
 
 
 
 
 
 
 
 
 

Interrogation of Dynamic Proteins to  
Expand the Druggable Proteome 

 
by 
 

Amanda Lee Peiffer 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy  
(Chemical Biology) 

in the University of Michigan  
2021 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Doctoral Committee: 
 

Professor Charles L. Brooks III, Co-Chair 
Professor Anna K. Mapp, Co-Chair 
Associate Professor Tomasz Cierpicki 
Assistant Professor Aaron T. Frank 
Associate Professor Bruce A. Palfey 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Amanda Lee Peiffer 

apeiffer@umich.edu 

ORCID iD: 0000-0001-8113-9458 

 
 
 
 
 
 

© Amanda Lee Peiffer 
 

All Rights Reserved, 2021 
 
 

  



 ii 

 
 
 
 
 
 

Acknowledgements 
  

I never pictured what it would be like to sit down and write my acknowledgements 

for my PhD thesis, but as I sit here typing this up (in the single outfit I’ve worn for what 

feels like weeks while writing), I’m finding it one of the more difficult pages to produce, 

mostly because I’m not convinced that I can truly convey in words the level of gratitude I 

feel. 

First and foremost, I have to thank my advisors, Professor Charlie Brooks and 

Professor Anna Mapp — first for agreeing to take me on as a student, and second for not 

firing me along the way. I feel so lucky to have found two unbelievable scientists who 

beyond everything else, are human. You both have allowed me so much creative freedom 

in my work, and you’ve been supportive and guiding forces along the way. 

Charlie, thank you for constantly pushing me to do better — to be better. You were 

always encouraging while making sure to challenge me; and anyone who knows me 

knows I thrive on being challenged. You changed the ways in which I think about science, 

which is an invaluable gift. I will forever be grateful for ridiculously funny conversations 

we had, like when you called me “nose ring” from across the room just to see if I would 

respond. It’s moments like these that stick with me and always make me smile. In addition, 

I personally will always appreciate the mentality you have for mentoring graduate 

students: if your students are well mentored and succeed, they will be your future 

collaborators. I hope that this is true for me (and if not, I take back all of the nice things I 

said before this). 

Anna, your unwavering support for the past five years has been truly incredible 

and way beyond what I could have ever expected. I have never met someone so open 

and willing to hear ideas being proposed. I am particularly grateful for the time you 

answered my Friday evening email about the COVID conspiracy theories I saw on Fox 

News, and that you subsequently went on CNN with me to discuss it. And for answering 



 iii 

the other email about wanting to start a COVID research project. I have always felt like 

you believed in me, and these two emails turned out to be the highlight of my time here. 

So thank you, truly.  

To my dissertation committee, thank you for the guidance and feedback along the 

way. Your input was instrumental in my success. And of course, thank you to everyone 

in the Mapp and Brooks labs. I have always felt so lucky to be surrounded by such a great 

group of people, who have always provided encouragement and feedback along the way. 

Thank you Yujin for being an awesome collaborator and friend in the Brooks lab. And 

thank you, Rachel, for teaching me how to use Illustrator, and for getting me into graphic 

design. You opened up a whole new creative world for me, and it made my thesis so 

much more fun. Thank you. 

Julie, thank you for being my scientific counterpart and one of my closest friends. 

I have never met anyone who has been more excited to talk science or Survivor. Our 

near-daily walks at the beginning of the pandemic were where we really developed the 

TMPRSS2 project, which will always be one of my most valued memories from grad 

school. You’re a phenomenal scientist. And your friendship is one of the best things I am 

leaving Ann Arbor with. So thank you. 

My family has been so important in my PhD journey. I want to thank my parents 

for always encouraging me to do what makes me happy, and to carve my own path in life. 

To my sisters, who have become my closest friends — thank you for honestly just being 

you. Lindsey, thank you for being that most amazing big sister. Our FaceTime sessions 

during my time in Michigan were always the best way to boost my mood on any day. 

You’re an unbelievable mom, and your kids are my heart. And Erin, you may be my little 

sister, but I swear I look up to you. Your ability to hold your own in any situation, and your 

unwavering moral compass are truly incredible. Thank for your continuous 

encouragement and compassion. And importantly, to my practically-sister, Kara. You may 

be half my height, by you count twice as much. You’ve always been the most incredible 

friend, and your Ann Arbor visits were always the best. 

To literally all of my educators along the way — you have molded me into the 

person I am today. I have never related more to a mission statement than my alma mater, 

Denison University: “Our purpose is to inspire and educate our students to become 



 iv 

autonomous thinkers, discerning moral agents and active citizens of a democratic 

society.” Thank you, Denison for pushing me to live by this. My time there made me a 

better human being. Thank you to my unbelievable undergraduate mentors, Dr. Specht 

and Dr. Ludwig. You both were absolutely instrumental in my success. You taught me 

how to critically think and, more important, how to question. Thank you for everything.  

Lastly, Landon. Life has been so unbelievably strange, yet your support has never 

wavered. I never would have expected to fall in love while in college, and I will always 

appreciate our chance encounter in the rain. You have changed my life, and we’ve made 

a home. Thank you for cooking me meals when I was living off of peanut butter; thank 

you for constantly asking me what I need during this crazy week as I wrap up my 

dissertation; and thank you for loving our cats as much as two humans possibly can. I 

can’t wait to marry you. I love you. 

  
  



 v 

 
 
 
 

 

Table of Contents 
 

Acknowledgements .......................................................................................................... ii 

List of Figures ................................................................................................................. viii 

List of Tables .................................................................................................................. xii 

List of Abbreviations ....................................................................................................... xiii 

List of Appendices ......................................................................................................... xvii 

Abstract ........................................................................................................................ xviii 

 
 

CHAPTERS 
 
Chapter 1. Recognition in Dynamic Transcriptional Protein-Protein Interactions ... 1 

1.1 Protein structure-function relationship ................................................................... 1 

1.2 Allostery in well-folded proteins ............................................................................. 2 

1.3 Intrinsically disordered proteins: breaking the structure-function rules  ................ 3 

1.4 Intrinsic disorder and allostery  .............................................................................. 7 

1.5 Functional disorder: the utility of dynamics in transcriptional regulation  .............. 9 

1.6 Coactivators serve as communication hubs  ....................................................... 10 

1.7 Activator binding domains ................................................................................... 13 

1.8 ABDs and disease  .............................................................................................. 14 

1.9 Experimental challenges surrounding “fuzzy” PPIs ............................................. 15 

1.10 Allostery as an avenue to expand the druggable proteome ................................ 16 

1.11 Dissertation summary  ......................................................................................... 17 

1.12 References  ......................................................................................................... 18 

Chapter 2. The KIX Domain Uses High Conformational Plasticity for Molecular 
Recognition  .................................................................................................................. 23 



 vi 

2.1 Introduction .......................................................................................................... 24 

2.2 Results and discussion ........................................................................................ 26 

KIX adopts a diminishing number of micro-states as substrates bind ................. 26 

Conformational entropy changes are masked in macroscopic measurements ... 34 

L12-G2 loop dynamics dictate KIX conformational entropy changes .................... 38 

2.3   Conclusions ......................................................................................................... 40 

2.4   Materials and Methods ........................................................................................ 42 

2.5   References .......................................................................................................... 50 

Chapter 3. The Coactivator Med25 AcID Exhibits High Fluctuations in Activator 
Engagement  ................................................................................................................. 55 

3.1   Introduction .......................................................................................................... 56 

3.2   Results and discussion ........................................................................................ 58 

Disulfide Tethering with VP16 circumvents limitations of structural techniques .. 58 

Temperature replica exchange overcomes energy barriers in simulations ......... 60 

Med25 AcID shows unique structural accommodation for activators .................. 69 

Kinetics data supports that activator-Med25 complexes are conformationally 

dynamic ............................................................................................................... 73 

A covalent small molecule inhibits both ortho- and allosterically by stabilizing 

Med25 AcID ......................................................................................................... 74 

3.3   Conclusion ........................................................................................................... 78 

3.4   Materials and methods ........................................................................................ 80 

3.5   References .......................................................................................................... 92 

Chapter 4. TMPRSS2 Inhibitor Discovery Facilitated Through an in silico and 
Biochemical Screening Platform  ............................................................................... 96 

4.1   Introduction .......................................................................................................... 96 

4.2   Results and discussion  ....................................................................................... 99 

Active TMPRSS2 Peptidase S1 can be expressed recombinantly in E. coli ....... 99 

Activity of TMPRSS2 peptidase domain  ........................................................... 101 

Analysis of TMPRSS2 covalent inhibitors ......................................................... 104 

Construction and refinement of TMPRSS2 homology model ............................ 107 

Virtual screening yields preliminary hits for in vitro assays ............................... 107 



 vii 

Identification of noncovalent inhibitors ............................................................... 110 

4.3  Conclusion  ......................................................................................................... 112 

4.4  Materials and Methods  ...................................................................................... 113 

4.5  References ......................................................................................................... 118 

Chapter 5. Conclusions and Future Directions ....................................................... 124 
5.1  Conclusion .......................................................................................................... 124 

5.2  Future directions ................................................................................................. 127 

5.3  References ......................................................................................................... 130 

 

  



 viii 

 

 

 

 

List of Figures  
 

Figure 1.1 Myoglobin and hemoglobin x-ray crystallography structures 2 

Figure 1.2 The MWC and KNF models for allostery in hemoglobin 4 

Figure 1.3 Binding modes in the ensemble framework of molecular 

recognition and allostery 

7 

Figure 1.4 The ensemble framework of allostery 9 

Figure 1.5 Transcription is initiated by assembling all of the necessary 

cellular machinery 

10 

Figure 1.6 Coactivators are interaction hubs in transcriptional regulation 11 

Figure 1.7 Domains of CBP 12 

Figure 1.8 Composition of the Mediator complex 13 

Figure 1.9 Structures of activator binding domains 14 

Figure 1.10 Disease relevance in activator binding domains 15 

Figure 2.1  The KIX domain of CBP exhibits allostery  25 

Figure 2.2  Molecular dynamics methods for dissecting KIX conformational 

entropy 

27 

Figure 2.3 Diminishing KIX micro-states in ternary complex formation when 

MLL binds first  

28 

Figure 2.4 Diminishing KIX micro-states in ternary complex formation when c-

Myb/pKID bind first  

30 

Figure 2.5 Pathways of KIX conformational selection in the mutant (I660V) 

pKID system  

31 

Figure 2.6 DSF experiments for thermal stability changes in WT KIX and 

KIXI660V systems 

32 

Figure 2.7 Pathways of KIX conformational selection in the pKID system with 

allosteric modulator molecule 1-10 

33 



 ix 

Figure 2.8 First derivative plots of relative fluorescence units (RFU) by 

temperature (°C) from DSF 

34 

Figure 2.9  Coverage of methyl-bearing amino acids on KIX 35 

Figure 2.10 Entropy changes and melting temperature changes in the c-Myb 

system 

36 

Figure 2.11 Entropy changes and melting temperature changes in the pKID 

system  

37 

Figure 2.12  Root mean square fluctuations (RMSF) and conformational 

entropy  

39 

Figure 2.13 Methyl order parameters of the L12-G2 loop by residue  40 

Figure 2.14 Methyl order parameters for all complexes in the c-Myb system 45 

Figure 2.15 Methyl order parameters for all complexes in the pKID system and 

mutant systems 

45 

Figure 2.16  Entropy calculations from clustering versus order parameters  46 

Figure 2.17 Relationship between KIX substructures and overall protein 

conformational entropy  

47 

Figure 3.1  Med25 is part of the tail subunit of the human Mediator complex 57 

Figure 3.2  Disulfide Tethering with H1-binding TADs 59 

Figure 3.3  Disulfide Tethering with VP16(438-454)  60 

Figure 3.4 Temperature replica exchange method as an enhanced sampling 

simulation technique 

61 

Figure 3.5 Simulation setup for temperature replica exchange with a 

Tethered peptide 

62 

Figure 3.6 Clustering results using a K-means clustering algorithm 63 

Figure 3.7 Fluctuations in the emerging structural model for AcID-activator 

formation 

63 

Figure 3.8 Protein melting experiments for apo Med25 and 

Med25+VP16(438-454)G450C 

64 

Figure 3.9 Binding of the long VP16(438-490) Tethered construct using 

temperature replica exchange 

65 



 x 

Figure 3.10 Two binding modes for VP16(438-490)G450C Tethered to 

Med25C506 

65 

Figure 3.11 Med25 chemical shift perturbations upon VP16 binding  66 

Figure 3.12 Helix bending in Med25 caused by VP16 binding  66 

Figure 3.13  Chemical shifts report on conformational changes with VP16 

binding  

68 

Figure 3.14 Molecular dynamics simulations with a Tethered ERM construct 69 

Figure 3.15 Med25 chemical shift perturbations upon ERM binding 70 

Figure 3.16 Interactions between ERM(38-68) and the upon H1 loop 71 

Figure 3.17 H1-binding TADs form unique complexes with Med25 AcID 72 

Figure 3.18 Root mean square fluctuations (RMSF) by Med25 AcID residue 73 

Figure 3.19 Transient kinetic experiments define minimal mechanism of 

activator-AcID complexation 

74 

Figure 3.20 Norstictic acid and psoromic acid inhibit Med25 AcID 75 

Figure 3.21 Mass spectrometry of Med25 AcID with norstictic acid 76 

Figure 3.22 Med25 AcID lysine reactivity with norstictic acid 77 

Figure 3.23 Structural model and fluctuations of Med25 with norstictic acid 78 

Figure 4.1 The role of TMPRSS2 in SARS-CoV-2 infection  98 

Figure 4.2 TMPRSS2 activation occurs through autocleavage 99 

Figure 4.3  Western blot for 6xHis tag at various stages of TMPRSS2 

purification 

100 

Figure 4.4 Silver stain gel and Western blot for TMPRSS2 protease 101 

Figure 4.5 Fluorescence-based kinetic activity assay for serine proteases 102 

Figure 4.6 Inhibition cure of TMPRSS2 activity obtained with increasing 

[FPR-cmk] 

103 

Figure 4.7 HTS with TMPRSS2 protease 103 

Figure 4.8 TMPRSS2 inhibition with published molecules 104 

Figure 4.9 Covalent inhibition with trypsin using mass spectrometry  105 

Figure 4.10 Decreasing IC50 values with longer incubations suggest a covalent 

mechanism of inhibition  

110 

Figure 4.11 The virtual docking workflow  109 



 xi 

Figure 4.12 Docked poses of known inhibitors 110 

Figure 4.13 Noncovalent hits from screen 111 

Figure 4.14 Inhibition data with the three noncovalent compounds against 

trypsin 

112 

Figure 5.1 CBP KIX binary and ternary complexes 127 

Figure 5.2 Modeling with molecule 22 covalently bound to Med25C506 129 

Figure 5.3 TMPRSS2 K342 shows promise for derivatizing debrisoquine 130 

 
  



 xii 

 
 
 
 

List of Tables  
 

Table 2.1 KIX conformational entropy changes from order parameters in MD 35 

Table 3.1 Sequences of peptides used in experiments 81 

Table 3.2 Primers used for site-directed mutagenesis of Med25 AcID 85 

Table 4.1 Soft-core potentials used in flexible receptor docking 118 

 
 

  



 xiii 

 
 
 
 

List of Abbreviations 
 

ABD  Activator binding domain  

ACE2 Angiotensin-converting enzyme 2 

AcID  Activator interaction domain  

AMC 7-amino-4-methylcoumarin 

ATF6a Activator transcription factor 6a 

BD  Bromodomain 

BET Bromodomain and extra terminal 

BME β-mercaptoethanol 

c-Myb Cellular MYB 

CD Circular dichroism 

CBP  CREB binding protein  

CDOCKER CHARMM docking 

CGENFF CHARMM General Force Field 

CH2 Cysteine-histidine-rich region 2 

CHARMM Chemistry at HARvard Macomolecular Mechanics  

CMK Chloromethylketone 

COVID-19 Coronavirus disease 2019; 2019-nCoV 

Cryo-EM Cryo-electrom microscopy 

CSP Chemical shift perturbation  

DBD  DNA binding domain 

DIPEA N,N-Diisopropylethylamine 

DMF Dimethylformamide 

DMN 4-N,N-dimethylamino-1,8-naphthalimide 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 



 xiv 

DSF  Differential scanning fluorimetry  

DTT Dithiothreitol 

EDT Ethanedithiol 

EDTA Ethylenediaminetetraacetic acid 

ETV Ets translocation variant  

FOY251 4-(4-guanidinobenzoyl-oxy)phenylacetic acid 

FPLC Fast protein liquid chromatography 

GACKIX Gal11, Arc105, CBP/p300, kinase-inducible domain interacting (KIX) 

GBMV Generalized Born using Molecular Volume 

GBSW Generalized Born with simple switching 

GPU Graphic processing unit 

GSH Reduced glutathione 

GSSG Oxidized glutathione 

HAT Histone acetyltransferase  

HPLC High performance liquid chromotagraphy  

HRP Horseradish peroxidase 

HSQC Heteronuclear single quantum coherence 

HTS High throughput screening 

iBiD IRF-3 binding domain 

IC50 Half-maximal inhibitory concentration 

IDP  Intrinsically disordered protein 

IMAC Immobilized metal iron affinity chromatography 

ITC Isothermal calorimetry  

IPTG Isopropyl-b-D-1-thiogalactopyranoside 

KIX Kinase inducible domain interacting domain  

KNF Koshland, Nemethy and Filmer 

LC/TOF Liquid chromatography/ time-of-flight 

LE Ligand efficiency  

L-S Lipari-Szabo 

MD Molecular dynamics 

Med15 Mediator subunit 15 



 xv 

MED25 Mediator subunit 25  

MERS Middle Eastern respiratory syndrome 

MLL Multi-lineage leukemia 

MMTSB Multiscale Modeling Tools for Structural Biology 

MOE Molecular Operating Environment 

mRNA Messenger RNA 

MW Molecular weight 

MWC  Monod-Wyman-Changeux  

Ni-NTA Nickel-Nitrilotriacetic Acid 

NMR  Nuclear magnetic resonance 

NR  Nuclear receptor 

OD Optical density  

OP Order parameter 

PC4 Positive Cofactor 4 

PDB Protein DataBank 

PEA3 Polyoma enhancer activator 3 

PHD Plant homeodomain 

pKID Phosphorylated kinase inducible domain (CREB) 

PPACK FPR-Chloromethylketone 

PPI  Protein-protein interaction  

PPM Part per million  

R state  Relaxed state 

RFU Relative fluorescence units 

RMSD Root mean square deviation  

RMSF Root mean square fluctuations 

RNA Ribonucleic acid  

RNA Pol  RNA Polymerase II 

RT Room temperature 

S protein Spike protein 

SARS Severe Acute Respiratory Syndrome 

SARS-CoV-2 Severe acute respiratory coronavirus 2 



 xvi 

SD Standard deviation  

SRCR Scavenger receptor cysteine-rich 

T state  Tense state 

RPM Revolutions per minute 

TAD  Transcriptional activation domain 

TAZ Transcriptional adapter zinc finger 

TBST Tris-Buffered Saline with Tween 

TFA Trifluoracetic acid 

TMPRSS2 Transmembrane protease, serine 2 

UV/Vis  Ultraviolet/visible spectroscopy 

VP16 Herpes simplex virus protein 16 

VWA Von Willebrand Factor Type A 

WT Wild-type 

 

  



 xvii 

 
 
 
 

List of Appendices 
 
Appendix A Characterization of Synthesized Peptides 133 

Appendix B DSF Melting Curves 137 

 
 
 

  



 xviii 

 
 
 
 

Abstract 
 

 The human proteome is vastly complex, and our understanding of it is constantly 

evolving. There are roughly 20,000 protein-coding genes in the human genome, yet only 

about 10% of the resultant proteins are deemed “druggable” targets. And, only half of 

those have disease relevance. Thus, the druggable proteome is surprisingly narrow, 

consisting largely of structured proteins with defined binding pockets. With so many 

disease signatures residing in the “undruggable” portion of the proteome, there is much 

work to be done to expand the druggable landscape. An area rich with disease relevance 

is dynamic protein-protein interactions (PPIs), which underpin many regulatory cellular 

functions both in healthy and diseased states. However, devoid of typical binding pockets 

that enable traditional drug discovery approaches (i.e. substrate mimicry), dynamic PPIs 

occur over large, flat surface areas, which is why they have remained “undrugged.”   

 A disproportionate number of dynamic proteins can be found in transcriptional 

regulation. As such, it provides an interesting avenue for chemical probe development 

and therapeutic intervention. For instance, a hallmark of cancerous cells are rampant 

growth and proliferation, with many proteins being overexpressed. While many research 

efforts have focused on targeting the overexpressed proteins themselves, halting the 

overexpression at the transcriptional level could stop the disease progression at its 

initiation.  

This dissertation works towards expanding the druggable proteome by 

establishing principles of molecular recognition that guide native PPIs. By primarily using 

molecular dynamics simulations, with complementary biophysical experimentation, I 

dissect coactivators and establish rules of activator recognition and engagement. In doing 

so, I demonstrate the utility of disorder in transcriptional regulation. In particular, I identify 

ways in which allostery manifests in dynamic coactivator proteins. Further, I explore how 
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inhibition / enhancement of particular PPIs can be achieved using small molecules that 

attenuate fluctuations and disrupt binding allosterically.  

The connections between allostery and disorder are explored in Chapter 1. There, 

I go through the historical context for how allostery was discovered as well as the models 

proposed around the underlying physics. I highlight how experimental advances over 

many decades has demonstrated that dynamic proteins have a high propensity for 

cooperative interactions, where binding of first ligand at one site stabilizes the dynamic 

protein for enhanced/inhibited binding of a second ligand at a distal site. This introductory 

chapter thus sets the foundation for exploring ways in which allostery manifests in the 

highly dynamic PPIs between transcriptional coactivators and activators.  

In Chapter 2, I utilize simulations to interrogate the wide distribution of 

conformational micro-states available in the apo form of the coactivator domain CBP KIX. 

I dissect the ways ternary complex formation and allosteric communication can be traced 

through redistributing relative populations of KIX configurational states. In doing so, I 

demonstrate that high conformational entropy allows for KIX to recognize multiple 

partners, and that subsequent binding winnows down the number of accessible micro-

states. This in turn results in allostery, where a redistribution of micro-states 

increases/decreases the likelihood of a second binding event. Importantly, I investigate 

how a small molecule can allosterically inhibit binding, finding that it does so by winnowing 

down the distribution of conformational states to ones that disfavor a second binding 

event. Thus, I finish by demonstrating ways in which druggability could be achieved with 

this difficult target using an allosteric small molecule instead of an orthosteric inhibitor.  

In Chapter 3, I utilize enhanced sampling techniques to explore binary complex 

formation with the coactivator Med25 AcID. While this protein has been structurally 

elucidated through NMR experiments, there are no current structures of it in complex with 

any activators. Through my simulations, I demonstrate how a structurally unique 

coactivator like Med25 AcID, containing a stable b-barrel core, follows similar principles 

of activator engagement as the helical bundle KIX; ultimately, I illustrate how Med25 

utilizes flanking loops and helices to accommodate binding partners. I use molecular 

dynamics to dissect ways in which the covalent small molecule norstictic acid is able to 

bind to the H2 face and allosterically inhibit PPIs on the H1 face. In doing so, I establish 
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that altering protein dynamics through a small molecule can alter fluctuations across the 

protein, lending insights into future drug development strategies.  

With the emergence of the COVID-19 pandemic, I switch focus in Chapter 4 to a 

transmembrane serine protease that has been implicated in coronaviral infections named 

TMPRSS2. TMPRSS2 has been shown to prime the viral spike protein, which promotes 

membrane fusion of the viral particle and the host. With little known about the protease, I 

utilize a combined computational and in vitro experimental workflow for identifying new 

inhibitors for the protease. In doing so, I find several clinically approved compounds that 

effectively inhibit proteolytic cleavage of substrates, which can be explored in drug 

repurposing for COVID-19. 

In Chapter 5, I summarize the findings discussed throughout this thesis and 

establish future directions for the projects. I describe strategies for “drugging” dynamic 

protein-protein interactions namely between coactivators activators, highlighting how 

dynamic substructures on the proteins can be targeted for allosteric 

inhibition/enhancement. Through this work, I expand the feasibility of drugging the 

“undruggable” classes of proteins.  
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Chapter 1 
Molecular Recognition in Dynamic Transcriptional Protein-Protein Interactions 

 
 
Abstract 
 One of the major limitations in drug discovery is the small number of proteins that 

are deemed “druggable.” Intrinsically disordered proteins (IDPs) rank high as some of the 

most unfeasible targets, and yet their abundance in regulatory cellular processes, both 

healthy and diseased, make them highly desirable drug targets. In particular, a 

disproportionate number of IDPs appear in transcriptional regulation. Activators and 

coactivators exhibit high conformational plasticity, which has made characterization of the 

binding mechanisms challenging. By better understanding the molecular recognition in 

dynamic PPIs, we can better strategize for targeted inhibition. As allostery often appears 

in conjunction with dynamic proteins, understanding how allostery manifests in activator-

coactivator interactions would provide key insights into chemical probe development, 

which is vital first step in expanding the druggable proteome.  

 

1.1 Protein structure-function relationship 
 In their simplest forms, proteins are merely strings of amino acids. What 

distinguishes them from one another involves how the varying patterns of primary 

sequences manifests a structural form through secondary, tertiary and quaternary 

interactions to ultimately perform a cellular function. Once properly folded, a protein can 

catalyze reactions,1 join other macromolecules and form higher structured complexes,2 

and so on (signaling,3 structural support,4 etc.). Thus, a protein’s function is determined 

through its three-dimensional fold.5  

 Theories surrounding the relationship between protein structure and function can 

be traced back to the earliest days of protein crystallography.6 Myoglobin, a monomeric 

protein responsible for binding molecular oxygen, was the first protein structure to be 
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solved (Figure 1.1A).7 Shortly thereafter, the functionally similar protein hemoglobin, a 

heterotetrameric protein responsible for transporting molecular oxygen, had its structure 

solved using crystallography (Figure 1.1B).8 Immediately evident is the structural 

similarities between the two proteins; superimposing their structures shows that the two 

deviate by only 2.3 Å backbone root-mean-square-deviation (RMSD). Surprisingly, 

however, the two proteins share only 17% of sequence similarities. The obvious 

similarities connecting protein fold to biological roles led researchers to deduce that a 

protein’s structure can be explained by its structure.  

 

 
Figure 1.1. Myoglobin and hemoglobin x-ray crystallography structures. (A) The structure of myoglobin 
(PDB 1MBN)9 and (B) a monomer of hemoglobin (PDB 1HHO)10. Despite the significant lack of sequence 
similarities between the two proteins (17% shared sequence identity), they share a both a similar protein 
fold and functional purpose, i.e., binding molecular oxygen. When superimposed, the two structures have 
a 2.3 Å backbone RMSD difference.   
 

1.2 Allostery in well-folded proteins 
 Even though hemoglobin and myoglobin exhibit similar functions (i.e. binding 

molecular oxygen), they do have significant differences, which can explain why the two 

proteins differ in sequence by 83%. Myoglobin is primarily located inside muscle cells, 

and it shows a high affinity towards molecular oxygen, as its role is oxygen storage.11 

Alternatively, the major role of hemoglobin is for oxygen transport, meaning that it needs 

to not only be able to bind oxygen, but also (and perhaps more importantly), it needs to 

be able to release it.6,12 Thus, hemoglobin shows a lower affinity for oxygen, allowing for 

it to be released as needed. 
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 In trying to better understand the relationships between protein structure and 

function, hemoglobin was found to occupy two structural states: the Tense state (T state), 

which is the deoxy-form of the protein, and the Relaxed state (R state), which is the fully 

oxygenated form.13 Thus, substrate binding was connected to conformational changes, 

however it was not yet clear how. As a tetrameric protein, hemoglobin has four subunits, 

each being able to bind molecular oxygen, with a fully oxygenated hemoglobin binding 

four molecules of oxygen. Further, what researchers found was that if one hemoglobin 

subunit bound oxygen, it increased the affinity for subsequent oxygen binding.13–15 

Hence, there was some cooperativity that occurs, called allostery, where binding of a 

molecule increases the affinity for a subsequent binding event at a different location.13,16  

Two general models emerged to explain allostery in hemoglobin, and both relied 

on the two physical states determined from crystallography.16,17 The Monod-Wyman-

Changeux (MWC) model suggests that the T and R states exist in some equilibrium. 

Subsequent binding of oxygen would change the equilibrium towards the R state (i.e. bind 

more O2), whereas unbinding of an oxygen would shift it towards the T state (Figure 

1.2A).16 Alternatively, the Sequential of KNF model developed by Koshland, Nemethy, 

and Filmer, was used to describe “induced fit” binding, where cooperative effects with 

oxygen binding could be attributed to induced structural changes that occur in the protein 

to make binding more oxygens more favorable (Figure 1.2B).17 As hemoglobin is a well-

folded protein, the KNF model attributed cooperativity to structural changes and 

mechanical coupling from one protein site to another.17 Binding sites were thought to be 

linked by communication networks of amino acid contacts, where an initial binding event 

would cause structural rearrangements that increase the affinity for subsequent binding. 

