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ABSTRACT

This research studies the intersection of two technologies to improve fuel economy,

i.e., pulse-and-glide (PnG) and cooperative adaptive cruise control (CACC). By ex-

ploiting the characteristics of internal combustion engines (ICEs), PnG periodically

turns on and off the engine to save fuel. On the other hand, CACC facilitates the

vehicle platooning via vehicle-to-vehicle (V2V) communication. CACC is promising

to both increase the traffic throughput and reduce the fuel consumption. This re-

search explores the possibilities for more fuel saving potential by introducing PnG

into CACC. It also addresses the speed oscillation problem resulting from PnG op-

erations, which is a challenge to vehicle platooning in terms of both string stability

and ride comfort.

To address these challenges, first the PnG operation of a hybrid electric vehicle

(HEV) in the car-following scenario is studied with ride comfort considerations. The

proposed control consists of two minimum-time control problems, one for the pulsing

phase and another for the gliding phase. These two problems are solved using model-

predictive control (MPC). After a series of simplification, convexification, and sparsity

optimization, the two minimum-time control problems are reformulated as quadratic

programming (QP) problems using the pseudo-spectral (PS) method to be solved

on-line efficiently. This proposed control establishes a framework that can effectively

leverage PnG for fuel savings, while satisfying the ride comfort and safety constraints.

For the problem of platooning heterogeneous PnG vehicles, the concept of PnG

synchronization is proposed as a solution. A control approach is developed based on

the Kuramoto oscillator model to realize this concept. More specifically, individual ve-

xiii



hicles in the platoon maintain their own virtual oscillators. With the synchronization

mechanism provided by the Kuramoto model, the virtual oscillators are synchronized

via only local communications. By tracking the target trajectories given by the vir-

tual oscillators, PnG synchronization is achieved. A range-keeping approach via V2V

communication is also developed. This proposed method of PnG synchronization is

able to maintain the fuel saving potentials of individual PnG vehicles while keeping

the platoon compact, which is ideal for achieving high throughput.

The naturalistic driving data from the Safety Pilot project are utilized to analyze

the levels of acceleration that people experience in everyday driving. Also, a PnG

experiment is conducted using an automated Lincoln MKZ. The results from this

experiment validate the fuel saving ability of the proposed PnG technique, especially

at lower speeds, and offer a better knowledge about the influence of PnG operations

on ride comfort.

xiv



CHAPTER I

Introduction

1.1 Motivation

According to the U.S. Energy Information Administration, 38,434 trillion BTU of

energy was consumed for transportation in the U.S. in 2019, occupying 28.3% of the

total energy usage [1]. In 2020, the pandemic caused by the novel coronavirus disease

(COVID-19) forced governments of countries around the world to take different mit-

igation efforts to slow down its spreading, which significantly impacted the everyday

mobility of people. Compared to 2019, the energy consumption for transportation in

the first 7 months of 2020 decreased by around 15% [1]. Even so, the gasoline price

has recovered from the drop in early 2020 and is predicted to continue increasing in

the near future, as shown in Figure 1.1 [2]. Given that fossil fuel is non-renewable,

improving the efficiency of transportation is still an important topic.

In transportation, a large portion of the energy is consumed by light-duty vehicles

and a significant amount is in the form of motor gasoline [3]. This trend is predicted

to remain the same in the future, as shown in Figure 1.2. The OEMs are thus

required to improve the fuel economy of their production vehicles according to the

regulation of corporate average fuel economy (CAFE) [4]. The CAFE standard sets

the requirement of fuel economy based on the size of the vehicles. For passenger cars

and light trucks, by 2025 they respectively need to achieve 45.61 to 61.07 miles per

1



Figure 1.1: The U.S. gasoline and crude oil prices in recent years [2].

Figure 1.2:
The U.S. transportation sector energy consumption in recent years and
prediction [3].

2



gallon (MPG) and 30.19 to 50.39 MPG, with the principle that the larger the vehicle

size is, the lower the MPG value is.

Several well-established technologies have been developed and implemented to

reduce the fuel consumption during the past decades, such as engine downsizing

and boosting [5], vehicle light-weighting [6], aerodynamic improvements [7], rolling

resistance reduction [8], engine efficiency improvements [9], waste heat recovery [10],

auxiliary and parasitic load reduction [11, 12], electrification and hybridization [13,

14]. These measures basically achieve improvement of fuel economy by modifications

or new design of vehicle components. With hybridization, one more power source

is added to the powertrain, which creates more possibilities for better powertrain

efficiency. Many research efforts have been devoted to the power management control

of hybrid vehicles. In power management control, the outputs of engine and motor(s)

are optimally determined to meet the driver’s demand. A detailed review for power

management strategies for hybrid vehicles is given in [15]. However, the driver’s

demand itself may not be optimal in terms of fuel saving. This leads to the topic of

eco-driving, which explores how the vehicle can be driven in a way that consumes less

fuel, rather than simply managing the power outputs from different sources for a given

speed profile. In fact, eco-driving is not limited to hybrid vehicles, but also a topic for

conventional internal combustion engine (ICE) vehicles. In [16], it is reported that,

as much as 10% fuel consumption can be influenced by how the vehicle is driven by

the driver.

As early as 1976, an eco-driving technique realized by the periodic control of

ground vehicles has been introduced [17]. This periodic control has later on been

called pulse-and-glide (PnG) [18] and is a technique that is often utilized in the

super-mileage competitions [19]. The mechanism of PnG operations for saving fuel

can be explained with the help of Figure 1.3. The concave-convex shape of the fuel-

rate curve of best fuel rate against engine power output leads to the improvement

3
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Figure 1.3:
The mechanism of PnG for fuel saving. The fuel rate of constant-speed
driving is denoted by QCS and that of PnG operation is by QPnG. In the
concave region, QPnG is below QCS, leading to reduced fuel consumption.

of fuel economy using PnG. As shown in Figure 1.3, the average fuel consumption

resulting from switching between the pulsing and gliding points is lower than the

constant-speed operation at the same drive power. In particular, the pulsing and

gliding points respectively correspond to operating the engine at the most efficient

point and turning off the engine. This alternate switching of PnG operation leads to

the oscillation of vehicle speed.

The PnG mechanism is actually in line with the concept of velocity relaxation

introduced in [20], in which the target speed profile is relaxed to create the room to

optimize the fuel economy and in fact the PnG-like behavior is observed accordingly.

In [21], the results of a controller established via stochastic dynamic programming

also show PnG-like behavior. In addition to numerical simulations, real driving exper-

iments in [22] using an ICE vehicle achieves 43.4% improvement of fuel consumption

around 40 kph with PnG.

On the other hand, for a hybrid vehicle with a battery, the battery can serve as

yet another energy buffer in addition to the vehicle body, which is the only choice

for ICE vehicles. In other words, during the pulsing phase the energy from engine

can either be temporarily stored in the battery or vehicle body. The stored energy

is then released to drive the vehicle during the gliding phase. The PnG operation

4



using vehicle bodies as the energy buffer is termed Speed-PnG, while the one using

batteries is called SOC-PnG [23]. Even though SOC-PnG can avoid the ride comfort

concerns of Speed-PnG caused by the speed oscillations, its fuel saving potential is

lower than that of the Speed-PnG [23, 24]. It also reveals the nature of trade-off

between fuel saving and ride comfort in the PnG operations. In this dissertation,

when using the term “PnG”, we mean the type of PnG operations that will result

in speed oscillations rather than pure SOC-PnG using batteries as the only energy

buffer, unless stated otherwise.

