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ABSTRACT

Turbulent flows found in aerodynamics, propulsion, and other energy conversion sys-

tems pose an inherent computational challenge for extensive predictive simulations.

Over the last few decades, a statistical approach for reduced-order modeling of tur-

bulence has become the dominant framework for prediction. However, there exists a

range of problems that the statistical approaches are ill-suited for – problems driven

not only by the chaoticity in the flow, but also by uncertainty in operating, boundary,

or initial conditions. Since tails of the initial flow field distribution may drive transi-

tion events, there is a need to develop techniques that do not explicitly rely on the

statistical representation of unresolved quantities.

The uniqueness of this work lies in the development of reduced-order models that

can track distinct trajectories of the dynamical behavior of reacting turbulent flows

without invoking ad-hoc assumptions about underlying small-scale turbulent motions

or flame structure. Treatment of turbulent flows as finite-dimensional dynamical

systems opens new paths for the development of a reduced-order description of such

systems. For certain types of dynamical systems, a property known as the inertial

manifold (IM) is known to exist, which allows for the dynamics to be represented in

a sub-space smaller than the entire state-space. The primary concept in approximate

IM (AIM) is that slow dominant dynamical behavior of the system is confined to

a low-dimension manifold, and fast dynamics respond to the dynamics on the IM

instantaneously. Decomposition of slow/fast dynamics and formulation of an AIM

is accomplished by only exploiting the governing equations. Based on this concept,

a computational analysis of the use of IMs for modeling reacting turbulent flows is

xviii



conducted.

First, the proposed modeling ansatz has been investigated for canonical turbulent

flows. An AIM is constructed for the one-dimensional Kuramoto-Sivashinsky equation

and the three-dimensional Navier-Stokes equations to assess different aspects of AIM

formulation. An a priori study is conducted to examine the validity of AIM assump-

tions and to obtain an estimation of the inertial manifold or attractor dimension.

Then a reduced-order model is developed and tested over a range of parameters.

Second, the theory of IM is extended to the development of reduced-order models

of turbulent combustion. Unlike pre-generated manifold-based combustion models,

here the combustion trajectory is tracked in a low-dimensional manifold determined

in-situ without invoking laminar flame structures or statistical assumptions about

the underlying turbulent flow. The AIM performance is assessed in capturing flame

behaviors with varying levels of extinction and reignition.

xix



CHAPTER I

Predictive Simulation of Turbulent Reacting Flows

Environmental concerns necessitate the development and design of efficient and ro-

bust modern combustion systems. In energy conversion and propulsion systems, the

combustor is the most critical component operating in fragile conditions imposed by

the system’s environment which are sometimes unfavorable for combustion [5]. Com-

bustors utilize turbulent flows as turbulence enhances transport and mixing of matter,

momentum, and heat considerably. As a result, the study of turbulent combustion

– a multi-physics process involving mixing, chemical reaction, different heat transfer

mechanisms, and phase change – has become a cornerstone in aerospace and propul-

sion science. The dynamics of these processes reside in a wide range of length and time

scales, and resolving their entirety is essential to capture their interaction. Figure 1.1

depicts such interactions in a model aircraft combustor. For flame stabilization, the

combustor is equipped with a swirling airflow, and a secondary air injection is used to

control emissions. Interaction of swirling flow and side jets creates strong recirculation

zones with negative axial velocity in the middle of the combustor. Isolation of flow

inside recirculation zones increases the residence time of the flow inside the combustor.

This larger residence time then enables soot formation, which is intricately linked to

the turbulence-chemistry interactions in turbulent combustion [1].
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Figure 1.1: Numerical simulation of a model aircraft combustor with swirler and
secondary jets. White lines show streamlines [1].

Combustors interact with other components located upstream and downstream

in the flow path and experience numerous operating conditions in their lifetime.

Reacting flows are governed by nonlinear partial differential equations (PDE) that are

sensitive to initial and boundary conditions. A comprehensive study of all possible

operating conditions needs numerous simulations. However, characteristics of practical

reacting flows impose an inherent computational challenge [6]. So far, the majority of

computational analyses of combustion systems have been limited to the design process

focusing on specific concerns such as efficiency, emission reduction and strength of

materials [7]. An outcome of this focus is that current frameworks are geared towards

predicting statistically stationary flows, essentially systems operating at specific design

conditions. However, there is a bigger gain to be made by analyzing these complex

devices when deviating from the normal behavior, which the statistically stationary

formulations by design neglect.
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1.1 Transient events

Combustion devices are dominated by chaotic dynamics of turbulence, where small

perturbations can grow exponentially leading to different dynamical behavior, includ-

ing catastrophic failure. There exists a range of problems for which assumptions

regarding statistical stationarity are not strictly valid. This includes transient prob-

lems such as inlet unstart in scramjets [8, 9] or high-altitude reignition [10, 11], which

deal with transition events driven partially by the chaoticity in the flow but are ul-

timately influenced by uncertainty in operating, boundary, or initial conditions. In

these problems, a well-developed turbulent flow may not be present and such an

assumption may lead to errors in predicting the probability of transition events. Since

tails of the distribution may drive transition events, there is a need to develop or ex-

plore techniques that do not explicitly rely on the statistical representation of reacting

turbulent flows [7, 12].

Intermittent interactions of turbulence and combustion can cause such transient

events, veering the device from its design point. Flame flashback in stationary gas

turbines is one example of such events. Lean premixed combustion in gas turbine

engines can control low emissions of NOx. However, swirling flow or a bluff body

should be used to stabilize the flame and prevent flame blowout. Interaction of

chemistry and fluid dynamics can cause an upstream flame propagation into the

fuel injection nozzle, namely flame flashback. Flashback has an adverse effect on

combustor operation and the durability of the burner. Due to the complex interaction

of combustion and turbulence, the flashback is not fully understood; but various

mechanisms have been found responsible for flame flashbacks such as combustion

instabilities and intermittent low-momentum fluctuations of the core flow [13–15].

In general, a flashback occurs when burning velocity exceeds the flow velocity at

least locally. For instance, in boundary layer flashback, the flame takes advantage

of the low-momentum near-wall regions to creep upstream into the mixing chamber.
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Figure 1.2 shows the experimental investigation of boundary layer flashback of swirling

turbulent lean-premixed methane-air flames in a model combustor featuring a mixing

tube with center body [2]. Here, the flame front, illustrated by chemiluminescence

(blue light), overcomes near-wall low-momentum flow and propagates into the mixing

chamber. This process can be triggered by increased fuel to oxidizer ratio, which

can be due to the operator’s decision about fuel rate or by large fluctuations of the

transient airflow. The long presence of flame inside the mixing tube causes severe

damages to the combustor.

Figure 1.2: Chemiluminescence images of flame flashback in a premixed combustor
with center body [2]. Time advances from left to right.

In most cases, unexpected disturbances are imposed by the system’s environment

and cannot be controlled. The designer’s concern is to know if the system will recover

from the transient event back into the nominal operating condition, or if it will diverge

into another abnormality. For instance, in a flame flashback caused by fluctuations of

incoming airflow, the flame can be pushed out of the flashback by an increased flow

rate leading to a flame blowout. Figure 1.3 illustrates another intermittent transient

event in a lean swirl premixed-combustor, where flame fluctuates intermittently be-

tween two states, one attached to the nozzle and the other detached from the nozzle.

This intermittency may cause a transition into the detached flame state to eventually

lead to flame blow-off [16]. While the reason behind flame fluctuations between the

attached and lifted states is not clearly understood, it is hypothesized that perturba-
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tions in the boundary conditions of the incoming flow may be the root cause, which

further emphasizes the need to deviate from traditional statistical analysis [17]. Such

perturbations can cause localized extinction in the flame base, leading to asymmetry

in the aerodynamic stabilization of the flame and finally a flame lift-off.

Figure 1.3: Intermittent oscillation of flame in a swirl premixed burner. Flame
topology is shown by OH PLIF contours. Left: flame attached to the
combustor nozzle. Right: flame detached from the combustor nozzle.
Based on experiments of [3] and visualization of [4].

To prevent and control these events, combustion devices are overdesigned. Limited

knowledge about triggers of transient events prevents revolutionary design practices

in propulsion and energy conversion systems. Full-scale numerical simulation of these

systems plays a vital role in the prediction of such events. However, an extensive

analysis of all possible operating conditions is computationally expensive and infeasible.

Since these systems are dominated by turbulent flows, the focus is on understanding

and predicting turbulence.
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1.2 Computational challenge

Turbulent flows found in nature and industrial applications are unsteady, irregular,

random, and unpredictable. Turbulence is characterized by the significant variation

of the velocity field in space and time without any pattern or periodicity. First

visualizations of unsteady three-dimensional turbulent structures date back to more

than five hundred years ago by Leonardo da Vinci, depicting turbulent eddies over

a range of scales. However, a mathematical description of energy cascade from large

eddies to smaller ones was provided by Richardson in the 1920s [18].

Turbulent flows consist of eddies of different sizes with various lengths and time

scales. The large energy-containing eddies become unstable and break down into

smaller eddies, and smaller eddies undergo the same process, turning into even smaller

eddies. This process transfers kinetic energy from large scales into smaller scales until

eddies are small enough that molecular viscosity dissipates the kinetic energy.

The range of eddy sizes in turbulence is controlled by the balance of inertial and

viscous forces, which is quantified by the Reynolds (Re) number. As Re increases and

inertial forces become more dominant, the range of scales increases. The large scales

of turbulence are influenced by particular geometrical features of the flow. In 1941,

Kolmogorov hypothesized that geometric properties of large eddies vanish through

energy cascade, and small scales are homogeneous, isotropic, and universal in different

flows. Kolmogorov’s hypothesis states that at very high Re numbers, the smallest scale

of turbulence, namely Kolmogorov scale η, is determined by the rate of energy transfer

from large scales and molecular viscosity. Eddies with length scales of the same order

as η are stable and get dissipated by viscosity. Then, Kolmogorov parameterized

statistical properties of intermediate scales between dissipation range and large scales

with only the rate of energy transfer [19, 20]. This intermediate range of scales is

called the inertial subrange.

Energy transfer between different scales is due to nonlinear dynamics of the fluid
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flow which is governed by the Navier-Stokes equations (NSE). This nonlinearity

is the source of the multi-scale nature of turbulence. The inherent assumption in

Kolmogorov’s description of energy cascade is the local equilibrium of kinetic energy at

the interface of eddies with different sizes. In general, it is assumed that smaller eddies

adapt quickly to maintain dynamic equilibrium with the large scales production of

kinetic energy. This local equilibrium interaction is assumed for eddies in inertial and

dissipation ranges. Kolmogorov’s theories provide valuable insight into the statistical

properties of turbulent flows at very high Re numbers. However, it is now known

that even for high Re, small scales are found to be anisotropic [21], and energy

transfers in both directions among the scales at rates different from Kolmogorov’s

estimation [22, 23]. Additionally, Kolmogorov’s theories of turbulence cannot predict

higher-order statistics of turbulent flows which can expose intermittent effects and

rare events [24]. Of these limitations, the latter is critical in engineering applications

as discussed in Sec. 1.1. Ultimately, classic theories of turbulence are incapable of

capturing such chaotic dynamics characteristic of intermittency and rare events. As

such, a paradigm shift is essential for the prediction and control of turbulence in

engineering applications.

Navier-Stokes equations describe turbulent motions at all length and time scales

under any initial and boundary conditions. However, the NSE solution cannot be

parameterized for turbulent flows. Direct methods solve these equations using com-

putational fluid dynamics (CFD) techniques. Direct numerical simulation (DNS) of

turbulent flows encompasses the entirety of temporal and spatial scales down to the

Kolmogorov scale. For practical high Reynolds number flows the computational cost

of DNS scales with Re3 [25]. Turbulent combustion introduces more challenges to

direct methods. Combustion extends the range of scales further; reaction zones can

be smaller than the Kolmogorov scale and higher resolution computational grids are

needed to capture them. Combustion of practical hydrocarbon fuels involves several
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hundred and sometimes thousands of species and chemical reactions [26]. Timescales

of these chemical reactions range from nanoseconds to minutes resulting in a stiff

system of differential equations [27, 28]. Although advancements in high-performance

computing have made invaluable progress in understanding the physics of canonical

turbulent flames, DNS of practical reacting flows for extensive operating conditions

is intractable due to its escalating computational cost. Reduced-order models (ROM)

are essential to alleviate the computational cost of numerical simulation of realistic

systems.

The primary ROM in the literature have been developed for turbulent flows, and

then extended and modified for combustion systems. Among such methods, coarse-

graining approaches are the most implemented because of their ability to resolve

dominant motions of turbulent flows directly. These approaches use reconstruction

and modeling techniques to account for small scales dynamics. Such models are de-

veloped based on turbulence theory and statistical assumptions on the small-scale

characteristics. These assumptions are often made in an ad-hoc manner via Kol-

mogorov’s theory of turbulence extended to turbulent flames, even though turbulence

theory is valid only in the incompressible constant density cases. The presence of

chemical reactions violates the validity of these assumptions [29, 30]. For instance,

these models are developed assuming a forward cascade of energy between the scales,

but combustion takes place at the molecular scales, and recent studies have shown a

backscatter of energy to the larger scales [31, 32]. Moreover, these approaches provide

a conditional statistical representation of the system, and they cannot track definite

trajectories of the system which may lead to extreme events.

In the field of turbulence, there has been a long history of treating the flow as

a chaotic dynamical system [33–35]. Any fluid system described by a set of PDEs

can be formulated as a finite-dimensional dynamical system after appropriate spatial

discretization. This approach to modeling complex systems has been particularly
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successful in weather prediction [36], as dynamical systems-based methods provide

access to properties about events that are otherwise difficult to assess using statistical

tools. In certain dynamical systems, it is hypothesized that the trajectory followed

by the flow in the full-dimensional system is confined to a low-dimensional subspace,

known as the attractor of the system. There have been many attempts to characterize

the size of this subspace [33–35, 37, 38]. While theoretical scaling suggests that

the attractor dimension will increase as Ren, where n > 2 in statistically stationary

turbulence [39], more recent numerical studies have concluded that the attractor may

be of lower dimensions. For instance, application to the Sandia flame series [38]

showed that the dimension is much smaller than the degrees of freedom generated by

discretization. In this dissertation, a different approach is used to approximate the

attractor of reacting flows by utilizing the notion of inertial manifolds. A reduced-

order model is developed for turbulent combustion which can track dynamics of the

system on a lower-dimensional subspace without invoking ad-hoc assumptions about

the underlying physics of turbulent flames.

1.3 Scope of the dissertation

With the above background, this dissertation investigates the applicability of inertial

manifold theories in the development of predictive reduced-order models for turbulent

reacting flows. First, a reduced-order modeling approach is constructed for reacting

flows described as dynamical systems. Second, the proposed model is studied for

turbulent flows and turbulent combustion. The dissertation is organized as follows:

Chapter II: In the next chapter, state-of-the-art approaches in modeling turbulence

and turbulent combustion are reviewed. In particular, the limitations and successes of

current models are discussed with a focus on transient events. In turbulence modeling,

modeling efforts in coarse-graining approaches are reviewed. Then, prevalent methods

in turbulent combustion models are discussed.
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Chapter III: In this chapter, the theory of inertial manifolds is introduced, and

properties of dissipative dynamical systems are discussed. Then, a general description

of reacting flows in a dynamical systems framework is presented. Based on the

inertial manifolds concept, a reduced-order model for the prediction of reacting flows

is proposed. The proposed model can track distinct trajectories of the system in a

lower-dimensional space.

Chapter IV: The reduced-order model developed in Chap. III is investigated for tur-

bulent flows. A computational analysis of the use of inertial manifolds for modeling

turbulent flows is conducted. Two canonical flows, the one-dimensional Kuramoto-

Sivashinsky equation and homogeneous isotropic turbulence with different characteris-

tics and dimensional complexities have been analyzed. The proposed model is tested

both a priori and a posteriori.

Chapter V: The proposed model is tested for an initially non-premixed flame devel-

oping in a homogeneous isotropic turbulent field. The thermochemistry parameters of

the problem are defined such that the chemical reaction rate is strongly temperature-

dependent, and the interaction of turbulence mixing and chemical reaction results in

different flame behaviors from equilibrium burning to localized extinction and reig-

nition and finally global extinction. The modeling approach is investigated in the

prediction of the dynamic interplay of micro-mixing and chemical reactions.

Chapter VI: In this chapter, the findings of this dissertation work are summarized.

Concluding remarks about the dynamical system-based modeling approach are pre-

sented in this chapter. Finally, suggestions for continuing this work in the field of

fluid dynamics and combustion and other engineering systems are discussed.
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CHAPTER II

Reduced-Order Modeling of Multi-Scale

Multi-Physics Problems

Modern combustion systems are dominated by turbulent flows and their chaotic

behavior. Hence, turbulence modeling sets the ground for modeling other physical

processes in these multi-physics systems. In this chapter, various approaches in

turbulence modeling are reviewed, and their limitations and strengths are discussed.

Then, combustion models are discussed. The goal of this chapter is to assess these

models in the context of systems deviating from their design point.

2.1 Turbulence modeling

Computational analysis of turbulence is shadowed by the curse of dimensionality.

Any attempt in turbulence modeling starts with the reduction of scales by projecting

the dynamics of the entire flow field into a lower-dimensional space. Let V be the

Hermitian space containing all possible realizations of the flow field, and v be an

element of V describing the entire turbulent field governed by a set of partial differential

equations,

∂v

∂t
= L(v) +N (v), v ∈ V , t ∈ (0, t), (2.1)
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subject to the proper boundary and initial conditions. Here L and N are linear and

nonlinear operators respectively, where the latter is the source of nonlinearity engaging

all of the scales. Dimension-reduction can be achieved by projecting the entire flow

field into a lower-dimensional space. Assume projection P : V → U , where U is

not necessarily a subspace of V . By applying projection P to Eq. 2.1, the governing

equations of motions in the reduced system can be obtained,

P
∂v

∂t
= PL(v) + PN (v), Pv ∈ PV , t ∈ (0, t). (2.2)

Let u = Pv be an element of U , describing the flow field in the reduced space.

Thus, Eq. 2.2 can be written as

∂u

∂t
= L(u) + PN (v), u ∈ U , t ∈ (0, t), (2.3)

assuming the projection operator is time-invariant, and the projection operator and

linear operator L, commute. The validity of these assumptions depends on the choice

of the projection P , and will be discussed for each modeling ansatz. Equation 2.3

describes evolution of the flow field in a lower-dimensional space U . However, it

still depends on the flow field realization in the original higher-dimensional space V,

because the projection operator and nonlinear operator do not commute,

PN (v) 6= N (Pv). (2.4)

This gives rise to the typical closure problem faced by all nonlinear multi-scale mod-

eling approaches. Adding and subtracting N (u) to and from Eq. 2.3 gives,

∂u

∂t
= L(u) +N (u) +

[
PN (v)−N (u)

]
, u ∈ U , t ∈ (0, t). (2.5)
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The bracketed term in Eq. 2.5 contains the full-state solution, v, which is an unknown

variable in the reduced system. This unclosed term in Eq. 2.5 should be replaced by

a model depending only on the projected variable u,

∂u

∂t
= L(u) +N (u) + Φ(u), u ∈ U , t ∈ (0, t). (2.6)

Here, Φ(u) is a mapping from U to itself, containing the effect of scales discarded

by the projection operator P . In Eq. 2.6, L and N are some approximations of the

respective operators in Eq. 2.1.

For brevity of arguments, V and U have been referred to as full space and resolved

space respectively in the rest of this thesis. The space containing all the scales removed

by the projection operator is called the unresolved space. Depending on the choice of

projection operator and the modeling approach accounting for the unresolved space,

turbulence models fall into several categories. The most common modeling strategies

will be discussed here.

2.1.1 Reynolds-Averaged Navier-Stokes

In the Reynolds-averaged Navier-Stokes (RANS) approach, the projection operator is

an averaging operator (either ensemble or temporal averaging) which decomposes the

flow field into mean flow properties and their fluctuations. The projection operator

affects all length scales, hence all scales in RANS are modeled. The goal is to reproduce

statistics of the ensemble average of the flow field. To close the governing equations of

mean flow evolution, the impact of turbulence fluctuations containing all information

about turbulence unsteadiness has to be modeled. RANS models vary from algebraic

relations added to the equations of motions of the mean flow to solving additional

transport equations. DNS and recently data-driven approaches have been used to tune

RANS model parameters [40], but these models have shown to be inaccurate when
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turbulent flow deviates from the design conditions of such models. RANS models lack

universal parameters, and model coefficients are pre-determined based on the flow

configuration used as the validation set in model development. When flow behavior

deviates from these configurations, those parameters are not valid anymore, and

there is no mechanism for changing parameters during the simulation. RANS models

have been used heavily for the simulation of practical turbulent flows because, unlike

scale-resolving approaches, the computational cost of the RANS approach does not

scale with Reynolds number. Since the focus of this dissertation is on scale-resolving

approaches, RANS models will not be discussed further here.

2.1.2 Large Eddy Simulation

Large eddy simulation (LES) resolves the large energy-containing motions of turbu-

lence directly, while the effects of small eddies are modeled. In LES, spatial filtering is

applied to the instantaneous turbulent field to separate resolved and unresolved scales,

such that all turbulent motions smaller than the filter width (∆), are removed and

need to be modeled. The premise of LES was built by Smagorinsky for atmospheric

flows [41], and then it has been adapted for turbulent flows [42, 43]. The spatial

decomposition implied by LES conforms with turbulence characteristics such as the

cascade of energy from large scales to the smaller scales, and large scales dominating

macroscopic features of turbulence. Unlike RANS, LES can capture three-dimensional

unsteady structures of turbulence albeit at a higher computational cost. LES can

also exploit computing power advancements by refining the filter width and resolving

more scales, effectively bridging the gap between RANS and DNS in both computa-

tional cost and scale-resolving capabilities. Recent advancements in high-performance

computing has made LES the frontier in turbulence modeling approaches [44–46].

Following the nomenclature in Sec. 2.1, the projection P in LES represents a

spatial filtering kernel, such as Gaussian or sharp spectral filters, which acts as a
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low-pass filter and attenuates scales smaller than the filter width. It is the effect

of these sub-grid scales (SGS) on the resolved scales that need to be modeled. The

general filtering operation was first introduced by Leonard [47] as the convolution of

time-invariant spatial filters with the entire flow field,

u =

∫
G(r,x)v(x− r, t) dr, (2.7)

and the unresolved or subfilter field is defined as

w = v − u. (2.8)

Assuming that the filter kernel G is homogeneous and independent from x, it commutes

with differentiation. By applying the filtering operation to the Navier-Stokes equations,

governing equations for the filtered (resolved) variables can be obtained in the form

of Eq. 2.5,

∂ui
∂t

= −∂G(vivj)

∂xj
− ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

, (2.9)

where vi and ui are the entire and filtered velocity components in the ith direction

respectively, p is the filtered pressure field and Re is the Reynolds number. The first

term on the right-hand side of this equation cannot be computed based on the filtered

field quantities and is unclosed. Equation 2.9 can be written as

∂ui
∂t

= −∂(uiuj)

∂xj
− ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

− ∂τij
∂xj

, (2.10)

where

τij = G(vivj)− uiuj. (2.11)

The subfilter stress tensor, τij, is a function of the unfiltered field and needs to be

modeled.
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Various LES approaches deal with filtering operation and closure of subgrid stress

tensor differently. The projection or filtering operation can be done either explicitly

or implicitly. In explicit filtering, scale decomposition is achieved by convolution of

a filtering kernel with the governing equations. Hence, the kernel function appears

in the governing equations of the filtered field. This approach provides more control

over the numerics of LES and makes filter width independent from the computational

grid spacing and numerical algorithm convergence. By refining filter width, LES

resolves more scales and converges to an LES solution independent from the filter

width. However, explicit filtering reduces the effective resolution of LES and cannot

leverage available computing power entirely.