The two different models for allostery were both able to account for measured 

cooperative effects in hemoglobin, making it difficult to truly dissect what could be going 

on. In the MWC model, differences in binding interactions came from changing the 

equilibrium between two states. In the KNF model, mechanical coupling caused physical 

structuring at a distal site. While slight variations on the two models were put forth, many 

shared one central component: the protein’s highly structured nature was a necessary 

component for allostery. 
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Figure 1.2. The Monod-Wyman-Changeux (MWC) and Sequential (KNF) models for allostery in 
hemoglobin. Shown here is an example of cooperativity using two domains, where oxygen-bound states 
are darker colored and unbound states are lighter. (A) In the MWC model, the T state (blue) and the R state 
(red) exist in equilibrium. Binding of oxygen molecules shifts the equilibrium towards the R state, increasing 
the affinity for additional oxygen molecules. (B) In the KNF or Sequential model, allostery is a result of 
conformational changes that occur both in the domain that binds oxygen as well as the allosterically 
connected domain. These conformational changes towards the R state increase the affinity for oxygen.  
 

1.3 Intrinsically disordered proteins: breaking the structure-function rules 
Today, over 170,000 protein structures have been elucidated by experimental 

methods, which has excelled our understanding of cellular biology and the proteome.18 

However, such experiments also led scientists to believe protein folding is a prerequisite 

for functional output (i.e. disordered proteins lack function).19 Through decades of new 
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experimental and theoretical developments, protein science has grown beyond highly 

structured domains, recognizing the many roles such proteins play in essential 

biology.20,21 In doing so, competing theories of molecular recognition have been put 

forward.   

At the center of the allosteric models of hemoglobin are questions about 

conformational changes involved in ligand binding, an idea that extends to other protein 

types. Protein structural changes can be thought to exist on a spectrum, from no changes 

with ligand binding to significant conformational rearrangements. For instance, enzyme-

substrate interactions were initially thought to subscribe to “Lock and Key” mechanisms 

of engagement, first proposed by Emil Fisher in 1894.  In this model, conformational 

changes are essentially nonexistent, as enzymes were believed to have well-formed 

binding pockets that complement substrate shape (Figure 1.3A). Alternatively, the 

“Induced Fit” model for binding aligns with the KNF model for allostery, where ligand 

binding induces some structural changes in a protein (Figure 1.3A).22 However, in both 

the “Lock and Key” as well as the “Induced Fit” models, a protein’s structure is relatively 

fixed before binding.  

While the development of crystallographic techniques in the mid-1950s allowed for 

atomic-level visualization of complicated biomolecules, it led many to falsely believe that 

proteins are rigid. Fortunately, the first molecular dynamics (MD) simulations brought forth 

a new picture of proteins that included dynamics.23 Simulations showed that even rigid 

proteins demonstrate atomic-level fluctuations in a thermal distribution, suggesting that 

the models of molecular recognition were overly simplistic and misleading.  

The implementation of statistical mechanics into models of protein interactions 

views proteins not as static structures, but instead as a distribution of conformational 

micro-states that are in some equilibrium before binding. The MWC model for hemoglobin 

lies within this thinking, deemed “Conformational Selection” (Figure 1.3A).24,25 In it, 

ligands select for states that enable the most favorable interactions, which redistributions 

relatively populations of states. Lastly, “fuzzy” interactions defy easy classification, with 

disordered proteins showing the propensity to sometimes fold when binding (Figure 

1.3A).21,22,26  
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While each of these classifications appear to be distinct (Lock and Key; Induced 

Fit; Conformational Section; “Fuzzy” interactions), the ensemble framework for protein 

conformational states from statistical mechanics can be applied to all theories (Figure 

1.3B).27,28 There are constant atomic movements in proteins, even enzymes who follow 

a general “Lock and Key” mechanism of binding. Thus, even the most rigid proteins still 

occupy a thermal distribution of conformational states; however, it is a narrow distribution 

of few highly populated structures (Figure 1.3B, solid pink line). Further, as the protein is 

already rigid, the conformational distribution does not change much with substrate binding 

(Figure 1.3B, dashed lines). The “Induced Fit” model is similar, except now instead of 

minorly narrowing the distribution of states, the distribution shifts to a new (or lowly 

populated) state (Figure 1.3B, orange distribution). In “Conformational Selection,” states 

exist in equilibrium, and as ligands have preferably protein conformations they bind, the 

distribution of protein states shifts (Figure 1.3, yellow distribution). Lastly, “fuzzy” 

interactions show the propensity for a protein to occupy a wide distribution of lowly 

populated conformational states, with binding resulting in some structural ordering. Thus, 

protein ensembles demonstrate how multiple mechanisms for ligand engagement can be 

reflected in the redistribution of conformational states, a direct reflection of protein 

conformational entropy.  
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Figure 1.3 Binding modes in the ensemble framework of molecular recognition and allostery. (A) Binding 
modes of proteins and ligands can be classified by conformational changes associated with binding, starting 
with the smallest conformational changes (Lock and Key) and going all the way to interactions with 
intrinsically disordered proteins (“fuzzy” interactions). (B) The ensemble framework of protein 
conformational states can be applied to all classifications. The apo protein distributions are shown with 
solid-colored lines corresponding to each classification. Dashed lines show how the distribution of protein 
structural states are limited through binding.  
  
 
1.4 Intrinsic disorder and allostery 

Over the years, experimental advancements have led to an abundance of 

disordered proteins being discovered.20,21,29,30 The emergence of unstructured/dynamic 

proteins has challenged previous intuitions about protein structure-function relationships, 

shedding light on the diverse and critical roles dynamic proteins take on. This shift, in 

part, can be attributed to the high number of disordered proteins that are exclusive to 

higher-order organisms. In fact, over 25% of proteins in high order organisms are deemed 

disordered, indicating an evolutionary benefit.30–33 However, this appears to be 

inconsistent with initial structure-function models of proteins in which only well-folded 

domains are functional. The question that follows is how disorder contributes to 

cellular/organismal complexity. 
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As with many other classifications, dynamic proteins come in different “flavors.” 

Intrinsically disordered proteins (IDPs) lacky bulky hydrophobic groups, and thus do not 

follow basic protein folding rules, where proteins form three dimensional shapes by 

burying hydrophobic residues internally. Instead, IDPs are very dynamic and do not 

possess any measurable structure.29 Intrinsically disordered domains can occur within a 

protein, where long unstructured linker regions separate folded domains. Disorder like 

this can allow for binding to multiple partners. Further, while some interactions between 

IDPs maintain disorder, other interactions induce sequential binding followed by folding.  

In exploring questions around how disordered proteins function, scientists 

discovered that disordered domains could exhibit high levels of allostery, challenging the 

two models for cooperative binding interactions established from hemoglobin 

studies.28,30,34,35 For instance, the MWC model states that a protein exists in an 

equilibrium that allosterically couples two sites. More conflicting is the KNF model, which 

attributes ligand binding and mechanical coupling as the driver of allostery, thus requiring 

a network of amino acid contacts in a well-structured protein.  

The ensemble framework for understanding protein structures has challenged 

previous notions about molecular recognition, and it has propelled our understanding of 

allostery. As seen in Figure 1.4, proteins exist in equilibrium in a distribution of states, 

with binding interactions narrowing and/or shifting the distribution. Thus, allostery can be 

viewed as altering the populations of distributions to states that allow for more favorable 

interactions with a second ligand.27 This framework has been able to account for a greater 

range of allosteric processes, especially those that emerge from more disordered 

proteins, which have been shown to exhibit high levels of allostery.34,36  
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Figure 1.4. The ensemble framework of allostery. While the MWC and KNF models of allostery are reliant 
on having two structural states associated with high and low affinity interactions, the energetic basis of 
allostery shows how disordered proteins can exhibit cooperative binding by reweighting the distribution of 
accessible conformational micro-states to ones that offer more favorable interactions with a ligand.   
 
 
1.5 Functional disorder: the utility of dynamics in transcriptional regulation  

One of the ways disordered proteins operate is by acting as signaling “hubs” in 

protein-protein interactions.20,20,29 Transcription is an essential and heavily regulated 

cellular process that involves a disproportionate number of disordered proteins.32,37,38 

This is particularly true of coactivators and activators.29,39,40 While these proteins do 

contain folded domains, they are notorious for containing large portions of completely 

unstructured regions separating folded domains.40 Further, the folded domains 

themselves have exhibited high conformational plasticity, with many interactions between 

activators-coactivators showing structural fuzziness, having multiple bound 

conformational states separated by low energy barriers.  

Through a complicated network of interactions, transcriptional proteins coalesce 

to the promoter region of a gene and initiate expression (Figure 1.5).37 Coactivator 

proteins serve as communication hubs in the transcriptional process, playing an important 

role in RNA polymerase II (RNA Pol II)-mediated transcription.41 At the promoter or 

enhancer region of DNA, the DNA-Binding Domain (DBD) of a transcription factor 

recognizes a specific promoter sequence and binds (Figure 1.5). If the transcription factor 
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is an activator, it contains a transcriptional activation domain (TAD), which is used to 

assemble the remaining transcriptional machinery to turn on gene expression. The 

recruitment of RNA Pol II to the promoter region of a gene is of particular importance for 

coactivators, which transcribes the gene of interest into RNA.  

 
Figure 1.5. Transcription is initiated by assembling all of the necessary cellular machinery. Transcriptional 
activators (purple) bind at the promoter region using a DNA binding domain (DBD). The transcriptional 
activation domain (TAD) interacts with activator binding domains (ABDs) of coactivators (green), which aid 
in the recruitment of RNA polymerase II (blue) and ultimately starts the gene expression.  
 

1.6 Coactivators serve as communication hubs  
The role of dynamic/disordered domains in transcription is to interact with multiple 

binding partners depending on the cellular context.37,40,41 For example, a person contains 

multiple cell types that all contain the same genetic composition (i.e. DNA), yet they are 

differentiated by levels of gene expression, which results from particular transcriptional 

PPIs prompting expression for cell-specific needs.42 Coactivators are an important 

component of this, interacting with a wide array of protein classes that includes RNA 

Polymerase II, epigenetic modulators, transcription factors, and even other coactivators 

(Figure 1.6). Hence, coactivator proteins coordinate the necessary transcriptional 

machinery through these interactions with many types of proteins.  
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Figure 1.6. Coactivators are interaction hubs in transcriptional regulation. Coactivators possess the ability 
to interact with a wide range of different protein types, including epigenetic modulators (yellow), RNA Pol II 
(red), transcription factors (purple), and other coactivators (green). The specific proteins listed in each 
category correspond to binding partners for the coactivator CBP.  
  

The CREB Binding Protein (CBP) along with the homolog p300 are coactivators 

that are important in regulating genes.43 Both are multi-domain proteins, containing 

activator binding domains (ABDs) like KIX and iBid; zinc-finger domains like TAZ1, TAZ2, 

PHD, ZZ, and RING; a histone acetyl-transferase (HAT); a bromodomain (BD); and a 

nuclear receptor.44,45 Through all of these domains, these proteins recognize over 400 

binding partners and elicit multiple roles in the transcriptional process (Figure 1.6).46,47 

While the individual domains in these coactivators do have secondary and tertiary 

structures, there are very long disordered regions separating the folded domains (Figure 

1.7).40 The domains of CBP/p300 have been studied in isolation,42,48,49 demonstrating 

high flexibility in many portions. However, the long linker regions that are completely 

unstructured have only recently been explored to elucidate their function.40 And while 

initially thought to be merely the connecting pieces to hold each folded domain together, 
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the disordered regions have now been shown to have binding interactions with other 

proteins and are important for overall function of CBP/p300.  

 

 
Figure 1.7. Domains of CBP. (A) The gene corresponding to CBP with domains annotated shows how 
almost half of the protein is linked by long, intrinsically-disordered regions. (B) Cartoon representation 
showing how long linker regions separate the folded domains of CBP. (C) Each domain of coactivators like 
CBP elicit independent functions and have their own set of cognate binding partners.     
 

Similar to CBP/p300, the coactivator known as the Mediator complex that has been 

deemed as a “master coordinator” in gene regulation.50–52 However, unlike CBP/p300, 

the Mediator is a massive protein complex (>1 mDa) composed of around 30 proteins.53 

In addition, the Mediator only exists in eukaryotes.54 With 3 general subunits along with a 

cyclin kinase module, this massive protein complex is critical in assembling necessary 

biomolecules to initiate transcription, relying on each domain for critical interactions 

(Figure 1.8). Of the four subunits, the tail subunit has proven to be the most difficult to 

obtain structural information for, as it has been shown to undergo major conformational 

rearrangement. The tail subunit is of particular interest, as it contains domains that directly 

interact with transcriptional activators and repressors, and portions of it are only found in 

higher eukaryotes, including Med25.50,51,55  
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Figure 1.8. Composition of the Mediator complex. A cartoon representation (left) of the Mediator complex 
along with a cryo-EM structure of the complex (right; PDB 7LBM). The experimentally solved structure 
contains more tail subunits than previously-solved Mediator structures, however it is still not completely 
resolved because of the large conformational changes that have been shown to occur in that portion of the 
complex. For example, the activator binding domain of Med25 is missing.      

 

1.7 Activator binding domains  
Activator binding domains (ABDs) of coactivators are responsible for directly 

interacting with the DNA-bound transcriptional activators.37 ABDs have been shown to 

typically be structurally dynamic, comprised mostly of helices and loops. This is 

immediately clear upon looking at solution NMR structures that have been solved for 

various ABDs (Figure 1.9). Several ABDs have been shown to take on similar folding 

patterns, with the prototypical example being helical bundles like KIX (Figure 1.9). 

Ultimately, the intrinsic mobility inherent to this class of proteins is important functionally, 

as ABDs need to be able to bind multiple partners that share little sequential overlap.  

ABDs in the Mediator complex are localized to the tail subunit, which is the most 

conformationally dynamic portion of the complex.55 While the structure of the Mediator 

complex has been successfully solved via cryo-EM, the structure lacks full details for the 

tail subunit (Figure 1.8).53 Recent advancements have yielded structural models for 

portions of the tail subunit, showing that like most ABDs, the proteins in the tail portion 

adopt predominantly helical structures.55 Interestingly, a missing protein from the cryo-

EM structure is Med25, which was unable to be resolved due to long linker regions 
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separating its independent domains. However, the structure of the activator binding 

domain (ABD) of Med25 termed AcID (Activator Interacting Domain) has been solved via 

NMR,56,57 showing that AcID is structurally unique with a stable b-barrel core that is 

flanked with three a-helices (Figure 1.9).  

 

 
Figure 1.9. Structures of activator binding domains. Solution NMR structures showing all identified 
conformational states for the following ABDs: TAZ1 (PDB 1U2N), ARC105 (PDB 2GUT), iBiD (PDB 1JJS), 
Med25 AcID (PDB 2XNF), TAZ2 (PDB 1F81), PC4 (PDB 2PHE), and CBP KIX (PDB 2AGH).  
 

1.8 ABDs and disease  
As coactivators serve critical roles in gene regulation, it comes as no surprise that 

misregulation of particular interactions has been linked to disease.58–61 The ABD KIX of 

the coactivator CBP has been shown to interact with over 15 partners, with direct 

implications in diseases such as cancer, metabolic disorders, and viral infections (Figure 

1.10). The Mediator also has relevance in many diseases. For example, the ABD of 

Med25, termed AcID, is very structurally distinct from KIX, yet it too is implicated in a wide 

range of diseases from cancer to viral infection. This has prompted an urgent need for 



 15 

the development of new chemical probes to interrogate these interactions for potential 

therapeutic purposes.  

 
Figure 1.10. Disease relevance in activator binding domains. (A) The KIX domain of CBP (PDB 2AGH) is 
able to interact with a multitude of binding partners, and misregulation of particular interactions has been 
linked to a variety of diseases. (B) Med25 AcID (PDB 2XNF) is structurally unique among typical activator 
binding domains, yet interactions been the protein and binding partners has been connected to disease 
states.  

 

1.9 Experimental challenges surrounding “fuzzy” PPIs 
 Even as ABDs like CBP KIX and Med25 AcID show high disease relevance, 

chemical probe development for these targets has been stalled by challenges inherent in 

dynamic PPIs. Mechanistic studies have shown native activator-coactivator interactions 

to be “fuzzy,” defying many standard biophysical techniques. This is because binding 

typically occurs over large, flat surface areas that are transient and dynamic in nature. 

Immediately clear is the difficulties this presents in trying to obtain structural information 

about such PPIs. For instance, x-ray crystallography necessitates a single low energy 

bound state when crystalized. Thus, a major tool to delineate structural information is 

through solution NMR, which can allow for multiple states to be elucidated.   

 NMR approaches have been utilized to obtain structural information about the 

dynamic class of proteins, ABDs. For instance, the structure of CBP KIX has been solved 

for a variety of binary complexes and ternary complexes. Alternatively, Med25 AcID has 

only been elucidated in the apo state. The reason for that is because binding of activators 

occurs in a “fuzzy” manner, where bound complexes can occupy many conformational 

states that are separated by low energy barriers and exchange on the intermediate 
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timescale. Thus, NMR experiments performed with Med25 and activators yield extensive 

line broadening, preventing structural elucidation of the bound complex. 

 Molecular dynamics (MD) simulations are an alternative approach to dissecting 

complicated binding interactions, which can prove more fruitful. However there are 

inherent challenges present in MD as well. The association of two proteins could take 

upwards of microseconds, which would require a large amount of computing power, as 

many simulations are used on the nanosecond timescales. Further, as these PPIs are 

deemed “fuzzy,” quantifying independent binding conformations can be extremely 

challenging. Thus, in order to build a comprehensive understanding of activator-

coactivator interactions, a combination of techniques is typically required.  

 

1.10 Allostery as an avenue to expand the druggable proteome  
 In developing new chemical probes for interrogating coactivator-activator 

interactions relevant in disease states, we need to better understand the mechanisms of 

molecular recognition. The transient interactions occur over a large surface area, which 

has made finding small molecules that can block certain interactions very challenging. 

Thus, the conformational plasticity of the proteins makes orthosteric inhibition intractable. 

Alternatively, many ABDs have been shown to form ternary complexes, and moreover, 

complex formation has been demonstrated in multiple domains to occur through allosteric 

communication, where binding at one surface increases the affinity for a second PPI.  

 In addition to allostery being inherent to many dynamic proteins, allosteric inhibition 

provides an interesting avenue for targeted probe development. Allosteric small 

molecules have been used with other proteins, such as kinases, and they have been vital 

for achieving higher levels of selectivity. As previously mentioned, ABDs interact with a 

suite of cognate binding partners, impacting the expression of thousands of genes. 

Because of this, it would be advantageous to block specific activator-coactivator 

interactions over others. With success in allosteric small molecules with other proteins, 

selectivity could be achieved in ABDs through perturbing the distribution of states towards 

ones that disfavor only a particular PPI. Hence, it is integral that we not only understand 

native allostery, but that we can find ways to exploit it for chemical probe development 

and therapeutic purposes.   
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 The approaches used throughout this thesis highlight the value in combining 

MD/molecular modeling with biophysical experimentation. Using various modeling 

approaches, we are able to study the ways ABDs utilize conformational plasticity in 

recognition at an atomic level.  

 

1.11 Dissertation summary   
There is a need for better understanding of native activator-coactivator 

interactions, as it could aid in chemical probe development and ultimately therapeutic 

development. My thesis work focuses on utilizing a set of biophysical tools, both in vitro 

and in silico, to determine the principles of molecular recognition used by ABDs.  

In the first data chapters of my thesis (Chapters 2 and 3), we identify key molecular 

recognition principles that guide activator•coactivator interactions. Starting with a 

prototypical activator binding domain CBP KIX (Chapter 2), we explore how the small and 

malleable domain can recognize a multitude of different binding partners using only two 

distinct binding surfaces. Further, we investigate how allostery manifests through KIX, 

demonstrating the utility of fluctuations and dynamics in cooperative binding. In building 

towards a model of inhibiting said interactions, we determine how small molecules can 

mimic native properties to allosterically inhibit specific binding events through 

modulating/attenuating dynamic movements.   

 In Chapter 3, we transition to another activator binding domain, Med25 AcID, that 

is structurally disparate from other coactivators, comprised of a seven stranded β barrel 

with three flanking helices. Using molecular dynamics simulations alongside disulfide 

Tethering experiments, we construct a model of how the activator VP16 binds. While 

structurally distinct, we determine that Med25 AcID abides by similar molecular 

recognition principles as KIX by using its most malleable regions to engage with activators 

and participate in allosteric communication. Thus, this work builds a foundation for future 

drug development, and presents a platform of biophysical experiments that can be used 

for challenging problems like these.  

 Chapter 4 addresses a protein unrelated to transcription that possesses immense 

human health consequences. With the emergence of COVID-19, I identified a human 

transmembrane serine protease TMPRSS2 as a valuable antiviral drug target. TMPRSS2 
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has been shown to directly aid in allowing SARS-CoV-2 to enter human cells, and yet it 

is deemed functionally redundant in knockout mouse models. With almost no drugs on 

the market targeting this protease, there is an urgent need to identify new compounds or 

repurposed drugs that can inhibit TMPRSS2. We develop a fluorescence-based kinetic 

assay to assess inhibition of compounds that show up as hits in a virtual screen, giving 

promise to an alternative route of preventing SARS-CoV-2 infection as well as a multitude 

of other viral infections.  
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Chapter 2 
The KIX Domain Uses High Conformational Plasticity for Molecular Recognition 

 
 
Abstract 

The coactivator KIX of CBP uses two binding surfaces to recognize multiple 

activators and exhibits allostery in ternary complex formation. Activator•coactivator 

interactions are central to transcriptional regulation, yet the microscopic origins of 

allostery in dynamic proteins like KIX are largely unknown. Here, we investigate the 

molecular recognition and allosteric manifestations involved in two KIX ternary systems 

c-Myb•KIX•MLL and pKID•KIX•MLL. Exploring the hypothesis that binary complex 

formation prepays an entropic cost for positive cooperativity, we utilize molecular 

dynamics simulations, side chain methyl order parameters, and differential scanning 

fluorimetry (DSF) to calculate conformational entropy changes in KIX. The protein’s 

configurational micro-states from structural clustering highlight the utility of protein 

plasticity in molecular recognition and allostery. We find that apo KIX occupies a wide 

distribution of lowly-populated configurational states. Each binding partner has its own 

suite of KIX states that it selects, building a model of molecular recognition fingerprints. 

Allostery is maximized with MLL pre-binding, which corresponds to the observation of a 

significant reduction in KIX micro-states observed when MLL binds. Experimentally 

capturing KIX stabilization is challenging, particularly because of the disordered nature of 

particular activators. However, DSF melting curves allow for inference of relative entropic 

changes that occur across complexes. Mutations and a small molecule allosterically KIX 

interactions, which do so by attenuating loop movements, demonstrating how the most 

dynamic region tunes overall conformational entropy. Thus, we demonstrate how the 

small flexible domain recognizes multiple partners, and further, how this native property 

can be exploited for targeted allosteric inhibition.  
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2.1 Introduction  
Allostery and disorder are both hallmarks of transcriptional regulation, suggesting 

a link between the two.1–3 Allostery describes events where a ligand binding to a central 

protein impacts the binding or catalytic success of a second ligand at a non-overlapping 

site.4–10 Early models attributed allosteric communication to a network of amino acid 

contacts in a well-structured protein.11–16 However, the prevalence of allostery in 

disordered proteins has led to a shift in understanding from mechanical coupling and 

towards an ensemble framework, viewing allostery instead as a reweighting of micro-

states in a thermal distribution.3,17–19 While ensembles provide a useful conceptual 

framework for understanding allostery, the question remains as to how this manifests in 

real biological systems.  

A prototypical example of structural disorder and allostery occurs within the KIX 

domain of CREB Binding Protein (CBP), a multidomain coactivator that acts as a bridge 

between activators and other transcriptional machinery components.20 KIX is comprised 

of three helices (Figure 2.1), and it has been shown to bind more than fifteen different 

partners with only two binding surfaces.21–27 KIX binds both the mixed lineage leukemia 

(MLL) transcription factor and the proto-oncogene transcription factor c-Myb in a 

cooperative manner, with ternary complex formation deemed critical for hematopoiesis.28–

31 Misregulation of the c-Myb•KIX•MLL ternary complex has been implicated in 

leukemogenesis, motivating a detailed atomic understanding of the molecular 

mechanisms of complex formation in order to discover chemical probes and therapeutic 

agents.28–31 Similar allosteric effects have been observed in KIX with MLL and a different 

c-Myb-site activator, the phosphorylated kinase-inducible domain of CREB (pKID) (Figure 

2.1).23 Solution NMR structures of the c-Myb•KIX•MLL and the pKID•KIX•MLL ternary 

complexes (called the c-Myb and pKID system hereon) show that while pKID and c-Myb 

bind on the same general KIX surface, they form structurally distinct KIX ternary 

complexes (Figure 1).32,33 The critical question that emerges from this data is whether the 

allosteric coupling is the same in both the c-Myb and pKID systems, or if dynamic domains 

such as KIX can employ multiple mechanisms. 
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Figure 2.1. The KIX domain of CBP exhibits allostery. (Top) The various domains of CBP. (Left) Positive 
cooperativity seen in the two native KIX systems (c-Myb and pKID, respectively), with affinity fold changes 
calculated using Kds obtained from ITC.23 The two solution NMR structures of the ternary complexes (c-
Myb•KIX•MLL from PDB 2agh32, and pKID•KIX•MLL from PDB 2lxt)33 were used to construct all of the native 
KIX complexes for simulations (apo KIX, KIX•c-Myb, KIX•MLL, c-Myb•KIX•MLL, KIX•pKID, and 
pKID•KIX•MLL). (Right) KIX mutations and ligands that perturb allostery in the pKID system affinity fold 
changes calculated using Kds obtained from fluorescence polarization and stopped flow experiments.34 All 
KIXI660V complexes were constructed using the original coordinates for the unmutated ternary structure 
(pKID•KIX•MLL, PDB 2lxt), with the location of I660 highlighted as a pink sphere. The crystal structure of 
KIXL664C*1-10 (PDB 4i9o)35 was used to construct simulations for the Tethered complex.  

 

Here we test the hypothesis that reduction of conformational entropy is the 

microscopic origin of the allostery observed in these key transcriptional regulatory 

systems. Molecular dynamics simulations are utilized to construct a detailed model of the 

KIX conformational landscape in ternary complex formation. Structural clustering of each 

complex yields independent distributions of KIX micro-states, from which we can estimate 

entropic changes. Comparisons across distributions of micro-states results in clear 

pathways of conformational selection. Results show that the distribution for the apo KIX 

protein contains many lowly-populated micro-states. Each activator peptide selects a 

unique suite of cognate micro-states, yielding a molecular recognition “fingerprint” for 

each binding partner. Examination of synthetic modulators and mutant KIX motifs 

(inhibition with molecule 1-10;35 enhancement with KIXI660V mutation,34 Figure 2.1) 

indicate allosteric enhancement /inhibition can be achieved by perturbing the distribution 

of KIX micro-states, which is consistent with observed changes in unfolding rates and 

melting temperatures. The data supports a model in which maximum positive 

cooperativity is achieved with decreases in conformational entropy, whereas inhibition 

can be achieved through a redistribution of states. Moreover, the largest entropy changes 
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in KIX are attributed to altered dynamics in the most mobile region of the protein, the L12-

G2 loop (residues 614-621). Thus, the molecular recognition principles guiding KIX 

interactions, both in native and mutant systems, rely heavily on the protein’s innate 

malleability to occupy various structural states in a wide distribution, which allows for 

accommodation of multiple binding partners despite the lack of significant sequence 

similarities.  

 

2.2 Results and discussion  
KIX adopts a diminishing number of micro-states as substrates bind 

Using the atomic coordinates from experimentally solved KIX complexes, all-atom 

molecular dynamics simulations were performed on each system independently (apo, 

binary/ternary complexes, and mutants) (Figure 2.2, Panels 1-2). In order to obtain 

information about the distribution of KIX conformational states for a given system, KIX 

structures from the trajectories are superposed and subjected to K-means clustering (2.5 

Å RMSD cutoff using Cα atoms; Figure 2.2, Panel 3). Hence, a given system (apo, 

binary/ternary, mutants) results in W structural clusters, with each individual cluster C1, 

C2, … , CW having occupancy Pn (∑ 𝑃!"
!#$ = 1) based on the number of KIX frames in a 

given cluster (Figure 2.2, Panel 4; W clusters for each complex represented as colored 

circles with sizes corresponding to relative occupancy/population). Averaged centroid 

structures are generated for each cluster, with each representing a given conformational 

micro-state “basin”.  