In recent years, connected and automated vehicle (CAV) technologies have been

developed and are believed to have the potential to improve not only the safety, but

also the fuel economy of ground transportation [25, 26]. CAV technologies involve the

automation of vehicle controls and the connection between individual vehicles and/or

infrastructures. With the sharing of information between surrounding vehicles and

nearby infrastructures via connectivity, the vehicles can be better informed about

their traffic environment. Actually, by communication between only a few vehicles

in a vehicle string, the traffic efficiency and stability can already be improved, as

pointed out in [27] with the concept of connected cruise control (CCC). If a series of

vehicles are all equipped with CAV capabilities, more sophisticated control strategies

can be implemented to further achieve better performance, which might not be pos-

sible by only human drivers. The communication between vehicles is called vehicle-

to-vehicle (V2V) communication, while that between vehicles and infrastructure is

called vehicle-to-infrastructure (V2I) communication. They are together called V2X

communication [28]. Researchers have focused on several applications for different

driving scenarios using the CAV technologies. Examples include merging at highway

on-ramps [29], roundabout entering [30], speed harmonization in highway traffic [31],

eco-approach and departure (ecoAND) at road intersections [32], and cooperative

adaptive cruise control (CACC) [33].
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Like the traditional adaptive cruise control (ACC), CACC is mainly applied in

cruising scenarios. However, CACC utilizes V2V communication technologies, such as

dedicated short-range communications (DSRC) [34], to facilitate vehicle platooning.

With CACC, vehicles are able to cruise at shorter inter-vehicle distances compared

to the cases with traditional ACC [35]. Shorter inter-vehicle distances lead to higher

traffic throughput. In other words, the efficiency of the traffic systems can be in-

creased. Furthermore, with the information of surrounding vehicles sent via V2V

communication, unnecessary acceleration and braking can be avoided. Better fuel

economy can be thus achieved. In addition, aerodynamic drag of the following vehi-

cles (FVs) in a platoon can be potentially reduced if they are driven closely to the

preceding vehicles (PVs). This further decreases the fuel consumption. As shown

in [36] via the reduced-sized wind tunnel experiments with passenger car models of

0.619 m length, the air drag coefficient drops by more than 15% for the second vehicle

in the platoon if the inter-vehicle distance reaches less than 3 vehicle length. Even

more reduction in air drag coefficients happens for the third and forth vehicles in

the experiment of four-vehicle platoon. In addition, vehicles forming a platoon in

coordination with the traffic light can pass the road intersection with overall delay

and stops reduced, thus leading to fuel saving and higher transportation efficiency

[37]. As a result, CACC is believed to be a viable technology that increases traffic

capacity and achieves better fuel economy.

Motivated by the above encouraging capabilities, we thus seek the possibility

of further improving the fuel economy by the synergy of PnG and CACC. More

specifically, realizing CACC through PnG is focused on in this study. The detailed

literature review and the gaps identified in the literature are given in the following

section.
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1.2 Literature Review

1.2.1 Pulse-and-Glide Operations

The concept of alternately turning on and off the engine based on the character-

istics of ICE engines to save fuel is introduced in 1976 [17]. In [18], simulation results

show 30 to 77% MPG improvement for a 2007 Ford Focus and 24 to 90% for a 2004

Toyota Prius at low speeds (25 to 35 mph). Compared to the simulation results,

roughly 4% reduction of MPG improvement is observed for the cases of Toyota Prius

in the dynamometer experiment. It is also pointed out in [18] that further studies

on the PnG operations for the hybrid vehicles are needed. In [38], an optimal con-

trol problem of the car-following scenario is formulated. In this problem, the FV is

controlled to follow a constant-speed PV with the goal of minimizing the fuel con-

sumption. The solution of the optimal control problem shows that as opposed to the

usual driving strategy of constant-speed in cruising, PnG is the optimal control for

low to medium speeds in terms of fuel saving. Roughly 35% to 15% fuel saving is

achieved from 22 mph to 67 mph, with fuel saving percentage decreasing with the

increase of speed. Further in [39], a rule-based switching strategy is developed to

decide the timing of PnG switching in the car-following strategy. Up to 20% fuel

economy improvement is achieved in simulations, and the same trend of decreased

fuel saving with speed increase in [38] is also observed. In [40], the mechanism of PnG

for saving fuel is further studied using the well-known Bittanti’s π-test [41], which is a

tool to estimate whether better performance is possible by periodic control compared

to constant control inputs. Reference [40] constructs the theory basis of PnG that

concludes that PnG operation is optimal in the concave region of the fuel-rate curve

in Figure 1.3.

In [23], the PnG of a parallel hybrid vehicle is studied. The PnG operation with

vehicle body for temporary energy storage is termed the Speed-PnG, while the one

7



using only the battery to store the energy is termed the SOC-PnG. Therefore, in

SOC-PnG the battery state of charge (SOC) oscillates, rather than the vehicle speed

in Speed-PnG. The numerical solutions obtained in [23] indicate that the fuel sav-

ing potential of both Speed-PnG and SOC-PnG decreases as the speed increases,

but with SOC-PnG being less effective in saving fuel at every speed. In brief, the

research efforts mentioned above establish the theory and analysis of PnG, and indi-

cate the relationship between fuel saving potential and speed. However, the question

of whether the ride comfort will be significantly influenced by PnG due to the speed

oscillation is not addressed. Especially in autonomous vehicles, drivers may become

more sensitive to the vehicle acceleration and deceleration and have lower levels of

tolerance for motion oscillations [42].

As shown in [23], SOC-PnG may be more favorable in terms of ride comfort, but

the fuel saving performance is much lower than that of Speed-PnG. Therefore, SOC-

PnG may not be the most ideal solution to ride comfort concerns. In [43], the ride

comfort issue caused by jerks in PnG is analyzed by applying the Pontryagin minimum

principle to the formulated optimal control problem. It establishes an approach to

determine the PnG period based on the requirement of jerk level. However, the

impact of PnG acceleration on ride comfort is not considered in [43]. The influence of

Speed-PnG on ride comfort with both jerk and acceleration considered is studied using

numerical simulations in [44]. This research tries to quantify the relation between fuel

saving and ride comfort based on the comfort index established from the experiment

with different participants [45]. The suggested requirements for ride comfort are

acceleration less than 0.3 m/s2 and jerk between -6 to 4 m/s3. This set of suggested

ride comfort requirements corresponds to the level of “noticeable only to skeptical

customers.” With this set of requirements, 28.2% and 5.2% fuel savings are achieved

respectively at 30 kph and 90 kph on a 2.0L ICE vehicle, and 22.3% and 2.2% on

an ICE vehicle with 1.2L engine. However, Reference [45] does not propose a control
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method to fulfill the ride comfort in PnG.

