajectory optimization problem into a nonlinear program (NLP)), indirect (single)
shooting, and multiple shooting [28]. A major difference between direct and indirect
shooting occurs in the definition of the control functions. For indirect (single) shooting,

2For example, Prius Prime has an EPA-rated all-electric range of 25 miles. It would take around one hour to
deplete the battery and enter the charge-sustaining mode in a city driving condition.
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the control is defined at each point in time by the maximum principle[29], whereas
the control (possibly parameterized) in direct shooting is determined directly. Both the
direct and indirect shooting methods suffer from a common difficulty. The essential
shortcoming of these methods is that small changes introduced early in the trajectory
can propagate into very nonlinear changes at the end of the trajectory. The fundamental
idea of multiple shooting is to break the trajectory into shorter pieces or segments. The
multiple shooting concept can be incorporated into either a direct or indirect method.
The schematic comparison between single and multiple shooting is illustrated in Fig. 1.6.

Figure 1.6: Illustration of single shooting and multiple shooting.

Based on my observation, it is less practical for PHEVs to adopt the direct and simul-
taneous approach. First of all, the fuel rate and efficiencies of motor and generator are
static maps that are hard to be approximated accurately and efficiently by analytical
expressions. As a result, the evaluation and approximation of the Hessian matrix required
by multiple shooting would introduce significant numerical errors and be very computa-
tionally intensive. Second, with multiple shooting, the system dynamics are converted
to equality constraints. Therefore in between multiple shooting iterations, the control
sequence could be inconsistent with the state sequence, violating primal feasibility. It
is especially notable in the PHEV application due to static maps. The numerical errors
with the Newton-type method would make the system’s dynamic equations very hard to
satisfy with acceptable accuracy. Finally, a reasonable problem horizon for PHEVs is
generally larger than one hour to necessitate the use of the engine and make the power-
split optimization meaningful. Consequently, even with the approximated Newton-type
method, the dimension of the resulting nonlinear program would become prohibitive for
executing the iterations.

• Fragile single shooting algorithm beyond single slow SOC state.

With only power split optimization, the SOC (state) constraints can be assumed to be
inactive, which facilitates the PMP-based analysis in continuous time. By compari-
son, in the presence of traffic, the vehicle following behavior necessitates the explicit
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consideration of pure state constraints (velocity and position). Notably, the position
constraints are usually time-varying. The necessary condition for optimality with pure
state constraints is less intuitive theoretically. Moreover, the jump condition associated
with pure state constraints is hard for numerical algorithms. The SOC dynamics in the
power split optimization are slow and stable. The benign dynamics enable the relatively
easy numerical implementation of single shooting. The similarity between solving the
two-point boundary value problem (TPBVP) resulting from PMP with single shooting
and the existing ECMS indicates the potential for realtime implementation of single
shooting in the PHEV application. However, as well be detailed later in this paper, the
dynamics of the vehicle following system are fast and unstable. The unstable dynamics
also pose a significant challenge to single shooting.

1.3 Organization and Contributions

This dissertation focuses on improving the total fuel economy of a PHEV over a trip
by improving the current production energy management strategy and then the longitudinal
velocity control and energy management strategy simultaneously in the traffic flow. The
considered trip is long enough that the battery alone cannot provide the required total energy.
Therefore, fully charged initially, the battery should be depleted to a desired low level at the
end of the trip to reduce the fuel consumption by exploiting the electricity.

Chapters 2 and 3 focus on the powertrain level control of a human-driven PHEV. Chapter 2
considers the SOC planning with connectivity. Specifically, an effective method is proposed
to determine the optimal sequence of SOC values at nodes between each segment of a route
using segmented sparse traffic information. These SOC node values are used as boundary
conditions for low-level vehicle energy management with more accurate traffic information
available locally. Finally, it leads to the P-ECMS proposed in Chapter 3.

Combined vehicle-following and powertrain level control are considered starting from
Chapter 4. Chapter 4 investigates a sequential, decentralized optimization approach, with
velocity smoothing under the traffic constraints followed by the power-split optimization.
Afterward, the centralized fuel minimization problem is considered. Finally, an iterative and
hierarchical numerical strategy is proposed to resolve difficulties associated with the direct fuel
minimization, combining the gradient projection with the single shooting.

This thesis focuses on solving the PHEV optimal control problems using single shooting-
based numerical strategies. The co-state dynamics are typically unstable forward-in-time
regardless of the stability of the state dynamics, thus making the continuous-time PMP-based
single shooting fragile. By comparison, when the state dynamics are stable, the co-state
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dynamics become stable backward-in-time when formulated directly in discrete time with
Karush-Kuhn-Tucker (KKT). When optimal control problems are formulated directly in
discrete time, even when the state dynamics are initially unstable, they can be pre-stabilized,
thus inducing stable co-state dynamics. As a result, formulating the optimal control problems
directly in discrete time has good potential to avoid unstable state and co-state dynamics.
Chapter 5 considers solving mixed-integer nonlinear optimal control problem (OCP) formulated
directly in discrete-time. A modified Discrete Maximum Principle (DMP) is proposed to
obtain first-order necessary conditions for optimality and a two-point boundary value problem
(TPBVP) to be solved. A Discrete Mixed-Integer Shooting (DMIS) algorithm is then presented
for solving the associated TPBVP numerically. The algorithm is first benchmarked against
state-of-art solvers on several eco-driving problems. It is then demonstrated successfully in
solving (1) the energy management of a PHEV to achieve minimum trip fuel consumption in
consideration of fuel cranking and (2) the fuel consumption minimization of an autonomous
PHEV by co-optimizing its velocity profile and powertrain operation.

Chapter 6 expands the discussions on the connection between the DMIS and approximate
policy iteration (approximate-PI) in the reinforcement learning (RL) application, integrating
the numerical optimization strategy with the online implementable framework. It then presents
the design of a control framework to unify the PHEV fuel-efficient control from the PT-only
control of a human-driven to the combined VD and PT control of an automated PHEV. In its
application to automated PHEVs, a control barrier function (CBF) is augmented as an add-on
block to modify the vehicle level control input to be executed whenever necessary. The unified
control framework guarantees safe vehicle-following behavior when including longitudinal
vehicle dynamics control.

It is critical to understand the fuel economy potential and the drivability with each optimiza-
tion scheme with all the different optimization formulations. Chapter 7 seeks to systematically
evaluate the fuel economy and drivability performance of different levels and structures of
optimization strategies both offline and online. In terms of the levels of optimization strategies,
both the PT level control for a human driver and the combined VD and PT level control for
an autonomous driver are evaluated. In terms of the optimization structures for combined
VD and PT level controls, both the centralized optimization structure, where the VD and PT
are optimized together under one single objective function, and a decentralized (sequential)
optimization structure, where the VD and PT are optimized separately with two different
objective functions are of interest.

The main contributions of this thesis are summarized as follows:

• Battery SOC node planning using connectivity

It is known from the offline simulation results that when the required trip energy is greater
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than the energy stored in a battery, an energy management strategy with SOC properly
blended could lead to a better fuel economy compared to the CDCS strategy current in
production. However, an effective online energy management strategy typically requires
a reference SOC trajectory to guide the charge-blending to realize this potential benefit.
Battery SOC planning is crucial for minimizing the fuel consumption of PHEVs. The
optimal SOC trajectory depends on the traffic information or the speed profile of the
entire trip. In chapter 2, crude traffic information about the velocity profile, similar to the
type of information available in mobile navigation applications, is considered for SOC
planning. Specifically, an effective method of determining the optimal sequence of SOC
values at nodes between each segment of a route is proposed using segmented sparse
traffic information. The SOC planning serves as the foundation of the online energy
management detailed in chapter 3.

– [30] D. Chen, Y. Kim and A. G. Stefanopoulou, ”State of Charge Node Planning
with Segmented Traffic Information,” 2018 Annual American Control Conference
(ACC), 2018, pp. 4969-4974, doi: 10.23919/ACC.2018.8431103.

• Online predictive equivalent consumption minimization strategy (P-ECMS)

The reference SOC obtained with the SOC node planning algorithm is used as boundary
conditions or a terminal condition for vehicle energy management with locally more
accurate traffic information. The proposed P-ECMS adjusts its co-state or equivalence
factor based on the difference between the future SOC obtained from short-horizon pre-
diction and a future reference SOC. The benefits of the proposed P-ECMS are evaluated
through vehicle simulations on a specified trip, compared against an A-ECMS with the
same control parameters minus prediction. The P-ECMS is presented in chapter 3.

– [31] D. Chen, Y. Kim and A. G. Stefanopoulou, ”Predictive Equivalent Consumption
Minimization Strategy With Segmented Traffic Information,” in IEEE Transactions
on Vehicular Technology, vol. 69, no. 12, pp. 14377-14390, Dec. 2020, doi:
10.1109/TVT.2020.3034552.

• Eco-driving and power-split optimization in a sequential manner

With increase driving automation and connectivity, it is possible to control the vehicle’s
longitudinal velocity to improve fuel efficiency further. The potential of fuel efficiency
improvement of a PHEV is investigated by the sequential smoothing of a velocity profile
given traffic constraints and the optimization of its charge depletion strategy. This study
is presented in the first part of chapter 4 and investigates the additional potential in fuel
economy compared to a pure powertrain level optimization.
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– [32] D. Chen, N. Prakash, A. Stefanopoulou, M. Huang, Y. Kim, and S. Hotz,
“Sequential Optimization of Velocity and Charge Depletion in a Plug-in Hybrid
Electric Vehicle.”, 14th International Symposium on Advanced Vehicle Control,
2018

• A Comparative Study of H1 and Model Predictive Control Approach to Eco-Driving

Most of the existing work on eco-driving focuses on the design of model predictive
control (MPC) controllers, an optimization-based control strategy. In the online MPC
implementation, both the computation complexity and the prediction accuracy will affect
the performance of the optimization-based controller. A simple but effective approach
to designing an ecological adaptive cruise controller based on the H1 technique is
investigated. The controller is designed to minimize the H1 norm of the transfer function
from the internal states and the lead vehicle’s velocity (disturbance) to the ego vehicle’s
acceleration to prompt driving smoothness. It implicitly handles position constraints via
the minimization of the H1 norm of the transfer function from the lead vehicle’s velocity
as a disturbance to the time-headway tracking (performance). The proposed controller
is beneficial as it is prediction and optimization-free, thus is lightweight for online
implementation. The performance of the proposed controller is compared with an MPC-
based car-following approach, precisely, acceleration minimization, in consideration of
electrical and hybrid powertrain operations. This study is presented in Appendix B.

– D. Chen, Y. Kim, “A Comparative Study of H1 and Model Predictive Control Ap-
proach to Eco-Driving.”, accepted to Modeling, Estimation and Control Conference
(MECC 2021)

• An iterative and hierarchical approach to co-optimizing the velocity and powersplit of a
PHEV to achieve direct fuel minimization

Via velocity smoothing in a sequential optimization approach, the power demand at
the wheel is reduced. However, the engine is controlled to work in its high-efficiency
region to minimize fuel consumption, typically high power. The engine would provide
excessive power to charge the battery. This secondary energy conversion would end up
damaging system-wise efficiency. Therefore, it is of interest to understand the optimality
gap between the decentralized and a centralized approach, where the fuel minimization
functions are the sole objective for the two subsystems. However, simultaneously co-
optimizing the two subsystems brings up significant numerical difficulties. An iterative
and hierarchical numerical strategy is proposed to resolve these difficulties. Single
shooting is used to deal with the engine on/off decisions in the power-split optimization,
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and the gradient projection is used to deal with the unstable dynamics and the state
constraints. The work in this study is presented in the last part of chapter 4.

– [26] D. Chen, Y. Kim, M. Huang and A. Stefanopoulou, ”An Iterative and Hierar-
chical Approach to Co-optimizing the Velocity Profile and Power-split of Plug-in
Hybrid Electric Vehicles,” 2020 American Control Conference (ACC), 2020, pp.
3059-3064, doi: 10.23919/ACC45564.2020.9147804.

• Discrete-Time Mixed-Integer Shooting (DMIS) Algorithm

One of the PHEV optimal control challenges is the difficulties in obtaining the numerical
solution of mixed-integer nonlinear optimal control problems. The work in this part con-
siders solving mixed-integer nonlinear OCP rising from the control of PHEV powertrains.
The OCPs are formulated in discrete-time, where a discrete-time maximum principle
is proposed to obtain first-order necessary conditions for optimality and a TPBVP to
be solved. Then a DMIS algorithm is presented for solving the associated TPBVP nu-
merically. The DMIS is first benchmarked against a state-of-art FBRS-based quadratic
program (QP) solver and a mixed-integer solver on two quadratic optimization problems
with continuous and discrete control inputs. The DMIS algorithm is demonstrated suc-
cessfully in addressing the energy management of a PHEV to achieve minimum trip fuel
consumption. In particular, nonsmooth state and control transition costs are incorporated
in the cost function to reduce frequent engine on/off behaviors. The DMIS algorithm is
presented in the second half of chapter 5.

– D. Chen, M. Huang, A. Stefanopoulou, “Discrete Mixed-Integer Shooting (DMIS):
Algorithm and Application to PHEV Energy Management Accounting for Fuel
Cranking”, submitted to IEEE Transactions on Control Systems Technology, 2020

• Offline numerical solution of co-optimization with DMIS, and the analysis of the underly-
ing physical reason for the fuel economy benefit with co-optimization.

The applicability of a DMIS algorithm is demonstrated in obtaining numerical solutions
to the fuel minimization of an autonomous PHEV by co-optimizing its velocity profile and
powertrain operation. The nonlinear minimum fuel consumption problem is formulated
in discrete time, has both continuous and discrete decision variables, and is subject to
nonlinear dynamics and time-varying state constraints. First, a TPBVP to be solved is
obtained with a discrete-time maximum principle. Then a DMIS algorithm is applied
to solve the associated TPBVP numerically. The underlying physical reason for the
fuel economy benefit with co-optimization is also analyzed. The study is presented in
chapter 5.
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– D. Chen, M. Huang, Y. Kim, A. Stefanopoulou, “Co-optimization of Velocity and
Charge-Depletion for Plug-in Hybrid Electric Vehicles: Accounting for Acceler-
ation and Jerk Constraints”, submitted to the ASME Journal of Dynamic Systems,
Measurement and Control

• Receding Horizon Co-Optimization Framework

The conflict between the long control horizon required for global optimality and compu-
tational power limits poses significant challenges to implementing the co-optimization
online. A receding horizon strategy is presented with the co-states updated using a
nominal trajectory and the temporal-difference to control the future cost, thus shortening
the prediction horizon to 10-sec. The co-state update considers 1) the predicted SOC
deviation from the nominal state trajectory, 2) the temporal difference (TD) deviation
from the nominal co-state trajectory, and 3) the predicted SOC deviation from the desired
terminal SOC. Besides, to resolve potential safety-critical constraint violations due
to insufficient single shooting iterations, the control action obtained from the MPC is
modified as needed in considering a maximal control invariant set. These studies are not
presented in this thesis but are included in the following papers.

– [33] Chen, D., Huang, M., Stefanopoulou, A., Kim, Y. (2021). “A Receding-
Horizon Framework for Co-Optimizing the Velocity and Power-Split of Automated
Plug-In Hybrid Electric Vehicles.” ASME Letters in Dynamic Systems and Control,
1(4), 041006.

– D. Chen, Y. Kim, E. Hyeon, “Receding-Horizon Safe Co-Optimization of the Veloc-
ity and Power-split of Plug-in Hybrid Electric Vehicles with Imperfect Prediction.”
presented at ACC21

• Online Fuel Efficient Control: a DMIS-Based Unified Receding-Horizon Fuel-Efficient
Control Framework

In the last part of Chapter 6, a unified receding horizon framework is presented, from
the PT-only control of a human-driven PHEV to the combined VD and PT control of an
automated PHEV. In the unified framework, the cost-to-go (the fuel consumption as the
economic cost) is represented by the co-state associated with the SOC dynamics. This
co-state is corrected internally using a single shooting method and externally based on the
co-state TD-error. In its application to automated PHEVs, a CBF is augmented as an add-
on block to modify the vehicle level control input to be executed whenever necessary. The
unified control framework guarantees safe vehicle-following behavior when including
longitudinal vehicle dynamics control. It allows for systematically evaluating the fuel
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economy and drivability performance of different levels and structures of optimization
strategies.

– D. Chen, N. Li, M. Huang, Y. Kim, A. Stefanopoulou, “Online Fuel Efficient
Control of Plug-In Hybrid Electric Vehicles: A Unified Reinforcement Learning
Inspired Safe Model Predictive Control Framework”, in preparation for an IEEE
journal
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CHAPTER 2

State-of-Charge Node Planning Using
Connectivity

The work presented in this chapter has been published in:
[30] D. Chen, Y. Kim and A. G. Stefanopoulou, “State of Charge Node Planning with Seg-
mented Traffic Information,” 2018 Annual American Control Conference (ACC), 2018, pp.
4969-4974, doi: 10.23919/ACC.2018.8431103.

2.1 Introduction

The utilization of traffic information can benefit energy management strategies for electrified
vehicles. The accuracy of a large-scale traffic monitoring system is typically limited; a more
realistic or nearly-achievable scenario would be the utilization of crude traffic information
from mobile services, e.g., Google Maps, WAZE, and HERE WeGo. They provide traffic
information on route segments, including highway systems, route distance, estimated time
of arrival (ETA), and traffic condition levels with a color code which are much less detailed.
Motivated by the immediate availability and popularity of such data, this chapter proposes to
use this less accurate information in SOC planning and compare the fuel consumption of this
scheme versus the one derived with the full velocity profile. The idea of SOC node planning is
inspired by [34], where the authors try to optimally control HEV by decomposing the route
into a series connection of segments with known properties. Expected fuel consumption is
calculated over the route as a function of set-points for SOC in each segment and vehicle
speed trajectories in each route segment. Then, DP is used to determine the sequence of SOC
setpoints for each route segment.

As shown in Fig. 2.1, the traffic information about segments of a given route is provided.
Based on the available information, a simplified velocity profile of each segment is constructed
and connected (solid green line on the bottom plot). Then, an optimal SOC trajectory for this
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simplified velocity profile over the route is (approximately) computed. Only the SOC node
values at the beginning and end of each segment are extracted (green diamonds on the top plot)
to obtain a sequence of desired SOC node values SOCd(i), i = 1, 2, ...n. When the vehicle is
driven on the first segment, the energy management with more accurate traffic information
and disturbances may lead the actual SOC at the end of the first segment to a slightly different
value (SOCa, the blue star on the top plot). Assuming new traffic information is obtained at
the end of the first segment for the remaining trip (black dashed line on the bottom plot), then
new optimal SOC node values are recomputed from a newly simplified velocity profile for the
remaining trip (black diamonds on the top plot).

Figure 2.1: The proposed approach for SOC planning by approximately computing optimal
SOC values at the end of velocity segments based on segmented trip information.

How these velocity segments are established and how the SOC nodes are obtained from the
segmented velocity profile are detailed in the next section.

2.2 State-of-Charge Node Planning with Segmented Traffic
Information

2.2.1 Traffic Simplification

One of the critical steps in SOC node planning is the simplification of the driving cycle from
limited traffic information. This simplified velocity is constructed by connecting acceleration,
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cruising, and deceleration to match the segment distance, ETA, and traffic flow.
The authors in [34] assumed the availability of a predicted nominal vehicle speed trajectory

for each route segment. The route segmentation criteria relate to substantial changes in either
the average road grade or average vehicle speed but did not specify how the nominal trajectories
are obtained. By comparison, the work presented in this section shows how a trapezoidal
nominal vehicle speed trajectory could be constructed from statistical features.

Concretely, in this chapter, we assume we know: The segment trip length l; the estimated
time spent on the segment T ; the average acceleration/deceleration1 a (a > 0 is the absolute
value, and we assume the same magnitude for acceleration and deceleration); and finally, the
entry and exit speed at this segment v0 and vf (can be considered as 0 if there is no available
information).

There are 4 unknowns: acceleration time �ta, deceleration time �td, cruising time �tc,
and the cruising speed vc. Then, velocity simplification can be converted into finding the above
4 unknowns subject to the following 4 equality constraints:

v0 + a ·�ta � (vf + a ·�td) = 0 (2.1)

v0 ·�ta +
1

2
a ·�t2

a
+ vf ·�td +

1

2
a ·�t2

d
+ vc ·�tc = l

vc � (v0 + a ·�ta) = 0

�ta +�td +�tc = T.

Solving (2.1) gives us the 4 unknown values, which can be utilized to construct the piece-
wise linear velocity profile v (consist of trapezoidal velocity segments). Such a simplified,
segmented velocity profile v will be used for SOC planning by considering a minimum fuel
consumption problem with v as the external disturbance. This will be the topic of Section 2.2.3.

2.2.2 Examples and Discussions

Before introducing the minimum fuel consumption problem for SOC planning, the concept
of traffic simplification through segmentation is first illustrated on some standard driving cycles.

Figure 2.2 shows two urban driving scenarios with different traffic levels and one highway
driving scenario. They are constructed by combining various federal driving cycles such as
UDDS, HWFET, NYCC, and LA92, for illustration purposes. Here the segments were manually
selected. As is indicated from (2.1), apart from the segment trip length l and estimated time T

1It is shown in [35] that the traffic data on the road segments in urban conditions is consistent regardless of
drivers. Consequently, the assumption that the typical acceleration value can be analyzed and extracted from
historical data is reasonable.
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on the segment, the acceleration a chosen to represent traffic also plays an important role in
prediction. Given the same segment trip length, a larger acceleration and a longer estimated
time on a segment usually indicate a more congested traffic condition because of more frequent
start-stop behaviors. On the contrary, a smaller acceleration with a shorter estimated time on
a segment indicates a smoother driving behavior and a less congested traffic level. The red
curves in the third row of Fig. 2.2 show the actual segment trip energy, and the black curves are
the corresponding predicted trip energy with the simplified velocity profile in the first row.
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Figure 2.2: Examples of segmentation, from top to bottom: velocity, power demand and trip
energy

The simplification of detailed velocity profile as stylized accelerating-cruising-decelerating
creates a mismatch in the demanded power, as shown in the 2nd row of Fig. 2.2. This is
especially true in high power demand, low congestion, and entry to high-speed trip segments.
The mismatch can lead to SOC planning that is sub-optimal when compared to the optimal
SOC trajectory with the actual detailed power demand the vehicle requires in reality. Some
attempts have been made to study the traffic pattern in velocity and acceleration thresholding
and distribution and establish criteria to classify different traffic conditions. However, those
previous attempts lack a systematic process and rigorous justification. Therefore, future work
will focus on the investigation of better classification of the traffic segments.
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2.2.3 Approximation of the Minimum Fuel Consumption Problem

As discussed at the end of Section 2.2.1, the simplified and segmented velocity profile v

will be used for SOC (node) planning. The SOC (node) planning is performed through solving
an optimal control problem.

The optimal control problem for SOC planning is formulated in continuous-time to mini-
mize the cost function J quantifying the total fuel consumption over a finite time horizon [0, tf ],
with tf typically the total ETA:

minimize J(u, v, t) =

Z
tf

0

ṁf (u)dt (2.2a)

subject to ẋ = f(x, u, v) corresponding to (A.14) (2.2b)

x(0) = x0, x(tf ) = xf initial and final SOC values (2.2c)

c(u, x, t)  0 corresponding to (A.26). (2.2d)

In (2.2), the state x = SOC, the control inputs u = [ne te]T include the engine speed and torque,
and v as the speed of the considered PHEV is considered as known external disturbance2. The
static fuel rate ṁf (u), depending only on the engine operation point, is the considered metric
in the stage cost.

Assumption 2-A. The entire battery range is allowable for the considered optimal control
problem (2.2), and the battery SOC lies always within the constraints, i.e., (A.26a) is inactive
for any feasible input and known external disturbance trajectories u[0, tf ], v[0, tf ], respectively.
Meanwhile, constraints (A.26b)-(A.26h) do not depend on SOC.

Assumption 2-A indicates the absence of the pure state inequality constraints (as SOC is
the only considered state in (4.3)). As a result, (2.2d) becomes c(u, t)  0.

Remark 1. Note that the torque and speed limits of the motor MG2 and generator MG1 are
all converted to the constraints on the engine, with the invariant constraints ⌦ on the engine
torque and speed in HV mode in this section defined by a polytope of the form [te, ne] 2

⌦ := {[te, ne]|H
"
te

ne

#
 h}. The original admissible set of the engine is [te, ne] 2 ⌦̃(v) :=

{[te, ne]|H
"
te

ne

#
 h̃(v)}, where h = h̃(v) except for only a single entry of h̃ depends on

2Although the purpose of this section is for SOC node planning with piese-wise linear, segmented velocity
profiles, in the problem formulation (2.2), v can be any valid vehicle’s velocity trajectory. As a result, (2.2) can
refer to SOC planning problem with segmented traffic information or the offline power-split optimization problem
on a particular trip v.
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v. This section (also this thesis) considers the maximal ⌦, such that ⌦ ⇢ ⌦̃(v), 8v. This is a
reasonable simplification since the tightened constraint is an upper bound on engine speed that
is rarely visited. As a result, (2.2d) becomes c(u)  0, which is invariant.

The Hamiltonian for this problem has the form:

H(x, u, p) = ṁf (u) + p · ˙SOC, (2.3)

where p is the co-state associated with the SOC. Assumption 2-A simplifies the constraints
to pure inequality control constraints, where no discontinuity in co-state p occurs [29]. The
co-state p satisfies the adjoint equation

ṗ = �@H

@x
= �

✓
@H

@Voc

@Voc

@SOC
+

@H

@Rbatt

@Rbatt

@SOC

◆
. (2.4)

As the considered powertrain has two different operating modes, namely, HV mode and EV
mode3, the Hamiltonian defined in (2.3) is split into the following:

H =

8
<

:
HHV = ṁf + p ˙SOC u = [ne te] 2 ⌦

HEV = p ˙SOC u = [0, 0]
(2.5)

where HHV and HEV correspond to HV and EV modes, respectively. According to the PMP
[29], at each time instant, the control is chosen as

u⇤ = argmin
u2⌦[[0,0]

{H} = argmin{HHV , HEV }, where (2.6a)

min{H} = min{HHV , HEV }. (2.6b)

Single shooting is used to solve the TPBVP in (2.2b), (2.2c), (2.4), (2.6a), where the initial
guess of the co-state p(0) is adjusted iteratively until the final SOC(tf ) is close to SOCf with
desired accuracy.

2.3 Simulation Results and Discussions

This section presents and discusses simulation results to evaluate the performance of the
proposed SOC node planning in a realistic scenario with less accurate traffic information4. For

3To be consistent throughout the thesis development, the Dual Motor Drive (DM) mode is omitted.
4The battery used in simulation in the comparison is half the size of the battery size used in other chapters of

the thesis.
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Figure 2.3: Performance of SOC node planning via segmented PMP in comparison with PMP
and DP with a full knowledge of the trip: SOC, cumulative fuel, fuel difference, and vehicle
velocity.

the SOC node planning to be meaningful, a trip is chosen such that the energy requirement over
the trip exceeds its maximum available battery energy. SOCf is set to a low level assuming the
availability of a recharging opportunity at the end of the trip.

The following procedures are established to simulate the real-world scenario and to evaluate
the performance of the proposed method:

1. Before the trip, the segmented rough traffic information is provided by a traffic advisory or
other mobile services. The segmented velocity profile is derived based on Section 2.2.1.

2. Afterwards, the TPBVP (2.2b), (2.2c), (2.4) based on PMP (abbreviated as PMP in the
remainder of this section) is formulated with the simplified velocity profile and solved
numerically with single shooting. The resulting SOC node sequence SOCd(i) at the
beginning and end of each segment is extracted and stored.

3. Next, the sequence SOCd(i) is used as the boundary condition for each segment. Assum-
ing that on each segment, exact knowledge of the velocity profile is available, a similar
TPBVP for each short segment can be solved numerically.

4. Finally, DP and PMP are applied on the entire offline trip to evaluate 1) the offline
performance of PMP with respect to DP as well as 2) the effectiveness of SOCd(i) as
additional boundary conditions for short-horizon optimal control. The performance is
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evaluated based on their total fuel efficiency as well as segment fuel efficiency. Note
that the performance of the proposed method is evaluated against DP results instead of
CDCS strategy because the commercial CDCS strategy typically contains complicated
logic, not publicly available.

2.3.1 A Case Study: A Combined Federal Drive Cycle

The performance of the proposed SOC node planning is evaluated through a case study. A
one-hour-long trip is designed by stitching US federal drive cycles, including HWFET, UDDS,
LA92, and NYCC. Each trip contains different driving behaviors: low-speed urban traffic,
medium-speed urban traffic, high-speed urban traffic, ramp driving, and highway driving. The
first subplot in Fig. 2.3 shows the SOC trajectories with corresponding control algorithms:

• oSOCDP : SOC trajectory computed by DP1 with the entire trip information. This is the
offline optimization on the detailed velocity profile for the particular trip in Fig. 2.3 and
takes approximately 5 hours.

• oSOCPMP : SOC trajectory computed by PMP with the entire trip information. It takes
approximate 150s.

• nSOC: The desired SOC node sequence computed by PMP on the segmented simplified
velocity profile. Only SOC node values in between segments are extracted, and it takes
approximately 40s.

• sSOC: SOC trajectory computed by PMP with nSOCs as boundary conditions and exact
velocity profiles on segments.

The second subplot in Fig. 2.3 shows cumulative fuel consumption from the three ap-
proaches, namely, oFuelDP , oFuelPMP and sFuel which are 561.8, 567.7 and 576.4 grams,
respectively. oFuelPMP is slightly higher than oFuelDP due to the use of a constant co-state
instead of the co-state dynamics (2.4) in simulation5. It should be highlighted that the SOC node
planning with the segmented velocity information leads to only 1% additional fuel consumption.
To check the robustness of the proposed algorithm to changes in traffic patterns, two other
scenarios with long highway driving duration in the beginning and at the end of the entire
trip are also simulated and compared to their corresponding DP results. In both scenarios,

1A solution to the DP problem is numerically obtained by using dpm function[36]. The number of grid sizes
of the states and inputs is sufficiently large so that the obtained solution can be considered as a global optimum.

5Note that as pointed out before, the battery considered in this section is relatively small. It is shown in [30]
that the co-state can be approximated by a constant value with the considered battery.
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the proposed algorithm with the segmented velocity increases the fuel consumption by 2.5%
additional.

As can be seen from the first and third subplots in Fig. 2.3, three segments are highlighted as
1�, 2� and 3�, where the SOC trajectory and fuel consumption from sPMP deviate considerably
from the optimal solutions by PMP and DP. It can be observed that the mismatch happens
primarily on high-speed operations. Specifically, the three apparent locations where mismatch
happens can be further divided into two cases: (1) the mispredicted SOCd(i) is at the end of
the high speed segment and causes an apparent fuel consumption difference when compared to
offline DP solution – 1� and 3� in Fig. 2.3; (2) mispredicted SOCd(i) happens in the middle of
several high speed segments, and another high speed segment counteracts and helps recover
segment fuel consumption difference when compared to DP – 2� in Fig. 2.3.

2.4 Performance of Control Obtained Using Necessary Con-
dition for Optimality

So far in this chapter, the control sequence is obtained by only considering the first-order
necessary conditions for optimality under the form of PMP. Although PMP is well known
to furnish necessary conditions for the optimality of the control of a dynamic system [37],
these conditions are not, in general, sufficient for optimality [38]. In [39, 40], comparative
analyses were done in terms of using DP and PMP to solve the resulting HEV minimum fuel
consumption problem. It was observed that DP and PMP could achieve very similar results. To
justify the utilization of only the first-order necessary conditions for the PHEV optimization
problem in this chapter and throughout this thesis, the optimality of the resulting control
sequence is worth investigating. The section seeks to justify the adoption of the PMP from two
aspects

1. Since the power-split optimization problem of a human-driven PHEV (2.2) with an actual
drive cycle involves only a single state (SOC) and two control inputs, it is possible to use
DP to calculate the solution numerically. The DP results with reasonable discretization
can be considered as global optimal solutions. By comparing the solution obtained with
PMP6 and DP, the optimality of PMP can be judged empirically 7.

6Here PMP refers to the single shooting-type of numerical strategy to solve the TPBVP obtained by considering
the first-order necessary condition in the form of PMP.

7Note that the DP results are only available for the optimization of a human-driven PHEV. For the co-
optimization problem considered in later chapters, the DP solution is not available due to the well-known “curse
of dimensionality”.
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2. An additional justification is provided in this section from the aspect of sufficient condi-
tion for optimality.

2.4.1 Comparison to Dynamic Programming in Simulation

First, the performance of PMP and DP is compared on 4 trips. The trips are standard driving
cycles combined with different orders and slightly scaled speed. The time-domain trajectories
are compared in Fig. 2.4 and Fig. 2.5, and the results are also summarized in Table 2.1a and
Table 2.1b. The battery used in simulation in the comparison is half the size of the battery size
used in other chapters of the thesis to reduce the problem horizon and thus the total computation
time required by DP.

The size of the discretization slightly influences the DP results. Nevertheless, the PMP and
DP results are sufficiently close, as evident by the resulting total fuel consumption, indicating
good performance (optimality) of the control sequence obtained by applying only necessary
conditions for optimality.

Table 2.1: Comparison of the numerical solutions between DP and PMP.

(a) Simulation Results on 1.3HWFET+UDDS
with different orders.

1.3HWFET
+ UDDS

UDDS+
1.3HWFET

SOCf

(PMP) 0.3540 0.3593

SOCf

(DP) 0.3474 0.3548

mfuel [g]
(PMP) 976.5832 977.9353

mfuel [g]
(DP) 977.4278 979.6739

(b) Simulation Results on 2*1.3HWFET+UDDS
with different orders.

2*1.3HWFET
+ UDDS

UDDS+
2*1.3HWFET

SOCf

(PMP) 0.3554 0.3382

SOCf

(DP) 0.3548 0.3474

mfuel [g]
(PMP) 1.8014e+03 1.7963e+03

mfuel [g]
(DP) 1.8052e+03 1.8030e+03

2.4.2 Sufficient Condition for Optimality

In the previous section, sufficient optimality of the control sequence (numerical solution)
obtained by applying the necessary condition for optimality in the form of PMP is demonstrated
through comparing with its corresponding DP solution. In this section, the empirical observation
is strengthened by showing the solution satisfies the sufficient condition for optimality [38].

Under the assumption of the absence of SOC constraints and slightly tightened control
constraints such that the admissible set for the control input becomes invariant, it is possible
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(a) 1.3HWFET+UDDS (b) UDDS+1.3HWFET

Figure 2.4: Comparison between PMP and DP (Table 2.1a).

(a) 2*1.3HWFET+UDDS (b) UDDS+2*1.3HWFET

Figure 2.5: Comparison between PMP and DP (Table 2.1b).

to show the optimality of the resulting solution follow the line of development of sufficient
condition for optimality as in [38]8.

Find a piecewise continuous9 control vector u 2 Rm and associated continuous and
8[38] discussed maximization. In the context of the minimization problem considered in this chapter, the

concavity conditions are converted to convexity conditions correspondingly.
9The term “piecewise continuous” is used in the sense that at the points of discontinuity the one-sided limits

always exist.
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piecewise differentiable state vector x 2 Rn, defined on the fixed time interval [t0, tf ], that will

minimize
Z

tf

t0

l(x, u, t)dt, (2.7a)

subject to the vector differential equation ẋ = f(x, u, t) (2.7b)

initial condition x(t0) = x0 (2.7c)

terminal conditions

8
>>><

>>>:

xi(tf ) = xi

f
i = 1, · · · , l

xi(tf ) � xi

f
i = l + 1, · · · ,m(xi

f
, i = 1, · · · ,m fixed numbers)

xi(tf ) free i = m+ 1, · · · , n
(2.7d)

and control variable restriction u(t) 2 U , U a given set in Rm. (2.7e)

It is assumed that f is continuous differentiable w.r.t. x. A pair (x(t), u(t)) is called admissible
if it satisfies (2.7b)-(2.7e). An admissible pair that minimizes the integral in (2.7a), and thus
solves the given problem, is called an optimal pair. For convenience, the well known PMP
(first-order necessary condition for optimality) is first stated.

Theorem 2.4.1. [38] In order that (x̄(t), ū(t)) be an optimal pair for (2.7), it is necessary
that there exist a constant p0 and a continuous function p(t) 2 Rn, where for all t 2 [t0, tf ],
(p0, p(t)) 6= (0, 0), and such that

H(x̄(t), u, p(t), t) � H(x̄(t), ū(t), p(t), t). 8u 2 U , (2.8a)

where the Hamiltonian function H is defined by

H(x, u, p, t) = p0 · l(x, u, t) + pTf(x, u, t), (2.8b)

except at the points of discontinuity of ū(t),

ṗ(t) = �Hx(x̄(t), ū(t), p(t), t). (2.8c)

Furthermore,

p0 = 1, or p0 = 1, (2.8d)
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and finally the following transversality conditions are satisfied
8
>>><

>>>:

pi(tf ) no conditions i = 1, · · · , l

pi(tf ) � 0 (= 0 if x̄i(tf ) > xi

f
) i = 1 + 1, · · · ,m

pi(tf ) = 0 i = m+ 1, · · · , n

. (2.8e)

Since for the particular PHEV minimum fuel consumption problem (2.2) the admissible
set for the control input(engine torque te and speed ne) consists of two disjoint sets [te, ne] 2

[0, 0] [ ⌦ := {[te, ne]|H
"
te

ne

#
 h}, a slightly generalized sufficient condition is considered.

To this end, let us define for (2.7)

H⇤(x, p, t) = min
u2U

H(x, u, p, t), (2.9)

where H(x, u, p, t) is as defined in (2.8a), and it is assumed that the minimum is attained.

Theorem 2.4.2. [38] Suppose (x̄(t), ū(t)) is an admissible pair satisfying all the conditions with
p0 = 1. If H⇤(x, p(t), t) defined in (2.9) is convex in x, then (x̄(t), ū(t)) is a solution to (2.7).

The proof of Theorem 2.4.2 is given in [38] and is therefore omitted here. For the particular
PHEV minimum fuel consumption problem (2.2), p0 = 1 is considered. It remains to show
the convexity of the Hamiltonian (2.3) in terms of x = SOC. Note that the co-state p =

�@H
⇤(SOC,p,t)
@SOC < 0, 8t, SOC based on the simulation results. As a result, the convexity of the

Hamiltonian can be seen from the SOC–(�p) plot.

(a) The state (SOC) and co-state on many similar
short Ann Arbor trips.

(b) The state (SOC) and co-state on a long trip
consisting of stitched standard driving cycles.

Figure 2.6: Illustration of SOC–(�p) plot on some trips.