To test whether KIX conformational states in bound complexes arise from micro-

states sampled in the apo distribution, centroid structures from the binary distributions are 

iteratively compared by RMSD to the distribution of states in the apo protein; The binary 

complex is said to have originated from the apo distribution if there exists an apo KIX 

centroid that is within the cutoff used for clustering (2.5 Å, Cα atoms; the cluster 

corresponding to the minimum RMSD is shown with a connecting line in Figure 2.2, Panel 

4). This process is repeated for the ternary complexes in comparison to the binary 

distribution of micro-states.  There are two ways in which ternary complex formation can 

happen with KIX: either MLL binds first, or c-Myb/pKID binds first. As allosteric 

measurements have been tested in both directions, we test the impact on the distribution 
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of KIX states by binding order (MLL binding first shown in Figure 2.3; c-Myb/pKID binding 

first in Figure 2.4).  

 

 
Figure 2.2. Molecular dynamics methods for dissecting KIX conformational entropy. [Panel 1] Six native 
systems are constructed using the solution NMR for c-Myb•KIX•MLL (PDB 2AGH) for ternary, binary, and 
apo starting structures, and pKID•KIX•MLL (PDB 2LXT) for ternary and binary structures. The KIXI660V 
mutation systems were created using the coordinates for the WT protein and mutating the residue to valine 
using CHARMM. The KIXL664C*1-10 structure used coordinates from the crystal structure of KIXL664C 
Tethered to molecule 1-10 through a disulfide bond. [Panel 2] All atom molecular dynamics simulations 
were performed in replicates for each of the system described in panel 1. Simulations contained 100 mM 
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NaCl and were performed using CHARMM. [Panel 3] Structural frames of KIX from simulations were 
superposed subjected to K-means clustering using 2.5 Å RMSD cutting with Cα atoms. [Panel 3] The 
distribution of KIX clusters was projected in two dimensions where each circle represents a given KIX cluster 
(i.e. conformational microstate), with size corresponding to occupancy (i.e. number of frames in given 
cluster). [Panel 4] In answering how the distribution of KIX states shifts with binding partners, centroids 
structures generated for each cluster in the ternary complex were iteratively compared binary complex 
centroids. This was repeated from binary to apo micro-states, which allowed for conformational selection 
maps to be constructed. [Panel 5] In quantifying KIX conformational entropy changes that occur in activator 
binding, side chain methyl order parameters were used.  
 
 

Immediately evident is the wide distribution of lowly-populated micro-states in the 

apo protein, shown in the central portion of Figure 2.3 and Figure 2.4. When MLL binds 

to apo KIX (Figure 2.3), there is a substantial reduction in conformational states sampled; 

Subsequent binding of c-Myb/pKID in ternary complex formation further winnows down 

the number of accessible KIX conformational states. Full pathways of conformational 

selection show that 87% of the distribution of KIX microstates in c-Myb•KIX•MLL and 

100% of KIX microstates in pKID•KIX•MLL originate from the same lowly-populated apo 

micro-state (Figure 2.3, coral colored micro-state). 

 

 
Figure 2.3. Diminishing KIX micro-states in ternary complex formation when MLL binds first. Circles 
represent KIX micro-state basins that come from K-means clustering analysis (see Methods). The diameter 
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of each circle is proportional to the relative population. Circle colors correspond to the cluster origin from 
the apo KIX distribution (shown in the center). The diminishing number of states are shown through these 
pathways of conformational selection for the (left) c-Myb ternary complex and (right) the pKID ternary 
complex when MLL binds first. 
 
 

In the reverse binding order, c-Myb and pKID bind to the same KIX binding face, 

yet they have almost no sequential overlap, indicating differing mechanisms of molecular 

recognition. Indeed, we see that the two peptides select for different subsets of KIX micro-

states, which in turn both differ from selected states with MLL binding. However, the vast 

majority of c-Myb•KIX•MLL micro-states arise from the same coral colored apo KIX state 

seen in either binding direction (Figure 2.4). When pKID binds to KIX first (KIX•pKID), all 

of the resultant ternary KIX micro-states originate from an alternative apo KIX 

conformational basin (yellow). These data illustrate an analogous mechanism of 

decreasing conformational micro-states, while also demonstrating that order of binding 

may lead to differing final state selection (Figure 2.4).  

There are multiple KIX micro-states found in the KIX•c-Myb binary complex that 

cannot be “traced back” to the distribution of apo KIX micro-states — That is to say that 

the RMSD of those KIX•c-Myb centroids to all KIX micro-states is greater than the 2.5 Å 

used in clustering (37% of the total KIX micro-states in the KIX•c-Myb complex, shown in 

gray in Figure 2.4). This suggests that c-Myb alters the conformational landscape of KIX 

by inducing a conformational shift. Additionally, as is evident in these maps, the number 

of accessible states in apo KIX is dramatically reduced when the first partner binds, and 

thus the search for those states that are most “binding competent” when the last partner 

interacts is much smaller, representing a decrease in configurational entropy for binding 

this last activator. While these findings are not quantitative with regards to entropy 

measurements, the observations are consistent with the stronger allostery in both 

systems occurring with MLL binding first. These results highlight a key feature of the 

molecular recognition used by KIX: Each activator selects for a unique suite of cognate 

micro-states, demonstrating the utility of disorder for a multi-partner protein hub. KIX has 

over 15 native binding partners, which necessitates specialized molecular recognition. 

The wide distribution of conformational states coupled with the protein’s ability to undergo 

conformational changes is integral in accommodating each partner and ultimately 

manifests in allostery.  
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Figure 2.4. Diminishing KIX micro-states in ternary complex formation when c-Myb/pKID bind first. Circles 
represent KIX micro-state basins that come from clustering (see Figure 2.3). The diminishing number of 
states are shown through these pathways of conformational selection for the (left) c-Myb ternary complex 
when c-Myb binds first and (right) the pKID ternary complex when pKID binds first. 
 
 

Previous studies have found that the mutation KIXI660V “turns on” the allosteric 

communication in the pKID system; that is to say that with the I660V mutant, pKID binding 

is enhanced regardless of whether MLL is pre-bound or not (Figure 2.1).34 Our analysis 

of molecular dynamics trajectories using structural clustering demonstrate that the I660V 

mutation winnows down the number of attainable apo KIX micro-states (Figure 2.5), much 

like MLL binding does in the wild type system (Figure 2.3). With the limited number of 

KIXI660V micro-states, pKID binding to form the binary KIXI660V•pKID complex no longer 

selects for the yellow KIX state (Figure 2.5), but instead follows a more “MLL-like” pathway 

by binding to the coral-colored state (Figure 2.3). Thus, the I660V mutation winnows down 

and pre-organizes the distribution of KIX micro-state basins to enhance pKID binding 

without MLL binding. In fact, we see that 93% of KIXI660V•pKID complexes stem from the 

same two apo KIX basins as 97% of the ternary pKID•KIXI660V•MLL complexes when MLL 

binds before pKID (Figure 2.5). 
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Figure 2.5. Pathways of KIX conformational selection in the mutant (I660V) pKID system. Circles represent 
KIX micro-state basins that come from K-means clustering analysis, and the diameter of each circle is 
proportional to the relative population. Circle colors correspond to the cluster origin from the apo KIX 
distribution. (Left) The diminishing states pathways in conformational selection when MLL binds first in 
ternary complex formation and (right) when the KIXI660V•pKID forms the binary complex.  
 
 

Directly monitoring conformational entropy changes in experiments presents a 

challenge. Calometric approaches cannot provide access to conformational entropy since 

they are global measurements, convoluted with entropy changes from solvation. Thus, 

we opted to measure changes in thermal stability across complexes using differential 

scanning fluorimetry (DSF).36,37 Pertinent thermodynamics can be qualitatively 

extrapolated by monitoring changes in the fluorescence when KIX is in various bound 

complexes by using a dye, SYPRO Orange, that binds to hydrophobic regions of proteins 

that become more exposed during unfolding.36–38 In performing these experiments, we 

find that while pKID and MLL in the wild-type system induce similar increases in TM, pKID 

greatly stabilizes the mutant (Figure 2.6), which aligns with the conformational selection 

map shown in Figure 2.6. More significantly, when pKID is pre-bound to KIXI660V 

(KIXI660V•pKID), MLL binding has no detectable change in KIX melting temperature — a 
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finding consistent with the “ternary-like” distribution of structural basins seen in 

KIXI660V•pKID.  

 

 
Figure 2.6. DSF experiments for thermal stability changes in WT KIX and KI660V systems. (A) Changes in 
melting temperatures determined via DSF in the native KIX system (light blue) and the mutant KIXI660V 
system (teal), with individual melting temperatures of both the wild type (WT) KIX and the mutant KIXI660V 
systems shown in (B). 
 
 

Molecule 1-10, when Tethered to the MLL site, has been shown to allosterically 

inhibit pKID binding at the distal site.34 The crystal structure of 1-10 Tethered to KIXL664C 

has been solved (Figure 2.1),35 which allows for MD and clustering to be performed to 

probe how the Tethered small molecule perturbs the distribution of micro-states. In doing 

so, we find that the bound adduct alters the distribution of micro-state basins such that 

63% of KIXL664C*1-10 structures cannot be traced back to any structures in the apo KIX 

distribution, suggesting that the molecule causes notable conformational changes and 

forces KIX into states unseen in the native distribution (Figure 2.7). Moreover, pKID does 

not appear to be able to bind any of these “new” states, and in fact 15% of the states seen 

in the KIX•pKID complex can no longer be traced back through structures in the 

KIXL664C*1-10 distribution (Figure 2.7). Thus, the allosteric inhibition observed with 1-10 
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can be, in part, attributed to modulating the KIX distribution of micro-states to ones that 

no longer favor pKID interactions, aligning with the partial inhibition seen in vitro.34 

 

 
Figure 2.7. Pathways of KIX conformational selection in the pKID system with allosteric modulator molecule 
1-10. Circles represent KIX micro-state basins that come from K-means clustering analysis, and the 
diameter of each circle is proportional to the relative population. Circle colors correspond to the cluster 
origin from the apo KIX distribution. Shown are the diminishing states pathways when molecule 1-10 is 
Tethered to KIXL664C. The gray dashed lines indicate that there are more steps involved in forming the 
complex than are depicted here (for instance, we did not perform MD on apo KIXL664C, nor did we perform 
MD on pKID•KIXL664C*1-10). 
 
 

In DSF experiments, we observe a large increase in stability with 1-10, which is 

determined by finding the temperature corresponding to the maximum change in relative 

fluorescence units (RFU) (Figure 2.8). The TM of the Tethered complex increases the 

melting temperature by 2.3 °C in comparison to the apo protein and 3.9 °C in comparison 

to KIXL664C (Figure 2.8). However, the unfolding transition is sharper in unbound 

KIX/KIXL664C than with the molecule bound, as seen as higher maximum first derivatives 

of changing fluorescence by temperature (Figure 2.8). This finding could suggest a less-
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cooperative unfolding transition, which would correspond to the new KIX states induced 

from 1-10 binding as seen in MD.   

 
Figure 2.8. First derivative plots of relative fluorescence units (RFU) by temperature (°C) from DSF. (A) 
The change in RFU by temperature, (d(FRU)/dT), is shown for various complexes in KIX•pKID systems 
with allosteric modulators. (B) Changes in melting temperature measured by DSF for each complex as well 
as the maximum height of the first derivative.  
 
 
Conformational entropy changes can be masked in macroscopic measurements 

The conformational selection maps presented in previous figures show a 

diminishing number of KIX micro-states upon binding, which is consistent with earlier 

coarse-grained modeling studies.39,40 However, while compelling, these data alone do not 

provide a fully quantitative explanation of the observed allostery. Thus, for quantification 

of configurational entropy changes associated with these binding events in MD 

simulations, side chain methyl order parameters are utilized. Order parameters describe 

individual side chain dynamics, ranging from 0 (completely disordered) to 1 (completely 

rigid).  Average methyl order parameters across an entire protein can be used to calculate 

overall conformational entropy (Equation 1 in Methods). As KIX has high coverage and 
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good dispersion of methyl amino acids (Figure 2.9), we use order parameters to calculate 

changes in KIX conformational entropy in complex formation (Table 2.1). 

 
Figure 2.9. Coverage of methyl-bearing amino acids on KIX. KIX show high coverage of methyl amino 
acids (Ala, Leu, Ile, Thr, Val, Met; shown in blue) that are evenly dispersed across the protein, indicating 
that methyl order parameters would be appropriate to use in this system.  
 
 
Table 2.1. KIX conformational entropy changes in wild type systems that occur with activator binding at 298 
K calculated using methyl order parameters from MD.  
 

Ligand Binding to −𝑻∆𝑺conf 
(kcal/mol) 

c-Myb KIX -2.1 
c-Myb KIX•MLL -0.5 
MLL KIX 3.7 
MLL KIX•c-Myb 5.4 
pKID KIX -0.7 
pKID KIX•MLL 0.6 
MLL KIX 3.7 
MLL KIX•pKID 5.1 

 

Conformational entropy is only one of the many components in the full 

thermodynamic expression (i.e. total enthalpy, ligand entropy, rotational/translational 

entropy, solvent entropy, etc.). Thus, thermodynamic measurements in experiment 

oftentimes report on a combination of the listed components, which makes it difficult to 

determine the true driving forces behind binding interactions. Isothermal calorimetry 

(ITC), a common tool to measure free energy changes upon binding events, has been 

utilized in the native KIX binding interactions.  Comparing total entropy changes from ITC 

to KIX conformational entropy changes calculated here using order parameters, we 
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observe that the measurements follow the same trend for the c-Myb system (Figure 2.10). 

Further, changes in melting temperatures measured via DSF also follow a similar trend; 

c-Myb binding causes an increase in KIX conformational entropy, which corresponds to 

the minimal changes seen in melting temperatures (Figure 2.10). MLL binding greatly 

decreases KIX conformational entropy, aligning with the increase in thermal stability. 

Thus, in the c-Myb system, it appears that conformational entropy is at the root of the 

thermodynamic driving forces in ternary complex formation.  

 

 
Figure 2.10. Entropy changes and melting temperature changes in the c-Myb system. Changes in total 
entropy upon binding from previously-published ITC experiments (dark blue)23 compared to KIX 
conformational entropy changes calculated here using methyl order parameters (OPs) from molecular 
dynamics simulations (light blue) for the c-Myb system. Changes in melting temperatures determined from 
DSF are shown on the right y-axis (purple).  
 
 

In contrast, while calculations from order parameters show pKID slightly increases 

KIX conformational entropy like c-Myb binding does, the total entropy greatly decreases 

(Figure 2.11). Further, changes in melting temperatures align with neither the calculated 

changes in KIX conformational entropy nor the total entropy changes, suggesting a more 

complex mechanism. Several studies have compared the binding mechanisms of c-Myb 

and pKID, finding that they differ with regards to the amount of secondary structural 

content each peptide contains prior to binding.41–43 The pKID activator is the largest 

peptide used in this study (pKID has 34 residues, c-Myb has 25, and MLL has 19), and 

unlike c-Myb, shows little to no propensity for pre-forming any helical content prior to 

binding KIX.41–43 The entropic cost affiliated with the folding transition of pKID upon 

binding would greatly contribute to the total entropy measured via ITC/DSF, and this could 
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outweigh the shifts in the ensemble of folded KIX micro-states we observe in our work, 

thus dominating the overall thermodynamics of binding but masking the origins of the 

observed allostery. 

 
Figure 2.11. Entropy changes and melting temperature changes in the pKID system. Changes in total 
entropy upon binding from previously-published ITC experiments (dark blue)23 compared to KIX 
conformational entropy changes calculated here using methyl order parameters (OPs) from molecular 
dynamics simulations (light blue) for the pKID system. Changes in melting temperatures determined from 
DSF are shown on the right y-axis (purple).  
 
 

In vitro binding assays have demonstrated for both the c-Myb and pKID systems 

that the highest cooperativity occurs when MLL binds first.23 Our results are consistent 

with this finding; using methyl order parameters to calculate entropy, MLL binding prepays 

the largest entropic cost (−𝑇∆𝑆conf = 3.7	kcal/mol). It also causes the largest increase in 

TM (0.8 °C) in both systems, significantly limiting the number of attainable KIX micro-

states to increase affinity for the second activator. Quantifying the entropic effects of 

mutating apo KIX to KIXI660V, we find that the mutation alone causes a reduction in entropy 

similar to when MLL binds apo KIX (−𝑇∆𝑆conf = 2.3	kcal/mol). Thus, a single mutation can 

alter the conformational landscape of the apo protein, which in turn affects binding and 

allostery, once more highlighting the significance of disorder/conformational entropy in 

dynamic allosteric interactions. Interestingly, the L664C and 1-10 combination decreases 

KIX entropy, but to a lesser degree (−𝑇∆𝑆conf = 0.5	kcal/mol), suggesting a more 

complicated mechanism for inhibition that includes a redistribution of accessible micro-

states, which we observe from our clustering (Figure 2.5). Thus, the inhibition mechanism 

is achieved not through a quantitative reduction in conformational entropy (i.e. inhibition 
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through conformational “trapping” into a single unfavorable state), but instead through a 

large redistribution of micro-states to ones that are less “binding competent.”   

 

L12-G2 loop dynamics dictate KIX conformational entropy changes     

To attribute changes in conformational entropy to specific structural elements on 

KIX, root-mean-square fluctuations (RMSF) are computed from MD simulations and 

compared across structural elements of KIX. For all complexes, residue-based 

fluctuations highlight that the L12-G2 loop provides the only major dynamical region 

outside of the protein termini (Figure 2.12A) — a finding supported by multiple 

studies.35,39,40,44 Averaging the RMSF by secondary structural elements within KIX, we 

examined the RMSF as a function of KIX conformational entropy to explore which region 

most strongly correlates with the calculated entropy changes (see Methods, Figure 2.17). 

By comparing the slope of the correlation line as well as the regression coefficient (R2), 

the L12-G2 loop exhibits both the largest slope as well as the highest R2 value (Figure 

2.12B), suggesting that loop dynamics can tune the protein’s conformational entropy.  
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Figure 2.12. Root mean square fluctuations (RMSF) and conformational entropy. (A) RMSF by KIX 
residues for all systems tested here. (B) The correlation between RMSF and configurational entropy derived 
from side chain methyl order parameters were determined. Both the magnitude (slope, dark blue) as well 
as the goodness of fit (R2, purple) of the correlation across different secondary structural elements of KIX 
show that fluctuations in the L12-G2 loop best correlate to KIX entropy.   
 
 

Looking at residue-based methyl order parameters in KIX, the L12-G2 loop shows 

the largest differences between the unbound and bound complexes (Figure 2.13). In both 

of the wild type KIX systems, the loop becomes most stabilized in the ternary complex 

(Figure 2.13). However, in the c-Myb system, MLL binding alone rigidifies the loop to the 

same extent as the ternary complex (Figure 2.13A). Of particular significance, we see 

that the I660V mutation slightly stabilizes the loop in the apo distribution of states (Figure 

2.13B, dashed lines). Further, pKID binding to KIXI660V causes the loop to rigidify to the 
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same extent as when MLL binds, demonstrating how the mutation impacts loop dynamics 

and thus conformational entropy. On the inhibitory side, the opposite is observed 

— molecule 1-10 binding increases some loop motions, providing mechanistic insights 

into how allostery can be tuned through modulation of loop dynamics. 

 

 
Figure 2.13. Methyl order parameters of the L12-G2 loop by residue. (A) Order parameters for (A) the c-Myb 
system and (B) the pKID system. Solid lines represent the wild type system, whereas dashed lines 
correspond to the allosteric modulators (I660V mutation and molecule 1-10).  
 

2.3 Conclusions  
 Activator binding domains (ABDs) bind an impressive range of diverse partners 

that have unique primary sequences. While seemingly chaotic, these interactions are vital 

for gene regulation in eukaryotes, proving that plasticity is evolutionarily advantageous. 

Indeed, like other ABDs, CBP KIX can bind more than 15 diverse activators, and its role 

in diseases like cancer have prompted thorough investigations into the mechanisms of 

molecular recognition. Here we show how inherent malleability in KIX enables interactions 

with a diverse set of partners by having a wide spread of lowly-populated configurational 

states. Activators have a suite of cognate conformational states they bind, which in turn 

reweights the distribution of states. Allostery in turn is a manifestation of this reweighting 

process, where a second binding partner simply has a higher or lower chance of forming 

favorable interactions with KIX based on how the distribution of states was reweighted.  
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 The conformational selection maps provide a qualitative illustration for decreasing 

KIX conformational entropy states, yet they are qualitative and do not aid in calculating 

entropy changes. NMR experiments have been innovatively applied to complicated 

problems like measuring protein conformational entropy. While the physical experiments 

were not performed here, MD simulations have proven to align well with experimental 

measurements. In calculating KIX conformational entropy changes using methyl order 

parameters, the quantitative measurements of allostery show differences between the c-

Myb and pKID systems studied here. Conformational entropy changes in the c-Myb 

system align with total entropy changes measured via ITC, demonstrating how KIX 

configurational landscape dictates positive cooperativity. Alternatively, conformational 

entropy in the pKID system aligns with neither the total entropy changes nor the thermal 

stability changes measured via ITC. From this, we demonstrate how subtle changes in 

conformational entropy can be masked in global measurements, making techniques like 

methyl order parameters very valuable for detecting such changes.  

 Where methyl order parameters fall short is in being unable to detect shifts in 

conformational states that don’t quantitatively change entropy measurements. Thus, the 

combination of mapping these redistributions with quantitative methods like order 

parameters gives the broadest mechanistic understanding of the critical role 

conformational entropy plays in dynamic allosteric systems like KIX.  

By establishing the importance of conformational entropy in native KIX allostery, 

we hypothesized that perturbating the distribution of states through mutation and/or small 

molecule binding would result in attenuated allostery.  Indeed, the two allosteric 

modulators tested here on the pKID system (KI660V “turns on” pKID allostery; KIXL664C*1-

10 allosterically inhibits pKID) align with this model. KIXI660V winnows down the distribution 

of states to look more “MLL-like”, and in doing so the mutation pays an entropic cost 

(−𝑇∆𝑆conf = 2.3	kcal/mol), which eliminates the need to have MLL pre-bound for 

enhanced binding. Alternatively, molecule 1-10 induces conformational changes unseen 

in the apo distribution of micro-states, providing mechanistic insights into its ability to 

allosterically inhibit pKID binding. Thus, this work highlights at the microscopic level 

strategies for future chemical probe development to enhance or inhibit particular binding 

interactions by perturbing the distribution of KIX micro-states.  
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2.4 Materials and methods 

Pre-production and production of MD simulations  

All simulations were done on GPUs using the CHARMM/OpenMM interface in the 

CHARMM molecular simulation package.45–47 The atomic coordinates of the solution 

NMR structure the c-Myb•KIX•MLL ternary complex (PDB 2AGH32) were used to 

construct the starting structures for the four simulations (apo KIX, KIX•c-Myb, KIX•MLL, 

and c-Myb•KIX•MLL). Two other complexes (KIX•pKID and pKID•KIX•MLL) were 

constructed using the solution NMR structure of the pKID•KIX•MLL ternary complex (PDB 

2LXT33). The KIX structures used for this work included 87 residues (586-672); c-Myb 

contained 25 residues (291-315); MLL contained 19 residues (839-857); and pKID 

contained 34 residues (116-149) with residue S133 being phosphorylated. KIXI660V 

mutants were constructed using the initial coordinates from the solution NMR structure 

(PDB 2LXT33), with the mutations being made using CHARMM.46 Simulations of 

KIXL664C*1-10 were constructed using the crystal structure (PDB 4I9O35), with missing 

residues being built in through CHARMM. Molecule 1-10 was parameterized using 

CGENFF,48 and the disulfide bond to KIX was reformed using the PATCH command in 

CHARMM. All systems were solvated with TIP3P water and neutralized with 100 mM 

NaCl using the MMTSB Toolset49 so that each complex was in a cubic box with a 

minimum distance cutoff of 8-10 Å from the box edges (initial simulations were performed 

with an 8 Å cutoff, and the later simulations were run with the larger box sizes). 

Simulations were run using the CHARMM36 force field (and CGENFF when performing 

simulations using 1-10) in the NVT ensemble at 298 K using a Langevin dynamics 

algorithm with a friction coefficient of 5 ps-1, and the SHAKE algorithm was used to fix 

bond lengths during simulations. PME and vswitch  were used for nonbonded interactions 

using a 12 Å cutoff.  

After the systems were constructed and solvated, the solvent was minimized by 

fixing the protein(s) and performing a 200-step minimization using the steepest descent 

algorithm. An additional 200 minimization steps using the steepest descent algorithm with 

a force constant of 40 kcal mol-1 Å -2 on the protein(s) was performed prior to running MD 

simulations. In order to ensure that the systems were equilibrated, an initial 10 ns of 

restrained MD was run using a force constant of 10 kcal mol-1 Å -2 on all protein heavy 
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atoms and using 2 fs timesteps. MD simulations were then initiated with no atomic 

restraints using periodic boundary conditions with 2 fs timesteps at 298 K. Each protein 

complex was simulated for a minimum of 100 ns (not including equilibration), and five 

independent trials were run per complex.  

 

Post-production: structural clustering  

After production of the simulations, water molecules and binding partners (c-Myb, 

MLL, and pKID, as well as molecule 1-10) were stripped away from each of the 

simulations. Combining all simulations trials by complex, 37,500 KIX coordinate frames 

were extracted. The remaining KIX structures were aligned and superposed by Cα 

backbone atoms to remove translational and rotational artifacts. The MMTSB Toolset 

function ‘cluster.pl’49 was used to first align Cα backbone atoms of all structure files and 

then cluster using the K-means clustering algorithm with varying cutoffs. For the clustering 

performed to estimate total KIX conformational entropy changes, all KIX residues (586-

672) were used.  

 

Conformational selection maps     

 Based on these extensive sampling data, we constructed conformational basin 

linkage maps, tracing the conformational states sampled in each complex and identifying 

the ones that represented the dominant basins sampled during subsequent binding 

processes. For each complex, KIX centroid structures were generated using a 2.5 Å cutoff 

on Cα atoms for residues 597-672. Populations of each KIX conformation were obtained 

using the number of frames that resided in a given cluster. The centroid of each cluster 

served as a reference to identify linked conformational basins between simulations of 

different complexes; we then took each centroid structure for a given bound complex and 

used it to determine where it originated from in the previous distribution (centroid 

structures were generated using the MMTSB Toolset function cluster.pl).49 For instance, 

the KIX centroid structures in a given ternary complex were iteratively compared across 

all KIX binary centroids to find its structural origin, which was determined by calculating 

the minimum RMSD after superimposing the ternary centroid across all binary centroids. 

This procedure was then repeated for the binary KIX centroids to find their origins across 
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the distribution of apo KIX centroids. If a given centroid comparison did not yield a 

minimum RMSD ≤ the cutoff used for clustering (2.5 Å), we said that the centroid in the 

bound form induced a conformational change in KIX and thus was not traceable back to 

its structural origin.  

 

Correlation functions and order parameters  

Methyl order parameters were calculated for each methyl-bearing amino acid on 

KIX to calculate conformational entropy changes that occur with activator binding. 

Correlation functions of the second Legendre polynomials corresponding to the C-C axial 

bond were calculated using the CORREL module in CHARMM (Eq 1). 

𝐶(𝑡) = 〈𝑃%(µ7(0) ∙ µ7(𝑡))〉 (Eq 1) 
In this, P2 corresponds to the second order Legendre polynomial, and µ7 corresponds to 

the unit vector along the C-C axial bond, which would be derived from relaxation 

experiments via NMR . The Lipari-Szabo (L-S) squared generalized order parameters 

can be calculated in the model-free formalism by:50  

𝑂% = lim
&→(

𝐶(𝑡) = lim
&→(

〈𝑃%(µ7(0) ∙ µ7(𝑡))〉  (Eq 2) 

This can be rewritten using the Cartesian axes (x, y, z) of the unit vector of the C-C bond 

as such:  

𝑂% = )
%
[〈𝑥%〉% + 〈𝑦%〉% + 〈𝑧%〉% + 2〈𝑥𝑦〉% + 2〈𝑥𝑧〉% + 2〈𝑦𝑧〉%] − $

%
 (Eq 3) 

Using this formula, side chain methyl order parameters were calculated on each 

side chain methyl group on KIX for all of the systems (amino acids with methyl side chains 

are Ala, Leu, Ile, Thr, Val, Met; Figure 2.9). Average side chain methyl order parameters 

are then used to calculate KIX conformational entropy for each bound state using the 

empirically derived equation (Eq 4):  

𝑆 = 0.83∑𝑁* (0.91 − 0.74〈𝑂+,-.% 〉)   (Eq. 4) 

where ∑𝑁* is the sum of all side chain 𝜒 angles in the protein and 〈𝑂+,-.% 〉 is the L-S51 

squared generalized order parameter.52 Side chain methyl order parameters are plotted 

by KIX residue (Figure 2.14 and Figure 2.15).  
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Figure 2.14. Methyl order parameter by KIX residue for all complexes in the c-Myb system. The complexes 
are colored as follows: apo KIX (gray), KIX•c-Myb (red), KIX•MLL (dark blue), and c-Myb•KIX•MLL (light 
blue). Order parameters for the L12-G2 region are shown in Figure 2.13A.  
 