Based on this literature review, a control framework for PnG that is able to

effectively leverage ride comfort limits for fuel saving is still necessary to advance the

realization of PnG implementation in real world, especially given that ride comfort

requirements are very subjective and the PnG benefits differ on different vehicles.

The influence of PnG on traffic smoothness and fuel saving performance in mixed

traffic flow is studied in [46] via numerical simulations. The mixed traffic flow is

composed of automated vehicles conducting PnG and manually driven conventional

vehicles that follow the intelligent driver model [47] in simulations. The manually

driven vehicles may save or waste fuel depending on the speed and acceleration of

the lead PnG vehicle that they are following. Furthermore, it is pointed out in [46]

that average speed and level of penetration of PnG vehicles are the two major factors

affecting traffic smoothness and overall fuel consumption. The overall fuel benefit

becomes larger if the penetration of PnG vehicles is higher [46]. In [48], the rule-based

switching approach in [39] is extended to the case with PV also conducting Speed-PnG

and applied to a platoon. It shows that in a homogeneous platoon the proposed PnG

switching method can achieve overall 21.8% fuel saving around 45 mph, compared

to the case with linear quadratic controllers. However, in the cases of heterogeneous

platoon, where the heterogeneity is characterized as acceleration deviations, it is

observed that undesired PnG switchings and range violations happen more frequently

with the increase of heterogeneity. The rule-based PnG switching is further refined

by the same group of researchers and applied to the heterogeneous platoon in [49].

It shows that the switching frequency and range violation are improved with larger

range oscillation. However, this tends to enlarge the platoon length, which may reduce

the overall traffic system efficiency that CACC originally aims to improve. Therefore,

without degrading the traffic throughput, how to effectively platoon the PnG vehicles

to maximize the fuel economy while maintaining the individual drivers’ ride comfort
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is still an open question.

As to the PnG experiments using real vehicles, a 2004 Toyota Prius is tested on

the chassis dynamometer in [18]. For PnG cases oscillating between 20 to 30 mph and

30 to 40 mph, 44% and 87% MPG improvements are achieved respectively. However,

the authors in [18] indicate that the SOC variations influence the results significantly,

so the simulation results with multiple repeated PnG cycles aiming to average out the

SOC influence are also reported, which reach 36% to 65% MPG improvements with

the same speed ranges of the dynamometer tests. In [50], an ICE vehicle Renault

Clio 3 Eco 2 with 5-speed manual gearbox is used to test the PnG on a test track.

The test vehicle is operated by a well-trained driver to implement PnG in the ranges

of 50 to 70 kph and 90 to 110 kph, from which roughly 12% and 13% fuel savings are

achieved respectively. Reference [22] reports the results of an automated ICE vehicle

Nissan X-trail tested on a test course. A fuel saving performance of 43.4% is achieved

around 40 kph. For highway, the researchers resorted to numerical simulation instead

and obtained roughly 8% fuel economy improvement. As such, the PnG performance

of real vehicles under different speeds is still open for exploration.

1.2.2 Cooperative Adaptive Cruise Control

As an application of CAV technologies, CACC has attracted increasing attention

from researchers. Many works are presented in the literature in this domain; however,

most of them focus on string stability or safety, and less on improving fuel economy.

References [51] and [52] utilize the consensus control approach via V2V commu-

nication to control the distances between the vehicles. In these works, the target is

to maintain desired platoon formations. In other words, in steady state the vehicles

drive at the same speed. Therefore, these approaches intrinsically lose the potential

for fuel saving by allowing flexible inter-vehicle ranges. In [53], a controller based on

reinforcement learning is established. This controller takes through V2V communica-
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tion the acceleration information of the PV as input and maintains the constant time

headway. In [35], the acceleration information of PV is transmitted to the FV and

constitutes the feedforward term of the controller in addition to the proportional-

derivative control based on measured relative speed and inter-vehicle range. This

research shows that by including the PV acceleration for the feedforward control,

smaller time headway can be achieved without losing the string stability compared

with the case with traditional ACC. Reference [54] further tackles the communication

delay issue based on the control approach proposed in [35]. When the communica-

tion is less reliable, the acceleration information of the vehicle right in front of the

PV is exploited additionally. This way, the string stability can still be maintained

under the condition of communication delay. Moreover, some works adopt the model

predictive control (MPC) approach for CACC. In [55], a robust MPC approach is

proposed to maintain close to the minimum safety distance. A control method based

on the sliding-mode control for CACC is presented in [56]. In this paper, the focus

is on the impact of communication related parameters on the platoon performance,

specifically the minimal inter-vehicle range that can be achieved. It is concluded that

under realistic communication delay and actuator lag, message frequency of 10 Hz is

suggested to maintain the vehicle platoon. Higher frequency might be unnecessary

and could congest the communication channel. In [57], a data-driven CACC approach

via on-line reinforcement learning is proposed to control the buses travelling on an ex-

clusive bus lane. A 30% increase of bus service volume is achieved without sacrificing

the travel time in simulations.

Communication issues may adversely influence the platoon string stability. In

[58], the Kalman filter is used to estimate the PV acceleration. When temporary

communication loss happens, this estimate is used to improve the car-following capa-

bility of the vehicles in a platoon. Similarly, for the issue of communication loss, in

[59] a switching controller based on the H∞ control is developed to robustly stabilize
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the platoon when communication loss happens. To efficiently use the communication

resources and avoid the channel congestion, the approach of event-triggered control

is applied to stabilize the vehicle platoons, especially under actuator delays and dis-

turbances [60, 61]. Reference [62] proposes an on-line method to exploit different

communication topology to improve the string stability under imperfect communica-

tion.

The potential of CACC in vehicle platooning for fuel saving is explored in [63].

In the simulation with the leading vehicle following a modified FTP-75 driving cycle

and the full knowledge of future speed profile of the PVs, it is shown that the fuel

saving achieved ranges from 14.7% to 33.4% in a seven-vehicle platoon, depending

on the position of the vehicles. Also demonstrated in [63] are the cases with different

length of time horizons of knowledge for future speed information. It is shown that

the longer the time horizons are, the closer the fuel saving approaches to that of the

full knowledge case. This indicates the potential of V2V communication, which may

provide the ability to better predict into the future to save the fuel. On the other

hand, Reference [63] also shows that the larger the floating margins (the allowed

variation of inter-vehicle distance) are, the higher the fuel saving potential is. This

benefit of flexible range is directly pointed out in [64]. Reference [64] states that

more flexible policies of inter-vehicle distances can create more degrees of freedom

for fuel saving. However, similar to the case of increasing the inter-vehicle range for

PnG operations, larger distances between vehicles would decrease the overall traffic

throughput, which is against one of the original purposes of CACC. Therefore, proper

coordination between the vehicles in platoons is required.

Even though the tasks under CAVs are often studied separately, the scenarios of

CACC combined with other tasks have also been explored in literature. For example,

CACC is combined with ecoAND at the road intersections in [65, 66]. In this case, the

main purpose is to facilitate the vehicles to form platoons such that they can pass the
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intersection efficiently in different directions, like Reference [37] introduced previously.