In implicit filtering, the filtering operator is defined implicitly based on the numer-

ics of the simulation and LES grid resolution. The computational grid represents the

resolved scales, and unresolved scales are not represented in the domain. Particularly,

implicitly-filtered LES is an under-resolved turbulent simulation that uses additional

terms to account for the SGS contributions to the resolved scales. Since the filter

kernel does not appear in the governing equations, the implementation of different

numerical approaches is easier. For a given computational grid, limited by the com-

puting power, implicitly-filtered LES resolves more scales and has lower numerical

errors. Refining filter width is equivalent to the refinement of the computational grid

and convergence to a model-free DNS solution.

Modeling unresolved or subgrid scales in LES can also be done either explicitly or

implicitly. In explicit modeling approaches, a subgrid-scale model is used to account

for the effect of SGS, while in implicit modeling no subgrid-scale model is used.

Dissipative characteristics of the numerical discretization approach account for the

effects of SGS, assuming their contribution is purely dissipative. Table 2.1 compares

different LES approaches, where G∆(x) is the spatial filtering kernel, ∆ is filter width

and ∆x is grid spacing of computational domain.
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LES approach in ∆ and ∆x Governing equation

filtering/modeling relation of LES

Explicit/Explicit ∆x < ∆ ∂u
∂t

= L(u) + G∆N (u) + Φ(u)

Explicit/Implicit ∆x < ∆ ∂u
∂t

= L(u) + G∆N (u)

Implicit/Explicit ∆x = ∆ ∂u
∂t

= L(u) +N (u) + Φ(u)

Implicit/Implicit ∆x = ∆ ∂u
∂t

= L(u) +N (u)

Table 2.1: Comparison of various LES formulations.

LES of practical flows has been dominated by implicitly-filtered explicitly-modeled

approaches. In such efforts, only filter width appears in the SGS modeling of LES. A

priori studies have shown that interaction of subgrid and resolved scales depends on

the choice of filter [48, 49], but this has been ignored in practical LES applications.

Spatial filters work very well for the decomposition of homogeneous flows, but in

the case of more complex geometries, non-uniform filters should be used. These

filters do not commute with spatial differentiation, and they introduce additional

unclosed terms [50, 51]. The success of LES in the prediction of turbulent flows in

various applications is due to the direct simulation of macroscopic features which are

controlled by large energy-containing scales. However, the prediction of large-scale

evolution requires accurate modeling of the effect of small scales.

2.1.2.1 Sub-grid scale modeling in LES

Initially, SGS models for LES have been adapted from RANS modeling approaches

which yielded better results because the resolved part of the flow in LES is predicted

more accurately. Although various approaches have been developed for SGS model-

ing, the inherent assumption among them is local equilibrium between resolved and

unresolved scales. Local equilibrium assumes that the production of kinetic energy at

resolved scales balances its dissipation at SGS, and small scales are only responsible
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for the forward cascade of energy to the molecular level where kinetic energy is finally

dissipated by viscosity. In general, LES models consider universal characteristics for

small-scale features of turbulent flows in different applications. In particular, small-

scale structures are assumed to be homogeneous and isotropic. Such assumptions

are valid in fully-developed, unbounded high Reynolds number turbulent flows. In

many applications, turbulent flows are transitional at relatively low Reynolds numbers

and/or wall-bounded, and such assumptions are violated. Research in LES modeling

has tackled many of such limitations by relaxing these assumptions selectively. For

instance, wall models are introduced to account for momentum transfer by small scales

in near-wall regions [43, 49]. Some of the more prevalent LES modeling approaches

are discussed below.

Eddy-viscosity models

Eddy viscosity models are the predominant models in LES practices. These models

are based on the turbulent-viscosity hypothesis introduced by Boussinesq in 1877

[52]. According to this hypothesis, turbulence responds to straining effects rapidly,

analogous to viscous stress in molecular processes. It also assumes that this response

is linearly proportional to the strain rate of the flow. Hence, the sub-grid stress tensor

can be modeled as

τij = −νT
(∂ui
∂xj

+
∂uj
∂xi

)
(2.12)

where νT is the eddy viscosity that needs to be specified. Equation 2.12 implies that

stress tensor and strain rates are perfectly aligned and correlated by a scalar, the

eddy viscosity. This assumption is not generally true even for simplest turbulent flow

configurations [53, 54]. The eddy viscosity was first modeled by Smagorinsky [41],

νT = (Cs∆)2(SijSij)
0.5 (2.13)
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where Cs is a constant, and Sij is the rate of strain tensor of the resolved field,

Sij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (2.14)

The constant Cs needs to be specified a priori, and it is either derived from theoretical

analysis such as Kolmogorov cascade or tuned by DNS or experimental data [55,

56]. Hence prior knowledge about the turbulent regime and small scales statistics is

required, which is limiting for practical turbulent flows in complex geometries. Even

for canonical flows, studies have shown discrepancies between parameters obtained

from exact measurements and theoretical approaches, and theoretical values are shown

to be too dissipative [57, 58]. Unlike theoretical expectations, filter width rarely lies

in the inertial subrange of turbulent scales, or turbulence is not fully developed

to sustain such inertial range, which explains such discrepancies. Even with an

appropriate specification of the model parameter, the Smagorinsky model fails to

capture backscatter, transfer of energy from subgrid scales to the resolved scales

[59, 60]. This is particularly important in transitional flows and near-wall regions,

where small scales transfer momentum to the large scales [61, 62].

Dynamic modeling procedure

LES modeling has leaped forward by dynamic modeling procedures which can de-

termine model parameters in situ. Following the Germano identity [63], dynamic

modeling assumes any physical characteristic of the flow is independent of filter width.

Therefore, information at resolved scales can be used to determine model coefficients.

By applying a second filtering operation with larger filter width (Gα∆, α > 1), the

LES field is coarse-grained. Then, considering the SGS model is a function of filter

width and a vector of parameters C, the Germano identity implies

Φ̂(u,∆,C) = Φ(û, α∆,C), (2.15)
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where ·̂ · · denotes the second filtering operation. Equation 2.15 involves fields at

resolved scales that are available in LES, and model parameters can be determined

as a function of time and space during the simulation. Dynamic modeling procedures

can capture local features of small scales and relax the homogeneity and universality

assumptions to some extent. Considering the Germano identity for the Smagorinsky

subgrid-scale model, Lily provided a minimization problem for finding the Smagorin-

sky constant dynamically [64]. Dynamic Smagorinsky models have overcome many

shortcomings of the original model. For instance, dynamic modeling can capture near-

wall structures, and unlike original Smagorinsky it is not too dissipative in transitional

flows [61, 65]. However, there are some mathematical and implementational challenges

for dynamic modeling in practical problems. To solve Eq. 2.15 for model parameters,

it is assumed that parameters commute with filtering, but when the dynamically

determined coefficient varies spatially strongly this assumption is violated. Besides,

in many applications model parameters are not scale-independent, and the location of

the filter width in turbulent scales affects dynamic parameter determination directly

[66]. Moreover, stability issues can occur when dynamic procedure predicts large

negative values of Smagorinsky constant and unphysical backscatter of energy to the

large scales. Attempts to fix these issues lead to again limiting the locality of dynamic

models.

Scale similarity approaches

Scale similarity model (SSM) [67] approximates the SGS stress tensor by applying a

second spatial filtering operation to the LES field, similar to the dynamic modeling

procedure. However here the proportionality constant in Germano identity is deter-

mined to reproduce the exact average SGS kinetic energy. The premise of SSM is that

the contribution of the small resolved scales to the large resolved scales is similar to

the contribution of the unresolved scales to the small resolved scales. SSM predicts

the correct rate of energy flux to the subgrid scales and backscatter of energy reason-
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ably. Unlike eddy viscosity models, SSM cannot predict adequate SGS dissipation,

and an additional relaxation regularization is required. Bardina et al. proposed a

mixed-model of scale-similarity and eddy-viscosity models to account for the twofold

SGS contribution: 1) energy transfer from large scales, and 2) dissipation of energy

contained in the SGS [68]. This model has a superior performance in transitional

flows, but the ratio of each component of the SGS model needs to be determined

either a priori or during the simulation by assuming some form of equilibrium between

production and dissipation of kinetic energy at filter width.

Higher fidelity approaches try to approximate the unfiltered field or its local

quantities of interest from the information at the resolved scales without invoking

the universality and homogeneity of the subgrid field. These models are developed

mostly on the scale similarity premise, i.e. the contribution of the small resolved

scales to the large resolved scales is similar to the contribution of the unresolved scales

to the small resolved scales. These models do not suffer from limiting assumptions

of eddy-viscosity models, and they can predict backscatter of energy without any

adverse effects on numerical stability [69–72].

Approximate deconvolution models

A generalized form of the scale similarity model with repeated filtering is the approx-

imate deconvolution method (ADM) [73]. In ADM, the unfiltered field is recovered

using the information of the LES field. Hence, nonlinear terms of the governing equa-

tion of the LES field can be computed directly, and the closure problem is solved. To

reconstruct the unfiltered field, it is assumed that the filtering operator (projection

P ) is invertible, and by applying its inverse to the filtered (LES) field, the entire flow

field can be recovered. Assuming Q = P−1 as the inverse of the filtering operator,

the unfiltered flow field can be recovered as

v∗ = Qu. (2.16)
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However, compact practical filters used in LES formulations are noninvertible, and an

approximation to Q is essential. The inverse operator is approximated by assuming

P has an inverse and it can be expanded by an infinite series. The series can be

truncated at n as an approximation of P−1,

Q = P−1 =
n∑
i=0

(I − P )i, (2.17)

which requires the convergence criteria: ||I−P || < 1, where I is the identity operator.

This approximation imposes a computational challenge to the ADM approach as the

series convergence rate is slow. To balance accuracy and computational cost, n < 5 is

usually considered. The approximated inverse filtering operator Q is repeated filtering

of the filtered field, and if the filtering operator is an orthogonal operator, such as the

sharp spectral filter, it cannot recover any information beyond the cut-off wavenumber.

The ADM approach can recover only part of the information lost by convolution of

the filtering operator with resolved scales. In wavenumber space, the inverse operator

affects only scales between the filter wavenumber and the Nyquist wavenumber of

the computational grid. Therefore, it is essential to implement ADM with explicitly

filtered LES or use a grid spacing smaller than the filter width in implicitly filtered

LES. The unfiltered field cannot recover any information of the scales smaller than

the grid spacing, and the effect of these scales cannot be modeled by just replacing the

unfiltered field v by the recovered field v∗ in the nonlinear term of the LES governing

equations (Eq. 2.9).

To model interaction between resolved field and unrepresented sub-grid scales,

another modeling component is introduced to ADM. In one approach, a dissipative

term is added to the LES governing equations to remove energy transferred from the

resolved scales to the nonrepresented field [74]. Since this relaxation term is purely

dissipative, it cannot account for the local backscatter of energy from the unresolved
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scales to the LES field. Also, the rate of dissipation needs to be determined by

trial and error at each time step. In another study, these shortcomings of ADM are

addressed by matching specific subgrid moments of the true field [75, 76]. However,

this approach requires the exact shape of the energy spectrum in the subgrid range,

which is assumed a priori.

The deconvolution approach is particularly interesting since it extracts unresolved

fields directly from the resolved fields, implying that a single unresolved field is linked

to each resolved field. This is a simplification of the ideal LES formulation of Langford

and Moser [77], in the sense that the optimal evolution is obtained by assuming that the

distribution of sub-filter fields for a given filtered field is a delta function. Approximate

deconvolution methods provide a mathematical framework to recover the subgrid

scales, compute the nonlinear term directly and close the LES governing equations,

but there are some underlying mathematical issues to be addressed. Questions such

as how much of the unresolved information can be recovered, or whether the ADM

approximation of the inverse of the filter is justified should be addressed. In LES, the

spatial filtering operator maps the infinite-dimensional solution to a lower-dimensional

space. Depending on the type of filter and numerical implementation, the LES field is

not necessarily a subspace of the original field. For instance, in the case of the sharp

spectral filter and Galerkin methods, the LES field is a subspace of a full-dimensional

system. But this is not true for box filters and finite difference schemes. In any case,

if deconvolution of the filter can recover all of the discarded information, then the LES

field is identical to the unfiltered field; it is only represented by a different set of basis

functions. This is more apparent when the LES field is a subspace of a full-dimensional

system. In this case, if the filtering operator is an orthogonal projection, nothing can

be recovered from the unresolved scales; and if the projection is an oblique projection,

deconvolution can at best recover the parallel component of the complement space.

There exist other LES modeling approaches that do not rely on traditional spatial
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filters for the separation of scales. Such models use projection-based decomposition for

scale separation. For instance, variational multi-scale LES uses a variational projection

to decompose the range of scales in groups of large resolved scales, small resolved

scales, and unresolved scales [78, 79]. In this approach, the direct contribution of

the SGS physics is confined to the small resolved scales, and large resolved scales are

solved directly, i.e. without any modeling, but influenced indirectly by the subgrid-

scale model due to the inherent coupling of all scales. This approach provides a

robust scale separation for wall-bounded flows, where inhomogeneous spatial filters

are avoided. It also does not require near-wall modeling of small-scales decay [80].

The above discussion has been limited to constant density flows. However, variable-

density low-Mach number flows and compressible flows are ubiquitous in engineering

applications. In particular, turbulent combustion requires a variable-density formu-

lation of the Navier-Stokes equations. Subgrid scale models have been extended for

variable-density and compressible flows [81, 82]. The goal of LES is resolving only the

large energy-containing scales, while the effect of small scales is modeled. Modeling

the physics of the smallest scales reduces the computational cost significantly, allowing

analysis of high Re number flows both in canonical and practical geometries [83, 84].

LES success in accurate prediction of large-scale features of turbulent flows has been

extended to modeling of other physical phenomena such as turbulent combustion [85].

Although LES provides an unsteady three-dimensional description of flow, it is still

an optimized statistical representation of large-scale flow dynamics [77]. LES models

the contributions of small scales represented by an ensemble average of all possible

sub-grid fields for a distinct resolved field. In many applications, there is an interest

in distinct realizations of the large-scale flow motions, specifically when the trajectory

of the system deviates from normal behavior. In this sense, LES cannot track definite

trajectories of the system which may lead to extreme events.
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2.1.3 Data-driven approaches

Recent advancements in high-performance computing and experimental techniques

have generated abundant data sets of turbulent flows in various applications. Lever-

aging data in turbulence modeling is not recent though; DNS results or experimental

data have been used for tuning model parameters and validation purposes in RANS

and LES approaches for decades. With advancements in machine learning techniques,

the calibration process has been generalized to the model itself rather than being

limited to its parameters, and a stochastic representation of models for the unresolved

scales has been achieved. In addition to model calibration, data has been exploited

to identify and quantify uncertainties in structures of turbulence models and their

parameters [40, 86].

With the development of more efficient statistical inference algorithms and access

to large data sets, data-driven approaches have been developed to fit more complex

functional forms of models [87–89]. Other studies have investigated reconstruction

of the unfiltered field from the information at resolved scales using deep learning

generative models, similar to approximate deconvolution methods [90, 91].

Besides exploiting data for turbulence closure modeling, data-driven techniques

have been used to identify coherent structures of turbulent flows and derive ROMs.

Among these data-driven ROMs, proper orthogonal decomposition (POD) methods

are the most common, where data sets are post-processed to decompose dynamics

of the Navier-Stokes equations into energetic coherent structures and residual scales

[92–94]. In other studies, neural networks are trained to extract spatio-temporal

structures of turbulence and predict temporal evolution of turbulent field [95]. Data-

driven approaches provide invaluable insight into turbulence modeling and identifying

coherent structures of turbulence. However, they face several challenges such as

availability of consistent data and observing physical constraints [86]. Finally, they

only provide stochastic representations of the flow field that have been optimized in
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some form.

2.1.4 Dynamical systems-based ROMs

Projection-based scale separation provides a theoretical framework for model reduction

largely used in dynamical systems. Any fluid system described by a set of partial

differential equations can be formulated as a finite-dimensional dynamical system

after appropriate spatial discretization. This approach to modeling complex systems

has been particularly successful in weather prediction [36], as dynamical systems-

based methods provide access to properties about events that are otherwise difficult

to assess using statistical tools. From a theoretical perspective, the focus has been

on the structure of the dynamical system in phase space, which is composed of the

N -dimensional state space defined by the degrees of freedom describing the discretized

system. The spatial and temporal evolution of the turbulent flow can then be expressed

as a trajectory in this state space.

In certain systems dominated by coherent structures, the long-time behavior of

the system is dictated by dynamics confined to a low-dimensional subspace of the full

N -dimensional state space. All trajectories of the system are attracted to this low-

dimensional manifold, which contains the attractor of the system [96–98]. Constantin

et al. [97] showed that the dimension of the attractor scales nonlinearly with the

Reynolds number of the flow. However, direct estimations of this attractor dimension

for turbulent flows using the Kaplan-Yorke conjecture [99] showed that attractor

dimensions are orders of magnitude lower than the number of degrees of freedom

required by DNS [38, 100].

In this regard, it is interesting to note that one of the original premises for the use

of dynamical systems is the development of reduced-order models, but this approach

has been fraught with challenges for the following reasons [101]. First, the possible

high-dimensionality of the attractor led to the conclusion that a highly reduced model
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cannot be easily determined [102]. Second, phenomenological approaches such as the

intermittency model [103] did not directly provide a path to other spatially extended

systems. Finally, there have been fundamental theoretical issues as to whether such

reduced models can capture the chaoticity of the flow [101]. In light of these challenges,

the recent focus on data-driven sciences has renewed interest in dynamical systems-

based modeling of turbulent flows [104–106]. For instance, techniques for describing

turbulent boundary layers have been formulated from these reduced-order modeling

concepts [107].

The reduced-order description of reacting turbulent flows proposed in this disserta-

tion is based on dynamical system representation of turbulent flows. The attractor of

the system is sought and approximated by leveraging the properties of the governing

equations. The dynamics of the system have been tracked on this lower-dimensional

attractor using the inertial manifold theory.

2.2 Combustion modeling

The primary modeling frameworks in the literature have been developed for turbulent

flows, and then extended and modified for combustion systems. Among such methods,

large eddy simulation is the most implemented one because of its ability in modeling

turbulent physical processes relevant to combustion applications [7, 108, 109]. In LES,

the large energy-containing scales are resolved directly, while the small-scales contri-

butions are modeled. Combustion is controlled by molecular diffusion of reactants at

scales competing with the smallest scales of turbulence and needs to be exclusively

modeled in all LES formulations. While this may seem to contradict the premise

of LES, combustion in canonical [110–114] and practical [115–118] applications have

been successfully modeled. In general, LES is far more accurate compared to the

Reynolds-averaged Navier-Stokes equations when the large-scale mixing controls the

combustion process, for instance in flames far away from extinction [108].
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Combustion modeling in practical devices faces two key challenges: 1) combustion

is controlled by molecular diffusion of reactants at scales competing with the small-

est scales of turbulence, and 2) the chemistry mechanism of practical hydrocarbon

fuels may involve thousands of species [26]. This makes direct simulations infeasible

even with foreseeable advancements in computing power. Combustion models address

these challenges by including a statistical representation of small scales and devel-

oping reduced chemistry mechanisms containing much fewer species. These issues

are generally addressed independently, introducing another modeling need to couple

them, namely the combustion model.

2.2.1 Reduced chemistry mechanisms

Chemical mechanisms of practical fuels contain few hundreds and sometimes thousands

of species [27]. It is essential to develop surrogate chemical mechanisms containing

a far fewer number of species. For simple hydrocarbon fuels, reduced mechanisms

with tens of species can represent a range of chemistry pathways accurately [119, 120].

In general, reduced mechanisms are developed assuming that the entire chemical

composition can be represented by a lower-dimensional manifold spanned by a small

number of species. Such manifolds have been developed with different assumptions

[121], for example, reaction manifolds are developed by assuming species conservation

is controlled only by chemical reaction. Reaction manifolds are built by decomposition

of species into manifold (resolved) species and unresolved species based on chemical

reaction rates and their properties. Intrinsic low-dimensional manifolds (ILDM) [122],

quasi-steady state manifolds [123, 124] and manifolds determined by computational

singular perturbation [125] are all reaction manifolds.

Reaction-diffusion manifolds account for both chemical reaction and molecular dif-

fusion in species gradient. Since turbulent straining can intensify scalars gradient and

molecular diffusive fluxes, these manifolds are more relevant to turbulent flames. The
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most prevalent reaction-diffusion manifolds are flamelet manifolds [126, 127], flamelet

generated manifolds [128] and flame prolongation of ILDM [129]. A combustion model

defines coupling between reaction and diffusion, which is determined based on specific

flame structure and combustion mode i.e. premixed or non-premixed combustion

regime.

2.2.2 Flamelet approaches

In turbulence modeling, the small unresolved scales are assumed to be in equilibrium

and respond instantaneously to the large scales. This assumption manifests in several

ways, and when combined with the universality of the statistics of small scales, leads

to known models for sub-filter scales such as the Smagorinsky closure [63] or the

algebraic model for variance [126, 130]. Even when this equilibrium assumption is

relaxed, it is selectively eased to add more nonequilibrium physics. For instance, in

the transported kinetic energy model [131], the dissipation rate spectrum reaches a

statistically stationary state, but it is based on non-local effects. Similar modifications

can be made for scalar energy as well [114, 132].

While the above discussion deals with the modeling of turbulence or non-reactive

scalars, a similar local equilibrium assumption is used in the construction of combus-

tion models [133, 134]. The primary success of LES is due to the accuracy of this

assumption for reactive scalars, which has enabled the development of a variety of

combustion models [126, 135–138]. Of these the most commonly used technique is the

flamelet or flame-generated manifold approach. The general formulation of a flamelet

model can be described as a mapping

φ = G(ξ), (2.18)

where φ ∈ RNs is the local thermochemical composition vector, and ξ ∈ RNM is
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a nominal set of mapping variables for the combustion model G, with M < Ns.

In general, G is obtained through another modeling assumption: a single or set of

canonical flames are sufficient to represent the range of thermochemical composition

space accessed by the target configuration of interest. It is assumed that reaction

occurs in thin flamelets, at scales smaller than resolved turbulent scales; and the

reaction zone is steady and laminar similar to canonical one-dimensional flames. The

equilibrium assumption implies that the flame reaches an equilibrium structure as the

large-scale eddies evolve in time. Similar to the sub-filter scale models for turbulence,

nonequilibrium flame-structure models can be developed that invoke the equilibrium

notion in different ways. For instance, in the unsteady flamelet formulation, it is

assumed that the flame responds to strain rate variations with a lag, but still conforms

to the diffusion or any other canonical flame structure [127, 139].

Depending on the choice of canonical flames, such as counterflow or burner-

stabilized laminar flames, the composition state can be accessed by a set of parameters

including a nonreactive scalar such as mixture fraction in non-premixed flames. In

LES of turbulent flames, the composition manifold is pre-computed and pre-tabulated,

and only the filtered manifold parameters are solved during the simulation. Tabula-

tion techniques are then used to find the local composition state. Pre-generation of

combustion manifolds, such as flame-generated manifold [128], flamelet-progress vari-

able [126], or unsteady flamelets [127] reduces the computational cost while providing

excellent predictive capabilities for stable flames far from extinction [7].

In practical systems, the development of such manifold methods faces some in-

herent hurdles. The primary issue is that manifolds are pre-generated by using an

auxiliary system. It has been shown that the choice of the auxiliary system has a

direct impact on the results [11, 140–143]. Essentially, it is assumed that the flame

structure is similar to that of the auxiliary system, which is difficult to ensure in

complex flows. This assumption has been the focus of research in flamelet approaches,
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involving multiple strategies to address the extrapolation of canonical flame structure

to practical calculations [144–146].