31



As seen from Fig. 2.6, the slope of SOC–(�p) plot (which is @
2
H

⇤(SOC,p,t)
@SOC2 ) is approximately

positive across the entire SOC span. It indicates the convexity requirement is approximately
satisfied for the considered problem. As a result, the sufficient condition for optimality is shown
to be approximately satisfied, justifying again sufficient optimality of the control obtained by
considering only the necessary condition for optimality.

2.5 Summary

This chapter presents a practical approach to scheduling battery SOC for PHEVs when
sparse traffic information is available over a given route. Simulation results show that, compared
to DP results with a full trip knowledge, the short horizon optimal control with SOC node
values obtained from the proposed method consumes only 2.5% additional fuel. Furthermore,
the SOC node values for the trip could be computed in 40 seconds, and they follow reasonably
well the values from DP except for particular segments characterized as high speed/ power
demand.

The control sequence obtained in this chapter is obtained by only considering the first-order
necessary conditions for optimality under the form of PMP. To justify the utilization of only the
first-order necessary conditions in this chapter, this chapter additionally seeks to demonstrate
the optimality of the resulting control sequence from two aspects. First, it is shown in simulation
that first-order necessary condition-based numerical solution achieves similar fuel consumption
results as those obtained with DP. Afterward, additional justifications are provided in view of
the sufficient condition for optimality. The confirmation of sufficient optimality lays out the
foundation for a single shooting type of numerical strategy based on the first-order necessary
condition developed throughout this thesis.
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CHAPTER 3

Online Power-Split Optimization

The work presented in this chapter has been published in
[31] D. Chen, Y. Kim and A. G. Stefanopoulou, “Predictive Equivalent Consumption Mini-
mization Strategy With Segmented Traffic Information,” in IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 14377-14390, Dec. 2020, doi: 10.1109/TVT.2020.3034552.

3.1 Introduction

The achievement of optimal energy management of PHEV for minimizing fuel consumption
is closely related to determining the optimal trajectory of SOC, referred to as battery SOC
planning [22]. This optimal SOC trajectory can also be used to solve the energy management
problem of PHEVs in a receding horizon manner online with forecasted driving profiles [14].
For instance, the authors in [14] showed that approximately 6% fuel economy gain could be
achieved by dynamic battery SOC planning using real-time traffic data, compared to a CDCS
strategy.

In Chapter 2, a SOC node planning scheme is proposed using segmented traffic information
provided by mobile services like Google Maps. Encouraged by the observed potential fuel
economy benefit, a P-ECMS is proposed in this chapter for online PHEV energy management
as an innovative extension of the ECMS that has already been well developed. Figure 3.1
illustrates the overall framework. First, a simplified velocity trajectory is constructed for a
given trip, from which the demanded torque/power trajectory can be calculated. The current
battery SOC provided by the battery management system is used for initialization, and the
terminal SOC target is a level desired at the end of the trip. With the simplified velocity and
power demand trajectories as external inputs, the minimum fuel consumption problem can be
defined. By solving this optimization problem, the resulting SOC trajectory can be obtained,
with only the SOC node sequence SOCd(i) at the beginning and end of each segment being
extracted. In online implementation, the proposed P-ECMS utilizes the planned SOC node
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Figure 3.1: A hierarchical approach to energy management via predictive ECMS with seg-
mented traffic information.

values combined with a short-horizon velocity prediction to adjust the co-state.
The main contribution of this chapter is twofold: First, a P-ECMS is proposed and inte-

grated into a framework that computes a reference SOC trajectory based on segmented traffic
information. Second, simulations show the robustness1 of the proposed P-ECMS to the initial
co-state, prediction horizon length, the co-state update rate, and the accuracy of the predicted
velocity. In particular, the performance of the proposed P-ECMS is compared with an existing
A-ECMS algorithm with the same parameters except without prediction through simulations
and, on average, is demonstrated to outperform the A-ECMS in terms of fuel economy and
terminal SOC satisfaction.

3.2 Predictive Equivalent Consumption Minimization Strat-
egy (P-ECMS)

This section briefly revisits the SOC node planning scheme with segmented traffic informa-
tion proposed in Chapter 2. Afterward, a P-ECMS combined with the SOC node planning is
proposed for online implementation.
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Figure 3.2: SOC planning by computing optimal SOC values at the ends of velocity segments,
or nodes, based on segmented traffic information proposed in Chapter 2.

3.2.1 State-of-Charge Node Planning with Segmented Traffic Informa-
tion

It is assumed that the rough traffic information available from mobile mapping apps (e.g.,
Google Maps) includes the trip segment length l, the estimated time of arrival (ETA) T for
each segment, and color codes indicating the congestion level in each segment. Acceleration
information is included in constructing the simplified velocity profile to indicate congestion
levels. Then, the construction of a simplified velocity can be converted into solving a set of
equations as in (2.1). The unknown values obtained by solving (2.1) will be utilized to construct
the piece-wise linear velocity profile vs (consist of trapezoidal velocity segments).

After constructing a simplified velocity profile, vs with the segmented traffic information
of the considered trip (illustrated as the red dashed curve in the bottom subplot of Fig. 3.2),
the desired SOC trajectory SOCd corresponding to this profile vs can be obtained by solving
the minimum fuel consumption problem over a finite time horizon [0, tf ], with tf typically the

1The term robustness refers to the fact that the total fuel consumption and terminal SOC are not heavily
affected by the values of the control parameters.

35



total ETA of the entire trip:

minimize J =

Z
tf

0

ṁf (ne, te)dt

subject to:
˙SOCd = f(SOCd, ne, te, vs, tp) detailed in (A.14)

SOCd(0) = SOC0, SOCd(tf ) = SOCf

(ne, te) 2 ⌦ \ [0, 0],

(3.1)

where ṁf is the engine fueling rate, which is a static map as a function of the engine torque te

and speed ne. The driver’s torque demand is represented by tp, and is defined as the function of
the vehicle velocity v and acceleration a through a regression model that needs to be satisfied
by the low-level powertrain components

tp = ↵0 + ↵1 · a+ ↵2 · vs + ↵3 · v2s , (3.2)

where ↵i, i 2 {0, 1, 2, 3} are the regression parameters. The engine speed ne and torque te

can either be off (EV mode, where (ne, te) = [0, 0]) or subject to an invariant constraint ⌦ 2

in HV mode. In (3.1), the state x = SOC, the control inputs u = [ne te]T include the engine
speed and torque, and vs as the speed of the considered PHEV is considered as known external
disturbance.

The continuous-time PMP is used to obtain the necessary conditions for optimality of (3.1)
and the corresponding TPBVP. It is detailed in Chapter 2. The continuous-time TPBVP is then
discretized to obtain the numerical solution. The Hamiltonian at t = k�t for this problem has
the form:

H(k) = ṁf (ne(k), te(k)) + p(k) · ˙SOC(k), (3.3)

where p(k) is the co-state at t = k�t. For a given initial co-state p(0), the discretized TPBVP
can be converted to the following initial value problem (IVP): For k = 1 : Nf

u(k) = [ne(k), te(k)] = argmin
[0,0][⌦

H(k) (3.4a)

SOCd(k + 1) = SOCd(k) +�t · f(SOCd(k), u(k), ·) (3.4b)

p(k + 1) = p(k)

✓
1��t

@f(SOCd(k), u(k), ·)
@SOCd(k)

◆
, (3.4c)

2As discussed in Chapter 2, such an invariant set is obtained by assuming inactive SOC constraint and slightly
tightening the speed-dependent constraint.
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where f(SOCd(k), u(k), ·) abbreviates the battery SOC dynamics in (3.1).
To achieve the desired terminal SOC, SOCf , single shooting is applied by iteratively

adjusting the initial value of the co-state p(0). The shooting iteration stops when the resulting
terminal SOC value converges to the desired value (in this case, tolerance of 5e-4 is used). The
SOC trajectory is obtained, and only the SOC node values at the beginning and end of each
segment are collected to create a sequence of desired SOC node values SOCd(i), i = 1, 2, ...m

assuming there are m segments, as shown in the first subplot of Fig. 3.2. As will be detailed
later, the desired SOC node sequence is used as the intermediate control waypoints in P-ECMS.

3.2.2 Predictive-ECMS with SOC Node Planning

In an A-ECMS, the co-state or equivalence factor3 is adjusted based on the difference
between current and reference SOC values with a proportional (P) or proportional-integral (PI)
controller. It is, in practice, difficult to choose a control gain such that, at the end of the trip,
the actual SOC of the system converges to the desired terminal SOC. This section proposes
to resolve this challenge with a P-ECMS that updates the co-state (equivalence factor) with a
detailed short-term prediction of the velocity profile based on the difference between the SOC
at the end of the predicted short-horizon and its corresponding reference value.

Note that for HEVs, the battery acts mainly as an energy buffer. By comparison, the battery
for a PHEV can be depleted from a high to a low SOC level throughout the trip. Consequently,
to maximize the fuel economy benefit, it is crucial to guarantee that the actual SOC approaches
the desired (low) level at the end of the trip.

3.2.2.1 Issues in A-ECMS with SOC Node Planning

The co-state in the A-ECMS is typically updated as

p(k + 1) = p(k) +Kp

�
SOC(k)� SOCd(k)

�
, (3.5)

where SOCd(k) is the reference SOC value at t = k�t. SOCd(k) is obtained by the linear
interpolation of the piecewise-linear SOC trajectory formed by connecting the selected SOC
nodes. Note that a P-controller type A-ECMS with a fixed control gain Kp is considered
to adjust the co-state. This control structure is similar to the P-ECMS, which allows us to
understand the benefit of introducing predictions in ECMS more clearly.

When the co-state is updated based on (3.5), the performance of the A-ECMS for PHEV
energy management strongly depends on the choice of the initial value of the co-state p(0)

3Note that as shown in [41], the equivalence factor is equivalent to the co-state under reasonable assumptions.
In later work, the co-state is used interchangeably with the equivalence factor in ECMS.

37



and its update rate Kp. The drawbacks of the A-ECMS given in (3.5) are twofold based on
observations and will be shown through simulations in Section 3.3.

1. The performance of the A-ECMS in terms of fuel economy and terminal SOC satisfaction
varies with different p(0) and Kp pairs. However, it is difficult to pick the “correct” tuning
parameters for all trips encountered in practice. Observation has confirmed that with
some combinations of p(0) and Kp, the performance of A-ECMS degrades fuel economy
significantly.

2. The feedback formulation (3.5) in the co-state cannot guarantee that the actual SOC at
the end of the trip converges to the desired terminal SOC. If the terminal SOC is higher
than expected, the fuel economy suffers due to the under-utilization of the battery.

The initial co-state p(0) and its update rate Kp influence the convergence of the actual
terminal SOC at the end of the trip. Moreover, they also influence how close the actual
SOC tracks the reference SOC. The tracking closeness, in turn, influences the fuel economy.
Figure 3.3 presents the trajectories of the battery SOC and cumulative fuel consumption results
obtained from using four different strategies:

1. Offline Optimal: the optimal solution obtained by solving (3.1) with the actual speed
profile (black-solid);

2. CDCS⇤: the modified CDCS strategy where the actual SOC at the end of the trip
approaches the desired SOC value (red-solid) and the charge-sustaining part is optimized;

3. A-ECMS1: the A-ECMS whose p(0) and Kp values are tuned so that the actual SOC at
the end of the trip is close to the desired SOC value without close SOC reference tracking
(green-solid);

4. A-ECMS2: the A-ECMS whose p(0) and Kp values are tuned such that the actual SOC
at the end of the trip is close to the desired SOC value and includes close SOC reference
tracking (green-dashed).

The SOC reference trajectory used in A-ECMS is generated by the SOC planning discussed
in the previous section. The simplified speed profile used in the exampled SOC planning
and the actual speed profile are compared in Fig. 3.3. Note that to satisfy the terminal SOC
constraint, Kp is adjusted through offline simulations [31]. As can be observed from the second
subplot in Fig. 3.3 and Table 3.1, the fuel economy degrades if the resulting SOC trajectory
tracks the reference SOC trajectory closely. Note that the actual final SOC at the end of the trip
SOC(Nf ) in A-ECMS2 is slightly higher than the desired value. That happens because, for
this given p(0), it is difficult to find a Kp that achieves the exact desired terminal SOC.
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Figure 3.3: A-ECMS simulation results with different parameters over the considered drive
cycle: (top) the battery SOC trajectories, (middle) the cumulative fuel consumption, and
(bottom) the corresponding speed profile. Both of the A-ECMS use the SOC reference obtained
with the segmented velocity profile.

Table 3.1: Final SOC and fuel consumption results from offline optimal solution, optimal
CDCS, and A-ECMS with different parameters.

p(0) Kp SOC(Nf ) Fuel [g]
A-ECMS1 -280 -0.08 0.15 911.1
A-ECMS2 -300 6.12 0.16 957.5

Offline Optimal Sol. 0.15 905.3
CDCS⇤ 0.15 969.1

3.2.2.2 P-ECMS with SOC Node Planning

With SOC waypoints generated from the SOC node-planning in Section 3.2.1, the following
P-ECMS is proposed for online implementation with detailed but not necessarily accurate
short-term velocity prediction. The main difference between the A-ECMS and the P-ECMS is
in utilizing SOC references constructed with rough traffic information. In A-ECMS, the co-
state is updated with feedback from only the current SOC and with no feedback from the final
SOC. By comparison, in P-ECMS, the co-state is updated with feedback in the short-horizon
predicted future SOC. In details:

Step 0: Before driving on the road, construct a simplified segmented velocity profile (vs)
based on the segmented rough traffic information provided from mobile mapping apps (assume
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there are m segments)4. Then, given the initial battery SOC (SOC0) and the desired SOC
value at the end of the trip (SOCf ), solve (3.1) numerically with vs. From the resulting SOC
trajectory extract the desired SOC node sequence at the beginning and end of each segment
(denoted as SOCd(0) = SOC0, SOCd(1), . . . , SOCd(m) = SOCf ). Only these node values are
stored in memory.

Step 1: Initialize the co-state value p(0) from a predefined range [p(0)l, p(0)u]. As will be
shown through simulations in Section 3.3, the proposed P-ECMS is usable to a wide range of
p(0).

If k < Nf , repeat:
Step 2: Given p(k), from the instantaneous Hamiltonian minimization (3.3) the engine

torque and speed command te(k), ne(k) can be determined. At the same time, simulate the
powertrain dynamics forward to predict the SOC trajectory Np-s ahead with a Np-s predicted
velocity trajectory. Within the prediction horizon, the engine torque and speed at each time
instance is chosen by solving (3.3) with the co-state value fixed as p(k). Denote the predicted
SOC value at the end of prediction horizon as ˆSOC(k +Np).

Step 3: Correct p(k + 1) as:

p(k + 1) = p(k) +Kp

�
ˆSOC(k +Np)� SOCd(k +Np)

�
. (3.6)

Here SOCd(k + Np) is the linear-in-time interpolated value on the piecewise-linear SOC
reference trajectory formulated by connecting the SOC node sequence. As will be shown
through simulations in Section 3.3, the proposed P-ECMS is usable for a wide range of Kp.

3.3 Simulation Results and Discussions

In this section, the efficacy of the proposed P-ECMS is presented and discussed compared
to alternative energy management strategies, including the A-ECMS, CDCS⇤, and an offline
optimal solution with knowledge of the entire actual drive cycle. Especially featured is the
performance comparison between the proposed P-ECMS (with prediction horizon Np = 30s)
and the A-ECMS with the same parameter setting but without prediction. Simulation results
with different initial co-state p(0) and co-state update rate Kp are shown in Fig. 3.4. Figure 3.4a
demonstrates that stable and good sub-optimal fuel economy can be obtained by introducing
prediction using the P-ECMS. By comparison, the performance of the A-ECMS has large
variations (Fig. 3.4a) and degrades drastically compared to the P-ECMS beyond a narrow range

4Note that this work assumes we only have a short-horizon velocity prediction and do not have knowledge of a
high-resolution velocity profile for the entire trip. Consequently, the simplified and stylized velocity profile is our
best approximation of the entire trip.
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Figure 3.4: Performance comparison between P-ECMS with Np = 30 seconds and A-ECMS
with different p(0) and Kp.
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of parameters (Fig. 3.4b). Specifically, the P-ECMS can save 99.5 grams of fuel (corrected)
on average, which corresponds to a 9.7% decrease in fuel consumption, compared to the
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A-ECMS across different combinations of p(0) and Kp
5. It is also found that the averaged

fuel consumption by the P-ECMS is 4.2% lower than that by CDCS⇤. Moreover, the standard
deviation for fuel consumption with P-ECMS can be reduced by 96% from 84.1 to 3.4 grams
compared to A-ECMS. When generated SOC nodes are used, the average performance with a
linear-in-distance interpolation based on a predicted distance is similar to that with a linear-in-
time interpolation. Complementary to Fig.4 (a), the average uncorrected fuel is 949.7 g. The
average corrected fuel is 943.5 g, and the average terminal SOC is 0.154 when the generated
SOC nodes are used applying a linear-in-distance interpolation with prediction distance.

Figures 3.5 and 3.6 present a comparison of the time-domain response among the P-ECMS,
the A-ECMS with 2 different choices of p(0) and Kp, the offline optimal and CDCS* results.
In Fig. 3.5, the performance of the A-ECMS is significantly worse in terms of fuel economy
compared to that of the P-ECMS, and worse still compared to CDCS*. Only in Fig. 3.6 is the
performance of the A-ECMS similar to that of the P-ECMS.

Note that the parameters being considered do not influence the CDCS⇤ and the optimal
solutions. Consequently, they are marked as constant values in subsequent plots.

In the subsequent subsections, the robustness of the P-ECMS will be demonstrated in detail
5Note that this large performance improvement with P-ECMS upon A-ECMS does not conflict with Table 3.1.

The result presented in Table 3.1 is obtained in an offline manner, where the Kp in (3.5) is adjusted iteratively on
the entire trip such that the actual terminal with A-ECMS is close to the desired value[31]. By comparison, the
result presented here is with an arbitrarily chosen Kp, where the actual terminal SOC with A-ECMS can deviate
non-trivially from the desired value. As a result, the total fuel economy with A-ECMS degrades.
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from the following perspectives:

1. The predictive horizon Np: P-ECMS is robust in prediction horizons. In general, a
prediction horizon of 30 to 100 seconds demonstrates a good sub-optimal fuel economy
compared to offline optimal results and considerable improvement upon CDCS based on
our simulations. This is detailed in Section. 3.3.1.

2. The initial co-state p(0): P-ECMS is robust even with inexact co-state initialization. In
general, initial co-state p(0) 2 [�330,�250] 6 results in acceptable reduction in total
fuel consumption. This is detailed in Section 3.3.2.

3. The co-state update rate Kp: P-ECMS is robust with various co-state update rates. In
general, as long as Kp is not too small, we will have relatively good fuel economy. This
is detailed in Section 3.3.3.

4. The accuracy of the velocity prediction: P-ECMS is robust with various levels of approx-
imation of velocity trace. This is detailed in Section 3.3.4.

Besides, to show the effectiveness of the SOC node planning strategy discussed in Sec-
tion 3.2.2, P-ECMS results obtained from three SOC planning approaches are presented. The
results are discussed in Section 3.3.5 and highlight the importance of proper SOC planning.

6This range is obtained from offline simulations on various driving cycles.
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Figure 3.8: Time domain response of P-ECMS with different prediction horizons with p(0) =
-300 and Kp = 3

All the simulations have been performed on the driving cycle collected from real-world
field testing, as shown in Fig. 3.2. Note that the SOC at the end of the trip is not guaranteed to
be rigorously close to the desired SOC level in online implementation. For better comparison,
we correct the total fuel consumption by considering the deviation of the terminal SOC from the
desired terminal SOC and then present the fuel consumption results with (denoted as corrected)
and without (denoted as uncorrected) SOC correction, which is computed by

mf,cor = mf � 1600(SOCf � SOC(Nf )), (3.7)

where mf denotes the actual (uncorrected) total fuel consumption from simulation, and mf,cor

denotes the corrected total fuel consumption based on terminal SOC difference. Since the
power-split optimization of a PHEV is to maximize the utilization of the battery, any terminal
SOC in the closed-loop simulation that is higher than the target value indicates energy left in
the battery and thus represents an increase in total fuel consumption.

Baseline Definition: The purpose of the P-ECMS as a charge-blending optimization is
to achieve better performance compared to CDCS, implemented on a production vehicle.
Therefore, the CDCS is considered to be the baseline control strategy. However, in this work,
CDCS⇤ is used because 1) the terminal SOC can be guaranteed to approach the desired SOC
through optimization, 2) the efficacy of the proposed P-ECMS can be shown even when
compared to the “best” achievable CDCS, that is, the charge-sustaining part of the trip is
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solved separately from a fuel minimization problem (3.1) with an actual velocity profile for the
charge-sustaining part.

3.3.1 Robustness with respect to the Prediction Horizon Np

Figure 3.7 compares the results of the P-ECMS with different prediction horizons for the
drive cycle in Fig. 3.2. The following parameters are used in this vehicle simulation: the
co-state update rate Kp = 30 and the initial co-state p(0) = �300. Note that for purposes of
comparison, the actual velocity trace (solid-black curve in Fig. 3.2) is applied for short-term
prediction. In practice, it is still possible to obtain a reasonably accurate and detailed velocity
trajectory for a short horizon, although the detailed velocity is not typically available for the
entire trip. The work in [2] has shown that it is possible to predict a vehicle’s velocity within a
10-second prediction horizon with DSRC information.

As can be seen from the first subplot in Fig. 3.7, the length of the prediction horizon does
not significantly affect the uncorrected fuel consumption by the P-ECMS, especially when
the prediction horizon Np is longer than 30 seconds. It can also be observed that even with a
short prediction horizon (e.g., Np = 10 seconds), the closed-loop system’s fuel consumption
is still less than that of the CDCS* although the terminal SOC is much higher than the target
terminal SOC value of 0.15. Meanwhile, as is shown in the second subplot in Fig. 3.7, as
the prediction horizon increases, the corrected total fuel consumption decreases, which is not
surprising. Moreover, as shown in the third subplot in Fig. 3.7, the actual terminal SOC is close
to the target terminal SOC with the P-ECMS.

Figure 3.8 illustrates the corresponding time-domain response to Fig. 3.7. As seen in the first
subplot, as the prediction horizon increases, the actual terminal SOC with the P-ECMS comes
closer to the desired terminal SOC (SOCf = 0.15), and the resulting total fuel consumption
comes closer to the offline optimal fuel consumption (red-dashed) from the second subplot. By
comparison, the A-ECMS (same parameter p(0) and Kp without prediction) results in a much
higher actual terminal SOC than the desired SOC, and total fuel consumption is even worse
than CDCS*.

3.3.2 Robustness with respect to the Initial Co-State p(0)

Figures 3.9 and 3.10 show the influence of the initial co-state p(0) on the performance of
the P-ECMS and the A-ECMS with two different co-state update rate Kp values: in both cases,
the prediction horizon is set to be Np = 30-sec. Note that the co-state tuning rates in Fig. 3.9
and Fig. 3.10 are Kp = 30 and Kp = 5, respectively. The co-state is initialized with a value
in the range from �330 to �250: p(0) 2 [�300,�250]. As can be seen from these figures,
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Figure 3.9: Influence of the initial co-state p(0) on the performance of P-ECMS with Np = 30
seconds and Kp = 30
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Figure 3.10: Influence of initial co-state on the performance of P-ECMS with Np = 30 seconds
and Kp = 5

with the P-ECMS, initializing the co-state within a certain range is sufficient to guarantee good
sub-optimality. By comparison, the performance of the A-ECMS with the same parameters
of Kp and p(0) can vary significantly. As seen from Fig. 3.10, for the particular driving cycle
considered, the A-ECMS works well with Kp = 5, meaning that the A-ECMS has the potential
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to achieve good fuel economy with the proper choice of Kp and p(0). However, as shown in
Fig. 3.9, the performance of the A-ECMS degrades drastically with Kp = 30. These simulation
results clearly show the robustness of the P-ECMS with respect to the initial co-state p(0).
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Figure 3.11: Influence of the co-state update rate Kp on the performance of P-ECMS with
Np = 30 seconds and p(0) = -300

3.3.3 Robustness with respect to the Co-State Update Rates Kp

Figure 3.11 compares the performance of the P-ECMS and the A-ECMS with different
co-state update rates Kp. The following simulation parameters are applied: prediction horizon
Np = 30 seconds and initial co-state p(0) = �300. It can be observed that good fuel economy
and terminal SOC value can be guaranteed with the P-ECMS as long as Kp is not too small.
Notably, even when Kp is as large as 1000, the P-ECMS can achieve better performance,
compared to CDCS*. Note also that the A-ECMS can achieve good fuel economy only when
Kp is relatively small. For this particular driving cycle, large co-state oscillations are observed
in the A-ECMS when Kp > 300. If the absolute value of the co-state is very large, the
controller will always engage the engine, and the battery will be charged so that battery SOC
will be maintained at the upper bound. By comparison, if the absolute value of the co-state is
considerably low, the controller will always employ the battery, making the operation CDCS.
Meanwhile, it can also be observed that with the A-ECMS for a chosen prediction horizon
and initial co-state, the terminal SOC and resulting total fuel consumption are sensitive to the
change in Kp. As for the P-ECMS, the performance is found to be robust when Kp > 30.
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However, that performance degrades slightly when Kp becomes very large, which is because
a very large tuning rate will cause large oscillations in the resulting co-state trajectory. Even
so, as can be observed in Fig. 3.11, the resulting performance with the P-ECMS is satisfactory
within a large range of Kp.

3.3.4 Robustness with respect to Various Levels of Accuracy in Velocity
Prediction
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Figure 3.12: Comparison of speed trajectories: actual data and moving-averaged (MA) signals
with two different data window.

In reality, prediction errors inevitably exist with any short-horizon velocity forecasting
algorithm. Since velocity prediction itself is not the focus of this work, here, two types of
inaccurate velocity profiles are employed to demonstrate the robustness of the P-ECMS in the
presence of inaccurate velocity prediction.
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1. Unbiased Prediction – the moving average of the actual velocity profile with different
window sizes

2. Biased Prediction – the moving average of the actual velocity profile with different
window sizes offset by a random number in (-5,5) m/s

The top subplot of Fig. 3.12 shows the moving average of the entire driving cycle, with
window sizes being 10, 20, and 30-second, respectively. Assuming the prediction horizon
Np = 30 seconds, the middle and bottom subplots illustrate the possible predicted velocity
profiles around the beginning and at 500s of the trip. Specifically, note that the middle subplots
represent when the predicted velocity profiles are the moving average of the actual velocity
profile with different window sizes with unbiased predictions. By comparison, the bottom
subplots show the case with biased predictions.

Figure 3.13 summarizes the performance of the P-ECMS in the presence of both inaccu-
rate/unbiased and inaccurate/biased velocity predictions. The following parameters are used
in simulation: the initial co-state p(0) = �300, the co-state update rate Kp = 30 and the
prediction horizon Np = 30 seconds. As can be seen from Fig. 3.12, as the window size
of the moving average velocity increases (which indicates an increased level of inaccuracy),
the difference between the actual velocity and the predicted velocity is no longer negligible.
Nonetheless, by comparing the blue bars in Fig. 3.13, it can be seen that the difference in
the resulting fuel consumption is remarkably small, irrespective of the level of inaccuracy in
velocity prediction. Also, by comparing the blue and yellow bars in Fig. 3.13, it can be seen
that the P-ECMS is robust even when the velocity prediction is biased7.

3.3.5 Discussion on the Importance of SOC Planning

The importance of the effective SOC planning strategy discussed in Section 3.2.1 is demon-
strated by comparing the performance of the P-ECMS with the same p(0), Kp, Np, but different
SOC references in this section. The parameters are chosen as: the initial co-state p(0) = �300,
the co-state update rate Kp = 30 and the prediction horizon Np = 30 seconds.

The results obtained with the P-ECMS using three different types of SOC references are
compared and shown in Fig. 3.14, where

1. Linear-in-time SOC ref:

SOCd(k) = SOC0 +
k

Nf

(SOC0 � SOCf ), (3.8)

7It is observed P-ECMS with biased prediction performs slightly better than that with unbiased prediction.
The reason is unclear, and how the prediction accuracy would affect the performance of P-ECMS is subject to
further investigation.
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Figure 3.13: Influence of velocity prediction quality on the performance of P-ECMS with
Np = 30 seconds, p(0) = -300 and Kp = 30
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where Nf represents the total trip time represented in discrete-time, and k represents the
time t = k�t.
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2. Linear-in-distance SOC ref:

SOCd(k) = SOC0 +
s(k)

sN
(SOC0 � SOCf ), (3.9)

where sN represents the total trip distance, and s(k) represents the distance travelled
(possibly predicted) up to time t = k�t.

3. Segmented SOC ref: SOC planning-based reference with constructed simplified velocity
profile as discussed in Section 3.2.1.

As can be seen from Fig. 3.14, among all the P-ECMS results, the fuel economy with
the linear-in-time SOC reference is the worst. On the other hand, the fuel economy with the
linear-in-distance SOC reference is better than that with the linear-in-time SOC reference. Even
so, the P-ECMS achieves the best fuel economy with the SOC planning-based reference of
the three. Also, as can be seen from the third subplot in Fig. 3.14, the actual terminal SOC
values resulting from the P-ECMS with linear-in-time and linear-in-distance reference are much
higher than the target terminal SOC. Moreover, the P-ECMS with SOC reference generated
from our proposed method has led to better utilization of energy stored in the battery.

3.4 Summary

In this chapter, a P-ECMS is proposed combining the SOC node-planning strategy devel-
oped in Chapter 2 to minimize the fuel consumption of a PHEV. The proposed P-ECMS is
a simple variant of the ECMS but adjusts the co-state based on differences in the predicted
future SOC and the corresponding reference SOC. Introducing predictions such as those in the
P-ECMS can reduce the sensitivity of fuel economy and terminal SOC performance to control
parameters. The reduction in the sensitivity to the choices of the control parameters indicates
the potential of the P-ECMS when encountering an unknown trip.

Simulation results demonstrate that the fuel economy performance of the P-controller type
of A-ECMS depends heavily on the selected p(0) and Kp pairs. Depending on the choice of p(0)
and Kp pairs, there is no guarantee that the actual terminal SOC will converge on the desired
SOC in the A-ECMS. This eventually leads to fuel economy deterioration. By comparison,
the proposed P-ECMS has shown that it can achieve better fuel economy robustly responding
to the initial co-state, the co-state update rate, the prediction horizon, and compensating for
inaccuracy in the velocity prediction.

The benefits of the P-ECMS can be summarized as follows:
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1. Compared to the A-ECMS, the introduction of predictions from the P-ECMS can reduce
the gap between the actual and desired terminal SOC on average.

2. Compared to the A-ECMS, the introduction of prediction from the P-ECMS demonstrates
its robustness to the parameters in the co-state update formula.

3. Its resulting fuel consumption is robust to the prediction horizon as well as the velocity
misprediction.

4. Compared to PMP, the P-ECMS does not solve the TPBVP as related to the minimum
fuel consumption problem (3.1) with the actual velocity profile of the entire trip to get
the correct initial co-state and co-state trajectory. It considers only the short-term future
and gradually adjusts the co-state through feedback.
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CHAPTER 4

Combined Velocity and Power-Split Optimization

The work presented in this chapter has been published in

1. [32] D. Chen, N. Prakash, A. Stefanopoulou, M. Huang, Y. Kim, and S. Hotz, “Sequential
Optimization of Velocity and Charge Depletion in a Plug-in Hybrid Electric Vehicle.”,
14th International Symposium on Advanced Vehicle Control, 2018

2. [26] D. Chen, Y. Kim, M. Huang and A. Stefanopoulou, “An Iterative and Hierarchical
Approach to Co-optimizing the Velocity Profile and Power-split of Plug-in Hybrid
Electric Vehicles,” 2020 American Control Conference (ACC), 2020, pp. 3059-3064, doi:
10.23919/ACC45564.2020.9147804.

4.1 Introduction

When shifting from the control of human-driven to automated PHEVs, recent developments
in advanced driver assistance systems (ADAS) grants the freedom to manipulate the vehicle
velocity within acceptable traffic constraints [42, 43] and provide the opportunity to reduce
fuel consumption beyond what is possible with powertrain optimization alone. The opportu-
nity also comes with the challenge to unify the velocity optimization and the management
of multiple energy resources for PHEVs. At first glance, it may seem intuitive to split the
above co-optimization problem into velocity optimization and charge depletion optimization
sub-problems. The actual optimum, though, might not occur when they are solved separately
and independently. One may pose the following question: is it justified to keep this sequential or
decentralized structure for this problem without considering its co-optimization nature (commu-
nications between velocity optimization subsystem and power management subsystem)? The
choice between a centralized controller and a sequential optimization define two limiting design
extremes. The optimality of the sequential and decentralized structure for PHEV problem is not
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guaranteed since the two subsystems are closely related: velocity is the input to the power split
optimization. The powertrain output torque influences the velocity through vehicle dynamics.

Over the years, several approaches have been proposed for the combined energy manage-
ment and eco-driving (economical driving) of HEVs [44, 19, 21] with the concept of predictive
cruise control. The authors in [45] showed that the optimal trajectory might be represented
by using only two phases separated by a coasting phase under the assumption of limited
traffic preview. Then, two-stage PMP[46] was applied to derive the formulation of an optimal
controller analytically. In [44], a three-layer predictive control scheme with different update
frequency and prediction horizons is proposed. The top layer plans the kinetic and electric
energy in a convex optimization problem. The corresponding dual variables present as state
references and fuel equivalents and are used adaptively in a real-time decision layer by solving
an ECMS type of instantaneous optimization. In [21], the authors split the problem into long
prediction horizon SOC planning and a short horizon combined velocity and SOC planning.

This chapter starts by investigating the potential of fuel efficiency improvement of a PHEV
by the sequential smoothing of a velocity profile given traffic constraints and the optimization
of its charge depletion strategy in an offline manner. First, the vehicle velocity is smoothed by
minimizing the quadratic acceleration term subject to the traffic-acceptable following distance
from a lead vehicle based on the lead vehicle’s velocity preview. Afterward, the fuel consumed
is minimized for the smoothed velocity profile by an optimal charge depletion policy that uses
the knowledge of the entire trip profile to stretch the battery charge till the end of the trip
instead of the CDCS strategy.

Afterward, this chapter investigates the additional fuel economy benefits with the direct
fuel consumption minimization by co-optimizing the vehicle-following and the hybrid pow-
ertrain subsystem in a centralized manner upon sequentially optimizing the two subsystems
(acceleration minimization followed by power-split optimization). However, challenges exist
in obtaining the numerical solution of the co-optimization problem due to the following as-
pects: (i) a mixed-integer problem structure (engine on/off decision), (ii) the presence of pure
state constraints whose dynamics do not explicitly depend on the control inputs (time-varying
position constraints), and (iii) unstable dynamics when representing the vehicle-following
dynamics by a double integrator. An iterative and hierarchical numerical strategy is proposed
to resolve these difficulties, combining the gradient projection (direct method) with the single
shooting (indirect method). Single shooting is used to deal with the engine on/off decisions
in the power-split optimization, and the gradient projection is used to deal with the unstable
dynamics and the state constraints.
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4.2 Acceleration Minimization for Velocity Optimization

The fuel consumption minimization problem in-between re-charging events in this section
follows a sequential optimization methodology. First, the velocity is smoothed, assuming
perfect knowledge of the traffic constraints on the entire trip. Then, the battery charge depletion
is optimized based on the smoothed velocity profile. Although this sequential optimization
structure might be sub-optimal, it maintains the relative simplicity of two subsystems and
makes the computation tractable. It is meaningful because:

1. It defines a vehicle-independent velocity optimization structure, and any vehicle with
automatic longitudinal control can employ these optimal controls.

2. The use of a linear vehicle model in velocity optimization is computationally attractive
for eventually solving an optimal control problem.

Moreover, it is also readily applicable to the existing energy management system (EMS). Since
this section aims to evaluate the potential of our proposed sequential optimization method,
perfect knowledge of the traffic constraints on the entire trip is assumed.

4.2.1 Velocity Smoothing based on Traffic Constraints

In this section, the velocity is smoothed through acceleration minimization. The vehicle
velocity and position are described as a point-mass system:

ż =

"
0 1

0 0

#
z +

"
0

1

#
a (4.1)

where z = [s v]T , with s, v, the position and velocity of the vehicle, respectively; a is the
acceleration of the vehicle. The acceleration limits are amin  a(t)  amax, and the speed limits
on the various road segments specify the vehicle speed constraints as vmin(t)  v(t)  vmax(t).
Meanwhile, the position of the vehicle is constrained by the traffic condition and its lead
vehicles. The vehicle should have an acceptable and safe traffic following behavior and
therefore its position needs to satisfy smin(t)  s(t)  smax(t). Here for simplicity, it is
assumed the constraints on the acceleration, a, and the velocity of the target vehicle, v, are
time-invariant.

Converting the continuous time vehicle following sub-system into discrete time system
leads to the following linear time invariant system defined in discrete time:

zk+1 = Azk +Bak, (4.2)
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where zk = [sk, vk]T is the vehicle state, and ak is the acceleration at time k, with A, B
corresponding matrices [32]. The acceleration minimization is performed with respect to a
sequence of control inputs U = [a0 a1 ... aN�1]T , N is the trip horizon and the problem is
converted to a large dimensional constrained optimization problem. The objective function has
the following form:

min
U

J1 = UTU, s.t GU  W + Tz0, (4.3)

where z0 = [s0 v0]T is the initial position and velocity of the vehicle. The constraints on states
are converted to control constraints. The derivation of matrices G, W and T can be seen in
[32]. This is a standard quadratic minimization problem, and is solved by Matlab QP solver or
other state-of-art QP solvers like [47].

The limits on the velocity are reasonable on almost all U.S.A. roads [48], [49]. The position
of the target vehicle, however, depends on the position and velocity of its leader vehicle (sL, vL)
and hence subjects to time-varying constraints defined as in [49]:

smin = sL + vL
L

10
, smax = sL +

8
<

:
vLdmax, if vL < 9 m/s (20 MPH),

vLdmin, otherwise,
(4.4)

where vL and sL are the velocity and position of the preceding vehicle, respectively; L is 4.5 m
(1 car length), dmax is 3 m and dmin is 1.2 m.

The torque demand of the vehicle tpk at time t = k is defined as the function of the vehicle
velocity vk and acceleration ak through a regression model that needs to be satisfied by the
low-level powertrain components

tpk = ↵0 + ↵1 · ak + ↵2 · vk + ↵3 · v2k, (4.5)

where ↵i, i 2 {0, 1, 2, 3} are the regression parameters.