Another example is combining CACC with the merging scenarios on highways [67].

For the combined tasks of CACC-ecoAND and CACC-merging, the communication

in general involves both V2V and V2I communication. The infrastructures at the

intersections or merging ramps can be controlled accordingly, as well.

Another important research topic of CACC in recent years is about cyber attack

and security. Similar to other systems of internet of things, e.g. microgrids, the vehi-

cles are connected and form a network in CACC. Any malicious behaviors intruding

this network can lead to serious consequences. In this topic, researchers focus on how

to detect the threats in a timely manner and try to avoid or mitigate the resultant

damage [68, 69, 70, 71].

From this literature review, it can be seen that most of the research on CACC is

devoted to keeping platoon formation and/or maintaining string stability. With these

purposes, some works bring communication delays, communication losses, actuator

lags, model uncertainties, and other disturbances into the scope. These works try to

realize the goal of increasing traffic throughput, the benefit anticipated by platooning,

with the help of CAV technologies. However, only quite limited number of works are

dedicated to improving fuel economy. In [63] and [64], even though the concept of

creating room for reducing fuel consumption by allowing variations of inter-vehicle

ranges is introduced, directly bringing the PnG operations to CACC is not considered.

To think from the opposite perspective, relaxing inter-vehicle ranges for fuel saving

implies that those approaches invented for keeping platoon formation are not suitable

for PnG platoons, since the flexibility that could be used for improving fuel economy

will be lost. For example, if the whole platoon is controlled to travel with a rigid

formation, the fuel saving performance of the FVs will be dictated by the lead vehicle.

When the lead vehicle cruises at constant speed, the FVs cannot fulfill PnG under

these control approaches. Even if the lead vehicle conducts PnG, the FVs need to
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follow the same PnG pattern. This may cause the loss of some fuel saving potential

and/or sacrifice the ride comfort for the FVs, especially given that PnG benefits differ

from car to car and ride comfort requirements change from driver to driver. On the

other hand, even though the PnG operation is applied to the platoons in [48] and

[49], the problems of avoiding frequent PnG switching caused by heterogeneity and

keeping the platoons compact for higher traffic throughput still persist.

1.3 Objectives, Scope of the Study, and Approaches

The overarching goal of this dissertation is to realize CACC through PnG to max-

imize the fuel saving potential of vehicles in a platoon. The literature survey above

shows that in spite of numerous encouraging results, an on-line control framework

for PnG that can effectively leverage ride comfort limits for fuel saving is missing,

especially for HEVs. Also, the issue of undesired PnG switchings in heterogeneous

platoons is still unresolved. Therefore, filling these gaps is necessary to achieve our

goal.

First, the topic of PnG operations in car-following is studied. To develop a control

framework that is flexible to include different requirements and is able to deal with

uncertainties and disturbances in a more systematic manner, an MPC approach is

adopted. The developed method must be able to effectively maximize the fuel saving

potential from PnG under different ride comfort requirements. Moreover, this control

needs to be on-line implementable. A series of convexification and simplification

techniques are thus explored to solve MPC efficiently. For ride comfort, also for the

purpose of reducing the computational load, we only consider the levels of acceleration

and deceleration, rather than jerks. The ride comfort concern from jerks is assumed

to be taken care of by the low-level actuator control and is not considered in this

study.

For the platooning problem, we only concentrate on the development of strate-
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gies for achieving the highest possible fuel saving potential, rather than on the string

stability. Our rationale is that keeping safety is always the top priority. If the pla-

toon encounters a situation where PnG may be risky, we simply deactivate the PnG

function and let the approaches developed for maintaining safety distances take over.

To tackle the challenges for platooning PnG vehicles pointed out in literature, we

develop the idea of PnG synchronization, such that the vehicles in a platoon can

preserve the freedom to pursue fuel saving while keeping the platoon compact. For

the PnG synchronization in heterogeneous platoons, a control approach is developed

based on the Kuramoto oscillator model [72]. The Kuramoto oscillator model pro-

vides a synchronization mechanism that only relies on local communication. The rich

research outcomes of the Kuramoto model in literature also provides a strong theory

basis for further study [73, 74].

After developing the control for PnG synchronization, we conduct the sensitivity

analysis on one single PnG vehicle to study how different parameters influence the

fuel savings. The results tell us that the amount of speed oscillations does not affect

the fuel saving potentials significantly in practical applications. This finding simplifies

our analysis on how to design the control gains, Kuramoto gain, and PnG period.

Given these control parameters, designing proper range policies that can ensure safety

while keeping the platoons compact is out of the scope of current research and is left

for future study.

1.4 Contributions

The contributions of this dissertation can be summarized as follows.

• A control method based on minimum-time control is developed for PnG imple-

mentation on HEVs in car-following. This method is on-line implementable and

helps balance the trade off between fuel saving and ride comfort, while achieving
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SOC sustenance.

• Real driving data from Safety Pilot dataset [75] is analyzed to set the ride

comfort requirement for PnG. The PnG fuel saving potential is also studied

using the naturalistic driving data from Safety Pilot dataset.

• A decentralized control approach for PnG synchronization in heterogeneous pla-

toons based on the Kuramoto oscillator model is presented. This approach only

relies on local communication and is able to maintain the fuel saving potentials

of different vehicles while keeping the platoons compact.

• The guidelines for designing control and platooning parameters for the proposed

method for PnG synchronization are presented. These step-by-step design in-

structions ensure the successful implementation of the proposed control method.

• The PnG experiment is conducted using an automated Lincoln MKZ hybrid

vehicle and 13% MPG improvement is observed at low speed.

1.5 Outline of the Dissertation

This dissertation is organized as follows. In Chapter II, the performance and

features of PnG operations of HEVs are studied through the proposed control for

car-following. The results of PnG synchronization in heterogeneous platoons are pre-

sented in Chapter III. The analysis on the proposed PnG synchronization method is

then analyzed in Chapter IV. Chapter V summarizes the results of physical experi-

ments of PnG using a Lincoln MKZ hybrid vehicle. Conclusions and future work are

given in Chapter VI.
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CHAPTER II

Pulse-and-Glide Operations in Car-Following

2.1 Introduction

As indicated in [23], Speed-PnG can achieve significant fuel savings, but it may

cause ride comfort concerns. On the other hand, SOC-PnG, in which the battery

SOC oscillates instead of the vehicle speed, can lead to better ride comfort. However,

it is less efficient because of battery ohmic losses.

Motivated by these observations, in this chapter we present the concept of intro-

ducing speed oscillation into SOC-PnG to seek a balance between fuel saving and

ride comfort, while meeting the SOC sustenance requirements. Specifically, a control

framework for hybrid electric vehicles (HEVs) with step-gear transmission is devel-

oped. In this framework, the vehicle oscillates around a desired range to the preceding

vehicle (PV) with limited acceleration/deceleration. The acceleration/deceleration

limits are intended to be at the discretion of the drivers to select according to the

ride comfort levels they desire. Given that ride comfort is subjective for individuals

and the sense of discomfort can gradually increase over time [42], it is important to

have this freedom for ride comfort selection. The proposed framework creates the

basis for future product design in fulfilling this purpose.