 
Figure 2.15. Methyl order parameter by KIX residue for all complexes in the pKID system and mutant 
systems. The complexes are colored as such: apo KIX (gray solid line), KIX•pKID (magenta solid line), 
KIX•MLL (dark blue solid line), pKID•KIX•MLL (green solid line), apo KIXI660V (gray dotted line), 
KIXI660V•pKID (magenta dotted line), KIXI660V•MLL (dark blue dotted line), pKID•KIXI660V•MLL (green dotted 
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line), and KIXL664C*1-10 (cyan dashed line). Order parameters in the L12-G2 region are shown in Figure 
2.13B.  
 

Conformational entropy is associated with the number of attainable conformational 

micro-states of a molecule and its respective probabilities as such: 

𝑆 = −𝑘/ ∑ 𝑃! ln 𝑃!"
!#$    (Eq. 5) 

where kB is the Boltzmann constant, W is the number of conformational basins, and Pn is 

the probability of being in conformational basin n. Thus, if averaged methyl order 

parameters are reporting on conformational entropy, they should correlate with entropy 

values obtained using the K-means clustering algorithm of the KIX structures from a given 

trajectory. Indeed, we find that regardless of the radius cutoff on Cα atoms used for 

clustering, a high correlation to the averaged methyl order parameters is observed (Figure 

2.16), indicating that the methyl order parameters consistently reflect conformational 

entropy changes in the KIX systems and would be useful tools in experimentally testing 

the ideas related here.   

 
Figure 2.16. Entropy calculations from clustering versus order parameters. Entropy calculations of KIX from 
methyl order parameters versus calculations using the K-means clustering algorithm with varying cutoff. 
There is good agreement between the two entropy calculations regardless of the radius cutoff used for 
clustering (1.5 Å cutoff: 𝑦 = 60.7𝑥 − 6.5, 𝑅! = 0.68; 2.0 Å cutoff: 𝑦 = 54.4𝑥 − 6.6, 𝑅! = 0.72; 2.5 Å cutoff: 
𝑦 = 43.9𝑥 − 5.7, 𝑅! = 0.61).  
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Root mean squared fluctuations 

 Root mean squared fluctuations (RMSF) were calculated by residue on KIX using 

Cα backbone atoms. The average KIX structure for each system was taken from the 

average structure of the most highly populated cluster after K-means clustering with a 1.5 

Å cutoff. Trajectories of KIX structures that were superposed by Cα atoms were used to 

calculate RMSF per residue of Cα atoms using Equation 6: 

𝑅𝑀𝑆𝐹 = N$
0
∑ 𝛿-%0
-#$   (Eq 6) 

where N is the number of identical Cα atoms in the trajectory and 𝛿i2 is the distance 

between atom i and the averaged structure. Average RMSF across the various secondary 

structural elements of KIX were calculated by averaging the mean squared fluctuations 

across the relevant number of residues and then taking the square root (Figure 2.17).   

 
Figure 2.17. Relationship between KIX substructures and overall protein conformational entropy. In order 
to attribute the largest conformational entropy changes to specific KIX structural elements, RMSF was 
averaged by each secondary structure and plotted against total entropy for each complex. Entropy was 
calculated using average side chain methyl order parameters. The sections of KIX included were as follows: 
all residues (586-672 in dark blue), 310 helix (591-594 in green), helix α1 (597-611 in red), L12-G2 loop (614-
621 in gray), helix α2 (623-640 in yellow), and helix α3 (646-669 in light blue). Each secondary structural 
element listed was fit to a line to determine the correlation (slope) as well as goodness-of-fit (R2), which is 
plotted in Figure 4a. The linear fits were as follows: All residues 𝑦 = 40.7𝑥 − 4.6, 𝑅! = 0.66; 310 helix 𝑦 =
18.1𝑥 − 1.0, 𝑅! = 0.07; helix α1 𝑦 = 26.6𝑥 − 3.2, 𝑅! = 0.55; L12-G2 loop 𝑦 = 91.8𝑥 − 12.3, 𝑅! = 0.74; helix α2 
𝑦 = 36.5𝑥 − 4.9, 𝑅! = 0.35; and helix α3 𝑦 = 28.2𝑥 − 3.4, 𝑅! = 0.38. 
 
Protein expression and purification 

The DNA sequence encoding the KIX domain from mouse CBP, residues 586–

672, was cloned into the bacterial expression pRSETB vector as previously described.53 
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The mutants at I660V and L664C were generated through site-directed mutagenesis, also 

as previously described.54  

Apo KIX(586-672) and mutants (I660V and L664C) were expressed  in BL21 DE3 

E. coli. Cells were grown to an optical density (OD600 nm) of 0.8 (37°C, 250rpm), induced 

with 0.25 mM isopropyl b-d-1-thiogalactopyranoside (IPTG) for 16 hours (overnight) at 

20°C, harvested by centrifugation (20 min, 6500 x g) and stored at -80 °C. Cell pellets 

were lysed via sonication in lysis buffer (10 mM phosphate, 300 mM NaCl, 10 mM 

imidazole, pH 7.2) containing 2-mercaptoethanol and Complete protease inhibitor. The 

Hisx6 tagged protein was affinity purified using immobilized metal ion affinity 

chromatography (IMAC) on a HisTrap HP Ni sepharose column (GE Healthcare). Elution 

was conducted using an imidazole gradient of 10mM to 600mM imidazole. An additional 

round of purification was completed using ion-exchange chromatography on a Source S 

column (GE Healthcare) in phosphate buffer (50 mM, pH 7.2) by eluting with a NaCl 

gradient from 0 to 1 M. Purified protein was buffer-exchanged by dialysis (overnight, 4C) 

into 10 mM phosphate, 100 mM NaCl, 10% glycerol, pH 6.8. Purified protein samples 

were aliquoted and stored at -80°C.  

 

Peptide synthesis and purification 

All peptides were synthesized automatically with a Liberty Blue peptide synthesizer 

on Protide resin from CEM.  Peptides were deprotected and cleaved from the resin for 4 

hours in 90% trifluoroacetic acid (TFA), 5% thioanisole, 3% ethanedithiol (EDT) and 2% 

anisole unless otherwise noted.  Crude peptides were filtered to remove resin, dried under 

nitrogen stream, and precipitated from cold ether.  Peptide suspensions were transferred 

to a 15 mL falcon tube, centrifuged at 4000 g for 5 minutes at 4 C, and ether decanted.  

Pellets were resuspended in 20% acetonitrile, frozen and lyophilized.  Dry, crude peptides 

were resuspended again in 20% acetonitrile, purified via HPLC on an Agilent 1260 

analytical HPLC using a semi-prep C18 column (Phenomenex) over a 10-50% acetonitrile 

gradient in 0.1% TFA.  Pure fractions were collected and lyophilized to afford pure 

peptides unless otherwise noted.  Analytical traces and mass spectra were obtained using 

an Agilent 6230 LC/TOF and an Agilent 6545 LC/Q-TOF. 
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c-Myb(291-396) was synthesized and purified as described above with no 

modifications and isolated in >98% purity (See Appendix A).   

c-Myb sequence: Ac-KEKRIKELELLLMSTENELKGQQALW-NH2.   

c-Myb calculated mass [M+H]+: 3168.74. Mass observed [M+H]+: 3168.76.   

 MLL(840-858) was synthesized as described above but purification was modified 

slightly.  Peptide was purified once on a semi-prep C18 column over a 40 min 10-50% 

acetonitrile gradient in 20 mM ammonium acetate to afford a mix of MLL and partially 

oxidized versions of MLL containing both disulfides and methionine oxide products.  MLL 

and oxidized MLL could not be readily separated, and were instead combined, frozen, 

and lyophilized.  Dried MLL peptides were then resuspended in 20% acetonitrile in 50 

mM TRIS (pH = 8.0) and 10 mM dithiothreitol (DTT) and agitated at room temperature for 

2 hours.  The DTT/peptide solution was purified directly on 10-50% acetonitrile gradient 

in 0.1% TFA to afford MLL in 98% purity (See Appendix A).   
MLL sequence: Ac-DCGNILPSDIMDFVLKNTPY-NH2.   

MLL calculated mass [M+H]+: 2296.09. Mass observed [M+H]+: 2296.10.   

 pKID(119-147) was synthesized and purified as described above except 

deprotection and resin cleavage was performed for only 2 hours in 95% TFA, 2.5% water 

and 2.5% triisopropylsilane.  HPLC purification afforded pKID in >90% purify (See 

Appendix A). 

pKID sequence: Ac-TDSQKRREILSRRPS(Phos)YRKILNDLSSDAPG-NH2.   

pKID calculated mass [M+H]+: 3479.78. Mass observed [M+H]+: 3479.81.   

 

Differential scanning fluorimetry 

Experiments were conducted utilizing 20 µL sample volumes in 96 well PCR plates 

sealed with clear cap strips. To determine Tm, 20 µM protein in the presence of 5X SYPRO 

orange dye (1:1000 dilution of purchased 5000X stock; Invitrogen) was incubated with 

ligand (4X 1-10, 1X TAD peptide) at RT for 30 minutes. An Applied Biosystems 

StepOnePlus qPCR instrument was utilized to obtain melting curves by exciting at 488 

nm and monitoring emission at 602 nm over a temperature gradient of 25-95°C with a 1 

°C/min ramp. Raw fluorescence data was converted to relative fluorescence units (RFU) 

by normalizing each individual melt curve to its maximum fluorescence (See Appendix 
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B). RFU was imported into the online data analysis program, DSFworld, and Tm was 

calculated by determining the maximum of the first derivative (dRFU). For data 

visualization, both RFU and dRFU are plotted as a function of temperature using 

GraphPad Prism software. The maximum of the first derivative is the reported Tm, with 

DTm of each ligand calculated as the difference between the Tm of the protein and the Tm 

of the protein + ligand. 
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Chapter 3 
The Coactivator Med25 AcID Exhibits High Fluctuations in Activator Engagement1,2 

 
 
Abstract 

Transcriptional coactivators are a molecular recognition marvel because a single 

domain within these proteins, the activator binding domain or ABD, interacts with multiple 

compositionally diverse transcriptional activators. Also remarkable is the structural 

diversity among ABDs, which range from conformationally dynamic helical motifs to those 

with a stable core such as a β-barrel. A significant objective is to define conserved 

properties of ABDs that allow them to interact with disparate activator sequences. The 

ABD of the coactivator Med25 (activator interaction domain or AcID) is unique in that it 

contains secondary structural elements that are on both ends of the spectrum: helices 

and loops that display significant conformational mobility and a seven-stranded β-barrel 

core that is structurally rigid. Using biophysical approaches that span from molecular 

dynamics simulations to NMR and kinetic experiments, we build a mechanistic model of 

how AcID forms complexes with the activators VP16 and ERM, as well as a small 

molecule inhibitor norstictic acid. In doing so, we find that despite its static core, Med25 

forms short-lived, conformationally mobile, and structurally distinct complexes with both 

cognate binding partners. We establish that Med25 utilizes conformational malleability 

through flanking loops and helices to uniquely accommodate both activators, forming 

 
1 Portions of this chapter were adopted from: Henderson, A. R. Henley, M. J.; Foster, N. J.; Peiffer, A. L.; 
Beyersdorf, M. D.; Standford, K. D., Sturlis, S. M.; Linhares, B. M.; Hill, Z. B.; Wells, J. A.; Cierpicki, T.; 
Brooks III, C. L.; Fierke, C. A.; Mapp, A. K. “Conservation of coactivator engagement mechanism enables 
small-molecule allosteric modulators,” PNAS, 115, 8960-8965 (2018).  
2 Portions of this chapter were adopted from: Garlick, J. M.; Sturlis, S. M.; Bruno, P. A.; Yates, J. A.; 
Peiffer, A. L.; Liu, Y.; Goo, L.; Bao, L.; De Salle, S. N.; Tamayo-Castillo, G.; Brooks III, C. L.; Merajver, S. 
D.; Mapp, A. K. “Norstictic acid is a selective allosteric transcriptional regulator,” J. Am. Chem. Soc., 143, 
9297-9302 (2021). 
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distinct complexes seen in modeling as well as NMR. Further, we find that norstictic 

inhibits ortho- and allosterically through modulating dynamics across the protein. 
 

3.1 Introduction  
The Mediator complex is a massive coactivator complex comprising 30 individual 

proteins.1–3 Its role in transcription has deemed it as a “master coordinator” as it serves 

as a bridge between promoter-bound activators and remaining transcriptional 

machinery.1,2,4 Independent activator binding domains (ABDs) occupy the tail portion of 

the Mediator and directly impact gene expression by forming protein-protein interactions 

with promoter-bound activators.5 As such, understanding these interactions is great 

interest. Med25 anchors to the tail subunit of the Mediator using a VWA domain (Figure 

3.1)6. A long linker connects the VWA to the activator interacting domain (AcID) of Med25, 

which is a binding partner of a diverse array of transcriptional activators, including 

VP16,6,7 ATF6α,8 and the ETV/PEA3 activators.9,10 Through these interactions, Med25 

plays significant roles in the unfolded protein response and in oncogenesis, generating 

significant interest into gaining an atomic level understanding these interactions.  

While the structure of Med25 AcID has been solved via NMR,11,12 structural 

elucidation has not been achieved with any of the AcID•activator interactions. This is in 

part because the activators cause extensive line broadening of many peaks, which is a 

result of the transient and conformationally dynamic interactions that are formed. This 

“fuzziness” inherent to the native interactions has made targeted drug discovery an 

unsolved problem. The VP16 transcriptional activation domain contacts a surface of 

∼1,800 Å2 of AcID, wrapping around the topologically challenging β-barrel while also 

contacting two flanking helices.11 The transcriptional activation domain of the ETV/PEA3 

member ERM interacts with one face of the β-barrel, a binding surface referred to as H1 

that is ∼900 Å2 in area9,10 (Figure 3.1). The β-barrel core of AcID is unusual among ABDs, 

with helices more commonly observed, and raises the question of the role that the barrel 

might play in the molecular recognition of activators relative to the other substructures 

within AcID. 
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Figure 3.1. Med25 is a part of the tail subunit of the human Mediator complex. The Activator-Interaction 
Domain (AcID) is the binding partner of a growing number of transcriptional activators and contains at least 
two binding surfaces, termed H1 and H2. The sequences of the transcriptional activation domains of the 
three Med25-dependent activators used in this study are shown below the protein structure (PDB ID 2XNF).  
 

The observation that a portion of VP16 and ERM utilize the same H1 binding 

surface in AcID despite their distinct sequences suggests that conformational plasticity 

within the ABD could play a role in its molecular recognition capabilities and, ultimately, 

function. If Med25 AcID indeed behaves like typical ABDs, we hypothesize that each 
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activator–AcID complex should be conformationally labile, with two or more conformation 

states energetically accessible. We assess this through a combination of biophysical 

techniques to dissect binding events with both VP16 and ERM, relying on both molecular 

dynamics simulations and in vitro experiments. Transient kinetic experiments with the 

activators revealed that in each case AcID exploits conformational lability to recognize 

the distinct sequences, aligning with multiple bound complexes seen in the structural 

models from MD. Simulations highlight the critical role that the flexible loops and helices 

play in the remodeling of one PPI surface, while also suggesting how these motions relate 

to the larger family of ABDs. Taken together, these data suggest a conserved mechanism 

for transcriptional activators despite considerable structural divergence. 

 

3.2 Results and discussion  
Disulfide Tethering with VP16 circumvents limitations of structural techniques  

A signature of activator•coactivator interactions is fuzziness, wherein complexes 

adopt multiple conformational states that are separated by low energy barriers. As 

crystallographic techniques require a protein to form a single stable conformation, NMR 

is the major tool used to delineate structural information in these systems. However, 

multiple binding modes can be exchanging on the intermediate timescale, causing 

extensive line broadening and defying structural characterization.13 Such is the case with 

Med25 AcID, where no structures have been solved of the protein in complex with binding 

partners. While NMR has thus far been unsuccessful in full structural characterization of 

the bound forms, chemical shift perturbations from NMR provide useful insights into 

binding interactions.  Separate NMR studies of AcID in complex with the transcriptional 

activation domains of VP16 and ERM suggest that the two activators both contact the H1 

binding surface, with the significantly larger VP16 also interacting with the H2 

surface7,11,14 (Figure 3.1). In order to build more complete structural models for these 

interactions, we utilized a suite of biophysical techniques that includes both 

theory/molecular dynamics simulations and in vitro experiments.  

Disulfide Tethering was utilized to construct a preliminary model of how H1-binding 

partners, namely VP16 and ERM, interact on that binding surface. Disulfide Tethering 

works by measuring complex formation via mass spec in the presence of a competitor 
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thiol so that complexes will only form if there are favorable interactions between the 

protein and peptide.15 Ultimately, by varying the position of the H1-binding transcriptional 

activation domain (TAD) of VP16(438-454), a model for the interaction can be 

deconstructed. Med25 AcID contains three native cysteine residues (Figure 3.2B). 

However, C249 is on a beta strand and points into the beta barrel, making it inaccessible 

for disulfide Tethering. Disulfide Tethering experiments are performed by systematically 

mutating VP16(438-454) residues with cysteines, which are capped using cystamine 

(Figure 3.2A). The VP16 TADs are incubated with Med25 AcID and a competitor thiol, β-

mercaptoethanol, thus disulfide bonds only formed between Med25 and VP16 when there 

are favorable binding interactions (Figure 3.2B).  

 

 
Figure 3.2. Disulfide Tethering with H1-binding TADs. (A) Cysteine residues are inserted in VP16 (438-
454) (blue helix) and are capped using 10 equivalents of cystamine. (B) The capped TAD is used in disulfide 
Tethering with Med25 AcID (PDB 2XNF, shown in gray; the three native cysteines are shown as red 
spheres) in the presence of a competitor thiol, β-mercaptoethanol. Med25 AcID has three native cysteines: 
C429, which points into the beta barrel; C497, which is behind helix a2; and C506, which is on a loop on 
the H1 face.   
 

Tethering percentages for all VP16(438-454)cys. mutant peptides were determined 

using mass spectrometry, where tethered adducts were compared to the apo protein 
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parent mass. In doing so, VP16(438-454)cys. mutant was found to only form stable covalent 

complexes when the cysteine was towards the C-terminal portion of the TAD (residues 

450-454; Figure 3.3A). Tethering experiments performed using Med25 mutants at the two 

solvent accessible cysteines (C497A and C506A) indicate that VP16 only reacts with 

C506, with no detectable Tethering occurring at C497 (Figure 3.3B). This provided a 

general starting orientation for how VP16(438-454) interacts on the H1 binding surface.  

 

 
Figure 3.3. Disulfide Tethering with VP16(438-454). (A) Tethering percentages are determined via mass 
spectrometry at varying cysteine positions across VP16(438-454). (B) Tethering positions on Med25 AcID 
are determined using alanine mutagenesis on the two solvent-accessible cysteines, C497 and C506, which 
yields that Tethering only occurs at C506. Experiments performed by Dr. Andrew Henderson.  
 
Temperature replica exchange overcomes energy barriers in simulations 

Molecular dynamics (MD) simulations are a powerful tool for obtaining atomic-level 

data around binding interactions, yet much like structural experiments with NMR and 

crystallography, there are inherent challenges and limitations. For example, capturing a 

protein-protein interaction in an unbiased simulation and fully solvated water box would 

entail an inordinate amount of computing power for a single trial, let alone experimental 

replicates. The unbiased nature of these simulations allows for more exploration, and real 

mechanisms of association can potentially be captured. However, as binding can occur 

on the micro- or millisecond timescale, this method wouldn’t be optimal or realistic for 

these protein systems. Further, we know from NMR that while Med25’s binding partners 

do have preferential binding sites, they are capable and do in fact bind to other locations 
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on the protein. Thus, the transient nature of these associations suggests alternative and 

more advanced modeling methods would be more fruitful.  

A major challenge in MD is overcoming large energy barriers that can be involved 

in binding (Figure 3.4). Thus, enhanced sampling methods have been developed to allow 

for more efficient exploration of conformational space.16,17 Temperature replica exchange 

is an enhanced sampling technique where multiple simulations are run in parallel at 

increasing temperatures.17,18 As see in Figure 3.4, while the simulation of interest occurs 

at the lowest temperature, higher temperature simulations allow for overcoming large 

energy barriers. Periodic exchanges between the replicates are attempted, so that these 

barriers are overcome, and we are able to collect data for structural states in the thermal 

distribution of interest.     

 

         
Figure 3.4. Temperature replica exchange method as an ehanced sampling simulation technique. (Left) A 
major challenge in simulation is overcoming large energy barriers associated with binding. However, 
simulations at higher temperatures can be used to overcome these barriers. (Right) Temperature replica 
exchange involves running multiple simulations in parallel and periodically exchanging coordinates between 
distributions, which allows for large energy barriers to be more easily overcome.  
 

All-atom molecular dynamics simulations via temperature replica exchange were 

used for both apo Med25 as well as tethered to VP16(438-454)cys. mutant. As many 

activators have shown a propensity for comprising of mostly helices, VP16 was 

constructed as a helix and tethered to C506 using a disulfide patch in CHARMM; the 

“unbound” peptide was oriented out into space, as to not bias simulations toward a 

particular bound pose (Figure 3.5).  
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Figure 3.5. Simulation setup for temperature replica exchange with a Tethered peptide. The NMR structure 
of Med25 (PDB 2XNF; shown in gray) was utilized in constructing the initial structure of the VP16(438-
454)G450C construct, where VP16 is shown as the blue peptide, and the disulfide bond to Med25C506 is shown 
in yellow.  
 

Simulations ran for 60ns with 12 replicas ranging in temperature from 280 to 500 

K. Data from the 280 K replicas were ultimately used for analysis, where frames from 

those simulations were extracted (4,000 frames / simulation) and K-means clustered 

using a 1.5 Å RMSD cutoff on Cα atoms. In doing so, we found that VP16(438-454)G450C 

appears to most significantly stabilize the protein; while the apo protein simulations yields 

20 clusters with many that are all relatively lowly populated, the VP16(438-454)G450C 

complex results in only 5 clusters with a clear majority for one of the clusters (72% of all 

frames; Figure 3.6B). This finding is even more apparent when looking at root mean 

square fluctuations (RMSF) of the apo protein in comparison to Med25+VP16(438-

454)G450C (Figure 3.7). In particular, much like with KIX, we find that the most dynamic 

region on the protein, the upper loop on the H1 face, shows the greatest stabilization upon 

binding. While Tethering experiments suggest that any VP16 binds with cysteine mutants 

at any position from 450 to 454, we find that the most specific interactions occur at the 

G450C position. Hence, this particular VP16(438-454) construct was further pursued. 
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Figure 3.6. Clustering results using a K-means clustering algorithm. All clusters with ≥ 5% occupancy are 
labeled. (A) Pie chart showing the breakdown of clusters for apo Med25 AcID, with the centroid structure 
from the most populated cluster shown below. (B) Clustering results of Med25 AcID tethered to VP16(438-
454) with varying cysteine mutations. Centroid structures of the most populated cluster for each bound 
complex are shown below.  
 
 

      
Figure 3.7. Fluctuations in the emerging structural model for AcID-activtor complex formation. Root mean 
square fluctuations (RMSF) were calculated for each Med25 AcID residue by overlaying Ca atoms for all 
coordinate files produced from simulations. The RMSF are projected onto the NMR structure for Med25 
(PDB), where thickness and coloring correspond to fluctuations, for (top) the apo protein and (bottom) 
Med25+VP16(438-454)G450C.  
 

The stabilization seen in MD was tested through protein melting experiments via 

circular dichroism (CD). In doing so, we determined that there was an increase in protein 

melting temperature of ∆𝑇1 = 0.9	°𝐶 when VP16(438-454)G450C (Figure 3.8). The melting 
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experiments also highlighted the stabilization induced through activator binding in a 

different way; the transition of going from the folded to the unfolded state became much 

sharper when in complex with VP16 (Figure 3.8B). This could in part be due to the 

stabilization we see of the helices that occurs when VP16 binds on the H1 face.  

 
Figure 3.8. Protein melting experiments for apo Med25 and Med25+VP16(438-454)G450C. (A) Thermal 
melting experiments for Apo Med25 (black; TM = 64.2 ± 0.2 °C) and Med25+VP16G450C (light blue, TM = 65.1 
± 0.1 °C) (B) The transition slope going from folded to unfolded is much sharper for the VP16(438-454)G450C 
tethered construct than for the apo protein. Experiments performed with Dr. Andrew Henderson and Dr. 
Matthew Henley.  
 

In building a more complete model for AcID activator recognition, we transitioned 

to the larger VP16 construct (residues 438-490), which has been shown to interact with 

both faces on Med25.7 Using the initial structure developed for the shorter construct, 

VP16(438-454)G450C, the peptide was appended with the remaining sequence on the C-

terminal (residues 438-490) and pointed the “unbound” helix outwards into space (Figure 

3.9). Temperature replica exchange was again employed, where we were able to obtain 

a model of binding. Using K-means clustering with a 1.5 Å backbone RMSD cutoff, we 

find that there are 16 clusters that The two binding poses are differentiated by which side 

of the triple lysine loop they bind onto on the H2 face (Figure 3.10). The two binding 

modes show varying degrees of helical content in VP16, with Pose 1 showing VP16 

comprised of almost exclusively helices and Pose 2 corresponding with more random 



 65 

coils. Thus, these models suggest that multiple bound conformational states can exist, 

which aligns with the difficulties in obtaining solving for a bound structure experimentally.  

 
Figure 3.9. Binding of the long VP16(438-490) Tethered construct using temperature replica exchange. 
Snapshots from simulation demonstrating how VP16 (438-490)G450C (blue) binds to Med25 (gray) when 
tethered starting from (left) the initial construct made in CHARMM with the NMR coordinates of Med25 
(PDB 2XNF) and a disulfide bond to the peptide.  
 

 
Figure 3.10. Two binding modes for VP16(438-490)G450C Tethered to Med25C506. (Top) Pose 1 is the higher 
occupancy state, comprising of 71% of the total frames from the simulation, where the VP16 peptide 
maintains a higher degree of helical content. (Bottom) Pose 2 is the less occupied pose, comprising of 27% 
of the total states, where VP16 binds on the left side of the lysine loop on the H2 face.  
 

We performed 1H,15N HSQC experiments on Med25+VP16(438-490), and the 

chemical shift perturbations (CSPs) align with structural models generated from our 
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modeling. Namely, we see most CSPs occur around the two side helices (Figure 3.11). 

Looking at the structure of generated through modeling of the bound complex, one large 

change that occurs is the bending the helix closest to the H1 face, a3 (Figure 3.12). This 

occurs not only in the longer VP16 construct but also in the shorter H1-binding TAD 

model.  

 

 
Figure 3.11. Med25 chemical shift perturbations upon VP16 binding. Results of VP16(438-490) chemical 
shift perturbation experiments superimposed upon the Med25 AcID NMR structure (PDB 2XNF). Residues 
displaying chemical shift perturbation greater than 2 SD upon VP16 binding are depicted in blue spheres. 
Experiments were performed by Dr. Andrew Henderson and Dr. Brian Linhares. 
 

 
Figure 3.12. Helix bending in Med25 caused by VP16 binding. Centroid structures of Med25 tethered 
complexes for (A) VP16(438-454)G450C (blue) and (B) VP16(438-490)G450C. Med25 structures from 
complexes formation are shown in light gray, with the disulfide bond used for Tethering shown in yellow. 
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The NMR structure of apo Med25 AcID (PDB 2XNF) is shown in teal. As seen with the green arrows, helix 
a3 bends towards the H1 face when VP16 binds.   
 