A second issue concerns the necessary models once a manifold is selected. LES

provides only the filtered mapping variables, and the small-scales effect should be

modeled. In flamelet approaches, the subfilter closure is obtained as

φ̃ =

∫
G(ξ)P (ξ)dξ, (2.19)

where φ̃ is the set of filtered mapping variables, and P is the sub-filter joint probability

density function (PDF) of the input variables. Determination of both P and G closes

the combustion modeling. The small-scale closure is achieved either by assuming a

functional form for the subfilter joint PDF or by solving transport equations of P . In

either case, closures for sub-filter variance of manifold parameters [114, 130], as well

as the one-point one-time distribution functions [147, 148] are needed. These models

can also impact simulation predictions, especially when local extinction and reignition

become important [132, 149].

2.2.3 Transported PDF approaches

Transported PDF approaches reduce combustion modeling into determining only P

by considering a unity mapping in Eq. 2.18, φ = ξ. Without any assumption of

a low-dimensional manifold in the composition space, detailed chemistry, or a re-

duced chemistry mechanism, is solved during LES or RANS computations. Therefore,

PDF methods are general for any combustion regime, and they are more successful

when flame structure deviates from normal behavior such as in events of extinction

and reignition. However, they increase the computational cost of the simulation, as

modeled conservation equations of joint-PDF of fluid properties and thermochemical

composition should be solved. Contrary to flamelet approaches, there is no limiting
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assumption about flame structure, and reaction computations are not pre-processed.

While PDF methods are generally more expensive, considering non-equilibrium ef-

fects in flamelet approaches requires higher-dimensional manifolds, which increases

tabulation cost and requires a priori knowledge about the flame structure.

The major advantage of PDF methods is that reaction rates are treated directly,

and only molecular diffusion needs to be modeled by mixing models. In general,

mixing models are developed based on the equilibrium between dissipation and the

production of kinetic energy. Mixing models developed for inert mixing have been used

for reactants mixing in PDF methods. However, studies have shown that chemical

reactions can steepen species gradients and enhance molecular mixing, and more

advanced models are required.

Other closures such as the linear eddy model [150], conditional moment closure

[151] and multiple mapping conditioning can be cast in a similar framework. Alter-

native approaches, such as the filtered density function (FDF) method [152, 153],

face related issues in terms of the modeling of small-scale mixing. The overall con-

clusion is that such equilibrium assumptions are often made in an ad-hoc manner

via Kolmogorov’s theory of turbulence extended to turbulent flames, even though

turbulence theory is valid only in the incompressible constant density cases. A few

direct numerical simulations have shown that such assumptions might be erroneous

[29, 30].

In this regard, similar to turbulence modeling in LES, different approaches have

been considered for modeling turbulent flames. The deconvolution-based modeling

procedure [154–156] assumes that given the large scale field, the unresolved scales can

be reconstructed, albeit only to some accuracy, to directly obtain sub-filter models.

In particular, such methods have been linked to an explicit filtering procedure, where

different filter shapes are explicitly assumed and the unresolved fields are recovered

using an inversion procedure [157]. While deconvolution methods have been relatively
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successful in turbulent flows, chemical reaction rates are very sensitive to the shape of

filter and approximations of its inverse [158]. Other approaches such as the variational

multiscale method [159, 160] invoke the equilibrium assumption in some form.

2.3 Summary

In this chapter, various approaches in modeling reacting flows have been reviewed

with a focus on scale resolving approaches. The discussion depicts the state of the art

in turbulence and turbulent combustion modeling, limitations of current approaches,

and what needs to be addressed towards an adaptive modeling approach. In general,

the majority of computational analyses of reacting flows have been limited to the

design process focusing on specific concerns such as efficiency, emission reduction,

and strength of materials. An outcome of this focus is that current frameworks are

geared towards predicting statistically stationary flows, essentially systems operating

at specific design conditions. To analyze and predict system dynamics when deviating

from normal behavior, the development of models which can track distinct trajectories

of reacting flows is essential. Since these systems are dominated by turbulence, small

perturbations can potentially cause large changes in behavior, including catastrophic

failure. Hence, developing models that circumvent statistical representations of small

scales is crucial to ensure the predictive accuracy of the models.
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CHAPTER III

Approximate Inertial Manifold Approach

Any fluid system described by a set of partial differential equations can be formu-

lated as a finite-dimensional dynamical system after appropriate spatial discretization.

Treatment of reacting flows as dynamical systems opens new paths for modeling and de-

velopment of reduced-order descriptions of such systems. Starting from the mid-1980s,

there has been growing recognition that treating an appropriately spatially-discretized

set of governing equations as a finite-dimensional dynamical system provides access

to properties about events that are otherwise difficult to assess using statistical tools.

This approach to modeling complex systems has been particularly successful in weather

prediction [36].

From a theoretical perspective, the focus has been on the structure of the dynamical

system in phase space, which is composed of the N -dimensional state space defined by

the degrees of freedom describing the discretized system. For instance, if a fluid domain

is discretized using ng grid points, and at each point nv variables are solved, the state

space dimension is N = ng×nv. Note that this estimation is dependent on the type of

numerical scheme used [37]. The spatial and temporal evolution of the turbulent flow

can then be expressed as a trajectory in this state space. In many systems dominated

by coherent structures, the long-time behavior of the system is dictated by dynamics

confined to a low-dimensional subspace of the full N -dimensional state space. All
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trajectories of the system are attracted to this closed subset of the phase space, known

as the attractor. Schematic visualization of an attractor is presented in Fig. 3.1 with

multiple trajectories of the system.

Figure 3.1: Schematic of the phase space representation of a dynamical system. The
plane represents the Hermitian space dynamics reside in. The blue
subset is the state-space, V . Initial conditions are represented by black
dot. Trajectories are shown as dashed black lines. The green subspace is
the attractor, E .

Constantin et al. [97] showed that the dimension of the attractor scales nonlinearly

with the Reynolds number of the flow. However, direct estimations of this attractor

dimension for turbulent flows using the Kaplan-Yorke conjecture [99] showed that

attractor dimensions are orders of magnitude lower than the number of degrees of

freedom required by DNS [34, 38, 100].

In this regard, one of the original premises for the use of dynamical systems is

the development of reduced-order models, but this approach has been fraught with

challenges for the following reasons [101]. First, the possible high-dimensionality of

the attractor led to the conclusion that a highly reduced model cannot be easily

determined [102]. Second, phenomenological approaches such as the intermittency
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model [103] did not directly provide a path to other spatially extended systems. Finally,

there have been fundamental theoretical issues as to whether such reduced models can

capture the chaoticity of the flow [101]. In light of these challenges, the recent focus

on data-driven sciences has renewed interest in dynamical systems-based modeling of

turbulent flows [104–106]. For instance, techniques for describing turbulent boundary

layers have been formulated from these reduced-order modeling concepts [107].

The inertial manifold theory provides a path to locate the attractor in specific

dynamical systems. In dissipative infinite-dimensional dynamical systems described by

partial differential equations, the long-time behavior of trajectories can be studied in an

invariant finite-dimensional subset of phase space called the Inertial manifold (IM) [98].

These manifolds, when they exist, attract all trajectories of the system exponentially

and therefore contain the global attractor. The dynamics of the inertial manifold can

be described by a finite-dimensional system of ordinary differential equation (ODE),

called the inertial form, which completely describes the long-time dynamical behavior

of the original infinite-dimensional system.

3.1 The inertial manifold theory

Consider a set of partial differential equations that describe the evolution of any fluid

system. The variables of interest are given by the set ξ = {ξ1, ξ2, · · · , ξnv}, and the

equations are written as

∂ξ

∂t
+∇ · N (ξ) +∇ · Lξ + S(ξ) = 0, (3.1)

where N is a nonlinear operator, L is a linear operator, and S is a volumetric source

term. In the context of reacting flows, ξ will include all transported variables such as

momentum, energy, and reacting scalars. The nonlinear term creates a spectrum of

length scales, which introduces the inherent computational complexity in solving these
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equations. For reacting scalars, including species mass fractions and temperature, the

volumetric chemical source term involves contributions from many fast reactions,

which introduces an additional source of nonlinearity. Since the range of scales is

dependent on some intrinsic parameter (such as Reynolds number), these equations are

computationally intractable for any practical flow and require some form of modeling

that reduces the range of scales.

The reacting flow can be cast in a dynamical system framework after proper spatial

discretization of Eq. 3.1, D : ξ → v, with D being the discretization operation. In

this discretized form, the governing equations can be written as

dv

dt
+Av +R(v) = 0, v(t = 0) = v0, (3.2)

where v is the discrete set of variables, A is the discretized linear term, and R is the

discretized nonlinear term including the chemical source term. To apply the inertial

manifold theory, A is taken to be an unbounded, linear, self-adjoint operator defined

on the Hilbert space H, where dynamics of the system reside in; hence A−1 is compact.

3.1.1 The squeezing property

Let S(t) : v(0) → v(t) be the semigroup of operators defining the solutions of

Eq. 3.2; and S(t)u0, and S(t)v0, be two solutions of Eq. 3.2, where u0, v0 ∈ H. The

squeezing property states that for every r > 0, there is a k depending on r and the

linear operator such that if |Au0| ≤ r and |Av0| ≤ r, then

|S(t)u0 − S(t)v0| ≤ exp(kt)|u0 − v0|, for all t ≥ 0. (3.3)

The squeezing property of Eq. 3.2 was proved by Foias and Temam [161] and Con-

stantin et al. [162]; this property is independent of the existence of an inertial

manifold.
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3.1.2 Definition of an inertial manifold

A subset M⊆ H is an inertial manifold if it satisfies the following properties [98]:

1. M is a finite dimensional Lipschitz manifold,

2. M is invariant, i.e., S(t)M⊆M, for all t ≥ 0,

3. M attracts exponentially all solutions of Eq. 3.2, i.e.,

lim
t→∞

dist (S(t)v0,M) = 0, (3.4)

for every v0 ∈ H.

The third property implies that an inertial manifold must contain the universal

attractor of the dynamical system. The proof of this property relies on the squeezing

property of the semigroup S(t).

Since A−1 is compact and self-adjoint, the set of eigenvectors of A forms an

orthonormal eigenbasis for the Hilbert space H; and eigenvalues of A satisfy,

0 < λ1 ≤ λ2 ≤ . . . , λj →∞ as j →∞. (3.5)

The main requirement for the existence of an inertial manifold is the existence of a

relatively large gap in the spectrum of the linear operator. If there is a m > 1 such

that a sufficiently large gap between λm and λm+1 exists, an inertial manifold with

dimension m can be constructed spanned by the first m eigenvectors of the linear

operator.

An orthogonal projection operator P can be defined onto a subset of the Hilbert

space spanned by the firstm eigenvectors ofA. An inertial manifold can be constructed

as a graph of a Lipschitz function,

Φ : PH → QH (3.6)
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where Q = I − P is the complement projection of P . With this definition of the

orthogonal projection and the complement projection, the squeezing property (Eq. 3.3)

can be stated as [98, 163],

|Q(S(t)u0 − S(t)v0)| ≤ γ|P (S(t)u0 − S(t)v0)|

|S(t)u0 − S(t)v0)| ≤ k2 exp(−k3λm+1t)|u0 − v0|
(3.7)

where γ > 0, k2 and k3 are constants. Inertial manifold is a subset of the state

space spanned by the first m eigenfunctions of A, such that the largest eigenvalue of

the eigenbasis spanning inertial manifold (A|PH) is λm, and the smallest eigenvalue

corresponding to the eigenbasis of the orthogonal space (A|QH) is λm+1 [98, 164].

Hence, the inertial manifold is m-dimensional. The squeezing property (Eq. 3.7)

implies that the difference between two trajectories of the system reduces exponentially,

and the exponential rate is proportional to the eigenvalue of the slowest eigenmode

of the complement space. When an IM exists, it contains the attractor of the system.

Figure 3.2 provides a schematic representation of the IM in the state space.
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Figure 3.2: Schematic of the inertial manifold of a dynamical system. The plane
represents the Hermitian space dynamics reside in. The blue subset is
the phase space, V . The initial conditions are represented by black dot.
The trajectories are shown as dashed black lines. The green subspace is
the attractor E , and the inertial manifold is the yellow subspace, M.

3.1.3 Construction of an inertial manifold

To construct the inertial form which describes the dynamics of the system on the

inertial manifold, the orthogonal projection operator P is applied to the phase-space

to split it into the manifold variables (u) and the orthogonal subset (w),

u = Pv, w = (I − P )v = Qv, v = (u,w). (3.8)

The complement projection Q maps its operand to the null-space of the projection

operator P . Formally, IMs are realized as graphs of functions Φ : PH → QH. For

the form of the discretized system considered here (Eq. 3.2), the goal is to describe

the dynamics in terms of u alone. The state space of the original dynamical system

is N -dimensional with v ∈ Rng×nv , the inertial form is m × nv dimensional with
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m << ng.

Such a decomposition of the state space can be achieved by any set of orthogonal

eigenbases of the full-dimensional state space. The dissipative linear operator, with

a set of positive ascending eigenvalues, provides a clear path for decomposition into

the resolved and unresolved subspaces. However, finding the eigenvalues of all of

the linear and nonlinear terms of the governing equation can give more information

about dominant dynamics. This method is more expensive computationally since the

Jacobian of the dynamical system needs to be computed at each time step. Several

reduced-order mechanisms are developed based on such decomposition, such as in-

trinsic low dimensional manifolds [122] and the computational singular perturbation

[165, 166].

The goal is to describe the dynamical features of the flow in this lower-dimensional

manifold instead of the full-dimensional system. By applying the projection operator

to the discrete governing equations (Eq. 3.2), the evolution equations for the resolved

and unresolved fields can be obtained as

du

dt
+Au+ PR(v) = 0, u(t = 0) = Pv0, (3.9)

and

dw

dt
+Aw +QR(v) = 0, w(t = 0) = Qv0, (3.10)

where v0 is the initial condition associated with the full state-space representation.

In Eqs. 3.9 and 3.10, the fact that orthogonal projections commute with the linear

operator is used,

PA = AP , → PAv = Au

QA = AQ, → QAv = Aw.
(3.11)

As P and Q are orthogonal projections in the Hilbert space H, they commute with

the linear operator A, and its powers [33].
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The main challenge in closing the inertial form is in the projected nonlinear term

PR(v), which cannot be described using only u. By constructing the inertial manifold

graph: w(t) = Φ(u(t)), the inertial form is closed. Now v(t) =
(
u(t),Φ(u(t))

)
is a

solution of Eq. 3.2 if and only if u(t) and w(t) = Φ(u(t)) satisfy Eqs. 3.9 and 3.10.

3.1.4 Uniqueness of the inertial manifold graph

Given a continuous bounded function σ : R→ H, there is a bounded unique solution

for equation

dψ

dt
+Aψ = σ, (3.12)

as t→ −∞. Integrating Eq. 3.12 between s and t for s < t gives,

ψ(t) = e−(t−s)Aψ(s) +

t∫
s

e−(t−τ)Aσ(τ)dτ. (3.13)

Using the boundedness assumption, for s→ −∞,

ψ(t) =

t∫
−∞

e−(t−τ)Aσ(τ)dτ, (3.14)

which shows the uniqueness of ψ. In Eqs. 3.12-3.14, ψ and σ can be replaced by w

and −QR(v), respectively, with v =

(
u,Φ(u)

)
. Then w(t) is given by,

w(t) =

t∫
−∞

e−(t−τ)AQR(u⊕ Φ(u), τ)dτ, (3.15)

for all t ∈ R. In particular, w(0) is given by

w(0) =

0∫
−∞

eτAQR(u⊕ Φ(u), τ)dτ. (3.16)
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Note thatw(0) depends on Φ, and with u(0) ∈ PH, a formal mapping for the manifold

is built. Equation 3.15 is identical to the Mori-Zwanzig formulation for reduced-order

modeling of dynamical systems [167, 168]. The original dynamical system is cast into

a lower-dimensional subset. However, the integral known as the memory term needs

to be computed by solving the orthogonal dynamical system. Reduced-order models

of turbulent systems have been developed following the Mori-Zwanzig formalism and

approximating the orthogonal dynamical system solution [169–171].

In the past, numerous studies have demonstrated the properties of inertial man-

ifolds for specific systems [98, 172, 173]. These include analysis of the stability of

the manifolds to perturbations [98], the exponential convergence of trajectories to the

manifold [172], and questions regarding the suitability of this manifold approximation

for representing the evolution of a dynamical system [172, 174]. These studies demon-

strated that an IM is a reliable framework for describing the long-time dynamics of the

system, and it can be a powerful approach for developing reduced-order models that

describe the underlying dynamical system. An example is the class of Galerkin-based

IMs, also known as Galerkin manifolds [39, 174].

Current proofs on the existence of an IM rely on the presence of arbitrarily large

gaps in the spectrum of the linear operator of the dynamical system [98]. The existence

of an inertial manifold has been proven for many dissipative PDEs [98, 175], describing

different physical systems such as reaction-diffusion systems [176–179], hydrodynamic

instabilities [180, 181] and interfacial instabilities [98, 176, 182, 183]. However, it

is important to recognize that these theoretical foundations are based on strong

restrictions [98, 175], and a rigorous extension to real-life problems, such as an end

application in multi-physics engineering processes, is a work in progress. Whether the

spectral gap condition is necessary for the existence of an IM is still being explored.

As such, it might be possible to prove the existence of the inertial manifold with

weaker conditions [98].
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3.2 Approximate inertial manifolds

Current theories on the existence of an inertial manifold strictly require a spectral

gap, delineating time scales associated with the modes on the orthogonal space from

those of the inertial manifold. However, not all of the properties of an IM, for instance,

the squeezing property, require the spectral gap condition to be satisfied. It might

be possible to develop a theory of inertial manifolds that uses weaker conditions

[98, 179]. Furthermore, these theoretical results cannot provide an explicit form

for the inertial manifold. As a result, an approximation of the inertial manifold is

necessary, which leads to the formulation of an approximate inertial manifold (AIM).

AIMs can be developed to approximate either the true inertial manifold [172, 177, 184]

or a neighborhood of the global attractor of the system [33, 185–187]. In this latter

case, while the existence of an IM is unknown, AIM still describes a subset of the phase

space which approximates a neighborhood of the global attractor [174]. Figure 3.3

shows a sketch of an AIM in the phase space. While the inertial manifold is shown

here, there is no need for an IM to exist; and AIM can enclose a neighborhood of the

attractor.

In this vein, one approach considered in this work is the direct approximation of

the inertial manifold [39, 174, 187, 188], where the dynamics of the system can be

simplified in a subspace of the state space, naturally leading to the construction of a

reduced-order model. Here, the dynamics of the system are tracked on an AIM. The

main assumption is that the dynamics in the complement space of the IM and full

state-space are enslaved by the dynamics on the IM. In other words, the motion in

the complement space responds instantaneously to changes in the trajectory on the

AIM. While this assumption is justified by the theoretical studies discussed above

[33, 98, 172], their validity needs to be scrutinized more rigorously. Many studies have

been conducted on approximate inertial manifolds for dissipative systems, estimating

their dimension and the rate of exponential convergence of dynamics to the AIM
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Figure 3.3: Schematic of the approximate inertial manifold of a dynamical system.
The plane represents the Hermitian space, and the blue subset is the
phase space, V . A trajectory is shown as a dashed black line. The green
subspace is the attractor E , and the inertial manifold is the yellow
subspace, M. The AIM is enclosed by the dotted line.

merely for dimension reduction [174, 189].

The concept of ROMs based on inertial manifolds for turbulence modeling was first

introduced by Temam [33], where the interaction law between small and large scales

guarantees the existence of an inertial manifold of the system. This work was followed

by AIM-inspired ROM algorithms developed for different systems, including reaction-

diffusion systems [98, 190], the Kuramoto-Sivashinsky equation (KSE) [172, 174, 183]

and the two-dimensional Navier-Stokes equations [33, 39, 191, 192]. In a more recent

work, an AIM was developed as a suitable solution of the three-dimensional Navier-

Stokes equations in Fourier space, and its properties were analyzed [193]. While

almost all of these studies treat the governing equations using a Fourier-based spectral

discretization, finite difference and finite volume-based PDE discretizations have also

been considered [194, 195].
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Recently, data-driven approximate inertial manifolds have been constructed using

machine learning and data assimilation techniques [196–199]. These techniques can be

used to either determine the structure of the AIM model (including its dimension) or

to track the dynamics with prior knowledge about its structure. Furthermore, AIMs

enable the study of qualitatively different dynamical behaviors such as the transition

to turbulence. For instance, bifurcations of the Kuramoto-Sivashinsky equation have

been studied over a range of parameters using an AIM projected in two dimensions by

symmetry reduction techniques [200]. Here, the manifold was computed and visualized

for different dynamical behaviors of the system, which is intractable in the full state

space. Despite these extensive studies, there is limited computational exploration of

AIMs and, in particular, their suitability for modeling turbulent reacting flows. The

focus of this work is to address this gap by systematically studying the AIM approach

for a set of canonical reacting flows.

3.2.1 Mathematical formulation of an AIM

The objective is to develop a reduced-order model predicting the dynamical behavior

of the system in a low-dimensional manifold described by dynamics of a subset of the

variables of interest. Unlike the predominant approach in turbulence modeling which

uses a spatial filtering operator for separation of variables, here the governing equa-

tions are leveraged to define an orthogonal projection operator P which decomposes

the vector of variables (v) into the resolved u and the unresolved w subsets. The

projection P is performed on the space spanned by the first m eigenfunctions of the

linear operator A. The choice of m depends on the spectral properties of the linear

operator [33, 201]. By applying the projection operator to Eq. 3.2, the governing

equations for the resolved and unresolved variables are obtained in Eqs. 3.9- 3.10.

The full - discrete - set of variables v has dimension N = (ng×nv). The projection

operators

46



a) P has dimension (m× nv, ng), and

b) Q has dimension (ng −m× nv, ng).

Therefore,

a) u = Pv ∈ Rm×nv ,

b) w = Qv ∈ Rng−m×nv .

Dimensions of u and w sum to N to avoid Eqs.3.9- 3.10 give rise to an overdetermined

set of equations. Therefore, there exist matrices P ∗ and Q∗ such that,

v = P ∗u+Q∗w

I = P ∗P +Q∗Q.

(3.17)

For tracking the dynamics of the approximate inertial manifold by only the resolved

variables, the projected nonlinear term PR(v) should be modeled as it cannot be

described using only u. The goal is to reconstruct w given only information of u and

compute the nonlinear terms with the recovered full-dimensional vector of variables.

Using IM theories, it is assumed that the dynamics of w respond instantaneously to

the dynamics of u. With the approximation dw/dt = 0 [185], Eq. 3.10,

dw

dt
+Aw +QR(v) = 0, (3.18)

results in

Aw +QR(v) = 0. (3.19)

The above nonlinear equation can be iterated starting from an initial guess to obtain

a converged solution for w,

w∗ = −A−1QR(u,w). (3.20)
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With this approximation of the unresolved dynamics, the nonlinear term PR(u,w),

and hence the governing equations of the resolved modes u, are closed,

du

dt
+Au+ PR(u,w∗) = 0, u(t = 0) = Pv0. (3.21)

The concept of the inertial manifold is introduced for dissipative dynamical systems

with a linear positive unbounded operator, whose eigenvectors provide an orthonormal

basis for the Hilbert space the dynamics reside in. Current theories on the existence

of an IM require a sufficiently large spectral gap in the eigenvalues of the linear

operator, which provides a natural way for the orthogonal decomposition of the state

space. Therefore, considering the eigenvalues of the linear operator for projection is

a computationally efficient choice for this problem. However, finding the eigenvalues

of the full right-hand side of the equation can give more information about dominant

dynamics. The computational cost of evaluating the eigenvalues of the full right-

hand side can be prohibitive in higher-dimensional systems, but lower-dimensional

approximate inertial manifolds can be tracked [165, 166].