4.2.2 Offline Controller Performance Evaluation

Various driving trips are created to evaluate the controller performance by stitching several
federal test cycles, including the Urban Dynamometer Driving Schedule (UDDS), the Highway
Fuel Economy Test (HWFET), the US06 Supplemental Federal Test Procedure. Here the
results are reported for two specific permutations as presented in Table 4.1. Offline simulations
have shown that different trips with different characteristics have different potentials for fuel
economy improvement upon CDCS when doing charge blending optimization. The following
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two scenarios are selected to represent two extreme cases:

Table 4.1: Definition of two driving trips

Trip Name Cycle sequence Time
Worst CDCS 3⇥US06+UDDS+HWFET 2⇥UDDS+HWFET 2 hour 4 minutes
Best CDCS 3⇥ HWFET+ 3⇥ UDDS + 3⇥ US06 2 hour 16 minutes

1. Worst CDCS Trip: the case where the result with CDCS strategy on a real velocity
profile is expected to be far from optimal. The trip is arranged such that high power is
frequently demanded at the beginning of the trip. With the optimal depletion strategy, the
engine would be heavily engaged at first. Consequently, it reserves more battery capacity
for later in the trip with much lower power demand. By contrast, the battery would be
quickly depleted because of the initial high power demand. The engine has to engage
during the rest of the trip to maintain the minimum SOC level.

2. Best CDCS Trip: the case where the result with CDCS strategy on a real velocity profile
is expected to be near optimal. The trip is arranged such that relatively low power demand
and high vehicle speed appear at the beginning of the trip. Therefore, it is more efficient
for the system to use the battery first and engage the engine at the end of the trip, which
has high power demand.

The total trip distance of Worst CDCS Trip is 66.87 miles, and the total trip distance of Best
CDCS Trip is 77.13 miles. The total trip energy of the presented cycle exceeds the available
battery energy of the simulated vehicle in both scenarios. Consequently, the charge depletion
strategy will be important and have a significant influence on fuel consumption. The trip
profiles and corresponding energy management strategies are summarized in Table 4.2.

Table 4.2: Velocity and energy management scenarios considered in vehicle simulation

Scenario Velocity Energy Management
RV-CDCS Real Charge depleting with EV mode followed by charge sustaining with HV mode
RV-OCBD Real Optimal charge blending
SV-CDCS Smooth Charge depleting with EV mode followed by charge sustaining with HV mode
SV-OCBD Smooth Optimal charge blending

Note that the commercially applied CDCS strategy typically contains a complicated logic
that is not publicly available. To allow comparisons, the baseline energy management strategy
that approximates the CDCS strategy is defined as charge depletion followed by the optimized
charge sustaining operation as discussed before.
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Table 4.3: Fuel consumption, engine-on time, energy consumption results for different scenarios:
Worst CDCS Trip. SOC(0)=0.85, SOC(tf )=0.15.

Scenario Fuel
(kg)

% Fuel
Reduct.

Engine-on
Time (%)

Braking Energy
@Wheel (kWh)

Tractive Energy
@Wheel [kWh]

Pure
EV miles

RV-CDCS 1.11 0 13.49 4.93 13.71 25.97
RV-OCBD 1.04 6.0 11.52 4.93 13.71 N/A
SV-CDCS 1.00 9.7 12.20 3.18 11.91 30.55
SV-OCBD 0.96 13.7 11.22 3.18 11.91 N/A

Table 4.4: Fuel consumption, engine-on time, energy consumption results for different scenarios:
Best CDCS Trip. SOC(0)=0.85, SOC(tf )=0.15.

Scenario Fuel
(kg)

% Fuel
Reduct.

Engine-on
Time (%)

Braking Energy
@Wheel (kWh)

Tractive Energy
@Wheel [kWh]

Pure
EV miles

RV-CDCS 1.37 0 13.43 5.16 15.30 39.30
RV-OCBD 1.36 1.1 13.99 5.16 15.30 N/A
SV-CDCS 1.28 7.0 13.48 3.29 13.38 40.85
SV-OCBD 1.28 7.0 13.70 3.29 13.38 N/A

(a) Worst CDCS Trip (b) Best CDCS Trip

Figure 4.1: Simulation results with different scenarios over two driving trips

4.2.3 Results and Discussion

The summary of the results are presented in Table 4.3 and 4.4. SOC trajectory and fuel
consumption trajectory for these two scenarios are presented in Fig. 4.1a and 4.1b, respectively.
The results show that, on Worst CDCS Trip, the sequential optimization of velocity and charge
depletion (SV-OCBD) reduces the total fuel consumption by 13.74 % compared to the baseline
depletion strategy on the Real Velocity profile (RV-CDCS). On Best CDCS Trip, the sequential
optimization of velocity and charge depletion (SV-OCBD) reduces the total fuel consumption
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by 7.07 % compared to the baseline depletion strategy on the Real Velocity profile (RV-CDCS).
For the Worst CDCS Trip, the significant improvement of RV-OCBD from RV-CDCS is

not unexpected. With CDCS, even though the engine is expected to operate at most efficient
points after entering HV mode, it will be extensively used during the rest of the trip. This can
be seen from Table 4.3, where compared to RV-CDCS strategy, RV-OCBD strategy reduces the
total amount of time of engine operation in the moderate power region by slightly increasing
the time for the engine to operate in the middle power region. As is shown in Table 4.3, the
baseline strategy on real velocity has a longer duration of engine-on operation compared to the
strategy that gives the optimal SOC depletion. However, for the Best CDCS Trip, the power
demand at the beginning of the trip is moderate, and the high power demand appears at the end
of the trip. The importance of “ saving the battery for better use ” decreases. Consequently, the
RV-CDCS strategy that uses engine on the later part of the trip would be near-optimal compared
to the RV-OCBD strategy.

The results from Best CDCS Trip conveys an important message: even when there is a
small potential for charge depletion optimization (around 1 %), velocity smoothing provides
a valuable opportunity to improve the fuel economy further. In addition, smooth velocity
provides significant benefits even for a PHEV, where regenerative braking can be fully utilized.

A thorough comparison between different strategies on Worst CDCS Trip and Best CDCS
Trip as shown in Table 4.3 and 4.4 gives us the following insight:

1. Smooth velocity profile significantly reduces average power demand. The lower power
demand at the beginning of the trip enables longer mileage covered (with CDCS) before
switching to hybrid mode as shown in Table 4.3 and 4.4.

2. Reducing tractive trip energy reduces the overall fuel consumption by a greater amount
than what can be achieved with charge depletion optimization. Consequently, SV-CDCS
has higher fuel reduction than RV-OCBD compared to RV-CDCS as shown in Table 4.3
and 4.4. Unfortunately, smooth velocity (SV) requires a high level of automation, namely
vehicle following capability such as in cooperative adaptive cruise control [50].

3. The individual benefits of the velocity smoothing and charge depletion optimization are
not additive. This happens because the negative energy (thus the potential for regenerative
braking) is reduced by velocity acceleration minimization as shown in Table 4.3 and 4.4.
In general, the SV diminishes the regenerative braking opportunity, but it creates the
immense savings from the elimination of expensive and unnecessary acceleration that
needs braking.

4. Despite the non-cumulative nature of individual benefits, the total reduction in fuel
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consumption is still significant (from RV-CDCS to SV-OCBD).

4.3 An Iterative and Hierarchical Numerical Approach to
Co-Optimization

In the previous section in this chapter, the fuel-economical driving of a PHEV is pursued
by sequentially optimizing its velocity and charge depletion. The overall system is decomposed
into a vehicle-following subsystem and a hybrid powertrain subsystem. Considering that people
usually purchase a PHEV for its ability to reduce fuel consumption in the daily commute, it is
meaningful to co-optimize the vehicle-following and powertrain dynamics under a centralized
framework with fuel minimization as a single objective. However, challenges exist in the co-
optimization because it results in a mixed-integer nonlinear optimal control problem with pure
state constraints (up to second-order [29]), which is considerably hard to solve numerically.

In this section, the minimum fuel consumption problem is formulated for the entire trip as
an OCP unifying the vehicle and hybrid powertrain dynamics. It then seeks to solve the OCP
to obtain the velocity profile and the corresponding powertrain operation simultaneously, thus
providing a benchmark for online strategies. Note that when the powertrain is included in the
velocity planning, DP is the common approach to obtain the numerical solution [18, 17, 51, 52].
However, due to the discretization of additional control inputs and states, compromises are
needed between the computational cost and the solution accuracy.

The main contributions of this section are twofold: (i) a hybrid solution scheme is proposed
to address the difficulties in solving the mixed-integer OCP numerically with guaranteed pure
state inequality and terminal equality constraints without discretizing the controls and states
into grids, and (ii) considerable additional fuel economy benefit of the co-optimization is
demonstrated upon the sequential optimization approach.

4.3.1 Co-Optimization Problem Formulation

The objective of co-optimizing the vehicle-following and hybrid powertrain subsystems is to
minimize the total fuel consumption for the considered trip without constraints violation. In this
section, first, the minimum fuel consumption (denote as co-optimization in the sequel) problem
is formulated in continuous time. Then, a TPBVP is obtained and discretized based on the
necessary condition for optimality. Afterward, issues related to the instantaneous minimization
and the stability of the TPBVP are discussed.
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4.3.1.1 Formulation of the Co-Optimization Problem

Remark 2. Note that similar to the discussion presented in Chapter 2, in the co-optimization
problem considered in this section, the torque and speed limits of the motor MG2 and generator
MG1 are all converted to the constraints on the engine, with the invariant constraints ⌦

on the engine torque and speed in HV mode in this section defined by a polytope of the

form [te, ne] 2 ⌦ := {[te, ne]|H
"
te

ne

#
 h}. The original admissible set of the engine is

[te, ne] 2 ⌦̃(v) := {[te, ne]|H
"
te

ne

#
 h̃(v)}, where h = h̃(v) except for only a single entry

of h̃ depends on v. Different from the pure power-split optimization of a human-driven PHEV,
here the constraints become a mixed state and control type since v becomes a state rather thanan
external input. Neverthless, to simply the development, this section still considers the maximal
⌦, such that ⌦ ⇢ ⌦̃(v), 8v. This is a reasonable simplification since the tightened constraint is
an upper bound on engine speed that is rarely visited.

Define the system state x = [s v SOC]T , consisting of the position, velocity and battery
SOC, and the control input u = [a ne te]T , including the acceleration, engine speed and
torque. The minimum fuel consumption problem in continuous-time with given trip time tf is
formulated as1

minimize J =

Z
tf

0

ṁf (ne, te)dt, (4.6a)

subject to the system dynamics ((4.1), (A.14)), the initial and desired terminal condition

x(0) = xint, SOC(tf ) = SOCf , (4.6b)

and the state constraints on the ego vehicle’s position and velocity

g(x) =

2

66664

s� smax

v � vmax

�s+ smin

�v + vmin

3

77775
 0, (4.6c)

where vmin and vmax are the minimum and maximum allowable velocity of the ego vehicle
determined in consideration of the road type, location, and traffic flow. They are chosen to be
constant values in this thesis. smin and smax are the minimum and maximum allowable distance

1The dependence on t is omitted for simplicity.

61



and are chosen to avoid cut-ins from adjacent lanes and collisions with the preceding vehicle,
respectively.

smin = sl(t� 3)� 4 (4.6d)

smax = sl(t� 1)� 1, (4.6e)

where sl(t� 3) and sl(t� 1) refer to the lead vehicle’s position 3s and 1s ago, respectively. g is
continuous differentiable with respect to x. The system is also subject to the control constraints

U := {u = (a, te, ne)|a 2 [amin, amax], [te, ne] 2 [0, 0] [ ⌦}, (4.6f)

where amin and amax are the minimum and maximum allowable acceleration due to the physical
limits on the vehicle, respectively.

Note that since the considered PHEV has two operation modes: HV mode with engine-on
and EV mode with engine-off, the engine on/off decision needs to be made. Consequently, the
co-optimization problem (4.6) is a mixed-integer optimal control problem with time-varying
pure state constraints (4.6c).

4.3.1.2 Necessary Condition for Optimality and TPBVP

From the necessary condition for optimality [29], the Hamiltonian for (4.6) is defined as:

H = ṁf + pTf(x, u) = ṁf (ne, te) +
�
p1v + p2a+ p3 ˙SOC

�
, (4.7)

where p = [p1, p2, p3]T is the co-state. Based on the discussions at the beginning of this section,
the mixed state and control constraints are approximately considered as pure control constraints.
The pure state constraints (4.6c) can be adjoined to the Hamiltonian (4.7) to form the following
Lagrangian through a direct adjoining approach [53]

L = L(x, p, u, µ) = H + µTg(x) = ṁf (ne, te) + p1v + p2a+ p3 ˙SOC + µTg(x), (4.8)

where µ 2 R4 is the vector of the additional Lagrange multipliers associated with the pure state
constraints (4.6c). With an informal formulation of the maximum principle that is used as a
recipe while dealing with optimal control problems with state constraints in an applied setting
[53], the optimal control u⇤ at time t is the instantaneous minimizer of the Hamiltonian (4.7)

u⇤ = argmin
u2U

�
ṁf + pTf(x, u)

 
= argmin

u2U

�
ṁf (ne, te) + p1v + p2a+ p3 ˙SOC

 
. (4.9)
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The adjoint equation that needs to be satisfied by the co-state p is expressed as

ṗ = �rxL(x, p, u, µ) = �
"✓

@f(x, u)

@x

◆T

p+

✓
@g(x)

@x

◆T

µ

#
, (4.10)

since ṁf is not an explicit function of x.
Discretizing the state and co-state dynamics with Forward Euler scheme and time step �t,

the following TPBVP can be obtained in discrete-time with unknown initial co-state p0

x0 = xint, xN = xf (4.11a)

u⇤
k
= argmin

uk2U
Hk (4.11b)

xk+1 = xk + f(xk, u
⇤
k
)�t (4.11c)

pk+1 =

✓
I ��t

@fT (xk, u⇤
k
)

@xk

◆
pk ��t

@gT (xk)

@xk

µk (4.11d)

g(xk)  0, µk � 0, g(xk)
Tµk = 0. (4.11e)

4.3.1.3 Instantaneous Hamiltonian Minimization

To solve the TPBVP (4.11) in discrete-time numerically, first the control input at t = k

needs to be obtained through instantaneous Hamiltonian minimization (4.11b)

u⇤
k
= argmin

uk2U

�
ṁf,k + pT

k
f(xk, uk)

 
= argmin

uk2U

�
Hps,k + p2,kak + p1,kvk

 
, (4.12)

where Hps,k = ṁf,k(nek, tek) + p3,k ˙SOCk represents the Hamiltonian of the power-split
optimization problem [54].

Note that the problem (4.12) with uk = [ak, nek, tek]T has a hierarchical structure that
can be exploited to decouple the instantaneous minimization problem: at time t = k with
the current state xk and co-state pk, for a given acceleration ak, the engine speed nek and
torque tek can be chosen such that the fuel rate ṁf,k is minimized in the same manner as in
the power-split optimization. This means that, for each given ak its corresponding optimal
engine operation ne⇤

k
(ak, xk, pk), te⇤k(ak, xk, pk) can be found. Consequently, the search for

the control inputs as an instantaneous minimization problem in the original three-dimensional
space can be decomposed in two lower dimensional sub-spaces: one-dimensional search on
acceleration ak, and two-dimensional search on engine torque tek and engine speed nek with
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given acceleration ak

a⇤
k
= argmin

a2[amin
k ,a

max
k ]

H⇤
ps,k

(a, xk, p3,k) + p2,ka+ p1,kvk. (4.13a)

Since p1,kvk is determined at t = k, (4.13a) is equivalent to

a⇤
k
= argmin

a2[amin
k ,a

max
k ]

H⇤
ps,k

(a, xk, p3,k) + p2,ka. (4.13b)

The typical optimization-based approach in the (P)HEV energy management is based
on PMP and is solved numerically through single shooting on a related TPBVP rather than
multiple shooting [55]. This is because engine on/off decisions need to be made for the (P)HEV
energy management, resulting in a mixed-integer nonlinear optimization problem.

In the power-split optimization, the SOC is the only state considered and is modeled as
a slow integrator. In the absence of active SOC constraints [54] and mixed state and control
constraints, the resulting co-state is continuous. However, for the co-optimization problem, (i)
additional states (velocity and position of the vehicle) with unstable, fast dynamics need to be
incorporated into the TPBVP, while the combination of the fast unstable and slow dynamics
complicates the indirect approach. (ii) The pure state constraints due to the preceding vehicle
need to be explicitly considered, which yield discontinuities in the co-state trajectories. As
is indicated in (4.11d) and (4.11e), if any of the state inequality constraints is active, the
corresponding additional Lagrange multiplier would cause jumps in the co-state. Moreover, the
dynamics of the position do not explicitly depend on the control input, making it hard to apply
finite difference approximation related strategy as in [56] to deal with position constraints.

Meanwhile, for the discrete-time TPBVP (4.11), apart from the vehicle-following dynamics
(a double-integrator) that are unstable forward-in-time as discussed above, in the meantime for
the co-state dynamics (4.11d), the matrix in front of pk is

Ap

.
= I ��t

@fT (xk, u⇤
k
)

@xk

=

2

64
1 ��t 0

0 1 0

0 �@ ˙SOC
@v

1� @ ˙SOC
@SOC

3

75 . (4.14)

In (4.14), ||Ap||max = maxij |aij| = max{�t+1, |@ ˙SOC
@SOC�1|+|@ ˙SOC

@v
|}. Since the sampling time

�t > 0, ||Ap||max � �t + 1 > 1. Based on the norm equivalence, ||Ap||2 � ||Ap||max � 1,
8{�t, @

˙SOC
@SOC ,

@ ˙SOC
@v

}. Consequently, the unforced response of the co-state in the absence of the
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additional Lagrange multipliers is

pk+1 = (Ap,kAp,k�1...Ap,1Ap,0)p0 (4.15a)

||pk+1||2 = ||(Ap,k...Ap,0)p0||2  ||Ap,k||2...||Ap,0||2||p0||2. (4.15b)

Since ||Ap,k||2 > 1, 8k as discussed above, the unforced co-state dynamics without addi-
tional Lagrange multipliers are also unstable forward-in-time. The unstable state and co-state
dynamics make it hard to implement single shooting numerically forward in time.

4.3.2 Numerical Strategy

In this section, an iterative and hierarchical approach combining the gradient projection
and the single shooting is proposed to address the numerical difficulties related to the TPBVP
(4.11) for the co-optimization discussed in the previous section.

4.3.2.1 Iterative and Hierarchical Solution Strategy

As discussed in the previous section, it is difficult to solve the TPBVP (4.11) with single
shooting alone forward-in-time due to (i) the unstable state and co-state dynamics, (ii) the
presence of the state constraints (position) whose dynamics do not explicitly depend on the
control inputs, and (iii) the jumps in the co-state dynamics due to the pure state constraints.
However, in the meantime, it is still desirable to keep the single shooting structure in choosing
the engine torque te and speed ne in the powertrain level because of its potential in handling
the engine on/off decisions. As pointed out in Section 4.3.1.3, the acceleration and engine
operation points can be chosen in a hierarchical and decomposed way in the Hamiltonian
minimization.

To address the issues mentioned above, a hybrid and hierarchical strategy is proposed
that combines single shooting (indirect method) to optimize the power-split operation with
the gradient projection (direct method) to optimize the acceleration sequence and handle the
state constraints. As a result, the stability of the single shooting that is used in power-split
optimization can be maintained.

The original co-optimization problem is reformulated as

minimize J⇤(Ua) =
⇣N�1X

k=0

ṁf,k�t
⌘⇤

Ua

, Ua = [a0, a1, ..., aN�1]
T , (4.16)

and its solution strategy is summarized in Algorithm 1. Steps 1, 2, 5-7, 9 in Algorithm 1
correspond to the upper-level optimization on the acceleration sequence and steps 3 and 8
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Algorithm 1 Iterative solution strategy
1: m 0
2: Um

a
 Any feasible acceleration sequence U0

a

3: Jm  Solve the power-split optimization J⇤(Um

a
)

4: while m < MaxIter do
5: rJm  Estimated gradient
6: Ũm+1

a
= Um

a
+ ↵mrJm

7: Um+1
a
 argmin

GUaW+Tz0
||Ua � Ũm+1

a
||2

8: Jm+1 = J⇤(Um+1
a

)
9: Um

a
 Um+1

a
, Jm  Jm+1, m m+ 1

10: end

correspond to the lower-level power-split optimization.
In (4.16) the entire acceleration sequence Ua is chosen as the upper-level decision variables.

Since the vehicle-following subsystem is a linear time-invariant (LTI) system, given a sequence
of acceleration Ua and the initial state z0 = [s0, v0]T , the speed and position sequences of the
vehicle are determined through the state transition matrix, and the torque demand sequence
is also fully determined. The position, velocity, and acceleration constraints can be converted
to polytopic constraints on acceleration. This is followed by the lower-level power-split
optimization, where the optimal fuel consumption under the given input sequences (J⇤(Ua))
can be obtained. Through iterative interaction between the upper and lower levels, eventually,
the optimal acceleration sequence U⇤

a
, the optimal powertrain operations and its corresponding

fuel consumption J⇤(U⇤
a
) can be obtained.

To summarize, in the proposed numerical solution strategy, the upper-level generates
the acceleration sequence and copes with the position, velocity, and acceleration constraints,
whereas the power-split optimization and powertrain component constraints are considered in
the lower-level for the given acceleration sequence.

4.3.2.2 Gradient Estimation and Projection

Since empirical static maps are heavily involved in the considered problem, significant
computation effort will be spent on interpolation if the gradientrJm is calculated (step 5 in
Algorithm 1) by solving a new power-split optimization problem with each perturbation in the
acceleration sequence. To relieve the computational burden, the gradient is not computed by
evaluating J⇤ with each perturbation, but is estimated by (i) plugging in a perturbed acceleration
sequence, (ii) using the nominal powertrain command obtained in the previous iteration, (iii)
simulating the powertrain system over the resulting velocity trajectory, and (iv) estimating the
difference in fuel consumption by SOC correction.
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Specifically, step 3 in Algorithm 1 solves the power-split optimization (fuel minimization)
problem with the feasible acceleration sequence Um

a
at the m-th iteration, which results in a

terminal SOC value SOCm

N
as well as the optimal engine operation sequence

!⇤
e,traj

(Um

a
) = [ne⇤0(a

m

0 ), ..., ne
⇤
N�1(a

m

N�1)], T ⇤
e,traj

(Um

a
) = [te⇤0(a

m

0 ), ..., te
⇤
N�1(a

m

N�1)].

The perturbed acceleration sequence Um

a,i
at the i-th entry of the m-th iteration is obtained

Um

a,i
(j) =

8
<

:
Um

a
(j) +�a = am

j
+�a, j = i

Um

a
(j) = am

j
, otherwise.

The corresponding perturbed velocity sequence V m

i
= [vm1,i, ..., v

m

N,i
] can be obtained with

the state transition matrix. The perturbed driver demanded torque trajectory can be obtained
correspondingly. The overall system is simulated forward with Um

a,i
, the resulting V m

i
, the

driver demanded torque, as well as the nominal engine operation sequence !⇤
e,traj

(Um

a
) and

T ⇤
e,traj

(Um

a
). Because of the perturbation in the acceleration and its corresponding changes

in the velocity and torque demand sequence, the terminal SOC value SOCm

N,i
is different

from SOCm

N
. The difference �SOCm

i
= SOCm

N,i
� SOCm

N
is used to calculate �Jm

i
through

�Jm

i
= 100↵�SOCm

i
(↵: fuel consumption corresponding to 1% difference in SOC). Finally,

the corresponding partial derivative can be estimated as @J

@a
m
i
⇡ �J

m
i

�a
. Here one full horizon

simulation per perturbation Um

a,i
is required, and takes ⇠ 6ms for a ⇠ 1800s trip with 1s sam-

pling time. However, the computation time can be further improved since for each perturbation
Um

a,i
the trajectories will differ only after i.

Since the inequality constraints on acceleration create a polytope specified by the matrix G,
W , T and the initial condition z0, the projection step 7 in Algorithm 1 becomes a constrained
QP problem and can be solved with IBM ILOG CPLEX Optimization Studio [57].

It should be pointed out that with many empirical static maps and a relatively large step
size, it would be possible that the proposed iterative approach leads to jumps among local
solutions very close in terms of objective function values. However, since the acceleration
sequence resulting from each gradient projection step is feasible, the iterations can also be
stopped when the value of the objective function does not decrease for several consecutive
iterations. Therefore, in the actual implementation, a fixed number of iterations is used.

4.3.3 Results and Discussions

In this section, the results of the co-optimization with the proposed solution strategy over
several driving cycles with different SOC spans are presented and discussed. Especially, three
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optimization approaches are compared:

1. Power-split optimization over the original driving cycle, denoted by org.+ps.opt. and
shown as the black dashed curve. Note that the CDCS is not used as the baseline here
because the initial power demand for the considered trip is high and cannot be met in
pure EV mode.

2. Sequential optimization: power-split optimization over a speed profile optimized with
acceleration minimization, denoted by acc.min+ps.opt. and shown as the solid blue
curve.

3. Co-optimization, denoted by co-opt. and shown as the solid red curve.

In all the simulations, ↵m = 0.01 and MaxIter = 1000 as in Algorithm 1 are used. A time
step �t = 1s is used in discretization. The position constraints of the ego vehicle at t = k

depend on its preceding vehicle’s position (sl, known for the entire trip), and are given by

smin
k

= sl,k�3 � 4, smax
k

= sl,k�1 � 1. (4.17)

Note that (i) additional fuel consumption for engine start-up is included in evaluating the total
fuel consumption, (ii) the driving profile and the resulting position sl of the lead vehicle used
in simulations are obtained with the shifted original driving cycle, which defines the position
constraints on the ego vehicle, (iii) the original driving cycles and the smoothed driving cycles
through acceleration minimization satisfy the prescribed position constraints (4.17), and (iv) all
the resulting trips travel the same time, distance and end with the same speed.

Table 4.5: Comparison of Fuel Consumption

Method Final SOC Fuel [g] Improvement [%]
org. + ps. opt. 0.50 140.96 0

acc min. + ps. opt. 0.50 115.36 18.16 (0)
co-opt 0.50 105.40 25.23 (8.63)

As a case study, a trip of around 2000s is considered. The initial SOC is 0.65, and the
desired terminal SOC is 0.50. In Fig. 4.2a, the first subplot shows the resulting velocity, the
second subplot shows the acceleration, the third subplot shows the resulting SOC trajectory, and
the fourth subplot shows the cumulative fuel consumption with three considered optimization
approaches, respectively. The detailed fuel consumption and actual terminal SOC with each
approach are summarized in Table. 4.5.
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(a) Vehicle operation, battery SOC and fuel con-
sumption.

(b) Zoomed in view of the vehicle operation com-
parison between the sequential and co-optimization
results between 550-900s

Figure 4.2: Case study: initial SOC: 0.65, terminal SOC: 0.50

Table 4.6: Fuel economy benefit with co-optimization on various cycles upon other optimization
approaches

Original cycle
(also sl)

SOC span
% Fuel reduction with
co-optimization upon

org. + ps. opt

% Fuel reduction with
co-optimization upon

acc min. + ps. opt
Partial UDDS (⇠600s) 0.55!0.55 15.17 12.57

US06 (⇠600s) 0.65!0.50 36.76 10.49
realistic cycle (⇠2000s) 0.50!0.50 12.11 4.15

As is shown in Fig. 4.2a and Table. 4.5, the terminal SOC with all three optimization
approaches are the same. Simulation results show that the co-optimization, admit with sub-
optimality due to early stopping, can lead to a substantial decrease in fuel consumption by
more than 25% compared to only the power split optimization on the original cycle (repre-
sents a human driver). Compared to sequential optimization, where the velocity profile and
driver demanded power are smoothed out, it is still possible to achieve an additional 8% fuel
consumption reduction with co-optimization.

A zoom-in comparison between the sequential and co-optimization is presented in Fig. 4.2b.
From the second subplot, it can be observed that the operation of the vehicle with co-
optimization can be characterized as accel-glide-decel. From the third and fourth subplots, the
position constraints are satisfied in both cases.
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4.4 Summary

This chapter first investigates the potential of a proposed sequential optimization of a
velocity profile given traffic constraints and the corresponding charge depletion strategy of a
PHEV. Afterward, an effective iterative and hierarchical scheme is presented to co-optimize
the velocity and power-split operation of a PHEV. Specifically, fuel consumption is minimized
directly in the presence of a preceding vehicle and under explicitly imposed velocity and
position constraints. To address the challenges in obtaining a numerical solution to the co-
optimization, a hybrid strategy is proposed that iterates over gradient projection and single
shooting steps: (i) gradient projection is applied to obtain a feasible acceleration sequence and
(ii) power-split of the PHEV is optimized over the velocity profile based on the acceleration
sequence. Through a case study, the ability to solve co-optimization problems for relatively long
drive cycles where the required energies exceed the available battery energies is demonstrated,
critical for the PHEV applications. Furthermore, simulation results with various driving cycles
show that an additional 4%-12% fuel consumption reduction can be achieved through co-
optimization over a decentralized, sequential approach of acceleration smoothing followed by
power-split optimization.

Up to this chapter, SOC is the only state considered in the powertrain dynamics. However,
as will be detailed in the next chapter, instantaneous Hamiltonian minimization resulting from
PMP could induce high-frequency switches in the control inputs, known as the chattering
behaviors. Chattering behaviors are reflected in the (P)HEV power-split optimization problem
as the busy engine on/offs. Addressing the chattering behaviors arising in the PMP-based single
shooting motivates the development of a discrete-time mixed-integer shooting algorithm, which
is the focus of the next chapter.
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CHAPTER 5

Development of Discrete Mixed-Integer Shooting
(DMIS) Algorithm

5.1 Computational Challenges in Engine Cranking and Co-
Optimization

As discussed in Chapter 1 and the end of Chapter 4, systematically managing the engine
on/off switching is one of the fundamental challenges in the optimal control of hybridized
vehicles. For PHEVs, the energy management while avoiding frequent engine on/off switching
through cranking fuel consideration is formulated as a mixed-integer type optimal control
problem.

Solving mixed-integer optimal control problems numerically, however, remains challenging.
Although commercial solvers like IBM-CPLEX [58] and Gurobi [59] have experienced rapid
development in branch-and-cut/bound algorithms, they have rather limited applications to
automotive control problems due to (i) the restricted cost functions and constraints forms
and (ii) the exponential growth in the computation time as the problem horizon increases.
Meanwhile, efforts have also been devoted to solving mixed-integer optimal control problems
with direct and simultaneous methods [27, 60, 61], tailored to automotive applications. In
[61], a mixed-integer nonlinear MPC of heavy-duty trucks with integer gear choices is tackled
by first applying partial outer convexification and relaxation [27]. A nonlinear program with
vanishing constraints is obtained by discretizing in time the modified problem. It is then solved
with direct multiple shooting. Inequality constraints are enforced on each realization at each
time instant to ensure feasibility with any rounding strategy.

Despite the successful application of the direct multiple shooting with a convex relaxation of
the binary control variables to a real-world problem of controlling a heavy-duty truck, including
predictive choice of gears [61, 60], it is less practical to adopt this direct and simultaneous
approach for the optimal control of PHEVs. First of all, the fuel rate and motor efficiencies
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are tabular data (static maps) that are hard to be approximated accurately and efficiently
by analytical expressions. The evaluation and approximation of the Hessian matrix in the
corresponding NLP would introduce significant numerical errors and be very computationally
intensive. Even though the BFGS formula [62] can be used to approximate Hessian based on
gradient information, it is still computationally demanding due to the large underlying problem
horizon.

Second, as observed when using single shooting to solve the TPBVP of the PHEV power-
split optimization problem considered in previous chapters, several local minima already exist
in the instantaneous Hamiltonian minimization problem. With a single shooting strategy, the
control at each time instant is chosen to be the instantaneous Hamiltonian minimizer, which
is of much lower dimension. Thus, it is possible to identify the potential local minima offline
for efficient warm-start. By comparison, solving the NLP requires the decision of the entire
control sequence at once. Properly warm-starting the control sequence as a whole, even for
short-horizon problems to avoid local minima, becomes very difficult due to the combinatorial
effect of the choice of an engine’s initial operation point at every time instant. Moreover, the
Hessian matrix of the NLP consists of elements of the instantiation of the Hamiltonians. As a
result, it might be hard to escape the local minima determined by the warm-start strategy due to
the local information provided by the Hessian matrix.

Third, the system dynamics are converted to equality constraints with multiple shooting. In
between multiple shooting iterations, the control sequence could be inconsistent with the state
sequence, violating primal feasibility. It is especially notable in our application due to static
maps. The numerical errors with the Newton-type method would make the system’s dynamic
equations very hard to satisfy with acceptable accuracy. Finally, it is crucial to obtain the
solution for the entire problem offline as the first step towards real-time online implementation
with a limited problem horizon. As single percent fuel economy differences are significant at
scale, it is valuable to understand the optimality gap of the “short-horizon” receding horizon
control versus the full trajectory optimization result. A reasonable problem horizon for PHEVs
is generally larger than one hour to necessitate the use of the engine and make the power-split
optimization meaningful. Consequently, even with the approximated Newton-type method,
the dimension of the resulting nonlinear program would become prohibitive for executing the
iterations.

As observed from simulation results at the end of Chapter 2, the numerical solution obtained
applying single shooting with the necessary condition for optimality is close to those obtained
with DP. The sufficient optimality of the controls obtained this way and the complications
when directly considering the NLP motivate the pursuit of an indirect single shooting-based
numerical algorithm in this thesis.
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5.2 A Discrete Maximum Principle (DMP)

As has been illustrated in Section 4.3.1.3, the co-state dynamics are unstable forward-in-
time when the state dynamics are unstable, thus making the continuous-time PMP-based single
shooting fragile. As shown later in this chapter, the co-state dynamics, when formulated in
continuous time, are still unstable forward-in-time even though the state dynamics are stable.
On the other hand, when the state dynamics are stable, the co-state dynamics become stable
backward-in-time when formulated directly in discrete time with KKT conditions. When
optimal control problems are formulated directly in discrete time, even when the state dynamics
are initially unstable, they can be pre-stabilized, thus inducing stable co-state dynamics. As a
result, formulating the optimal control problems directly in discrete time has good potential to
avoid unstable state and co-state dynamics.

Motivated by the need to avoid unstable state and co-state dynamics in the TPBVP when
formulated with continuous-time PMP (discussed in Section 5.5.1.2), and some practical
control problems may not have trivial continuous-time re-formulations (for example, the
problem discussed in Section 5.4), this chapter seeks to formulate the optimal control problems
directly in discrete-time. A DMP1 is then established where control can take mixed-integer
values and functions involved are not necessarily differentiable, thus applicable to the PHEV
optimal control problems considered in this thesis.

When the optimal control problems are formulated in discrete-time, KKT conditions are
typically obtained as a necessary condition for a local optimum under suitable constraint
qualification assumptions [63]. It requires differentiability of the objective function and
constraints with respect to decision variables.

A maximum principle of the Pontryagin type (or DMP) for systems described by nonlinear
difference equations can be obtained under certain smoothness and convexity requirement
[64, 65] or relaxed directional convexity [66, 67] through separation of the reachable sets.
A DMP can also be obtained from KKT conditions assuming certainty differentiability and
convexity conditions on the state and control inputs [65, 68].

However, such requirements are typically strong in practice. With a DMP obtained from
the separation of reachable sets [64, 65] (no particular assumptions on the control input), the
convexity assumptions are always justified in the case of a system of nonlinear difference
equations which approximates a system of nonlinear differential equations [64]. However, the
twice-continuous differentiability assumption of the system dynamics and stage cost to the
system state is still strong in practice in the presence of tabular data and max-type functions.

1In this thesis, the maximum principle and minimum principle are used interchangeably since the minimization
problem can be converted to an equivalent maximization problem. However, they both refer to the minimization
problem in this thesis.
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The assumptions for the KKT conditions based DMP are also hard to be satisfied in practice.
For example, in our application to the PHEV, the state cost (the fuel rate, a static map of engine
torque and speed) and the SOC dynamics are not necessarily convex functions of control inputs.
Moreover, with integer decision variables (the engine on/off decision), the above functions are
not differentiable to the control inputs. Smoothing functions may be introduced; however, the
choice is non-trivial and complicates design and calibration.

This section presents the efforts toward arriving at a DMP without assuming the differ-
entiability on the control input u and state x. As a result, cases are also incorporated where
specific control inputs can only take integer values, and non-differentiable max-type function
can be included in the stage cost. Such a relaxation is critical to the PHEV applications since
the engine on/off command is an integer-valued decision variable, and the engine cranking
cost is formulated mathematically as a max-type function. A DMIS is then proposed to solve
the TPBVP numerically. It should be pointed out that single shooting is rarely used when
optimal control problems are directly formulated in discrete-time due to the asynchronous but
co-dependent controls, states, and co-states. One of the few applications is when the system is
linear, the stage cost is quadratic with an available closed-form solution for the control. A more
welcoming approach is to convert the first-order necessary conditions to a generalized equation
and solved them by Newton-type solvers [69].

The majority of the derivation presented in this section follows the line of strong Lagrange
duality and saddle-point theorem as in [70, 71]. For a given nonlinear programming problem
(primal problem), there is another nonlinear programming problem closely associated with
it (Lagrangian dual problem). Under certain convexity assumptions and suitable constraint
qualifications, the primal and dual problems have equal optimal objective values. As a by-
product of one of the duality theorems, saddle point necessary optimality conditions without
any differentiability assumptions can be established. The Lagrangian duality formulation has
proved useful in discrete optimization where all or some of the variables are further restricted
to be integers [63]. The strong Lagrange duality and saddle-point theorems for a constrained
optimization problem considered in this section are based on two basic assumptions about the
problem: (i) a convexity property in the image space of the constraints and (ii) a normality
condition (constraint qualification) which rules out certain ill-behaved problems.
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5.2.1 Duality and Saddle Point

First, the concept of duality and saddle point is revisited in this section for self-containment,
according to [72]. Consider an optimization problem in the standard form

minimize f0(x)

subject to fi(x)  0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p,

(5.1)

with variables x 2 Rn. Assume its domain D =
T

m

i=0 dom fi \
T

p

i=1 dom hi is nonempty, and
denote the optimal value of (5.1) by p⇤. There is no requirement of convexity on the problem.

The basic idea in Lagrangian duality is to take the constraints in (5.1) into account by
augmenting the objective function with a weighted sum of the constraint functions. Define the
Lagrangian L : Rn ⇥ Rm ⇥ Rp 7! R associated with the problem (5.1) as

L(x,�, �) = f0(x) +
mX

i=1

�ifi(x) +
pX

i=1

�ihi(x), (5.2)

with dom L = D ⇥ Rm ⇥ Rp. Refer to �i as the Lagrange multiplier associated with the ith
inequality constraint fi(x)  0; similarly refer to �i as the Lagrange multiplier associated with
the ith equality constraint hi(x) = 0. The vectors � and � are called the dual variables or
Lagrange multiplier vectors associated with the problem (5.1).

