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Abstract

The theory of Ulrich modules has many powerful and broad applications ranging from the

original purpose of giving a criterion for when a local Cohen-Macaulay ring is Gorenstein

to new methods of finding Chow forms of a variety to longstanding open conjectures in

multiplicity theory. For example, the existence of Ulrich modules and Ulrich-like objects

has been the main approach to Lech’s conjecture, which has been open for over 60 years.

However, existence results have been very difficult to establish and for over thirty years,

it was unknown whether (complete) local domains always have Ulrich modules. Recently,

Ma introduced the weaker notion of (weakly) lim Ulrich sequences and showed that

their existence for (complete) local domains implies Lech’s conjecture. Ma then asks if

(weakly) lim Ulrich sequences always exist for complete local domains.

In this thesis, we answer the question of existence for both Ulrich modules and weakly

lim Ulrich sequences in the negative by constructing (complete) local domains that do not

have any Ulrich modules or weakly lim Ulrich sequences. A key insight in our proofs is the

classification of MCM modules over a ring R via the S2-ification of R. Moreover, for local

domains of dimension 2, we show that the existence of weakly lim Ulrich sequences implies

the existence of lim Ulrich sequences. Finally, our counterexamples are not standard-

graded or Cohen–Macaulay. As such, we construct candidate counterexample rings that

are standard-graded and/or Cohen–Macaulay from our original counterexamples.
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Chapter 1

Introduction

This thesis explores the existence of Ulrich modules, lim Ulrich sequences, and weakly

lim Ulrich sequences. Ulrich modules were introduced by Bernd Ulrich in 1984 as a

means to study the Gorenstein property of Cohen-Macaulay rings [U]. Since then, the

theory of Ulrich modules has become a very active area of research in both commutative

algebra and algebraic geometry [B].

Commutative algebra is the study of commutative rings, ideals, and modules. Com-

mutative rings arise naturally in the field of algebraic geometry, which is the study of

algebraic varieties. Algebraic varieties are geometric shapes determined by solutions

to systems of polynomials. An example of such a geometric shape is a circle, which

is the set of points (a, b) that are solutions to the equation x2 + y2 − 1 = 0. To each

algebraic variety, we can associate a commutative ring, which is called a coordinate ring.

Conversely, given a coordinate ring, we can recover the geometric shape. By studying the

algebraic properties of commutative rings, we can understand the geometric properties

of algebraic varieties.

One such algebraic property is the Hilbert-Samuel multiplicity (or multiplicity for
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short), which can be thought of as a measure of the complexity of a ring. Geometrically,

the Hilbert-Samuel multiplicity measures the singularity of a point on an algebraic variety.

For example, the multiplicity of the local ring at the origin of the parabola y = x2 is 1

while the multiplicity of the local ring at the origin of the cusp y3 = x2 is 2. In general,

larger multiplicities correspond to worse singularities.

1.1 Motivation and History

A major motivation for studying Ulrich modules is that the existence of Ulrich modules

for (complete) local domains implies Lech’s conjecture, which has been open for over 60

years.

Conjecture 1.1.1 (Lech’s Conjecture [L60]). Let ϕ : (R,m, k)→ (S, n, l) be a flat local

map between local rings. Then em(R) ≤ en(S).

Intuitively, this conjecture says that if there is a nice map between R and S, the ring S

is at least as complex as R. While Lech’s conjecture is simple to state and philosophically

reasonable to expect, it was wide open for virtually all cases until very recently. In the

1960 paper where he first introduced the conjecture [L60], Lech proved the conjecture

for rings of dimension 2. For next three decades or so, this was the only known major

case of Lech’s conjecture.

The major breakthroughs that followed utilized either Ulrich modules or sequences

of modules {Mn} that better approximate the Ulrich condition as n gets larger. In the

1990s, Herzog, Ulrich, and Backelin proved that strict complete intersection rings had

Ulrich modules – thus proving Lech’s conjecture for strict complete intersections. The

next major case was proven in Hanes’s thesis [Ha99] where he proved Lech’s conjecture
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for standard-graded rings of dimension 3 over a perfect field k of characteristic p > 0.

Hanes’s proof involved constructing a sequence of maximal Cohen–Macaulay (or MCM)

modules {Mn} that approximated the Ulrich condition.

Almost two decades later, Ma proved Lech’s conjecture for rings of dimension 3 in

the equicharacteristic case in [Ma1]. Then in [Ma2], Ma introduced the notion of weakly

lim Ulrich sequences which is a much more general notion of a sequence of modules that

approximate the Ulrich condition than the one used in Hanes’s thesis. For example,

while Hanes’s sequence consisted of maximal Cohen–Macaulay modules, the sequences

in Ma’s construction need not be Cohen–Macaulay, much less maximal Cohen–Macaulay.

See Chapter 2 for definitions. In [Ma2], Ma shows that the existence of weakly lim

Ulrich sequences implies Lech’s conjecture. He then proves Lech’s conjecture for all

standard graded rings over perfect fields by constructing weakly lim Ulrich sequences for

all standard graded domains over perfect fields of characteristic p > 0. The characteristic

0 case of Lech’s conjecture follows by a reduction modulo p argument.

Ulrich modules entered the sphere of algebraic geometry in a paper by Eisenbud and

Schreyer, where they defined and used Ulrich bundles to give new methods for computing

Chow forms of a variety [ES]. A major open question in algebraic geometry is the

following:

Question 1.1.2 ([ES], [B]). Does every smooth projective variety X ⊆ P n have an Ulrich

bundle, i.e., a vector bundle whose associated graded module Γ∗(E) =
⊕

m∈Z H
0(X,E(m))

is an Ulrich module?

In [ES], Eisenbud and Schreyer proved new existence results for Ulrich modules

including for Veronese subrings of degree d of a polynomial ring in n variables.

Very recently, Iyengar, Ma, and Walker introduced two new multiplicity conjectures:
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Conjecture 1.1.3 ([IMW]). For a local ring R, every nonzero R-module M of finite

projective dimension satisfies `R(M) ≥ e(R).

Conjecture 1.1.4 ([IMW]). For a local ring R, every short complex F supported on the

maximal ideal satisfies χ∞(F ) ≥ e(R), where χ∞(F ) is the Dutta multiplicity.

Remark 1.1.5. A short complex supported on the maximal ideal is a non-exact complex

F of finite free R-modules that has the form

F : 0→ Fdim(R) → . . .→ F1 → F0 → 0

such that the homology modules Hi(F ) have finite length for all i.

The first conjecture implies Lech’s conjecture for Cohen–Macaulay rings. The second

conjecture implies Lech’s conjecture. Many of the cases established for these two

conjectures in [IMW] utilize Ulrich modules and lim Ulrich sequences.

Historically, the existence of Ulrich modules has been a very difficult and elusive

question. The existing literature is rather sparse and has mainly explored positive

existence results, i.e., classes of rings for which Ulrich modules exist. The major existence

results are that Ulrich modules exist for the following classes of rings:

1. two-dimensional, standard graded Cohen-Macaulay domains [BHU]

2. strict complete intersection rings [HUB]

3. generic determinantal rings [BRW]

4. some Veronese subrings of degree d of a polynomial ring in n variables:

• n = 3 with d arbitrary and n = 4 with d = 2` in arbitrary characteristic [Ha99]
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• arbitrary n and d in characteristic 0 [ES]

• arbitrary n and d for characteristic p ≥ (d− 1)n+ (n+ 1) [Sa]

Beyond these results, there has been limited progress. In particular, for over thirty

years, it has been unknown whether or not (complete) local domains always have Ulrich

modules.

1.2 Main Theorems

Given the strength of the implications of existence, one may expect that Ulrich modules

do not exist for all local domains. A major obstruction to finding counterexamples is

that there are essentially no good criteria to test whether or not a ring has an Ulrich

module. Directly proving that a ring has no Ulrich modules involves classifying all of its

MCM modules – yet another incredibly difficult problem – and showing that none of the

MCM modules are Ulrich. Furthermore, positive existence results for large classes of

two-dimensional rings seemed to indicate that a counterexample would be fairly complex.

As such, finding a counterexample was considered to be a very difficult – if not intractable

– problem.

In this thesis, we resolve the question of existence of Ulrich modules in the negative.

Theorem A. Ulrich modules do not always exist for complete local domains. More

explicitly, the local domain

R = k[xn, xn+1, xny, yn, yn+1, xyn, xy]m,
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where m is the maximal ideal (xn, xn+1, xny, yn, yn+1, xyn, xy), and its completion

R̂ = k[[xn, xn+1, xny, yn, yn+1, xyn, xy]]

do not have Ulrich modules for n ≥ 2.

The key ingredient to proving that R does not have Ulrich modules is Lemma 3.1.1,

which states that any MCM module over R is an MCM module over its S2-ification S.

When S is regular, any MCM module over S has the form S⊕h. This yields the following

intermediary theorem:

Theorem B. Let (R,m, k) be a local domain. Suppose R has an S2-ification S such that

S is a regular local ring. Then every MCM module of R has the form S⊕h. Consequently

R has Ulrich modules if and only if S is an Ulrich module of R.

Then the idea behind the counterexample in Theorem A is to construct a ring R

such that its S2-ification S is a regular ring, but S is not an Ulrich module of R. Now,

Theorem B holds in greater generality than just dimension 2. A natural question to ask

is if we can construct a more general class of rings using the same idea. The answer is

yes! In fact, we can construct a counterexample in any dimension d ≥ 2.

Theorem C. Let S = k[[x]] = k[[x1, . . . , xn]] where n ≥ 2. Let u = u1, . . . , un be a system

for parameters of S such that I = (u)S is not integrally closed. Let I be the integral

closure of I in S. Let {gλ}λ∈Λ be an arbitrary collection of elements in I and f ∈ I − I.

For 1 ≤ j ≤ n, let vj, wj be elements of the maximal ideal of k[[u]] that generate a height

2 ideal in R (e.g. one can take powers of distinct elements in {u1, . . . , un}). Define R to

be the domain

R := k[[u]][f ][vjxj, wjxj]1≤j≤n[gλ]λ∈Λ.
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Then R has no Ulrich modules.

The counterexamples in Theorems A and C can be taken to be fairly nice monomial

algebras that have low dimension. This suggests that counterexamples may be quite

ubiquitous and thus, having an Ulrich module may be a special property that characterizes

certain classes of rings. The ubiquity of counterexamples remains completely unexplored.

In general, the question of existence still remains wide open in many cases of interest. For

example, the counterexamples in this thesis are not Cohen–Macaulay and the original

question posed by Ulrich in [U] remains open:

Question 1.2.1 ([U]). Does every local Cohen–Macaulay ring have an Ulrich module?

The second major contribution of this thesis answers a question posed by Ma in [Ma2]:

Question 1.2.2 ([Ma2]). Does every complete local domain of characteristic p > 0 with

an F -finite residue field admit a lim Ulrich sequence, or at least a weakly lim Ulirch

sequence?

A positive answer to Question 1.2.2 in conjunction with the argument for reduction

modulo p > 0 in [Ma1] would have resolved Lech’s conjecture in the equicharacteristic

case. However, in this paper, we answer the question in the negative.

Theorem D. Weakly lim Ulrich sequences do not always exist for complete local domains.

To prove Theorem D, we establish important characterizations of (weakly) lim Ulrich

sequences for local domains of dimension 2. In particular, we first show:

Theorem E. Let (R,m, k) be a local domain of dimension 2. If R has a weakly lim

Ulrich sequence, then R has a lim Ulrich sequence consisting of torsion-free modules.
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Moreover, in the case where R ⊆ S is a local module-finite extension of local domains

such that S/R has finite length and S ⊆ frac(R), there exists a lim Ulrich sequence of

R-modules that is also a lim Cohen–Macaulay sequence of S-modules.