To achieve this goal, we formulate the PnG operation as two minimum-time control

problems, one for the gliding phase and one for the pulsing phase. In the gliding phase,
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the motor may need to provide some torque to reduce the deceleration. Therefore,

the battery SOC will decrease. Then in the pulsing phase, the battery SOC drop

that happened in the gliding phase needs to be restored. Based on the linearized

vehicle dynamics, the approximation of SOC dynamics and its convexification using

the McCormick envelope [76], and the sparsity optimization approach in [77], the two

minimum-time optimal control problems are transcribed into quadratic programming

(QP) problems via the pseudo-spectral (PS) method. The resulting problems can be

solved efficiently by existing solvers.

The rest of this chapter is organized as follows. The vehicle models and the

parameters used in this work are introduced in Section 2.2. Section 2.3 explains

in detail the formulated minimum-time control problems and the solution strategy.

Simulation results are presented in Section 2.4. Finally, conclusions and future work

are given in Section 2.5.

2.2 Vehicle Model

In this work, we focus on a parallel HEV with step-gear transmission. The key

parameters of the vehicle used in this chapter are summarized in Table 2.1. The

engine brake specific fuel consumption (BSFC) map and the motor efficiency map are

shown in Figure 2.1 and Figure 2.2 respectively, and the vehicle and SOC dynamics

are described below.

2.2.1 Vehicle Dynamics

In this study, only the longitudinal vehicle dynamics is considered for the car-

following scenario with the following constant time headway range policy:

Rdes = d0 + hτvP , (2.1)
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Figure 2.1: The engine map of the simulation studies.
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Figure 2.2: The motor efficiency map of the simulation studies.
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where Rdes is the desired range to the PV, d0 is the standstill range, hτ is the time

headway, and vP is the speed of PV. Then the dynamics of range error dR := R−Rdes,

where R is the range to the PV, is

dṘ = −v + vP + hτaP , (2.2)

with aP being the acceleration of PV. The dynamics of speed of the following vehicle

(FV), which we control, is

v̇ = k1v
2 + k2(Te + Tm)− gfr, (2.3)

with k1 := −CdρaAv/(2Mv) and k2 := ηTη0rT r0/(Mvrw), where the vehicle parame-

ters are as defined in Table 2.1. Te > 0 and Tm are respectively the engine torque

and motor torque, with Tm > 0 corresponding to battery discharging and Tm < 0

corresponding to battery charging.

2.2.2 SOC Dynamics

For the SOC dynamics, we adopt the widely-used open-circuit-voltage-resistance

(OCV-R) model:

˙SOC =
−Ibat

Cbat

, (2.4)

where

Ibat =
Voc − Voc

√
1− 4PbatRbat/V 2

oc

2Rbat

(2.5)

is the battery current and Cbat is the nominal battery capacity. In addition, Pbat =

ηmPm while charging and Pbat = η−1
m Pm while discharging. The motor efficiency ηm

is obtained from Figure 2.2. The open-circuit voltage, Voc, and the battery internal

resistance, Rbat, are functions of SOC and defined as shown in Figure 2.3.
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The open circuit voltage and battery inner resistance for the whole battery
pack.

Parameter Description Value Unit
Mv vehicle weight 2948 kg
Cd air drag coefficient 0.4 -
Av vehicle frontal area 3.26 m2

ρa air density 1.202 kg/m3

fr rolling resistance 0.015 -
rw effective tire radius 0.3848 m
g acceleration of gravity 9.81 m/s2

rT gear ratio (gear 1-6) [4.03, 2.36, 1.53, -
1.15, 0.85, 0.67]

ηT gear efficiency (gear 1-6) [0.963, 0.971, 0.993, -
0.993, 0.995, 0.993]

r0 final drive ratio 3.23 -
η0 final drive efficiency 0.966 -
Cbat battery capacity 6 kWh

Table 2.1: The vehicle parameters of the simulation studies.
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2.3 Methodology

In this section, the on-line implementation of the PnG operation is introduced.

Two problems, one for the gliding phase and another for the pulsing phase, are for-

mulated as minimum-time control problems. The longitudinal dynamics is linearized

and the SOC dynamics is convexified. Then, with the adoption of the concept of

sparsity optimization and convexification technique for minimum time problems in

[77], the unknown variable of time to be minimized (the end time of these two indi-

vidual problems) is avoided in the problem formulation. At last, the two problems are

solved on-line in the MPC fashion via the pseudo-spectral method, which transcribes

them into QP problems that can be solved very efficiently.

2.3.1 Problem Formulation

We assume the engine can be totally disengaged. Even though the engine sweet

spot cannot be achieved at every speed as in the case of continuously variable trans-

mission [39], the similar concave-convex shape of the fuel-rate curve can still be ob-

served for a given engine speed, as shown in Figure 2.4 with 40 mph and 60 mph with

gear 6 as examples, drawn from the engine map of Figure 2.1. Moreover, the gear is

not changed in our PnG strategy. In other words, the engine will run at roughly the

same speed. Therefore, PnG operation is still beneficial in terms of fuel saving for

the vehicle with step-gear transmission used in this study.

Recall that the purpose of this work is to introduce speed oscillation to SOC-

PnG, which originally can achieve constant speed for the FV when the PV is cruising

at constant speed. The speed oscillation is introduced to recover some of the fuel

saving potential from the Speed-PnG operations. To achieve this goal, we formulate

two minimum-time control problems, one for the gliding phase and the other for the

pulsing phase. The problems are solved every ∆T s using the MPC approach to

counter the changing traffic environment. In the gliding phase, the vehicle glides to
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Figure 2.4:
The fuel-rate curve for step-gear transmission at given speeds with gear
6. The fuel rate of constant-speed driving is denoted by QCS and that of
PnG operation is by QPnG.

the preset minimum speed, vmin, when it converges to Rdes. On the other hand, in

the pulsing phase the vehicle pulses to the preset maximum speed, vmax, when it

converges to Rdes again. In the whole process, the range constraint (for safety) and

the acceleration/deceleration constraints (for ride comfort) need to be satisfied. The

problem formulations and how to solve them efficiently on-line are introduced next.

2.3.1.1 The Gliding Phase Problem

The purpose during the gliding phase is to minimize the battery power consump-

tion while satisfying the constraints. The SOC drop resulting from this battery power

consumption needs to be restored in the pulsing phase for the purpose of SOC sus-

tenance. Therefore, less battery power consumption leads to better fuel economy in

the whole PnG process. The battery power consumption is, however, directly linked

to the deceleration constraint. Higher motor driving power leads to higher SOC drop

and allows the vehicle glide to the minimum speed at a later time. On the contrary,

with just enough motor driving power that can fulfill the deceleration constraint,
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the battery power consumption can be reduced and the preset minimum PnG speed

will be achieved earlier in this situation. With this rationale, we formulate the glid-

ing phase problem as a minimum-time control problem such that the battery power

consumption can be minimized while ensuring the satisfaction of constraints.