Define the Lagrange dual function (or just dual function) g : Rm⇥Rp 7! R as the minimum
value of the Lagrangian over x: for � 2 Rm, � 2 Rp,

g(�, �) = inf
x2D

L(x,�, �) = inf
x2D

(f0(x) +
mX

i=1

�ifi(x) +
pX

i=1

�ihi(x)). (5.3)

When the Lagrangian is unbounded below in x, the dual function takes on the value �1. Since
the dual function is the pointwise infimum of a family of affine functions of (�, �), it is concave,
even when the problem (5.1) is not convex.

The dual function yields lower bounds on the optimal value p⇤ of the problem (5.1): For
any � � 0 and any �

g(�, �)  p⇤. (5.4)
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Suppose x̃ is a feasible point for (5.1), i.e., fi(x̃)  0 and hi(x̃) = 0, and � � 0. Then

mX

i=1

�ifi(x̃) +
pX

i=1

�ihi(x̃)  0, (5.5)

and

L(x̃,�, �) = f0(x̃) +
mX

i=1

�ifi(x̃) +
pX

i=1

�ihi(x̃)  f0(x̃). (5.6)

Hence

g(�, �) = inf
x2D

L(x,�, �)  L(x̃,�, �)  f0(x̃). (5.7)

Since g(�, �)  f0(x̃) holds for every feasible point x̃, the inequality (5.4) follows. The dual
function gives a nontrivial lower bound on p⇤ only when � � 0 and (�, �) 2 dom g, i.e.,
g(�, �) > �1. A pair (�, �) with � � 0 and (�, �) 2 dom g is referred as dual feasible.

A pair w̃ 2 W ⇢ Rn, z̃ 2 Z ⇢ Rm is referred as a saddle-point for f if

f(w̃, z)  f(w̃, z̃)  f(w, z̃) (5.8)

for all w 2 W and z 2 Z. In other words, w̃ minimizes f(w, z̃) (over w 2 W ) and z̃ maximizes
f(w̃, z) (over z 2 Z):

f(w̃, z̃) = inf
w2W

f(w, z̃), f(w̃, z̃) = sup
z2Z

f(w̃, z). (5.9)

5.2.2 Theorem of Alternative

Let X ⇢ Rn, Y ⇢ Rm and Z ⇢ Rl be vector spaces with topological duals Y ⇤ and Z⇤,
respectively. For a normed space V with dual space V ⇤, the value of a linear functional w 2 V ⇤

at a point v 2 V is written as hv, wi. Consider the optimization problem in the set X with
f : X 7! R, g : X 7! Y , and h : X 7! Z, find an element x 2 X

minimize f(x) (5.10a)

s.t. g(x)  0 (5.10b)

h(x) = 0 (5.10c)

x 2 X. (5.10d)
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Its Lagrangian function L : X ⇥ (Y ⇤ ⇥ Z⇤) 7! R is defined by

L(x; u, v) = f(x) + hg(x), ui+ hh(x), vi, (5.11)

for x 2 X and (u, v) 2 Y ⇤ ⇥ Z⇤. The dual functional � : Y ⇤ ⇥ Z⇤ 7! R is defined by

�(u, v) = inf{L(x; u, v), x 2 X}, (5.12)

The Lagrangian dual optimization problem of the primal problem (5.10) is defined as

max{�(u, v) : (u, v) 2 P ⇤ ⇥ Z⇤}, (5.13)

where P ⇤ := {u|u � 0, u 2 Y ⇤}.

Assumption 5-A. (Convexity [70, 73, 74]) If x1 2 X, x2 2 X , and � 2 [0, 1], then there is an
element x3 2 X such that

f(x3)  �f(x1) + (1� �)f(x2) (5.14)

g(x3)  �g(x1) + (1� �)g(x2) (5.15)

h(x3) = �h(x1) + (1� �)h(x2). (5.16)

Assumption 5-B. (Existence of Interior Points [70]) Assume that:

1. the positive cone [75] P in the normed space Y has nonempty interior int P ;

2. the image h(X) under the mapping h : X 7! Z in the normed space Z has nonempty
interior int h(X);

3. there is an open set U ⇢ int h(X) and a point (M, yM) 2 R ⇥ Y , such that for every
z 2 U , there is an x 2 X satisfying f(x) M , g(x)  yM , h(x) = z.

Define a multifunction B : X 7! R⇥ Y ⇥ Z through

B(x) = {(b, q, s) 2 R⇥ Y ⇥ Z : f(x)  b, g(x)  q, h(x) = s}, (5.17)

then Assumption 5-B implies that the range of the multifunction B in R⇥Y ⇥Z has nonempty
interior.

Assumption 5-C. (Constraint Qualification/ Normality Condition [70]) Assume that for every
nonzero (u, v) 2 Y ⇤ ⇥ Z⇤ satisfying u � 0, 9x 2 X such that hg(x), ui+ hh(x), yi < 0.
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Assumption 5-C guarantees the existence of a normal Lagrange multiplier by ruling out
abnormal multipliers.

Theorem 5.2.1. (Eidelheit Separation Theorem [76]). Let Kl and K2 be convex sets in X such
that Kl has interior points and K2 contains no interior point of K1. Then there is a closed
hyperplane H separating K1 and K2; i.e., there is an x⇤ 2 X⇤ such that sup

x2K1
hx, x⇤i 

infx2K2hx, x⇤i. In other words, K1 and K2 lie in opposite half-spaces determined by H .

Definition 5.2.1. Inequality-Equality Systems.
System 1: There is an x 2 X such that f(x) < 0, g(x)  0, h(x) = 0.
System 2: There is a nonzero vector (u0, u, v) 2 R⇥Y ⇤⇥Z⇤ such that u0 � 0, u � 0, and

f(x)u0 + hg(x), ui+ hh(x), vi � 0, 8x 2 X. (5.18)

Proposition 5.2.1. (Theorem of Alternative [70]). If the convexity and interior point assump-
tions are satisfied by the functions f, g, h, then:

1. if System 1 has no solution x, it follows that System 2 has a solution (x0, u, v);

2. if System 2 has a solution (u0, u, v) and u0 > 0, then system 1 has no solution.

Proof. Define the set

A = {(b, q, s) 2 R⇥ Y ⇥ Z : 9x 2 X, s.t. f(x) < b, g(x)  q, h(x) = s}. (5.19)

Then System 1 has no solution iff ✓ /2 A, where ✓ is the zero vector in R⇥Y ⇥Z. Assumption 5-
A concerning convexity implies that A is convex, and Assumption 5-B implies the set A is not
empty since

int (cl A) = int A 6= ;. (5.20)

It follows from Theorem 5.2.1 that (K1 := A and K2 = {✓}, and int K1 \K2 = ;) there exists
a nonzero vector (ũ0, ũ, ṽ) 2 R⇥ Y ⇤ ⇥ Z⇤ such that

sup
(b,q,s)2cl A

 infh✓, (ũ0, ũ, ṽ)i = 0. (5.21)

Define (u0, u, v) := (�ũ0,�ũ,�ṽ) 2 R⇥ Y ⇤ ⇥ Z⇤, (5.21) is equivalent to the existence of a
nonzero vector (u0, u, v) 2 R⇥ Y ⇤ ⇥ Z⇤ such that for every (b, q, s) 2 cl A

bu0 + hq, ui+ hs, vi � 0. (5.22)
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Let x be any point in X , and define

b̄ = f(x) + ✏+ ⇠, q̄ = g(x) + ⌘, s̄ = h(x), (5.23)

where ✏ > 0, ⇠ � 0, ⌘ 2 P ⇢ Y . Then for any (⇠, ⌘, 0), (b̄, q̄, s̄) 2 A, it follows from (5.22)
that u0 � 0 and u � 0 since

⇠u0 + h⌘, ui � 0. (5.24)

For every x 2 X ,

(f(x), g(x), h(x)) 2 cl A, (5.25)

and it follows from (5.22) that

f(x)u0 + hg(x), ui+ hh(x), vi � 0, 8x 2 X. (5.26)

To prove the second claim, assume that u0 > 0, u � 0, and x 2 X satisfies g(x)  0, h(x) = 0.
Then

hg(x), ui  0, hh(x), vi = 0, 8v. (5.27)

It follows from (5.18) that

f(x)u0 � f(x)u0 + hg(x), ui+ hh(x), vi � 0, (5.28)

and because u0 > 0, it can be concluded that f(x) � 0, 8x 2 X satisfying g(x)  0 and
h(x) = 0, which proves the second part.

The existence of Lagrange multipliers follows from the theorem of the alternative by
offsetting f(x) by its optimal value.

Theorem 5.2.2. Assume that (i) x̄ 2 X is an optimal solution to the primal optimization
problem (5.10), (ii) the convexity Assumption 5-A is satisfied, and (iii) the interior point
Assumption 5-B is satisfied, or the spaces Y and Z are finite dimensional. Then there is a
nonzero vector (u0, u, v) 2 R⇥ Y ⇤ ⇥ Z⇤, and a real-valued function F on X , defined by

F (x; u0, u, v) = f(x)u0 + hg(x), ui+ hh(x), vi, x 2 X, (5.29)
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and it satisfies

F (x̄; u0, u, v)  F (x; u0, u, v), 8x 2 X (5.30)

u0 � 0, u � 0, (5.31)

hg(x̄), ui = 0. (5.32)

Proof. Let c = f(x̄). Then there is no x 2 X such that

f(x)� c  0, g(x)  0, h(x) = 0. (5.33)

It can be seen that (5.33) is the System 1 under Definition 5.2.1. Under the Assumptions 5-A,
5-B, per Theorem of Alternative there exists a nonzero vector (u0, u, v) satisfying (5.31) and

(f(x)� c)u0 + hg(x), ui+ hh(x), vi � 0, 8x 2 X. (5.34)

(5.32) is a direct result by applying (5.34) and f(x̄) = 0, g(x̄)  0, h(x̄) = 0 for x̄ 2
X . (5.30) can be obtained from (5.34). Finally, note that for u0 6= 0, F (x; u0, u, v) ⌘
u0L(x; u/u0, v/u0).

Theorem 5.2.3. (Lagrange Multiplier Rule [70]). Assume that the conditions (i)-(iii) of Theo-
rem 5.2.2 are satisfied and that the constraint qualification (Assumption 5-C) is satisfied. Then
there exists a normal Lagrange multiplier (ũ, ṽ) 2 P ⇤ ⇥ Z⇤ for the constraints of the primal
problem, such that

L(x̃, ũ, ṽ)  L(x, ũ, ṽ), 8x 2 X (5.35)

ũ � 0 (5.36)

hg(x̃), ũi = 0. (5.37)

Proof. Theorem 5.2.2 implies the existence of a nonzero vector (u0, u, v) and a function F

satisfying (5.30)-(5.32). Assume u0 = 0, then it follows that

hg(x), ui+ hh(x), vi � 0, 8x 2 X, (5.38)

where (u, v) 6= 0, u � 0. This violates Assumption 5-C. Consequently, u0 > 0, and F defines
a Lagragian function

L(x; ū, v̄) = (1/u0)F (x; u0, u, v), (5.39)
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where ū = (1/u0)u and v̄ = (1/u0)v.

The saddle-point theorem presented below is a direct application of Theorem 5.2.2 and
5.2.3.

Theorem 5.2.4. Assume that (i) x̄ 2 X is an optimal solution to the primal optimization
problem, (ii) the convexity Assumption 5-A, (iii) the interior point Assumption 5-B or the
space Y and Z are finite-dimensional, and (iv) the constraint qualification Assumption 5-C is
satisfied. Then, there exists a Lagrange multiplier (ū, v̄) 2 P ⇤ ⇥ Z⇤ such that (x̄; ū; v̄) is a
saddle point of the Lagrangian function of the problem on X ⇥ (P ⇤ ⇥ Z⇤).

5.2.3 A DMP from Lagrange Duality with Application to (Mixed-Integer)
Optimal Control Problem

Consider the general (mixed-integer) optimal control problem (The primal problem (P)) of
minimizing2

J := J(X,U) = �(xN) +
N�1X

k=0

l̃(xk, uk), (5.40a)

with the state xk 2 Rn and the control input uk 2 Rm at the time t = k (certain control
inputs could be restricted to only integer values as will be refined in the following). The state
sequence is defined as X = (x0 ... xN) 2 Rn·(N+1), and the control sequence is defined as
U = (u0 ... uN�1) 2 Rm·N . In (5.40a) � : Rn 7! R is the terminal cost, and l̃ : Rn ⇥Rm 7! R
is the augmented stage cost. (5.40a) is subject to the initial condition

x0 = q0, (5.40b)

the state dynamics

xk+1 = f(xk, uk), (5.40c)

and the control input u = (u1, u2) consists of discrete part u1 and continuous part u2, with
constraints uk 2 Uk defined as

u1
k
2 Zm1 \ ⌦1

k
, u2

k
⇥ ⌦2

k
, (5.40d)

2For simplicity, the case with terminal cost rather than terminal state equality constraint is presented here
without loss of generality.
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where ⌦1
k
⇢ Rm1 ,⌦2

k
⇢ Rm�m1 , and the (mixed state and) control constraints

(xk, uk) 2Wk, expressed in the form of g(xk, uk)  0, (5.40e)

where g : Rn ⇥ Rm 7! Rp. In particular, note that although pure state constraints are not
presented explicitly in the (5.40), they are actually augmented to the stage cost l̃(x, u) as
(convex) penalties measuring the constraint violation. Following the discussion in [77],

l̃(xk, uk) = l(xk, uk) + ⇢(d(xk,Xk)), (5.40f)

where d(xk,Xk) is a metric function describing the distance of the state xk from the feasible
region Xk, and ⇢(·) is a monotonically non-decreasing penalty function such that ⇢(0) = 0, and
grows quickly outside Xk.

Note that for the primal problem (5.40), it is only required for �, l̃, and f to be locally
Lipschitz continuous in x. No differentiability is assumed since non-smooth terms can appear
in either the stage cost l, the terminal cost �, or the dynamics f (for example, static maps are
involved in f with some industrial applications).

Define P = (p0 ... pN) 2 Rn·(N+1) with pk 2 Rn, and ⌥ = (�0 ... �N�1) 2 Rp·N with
�k 2 Rp. The Lagrangian function L : Rn·(N+1)⇥Rm·N ⇥Rn(N+1)⇥Rp·N 7! R for the primal
problem (5.40) is defined as

L(X,U, P,⌥) =J + pT0 (q0 � x0) +
N�1X

k=0

pT
k+1(f(xk, uk)� xk+1) + �T

k
g(xk, uk) (5.41)

=�(xN) +
N�1X

k=0

{l̃(xk, uk) + pT
k+1f(xk, uk) + �T

k
g(xk, uk)}�

NX

k=0

pT
k
xk + pT0 q0.

The dual function � : Rn·(N+1) ⇥ Rp·N 7! R [ {�1} is defined as

�(P,⌥) = inf
X,U

{L(X,U, P,⌥)}. (5.42a)

The Lagrange dual optimization problem is defined as

maximize �(P,⌥), (5.42b)

subject to ⌥ � 0. (5.42c)

Any (X,U) satisfying the constraints (5.40c) – (5.40e), together with x0 = q0, and d(xk,Xk)

finite, 8k 2 {1, ..., N} finite of the primal problem is called primal feasible, and any (P,⌥)
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satisfying the constraint (5.42c) of the dual problem is dual feasible. In the sequel, denote the
set of (X,U) satisfying primal feasibility as X ⇥ U ⇢ Rn·(N+1) ⇥ Rm·N .

Theorem 5.2.5. (Weak and strong duality [63, 71, 72]). If (X̂, Û) is primal feasible, and (P̂ , ⌥̂)

is dual feasible, then �(P̂ , ⌥̂)  J(X̂, Û). Further, if �(P̂ , ⌥̂) = J(X̂, Û), then (X̂, Û) and
(P̂ , ⌥̂) are optimal solutions to the primal and dual problems, respectively.

Theorem 5.2.5 states that any dual feasible vector provides a lower bound for the primal
optimum, and any feasible vector an upper bound for the dual optimum [63, 71]. The strong
duality condition �(P̂ , ⌥̂) = J(X̂, Û) is sufficient for the primal and dual optimality.

Theorem 5.2.6. (Conditions equivalent to strong duality [63, 71]). Let (X̂, Û) be primal feasible
and (P̂ , ⌥̂) dual feasible. Then the strong duality condition �(P̂ , ⌥̂) = J(X̂, Û) is satisfied if
and only if the following conditions are satisfied: infX,U{L(X,U, P̂ , ⌥̂)} is obtained at (X̂, Û),
and

P
N�1
k=0 �̂T

k
g(x̂k, ûk) = 0.

Theorem 5.2.6 for feasible primal and dual vectors (X̂, Û) and (P̂ , ⌥̂), minimization of the
Lagrangian at (X̂, Û) and the condition of the complementary slackness

P
N�1
k=0 �̂T

k
g(x̂k, ûk) =

0, are necessary and sufficient condition for the strong duality and therefore the primal and
dual optimality of (X̂, Û) and (P̂ , ⌥̂). Consequently, the conditions under which a Lagrange
multiplier (P̂ , ⌥̂) together with a primal optimal solution (X̂, Û) satisfy the strong duality
condition is of great interest. As is shown in [71], the key ingredients are the generalized
convexity and normality properties that will be summarized in the remaining section.

Condition 5.2.1. (Generalized convexity [71, 70]). For every (X1, U1), (X2, U2) and  2 [0, 1],
there is an element (X3, U3), such that

J(X3, U3)  J(X1, U1) + (1� )J(X2, U2), (5.43a)

F (X3, U3) = F (X1, U1) + (1� )F (X2, U2), (5.43b)

where F (X,U) =
�
(q0 � x0), (f(x0, u0)� x1), ... , (f(xN�1, uN�1)� xN)

�
.

G(X3, U3)  G(X1, U1) + (1� )G(X2, U2), (5.43c)

where G(X,U) =
�
g(x0, u0), ... , g(xN�1, uN�1)

�
.

Condition 5.2.2. (Sufficient condition for the convexity Condition 5.2.1[71]). For every t 2
{0 · · · N � 1}, for every x1, x2 2 Rn, for every u1, u2 2 Uk, and for every  2 [0, 1], there is a
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u3 2 Uk such that:

l̃k(x3, u3)  l̃k(x1, u1) + (1� )l̃k(x2, u2), (5.44)

f(x3, u3) = f(x1, u1) + (1� )f(x2, u2), (5.45)

g(x3, u3)  g(x1, u1) + (1� )g(x2, u2), (5.46)

where x3 = x1 + (1� )x2, and for t = N , the terminal cost � is a convex function on Rn.

As discussed in [71], a sufficient condition for (5.43b) in the form of (5.44) is related to the
system controllability and can in general be satisfied. (5.46) in Condition 5.2.2 can be satisfied
since the control constraints usually have an affine type.

Condition 5.2.3. (Normality). For every nonzero (P,⌥) there is (X,U) such that

pT0 (q0 � x0) +
N�1X

k=0

pT
k+1(f(xk, uk)� xk+1) + �T

k
g(xk, uk) < 0. (5.47)

Theorem 5.2.7. (Necessary and sufficient conditions for optimality in the case of strong La-
grange duality [71]). Assume convexity (5.2.1) and normality (5.2.3). A primal feasible tuple
(X⇤, U⇤) is optimal if and only if there exists a Lagrange multiplier vector (P ⇤,⌥⇤) such that
the following conditions are satisfied:

minL(X,U, P ⇤,⌥⇤) (5.48a)

is attained at the point (X⇤, U⇤),

⌥⇤ � 0, (5.48b)

and

N�1X

k=0

(�⇤
k
)T g(x⇤

k
, u⇤

k
) = 0. (5.48c)

The discrete maximum principle is a direct consequence of the theorem 5.2.7.

Theorem 5.2.8. (The discrete maximum principle of Pontryagin without differentiability [71]).
Assume that convexity Condition 5.2.1 and normality Condition 5.2.3 are satisfied. If (X⇤, U⇤)

is an optimal solution to the primal problem (5.40), then a Lagrange multiplier vector (P ⇤,⌥⇤)
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exists such that

min{L(X⇤, U, P ⇤,⌥⇤)} (5.49a)

is obtained at U⇤, and

min{L(X,U⇤, P ⇤,⌥⇤)} (5.49b)

is obtained at X⇤. (5.49b) is equivalent to the condition:

0 2 @L(X,U⇤, P ⇤,⌥⇤)

@X
|X⇤ , (5.49c)

where @L(·)
@X

denotes the generalized gradient (subgradient here) of the Lagrangian, and the
conditions of dual feasibility and complementary slackness are satisfied:

⌥⇤ � 0,
N�1X

k=0

(�⇤
k
)Tg(x⇤

k
, u⇤

k
) = 0. (5.49d)

Denote the Hamiltonian Hk

Hk := Hk(xk, uk, pk+1, �k) = l̃(xk, uk) + pT
k+1f(xk, uk) + �T

k
g(xk, uk), (5.50)

then in Theorem 5.2.8, (5.49a) is equivalent to

u⇤
k
= argmin

u2Uk

{l̃(x⇤
k
, u) + (p⇤

k+1)
Tf(x⇤

k
, u) + (�⇤

k
)Tg(xk, u)}

= argmin
u2Uk

{Hk(x
⇤
k
, u, p⇤

k+1, �
⇤
k
)},

(5.51)

where the case when some of the control inputs are restricted to take only integer values can be
treated no differently in the instantaneous Hamiltonian minimization.

The condition (5.49c) is equivalent to the co-state dynamics

p⇤
k
2

@Hk(xk, u⇤
k
, p⇤

k+1, �
⇤
k
)

@xk

|x⇤
k
, p⇤

N
2 @�(xN)

@xN

|x⇤
N

(5.52)

where @Hk(xk,uk,pk+1,vk)
@xk

and @�(xN )
@xN

denote the generalized gradient [78] of the Hamiltonian H

and terminal cost � at x, respectively.

Remark 3. Note that although in (5.52) the co-state dynamics involve generalized gradients, in
the numerical implementation, finite difference method is used to evaluate an element from
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their generalized gradients [78]. Consequently, equality (=) replacing the set inclusion (2)
is used in (5.52) as well as in the sequel for simplicity. In addition, to avoid the additional
Lagrange multiplier vk associated with the mixed state and control constraints g(xk, uk) in the
single shooting-based numerical algorithms introduced in the following sections, g(xk, uk) will
be removed. Instead, the mixed state and control constraint violation will be augmented to
the stage cost through a proper penalty when formulating the optimal control problems in the
remaining thesis.

5.2.4 Generalized Convexity and Normality Conditions for the PHEV
Application

For the DMP to be applicable to the minimum fuel consumption problem of a PHEV
considered in this thesis, it remains to check whether the generalized convexity Condition 5.2.1
and the normality Condition 5.2.3 are satisfied. As a sufficient condition for the convexity
property 5.2.1, (5.44) is satisfied in the PHEV application since the penalty function (in the
co-optimization) is convex in state and the fuel rate (stage cost) is locally a convex map with
respect to the engine torque and speed, and it is always possible to choose u3 = 0 (EV) mode
to satisfy (5.44).

Linear regression is used to approximate the empirical fuel rate map with third-order
polynomials, from which the Hessian can be calculated.

ḃmf =
X

i2{0,1,2,3},j2{0,1,2,3}

↵i,j ⇥ unei ⇥ utej, (5.53)

where une and ute are the normalized engine speed and torque. Figure 5.1a and Fig. 5.1b
present the regression models of the entire fuel rate map. Unfortunately, the Hessian matrix of
the fuel rate H ḃmf has saddle point most of the times.

However, it is not necessary to consider the entire operation region. Under the minimum
fuel consumption objective, the engine will always be commanded to operate within the lowest
engine BSFC region, as marked as the shadowed region in Fig. 5.1a. Within the low BSFC
region, the fuel rate map can be approximated with second-order polynomials, as shown in
Fig. 5.1c. Admit that the engine has saddle point globally, but locally the region in consideration
is convex.

86



(a) Illustration of the entire feasible and local BSFC
regions.

(b) Polynomial regression of the engine fuel rate
map within entire operation region

!̇#! =
1
2
'()
'*)

" 2.9306 3.1898
3.1898 6.6436

'()
'*) + −0.3286 0

0 −4.0074
'()
'*) + 1.4726

Positive definite à Strictly convex

(c) Polynomial regression of the engine fuel rate map within the low BSFC region.

Figure 5.1: Polynomial regression of the engine fuel rate map

5.3 Description of the DMIS Algorithm

In this section, a Discrete Mixed-Integer Shooting (DMIS) algorithm is presented as a
modification of the single algorithm with co-state backward-in-time propagation [5]. The
DMIS is summarized in Algorithm 2 and pictorially presented in Fig. 5.2. It serves as the
numerical strategy to solve the TPBVP ((5.40b), (5.40c), (5.52) where the set inclusion will
be replaced with equality in numerical evaluation, and the terminal co-state p⇤

N
could also

be determined when the terminal cost function �(xN) is replaced by terminal equality and
inequality constraints) obtained when applying DMP to the problem (P), but in consideration of
additional terminal state equality constraints and integer-valued decision variables. Algorithm 2
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Figure 5.2: Essential idea behind the DMIS.

is then benchmarked against a start-of-art multiple shooting algorithm and a mixed-integer
solver on two optimization problems with continuous and discrete control inputs in Section 5.4.
Finally, it is applied to solve the PHEV minimum fuel consumption problem with an additional
engine cranking state (5.13, 5.14) numerically in Section 5.5.

The essential idea behind the DMIS algorithm is illustrated in Fig. 5.2. As seen from
(5.50), the Hamiltonian at t = k depends on the value of the co-state at t = k + 1, pk+1. The
dynamics of the co-state are defined backward-in-time and depend on the state xk and control
uk at time t = k as shown in (5.52). The issue is that the state and control trajectories are not
known a priori. Since the system dynamics and cost function are nonlinear, no closed-form
solution is available to break the loop. The authors proposed an algorithm [5] utilizing an initial
guess of the control trajectories and a modified Hamiltonian by a penalty term enabling the
successive iterations to be stabilized to resolve this issue. Note that in [5], only terminal state
inequality constraints are considered. As a result, the terminal co-state is 0, and no shooting
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Algorithm 2 Discrete Mixed-Integer Shooting (DMIS) (a modified version of [5])
Parameters: ✏u, ✏J , ✏x, dµ, �, imax

Input: u0, x0, xf , p0N , µ
0

Output: ui, xi, pi, J i

1: i 0, ui  any feasible initial control trajectory u0

2: xi, J i  simulate the system forward with ui, x0

3: µi  initial choice of µ0

4: m 0, pm
N
 initial guess of the terminal co-state p0

N

5: while i < inf do
6: while ||xi

N
� xf || � ✏x do

7: pm  co-state backward propagation with xi, ui, pm
N

8: xi+1, ui+1, J  simulate the system forward with pm,
where ui+1

k
= argmin

u
[H i+1

k
+ µi||u� ui

k
||2],

and H i+1
k

= lk(x
i+1
k

, u) + (pm
k+1)

Txi+1
k+1

9: pm+1
N

= pm
N
+�pm

N
(xi+1

N
, xf )

10: m m+ 1, pm
N
 pm+1

N

11: end
12: if J > J i � ✏J and ||ui � ui�1|| > ✏u then
13: µi = max(µi + dµ, �µi), m 0
14: else if J > J i � ✏J then
15: �ui = ui+1 � ui, µi+1 = max(0,min(µi � dµ, µi/�))
16: m 0, i i+ 1, µi  µi+1, J i  J
17: else
18: �ui = ui+1 � ui

19: m 0, i i+ 1, µi  µi+1, J i  J

20: if ||�ui||  ✏u and i � imax then
21: break
22: end

iterations are needed for the TPBVP. However, for the PHEV fuel-optimal control application
considered in this thesis, terminal state equality constraints are considered (terminal SOC
requirement). Besides, the original work [5] assumes twice continuously differentiability of the
system dynamics and the state cost, which is relaxed in this thesis to incorporate cases with
max-type terms (cranking cost in (5.11)).

In Algorithm 2, the iterations for the inner-loop and outer-loop are denoted as m and i,
respectively. The inputs to Algorithm 2 are an initial feasible control trajectory u0, the initial
and terminal state x0 and xf , the initial guess of the terminal co-state p0

N
, and the initial choice

of the penalty weight µ0. The outputs from Algorithm 2 are the resulting control, state, co-state
trajectories ui, xi, pi, respectively, and the value of the cost function J i when exiting from
the current iteration i. Besides, parameters for this algorithm need to be selected in advance,
including the thresholds of the change in the control, state and cost function, ✏u, ✏x and ✏J ,
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respectively; scaling factors for the penalty weight dµ and �, respectively; the maximum
number of outer iterations imax. In Step 8, µi is the penalty weight, and µi||u � ui

k
||2 is a

penalty term that enables the successive iterations to be stabilized: when µi is high, u will be
different from ui

k
only when it dramatically decreases H [5].

Note that (i) the penalty weight µ is essential for stabilization and convergence of the DMIS
iterations, as can be seen in [5]. (ii) In Step 8, the original Hamiltonian is recovered when
µi||u� ui

k
||2 = 0.

5.3.1 Behavior of Successive Cost Function Values

In the original paper [5], it is shown that the values of the successive cost functions can
always be decreased if the penalty weight µ takes sufficient high values. However, the results
are based on continuous-time formulation followed by discretization. Here the results are
showed to hold with the direct discrete-time formulation and supplement the proof to include
the discrete-valued control.

The control input u here includes continuous and discrete control variables u = [v,↵], and
the system’s dynamics in discrete-time can be re-written as

xk+1 =
X

q2Q

↵qfp,k(xk, vk), (5.54a)

where 8q 2 Q, ↵q = 1 if q is the active configuration and ↵q = 0 otherwise. More precisely,

8q 2 Q, ↵q = {0, 1}, and
X

q2Q

↵q = 1. (5.54b)

In (5.54a), fp,k(xk, vk) is locally Lipschitz-continuous in x, v, 8p.

Assumption 5-D. H(x, u, p) is strongly semismooth in x.

The strongly semismoothness in Assumption 5-D is reasonable in the presence of either
max type function or static maps. Denote �xi

k
= (xi+1

k
� xi

k
), from [79]

Hk(x
i+1
k

, ui

k
, pi

k+1)�Hk(x
i

k
, ui

k
, pi

k+1) 
�@Hk(xi

k
, ui

k
, pi

k+1)

@xk

�T
�xi

k
+

L

2
||�xi

k
||2. (5.55)

In between two successive shooting iterations,

J(ui+1)� J(ui) =
N�1X

k=0

[Lk(x
i+1
k

, u
i+1
k

)� Lk(x
i

k
, u

i

k
)], (5.56a)
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which can be rewritten with the definition of the Hamiltonian

J(ui+1) =J(ui) +
N�1X

k=0

⇥
Hk(x

i+1
k

, u
i+1
k

, p
i

k+1)�Hk(x
i+1
k

, u
i

k
, p

i

k+1) (5.56b)

+Hk(x
i+1
k

, u
i

k
, p

i

k+1)�Hk(x
i

k
, u

i

k
, p

i

k+1)� (pi
k+1)

T (fk(x
i+1
k

, u
i+1
k

)� fk(x
i

k
, u

i

k
))
⇤

According to the approximate Hamiltonian minimization, denote �ui

k
= ui+1

k
� ui

k
, then

Hk(x
i+1
k

, u
i+1
k

, p
i

k+1)�Hk(x
i+1
k

, u
i

k
, p

i

k+1)  �µi||�ui
k
||2. (5.56c)

As a result,

J(ui+1) J(ui) +
N�1X

k=0

[�µi||�ui

k
||2 + L

2
||�xi

k
||2 + (

@Hk(xi

k
, ui

k
, pi

k+1)

@xk

)T �xi

k
(5.56d)

� (pi
k+1)

T (fk(x
i+1
k

, ui+1
k

)� fk(x
i

k
, ui

k
))]

=J(ui) +
N�1X

k=0

[�µi||�ui

k
||2 + L

2
||�xi

k
||2 + (pi

k
)T �xi

k
� (pi

k+1)
T �xi

k+1]

=J(ui) + (pi0)
T �xi

0 � (pi
N
)T �xi

N
+

N�1X

k=0

[�µi||�ui

k
||2 + L

2
||�xi

k
||2]

J(ui+1) J(ui) +
N�1X

k=0

⇥
� µi||�ui

k
||2 + L

2
||�xi

k
||2
⇤
. (5.56e)

Since initial condition is given, �xi

0 = 0, 8i. For the states with terminal inequality constraints
pi
N

= 0, and for the states with terminal equality constraints, �xi

N
= 0. In either case,

(pi
N
)T �xi

N
= 0.

�x
i

k+1 = x
i+1
k+1 � x

i

k+1 = fpi+1,k(x
i+1
k

, v
i+1
k

)� fpi,k(x
i

k
, v

i

k
)

=
⇥
fpi+1,k(x

i+1
k

, v
i+1
k

)� fpi+1,k(x
i

k
, v

i

k
)
⇤
+
⇥
fpi+1,k(x

i

k
, v

i

k
)� fpi,k(x

i

k
, v

i

k
)
⇤ (5.57)

Assumption 5-E . ||fpi(x, v)� fpj(x, v)||  �1||↵i+1
k
� ↵i

k
||, 8pi, pj 2 Q.

Mean value theorem for vector-valued functions [80] and (5-E) yield

||�xi
k+1||  ||

@fpi+1,k

@xk
||||�xi

k
||+ ||

@fpi+1,k

@vk
||||�vi

k
||+ �1||↵i+1

k
� ↵

i

k
|| (5.58)

M1||�xik||+ �2||�vik||+ �1||↵i+1
k
� ↵

i

k
|| = M1||�xik||+

"
�2 0

0 �1

#"
||�vi

k
||

||↵i+1
k
� ↵

i

k
||

#

=M1||�xik||+
"
�2 0

0 �1

#
||ui+1

k
� u

i

k
|| M1||�xik||+M2||�uik||
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Consequently,

||�xi

k
|| M1||�xi

k�1||+M2||�ui

k�1|| M1(M1||�xi

k�2||+M2||�ui

k�2||) +M2||�ui

k�1||


k�1X

j=0

M2M
k�j�1
1 ||�ui

j
||, (5.59)

since �xi

0 = 0. Using M = maxj=0,1,...k�1{Mk�j�1
1 },

||�xi
k
||2 

k�1X

j=0

2M2
2M

2||�uij ||2, (5.60)

which means

N�1X

k=0

||�xi

k
||2 

N�1X

k=1

(
k�1X

j=0

2M2
2M

2||�ui

j
||2) 

N�1X

k=0

R||�ui

k
||2 (5.61)

J(ui+1)� J(ui) 
N�1X

k=0

(R� µi)||�ui

k
||2 (5.62)

As long as ||�ui||1 6= 0, µi can always be chosen large enough to decrease J(ui+1). However,
in the actual implementation according to Algorithm 2, sometimes ||�ui||1 = 0 in some
intermediate iterations for some µi, which means ui+1 = ui and thus J(ui+1) = J(ui).
Per Step 14 µi would keep decreasing. After some iterations when µi becomes small and
||�ui||1 6= 0, the value of µi may not to able to guarantee the decrease in decrease J(ui+1) and
µi will increase according to Step 12. As a result, in certain applications the shooting iterations
in actual implementation would oscillated and trapped between Step 12 and Step 13 and µi is
not able to decrease to 0. Addressing this issue will be the future work. Note that in part B,
the penalty weight µ is fixed µi ⌘ µ > 0 and determined experimentally to avoid oscillations.
Admittedly, a nonzero µ could indicate potential sub-optimal solutions, the stabilization of
DMIS iterations are more critical for online implementation than strict optimality, especially
any real-time iteration (RTI) scheme is approximate and sub-optimal [81]. On the other hand,
it is observed that a fixed, nonzero µ could still lead to close-to-optimal solutions on several
numerical examples, since when the solution converges, ui+1 = ui indicates in Step 8, the
stabilizing term µi||u� ui

k
||2 = 0, and the original Hamiltonian is recovered.
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5.4 Benchmark Problems with Eco-Driving Applications

In this section, the performances of the DMIS are compared to other methods3 on two
benchmark problems with quadratic cost functions and linear state constraints: one with
continuous-valued control inputs (QP) and the other one with integer-valued control inputs
(mixed-integer quadratic program (MIQP)). The problem can be considered as the acceleration
minimization of the vehicle-following dynamics.

1. For the continuous-valued control problem, DMIS is compared to the state-of-art QP
solver using a FBRS-based multiple shooting (will be abbreviated as FBRS in the sequel)
[47] (P0).

2. For the integer-valued control problem, DMIS is compared to IBM-CPLEX [57] (P2).

The first benchmark problem is chosen to be the acceleration minimization of a double-
integrator (P0) with problem horizon N and time step �t.

(P0): Minimize

J =
N�1X

k=0

1

2
· a2

k
·�t, (5.63a)

where ak is the control input, denoting the vehicle acceleration at time t = k. (5.63a) is subject
to the system dynamics

sk+1 = sk + vk ·�t, vk+1 = vk + ak ·�t, (5.63b)

where sk and vk are the position and velocity of the considered ego vehicle, respectively, and
subject to state constraints

s
l,k�[ 3

�t ]
� 4 = smin

k
 sk  smax

k
= s

l,k�[ 1
�t ]
� 1 (5.63ca)

vmin
k
 vk  vmax

k
, (5.63cb)

where s
l,k�[ 3

�t ]
, s

l,k�[ 1
�t ]

represents the lead vehicle’s position 3s and 1s ago, respectively. The
state constraints (5.63ca) is related to the presence of a lead vehicle. Therefore, its position is
constrained by the lead vehicle, where smin

k
and smax

k
are the minimum and maximum allowable

distance and are chosen to avoid cut-ins from adjacent lanes and collisions with the lead vehicle,
respectively, and are functions of the position of the lead vehicle.

3Note that all the computations are done on a Mac OS X with an Intel® Core i5 2.7 GHz processor and 8GB
RAM.
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In addition, the control input ak needs to satisfy

amin
k
 ak  amax

k
. (5.63d)

Note that the ego vehicle represented by a double-integrator system (5.63b) has unstable
dynamics forward-in-time. It indicates a high sensitivity of the change in the terminal state
to the perturbation in the terminal co-state and thus not suitable to apply single shooting.
Although this is not an issue for multiple shooting, it is difficult to solve the associated TPBVP
numerically with single shooting. Consequently, to make the system suitable for single shooting,
the original double integrator system (5.63b) is pre-stabilized to formulate the equivalent system

sk+1 = sk + vk ·�t, vk+1 = K · (sl,k � sk +R · rk), (5.1)

where K 2 (0, 1) is a stabilizing feedback gain, R is the normalizing term, and rk is the control
input. As a result, the ego vehicle’s velocity vk+1 is in a linear feedback form of the reference
distance gap between the lead vehicle and itself, where this reference gap is optimized by
changing the normalized input rk. The acceleration ak is a function of the control rk, the state
sk, vk and the position of the lead vehicle sl,k calculated by

ak =
vk+1 � vk

�t
=

K · (sl,k � sk +R · rk)� vk
�t

. (5.2)

With the pre-stabilized reformulation (5.1), the control input becomes rk, where ak is a function
of the state, the control input and the lead vehicle’s positon sl,k. It should be pointed out
that vk+1 in (5.1) would only make sense with discrete-time formulation as there is no direct
continuous-time counterpart.