Then we prove the following theorem:

Theorem F. Let (R,m, k) be a local domain of dimension 2. Suppose R has an S2-

ification S that is a regular local ring. If R has a weakly lim Ulrich sequence, then R has

an Ulrich module. In particular, by Theorem B, if R has a weakly lim Ulrich sequence,

then S is an Ulrich module of R.

We want to make two important observations with regard to our results on the existence

of weakly lim Ulrich sequences.

First, in the proofs of the statements involving (weakly) lim Ulrich sequences, we

heavily use the fact that the rings have dimension 2, in addition to the fact that the

S2-ifications of the counterexample rings are regular. On the other hand, in the proofs

of our theorems about Ulrich modules, the dimension did not matter as long as the

dimension was at least 2.

Second, the idea of constructing sequences that approximate the Ulrich condition

arose, in part, because of the difficulty of constructing Ulrich modules. Weakly lim

Ulrich sequences are a weaker notion than Ulrich modules. For example, the modules

in the sequence need not be Cohen–Macaulay. Ma uses this flexibility to great effect

to prove Lech’s conjecture for standard-graded rings over perfect fields. While our

counterexample to the existence of weakly lim Ulrich sequences indicates that there are

some limitations to this approach, it also highlights the mysterious nature of the Ulrich

property. In particular, lim Ulrich and weakly lim Ulrich sequences are special kinds of

lim Cohen–Macaulay and respectively, weakly lim Cohen–Macaulay sequences. In [BHM],
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Bhatt, Hochster, and Ma prove that every complete local domain of characteristic p > 0

with an F -finite residue field admits a lim Cohen–Macaulay sequence. (See comment in

[Ma2].)

1.3 Structure of the Thesis

The structure of this thesis is as follows: In Chapter 2, we review the basic definitions and

properties that will be used throughout the thesis including the definitions and properties

of Ulrich modules and (weakly) lim Ulrich sequences. In Chapter 3, we prove our results

about rings with regular S2-ifications as well as the main theorem that Ulrich modules

do not always exist for complete local domains. In Chapter 4, we construct a candidate

class of Cohen–Macaulay rings from the counterexample rings Rn from Chapter 3 that

possibly could yield a counterexample in the Cohen–Macaulay case. In Chapter 5, we

prove our theorems characterizing weakly lim Ulrich sequences in dimension 2 as well

as the theorem that weakly lim Ulrich sequences do not always exist for complete local

domains.
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Chapter 2

Preliminaries

In this chapter, we review the definitions and properties as well as the notation that will

be used throughout the thesis. Many of the results in this chapter are standard in the

literature and can be found in [Mat], [SH], [S]. As such, we omit most of the proofs.

Ma’s paper [Ma2] is the main reference for the definitions and properties of (weakly) lim

Cohen–Macaulay sequences and (weakly) lim Ulrich sequences. All rings in this thesis

are commutative with multiplicative identity 1 and Noetherian. In particular, all local

rings (R,m, k) include the Noetherian property. For simplicity, we will assume that k is

infinite unless explicitly stated otherwise.

2.1 Notation

Let (R,m, k) be a local ring of dimension d. Let M be a finitely generated module

over R. For simplicity, we assume that k is infinite unless explicitly stated otherwise.

Throughout the thesis, we use the following notation:

• x = x1, . . . , xd

10



• `R(M) is the length of M as a module over R. We write `(M) when it is clear from

the context which R is being used.

• Hi(x;M) is the i-th Koszul homology of the module M with respect to x.

• hRi (x;M) = `R(Hi(x;M))

• χ(x;M) =
∑d

i=0(−1)i`(Hi(x;M)) =
∑d

i=0(−1)ihi(x;M).

• χ1(x;M) =
∑d

i=1(−1)i−1`(Hi(x;M)) =
∑d

i=1(−1)i−1hi(x;M).

• νR(M) is the minimal number of generators of M .

• eR(M) is the multiplicity of M with respect to the maximal ideal m. When M = R,

we write e(R).

2.2 Definitions and Properties

2.2.1 Integral Closure of Rings and Ideals

Definition 2.2.1. Let R ⊆ S be an extension of rings. Then an element s ∈ S is integral

over R if s satisfies a monic polynomial with coefficients in R. That is, there exists a

positive integer n such that

sn = rn−1s
n−1 + rn−2s

n−2 + . . .+ r1s+ r0.

Definition 2.2.2. Let R ⊂ S be an extension of rings. Then the integral closure of R

in S is the subring of S generated by all the elements of S that are integral over R. If R

is a domain, we say that R is normal if the integral closure of R in frac(R) is R.

11



A key ingredient to the main results in this thesis is a module-finite extension of a

domain called the S2-ification. The following definition and proposition is adapted from

[HH].

Definition 2.2.3. (S2-ification [HH]) Let R be an domain. Let frac(R) be the fraction

field of R. The S2-ification of R, denoted S, is a ring extension R ⊆ S ⊆ frac(R) that

satisfies the following conditions:

1. S is module-finite over R.

2. S satisfies S2 as an R-module.

3. For any f ∈ S −R, the ideal R :R f = {a ∈ R | af ∈ R} has height ≥ 2.

Proposition 2.2.4 ([HH]). Let (R,m, k) be a local domain. Let S be the subring of

frac(R) consisting of all elements f ∈ frac(R) such that the ideal R :R f has height ≥ 2.

Then R has an S2-ification if and only if S is module-finite over R, in which case S is

the unique S2-ification of R.

Definition 2.2.5. Let R be a ring and let I ⊆ R an ideal. Then an element r ∈ R is

integral over I if it satisfies a monic polynomial f(z) of degree n such that the coefficient

of zd−t is an element of I t for 1 ≤ t ≤ n.

Definition 2.2.6. Let R be a ring and let I ⊆ R be an ideal. Then the integral closure

of I, denoted I, is the ideal consisting of all elements r ∈ R that are integral over I.

A proposition that we will be use frequently in this thesis is the following:

Proposition 2.2.7. Let R be a ring and let I ⊆ R be an ideal. Let R ⊆ S be an integral

extension of rings. Then IS ∩R = I.

12



Definition 2.2.8. Let R be a ring. Let I ⊆ J . Then I is a reduction of J if J is integral

over I.

Proposition 2.2.9. Let (R,m, k) be a local ring of dimension d. Then any reduction

of m is generated by at least d elements. If k is infinite, then m has a reduction that is

generated by d elements r1, . . . , rd. The elements r1, . . . , rd form a system of parameters

for m.

Definition 2.2.10. Let (R,m, k) be a local ring of dimension d with infinite residue

field k. Then we say that an ideal I ⊆ m is a minimal reduction of m if I is a reduction

of m generated by d elements.

Remark 2.2.11. In [SH], a minimal reduction of m (more generally, for an ideal I) is

defined to be a reduction of m (resp. I) that is minimal with respect to inclusion. In the

case where the residue field k is infinite, this definition coincides with Definition 2.2.10.

2.2.2 The Hilbert-Samuel Multiplicity

Definition 2.2.12. Let (R,m, k) be a local ring of dimension d. Let M be a finitely

generated module over R. Let I ⊂ R be an m-primary ideal. Then the length `R(M/InM)

eventually agrees with a polynomial of degree c in the variable n where c is

dim(M) = dim(R/AnnR(M)).

If dim(M) = dim(R), then the leading term of the polynomial has the form e
d!
nd where

e is a positive integer.

Definition 2.2.13 (Hilbert-Samuel Multiplicity). Let (R,m, k) be a local ring of dimen-

sion d. Let I ⊆ R be an m-primary ideal. Let M be a finitely generated module over R.

13



The Hilbert-Samuel multiplicity of R with respect to I is

eI(M) := d! lim
n→∞

`(M/InM)

nd

where dim(R) = d. If the dim(M) < d, then eI(M) = 0. If I = m, then we call em(M)

the multiplicity of M and denote em(M) as eR(M) or e(M).

Proposition 2.2.14. Let (R,m, k) be a local ring of dimension d. Let M be a finitely

generated R-module. Let I ⊂ J be m-primary ideals of R. Then we have the following

properties:

(a) eJ(M) ≤ eI(M)

(b) Let I and J be the integral closures of I and J respectively. Then if I = J , we have

eI(M) = eJ(M).

Theorem 2.2.15 (Rees). Let (R,m, k) be a formally equidimensional local ring. Let

I ⊆ J be m-primary ideals. Then I = J if and only if eI(R) = eJ(R).

Proposition 2.2.16. Let (R,m, k) be a local domain, I ⊂ R an m-primary ideal, and

M a finitely generated R-module. Then eI(M) = rankR(M) · eI(R).

Theorem 2.2.17. (Serre [S]) Let (R,m, k) be a local ring of dimension d. Let M be

a finitely generated R-module. Let x1, . . . , xd be a system of parameters for R and let

I = (x1, . . . , xd)R. Then

χ(x;M) =
d∑
i=0

(−1)ihi(x;M)

is equal to eI(M).
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Theorem 2.2.18. (Serre [S]) Let (R,m, k) be a local ring of dimension d and M a

finitely generated R-module. Let x1, . . . , xd be a system of parameters of R. Then

χ1(x;M) =
d∑
i=1

(−1)i−1hi(x;M) ≥ 0.

Proposition 2.2.19. Let (R,m, k)→ (S, n, l) be a flat local map of local rings such that

mS is n-primary. Let M be a finitely generated R-module. Let I be an m-primary ideal.

(a) Then dim(S ⊗RM) = dim(M).

(b) If n = mS, then eI(M) = eIS(S ⊗RM).

2.3 Ulrich modules and (weakly) lim Ulrich

sequences

Definition 2.3.1 (MCM). Let M be a finitely generated module over (R,m, k). Then

M is maximal Cohen-Macaulay (or MCM) module of R if depthR(M) = dim(R).

Proposition 2.3.2. Let (R,m, k) be a local ring of dimension d. Let M be a maximal

Cohen–Macaulay module of R. Then there exists a system of parameters r1, . . . , rd that

is a regular sequence on M . Equivalently, every (part of a) system of parameters is (part

of) a regular sequence on M .

Proposition 2.3.3. Let (R,m, k) be a local domain of dimension d. Let M be an MCM

module over R. Let νR(M) be the minimal number of generators of M . Then we have

(a) eR(M) = `(M/IM), where I ⊆ m is a minimal reduction of m, and

(b) eR(M) ≥ νR(M).
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Definition 2.3.4. Let (R,m, k) is a local ring of dimension d. Let M be an MCM

module over R. Then M is an Ulrich module if eR(M) = νR(M). Equivalently, M is an

Ulrich module if mM = IM for any minimal reduction I ⊆ m.

Lemma 2.3.5. Let (R,m, k) be a local domain containing k. Let L be a finite algebraic

extension of k. Then S = L⊗k R is a local ring with maximal ideal mS and S has an

Ulrich module if and only if R has an Ulrich module.

The proof of Lemma 2.3.5 is standard. We include it below for completeness.

Proof. Observe that S is a free module-finite extension of R and that mS is the maximal

ideal of S. So any system of parameters for R is a system of parameters for S.