In the following chapters, this approximation of the inertial manifold has been

investigated for turbulent flows and turbulent combustion. In all systems considered,

the proposed AIM is analyzed both a priori and a posteriori. In the a priori analysis,

first the full-dimensional system of equations is solved using direct methods. Then,

the solution is decomposed into the resolved and unresolved variables by projections

P and Q, respectively. The unresolved variables are approximated by the exactly

resolved scales using Eq. 3.20 and are compared against the exact unresolved modes.

This analysis provides an insight into whether approximation dw/dt = 0 is justified.

In the a posteriori analysis, the proposed closure for the resolved variables is used

to forecast the dynamics of the system in a low-dimensional approximate IM rather

than the full-dimensional system. The modeled system is then compared against the
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exact resolved solution obtained from direct methods.

3.3 Summary

First, reacting turbulent flows are cast as a dynamical system, and properties of

governing equations are discussed. Second, the inertial manifold theory is introduced,

which provides a path for developing reduced-order models. A ROM is proposed based

on the IM theory, which decomposes the dynamics of the system into resolved and

unresolved scales similar to conventional modeling approaches discussed in Chap. II.

However, in this approach, the governing equations of the system are leveraged for

the decomposition of scales and closure of the model.
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CHAPTER IV

AIM-Based Turbulence Modeling

In this chapter, the approximate inertial manifold proposed in chapter III is con-

structed for two canonical turbulent flows, the one-dimensional Kuramoto-Sivashinsky

equation and homogeneous isotropic turbulence (HIT) governed by the Navier-Stokes

equations. Current theories prove the existence of an inertial manifold for the KSE

and provide an estimate of the lowest dimension of such manifold [183]. The KSE

has been studied extensively by approximate inertial manifolds. However, the range

of parameters considered in previous works is such that the spatiotemporal chaotic

behavior is not reached. Here, the KSE is studied in the fully chaotic regime to assess

different aspects of AIM formulation. Also, the AIM approach is tested for homoge-

neous isotropic turbulence, which is the first such study to the authors’ knowledge.

Compared to KSE, HIT introduces two challenges: 1) current theories cannot prove

the existence of an IM for the Navier-Stokes equations even in two dimensions, 2)

there is a dimensional jump compared to any other system an AIM is constructed for

in previous studies.

4.1 A priori analysis of AIM for turbulent flows

First, an a priori study is conducted to examine the validity of AIM assumptions and

to obtain an estimation of inertial manifold dimension for each of these systems over
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a range of parameters. Accordingly, this study does not focus on model development,

since the full-dimensional dynamical system is solved for the a priori analysis. However,

the formulation provides a clear path to develop an AIM-based ROM as explained in

Chap. III.

4.1.1 Kuramoto-Sivashinsky equation-based spatiotemporal chaos

The Kuramoto-Sivashinsky equation has been used as a surrogate for studying tur-

bulence and interfacial instabilities [202–204]. The KSE is a convection-diffusion

equation written as

∂ξ

∂t
+ ξ

∂ξ

∂x
+
∂2ξ

∂x2
+ µ

∂4ξ

∂x4
= 0 , x ∈ R, t > 0

ξ(x, t) = ξ(x+ L, t); ξ(x, 0) = g(x),

(4.1)

where t is time, x is physical space, ξ is the solution of the equation, L is the

spatial period, and µ is viscosity. The dynamics of the system are controlled by two

parameters: L and µ. It is then possible to define a Reynolds number type parameter

as Re = L
2π
√
µ

[205], where the extent of spatiotemporal chaos is determined similar

to the conventional use of this non-dimensional number. The range of scales in the

system can be modified by changing Re. In this study, viscosity is kept constant at

µ = 0.001, and the length of the domain is varied in the range of [10π, 64π]. The AIM

will be investigated for this range of parameters.

To cast the KSE in a dynamical system framework, spectral discretization is used.

Let v be the Fourier transform of ξ,

v(k, t) = F(ξ(x, t)) =
1

L

L∫
0

ξ(x, t)e−iqkxdx, (4.2)

where qk = 2πk
L

, k ∈ Z, and F is the Fourier transform operator. In discretized form,

nF Fourier coefficients are used for v, denoted by vk with k ∈ [−nF/2 + 1, nF/2]. The
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governing equation of the system in spectral space is obtained as a Galerkin projection

of the Fourier modes,

d

dt
vk + (µq4

k − q2
k)vk +

iqk
2

∑
1 ≤ |l| ≤ nF /2

1 ≤ |k − l| ≤ nF /2

vlvk−l = 0. (4.3)

Fourier modes with large wavenumbers have low amplitude and can be neglected at

sufficiently large nF . The exact solution of the full-dimensional system is obtained

by solving Eq. 4.3 using the exponential time difference fourth-order Runge-Kutta

method (ETDRK4) [206, 207] with standard 3/2 de-aliasing. The initial condition of

the dynamical system in physical space (Eq. 4.1) is g(x) = sin(x)(1 + cos(x)). For

the range of domain sizes considered here, this computation can become expensive.

The required grid resolution is provided in Tab. 4.1. For this reason, an MPI-based

domain decomposition approach is used to solve the system on distributed memory

computers.

4.1.1.1 Numerical stability requirements

The KSE exhibits spatiotemporal chaos, where infinitesimal perturbations exponen-

tially grow over time. Therefore, the numerical resolution (in time and space) used

to resolve the system has a significant impact on the accuracy and stability of the

solution. The range of scales found in the system increases with the length of the

domain. As a result, the number of Fourier modes needed to resolve the dynamics

also changes. Figure 4.1 shows a typical x − t plot of the solution ξ for a Reynolds

number 316.23 using 4096 Fourier modes. Initially, spatial variations retain the phys-

ical structure of the initial conditions. At t > 0.15, transition to a chaotic regime

is observed. However, with 1024 Fourier modes for the same Reynolds number, the

solution becomes unstable after the transition to the chaotic regime and blows up.
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These simulations with coarser resolution represent truncated systems without any

subgrid model.

As expected, when sufficient spatial resolution is not available, the energy dissi-

pation is not fully captured and there can be a pile-up of energy at the small scales,

which leads to numerical instability. Since one of the objectives of this work is to

determine whether an AIM approximation is useful as a modeling path, the errors

associated with the AIM process will be compared to those of the minimum resolution

needed to evolve the governing equations stably. In other words, if the AIM approach

shows good accuracy when using a smaller number of Fourier modes, it will provide a

computational benefit when compared to the minimum resolution needed to solve the

equations stably. Table 4.1 shows the required minimum resolution for the stability of

the solution for different Re values as well as the maximum resolution used in the high

fidelity solution of this study. By increasing the number of Fourier modes beyond the

minimum resolution, the size of structures captured in the chaotic regime decreases.

A grid convergence study is done at each Re number. The highest resolution grid is

considered as the exact solution, and the L2 norm of the difference between coarser

grids solution and exact solution is monitored as convergence metric. The high fidelity

simulation is called DNS in this study since the governing equations are solved without

any modeling. When discussing the AIM resolution (m in Chap. III), the minimum

resolution will be used as a reference.

Case Length of domain Re Nmin NDNS

A 10π 158.11 1024 2048
B 20π 316.23 2048 4096
C 36π 569.21 4096 8192
D 64π 1011.93 8192 16384

Table 4.1: Grid convergence study of the KSE for different Re numbers. Nmin

denotes the minimum number of modes required to obtain a stable
solution. NDNS is the number of modes used to obtain the high fidelity
solution.
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Figure 4.1: Solution of the KSE, ξ(x, t), for Re = 316.23, NDNS = 4096. Only part
of the computational domain is shown.

4.1.1.2 Construction of an AIM for the KSE

The existence of an IM has been proven for the KSE [183, 208]. In the IM formulation,

Eq. 4.3 can be arranged as Eq. 3.2 with the linear operator A = µq4
k and R(v) =

−q2
kvk+ i qk

2

∑
vlvk−l or their physical space analog. The KSE has two linear operators,

but only one of them (µq4
k) satisfies properties of A (i.e., linear, unbounded, and self-

adjoint) required by the theory of inertial manifolds. While the second-derivative

term (−q2
k) is responsible for instability at large scales, the fourth-derivative term

provides damping at the small scales. In this formulation, the projection operator

is defined in the spectral domain by the first m eigenvectors of A; P is a diagonal

matrix with µq4
k as its diagonal entries. By applying the projection operators into

Eq. 4.3, governing equations of resolved and unresolved subspaces are obtained,

d

dt
uk + (µq4

k − q2
k)uk +

iqk
2
P

( ∑
1 ≤ |l| ≤ nF /2

1 ≤ |k − l| ≤ nF /2

vlvk−l

)
= 0, (4.4)
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and

d

dt
wk + (µq4

k − q2
k)wk +

iqk
2
Q

( ∑
1 ≤ |l| ≤ nF /2

1 ≤ |k − l| ≤ nF /2

vlvk−l

)
= 0. (4.5)

Resolved variables are u = (v−m/2, ..., vm/2), and the unresolved variables are w =

(v−nF /2+1, ..., v−(m+1)/2, v(m+1)/2, ..., vnF /2). With the AIM approximation, the unre-

solved modes can be sought as the solution of

wj+1
k = (µq4

k)
−1

(
q2
kw

j
k −

iqk
2
Q

( ∑
1 ≤ |l| ≤ nF /2

1 ≤ |k − l| ≤ nF /2

(u,wj)l(u,w
j)k−l

))
, (4.6)

where j is the index of iteration. Equation 4.6 is solved by an iterative method.

It is shown that Eq. 4.6 has a unique solution [183]. However, seeking the fixed-

point solution of this equation can be expensive, since the nonlinear term should

be computed at each iteration. Most of the following analysis has been done with

j = 1 unless otherwise mentioned. This provides a first-order approximation of the

unresolved dynamics, which is a common practice in an approximation of inertial

manifolds [174, 183]. The second-derivative term does not appear in Eq. 4.6 for

j = 1, and the nonlinear term is computed only by the resolved variables. With this

approximation, w = Φ(u), and an AIM is constructed as Φ : PH → QH.

4.1.1.3 Validity of the AIM formulation for the KSE

One of the key assumptions in the AIM methodology is that the linear operator

dominates and controls the unresolved dynamics. In the KSE, the linear operator is

dissipative in nature. If dissipation dominates the unresolved dynamics, the energy of

high wavenumber modes is exponentially dissipative and asymptotically small. This

fact reinforces the notion that long-time dynamics of the system lie in the inertial
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manifold. This assumption is evaluated using the energy budget of the governing

equation for case A in Tab. 4.1. Figure 4.2 shows the energy budget for different

quantities in the unresolved dynamics, each plotted using an AIM resolution of m =

158, which is equal to the number of linearly unstable modes in this case. The

number of linearly unstable modes is found by linearizing Eq. 4.3 at its trivial solution

and computing the eigenvalues of its linear operator. Eigenvalues with positive real

parts correspond to the linearly unstable modes. In this case, the eigenvalues are:

λk = q2
k(1− µq2

k), which gives [Re] eigenvalues with positive real part, where [Re] is

the integer part of Re.

To obtain the linear and nonlinear terms in Eqs. 4.4 and 4.5, the solution v from

the high fidelity computation is projected onto the resolved and unresolved spaces

using the operators P and Q = I −P , respectively. For the KSE, P is the projector

onto the span of the first m eigenvectors of the linear operator A = µq4
k. The nonlinear

operator is computed using the DNS data and is then projected onto the resolved and

unresolved spaces.

The energy budget, defined as the magnitude of each term for the evolution in

spectral space, is shown in Figs. 4.2 and 4.3. For the unresolved scales, the magnitude

of the linear term is comparable to that of the nonlinear term. This trend holds for

the first unresolved mode as well as the average of all the unresolved modes. The

linear operator gains more energy at the small scales because of the strong dissipative

nature of the KSE. On the other hand, for the resolved modes (shown in Fig. 4.3),

the nonlinear term is substantial compared to the linear term, which is consistent

with the chaotic nature of this system. It is also seen that the average of all resolved

terms shows that both operators are of roughly similar magnitude. This is because

the modes close to the cut-off wavenumber (i.e., close to m = 158) have a robust

linear term (as seen for the first unresolved mode). As m is increased, the unresolved

modes will be increasingly dominated by the linear operator.
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Figure 4.2: Energy budget for the unresolved dynamics (Eq. 4.5) of the KSE for
Re = 158.11, m = 158. Linear term (Aw): , nonlinear term
(QR(u,w)): . Left: energy budget of the first unresolved mode.
Right: average energy budget of the unresolved dynamics.

Figure 4.3: Energy budget for the resolved dynamics (Eq. 4.4) of the KSE for
Re = 158.11, m = 158. Linear term (Au): , nonlinear term
(PR(u,w)): . Left: energy budget of the first resolved mode, right:
average energy budget of the resolved dynamics.

An interesting aspect of the results in Figs. 4.2-4.3 is that the first unresolved mode

has more energy than the resolved modes. Figure 4.4 shows the energy spectrum of

the KSE for Re = 158.11. The vertical dashed line marks the cut-off wavenumber in

the AIM projection for m = 158. At this AIM resolution, the cut-off wavenumber is

in the inertial range of the energy spectrum, and it is discernible that the energy of

the first unresolved mode is more than the energy of some of the resolved scales. This

behavior in the KSE energy spectrum is because of the destabilizing effect (second

derivative term) in large scales which increases energy towards higher modes before
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viscosity becomes dominant. This shows that decomposition in AIM is not about

relative energy content alone, but the separation of time scales. In the following

sections, it is shown that even with such differences in energy content the method is

relatively accurate. This provides confidence in the transferability of the model to

situations where at least a portion of the small scales might have more energy than

some of the larger scales.

Figure 4.4: Energy spectrum of the KSE for Re = 158.11.

4.1.1.4 Dimension of AIM

The primary AIM outcome is the determination of the unresolved dynamics based on

the evolution of the resolved scales. To understand the accuracy of this approach, an a

priori analysis is conducted. As mentioned in Chap. III, current theories can prove the

existence of an IM for some dissipative systems, although they cannot determine its

dimension and topology explicitly. Therefore, an estimation of the inertial manifold

is essential. As the IM attracts all trajectories exponentially, its approximation must

contain a thin neighborhood of the IM. Therefore, m should be larger than the

dimension of the IM. However, obtaining this dimension is a computational challenge
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in itself, and is currently infeasible [34, 37, 38, 209]. Previous studies have estimated

the dimension of IM for the KSE and provided an upper-bound scaling with different

powers of Re [174, 183]. Here, the relation of the AIM accuracy to this dimension

estimate is assessed.

For each Re, different projection operators leading to various resolutions of AIM

are considered, and unresolved quantities are approximated by Eq. 4.6. They are

then compared against the high fidelity solution of the dynamical system projected

onto the unresolved subset. The results are first shown in Fig. 4.5, where the real

part of the first unresolved mode is plotted. It is seen that as m increases, the

AIM assumption becomes increasingly accurate, with the predicted field accurately

tracking the exact quantity in time. Note that the number of resolved modes m is well

below the minimum required to reach stability with a truncated system (Tab. 4.1).

Figure 4.6 shows the evolution of the average of unresolved quantities with time. It

is seen that, similar to the first unresolved mode, increasing the AIM dimension (m)

increases the accuracy of the results. However, the improvement is not as marked

as for the first unresolved mode. From these figures, it is concluded that the modes

closest to the resolved space are more responsive to the resolved-scale dynamics. This

trend is shown more clearly in Sec. 4.1.1.5.

Figure 4.5: Effect of the AIM resolution m, on approximation of the dominant
unresolved mode (wm+1) for Re = 1011.93. DNS: , AIM: . Left:
m = 1024, right: m = 2048.
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Figure 4.6: Effect of the AIM resolution on approximation of the average of
unresolved dynamics (w̄) for Re = 1011.93. DNS: , AIM: . Left:
m = 1024; right: m = 2048.

Even though the AIM estimation degrades at higher wavenumbers, the overall

performance improves with increasing AIM resolution. Figure 4.7 shows the L2-norm

of the difference between the w field obtained using AIM (Eq. 4.6) and the unresolved

sub-space of the full system solution (Eq. 4.3), expressed in the spectral space as a

function of AIM resolution over the range of Re numbers. Regardless of the Re number

used, after an initial reduction, the error appears to plateau before decreasing further.

Incidentally, the switch from the plateau to the second convergence branch occurs

when AIM resolution m exceeds the bifurcation parameter, Re. Given that prior work

has shown that the dimension of the inertial manifold scales as Re [174, 183], this

result suggests that strong convergence properties can be obtained for resolutions

higher than the dimension of the inertial manifold. At low m, it is postulated that

the initial error reduction occurs primarily because the resolved modes increasingly

capture the key macroscopic features. A constant rate of convergence is not expected

due to the highly nonlinear nature of the resolved scales dynamics [210].
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Figure 4.7: Effect of AIM resolution on estimation of the unresolved dynamics
||wDNS −wAIM ||2. Re = 158.11: , Re = 316.23: , Re = 569.21: ,
Re = 1011.93: . Vertical dashed line marks m = [Re].

While the comparisons so far have been in spectral space, it is illustrative to

consider the physical space features captured by the AIM model. For this purpose,

two different resolutions of the AIM are considered for Re = 158.11. Figures 4.8 and 4.9

show the different fields for the AIM resolutions m = 128 and m = 256, corresponding

to the full-dimensional reconstructed field and the unresolved dynamics, respectively.

For a clearer representation of the small scales, only part of the simulation domain

is shown for the chaotic regime (t > 0.15). Before the transition to this regime, the

dynamics are laminar and captured by large wavelength resolved-scale modes.

Figure 4.8 compares the AIM-reconstructed fields (F−1(u,wAIM)) by two different

AIM resolutions against the high fidelity (DNS) solution. The reconstructed field

retains the features of the full field, even at the lower resolutions considered. For

m = 256, the AIM-reconstructed field appears to retain most of the details of the

flow qualitatively. However, these are full-dimensional fields reconstructed from the

AIM approximation and resolved fields. In Fig. 4.9, a comparison of the exact and

approximated unresolved fields is revealing of the effect of the AIM dimension in
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approximating the unresolved modes. In particular, it is seen that the extrema in the

reconstructed field are smaller in magnitude in comparison to those of the original field.

While this improves with the resolution, there remain differences in the spatiotemporal

structures at m = 256.

Figure 4.8: KSE solution in physical space for Re = 158.11, ng = 2048. Left:
full-dimensional solution (ξ(x, t)) obtained by DNS; reconstructed
solution by AIM with m = 128 (middle) and m = 256 (right).

Figure 4.9: Unresolved dynamics of the KSE solution in physical space for
Re = 158.11, ng = 2048; Top left: DNS solution (Qξ(x, t)) for m = 128,
top right: AIM estimation by Eq. 4.6 for m = 128, bottom left: DNS
solution (Qξ(x, t)) for m = 256 and bottom right: AIM estimation by
Eq. 4.6 for m = 256.

62



4.1.1.5 Accuracy of statistical features

While the focus so far has been on the ability of AIM to capture the dynamics of

the underlying system, it is essential to understand the impact on the statistical

properties of the system. For this purpose, the two-point spatial correlation R(r, t) =

〈ξ(x, t)ξ(x+r, t)〉, is computed for the DNS and AIM-reconstructed fields. Figure 4.10

(left) shows the convergence of the AIM solution to the exact solution by increasing

the dimension of the AIM. Although the highest AIM resolution, (m), is significantly

lower than the DNS resolution and the minimum resolution required for stability, it

can capture the exact two-point correlation fairly accurately. Figure 4.11 shows the

energy spectrum plotted in spectral space. Discrepancies in the modeled spectrum can

be observed, especially at high wavenumbers. Nevertheless, AIM captures the energy

of the largest unresolved scales quite accurately (for |k| ∈ [50, 100]), indicating that

their dynamics are indeed enslaved to the largest resolved scales. However, the small

scales appear to have lower energy in the AIM reconstruction, indicating that the

approach to the manifold is not purely determined by the scale-specific time-scale,

which tends to be smaller at larger wavenumbers. This behavior is also seen in the

spatial correlations of the unresolved dynamics alone, w. Figure 4.10 (right) shows

that for larger separations (r/L > 0.05) the two-point correlation is well represented by

the AIM reconstruction of the small-scales, while the amplitude of these correlations

is not captured at shorter separation distances.
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Figure 4.10: Spatial two-point correlation of velocity field in physical space for
Re = 158.11. Left: convergence to DNS by increasing AIM resolution
m, obtained for full vector of variables (u,w). DNS: ; AIM, m = 64:

; AIM, m = 128: ; AIM, m = 256: . Right: Spatial-correlation of
unresolved space (w) for m = 256. DNS: ; AIM: . In both plots, all
values are normalized by the corresponding spatial correlation at r = 0
obtained by DNS.

Figure 4.11: Energy spectrum for Re = 158.11, m = 256. DNS: ; AIM: ; exact
subgrid spectrum: ; subgrid spectrum approximated by AIM: .
The vertical dashed line marks the cut-off wave number.

The energy spectrum and the two-point correlation show that the AIM approxi-

mation deteriorates at the smallest scales in the unresolved dynamics. However, the

approximation can be improved by seeking the fixed-point solution of Eq. 4.6 with

more iterations. Figure 4.12 (left) shows that with j = 3 in Eq. 4.6, the AIM approx-
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imation has improved considerably at higher wavenumbers, and the energy spectrum

is reconstructed at the smallest scales. The rate of convergence is controlled by the

quadratic nonlinearity in Eq. 4.6 which correlates with different scales. Figure 4.12

(right) compares the normalized error of the energy spectrum of the unresolved modes

obtained using different numbers of iterations. At each iteration, the number of

unresolved modes correlated with the resolved dynamics is doubled because of the

quadratic nonlinearity. By considering more iterations, the information in the resolved

and larger unresolved scales is transferred to the smaller scales, which improves the

performance of the approximation. Since the dimension of the unresolved dynamics is

finite, increasing the number of iterations after some point does not improve the ap-

proximation anymore. In the discussions above, only the j = 1 solution is considered,

since this provides a first-order approximation of the unresolved dynamics.

Figure 4.12: Left: Energy spectrum for Re = 158.11, m = 256. The unresolved
dynamics are reconstructed by Eq. 4.6 with j = 3; DNS: , AIM: .
Right: relative error in energy spectrum of the unresolved dynamics for
Re = 158.11, m = 256, when unresolved dynamics are approximated by
Eq. 4.6 with j = 1: , j = 2: and j = 3: . Vertical dashed lines
mark wavenumbers km, 2km and 4km.

4.1.2 Homogeneous isotropic turbulence

In this section, the performance of the proposed AIM is assessed a priori for a canonical
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turbulent flow evolving in a cube of side length 2πm. This problem represents a jump

in complexity for two reasons: 1) the dimensionality of the discretized system is

increased by orders of magnitude; 2) the existence of an IM has not yet been proven

for the Navier-Stokes equations [98]. The flow is considered incompressible, and the

three-dimensional Navier-Stokes equations govern the state of the system

∂ξi
∂t

+ ξj
∂ξi
∂xj

= −1

ρ

∂p

∂xi
+ µ

∂

∂xj
(
∂ξi
∂xj

) +Bξi

∂ξi
∂xi

= 0,

(4.7)

where ξi is the velocity component in the ith direction, p is the hydrodynamic pressure,

µ is the kinematic viscosity and ρ is the density. Statistical stationarity is achieved by

using a turbulent forcing technique that compensates for the viscous dissipation. A

linear forcing scheme is used with a uniform constant-coefficient B [211, 212]. It should

be mentioned that IM theories are developed for nonstationary systems [98, 163], but

for decaying turbulence, the Re number and subsequently dimension of the attractor

are decreasing. Therefore, it is not fair to assess an AIM with a fixed dimension for

long-term prediction of dynamical or statistical features of decaying turbulence.

4.1.2.1 HIT solution and numerical specifications

Similar to the procedure used for the KSE, Eq. 4.7 is expressed in Fourier space using

ξi =
∑

~k vi(
~k, t)e

~k.~x. A Galerkin projection of the equation leads to a system of ODEs

that govern the evolution of the Fourier coefficients vi(~k, t),

d

dt
vi(~k, t) + µ|k|2vi(~k, t)−Bvi(~k, t) + ki

~f.~k

|k|2
− fi = 0

fi = −F(
∂ξiξj
∂xj

)~k,

(4.8)

which is solved in a domain of 2π × 2π × 2πm with periodic boundary conditions.