Remark 4. Note that the pre-stabilizing controller in (5.1) is a variation of the adaptive cruise
controller (ACC), but with an additional degree of freedom that seeks the optimal reference
�d⇤

k
= sl,k � sk +R · rk by selecting rk.

A smooth exterior penalty method is used to cope with the state constraints (5.63ca),(5.63cb).
This, combined with the pre-stabilized reformulation (5.1), results in an equivalent acceleration
minimization problem (P1) which is then augmented with discrete controls.

(P1): Minimize

J =
N�1X

k=0

1

2
�t · [(vk+1 � vk

�t
)2 + (max(sk � smax

k
, 0))2 + (max(smin

k
� sk, 0))

2

+ 10 · (max(�vk, 0))2]

(5.3a)
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Table 5.1: Performance comparison between DMIS and FBRS

FBRS DMIS
N (problem horizon) 1969 1969
Objective Function J 114.2773 114.0058

sN [m] 2.1215e+04 2.1215e+04
vN [m/s] 0.8383 0.8618

Total iterations 200 633983
Computation time [s] 17 297

Figure 5.3: An illustration of the lead vehicle’s trajectory, a drive cycle recorded in Ann Arbor,
MI, USA [3].

subject to the dynamics (5.1) and the control constraints

rk 2

8
<

:
[rmin

k
, rmax

k
], if rk takes continuous value

{�1, 0, 1}, if rk takes integer value.
(5.3b)

In (5.3a), the weights on the penalty terms are selected experimentally to balance the constraint
satisfaction and the stability of the DMIS iterations.

5.4.1 Comparison against FBRS

The performance of the DMIS on (P1) is compared against multiple shooting on (P0) based
on FBRS [47] when the control input rk takes continuous value. Here �t = 1, R = 1, K = 0.1,
rmax
k

= 2000, rmin
k

= �2000.
The lead vehicle’s velocity is shown in Fig. 5.3, where its position sl is obtained by

numerical integration. Figure 5.4 plots the resulting velocity, acceleration, and co-states
trajectories obtained with multiple shooting and single shooting. It can be seen from Fig. 5.4
that the trajectories obtained with DMIS are very close to those with the multiple shooting. The
results are also summarized in Table 5.1. As shown in Table 5.1, the objective function obtained
with single shooting is very close to that with multiple shooting, where the small discrepancy
in the cost function is due to the difference in the terminal state (pN = 0 no terminal equality
constrains are enforced). The computation time with single shooting is approximately 300
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Figure 5.4: Result comparison between DMIS (single shooting) and FBRS (multiple shooting)
with the lead vehicle’s velocity shown in Fig. 5.3. Black solid curve: single integrator, single
shooting, K = 0.1, µ0 = 2000, µf = 0.35. Red dashed curve: multiple shooting. Blue solid
curve: lead vehicle’s trajectory.

sec (5 min) with more than 630k iterations, and the computation time with multiple shooting
is 17s (200 iterations). The computation and number of iterations with single shooting is
considerably longer compared to the multiple shooting. This is reasonable since single shooting
only uses first-order information. By comparison, the multiple shooting exploits second-order
information (Hessian) and thus provides faster convergence behavior, which cannot be extended
to a mixed-integer domain.

5.4.2 Comparison against IBM-CPLEX

The performance of the DMIS on (P1) is compared against the state-of-art IBM-CPLEX
[57] mixed-interger quadratic program (MIQP) solver when the control input rk takes integer
value. Here �t = 1, R = 10, K = 0.3. Note that since the max terms in (P1) make the
problem no longer MIQP for IBM-CPLEX, (P1) is reformulated into the following form (P2) by
introducing additional relaxation variables to allow consistent comparison with the formulation
(P1) used in single shooting.

(P2): Minimize

J =
N�1X

k=0

1

2
�t · [(vk+1 � vk

�t
)2 + y21,k + y22,k + 10 · y23,k], (5.4a)
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Figure 5.5: Semi-log plot of the computation time comparison as a function of the problem
horizon. Blue solid: CPLEX. Red solid: Single shooting. Yellow dashed: Single shooting with
MEX Function from Matlab C code generation.

subject to dynamics (5.1) and the constraints

sk � smax
k
� y1,k  0, smin

k
� sk � y2,k  0, �vk � y3,k  0. (5.4b)

The maximum difference in objective function values is 0.01% between the values obtained
from single shooting and the integer-optimal objective function value with IBM-CPLEX, with
different problem horizons. However, as shown in Table 5.2, the computation time with single
shooting is significantly faster compared to that with IBM-CPLEX. It can be seen from the
Semi-log plot of the computation time in Fig. 5.5) that the single shooting scales linearly to
the problem horizon, by comparison, IBM-CPLEX with branch-and-cut based strategy scales
exponentially to the problem horizon.

Table 5.2: Comparison against CPLEX: computation time [s]

N
(problem horizon)

Cplex
class Single shooting Single shooting

+ codegen
100 0.3 0.7 0.15
200 1.2 1.4 0.16
300 2.0 2.1 0.14
400 8.8 2.6 0.15
500 10.2 2.7 0.15
600 110.8 4.0 0.16
700 262.2 4.0 0.15
800 748.2 4.8 0.16
900 2223.0 4.9 0.17

1000 5880.8 5.6 0.17
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5.5 Power-Split Optimization Accounting for Fuel Crank-
ing

In this section, the power-split optimization with an additional cranking state is formulated
directly in discrete-time, and its associated TPBVP is established with the modified DMIS.
The resulting TPBVP is then solved numerically with DMIS Algorithm 2 presented in the
previous section. The simulation results with DMIS are presented to solve the PHEV minimum
fuel consumption problem offline with an additional engine cranking state. A significant
reduction in cranking fuel consumption is observed in simulation compared to the PMP-based
approach without the cranking state, demonstrating its capability to resolve the chattering
behavior encountered by the continuous-time PMP-based solution, as discussed in Section
5.5.1.1. DMIS is demonstrated to tackle problems with multiple states, stabilize co-state
dynamics that are initially unstable with a continuous-time formulation. Afterward, an MPC
version of the DMIS is implemented on the dyno4, demonstrating its real-time capability and
fuel economy benefit compared to the stock CDCS strategy.

5.5.1 Limitation of the Continuous-Time Optimization

In terms of a suitable numerical strategy for the underlying minimum fuel consumption
problem for the energy management and optimization of (P)HEVs, previous efforts [30, 3]
focused on the feasibility study of the single shooting approach. For a trip with given (or
predicted) velocity and thus torque demand profiles, the minimum fuel consumption problem
is formulated in continuous time. PMP is then applied to get the dynamics of the co-states. The
resulting continuous-time TPBVP is discretized, where single shooting is used to obtain its nu-
merical solution. Good fuel economy compared to the baseline CDCS strategy is demonstrated
in simulations.

Admittedly, from a numerical implementation perspective, PMP has demonstrated its strong
applicability to the (P)HEV power-split optimization problem. In particular, the instantaneous
Hamiltonian minimization avoids the explicit consideration of the integer decision variable
representing the powertrain mode selection, as discussed in the sequel. However, instantaneous
Hamiltonian minimization resulting from PMP could induce high-frequency switches in the
control inputs, known as the chattering behaviors. Chattering behaviors are reflected in the
(P)HEV power-split optimization problem as the busy engine on/offs. There are relatively fewer
research efforts in optimizing the transient engine behaviors than the abundant work where only

4Acknowledgment: The dyno implementation and its results are work done by Dr. Mike Huang while he was
with Toyota. I am also grateful to Dr. Ken Butts from Toyota for his efforts.
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quasi-static engine maps are considered. In [23], an MPC torque-split strategy is proposed,
where the transient engine characteristics are considered through an augmented weighted
cost related to the engine mode switch. However, the engine mode within the prediction
horizon is determined heuristically. In [24], a control algorithm is proposed to regulate the
transitions between different operating points by using the battery to smoothen the engine
transients. However, the problem essentially becomes a regularization problem for an HEV
because of its small allowable SOC range. It is not applicable in the PHEV application because
the desired SOC reference requires solving the fuel minimization problem first, where the
busy engine cranking problem persists. In [25], an additional integer-valued engine on/off
state is considered, with engine cranking cost augmented in the cost function. However, its
numerical strategy is simplified by the constant co-state assumption, and the solution is obtained
by sequentially applying dynamic programming (DP) and convex optimization. It is hardly
applicable to the PHEV application, where the constant co-state assumption is not valid due
to the large SOC span. Moreover, the real-time implementability of the proposed sequential
optimization strategy is unclear.

As detailed in this section, the chattering behavior can only be addressed fundamentally
by introducing an additional engine cranking state. However, a critical issue appears with the
continuous-time formulation, i.e., the co-state corresponding to the cranking state becomes
unstable even though the engine cranking has stable dynamics. As a result, such continuous-
time, PMP-based shooting iterations are hard to stabilize in practice.

5.5.1.1 Chattering Behaviors in Hamiltonian Minimization

The Hamiltonian of the continuous-time minimum fuel consumption problem is

H = ṁf (u) + p · ˙SOC(SOC, u, v, tp), (5.5)

where as already stated in previous chapters, the state x = SOC, the control input u = [te, ne],
v is the velocity of the PHEV as the external disturbance and tp is the driver demanded torque.
p is the co-state. Based on the necessary condition for optimality (PMP), the optimal control at
time t is the instantaneous minimizer of the Hamiltonian (5.5)

u⇤ = argmin
u2U

{ṁf (u) + p · ˙SOC(SOC, u, v, Tp)}, (5.6)

and the co-state dynamics are

ṗ = � @H

@SOC
= �@ ˙SOC(SOC, u, v, tp)

@SOC
· p, (5.7)
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since ṁf does not explicitly depend on SOC.
The resulting discrete-time TPBVP with the forward-Euler scheme and a time step �t

SOC0 = SOCint, SOCN = SOCf (5.8a)

u⇤
k
= argmin

u2U
{ṁf,k(u) + pk · ˙SOCk(·)}, (5.8b)

SOCk+1 = (1 +
˙SOCk(·, u⇤

k
, ·)

SOCk

·�t) · SOCk, (5.8c)

pk+1 =
�
1� @ ˙SOCk(·, u⇤

k
, ·)

@SOCk

·�t
�
· pk. (5.8d)

Note that the PHEV powertrain is a switched hybrid system: it can either operate in HV
mode, where the engine is on, or in EV mode where the engine is off. As discussed in [30], u⇤

k

in (5.8b) is obtained by comparing the HV (u 2 ⌦) and EV mode Hamiltonian (u = [0, 0]T )

u⇤
k
=

8
<

:
argmin

u2⌦ H⇤
HV,k

if H⇤
HV,k

< HEV,k � ✏

[0, 0]T otherwise
, (5.9)

where

H⇤
HV,k

= min
u2⌦

{ṁf,k(u) + pk · ˙SOCk(·, u, ·)}, (5.10a)

HEV,k = ṁf,k(u) + pk · ˙SOCk(·, [0, 0]T , ·), (5.10b)

and ✏ is a threshold that could be chosen heuristically to defer the engine from being frequently
cranked on. However, it can be seen that the powertrain operation determined from (5.9) could
jump arbitrarily (chattering behavior) between HV and EV mode, resulting in busy engine
on/off switches. Moreover, note that adding hysteresis between HV and EV mode switch by
increasing ✏ does not fundamentally resolve the chattering behavior and is challenging to tune
by our observations.

5.5.1.2 Limitation of the Continuous-Time Formulation

To properly address the chattering behaviors caused by the instantaneous Hamiltonian
minimization (5.9), the original fuel minimization problem is augmented with the engine
cranking dynamics and their associated cranking cost.

Minimize

J =

Z
tf

0

{ṁf (u) +mc ·max
�
ė(e, E), 0

�
}dt, (5.11a)
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subject to the SOC dynamics and the normalized engine cranking dynamics modeled as [82]

ė = �� · e+ � · E, � > 0, (5.11b)

where E 2 {0, 1} is the engine on/off command. mc is the constant cranking penalty, which
corresponds, physically, to the cranking event energy cost (not a tuning parameter), and � is
the inverse of the time constant for the engine cranking dynamics.

The necessary condition for optimality on (5.11) yields

H = ṁf +mc ·max(ė, 0) + p1 · ˙SOC + p2 · ė (5.12a)

ṗ1 = �
@H

@SOC
= �@ ˙SOC

@SOC
· p1 (5.12b)

ṗ2 = �
@H

@e
= � · p2 + � ·mc · (ė > 0), (5.12c)

where (·) is the indicator function. It can be seen that although the engine cranking has stable
dynamics (5.11b), the unforced dynamic state of the co-state p2 (5.12c) is unstable.

5.5.2 Discrete-Time Formulation with Engine Cranking State

The discrete-time minimum fuel consumption problem with the SOC and engine cranking
state is formulated as

Minimize

J =
N�1X

k=0

�
�t · ṁf,k(uk) +mc ·max(ẽk+1 � ẽk, 0)}, (5.13a)

subject to state dynamics with

SOCk+1 = SOCk +�t · f(SOCk, uk, vk, tpk)

ẽk+1 = ↵̃ · ẽk + (1� ↵̃) · Ek,
(5.13b)

where Ek is the engine on/off command, and ẽk is the filtered engine on/off state at t = k. ↵̃ in
(5.13b) is related to � in (5.11b) by ↵̃ = 1��t · � 2 (0, 1). Meanwhile, the initial state and
the desired terminal SOC are given

SOC0 = SOCint, ẽ0 = 0, SOCN = SOCf , (5.13c)
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and control constraints are defined as

uk = [tek, nek]
T 2 U , where U = ⌦ [ [0, 0]T , Ek 2 {0, 1}. (5.13d)

According to the DMP presented in Section 5.2.3

Hk = �t · ṁf,k(uk) +mc ·max(ẽk+1 � ẽk, 0) + p1,k+1 · SOCk+1 + p2,k+1 · ẽk+1

(5.14a)

[uk, Ek] 2 argmin
u2U ,E2{0,1}

�
�t · ṁf,k(uk) +mc ·max(ẽk+1 � ẽk, 0) + p1,k+1 · SOCk+1 (5.14b)

+ p2,k+1 · ẽk+1

 

p1,k =
@Hk

@SOCk

=
@SOCk+1

@SOCk

· p1,k+1 (5.14c)

p2,k =
@Hk

@ẽk
= mc · (↵̃� 1) · (ẽk+1 � ẽk > 0) + ↵̃ · p2,k+1. (5.14d)

It can be seen that the unforced dynamics of p2 (5.14d) in discrete-time are stable backward-in-
time since ↵̃ 2 (0, 1).

Remark 5. Note that as discussed after Theorem 5.2.8, in the numerical implementation, finite
difference is used to evaluate an element from their generalized gradients [78] in the co-state
dynamics. Consequently, equality (=) replacing the set inclusion (2) is used in (5.14c) and
(5.14d) as well as in the sequel for simplicity.

5.5.3 Simulation Results

The parameters in the Algorithm 2 used for simulations in this section are as follows

✏u = 1, ✏J = 0.001, dµ = 0.01, � = 1.01, µ0 = 0.4, ✏x = ✏SOC = 0.001.

To demonstrate the effectiveness of the DMIS in resolving the chattering behavior as
discussed in Section 5.5.1.1 (in our application, the frequent engine on/off switches), the
baseline is defined as the minimum fuel consumption problem formulation as in (5.11) without
considering the engine cranking. The resolving discretized TPBVP (5.8) is solved numerically
with PMP-based single shooting. Note that in the offline simulations, the velocity trajectories are
the same for each simulation, with the driver demanded torque calculated by (4.5) (backward-
looking model). As a result, the effect of driver variations is eliminated in the offline simulations.

Figure 5.6a compares the state and control trajectories obtained with DMIS on (5.14)
against those with PMP-based single shooting on (5.8) with a realistic driving cycle. The first
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subplot presents the considered driving cycle. The second subplot shows the SOC trajectory.
The third subplot shows the total fuel consumption. The fourth subplot shows the cranking
fuel, and the fifth and sixth subplots show the engine on/off command resulting from the DMIS
and PMP-based method, respectively. As can be seen from the fourth subplot, the cranking
fuel with (5.14) is considerably less compared to that with (5.8). A detailed view of Fig. 5.6a
between 50s and 300s is shown in Fig. 5.6b. As can be observed by comparing the fourth and
fifth subplot of Fig. 5.6b, the engine switches on/off much less frequently with DMIS-based
compared to the baseline PMP-based optimization without engine cranking optimization. The
total fuel (cranking fuel included) is 527 grams with additional cranking fuel optimization
(5.14), achieves 3% additional improvement in fuel economy compared to 544 grams without
additional cranking fuel optimization (5.8).

Besides, the penalty term for stabilizing shooting iterations eventually decreases to 0, as
shown in Fig. 5.7. This indicates that in Step 8 of Algorithm 2, ui+1

k
satisfies the discrete-time

maximum principle.

5.6 Velocity and Power-Split Co-Optimization with DMIS

The proposed DMIS strategy not only addresses the chattering behaviors in the PHEV
power-split optimization problem, it also enables systematically solving the PHEV velocity
and power-split co-optimization. It demonstrates better scalability with respect to problem
horizon compared to the hierarchical approach proposed in Chapter 4.

For co-optimizing the velocity profile of the PHEV and its powertrain dynamics to achieve
minimum fuel consumption, it is reasonable to decouple the overall system into two subsystems:
(i) the vehicle-following subsystem and (ii) the hybrid powertrain subsystem. These two
subsystems are connected through the vehicle (longitudinal) velocity vk, and the demanded
torque tpk (5.15c) to be satisfied by the powertrain components. In this section, the ego vehicle
is assumed to drive on a single lane without grades for simplicity, and only its longitudinal
dynamics are considered.

The vehicle level control focuses on controlling the longitudinal acceleration ak of the
vehicle in the presence of a lead vehicle. At the vehicle level, the states of consideration are
the position sk and the velocity vk of the ego PHEV. The dynamics of the ego vehicle are
defined as follows in the car-following context, which is a variant of the adaptive cruise control

103



(a) Comparison of the simulated state and control trajectories. Blue solid
curve: DMIS results of (5.14) with engine cranking optimization. Red solid
curve: baseline PMP-based optimization results (5.8) without engine cranking
optimization.

(b) Detailed view of the state and control trajectories between 50-sec and
300-sec. Blue solid curve: DMIS results of (5.14) with engine cranking
optimization. Red solid curve: baseline PMP-based optimization results (5.8)
without engine cranking optimization.

Figure 5.6: Offline power-split optimization simulation results with a realistic driving cycle.

formulation, but with an additional input that controls the reference distance gap

sk+1 = sk + vk ·�t+
1

2
ak ·�t2

vk+1 = K · (sl,k � sk +R · rk),
(5.15a)
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Figure 5.7: Convergence results of DMIS

with parameters similarly defined as in Section 5.4. Note that the exact integration is used in
(5.15a) to enable a relatively large time step and avoid numerical inaccuracy and the influence
on SOC dynamics. The states subject to the (5.63ca), (5.63cb).

The acceleration ak becomes a function of the state and control input

ak =
vk+1 � vk

�t
=

K · (sl,k � sk +R · rk)� vk
�t

(5.15b)

The torque demand of the vehicle tpk at t = k�t is defined through a regression model that
needs to be satisfied by the low-level powertrain components

tpk = ↵0 + ↵1 · ak + ↵2 · vk + ↵3 · v2k, (5.15c)

where ↵i, i 2 {0, 1, 2, 3} are the regression parameters.
At the powertrain level, the hybrid powertrain subsystem consists of the engine, the motor

(MG2), and the generator (MG1), which are connected through a power-split device. The
engine torque tek and speed nek in the powertrain subsystem are controlled to satisfy the
required torque tpk, which results in a specific fuel rate ṁf,k and rate of change in battery
state-of-charge (SOC).

The dynamics of the battery SOC and the engine cranking are given by (5.13b). Every time
the engine is cranked on, an additional cranking fuel mc per cranking event would be induced.

The fuel rate ṁf,k at t = k ·�t is modeled as a static map as a function of the engine torque
tek and speed nek

ṁf,k = ṁf,k(nek, tek). (5.16)
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5.6.1 Co-Optimization Problem Formulation

The problem of the PHEV velocity and power split co-optimization to achieve minimum
fuel consumption (including cranking fuel) of a considered trip in the presence of a lead vehicle,
with state constraints incorporated through smooth exterior penalties is formulated as

(P1): Minimize

J =
N�1X

k=0

lk(xk, uk), (5.17a)

where the stage cost lk includes the fuel rate, the cranking fuel and the quadratic measurement
of the constraint violation

lk =mc ·max(ẽk+1 � ẽk, 0) +�t ·
⇥
ṁf,k(tek, nek) +

1

2
·max (sk � smax

k
, 0)2

+
1

2
·max (smin

k
� sk, 0)

2
+ 2 ·max (�vk, 0)2 +max (ak � amax

k
, 0)2

+max (�ak + amin
k

, 0)
2⇤
,

(5.17b)

with s0, v0, and SOC0 given, and subject to the vehicle-following dynamics (5.15a), the battery
SOC and the engine cranking dynamics (5.13b). Note that a quadratic exterior penalty method
is used to penalize the constraint violation. Although other different constraint handling
techniques [83], especially an `1-type, exact penalty method as suggested in [62] or a fourth-
order penalty function to ensure the twice continuous differentiability of the Hamiltonian as in
[84] can be used, it is observed in simulation that the second-order penalty function works best
for stabilizing the co-state dynamics in DMIS iterations. Therefore, it is used in this chapter
whenever state inequality constraints are considered in a DMIS-based numerical strategy. It will
also be used in the remaining chapters without further explanation. The velocity vk, position sk

and acceleration ak are subject to the constraints defined the same as in (5.63cb), (5.63ca) and
(5.63d). The control constraints are

[tek, nek] 2 ⌦k [ [0, 0]T , Ek 2 {0, 1}. (5.17c)

In addition, a desired SOC, SOCf needs to be satisfied at the end of the trip

SOCN = SOCf . (5.17d)

To summarize, the co-optimization problem (P1) considers 4 states xk = [sk, vk, SOCk, ẽk]T

and 4 control inputs: uk = [rk, Ek, tek, nek]T , where the engine on/off command Ek takes
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only integer values. wk = sl
k

is the position of the lead vehicle (known external input). In this
section, idealized/perfect forecasting of the lead vehicle’s position is assumed. In the sequel,
the control input uk is grouped into 2 groups uk = [rk, uT

2,k]
T , where u2,k = [Ek, nek, tek]T and

the constraints are denoted as U2.

5.6.2 Hierarchical Newton’s Method for Hamiltonian Minimization

Previously, minimizing the Hamiltonian of the co-optimization problem is performed
through discretization and greedy search for solution reliability. It is because several possible
local minima have already been identified in the pure power-split optimization problem. With
an increased dimension in the co-optimization problem, it is hard to visualize the shape of
the Hamiltonian and thus hard to judge the reliability and performance of a gradient-based
solver. Although discretization and greedy search are reliable ways of minimizing a nonsmooth
objective function, thousands of discrete Hamiltonian values must be evaluated, making the
total computation time still too high to be potentially implemented in real-time. In this section,
the Hamiltonian minimization is performed hierarchically by exploiting the problem structure.
As a result, it enables a gradient-based solver and improves the computational efficiency of the
Hamiltonian minimization.

The Hamiltonian for (5.17) at time t = k in DMIS [85] is

Hk = lk(·) + pT
k+1xk+1, (5.18a)

and the control uk is determined through instantaneous minimizater of (5.18a) as

uk = argmin
u2U

Hk (5.18b)

However, uk obtained directly from (5.18b) requires a complicated 4-dimensional search in
the feasible control space. To simplify the instantaneous Hamiltonian minimization, first, note
that the engine on/off command Ek is a function of the engine speed

Ek(nek = 0) = 0, Ek(nek > 0) = 1. (5.19)

Furthermore, for a given rk, the acceleration ak at time t = k is determined through (5.2), and
the driver demanded torque is calculated with (5.15c). Then the selection of u2,k is equivalent
to the instantaneous consumption minimization in the power-split optimization problem [3].
More precisely, the original Hamiltonian minimization problem in 4-dimension (5.18b) can
be decomposed into the following 2 low-dimensional optimization problems in a hierarchical
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manner

rk = argmin
rk2[�1,1]

H⇤
k
(rk, xk, pk+1, wk), (5.20a)

with

H⇤
k
(rk, xk, pk+1, wk) = Hk(rk, u

⇤
2,k, xk, pk+1, wk), (5.20b)

where for a given rk, the selection of u2,k is equivalent to the power-split optimization [3]

u⇤
2,k = argmin

u22U2

Hk(rk, u2, xk, pk+1, wk). (5.20c)

Figure 5.8 illustrates a Hamiltonian sweep result. The engine torque and engine speed are
lumped into a power term for visualization. The overall Hamiltonian sweep is presented in
Fig. 5.8, and the minimum co-optimization Hamiltonian for each rk (corresponding to the red
stars in Fig. 5.8) is shown in Fig. 5.9. In Fig. 5.8, the red stars are to denote the minimum
Hamiltonian corresponding to each given rk. As can be seen from Fig. 5.9, the resulting
minimum co-optimization Hamiltonian for each rk presents a convex shape. The convexity of
H⇤(rk) motivates the use of a hierarchical Newton’s method to minimize the co-optimization
Hamiltonian. Note that the convexity is induced by the pre-stabilizing term µ · (r� ri�1)2 as in
Step. 8 in Algorithm 2.

As can be seen from Fig. 5.9, the resulting minimum co-optimization Hamiltonian for
each rk presents a convex shape. The convexity of H⇤(rk) motivates the use of a hierarchical
Newton’s method for the minimization of the co-optimization Hamiltonian. Note that the
convexity is induced by the pre-stabilizing term µ · (r � ri�1)2.

(a) Co-Opt Hamil, case 1. (b) Co-Opt Hamil, case 2. (c) Co-Opt Hamil, case 3.

Figure 5.8: Illustrations of co-optimization Hamiltonian with the considered PHEV powertrain.

However, issues exist in the motor limit violation. For a given rk (thus a given acceleration
ak), it is not guaranteed the resulting motor and generator’s torque limits are not violated.
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(a) Co-Opt Hamil, case 1. (b) Co-Opt Hamil, case 2. (c) Co-Opt Hamil, case 3.

Figure 5.9: Minimum co-optimization Hamiltonian corresponds to each given r.

Therefore, motor and generator torque limits need to be properly included in the Hamiltonian
minimization. To incorporate motor torque limits, the stage cost is augmented with

l̃k(·) = lk(·) + T ·max(|Tmg2|� Tmax
mg2 , 0)

2 + T ·max(|Tmg1|� Tmax
mg1 , 0)

2, (5.21)

where T is the weight penalizing the torque constraint violation. Note that (5.21) is only used
in the forward pass to choose the control input, not the backward pass to obtain the co-state
dynamics.

Remark 6. Note that although the shape of the Hamiltonian is problem-specific, the idea of the
hierarchical optimization still applies to the co-optimization of other hybrid powertrain and
vehicle dynamics.

5.6.3 Underlying Reasons for Fuel Economy Benefit with
Co-Optimization

In this section, a detailed analysis is provided to understand the underlying fundamental
reasons for the fuel economy benefit with co-optimization. The simulation results of the co-
optimization will be presented together with other different optimization strategies in Section 7,
and thus omitted in this section to avoid duplication.

Compared to the existing sequential optimization approaches (thus decentralized), the
direct fuel minimization of a PHEV by co-optimizing the velocity profile and powertrain
operation (thus centralized) is different in that the powertrain dynamics is explicitly considered
to determine vehicle acceleration in co-optimization. As compared to the fuel minimization of
an internal combustion engine (ICE), or energy-efficient driving of a battery EV (single source
vehicles), the PHEV (with two energy sources) co-optimization differs fundamentally in

1. Unlike the ICE, where the negative power demand at the wheel is wasted through heat,
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the negative trip energy can be recovered by regenerative braking for a PHEV.

2. For a battery EV, the energy-efficient driving implies minimizing the total battery energy
over a trip. By comparison, for a PHEV, the terminal SOC should be equal to the target
value regardless of the choice of an optimization method. It means that the total battery
energies spent are the same (or at least very close to each other).

For a PHEV, the engine and battery need to provide the power energy at the wheel; this
means that Ed ⇡ Ee +Eb, with Ed, Ee and Eb representing the total demanded, the engine and
battery energy, respectively. With the same initial and desired terminal SOCs, Eb-s are almost
the same regardless of power management strategies as discussed above. This means that to
minimize the total fuel consumption (or Ee), one should reduce the trip energy Ed (not just the
positive part) while minimizing multiple energy conversion, i.e., using recuperated energy for
vehicle propulsion.

For the vehicle level operation, from the demanded torque at wheel (5.15c), the power
demand at wheel is given by

Pd =
tp · v
Rt

= f(x) · a+ g(x). (5.22)

where f(x) = ↵1
Rt
v and g(x) = (↵0+↵2v+↵3v

2)
Rt

v with ↵{·} the regression parameters defined
in (5.15c). It can be seen from (5.22) Pd is affine in the vehicle acceleration a5. Thus the
Hamiltonian corresponds to the trip energy minimization problem is also affine in control a
(when state constraints are not active). The affine relationship explains the reason why the
resulting acceleration is of the bang-singular arc-bang type.

Ideally, the engine should operate at one of the local power-split Hamiltonian islands for
the powertrain level operation due to the fuel minimization objective. However, if the driving
cycle is smoothed through acceleration minimization, ignoring the powertrain dynamics, the
resulting driver demanded power would decrease significantly. Because the best efficient engine
operation is achieved at relatively high power, the engine would provide power exceeding
the requested power, resulting in battery charge. Using the engine to charge the battery is
inefficient at the system level due to the secondary energy conversion, albeit the engine’s high
efficiency. By comparison, co-optimization considers the vehicle dynamics and powertrain
dynamics simultaneously and seeks to avoid the secondary energy conversion events as much
as possible. However, as the passenger comfort requirement becomes more critical, it becomes
harder to prevent the secondary energy conversion with co-optimization due to the need for the

5Although for numerical implementation, the vehicle following dynamics are pre-stabilized by the control
input r, the actual command is the vehicle acceleration a.
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Figure 5.10: Trip energy analysis of the considered SOC depleting scenario.

engine to operate at a high-efficiency point. Consequently, the total fuel consumption increases
with the smoothness of the vehicle’s velocity.

A detailed trip energy analysis of the simulation results for the considered scenario is
presented in Fig. 5.10. The percentage reduction of the energy metrics is computed against
those from the baseline naturalistic human driving. It is noted that the trip energy refers to
the cumulative driver demanded power over time. Figure 5.10(a) shows that the positive trip
energy decreases as the velocity is smoothed out. Figure 5.10(b) shows that the smoother the
velocity becomes, the less negative trip energy and thus regenerative braking potential could be
extracted from the trip. As seen from Figs. 5.10(c) and (d), the co-optimization leads to less
secondary energy conversion and improves system-wide efficiency. Compared to the baseline
human-driven trace, the velocity profile through acceleration minimization induces a significant
increase in the secondary energy conversion and reduces the system-wide efficiency.

As a bidirectional energy source, the battery can be charged and discharged. When charged,
the charging power can either come from the negative driver demanded power (regenerative
braking) or redundant engine power (secondary energy conversion). With the same initial and
final battery SOC, the total battery energy spent would be sufficiently close to each other with
different optimization strategies for the same trip. As a result, the more the battery is charged,
the more positive battery energy would be available (discharge) to reduce fuel consumption.
As can be seen from Fig. 5.10(e) and Fig. 5.10(f), the discharging battery energy increases, and
the trip charging battery energy increases with co-optimization when the passenger comfort
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is not considered. However, as discussed above, the system-wide efficiency would reduce if
the engine charges the battery. Consequently, the co-optimization seeks to shape the velocity
profile within the required distance bound from the lead vehicle such that the potential in the
negative trip energy could be maximized. This potential, however, cannot be realized when the
driving trace is smoothed out.

5.7 Influence of Warm-Start on Convergence of DMIS

In simulations, it was observed that except for the case of the pure co-optimization case
without penalty on driving discomfort, the resulting velocities are strongly affected by the
warm-start vehicle-level control input trajectory r0 = (r0 · · · rN)0 for a fixed number of single
shooting iterations. In particular, in the presence of drivability requirement, DMIS exhibits
faster convergence when warm-started from the vehicle-level control input obtained from the
acceleration minimization result, as evident by Fig. 5.11. In both cases, the initial engine
speed and torque sequences are the same. The observed slow convergence is also evident
by the comparison between the DMIS and the multiple shooting in solving the acceleration
minimization problem presented in Section 5.4.1. The number of (single shooting) iterations to
achieve a similar solution quantity as with multiple shooting is considerably larger. It shows the
underlying slow convergence issue when the vehicle-following dynamics (double integrator)
are optimized with a velocity smoothing objective with DMIS.

Figure 5.11: Comparison of behavior of the DMIS iterations under different warm-start
strategies. The presented values are offset by the cost function value at the final DMIS
iteration warm-started with acceleration minimization results.

In Section 5.3.1, it is shown that the values of the successive cost functions can always be
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decreased if the penalty weight µ takes sufficient high values. The importance of the penalty
weight µ in controlling the behaviors of the DMIS iterations is illustrated in Fig. 5.12a. Note
that the penalty weight is kept constant throughout the DMIS iterations in the co-optimization
problems, rather than dynamically adaptive as in Algorithm 2, to guarantee a stabilized DMIS
iterations due to the presence of vehicle-following dynamics. Such a constant µ is also used to
obtain the numerical solution of (5.3a) to generate a comparable result to that with multiple
shooting, as shown in Fig. 5.4.

The inequality relationship (5.62) indicates that the function values can always non-increase
by choosing a sufficiently large penalty weight µ. As can be clearly observed from Fig. 5.12a,
R in (5.62) for the considered co-optimization problem increases with DMIS iterations. As a
result, the choice of the penalty weight µ = 80 that guarantees a monotonically non-increasing
cost function values is out-weighted by R after 200-iterations and fails to generate monotonic
behavior as the red curve indicated in Fig. 5.12a. By comparison, when µ = 2000, the cost
function values are monotonically decreasing.

(a) The vehicle-level control input warm-started from the acceleration minimization results.

(b) The vehicle-level control input warm-started from zero.

Figure 5.12: Influence of the penalty weight µ on the values of the successive cost functions.
Ji and Jf represent the cost function values at the i-th and final DMIS iterations, respectively.

For the considered co-optimization problem, Fig. 5.12a presents the behaviors of the DMIS
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iterations when the vehicle-level control sequence in DMIS is warm-started with that obtained
from acceleration minimization. Fig. 5.12b presents the behaviors of the DMIS iterations
when the vehicle-level control sequence in DMIS is warm-started with zero. By comparing
the behaviors with the two initialization schemes, it can be seen that R when the vehicle-
level control sequence is warm-started from zero is significantly smaller than that when the
acceleration minimization-based warm-start sequence is used. As a result, a smaller penalty
weight µ can be used and still generate monotonic behavior as shown in Fig. 5.12b. On the
other hand, an increase in µ tends to slow down the convergence of the DMIS iterations, as can
be observed in Fig. 5.12.

5.8 Summary

This section presented the Discrete Mixed-Integer Shooting (DMIS), a modified version
of the single shooting algorithm in [5] for solving mixed-integer optimal control problems
with terminal state equality constraints. The performance of the DMIS is benchmarked against
state-of-art solvers on two benchmark problems with continuous and integer-valued control
inputs. The computation time of the DMIS is shown to scale linearly as the problem horizon
increases, compared to a typical exponential growth with branch and bound/cut algorithms.
For our application to PHEV optimal control problems, first offline power-split optimization
with the additional cranking state to address the chattering behaviors encountered in the PMP-
based single shooting is solved with the proposed DMIS algorithm. A significant reduction
in cranking fuel consumption is observed in simulation compared to the PMP-based single
shooting without the cranking state.

Finally, the minimum fuel consumption problem for the PHEV by co-optimizing velocity
and power-split operation is formulated and solved with the co-state backward-in-time propa-
gation algorithm. Furthermore, the source of the fuel economy benefit with co-optimization is
analyzed in detail.
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CHAPTER 6

DMIS-Based Unified Receding-Horizon
Fuel-Efficient Control Framework

6.1 Challenges in the Online Co-Optimization Implementa-
tion

Efforts toward online energy-efficient driving for (P)HEVs in the literature can be found
in [16, 86, 87, 19, 21]. Most of the existing eco-driving approaches are based on a layered
control framework that indirectly minimizes fuel consumption. Typically, each control layer
is equipped with its objective function. However, although a layered control framework is
advantageous for maintaining relative simplicity and modularity, there is no guarantee that
the resulting system-wide efficiency is close to the maximum overall system-wide efficiency.
As has been uncovered in Chapters 4 and 5, there is substantially additional potential in fuel
economy when doing co-optimization compared to the layered optimization. The primary
motivation of this chapter is to develop an online implementation strategy that co-optimizes
the velocity and powertrain operations explicitly to achieve maximum system-wide efficiency
while guaranteeing the safety and desired terminal SOC. Moreover, the proposed solution
strategy is potentially implementable in real-time.

In general, for PHEVs the predominant roadblock to adopting a co-optimization control
framework online originates from its numerical implementation. To be more concrete: to
optimize the battery charge-depletion rate and the velocity for a PHEV, one needs to solve a
trajectory optimization problem (TOP) for the entire trip with a specified SOC to be satisfied
at the end of the trip. In the online implementation, the TOP is posed as an econominc model
predictive control (EMPC) problem. To the authors’ knowledge, the work of Huang et al.,
[3], is the first that succeeded in solving the TOP directly in real-time rather than tracking a
reference explicitly. However, the work in [3] only considered the powertrain dynamics with a
single battery SOC. For the co-optimization problem, due to additional controls and states, the
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real-time implementability is unclear when the EMPC aims to cover the entire trip. Besides,
co-optimization relies on predicting a lead vehicle’s driving trace to formulate its feasible
search space. Such a prediction will become less accurate as the prediction horizon increases.
As a result, the performance benefit with prediction could be nullified due to the discrepancy
between the actual and predicted feasible search space.