Now suppose N is an Ulrich module over S. It is clear that any MCM module

over S is an MCM module over R. We have e(R) = e(S) because the length of

S/(mS)t = L⊗R (R/mt) over S is the same as the length of R/mt over R. Let [L : k] be

the degree of the field extension. Then νR(N) = [L : k]νS(N) and we have

eR(N) = rankR(N)e(R) = [L : k]rankS(N)e(R) = [L : k]rankS(N)e(S) = [L : k]eS(N).

Then

eR(N)

νR(N)
=
eS(N)

νS(N)
= 1.

So N is an Ulrich module of R.

On the other hand, if M is an MCM module of R, then S⊗RM is an MCM module of

S, and we have eR(M) = eS(S ⊗RM) and νR(M) = νS(S ⊗RM). So if M is an Ulrich

module of R, then S ⊗RM is an Ulrich module of S.
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Remark 2.3.6. Let (R,m, k) be a local ring of dimension d. Throughout this thesis, we

assume that k is infinite for simplicity. However, what we really want to assume is the

existence of a minimal reduction of m –that is, a reduction of m that has d generators. If

k is infinite, then such a minimal reduction always exists. If k is finite, such a minimal

reduction may not exist. But this is easily remedied without loss of generality. In

particular, in Lemma 2.3.5, one need not restrict to the case where the local ring (R,m, k)

contains k. There always exists a flat local ring extension (S, n, l) where n = mS, the

field extension k ⊆ l is finite, and a minimal reduction with d generators exists for n.

Then by proposition 2.2.19 and a virtually identical argument as Lemma 2.3.5, we see

that R has an Ulrich module if and only if S has an Ulrich module.

Definition 2.3.7. Let (R,m, k) be a local ring of dimension d. A sequence of finitely

generated R-modules {Mn} of dimension d is called lim Cohen–Macaulay if there exists

a system of parameters x such that for all i ≥ 1, we have

lim
n→∞

`(Hi(x;Mn))

νR(Mn)
= 0.

A sequence of finitely generated R-modules {Mn} of dimension d is called weaky lim

Cohen–Macaulay if there exists a system of parameters x such that

lim
n→∞

χ1(x;Mn)

νR(Mn)
= 0.

Definition 2.3.8. Let (R,m, k) be a local ring of dimension d. A sequence of finitely

generated R-modules {Mn} of dimension d is called lim Ulrich (respectively, weakly lim

Ulrich) if {Mn} is lim Cohen–Macaulay (respectively, weakly lim Cohen–Macaulay) and

17



lim
n→∞

eR(Mn)

νR(Mn)
= 1.

Proposition 2.3.9 ([BHM][Ma2]). Let (R,m, k) be a local ring of dimension d.

(a) [BHM] If {Mn} is a lim Cohen–Macaulay sequence of R, then for every system of

parameters x = x1, . . . , xd, we have

lim
n→∞

hi(x;Mn)

νR(Mn)
= 0

where i ≥ 1.

(b) [Ma2] If {Mn} is a weakly lim Cohen–Macaulay sequence of R, then for every

system of parameters x = x1, . . . , xd, we have

lim
n→∞

χ1(x;Mn)

νR(Mn)
= 0.

2.3.1 Lech’s Conjecture

Recall the statement of Lech’s Conjecture:

Conjecture 2.3.10 (Lech’s Conjecture [L60]). Let ϕ : (R,m, k) → (S, n, l) be a flat

local map between local rings. Then em(R) ≤ en(S).

The existence of Ulrich modules for complete local domains implies Lech’s conjecture.

It is known that we can reduce Lech’s conjecture to the case where:

1. R is a complete local domain.

2. dim(R) = dim(S) = d, equivalently mS is primary to nS.
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See [Ma1], [Ha99].

Proposition 2.3.11. Let (R,m, k) be a complete local domain. Suppose R has an Ulrich

module. Then Lech’s conjecture holds for R.

Proof. We can reduce to the case where mS is primary to nS. Let M be an Ulrich

module over R. Then S ⊗RM is a MCM module over S and we have

en(S) =
1

rankS(S ⊗RM)
· en(S ⊗RM) ≥ 1

rankR(M)
· νS(S ⊗RM)

=
1

rankR(M)
· νR(S)

= em(R).

In [Ma2], Ma proves that the existence of a weakly lim Ulrich sequence for complete

local domains implies Lech’s conjecture. The proof of this is similar to the one above

once some key facts about (weakly) lim Cohen–Macaulay sequences and (weakly) lim

Ulrich sequences are established.
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Chapter 3

Counterexamples Concerning

Ulrich Modules

3.1 Ulrich modules do not always exist for local

domains

Let (R,m, k) be a local ring. For simplicity, we assume that the residue field k is infinite.

Lemma 3.1.1. Let (R,m, k) be a local domain. If R has an S2-ification S that is a local

ring, then any MCM module M of R is an MCM module of S.

Proof. Let M be an MCM module over R. We want to show that for any f ∈ S − R

and any m ∈ M , there is a well-defined element f ·m ∈ M . Let W = R − {0}. Since

M is MCM, it is torsion-free over R and embeds in W−1M . It suffices to show that

f · (m/1) ∈M . Since the height of the ideal R :R f is at least two, there exist u and v

in R :R f such that the sequence u, v is a part of a system of parameters for R. Since M
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is MCM, the sequence u, v is a regular sequence on M . Then

v · ((uf) · (m/1)) = u · ((vf) · (m/1)) ∈ vM

implies that (vf)·(m/1) ∈ vM . Since M is torsion-free over R, we have f ·(m/1) ∈M.

Theorem 3.1.2. Let (R,m, k) be a local domain with k infinite. Suppose R has an

S2-ification S such that S is a regular local ring. Then every MCM module of R has the

form S⊕h. Consequently R has Ulrich modules if and only if S is an Ulrich module of R

if and only if IS = mS for any minimal reduction I of m.

Proof. By Lemma 3.1.1, any MCM module M over R is MCM over S. But S is regular.

Hence M ∼= S⊕h. The second statement follows immediately because S⊕h is an Ulrich

module of R if and only if S is an Ulrich module of R.

Theorem 3.1.3. The local domain

R = k[xn, xn+1, xny, yn, yn+1, xyn, xy]m,

where m is the maximal ideal (xn, xn+1, xny, yn, yn+1, xyn, xy), and its completion

R̂ = k[[xn, xn+1, xny, yn, yn+1, xyn, xy]]

do not have Ulrich modules for n ≥ 2.

Proof of Theorem 3.1.3. The proof is essentially the same for R and R̂. We will work

with R. We claim that the S2-ification S of R is k[x, y](x,y). Both xn and yn multiply

x and y into R. The ideal (xn, yn)R has height 2 in R; so the S2-ification S of R must
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contain x and y by Proposition 2.2.4. Since k[x, y](x,y) is normal and contains S, it must

be the S2-ification S of R.

Since S is a regular local ring, it suffices to check that S is not an Ulrich module over R

by Theorem 3.1.2. One can compute that the ideal (xy, xn− yn)R is a minimal reduction

for m. But (xy, xn − yn)S 6= (xn, xn+1, xny, yn, yn+1, xyn, xy)S as ideals in S.

We can use R to give a new counterexample to the localization of Ulrich modules –

that is, a local ring (T, n, `) that has an Ulrich module M and a prime ideal p ⊆ T such

that Mp is not an Ulrich module over Tp. While a counterexample to localization was

first given by Hanes in [Ha99], the following counterexample is stronger in the sense

that T localizes to a ring that has no Ulrich modules whereas Hanes’s counterexample

localizes to a ring that does have an Ulrich module.

Counterexample 3.1.4 (Localization). Consider the ring

T = k[sn+1, sxn, xn+1, xny, syn, yn+1, xyn, sn−1xy]n

where n = (sn+1, sxn, xn+1, xny, syn, yn+1, xyn, sn−1xy) and n ≥ 2. Let

ϕ : T ↪→ k[s, x, y](s,x,y)

be the inclusion map and p = ϕ−1((x, y)). Then the localization Tp is the ring

k(sn+1)
[(x
s

)n
,
(x
s

)n+1

,
(x
s

)n(y
s

)
,
(y
s

)n
,
(y
s

)n+1

,
(x
s

)(y
s

)n
,
(x
s

)(y
s

)]

localized at the obvious maximal ideal. But Tp has no Ulrich modules by Theorem 3.1.3.

It remains to show that T has an Ulrich module. Let S = k[s, x, y]
(n+1)
(s,x,y) be the Veronese
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subring of degree n+1 with maximal ideal a. One can compute eT (T ) = (n+1)2 = eS(S).

The rings T and S have the same fraction field and so rankT (S) = 1. Now S has

an Ulrich module M by Proposition 3.6 in [Ha04]. Then M is MCM over T and

rankT (M) = rankS(M). Then

(n+ 1) · rankT (M) = eT (M) ≥ νT (M) ≥ νS(M) = eS(M) = (n+ 1) · rankT (M).

Thus eT (M) = νT (M) and M is Ulrich over T.

We can extend the ideas in Theorem 3.1.3 to construct a more general class of

counterexamples.

Theorem 3.1.5. Let S = k[[x]] = k[[x1, . . . , xn]] where n ≥ 2. Let u = u1, . . . , un be a

system for parameters of S such that I = (u)S is not integrally closed. Let I be the

integral closure of I in S. Let {gλ}λ∈Λ be an arbitrary collection of elements in I and

f ∈ I−I. For 1 ≤ j ≤ n, let vj, wj be elements of the maximal ideal of k[[u]] that generate

a height 2 ideal in R (e.g. one can take powers of distinct elements in {u1, . . . , un}).

Define R to be the domain

R := k[[u]][f ][vjxj, wjxj]1≤j≤n[gλ]λ∈Λ.

Then R has no Ulrich modules.

Proof. First, notice that k[[u]] ⊂ k[[x]] is a module-finite extension. Then R is (Noetherian)

local and R ⊂ k[[x]] is a module-finite extension.

Let mR be the maximal ideal of R. From the construction of R, it is clear that

u = u1, . . . , un is a system for parameters for R and in fact, a minimal reduction of mR

because all the other adjoined elements are integral over (u)S in S and thus integral
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over (u)R in R. Then for all 1 ≤ j ≤ n, the element xj is multiplied into R by vj and wj

which generate a height 2 ideal in R. Thus xj is in the S2-ification of R for all 1 ≤ j ≤ n.

But this means that S = k[[x]] is the S2-ification of R.

By Theorem 3.1.2, it suffices to show that S is not an Ulrich module of R. But

(u)S 6= mRS because f /∈ (u)S. Thus R has no Ulrich modules.

Remark 3.1.6. In [IMW], Iyengar, Ma, and Walker consider rings of the form T = k + J

where S = k[[x, y]] and J ⊆ S is an ideal primary to (x, y)S. If J has a minimal reduction

I = (u, v)S, then the rings T have the form in Theorem 3.1.5. Thus T = k + J has no

Ulrich modules if J 6= IS.

In the case where J does not have a minimal reduction, we can reduce to the previous

case by taking a finite algebraic field extension of k so that J has a minimal reduction

and then applying Lemma 2.3.5.
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Chapter 4

A Candidate Class of

Cohen-Macaulay Rings

In Chapter 3, we constructed counterexamples to the existence of Ulrich modules for

(complete) local domains in all dimensions. The key idea was to find rings R such that

the S2-ification S of R is a regular local ring that is not an Ulrich module of R. Our

counterexamples were necessarily not Cohen-Macaulay because a Cohen-Macaulay ring

is S2 and a regular local ring is Ulrich module over itself. The following difficult question

remains open:

Question 4.1. Let (R,m, k) be a local Cohen-Macaulay domain. Does R have an Ulrich

module?