Similar to the KSE, a pseudo-spectral method with dealiasing is used for the non-linear
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term. Exact time integration is used for the linear viscous term, and second-order

Runge Kutta (RK2) is used for the other terms. Since small incompressibility errors

can grow fast in a spectral formulation, it is necessary to remove the divergence error

at every time step [213, 214]. At each time step, the velocity field is projected on the

divergence-free space following the procedure explained in [213, App. A1].

Four different spatial resolutions are used to investigate the accuracy of the AIM

methodology for different Reynolds numbers. The simulation details are provided in

Tab. 4.2. The Taylor microscale Reynolds number Reλ = u′λg
µ

and the Kolmogorov

length scale η = (µ
3

ε
)1/4 are monitored over the initialization time to make sure the

turbulent field is fully developed, where λg is computed as
√

15µ
ε
u′ [6, Chap. 6], u′ is

the fluctuating velocity and ε is the dissipation of turbulent kinetic energy. At each

resolution, the flow statistics are monitored for approximately 1000 eddy turnover

times (τ) to ensure a fully-developed, forced, statistically stationary flow field. The

long transient time is chosen to make sure that the forcing method does not lead to

instability and energy pile-up at small scales. The AIM investigation period is started

when the flow becomes statistically stationary. Figure 4.13 shows one snapshot of the

magnitude of vorticity vector for different grid resolutions.

Case Grid Resolution Reλ η/∆x Forcing coefficient (B)

I 323 15.7 1.22 0.1370
II 643 27.1 1.12 0.3275
III 1283 39.34 1.18 0.825
IV 2563 51.67 1.36 1.8

Table 4.2: Numerical setup for a priori analysis of AIM for HIT.
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Figure 4.13: Instantaneous magnitude of vorticity vector obtained for different grid
resolutions, left: ng = 643, middle: ng = 1283 and right: ng = 2563.

4.1.2.2 Construction of an AIM for HIT

Equation 4.8 can be rearranged as Eq. 3.2 using the linear operator A = µ|k|2, with

R(v) containing all other terms. It should be noted that the constant forcing term

is not included in the linear operator because it does not satisfy properties required

by the theory of inertial manifolds (Chap. III). The projection operator P , that

defines the resolved subspace is spanned by the first m eigenvectors of the linear

operator A = µ|~k|2, and it is parameterized using a three-dimensional wavenumber

km such that all the modes with wave numbers
√
k2
x + k2

y + k2
z ≤ km are included in

the resolved space. The number of modes satisfying this requirement is the dimension

of AIM, (m). For example, km = 2 leads to m = 23. In the following sections, different

values of km are used to examine the convergence properties of AIM. Figure 4.14 shows

the separation of the resolved and unresolved subspaces in the wavenumber space.

The highest wavenumber of the discretization is limited by the dealiasing, and higher

modes are insignificant in the calculations.
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Figure 4.14: Representation of the resolved and unresolved subspaces in the
wavenumber space. Circle with radius km encloses the resolved modes.
Gray shaded area denotes the unresolved subspace. kmax is the highest
wavenumber in DNS and unresolved dynamics calculations.

With the AIM approximation, dw/dt = 0, the unresolved variables with wavenum-

ber ~k can be approximated as

wj+1
~k

= −(µ|k|2)−1QR(u,wj), (4.9)

where j is the iteration index. As mentioned in Chap. III, the unresolved dynamics

can be approximated by solving Eq. 4.9 with a fixed-point iterative method.

One concern is that whether the reconstructed velocity field is physically con-

strained. It can be shown that the AIM approximation satisfies continuity conserva-

tion. If the initial guess of the sub-grid field is precisely divergence-free, regardless of
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the iterative method, this approximation preserves this condition in the unresolved

dynamics. However, if the initial guess of the unresolved velocity field does not satisfy

the continuity equation, its residual error will grow exponentially. For the velocity

vector corresponding to wavenumber ~k with initial guess w0 and j iterations in Eq. 4.9,

5 .w0
~k

= ε,

5 .wj
~k

=
(
(µ|k|2)−1B

)j
ε,

(4.10)

where ε is the residual of the continuity equation for the initial guess of the velocity

vector. At each unresolved mode, the error grows at a rate proportional to the inverse

of the wavenumber. Hence, the smallest unresolved scale (close to |~k| = km) has the

highest growth rate.

4.1.2.3 Validity of the AIM for HIT

As discussed in Sec. 4.1.1.3 for the KSE, the key assumption in the AIM method

is that the linear operator dominates the unresolved dynamics. In Navier-Stokes

equations, the linear operator is the Stokes operator. Even though this operator is

dissipative, and it possesses the required properties for AIM analysis (Chap. III),

it does not satisfy the spectral gap condition enforced by available theories on the

existence of an IM [98]. However, the existence of an IM for Navier-Stokes equations

might be proven by theories with more relaxed prerequisites. If the linear operator

is dominant in the unresolved dynamics, these dynamics are asymptotically small,

and the long-time dynamics of the system lie in the IM. To compare the prevailing

effect of the linear term in the resolved and unresolved sub-spaces, the variation of

the energy budget of the linear and nonlinear terms of governing equations (Eqs. 3.9

and 3.10) are monitored over several eddy turnover times for case II in Tab. 4.2 with

km = 8.

The linear and nonlinear terms, discussed in Sec. 4.1.2.2, are obtained from the
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DNS computation, where the full-dimensional solution (v) is projected onto the u and

w subsets using the operators P and Q = I − P , respectively. The energy budget

is defined as the magnitude of each term in spectral space. The same analysis for

the KSE in Sec. 4.1.1.3 shows that in the resolved subspace, the nonlinear terms are

considerably larger. While approaching the unresolved subspace, the linear term gains

more energy. The linear and nonlinear terms are of the same order of magnitude in the

unresolved subspace of the KSE. Figure 4.15 shows the variation of the energy budget

for the unresolved (left) and resolved (right) dynamics. In the resolved subspace of

the HIT, the nonlinear term is dominant. However, unlike in the KSE, the linear

operator is not important in the unresolved dynamics. Even though the linear term

becomes larger in the unresolved part, the nonlinear term remains important for all

modes. This behavior is consistent over different AIM resolutions (different km values)

until the truncated system becomes as descriptive as the AIM.

Figure 4.15: Energy budget of the governing equation for ng = 643, km = 8, left:
budget-study of the unresolved dynamics averaged over unresolved
sub-space, |~k| > km. Linear term, Aw: , nonlinear term, QR(u,w):

. Right: budget-study of the resolved dynamics for k ≤ km averaged
over all resolved modes. Linear term, Au: , nonlinear term
PR(u,w): .

4.1.2.4 Dimension of AIM

For each case in Tab. 4.2, different values of km are considered such that the number of

degrees of freedom for the largest approximate inertial manifold is around 30 percent
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of the degrees of freedom of DNS. The magnitude of the velocity field in physical

space is shown in Fig. 4.16 for case IV (see Tab. 4.2) and km = 32. Figure 4.16 shows

that the AIM-augmented field captures the dominant spatial features in the flow, even

though the unresolved dynamics are overestimated.

Figure 4.16: Magnitude of the velocity vector in a plane of the computational
domain for ng = 2563, top left: DNS, top right: AIM-reconstructed
field, bottom left: DNS field projected onto the unresolved subspace,
and bottom right: approximated unresolved dynamics by AIM. The last
three fields are obtained for km = 32, m/ng = 0.0042.

Figures 4.17 and 4.18 show the effect of AIM resolution on accuracy. In all cases, by

increasing the number of resolved modes AIM accuracy improves. Figure 4.18 shows

that the dynamics of the sub-grid flow field are estimated with reasonable accuracy

when using the information of the resolved modes alone (about five percent of the DNS

modes). Figure 4.19 shows the L2-norm of the difference between AIM estimation of

the unresolved scales (w) and the DNS solution as a function of AIM resolution (m).

The error decreases with increasing resolution; similar to the results obtained with

KSE, the rate of convergence is not constant. This behavior is consistent for all cases
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with different DNS resolutions.

Figure 4.17: Effect of AIM resolution m, on the estimation of dominant unresolved
mode for ng = 2563, left: km = 32, m/ng = 0.0042, and right: km = 72,
m/ng = 0.047. DNS: , AIM: .

Figure 4.18: Effect of AIM resolution (m) on the estimation of average unresolved
dynamics for ng = 2563. Left: m/ng = 0.0042, right: m/ng = 0.047.
DNS: , AIM: .

4.1.2.5 Statistical accuracy

Similar to the analysis of KSE in Sec. 4.1.1.5, the AIM modeling is assessed in terms

of the statistics of the approximated flow field. The turbulent kinetic energy spectrum

reconstructed with AIM is compared to that of DNS in Fig. 4.20 (top left), showing that

the spectrum differs fundamentally from that of the KSE. The largest wavenumbers

of the unresolved scales are not approximated accurately, which can cause stability

issues in a modeling setup. This behavior can have two possible explanations which

are discussed below.
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Figure 4.19: Effect of AIM resolution (m) on L2-norm of the difference between
exact and approximated unresolved dynamics ||wDNS −wAIM ||2 .
ng = 323: , ng = 643: , ng = 1283: , ng = 2563: .

In the governing equations of HIT, the forcing term is linear but counteracts

dissipation, which is combined with other nonlinear terms in AIM formulation,

d

dt
vi(~k, t) + µ|k|2vi(~k, t)−Bvi(~k, t) + ki

~f.~k

|k|2
− fi = 0,

Avi = µ|k|2vi(~k, t),

R(v)i = −Bvi(~k, t) + ki
~f.~k

|k|2
− fi.

(4.11)

Estimating the unresolved dynamics with only one iteration (j = 1) in Eq. 4.9

neglects the forcing term. The impact of this formulation is not critical at higher

wavenumbers (|~k| >> km), where the dissipative linear operator (A ∝ |~k|2) becomes

more dominant compared to the constant linear forcing coefficient (B). Therefore,

there is no energy over-estimation at small scales. This may explain the discrepancy

between AIM and DNS in the unresolved modes close to the cut-off wavenumber. To

examine this explanation, the following experiment is conducted: the influence of the

forcing term is removed by performing AIM on HIT and forcing only large scales to

sustain turbulence. In this case, the forcing coefficient B is zero for unresolved modes.

Figure 4.20 (top right) shows that AIM performance is improved when unresolved
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modes are not forced. However, there is still a small overestimation of energy close to

the cut-off wavenumber.

Furthermore, this persistent error in the energy spectrum may be related to the

first order (one iteration, j = 1) approximation in Eq. 4.9. Approximating unresolved

dynamics with additional iterations could be used to test this conjecture. Considering

Eq. 4.9 with j = 1, the nonlinear term only accounts for the interaction between

the resolved scales. Implementing a fixed-point iterative method for solving Eq. 4.9

will include interactions among all scales in the resolved and unresolved sub-spaces.

Previous studies of the two-dimensional Navier-Stokes equations have shown that

the fixed-point iteration has a unique bounded solution with a convergence rate

exponentially proportional to the smallest eigenvalue of the linear operator projected

onto the unresolved subspace (A|QH) [187].

The unresolved dynamics are approximated by a preconditioned nonlinear New-

ton method. To ensure robustness, a successive over-relaxation (SOR) approach is

used instead of the Newton scheme [215]. Figure 4.20 (bottom) shows that higher-

order estimation with only three iterations and SOR coefficient of 0.2 removes the

energy build-up issue. This higher-order estimation is more effective closer to the

cut-off wavenumber, which is in the inertial range of the energy spectrum where the

nonlinearity of the energy cascade dominates the dynamics.
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Figure 4.20: Energy spectrum reconstruction for ng = 643, km = 8. Top left: all
scales are uniformly forced and j = 1 in Eq. 4.9, top right: only
resolved scales are forced and j = 1 in Eq. 4.9, and bottom: all scales
are uniformly forced with j = 2 in Eq. 4.9. DNS: , AIM: .

4.1.2.6 Higher order statistics

In modeling the small-scale structures of the field from information at the large scales,

the vorticity vector (~ω), or its scalar equivalent, the enstrophy (z), is another important

quantity describing the energy cascade between these scales. Given in Eq. 4.12,

enstrophy measures dissipation of energy due to rotational or vortical motions, and its

prediction leads to identifying vortex structures and measuring momentum dissipation

from rotation,

~ω =5×~ξ

z =
1

2
(~ω.~ω).

(4.12)
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Figure 4.21 compares the time evolution of the total energy and enstrophy, achieved

with different AIM resolutions, with DNS. By increasing the number of resolved

modes, the AIM approximation becomes more accurate. For km = 32, m/ng = 0.0042,

the difference between total energy estimated by AIM and computed from DNS is

negligible, but there is a discernible error in total enstrophy prediction. This behavior

shows that the dissipation of energy is not captured accurately at the smallest scales.

Figure 4.21: Effect of AIM resolution on recovery of total energy and enstrophy for
ng = 2563. The highest resolution of AIM contains only 0.4 percent of
DNS modes. DNS: , AIM with km = 16, m/ng = 5.33× 10−4: , AIM
with km = 24, m/ng = 0.0018: , AIM with km = 32, m/ng = 0.0042:

.

To further understand the method’s ability to capture the spatial structure of the

turbulent flow, the helicity field is also explored. Helicity is defined as the integral

of the scalar product of the vorticity and velocity vectors, and is a measure of their

alignment in the flow,

H =

∫
V

~ξ · ~ωdV, (4.13)

where the integral is over the computational domain. Helicity is related to nonlinear

vortex stretching and impedes the cascade of energy between scales. While a higher

helicity is associated with coherent and long-lasting structures, a lower helicity indi-

cates higher dissipation at small scales. Helicity density is defined as the dot product

of the velocity and vorticity vectors: h̄ = 〈~ξ · ~ω〉. Helicity is the integral of helicity

density over the considered volume. Here, helicity density is computed at different
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AIM resolutions. Figure 4.22 shows that AIM with a sufficiently large dimension can

capture helicity quite accurately. Helicity can also be studied as a dimensionless local

quantity named relative helicity density [216],

h =
~ξ · ~ω
|~ξ||~ω|

= cos(θ), (4.14)

which is defined as the cosine of the angle between velocity and vorticity vectors. In

this definition, the instantaneous total velocity and vorticity fields are used. Regions

with h ≈ ±1 correspond to coherent large-scale structures. Previous studies suggest

h2 = cos2 θ ≈ 0.333 for a flat relative helicity density probability distribution function

(PDF), where h2 is the average value of the PDF [216]. Larger or smaller values

correspond to a greater or less helical behavior, respectively. Figure 4.22 (right)

compares the fluctuating relative helicity density PDF approximated by AIM with

DNS results. As shown, AIM modeling predicts more dissipative vortical motion and

fewer sustained structures, both in the PDF distribution and in the average helicity

density of the field.

Figure 4.22: Prediction of helicity density by AIM. Left: convergence to DNS by
increasing AIM resolution for ng = 2563, 5.33× 10−4 < m/ng < 0.0042;
DNS: , AIM with km = 16: , AIM with km = 24: , AIM with
km = 32: . Right: The relative helicity density PDF for
ng = 1283, km = 16. (h2

DNS = 0.3639, h2
AIM = 0.3540); DNS: , AIM:

.

Higher-order moments of velocity derivatives provide information about the small-
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scale structure, including the transfer of energy between different scales and the

inertial range. For this purpose, the derivative skewness is defined as

S = −
〈( ∂ξ1
∂x1

)3〉
〈( ∂ξ1
∂x1

)2〉3/2
, (4.15)

with ξ1 as the velocity component in x-direction, and 〈·〉 denotes spatial average. By

this definition, derivative skewness is positive, and it is related to vortex stretching

and energy cascade in the dissipation range. Prediction of such higher-order statistics

of small-scale quantities is essential for rare events consideration [6]. Figure 4.23 shows

that AIM with sufficiently large dimension can track exact derivative skewness with

significant dimension reduction (m/N = 0.03). Since the small scales are important

for such derivative quantities, these results show that AIM can recover a portion of

this information (Fig. 4.23, right).

Figure 4.23: Prediction of velocity-derivative skewness by AIM. Left: convergence
with resolution for ng = 1283, 0.0018 < m/ng < 0.0334; DNS: , AIM
with km = 12: , AIM with km = 16: , AIM with km = 32: .
Right: comparison of AIM with filtered DNS velocity field for
ng = 643,m/ng = 0.0044. DNS: , AIM: , Projected DNS: .

4.1.2.7 A priori comparison with other models

Here, the AIM approximation is compared against the Smagorinsky model [41] in

the LES approach. As discussed in Sec. 2.1.2, LES approaches are dominated by

implicitly filtered LES. To make the comparison meaningful, explicit filtering of LES
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is considered here. Conventional LES SGS models represent the subfilter stress terms,

which can be considered as a lower order projection of the small scale information.

They do not reconstruct the subfilter field. Also, there has been other works in the

past relating SGS modeling to AIM, albeit theoretically (see, for instance, [68]). Here

a numerical test is done to compare the a priori AIM and one LES model. The

deviatoric part of the subgrid-scale stress tensor (τij) modeled by LES is compared

with the exact SGS obtained from the DNS. To make the comparison fair, a priori

LES model is conducted similar to such analysis in previous studies [83, 217, 218].

The constant-coefficient Smagorinsky model [41, 219] is defined as

τij = −2νT S̄ij

νT = (Cs∆)2(2S̄ijS̄ij)
1/2,

(4.16)

where νT (x, t) is the eddy viscosity, and S̄ij is the resolved strain-rate tensor. The

eddy viscosity is defined based on the constant Cs and the filter width ∆. In this

study, Cs = 0.2 is chosen among various values tested for Cs. For a priori LES

modeling, the filtered velocity field is obtained from the DNS data. A sharp spectral

filter is used to project the DNS field onto the resolved field of LES. The exact SGS

stress tensor is computed by Eq. 2.11. To compare AIM with the Smagorinsky model,

SGS stress tensor is computed from Eq. 2.11 from the AIM-reconstructed field. The

DNS calculation is done on a ng = 643 grid, and the cut-off wavenumber for the AIM

projection and sharp spectral filter is kc = 8. The sharp spectral filter is chosen as

the filtering operator to make the resolved (filtered) field identical for LES and AIM.

The SGS stress tensor is recovered on a N = 163 grid. Figure 4.24 shows the τ12

obtained from the DNS data (left) and modeled by AIM (middle) and LES (right).

Both AIM and LES models predict more dissipation compared to the DNS field. The

Smagorinsky model has roughly captured some large features of the exact field, while

the AIM prediction looks like an intensified DNS field. Figure 4.25 compares the
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volume-averaged mean subgrid-scale stresses < τij >, which shows that both models

are considerably different from the exact SGS stress.

Figure 4.24: Subgrid scale shear stress, τ12 (m2/s2). Left: Exact SGS shear stress
from DNS data, middle: SGS shear stress modeled by AIM, and right:
SGS shear stress modeled by Smagorinsky model (Eq. 4.16).

Figure 4.25: Volume averaged SGS stresses < τij >. DNS: , AIM: , LES: .

4.2 A posteriori analysis of AIM for turbulent flows

In this section, the proposed reduced-order model is assessed a posteriori for the

forecast of turbulent dynamics in the KSE and HIT over a range of parameters

relevant to the dimension of the attractor. By tracking the dynamics of the system

in a lower-dimensional space, convergence of the AIM model to the full-dimensional
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solution is shown for the KSE which possesses an IM. A computationally efficient

framework of AIM is investigated for HIT because it is a more realistic problem of

interest. The proposed model is assessed in the forecast of the long-term statistics,

dynamics of spatial statistics, and small scales contribution to the resolved subspace.

Finally, the reduced-order model performance is compared against other prevalent

turbulence models.

4.2.1 The Kuramoto-Sivashinsky equation

The goal is to evolve dynamics of the resolved subspace alone. Equation 4.4 can be

written as

un+1
k − unk

∆t
+ (µq4

k − q2
k)u

n
k +

iqk
2
P

( ∑
1 ≤ |l| ≤ nF /2

1 ≤ |k − l| ≤ nF /2

(un,wn)l(u
n,wn)k−l

)
= 0,

(4.17)

where n is time step iteration and wn is approximated by Eq. 4.6 using un. Initial

condition of Eq. 4.17 is the projected initial condition of DNS simulations (P g(x)).

Similar to the full-dimensional simulation, the exponential time difference fourth

order Runge-Kutta method (ETDRK4) [206, 207] with standard 3/2 de-aliasing is

implemented for the reduced-order modeling.

4.2.1.1 Stability and AIM convergence

The KSE exhibits spatiotemporal chaos, where infinitesimal perturbations can lead

to exponential energy accumulation. The quadratic nonlinear term transports energy

from the low linearly unstable modes to the high modes with rapid exponential decay.

Therefore, insufficient spatial resolution cannot capture energy dissipation and leads

to numerical instability. Table 4.1 shows the required minimum resolution (Nmin),

for the stability of the solution as well as the maximum resolution (NDNS) used in
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the high fidelity solution of this study. The objective of the proposed reduced-order

model is to evolve the dynamics of the system on an AIM spanned by m� Nmin.

Figure 4.26: Solution of the KSE, ξ(x, t), for Re = 158.11. Top left: DNS with
NDNS = 2048, top right: AIM with m = 256, bottom left: AIM with
m = 64, bottom right: AIM with m = 128. Only part of the
computational domain is shown.

Figure 4.26 shows convergence of AIM prediction for Re = 158.11 with 64 ≤ m ≤

256. It can be observed that at t > 0.15, the dynamics enter the chaotic regime,

where a truncated system with 512 Fourier modes for the same Reynolds number

becomes unstable and blows up. Including the AIM subgrid model in the evolution

of the resolved modes stabilizes the solution and predicts transition to turbulence.

The lowest dimensional AIM cannot capture the transition to chaotic dynamics, and

it only retains the large-scale structures of the laminar region. However, at this

resolution AIM dimension is much lower than the minimum resolution required for

stability. By increasing the AIM dimension, the prediction is improved considerably,

and a 256-dimensional AIM captures most of the dynamics in the chaotic region.

The accuracy of the model prediction depends on the size of the AIM, m, and the
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accuracy of the approximation of the unresolved dynamics. The KSE is known to have

a relatively low-dimensional inertial manifold which scales as Re [174, 183]. Here, the

model accuracy is assessed for a range of resolutions m, and Fig. 4.27 shows the root

mean square of the error between AIM prediction and the full-dimensional system

solution in physical space computed in the chaotic regime (t > 0.15), over a range of

Re numbers and AIM dimensions. The AIM resolution is normalized by the integer

part of the Reynolds number [Re], which is the number of linearly unstable modes.

The AIM prediction converges uniformly to the exact solution when the approximate

IM is large enough to contain all of the unstable dynamics. These results suggest that

strong convergence properties can be obtained for resolutions exceeding this point,

which is in agreement with prior works [174, 183].

Figure 4.27: L2-norm of the spatiotemporal error of AIM prediction in physical
space; Re = 158.11: , Re = 316.23: , Re = 569.21: , Re = 1011.93:

. Vertical dashed line marks m = [Re].