 

The fact that the majority of CSPs upon VP16 binding occur between the H1 and 

H2 face (i.e. on the helices separating the two faces) rather than directly on the two 

binding surfaces suggests that binding induces conformational changes, as seen in the 

models generated here. Indeed, looking closely at the highest CSPs, we see that the sum 

effect of CSPs report on such conformational changes. The movement in the helix that 

neighbors the H1 face (a3) as seen in Figure 3.12 corresponds to large CSPs on that 

helix. Starting with G456 (light pink spheres), we can see how subsequent chemical shifts 

include Q539 (dark green spheres) and T542 (light orange spheres), which are pulled 

towards the H1 face with binding (Figure 3.13A).  Similar effects are seen with the 

neighboring helix on the H2 face (a1). VP16 binding on the H2 face causes pulling from 

the bottom of Med25’s a1. R466 (cyan spheres) show large movement towards the H2 

face, corresponding to a large CSPs in NMR (Figure 3.13).  L464 (green spheres) on helix 

a1 also shows movement and high CSP, as well as Q456 (yellow spheres) on the top of 

that helix.  
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Figure 3.13. Chemical shifts report on conformational changes with VP16 binding. Results of VP16(438-
490) chemical shift perturbation experiments superimposed upon the Med25 AcID NMR structure (lime 
green, PDB 2XNF) for residues displaying CSPs > 2 SD upon VP16 binding (shown as spheres). 
Superposed is the model for VP16(438-490)G450C (blue) Tethered to Med25C506 (light gray). (A) The side 
view for large CSPs, and (B) CSPs from the H2 face, where residues with high CSPs are shown as colored 
spheres. NMR experiments were performed by Dr. Andrew Henderson and Dr. Brian Linhares.  
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Med25 AcID shows unique structural accommodation for activators  

With success in generating structural models of VP16 Tethered to AcID through 

enhanced sampling methodologies, temperature replica exchange was utilized once 

more to dissect key interactions between ERM and Med25. However, this system lacked 

in vitro Tethering data. Nonetheless, a Tether was created using CHARMM by appending 

the C-terminal portion of the TAD with repeating glycine-serine pairs and a C-terminal 

cysteine, named ERM(38-68)+GSGSGSGC hereon (Figure 3.14A). Using K-means clustering 

(1.5 Å backbone RMSD cutoff), we find an ensemble of bound poses that all generally 

show the ERM peptide wrapping across the beta barrel (Figure 3.14B). In addition, all 

clusters show the top loop on the H1 face in a single down conformation.  

 

 
Figure 3.14. Molecular dynamics simulations with a Tethered ERM construct. (A) ERM(38-68) (gold) was 
appended with a linker (GSGSGSGC) and Tethered to Med25C506 (PDB 2XNF, shown in gray) for 
simulations with temperature replica exchange.  (B) Ensemble of ERM structures bound to the H1 face of 
Med25 after 60 ns of simulation. Structures shown are the centroids generated using the K-means 
clustering algorithm with a  1.5 Å backbone RMSD cutoff.  
 
 

Much like with VP16, the CSPs from 1H,15N HSQC experiments with ERM(38-68) 

support the structural model of binding we see from modeling, where perturbations occur 

across the beta barrel (Figure 3.15). This, along with data corresponding to VP16, 

suggests that the models generated from replica exchange can be used to generate 

structures of Tethered binding interactions. Further, the distinct but overlapping chemical 

shift patterns observed upon binding of each of the activators to Med25 suggest several 

unique binding modes accommodated within AcID.  
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Figure 3.15. Med25 chemical shift perturbations upon ERM binding. Results of chemical shift perturbation 
experiments superimposed upon the Med25 AcID structure (PDB 2XNF). Residues displaying chemical 
shift perturbation greater than 2 SD upon ERM binding are depicted in maize spheres. Grey spheres 
indicate residues with chemical shifts that broaden upon ERM binding. Experiments were performed by Dr. 
Andrew Henderson and Dr. Brian Linhares.  
 
  

The modeling aligns with the NMR experiments with ERM by showing the general 

direction of the activator engagement across the beta barrel (Figures 3.14 and 3.15). In 

addition, there are many residues in the upper loop on the H1 face that show either large 

CSPs or are in intermediate exchange. Looking at the generated model for the Tethered 

construct, we see that the upper loop participates in charged interactions with ERM 

(Figure 3.16). Thus, ERM uses a different mechanism of activator engagement than 

VP16, which did not show direct interactions with that upper loop. Further, as clearly 

shown, electrostatics play an important role in activator engagement.  
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Figure 3.16. Interactions between ERM(38-68) and the upper H1 loop. Residues in ERM(38-68) (gold, with 
residues labeled in circles) show many charged interactions with the upper H1 loop of Med25 (gray, labels 
in rectangles).  
 
 

The two bound complexes from modeling with VP16 and ERM demonstrate the 

inherent malleability in the seemingly rigid Med25 AcID domain; while both activator bind 

on the H1 face, they bind in and form two very unique binary complexes (Figure 3.17). 

This finding is supported by the amide proton perturbation patterns measured for the 

activator–AcID complexes via NMR, suggesting unique binding modes for each activator. 

This is analogous to helical activator binding domains such as GACKIX of CBP/p300, a 

three-helix bundle that contains at least two activator binding sites.19 
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Figure 3.17. H1-binding TADs form unique complexes with Med25 AcID. (A) Centroid structures from 
simulation of Med25+VP16(438-454)G450C (light gray Med25, blue peptide) and Med25+ERM(38-
68)+GSGSGSGC (dark gray Med25, gold peptide). The disulfide bond for both Tethered complexes are shown 
in yellow, and orientation of Med25 shows the H1 face. (B) The side view of the bound complexes for the 
two activators. The differences in helix a3 structure are highlighted by color corresponding to the activator 
that is bound. (C&D) The surface representation of Med25 on the H1 face with (C) ERM bound or (D) VP16 
bound.   
 

While the structures induced by activator binding is very different, both cause 

significant decreases Med25 dynamics (Figure 3.18). Much like with KIX, activator binding 

stabilizes the protein, with the most dynamic regions, i.e. upper loop on H1 face, 

particularly residues 415-421. Additionally, the long flexible region under the b-barrel 

(residues 436-444) shows a large reduction in movement. Thus, again similar to KIX, 

most dynamic region of the protein is able to tune the overall rigidity of the protein.   
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Figure 3.18. Root mean square fluctuations (RMSF) by Med25 AcID residue. RMSF by residue is shown 
for the apo protein (black), Med25+VP16(438-454)G450C (blue), and Med25+ERM(38-68+GSGSGSGC) (gold). 
Residues that show the greatest stabilization include 415-421, which is the majority of the upper loop on 
the H1 face of Med25.   
 

Kinetics data supports that activator–Med25 complexes are conformationally dynamic 

The underlying mechanistic features of activator–AcID complex formation were 

examined by determining association mechanisms of AcID with the TADs of VP16 and 

ERM using stopped-flow fluorescence spectroscopy. These kinetic experiments allow 

calculation of microscopic rate constants for association and dissociation, as well as 

forward and reverse rate constants for any conformational changes that happen during 

the binding process20,21 (Figure 3.19). Previous kinetic studies of helical coactivators 

revealed that complex formation with activators proceeds by fast association (kon) and 

dissociation (koff) rate constants.21–26 Consistent with this observation, we found that 

activator–AcID complexes form with elevated kon and koff values, with kon ranging 

between 300 and 1,100 µM−1·s−1and koff ranging between 100 and 400 s−1 (Figure 3.19). 

This behavior allows for activators to form tight interactions (KD values 50–500 nM) with 

Med25 AcID that are short-lived, with activator residence times less than 10 ms. 

Additionally, at least one conformational change during the binding process was observed 

for both activators, with similar observed rate constants (kobs = 10–40 s−1) for each 

activator (Figure 3.19). These findings align with the multiple bound complexes 

determined from MD. 
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Figure 3.19. Transient kinetic experiments define minimal mechanism of activator-AcID complexation. (A) 
General kinetic mechanism for TAD-AcID complex formation as determined by these experiments for all 
activators. Microscopic equilibrium constants (KC,n) are defined as the ratio of respective forward and 
reverse rate constants. (B) Representation of equilibrium population distributions of bound states, 
calculated from equilibrium constants, for VP16(438-490) and (C) ERM(38-68). Sizing of each complex is 
scaled according to the indicated percentage population. When one equilibrium constant is too small to 
measure, the values are given as ranges. (D) Measured kinetic and equilibrium constants for both 
activators. Kinetic constants kF,2 and kR,2 are unable to be reliably calculated. a, The conformational change 
equilibrium constant is too small to be measured with precision. Experiments performed by Dr. Matthew 
Henley.  
 
A covalent small molecule inhibits ortho- and allosterically by stabilizing Med25 AcID 

 To identify inhibitors of Med25 AcID, we utilized a high-throughput fluorescence 

polarization (FP) assay interrogating a complex of AcID and fluorescein-tagged 

VP16(465-490). As previously reported, this VP16 sequence contains the minimal binding 

sequence for interaction with AcID (KD = 0.60 ± 0.06 µM) and interacts with the H1 and 

H2 binding surfaces. Several commercially available libraries (MS Spectrum 2000, 

Focused Collections, and BioFocus NCC libraries) with a combined total of 4046 

compounds were screened using this format (Z’ = 0.87; 1.6% hit rate). Compounds with 

activity > 3 S.D. relative to the negative control (DMSO) were subjected to dose-response 

assessment with freshly purchased material, as well as secondary selectivity assays. 
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From this, the lichen-derived natural products norstictic acid (NA) and psoromic acid (PA) 

emerged as the best inhibitors, with apparent IC50 values of 2.3 ± 0.1 µM and 3.9 ± 0.3 

µM (Figure 3.20).  

 
Figure 3.20. Norstictic acid and psoromic acid inhibit Med25 AcID. (A) Chemical structures of the top two 
hits emerging from the screen of the Med25 AcID•fl-VP16(465-490) along with (B) their apparent IC50 
values. The apparent IC50 values were determined through titrations of either NA or PA against Med25 
AcID•fl-VP16(465-490) performed in triplicate with the indicated error (SDOM). (C) Assessment of related 
structures shows that the orthophenoxyaldehyde moiety is important but not sufficient for inhibitory activity. 
IC50 values were determined via competition fluorescence polarization against Med25•VP16(465-490). (D) 
Inhibition of related PPI networks by NA. Apparent IC50 values were measured via fluorescence polarization 
against a suite of coactivator domains (CBP KIX, p300 TAZ1, CBP IBiD, Med15 KIX) bound to fluorescein-
tagged activators. The values are the average of three independent experiments with the indicated error 
(SDOM). No error bars are shown for the IC50 against IBiD•ACTR because the IC50 was greater than the 
highest concentration of NA tested, 250 µM, and thus we can only accurately report the IC50 as > 250 µM. 
Experiments performed by Dr. Steven Sturlis and Dr. Julie Garlick.   
 

Both NA and PA are natural products in the depsidone family containing an 

orthophenolic aldehyde moiety (Figure 3.20A). The presence of a reactive aldehyde 

functionality suggested a potential covalent mechanism of action, for example via imine 

formation with lysine side chains. Consistent with this hypothesis, analysis of NA-treated 

Med25 AcID using mass spectrometry showed the presence of concentration-dependent 
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covalent adduct(s). Treatment with the reducing agent NaBH4 led to incorporation of H2 

into the adduct, indicating initial formation of a Schiff base followed by reduction (Figure 

3.21). Data from a time-course experiment revealed that at 5 minutes, significant inhibition 

is observed, with full activity after 30 minutes. An examination of related structures 

indicates that the orthophenolic aldehyde is necessary, but not sufficient for interaction 

with Med25 AcID or for inhibitory activity. Stictic acid, in which the phenol is masked as a 

methyl ether, inhibits Med25 interactions poorly (IC50 > 250 μM). Additionally, 

salicylaldehyde efficiently labels Med25 AcID, but does not impact binding of activators. 

These data suggest that noncovalent interactions play essential roles in the inhibitor 

function of NA. Consistent with this, NA exhibits remarkable selectivity for Med25 PPIs 

relative to other coactivators with similar binding surfaces (Figure 3.20D). Notably, NA 

inhibits Med25 PPIs at both binding surfaces, including those formed with transcriptional 

activators ETV5 (H1 binding surface) and ATF6α (H2 binding surface). 

 

 
Figure 3.21. Mass spectrometry of Med25 AcID with norstictic acid. Addition of 4 equivalents NaBH4 after 
incubation with NA for 30 minutes leads to formation of +358 adduct (top), indicating covalent modification 
through initial imine formation (bottom). Experiments performed by Dr. Steven Sturlis and Dr. Julie Garlick.  
 

Several lines of evidence suggested that the engagement site of NA is a lysine-

rich dynamic loop that borders the H2 binding surface (Figure 3.22A).  There are 11 lysine 

residues within Med25 AcID, 6 of which are found on dynamic loop regions flanking the 

two known activator binding surfaces. Replacement of these lysines with arginine either 

alone or in combination had minimal effects on binding of the cognate transcriptional 
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activator binding partners. Similarly, mutations within the H1 binding surface had minimal 

impact on both NA binding, determined by mass spectrometric analysis, and inhibition in 

an in vitro binding assay (Figure 3.22). In contrast, mutation of K519 had a profound effect 

on NA binding and inhibition. This residue is part of a lysine-rich dynamic loop that flanks 

the H2 face and the mutational data indicates that NA can also interact with K520 and 

K518 within this loop.  

 
Figure 3.22. Med25 AcID lysine reactivity with norstictic acid. (A) LC-MS analysis of norstictic acid covalent 
adduct formation with Med25 lysine-to-arginine mutants indicates that K519R leads to the most significant 
reduction of labelling. No reduction of labelling corresponds to a decrease in abundance of the NA covalent 
adduct of less than 10%. Minimal reduction in labelling, observed for K520R, corresponds to a 22% 
reduction in the mass abundance of the NA covalent adduct. Significant reduction in labelling, observed for 
K519R, corresponds to a 53% reduction in the mass abundance of the +1 covalent adduct. PDB 2XNF 
used to generate figure. (B) Inhibition of Med25 AcID•ETV5 interaction by norstictic acid measured using 
fluorescence polarization. Mutants containing K519R, highlighted in grey, demonstrate the most significant 
increase in apparent IC50. Values represent the average of three independent experiments with the 
indicated error (SDOM). Experiments performed by Dr. Steven Sturlis and Dr. Julie Garlick.  
 

To develop a structural model of NA binding and function, molecular dynamics 

simulations of the covalent NA-Med25 AcID complex in which NA is covalently linked to 

K519 were carried out, and the results compared to the case of unbound Med25 AcID. 

Looking at the RMSF by Med25 residue, minimal restructuring in the lysine loop adjacent 

to the H2 binding interface is observed (Figure 3.23A). However, helix a1 shows 

significant conformational changes, resulting in partial unfolding. More surprising, the only 

detectable dynamical changes in NA binding occur on the H1 face, with residues in the 

two loops on that face showing up to 50% reduction in root-mean-square fluctuations 

(Figure 3.23C). Taken together, the data indicate that NA serves as both an orthosteric 
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inhibitor of H2-binding transcription factors (e.g. ATF6α) and an allosteric inhibitor of H1 

binding transcriptional activators (e.g. ETV5). 

 
Figure 3.23. Structural model and fluctuations of Med25 with norstictic acid. (A) Root mean square 
fluctuations (RMSF) across Med25 residues. (B) Centroid structure of the most populated cluster from 
molecular dynamics simulations, where norstictic acid binds to the H2 face of Med25 and covalently links 
to K519. (C) The residues that showed the greatest reduction in fluctuations (RMSF) upon activator binding 
all occur on dynamic substructures on the H1 face. 
 

3.3 Conclusion  
ABDs are molecular recognition marvels, with a single ABD typically being the 

cognate binding partner for tens of different activators. Hence, ABDs require a significant 

degree of structural mobility to accommodate this diversity. This mobility likely 

corresponds to local folding-like transitions; it not only allows the binding interfaces to 

morph into unique conformations as part of binding different activators, but underlies the 

allosteric interactions between different binding sites in an individual domain.27,28 

Therefore, the “important” molecular recognition elements should be the most mobile 
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regions, which is in line with our results shown here with Med25 AcID. Despite the large 

surface area of the core β-barrel that is used for interacting with activators, it is changes 

in the flanking loops and helices that enable accommodation of the distinct cognate 

ligands. Further, since the first structural reports of AcID, the identity of activator and 

coactivator binding partners of Med25 has expanded,29 and the molecular recognition 

model outlined here indicates that cooperative binding of Med25 to activators and/or 

coactivators such as CBP may be a key regulatory mechanism. 

Taken together, the combined modeling and in vitro results detailed here point to 

a mode of interaction where Med25 AcID forms conformationally unique complexes with 

its activator interaction partners. While the activators bind to Med25 with similar affinities, 

they have different kinetic signatures characterized by a conformational change after 

binding that extends throughout the AcID structure. This is found not only in modeling, 

but also in CSPs measured from NMR. Finally, all of these complexes can be described 

as “fuzzy”; at equilibrium, each complex contains multiple populated conformational 

substates that are separated by low energy barriers.30 Hence, we establish that while 

Med25 is structurally unique in its b-barrel core, it shares mechanisms of activator 

engagement with other more flexible domains like KIX — Both proteins utilize their most 

dynamic regions to individually accommodate multiple partners, thus again establishing 

the utility of disorder processes like transcription.  

Beyond interrogating native interactions, we were able to identify an inhibitor for 

Med25, namely norstictic acid. We demonstrated how this small molecule covalently 

binds to a lysine loop on the H2 face, and yet it can inhibit not only orthosterically, but 

also allosterically on the H1 face. Using molecular dynamics simulations, we show that 

allosteric inhibition is achieved through changes in H1 face fluctuations. Thus, much like 

with KIX, inhibition of dynamic coactivators can be achieved through changes in the 

conformational landscape towards micro-states that disfavor binding. This consistency 

between Med25 and KIX — two coactivators that are structurally distinct from one another 

— builds on our understanding of this class of proteins (i.e. coactivators) and highlights 

how druggability can be achieved through targeting dynamic substructures on a protein 

to alter overall dynamics.   
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3.4 Materials and methods  
Modeling experimental  

The objectives of our modeling efforts were to predict an ensemble of putative 

structures for binding of the two activators, VP16 and ERM, tethered to the Med25 AcID 

domain C506 via a disulfide Tether. Our modeling was initiated from the published NMR 

coordinates for Med25 AcID (PDB 2XNF).7 The protein structure of Med25 AcID was 

prepared for simulation in CHARMM using the Multiscale Modeling Tools for Structural 

Biology (MMTSB).31–33 Activators have been shown to typically form a helical 

conformational states when in complex with coactivators, so both peptides were 

constructed in CHARMM as a contiguous helix, which were then bonded using the DISU 

patch in CHARMM to Med25C506 through the formation of a disulfide bond. Prior to running 

the implicit solvent simulations, Med25 was fixed using harmonic restraints, and the 

complex was minimized with 1000 steps of a steepest descent algorithm. Using GBSW 

implicit solvent,34,35 temperature replica exchange17 was implemented using the 

CHARMM22 force field. These simulations were run for a total of 60 ns (2 fs time steps) 

using 12 replicas, sampling between 280-500 K and attempting coordinate exchanges 

every 5000 steps. The 12 replica trajectories were sorted by their respective 

temperatures, and the last 40 ns of the 280 K trajectories were then parsed into 4000 

coordinate files. The MMTSB tool cluster.pl was used to cluster these structures, using 

K-means clustering36 with 1.5 Å RMSD cutoff for the superposed Ca backbone atoms for 

all of the structures. The root-mean-square fluctuations (RMSF) for the last 40 ns of the 

280 K trajectory were calculated for each Med25 AcID residue by superposing Ca atoms 

of the coordinate files produced from the simulations.   

Norstictic acid was parameterized using CGENFF, which was then covalently 

linked to Med25 K519 through a PATCH that was created in CHARMM, with the 

molecules oriented out into space to allow for full, unbiased exploration around the protein 

before binding. The system was solvated using TIP3P water molecules as well as 100 

mM NaCl using the MMTSB toolset so that the linked complex was in a cubic box with a 

minimum cutoff distance being 10 Å from the box edges. Simulations were unbiased 

molecular dynamics simulations using the CHARMM36 and CGENFF force fields for 100 

ns of sampling at 298 K after allowing for 2 ns of equilibration of the system. The 
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simulation was run in the NVT ensemble using the Langevin dynamics algorithm with a 

friction coefficient of 5 ps-1. The SHAKE algorithm was used to fix bond lengths during 

simulations. PME and vswitch were used for nonbonded interactions with a 12 Å cutoff. 

All molecular dynamics were performed using GPUs through the CHARMM compatible 

OpenMM interface. Five independent trials of simulations were performed for each 

molecule.  

 
Peptide synthesis and preparation 

The peptides listed in Table 3.1 were prepared following standard FMOC solid-

phase synthesis methods on a Liberty Blue Microwave Synthesizer (CEM). FMOC 

deprotections were completed by suspending the resin in 20% piperidine (ChemImpex) 

in DMF supplemented with 0.2 M Oxyma Pure (CEM) and irradiating under variable power 

to maintain a temperature of 90 °C for 60 seconds. Coupling reactions were completed 

by combining the amino acid (5 eq relative to resin; CEM, ChemImpex, and 

NovaBiochem), diisopropylcarbodiimide (7 eq, ChemImpex), and Oxyma Pure (5 eq) in 

DMF and irradiating under variable power to maintain a temperature of 90 °C for 4 

minutes. The resin was rinsed four times with an excess of DMF between all deprotection 

and coupling steps. N-terminal addition of fluoresceine isothiocyanate (FITC) residue was 

conducted by adding 1.2 eq in 5% diisopropylethylamine in dimethyl formamide for 18 

hours at RT.  

 
Table 3.1. Sequences of peptides used in experiments.   

Entry Peptide Sequence 
1 VP16 

(438-
490) 

AcALDDFDLDMLGDGDSPGPGFTPHDSAPYGALDMADFEFEQMFTDAL 
GIDEYGG 

2 ERM 
(38-68) 

AcDLAHDSEELFQDLSQLQEAWLAEAQVPDDEQ 

3 4-DMN-
VP16 
(438-
490) 

4-DMN-bAla-
DALDDFDLDMLGDGDSPGPGFTPHDSAPYGALDMADFEFEQMFTDALG 
IDEYGG 

4 4-DMN-
ERM 
(38-68) 

4-DMN-bAla-DLAHDSEELFQDLSQLQEAWLAEAQVPDDEQ 
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5 VP16 
(438-
454) 
D441C* 

AcY-bAla-ALDCFDLDMLGDGDSPG 

6 VP16 
(438-
454) 
F442C* 

AcY-bAla-ALDDCDLDMLGDGDSPG 

7 VP16 
(438-
454) 
D443C* 

AcY-bAla-ALDDFCLDMLGDGDSPG 

8 VP16 
(438-
454) 
L444C* 

AcY-bAla-ALDDFDCDMLGDGDSPG 

9 VP16 
(438-
454) 
D445C* 

AcY-bAla-ALDDFDLCMLGDGDSPG 

10 VP16 
(438-
454) 
M446C* 

AcY-bAla-ALDDFDLDCLGDGDSPG 

11 VP16 
(438-
454) 
L447C* 

AcY-bAla-ALDDFDLDMCGDGDSPG 

12 VP16 
(438-
454) 
G448C* 

AcY-bAla-ALDDFDLDMLCDGDSPG 

13 VP16 
(438-
454) 
D449C* 

AcY-bAla-ALDDFDLDMLGCGDSPG 

14 VP16 
(438-
454) 
G450C* 

AcY-bAla-ALDDFDLDMLGDCDSPG 

15 VP16 
(438-
454) 
D451C* 

AcY-bAla-ALDDFDLDMLGDGCSPG 

16 VP16 
(438-
454) 
S452C* 

AcY-bAla-ALDDFDLDMLGDGDCPG 

17 VP16 
(438-

AcY-bAla-ALDDFDLDMLGDGDSCG 
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454) 
P453C* 

    18 VP16 
(438-
454) 
G454C* 

AcY-bAla-ALDDFDLDMLGDGDSPC 

  19 VP16 
(465-
490) 

FITC--bAla-YGALDMADFEFEQMFTDALGIDEYGG 

  20 ETV5 
(38-68) 

FITC-βA-ALDMADFEFEQMFTDALG 

  21 ATF6a 
(40-66) 

FITC-βA-DTDELQLEAANETYENNFDNLDFDLDLM 

  22 MLL 
(840-
858) 

FITC-βA- DCGNILPSDIMDFVLKNTP 

  23 Myb 
(291-
316) 

FITC-βA-KEKRIKELELLLMSTENELKGQQVLP 

  24 IBiD 
(2063-
2111) 

Ac-
SPSALQDLLRTLKSPSSPQQQQQVLNILKSNPQLMAAFIKQRTAKYVAN 

  25 ACTR 
(1041-
1088) 

FITC-βA- 
PSNLEGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQAL 

 26 HIF1a 
(786-
826) 

FITC-βA-SMDESGLPQLTSYDCEVNAPIQGSRNLLQGEELLRALDQVN 

*The cysteine thiol has been converted to a mixed disulfide with 2-aminoethanethiol. 

 
At the conclusion of the syntheses, peptides listed in entry numbers 1, 2, and 5-18 

underwent a final FMOC deprotection and were treated with acetic anhydride (Fisher 

Scientific) in the presence of triethylamine (Fisher Scientific) to acetylate the amino 

terminus. At the conclusion of synthesis for entries 3 and 4, an additional coupling was 

carried out with 4-N,N-dimethylamino- 1,8-napththalimide (4-DMN) linked to b-alanine 

prior to cleavage. Peptides were cleaved from resin with 95% trifluoroacetic acid (Sigma 

Aldrich), 2.5% H2O, 2.5% triisopropylsilane (Sigma Aldrich) and filtered. The resulting 

solution was concentrated, and the peptide then precipitated by addition of cold diethyl 

ether. After filtration the solid was dissolved in 3:1 100 mM ammonium acetate (pH 7.0, 

Fisher Scientific) and acetonitrile with minimal ammonium hydroxide to fully solubilize the 

peptide. Purification was accomplished by reversed- phase HPLC on an Agilent 1260 

Series instrument with a 250 x 10 mm Luna Omega 5 μm PS C18 column (Phenomenex) 
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using a gradient elution of acetonitrile in 100 mM ammonium acetate (pH 7.0). Gradient 

conditions are included in the legends of the analytical traces for each peptide found at 

the end of this document. Final purity was assessed by analytical HPLC and peptide 

identity was confirmed via mass spectrometry under negative mode ionization conditions 

(Agilent Q- TOF). Purified peptides were reconstituted in a minimal volume of DMSO and 

quantified by UV/Vis spectroscopy using either tyrosine absorbance at 280 nm 

(ε280=1280 M-1 cm-1) or 4-DMN absorbance at 450 nm (ε450=10,800 M-1 cm-1). The 4-

DMN extinction coefficient was measured by serial dilution of a known concentration of 

4-DMN-β-Ala-OtBu in identical conditions as the measurement of peptide concentrations.  

 
Preparation of disulfide-capped peptides for Tethering experiments  

The VP16-derived cysteine mutants (Table 3.1, Entries 5-18) were cleaved from 

resin and following ether precipitation were dissolved in minimal 1:1 DMSO:H2O solution 

followed by the addition of 10 eq of cystamine•HCl (Fisher Scientific), 30 eq of 

diisopropylethylamine, and 1 eq of cysteamine (Fisher Scientific). The resulting solution 

was incubated at room temperature for 18 h on a rotating carousel. Solvent was removed 

by lyophilization and peptides were resuspended in 3:1 100 mM ammonium acetate (pH 

7.0):acetonitrile for HPLC purification. Purified peptides were dissolved in a minimal 

volume of DMSO, quantified by UV/Vis spectroscopy using tyrosine absorbance at 280 

nm (ε280=1280 M-1 cm-1), and stored at -20 °C.  

 
Plasmids for protein expression  

The Med25 expression plasmid pET21b-Med25(394-543)-His6 was generously 

provided by Prof. Patrick Cramer.7 Variants of pET21b-Med25(394-543)-His6 were 

prepared using site directed mutagenesis, as previously described, with the primers 

indicated in Table 3.2.37 Plasmid sequence identity was confirmed via standard Sanger 

sequencing methods on an Applied Biosystems 3730xl DNA Analyzer at the University of 

Michigan DNA Sequencing Core and analyzed using SeqMan Pro from the Lasergene 

DNASTAR software suite. 
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Table 3.2. Primers used for site-directed mutagenesis of Med25 AcID. 