In the gliding phase, the constraint with respect to the minimum range error dRmin

is more crucial compared to the one of dRmax, since it may be easily violated if the

initial gliding speed is too high or the PV is reducing its speed. The minimum-time

control problem for the gliding phase is as follows:

min
Tm(t)

(tf,gld − t0,gld)

s.t. vehicle longitudinal dynamics (2.2) and (2.3)

−dlim ≤ a(t) ≤ alim

0 ≤ Tm(t) ≤ T disch
m,max

Ṫm,min ≤ Ṫm(t) ≤ Ṫm,max

dRmin ≤ dR(t) ≤ dRmax

vf (tf,gld) = vmin.

(2.6)

In (2.6), the time duration of gliding phase (tf,gld−t0,gld) is to be minimized. This opti-

mal control problem needs to satisfy the vehicle dynamics and acceleration/deceleration

limits, the constraint for motor torque variation, and the range error constraint.

Also, problem (2.6) needs to be solved every ∆T s until switching to the pulsing

phase. The initial boundary conditions of dR and v are those at the current time

t0,gld. The final boundary condition only includes the achieving of vmin, since the

vehicle will glide to lower speed such that Rdes can be reached for sure. This can also

help the convergence of problem solving, instead of adding too many constraints to

problem (2.6).
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2.3.1.2 The Pulsing Phase Problem

In the pulsing phase, the engine is turned on to drive the vehicle and charge the

battery at the same time. The principle for achieving better fuel economy is now to

operate the engine closer to the sweet spot. From Figure 2.1, we can see that the

engine efficiency is higher with increased torque at any given engine speed. In practical

applications, using the most efficient engine operating points at different engine speeds

usually leads to high acceleration that will negatively influence the ride comfort. In

other words, the efficiency of engine operation is limited by the acceleration constraint

for ride comfort. Therefore, among the engine torques satisfying the acceleration limit,

higher torque will result in faster convergence to the preset vmax, which is also with

higher engine efficiency. This leads to the formulation of the pulsing phase problem as

the minimum-time problem as well. In the pulsing phase, the constraint with respect

to the maximum range error dRmax is more crucial compared to that with respect to

dRmin, since it may be easily violated if the initial pulsing speed is too low or the

PV is increasing its speed. The optimal control problem for the pulsing phase is as

follows:
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min
Tm(t), Te(t)

(tf,pls − t0,pls)

s.t. vehicle longitudinal dynamics (2.2) and (2.3)

SOC dynamics (2.4)

−dlim ≤ a(t) ≤ alim

T ch
m,max ≤ Tm(t) ≤ 0

Ṫm,min ≤ Ṫm(t) ≤ Ṫm,max

0 ≤ Te(t) ≤ T̄sw

Ṫe,min ≤ Ṫe(t) ≤ Ṫe,max

Te(t) + Tm(t) ≥ 0

dRmin ≤ dR(t) ≤ dRmax

vf (tf,pls) = vmax

SOCf (tf,pls) = SOCtarget.

(2.7)

The objective function in (2.7) is to minimize the time duration of pulsing phase

(tf,pls − t0,pls). The constraints in (2.7) are described as follows. The optimal control

problem needs to satisfy the vehicle dynamics, acceleration/deceleration limits, and

the range constraint. Both the engine torque and motor torque need to be within the

desired range. The upper limit of Te is set to T̄sw, the most efficient engine torque at

the given engine speed. The motor torque for charging is also from the engine (here

we do not consider regenerative braking), so Te + Tm needs to be greater than zero.

In addition, in this phase, the SOC dynamics is considered for the purpose of SOC

sustenance. In other words, the final SOC in this phase needs to achieve the target

SOC, SOCtarget, which is the SOC level at the beginning of the gliding phase. Similar

to the gliding phase problem (2.6), the final boundary conditions only include the

achieving of vmax in addition to that for the target SOC, since the vehicle will pulse

to higher speed such that Rdes can be reached surely.

Problem (2.7) also needs to be solved every ∆T s. The initial boundary conditions
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of dR, v, and SOC are those at the current time t0,pls. The final conditions are as

just described above.

2.3.2 Solution Strategy

In this work, the Legendre pseudo-spectral method (PS) method with Legende-

Gauss-Radau (LGR) collocation points [78] is adopted to solve the optimal control

problems (2.6) and (2.7). However, if we directly apply the PS method to solve the

whole PnG cycle, we need to use multi-interval PS due to the discontinuous nature

of the PnG operation [79] and the time horizon of the problem will be too long for

practical applications. The computation load will also be heavier and not ideal for

real-time applications. In the following, a series of approximation strategies devoted

to efficient on-line problem solving are introduced. Then the resultant quadratic

problems are transcribed using the PS method to become QP problems.

2.3.2.1 Linearization and Approximation of the Dynamics

The longitudinal dynamics (2.3) is nonlinear, which will lead to a set of nonlinear

constraints after applying the PS method. However, we can exploit the feature of

small speed oscillation to linearize (2.3) around the average speed to obtain

v̇ = 2k1v̄v − k1v̄
2 + k2(Te + Tm)− gfr, (2.8)

where v̄ is the average speed or the cruising speed of the PV.

The SOC dynamics (2.4) is also nonlinear. To solve the optimal control problem

efficiently enough for a real-time application, the surface of dSOC/dt is fitted with

first order in both SOC and Pm as shown in Figure 2.5. Therefore, the SOC dynamics

can be approximated as

˙SOC ≈ c00 + c10SOC + c01Pm, (2.9)
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Figure 2.5: The fitting of the SOC dynamics during charging.

where c00 = 7.919 × 10−5, c10 = −4.244 × 10−5, and c01 = −2.704 × 10−8 for the

vehicle model used in this study. However, due to the fact that Pm = Tmωm, the SOC

dynamics is not yet a linear constraint after being transcribed via the PS method.

In addition, because there is no gear shifting in our PnG strategy, Pm = cωvTmv

with cωv := rwrT r0 being a constant. Therefore, Pm is a bilinear term in the state v

and control Tm, both being unknown. We then adopt the conventional McCormick

envelope approach [76] to convexify the bilinear term Pm as follows.

The underestimates of Pm are:

Pm ≥ (T ch
m,minv + Tmvmin − T ch

m,minvmin)/cωv

Pm ≥ (T ch
m,maxv + Tmvmax − T ch

m,maxvmax)/cωv,
(2.10)

and the overestimates of Pm are:

Pm ≤ (T ch
m,maxv + Tmvmin − T ch

m,maxvmin)/cωv

Pm ≤ (Tmvmax + T ch
m,minv − T ch

m,maxvmax)/cωv.
(2.11)

As can be seen from (2.10) and (2.11), the constraints for Pm are linear. The tighter

the upper and lower bounds of the variables are in the bilinear terms, the more
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precise the convexification is. Because the speed oscillation is intended to be small

in this work, the result of this approximation is acceptable, as will be seen from the

simulation results.