Moreover, the counterexample rings in Chapter 3 are not standard-graded. We will

show in Chapter 5 that the two-dimensional rings Rn have no weakly lim Ulrich sequences,

which is a weaker notion than that of an Ulrich module. On the other hand, in [Ma2],

Ma showed that standard-graded rings over a perfect field of characteristic p > 0 have

weakly lim Ulrich sequences. Then a natural question to ask is the following:
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Question 4.2. Let R be a standard-graded k-algebra. Does R have an Ulrich module?

In this Chapter, we construct a candidate class of rings. Recall that for n ≥ 2, the

rings

Rn = k[xn, xn+1, xny, yn, yn+1, xyn, xy]

do not have Ulrich modules.

In Chapter 3, we “homogenized” the generators of Rn and added the element sn+1 to

construct the rings

Tn = k[sn+1, xns, xn+1, xny, yns, yn+1, xyn, xysn−1].

These rings have Ulrich modules but localize to rings that have no Ulrich modules.

In this chapter, we construct candidate classes of standard-graded and Cohen-Macaulay

rings for counterexamples to existence of Ulrich modules. More specifically, we construct

the “homogenized” rings Un that do not contain sn+1 in the hopes that the “pathologies”

of the nonexistence of Ulrich modules from the original counterexamples Rn are preserved.

Define Un as follows:

Un := k[sxn, xn+1, xny, syn, yn+1, xyn, sn−1xy].

Moreover, we determine the integral closure Vn of Un. The integral closure of a monomial

algebra is a monomial algebra as well. Surprisingly Vn is also generated in degree n+ 1

and thus, also standard-graded. By a famous result of Hochster [Hoc72], a normal

monomial algebra is Cohen–Macaulay. We also compute the integral closure Wn of Un

in k[x, y, s]. We compute multiplicities and minimal reductions for Un, Vn, and Wn and

discuss the relationships between these rings and their Ulrich modules. Finally, we have
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not yet been able to determine whether the rings Un, Vn, and Wn have Ulrich modules

for n ≥ 3. As a Vn-module, the ring Wn splits into a direct sum of rank one MCM

modules over Vn (and over Un.) We show that these rank one MCM modules are not

Ulrich modules of Vn or Un

4.1 Computing Vn and Wn

One can check the following lemma:

Lemma 4.1.1. The fraction field of Un is the same as the fraction field of the Veronese

subring k[x, y, s]n+1 ⊆ k[x, y, s], which is k(xn+1, y/x, s/x).

Theorem 4.1.2. Let Ld be the monomials of degree d in the d-th graded piece k[x, y]d

of the polynomial ring k[x, y]. Let n ≥ 2. Then Vn is generated by monomials of degree

n+ 1 and has the form

Vn = k[Ln+1,Lns, xyLn−3s
2, xyLn−4s

3, . . . , xyL1s
n−2, xyL0s

n−1]

where αLdβ = {αµβ | µ ∈ Ld}.

Proof. The integral closure of a monomial algebra is a monomial algebra. So it is enough

to find all the monomials of degree n+1 in Vn and show that any higher degree monomial

in Vn can be written as a product of the monomials of degree n+ 1.

Recall that

Un := k[xns, xn+1, xny, yns, yn+1, xyn, xysn−1].

Any monomial in the integral closure Vn must have a power in Un. So we want to

determine all monomials xaybsj such that there exists a positive integer N such that
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(xaybsj)N ∈ Un.

Notice that Vn contains all monomials of the form xayb where a and b are non-negative

integers such that a+ b = n+ 1 because

(xayb)n+1 = (xn+1)a(yn+1)b.

We also have all monomials of the form xaybs where a and b are non-negative integers

such that a+ b = n because

(xaybs)n = (xns)a(yns)b.

Therefore, a monomial xaybsj is in Vn if and only if for the corresponding exponent vector

(a, b, j), there exists a positive integer N such that (Na,Nb,Nj) is in the Z≥0-linear sum

of vectors of the following types:

• (i, n− i, 1) corresponding to monomials of the form xiyn−is where 0 ≤ i ≤ n,

• (1, 1, n− 1) corresponding to the monomial xysn−1, and

• (i, n+1−i, 0) corresponding to monomials of the form xiyn+1−i where 0 ≤ i ≤ n+1.

We want to characterize all such exponent vectors (a, b, j). We consider the case where

n = 2 and the case where n ≥ 3 separately.

If n = 2, then xys is a monomial of type (i, 2− i, 1) where 1 ≤ i ≤ n. Then a monomial

µ = xaybsj of degree a+ b+ j = 3m is in V2 if and only if there exists a positive integer

N such that (Na,Nb,Nj) can be written as a sum of

• h vectors of type (i, 2− i, 1) where 0 ≤ i ≤ 2, and

• Nm− h vectors of type (i, 3− i, 0) where 0 ≤ i ≤ 3.
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Since L3 ⊆ V2, this is equivalent to N , a, b, j and h satisfying

• h = Nj,

• a+ b = 3m− j,

• 2h ≤ Na+Nb, and

• h ≤ Nm.

Since h = Nj and a+ b = 3m− j, the two inequalities are both

Nj ≤ Nm.

This inequality does not depend on N . Dividing by N yields j ≤ m. So xaybsj ∈ V2 if

and only if a+ b+ j = 3m and j ≤ m.

We want to determine the monomials of degree n + 1 = 3 in V2. But this means

j ≤ m = 1. We have already shown that all such monomials are in Vn. Now suppose

that m ≥ 2. Then a + b = 3m − j ≥ 2j because j ≤ m. If a, b ≥ j, then xaybsj =

(xys)j(xa−jyb−j). So we are done. If we have the case where b < j, then we also have the

case where a < j because of the symmetry of x and y in U2. So without loss of generality,

suppose b < j. Then a− b ≥ 2(j − b). So xaybsj = (xys)b(x2s)j−bxa−b−2(j−b). Thus, V2 is

generated in degree n+ 1 = 3 and

V2 = k[x3, x2y, xy2, y3, x2s, y2s, xys].

Notice that in this case U2 = V2.

Now assume that n ≥ 3. We already showed that Vn contains all monomials in x, y, s

where j = 0 and j = 1 in Vn. So we may assume that j ≥ 2. Let xaybsj be a monomial
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of degree m(n+ 1) in Vn where m is a positive integer. Then there is a positive integer

N such that (xaybsj)N is in Un and there are non-negative integers h and k such that

the vector (Na,Nb,Nj) can be written with

• h vectors of type (i, n− i, 1) where 0 ≤ i ≤ n,

• t vectors of type (1, 1, n− 1), and

• Nm− h− t vectors of type (i, n+ 1− i, 0) where 0 ≤ i ≤ n+ 1.

Let (p, q, h) be the exponent vector corresponding to the product of the h monomials of

type (i, n− i, 1). Then since Ln+1 ⊆ Vn, we have xaybxj ∈ Vn if and only if the following

conditions are satisfied:

(a) h+ t ≤ Nm.

(b) h+ t(n− 1) = Nj.

(c) p+ q = hn.

(d) p+ t ≤ Na.

(e) q + t ≤ Nb.

Rewriting (b) as h = Nj − t(n− 1), we can replace (a) with

Nj − t(n− 1) + t = Nj − t(n− 2) ≤ Nm (4.1)

and we can replace (c) with

p+ q = (Nj − t(n− 1))n. (4.2)
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Then the conditions that we need to satisfy are:

(a′) Nj − t(n− 2) ≤ Nm.

(b′) h = Nj − t(n− 1).

(c′) p+ q = (Nj − t(n− 1))n.

(d′) p+ t ≤ Na.

(e′) q + t ≤ Nb.

Now suppose that n ≥ 3 and j ≥ 2. Then we can rewrite (a′) as

t ≥ N(j −m)

n− 2
.

Since h ≥ 0, we can rewrite (b′) as

t ≤ Nj

n− 1

and (d′) and (e′) as

t ≤ Na and t ≤ Nb.

Finally, using t ≤ Na and t ≤ Nb, we can rewrite (c′) as

(Nj − t(n− 1))n+ 2t ≤ N(a+ b)

which then yields

t ≥ N(jn− (a+ b))

(n− 2)(n+ 1)
. (4.3)
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Now a+ b = m(n+ 1)− j. So we have

N(jn− (a+ b)) = N(jn−m(n+ 1) + j) = N(n+ 1)(j −m).

Then the inequality in 4.3 is just

t ≥ N(j −m)

n− 2
.

Combining the inequalities above, we have

N(j −m)

n− 2
≤ t ≤ min

{ Nj

n− 1
, Na,Nb

}
. (4.4)

Thus, a monomial xaybsj is in Vn if and only if a+b+j = m(n+1) for some m, and there

exists a positive integer N and non-negative integers t and h such that h = Nj− t(n− 1)

and t is in the interval

[N(j −m)

n− 2
,min

{ Nj

n− 1
, Na,Nb

}]
.

Now, the inequality in 4.4 does not depend on N and holds for all sufficiently large

and sufficiently divisible N . So we may divide 4.4 by N to get an equivalent condition

involving only j. That is, we have

j −m
n− 2

≤ min
{ j

n− 1
, a, b

}
. (4.5)

Claim 4.1.2.1. Let j ≥ 2. Let µ = xaybsj be a monomial of degree n+ 1. The µ ∈ Vn

if and only if j ≤ n− 1 and µ ∈ xyLn−j−1s
j.
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Proof. This is the case where m = 1. Then from 4.5, we have

j − 1

n− 2
≤ j

n− 1

which simplifies to

j ≤ n− 1.

Since j ≥ 2 and n ≥ 3, we know that

0 <
j − 1

n− 2
≤ a, b.

Since a and b are integers, we have a, b ≥ 1. Moreover, for any j ≤ n− 1, we have

0 <
j − 1

n− 2
≤ 1 ≤ a, b.

So µ = xaybsj ∈ xyLn−j−1s
j where j ≤ n− 1.

It remains to show that Vn is generated in degree n+ 1. Let m ≥ 2. Let µ = xaybsj be

a monomial of degree m(n+ 1) in Vn. We may assume that j ≥ 2. Then (a, b, j) satisfies

j −m
n− 2

≤ min
{ j

n− 1
, a, b

}
.

This condition is equivalent to the following three inequalities:

(a) j ≤ m(n− 1).

(b) j−m
n−2
≤ a.

(c) j−m
n−2
≤ b.
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Claim 4.1.2.2. If a > 0, b > 0, and j ≥ n− 1, then we can factor µ as

µ = xaybsj = (xysn−1)xa−1yb−1sj−(n−1)

and the monomial xa−1yb−1sj−(n−1) is an element of Vn of degree (m− 1)(n+ 1).

Proof. We just need to show that xa−1yb−1sj−(n−1) satisfies the inequalities

(a′) j − (n− 1) ≤ (m− 1)(n− 1)

(b′) j−(n−1)−(m−1)
n−2

≤ a− 1

(c′) j−(n−1)−(m−1)
n−2

≤ b− 1

Now

j − (n− 1)− (m− 1)

n− 2
=
j −m
n− 2

− 1.

But this means that (a′), (b′), and (c′) are equivalent to

(a) j ≤ m(n− 1),

(b) j−m
n−2
≤ a,

(c) j−m
n−2
≤ b.

So we are done.

Using Claim 4.1.2.2, we can reduce the proof to the case where a = 0 or b = 0 or

j < n− 1.

Case 1: (a = 0 or b = 0) The case where a = 0 is the same as the case b = 0 by

symmetry. Without loss of generality, we assume b = 0. In this case, we have xasj. Since
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j−m
n−2
≤ b = 0, we have j ≤ m. Now j + a = m(n+ 1) and so

a = m(n+ 1)− j ≥ mn ≥ jn.