Plasmid Primer sequence  
pET21b-
Med25(394- 
543)C506A-
His6 

F: TCCCCCCACGGCGCCCGCCGAGGTGCGCGTGCTCATG 
R: CATGAGCACGCGCACCTCGGCGGGCGCCGTGGGGGGA 

pET21b-
Med25(394- 
543)C497A-
His6 

F: GGCCAACGGCTTCGCGGGCGCCGTGCACTTCCCCACACG 
R: CGTGTGGGGAAGTGCACGGCGCCCGCGAAGCCGTTGCC 

pET21b-
Med25(394-
543)K518R-
His6 

F:  
TCATGCTCCTGTACTCGTCCAGGAAGAAGATCTTCATGGGCCT
CATCCC 
R: 
GGGATGAGGCCCATGAAGATCTTCTTCCTGGACGAGTACAGG
AGCATGA 

pET21b-
Med25(394-
543)K519R-
His6 

F: 
TCATGCTCCTGTACTCGTCCAAGAGGAAGATCTTCATGGGCCT
CATCCC 
R: 
GGGATGAGGCCCATGAAGATCTTCCTCTTGGACGAGTACAGG
AGCATGA 

pET21b-
Med25(394-
543)K520R-
His6 

F: 
TCATGCTCCTGTACTCGTCCAAGAAGAGGATCTTCATGGGCCT
CATCCC 
R: 
GGGATGAGGCCCATGAAGATCCTCTTCTTGGACGAGTACAGG
AGCATGA 

pET21b-
Med25(394-
543)KK518RR-
His6 

F: 
TCATGCTCCTGTACTCGTCCAGGAGGAAGATCTTCATGGGCCT
CATCCC 
R: 
GGGATGAGGCCCATGAAGATCTTCCTCCTGGACGAGTACAGG
AGCATGA 

pET21b-
Med25(394-
543)KKK518RR
R-His6 

F: 
TCATGCTCCTGTACTCGTCCAGGAGGAGGATCTTCATGGGCC
TCATCCC 
R: 
GGGATGAGGCCCATGAAGATCCTCCTCCTGGACGAGTACAGG
AGCATGA 
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pET21b-
Med25(394-
543)K411R/K41
3R-His6 

F: 
GGGGTCCTGGAGTGGCAAGAGAGACCCAGACCTGCCTCAGT
GGATGCCAAC 
R: 
GTTGGCATCCACTGAGGCAGGTCTGGGTCTCTCTTGCCACTC
CAGGACCCC 

 

Protein expression 

Wild-type Med25(394-543) and variants were expressed in E. coli Rosetta pLysS 

cells (EMD Millipore) using standard protocols.2 Briefly, overnight starter cultures (50 mL) 

were grown in LB (Research Products International) in the presence of 1 mg/mL ampicillin 

(Gold Bio Technology) and 0.034 mg/mL chloramphenicol (Sigma Aldrich) at 37 °C at 150 

RPM. Following overnight growth, 1 L of terrific broth (12 g tryptone, 24 g yeast extract, 

4 mL glycerol, 100 mL 0.17M KH2PO4/0.72M K2HPO4, 900 mL water) supplemented 

with 1 mg/mL ampicillin and 0.034 mg/mL chloramphenicol was inoculated with 5 mL of 

the overnight culture and grown at 37 °C to an OD of 0.8, at which point the incubator 

temperature was lowered to 21 °C and isopropyl β-D-1-thiogalactopyranoside (IPTG, 

Research Products International) was added to a final concentration of 0.5 mM to induce 

protein expression. Agitation at 150 RPM was continued for 18 hours. Cells were 

harvested via centrifugation at 6500 RPM for 20 minutes, snap frozen in liquid nitrogen, 

and stored at -80 °C. 

To isolate and purify Med25 AcID and mutants, frozen cell pellets were 

resuspended in lysis buffer (50 mM phosphate, 300 mM NaCl, 10 mM imidazole, pH 6.5, 

0.7 µL/mL b-ME) and lysed by sonication. Cellular debris was then pelleted by 

centrifugation for 20 min at 10,000 rpm. The supernatant was filtered using a 0.45 µm 

syringe filter (CellTreat) and loaded directly on an AKTA Pure FPLC equipped with a Ni 

column (HisTrap HP, GE Healthcare) using a gradient of Buffer A (50 mM sodium 

phosphate, 300 mM NaCl, and 30 mM imidazole, pH 6.8) to Buffer B (50 mM sodium 

phosphate, 300 mM NaCl, and 400 mM imidazole, pH 6.8) over ten column volumes. 

AcID-containing fractions were pooled and underwent a second purification via cation 

exchange (HiTrap SP HP, GE Healthcare) with a gradient of Buffer A (50 mM sodium 

phosphate, 1 mM DTT, pH 6.8) to Buffer B (50 mM sodium phosphate, 1 mM DTT, 1M 
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NaCl, pH 6.8) over fifteen column volumes. Pooled fractions containing purified protein 

were dialyzed into storage buffer (10 mM NaPO4, 50 mM NaCl, pH 6.8). Following 

dialysis, protein was concentrated via Amicon 5,000 Da cutoff spin concentrator and 

quantified via UV/Vis spectroscopy on a NanoDrop at 280 nm using an extinction 

coefficient, e = 22,460 M-1cm-1. Protein identity was confirmed via mass spectrometry 

(Agilent Q-TOF) and purity was assessed by SDS-PAGE on a 4-12% bis-tris gel stained 

using Quick Coomassie (Anatrace).  

For isotopically labeled protein, Rosetta pLysS cells bearing the appropriate 

expression plasmid were grown in LB at 37 °C for 18 hrs.  The resulting cells were pelleted 

via centrifugation for 10 minutes at 2500 RPM and the LB was decanted. Cell pellets were 

resuspended in 20 mL M9 minimal media followed by centrifugation for 10 mins at 2500 

RPM. M9 media was decanted and the washed pellet resuspended in 10 mL M9 media. 

5 mL of suspended cells were then used to inoculate a 1 L expression flask containing 

M9 media supplemented with Bioexpress (6 mL/L, Cambridge Isotopes) and containing 

the appropriate isotopically labeled reagents (1 g/L 15NH4Cl or 1 g/L 15NH4Cl and 13C D-

glucose, Cambridge Isotopes). Isotopically labeled protein was isolated and purified as 

described above, with the exception of the storage buffer used for dialysis (20 mM NaPO4, 

150 mM NaCl, pH 6.5).  

 

NMR Analyses of Activator–AcID Complexes 
1H,15N HSQC experiments of activator–AcID complexes were performed on a 

Bruker Avance III 600 MHz spectrometer equipped with a cryogenic probe at 30 °C. 

Titrations were conducted with Med25 AcID (20 mM NaPO4, 150 mM NaCl, pH 6.5, 5% 

D2O) at 50 μM, and acetylated peptides were added at 0, 0.2, 0.5, 0.8, 1.1, 2, and 3 eq 

with a 2% final DMSO concentration. Control spectra were obtained with Med25 AcID 

and DMSO only. Tethered activator–AcID complexes were prepared as previously 

described.15 Data processing and visualization was performed using NMR Pipe and 

Sparky.38 
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Peptide Tethering 

VP16-AcID tethered complexes were prepared by incubating 10 µM Med25 AcID 

with 4 eq of individual disulfide-capped VP16 peptides (3.1, Entries 5-18) and 2 eq of b-

mercaptoethanol (b-ME) for 4 hours at room temperature in protein storage buffer (10 mM 

NaPO4, 100 mM NaCl, pH 6.8). Immediately following the 4 hour incubation, labeling 

efficiency was determined via mass spectrometric analysis of an aliquot of each reaction 

on an Agilent Q-TOF and comparing the spectral peak heights of unlabeled Med25 AcID, 

the Med25 AcID-b-ME adduct, and the tethered Med25 AcID-VP16 complex using the 

following equation: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑙𝑎𝑏𝑒𝑙𝑒𝑑	 = 	
𝑀𝑒𝑑25	𝐴𝑐𝐼𝐷23$4

𝑀𝑒𝑑25	𝐴𝑐𝐼𝐷5!6+78689	+	𝑀𝑒𝑑25	𝐴𝑐𝐼𝐷	b;1< +	𝑀𝑒𝑑25	𝐴𝑐𝐼𝐷	23$4
	𝑥	100 

 

Transient kinetic experiments 

Stopped-flow kinetic assays were performed on a Kintek SF-2001 stopped-flow 

apparatus equipped with a 100-W Xe arc lamp in two-syringe mode. The 4-DMN 

fluorophore was excited at 440 nm and its emission was monitored at wavelengths >510 

nm, using a long-pass filter (Corion). All experiments were run at 10 °C in stopped-flow 

buffer (10 mM sodium phosphate, 100 mM NaCl, 1% glycerol, 0.001% NP-40, pH 6.8), 

and the solutions were equilibrated in the instrument for at least 5 min before experiments 

were performed. Concentrations reported are after mixing. All kinetic traces reported are 

an average of 20-80 individual traces. A series of exponential equations were fit to the 

transient kinetic time courses, F(t) as in the equation below, to obtain the fluorescence 

amplitudes (Fn) and the observed rate constants (kobs) for each exponential phase, where 

F(0) is the initial fluorescence intensity and t is time. 

𝐹(𝑡) = 𝐹(0) +]𝐹! × (1 − 𝑒;="#$,&×&) 

Association experiments were performed by mixing excess Med25 with a constant 

concentration of labeled activator. Dissociation experiments were performed by 

precomplexing Med25 with the labeled activator and mixing with an excess of the 

corresponding unlabeled activator. The concentrations of labeled activators for 

association experiments were as follows 50 nM VP16 and 250 nM ERM.  
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Calculation of microscopic rate constants  

In previous work, a Taylor series approximation of the exact equation for a two-

step association mechanism was used.20,21 However, here the kinetics did not meet the 

requirements to use this approximation (i.e., sufficient time-domain separation of the two 

phases at the limit of zero Med25). Instead, because two phases were observed, the 

exact expression for a dissociation experiment (below) was utilized to calculate all first-

order microscopic rate constants. 

 

𝑘?7.,?AA,$,% =
𝑘?AA + 𝑘A + 𝑘B ± `(𝑘?AA + 𝑘A + 𝑘B)% − 4 × 𝑘?AA × 𝑘B

2  

 

Because kobs,2,max is the sum of kf and kr, koff is simply the sum of the two observed off-

rate constants minus kobs,2,max: 

 

𝑘?AA = 𝑘?7.,?AA,$ + 𝑘?7.,?AA,% − 𝑘?7.,%,C+, 

 

A value for kr can also be easily resolved from the exact expression, by first subtracting 

the two observed off-rate constants and then substituting observable parameters and 

rearranging: 

 

𝑘?7.,?AA,$ − 𝑘?7.,?AA,% = N(𝑘?AA + 𝑘A + 𝑘B)% − 4 × 𝑘?AA × 𝑘B

= N(𝑘?7.,?AA,$ + 𝑘?7.,?AA,%)% − 4 × (𝑘?7.,?AA,$ + 𝑘?7.,?AA,% − 𝑘?7.,%,C+,) × 𝑘B 

 

 

𝑘B =
(𝑘?7.,?AA,$ + 𝑘?7.,?AA,%)% − (𝑘?7.,?AA,$ − 𝑘?7.,?AA,%)%

4 × (𝑘?7.,?AA,$ + 𝑘?7.,?AA,% − 𝑘?7.,%,C+,)
 

kr is then simply obtained by subtracted the calculated value of kr from kobs,2,max. To 

validate this model, a subset of kinetic transients were globally fit using the calculated 

microscopic rate constants as constraints with Kintek Explorer. Here, the rate constants 

were constrained to the calculated values and fitted fluorescence values for each state 
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along with small scaling factors to account for variations in lamp intensity. Good fits were 

found for the data, further supporting the proposed mechanisms and values.  

 

Direct binding and competition experiments  

 Direct binding and competition experiments were performed using fluorescence 

polarization. Low volume, non-binding black 384-well plates (Corning) were used and 

fluorescence polarization was measured using a PHERAStar multi-mode plate reader 

with polarized excitation at 485 nm and emission intensity measured through a parallel 

and perpendicularly polarized 535 nm filters. Data was analyzed using GraphPad Prism 

5.0. For direct binding experiments, a binding isotherm that accounts for ligand depletion 

(assuming a 1:1 binding model of peptide to AcID) was fit to the observed polarization 

values as a function of protein concentration to obtain the apparent equilibrium 

dissociation, Kd: 

𝑦 = 𝑐 + (𝑏 − 𝑐) ×
(𝐾9 + 𝑎 + 𝑥) − `(𝐾9 + 𝑎 + 𝑥)% − 4𝑎𝑥

2𝑎  

“a” and “x” are the total concentrations of fluorescent peptide and protein, respectively, 

“y” is the observed anisotropy at a given protein concentration, “b” is the maximum 

observed anisotropy value, and “c” is the minimum observed anisotropy value. Each data 

point is an average of three independent experiments with the indicated error 

representing the standard deviation of the three replicates. For competition experiments, 

curves were fit with a non-linear regression using the built-in equation “log(inhibitor) vs 

response – variable slope” from which the IC50 value was calculated.  

 

High-throughput screening  

Assays were performed in a final volume of 20 µL in a low volume, non-binding, 

black 384-well plate (Corning) and read by plate reader (Pherastar) with polarized 

excitation at 485 nm and emission intensity measured through parallel and 

perpendicularly polarized 535 nm filters. Optimization of fluorescence polarization assay 

for high throughput was conducted by testing stability of the VP16(465-490)•AcID 

interaction (Kd) over time, with combinations of DMSO and NP-40. The assay shows little 

variance in affinity over time, up to 20 hours as well as tolerance to DMSO (5%) and NP-
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40 (0.001%). 4046 compounds were tested from the MS Spectrum 2000, Focused 

Collections, and BioFocus NCC libraries, which include known bioactive molecules, 

secondary metabolites, natural products, and FDA approved drugs. 200 nL of each 

compound in DMSO was first plated, followed by addition of 10 µL FITC-VP16(465-490). 

The compounds were then tested for fluorescence quenching before 10 µL of Med25 

AcID protein was added. Plates were incubated for thirty minutes at room temperature 

and read by plate reader, as described above with gain settings determined based on a 

well from columns 23-24 (tracer only).  Final concentration of AcID protein was 850 nM, 

final concentration of FITC-VP16(465-490) was 20 nM, and compounds were assayed at 

a concentration of 20 µM with a final DMSO concentration of 1% v/v. Data was published 

to and analyzed using MScreen (http://mscreen.lsi.umich.edu). 

The primary screening campaign had an average Z’ score of 0.87, indicating an 

excellent assay, and a 1.6% hit rate. For the purposes of this screen, a hit was defined 

as any compound that resulted in inhibition greater than three standard deviations above 

the negative control, which corresponded to approximately ten percent inhibition. 

Following the primary screen, hits were filtered and compounds with known chemically 

reactive properties as well as those compounds that demonstrated native fluorescence 

greater than ten percent of the fluorescence produced by the tracer were removed. 

 

Mass spectrometry analysis of covalent adducts  

Protein (Med25 WT and mutants) was diluted to a concentration of 20 µM using 

storage buffer (10 mM phosphate, 50 mM NaCl, 10% v/v glycerol, 0.001% v/v NP-40, pH 

6.8). Norstictic acid was added to the diluted protein to a final concentration of 20 µM (1 

equivalent). Samples were incubated for 30 minutes at room temperature with gentle 

mixing on an orbital shaker. Samples were analyzed by mass spectrometry using an 

Agilent QToF LC/MS equipped with a Poroshell 300SB C8 reverse-phased column using 

a gradient of 5-100% acetonitrile with 0.1% formic acid in water with 0.1% formic acid 

over five minutes. Analysis of data was completed using the Agilent Qualitative Analysis 

Program with background subtraction and deconvolution settings for an intact protein of 

10,000- 30,000 Da.   

 



 92 

3.5 References  
(1)  Conaway, R. C.; Sato, S.; Tomomori-Sato, C.; Yao, T.; Conaway, J. W. The 

Mammalian Mediator Complex and Its Role in Transcriptional Regulation. Trends 
Biochem. Sci. 2005, 30 (5), 250–255. https://doi.org/10.1016/j.tibs.2005.03.002. 

(2)  Taatjes, D. J. The Human Mediator Complex: A Versatile, Genome-Wide 
Regulator of Transcription. Trends Biochem. Sci. 2010, 35 (6), 315–322. 
https://doi.org/10.1016/j.tibs.2010.02.004. 

(3)  Cantin, G. T.; Stevens, J. L.; Berk, A. J. Activation Domain–Mediator Interactions 
Promote Transcription Preinitiation Complex Assembly on Promoter DNA. Proc. 
Natl. Acad. Sci. 2003, 100 (21), 12003–12008. 
https://doi.org/10.1073/pnas.2035253100. 

(4)  Yin, J.; Wang, G. The Mediator Complex: A Master Coordinator of Transcription 
and Cell Lineage Development. Dev. Camb. Engl. 2014, 141 (5), 977–987. 
https://doi.org/10.1242/dev.098392. 

(5)  Ansari, S. A.; Morse, R. H. Selective Role of Mediator Tail Module in the 
Transcription of Highly Regulated Genes in Yeast. Transcription 2012, 3 (3), 110–
114. https://doi.org/10.4161/trns.19840. 

(6)  Mittler, G.; Stühler, T.; Santolin, L.; Uhlmann, T.; Kremmer, E.; Lottspeich, F.; 
Berti, L.; Meisterernst, M. A Novel Docking Site on Mediator Is Critical for 
Activation by VP16 in Mammalian Cells. EMBO J. 2003, 22 (24), 6494–6504. 
https://doi.org/10.1093/emboj/cdg619. 

(7)  Vojnic, E.; Mourão, A.; Seizl, M.; Simon, B.; Wenzeck, L.; Larivière, L.; Baumli, S.; 
Baumgart, K.; Meisterernst, M.; Sattler, M.; Cramer, P. Structure and VP16 
Binding of the Mediator Med25 Activator Interaction Domain. Nat. Struct. Mol. 
Biol. 2011, 18 (4), 404–409. https://doi.org/10.1038/nsmb.1997. 

(8)  Sela, D.; Conkright, J. J.; Chen, L.; Gilmore, J.; Washburn, M. P.; Florens, L.; 
Conaway, R. C.; Conaway, J. W. Role for Human Mediator Subunit MED25 in 
Recruitment of Mediator to Promoters by Endoplasmic Reticulum Stress-
Responsive Transcription Factor ATF6α *. J. Biol. Chem. 2013, 288 (36), 26179–
26187. https://doi.org/10.1074/jbc.M113.496968. 

(9)  Landrieu, I.; Verger, A.; Baert, J.-L.; Rucktooa, P.; Cantrelle, F.-X.; Dewitte, F.; 
Ferreira, E.; Lens, Z.; Villeret, V.; Monté, D. Characterization of ERM 
Transactivation Domain Binding to the ACID/PTOV Domain of the Mediator 
Subunit MED25. Nucleic Acids Res. 2015, 43 (14), 7110–7121. 
https://doi.org/10.1093/nar/gkv650. 

(10)  Verger, A.; Baert, J.-L.; Verreman, K.; Dewitte, F.; Ferreira, E.; Lens, Z.; de 
Launoit, Y.; Villeret, V.; Monté, D. The Mediator Complex Subunit MED25 Is 
Targeted by the N-Terminal Transactivation Domain of the PEA3 Group 
Members. Nucleic Acids Res. 2013, 41 (9), 4847–4859. 
https://doi.org/10.1093/nar/gkt199. 

(11)  Bontems, F.; Verger, A.; Dewitte, F.; Lens, Z.; Baert, J.-L.; Ferreira, E.; Launoit, Y. 
de; Sizun, C.; Guittet, E.; Villeret, V.; Monté, D. NMR Structure of the Human 
Mediator MED25 ACID Domain. J. Struct. Biol. 2011, 174 (1), 245–251. 
https://doi.org/10.1016/j.jsb.2010.10.011. 

(12)  Eletsky, A.; Ruyechan, W. T.; Xiao, R.; Acton, T. B.; Montelione, G. T.; Szyperski, 
T. Solution NMR Structure of MED25(391–543) Comprising the Activator-



 93 

Interacting Domain (ACID) of Human Mediator Subunit 25. J. Struct. Funct. 
Genomics 2011, 12 (3), 159. https://doi.org/10.1007/s10969-011-9115-1. 

(13)  Teilum, K.; Kunze, M. B. A.; Erlendsson, S.; Kragelund, B. B. (S)Pinning down 
Protein Interactions by NMR. Protein Sci. Publ. Protein Soc. 2017, 26 (3), 436–
451. https://doi.org/10.1002/pro.3105. 

(14)  Milbradt, A. G.; Kulkarni, M.; Yi, T.; Takeuchi, K.; Sun, Z.-Y. J.; Luna, R. E.; 
Selenko, P.; Näär, A. M.; Wagner, G. Structure of the VP16 Transactivator Target 
in the Mediator. Nat. Struct. Mol. Biol. 2011, 18 (4), 410–415. 
https://doi.org/10.1038/nsmb.1999. 

(15)  Sadowsky, J. D.; Burlingame, M. A.; Wolan, D. W.; McClendon, C. L.; Jacobson, 
M. P.; Wells, J. A. Turning a Protein Kinase on or off from a Single Allosteric Site 
via Disulfide Trapping. Proc. Natl. Acad. Sci. 2011, 108 (15), 6056–6061. 
https://doi.org/10.1073/pnas.1102376108. 

(16)  Liu, P.; Kim, B.; Friesner, R. A.; Berne, B. J. Replica Exchange with Solute 
Tempering: A Method for Sampling Biological Systems in Explicit Water. Proc. 
Natl. Acad. Sci. 2005, 102 (39), 13749–13754. 
https://doi.org/10.1073/pnas.0506346102. 

(17)  Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for 
Protein Folding. Chem. Phys. Lett. 1999, 314 (1), 141–151. 
https://doi.org/10.1016/S0009-2614(99)01123-9. 

(18)  Kim, J.; Straub, J. E.; Keyes, T. Replica Exchange Statistical Temperature 
Molecular Dynamics Algorithm. J. Phys. Chem. B 2012, 116 (29), 8646–8653. 
https://doi.org/10.1021/jp300366j. 

(19)  Dyson, H. J.; Wright, P. E. Role of Intrinsic Protein Disorder in the Function and 
Interactions of the Transcriptional Coactivators CREB-Binding Protein (CBP) and 
P300. J. Biol. Chem. 2016, 291 (13), 6714–6722. 
https://doi.org/10.1074/jbc.R115.692020. 

(20)  Johnson, K. A. Rapid Kinetic Analysis of Mechanochemical 
Adenosinetriphosphatases. Methods Enzymol. 1986, 134, 677–705. 
https://doi.org/10.1016/0076-6879(86)34129-6. 

(21)  Wands, A. M.; Wang, N.; Lum, J. K.; Hsieh, J.; Fierke, C. A.; Mapp, A. K. 
Transient-State Kinetic Analysis of Transcriptional Activator·DNA Complexes 
Interacting with a Key Coactivator. J. Biol. Chem. 2011, 286 (18), 16238–16245. 
https://doi.org/10.1074/jbc.M110.207589. 

(22)  Wang, N.; Lodge, J. M.; Fierke, C. A.; Mapp, A. K. Dissecting Allosteric Effects of 
Activator–Coactivator Complexes Using a Covalent Small Molecule Ligand. Proc. 
Natl. Acad. Sci. 2014, 111 (33), 12061–12066. 
https://doi.org/10.1073/pnas.1406033111. 

(23)  Shammas, S. L.; Travis, A. J.; Clarke, J. Remarkably Fast Coupled Folding and 
Binding of the Intrinsically Disordered Transactivation Domain of CMyb to CBP 
KIX. J. Phys. Chem. B 2013, 117 (42), 13346–13356. 
https://doi.org/10.1021/jp404267e. 

(24)  Shammas, S. L.; Travis, A. J.; Clarke, J. Allostery within a Transcription 
Coactivator Is Predominantly Mediated through Dissociation Rate Constants. 
Proc. Natl. Acad. Sci. 2014, 111 (33), 12055–12060. 
https://doi.org/10.1073/pnas.1405815111. 



 94 

(25)  Gianni, S.; Morrone, A.; Giri, R.; Brunori, M. A Folding-after-Binding Mechanism 
Describes the Recognition between the Transactivation Domain of c-Myb and the 
KIX Domain of the CREB-Binding Protein. Biochem. Biophys. Res. Commun. 
2012, 428 (2), 205–209. https://doi.org/10.1016/j.bbrc.2012.09.112. 

(26)  Dogan, J.; Schmidt, T.; Mu, X.; Engström, Å.; Jemth, P. Fast Association and 
Slow Transitions in the Interaction between Two Intrinsically Disordered Protein 
Domains*. J. Biol. Chem. 2012, 287 (41), 34316–34324. 
https://doi.org/10.1074/jbc.M112.399436. 

(27)  Hilser, V. J.; Thompson, E. B. Intrinsic Disorder as a Mechanism to Optimize 
Allosteric Coupling in Proteins. Proc. Natl. Acad. Sci. 2007, 104 (20), 8311–8315. 
https://doi.org/10.1073/pnas.0700329104. 

(28)  Schrank, T. P.; Bolen, D. W.; Hilser, V. J. Rational Modulation of Conformational 
Fluctuations in Adenylate Kinase Reveals a Local Unfolding Mechanism for 
Allostery and Functional Adaptation in Proteins. Proc. Natl. Acad. Sci. 2009, 106 
(40), 16984–16989. https://doi.org/10.1073/pnas.0906510106. 

(29)  Currie, S. L.; Doane, J. J.; Evans, K. S.; Bhachech, N.; Madison, B. J.; Lau, D. K. 
W.; McIntosh, L. P.; Skalicky, J. J.; Clark, K. A.; Graves, B. J. ETV4 and AP1 
Transcription Factors Form Multivalent Interactions with Three Sites on the 
MED25 Activator-Interacting Domain. J. Mol. Biol. 2017, 429 (20), 2975–2995. 
https://doi.org/10.1016/j.jmb.2017.06.024. 

(30)  Tompa, P.; Fuxreiter, M. Fuzzy Complexes: Polymorphism and Structural 
Disorder in Protein-Protein Interactions. Trends Biochem. Sci. 2008, 33 (1), 2–8. 
https://doi.org/10.1016/j.tibs.2007.10.003. 

(31)  Brooks, B. R.; Brooks III, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, 
B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, 
Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, 
K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, 
J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; 
York, D. M.; Karplus, M. CHARMM: The Biomolecular Simulation Program. J. 
Comput. Chem. 2009, 30 (10), 1545–1614. https://doi.org/10.1002/jcc.21287. 

(32)  MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, 
M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; 
Kuczera, K.; Lau, F. T.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; 
Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; 
Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-Atom 
Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. 
Phys. Chem. B 1998, 102 (18), 3586–3616. https://doi.org/10.1021/jp973084f. 

(33)  Feig, M.; Karanicolas, J.; Brooks III, C. L. MMTSB Tool Set: Enhanced Sampling 
and Multiscale Modeling Methods for Applications in Structural Biology. J. Mol. 
Graph. Model. 2004, 22 (5), 377–395. https://doi.org/10.1016/j.jmgm.2003.12.005. 

(34)  Im, W.; Lee, M. S.; Brooks III, C. L. Generalized Born Model with a Simple 
Smoothing Function. J. Comput. Chem. 2003, 24 (14), 1691–1702. 
https://doi.org/10.1002/jcc.10321. 

(35)  Chen, J.; Im, W.; Brooks III, C. L. Balancing Solvation and Intramolecular 
Interactions. J. Am. Chem. Soc. 2006, 128 (11), 3728–3736. 
https://doi.org/10.1021/ja057216r. 



 95 

(36)  Karpen, M. E.; Tobias, D. J.; Brooks III, C. L. Statistical Clustering Techniques for 
the Analysis of Long Molecular Dynamics Trajectories: Analysis of 2.2-Ns 
Trajectories of YPGDV. Biochemistry 1993, 32 (2), 412–420. 

(37)  Pomerantz, W. C.; Wang, N.; Lipinski, A. K.; Wang, R.; Cierpicki, T.; Mapp, A. K. 
Profiling the Dynamic Interfaces of Fluorinated Transcription Complexes for 
Ligand Discovery and Characterization. ACS Chem. Biol. 2012, 7 (8), 1345–1350. 
https://doi.org/10.1021/cb3002733. 

(38)  Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A 
Multidimensional Spectral Processing System Based on UNIX Pipes. J. Biomol. 
NMR 1995, 6 (3), 277–293. https://doi.org/10.1007/BF00197809. 

  



 96 

 
 
 
 

Chapter 4 
TMPRSS2 Inhibitor Discovery Facilitated Through an in silico and Biochemical 

Screening Platform1 
 
Abstract 

The COVID-19 pandemic has highlighted the need for new antiviral targets, as 

many of the currently approved drugs have proven ineffective against mitigating SARS-

CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a highly 

promising antiviral target, as it plays a direct role in priming the spike protein before viral 

entry occurs. Further, unlike other targets such as ACE2, TMPRSS2 has no known 

biological role. Here we utilize virtual screening to curate large libraries into a focused 

collection of potential inhibitors. Optimization of a recombinant expression and purification 

protocol for the TMPRSS2 peptidase domain facilitates subsequent biochemical 

screening and characterization of selected compounds from the curated collection in a 

kinetic assay.  In doing so, we demonstrate that serine protease inhibitors camostat, 

nafamostat, and gabexate inhibit through a covalent mechanism. We further identify new 

non-covalent compounds as TMPRSS2 protease inhibitors, demonstrating the utility of a 

combined virtual and experimental screening campaign in rapid drug discovery efforts.     
 