Unlike relatively deterministic road information, forecasting human drivers’ decisions
accompanies high uncertainty in the optimization process. The controller needs to leverage the
speed previews with different accuracy over short and long prediction horizons, the computa-
tional demands, and the performance degradation for the whole trip when considering only a
limited prediction horizon. Among various efforts over the years, a multi-horizon model predic-
tive controller has received particular attention [88, 89, 90] for integrated power and thermal
management. In [88], the scheduling layer MPC with a long horizon generates reference torque
and SOC trajectories used in the short horizon MPC to track. In [90] the fuel consumption over
the remaining trip is approximated with the long-horizon layer. However, vehicle dynamics are
not optimized; hence the prediction accuracy would not affect the safety (position) constraint,
as is the case for our problem in the presence of traffic flow. Despite being updated at a low
sampling rate, the long-horizon MPC layer still induces an extra computation burden. In light of
the principle of optimality [91], the long-horizon MPC layer essentially serves to approximate
the cost-to-go for the considered problem. When the route is driven repeatedly, the cost-to-go
can be learned offline in a data-driven fashion through offline optimization.

This chapter expands the discussions on the connection between the DMIS and approximate
policy iteration (approximate-PI) in the reinforcement learning (RL) application, integrating
the numerical optimization strategy with the online implementable framework. Henceforward,
the PT-only control of a human-driven to the combined VD and PT control of an automated
PHEV are unified under the same DMIS-based framework. In the unified framework, the
cost-to-go (the fuel consumption as the economic cost) is represented by the co-state associated
with the SOC dynamics. This co-state is corrected both internally using a single shooting
method and externally based on the co-state temporal difference (TD)-error. In its application
to automated PHEVs, a control barrier function (CBF) is augmented as an add-on block to
modify the vehicle level control input to be executed whenever necessary. The unified control
framework guarantees safe vehicle-following behavior when including longitudinal vehicle
dynamics control. The unified framework allows for systematically evaluating the fuel economy
and drivability performance of different levels and structures of optimization strategies, detailed
in Chapter 7.
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6.2 Connection between DMIS and Approximate Policy It-
eration (PI)

The DMIS algorithm presented in Chapter 5, based on a Discrete Maximum Principle
(DMP), consists of a backward and a forward path, tightening itself closely to the policy
evaluation and improvement steps in the approximate-PI. This section is devoted to establishing
the connection between the approximate-PI and the DMIS. In light of the connection, the DMIS
is not just the numerical strategy in solving the underlying optimization; it also inspires an
online implementation strategy. A DMIS-based receding-horizon framework is then established,
uniting the PT-only control of a human-driven and the combined VD and PT control of an
automated PHEV. This will be the focus of the next section.

6.2.1 Forward Path in DMIS and Policy Improvement

In the forward path of DMIS, the control at time t in the (i+1)-th shooting iteration is chosen
as an element minimizing the Hamiltonian H (dependency on external parameters wt is omitted
to make the equations concentrated), with the entire co-state sequence P i = (pi0, · · · , piNf

)

obtained from the i-th shooting iteration

u⇤,i+1
t 2 argmin

u2U
H(x⇤,i+1

t , u, pi
t+1) = argmin

u2U
{l(x⇤,i+1

t , u) + (pi
t+1)

Tf(x⇤,i+1
t , u)}, (6.1a)

where

H(x⇤,i+1
t , u⇤,i+1

t , pi
t+1) =min

u2U
H(x⇤,i+1

t , u, pi
t+1). (6.1b)

The system dynamics are then propagated forward-in-time

x⇤,i+1
0 = x0, x⇤,i+1

t+1 = f(x⇤,i+1
t , u⇤,i+1

t ). (6.1c)

The results of the forward pass in the (i + 1)-th shooting iteration are the state and control
sequences (policy)

X ⇤,i+1 = (x0, x
⇤,i+1
1 , · · · , x⇤,i+1

Nf
), U⇤,i+1 = (u⇤,i+1

0 , · · · , u⇤,i+1
Nf�1)

to be used in the backward pass in (i + 1)-th shooting iteration. It can be seen that (6.1)
is equivalent to the policy improvement step in approximate-PI when we consider µi+1 =
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(µi+1
0 , · · · , µi+1

Nf�1) with

µi+1
t

= argmin
u2U

l(x, u) + V̂ µ
i

t+1(f(x, u)), (6.2a)

where the approximate cost-to-go is in the form of

V̂ µ
i

t+1(f(x, u)) = (pi
t+1)

Tf(x, u), (6.2b)

where pi
t+1 := pµ

i

t+1 depends on the policy µi. In (6.2b), a potential constant offset term c on the
right hand-side of (6.2b) can be omitted since it does not affect the choice of the control input.

6.2.2 Backward Path in DMIS and Policy Evaluation

With the control and state sequence U⇤,i+1,X ⇤,i+1 obtained in the (i + 1)-th shooting
iteration, the (i+ 1)-th backward path proceeds as

pi+1
Nf

=

8
<

:
0 if the requirement is xNf

2 Xf

pi
Nf
� [ @c(·)

@pNf
|piNf

]�1c(·)i+1 if the requirement is c(xNf
, xf ) = 0

(6.3)

pi+1
t

=
@H

@x
|
x
⇤,i+1
t ,u

⇤,i+1
t ,p

i+1
t+1

=
@l(x, u)

@x
|
x
⇤,i+1
t ,u

⇤,i+1
t

+
⇣@f(x, u)

@x
|
x
⇤,i+1
t ,u

⇤,i+1
t

⌘T

pi+1
t+1,

where c(xNf
, xf ) denotes the terminal state equality constraints. The terminal set Xf is defined

by gf (xf )  0. Note that if gf (xf ) = 0 (terminal inequality constraints become active),
the terminal co-state pNf

is no longer zero, but is rather determined by @gf (xf )
@xf

T

⌫f , with
⌫f � 0, ⌫T

f
gf (xf ) = 0 as in [65].

Assumption 6-A. It is assumed that the terminal inequality constraints are inactive.

Note that pNf
-s are initialized differently in (6.3), depending on whether a terminal in-

equality (xNf
2 Xf ) or a terminal equality (c(xNf

, xf ) = 0) constraint is present. These
two types of initialization cover all possible conditions for the problem in consideration due
to an absence of the terminal cost as in (6.8a) under Assumption 6-A. The results of the
backward path is the co-state sequence P i+1 = (pi+1

0 , · · · , pi+1
Nf

). Recall from (6.2) that
the focus is on approximating the cost-to-go sequence V = (V0, · · · , VNf

) on the subspace
Ŝ := {PTX := (pT0 x0, · · · , pTNf

xNf
)} ⇢ RNf+1. Restricting the partial derivative of the

Hamiltonian H with respect to the state x at time t to be the co-state pt, the temporarily
improved cost-to-go is projected back to the subspace Ŝ .
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The forward (6.1) and backward (6.3) paths can be written compactly as

P i+1 = ⇧̂ � T̂µi

�
P i
�
, (6.4)

where T̂ i

µ
: P i 7! (X i,U i) corresponds to the forward path (6.1), where at i-th iteration, for a

given sequence of co-state P i, the system is propagated forward-in-time with the control input
µi

t
chosen to minimize the instantaneous Hamiltonian. It corresponds to the policy improvement

step in approximate-PI. ⇧̂ : (X i,U i) 7! P i+1 corresponds to the backward path, where the
co-state dynamics are propagated backward-in-time as in (6.3) with the given state X ⇤,i and
control U⇤,i sequences obtained resulting from the previous policy µi. It corresponds to the
policy evaluation step in approximate-PI. As a result, DMIS [85] seeks to find the sequence of
co-states P = (p0 · · · pNf

) to be a fixed point under the projected Bellman operator ⇧̂ � T̂µ in
the form of the co-state dynamics

P = ⇧̂ � T̂µ

�
P
�
, (6.5)

to approximate the fixed-point of the optimal cost-to-go sequence in view of the principle of
optimality

V̂ = F(V̂) (6.6a)

with V : X 7! V(X ) = (V0(x0) V1(x1) · · · VNf
(xNf

)) 2 RNf+1, where VNf
is given, and

F : V 7! V is defined with

Vt = min
u2U

{l(xt, u) + Vt+1(f(xt, u))}, 8t 2 {0, ..., Nf � 1}. (6.6b)

Comparing (6.5) with (6.6) it can be seen that (6.5) is an resemblance of the fixed point of the
projected Bellman operator

V̂(X ) = ⇧ � T
�
V̂(X )

�
, (6.7a)

where V̂(X ) is the projection of V(X ) onto the approximation subspace S = (S0 · · · SNf
) ⇢

RNf+1 defined by

St = {rT
t
�t(xt)|rt 2 Rs}, (6.7b)

where �t(xt) 2 Rs is the feature vector, consisting of polynomials in x of potentially infinite
order s. rt is the weight vector. As discussed in [92], allowing for different features �t(xt) and
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different parameter vectors rt for each stage t is necessary for nonstationary problems (e.g., if
the state space changes over time1). The connection between S and Ŝ can be established by
reformulating the linear approximation structure with the co-state

V̂t(xt) = rT
t
�t(xt) = pT

t
xt + c. (6.7c)

Note the last equality holds exactly since �t(xt) consists of polynomial functions. As already
discussed, the constant term c can be omitted.

The resulting stationary policy µ corresponds to the optimal control sequence U⇤ =

(u⇤
0, · · · , u⇤

Nf�1).

6.3 A Unified DMIS-Based Framework for Fuel-Efficient Con-
trol

6.3.1 Minimum Fuel Consumption Problems Formulated Offline

The following three types of problems are defined directly in discrete-time, representing
PHEV fuel-efficient control with an increased level of automation and cooperation.

1. The power-split optimization problem (ps-opt): The considered PHEV is assumed to
driven by a human, thus we can only control its powertrain operation.

2. The sequential optimization problem (sequential-opt): The powertrain and vehicle
following dynamics are considered separately.

3. The co-optimization problem (co-opt): The powertrain and vehicle following dynamics
are considered simultaneously.

In all three types of optimization problems to be considered, a minimum fuel consumption
problem needs to be solved.

minimize
Nf�1X

k=0

l(xk, uk, wk), (6.8a)

where wk is the disturbances, which is the ego vehicle’s velocity and torque demand for ps-opt,
and the lead vehicle’s velocity/position for sequential-opt and co-opt. (6.8a) is subject to

1This is exactly the case with the PHEV fuel-efficient control problems considered in this thesis. The total
distance traveled by the PHEV is non-decreasing and the battery SOC is non-increasing in terms of the entire trip
(also locally SOC can increase or decrease)
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system dynamics (presented in previous sections), written in a compact form as

xk+1 = f(xk, uk), (6.8b)

the control constraints

[tek, nek] 2 ⌦k [ [0, 0]T , Ek 2 {0, 1}, (6.8c)

and the desired terminal SOC, SOCf

SOCNf
= SOCf . (6.8d)

The stage cost l(·) in (6.8a) is defined as

l(·) = ṁf,k ·�t| {z }
static fuel

+mc ·max(ẽk+1 � ẽk, 0)| {z }
cranking fuel

, (6.8e)

whereas in the co-optimization problem, additional penalty terms are augmented to (6.8e) to
account for driving safety and comfort

lcoopt(·) =l(·) +Q · a2
k

(6.8f)

+Qs ·max (sl
k
� sk � d0 � ⌧maxvk, 0)

2

| {z }
maximum time headway violation

+Qs ·max (�sl
k
+ sk + d0 + ⌧minvk, 0)

2

| {z }
minimum time headway violation

+Qv · max (�vk, 0)2| {z }
forward driving violation

+Qa · max (ak � amax
k

, 0)2| {z }
maximum acceleration violation

+Qa ·max (�ak + amin
k

, 0)
2

| {z }
minimum acceleration violation

+Q�a ·max (�ak ��amax
k

, 0)2| {z }
maximum jerk violation

+Q�a · max (��ak +�amin
k

, 0)
2

| {z }
minimum jerk (backward direction) violation

.

The first line in lcoopt(·) is the economic cost, including the fuel consumption and the cranking
fuel, and potentially the additional acceleration minimization to prompt driving smoothness.
The second and the third lines penalize the maximum and minimum time-headway violation.
The fourth line penalizes the violation of forward driving. The fifth and sixth lines penalize
the violations of the maximum and minimum acceleration constraints. The seventh and
eighth lines penalize the violations of the maximum and minimum jerk constraints. In (6.8e),
�ak = ak � ak�1 is the jerk. Q,Qs, Qv, Qa, Q�a are the tunable weights on the corresponding
constraint violations. Note that all state constraints and state-and-control mixed constraints are
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handled by augmenting penalty terms to the state cost l. This way, only pure control constraints
are considered as hard constraints. Such a formulation facilitates numerical computation by
removing the need to consider jumps in the co-state. To strictly enforce these state and mixed
constraints to further improve driving safety, a CBF-based strategy in Section 6.3.6.

Note that an additional optimization problem is considered in sequential-opt

minimize
Nf�1X

k=0

a2
k
�t, (6.9)

subject to (4.2)

and constraints summarized from line 2-6 in (6.8f).

6.3.2 From EMPC to Discounted EMPC Formulation

Now the focus is shifted from the offline trajectory optimization to its online implementation.
The core fuel minimization problem to be solved in a receding horizon manner at time t is
denoted as PNf

t (SOCf )[33],

PNf

t (SOCf ): min JNf |t =

Nf�1X

k=0

l?(xk|t, uk|t), (6.10a)

with ? 2 {ps-opt, sequential-opt, co-opt}, and the corresponding dynamics, constraints formu-
lated with predicted lead vehicle’s trajectory and a desired terminal SOC requirement

SOC(Nf |t) = SOCf . (6.10b)

As discussed previously, there is no explicit reference trajectory to track in (6.10), necessitating
the consideration of the entire trip due to (6.10b). For a PHEV, the entire length Nf is in
general long (hours), making it computationally demanding to solve PNf

t (SOCf ) directly.
Moreover, solving PNf

t (SOCf ) does not necessarily guarantee a fuel economy gain due to the
large uncertainty into far-future.

Instead, the following discounted receding horizon problem is considered at time t, with a
horizon length of Np

min J⇢

Np|t =

Np�1X

k=0

⇢kl?(·) + ⇢NpV̂Np|t(SOCNp|t), (6.11)

where V̂Np|t(SOCNp|t) is an approximation of the (Np-step ahead) terminal cost at time t, and
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⇢ 2 (0, 1] is a factor to discount farther future rewards/costs, which corresponds less accurate
predictions. Note that in sequential-opt, the velocity and acceleration trajectories are optimized
before (6.11) through solving a Np-step version of the acceleration minimization problem with
the lead vehicle’s trajectory predicted to formulate the position constraints. Therefore, (6.11)
for the sequential-opt is essentially the same as the ps-opt, except with different velocity and
acceleration trajectories.

In particular, this section considers the approximated terminal cost V̂Np|t(SOCNp|t) in (6.11)
to only depend on the predicted terminal SOC, SOCNp|t. The reasons are as follows. 1) There
is a desired terminal SOC (6.10b) at the end of the trip. In view of the principle of optimality,
it is desirable to drive the predicted SOC (SOCNp|t) to SOC⇤

Np+t
that is optimal to the actual

remaining trip. 2) In view of the original EMPC problem (6.10), neither terminal cost nor
terminal equality constraints are imposed on other states (ẽt, or additionally, st, vt), except for
the persistent time-varying state constraints. Based on Assumption 6-A, it is known in the
classical optimal control theory that the terminal co-state is zero in the absence of both terminal
cost and inequality constraints as indicated in the first line of (6.3).

6.3.3 Terminal Cost Approximation

This section examines approximating the terminal cost V̂Np|t(SOCNp|t) in (6.11) with a
particular form, and discuss how an initial terminal cost approximation V̂ 0

Np|t is improved while
solving the (6.11) numerically using DMIS (6.2), (6.3) through iterative refinement.

First, when applying DMIS to solve the underlying optimization problem (6.8) offline,
the terminal SOC is achieved by iteratively adjusting the SOC-associated terminal co-state
pNf ,SOC until the simulated terminal SOC is in the vicinity of its desired value. When the
DMIS iterations converge, this terminal co-state will converge to p⇤

Nf ,SOC := p⇤
Nf ,SOC(SOCf ),

as a function of the required terminal SOC, SOCf . Afterward, the DMIS iterations become
stationary, and (6.8) is equivalent to

minimize JNf
= �⇤(SOCNf

) +

Nf�1X

k=0

l(xk, uk, wk), (6.12)

where �⇤(SOCNf
) = p⇤

Nf ,SOC · SOCNf
is the (optimal) terminal cost. without the terminal state

constraint (6.8d).

Assumption 6-B. The terminal SOC constraint, SOCf , and the terminal co-state p⇤
Nf ,SOC at the

fixed-point of our iterations (6.5) have (at least locally) a one-to-one relationship.

Assumption 6-B is implicitly assumed in (6.3) when applying DMIS backward path, and is
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observed (at least locally) in simulations for our application. The role of the optimal Lagrange
multiplier vector (i.e. the co-state) as a replacement of the primal terminal constraints in
EMPC is also pointed out in a recent work [93]. As seen by comparing (6.8a), (6.8d) and
(6.12), the information of the terminal state constraint is embedded in the terminal co-state.
Compare (6.12) with (6.11), one can recognize that the co-state is functionally equivalent to a
resemblance of the terminal cost, with the optimal cost-to-go defined as V ⇤

Nf
= p⇤

Nf ,SOC ·SOCNf
.

Solving (6.12) results in the same optimal state, control (primal) and co-state (dual) sequence,
X ⇤

Nf
= (x0, x⇤

1, · · · , x⇤
Nf

), U⇤
Nf

= (u⇤
0, · · · , u⇤

Nf�1), P⇤
Nf

= (p⇤0, · · · , p⇤Nf
) respectively, as

solving (6.8a) and (6.8d).
When shifting to the online implementation, as discussed in the previous section, SOCNp|t

ideally should be driven to a state SOC⇤
Np+t

optimal to the remaining trip in view of the
principle of optimality. Denote p⇤

Np|t,SOC(SOC) as the optimal terminal co-state when solving
(6.11), except that the terminal cost is replaced with an equivalent terminal SOC constraint
SOCNp|t = SOC⇤

Np+t
. Then based on the discussions above, ideally, we pursue approximating

the terminal cost as

V̂ ⇤
Np|t(SOCNp|t) = p⇤

Np|t,SOC(SOC⇤
Np+t

) · SOCNp|t. (6.13)

Note that (6.13) holds only when DMIS iterations converge. In the actual implementation,
we initialize the approximation V̂ 0

Np
(SOCNp|t) in (6.11) with p0

Np|t,SOC · SOCNp|t, and update
pi
Np|t,SOC iteratively through (6.1) to (6.3) to achieve (6.13). The iterative update in pi

Np|t,SOC

towards p⇤
Np|t,SOC(SOC⇤

Np+t
) is similar to the parameter update step if a parameterized function

V̂✓ is to approximate the cost-to-go.
However, there are two potential issues. First, in the online implementation, SOC⇤

Np+t
is not

known a priori because the future trajectory is uncertain as the future lead vehicle’s trajectory
is uncertain and, in turn, affects the feasible region defined by the position constraints. As a
result, in reality, even if the DMIS iterations converge, one might only get p⇤

Np|t,SOC(SOC⇤
Np+t

)

at best, with SOC⇤
Np+t

being an estimation of the optimal SOC⇤
Np+t

provided SOC⇤
Np+t

being
a feasible terminal constraint. Second, we are motivated to design algorithms for poten-
tial real-time implementation. Also, the estimation SOC⇤

Np+t
might even not be a feasible

terminal constraint for DMIS to enforce convergence2. Therefore, only a fixed-number of
DMIS iterations (maxiter) are performed per MPC step. As a result, one will eventually get

2To see this, one can consider a rather extreme case where the prediction horizon Np = 10-sec. The current
SOC(t) = 0.85, whereas SOC⇤

Np+t = 0. It is physically impossible to completely deplete the battery within 10-sec
under a normal driving condition. Therefore, the Np-horizon optimization problem with terminal SOC constraint
to be SOC⇤

Np+t is infeasible. However, even under such a circumstance it is still possible to perform a maxiter
number of DMIS iterations.
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VNp|t(SOCNp|t) = pmaxiter
Np|t,SOC(SOC⇤

Np+t
) · SOCNp|t and the state, control and co-state sequence

within the prediction horizon

X ⇤,maxiter
Np|t = (xt, x

⇤,maxiter
1|t , · · · , x⇤,maxiter

Np|t )

U⇤,maxiter
Np|t = (u⇤,maxiter

0|t , · · · , u⇤,maxiter
Np�1|t )

Pmaxiter
Np|t = (pmaxiter

0|t , · · · , pmaxiter
Np|t ).

The control input uMPC
t

to be executed by the MPC controller at time t is define as uMPC
t

:=

(u⇤
0|t)

maxiter, where

(u⇤
0|t)

maxiter = argminHmaxiter
0|t = argmin l(xt, u, wt) + (pmaxiter

1|t )Tf(xt, u). (6.14)

It can be seen that the optimality of (u⇤
0|t)

maxiter depends on the optimality of co-state pmaxiter
1|t .

If pmaxiter
1|t = p⇤

t+1, 8t, with p⇤
t+1 extracted from P⇤

Nf
, the resulting control action uMPC

t
executed

by MPC is optimal. In the online implementation, however, it is not possible to guarantee
pmaxiter
1|t = p⇤

t+1. It is therefore the target of this section to improve the optimality of pmaxiter
1|t with

the MPC implementation.
As now becoming clear from (6.14), under the DMIS algorithm, the true utility of the MPC

problem is to improve the optimality of the co-state through multi-step look-ahead. This well
echos the advantage of multi-step look-ahead in improving the performance of RL [92, 94]. The
strategy to improve the optimality of pmaxiter

1|t internally within DMIS iterations, and externally
with TD-error correction is the topic of next section.

6.3.4 Underlying Markov Decision Process and Time-Based Sampling

So far, we have considered the minimum fuel consumption problems on a particular trip,
which is rather deterministic. It is also possible to model the real system we want to control as
a Markov Decision Process (MDP) having the (possibly) stochastic state transition dynamics
P[s+|s, a], where s and a denote the states and controls, respectively. For the co-optimization
problem3, the uncertainty comes from the lead vehicle’s remaining distance (to destination)
and velocity. The state s = [d v ẽ SOC]T includes the ego PHEV’s 1) remaining distance to
destination, 2) current velocity, 3) engine cranking state, and 4) battery SOC (i.e. the remaining
electricity). The control a includes 1) the normalized reference for the vehicle speed control, 2)
the engine cranking command, 3) the engine speed, and 4) the engine torque. The stage cost
associated with the MDP is the fuel consumed between time steps, l(s, a) = �mf .

3Although this section mainly discusses the co-optimization problem, extensions to the power-split optimization
and sequential optimization should be straightforward.
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Remark 7. Note that the remaining distance to destination instead of the absolute distance
travelled is considered in the state. This enables the convenient description of the terminal state
for a considered trip as sf = [0 v ẽ SOCf ]T .

The performance of a policy ⇡ at a state the average discounted reward accumulated by
following the policy from the state

V ⇡(s) = E
h 1X

t=0

⇢tl(st, ⇡(st))|s0 = s
i
, (6.15)

which characterizes the (discounted) total fuel consumption over the remaining trip.
However, note that the entire continuous state space s 2 [0, dmax]⇥ [0, vmax]⇥ [0, 1]⇥ [0, 1]

is too large to work on and it is hard to design an efficient value function approximator valid for
the entire state space. For stationary problems with a long or infinite horizon as in (6.15), where
the state space does not change with t, it is common to use the same features and parameters for
all stages [92]. Following (6.7c), the value function is approximated by V̂ (s) = rT�(x) = pTx

(x is almost the same as s except that the remaining distance is considered in s), and based
on our previous discussion, p is the co-state. As discussed in Section 6.2.2, the problem is
non-stationary for a particular trip since the state space changes over time. It indicates that the
focus should be trajectory-centric rather than individual state-centric.

In the online execution phase, the remaining distance to the destination is non-increasing,
and the battery SOC is non-increasing in terms of the entire trip (also locally SOC can increase
or decrease). As a result, in the online implementation, at time t, the experience between
[0, t� 1] with associated state trajectory s[0,t�1] will be hard to be utilized since they will hardly
ever be revisited in the remaining trip. As a result, it is desirable to get a good ”ground-truth”
trajectory from the offline training phase. The above discussions motivate using repeated trips
with sufficient variations on the same route for the offline training phase. It is observed that
the state and co-state at each time instant roughly obey Gaussian distribution. As a result,
the ground-truth value is sampled from an underlying Gaussian distribution at each time
instant, assuming the mean value is the nominal trajectory. Note that for the considered PHEV
fuel-efficient control problems, it might also be possible to get the nominal state and co-state
trajectories in a distance domain. Meanwhile, there have been ongoing discussions on whether
the ground-truth values should be taken as samples from an underlying distribution or just an
interpolation on the nominal trajectories. The proper choice of the nominal trajectories and
how the nominal trajectories should be used online are subject to further investigations.

Figure 6.1 and 6.2 illustrate the resulting distribution of the SOC and their associate co-state
at different time steps on the considered repeated Ann Arbor trips with power-split optimization
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(a) Distribution of SOC and co-state at t = 100-s. (b) Distribution of SOC and co-state at t = 1000-s.

(c) Distribution of SOC and co-state at t = 1500-s. (d) Distribution of SOC and co-state at t = 1800-s.

Figure 6.1: Distribution of SOC and co-state of power-split optimization (ps-opt) on the
repeated Ann Arbor trips.

and co-optimization, respectively. The total trip lengths vary from ⇠1500s to ⇠2300s. Detailed
trip statistics are presented in Fig. 7.5 in Chapter 7. The initial SOC and terminal SOC values are
SOC0 = 0.4, SOCf = 0.35, respectively, in all offline optimization results. As can be observed
from Figure 6.1 and 6.2, especially in the middle of the considered trips, the distribution of
state and co-state at each time instant roughly follows a normal distribution around a nominal
trajectory. As will be seen from (6.16a) and (6.16b) below, in the online implementation,
the ”ground-truth” state and co-state are sampled from normal distributions with the average
values specified by the nominal state and co-state trajectories. As will be discussed further in
Chapter 7, the nominal state and co-state trajectories are average trajectories of those obtained
from the offline optimization. However, the distribution is less likely to be a normal distribution
at the beginning and towards the end of the trip due to the initial and terminal SOC requirements.
It indicates a possible more reasonable way to obtain nominal trajectory: sample from a normal
distribution of the initial and terminal SOC, do offline optimization, and get average trajectories,
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(a) Distribution of SOC and co-state at t = 100-s. (b) Distribution of SOC and co-state at t = 1000-s.

(c) Distribution of SOC and co-state at t = 1500-s. (d) Distribution of SOC and co-state at t = 1800-s.

Figure 6.2: Distribution of SOC and co-state of co-optimization (co-opt) on the repeated Ann
Arbor trips.

instead of a fixed, same initial and terminal SOC. Also, right now, the weight of each trajectory
is the same. It might be better to consider different weights on different trajectories to get
nominal trajectories. These will be further investigated in future work.

6.3.5 Improving Terminal Cost in EMPC

At time t, consider (6.11) with an initial guess of the terminal cost V̂ 0
Np|t(SOCNp|t) =

p0
Np|t · SOCNp|t. Warm-started with the shifted predicted state and control sequences X 0

Np|t =

(x*,maxiter
1|t�1 , · · · , x*,maxiter

Np|t�1 , x
*,maxiter
Np|t�1 ) and U0

Np|t = (u*,maxiter
1|t�1 , · · · , u*,maxiter

Np�1|t�1, u
*,maxiter
Np�1|t�1), we have

PNp

t (SOCf,Np|t):

pNp+1|t,SOC ⇠ N (p
t+Np+1,SOC, �

2
1), (6.16a)

SOCf,Np|t ⇠ N (SOCt+Np , �
2
2), (6.16b)
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where SOC and pSOC are ground truth/nominal SOC and its associated co-state trajectories, and
are obtained from offline simulations (training data set). How to obtain SOC and pSOC will be
detailed in Chapter 7.

Remark 8. Note that in (6.7c) the cost-to-go is approximated by the inner product of all states
and their associated co-states. However, currently, the cost-to-go of the state Np-step head
is approximated by considering only the SOC and its associated co-state. The other states
and co-states are ignored based on Assumption 6-A. At time t, a multi-step look-ahead [92]
through Np-step MPC is used to improve the estimation of the cost-to-go V̂t+1 at t+ 1 starting
from an initial estimation of V̂ 0

Np
in the form of DMIS. Future work could consider adding a

proper terminal cost (e.g., a Lyapunov function characterizing the requirement of allowable
distance bands.)

�TD
Np|t,SOC = pmaxiter

Np|t�1,SOC| {z }
@ time t�1

�
@HNp|t(xNp|t, uNp|t, p̂Np+1|t,SOC)

@SOCNp|t| {z }
ground truth correction

(6.16c)

p0
Np|t,SOC = pmaxiter

Np|t�1,SOC + ��TD
Np|t,SOC, p0

?,Np|t = 0 (6.16d)

P0
Np|t = P0

Np|t(p
0
Np|t,X

0
Np|t,U

0
Np|t) (6.16e)

P i+1
Np|t = ⇧Tµ(P i

Np|t, SOCf,Np|t), i = 0, · · · ,maxiter (6.16f)

ut := u⇤
0|t = argmin

u2U
l(xt, u) + ⇢ · (pmaxiter

1|t )Tf(xt, u) (6.16g)

T µMPC = {u0, · · · , ut, · · · , uNf�1}. (6.16h)

In (6.16), p? denotes the co-state associated with states other than SOC. As discussed in
previous sections, the co-state corresponding to states other than SOC, the lack of terminal cost
and constraints indicate a zero terminal co-state. The DMIS iteration P i+1

Np|t = ⇧ � Tµ(P i

Np|t) in
(6.16f) is defined as:

pi+1
k|t =

@Hk|t

@xk|t
|
x
⇤,i
k|t,(u

⇤,i
k|t)

i,pik+1|t
= ⇢k

@l(·)
@x

|
x
⇤,i
k|t,u

⇤,i
k|t

+
⇣@f(·)

@x
|
x
⇤,i
k|t,u

⇤,i
k|t

⌘T

pi
k+1|t. (6.17a)

pi+1
Np|t,SOC =pi

Np|t,SOC � [
@c(·)

@pNp|t,SOC
|piNp

]�1c(SOCf,Np|t, ·)i

(u⇤
k|t)

i+1 =argmin
u2U

H(xi+1
k|t , u, p

i+1
k+1|t) = argmin

u2U
l(xi

k|t, u) + (pi
k+1|t)

Tf(xi

k|t, u), (6.17b)

which is functionally equivalent to approximate-PI. In (6.17a), c(SOCf,Np|t, ·) denotes the
equality constraint at the end of the prediction horizon SOCNp|t = SOCf,Np|t. (6.16a) and
(6.16b) are to characterize the target value (similar to the target network in NN-based RL),
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where pNp+1|t,SOC is used in the external correction step (6.16c), and SOCNp+1|t is used in the
internal correction step (6.17). Note that the inverse of the sensitivity of the terminal equality
constraint c(·) to the terminal co-state pNp , [ @c(·)

@pNp|t,SOC
|piNp

]�1, is used in (6.17a) for the purpose
of notation. Approximations can be made in the actual implementation to avoid unstable
shooting iterations induced by large terminal co-state update size. As observed in simulations,
in the absence of the nominal co-state trajectory p̄, the initial guess terminal co-state p0

Np|t,SOC

will only be in a purely feedback form of the nominal SOC as in (6.17a). It then decreases to
the P-ECMS presented in Chapter 3, where large oscillations will be induced in the resulting
co-state trajectory. The external and internal corrections are therefore balancing the bias and
variance in approximating the terminal cost.

On the one hand, it is observed that the state and co-state at each time instant roughly obey
Gaussian distribution centered around the nominal trajectory, as illustrated in Figs. 6.1 and
6.2. As a result, in the online implementation, it is desirable to sample the ”ground-truth” state
and co-state values from the assumed distribution rather than using the nominal trajectories
directly due to the uncertainty of each individual trip. On the other hand, the importance of
the noisy sample pSOC is observed in simulations; although it is possible to warm-start the
terminal co-state p0

Np|t using the value p̄t+Np from the nominal co-state trajectory p̄, due to the
trip uncertainty, relying solely on p̄ would induce a systematic bias to the terminal SOC at the
end of the trip [33].

The complete algorithm is shown as Algorithm 3.

Algorithm 3 A unified DMIS-based framework for PHEV PT or combined VD + PT control
Inputs: prediction horizon Np, nominal SOC SOC and its corresponding co-state trajecto-

ries p̄SOC, initial condition x0, terminal SOC target SOCf .
For ps-opt and sequential-opt: x = (SOC ẽ), u = (E ne te),
For co-opt: x = (SOC, ẽ s v), u = (E ne te r).
Warm-start the state and control sequence, X 0

Np|0 and U0
Np|0 with either an pre-solved offline

solution on a similar trip or obtained by propagating the prediction model forward-in-time with
a base control sequence (zero control input).
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1: for t = 1 to Nf do
2: Predict lead vehicle’s trajectories

V l

Np|t := vl
t
, vl1|t, · · · , vlNp|t, S l

Np|t := sl
t
, sl1|t, · · · , slNp|t.

3: if sequential-opt or co-opt then
4: Formulate the position constraints using S l

Np|t according to (6.21).

5: if sequential-opt then
6: Solve a Np-step version of (6.9) with S l

Np|t, get the acceleration and velocity
sequence

V⇤
Np|t := v⇤1|t, · · · , v⇤Np|t, A⇤

Np|t := a⇤0|t, · · · , a⇤Np�1|t.

7: for i = 1 to maxiter do
8: if sequential-opt/ps-opt then
9: V ⇤

Np|t/V
l

Np|t used as the predicted ego vehicle’s trajectory in the power-split
optimization.

Policy Evaluation with SOCf,Np|t:
10: for k = 1 : Np do
11: pi

k|t =
@H

i
k|t

@xk|t
as in (6.17a).

Policy Improvement:
12: for k = 1 : Np do
13: ui

k|t = argmin{H i

k|t + ⌘(u � ui�1
k+1|t�1)

2 } as in (6.17b). ⌘(·) is a stabilizing
term and is detailed in [85].

14: Obtain X ⇤,maxiter
Np|t , U⇤,maxiter

Np|t and P⇤,maxiter
Np|t .

15: if has VD control then
16: if sequential-opt then
17: a⇤0|t filtered by CBF (design is omitted but follow the procedure in Section 6.3.6)

=) ã⇤0|t.

18: if co-opt then
19: r⇤0|t filtered by CBF (6.36)=) r̃⇤0|t.

20: Execute u⇤
0|t (with ã⇤0|t in sequential-opt), simulate system forward.

TD-error correction
21: Noisy sample from p̄ (6.16a), calculate the TD-error with (6.16c), and correct the initial

guess of p0
Np|t+1,SOC by (6.16d).

22: Noisy sample from ¯SOC (6.16b), used in the policy evaluation (step 11).
23: Shift the state and control sequence

X 0
Np|t =(x*,maxiter

1|t�1 , · · · , x*,maxiter
Np|t�1 , x

*,maxiter
Np|t�1 )

U0
Np|t =(u*,maxiter

1|t�1 , · · · , u*,maxiter
Np�1|t�1, u

*,maxiter
Np�1|t�1).
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6.3.6 A Control Barrier Function (CBF) Approach to Enforce Safety

In the preliminary work on the online implementable co-opt controller [33], the constraint
violation quantity is augmented to the stage cost (6.8f) with the exterior penalty method.
However, it is observed that constraint satisfaction is closely related to the number of single
shooting iterations. A small number of single shooting iterations are preferred to reduce
computation burden, which yet could lead to constraint violation. Besides, the prediction of
the lead vehicle’s trajectory is used to formulate the position constraint in both the co-opt and
sequential-opt problems. Due to the prediction inaccuracy, even though the underlying QP (6.9)
with a prediction horizon Np in sequential-opt can be solved rather reliably and fast enough to
convergence, position constraint violation could still happen due to prediction inaccuracy.

Among the state and mixed state and control constraints considered, the position constraints
in the vehicle-following control are time-varying and depend on the lead vehicle’s position.
The time-varying position constraints make the design of a safety-certified vehicle-following
controller challenging. The work in [95] proposed finding an invariant tube out of time-varying
constraints. A scalable maximal control invariant set was introduced to adjust the solution
obtained from the EMPC to guarantee constraint satisfaction in the minimum and maximum
distance gaps to the target lead vehicle despite imperfect prediction and insufficient single
shooting iterations. However, it is not computationally efficient to carry a control-invariant set
(even a polytope) online and perform a projection each time instant. Moreover, the acceleration
(5.15b) in the reformulated vehicle-following dynamics is a function of the state and control
input. The acceleration constraints are not included in calculating the maximal control invariant
set because of the mixed state and control constraint nature. It is desirable to have a systematic
way to deal with state constraints without significantly additional computational efforts. To this
end, in this section a control barrier function [96] design is presented to enforce time-varying
position constraints and allowable acceleration limits.

6.3.6.1 Barrier Functions for Discrete-Time Systems

The control barrier function (CBF) has proven its usefulness in safe-critical systems,
especially automotive applications [96]. It provides inequality constraints in the control input
that, when satisfied, imply forward invariance of the set [96]. This section follows the discrete-
time version presented in [97].

I consider a Safety Set C and establish its forward invariance. The safety set and its boundary
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are assumed by characterized by a continuous function h as

C :={x 2 D|h(x) � 0} (6.18)

@C :={x 2 D|h(x) = 0}. (6.19)

Define the safety set, C as

C = {x 2 D|B(x) � 0}, (6.20)

where B : D 7! R is called the discrete-time Exponential Control Barrier Function.

Definition 6.3.1. [97] A map B : D 7! R is a discrete-time Exponential Control Barrier
Function if

1. B0 � 0, and

2. there exists a control input uk 2 Rm such that �Bk + �Bk � 0, 8k 2 Z+, 0 < �  1.

The set C is invariant along the trajectories of the discrete-time system if there exits a map
B : S 7! R such that:

1. B0 � 0, and

2. Bk+1 � Bk + �Bk � 0, 8k 2 Z+, 0 < �  1

Proof. Bt � (1��)tB0 � 0, 8t 2 Z+, 0 < �  1, since Bt � (1��)Bt�1 � (1��)2Bt�2 �
... � (1� �)tB0.