4.2.1.2 Prediction of statistical properties

In the AIM model, the ground assumption is that the unresolved variables respond

instantly to the resolved dynamics, i.e. dw/dt = 0. The validity of this assumption

and the rate of convergence to the fixed-point solution of Eq. 4.6 has been assessed

in Sec. 4.1. The optimum number of iterations depends on the Re number and

the resolution of AIM, m. Seeking the fixed-point solution can be computationally
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expensive, and its feasibility should be judged based on the improved accuracy of

the resolved dynamics prediction. Figure 4.28 (left) shows the energy spectrum

of Fourier modes in the resolved and unresolved subspaces. The modeled resolved

spectrum generally follows the DNS spectrum, but there are discrepancies at the

largest resolved scales. The reconstructed unresolved spectrum can be improved

by implementing more iterations in Eq. 4.6. The first-order approximation (j = 1)

considers only the nonlinear interaction between the resolved scales for the transfer

of energy to the unresolved scales. This approximation is improved by seeking the

fixed-point solution of Eq. 4.6 with more iterations to reconstruct the unresolved

modes. However, unlike the unresolved dynamics, this higher-order approximation

does not improve the resolved dynamics spectrum significantly. To assess this higher-

order approximation more precisely, the probability density function of the resolved

modes is compared for different numbers of iterations (j), in Eq. 4.6. Figure 4.28

(right) compares the PDF of real part of Fourier mode at the cut-off wavenumber for

Re = 158.11 and m = 256 predicted by AIM and DNS. It is shown that a higher-order

approximation of the unresolved dynamics gives a better prediction of the resolved

scales throughout the distribution.

Figure 4.28: Left: Energy spectrum of the KSE at Re = 316.23. DNS: , AIM with
m = 512 and j = 1 in Eq.4.6: , AIM with m = 512 and j = 4 in
Eq.4.6: . Right: PDF of real part of um predicted by AIM and DNS
at Re = 158.11, m = 256; DNS: , AIM with j = 1 in Eq. 4.6: , AIM
with j = 3 in Eq. 4.6: .
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4.2.2 Homogeneous isotropic turbulence

Following the construction of an AIM for the Navier-Stokes equations in Sec. 4.1.2.2,

dynamics of the HIT can be tracked on the inertial manifold by evolving only the

resolved variables,

un+1
i − uni

∆t
(~k, t) + µ|k|2uni (~k, t)−Buni (~k, t) +R(un,wn) = 0, (4.18)

wherewn is obtained from Eq. 4.9 using un. With this approximation of the unresolved

dynamics, the governing equations of the resolved dynamics (Eq. 4.18) is closed and

can be evolved in time independently.

Before any spatial discretization, the unresolved subspace is infinite-dimensional.

After spatial discretization, the unresolved subspace is the subspace between approxi-

mated IM and the entire state space. To develop a low-dimensional AIM, the unre-

solved subspace becomes considerably higher dimensional such that solving Eq. 4.9

can be adversely expensive in terms of cost and memory. This limitation can be

lifted by considering only part of the unresolved dynamics that resides in a close

neighborhood of the resolved subspace. Such simplification is in agreement with the

exponential tracking property of dissipative dynamical systems [172], and the lower

grid resolution reduces the computational and memory cost of the approach. By

removing the exponentially decaying dynamics, the stiffness of the problem reduces

and a larger time step can be used.

Unlike the KSE, the rate of convergence in Eq.4.9 is slower than quadratic, and

more iterations are needed to approximate higher modes in the unresolved subspace

which can make the AIM approach inefficient (Sec. 4.1.2.5). Removing the smallest

unresolved scales from the computational grid makes the AIM approach more efficient

in two ways: 1) by reducing the size of the domain, the cost of computing the nonlinear

term R(u,w), decreases; 2) higher-order approximations of Eq. 4.9 are required to
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reconstruct smaller unresolved scales, which can be avoided. Therefore, the unresolved

subspace can be decomposed into unresolved but represented scales approximated

by Eq. 4.9 and unresolved and unrepresented scales with wavenumbers larger than

the Nyquist wavenumber (kng) of the computational grid. The decomposition of

the computational domain is shown in Fig. 4.29. AIM dimension refers to m which

determines the degrees of freedom of the resolved subspace, and AIM resolution is

ng of AIM simulation including both resolved and represented unresolved subspaces.

The effect of the unresolved and unrepresented scales on the dynamics of the system

needs to be modeled.

Figure 4.29: Representation of the resolved and unresolved subspaces in wavenumber
space. Circle with radius km encloses the resolved modes. Light gray
shaded area denotes the unresolved and unrepresented modes, and dark
gray area represents unresolved but represented modes. kmax is the
highest wavenumber in DNS calculations, and kN is the highest
wavenumber in AIM-ROM calculations. Dashed red rectangle is
computational domain of AIM-ROM.

The a priori analysis has demonstrated that approximating only the larger un-

resolved scales reconstructs the interaction between resolved and unresolved dy-
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namics sufficiently. However, it cannot provide adequate dissipation in the system

(Sec. 4.1.2.6). Adding a dissipative modeling component similar to the eddy-viscosity

approach can address this shortcoming.

4.2.2.1 A modified approximate inertial manifold

As discussed in Chap. II, most eddy-viscosity subfilter models in LES assume that

the SGS contribution to the filtered field is dissipative and thus cannot predict the

transfer of energy to the large scales (backscatter). An improvement has been made

by adding additional non-dissipative terms to these models such as in the mixed model

and the scale-similarity model [68, 83]. Dynamic subfilter modeling can also account

for backscatter in transitional flows if locally negative eddy-viscosity is allowed [61].

On the contrary, AIM recovers the nonlinear interaction between the resolved and

unresolved scales by reconstructing the subfilter field without assuming a forward cas-

cade of energy. The recovered unresolved energy spectrum which is mostly dominated

in a neighborhood of the resolved subspace (Sec. 4.1.2.5), can be used to determine

the rate of backward/forward transfer of energy between the resolved and unresolved

subsets. The energy stored in the unresolved scales either transfers backward to the

resolved scales or transfers forward to the smaller unresolved scales where it finally

gets dissipated by molecular viscosity. If only part of the unresolved modes is repre-

sented in the unresolved subspace, the portion of their energy that is not supposed to

backscatter should be drained from the system. Therefore, energy virtually transferred

to the unresolved and unrepresented scales needs to be dissipated. First, the AIM

approximation is studied to determine whether backward/forward energy transfer is

captured accurately.

The subgrid-scale dissipation, εSGS is defined as

εSGS = τijSij, (4.19)
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where τij = uiuj − ui uj is the SGS stress, and Sij =
(
∂ui
∂xj

+
∂uj
∂xi

)
is the resolved-

scales strain rate. When the unresolved scales remove energy from the resolved ones

(forward scatter), εSGS is negative; and if SGS transports energy to the resolved scales

(backscatter), SGS dissipation is positive. Therefore, forward and backward energy

transfer can be defined as [60]

ε− = 0.5
(
εSGS − |εSGS|

)
ε+ = 0.5

(
εSGS + |εSGS|

)
.

(4.20)

The forward energy scatter will eventually dissipate at the smallest scales. If the

smallest unresolved scales are discarded, this energy needs to be removed to avoid

energy accumulation beyond the decomposition wavenumber. Reconstructed energy

spectrum can provide the rate of energy dissipation at the unresolved scales. A

dynamic spatially varying viscosity can be determined to dissipate the forward cascade

of energy beyond the cut-off wavenumber

|ε̂−| = 2µT (k)|k|2E(k), (4.21)

where ε̂− is the Fourier transform of forwarding cascade of energy. With this turbulent

viscosity, the effective viscosity at the unresolved scales is: µeff = µ + µT , and the

unresolved dynamics are approximated by

wj+1
~k

= −(µjeff |k|
2)−1QR(u,wj)~k. (4.22)

It should be noted that µeff changes at each iteration. For j = 1, µeff = µ because

the unresolved subspace is not reconstructed yet. By implementing more iterations,

the modified viscosity is updated with the reconstructed unresolved scales.

Backward and forward scatter of energy occur at all scales, and turbulent viscosity
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obtained from Eq. 4.21 can be defined at both resolved and unresolved scales. Three

different approaches have been considered: 1) modifying viscosity only at the resolved

subspace, 2) modifying viscosity at both resolved and unresolved subspaces, and 3)

modifying viscosity only at the unresolved subspace. Here, the effective viscosity is

modified only at the represented unresolved scales, as the forward energy transfer from

resolved scales will eventually dissipate at the unresolved scales. Besides, modifying

the effective viscosity at the unresolved scales improves the inertial manifold theory

requirements by increasing the spectral gap of the linear operator of the Navier-Stokes

equations. As unresolved scales become more dissipative, the separation of scales

between resolved and unresolved scales is more prominent. In turn, the assumption

that unresolved scales equilibrate to the AIM dynamics is more justified.

4.2.2.2 Numerical tests

For this a posteriori study, a different set of HIT cases are considered for two reasons.

First, higher resolutions of HIT at higher Re numbers are considered to allow the

investigation of AIM at higher-dimensional systems. Second, the forcing of the velocity

field has been limited to the large energy-containing scales. Since part of the unresolved

scales are removed, a uniform forcing at all scales would not have been reasonable

for model comparison. Statistics of turbulence are independent of forcing scheme

[220], and previous studies have shown dimension of the attractor of the system is

also independent of forcing scheme [213].

Direct numerical simulations of HIT of two spatial resolutions are used to inves-

tigate the accuracy of the AIM prediction. Table 4.3 shows the numerical setup for

DNS cases. The Taylor microscale Reynolds number Reλ and the Kolmogorov length

scale η (∆x is grid spacing in each direction), are monitored over the initialization

time to make sure the turbulent field is fully developed and resolved. Only Fourier

modes with |~k| ≤ kf are being forced, and the flow statistics are monitored for several
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eddy turnover times (τ) to ensure the forcing method does not lead to instability and

energy pile-up at small scales.

Grid Resolution (ng) µ Reλ η/∆x B kf DKY

2563 0.05 91.54 0.55 5 8 6.9257× 104

5123 0.01 290.27 0.23 8 8 6.4165× 106

Table 4.3: Numerical setup for HIT

Current theories cannot prove the existence of an inertial manifold for the Navier-

Stokes equations [98]. However, in systems dominated by coherent structures, the

dynamics of the system are confined to a low-dimensional attractor. Direct estimations

of this attractor dimension for turbulent flows using the Kaplan-Yorke conjecture [99]

showed that attractor dimensions are orders of magnitude lower than the number of

degrees of freedom required by DNS [34, 100], and for forced HIT, it is shown that

the attractor dimension scales with
(
L
η

)2.8
[100] where L is the domain length. For

the turbulent fields considered here, this estimated attractor dimension (DKY ) is used

as a reference for the assessment of AIM accuracy over a range of AIM dimensions. It

should be mentioned that when an inertial manifold exists, it contains the attractor

of the system. Hence, an AIM should be larger than the attractor of the system

regardless of the existence of an inertial manifold.

To evaluate the proposed AIM model against common turbulence modeling ap-

proaches in terms of accuracy and efficiency, large-eddy simulations with constant and

dynamic Smagorinsky subfilter models [41] have been conducted. To make resolved

subsets of LES and AIM similar, a sharp spectral filter is used for LES. However, the

resulted variable separations are not identical. The resolved subspace of AIM in the

wavenumber space is a sphere with radius km, while the same cut-off wavenumber in

LES resolves all the wavenumbers enclosed in a cube of side length 2km. Following the

conventional LES practices, the subfilter field representation is implicit such that the

subfilter scales are not represented on the computational grid, and their contribution
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is modeled by the Smagorinsky eddy viscosity model. On the other hand, AIM recon-

structs the subfilter field either entirely or just a subspace of it. Therefore, for the

same cut-off wavenumber, the computational grid of AIM is larger because it contains

the unresolved but represented scales.

4.2.2.3 Prediction of backward/forward energy transfer

First, AIM prediction (Eq. 4.9) has been examined to see if the reconstructed turbulent

field captures forward and backward scatter of energy between resolved and unresolved

scales accurately. Figure 4.30 shows the rate of energy transfer over the range of

scales for 2563 field with km = 16. As expected, subgrid-scale energy transfer is

dominated closer to the cut-off wavenumber and at larger unresolved scales. This

behavior confirms that there is no need to recover all of the unresolved subspace,

and approximating only the largest unresolved scales is sufficient to capture subgrid-

scale effects on resolved dynamics. It can be seen that AIM captures energy transfer

towards both the larger and the smaller scales. However, it overestimates the backward

scatter at the unresolved scales. This is due to the limited approximation of the

unresolved scales, and by implementing more iterations in Eq. 4.9 and recovering

smaller unresolved scales, this approximation improves.
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Figure 4.30: Spectrum of backward ( ) and forward ( ) SGS dissipation rate for
ng = 2563 and km = 16. DNS: solid lines, AIM: dashed lines.

Figure 4.31: Top: subgrid-scale dissipation, middle: SGS backscatter. Both values
are normalized by total resolved dissipation. Bottom: fraction of points
with backscatter of the energy in the computational domain. DNS of
2563: , AIM-ROM for 2563: . DNS of 5123: , AIM-ROM
for 5123: . Horizontal axis is resolved subspace dimension
normalized by the full-dimensional system dimension (m/ng).

Statistics describing the energy transfer between resolved and unresolved subspaces

are provided in Fig. 4.31 where the (SGS) dissipation (top) and energy backscatter of

93



the subfilter field (middle) as a function of the normalized AIM dimension (m/ng) are

shown. Here, the SGS dissipation and backscatter of energy to the resolved scales are

computed from turbulence fields modeled by the AIM over a range of dimensions, m.

Also, DNS fields are filtered, and the exact values of these quantities are computed at

different filtering widths for comparison with AIM. At each cut-off wavenumber, the

SGS dissipation (〈εSGS〉), and the energy backscatter (〈ε+〉) are normalized by the

total resolved dissipation (〈ε〉). It can be seen that by increasing the filter width, i.e. by

using a lower AIM resolution, the amount of SGS dissipation increases. Accordingly,

the amount of backscatter of energy to the resolved scales increases, because the

cut-off wavenumber is farther away from the rapidly dissipative scales, and a larger

part of the inertial range is in the unresolved subspace. The number of points in the

physical domain experiencing energy backscatter is almost independent of the cut-off

wavenumber (Fig. 4.31, bottom), which shows that even when the amount of energy

backscatter is not considerable compared to the total dissipation, subgrid energy

backscatter occurs between the smallest scales at the dissipation range. AIM predicts

the same characteristics, but more points in the field experience backscatter. This is

not surprising as AIM models nonlinear interaction between the scales but does not

have a completely dissipative component. Overall, these results show that AIM can

capture energy transfer between resolved and unresolved subspaces accurately, and

this property can be used to implement a dynamic dissipative component to account

for the unresolved and unrepresented scales (Eq. 4.22).

4.2.2.4 Prediction of turbulent statistics

Turbulent statistics predicted by the original and modified AIM models are compared

against the DNS calculations in Fig. 4.32, where turbulent kinetic energy is computed

based on the resolved field and total dissipation rate is computed based on the effective

viscosity in each of the modeling approaches including LES. It can be observed that
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AIM approximation alone cannot predict enough dissipation in the system, but adding

a dissipative component solves this problem, and dissipation is almost accurately

predicted by the modified AIM model. This improvement in AIM prediction is not

dominant in the turbulent kinetic energy as the modified viscosity removes energy

only from the unresolved scales. These statistics show that AIM models outperform

the dynamic Smagorinsky approach, however, here all of the unresolved subspace is

approximated by AIM with only two iterations in Eqs. 4.9 and 4.22, and decomposing

the unresolved subspace into represented and unrepresented components provide a

closer comparison to LES.

Figure 4.32: Time evolution of resolved turbulent kinetic energy (left) and
dissipation rate (right) of 2563 field with km = 16. DNS: , AIM: ,
modified AIM: , LES with dynamic Smagorinsky model: .

To assess the modified AIM approach in modeling the effect of unresolved and

unrepresented scales, only part of the unresolved subspace is kept in the computational

domain and approximated by AIM. Figure 4.33 shows the statistics for the 2563

field and km = 16 where the unresolved subspace dimension in AIM is reduced by

discarding higher wavenumbers and using a lower grid resolution. While reducing

the unresolved subspace dimension does not affect the turbulent kinetic energy of

the resolved subspace substantially, it underestimates total dissipation in the system

considerably. This behavior is predictable as in the lowest dimensional unresolved

subspace (ng = 643 for km = 16) the largest unresolved wavenumber reconstructed

by AIM is 30.2 and k/km < 2 in Fig. 4.30, which shows a considerable amount of
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forward scatter of energy is discarded. In this case, the dimension of AIM, m, is

only 0.75 of the estimated dimension of the system’s attractor (DKY in Tab. 4.3).

By increasing the AIM resolution, approximation of the unresolved dynamics and

AIM prediction improve considerably. Considering approximate inertial manifolds for

the 5123 case with two different dimensions obtained from km = 64 and km = 128

results in m/DKY ≈ 0.5 and m/DKY ≈ 4. Figure 4.34 compares the time evolution of

turbulent kinetic energy and dissipation rate predicted by AIM against the DNS data.

By increasing the AIM dimension, both approximations have improved especially

earlier in the prediction time.

Figure 4.33: Time evolution of resolved turbulent kinetic energy (left) and
dissipation rate (right) of 2563 field with km = 16. DNS: , modified
AIM with ng = 2563: , modified AIM with ng = 1283: , modified
AIM with ng = 643: , LES with dynamic Smagorinsky model: .
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Figure 4.34: Time evolution of resolved turbulent kinetic energy (left) and total
dissipation rate (right) of 5123 field with km = 64 (blue lines) and
km = 128 (black lines). Solid lines are obtained from DNS, and dashed
lines are predicted by modified AIM model. Since total dissipation does
not depend on km, only one line is shown here in dissipation evolution
(right).

Figure 4.35: Left: resolved kinetic energy spectrum of forced 5123 field for km = 64;
DNS: , AIM: , modified AIM: , LES with dynamic Smagorinsky
model: . Right: resolved kinetic energy spectrum of decaying 5123

field for km = 64. DNS: , modified AIM: , LES with dynamic
Smagorinsky model: .

Resolved energy spectrum of the 5123 field predicted by DNS, AIM and LES

models for projection wavenumber km = 64 is compared in Fig. 4.35 (left). At this

resolution, the AIM dimension m is almost half of the estimated dimension of the

system’s attractor (DKY in Tab. 4.3). However, the energy spectrum is captured

quite accurately by AIM except for the smallest resolved scales which their energy

is overestimated. This issue has been alleviated in the modified AIM model. The

spectrum predicted by the dynamic Smagorinsky model is quite different from the

exact spectrum which can be due to the limited forcing of the large scales. The
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dynamic Smagorinsky approach relies on the scale-similarity between larger resolved

scales, smaller resolved scales and unresolved scales. Limited forcing at the larger

resolved scales can falsely impose a higher rate of energy transfer at the smaller

scales and lead to overshooting of energy at the smallest resolved scales. To test

this explanation, the same initial condition for the 5123 field in Tab. 4.3 is used for

decaying HIT where there is no force. Figure 4.35 (right) shows the energy spectrum

predicted by DNS, modified AIM and LES at t/τ ≈ 1, and it can be seen that the

LES spectrum follows the exact spectrum even though it is more dissipative at the

smallest resolved scales.

Finally, contours of the velocity field predicted by DNS, modified AIM, and LES

models are compared in Fig. 4.36. Here, the decaying 5123 field has been chosen for

comparison since it allows for a fixed time step and comparison of various models

at one instant where t/τ0 ≈ 1. Both modeled fields look quite similar to the DNS

field, but it can be seen that AIM preserves more details of the smaller structures. It

should be mentioned that in decaying HIT, as turbulent energy dissipates, the size of

the attractor changes and shrinks. Hence the approximation of AIM becomes more

accurate for longer prediction times.

Figure 4.36: Magnitude of the velocity vector in a plane of the computational
domain for decaying 5123 field, left: DNS, middle: modified AIM with
km = 64 and m/DKY ≈ 0.5, and right: LES with ng = 1283. LES field
is interpolated into a higher resolution for demonstration purposes.

Computational cost of AIM and LES models are compared over a range of cut-off

wavenumbers in Fig. 4.37, where computational costs of AIM and LES models are

98



normalized by the cost of the corresponding DNS. The comparison is based on the

reduced grid resolution of the models (N/Ng), where N is the grid resolution of AIM or

LES simulations, and Ng is the grid resolution of the corresponding DNS. It is shown

that AIM is more expensive than the constant Smagorinsky model, but it is more

efficient compared to the dynamic LES modeling. It should be mentioned that for the

same grid resolution of AIM and LES, the resolved space in AIM is lower-dimensional,

and it is not possible to compare computational cost of these models at the same

accuracy.

Figure 4.37: Reduced computational cost of DNS of Ng = 2563 with AIM: ,
dynamic Smagorinsky: , and constant Smagorinsky: models.
Reduced cost of DNS of Ng = 5123 with AIM: , dynamic Smagorinsky:

, and constant Smagorinsky: models.

4.3 Summary

The reduced-order model of turbulent flows developed in Chap. III based on the

inertial manifold theory is investigated in this chapter. The proposed model has been

examined on two canonical flows: one-dimensional Kuramoto-Sivashinsky equation

and homogeneous isotropic turbulence governed by three-dimensional Navier-Stokes

equations. First, an a priori analysis of the AIM approximation is conducted for both
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systems.

The proposed AIM approximation is examined using a wide range of parameters in

terms of the number of resolved scales (the dimension of the AIM) and the Reynolds

or bifurcation numbers (directly proportional to the dimension of the attractor). In

all configurations, for a sufficiently large dimension of the AIM, the dynamics of the

unresolved variables are captured quite accurately. For the KSE, the statistics of

the unresolved scales in the neighborhood of the inertial manifold are captured more

accurately than the smaller scales farther away from the approximated IM. Smaller

scales in the unresolved dynamics are less responsive to the dynamics of the IM, and

there is a time delay in their response. Similar behavior was observed for the HIT case.

A higher-order estimation of the unresolved dynamics, where the interactions between

the resolved and unresolved dynamics are included, improves the AIM estimation of

the unresolved dynamics.

In the a posteriori study, dynamics of the system are tracked in a lower-dimensional

manifold determined in-situ without invoking ad-hoc assumptions about underlying

statistics of turbulence. The approximate inertial manifold model has been studied

over a range of parameters such as the AIM dimension, the size of the attractor, and

the recoverable unresolved subspace dimension. The KSE is known to possess a low-

dimensional inertial manifold, and convergence properties of the proposed AIM are

following the estimated dimension of this manifold. HIT sets more challenges since the

existence of an IM is still under question for three-dimensional Navier-Stokes equations.

However, it has been shown that AIM with dimensions smaller than the estimated

size of the attractor can capture the dynamics of the system quite accurately. Finally,

AIM performance and cost have been compared with the dynamic Smagorinsky model

in LES. It is shown that AIM outperforms LES in predicting statistical properties of

turbulence and reconstructing features of the field, while its computational overhead

is comparable.
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CHAPTER V

AIM-Based Combustion Modeling

Discussion of combustion models in Sec. 2.2 revealed that developing models that

circumvent the need for external manifold development would be a significant advance

in ensuring the predictive accuracy of efficient combustion models. In this chapter,

a different manifold-based approach is used, which utilizes the notion of inertial

manifolds. Based on this concept, an analysis of the use of IM theories for modeling

turbulent reacting flows is conducted. Here, an approximate inertial manifold is

utilized, where the flow is decomposed into resolved and unresolved scales similar to

conventional LES filtering. However, unlike in conventional LES, the small scales

are directly reconstructed through a steady-state assumption. In Chap. IV, this

approach has been tested for non-reacting turbulent flows. Here, AIM is extended

to turbulent flames. The AIM approach combines adaptive deconvolution principles

with state-space decomposition such as intrinsic low-dimensional manifold (ILDM)

[122] or computational singular perturbation (CSP) [125]. The main advantage of

the IM-based approach is that the manifold can be identified using the linear part

of the governing equations, namely the viscous or diffusion operators, rather than by

the eigendecomposition of the Jacobian matrix. Additionally, unlike the flamelet-type

approaches where the manifold is constructed a priori, the AIM approach will extract

this manifold in-situ. As a result, additional sub-filter closures for scalar dissipation
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or mixing time scales are not needed.