Then xasj = (xns)jxa−jn and a− jn = (m− j)(n+ 1). So we are done.

Case 2: (j < n−1) In this case, we must have a, b > 0. Then there exists µ1 ∈ xyLn−j−1s
j

and µ2 = xcyd such that xaybsj = µ1µ2. So we are done.

This completes the proof that

Vn = k[Ln+1,Lns, xyLn−3s
2, xyLn−4s

3, . . . , xyL1s
n−2, xyL0s

n−1].

Lemma 4.1.3. Let Wn be the integral closure of Un in k[x, y, s]. Then

Vn = Wn ∩ k[x, y, s](n+1).

Proof. Since Wn is the integral closure of Un in k[x, y, s] and Vn is the integral closure of

Un in k[x, y, s]n+1 ⊆ k[x, y, s], it follows that Wn contains Vn. So Vn is contained in the

intersection Wn ∩ k[x, y, s](n+1).

On other hand, if u ∈ Wn ∩ k[x, y, s](n+1), then u is integral over Vn because Wn is

integral over Vn. Now u is also an element of k[x, y, s](n+1) which has the same fraction

field as Vn. So u must be in the fraction field of Vn and therefore, u must be an element

of Vn.

Theorem 4.1.4. Let Wn be the integral closure of Un in k[x, y, s]. Then Wn is normal

and

Wn := k[x, y, xns, yns, xys, xys2, . . . , xysn−1].
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Proof. Let W ′
n = k[x, y, xns, yns, xys, xys2, . . . , xysn−1]. We first check that the genera-

tors of W ′
n are integral over Un. It is clear that x and y are integral over Un because

xn+1, yn+1 ∈ Un. Now consider sjxy where 1 ≤ j ≤ n− 1. Then

(sjxy)n−1 = (sn−1xy)jxn−1−jyn−1−j.

So W ′
n is contained in Wn. It remains to show that W ′

n = Wn.

A monomial xaybsj ∈ Wn if and only if (xaybsj)n+1 ∈ Vn. Then xaybsj ∈ Wn if and

only if the exponent vector (a(n+ 1), b(n+ 1), j(n+ 1)) satisfies

j(n+ 1)−m
n− 2

≤ min
{j(n+ 1)

n− 1
, a(n+ 1), b(n+ 1)

}
. (4.6)

where m = a+ b+ j. We want to show that xaybsj ∈ W ′
n. Since x, y ∈ W ′

n, we already

have the case where j = 0. We may assume that j > 0. The inequality in 4.6 is equivalent

to the following inequalities:

(a) 2j ≤ (a+ b)(n− 1),

(b) j(n+ 1)− (a+ b+ j) ≤ a(n+ 1)(n− 2),

(c) j(n+ 1)− (a+ b+ j) ≤ b(n+ 1)(n− 2).

We claim that we can factor out xysn−1. More precisely, the monomial xa−1yb−1sj−n+1

is also an element of W ′
n. We need to check that (a− 1, b− 1, j − (n− 1)) satisfies

(a′) 2(j − (n− 1)) ≤ (a− 1 + b− 1)(n− 1),

(b′) (j − (n− 1))(n+ 1)− (a− 1 + b− 1 + j − (n− 1)) ≤ (a− 1)(n+ 1)(n− 2), and

(c′) (j − (n− 1))(n+ 1)− (a− 1 + b− 1 + j − (n− 1)) ≤ (b− 1)(n+ 1)(n− 2).
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But (a′), (b′), and (c′) are equivalent to (a), (b), and (c). So xa−1yb−1sj−n+1 ∈ Wn. This

means that we can factor out as many xysn−1 as possible and reduce to the case where

a = 0 or b = 0 or j < n − 1. Notice that if j > 1, then from condition (a), we have

0 < 2j/(n− 1) < a+ b. Then we must have a > 0 or b > 0.

Case 1: (a > 0, b > 0, j < n− 1) First notice that if j < n− 1, we have xaybsj = (xysj)µ

where µ is a monomial in x and y. So we are done.

Case 2: (a = 0 or b = 0) Without loss of generality, we may assume that b = 0 because

of the symmetry of x and y in W ′
n. We have xasj ∈ W ′

n. Then the three inequalities are

(a′′) 2j ≤ a(n− 1),

(b′′) j(n+ 1)− (a+ j) ≤ a(n+ 1)(n− 2), and

(c′′) j(n+ 1)− (a+ j) ≤ 0.

The last inequality yields jn ≤ a. Then xasj = (xns)jxa−jn ∈ Wn.
′ This finishes Case 2.

This concludes the proof that W ′
n = Wn.

4.2 The Multiplicities of Vn and Wn

In this section, we compute the multiplicities of Vn and Wn. Because Vn is standard-

graded and has dimension 3, its Hilbert function eventually agrees with a polynomial of

degree 2 called the Hilbert polynomial. The Hilbert polynomial can be used to compute

the multiplicity of Vn localized at its homogeneous maximal ideal. Put another way,

we can extend the notion of multiplicity from the local setting to the standard-graded

setting in a compatible manner. See Chapter 1 for more details.
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On the other hand, the ring Wn is not standard-graded and in particular, the Hilbert

function of Wn is not the same as the Hilbert function of the associated graded ring of

Wn localized at its maximal ideal. In fact, the Hilbert function of Wn does not eventually

agree with a polynomial. By “the multiplicity of Wn,” we mean the multiplicity of Wn

localized at its homogeneous maximal ideal.

Throughout this section, it will be convenient to switch between the local setting and

the graded setting. For simplicity of notation, we will write Vn and Wn for both the

graded rings and their localizations at their respective homogeneous maximal ideals

when it is clear from context which setting we are working in.

Proposition 4.2.1. Let n ≥ 2. Let Wn be the ring

k[x, y, xns, yns, xys, xys2, . . . , xysn−1]

localized at the maximal ideal mWn = (x, y, xns, yns, xys, xys2, . . . , xysn−1). Then

I = (x− yns, y − xns, xysn−1)Wn

is a minimal reduction for mWn. The multiplicity of Wn is n+ 1 and the type of Wn is n.

Proof. For simplicity of notation, we will write gr(W ) for the associated graded ring of

Wn with respect to its maximal ideal mW . To show that I = (x− yns, y − xns, xysn−1)

is a minimal reduction of mWn , it is enough to show that the images of x− yns, y − xns,

and xysn−1 in gr(W ) form a linear system of parameters for gr(W ).

Now the associated graded ring gr(W ) has the form k[x, y, u, v, w1, . . . wn−1]/J where

J is the ideal generated by the leading forms (i.e., lowest degree terms) in the kernel of
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the surjection

ϕ : k[x, y, u, v, w1, . . . , wn−1] � k[x, y, xns, yns, xys, . . . , xysn−1]

where x 7→ x, y 7→ y, u 7→ xns, v 7→ yns, and wi 7→ xysi for 1 ≤ i ≤ n− 1.

We have the following relations in ker(ϕ):

• wn−1
i − (xy)n−1−iwin−1 = 0 for 1 ≤ i < n− 1.

• xv − yn−1w1 = 0.

• yu− xn−1w1 = 0.

Then xv, yu, and wi where 1 ≤ i < n − 1 are nilpotent in the associated graded ring

gr(W ). Killing wn−1, x− v, and y − u make x, y, u, v and wn−1 nilpotent in

gr(W )/(wn−1, x− v, y − u)gr(W ).

So wn−1, x− v, and y − u are a linear system of parameters for gr(W) and

I = (x− yns, y − xns, xysn−1)

is a minimal reduction of mWn .

The multiplicity of Wn is the length of W n = Wn/(x− yns, y−xns, xysn−1)Wn, which

is the same as the k-vector space dimension of W n.

Claim. The element xy is 0 in W n.
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Proof. In W n, we have x = yns, y = xns, and xysn−1 = 0. Then

xy = (yns)(xns) = (s2xy)(xy)n−1

= (s2xy)((yns)(xns))n−1

= (s2xy)(s2xy)n−1(xy)(n−1)(n−1)

= (s2xy)(sn−1xy)2(xy)n−3(xy)(n−1)(n−1)

= 0.

Claim. Let mWn be the maximal ideal of W n. Then (mWn)2 = 0.

Proof. We already showed that xy = 0. Now consider the products wiwj = (xysi)(xysj)

where 1 ≤ i, j ≤ n− 2. If i+ j ≥ n− 1, then

wiwj = (xysn−1)(xys(i+j)−(n−1)) = 0.

If i+ j < n− 1, then

wiwj = xysi+j(xy) = 0.

Next, notice that

x2 = x(yns) = (sxy)(yn−1) = 0.

By symmetry y2 = 0. Finally, we have

xwi = x(xysi) = (yns)(xysi)

= (yn)(xysi+1) = (yn−1)(xns)(xysi+1)

= (xy)n−2x(xys)(xysi+1) = 0.

40



By symmetry ywi = 0.

Now there are no linear relations between x, y, and the wi for 1 ≤ i ≤ n− 2. So then

we must have

W n
∼=
k[x, y, wi | 1 ≤ i ≤ n− 2]

(x, y, wi | 1 ≤ i ≤ n− 2)2
.

Thus the multiplicity of Wn is n+ 1 and the type is n.

Proposition 4.2.2. Let n ≥ 2. Let Vn be the standard-graded ring

Vn = k[Ln+1,Lns, xyLn−3s
2, xyLn−4s

3, . . . , xyL1s
n−2, xyL0s

n−1].

Then the multiplicity of Vn is n2 + 1

Proof. We will compute the multiplicity of Vn by using the Hilbert function of Vn which

is defined as

HilbVn(m) = `([Vn]m) = dimk([Vn]m).

where the m-th graded piece [Vn]m which consists of forms of degree m(n+ 1). We will

consider the case where n = 2 and n ≥ 3 separately.

Let n = 2. Then recall from the previous section that a monomial xaybsj ∈ V2 if and

only if the following conditions hold:

(a) a+ b+ j = 3m.

(b) j ≤ m.

Since a, b ≥ 0, we can rewrite these conditions as

(a′) a+ b ≤ 3m and
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(b′) a+ b ≥ 2m.

The area defined by these inequalities is a trapezoid whose vertices are integer coefficients.

We want to find the number of lattice points in this region. Pick’s theorem says that the

area of a polygon whose vertices have integer coordinates is determined by the number

of lattice points in the following way: Let i(m) be the number of interior lattice points

and b(m) be the number of boundary lattice points. Then the area of the region is

A(m) = i(m) +
b(m)

2
− 1.

Notice that i(m) is quadratic in m and b(m) is linear in m. Since

i(m) < A(m) < i(m) + b(m),

we have A(m) is asymptotic to (i(m) + b(m)). That is, HilbV2(m) is asymptotic to A(m).

We have

A(m) =
1

2
(9m2 − 4m2) =

1

2
(5m2).

Thus, the multiplicity of V2 is 5 = n2 + 1

Now let n ≥ 3. Recall from the previous section that a monomial xaybsj ∈ Vn if and

only if the following conditions hold:

(a) a+ b+ j = m(n+ 1).

(b) a, b ≥ (j −m)/(n− 2).

(c) j ≤ m(n− 1).

Since a, b ≥ 0, we can rewrite these conditions as

42



(a′) a+ b ≤ m(n+ 1),

(b′) (n− 1)a+ b ≥ mn,

(c′) a+ b(n− 1) ≥ mn, and

(d′) a+ b ≥ 2m.