6.3.6.2 Time-headway Constraints as Hard Constraints

For the vehicle following subsystem, the constraints are defined as the

sl
k
� sk � dmin

0 � ⌧minvk � 0 (6.21a)

�sl
k
+ sk + dmax

0 + ⌧maxvk � 0, (6.21b)

where ⌧min, ⌧max are the minimum and maximum time-headway, respectively. dmin
0  dmax

0 to
guarantee a small margin during standstill. The time-headway constraints (6.21) can be written
compactly as

h(xk, k) := Hxk + Fk � 0, (6.22)
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where H =

"
�1 �⌧min

1 ⌧max

#
, and Fk =

"
sl
k
� dmin

0

�sl
k
+ dmax

0

#
.

The dynamics of the vehicle-following subsystem (6.24) and (6.23)

sk+1 = sk +
�t

2
(vk + vk+1) (6.23)

vk+1 = K(sl
k
� sk � d0 +R rk), (6.24)

written compactly are

xk+1 = Axk +Brrk +Bss
l

k
+ c0, (6.25)

where A =

"
1� �tK

2
�t

2

�K 0

#
, Br =

"
�tKR

2

KR

#
, Bs =

"
�tK

2

K

#
, and c0 =

"
��tK

2

�K

#
d0.

Define Bk = h(xk, k), the CBF condition now becomes:

Bk+1 + (� � 1)Bk =H(Axk +Brrk +Bss
l

k
+ c0) + Fk+1 + (� � 1)(Hxk + Fk) (6.26)

=H[A+ (� � 1)I]xk +HBss
l

k
+Hc0 + Fk+1 + (� � 1)Fk +HBrrk � 0

Note that one issue arises that in (6.26), Fk+1 depends on the lead vehicle’s position at t = k+1,
sl
k+1, which is unknown at t = k. To resolve this issue, we consider the following tightened

constraints

sl
k+1 =sl

k
+ vl

k
�t+

�t2

2
al
k
 sl

k+1 where sl
k+1 = sl

k
+ vl

k
�t+

�t2

2
almax (6.27)

sl
k+1 =sl

k
+ vl

k
�t+

�t2

2
al
k
� sl

k+1 where sl
k+1 = sl

k
+ vl

k
�t+

�t2

2
almin, (6.28)

where almax and almin are the lead vehicle’s maximum and minimum allowable acceleration and
can be estimated from data or a conservative estimation. As a result, the following constraints
are to be satisfied

Bk+1 + (� � 1)Bk =H[A+ (� � 1)I]xk +HBss
l

k
+Hc0 (6.29)

+ (� � 1)Fk +HBrrk + Fmin
k+1 � 0,

where Fmin
k+1 =

"
sl
k+1 � dmin

0

�sl
k+1 + dmax

0

#
.
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In addition, the acceleration constraints

amin  ak =
1
⌧
(sl

k
� sk � d0 +Rrk)� vk

�t
 amax, (6.30)

where we consider |amin| = |amax|. Since it may be the case that the time-headway con-
straints (6.21) will conflict with the acceleration constraints (6.30). We could either require
an acceleration-based barrier function as in [96] allowing the time-headway constraints and
acceleration constraints to be simultaneously satisfied, or we need to show that (6.26) and
(6.30) can always be satisfied simultaneously.

Assume xk 2 h(xk, k), then the time-headway constraints (6.21) are satisfied all the time.

(6.21a) =) ak�t =
1

⌧
(sl

k
� sk � d0 +Rrk)� vk (6.31a)

� ⌧min � ⌧

⌧
vk +

1

⌧
(dmin

0 � d0) +
R

⌧
rk

(6.21b) =) ak�t =
1

⌧
(sl

k
� sk � d0 +Rrk)� vk (6.31b)

 ⌧max � ⌧

⌧
vk +

1

⌧
(dmax

0 � d0) +
R

⌧
rk.

To have xk 2 h(xk, k) also satisfying the acceleration constraints (6.30), we want

RHS of (6.31a) :
⌧min � ⌧

⌧
vk +

1

⌧
(dmin

0 � d0) +
R

⌧
rk � amin�t (6.32a)

=) rk �
1

R
[⌧amin�t+ (⌧ � ⌧min)vk + (d0 � dmin

0 )]

RHS of (6.31b) :
⌧max � ⌧

⌧
vk +

1

⌧
(dmax

0 � d0) +
R

⌧
rk  amax�t (6.32b)

rt 
1

R
[⌧amax�t+ (⌧ � ⌧max)vk + (d0 � dmax

0 )]

To guarantee the existence of a non-empty set (6.32),

⌧amin�t+ (⌧ � ⌧min)vk + (d0 � dmin
0 )  ⌧amax�t+ (⌧ � ⌧max)vk + (d0 � dmax

0 ) =)

(⌧max � ⌧min)vk + (dmax
0 � dmin

0 )  ⌧(amax � amin)�t. (6.33)

(6.33) can only be guaranteed when vk satisfies vk  va := ⌧(amax�a
min)�t�(dmax

0 �d
min
0 )

(⌧max�⌧min)
. When

vk is large, the set needs to be modified. When vk increases, (6.33) can still be guaranteed by
increasing ⌧min (thus reducing (⌧max � ⌧min)). Increasing ⌧min is also physically intuitive since
when the speed vk is high, it is reasonable to increase the time-headway between the ego and
its lead vehicle to maintain safety.
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Based on the above discussions, the modified time-headway constraints ha(xk, k) that is
acceleration admissible is

ha(xk, k) := Hkxk + Fk � 0, (6.34)

where Hk =

"
�1 �⌧amin(vk)

1 ⌧max

#
, and Fk =

"
sl
k
� dmin

0

�sl
k
+ dmax

0

#
. In (6.34),

⌧amin(vk) =

8
<

:
⌧min vk  va

⌧max � ⌧(amax�a
min)�t�(dmax

0 �d
min
0 )

(vk+amax�t) vk > va
.

The speed-dependent minimum time-headway ⌧amin(vk) satisfies ⌧amin(vk) 2 [⌧min, ⌧max), 8vk.
To see this, first notice that when vk  va, ⌧amin(vk) = ⌧min. When vk > va,

vk >
⌧(amax � amin)�t� (dmax

0 � dmin
0 )

(⌧max � ⌧min)
=) (6.35a)

(⌧max � ⌧min)vk � ⌧(amax � amin)�t+ (dmax
0 � dmin

0 ) � 0

(⌧max � ⌧min)(vk + amax�t)� ⌧(amax � amin)�t+ (dmax
0 � dmin

0 ) > (⌧max � ⌧min)vk

� ⌧(amax � amin)�t+ (dmax
0 � dmin

0 ) � 0 =) ⌧amin(vk)� ⌧min > 0, 8vk > va.

Meanwhile, ⌧, amax, amin, dmax
0 , dmin

0 are chosen such that ⌧(amax�amin)�t�(dmax
0 �dmin

0 ) > 0

to guarantee ⌧amin(vk) < ⌧max.
The constraints (6.29) are modified as

Bk+1 + (� � 1)Bk =Hk[A+ (� � 1)I]xk +HkBss
l

k
(6.36)

+Hkc0 + (� � 1)Fk +HkBrrk + Fmin
k+1 � 0.

Suppose (6.29) is recursive feasible, then the recursive feasibility of (6.36) can be guaranteed
because (6.26) and (6.36) can be rearranged into

H(Brrk + hk) + (� � 1)Fk + Fmin
k+1 � 0 (6.37)

Hk(Brrk + hk) + (� � 1)Fk + Fmin
k+1 � 0, (6.38)

respectively. The first term in (6.37) and (6.38) are linear combinations of columns of H
and Hk, respectively. Since the columns of Hk remains linearly independent and the relative
position is preserved as illustrated in Fig. 6.3.
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Figure 6.3: Visualization of the column vectors of H/Hk.

6.4 Summary

This chapter expands the discussions on the connection between the DMIS and approximate
policy iteration (approximate-PI) in the reinforcement learning (RL) application, integrating
the numerical optimization strategy with the online implementable framework. Henceforward,
the PT-only control of a human-driven to the combined VD and PT control of an automated
PHEV are unified under the same DMIS-based framework. In the unified framework, the
cost-to-go (the fuel consumption as the economic cost) is represented by the co-state associated
with the SOC dynamics. This co-state is corrected both internally using a single shooting
method and externally based on the co-state TD-error. In its application to automated PHEVs,
a CBF is augmented as an add-on block to modify the vehicle level control input to be executed
whenever necessary. The unified control framework guarantees safe vehicle-following behavior
when including longitudinal vehicle dynamics control. The unified framework allows for
systematically evaluating the fuel economy and drivability performance of different levels and
structures of optimization strategies, detailed in Chapter 7.
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CHAPTER 7

Performance Analysis of Different Optimization
Schemes in Fuel Economy and Driving Statistics

7.1 Introduction

So far, different optimization schemes have been presented, starting from the power-split
optimization (PT level optimization), then shifting toward combined VD and PT optimizations.
To achieve a combined VD and PT optimization, first the sequential optimization strategies
is investigated, where the VD level optimization is performed first through acceleration min-
imization then followed by the PT optimization. The remaining efforts are devoted to the
centralized VD and PT co-optimization. It is critical to understand the fuel economy potential
and the drivability with each optimization scheme with all the different optimization schemes.
This chapter seeks to systematically evaluate the fuel economy and drivability performance of
different levels and structures of optimization strategies.

In terms of the levels of optimization strategies, both the PT level control for a human driver
and the combined VD and PT level control for an autonomous driver are evaluated. In terms
of the optimization structures for combined VD and PT level controls, both the centralized
optimization structure, where the VD and PT are optimized together under one single objective
function, and a decentralized (sequential) optimization structure, where the VD and PT are
optimized separately with two different objective functions are of interest.

Specifically, this chapter will focus on

1. Offline Illustrative Comparison (Section. 7.2): One illustrative cycle comparison of
offline optimization results with different optimization schemes in time domain.

2. Offline Statistical Comparison (Section. 7.3): Statistical comparison of offline opti-
mization results with different optimization schemes on many similar Ann Arbor trips.
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3. Online Statistical Comparison (Section. 7.4): Online Statistical comparison of online
MPC results with different optimization schemes on many similar Ann Arbor trips.

7.2 Analysis of Offline Optimization Results in Time-Domain

This section compares the performance of different optimization strategies in an offline
manner. The following optimization schemes are considered

1. opt-cdcs : The ego vehicle’s velocity profile is identical to the lead vehicle’s trajectory.
The vehicle operates in an EV mode (charge depletion) first, followed by an optimal
charge-sustaining mode, i.e., CDCS.

2. ps-opt: The ego vehicle’s velocity profile is identical to the lead vehicle’s trajectory. The
vehicle operates in an optimal power-split mode. This strategy represents the optimal
energy-management of a human-driven PHEV.

3. seq-opt: The ego vehicle’s velocity profile is optimized by solving an acceleration mini-
mization problem [32] that provides a smooth velocity. Then, power-split optimization
is performed with the resulting velocity profile. This strategy represents the sequential
optimization approach to eco-driving in the existing literature.

Moreover, this chapter discusses the tradeoff between passenger comfort and fuel consump-
tion benefit. Specifically, the original co-optimization problem (P1 as in (5.17)) and its two
additional variants are considered:

1. co-opt: The ego vehicle’s velocity trajectory and power-split are optimized by solving
the original co-optimization problem (P1) with acceleration limits (amax and amin) in
(5.17b).

2. co-opt�a: A variant of the co-optimization with jerk limits (�amax and �amin) is addi-
tionally included. The augmented stage cost l̃k replaces lk in (5.17b)

l̃k = lk +max(�ak ��amax, 0)2 +max(�amin ��ak, 0)
2, (7.1)

where �ak = ak � ak�1, with a�1 = 0.

3. co-optQ: A variant of the co-optimization where vehicle acceleration is penalized to
induce smoothness. The augmented stage cost l̄k replaces lk in (5.17b)

l̄k = lk +Q · a2
k
. (7.2)
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Figure 7.1: The lead/ego vehicle’s trajectory in the considered CDCS-worst scenario.

For PHEVs, the trip considered in this thesis is usually defined to be between recharge
opportunities, where the large battery is depleted from fully charged to a low level1. As
discussed in previous sections, a 2-hr trip is considered consisting of stitched standard driving
cycles (3UDDS + 3US06 + 3HWFET). The standard driving cycles are combined in a particular
order to generate the most fuel consumption benefit with power-split optimization compared to
CDCS as observed from offline simulation results. For the considered scenario, the trip is long
enough to exceed the vehicle’s pure EV range. The time-domain response of the considered
scenario is shown in Fig. 7.2. The initial battery SOC is SOC0 = 0.85, and the desired terminal
SOC is SOCf = 0.15. The first subplot presents the battery SOC trajectories. The second
subplot presents the cumulative fuel consumption trajectories (including cranking fuel). The
third subplot presents cumulative cranking fuel consumption trajectories. The fourth subplot
presents the resulting velocity trajectories. The exact values are summarized in Table. 7.1. Note
that in all the simulations, the actual terminal SOC is adequately close to the desired SOC
terminal SOC SOCf . To make Fig. 7.2 readable, only selective simulations are presented. The
full evaluation of percentage fuel consumption reduction with different optimization schemes
is presented in Fig. 7.3.

7.2.1 Trade-Off between Fuel Economy and Passenger Comfort

A thorough evaluation of fuel consumption reduction from the baseline CDCS strategy
on the human driving with different optimization schemes is presented in Fig. 7.3. As clearly
observed in Fig. 7.3, a nearly 30% reduction in total fuel consumption can be achieved with the
co-optimization in the absence of additional passenger comfort constraints. By comparison,
sequential optimization can only reach half of the fuel consumption reduction potential. All the
remaining fuel consumption results with the co-optimization with passenger comfort constraints

1The Ann Arbor trips to be studied are relatively short and can be driven in a pure EV mode if starting with a
fully-charged battery. Therefore, to make optimizations meaningful, a small SOC span is considered to force the
engine to be used.
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Figure 7.2: Time-domain response comparisons for selective simulation results of the consid-
ered CDCS-worst cycle.

fall between the sequential optimization and the full co-optimization. The trade-off between the
fuel economy and passenger comfort is evident by the transition from sequential optimization
to full co-optimization with neither acceleration penalty nor jerk limits. At the same time, it
can be seen that the penalty weights on the acceleration affect the fuel economy dramatically.
By comparison, the effects of different jerk limits on the fuel economy are more incremental.
This observation is instructive to choose a cost function as the jerk level better characterizes
the trade-off between the passenger comfort and the fuel economy. On the other hand, the
quadratic acceleration penalty significantly limits the margin for acceleration variations and
might not be the best indication of passenger comfort levels.

The time-domain responses of some selective control strategies indicating different levels
of passenger comfort requirements are given in Fig. 7.2: it is be found that the terminal SOC
constraint is well satisfied in all simulations as seen from Fig. 7.2(a). Figures 7.2(b) and
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Figure 7.3: The full comparison of Fuel economy benefits.

(c) present the cumulative fuel consumption trajectories and the cumulative cranking fuel
consumption trajectories, respectively. Figure 7.2(d) shows the resulting velocity trajectories.
The fuel consumption values are summarized in the second and third columns in Table. 7.1.

The first observation is the difference in the charge-blending properties indicated by SOC
trajectories (see Fig. 7.2(a)). As the passenger comfort requirement tightened, the battery tends
to be more heavily charged at the beginning of the trip to grant the vehicle an opportunity
to run nearly exclusively in EV mode in the latter part of the trip. The reason is related to a
smoothed power demand needed by the passenger comfort and the high-efficiency, high power
engine operation points required by the fuel minimization objective. Another observation is that
the considerable potential in fuel economy achieved by co-optimization (neither acceleration
penalty nor jerk limit) is realized through frequent switching between the EV and HV modes.
In particular, the co-optimization without additional passenger comfort constraints consumes
significantly more cranking fuel than the other methods. As the passenger comfort requirement
becomes more stringent in the co-optimization, the resulting velocity profiles become smoother,
which leads to a reduction in the total cranking fuel. Lastly, as observed in Fig. 7.3, the
fuel economy with co-optimization with an additional acceleration penalty where Q = 10

degrades to a level similar to the sequential optimization (acceleration minimization followed by
power-split optimization). This observation is also evident by the similarity of the time-domain
responses between the two simulations, as shown in Fig. 7.2.

The acceleration and jerk statistics are compared across different optimization schemes
in Fig. 7.4b (the distribution of acceleration in the first column and the distribution of jerk
in the second column): the naturalistic human driving, that is, the original driving cycle in
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Table 7.1: Fuel consumption and passenger comfort comparisons among selective simulations.
opt-cdcs: the original human driving in Fig. 7.1, seq-opt: the velocity trace obtained by the
acceleration minimization over the whole trip, co-opt: the velocity trace resulting from the
co-optimization, with different passenger comfort considerations.

Test name
total fuel w/
crank fuel

[g] (% reduction)

crank fuel
[g]

max abs.
accel [m/s2]

ave abs.
accel [m/s2]

max abs.
jerk [m/s3]

ave abs.
jerk [m/s3]

opt-cdcs 1411 (0) 12 3.8 0.4 3.4 0.19
ps-opt 1321 (6) 21 - - - -
seq-opt 1209 (14) 3 2.0 0.3 0.4 0.04

co-optQ=10 1205 (15) 3 1.7 0.3 0.4 0.04
co-optQ=0.1 1176 (17) 9 2.9 0.3 1.4 0.08
co-opt�a=1 1173 (17) 3 3.3 0.3 1.1 0.22
co-opt�a=3 1112 (21) 10 4.7 0.4 3.9 0.56

co-opt 997 (29) 82 4.0 0.7 8.0 0.95

(a) Passenger comfort analysis for different Q values
penalizing squared acceleration term and different
jerk limit: acceleration and jerk comparison.

(b) Passenger comfort analysis corresponding to Ta-
ble 7.1: acceleration and jerk comparison.
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Fig. 7.1 (see Figs. 7.4b(a) and (b)); the driving resulting from the sequential optimization (see
Figs. 7.4b(c) and (d)); the driving resulting from the co-optimization with acceleration penalty
Q = 10 (see Figs. 7.4b(e) and (f)); the driving resulting from the co-optimization with jerk limit
|�amax| = 0.5 (see Figs. 7.4b(g) and (h)); and the driving resulting from the co-optimization
without additional passenger comfort requirement (see Figs. 7.4b(i) and (j)). The maximum
absolute and mean values of acceleration and jerk are summarized in the last four columns in
Table. 7.1. The complete passenger comfort analysis for different Q values and jerk limits are
shown in Fig. 7.4a.

As seen from Table. 7.1, the driving statistics of the sequential optimization are very
close to those of the co-optimization with Q = 10 penalizing acceleration-quadratic term. It
reflects the similarity in the vehicle dynamics level between the sequential optimization and the
co-optimization with stringent passenger comfort requirements beyond the powertrain-level
similarity (fuel consumption), as discussed above. Figure 7.4b(i) indicates that the vehicle-level
operation (acceleration) with the full co-optimization is of bang-bang type and the resulting
maximum jerk shown in Fig. 7.4b(j) is significantly high and hardly acceptable for a human
driver/passenger from a passenger comfort perspective. However, this aggressive driving could
still be valuable for more cost-effective and eco-friendly unmanned vehicles (carrying goods –
not humans). Remarkably, the co-optimization, whose solution is enabled by DMIS, provides
a unified way of investigating the fundamental trade-off between the fuel economy and the
passenger comfort requirement. One additional observation is that the driving statistics with
different Q values are very similar. This similarity implies the narrow fuel economy benefit
margin with varying Q values shown in Fig. 7.3 and explains why jerk instead of acceleration
penalty is a better indication of passenger comfort level.

7.3 Statistical Analysis of Offline Implementations

The fuel economy benefits and the drivability analysis are performed on a single trip in
the previous section. Although it is important to understand their time-domain responses and
the potential where optimized operations can provide large performance improvements, it is
also critical to confirm the generality of the fuel economy trends and drivability. To this end, a
set of similar trips recorded in Ann Arbor are chosen to statistically compare the performance
of different optimization schemes. The trips statistics are summarized in Fig. 7.5. The top
left-most subplot in Fig. 7.5a presents the trip times distribution of the considered 142 trips.
It can be seen that there can be a more than 10-min difference in trip time. As shown in the
bottom two subplots in Fig. 7.5a, there is enough variability in velocity both within a single trip
and across different trips. The acceleration and jerk statistics of each trip are summarized in
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Fig. 7.5b. The variability across the considered trips is also verified in terms of the maximum
absolute acceleration and jerk and standard deviation of acceleration and jerk.

(a) Statistics of Ann Arbor trips.

(b) Acceleration and jerk statistics.

Figure 7.5: Illustration of the variability of the considered Ann Arbor driving data set.

For all the optimizations on all the trips considered, the initial SOC is 0.4 and the desired
terminal SOC is 0.35. Since the optimizations are performed offline, it is possible for the actual
terminal SOC to be sufficiently close to the desired value. The offline optimization results
are compared in Fig. 7.6, where Fig. 7.6a presents the total fuel consumption distribution and
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(a) Total fuel consumption with different optimization strategies.

(b) Acceleration and jerk comparison with different optimization strategies.

Figure 7.6: Comparison of offline implementations of different optimization strategies on Ann
Arbor trips.

cycle-to-cycle comparison, and Fig. 7.6b shows that resulting acceleration and jerk distributions.
As clearly observed in Fig. 7.6a, the fuel economy with co-optimization in the absence of

drivability requirement significantly and systematically outperforms any other optimization
strategies. On the other hand, co-optimization where the maximum jerk is limited to be within
± 1 m/s3 still slightly and systematically outperforms the sequential optimization strategy,
where the velocity traces are maximally smoothed. It should also be noted that since the original
naturalistic human-driven traces are already relatively smooth, as evident by the moderate
acceleration and jerk showed later in Figures 7.5a and 7.5b, the fuel economy potential by
doing the sequential optimization is relatively small compared to only PT level optimization
performed on human drivers, even if the sequential optimization is a combined VD and PT
level optimization. Besides, for a human driver, the potential fuel economy gain through the
power-split optimization is relatively small compared to an optimized CDCS.
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7.4 Statistical Analysis of Online Implementations of Differ-
ent Optimization Schemes Under a Unified Framework

Figure 7.7: The unified DMIS-based framework for the PHEV PT-only and different strategies
for the combined safe-augmented VD + PT controls

A unified DMIS-based framework from the PT-only control of a human-driven to the
combined VD and PT control of an automated PHEV was presented in Chapter 6. In the unified
framework, the cost-to-go (the fuel consumption as the economic cost) is represented by the
co-state associated with the SOC dynamics, whereas this co-state is corrected both internally
using a single shooting method and externally based on the co-state TD-error. In its application
to automated PHEVs, a CBF is augmented as an add-on block to modify the vehicle level
control input to be executed whenever necessary.

The proposed unified control framework allows for systematically evaluating the fuel
economy and drivability performance of different levels and structures of optimization strate-
gies. This section aims to present a solid demonstration of the efficacy of the unified control
framework, with evaluation on the same Ann Arbor trips set.

7.4.1 Co-State Nominal Trajectories

The trips #1-50 are used to obtain nominal trajectories (as training set) to be used online,
and the trips #51-142 are used to test the MPC performance (as test set). Concretely, for a
particular optimization strategy (e.g., co-optimization or power-split optimization), offline
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optimizations are performed on the first 50 trips, where the velocity trajectory of each trip
is either considered to be the lead vehicle’s trajectory or the ego vehicle’s trajectory. Then,
the SOC and its associated co-state trajectories resulting from optimizations performed on
the 50 trips as the training set are averaged to get the nominal trajectories corresponding to
each optimization scheme. The concept and results of obtaining the nominal trajectories are
demonstrated in Fig. 7.82. The colored lines are trajectories resulting from particular trips, and
the shadowed grey area denotes the envelope of the results on the training set. It can be seen
that there is enough variability in the training data set. The thick red lines are the averaged
SOC and its associated co-state trajectories and will be used as nominal trajectories in the
online MPC implementation. Note that in the absence of the offline data, it can also be obtained
online, through rollout algorithms and MPC [92]. An example of the online method based on
MPC with aggregation is presented in the optimized power-split control of a human-driven
PHEV [3].

In all the MPC implementations, 10 total shooting iterations are performed per MPC step.
A prediction horizon of 10-sec is used in all the MPC implementations. The discount factor as
discussed in Section 6.2 is selected to be ⇢ = 0.99.

7.4.2 Comparison of Online Optimization Results

In this section, the fuel consumption results on the unseen Ann Arbor trips are compared
with different MPC implementations. The following MPC strategies are considered

1. psopt MPC: A PT level controller, where the considered PHEV is assumed to be driven
by a human. Only its power-split operation is optimized. The predicted lead vehicle’s
trajectory is used as the PHEV’s trajectory for predictive energy management. Its nominal
SOC and associated co-state trajectories are shown in Fig. 7.8a.

2. accmin + psopt MPC: A sequential VD + PT level controller. The vehicle-following
dynamics are first optimized by minimizing the acceleration. The first step acceleration
is modified whenever necessary by the CBF to ensure safe distance gap. Its nominal
SOC and associated co-state trajectories are shown in Fig. 7.12b.

3. coopt, max jerk = 1 m/s3: A centralized VD + PT level controller. An additional
drivability requirement is added to limit the maximum jerk to be within ±1 m/s3. The
first step acceleration is modified whenever necessary by the CBF to ensure safe distance
gap. Its nominal SOC and associated co-state trajectories are shown in Fig. 7.8c.

2Note that the optimal SOC trajectories do not present linear-in-time features. It is because while the total
allowable SOC span is small, and the SOC is allowed to be freely placed (no SOC inequality constraint).
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(a) Offline power-split optimization results of trips
#1-50.

(b) Offline sequential optimization results of trips
#1-50.

(c) Offline co-optimization results of trips #1-50. (d) Offline co-optimization results of trips #1-50.

Figure 7.8: Offline simulation results on 50 similar trips and their corresponding nominal
trajectories as an average of the offline simulation results.

4. coopt: A centralized VD + PT level controller without drivability requirement. The first
step acceleration is modified whenever necessary by the CBF to ensure safe distance gap.
Its nominal SOC and associated co-state trajectories are shown in Fig. 7.8d.

The comparison of the fuel consumption of the undriven Ann Arbor trips with different
optimization schemes is shown in Fig. 7.9. It can be seen that the co-optimization without
any drivability requirement outperforms all the other optimization schemes in terms of the
fuel economy, even in their online implementations, despite all the prediction errors and
incomplete numerical solutions to the optimization problems. The sequential optimization
results lie in the middle and are similar to the co-optimization results with additional drivability
requirements. All the MPC implementations with vehicle-level optimization outperform the
energy management only optimization.

149



Figure 7.9: Comparison of total fuel consumption.

Figure 7.10: Comparison of actual total fuel consumption and final states, including final SOC,
velocity and total distance traveled.

7.4.2.1 Time-Domain Responses on Several Ann Arbor Trips

In this section, the time domain responses of the resulting receding horizon implementation
of different optimization strategies are presented. The result of a trip with short travel time is
presented in Fig. 7.11, and the result of a trip with long travel time is presented in Fig. 7.12.

As observed in Figs. 7.11 and 7.12, in both cases, the terminal SOC with power-split only
optimization and sequential optimization based control lead to non-trivial higher-than-desired
value. It indicates the design of the training process should be improved as discussed in
Chapter 6, or a better co-state update strategy is needed towards the end of the trip to avoid
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(a) SOC (b) Trip fuel consumption

(c) Acceleration (d) Velocity

Figure 7.11: Time-domain response when the lead vehicle’s trajectory is trip #77.

unnecessary battery charging.

7.4.3 Effectiveness of CBF

The effectiveness of CBF is demonstrated in Fig.7.13. As can be seen from the top left and
the bottom left subplots, the minimum time-headway constraints are violated in both the acc min
+ psopt MPC implementation and the coopt MPC implementation. The constraint violations
in accmin + psopt are due to the inaccuracies in predicting the lead vehicle’s trajectories. In
addition to the prediction inaccuracy, the incomplete single shooting iterations for computation
efficiency will exaggerate the constraint violation. The constraint violation is added directly to
the stage cost with the exterior penalty method. The solution quality, dominated by the number
of single shooting iterations, will directly affect the constraint satisfaction. The minimum
time-headway constraints are considered to be safe-critical for the vehicle the following control.
Significant violation of minimum time-headway constraints could lead to rear-end collisions.
The pure DMIS-based MPC implementations, without additional CBF-based safety filter may
not be acceptable. By introducing CBF, the vehicle-level control is filtered such that the
time-headway constraints are always satisfied.
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(a) SOC (b) Trip fuel consumption

(c) Acceleration (d) Velocity

Figure 7.12: Time-domain response when the lead vehicle’s trajectory is trip #58.

Figure 7.13: Comparison of MPC results with and without CBF.
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7.5 Summary

This chapter seeks to provide a systematic way of benchmarking the fuel economy per-
formance of the centralized velocity and powertrain co-optimization of a PHEV against the
CDCS strategy typically implemented on a human-driven PHEV, and a layered decentralized
optimization structure of an autonomous PHEV where the velocity is first smoothed via accel-
eration minimization, followed by the power-split optimization [32]. An important observation
is that the fuel economy advantage obtained with the co-optimization decreases to a similar
level as in the sequential optimization as the drivability requirement on the co-optimization
increases, providing valuable instructions for selecting control framework under different
scenarios emphasizing fuel economy or passenger comfort.

Afterward, the chapter presents a unified DMIS-based framework from the powertrain (PT)-
only control of a human-driven to the combined vehicle dynamics (VD) and powertrain (PT)
control of an automated plug-in hybrid electric vehicle (PHEV). In the unified framework,
the co-state represents the cost-to-go, whereas the co-state is corrected both internally as in
single shooting and externally based on the co-stat TD-error. In the application of automated
PHEVs, a control barrier function (CBF) design is presented as an add-on block to modify the
vehicle level control input to be executed whenever necessary. The unified control framework
guarantees safe vehicle-following behavior when including longitudinal vehicle dynamics
control. It is shown to generate consistent fuel economy benefits on a large number of unseen
trips.
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CHAPTER 8

Conclusion and Future Work

8.1 Results and Conclusions

In 2016, the department of energy (DOE) launched a project on the Next-Generation
Energy Technologies for Connected and Automated On-Road Vehicles (NEXTCAR). The
project aims at an additional 20% reduction in energy consumption of future connected and
automated vehicles enabled by technologies that use connectivity and automation to co-optimize
vehicle dynamic controls and powertrain operation. Vehicle dynamics and powertrain control
technologies, implemented on a single-vehicle basis, across a cohort of cooperating vehicles,
or across the entire vehicle fleet, could significantly improve individual vehicle and, ultimately,
fleet energy efficiency [98]. To date, the funded teams have generated abundant work: on
CAV overview [99, 100], traffic intersection management/crossing [101, 102], eco-routing and
eco-driving/eco-ACC [103, 104, 105], and combined vehicle dynamics and powertrain control
of CAVs [106, 107], just to name a few.

In the year 2021 (by the time of thesis submission), there have been more projects funded
by DOE in the field of traffic control, utilization of data with connectivity, artificial intelligence
for CAVs, characterization and validation of the behaviors of CAV controls, and metrics for
assessing the impacts of energy-efficient mobility systems [108]. From individual technologies
to technology integration to tools for evaluation and assessment, new technologies are actively
created that provide economic benefits through enhanced mobility.

With their immense potential for increasing the country’s energy security, economic vitality,
and quality of life, plug-in electric vehicles (PEVs) – including PHEVs and all-EVs – will play
a vital role in the country’s transportation future [109]. Meanwhile, recent rapid advancements
in driver assistance technologies and the deployment of vehicles with increased levels of
connectivity and automation have created multiple opportunities to improve the efficiency of
future vehicles in new ways. As part of the NEXTCAR project, this thesis aims to utilize CAV
technologies for better powertrain control and combined vehicle dynamics and powertrain
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control design through optimization algorithms to improve individual PHEVs’ energy efficiency
significantly. In particular, this thesis aims to walk from “what is possible” to “ what is
practical”.

This thesis starts by constructing a strategy to improve the powertrain control of a human-
driven PHEV utilizing connectivity. First, battery SOC reference waypoints are obtained by
a simplified speed profile constructed from segmented traffic information, typically available
from mobile mapping applications. Then, a P-ECMS is proposed to adjust its co-state based
on the difference between the future SOC obtained from short-horizon prediction and a future
reference SOC from the node planning.

Pushing forward the fuel-efficient control of a PHEV beyond a ECMS-type of instantaneous
optimization for its powertrain operation necessitates considering a trajectory optimization
(i.e., optimal control) problem. As a hybrid system, the optimal control of PHEVs requires
the numerical solution of optimization problems of mixed-integer type. Moreover, with an
increased number of states and control inputs resulting from the engine cranking and combined
vehicle and power level control, it is of interest to have a unified numerical algorithm for
solving mixed-integer optimal control problems with many states and control inputs. Based on
a Discrete Maximum Principle (DMP), a Discrete Mixed-Integer Shooting (DMIS) algorithm is
proposed. The DMIS is demonstrated in successfully addressing the cranking fuel optimization
in the energy management of a PHEV. It also serves as the foundation of the co-optimization
problem considered in the remaining part of the thesis.

With the numerical tool developed, different control designs are presented in this thesis
with the increased vehicle automation level combining vehicle dynamics and powertrain
of PHEVs in within-a-lane traffic flow. This thesis starts with a sequential, decentralized
optimization and then advances to direct fuel minimization by simultaneously optimizing the
two subsystems in a centralized manner. When shifting toward online implementation, the
striking challenge lies in the conflict between the long control horizon required for global
optimality and the computational power limit. In this thesis, a receding horizon strategy is
proposed to resolve the conflict between the horizon length and the computation complexity with
co-states approximating the future cost, thus shortening the prediction horizon. In particular, the
co-state is updated using a nominal trajectory and the TD error based on the co-state dynamics.

The remaining work aims at developing a unified DMIS-based receding horizon framework
from the PT-only control of a human-driven to the combined VD and PT control of an automated
PHEV. In the unified framework, the cost-to-go (the fuel consumption as the economic cost) is
represented by the co-state associated with the SOC dynamics. In its application to automated
PHEVs, a CBF is augmented as an add-on block to modify the vehicle level control input to be
executed whenever necessary. The unified control framework guarantees safe vehicle-following
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behavior when including longitudinal vehicle dynamics control. Furthermore, it allows for
systematically evaluating the fuel economy and drivability performance of different levels and
structures of optimization strategies.

8.2 Future Work and Open Challenges

In this thesis, the fuel economy of the receding-horizon co-optimization of the vehicle lon-
gitudinal and powertrain dynamics of a PHEV was studied and validated through simulations.
The next step would be validation of the results on a vehicle and test whether the proposed
control algorithms developed are easily implementable on a vehicle ECU. In particular, the real-
time implementability and reliability of the DMIS algorithm applying to the co-optimization
problem are crucial to investigate. The sequential eco-driving and energy management frame-
work has already been implemented. Therefore, it is of great interest to evaluate the sequential
and co-optimization framework in fuel economy and passenger acceptance.

Improving the offline training and sample strategy for more effective “ground-truth” state
and co-state values should also be considered in future work. As discussed in Section 6,
currently, the nominal state and co-state trajectories are average trajectories of those obtained
from the offline optimization. However, the distribution is less likely to be normally distributed
at the beginning and towards the end of the trip due to the initial and terminal SOC requirements.
It indicates a possible more reasonable way to obtain nominal trajectory: sample from a normal
distribution of the initial and terminal SOC, do offline optimization, and get average trajectories,
instead of a fixed, same initial and terminal SOC. Also, right now, the weight of each trajectory
is the same. It might be better to consider different weights on different trajectories to get
nominal trajectories.

Although the work presented in this thesis is application-driven, it would be interesting to
provide more formal justification from a theoretical point of view, as preliminary investigated
in Section 6.3.4, where the real system is modeled as a Markov Decision Process (MDP).

Finally, it would be interesting to extend and evaluate the DMIS-based MPC framework to
other applications.
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APPENDIX A

Control-Oriented Hybrid Powertrain Model and
Static Map Regressions

A.1 PHEV Powertrain Control-Oriented Model

In this thesis, the 2017 Prius Prime PHEV is considered as the target powertrain architecture.
The inputs to the model are the engine torque te and the engine speed ne, and the outputs
of the main concern from the model are the fuel rate ṁf and the change in SOC ˙SOC. The
overall schematic view of the hybrid powertrain is shown in Fig. A.1. The minimum fuel
consumption problems in Chapter 2, 3 and 4, when formulated in continuous-time, do not
include the additional fuel consumption associated with engine cranking. Therefore, in those
chapters, the SOC is considered as the only state. The minimum fuel consumption problems
considered in all the other chapters are formulated directly in discrete time and account for the
additional fuel consumption due to engine cranking. In those chapters, two states are considered
in the powertrain dynamics, including the SOC and the normalized engine cranking ẽ. The
SOC dynamics are the focus of this section when developing the control-oriented model.

This chapter first revisits the control-oriented model for the SOC dynamics for the control
design, simulation, and analysis throughout this thesis with great details. First, each critical
component is modeled separately. Afterward, several simplifications are made, which leads
to a control-oriented model used throughout this thesis. Static maps are heavily involved
in the control-oriented model (A.14), including battery OCV, internal resistance, MG1 and
MG2 power losses, and fuel rate. To make the simulation results presented in this thesis
reproducible, regression models are established for powertrain components of the considered
PHEV in this chapter. Notably, efforts are devoted to striking a balance between the model
accuracy, compliance with the company data privacy, and the numerical difficulty resulting
from smoothed regression models. It will be detailed in the second half of this chapter. Two
main techniques are adopted in establishing regression models: the polynomial and the NN
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regression. Polynomial regressions are used to approximate the battery OCV and internal
resistance, and the NNs are used to approximate the power loss and the fuel rate maps.

Figure A.1: A schematic control oriented model for Prius Prime PHEV

A.1.1 Modeling of the Power Split Device and One-way Clutch

The Prius new PHV transaxle for a compact vehicle installed in the new Prius Prime has
a four-axle structure. It consists of a torsional damper with a torque limiter, one-way clutch,
input shaft, planetary gear, generator, motor, reduction device, and differential device[4, 110].

The rotational speeds of the ring gear !r, sun gear !s, and the carrier gear !c satisfy the
following relationship at all times:

!s · S + !r ·R = !c · (R + S), (A.1)

where S and R are the radii of the sun gear and the ring gear, respectively.

(a) Force analysis on a planetary gear set
(adapted based on [111])

(b) Dual Motor Drive System [4]

Figure A.2: Free body diagram of the mechanical path.
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The forces on the planetary gear set is shown in Fig. A.2a. The dynamics of the gear nodes
are obtained as:

Ir · !̇r = F ·R� Tr, Ic · !̇c = Tc � F · (R + S), Is · !̇s = F · S � Ts, (A.2)

where Ir, Ic, and Is are the inertia of the ring, carrier and sun gear, respectively. Tr, Tc are the
ring gear and carrier gear torque, respectively.

(a) Cross-section of one-way clutch installation
configuration.