4.1 Introduction  

The emergence of COVID-19 in late 2019 and the rapid transmission of the 

disease around the globe has prompted an urgent need for effective treatments.1 As with 

many coronoviruses, infection with SARS-CoV-2 requires host cell cooperation; the spike 

(S) protein protruding outside the viral coat requires priming by TMPRSS2, a human 

transmembrane serine protease, for viral entry via the receptor ACE2 (Figure 4.1A).2–5 

 
1 Portions of this chapter were adopted from: Peiffer, A. L.; Garlick, J. M.; Wu, Y.; Soellner, M. B.; Brooks 
III, C. L.; Mapp, A. K. “TMPRSS2 inhibitor discovery facilitated through an in silico and biochemical 
screening platform,” bioRxiv doi:10.1101/2021.03.22.436465 (2021). 
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While many have focused on blocking the interactions between ACE2 and the S protein, 

ACE2 also plays an important role in healthy cell function by counterbalancing ACE to 

lower and maintain healthy blood pressure.6 Alternatively, there is little known about the 

biological function of TMPRSS2, with data suggesting it is likely functionally redundant.7,8 

Along with SARS-CoV-2, TMPRSS2 has been implicated in priming other pathogenic 

coronaviruses such as SARS-CoV and MERS, as well as influenza.9–12 TMPRSS2-/- 

knockout mice have little phenotypic differences compared to wild-type animals, yet 

conferred resistance to viral infections, suggesting that the protein is not essential.13  

Inhibiting transcription of TMPRSS2 via BET inhibitors leads to decreased infectivity of 

SARS-CoV-2 in human lung cells, further suggesting the viability of TMPRSS2 inhibition 

as an antiviral strategy.14 Additionally, as a human protein target rather than a viral protein 

target, TMPRSS2-targeting therapeutics should be less susceptible to drug-resistance 

due to viral mutation. Thus, TMPRSS2 is a desirable drug target for treating SARS-CoV-

2 and future coronavirus infections.   

To date, there are few reported TMPRSS2 inhibitors. Camostat, a compound 

initially discovered as a Matriptase 2 inhibitor, also inhibits TMPRSS2.4,15 Nafamostat and 

gabexate have also been reported to inhibit TMPRSS2. However, both camostat and 

nafamostat inhibit a wide range of serine proteases and are rapidly metabolized in 

mammals to structures with poorly defined activity. 16–18 It has been reported that each of 

these compounds all form a covalent bond with the active site serine of serine proteases 

via the central ester, also a site of metabolic breakdown (Figure 4.1A).19,20 Additionally, 

molecular modeling studies on TMPRSS2 supports covalent bond formation with both 

camostat and nafamostat, as well as the camostat metabolite FOY 251.21 Thus, 

TMPRSS2 inhibitors with less reactive architectures are highly desirable.  

As a strategy for rapid TMPRSS2 inhibitor discovery, we developed a combined in 

silico and biochemical workflow. Strategic development of a TMPRSS2 expression 

protocol, utilizing an autocatalysis-based affinity tag removal, facilitated purification for 

biochemical assay development. This allowed existing TMPRSS2 inhibitors to be profiled 

and characterized as covalent. Our protocol for virtual screening against a TMPRSS2 

homology model (Figure 4.2) comprises a molecular dynamics/simulated annealing-

based docking that employs flexible receptor side chains to capture subtle changes, both 



 98 

conformational and energetic, for improved compound scoring. Our approach curated a 

subset of promising TMPRSS2 ligands, which upon subsequent biochemical testing were 

identified as active inhibitors. In doing so, we identify new non-covalent hit compounds 

that can be both repurposed for SARS-CoV-2 infections as well as derivatized to yield 

improved TMPRSS2 inhibitors.  

 

 
Figure 4.1. The role of TMPRSS2 in SARS-CoV-2 infection. (A) TMPRSS2 primes the viral S protein 
(SARS-2-S), which promotes membrane fusion and ultimately viral entry. TMPRSS2, part of the type II 
transmembrane serine protease family and hepsin/TMPRSS subfamily, is anchored at the cell membrane.4 
The protein is mostly extracellular, with a small intracellular cytosolic domain. The extracellular portion of 
the protein is composed of a LDLR class A domain, an SRCR domain, and finally the peptidase S1 domain 
required for catalytic activity.22 (B) The peptidase S1 domain of TMPRSS2 cleaves SARS-2-S (PDB 6VXX) 
at the S2’ cleavage site.23,24  
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4.2 Results and Discussion   
Active TMPRSS2 Peptidase S1 can be expressed recombinantly in E. coli 

Like other serine proteases, TMPRSS2 is natively expressed as a zymogen; 

activation occurs via autocatalysis of the peptide bond between Arg-255 and Ile-256, 

leaving the N-terminal portion of Ile-256 to undergo a conformational change to stabilize 

the active state.25–27 Careful consideration was taken when designing the gene fragment 

for recombinant expression and purification of the TMPRSS2 peptidase domain (residues 

256–492). C-terminal affinity tags appear to disrupt catalytic activity; thus, an N-terminal 

affinity tag is required but must be removed, leaving residue Ile-256 with a free N-

terminus. Previous approaches to expression and purification in bacteria have utilized an 

orthogonal protease to allow for cleavage directly N-terminal to Ile-256, such as the 

TAGzyme system.28 We hypothesized that utilizing a construct with an extended N-

terminal portion would be enough to promote enzyme autocatalysis, removing any N-

terminal affinity tag as well as yielding the necessary free isoleucine without the need for 

multiple rounds of purification and introduction of an orthogonal cleavage site. Thus, a 

gene fragment for the catalytic domain of TMPRSS2 was constructed, called 

TMPRSS2(247–492), with an N-terminal 6xHis tag for purification (Figure 4.2).  

 
Figure 4.2 TMPRSS2 activation occurs through autocleavage. (Left) The homology model for TMPRSS2 
contains the SRCR domain (light blue) and the protease domain (teal). Activation occurs through 
autocatalysis at R255 (purple), leaving I256 (dark blue) free to insert under protease domain and stabilize 
the active conformation. (Right) The recombinant expression vector contains an extended portion of the 
Peptidase S1 (247-492) of TMPRSS2 along with a 6xHis tag that allows for purification of the denatured 
protease and subsequent cleavage of the affinity tag after proper refolding.  
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Overexpression of the TMPRSS2(247–492) construct in E. coli led to protein 

aggregation in insoluble inclusion bodies, which enabled simple separation from the 

remaining cell lysate. Solubilizing the inclusion bodies required denaturing the aggregates 

utilizing 8 M urea. The N-terminal 6xHis tag was used to remove the denatured, unfolded 

protein from remaining impurities by batch binding with Ni NTA resin. Purified, denatured 

TMPRSS2 was then subjected to refolding by rapid dilution in 1:100 refolding buffer. 

Development of a modified refolding procedure using a syringe pump for slow and 

controlled dilution proved to be instrumental in producing active protein, likely due to 

providing a more optimal environment for the three internal disulfide bonds to correctly 

form. Concentration (10-fold) and subsequent dialysis into a 50 mM Tris 500 mM NaCl 

0.01% NP-40 pH 8 buffer led to activation of the enzymatic activity demonstrated by the 

autocatalytic cleavage of the 6xHis tag (Figure 4.3). As seen in Figure 4.4, while 

TMPRSS2 expression yields highly concentrated protein that is denatured, the refolding 

procedure significantly reduces the concentration. Nonetheless, silver staining was able 

to detect protein at the correct mass, and a TMPRSS2 antibody showed furth validation 

of obtaining the correct protein.  

 

 
Figure 4.3. Western blot for 6xHis tag at various stages of TMPRSS2 purification. Significant signal is seen 
after denaturation and at various time points during refolding. A small amount of His-tagged protein is 
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observed immediately after exchange of concentrated refolding solution into activation buffer, but ultimately 
no signal is observed, indicating autocleavage and removal of 6xHis tag, in the final active product. 
Experiments performed with Dr. Julie Garlick.  
 

 
Figure 4.4. Silver stain gel and Western blot for TMPRSS2 protease. TMPRSS2 protein is expressed and 
purified by expression in inclusion bodies (labeled denatured), purified by batch binding to Ni-NTA resin, 
refolded, and dialyzed into assay buffer. Silver staining shows purity and protein levels at each step 
(TMPRSS2, ~26kDa). Western blot with TMPRSS2 antibody raised against the protease domain confirms 
the identity of the 26 kDa protein observed with silver staining as TMPRSS2. Experiments performed with 
Dr. Julie Garlick. 
 

Activity of TMPRSS2 peptidase domain  

The classic trypsin substrate Boc-QAR-AMC has been reported as a TMPRSS2 

substrate, which we used to confirm activity of the purified protein (Figure 4.5A).16,29 In 

doing kinetic fluorescence experiments, we determined the KM to be 5.1 ± 0.4 μM with 

TMPRSS2 (Figure 4.5D and 4.5E), which is comparable to the KM for trypsin with this 

substrate, 7.8 ± 0.7 μM (Figure 4.5B and 4.5C). 
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Figure 4.5. Fluorescence-based kinetic activity assay for serine proteases. (A) Schematic of the 
biochemical assay used to monitor TMPRSS2 activity. Raw fluorescence reads over time for (B) trypsin (D) 
TMPRSS2 using Boc-Glu-Ala-Arg-AMC (Boc-QAR-AMC) are shown. KM is determined by plotting initial 
velocity, calculated as the slope of the kinetic trace at less than 10 percent substrate cleavage, vs substrate 
concentration, which is shown for (C) trypsin and (E) TMPRSS2. Data was fit to the Michaelis-Menten 
equation using GraphPad Prism. Experiments performed with Dr. Julie Garlick. 
 

Using a NanoDrop, we calculated that we had ~1.7 µM protein in our active 

sample. However, we noted that does not reflect the concentration of active protein. Thus, 

to determine approximate concentration of active protein, we measured TMPRSS2 

activity while titrating in the covalent protease inhibitor FPR-chloromethylketone (also 

known as PPACK).30–32 This inhibitor reacts with the histidine in the catalytic triad of serine 
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proteases to irreversibly alkylate and inactivate the enzyme in a 1:1 complex (Figure 4.6). 

In doing so, we determined that we had roughly 0.5 nM active protein in our samples.  

 
Figure 4.6. Inhibition curve of TMPRSS2 activity obtained with increasing [FPR-cmk]. The IC50 obtained 
here is 0.32 ± 0.09 nM, allowing us to approximate 100% inhibition at about 0.64 nM. Thus, assuming 1:1 
complex formation of protein and inhibitor, we can determine the protein concentration of this sample to be 
about 0.64 nM. Data points represent the average of technical triplicate data points with error bars indicating 
the standard deviation. Experiments performed by Dr. Julie Garlick. 
 

Experimental conditions for high throughput screening (HTS) in 384-well plates 

were optimized using 2.5 μM substrate and 0.5 nM TMPRSS2. The concentration of 

substrate in this assay was set below the KM to enable identification of competitive 

inhibitors. After incubation at room temperature for 30 min, endpoint fluorescence was 

determined (ex: 355 nm, em: 450 nm). At 30 min, less than 20% of the substrate was 

cleaved as determined by comparing fluorescence to that of 2.5 µM free AMC (i.e. 100% 

substrate conversion), enabling inhibition to be monitored while activity is still within the 

linear range. The S:B and Z factor were calculated to be 10.6 and 0.79, respectively, 

indicating an excellent HTS assay (Figure 4.7).  

 
Figure 4.7. HTS with TMPRSS2 protease. TMPRSS2 activity assay was adapted to 384 well format with 
the Z factor indicating an excellent assay. Negative controls correspond to protein + substrate, while positive 
controls correspond to substrate only. Experiment performed by Dr. Julie Garlick. 
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This biochemical assay was then utilized to test the apparent IC50 of known 

inhibitors camostat, nafamostat, and gabexate, where the compounds were incubated 

with TMPRSS2 for 30 min before substrate was added (Figure 4.8). IC50 values for these 

compounds agree with previously reported values obtained using similar biochemical 

approaches. Notably, the IC50 values for these compounds are very low, approaching the 

lower limit of detection based on the protein concentration in the assay.  

 

 
 
Figure 4.8. TMPRSS2 inhibition with published molecules. (A) The molecules that have commonly been 
cited as TMPRSS2 inhibitors are camostat, FOY 251, nafamostat, and gabexate. All contain a reactive 
ester, which can form a covalent bond with the catalytic serine, as well as a guanidium group. (B) Inhibition 
of TMPRSS2 by compounds camostat, nafamostat, FOY 251, and gabexate, with 30 minutes preincubation 
of protein and inhibitor. Data points represent the average of technical triplicate with error bars indicating 
the standard deviation. Experiments performed with Dr. Julie Garlick. 
 
 
Analysis of covalent TMPRSS2 inhibitors  

Although not previously shown experimentally, others have suggested that the 

inhibitors camostat and nafamostat covalently modify TMPRSS2 with a similar 

mechanism to other proteases.21 This involves initial binding, acylation, and ultimately 

hydrolysis. While it would be ideal to validate formation of a covalent adduct with 

TMPRSS2 using mass spectrometry, the purification of the protease domain yields low 

concentrations of active protein that is very sensitive to buffer conditions, making mass 

spectrometric analysis intractable. However, we demonstrate covalent adduct formation 

via mass spectrometry using trypsin (Figure 4.9). With equimolar protein and compound, 

an increase in mass of 161 Da is observed for camostat, nafamostat, and FOY 251 

(Figure 4.9). Gabexate requires 10X compound compared to protein for adduct formation 

to be observed, which corresponds to a mass increase of 155 Da (Figure 4.9).  
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Figure 4.9. Covalent inhibition with trypsin using mass spectrometry. Deconvoluted LC-MS data of (Top 
left) apo trypsin, incubated with (top right) equimolar nafamostat, (second row, left) FOY 251, or (second 
row, right) camostat. After 30 minutes incubation, a mass increase of about 161 Da is observed, indicating 

23454.91 
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covalent adduct formation. (Bottom) Deconvoluted LC-MS data of trypsin incubated with 10X gabexate. 
After 30 minutes of incubation, a mass increase of about 155 Da is observed, indicating covalent adduct 
formation. No mass change was observed after 30 minutes incubation with equimolar gabexate. 
Experiments performed by Dr. Julie Garlick. 
 

Since mass spectrometry was not a viable option with TMPRSS2, covalency was 

tested through looking at IC50’s with varying incubation times with inhibitors. A time-

dependent decrease in apparent IC50 is observed with camostat in biochemical activity 

assays for both trypsin and TMPRSS2 (Figure 4.10). This shift in IC50 vs. time fits to an 

equation for one phase decay, with the IC50 values approaching the limiting concentration 

of the protein used in the assay, suggesting that covalent bond formation is occurring at 

the active site (Figure 4.10). Thus, while these compounds exhibit low nM IC50 values in 

vitro, this is likely due, at least in part, to the covalent mechanism of action. 

 
Figure 4.10. Decreasing IC50 values with longer incubations suggest a covalent mechanism of inhibition. 
Decreasing IC50 values for camostat with increased incubation time for trypsin (top) and TMPRSS2 (bottom) 
is consistent with covalent inhibition. Experiments performed with Dr. Julie Garlick. 
 

It is important to note that in a cellular context, camostat has a very short half-life 

of <1 min.33 Rapid hydrolysis to (4-(4-guanidinobenzoyl-oxy)phenylacetic acid), also 

known as the protease inhibitor FOY 251 (Figure 4.8A), occurs both in vitro in serum as 

well as in vivo.34–36 We observe similar potencies of FOY 251 and camostat in our 
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biochemical assay, with apparent IC50 = 4.3 ± 0.9 nM and 2.7 ± 0.4 nM, respectively 

(Figure 4.8). The half-life of FOY 251 is longer than camostat, though it is metabolized to 

4-guanidinobenzoic acid, which shows minimal TMPRSS2 inhibition.34 Thus, it would be 

advantageous to identify novel inhibitors that have alternative molecular scaffolds.  

 

Construction and refinement of TMPRSS2 homology model 

Virtual screening methods have greatly improved over the past two decades, 

leading many drug discovery campaigns by filtering out thousands/millions of molecules 

before testing them in vitro. However, such studies require a structural model in which to 

dock compounds into the active site. Because no crystallographic or NMR-based models 

exist for TMPRSS2, we developed a homology model for the active soluble domain 

starting from prediction using the SWISS-MODEL web-interface (Figure 4.2).37–41 This 

structure was built based on sequence homology of hepsin (PDB 5CE1). The structure 

showed high homology with the TMPRSS2 peptidase domain (34% sequence similarity 

with 70% sequence coverage) and also contained the bound ligand 2-[6-(1-

hydroxycyclohexyl)pyridin-2-yl]-1H-indole-5-carboximidamide, which served as one of 

the templates for pharmacophore-based docking of putative ligands as described below. 

The SWISS-MODEL structure of TMPRSS2 was further “conditioned” through the 

application of molecular dynamics in an implicit solvent (GBMV) model to facilitate better 

packing and configurational relaxation.42–44 

 

Virtual screening yields preliminary hits for in vitro assays 

Extensive virtual screening was performed to obtain putative hits for follow-up 

testing via in vitro inhibition assays (Figure 4.11). A total of 134,109 molecules were 

collected from multiple databases, which were subjected to a hierarchical refinement of 

docking poses. In the first stage, rigid receptor docking was performed exploring two 

means of initially positioning the small molecules. One utilized pharmacophores based 

on ligands in other bound serine proteases (see Methods), and the other initiated from a 

random generation of molecular conformations and random positioning inside the pocket 

(Figure 4.11). The second relied upon a novel 3D pharmacophore fastdock framework, 
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which operates by superposing pharmacophores onto compounds bound in 

experimentally solved structures.  

From this initial stage, 4,307 Level 1 screening candidates were determined and 

subjected to GPU accelerated Flexible-CDOCKER methods that were recently developed 

as part of the CHARMM molecular modeling package.45–48 This approach utilizes flexible 

side chains for residues in or near the binding pocket while using a grid representation 

for the remaining receptor. Multiple copies of each set of side chains and initial ligand 

poses are created, which allows for parallel, multiple copy processing of multiple flexible 

ligands-flexible receptor trials simultaneously on GPUs. The flexible docking searching 

algorithm combines molecular dynamics (MD) based simulated annealing and a 

continuous genetic algorithm search protocol to enhance the sampling of differing 

receptor conformations.  

We utilize a novel scoring methodology by performing conformational clustering of 

the flexible side chains and the ligand, which provides key contributions to the ligand 

scoring from the entropic variation of the side chains to accommodate various ligand 

poses. The ligands are rescored in the protein binding site a final time using an implicit 

solvent model that captures aspects of the desolvation costs not generally accessible in 

typical docking methods.49 The rescoring is accomplished by minimizing the docked 

poses from the flexible side chains and flexible ligand in the context of the rigid protein, 

while also considering the total energy of the solvated docked and undocked systems.  
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Figure 4.11. The virtual docking workflow. The virtual screening protocol involves multiple refinements, 
including using MD-based docking. Top ranked compounds were tested for in vitro inhibition. 
 

The virtual screen was successful on many fronts. MD-based flexible docking 

identified residues near the active site that are conformationally dynamic to accommodate 

different ligands. Residues Gln-438 and Lys-342 in particular show the greatest 

conformational change upon ligand binding, suggesting that they participate in stabilizing 

bound compounds. The known inhibitors camostat, nafamostat, and gabexate all ranked 

in the top 5 compounds, and all adopted poses that demonstrate how the catalytic serine 

residue positions itself to ultimately react with the inhibitors while positioning the 

guanidinium functionality to form a salt-bridge interaction with the active site Asp-435. As 

the mechanism of covalent inhibition involves His-296 deprotonating Ser-441, we 

performed a subsequent docking experiment using the three molecules with these charge 

changes (Figure 4.12). For all three molecules, the deprotonated serine positions itself 

into a more reactive state to attack the carbonyl carbon. For instance, the distance 

between the serine oxygen and camostat carbonyl carbon decreased from 4.9 Å to 3.5 

Å, and the distance for gabexate decreased from 5.9 Å to 3.3 Å. While nafamostat 

appears to be further away from the reactive carbon (4.4 Å to 4.8 Å), the molecule flips 

so that the carbonyl is positioned for reactivity.    
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Figure 4.12. Docked poses of known inhibitors. Docked poses of camostat, nafamostat, and gabexate in 
the TMPRSS2 active site with the proton transfer from Ser-441 to His-296 that occurs after substrate 
binding. Shown in red is D435, which resides at the bottom of the S1 binding pocket, and lime green 
corresponds to the catalytic triad (His-296, Asp-345, Ser-441). Dashed lines shown here indicate the 
distance between the catalytic serine oxygen and the carbonyl carbon of each inhibitor (camostat = 3.5 Å, 
nafamostat = 4.8 Å, gabexate = 3.5 Å). Experiments performed by Yujin Wu.  
 

Identification of noncovalent inhibitors 

Several clinically approved drugs emerged as top ranked compounds in the virtual 

screen, which we selected to test in our in vitro assay. Like the covalent inhibitors, 

pentamidine, propamidine, and debrisoquine all contain a guanidinium moiety and docked 

into the active site of TMPRSS2 with the positive charge pointing towards Asp-435 (Figure 

4.13). Biochemically, we found that all three molecules did in fact inhibit TMPRSS2 

activity with varied potencies, with debrisoquine being the least potent (Figure 4.13). The 

docked poses of pentamidine and propamidine show both compounds are positioned to 

block the active site residues, whereas debrisoquine does not fully span the catalytic triad, 

which likely correlates to the differences in potency (Figure 4.13). Pentamidine and 

propamidine are of similar size to camostat and nafamostat, typical of small molecule 

inhibitors (>350 MW), while debrisoquine is quite small, at 175.2 MW, classifying it as a 

fragment rather than a small molecule. However, debrisoquine has the greatest ligand 

efficiency (LE) at 0.42 compared to pentamidine and propamidine, which are 0.33 and 

0.31 respectively. Thus, for its small size debrisoquine binds well to TMPRSS2. 

Furthermore, a LE = 0.42 is suggestive of an excellent starting point for fragment 

expansion efforts. It is worth noting that each of these molecules also inhibit trypsin 

activity (Figure 4.14). However, the fragment debrisoquine has modest selectivity for 

TMPRSS2 over trypsin (~3 fold). As observed with the covalent inhibitors (camostat, 
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nafamostat, and gabexate; 4.12), the docking studies with the noncovalent compounds 

showed significant structural rearrangements for the two non-catalytic residues, Lys-342 

and Gln-438 (Figure 4.13). While Gln-438 is conserved across the serine proteases 

tested here as well as those used to construct the homology model (i.e. TMPRSS2, 

trypsin, hepsin; lysine residue in human plasma kallikrein), Lys-342 only appears in 

TMPRSS2. In fact, the entire loop where this residue resides greatly differs in length and 

conformation among the four proteases.  Thus, derivatization of a fragment like 

debrisoquine towards Lys-342 may confer additional selectivity across similar serine 

proteases.  

 
Figure 4.13. Noncovalent hits from virtual screen.  Top ranked hits from virtual screen inhibit TMPRSS2 in 
biochemical activity assay. Left: Raw inhibition values used to obtain IC50 curves. Data is the average of 
duplicate experiments conducted in technical triplicate. Right: Table showing structures of hits, calculated 
IC50 values, and ligand efficiencies (LE). (B) Docking results for the three drugs identified as hits both in the 
virtual screen and the in vitro assay. All three molecules fit into the active site (Asp-435 at the bottom of the 
pocket shown in red). Pentamidine and propamidine obstruct access to the catalytic triad (shown in lime 
green), whereas the fragment debrisoquine only partially reaches those residues. Binding experiments 
performed with Dr. Julie Garlick. Docking experiments performed by Yujin Wu.  
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Figure 4.14. Inhibition data with the three noncovalent compounds against trypsin. Inhibition of Trypsin by 
computational hit compounds pentamidine, propamidine, and debrisoquine with 30 minutes preincubation 
of protein and inhibitor. Data points represent the average of technical triplicate with error bars indicating 
the standard deviation (left). Calculated IC50 values (right). Experiments performed with Dr. Julie Garlick. 
 

4.3 Conclusion 
With new strains of SARS-CoV-2 emerging, and the significance of TMPRSS2 in 

viral entry for multiple coronaviruses, it is pivotal that we uncover novel strategies to inhibit 

TMPRSS2 protease activity.50,51 However, TMPRSS2 provides obstacles in multiple 

areas of the discovery pipeline. For instance, the lack of an experimentally solved 

structure makes docking studies a challenge, relying instead on the use of a homology 

model developed based on other serine protease domains. Biochemically, the protease 

domain of TMPRSS2 has proven difficult to purify and refold recombinantly in E. coli, 

which has stalled many high-throughput screening efforts. In the present study, we 

demonstrate that combined computational and experimental techniques can be used to 

identify new TMPRSS2 protease inhibitors. Having identified promising scaffolds with 

high ligand efficiencies, future work will be dedicated towards improving potency and 

selectivity of these inhibitors. While we have developed an effective expression and 

purification protocol for the TMPRSS2 peptidase domain, it remains a challenge to obtain 

high yields of active protein. Thus, the combined virtual and biochemical screening 

approach presented here is attractive because it enables an initial triage through large 

compound libraries before testing a smaller number of molecules, more likely to be 

functionally relevant, in an assay. Current efforts are directed toward testing more hits 

prioritized from the computational screen for biochemical activity.  
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4.4 Materials and Methods 
Mass spectrometric analysis of trypsin  

Trypsin (Sigma, T9201), 10 µM, was incubated with compound, 10 µM, for 30 

minutes at room temperature in assay buffer (50 mM Tris, 500 mM NaCl, 0.001% NP-40, 

pH 7.5) before being subjected to analysis by mass spectrometry using an Agilent QToF 

LC-MS equipped with a Poroshell 300SB C8 reverse phase column. A 5-100% gradient 

of acetonitrile with 0.1% formic acid in water to 0.1% formic acid over five minutes was 

used. Raw data was deconvoluted (intact protein of 20,000-25,000 Da) using BioConfirm 

software with background subtraction.  

 

Vector design 

Plasmids were constructed by Twist Bioscience by inserting the gene for protease 

domain of TMPRSS2, specifically amino acids 247-492, into the pET28a+ vector using 

the NdeI_XhoI restriction enzyme cut-sites.  

 

Protein expression  

The pET28a+ plasmids containing the TMPRSS2 genes were transformed into 

BL21(DE3) and plated on LB agar with kanamycin. The bacteria were grown in small 5 

mL LB (+ kanamycin) cultures overnight at 37 °C. The 5 mL starters were used to 

inoculate 1 L LB (+ kanamycin) cultures, which were grown to OD = 0.8 at 37 °C with 

shaking at 250 rpm. Expression was induced using 1 mM Isopropyl β-d-1-

thiogalactopyranoside (IPTG), which we let grow for 5 hours. The cells were then spun 

down at 9,500 x g for 15 min. The pellets were collected, flash frozen and stored at -80 

°C.  

 

Chemical lysis and denaturing 

Before lysing, the cell pellet was first fully thawed until it reached room 

temperature. Chemical lysis was performed by resuspending the pellet using B-PER 

reagent (Fisher, PI78243) with lysozyme (Fisher, 90082) and DNase I (Fisher, 90083) 

following manufacturer’s protocols. The cells were then spun at 15,000 x g for 5 minutes, 

and the cell lysate was collected and saved. The insoluble portion, which contained 
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inclusion bodies of TMPRSS2, was resuspended / washed using lysis buffer containing 

detergent (50 mM Tris HCl, 0.9% NaCl, 1% Triton X-100, pH 7.5) and then spun at 15,000 

x g for 5 minutes. After removing the supernatant, the pellet was washed once more with 

a lysis buffer that did not contain detergent (50 mM Tris HCl, 0.9% NaCl, pH 7.5) and then 

spun at 15,000 x g for 5 minutes.  

The pellet was resuspended and the inclusion bodies were denatured by adding 

20 mL denaturing buffer (8 M urea, 10 mM Tris, 100 mM sodium phosphate, pH 8.0) plus 

reducing agent (1:1000 BME). Denaturing occurred at room temperature with rotation for 

at least 30 minutes. The concentration of protein was determined via nanodrop, and 

additional denaturing buffer was added to reduce the concentration to below 1mg/mL. 

Denaturing occurred at room temperature on a rotator for at least 30 minutes before being 

spun down and decanted (20,000 x g, 15 minutes).  

 

Batch binding    

Ni-NTA agarose (Qiagen, 30210) was prepared by washing 3 times with binding 

buffer (8 M urea, 10 mM Tris, 100 mM sodium phosphate, pH 8.0). Denatured protein 

was added to Ni-NTA resin (750 µL) and incubated at 4 °C on a rotator for 1.5 hours. 

Resin was pelleted by centrifugation at 2500 x g and flowthrough was removed. Resin 

was washed 3 times with wash buffer (8 M urea, 10 mM Tris, 100 mM sodium phosphate, 

20 mM imidazole, pH 6.5), followed by addition of elution buffer (8 M urea, 10 mM Tris, 

100 mM sodium phosphate, 500 mM Imidazole, pH 6.5). Eluting was performed on a 

rotator at 4 °C for 30 minutes. The resin was again pelleted by centrifugation at 2500 x g, 

and the sample was collected.   

 

Refolding 

The denatured sample was diluted 1:100 into refolding buffer (50 mM Tris, 0.5 M 

arginine, 20 mM CaCl2, 1 mM EDTA, 100 mM NaCl, 0.01% NP-40, 0.05 mM GSSG, 0.5 

mM GSH, pH 7.5) at room temperature using a syringe pump (flow rate 1 mL/min) while 

allowing the solution to gently stir.  The refolding protein was left at 4 °C for 3 days with 

gentle stirring.  
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The sample was concentrated 10-fold using Amicon Stirred Cells with 10 kDa 

Ultrafugation disks (Millipore, UFC801024). Once concentrated, the sample was dialyzed 

overnight into assay buffer (50 mM Tris, 500 mM NaCl, 0.001% NP-40, pH 7.5) at 4 °C.  