This chapter focuses on exploring the validity and accuracy of the inertial manifold

theory for canonical turbulent flames. Compared to the previous analysis on chaotic

flows, this problem challenges the AIM approximation in different ways. The non-

linear chemical source term lacks the scale separation property of the convection term,

and the thermochemical properties of the chemistry field affect the level of local flame

strength causing extinction or reignition, which implies strong interaction between

turbulence and chemistry.

5.1 Problem configuration and numerical approach

Turbulent combustion developing in homogeneous isotropic turbulence is used to

assess the AIM approach. The one-step chemical global reaction is used to emulate

combustion while neglecting density variations. The reaction rate parameters are

obtained from prior work [221], which has been previously used to study unsteady

flamelet modeling [222]. This flow configuration is solved using a pseudo-spectral

approach, with the full resolution of the length and time scales providing the DNS

solution. Additionally, the AIM-based simulations with reduced degrees of freedom, as

well as a truncated simulation with the same degrees of freedom as the AIM but with

no additional modeling, are conducted. The governing equations include transport

equations for the three velocity components, mixture fraction, and progress variable.

The velocity field is considered to be incompressible, leading to the following set of

equations,
∂ξi
∂t

+ ξj
∂ξi
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj
(
∂ξi
∂xj

) +Bξi,

∂ξi
∂xi

= 0,

(5.1)

where ξi is the velocity component in the ith direction, p is the hydrodynamic pressure,

ν is the kinematic viscosity and ρ is the density. To obtain statistical stationarity
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of turbulent features, large-scale forcing is employed. Here, a constant linear forcing

term is used with the coefficient B tuned to compensate for the viscous dissipation

[211, 212].

The global one-step chemistry is the following reversible reaction,

F + rO 
 (r + 1)P, (5.2)

where r is the stoichiometric ratio, which is the mass of oxidizer consumed with unit

mass of fuel. For modeling purposes, mixture fraction is defined as

Z =
rYF − YO + YO∞
rYF∞ + YO∞

, (5.3)

where YF and YO are mass fractions of fuel and oxidizer, respectively. The unmixed

values of fuel and oxidizer (YF∞, YO∞) are unity which results in Zs = 1/(r + 1) for

the stoichiometric value of the mixture fraction. In this work, r = 1 has been chosen

resulting in Zs = 0.5. The transport equations for mixture fraction and progress

variable are

∂Yi
∂t

= −ξ · ∇Yi +D∇2Yi + ωi. (5.4)

Here, D is the coefficient of molecular diffusion of species, and reaction rate (ωi)

is zero in the governing equation of mixture fraction. In the current formulation,

the product mass fraction (YP ) is equivalent to the normalized temperature θ, and

the reacting field is determined by solving for Z and θ, with the Schmidt number

(Sc = ν/D) equal to 0.7 for both scalars. For the reversible chemistry (Eq. 5.2) with

an equilibrium constant K, the production rate of the products can be expressed as

[223],

ωP = (r + 1)A exp

(
−β
α

)
exp

(
−β(1− YP )

1− α(1− YP )

)(
YFYO −

1

K
Y r+1
P

)
, (5.5)

103



where A is a pre-exponential factor, β is the Zeldovich number, and α is the dimension-

less heat release parameter. These parameters are defined such that the reaction rate

is strongly temperature-dependent, which can lead to local extinction and reignition

controlled by the interaction of turbulent mixing and reaction [221].

The relative impact of turbulence on flame stability can be controlled using the

reaction rate parameters. For this purpose, a Damkohler number is defined as Da =

τχ/τc, which is the ratio of turbulent mixing and reaction time scales. The local mixing

time scale is characterized by the inverse of the scalar dissipation rate, χ = 2D∇Z ·∇Z.

Considering the chemistry of the flame, the Damkohler number can be expressed as

[224],

Da = 16rr(1− Zst)2l2+r
r A exp

(
−β
α

)
/χs, (5.6)

where lr characterizes the width of the reaction zone, and χs is the dissipation rate of

the mixture fraction at the stoichiometric mixture. Reaction thickness lr is defined

as lr = ldDa
−1/3 [225], where ld = (D/χ)1/2 is the diffusive thickness. The statistics

conditioned on the stoichiometric mixture fraction are obtained by averaging over this

reaction thickness. Here, the pre-exponent A is chosen as the control parameter that

is used to modify the Damkohler number (Table 5.1). Five different flame behaviors

ranging from stable combustion to localized extinction and reignition and finally

global extinction are observed for different values of Da considered. Table 5.2 provides

characteristics of the flow field and thermochemistry parameters of the reacting field.

Flame I Flame II Flame III Flame IV Flame V

8× 103 8× 104 105 8× 105 8× 106

Table 5.1: Pre-exponent factor A for different flames

ng Reλ kmaxη B Sc α β K

2563 83.25 1.72 5 0.7 0.87 4.0 100

Table 5.2: Characteristics of turbulence and thermochemistry parameters
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5.1.1 DNS calculations and flame behavior

For the DNS calculations, the set of governing equations is solved in a 2π length cube

with periodic boundary conditions using a pseudo-spectral code [226, 227]. A two-

thirds dealiasing rule is used for the non-linear terms [228]. Exact time integration is

used for the linear viscous term and RK2 is used for the other terms [229, 230]. Since

small incompressibility errors can grow fast in a spectral formulation, it is necessary

to remove the divergence error at every time step [213, 214]. At each time step, the

velocity field is projected on the divergence-free space [213]. Turbulent field statistics

such as the Taylor microscale Reynolds number Reλ = u′λg
ν

, and the Kolmogorov

length scale η = (ν
3

ε
)1/4, are monitored over the initialization time to make sure

the turbulent field is fully developed, where λg is computed as
√

15ν
ε
u′ [6], u′ is the

fluctuating velocity and ε is the dissipation of turbulent kinetic energy. To resolve

the velocity and conserved scalar field kmaxη > 1 is required, where kmax = 15/32N

is the cut-off wavenumber and N is the number of grid points in one direction of the

computational domain [231]. The flow statistics are monitored for approximately 200

eddy turnover times (τ) to ensure a fully developed forced statistically stationary flow

field. The long transient time is chosen to make sure that the forcing does not lead

to instability and energy pile-up at small scales, and the forcing energy is balanced

with dissipation. The combustion and AIM investigation period starts when the flow

becomes statistically stationary.

After the flow reaches statistical stationarity, the computational domain is filled

homogeneously with blobs of fuel and oxidizer, corresponding to Z equal to one and

zero respectively, such that the volume average of mixture fraction is equal to its

stoichiometric value (〈Z0〉 = Zs). The progress variable (normalized temperature) is

initialized with solutions of the steady flamelet model, which is obtained from the
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steady version of the following time-dependent flamelet model,

∂Yi
∂t

=
χ

2

∂2Yi
∂Z2

+ ωi. (5.7)

For initializing the temperature field, the scalar dissipation rate is modeled as χ(Z) =

χs exp
(
−2erf−1 [(2Z − 1)2]

)
, [232].

Figure 5.1: Left: time evolution of conditionally averaged mixture fraction
dissipation rate 〈χ|Z = Zs〉; right: time evolution of conditionally
averaged temperature 〈θ|Z = Zs〉, for different flames with different
pre-exponential factors, A. Flame I: , flame II: , flame III: ,
flame IV : , flame V : .

Figure 5.1 shows time evolution of mixture fraction dissipation rate (left) and

temperature (right) at the stoichiometric mixture fraction. Due to straining, the

scalar dissipation rate increases initially, and its fluctuations disrupt the stoichiometric

surface. Strong fluctuations of turbulent mixing cause excessive heat losses at the

flame surface leading to extinguished regions. When the reaction is faster than

mixing, combustion heat release compensates for this heat loss leading to sustained

high temperatures. By increasing the pre-exponential factor A, the flame behavior

changes from global extinction to various degrees of localized extinction and reignition,

and finally to the stably burning flame at equilibrium conditions. Local extinction is

due to the fluctuations of the scalar dissipation rate. When the maximum fluctuation

of scalar occurs, the reacting surface deviates from the equilibrium condition. At this

transient moment, Da is computed from Eq. 5.6 for flames I − V corresponding to
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A ∈ (8 × 103, 8 × 106). Figure 5.2 shows the Da number versus the flame thickness

parameter Z∗ = Zrms/lr where Zrms is the root mean square mixture fraction, and lr

is the width of the reaction zone in mixture fraction space. Relation between Da and

Z∗ shows the competition between turbulence and chemistry time and length scales.

When the reaction is on average faster than mixing with the smaller reaction layer

thickness (larger Z∗), stable combustion occurs (flame V ). As Da is decreased, for a

given Z∗, departure from equilibrium increases, and beyond a critical Da reaction can

no longer balance heat loss of turbulent mixing, and global extinction occurs (flame

I). At this critical Da, when localized extinction occurs, molecular mixing eventually

overcomes the influence of turbulent straining and leads to the decrease of the scalar

gradients. This process is accompanied by gradual reignition; ultimately the reacting

scalar field returns to the stable burning solution. In the case of diffusion flames,

there is no exact definition of critical Da, and it is determined based on the DNS

cases considered (flames II, III and IV in this study) [223].

Figure 5.2: Sketch of Da− Z∗ relation for different flame behaviors. Dashed line
shows the critical Da number. All values are computed at transient
moment when 〈χ|Z = Zs〉 has its maximum value (t/τ ≈ 0.25). Legends
colors are same as in Fig. 5.1.
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5.2 Construction of an AIM for turbulent flames

In this section, the proposed approximate inertial manifold (Sec. 3.2.1) is constructed

for the turbulent combustion cases discussed in Sec. 5.1. To develop an AIM, governing

equations of the flow field and combustion scalars can be rearranged as Eq. 3.2 using

the Stokes operator (ν∇2ξi in Eq. 5.1) as the linear operator of the Navier-Stokes

equations and the diffusion operator as the linear operator of the conserved and

reacting scalars. Since the construction of an AIM for the underlying turbulent field is

discussed in detail in Sec. 4.1.2.2, it is not stated here. Let Ŷi = F(Yi) be the Fourier

transform of scalars describing reaction field. Equation 5.4 can be rearranged as

dŶi
dt

+D|k|2Ŷi + F(ξ · ∇Yi − ωi) = 0. (5.8)

The projection operator that defines the resolved scales is parameterized using a three-

dimensional wavenumber km, such that modes with wave numbers
√
k2
x + k2

y + k2
z ≤

km are included in the resolved subspace. The number of modes satisfying this

requirement is the dimension of AIM, m. By applying projections P and Q =

I − P into Eq. 5.8, governing equations for the resolved and unresolved subspaces

are obtained as

dyi
dt

+D|k|2yi + PR(y,y′) = 0, (5.9)

and

dy′i
dt

+D|k|2y′i +QR(y,y′) = 0, (5.10)

where yi = P Ŷi, and y′i = QŶi. Utilizing AIM assumption dy′/dt = 0, the unresolved

dynamics can be approximated by

y′
j+1

i = −(D|k|2)−1
(
QR(y,y′j)

)
. (5.11)
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It is important to ensure reconstructed scalar fields do not violate mass conserva-

tion, and only physical realizations of the chemical composition space are reached by

AIM. For this purpose, at each iteration of Eq. 5.11, for out of bound values of scalars

chemical reaction term is set to zero. This is enough to ensure AIM only accesses

physical trajectories of the chemical composition space, and there is no need for clip-

ping mass fractions after reconstruction of species vector of variables. In this study,

different values of km have been used to examine the performance and convergence

of AIM approximation. The goal is to assess AIM performance in the prediction of

different flame behaviors.

5.2.1 A priori analysis of the AIM for turbulent flames

In this section, the performance of AIM approximation is assessed a priori such that

the unresolved dynamics are approximated by the information of the exact resolved

dynamics. For each AIM resolution (m), the resolved modes (u) are obtained by

projection of the DNS data, then the unresolved variables (w) are approximated

using Eq. 5.11. The full-dimensional vector of variables reconstructed by AIM (uDNS+

wAIM) is compared against the DNS data. In this regard, this analysis is different

from conventional LES analyses. Note that LES models approximate the effect of

the unresolved features in the resolved scale equation. As a result, the unresolved

features are not directly reconstructed in conventional LES. Hence, the a priori

analysis of sub-filter terms typically involves the comparison of the modeled term to

the true sub-filter term. In the AIM approach, similar to deconvolution-based models

[73, 74, 156, 233, 234], a representation of the unresolved scales is obtained. Hence,

the full reconstructed field can be directly compared to the DNS field.

Global behavior of different flames is studied for various AIM resolutions in Fig. 5.3.

Here, the time evolution of mixture fraction dissipation rate and temperature at the

stoichiometric surface are compared. As discussed in Sec. 5.1.1, enhanced gradients
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imposed by the underlying turbulent field disrupt the flame surface and induces

localized extinction. Competition between chemistry and mixing time scales either

results in reignition or higher levels of extinction that cause global quenching of

the flame. Figure 5.3 (left) compares the time evolution of the mixture fraction

dissipation rate modeled by AIM against the DNS results. Since AIM reconstructs

the full-dimensional vector of variables, the dissipation rate can be computed directly

without further modeling of the small scales. By increasing the AIM resolution m, the

approximation becomes closer to the exact field. However, the maximum dissipation

rate is underestimated by AIM. Here, the highest resolution AIM is obtained with

km = 64 and is spanned by only three percent of the DNS modes.

Figure 5.3: Left: time evolution of conditionally-averaged mixture fraction
dissipation rate 〈χ|Z = Zs〉; right: time evolution of conditionally
averaged temperature 〈θ|Z = Zs〉 for flame IV . DNS: , AIM with
km = 16: , AIM with km = 32: , AIM with km = 64: .

Approximations of the conditionally averaged temperature 〈θ|Z = Zs〉, by differ-

ent AIM resolutions (m) is compared against the DNS data for flame IV (Fig. 5.3,

right). In this case, initially, the flame experiences a nominal temperature drop at

the stoichiometric surface which shows localized extinction due to straining. Since

the stoichiometric surface is still engulfed by a relatively high-temperature fuel and

oxidizer mixture, the reaction rate increases, and the flame re-ignites and reaches

an equilibrium state quickly. It is shown that flame-front temperature reconstructed

by AIM follows similar behavior, but experiences more severe extinction and slower
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return to stably burning flame. The reason behind this discrepancy between AIM and

DNS can be the fast-moving trajectory of the system on the manifold such that the

scale-separation between resolved and unresolved dynamics is not present.

Figure 5.4: Time evolution of conditionally averaged temperature 〈θ|Z = Zs〉. DNS
of flame II: , and flame IV : , AIM with km = 32 for flame II:
and flame IV : .

The reasoning above can be verified by comparing the AIM prediction of flames II

and IV . Figure 5.4 compares conditionally averaged temperature at the flame surface

reconstructed by AIM with km = 32 against the DNS data for fast and slow extinction

and reignition events. At the same resolution, AIM approximation is significantly

more accurate in the extent of the extinction and pace of the reignition for flame II.

In this flame, the chemical reaction is slower, on average, than turbulence mixing.

Initially, scalar fluctuations caused by turbulent mixing leads to extinction, and since

the chemical reaction is slower, it cannot overcome the influence of turbulent straining.

After a while, scalar gradients are decreased due to molecular mixing. This process is

accompanied by gradual reignition; ultimately the reacting scalar field returns to the

steady flamelet solution.
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Figure 5.5: Mixture fraction dissipation rate χ = 2D(∇Z)2, in a plane of the
computational domain at t/τ ≈ 0.5 when flame IV is locally
extinguished. Left: DNS, middle: AIM, right: projected DNS field (only
resolved scales). Projection cut-off wavenumber is km = 16. Black lines
represent stoichiometric mixture, Z = Zs.

In diffusion flames, the chemical reaction is controlled by strain and is proportional

to the dissipation rate of reactants. By reconstruction of the small-scale quantities

with AIM, scalar dissipation and chemical reaction rates can be directly computed

from reconstructed temperature and mixture fraction fields without explicit modeling.

Figure 5.5 shows the dissipation rate contours plotted when the mean temperature

is the lowest (see Fig. 5.3). The presence of high dissipation rate values at the

stoichiometric surface leads to local extinction. It is seen that the AIM reconstruction

overall captures such structures, but differences can be found in the top right and top

left corners of the domain where only small-scale reaction structures are present. At

this cut-off wavenumber projection (km = 16), AIM dimension (m) is 0.05 percent

of the DNS degrees of freedom. The dissipation rate computed from the projected

DNS field, which includes only the resolved scales, is shown in Fig. 5.5 (right). At

this projection cut-off wavenumber, large features of the field are preserved but small

scales and maximum dissipation rates are not captured. AIM approximation can

recover many of the small features.

An important component of turbulent combustion models is the prescription of

the scalar dissipation rate, both for mixture fraction [132, 235] and reacting scalars

[121, 148, 153]. More commonly, a time-scale is prescribed for the dissipation of scalar
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variance [153, 236]. The characteristic time scale Tj, for dissipation of scalar energy

can be defined as [237],

Tj = 〈Y 2
j 〉/〈2D(∇Yj)2〉. (5.12)

Models for this time scale typically assume that scalar dissipation is directly propor-

tional to turbulent energy dissipation [6]. It has been widely observed that modeling

of these terms has a first-order impact on the simulation predictions, but models even

for non-reacting scalars such as mixture fraction can introduce large errors [114]. Since

turbulent mixing enhances the gradients of species, which is nonlinearly impacted by

Arrhenius chemistry, reacting scalar gradients can be locally steepened due to small-

scale reaction zones. As a result, the length and time scales associated with reacting

species can be vastly different from the predominantly turbulent mixing controlled

non-reacting scalar properties. In addition, there is a time lag in the response of

chemistry to turbulent straining, which can be seen in Figure 5.1. It shows that the

scalar dissipation rate is initially increasing due to the straining effects of the turbulent

field, and the maximum of scalar variations at the flame surface occurs at t/τ ≈ 0.25.

The interplay of mixing and reaction leads to the extinction of flames I − IV , but

this extinction happens after a finite time depending on the chemistry time scale. For

instance, flames II and III are quenched by t/τ ≈ 1.37 when almost all of the scalar

variations are dampened. On the other hand, flame IV responds much quicker to the

turbulent mixing effects and experiences localized extinction at t/τ ≈ 0.5. So, even

if the time scale for the dissipation of conserved scalar energy can be assumed to be

proportional to the turbulent energy dissipation rate, the characteristic time scale for

the reacting scalars need not follow this relation.

Only for infinitely fast irreversible chemistry or slow chemistry, where the assump-

tion of dissipation balancing production is sufficiently accurate, is the characteristic

time scale of all reacting scalars nearly identical and can be assumed to be propor-

tional to the conserved scalar time scale [238]. Here, the ratio of progress variable
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and mixture fraction time scales is compared for two flames experiencing minimal

and maximal extinction under the straining effects of the turbulent field. Figure 5.6

compares some properties of flame II and flame IV , and the capability of AIM to

reproduce them. The time scale ratio of reacting and conserved scalars (Tθ/TZ), shows

that on average, the reaction is faster than mixing. However, in flame IV with mini-

mal extinction, the difference between time scales is more prominent, since this flame

reignites quickly when the micro-scale mixing overcomes straining effects (Fig. 5.4).

Figure 5.6: Top: time evolution of mixing time scale ratio of reactive and conserved
scalars (Tθ/TZ) (left) and probability distribution of temperature at
t/τ = 0.5 (right) for flames II (blue) and IV (black). DNS of flame II:

, and flame IV : , AIM with km = 32 for flame II: and flame IV :
. Bottom: conditional distribution of temperature at t/τ = 0.5 for

flame II (left) and flame IV (right). DNS: blue dots, AIM: red dots and
steady flamelet solutions: black circles.

Properties of temperature (progress variable) as these flames experience their

extinction are compared further. The conditional distribution of temperature depicts

very different behaviors. Flame II is globally extinguished, and there is little variation

in the temperature field. On the contrary, flame IV experiences local extinction due to
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breakage of flamelets, and since the micromixing of reactants is fast enough to enhance

gradients, the flame re-ignites across the entire range of mixture fraction values. This

is shown by the large variation of temperature (Fig. 5.6, bottom). Comparison

of the probability distribution of temperature for these two flames illustrates their

different responses to the straining turbulent field. AIM succeeds in representing these

characteristics quite accurately, but the AIM approach is marginally better in flame

II. This is expected since the trajectory is varying quickly in flame IV as compared

to flame II.

Additional statistics of the scalar dissipation rate computed from the AIM recon-

structed mixture fraction field is provided in Fig. 5.7, where three approximate inertial

manifolds are compared against the DNS data at a time instance where the mixture

fraction fluctuations (standard deviation of the field) is maximum. Overall, by increas-

ing the AIM resolution (m), the approximation improves and converges to the exact

solution. Figure 5.7 (top) shows that the conditional average of χ is captured quite

accurately with the higher dimensional AIMs, but conditionally averaged fluctuations

of mixture fraction are underestimated closer to the stoichiometric mixture fraction

value even at the highest resolution AIM. The distribution of the range of scales in the

mixture fraction field fluctuations is compared between DNS and AIM reconstructed

fields with the normalized spectrum of the mixture fraction dissipation rate (Fig. 5.7,

bottom left). The wavenumber space is scaled with the smallest scale of the scalar

field ηZ = ηSc−3/4, where η is the Kolmogorov scale and ηZ is the Batchelor’s scale.

AIM approximation can model the dissipation rate of mixture fraction at large scales,

where there is a plateau in the spectrum corresponding to the inertial range of the

turbulent scales, but the dissipation rate of the mixture fraction is underestimated

at the small scales. The approximation improves by increasing the AIM resolution,

but it cannot recover the small-scale dissipation rate entirely. Finally, the probability

distribution of the dissipation rate (Fig. 5.7 bottom right) shows that in the lower-
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dimensional AIM, the maximum of χ is underestimated, and the range of scales is

not captured accurately. However, the approximation is considerably improved by

increasing m.

Figure 5.7: Statistical properties of mixture fraction dissipation rate χ, at t/τ ≈ 0.25.
Top: conditional average (left) and conditional variance (right) of χ in
mixture fraction space. Bottom: spectrum of the scalar dissipation rate
normalized by D(εηZ)−1/3〈χ〉, where ε is the total dissipation, and
ηZ = ηSc−3/4 (left); and probability distribution function of χ (right).
DNS: , AIM with km = 16: , AIM with km = 32: , AIM with
km = 64 .

Statistics of the temperature field and chemical reaction source term for flame

III are presented in Fig. 5.8, showing that flame III experiences a mild extinction

followed by reignition (top left). The conditional distribution of temperature in

mixture fraction space shows large scatter, indicating regions of local extinction as

well as fully burning pockets. AIM approximation with km = 32 can capture this

variation, both in terms of the conditional mean and variance of temperature. While

there is a slight underprediction of the conditional mean of reaction source term

(bottom left), this effect is minimal in the prediction of the conditional mean of
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temperature. AIM reconstruction overestimates variance of the chemical reaction

source term, indicating that overall the predictions show a higher degree of extinction.

Figure 5.8: Statistical properties of flame III; top left: time evolution of conditional
average of temperature and mixture fraction dissipation rate at Z = Zs;
DNS: solid lines, AIM: dashed lines. Each color represents values for the
matching vertical axis. Top right: Conditional distribution of
temperature in mixture fraction space (same legend as in Fig. 5.6,
bottom). Middle: conditional mean (left) and variance (right) of
temperature. Bottom: conditional mean (left) and variance (right) of
chemical reaction source term (wp). DNS: , AIM: . Cut-off
wavenumber for AIM projection is km = 32. Instantaneous plots are
taken at t/τ ≈ 0.25 where 〈χ|Z = Zs〉 is maximum.

Finally, the temperature field of flame III reconstructed by a lower resolution AIM

is compared against the DNS field in Fig. 5.9. Snapshots are taken when the mean
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dissipation rate at the flame surface is the highest. Details of the flame distribution are

captured in the AIM reconstructed field, but the flame temperature is underestimated

in some regions.