The last condition (d′) is redundant and can be obtained from (b′) and (c′). We want to

determine the number of lattice points in the region determined by these inequalities.

On (a, b)-plane, the intercepts of the above conditions are

(a′) (m(n+ 1), 0), (0,m(n+ 1))

(b′) (mn/(n− 1), 0), (0,mn), and

(c′) (mn, 0), (0,mn/(n− 1)).

This is a pentagon with vertices that have integer coordinates.

Figure 4.1: Area A(m) split into a triangle and a trapezoid

We want to find the area A(m) of the pentagon. We can split up A(m) as a triangle

with vertices (0,mn), (m,m), and (mn, 0) and a trapezoid. See Figure 4.1. The area of
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the trapezoid is

1

2
m2(n+ 1)2 − 1

2
(mn)2 =

1

2
(2n+ 1)m2.

The area of the triangle is

1

2
(n2 − 2n)m2.

Then

A(m) =
1

2
(n2 + 1)m2.

Thus, the multiplicity of Vn is n2 + 1.

Proposition 4.2.3. Let n ≥ 2. Let Vn be the localization of

k[Ln+1,Lns, xyLn−3s
2, xyLn−4s

3, . . . , xyL1s
n−2, xyL0s

n−1].

at the homogeneous maximal ideal

mVn = (Ln+1,Lns, xyLn−3s
2, xyLn−4s

3, . . . , xyL1s
n−2, xyL0s

n−1).

Then I = (xn+1 − yns, yn+1 − xns, xysn−1)Vn is a minimal reduction of mVn .

Proof. For large n, it can be cumbersome to work directly with Vn because of the number

of monomial generators. We can work with Wn instead. The multiplicity of Wn as a

Vn-module is eVn(Wn)rankVn(Wn) · eVn(Vn). The fraction field of Wn is

k(x, y, s) = k(x, y/x, s/x)

and the fraction field of Vn is

k(xn+1, y/x, s/x).
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So rankVn(Wn) = n + 1 and eVn(Wn) = (n + 1)(n2 + 1). In order to prove that I =

(xn+1 − yns, yn+1 − xns, xysn−1)Vn is a minimal reduction for mVn , by Rees’s theorem, it

suffices to show that eI(Wn) is (n+ 1)(n2 + 1). Note that eI(Wn) ≥ (n+ 1)(n2 + 1) and

eI(Wn) is the length of Qn := Wn/(x
n+1 − yns, yn+1 − xns, xysn−1)Wn. So if we find a

spanning set for Qn as a k-vector space with (n+ 1)(n2 + 1) elements, we are done.

Claim. The following elements span Qn as a k-vector space:

• xiyj where 0 ≤ i, j,≤ n+ 1 but both i, j cannot be equal to n+ 1.

• xiyjwm where wm = xysm, 1 ≤ m ≤ n− 2, and 0 ≤ i, j ≤ n.

Proof. Note that in Qn, we have xn+1 = yns, yn+1 = xns, and xysn−1 = 0. We want to

show that all monomials in Qn can be written as a sum of the basis elements. We first

consider the case xiyjwm where either i > n or j > n. Choose t = max{i, j}. Because

the relations we are quotienting out are symmetric in x and y, we may assume i > j

without loss of generality. Then

xiyjwm = xi−(n+1)(yns)yjwm = xi−(n+1)(yj+n)wm+1.

Notice that the total degree of x and y in the monomial has decreased by 1 while the

subscript on the w term has increased by 1. Let i′ = (i− (n+ 1)) and j′ = j + n. Repeat

the process until either the exponents on x and y are at most n or until the subscript on

the w reaches n− 1. In the latter case, the monomial is 0 because wn−1 = xysn−1 = 0.

The algorithm must terminate because at each step, the total degree of x and y decreases

by 1 and the subscript on w increases by 1.

Next, we consider the case xiyj where either i > n+ 1 or j > n+ 1. Without loss of

45



generality, suppose i > n+ 1. Then

xiyj = (yns)xi−(n+1)yj = xi−(n+1)yjw1.

So we have reduced to the previous case.

Finally, in the case where i = j = n+ 1, we have

xn+1yn+1 = (xns)(yns) = (s2xy)xn−1yn−1 = xn−1yn−1w2.

The total number of elements in the spanning set above is

((n+ 2)2 − 1) + (n+ 1)2(n− 2) = n3 + n2 + n+ 1.

But this is the same as (n+ 1)(n2 + 1).

Proposition 4.2.4. Let n ≥ 2. Let Un be the localization of

k[xns, xn+1, xny, yns, yn+1, xyn, xysn−1]

at the homogeneous maximal ideal mUn = (xns, xn+1, xny, yns, yn+1, xyn, xysn−1). Then

I = (xn+1 − yns, yn+1 − xns, xysn−1)Un

is a minimal reduction for mUn, and the multiplicity of Un is n2 + 1.

Proof. Since xn+1 − yns, yn+1 − xns, and xysn−1 generate minimal reduction for the

maximal ideal of Vn which contains mUn and Vn is integral over Un, it follows that mUn

is integral over (xn+1 − yns, yn+1 − xns, xysn−1)Un.
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To get the multiplicity of Un, it suffices to compute the length of

Vn/(x
n+1 − yns, yn+1 − xns, xysn−1)Vn

because Vn is a rank 1 Cohen–Macaulay module over Un. But IVn is a minimal reduction

for the maximal ideal of Vn. So this length is precisely the multiplicity of Vn which is

n2 + 1.

4.3 Relationships between Un, Vn, and Wn

Theorem 4.3.1. Let (R,mR, k)→ (S,mS, l) be a module-finite extension such that mS

is integral over mR. It suffices for the generators of mS to be integral over mR. Then

the parameters that give a minimal reduction of mR give a minimal reduction of mS.

Moreover, if M is an Ulrich module of S, then M is an Ulrich module of R.

Proof. Let d = dim(R) = dim(S). Let x1, . . . , xd be a system of parameters of R such

that the ideal they generate I = (x1, . . . , xd)R is a minimal reduction for mR. Now mS

is integral over mR, and mR is integral over I. So mS is integral over IS. But IS has

d =dim(S) generators. So IS is a minimal reduction for mS.

Let M be an Ulrich module of S. Clearly M is still an MCM module over R. Now

IM ⊆ mRM ⊆ mSM.

Then we have IM = mSM because M is an Ulrich module of S. So IM = mRM. But

this means M is an Ulrich module of R.
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Corollary 4.3.2. Let (S, n, k) be a complete local ring of dimension d containing k. Let

(x1, . . . , xd) be a minimal reduction of n. If S has an Ulrich module, then any ring R

such that k[[x1, . . . , xd]] ⊆ R ⊆ S has an Ulrich module.

Applying Theorem 4.3.1, we see that any Ulrich module of Wn is an Ulrich module

over Un, and any Ulrich module over Vn is an Ulrich module over Un. Then to show that

Vn or Wn has no Ulrich modules (if this is indeed the case), it is enough to show that Un

has no Ulrich modules.

Theorem 4.3.3. The ring U2 = V2 has an Ulrich module.

Proof. We show that U2 has a rank one Ulrich module. If M is a rank one Ulrich, then

M must be an ideal I ⊆ U2. Now an ideal I is MCM over U2 if and only if the depth of I

is 3. Because U2 is a domain, I is MCM over U2 if and only if the quotient ring U2/IU2

is a Cohen–Macaulay ring of dimension 2 and I has pure height one (i.e., all the primes

in its primary decomposition have height one). The multiplicity of U2 is n2 + 1 = 5. So

then I is a rank one Ulrich module over U2 if and only if I is an ideal of pure height one

such that the quotient ring U2/IU2 is a Cohen–Macaulay ring of dimension 2. We show

that such an ideal I exists.

Using Macaulay2 [M2], we compute a presentation of U2. In particular, we have the

following isomorphism:

ϕ : k[u1, u2, u3, v1, v2, v3, w]/J
∼−→ k[x3, x2y, xy2, y3, x2s, y2s, xys] = U2

where J is generated by the relations

1. v2v3 − w2

2. u3v3 − v1w
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3. u2v3 − u3w

4. u1v3 − u2w

5. v1v2 − u3w

6. u3v2 − u2w

7. u2v2 − u1w

8. u2
3 − u2v1

9. u2u3 − u1v1

10. u2
2 − u1u3

which were computed using Macaulay2 [M2].

Claim 4.3.3.1. The ideal I = (u2, u3, v1, v3, w) is an Ulrich module.

Proof. We want to compute the quotient U2/IU2. In this quotient, the relations listed

above become trivial. Then U2/IU2
∼= k[u1, v2], which is a two-dimensional Cohen–

Macaulay ring. So I is a rank one MCM module of U2. Since I has five generators, it is

an Ulrich module.

Remark 4.3.4. The same approach does not appear to work for Un where n ≥ 3. This

is because the multiplicity of Un is n2 + 1, but the number of monomial generators of

the maximal ideal remains the same. So finding an “obvious” Ulrich module becomes

more difficult. One could possibly try to work with Vn since the monomial generators

increases quadratically, but the process quickly becomes very computationally laborious.
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Lemma 4.3.5. Let n ≥ 2. Let Wn and Vn be the monomial algebras defined in the

previous sections. Then considering Wn as a Vn-module, we have

Wn = ⊕nρ=0Wn,ρ = Vn ⊕ (⊕nρ=1Wn,ρ)

where Wn,ρ is spanned by all homogeneous elements of degree ρ modulo n + 1. Each

Wn,ρ has rank 1 as a Vn-module (also as a Un-module by restriction of scalars) and is

Cohen–Macaulay over Vn (resp. over Un).

Proof. It is clear that Wn = Vn⊕ (⊕nρ=1Wn,ρ), and that because Wn is a Cohen–Macaulay

Vn-module, each Wn,ρ is a Cohen–Macaulay Vn-module. To see that Wn,ρ has rank 1 as a

Vn-module, it is enough to see that each Wn,ρ 6= 0. This is because rankVn(Wn) = n+ 1,

and there are n+ 1 summands. But xρ · Vn ⊂ Wn,ρ.

Theorem 4.3.6. Let n ≥ 3 and 0 ≤ ρ ≤ n. The rank one Cohen-Macaulay summands

Wn,ρ are not Ulrich modules of Un or Vn.

Proof. It is enough to show that the Wn,ρ are not Ulrich modules of Un. The multiplicity

of each Wn,ρ is n2 + 1. So it suffices to show that the minimal number of generators of

Wn,ρ is less than n2 + 1.

Let mUn be the maximal homogeneous ideal of Un. From the previous section, we

know that a minimal reduction of mUn is I = (xn+1 − yns, yn+1 − xns, xysn−1). A basis

for Qn = Wn/IWn is

1. xayb where 0 ≤ a, b,≤ n+ 1 but both a, b cannot be equal to n+ 1, and

2. xaybwi where wi = xysi, 1 ≤ i ≤ n− 2, and 0 ≤ a, b ≤ n.

Then Qn/(x
n+1, yn+1, xyn, xny)Qn = Wn/mUnWn. So, we want to determine what basis
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elements of Qn are multiples of xn+1, yn+1, xyn, and xny. Removing the obvious multiples,

we have the following spanning set for Wn/mUnWn :

1. xn, yn, xayb where 0 ≤ a, b, < n, and

2. xaybwi where wi = xysi, 1 ≤ i ≤ n− 2, and 0 ≤ a, b ≤ n− 1.

Note that for i ≥ 2, we have

xnwi = xn(xysi) = (xns)wi−1 = yn+1wi−1 = 0.