 

Protein gel and silver staining  

LDS loading dye was added to protein samples and samples were boiled for 5 

minutes at 95 °C. 10uL of each sample was loaded onto a 4-20% mini-PROTEAN TGX 

gel (BioRad, 4561096) and run at 180V for 45 minutes. Total protein was visualized using 

a Pierce Silver Staining Kit (Thermo, PI24612) following manufacturer’s protocols. 

 

Western Blot 

After running gel as described above, protein was transferred to PVDF membrane 

using a BioRaD TransferBox Turbo following the standard protocols. Membrane was 

blocked for 1 hour at room temperature using Super Block (Thermo Scientific, 37515). 

TMPRSS2 antibody (Novus biologicals, NBP1-20984) was added to membrane (1:1000 

dilution in Super Block) and incubated overnight at 4C with gentle shaking. After removal 

of primary antibody and three washes with TBST, HRP conjugated secondary antibody 

(abcam, ab6741, 1:20,000 in Super Block) was added to membrane and incubated at RT 

for 1hr with shaking. After removal of secondary antibody with three washes with TBST, 

HRP substrate (Thermo Scientific, 34095) was added and after 1 minute Western blot 

was visualized using Chemiluminescence on an Azure Biosystems c600 imager.  

 

Kinetic assays 

Assays were conducted on a Molecular Devices Spectramax Spectrophotometer 

using 96-well plates (Fisher, 12-565-501). Protein was first plated, followed by addition of 

substrate, Boc-QAR-AMC (Bachem, 4017019.0005) at concentrations to give the 

indicated final concentration in a 100 µL volume. After addition of substrate, fluorescence 

was immediately read (Ex: 380, Em: 460nm), taking measurements every 30 seconds for 

20 minutes. Active protein was quantified by titrating in the known active site protease 

inhibitor FPR-CMK (Haematologic Technologies). To determine the KM the initial 

fluorescence data, at less than 10% substrate conversion, was fit to a linear equation and 
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the slope was determined, V0. V0 was plotted vs substrate concentration and the data was 

fit to the Michaelis Menten equation using GraphPad Prism.  

 

Fluorescence endpoint assays for IC50 determination 

Assays were conducted in 384 well black plates (Costar, 4514) using an Envision 

plate reader, ex. filter 350 nm and em. filter 450 nm. The compounds were first plated (10 

µL, at various concentrations) followed by addition of TMPRSS2 protein (8 µL, 0.5 nM 

final concentration). After 30 minute incubation (unless otherwise specified) at room 

temperature, substrate (2 µL, 2.5 µM final concentration) was added. At 30 minutes, 

corresponding to less than 20% substrate cleavage as measured by comparing 

fluorescence of the negative control to free AMC (Millipore, 257370), fluorescence was 

read. Wells containing no TMPRSS2 protein (substrate only) served as positive controls. 

Wells containing no inhibitors (TMPRSS2 and substrate only) served as negative 

controls.  Fluorescence readout was plotted against the log of inhibitor concentration and 

fit to log(inhibitor) vs response - variable slope equation in GraphPad Prism. Fluorescence 

endpoint assays with trypsin were conducted utilizing 1 nM protein and 5 µM substrate.  

 

General flexible docking setup 

The homology model of TMPRSS2 was generated using SWISS-Model based on 

the serine protease Hepsin (PDB 5CE1), which has 34% similarity and 70% coverage of 

the TMPRSS2 sequence. Included in the Hepsin structure is a 100 nM inhibitor, 2-[6-(1-

hydroxycyclohexyl)pyridin-2-yl]-1H-indole-5-carboximidamide, which is bound in the 

active site. The inhibitor is utilized as one of the pharmacophore targets in our fastdock 

protocol.   

The fastdock protocol is a python-based workflow that integrates the align-it 

software to search across our curated library of compounds for 3D pharmacophore 

matches to an inhibitor from a solved structure.52,53 The fastdock ligand templates are 

taken from the Hepsin structure used in the initial generation of the model (PDB 5CE1) 

as well as from a plasma kallikrein structure with the 1 nM inhibitor N-[(6-amino-2,4-

dimethylpyridin-3-yl)methyl]-1-({4-[(1H-pyrazol-1-yl)methyl]phenyl}methyl)-1H-pyrazole-

4-carboxamide bound (PDB 6O1G; 43% sequence similarity and 51% sequence 
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coverage). Scoring of the pharmacophore matches is based on a volumetric Tanimoto 

value of the target ligand pharmacophore map and the reference ligand map. Based on 

this initial selection of potential ligands for exploration, we harvested 1-10% of the top 

hits.  

The MMTSB tool set was used to cluster binding poses and prepare pdb files.54 

Open Babel was used to generate ligand random conformations.55 MOE was used to 

predict the correct protonation state for the ligands at pH 7.4.56 ParamChem was used to 

prepare the ligand topology and parameter files with the CGenFF force field.57–59 

Clustering used the tool cluster.pl with a 1 Å cutoff radius for the K-means clustering. The 

CHARMM C36 force fields were used and docking was performed in CHARMM with the 

CHARMM/OpenMM parallel simulated annealing feature.48,60  

 

Flexible docking setup 

Flexible CDOCKER with a hybrid searching algorithm combining molecular 

dynamics (MD) based simulated annealing and continuous genetic algorithm was used 

to dock and rank the top hits.45 Flexible CDOCKER uses a physics-based scoring function 

and allows both ligand and protein side chains to explore their conformational space 

simultaneously. The following amino acid side chains are considered flexible : His-296, 

Tyr-337, Lys-342, Asp-435, Ser-436, Gln-438, Ser-441, Thr-459, Trp-461 and Cys-465. 

Each docking measurement represents 500 genes (docking trials). The 

coordinates of the ligand-protein flexible side chains are used to assemble a gene 

(potential docking pose). Each ligand in the dataset is first aligned to the pharmacophore 

model with align-it. In the initial generation, half of the genes have the ligand starting with 

the aligned position. The rest of the genes are constructed by generating a random 

conformation of the ligand with Open Babel and centering at the binding pocket. A random 

translation (within a volume with a 2 Å edge length) and rotation (maximum 360○) are 

performed on ligands in each gene. An energy cutoff is applied to avoid potential collision 

between ligand atoms and protein atoms due to the random translation and rotation. The 

protein flexible side chains are initialized with the coordinates from the input homology 

model. Then these genes are optimized by an MD based simulated annealing algorithm. 
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Detailed values for softness parameter Emax used in flexible receptor docking are 

summarized in Table 4.1.  

 
Table 4.1. Soft-core potentials used in flexible receptor docking 

name E*max(vdw) E*max(att) E*max(rep) 

Soft-core potential I 15.0 -120.0 -2.0 

Soft-core potential II 3.0 -20.0 40.0 

Soft-core potential III 10000 -10000 10000 
* Emax(vdw), Emax(att) and Emax(rep) in the unit of kcal/mol are parameters for the Van der 

Waals, electrostatic attractive, and electrostatic repulsive interactions, respectively. 

 

The docking poses (optimized genes) are then K-means clustered based on ligand 

heavy atom RMSD with a radius cutoff of 1 Å. We then select the best individuals 

(minimum energy pose) from the top 10 largest clusters to construct the second 

generation. In our previous study, we show that using two generations is adequate and 

the average computer time for each docking measurement is around 30~45 mins. After 

the second generation, the docking poses are clustered and the best individuals from the 

top 15 largest clusters are saved. These docking poses are then rescored using the 

FACTS implicit solvent model.49 
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Chapter 5 
Conclusions and Future Directions 

 

 

5.1 Conclusions 
 One of the major challenges in drug design is protein target viability. The work 

presented in this dissertation aids in expanding the druggable proteome by establishing 

rules of molecular recognition in difficult targets, namely disordered/dynamic proteins. In 

Chapters 2 and 3, we utilize molecular dynamics simulations and biophysical in vitro 

experiments to interrogate dynamic protein-protein interactions (PPIs) involved in 

transcriptional regulation to establish ways in which native assembly occurs. We study 

two structurally distinct coactivators, CBP KIX (Chapter 2) and Med25 AcID (Chapter 3), 

and we find that rules of engagement with transcription factors can be generalized; ABDs 

utilize high conformational plasticity to engage with multiple partners, where a wide 

distribution of micro-states can be selected by each ligand respectively. 

 

The utility of disorder in transcriptional regulation 

Chapter 2 explores the ways in which KIX forms ternary complexes with two pairs 

of activator: c-Myb/MLL and pKID/MLL. Previous research on these proteins has 

established that while c-Myb and pKID bind to the same general area on KIX, the 

mechanisms by which they do this differs between the two.1,2 Both c-Myb and pKID 

participate in allosteric communication through KIX, showing increased affinity for the 

protein when MLL binds first.3  To interrogate the ways in which KIX utilizes 

conformational flexibility in complex assembly, we utilized molecular dynamics 

simulations. 
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Simulations of all systems (apo, binary, ternary) yielded atomic level resolution for 

binding interactions. In answering the question of how the distribution of KIX 

conformational states changes through activator binding, we utilized structural clustering 

and developed a method to project distribution changes in two dimensions. First, we 

utilized K-means clustering on all KIX complexes for a given system to determine the 

number of configurational micro-states as their relative populations.4 In the apo 

distribution of states, we found that KIX occupies a wide distribution of states that are all 

relatively lowly populated. This is not surprising, given that the structure of apo KIX defies 

structural experimentation (i.e. crystallography or NMR) because of its inherent 

“floppiness.”1,2 Subsequent activator binding stabilizes KIX by winnowing down the 

number of accessible states. This, in turn, allows for allostery to occur, where the 

reweighted distribution of states increases or decreases the probability of the second 

binding event. 

One finding of particular interest is that KIX can employ multiple mechanisms of 

molecular recognition. From our structural clustering methods, we found that when c-Myb, 

pKID, or MLL bind, each activator engages with a unique subset of KIX micro-states, 

reweighting relative populations in the distribution. However, unlike pKID or MLL, c-Myb 

also induces conformational changes into KIX. Thus, the benefits of flexibility inherent to 

the protein are two-fold. First, it allows multiple activators to bind because the apo 

distribution is so wide. And second, the structural plasticity of the protein allows for binding 

to induce conformational changes. We see similar effects with the Tethered inhibitor 1-

10, which induces structural changes that disfavor pKID binding. Hence, we establish that 

dynamic domains like KIX could be “drugged” through allosteric small molecules that 

induce unfavorable structural changes.  

 

Structurally different ABDs exhibit consistent mechanisms of activator engagement  

 While the ABD KIX has been studied relatively extensively, Med25 AcID has only 

more recently emerged as a domain of interest.5–7 The structure of Med25 differs 

significantly from that of KIX, where instead having dynamic helices, it contains a stable 

b-barrel core.5,6,8 While apo KIX has never been structurally elucidated via 

crystallography/NMR, Med25 AcID has only been solved in the apo state.6,8 One of the 
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reasons for this is because of the “fuzziness” of interactions between Med25 and binding 

partners; activators including VP16 and ERM show preferential binding to one Med25 

face over another, however, they do have propensity to bind weakly at opposing faces as 

well.7,8 Further, when studying bound Med25 in complex with activators, extensive line 

broadening in NMR suggests that there are multiple bound conformational states.  

In Chapter 3, we demonstrate how the binding interactions between activators and 

Med25 can be elucidated using molecular dynamics simulations. In particular, we opt to 

use enhanced sampling methods, namely temperature replica exchange, as PPIs could 

incur large energy barriers in binding that are difficult to overcome in a single unbiased 

MD simulation. Further, we utilize disulfide Tethering to localize the activators to pertinent 

areas on the protein, namely the H1 face. This was made easier since Med25 has native 

cysteines, and we demonstrated that only one of the three cysteines forms a disulfide 

bond with the peptides. Through simulations, we ultimately produce models of bound 

Med25 complexes, which aligns with chemical shift perturbations (CSPs) from NMR. In 

doing so, we find that even while Med25 is very structurally different from more typical 

ABDs, it engages with activators in the same way by utilizing the mobile regions on the 

protein to uniquely accommodate partners. 

In addition to exploring cognate binding partners, we utilize high-throughput 

screening to identify the covalent small molecule inhibitor norstictic acid (NA). NA was 

found to covalently link to lysine side chain residues on the H2 face of Med25, yet the 

molecule can inhibit interactions with activators not only on the H2 face, but H1 face 

interactions as well. Using molecular dynamics simulations, we find that H1 face 

interactions may be inhibited through altered dynamics, as the mobile loops surrounding 

the H1 binding surface show decreased fluctuations. Through this work, we establish that 

drugging Med25 may be achieved by targeting dynamic substructures on the protein, 

which can inhibit both ortho- and allosterically, much like we saw with KIX. 

 

Identification of TMPRSS2 inhibitors 

  The COVID-19 pandemic shifted my research focus towards identifying antiviral 

drugs with the goal of mitigating SARS-CoV-2 infection. The transmembrane serine 

protease TMPRSS2 has been implicated in coronaviral infections, including with SARS 
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and MERS, as well as other viral infections.9–11 Thus, in Chapter 4, we utilize a multi-

pronged strategy for TMPRSS2 inhibitor discovery, relying on in silico virtual screening 

alongside biochemical testing. We first curate a subset of small molecules that show 

propensity to bind in the TMPRSS2 active site through molecular docking by using a 

homology model for the protease domain. Biochemically, we optimize an expression and 

purification protocol that includes a delicate protein refolding of the peptidase domain. 

Subsequent kinetic experiments with hits from virtual screening show that current 

approved drugs have the potential to be repurposed for TMPRSS2 inhibition.   

 

5.2 Future directions  
Expanding our understanding of KIX allostery using additional activators  

 Our modeling generated for the KIX systems illustrates how three activators (c-

Myb, pKID, and MLL) are able to differentially engage with the available distribution of 

KIX configurational states. In building a larger understanding of the ABD’s role in activator 

engagement, other binding partners will be explored. Using molecular dynamics and the 

clustering protocols developed in Chapter 2, conformational selection by different 

activators including p65, FOXO3a, E2a, and HBZ will be determined (Figure 5.1). This 

will help to build our understanding the KIX conformational landscape, where we can 

identify common KIX micro-states that are important for engaging with multiple activators.   

 
Figure 5.1. CBP KIX binary and ternary complexes. KIX is shown in light gray, and all of the activators are 
shown in color: p65 (yellow), FOXO3a (green), E2A (seafoam green), c-Myb (red), and HBZ (purple). PDB 
structures shown include: KIX•p65 (PDB 5U4K)12, KIX•FOXO3a (PDB 2LQI)13, KIX•E2A (PDB 2LQI), and 
c-Myb•KIX•HBZ (PDB 6DMX).14   
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Identification of Med25 orthosteric and allosteric inhibitors 

 With its role in various diseases, there is high interest in developing chemical 

probes for Med25. However, targeting dynamic PPIs is non-trivial. One molecule that 

arose from a disulfide Tethering screen was molecule 22, which preferentially binds to 

Med25C506 (Figure 5.2)15. More interestingly, while 22 binds to the H1 face, enhances 

binding of activators at the H2 face. I performed explicit solvent all-atom molecular 

dynamics simulations on the bound complex to identify ways in which the molecule can 

elicit cooperative effects. Structures show that while the molecule can adopt a linear pose, 

it binds to Med25 predominantly in a bent conformational state, fitting between the bottom 

two loops on Med25. Conformational changes are observed on the H1 face, with a 

majority of the changes corresponding to the more dynamic regions on the protein (Figure 

5.2).  

 With the identification of norstictic acid, which binds to the H2 face and 

allosterically inhibits, as well as molecule 22, which binds to the H1 face and allosterically 

enhances, we establish the importance of dynamic substructures on malleable proteins. 

Targeting mobile loops with small molecules allows for global conformational changes, 

redistributing the ensemble of accessible conformational micro-states. Thus, future 

research efforts can be directed towards high-throughput screens that contain reactive 

compounds (for example, disulfides) to look for molecules that form bound adducts. By 

increasing the number of both inhibitors and enhancer molecules for Med25, we can 

begin to better understand ways in which molecules can be strategically designed for 

enhancement/inhibition of particular Med25 interactions. This can be done using machine 

learning as well as rational design.  
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Figure 5.2. Modeling with molecule 22 covalently bound to Med25C506. Molecule 22 (top) was covalently 
linked to Med25C506 via a modified PATCH in CHARMM. (Bottom) Molecular dynamics simulations over the 
course of 100 ns show that the molecule preferentially adopts a bent shape and binds between the two 
bottom loops of Med25. In doing so, the bottom helix on the protein unwinds. Binding in this pose induces 
structural changes to the upper loop.  
 

Derivatization of TMPRSS2 inhibitors  

 From the work done in Chapter 4, we identified small molecules that inhibit 

TMPRSS2 protease activity. Debrisoquine was the least potent inhibitor at 70 ± 20 µM, 

however it had the highest ligand efficiency (LE) of 0.42. Thus, the fragment provides a 

promising starting point for further derivatization to increase potency while maintaining 

key contacts formed between the molecule and the protease active site. The structural 

models generated from virtual screening are a crucial first step beginning to expand the 
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molecule. For example, we identified non-catalytic residues that show conformational 

flexibility between all bound molecules. In particular, residues K342 and Q438 showed 

large movements, interact with each bound molecule differently. Looking at K342, we see 

that when structurally aligning TMPRSS2 to other serine proteases, the residues in that 

loop are not conserved (Figure 5.3). Additionally, the size and conformation of the loop 

differs between proteases. This provides a direction for how to derivatize debrisoquine 

and build out towards this loop, where we can achieve high selectivity and potency for 

targeted inhibition.     

 
Figure 5.3. TMPRSS2 K342 shows promise for derivatizing debrisoquine. The proteases are all shown in 
gray. Debrisoquine (yellow) is docked into the active site of TMPRSS2. K342 in TMPRSS2, shown in teal, 
is not conserved across these other proteases.  
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Appendix A 
Characterization of Synthesized Peptides 

 

This appendix contains analytical HPLC chromatograms for the activator synthesized 

peptides used throughout this thesis.  
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Analytical HPLC UV/Vis trace of VP16 (438-490), monitored at 280 nm. Analytical sample was run in a 
100 mM ammonium acetate(pH 7)/acetonitrile binary solvent system. The sample was injected with an 
isocratic flow of 82% 100 mM ammonium acetate and 18% acetonitrile. After 2 mins, the solvent gradient 
was increased from 18-28% ACN over 20 mins.  

 
Analytical HPLC UV/Vis trace of ERM (38-68), monitored at 280 nm. Analytical sample was run in a water 
(with 100 mM ammonium acetate)/acetonitrile system. The sample was injected with an isocratic flow of 
85% water (with 100 mM ammonium acetate) and 15% acetonitriile. After 2 mins, the solvent gradient 
was increased from 15-30% acetonitrile over 20 mins.  

 
 
Analytical HPLC UV/Vis trace of DMN-VP16 (438-490), monitored at 430 nm. Analytical sample was run 
in a water (with 100 mM ammonium acetate)/ acetonitrile system. The sample was injected with an 
isocratic flow of 78% water (with 100 mM ammonium acetate) and 22% acetonitrile. After 2 mins, the 
solvent gradient was increased from 22-32% acetonitrile over 20 mins. 

 
 

=====================================================================
Acq. Operator   : SYSTEM                         Seq. Line :   1
Acq. Instrument : 1260 HPLC                       Location : Vial 1
Injection Date  : 3/9/2017 2:04:40 PM                  Inj :   1
                                                Inj Volume : 100.000 µl
Acq. Method     : C:\HPLC\MJH\DATA\2017_03_09_VP16_L2-L3_NTAC_F2_REPUR2 1\AAC AND ACN_18-28_
                  20M_214-280_PREPF.M
Last changed    : 3/9/2017 2:02:48 PM by SYSTEM
Analysis Method : C:\HPLC\MJH\DATA\2017_03_09_VP16_L2-L3_NTAC_F2_REPUR2 1\AAC AND ACN_18-28_
                  20M_214-280_PREPF.M (Sequence Method)
Last changed    : 12/5/2017 6:12:00 PM by SYSTEM
                  (modified after loading)
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 DAD1 B, Sig=214,4 Ref=off (C:\HPLC\MJH\DATA\2017_03_09_VP16_L2-L3_NTAC_F2_REPUR2 1\001-0101.D)

 
=====================================================================
                         Area Percent Report                         
=====================================================================
 
Sorted By             :      Signal
Multiplier            :      1.0000
Dilution              :      1.0000
Do not use Multiplier & Dilution Factor with ISTDs
 
 
Signal 1: DAD1 A, Sig=280,4 Ref=off
 
Peak RetTime Type  Width     Area      Height     Area  
  #   [min]        [min]   [mAU*s]     [mAU]        %
----|-------|----|-------|----------|----------|--------|
   1   3.735 BB    0.1035   30.89848    4.02940   0.3293
   2  18.305 BB    0.2809  150.19446    8.15332   1.6007
   3  19.504 BB    0.2624  133.41879    8.00831   1.4219
   4  20.574 BV    0.2666  147.07286    8.72928   1.5674
   5  21.399 VB    0.5090 7832.43701  250.35378  83.4731
   6  23.038 BB    0.4507  277.60715    8.68915   2.9586

Data File C:\HPLC\MJH\DATA\2017_03_09_VP16_L2-L3_NTAC_F2_REPUR2 1\001-0101.D
Sample Name: 2017_03_09_VP16_L2-L3_NtAc_F2_repur2

1260 HPLC 12/5/2017 6:12:03 PM SYSTEM Page 1 of 3

=====================================================================
Acq. Operator   : SYSTEM                         Seq. Line :   1
Acq. Instrument : 1260 HPLC                       Location : Vial 1
Injection Date  : 2/25/2017 2:13:21 PM                 Inj :   1
                                                Inj Volume : 200.000 µl
Method          : C:\HPLC\ARH\DATA\ANALYTICALS\20170225 ERM 38-68 ACET ANAL\AAC AND ACN_10-40
                  _30M_280-214_F.M (Sequence Method)
Last changed    : 2/25/2017 2:10:10 PM by SYSTEM
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==================================================================================
                           Fraction Information
==================================================================================
Fraction collection using a timetable
==================================================================================
No Fractions found.
==================================================================================

Data File C:\HPLC\ARH\DATA\ANALYTICALS\20170225 ERM 38-68 ACET ANAL\001-0101.D
Sample Name: 20170225 ERM 38-68 acet anal

1260 HPLC 7/3/2017 7:45:40 PM SYSTEM Page 1 of 3

=====================================================================
Acq. Operator   : SYSTEM                         Seq. Line :   1
Acq. Instrument : 1260 HPLC                       Location : Vial 1
Injection Date  : 2/21/2017 11:14:38 AM                Inj :   1
                                                Inj Volume : 45.000 µl
Method          : C:\HPLC\MJH\DATA\2017_02_21_VP16_L2-L3_NTDMN_ANAL_OLD1-2 1\AAC AND ACN_22-
                  32_20M_430_ANAL.M (Sequence Method)
Last changed    : 2/21/2017 11:13:03 AM by SYSTEM

���5 10 15 20 25

���

5
10
15
20
25
30
35
40

 DAD1 A, Sig=430,4 Ref=off (C:\HPLC\MJH\DATA\2017_02_21_VP16_L2-L3_NTDMN_ANAL_OLD1-2 1\001-0101.D)

���5 10 15 20 25

���

-2000

-1500

-1000

-500

0

 DAD1 B, Sig=214,4 Ref=off (C:\HPLC\MJH\DATA\2017_02_21_VP16_L2-L3_NTDMN_ANAL_OLD1-2 1\001-0101.D)

���5 10 15 20 25

���

0

5

10

15

20

25

 DAD1 C, Sig=280,4 Ref=off (C:\HPLC\MJH\DATA\2017_02_21_VP16_L2-L3_NTDMN_ANAL_OLD1-2 1\001-0101.D)

 
==================================================================================
                           Fraction Information
==================================================================================
Fraction collection using a timetable
==================================================================================
No Fractions found.
==================================================================================

Data File C:\HPLC\MJH\DATA\2017_02_21_VP16_L2-L3_NTDMN_ANAL_OLD1-2 1\001-0101.D
Sample Name: 2017_02_21_VP16_L2-L3_NtDMN_anal_old1.2

1260 HPLC 12/1/2017 11:58:23 AM SYSTEM Page 1 of 3

=====================================================================

Acq. Operator   : SYSTEM                         Seq. Line :   1

Acq. Instrument : 1260 HPLC                       Location : Vial 2

Injection Date  : 1/31/2017 10:18:27 AM                Inj :   1

                                                Inj Volume : 100.000 µl

Acq. Method     : C:\HPLC\MJH\DATA\2017_01_31_ERM_38-68_NTDMN_ANALYT1\AAC AND ACN_10-40_40M_

                  430_PS120_F.M

Last changed    : 1/31/2017 10:15:02 AM by SYSTEM

Analysis Method : C:\HPLC\MJH\DATA\2017_01_31_ERM_38-68_NTDMN_ANALYT1\AAC AND ACN_10-40_40M_

                  430_PS120_F.M (Sequence Method)

Last changed    : 12/1/2017 12:00:39 PM by SYSTEM

                  (modified after loading)
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=====================================================================

                         Area Percent Report                         

=====================================================================

 

Sorted By             :      Signal

Multiplier            :      1.0000

Dilution              :      1.0000

Do not use Multiplier & Dilution Factor with ISTDs

 

Data File C:\HPLC\MJH\DATA\2017_01_31_ERM_38-68_NTDMN_ANALYT1\002-0101.D

Sample Name: 2017_01_31_erm_38-68_NtDMN_analyt1

1260 HPLC 12/1/2017 12:00:58 PM SYSTEM Page 1 of 3
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Analytical HPLC UV/Vis trace of DMN-ERM (38-68), monitored at 430 nm. Analytical sample was run in a 
water (with 100 mM ammonium acetate)/ acetonitrile system. The sample was injected with an isocratic 
flow of 90% water (with 100 mM ammonium acetate) and 10% acetonitrile. After 2 mins, the solvent 
gradient was increased from 10-40% acetonitrile over 40 mins. 
 

 
Analytical HPLC UV/Vis trace of VP16 (438-454) G450C, monitored at 280 nm. Analytical sample was run 
in a water (with 100 mM ammonium acetate)/ acetonitrile system. The sample was injected with an isocratic 
flow of 85% water (with 100 mM ammonium acetate) and 15% acetonitrile. After 2 mins, the solvent gradient 
was increased from 15-30% acetonitrile over 20 mins.  

=====================================================================
Acq. Operator   : SYSTEM                         Seq. Line :   1
Acq. Instrument : 1260 HPLC                       Location : Vial 5
Injection Date  : 3/21/2017 10:22:56 PM                Inj :   1
                                                Inj Volume : 100.000 µl
Method          : C:\HPLC\ARH\DATA\ANALYTICALS\20170321 VP16 ANALYTICALS3\AAC AND ACN_15-30_
                  20M_280-214_F.M (Sequence Method)
Last changed    : 3/21/2017 10:21:02 PM by SYSTEM
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==================================================================================
                           Fraction Information
==================================================================================
Fraction collection using a timetable
==================================================================================
No Fractions found.
==================================================================================
=====================================================================
                         Area Percent Report                         
=====================================================================
 
Sorted By             :      Signal
Multiplier            :      1.0000
Dilution              :      1.0000
Use Multiplier & Dilution Factor with ISTDs
 
 
Signal 1: DAD1 A, Sig=280,4 Ref=off
 
Peak RetTime Type  Width     Area      Height     Area  
  #   [min]        [min]   [mAU*s]     [mAU]        %
----|-------|----|-------|----------|----------|--------|
   1   4.219 BB    0.0537    5.79185    1.61950   0.1776
   2   7.162 BB    0.1593   11.82709    1.19710   0.3627
   3   7.755 BB    0.1466   23.18845    2.44667   0.7111

Data File C:\HPLC\ARH\DATA\ANALYTICALS\20170321 VP16 ANALYTICALS3\005-0101.D
Sample Name: 20170321 VP16 450

1260 HPLC 7/3/2017 7:32:37 PM SYSTEM Page 1 of 2
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Analytical HPCL traces for KIX system peptides. Analytical traces at 280 nm of purified peptides for A) c-
Myb, B) MLL, and C) pKID. Experiments performed by Dr. Stephen Joy.  
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Appendix B 
DSF melting curves 

 

This appendix contains melting curves for KIX complexes using SYPRO Orange dye.  
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DSF melting curves for KIX in various complexes. DSF melt curves (left) normalized to relative 
fluorescence units (RFU) and the first derivative of the curves (right). Experiments performed by Dr. Julie 
Garlick.  
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