Figure 5.9: Temperature field for flame III at t/τ = 0.25, when 〈χ|Z = Zs〉 is
maximum. Left: DNS, right: AIM with km = 16. White lines represent
Z = Zs.

5.2.2 A posteriori analysis of AIM

In this section, the performance of AIM approximation is assessed a posteriori such

that only the resolved dynamics are evolved to the next time step (Eq. 5.9), while

the unresolved variables are approximated using the information of the resolved

variables (Eq. 5.11), and the nonlinear term PR(u+w), is computed from the AIM-

reconstructed full-dimensional vector of variables to close the governing equation of

resolved variables. For each AIM resolution (m), the full-dimensional field modeled

by AIM is compared against the DNS field. Here, three different AIM dimensions

(km = 16, 32, 64) are analyzed for different Damkohler numbers. The velocity and

scalar fields are evolved using the AIM, but the scalar field properties are discussed

below.

The time evolution of dissipation rate of mixture fraction at stoichiometric mixture

modeled by AIM is shown in Fig. 5.10 (left). Convergence of AIM prediction to the

exact solution is different from the a priori analysis, and the lowest dimensional AIM
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(km = 16) overpredicts the dissipation rate. The reason for this behavior is that

the approximate inertial manifold at this resolution (km = 16,m = 8937) is lower-

dimensional than the estimated attractor dimension for the underlying turbulent

field [100]. The insufficient resolution cannot reconstruct the dissipative range of

the turbulent motions which manifests as enhanced mixing and a higher degree of

turbulence. Spatial variation of the mixture fraction dissipation rate under the effect

of turbulent straining is compared in Fig. 5.10 (middle and right). When turbulent

mixing is dominant (t/τ ≈ 0.25), the stoichiometric mixture, represented with black

lines, experiences the steepest gradients and becomes corrugated. It can be seen that

a moderate resolution AIM (km = 32) can capture details of spatial structures quite

accurately but it overestimates the scalar dissipation rate at less dissipative regions.

Figure 5.10: Left: time evolution of conditionally averaged χ at stoichiometric
mixture; DNS: , AIM with km = 16: , AIM with km = 32: , AIM
with km = 64 . Contour of χ in a plane of domain obtained from the
DNS data (middle) and from AIM model with km = 32 (right). Black
lines in contour plots mark stoichiometric mixture Z = Zs, and fields
are extracted at t/τ ≈ 0.25.

AIM model performance in modeling scalar dissipation rate is evaluated further

in Fig. 5.11. While probability distribution and the conditional distribution of χ

are captured well at higher resolutions, the conditional standard deviation of the

dissipation field is underestimated considerably. The results shown here are when

the turbulence effects are most prominent. In all cases, as the system moves towards

equilibrium, the AIM performance improves.
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Figure 5.11: Convergence of AIM-ROM in modeling mixture fraction dissipation rate
χ = 2D(∇Z)2 at t/τ ≈ 0.25, when maximum straining effect occurs.
Left: probability density function of χ, middle: conditional expectation
of χ, and right: conditional variance of χ. DNS: , AIM with km = 16:

, AIM with km = 32: , AIM with km = 64 .

Figure 5.12: Convergence of AIM-ROM in modeling energy spectrum of the velocity
field (left) and mixture fraction dissipation rate (right) at t/τ ≈ 0.25,
when maximum straining effect occurs. DNS: , AIM with km = 16: ,
AIM with km = 32: , AIM with km = 64 .

In Fig. 5.12, the AIM modeled field is compared against the DNS field in the

spectral space by comparing the energy spectrum of the velocity field (left) and

scalar dissipation rate (right) at different resolutions. The modeled turbulent energy

spectrum contains only the modeled (resolved) scales at each AIM resolution. Different

AIM resolutions can capture the large energy-containing and inertial range scales

accurately. At the smallest AIM dimension (km = 16), the energy spectrum of the

smaller resolved scales (close to the cut-off wavenumber) is overestimated, as there is

not enough dissipation at this resolution. This behavior has led to a more turbulent

field at this resolution, which enhances mixing of the scalars and results in higher
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dissipation rate energy of scalars (Fig. 5.12, right). For higher-dimensional AIM, the

energy spectrum of turbulent field and mixture fraction dissipation rate is captured

more accurately but still underestimated at the smallest scales.

Figure 5.13 (left) compares Tθ/TZ for flames II and IV up to t/τ = 1, when both

flames experience the highest scalar dissipation, causing flame II to globally quench,

but only partial extinction in flame IV . The conditional distribution of temperature of

these flames when they experience their maximum extinction is compared in Fig. 5.13

(right). As explained in the a priori analysis (Sec. 5.2.1), the faster reactions in flame

IV leads to smaller time scales, which are captured by the AIM approach. The global

extinction reduces the support of the temperature distribution function, with the

near-Gaussian spread for flame II. On the other hand, there is a broader distribution

for flame IV , with significant regions of low temperature consistent with the local

extinction-reignition process.

Figure 5.13: Left: time evolution of mixing time scale ratio of progress variable and
mixture fraction (Tθ/TZ), right: probability distribution of temperature
at t/τ ≈ 0.5. DNS of flame II: , and flame IV : , AIM with km = 32
for flame II: and flame IV : .
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Figure 5.14: Dissipation rate of progress variable χθ = 2D(∇θ)2, for flame IV at
t/τ = 0.5 when flame is locally extinguished. Left: DNS, middle: AIM,
right: no model prediction. Projection operator is at km = 16. Black
lines represent stoichiometric mixture.

Dissipation rate of the progress variable (temperature) of flame IV when local

extinction is maximum (lowest conditional temperature in Fig. 5.3, right). Near the

stoichiometric mixture fraction surface (shown by black lines), higher reaction rates

impose steeper temperature gradients, which emphasizes the reaction effects on small-

scale mixing. Modeling of χθ with the lowest dimensional AIM considered here can

reproduce most features of the field. However, the dissipation rate is overestimated

in general. Compared to the reduced-order evolution of dynamics without any form

of reconstruction of the unresolved modes (Fig. 5.14, right), AIM has managed to

recover small-scale features of the field.

Figure 5.15 compares some statistics of temperature field for flame IV predicted

by AIM-ROM against the DNS data. Global behavior of the flame is compared in

Fig. 5.15 (top left) showing the time evolution of conditioned temperature and mixture

fraction dissipation rate. Overall, AIM captures the local extinction and subsequent

reignition, but it overpredicts the extent of extinction. Given that the dissipation

rate is underpredicted at the flame surface, this result shows that AIM suppresses

reactions away from the stoichiometric surface. Distribution of temperature and

mixture fraction dissipation rate at stoichiometric mixture at t/τ ≈ 0.5 illustrates

more details of extinction (Fig. 5.15,top right). While part of the stoichiometric

mixture is burning close to the steady flamelet solution, localized extinction has
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created considerable cold and non-burning regions. Bi-modal distribution of the

temperature shown in Fig. 5.13 (right) is evidence of this locally extinguished flame.

It can be seen that the range of scalar dissipation values is underestimated by AIM. In

particular, burning flamelets under higher strain rates are not captured. Additionally,

AIM predicts lower reaction rates and temperatures under medium strain rates. These

behaviors result in overprediction of the extent of extinction. Conditional distribution

of temperature and its variance are compared in Fig. 5.15 (bottom). Overall, AIM can

predict flame structure reasonably well and handles local extinction and reignition

without any additional modeling.

Figure 5.15: Statistical properties of flame IV . Top left: time evolution of
conditionally averaged temperature and mixture fraction dissipation
rate. Solid lines are DNS results, and dashed lines are AIM-ROM
results with km = 32. Top right: the distribution of temperature and
mixture fraction dissipation rate at stoichiometric surface at t/τ = 0.5.
Bottom: conditional mean (left) and variance (right) of temperature at
t/τ = 0.5; DNS: , AIM: .
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5.3 Summary

In this chapter, the theory of inertial manifolds is used to develop reduced-order

models of turbulent combustion. In this approach, the dynamic interplay of turbulence

and chemistry is tracked in a low-dimensional manifold determined in-situ without

invoking laminar flame structures or statistical assumptions about the underlying

turbulent flow. Direct numerical simulations of initially non-premixed fuel-air mixtures

developing in forced isotropic turbulence have been carried out to investigate the

proposed model. Reaction rate parameters are varied to allow for varying levels of

extinction and reignition. The AIM performance in capturing different flame behaviors

is assessed both a priori and a posteriori. It is shown that AIM captures the dynamics

of the flames including extinction and reignition. Moreover, AIM provides scalar

dissipation rate, mixing time for reactive scalars, and closures for nonlinear terms

without any additional modeling.
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CHAPTER VI

Summary, Conclusions and Future Directions

6.1 Summary

The objective of this dissertation is to provide a framework for the development

of a reduced-order description of multi-physics multi-scale systems in the context

of turbulent reacting flows. The goal is to develop models that can track distinct

trajectories of the system without limiting assumptions about the underlying turbulent

flow or flame structures. The theory of inertial manifolds is leveraged for deriving

a modeling approach for turbulent combustion. The foundations of this modeling

principle are fundamentally different from other modeling practices in turbulence or

turbulent combustion. The proposed model is investigated on canonical turbulent

flows and turbulent flames. The rest of this section summarizes the chapter-by-chapter

advances presented in this work.

Chapter I:

In this chapter, the need for a predictive model of combustion devices, when such

devices deviate from their design point, is discussed. Several examples of transient

events in combustors are provided to emphasize the importance of these events in the

efficiency, robustness, and pollutant formation of modern energy conversion systems.

The computational challenge of direct methods for an extensive analysis of combustion

devices is discussed, and a need for reduced-order descriptions of practical reacting
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flows is outlined. It is further explained why models driven for statistically stationary

systems cannot address this need.

Chapter II:

Predominant modeling approaches in turbulence and turbulent combustion are re-

viewed in this chapter. It is discussed that current models are geared toward sta-

tistically stationary systems, and they provide an ensemble average of all possible

realizations of the flow. In particular, combustion models depend on external manifold

developments based on the thermochemical composition of laminar flame structures.

This comprehensive image of state-of-the-art models reveals the need for models that

can track distinctive trajectories of reacting flows far from normal behavior. To pre-

dict deviation from nominal conditions in energy conversion systems a paradigm shift

in modeling perspective is essential. The development of models that do not rely

on statistical assumptions about small-scale turbulent features or canonical flame

configurations is critical for the predictive accuracy of these tools.

Chapter III:

In this chapter, the theory of inertial manifolds is introduced. The existence of an

inertial manifold for certain systems is discussed, and key properties of such manifolds

are provided. A reduced-order model describing reacting flows is developed by invoking

a dynamical systems perspective. Based on the inertial manifold theory, governing

equations of the system are utilized for the decomposition of the system’s dynamics

into resolved and unresolved subsets. An inertial form describing the dynamical

behavior of the system in a low-dimensional manifold is derived. Particularly, it is

shown that the proposed model recovers a single realization of the unresolved field for

a given resolved field. Therefore, distinct trajectories of the system can be tracked,

which is essential for the forecast of transient events.

Chapter IV:

The suitability of approximate inertial manifolds in the prediction of turbulent flows is

126



examined in this chapter. Two canonical chaotic flows with different complexities and

properties are considered. The one-dimensional Kuramoto-Sivashinsky equation is

known to possess a relatively low-dimensional inertial manifold. Current theories can

only provide an upper bound for the dimension of this manifold. In this chapter, the

possibility of approximating the IM is investigated over a wide range of parameters

such that the KSE is in a fully chaotic regime. Strong convergence properties conform

with theoretical works. Convergence of the proposed AIM suggests a low-dimensional

manifold spanned by unstable modes of the KSE. An AIM-based ROM is used to track

the dynamical behavior of the system in a considerably lower-dimensional manifold.

The proposed model is also examined for homogeneous isotropic turbulence dic-

tated by the three-dimensional Navier-Stokes equations. The existence of an IM for

the Navier-Stokes equations is still an open question. The AIM approach tries to locate

a neighborhood of the attractor in the state space. The AIM is studied over a wide

range of parameters such as the dimension of the AIM, the dimension of the unresolved

subspace, and the Reynolds number, which is directly proportional to the dimension

of the attractor. Convergence properties of the approximate inertial manifold for HIT

were found to be considerably different from the KSE. However, in all configurations

considered, for AIMs with dimensions of the same order as the estimated size of the

attractor, convergence rates improve. The AIM-based ROM can reconstruct nonlinear

interaction between resolved and unresolved dynamics effectively, especially for the

dynamics in the vicinity of the AIM. Higher-order approximations of an AIM are

required to reconstruct smaller scales in the unresolved subspace. Another modeling

component similar to eddy viscosity models in LES is introduced to account for these

scales and to make the model computationally more efficient.

Chapter V:

The theory of inertial manifolds is used to develop reduced-order models of turbulent

combustion. In this chapter, the dynamics of turbulent flames are tracked in a low-
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dimensional manifold determined in-situ without invoking laminar flame structures

or statistical assumptions about the underlying turbulent flow. Direct numerical

simulations of initially non-premixed fuel-air mixtures developing in forced isotropic

turbulence have been carried out to investigate the proposed model. Reaction rate

parameters are varied to allow for varying levels of extinction and reignition. The

AIM performance in capturing different flame behaviors is assessed both a priori and a

posteriori. It is shown that the small-scale dynamics are reconstructed fairly accurately,

even when the AIM contains only a small number of resolved modes. In particular, the

AIM-reconstructed field captures various degrees of localized extinction and reignition

due to the interplay of straining and molecular diffusion. This assessment of AIM

approximation encourages the development of reduced-order models using the inertial

manifold theory for more practical combustion systems.

6.2 Conclusions

In multiscale complex nonlinear systems, it is desired to predict the dynamical be-

havior without resolving all of the scales within the system through direct numerical

simulations. In this context, the approximate inertial manifold methodology is a

valuable alternative, naturally yielding a reduced-order approach while capturing the

dominant dynamics of the problem. Casting the discretized governing equations as a

dynamical system provides a path for the decomposition of variables without relying

on traditional scale-separation methods, such as spatial filtering. Here, governing

equations of the system have been leveraged to define resolved variables and recover

unresolved variables to directly compute the nonlinear term. The underlying notion

is that the slow modes of the dynamical system will traverse a stable low-dimensional

manifold, and the fast variables are at a steady state that is controlled only by the

slow variables. In this study, the suitability of the inertial manifold theory for the

prediction of reacting turbulent flows is assessed.
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The existence of an inertial manifold is not yet proven for turbulent flows. Never-

theless, the construction of an AIM for the Navier-Stokes equations shows promising

results. The AIM-based reduction requires that the dimension of the reduced-order

model should be higher than the dimension of the attractor. Since exactly obtaining

the attractor dimension is not feasible for most practical problems, the AIM reduc-

tion for different dimensions is used to understand the validity of this approximation.

Convergence properties of the AIM conform with direct estimations of the size of the

attractor for these systems proving the proposed AIM can approximate the dynamics

of the attractor.

For a given resolved field, AIM reconstructs a single realization of the unresolved

dynamics. This contribution of an AIM to the resolved dynamics can also be seen

as a subgrid-scale model. In all configurations, for a sufficiently large dimension of

the AIM, the unresolved dynamics were found to respond to the dynamics of the

AIM instantaneously. However, smaller scales in the unresolved dynamics are less

responsive to the dynamics of the IM, and there is a time delay in their response. A

higher-order estimation of the unresolved dynamics, where the interactions between

the resolved and unresolved dynamics are included, improves the AIM estimation of the

unresolved dynamics. The rate of convergence is controlled by the nonlinear interaction

between resolved and unresolved scales. However, turbulence is broadband, and the

approximation of unresolved dynamics farther from the approximate inertial manifold

can be cost-prohibitive. It is shown that reconstruction of the entire unresolved

subspace is not necessary, and recovering the unresolved dynamics in the vicinity of

the AIM captures the nonlinear interaction sufficiently. The information recovered

by AIM is used to model the effect of the dynamics far from the AIM. The modified

AIM approach is robust, efficient, and more accurate in the prediction of long-time

statistics of the system. The modified model shows the capacity of the AIM approach

for an adaptive modeling framework.
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Assessment of the AIM approach for turbulent flames proves it an effective alter-

native for combustion modeling. The main advantage of the AIM approach is that it

models the small-scale features using a self-consistent approximation. In other words,

no external modeling information regarding the structure of the chemical manifold or

energy spectrum is needed. Forced isotropic turbulence with one-step chemical reac-

tion and neglecting density variations is considered. The parameters of the reaction

rate are varied to allow for local extinction and reignition. Extinction and reignition

are considered deviations from laminar flames burning at equilibrium in a turbulent

flow. Competing time scales of micro-mixing and chemical reaction determine the

flame dynamics.

Considering one-step chemical reaction and neglecting density variations are sig-

nificant simplifications of end applications. However, the purpose of this study is the

interplay of turbulent mixing and reaction rate in flame dynamics. Various reignition

pace for different flames is due to different mechanisms that derive reignition. In a

fast reignition, mixing of cold and hot spots enhanced by underlying turbulent field

triggers reignition. On contrary, a gradual reignition is controlled by the chemical

reaction rate. AIM decomposition is based on the linear operator of the system, and

accurate prediction of flame behaviors controlled by chemical reaction is very promis-

ing for this approach. For all the cases studied, the AIM reconstruction captures

the variations in the small scales. The model is particularly accurate when the large

scales evolve slowly in time, for instance through a gradual reignition process rather

than a sudden return to equilibrium. Moreover, the AIM approach can provide scalar

dissipation rate, mixing time for reactive scalars, and closures for nonlinear terms

without any additional modeling. In this context, it overcomes some of the limitations

of manifold-based techniques such as flamelet-generated or flamelet-based approaches.

In the AIM-based ROM, approximation of the small scales is used to obtain the

closure terms and evolve the dynamics of the AIM. This feedback to the simulation
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does not cause an accumulation of errors, and the model predicts various dynamics

of the flames. In particular, extinction and re-ignition processes are well-captured.

Overall, the results of this study are promising. It shows for the first time that

dynamical systems-based modeling can be used to close turbulent reacting flow systems.

While the concept of manifolds is well-known in the combustion community, this

term generally refers to laminar flame or other non-turbulent configuration-based

representation. In this work, a fully turbulent manifold has been constructed through

the AIM procedure.

6.3 Future challenges and recommendations

Studying the attractor of chaotic systems provides new paths for the development of

reduced-order models to predict and control complex systems. Direct methods for find-

ing the topology of the attractor are prohibitively expensive, but strong convergence

properties observed for approximate inertial manifolds over a range of problems consid-

ered in this dissertation show the potential of this approach in locating the attractor

of more practical systems. The next steps will involve extensions to non-homogeneous

systems such as wall-bounded flows, for which the AIM approach should be cast in

physical space [194]. Similar to multi-grid methods, a hierarchy of discretizations can

be used for AIM formulation in physical space. The inherent assumption of AIM for-

mulation is the relative dominance of the linear operator at the unresolved dynamics.

A budget study of the solution provides a premise for adaptive mesh refinement using

the AIM formulation.

To assess the potentials of the IM theory for combustion systems, more realistic

combustion processes should also be considered. The promising results of this work

show that AIM can capture the interplay of micro-mixing and chemical reactions

without any additional mixing model. But AIM relies on the linear operator for

decomposition of dynamics of the system, and it might not be suitable for modeling
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detailed chemistry mechanisms. Other approaches such as the G-scheme, which uses

both linear and nonlinear operators for decomposition of slow/fast dynamics, are more

amenable for combustion manifold development [166]. Currently, such approaches

suffer from the cost of computing the Jacobian of the governing equations. The

development of an adaptive chemistry approach can compensate for shortcomings of

each of these approaches in cost and accuracy to develop chemistry manifolds on the

fly.

The approximate inertial manifold approach provides a promising framework for

the mitigation of extreme events. Extreme events, driven by events in the tails of

the distribution, arise spontaneously in chaotic dynamical systems. It is shown that

some regions of the attractor are more likely to contain the precursors of extreme

events [239, 240]. A parameterization of the attractor provides the path to search

for regions with a higher likelihood of extreme events and mitigate such events. In

particular, a phase-space parameterization allows minimal control mechanism on

the degrees of freedom that trigger the formation of an extreme event [239]. The

system experiencing the extreme event and the system with mitigated extreme events

share the same attractor. An approximation of this attractor reduces the search for

precursors of extreme events to a low-dimensional manifold of the state-space.

132



BIBLIOGRAPHY

133



BIBLIOGRAPHY

[1] Chong, S. T., Hassanaly, M., Koo, H., Mueller, M. E., Raman, V., and Geigle, K.-
P., “Large eddy simulation of pressure and dilution-jet effects on soot formation
in a model aircraft swirl combustor,” Combustion and Flame, Vol. 192, 2018,
pp. 452–472.

[2] Ebi, D. and Clemens, N. T., “Experimental investigation of upstream flame
propagation during boundary layer flashback of swirl flames,” Combustion and
Flame, Vol. 168, 2016, pp. 39–52.

[3] An, Q., Kwong, W. Y., Geraedts, B. D., and Steinberg, A. M., “Coupled dynam-
ics of lift-off and precessing vortex core formation in swirl flames,” Combustion
and Flame, Vol. 168, 2016, pp. 228–239.

[4] Barwey, S., Hassanaly, M., An, Q., Raman, V., and Steinberg, A., “Experimental
data-based reduced-order model for analysis and prediction of flame transition
in gas turbine combustors,” Combustion Theory and Modelling , Vol. 23, No. 6,
2019, pp. 994–1020.

[5] Read, R. W., Experimental investigations into high-altitude relight of a gas
turbine, Ph.D. thesis, University of Cambridge, 2008.

[6] Pope, S. B., Turbulent Flows , Cambridge University Press, 2000.

[7] Raman, V. and Hassanaly, M., “Emerging trends in numerical simulations of
combustion systems,” Proceedings of the Combustion Institute, Vol. 37, No. 2,
2019, pp. 2073–2089.

[8] Wagner, J., Yuceil, K., and Clemens, N., “Velocimetry measurements of unstart
of an inlet-isolator model in Mach 5 flow,” AIAA journal , Vol. 48, No. 9, 2010,
pp. 1875–1888.

[9] Koo, H. and Raman, V., “Large-eddy simulation of a supersonic inlet-isolator,”
AIAA journal , Vol. 50, No. 7, 2012, pp. 1596–1613.

[10] Sforzo, B., Kim, J., Jagoda, J., and Seitzman, J., “Ignition probability in a
stratified turbulent flow with a sunken fire igniter,” Journal of Engineering for
Gas Turbines and Power , Vol. 137, No. 1, 2015, pp. 011502.

134



[11] Tang, Y., Hassanaly, M., Raman, V., Sforzo, B., and Seitzman, J., “A com-
prehensive modeling procedure for estimating statistical properties of forced
ignition,” Combustion and Flame, Vol. 206, 2019, pp. 158–176.

[12] Hassanaly, M. and Raman, V., “Computational Tools for Data-poor Problems
in Turbulent Combustion,” AIAA Scitech 2019 Forum, 2019, p. 0998.

[13] Sommerer, Y., Galley, D., Poinsot, T., Ducruix, S., Lacas, F., and Veynante, D.,
“Large eddy simulation and experimental study of flashback and blow-off in a
lean partially premixed swirled burner,” Journal of Turbulence, Vol. 5, No. 37,
2004.

[14] Heeger, C., Gordon, R., Tummers, M., Sattelmayer, T., and Dreizler, A., “Ex-
perimental analysis of flashback in lean premixed swirling flames: upstream
flame propagation,” Experiments in fluids , Vol. 49, No. 4, 2010, pp. 853–863.

[15] Konle, M., Kiesewetter, F., and Sattelmayer, T., “Simultaneous high repetition
rate PIV–LIF-measurements of CIVB driven flashback,” Experiments in Fluids ,
Vol. 44, No. 4, 2008, pp. 529–538.
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