(b) Internal structure of one-way clutch.

Figure A.3: Illustration of the one-way clutch in the Prius Prime powertrain [4].

One noticeable new feature of 2017 Prius Prime is the addition of a one-way clutch (OWC)
[110, 4] which prevents the engine from rotating in the reverse direction. Moreover, this
new feature allows for extended driving in EV mode as the motor and generator can be used
simultaneously for vehicle propulsion when the engine stops. This particular mode is referred
to as DM. Fig. A.3a shows the cross-section of one-way clutch installation configuration.
Fig. A.3b shows its internal structure. The housing (pink), outer race (gray), pawls (blue)
springs, and plate (yellow) are integrated and rotate together. The housing is connected to the
flywheel (engine) and rotates together with the engine. The inner race (green) engages with
the plate (blue) between engine and transaxle through spline engagement and is fixed to the
transaxle. There is friction between the plate (yellow) and the inner race (green). Thus under
normal HV mode, the engine generates torque and rotates in the forward direction. The torque
will flow from the engine (flywheel) to the damper (conventional clutch) and the input shaft and
eventually to the carrier gear. However, suppose the engine stops (ne = 0, te = 0). The reverse
direction-driven torque is from carrier gear (reverse direction torque from the generator), which
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will drive the engine to rotate in the reverse direction. In that case, the pawls and inner race will
engage. Because the inner race is fixed to the transaxle, it will prevent the engine from rotating
in the reverse direction. Moreover, the engagement between the inner race and fixed transaxle
under this scenario generates an additional clutch torque Tcl, which counteracts the carrier gear
force Tc, and therefore allows the reaction force F to be transmitted to the ring gear axis as
shown in Fig. A.2b. Consequently, the use of the one-way clutch adds a DM to the original EV
mode.

For the MG1 (generator) at the sun gear side, the governing equation is:

Img1 · ṅmg1 = Ts + tmg1, (A.3)

where nmg1, nmg1, and Img1 are the MG1 torque, speed and inertia respectively.
Combined with sun gear dynamics and nmg1 = !s, we get:

(Img1 + Is) · ṅmg1 = tmg1 + F · S. (A.4)

For the engine at the carrier gear side, the governing equation is:

Ie · ṅe = te+ Tcl � Tc, (A.5)

where te, ne and Ie are the engine torque, speed and inertia respectively. Tcl is the clutch torque.
For different modes, either Te or Tcl will be 0.

Combined with sun gear dynamics and ne = !c, we get:

(Ie + Ic) · ṅe = te+ Tcl � F · (R + S). (A.6)

For the motor and the motor reduction gear at the ring gear side, the governing equation is:

⇣ M ·R2
tire

(K1 ·K2)2
+

Img2

(K2)2

⌘
!̇r = Tr +

tmg2

K2
� Tf + (Faero + Froll � Fgrad)Rtire

K1 ·K2
(A.7)

where K1 is the counter gear ratio, K2 is the motor reduction gear ratio, M is the vehicle mass,
Rtire is the tire radius, Tf is the additional friction brake (Tf � 0), Froll is the rolling resistance,
Faero is the aerodynamic force, Fgrad is the grade force, tmg2 is the MG2 torque, Img2 is the
MG2 inertia. The rolling resistance Froll is calculated as:

Froll = Cf ·M · g · cos ✓, (A.8)

where Cf is the rolling resistance coefficient, g is the gravity acceleration, ✓ is the road grade
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which is assumed to be positive when vehicle is driven down a hill.
The aerodynamic force Faero is calculated as:

Faero =
1

2
· ⇢ · Af · Cd · v2, (A.9)

where ⇢ is the air density, Af is the frontal area of the vehicle, Cd is the drag coefficient, v is
the vehicle velocity. An additional kinematic relationship between vehicle speed v and ring
gear speed !r is obtained as:

!r =
v

Rtire

·K1 ·K2. (A.10)

The grade force Fgrad is obtained as:

Fgrad = M · g · sin ✓. (A.11)

On the output shaft, the torque transmitted by the ring gear the motor are combined:

Tout = (TMG2 +K2 · Tr) ·K1 (A.12)

The driver demanded torque Tdriver follows:

Tdriver = Tout � Tf (Tf � 0) (A.13)

A.1.2 Model Simplification and Final Control-oriented Model

For the purpose of reducing calculation burden and SOC planning, it is justified to reduce
the state system to contain only SOC by assuming in !̇r = !̇c = !̇s = 0 [111] in (A.2). The
battery SOC is the main state in the charge depletion optimization of a PHEV. The battery
SOC dynamics depends on battery power Pbatt:

˙SOC = �
Voc �

p
V 2
oc
� 4PbattRbatt

2CbattRbatt

, (A.14)

with

Pbatt = PMG2,e + PMG1,e, (A.15)

where Voc = Voc(SOC) and Rbatt = Rbatt(SOC) are the battery open-circuit voltage and
internal resistance, respectively, and are functions of SOC; Pbatt is the battery power; PMG2,e
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and PMG1,e are the motor and generator electrical power, respectively. The electrical power
from the electrical machines are represented by:

PMG1,e = tmg1 · nmg1 + PMG1,loss,

PMG2,e = tmg2 · nmg2 + PMG2,loss,
(A.16)

where PMG1,loss and PMG2,loss are motor and generator power losses, respectively, which are
provided by the manufacturer. Given the vehicle speed v, the motor (MG2) speed nmg2 is
determined by:

nmg2 =
v

Rtire

K1. (A.17)

The driver torque demand Tdriver satisfies:

Tdriver = Tout � Tf , (Tf � 0), (A.18)

where Tf is additional friction brake; Tout is the powertrain output torque and is defined in
(A.24). The driver torque demand Tdriver is calculated from the vehicle longitudinal dynamics
with v and v̇ as inputs:

Meff v̇ =
Tdriver

Rtire

� 1

2
⇢AfCdv

2 � CfMg cos ✓ +Mg sin ✓. (A.19)

The speed of motor, generator, and engine are coupled via the power split device through
the following kinematic relationship:

nmg1 · S + nmg2 ·K2 ·R = ne · (R + S), (A.20)

The torque coupling among motor tmg2, generator tmg1, engine te and clutch Tcl are related
through the following relationships:

In Hybrid Vehicle (HV) & Electric Vehicle (EV) mode

tmg1 + F · S = 0, te� F · (R + S) = 0 (A.21)

In Dual Motor Drive (DM) mode

tmg1 + F · S = 0, Tcl � F · (R + S) = 0. (A.22)

The engine torque te and generator torque tmg1 are combined to the ring gear torque Tr
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through reaction force F :

Tr = F ·R. (A.23)

On the output shaft, the torque transmitted by the ring gear Tr and the torque from the motor
tmg2 are combined as

Tout = (tmg2 +K2 · Tr) ·K1. (A.24)

A static map �, that was experimentally determined by the manufacturer of the considered
vehicle, is used to calculate the fueling rate ṁf based on engine torque te and engine speed, ne
given by:

ṁf = �(te, ne). (A.25)

Meanwhile, the following physical constraints, usually time-varying, must be enforced at
each time instant:

SOCmin(t)  SOC(t)  SOCmax(t) (A.26a)

Pmin
batt

(t)  Pbatt(t)  Pmax
batt

(t) (A.26b)

nemin(t)  ne(t)  nemax(t) (A.26c)

temin(t)  te(t)  temax(t) (A.26d)

nmg1min(t)  nmg1(t)  nmg1max(t) (A.26e)

tmg1min(t)  tmg1(t)  tmg1max(t) (A.26f)

nmg2min(t)  nmg2(t)  nmg2max(t) (A.26g)

tmg2min(t)  tmg2(t)  tmg2max(t) (A.26h)

In this thesis, The following simplifications are made: 1) the battery SOC limits (A.26a) are
assumed to be inactive since the SOC range, and the battery capacity is considerably large in a
PHEV; therefore, these limits are not considered in the optimization, 2) the constraints on the
motor and the generator in HV mode (A.26e)–(A.26h) are converted to the constraint on the
engine torque and speed, together with (A.26c)–(A.26d), denoted as ⌦(v), 3) the battery power
limits (A.26b) and the constraints on the motor and the generator in EV mode are assumed to
be inactive for a human-driven PHEV. This is because the power demand from a human is
typically not very aggressive. For an automated PHEV, the constraints in EV mode are handled
by torque saturation.
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Remark 9. Note that although each individual term of the friction force is modeled in this
section, in most of the thesis, a regression model is used to calculate the torque demand directly.

Remark 10. Despite the presence of an additional Dual Motor Drive mode, in this thesis, the
considered PHEV is still assumed to operate under either HV or EV mode.

A.2 Regression Models and Validations

As discussed at the beginning of this chapter, to make the simulation results presented in
this thesis reproducible, regression models for powertrain components of the considered PHEV
need to be established. Two main techniques are adopted in establishing regression models: the
polynomial and the NN regression. Polynomial regressions are used to approximate the battery
OCV and internal resistance, and the NNs are used to approximate the power loss and the fuel
rate maps.

A.2.1 Regression Models for Battery

Figure A.4: Polynomial regression models for battery OCV and internal resistance.

A fifth-order polynomial is used to approximate the battery OCV.

[OCV = ↵SOC
0 + ↵SOC

1 · SOC + ↵SOC
2 · SOC2 + ↵SOC

3 · SOC3 + ↵SOC
4 · SOC4 + ↵SOC

5 · SOC5,

(A.27)

Define the feature matrices XSOC =

0

BBBB@

1 SOC(1) SOC2
(1) . . . SOC5

(1)

1 SOC(2) SOC2
(2) . . . SOC5

(2)

. . .

1 SOC(n) SOC2
(n) . . . SOC5

(n)

1

CCCCA
, and the actual
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output matrix Y SOC =

0

BB@

OCV(1)

...
OCV(n)

1

CCA, where [SOC(1), · · · , SOC(n)], [OCV(1), · · · ,OCV(n)], n 2

{1, · · · , n} denotes the sampled n date points from the actual SOC-OCV map. The parameter
set ↵SOC = (↵SOC

0 , · · · ,↵SOC
5 ) is obtained by ↵SOC = XSOC\Y SOC.

A fourth-order polynomial is used to approximate the battery internal resistance.

r̂ = ↵r

0 + ↵r

1 · SOC + ↵r

2 · SOC2 + ↵r

3 · SOC3 + ↵r

4 · SOC4, (A.28)

where r̂ denotes the approximated battery internal resistance. Define the feature matrices

Xr =

0

BBBB@

1 r(1) r2(1) . . . r4(1)
1 r(2) r2(2) . . . r4(2)

. . .

1 r(n) r2(n) . . . r4(n)

1

CCCCA
, and the actual output matrix Y r =

0

BB@

r(1)
...

r(n)

1

CCA, where

[SOC(1), · · · , SOC(n)], [r(1), · · · , r(n)], n 2 {1, · · · , n} denotes the sampled n date points
from the actual SOC-resistance map. The parameter set ↵r = (↵r

0, · · · ,↵r

5) is obtained by
↵r = Xr\Y r.

The resulting parameters for the OCV regression are ↵SOC
0 = 0.7502, ↵SOC

1 = 1.3355,
↵SOC
2 = �5.4498, ↵SOC

3 = 10.5698, ↵SOC
4 = �9.2707, and ↵SOC

5 = 3.0684. The resulting
parameters for the internal resistance regression are ↵r

0 = 0.1604, ↵r

1 = �0.2266, ↵r

2 = 0.4976,
↵r

3 = �0.5616, and ↵r

4 = 0.2392. The resulting curves are shown in Fig. A.4.

A.2.2 Regression Models for Electric Motors and the Fuel Rate Map

As a linear regression technique, polynomials do not have enough capability to approximat-
ing maps due to their underlying smoothness. As a result, neural network models are used to
capture some of the non-smoothness embedded in the motor efficiency maps.

A two-layer NN with 8 neurons per layer is used to get the regression models for MG1
and MG2. The resulting regression models are shown in Fig. A.5. To capture some of the
non-smoothness embedded in the fuel rate map, a two-layer NN with 8 neurons per layer is
used to get the regression models for the fuel rate map. The resulting regression models are
shown in Fig. A.6.

A.2.3 Open-loop Simulations

The accuracy of the regression models affects the simulation results in two ways:

1. The accuracy of the open-loop simulations with a given control input sequence,
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Figure A.5: NN regression models for MG2 and MG1 power loss maps.

Figure A.6: NN regression model for the fuel rate map.

2. and the results of the Hamiltonian minimization in single shooting.

To test the performance of the regression models, the accuracy of the regression model
is first compared in the open-loop simulations against the actual model with a given control
input. The considered trip is long with wide SOC spans, which is suitable for testing the model
accuracy over the entire range of SOC. The resulting time-domain responses of the SOC and
fuel consumption with the two models are compared in Fig. A.7. The initial SOC-s are 0.85 in
both cases, and the actual final SOC-s are 0.166 and 0.150 (10.7% difference) for the regression
and the actual models, respectively. The total fuel consumption is 1285 and 1243 grams (3.4%
difference) for the regression and the actual model. It can be seen from the full battery range
open-loop simulation that the difference in SOC is rather large due to the cumulative error. The
difference in the total fuel consumption is small, indicating the relatively good approximation
accuracy of the neural network-based fuel rate map. Admit the existence of model inaccuracy,
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the overall trend is consistent, with higher terminal actual SOC and fuel consumption.

Figure A.7: Comparison of open-loop simulations with the actual model and the regression
models.

A.3 Simulation Results with the Regression Models

Although it is crucial to demonstrate the accuracy of the regression models in open-loop
simulations, the accuracy of the exact numbers is not the most critical quantity. The regression
models are eventually used as the control-oriented model to select the control action, and
different models will inevitably lead to potential discrepancies in optimized control actions.
As pointed out in the previous section, the model discrepancies would affect the shape of the
Hamiltonian and, in turn, the optimal control action. As a result, it is essential to investigate
whether the overall trend, i.e., the trade-off between the fuel economy and drivability, the fuel
economy benefit of the co-optimization upon the sequential optimization, will hold with the
regression models. Besides, it is also important to observe whether the regression models
(smoother than the actual maps) could lead to numerical difficulties in the instantaneous
Hamiltonian minimization and the single shooting iteration.
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A.3.1 Numerical Difficulties with the Regression Model

Inevitably, the regression models are smoother compared to the actual model. However,
the smoothness will significantly impact the locations of the local minima of the Hamiltonian,
which as a result, will affect the speed of convergence in the single shooting iterations. These
observations will be detailed in the remaining section.

In a system open-loop evaluation level, it is enough to consider only the total discrepancy
of the SOC and fuel consumption at the end of a trip to be evaluated. However, since the
essential purpose of the control-oriented model is for numerical optimization, the regression
model’s inaccuracies would accumulate and end up significantly changing the shape of the
Hamiltonian, which might lead to numerical difficulties and unexpected optimization results.
For an arbitrary combination of regression models for battery, engine, and electric motors, it
is not guaranteed that the power-split Hamiltonian shape would be close to that of the actual
model. The power-split Hamiltonian resulting from the actual model is unique in that it has
several relatively stationary local minima (deep valleys). However, based on my observation,
the Hamiltonian obtained with regression models often has very shallow valleys, making it hard
to warm-start a local Newton-type solver. Worse still, for some combinations of regression
models, the local minima are non-stationary, making it hard to do effective warm-starts.

To illustrate the numerical difficulties in the instantaneous Hamiltonian minimization with
regression models, Some illustrative examples of Hamiltonian sweep for a given set of state
and co-state are presented, shown in Fig. A.8. The regression models used are obtained after
different NN set-ups for electric motors and fuel rate approximations. A particular combination
producing the closest local engine torque and speed minimizers to those with the actual maps
is selected. As clearly seen from Fig. figs. A.8b, A.8d and A.8f, the local Hamiltonian valleys
with regression models are much shallower compared to those with the actual model. As a
result, the step size of the Newton step has to be adequately reduced.

The convergence of single shooting iterations with regression models is much slower than
those with the actual model. The step size when choosing the vehicle level control needs to be
much smaller. As a result, the number of single shooting iterations increases significantly for
the control input rk to be convergent.

A.3.2 One Cycle Comparison of Different Optimization Strategies with
Regression Models

The time-domain response of the considered scenario is shown in Fig. A.9a. The initial
battery SOC is SOC0 = 0.85, and the desired terminal SOC is SOCf = 0.15. The first
subplot presents the battery SOC trajectories. The second subplot presents the cumulative
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(a) Comparison of Hamiltonian contour, 1. (b) Comparison of Hamiltonian surface, 1.

(c) Comparison of Hamiltonian contour, 2. (d) Comparison of Hamiltonian surface, 2.

(e) Comparison of Hamiltonian surface, 3. (f) Comparison of Hamiltonian surface, 3.

Figure A.8: Selective Hamiltonian comparisons.

fuel consumption trajectories (including cranking fuel). The third subplot presents cumulative
cranking fuel consumption trajectories. The fourth subplot presents the resulting velocity
trajectories. Note that in all the simulations, the actual terminal SOC is adequately close to
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the desired SOC terminal SOC SOCf . To make Fig. A.9a readable, only selective simulations
are presented. The full evaluation of percentage fuel consumption reduction with different
optimization schemes is presented in Fig. A.10.

As clearly observed in Fig. A.9a, a 26% reduction in total fuel consumption can be achieved
with co-optimization in the absence of additional drivability constraints. By comparison, the
acceleration minimization followed by power-split optimization reaches slightly more than half
of the fuel consumption reduction potential. All the remaining fuel consumption results with
co-optimization with drivability constraints fall between the sequential optimization and the full
co-optimization. Notably, the fuel economy benefits with co-optimization with an additional
acceleration penalty where Q = 5, 10 degrades to a level similar to the sequential optimization
(acceleration minimization followed by power-split optimization). It is also evident by the
similarity of the time-domain responses between the two simulations. The fuel consumption
results are consistent with those obtained with the actual model.

Similarly, it is also observed that the considerable potential in fuel economy with pure
co-optimization is realized through frequent switches between the EV and HV modes. In
particular, the co-optimization without additional drivability constraints consumes significantly
more cranking fuel than any other method, as shown in the third subplot in Fig. A.10. As the
requirement on the drivability becomes more stringent in co-optimization, the resulting velocity
trace becomes smoother, which leads to a reduction in the total cranking fuel.

A.4 Summary

This chapter first revisits the control-oriented model for the SOC dynamics used for the
control design, simulation, and analysis throughout this thesis by providing modeling details.
First, each critical component is modeled separately. Afterward, several simplifications are
made, leading to a control-oriented model used throughout this thesis.

Afterward, to make all the simulation results in this thesis reproducible, efforts are made in
obtaining regression models to replace the actual models. First, polynomial regression is used
to approximate the battery open circuit voltage (OCV) and internal resistance. Neural network
models are used to approximate power losses of generator (MG1) and motor (MG2), and the
fuel rate. The open-loop response with the regression models is compared with the actual
model for a given control input trajectory. The regression models are then used to perform
closed-loop simulations. The total fuel economy and drivability trends with the regression
models are consistent with those with the actual models.

In trying to approximate static maps by smooth regression models, it is found that the
smoothness induced by the regression models could cause difficulties in both the instantaneous
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(a) Comparison of open-loop simulations with the
actual model and the regression models.

(b) Comparison of open-loop simulations with the
actual model and the regression models.

Figure A.10: Comparison of open-loop simulations with the actual model and the regression
models.

Hamiltonian minimization and the convergence of the single shooting iterations. Therefore, it
is of interest to investigate and quantify the contribution of the map smoothness on the total
fuel economy and numerical difficulty as future work.
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APPENDIX B

An H1 Approach for Velocity Optimization

Most of the existing work on eco-driving focuses on the design of MPC controllers for
longitudinal vehicle dynamics (also the case when the sequential optimization discussed in
Chapter 4 is converted into a receding horizon implementation), which is an optimization-
based control strategy [112, 113, 114]. Essentially, the optimization based control of vehicle
longitudinal dynamics typically requires

1. an optimization problem to be solved. In the acceleration minimization setting presented
in the previous section, it requires to solve a QP,

2. the prediction of the lead vehicle’s trajectory within the considered horizon, and

3. the discretization of the continuous-time dynamics, which necessitates balancing between
the computational complexity and accuracy of the prediction model.

In the online (MPC) implementation, both the computation complexity and the prediction
accuracy will affect the performance of the optimization-based controller. Inevitably, the lead
vehicle’s prediction as a disturbance can affect energy efficiency and constraint satisfaction.

Cooperative adaptive cruise control (CACC) as an extension of the adaptive cruise control
(ACC) functionality, has shown its potential to significantly enhance road safety, improve
highway utility, and increase traffic efficiency [115]. As CACC system is employed to ensure
short inter-vehicle distances, disturbance amplifications in the upstream direction may occur.
For this reason, disturbance attenuation, also known as string stability, is an essential issue for
vehicle platoon control as well as the system stability [116]. It is well-known that robust control
methodologies can effectively deal with modeling uncertainties and external disturbances [117].
As has been widely recognized, the linear consensus control and distributed robust control
techniques enable insightful theoretical analysis and provide guarantees of string stability [99].
The requirements of string stability, robustness, and tracking performance are systematically
measured by the H1 norm [115]. Although the scope of interest of this thesis is on the
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control of a single vehicle, the effectiveness of the H1 synthesis technique demonstrated in the
vehicle platooning control motivates the development of purely linear feedback control for the
eco-driving of a single vehicle in this section.

Most of the existing platooning control work employs H1 synthesis for robust and string
stability [118, 116, 119, 120]. In this chapter, a H1 controller is developed for eco-driving
in the presence of a lead vehicle with acceleration as the input. The controller is designed to
balance the allowable following distance gaps and passenger comfort requirements. Different
from the CACC design, the objective is not to track the desired time-headway accurately.
Instead, a desired time-headway tracking objective is incorporated to replace the position
constraints explicitly considered in the MPC controller. The lead vehicle’s speed is viewed
as a disturbance, with the controller designed to minimize its influence on the time-headway
tracking, thus constraint violation. Meanwhile, the acceleration is considered as an indication
of passenger comfort. The controller is designed to minimize the impacts from both the lead
vehicle’s speed as disturbance and the internal dynamics on acceleration to prompt driving
smoothness. Although several works on (adaptive) cruise control [121, 122, 123, 124] adopted
a H1 approach, their focuses are still on stability and tracking either a desired time-headway
or a desired speed. The uniqueness of the work presented in this chapter is that it shifts the
explicit position constraint requirement into an implicit consideration via the time-headway
tracking objective. Besides, the quadratic acceleration cost in MPC problem is reformulated in
the H1 design. It is considered as a design objective for the states and disturbance to impact
the acceleration minimally.

B.1 Design of Different Velocity Following Controllers

B.1.1 An H1 Control Design

A linear state-feedback controller will be designed to track a desired time headway ⌧s

and smooth the velocity trajectory simultaneously. The dynamics of the vehicle-following
subsystem are reformulated as

ẋ = Ax+Buu+Bww (B.1a)

zw = Cx,w(⌧s)x+Du,wu (B.1b)

zu = Cx,ux+Du,uu (B.1c)

where x = [�d v]T = [sl � s � �d0 v]T are the distance gap between the lead and ego
vehicle, the velocity of the ego vehicle, respectively. �d0 denotes the initial distance gap
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between the lead vehicle and the ego vehicle. s and sl are the ego and lead vehicle’s position,
respectively. u = a is the acceleration of the ego vehicle, and the disturbance w = vl is the
lead vehicle’s velocity. Two sets of outputs are considered to include disturbance-to-output
and state-to-output properties, respectively. zw = [�d� ⌧sv a]T with ⌧s 2 [⌧min, ⌧max] includes
the desired time-headway tracking and the acceleration, and zu = a includes the acceleration.

A =

"
0 �1
0 0

#
, Bu =

"
0

1

#
, Bw =

"
1

0

#
, Cx,w(⌧s) =

"
⇢1 �⇢1⌧s
0 0

#
, and Du,w =

"
0

⇢2

#
, where

⇢1 and ⇢2 are tunable weights on time headway tracking or acceleration. Cx,u =

"
0 0

0 0

#
, and

Du,u =

"
0

⇢3

#
, where ⇢3 is a tunable weight on acceleration. ⇢1–⇢3 are first chosen to be the

inverse of the maximum distance gap and acceleration, and are then tuned such that no violation
of (B.7e) and (B.7d) is observed on several test trips.

Remark 11. Note that although here the control-oriented model is assumed to be accurate, the
model inaccuracy could be included in the H1 control design if, for example, the uncertainty
terms can be represented by polytopic linear differential inclusions [117].

A linear state-feedback gain K is considered so as to minimize the impact of the exogenous
disturbance w (the lead vehicle’s velocity) on the output zw including the time-headway tracking
and the acceleration. A state-feedback gain K is pursued such that the L2 gain

sup
||w||2=1

||z||2 = sup
||w||2 6=0

||z||2
||w||2

(B.2)

of the closed-loop system is less than a specified number �. The L2 gain for LTI systems is
equal to the H1 norm of the corresponding transfer matrix. There exists a state-feedback gain
K such that the L2 gain of an LTI system is less than �1, if there exist K and Q > 0 such that,

"
(A+BuK)Q+Q(A+BuK)T +BwBT

w
⇤

(Cx,w(⌧s) +Du,wK)Q ��2
1I

#
 0 (B.3)

In addition, the resulting acceleration a is also affected by the state x. For the driving
smoothness objective, an additional linear matrix inequality (LMI) condition is considered

"
(A+BuK)Q+Q(A+BuK)T ⇤

(Cx,u +Du,uK)Q ��2
2I

#
 0, (B.4)

such that the output energy
R1
0 zT

u
zu  �2.
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With �d0 being the initial distance gap between the lead and the ego vehicle, the initial
condition x(0) can be assumed to be zero. Consequently, the acceleration constraints ||u|| 
amax can be enforced through the following LMI

"
Q Y T

Y a2maxI

#
� 0 (B.5)

The underlying optimization to be solved is

minimize �1 + �2

subject to (B.3), (B.4), (B.5), 8⌧s 2 co{⌧min, ⌧max}. (B.6)

B.1.2 Online Acceleration Minimization Formulation

The MPC problem to be solved at each time instant t, with a prediction horizon Np is
formulated as

minimize
Np�1X

k=0

a2
k|t�t (B.7a)

subject to xk+1|t = Adxk|t +Bdak|t, (B.7b)

the acceleration constraints

�amax  ak|t  amax (B.7c)

the minimum time-headway (⌧min) constraints

⌧minvk|t +�dmin  sl
k|t � sk|t ��d0, (B.7d)

where and the maximum time-headway (⌧max) constraints

⌧minvk|t +�dmax � sl
k|t � sk|t ��d0. (B.7e)

�dmin  �dmax to guarantee a small margin during standstill. The vehicle dynamics (B.7b) in

prediction is formulated in discrete-time, with Ad =

"
1 �t

0 1

#
, Bd =

"
1
2�t2

�t

#
. The velocity

smoothness is the only cost as in (B.7a), whereas the time-headway requirements (B.7d),(B.7e)
are enforced explicitly as constraints. The time-headway tracking requirement considered with
H1 formulation is eliminated with the MPC formulation, allowing the controller to better
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exploit the allowable distance band to improve the driving smoothness.

Remark 12. Note that there is no terminal cost in the above MPC formulation (B.7a), as pointed
out in [112], a MPC formulation without terminal penalty or constraints risks to be myopic in
many situations. As investigated in [49], for a conventional internal combustion engine vehicle,
a 20-sec prediction horizon is needed with perfect prediction in the absence of a terminal cost
in the MPC formulation to achieve a fuel economy comparable to the optimal offline result.
However, a sensational terminal cost is not intuitive in the absence of a quadratic term on the
state. Although a terminal cost design was presented in [112] penalizing the terminal velocity
and position, its design is rather heuristic. The optimality gap between the proposed terminal
cost and the optimal form of the terminal cost is unclear. An advantage of the proposed H1

control design is that it provides the optimal cost-to-go matrix P = Q�1 as a by-product when
solving the LMI. It is therefore convenient to convert the H1 control design into an MPC
formulation with the optimal cost-to-go xTPx.

B.1.3 Discussion on the Design Difference

One immediate advantage with the H1 controller is that it does not require any information
from vehicle-to-vehicle communication but from real-time onboard sensors, which is relatively
standard on modern vehicles. However, the H1 control design necessities compromising the
driving smoothness to the time-headway tracking, as position constraints (B.7d) and (B.7e)
are only handled implicitly through a properly tuned weight ⇢1 on the time-headway tracking.
Besides, particular realizations of the lead vehicle’s trajectories are not accounted for in the H1

control design. Instead, the controller is designed to minimize the influence of the lead vehicle’s
velocity on the performance metric under all frequencies. Since the controller is designed to be
only reactive, there will be inevitable degradation in driving smoothness compared to the pure
acceleration minimization.

By comparison, the MPC design, with only the acceleration minimization objective, re-
moves the conservativeness introduced by time-headway tracking. The advantage of MPC in
handling state constraints allows the controller to maximize the utilization of the distance band
to achieve extremely smooth driving. Moreover, with prediction, the controller acts proactive,
thus eliminating the performance degradation with the H1 controller. However, several issues
arise in the MPC controller, making it not necessarily a better approach than the H1 controller
under all circumstances.

First, the MPC controller needs an optimization problem (B.7) to be solved online at each
time instant due to the time-varying constraints (B.7e) and (B.7d). Albeit fast and reliable QP
solvers [125], any cost increase due to the use of high-performance processors refrains the
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application of MPC in automotive systems except in very few cases. Second, as investigated
in [49] the performance of the MPC controller is impacted by the prediction horizon. Admit
that the performance improves with a larger prediction horizon; the computation cost might
no longer be negligible. Moreover, (B.7) requires prediction of the lead vehicle’s trajectory.
A reasonable prediction accuracy necessitates vehicle-to-vehicle communication and is not
available with only ADAS. With insufficient CAV penetration, it might not be possible to predict
or hard to get a high-quality prediction. Prediction inaccuracy would make increasing Np in
(B.7) less beneficial. Moreover, as prediction is used in formulating the position constraints,
prediction inaccuracy could lead to a constraint violation, even if (B.7) is solved reliably. The
rear-end collision will be a severe consequence. Additional design is needed to cope with the
constraint violation caused by prediction inaccuracy. The performance degradation caused by
a short prediction length, prediction inaccuracy, and the extra efforts on constraint violation
might offset the benefits with the MPC controller.

Since the ultimate goal of eco-driving is to improve energy or fuel efficiency, the comparison
of different eco-driving controllers only becomes instructive when particular vehicle powertrains
are included. The performance of H1 and MPC evaluated together with specific powertrains is
the focus of the next section.

B.2 Simulation Results and Discussions

In this section, first, the performance of the H1 is compared with the MPC controller in
terms of trip energy of the resulting trajectories. Afterward, different types of powertrains
are included to evaluate the energy/fuel consumption. Specifically, vehicles with two types of
powertrains are considered

1. pure EVs, which are single energy source vehicles,

2. and (P)HEVs, where both the engine and electric motors are used and thus have two en-
ergy sources. The initial and terminal SOC are required to be the same in all simulations.

The torque demand to be satisfied by the powertrain is calculated with (4.5) from the resulting
velocity and acceleration trajectories. Three prediction methods are considered in the MPC
implementation

1. constant velocity prediction: The lead vehicle’s velocity is assumed to be its current
value vl

t
and held constant within the prediction horizon.

2. constant acceleration prediction: The lead vehicle’s acceleration is assumed to be its
current value al

t
and held constant within the prediction horizon. Since a constant non-
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zero acceleration could lead to a negative or very large positive velocity, the resulting
speed is saturated to zero or a maximum allowable value.

3. perfect velocity prediction: The lead vehicle’s velocity within the prediction horizon
is assumed to be its exact velocity trace in the next Np-step. This corresponds to the
idealized case with V2V communication technique.

The same Ann Arbor trip set is considered to generalize the performance comparison. The
lead vehicle is assumed to drive exactly these trips, whereas the ego vehicle’s driving traces
are obtained either with H1 or MPC controller. The horizon length is chosen to be 10-sec to
match those enabled by the existing velocity prediction algorithms [126, 2].

B.2.1 Trip Energy Comparison

Figure B.1a quantifies the trip energy distributions resulting from the H1 and MPC con-
troller prior to including any specific powertrain. The average total trip energies are 1.64, 1.65,
1.67, and 1.61 kWh, the average positive trip energies are 2.50, 2.43, 2.28, and 2.45 kWh , the
average negative trip energies are�0.86, �0.88, �0.61, and�0.84 kWh for accmin-MPC with
constant velocity, constant acceleration and perfect prediction, and H1 controller, respectively.

From Fig. B.1a(b) and (c), it can be seen that the accmin-MPC, under ideal prediction,
significantly reduces both positive and negative trip energy as expected, due to its purely
velocity smoothing objective. By comparison, both the positive and negative trip energy
increases with the H1 controller, due to its time-headway tracking requirement. An important
observation is that smoothing the velocity by acceleration minimization is not equivalent to
the minimization of the total trip energy. Although the accmin-MPC with perfect prediction
smooths the driving trace most significantly, its total trip energy is not statistically smaller
compared the results with H1 controller, as evident from the Fig. B.1a(a). How the difference
in the trip energy could affect the total energy or fuel efficiency is powertrain-dependent, and is
the focus of the next section.

B.2.2 Energy/Fuel Consumption with Pure Electric and Hybrid Powe-
trains

Since the purpose of the eco-driving controller design via velocity smoothing is to improve
the energy or fuel efficiency, in this section, two specific electrified powertrains1 are considered

1The considered powertrain is the same as used in this thesis, which can either run in a pure EV mode with
only electric motors or a HV mode, with both engine and electric motors.
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(a) Statistical comparison of trip energies among
different control strategies: (a) total trip energy, (b)
positive trip energy, and (c) negative trip energy.

(b) Statistical comparison of resulting battery en-
ergies among different control strategies: (a) total
battery energy, (b) total battery discharge energy,
(c) total battery charge energy, and (d) the actual
terminal SOC at the end of the trip.

Figure B.1: Comparison of resulting vehicle and battery energy for several trips.

to evaluate the driving traces obtained from the two different eco-driving controllers. To
better compare the results, the energy/fuel efficiency is evaluated in an offline manner. The
powertrain-level controller is not running together with the eco-driving controller but rather in
an ad hoc manner, assuming the entire eco-driving trace is known.

First, the powertrain if forced to operate in a pure EV mode, effectively making the vehicle
an EV. The total electrical energy is thus the performance metric. The initial SOC in all EV
simulations are set to 0.85. The average total battery energies are 2.04, 2.00, 1.98, and 1.95

kWh, the average positive battery energies (discharge) are 2.76, 2.68, 2.51, and 2.70 kWh,
the average negative battery energies (charge) are �0.72, �0.68, �0.54, and �0.75 kWh, and
the average terminal SOC are 0.603, 0.609, 0.612, and 0.614 for accmin-MPC with constant
velocity, constant acceleration and perfect prediction, and H1 controller, respectively. A higher
terminal SOC is an indication of a lower total battery usage. Through slightly compromising
passenger comfort, the total battery usage reduces with the H1 controller compared to the
ideal case accmin-MPC under the considered prediction horizon.

An illustration of the time-domain responses over different periods with different controllers
on a particular trip is shown in Fig. B.2a. As observed from the acceleration and velocity

179



comparisons, the accmin-MPC with perfect prediction achieves the smoothest driving as
expected. Under ideal forecast, it maximizes the allowable distance gap to generate an extremely
smooth trajectory. The H1 controller achieves the second smoothest driving, as the position
constraints are handled implicitly with the time-headway tracking objective, thus compromising
the driving smoothness objective. Except for the constant velocity prediction case, all the
results are shown to attenuate the lead vehicle’s acceleration (smoother driving), as seen from
Fig. B.2a(g)–(i). The accmin-MPC with constant velocity prediction is the most aggressive
because the controller could force the ego vehicle to converge to the lead vehicle’s current
speed within the prediction horizon.

(a) Performance comparison among different con-
trol strategies over different periods: (a)–(c) battery
SOC, (d)–(f) velocity, and (g)–(i) acceleration

(b) Statistical comparison of the resulting fuel con-
sumption among different control strategies: (a)
total fuel consumption distribution, and (b) trip-by-
trip fuel consumption.

Figure B.2: Comparison of time-domain responses and fuel consumption with a hybrid power-
train.

Next, the fuel efficiency of a PHEV/HEV with power-split optimization is compared,
representing the best achievable fuel efficiency. The power-split optimization is performed with
the method described in [3, 31]. The initial SOC is 0.4, and the terminal SOC is 0.35.

The average total fuel consumption are 355, 345, 337 g for accmin-MPC with constant
velocity, constant acceleration, perfect prediction, and 334 g for H1 controller, respectively. It
can be seen that the best achievable performance in fuel economy for a (P)HEV with a H1

eco-driving controller is as good as what can be achieved with an accmin-MPC controller with
a 10-sec perfect prediction.

B.2.3 Distance Gap Constraints

Figure B.3a compares the vehicle-following behaviors resulting from the H1 and MPC
controller. �d is the actual distance gap between the ego and its immediate preceding vehicle.
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(a) Statistical comparison of distance gaps result-
ing different control strategies.

(b) Comparison of distance gap from the lead
vehicles:(a) MPC w/ constant velocity prediction,
(b) MPC w/ constant acceleration prediction, (c)
MPC with perfect prediction, and (d) the pro-
posed H1 controller

Figure B.3: Comparison of resulting distance gaps.

�dmin denotes the minimum allowable distance gap (1-sec time-headway) for avoiding rear-end
collisions. �dmax is the maximum allowable distance gap (3-sec time-headway) for avoiding
cut-ins from adjacent lanes. �ddesired represents the desired distance gap (2-sec time-headway).
The remaining margins to the minimum and maximum allowable distance gaps and the absolute
gaps to the desired time-headway are presented.

No constraint violation is observed when the accmin-MPC is applied with a perfectly
predicted lead vehicle’s trajectory. However, in the presence of prediction inaccuracy, accmin-
MPC could lead to violations of either maximum or minimum distance gap requirement,
as evident by Fig. B.3a(a) and (b). By comparison, the inherent time-headway tracking
requirement guarantees the constraint satisfaction on all the considered trips.

An illustration of the distance gap behaviors in time-domain with different controllers on a
particular trip is shown in Fig. B.3b. Constraint violations are observed in the MPC controller
with constant velocity prediction, as seen from Fig. B.3b(a). An important observation is that
the accmin-MPC, with perfect prediction, maximizes the utilization of the allowable distance
band, as shown in Fig. B.3b(c). The margins often are enlarged when the MPC is performed
with constant acceleration prediction, as seen from Fig. B.3b(b). By comparison, there are
always small distance margins left with the H1 controller, as shown in Fig. B.3b(d).
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