2.3.2.2 Relaxing the Acceleration/Deceleration Constraints

For the gliding phase problem, to ensure feasible solutions, especially in the case

of varying speed PV, the deceleration constraint is relaxed to become a soft constraint

by adding a slack variable to it. This additional deceleration is achieved by a brak-

ing acceleration as an additional control variable. In this study, we simply assume

this braking acceleration is provided by the friction brake. The slack variable of de-

celeration constraint and the braking acceleration will be penalized in the objective

function.

Similarly, for the pulsing phase problem, a slack variable is added to the accelera-

tion constraint such that it becomes soft. Then this slack variable is penalized in the

objective function of the pulsing phase problem. This way, the control proposed can

better handle the real traffic environment, especially with the fact that the subjective

feeling of ride comfort does not abruptly change if the preset acceleration/deceleration

limits are just slightly exceeded temporarily.

Therefore, the objective functions of (2.6) and (2.7) will become:

min
Tm(t), sd(t), ab(t)

(tf,gld − t0,gld) +

tf,gld∫
t0,gld

[
wds

2
d(t) + wba

2
b(t)
]
dt, (2.12)

and

min
Tm(t), Te(t), sa(t)

(tf,pls − t0,pls) +

tf,pls∫
t0,pls

was
2
a(t)dt, (2.13)

where sa and sd are respectively the slack variables of acceleration and deceleration
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constraints, ab ≤ 0 is the braking acceleration, and wa, wd, and wb are the associated

weighting factors.

2.3.2.3 Sparsity Optimization Formulation for the Pulsing and Gliding

Problems

In problems (2.6) and (2.7), the objects are respectively to minimize the gliding

and pulsing duration by finding the unknown switching times, tf,gld and tf,pls. If we

directly apply the PS method, the unknown switching times will make the transcribed

problems nonlinear because of the longitudinal vehicle dynamics and SOC dynamics.

The objective functions (2.12) and (2.13) will also become non-quadratic due to the

penalizing terms. Therefore, we adopt the strategy based on sparsity optimization in

[77] to the pulsing and gliding phase problems.

The strategy in [77] for minimum-time control problem is summarized as follows.

Consider a discrete minimum-time control problem:

min
u(0),...,u(T−1)

T

s.t. x(t+ 1) = Ax(t) + bu(t),

x(T ) = 0 and x(t) 6= 0, t = 0, 1, ..., T − 1,

u(t) ∈ U , t = 0, 1, ..., T − 1.

(2.14)

It is equivalent to the sparsity optimization problem:

min
u(0),...,u(T−1)

|{t : ‖x(t)‖2 6= 0}|

s.t. x(t+ 1) = Ax(t) + bu(t),

∃T1 ≤ T : x(t) = 0, t = T1, ..., T, and

x(t) 6= 0, t = 0, 1, ...T1 − 1,

u(t) ∈ U , t = 0, 1, ..., T − 1,

(2.15)
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where the operator ‖(.)‖2 is the 2-norm and |(.)| means the carnality. Then in [77]

(2.15) is convexified to

min
u(0),...,u(T−1)

T∑
t=1

w(t) ‖x(t)‖2

s.t. x(t+ 1) = Ax(t) + bu(t),

u(t) ∈ U , t = 0, 1, ..., T − 1,

(2.16)

where w(t) is an increasing function. The problem of (2.16) is then solved using

the MPC approach, of which the MPC horizon in fact does not need to cover the

minimum time [77].

To apply this approach of sparsity optimization for our minimum-time problems,

we need to have the target states be at the origin. With the new states defined as

εv := v − vmin in the gliding phase and εv := v − vmax and εsoc := SOC − SOCtarget

in the pulsing phase, together with the simplification and convexification techniques

introduced above, problems (2.6) and (2.7) become:

min
Tm(t), sd(t), ab(t)

t0,gld+∆Tgld∫
t0,gld

[
w(t)εv(t)

2 + wds
2
d(t) + wba

2
b(t)
]
dt

s.t. dṘ(t) = −(εv(t) + vmin) + vP + hτaP

ε̇v(t) = 2k1v̄(εv(t) + vmin)− k1v̄
2 + k2(Te(t) + Tm(t))− gfr

−dlim − sd(t) ≤ a(t) ≤ alim

0 ≤ Tm(t) ≤ T disch
m,max

Ṫm,min ≤ Ṫm(t) ≤ Ṫm,max

dRmin ≤ dR(t) ≤ dRmax

sd(t) ≥ 0

ab(t) ≤ 0,

(2.17)

and
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min
Tm(t), Te(t), sa(t)

t0,pls+∆Tpls∫
t0,pls

{
w(t)

[
ε2v(t) + wsocε

2
soc(t)

]
+ was

2
a(t)
}
dt

s.t. dṘ(t) = −(εv(t) + vmax) + vP + hτaP

ε̇v(t) = 2k1v̄(εv(t) + vmax)− k1v̄
2 + k2(Te(t) + Tm(t))− gfr

ε̇soc(t) = c00 + c10(εsoc + SOCtarget) + c01Pm(t)

Pm(t) ≥
[
T ch
m,min(εv(t) + vmax) + Tm(t)vmin − T ch

m,minvmin

]
/cωv

Pm(t) ≥
[
T ch
m,max(εv(t) + vmax) + Tm(t)vmax − T ch

m,maxvmax

]
cωv

Pm(t) ≤
[
T ch
m,max(εv(t) + vmax) + Tm(t)vmin − T ch

m,maxvmin

]
/cωv

Pm(t) ≤
[
Tm(t)vmax + T ch

m,min(εv(t) + vmax)− T ch
m,maxvmax

]
/cωv

−dlim ≤ a(t) ≤ alim + sa(t)

T ch
m,max ≤ Tm(t) ≤ 0

Ṫm,min ≤ Ṫm(t) ≤ Ṫm,max

0 ≤ Te(t) ≤ T̄sw

Ṫe,min ≤ Ṫe(t) ≤ Ṫe,max

Te(t) + Tm(t) ≥ 0

dRmin ≤ dR(t) ≤ dRmax

sa(t) ≥ 0,

(2.18)

where ∆Tgld and ∆Tpls are respectively the MPC horizons of the gliding and pulsing

problems, and wsoc in the objective function of (2.18) is the weighting factor for

balancing the magnitudes of εv and εsoc. For the w(t) in the objective functions, we

simply define it as

w(t) = α(t− t0,i), (2.19)

with α a positive constant and t0,i being t0,gld or t0,pls, the current time.
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2.3.2.4 Problem Solving Using the Pseudo-Spectral Method

Problems (2.17) and (2.18) are solved using the PS method. The constraints

in these two problems are now all linear and the objective functions are quadratic.

Therefore, after the application of the PS method, the two problems will become QP

problems, which can be solved very efficiently.

In this study, we assume that the PV speed and PV acceleration in the MPC

horizons are known. In practical applications, they can be estimated by proper pre-

diction methods, such as those in [80, 81]. The proposed method in this study can

be further integrated with any methods able to predict the PV behaviors, which have

already been explored extensively in literature and are out of the scope of our study.