If i = 1, then

xnw1 = xn(xys) = (xns)xy = yn+1xy = 0.

Similarly, ynwi = 0 for 0 ≤ i ≤ n− 2.

The elements of this spanning set that have degree ρ modulo n+ 1 form a spanning

set of Wn.ρ/mUnWn,ρ. Note that degree of the elements of the first type (i.e., monomials

in x and y only) ranges from 0 to 2n− 2. The degree of the elements of the second type

ranges from 3 to 3n− 2

Claim 4.3.6.1. The number of elements of type one (i.e., monomials of the form xayb)

in the spanning set that have degree ρ modulo n+ 1 is max{n− 1, ρ+ 1}.

Proof. The number of elements of degree ρ is ρ + 1. Consider the elements that have

degree ρ + (n + 1). If ρ ≥ n − 2, then there are no basis elements of this degree. If

ρ ≤ n− 3, then we have a, b > ρ+ 1 because a, b < n. So there are n− ρ− 2 elements.

Finally, there are no elements of the form xayb that have degree ρ+ 2(n+ 1). Then the

number of elements of degree ρ modulo n+ 1 is

ρ+ 1 + max{n− ρ− 2, 0} = max{n− 1, ρ+ 1}
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It remains to count the number of elements of type 2 that have degree ρ modulo n+ 1.

These are elements of the form xaybwi where 0 ≤ a, b ≤ n− 1. Now wi = xysi and so

xaybwi = xaybsixy has degree a+ b+ i+ 2. Then counting the number of elements xaybwi

that have degree ρ modulo n+ 1 is the same as counting the number of monomials xaybsi

such that

• a+ b+ i ≡ ρ− 2 (mod n+ 1),

• 0 ≤ a, b ≤ n− 1, and

• 1 ≤ i ≤ n− 2.

We can get an upper bound on the number of monomials xaybsi satisfying the above

conditions by counting the monomials xaybsi satisfying

• a+ b+ i ≡ ρ− 2 (mod n+ 1),

• 0 ≤ a, b ≤ n− 1, and

• 0 ≤ i ≤ n− 2.

This is the same as the sum of the Hilbert function of T := k[x, y, s]/(xn, yn, sn−1)

evaluated at ρ− 2, ρ− 2 + (n+ 1), and ρ− 2 + 2(n+ 1). Let HilbT (d) be the Hilbert

function of T. We can compute a closed form of HilbT (d) using the Koszul complex

K•(x
n, yn, sn−1; k[x, y, s]), which is a free resolution of T as a module over k[x, y, s]. Note

that we will want to keep track of the grading. Let R = k[x, y, s] and d = a + b + i.

Then we have the following Koszul complex for T :

0→ R(−3n+ 1)→ R(−2n)⊕R(−2n+ 1)⊕R(−2n+ 1)

→ R(−n)⊕R(−n)⊕R(−n+ 1)→ R (→ T )→ 0.
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Let HR(d) be the Hilbert function of k[x, y, s]. So we have

HR(d) =

(
d+ 2

2

)
.

Then the Hilbert function of T = k[x, y, s]/(xn, yn, sn−1) has the form

HR(d)− 2HR(d−n)−HR(d−n+ 1) + 2HR(d− 2n+ 1) +HR(d− 2n)−HR(d− 3n+ 1)

where HR(m) = 0 if m < 0. Note that HR(m) = 1 if m = 0. Thus, in order to get more

explicit formulas, we need to consider the following cases:

• d < n− 1,

• d = n− 1,

• d = n,

• n < d < 2n− 1,

• d = 2n− 1,

• d = 2n, and

• 2n < d < 3n− 1.

We compute HilbT (d):

• d < n− 1

HilbT (d) = HR(d) =
1

2
(d2 + 3d+ 2)

• d = n− 1

HilbT (d) = HR(d)− 1 =
1

2
(d2 + 3d+ 2)− 1
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• d = n

HilbT (d) = HR(d)− 5 =
1

2
(d2 + 3d+ 2)− 5

• n < d < 2n− 1

HilbT (d) = HR(d)− 2HR(d− n)−HR(d− n+ 1)

=
1

2
(−2d2 + 6dn− 8d− 3n2 + 11n− 8)

• d = 2n− 1

HilbT (d) = HR(d)− 2HR(d− n)−HR(d− n+ 1) + 2

=
1

2
(−2d2 + 6dn− 8d− 3n2 + 11n− 8) + 2

• d = 2n

HilbT (d) = HR(d)− 2HR(d− n)−HR(d− n+ 1) + 7

=
1

2
(−2d2 + 6dn− 8d− 3n2 + 11n− 8) + 7

• 2n < d < 3n− 1

HilbT (d) = HR(d)− 2HR(d− n)−HR(d− n+ 1) + 2HR(d− 2n+ 1)

+HR(d− 2n)−HR(d− 3n+ 1)

=
1

2
(d2 − 6dn+ 5d+ 9n2 − 15n+ 6)

Recall that: 0 ≤ ρ ≤ n. We want to sum the cases where the values of d are d = ρ− 2,
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d = ρ+ n− 1, and d = ρ+ 2n. This will give us an upper bound for the number of basis

elements of the form xaybwi.

• Case 1: ρ = 0

– When d = ρ− 2 < 0, we have 0.

– When d = ρ+ n− 1 = n− 1, we have

1

2
(d2 + 3d+ 2)− 1 =

1

2
(n2 + n)− 1.

– When d = ρ+ 2n = 2n, we have

1

2
(n2 − 5n− 8) + 7

Summing the three terms, we have n2 − 2n + 2.

• Case 2: ρ = 1

– When d = ρ− 2 < 0, we have 0.

– When d = ρ+ n− 1 = n, we have

1

2
(n2 + 3n+ 2)− 5.

– When d = ρ+ 2n = 2n+ 1, we have

1

2
(n2 − 7n+ 12).

Summing the three terms, we have n2 − 2n + 2.
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• Case 3: 2 ≤ ρ < n− 1

– When d = ρ− 2, we have

1

2
(ρ(ρ− 1)).

– When d = ρ+ n− 1, we have

1

2
(n2 − 2nρ+ n− 2ρ2 − 4ρ− 2).

– When d = ρ+ 2n, we have

1

2
(n2 − 2nρ− 5n+ ρ2 − 5ρ+ 6)

Summing the three terms, we have n2 − 2n + 2.

• Case 4: ρ = n− 1

– When d = ρ− 2 = n− 3, we have

1

2
(ρ(ρ− 1)) =

1

2
(n2 − 3n+ 2).

– When d = ρ+ n− 1 = 2n− 2, we have

1

2
(n2 − 2nρ+ n− 2ρ2 − 4ρ− 2) =

1

2
(n2 − n)

– When d = ρ+ 2n = 3n− 1, we have 0.

Summing the three terms, we have n2 − 2n + 1.

• Case 5: ρ = n
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– When d = ρ− 2 = n− 2, we have

1

2
(ρ(ρ− 1)) =

1

2
(n2 − n).

– When d = ρ+ n− 1 = 2n− 1, we have

1

2
(n2 − 3n− 2) + 2

– When d = ρ+ 2n = 3n, we have 0.

Summing the three terms, we have n2 − 2n + 1.

Recall that the upper bound for the elements of type 1 (monomials in x and y) with

degree ρ modulo n+ 1 is max{n− 1, ρ+ 1}. Adding these to the upper bounds for the

elements of type 2 (i.e., monomials of the form xaybwi) with degree ρ modulo n+ 1, we

have the following upper bounds for the minimal number of generators of Wn,ρ/mUnWn,ρ

• Case 1: ρ = 0

max{n− 1, ρ+ 1}+ n2 − 2n+ 2 = n− 1 + n2 − 2n+ 2 = n2 − n + 1.

• Case 2: ρ = 1

max{n− 1, ρ+ 1}+ n2 − 2n+ 2 = n− 1 + n2 − 2n+ 2 = n2 − n + 1

• Case 3: 2 ≤ ρ < n− 1

max{n− 1, ρ+ 1}+ n2 − 2n+ 2 = n− 1 + n2 − 2n+ 2 = n2 − n + 1
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• Case 4: ρ = n− 1

max{n− 1, ρ+ 1}+ n2 − 2n+ 1 = n+ n2 − 2n+ 1 = n2 − n + 1

• Case 5: ρ = n

max{n− 1, ρ+ 1}+ n2 − 2n+ 1 = n+ 1 + n2 − 2n+ 1 = n2 − n + 2.

But n ≥ 2, and so n2 − n+ 2 < n2 + 1 and n2 − n+ 1 < n2 + 1. Thus, the Wn,ρ are not

Ulrich modules for Un and consequently, they are not Ulrich modules for Vn.
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Chapter 5

Lim Ulrich Sequences and Weakly

Lim Ulrich Sequences for Domains

of Dimension 2

5.1 (Weakly) lim Cohen–Macaulay and (weakly) lim

Ulrich sequences over domains of dimension 2

Definition 5.1.1. Let (R,m, k) be a local ring. Let M = {Mn} be a sequence of

nonzero finitely generated R-modules. Let νR(Mn) be the minimal number of generators

of Mn. Let {an} and {bn} be a sequence of positive integers. We define ∼M to be the

equivalence relation ∼M where {an} ∼M {bn} if

lim
n→∞

an − bn
νR(Mn)

= 0.

For the sake of simplicity, we write an ∼M bn instead of {an} ∼M {bn}.
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Lemma 5.1.2. Let (R,m, k) be a local ring. Let M = {Mn} and N = {Nn} be two

sequences of nonzero finitely generated R-modules. Let {an} and {bn} be a sequence of

non-negative integers. Suppose νR(Nn) ∼M νR(Mn). If an ∼M bn, then an ∼N bn. In

particular, νR(Mn) ∼N νR(Nn).

Theorem 5.1.3. Let (R,m, k) be a local domain of dimension 2. Let {Mn} be a weakly

lim Cohen–Macaulay (resp. weakly lim Ulrich) sequence over R. Let Cn ⊆ Mn be a

torsion submodule such that the quotient Mn := Mn/Cn has no finite length submodules.

Then the sequence {Mn} is a lim Cohen–Macaulay (resp. lim Ulrich) sequence over R.

Proof. Let M := {Mn} be a weakly lim Cohen–Macaulay sequence over R. Let I = (x)

be a system of parameters of the maximal ideal m and let νR(Mn) be the minimal number

of generators of Mn. First, we check that

νR(Mn) ∼M νR(Mn).

Consider the short exact sequence

0→ Cn →Mn →Mn → 0.

We know that νR(Mn) ≤ νR(Mn) ≤ νR(Mn) + νR(Cn). So it suffices to show that

νR(Cn) ∼M 0.
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From the short exact sequence, we get the long exact sequence of Koszul homology

0→ H2(x;Cn)→ H2(x;Mn)→ H2(x;Mn)

→ H1(x;Cn)→ H1(x;Mn)→ H1(x;Mn)→ H0(x;Cn)→ H0(x;Mn)→ H0(x;Mn)→ 0.

Now Mn has no finite length torsion submodules, so H2(x;Mn) = 0. We observe the

following:

(a) H2(x;Cn) ∼= H2(x;Mn)

(b) h1(x;Cn) ≤ h1(x;Mn)

(c) χ1(x;M) ≥ 0 for any finitely generated R-module M [S]

(d) χ(x;Cn) = 0

(e) 0 ≤ h0(x;Mn)− h0(x;Mn) ≤ h0(x;Cn)

From (a), (b), and (c), it follows that

0 ≤ χ1(x;Cn) ≤ χ1(x;Mn).

and because M is weakly lim Cohen–Macaulay, we have

χ1(x;Cn) ∼M 0. (5.1)

But χ(x;Cn) = 0 and so, χ1(x;Cn) = h0(x;Cn) = `(Cn/(x)Cn). Then the inequality

νR(Cn) = `(Cn/mCn) ≤ `(Cn/(x)Cn)
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yields

νR(Cn) ∼M 0.

Next, we show that {Mn} is a lim Cohen-Macaulay sequence over R. We already

know that h2(x;Mn) = 0. It remains to show

lim
n→∞

h1(x;Mn)

νR(Mn)
= 0.

By Lemma 5.1.2, it is enough to show that

lim
n→∞

h1(x;Mn)

νR(Mn)
= 0.

because νR(Mn) ∼M νR(Mn). Take the alternating sum of the lengths of the Koszul

homology in the exact sequence

0→ H1(x;Cn)→ H1(x;Mn)→ H1(x;Mn)→ H0(x;Cn)→ H0(x;Mn)→ H0(x;Mn)→ 0.

This is the sum

h1(x;Cn)− h1(x;Mn) + h1(x;Mn)− h0(x;Cn) + h0(x;Mn)− h0(x;Mn) = 0.
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Then

h1(x;Mn) = −h1(x;Cn) + h0(x;Cn) + h1(x;Mn)− h0(x;Mn) + h0(x;Mn)

= −h2(x;Cn) + h1(x;Mn)− h0(x;Mn) + h0(x;Mn)

= −h2(x;Mn) + h1(x;Mn)− h0(x;Mn) + h0(x;Mn)

= χ1(x;Mn)− (h0(x;Mn)− h0(x;Mn)).

Now we know that

χ1(x;Mn) ∼M 0

and by (e) and 5.1 above, we have

0 ≤ h0(x;Mn)− h0(x;Mn) ≤ h0(x;Cn) = χ1(x;Cn) ∼M 0.

Thus

lim
n→∞

h1(x;Mn)

νR(Mn)
= 0

and the sequence {Mn} is lim Cohen–Macaulay. It remains to check that

lim
n→∞

eR(Mn)

νR(Mn)
= 1.

But eR(Mn) = eR(Mn) and νR(Mn) ∼M νR(Mn), so the condition immediately follows

and thus {Mn} is a lim Ulrich sequence of R.

Definition 5.1.4. Let (R,m, k) be a local domain and let M be finitely generated

torsion-free R-module. Let (S, n, `) be a local module-finite extension domain of R.

Suppose K = frac(R) = frac(S). Then we define MS to be the S-module generated by
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M in M ⊗R K.

Remark 5.1.5. In the case where R is a local domain with a S2-ification S that is local,

if M is an MCM module of R, then MS = M by Lemma 3.1.1.

Lemma 5.1.6. Let (R,m, k) be a local domain of dimension 2 and let M be a finitely

generated torsion-free R-module. Let (S, n, `) be a local module-finite extension domain

of R. Suppose S ⊆ frac(R) and S/R has finite length. Choose a fixed constant t such

that mtS ⊆ R. Let x, y be a system of parameters for R. Then

(a) MS ⊆M :K⊗RM (xt, yt)R,

(b) (M :M⊗RK (xt, yt))/M ∼= H1(xt, yt;M),

(c) `(MS/M) ≤ h1(xt, yt;M).

Proof. Part (a) is clear by the choice of t. Part(c) follows immediately from parts (a)

and (b). It remains to prove part (b). Define

ϕ : H1(xt, yt;M)→ (M :M⊗RK (xt, yt))/M

to be the map

[(u, v)] 7→
[ u
yt

]
=
[−v
xt

]
where the equality follows from the relation uxt + vyt = 0. This map is well-defined.

If [(u, v)] is trivial, then there exists w ∈ M such that [(u, v)] = [ytw,−xtw]. But

[ytw,−xtw] is mapped to [(ytw)/yt] = [w/1] = 0.

For the map going the other direction, define

ψ : (M :M⊗RK (xt, yt))/M → H1(xt, yt;M)
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to be the map

[f ] 7→ [(ytf,−xtf)].

This is clearly well-defined. The maps ϕ and ψ are inverses, so we are done.

Theorem 5.1.7. Let (R,m, k) be a local domain of dimension 2. Let (S, n, `) be a local

module–finite extension domain of R such that S ⊆ frac(R) and S/R has finite length.

Let M = {Mn} be a lim Cohen–Macaulay (resp. lim Ulrich) sequence of torsion-free

R-modules. Then the sequence N = {MnS} is a lim Cohen–Macaulay (resp. lim Ulrich)

sequence of R-modules and also a lim Cohen–Macaulay sequence of S-modules.

Proof. We first prove that

νR(Mn) ∼M νR(MnS).

Let Qn = MnS/Mn. Note that Qn has finite length because S/R has finite length. The

short exact sequence

0→Mn →MnS → Qn → 0

yields the long exact sequence

. . .→ TorR1 (Qn, k)→Mn ⊗R k →MnS ⊗R k → Qn ⊗R k → 0.

Then

νR(Mn) ≤ νR(MnS) + `(TorR1 (Qn, k)) ≤ νR(Mn) + νR(Qn) + `(TorR1 (Qn, k)).
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and so it suffices to show that

`(TorR1 (Qn, k)) ∼M 0 and νR(Qn) ∼M 0.

Let x = x1, x2 be a system of parameters for R. By Lemma 5.1.6, we know that

`(Qn) ≤ h1(xt1, x
t
2;Mn) for some fixed t. But M is a lim Cohen-Macaulay sequence, so

h1(xt1, x
t
2;Mn) ∼M 0 and

`(Qn) ∼M 0.

Then

νR(Qn) = `(Qn/mQn) ∼M 0.

Next, by taking a prime cyclic filtration of Qn, one can observe that

`(TorR1 (Qn, k)) ≤ `(Q)`(TorR1 (k, k)).

Then it immediately follows that

`(TorR1 (Qn, k)) ∼M 0.

We now show that N = {MnS} is a lim Cohen–Macaulay sequence of R-modules. It

is enough to show that

h1(x;MnS) ∼M 0.
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Because Mn and MnS are torsion-free over R, we have the long exact sequence

0→ H2(x;Qn)→ H1(x;Mn)→ H1(x;MnS)→ H1(x;Qn)

→ H0(x;Mn)→ H0(x;MnS)→ H0(x;Qn)→ 0.

Observe that for all i ≥ 0

hi(x;Qn) ∼M 0.

We see that

h2(x;Qn) ∼M 0

because H2(x;Qn) injects into H1(x;Mn). We already proved that `(Qn) ∼M 0. It

immediately follows that

h0(x;Qn) = `(Qn/xQn) ∼M 0.

Then, it follows from χ(x;Qn) = 0 that

h1(x;Qn) ∼M 0.

From the long exact sequence on Koszul homology, we have

h1(x;MnS) ≤ h1(x;Mn) + h1(x;Qn).

But h1(x;Mn) ∼M 0 and h1(x;Qn) ∼M 0. Therefore, N = {MnS} is a lim Cohen–

Macaulay sequence over R.

If M is lim Ulrich, it immediately follows that N is lim Ulrich because
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eR(Mn) = eR(MnS) and νR(Mn) ∼M νR(MnS). It remains to check that N = {MnS} is

a lim Cohen–Macaulay sequence for S.

For any i, the Koszul homology Hi(x;MnS) does not change for whether we think of

MnS as an R-module or an S-module. We also have

νR(MnS) ≤ νR(S)νS(MnS),

which yields

νR(MnS)

νR(S)
≤ νS(MnS).

Then

lim
n→∞

hS1 (x;MnS)

νS(MnS)
≤ lim

n→∞

νR(S)hR1 (x;MnS)

νR(MnS)
= νR(S) lim

n→∞

hR1 (x;MnS)

νR(MnS)
= 0.

Thus N = {MnS} is a lim Cohen-Macaulay sequence over S.

Theorem 5.1.8. A sequence of finitely generated nonzero torsion–free modules {Nn}

over a regular local ring S of dimension 2 is lim Cohen–Macaulay if and only if for the

minimal free resolution

0→ Sbn → San → Nn → 0

we have limn→∞ bn/an = 0. Such a sequence is always lim Ulrich.
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Proof. Let x, y be a regular system of parameters for S. We have

an = νS(Nn) = h0(x, y;Nn)

and

bn = h1(x, y;Nn).

Then {Nn} is lim Cohen–Macaulay over S if and only if

lim
n→∞

h1(x, y;Nn)

νS(Nn)
= lim

n→∞

bn
an

= 0.

Moreover, we have

lim
n→∞

eS(Nn)

νS(Nn)
= lim

n→∞

an − bn
an

= 1.

Thus {Nn} is a lim Ulrich sequence for S.

5.2 Weakly lim Ulrich sequences do not always exist

for local domains

Theorem 5.2.1. Let (R,m, k) be a local domain of dimension 2. Suppose R has an

S2-ification S that is a regular local ring. The following are equivalent:

(a) R has a weakly lim Ulrich sequence.

(b) R has an Ulrich module.

(c) S is an Ulrich module of R.

(d) For any minimal reduction I of m, we have IS = mS.
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Proof. First, (c) and (d) are equivalent by definition. Next (b) and (c) are equivalent by

Theorem 3.1.2. It is clear that (b) implies (a). It remains to show that (a) implies (b).

Suppose R has a weakly lim Ulrich sequence. Then by Theorems 5.1.3 and 5.1.7,

there exists a lim Ulrich sequence M = {Mn} of torsion-free R modules that are also S

modules. Consider the minimal free resolution

0→ Sbn → San →Mn → 0

where an = νS(Mn). Now

νR(Sbn) = bnνR(S)

and

eR(Sbn) = bneR(S).

Then Theorem 5.1.8 yields

lim
n→∞

νR(Sbn)

νR(Mn)
= lim

n→∞

νR(S)bn
νR(Mn)

≤ lim
n→∞

νR(S)bn
νS(Mn)

= lim
n→∞

νR(S)bn
an

= 0,

and

lim
n→∞

eR(Sbn)

νR(Mn)
= lim

n→∞

eR(S)bn
νR(Mn)

≤ lim
n→∞

eR(S)bn
νS(Mn)

= lim
n→∞

eR(S)bn
an

= 0.

Consequently, by the minimal free resolution above, we have

νR(Mn) ∼M νR(San) = νR(S)an, (5.2)

and

eR(Mn) ∼M eR(San) = eR(S)an. (5.3)
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Combining equivalences 5.2 and 5.3, we have

lim
n→∞

eR(S)

vR(S)
= lim

n→∞

eR(Mn)

vR(Mn)
=
eR(S)

vR(S)
= 1.

Thus S is an Ulrich module of R.

Theorem 5.2.2. Weakly lim Ulrich sequences do not always exist for (complete) local

domains.

Proof. This is immediate by Theorem 3.1.3 and Theorem 5.2.1.

Corollary 5.2.3 (Localization). Weakly lim Ulrich sequences do not always localize for

local domains. More precisely, there exist local domains (R,m, k) that have a weakly

lim Ulrich sequence {Mn} and a prime ideal p such that {(Mn)p} is not a weakly lim

Ulrich sequence for Rp. Moreover, there exist local domains that have weakly lim Ulrich

sequences and a prime ideal p such that Rp has no weakly lim Ulrich sequences.

Proof. This is immediate by taking k to be perfect and char(k) > 0 in Counterexample

3.1.4 and applying Theorem 5.2.1.
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