2.3.3 The Ride Comfort Requirement

As discussed previously, vehicle bodies are more efficient energy buffers compared

with batteries for storing the energy from engine in PnG. However, using the vehicle

body as the energy buffer means that speed oscillation will occur, which may influence

the ride comfort negatively. Therefore, it is necessary to consider ride comfort in the

practical PnG implementation.

Here we assume that jerks can be properly handled by the design of low-level actu-

ator control. Therefore, only the feelings of drivers caused by the pulsing acceleration

and gliding deceleration are considered. The cycles of PnG in real applications are

at the order of ten seconds. In literature, however, most of the research efforts for

studying motion sickness under different excitation frequency only reach to 0.1 Hz

or is not for longitudinal direction [82][83]. In other words, the research of human

body reactions to very low frequency has not yet been well-established. As a result,

we resort to the Safety Pilot dataset [75] to see what is the level of acceleration that

people encounter in everyday driving. With the PnG experiment using real vehicle

that will be presented in Chapter V, we can have better idea about the influence of
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ride comfort by PnG.

From the Safety Pilot dataset, first the events in car-following scenario are chosen.

Then we further extract those recorded in cruising scenario. If an event is with speed

variation less than 10% of its average speed, it is defined as in the cruising scenario.

The average root-mean-square acceleration of those selected cruising events ranges

from 0.17 to 0.2 m/s2 at different speeds (30 to 80 mph). Therefore, we choose 0.2

m/s2 as the acceleration/deceleration limits for ride comfort, close to a suggested

maximum acceleration 0.3 m/s2 in [44]. However, the level of acceleration 0.2 m/s2

from the analysis of Safety Pilot dataset is the one that people encounter everyday in

traditional cruising, which may be very conservative. More systematic study for ride

comfort in PnG is needed, which would need to involve numerous experiments with

different subjects and is thus not in the scope of this study.

2.4 Simulation Results and Discussions

In this work, it is assumed that the road is flat without any grade variation. First,

the cases with constant-speed PV are simulated with different speeds. A case with

varying-speed PV is then considered to further validate the control of the proposed

method. At last, the Safety Pilot dataset is exploited to define the PV speed to

gain more comprehensive idea about the potential of fuel saving using the proposed

method in real traffic. All simulations are started with the FV at the desired range

to the PV. Except for some cases with constant-speed PV, all the other cases with

varying-speed PV are with gear 6. The MPC horizons for all cases are set as 6 s. In

simulations, the computation time for solving each problem on a laptop with Intel®

i5 CPU in MATLAB using the built-in quadprog solver is roughly less than 0.1 s.

Therefore we choose ∆T = 0.5 s, i.e., solving the QP problems every 0.5 s, which is

sufficient for normal driving situations.
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2.4.1 Constant-Speed Preceding Vehicle

Figure 2.6 shows the MPG for CS driving at different speeds in engine mode, and

Figure 2.7 summarizes the MPG improvements of SOC-PnG without speed oscilla-

tion. In this study, the baseline cases for MPG improvement are those of CS driving

in engine mode with gear 6, because gear 6 renders the least fuel consumption in

every speed of CS driving. It can be seen that due to high vehicle weight and not

very efficient motor, pure SOC-PnG cannot save fuel for the vehicle studied. On the

other hand, for Speed-PnG without involving the electrical path of the powertrain,

high MPG improvements can be achieved as summarized in Figure 2.8. The MPG

improvements of Speed-PnG range roughly from 8% to 35%, following the trend of

decreased fuel saving with speed increase. However, this achievement might be at

the expense of ride comfort. The root-mean-square accelerations at different speeds

of pure Speed-PnG are also shown in Figure 2.8. We can see that they can reach

beyond 0.3 m/s2 at higher speeds, even with gear 6 that leads to lower accelerations.

Nevertheless, if we introduce 10% speed oscillation to the SOC-PnG, some fuel sav-

ing potential can be regained using the proposed control method, as shown in Figure

2.9. Meanwhile, the root-mean-square accelerations are about 0.2 m/s2, the preset

level of the acceleration/deceleration limits for ride comfort. Figure 2.10 plots the

simulation trajectories of the case of 40 mph as an example. We can see that the

range and acceleration/deceleration constraints are satisfied and the battery SOC is

also maintained.

In this simulation study, we see that partial fuel saving capability can be recovered

if speed oscillations are allowed to the SOC-PnG. This is because the vehicle body is

a more efficient energy buffer than the battery. Furthermore, we can also observe the

performance of different PnG operations, with the feature that pure Speed-PnG and

pure SOC-PnG serve respectively the upper bound and lower bound of the fuel saving

potential. Next, we will apply the proposed method to a case with varying-speed PV
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to further check its performance.
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Figure 2.6: The MPG of constant-speed driving at different speeds in engine mode.
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Figure 2.7:
The MPG improvements of constant-speed driving at different speeds
with pure SOC-PnG.
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Speed-PnG
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Figure 2.8:
The MPG improvements and root-mean-square accelerations of Speed-
PnG with 10% speed oscillation at different speeds.

2.4.2 Varying-Speed Preceding Vehicle

To examine the control performance of the proposed method, a speed profile with

0.06 m/s2 root-mean-square acceleration, shown in Figure 2.11, is used as the speed

of PV. Two cases are simulated, one starting in pulsing phase and another starting in

gliding phase. The simulation results are shown in Figure 2.12 and Figure 2.13 respec-

tively. We can see that in both cases, the range constraint is satisfied. However, the

limits of acceleration and deceleration for ride comfort are sometimes exceeded. Due

to the varying speed of PV, the FV may need to temporarily increase the acceleration

or deceleration to meet the range constraint. For example, in Figure 2.12 at t = 32

s, the FV raises its acceleration beyond the preset limit 0.2 m/s2 according to the

speed increase of PV, such that the range error is still within the bounds later around

t = 38 s. Furthermore, at t = 46 s, also in Figure 2.12, the FV applies brake to re-

duce its speed in response to the speed reduction of PV, which leads to the temporary
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SOC-PnG with Speed Oscillation
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Figure 2.9:
The MPG improvements and root-mean-square accelerations of SOC-PnG
with 10% speed oscillation at different speeds.

exceeding of deceleration from the preset limit. This phenomenon is also reflected

in the root-mean-square acceleration, 0.22 m/s2 for the case starting in pulsing and

0.23 m/s2 for the one starting in gliding. The fuel economy for these two cases are

36.6 MPG and 40.9 MPG, respectively. It also indicates the fact that for short runs,

starting with pulsing tends to have slightly lower MPG because larger proportion of

time is with engine turned on. If driven in engine mode without PnG operation, the

fuel economy is 29.3 MPG. Therefore, roughly 32.1% MPG improvement is achieved

if the average of MPG from the cases in Figure 2.12 and Figure 2.13 is considered.

The simulations here show that the proposed method is able to deal with the

cases where the PV has varying speed. Further study using naturalistic driving data

is presented next.
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Figure 2.10:
The simulation results of constant-speed PV at 40 mph with gear 6. The
dashed lines indicate the allowed range error, PV speed, and accelera-
tion/deceleration limits for ride comfort.
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Figure 2.11:
The speed and acceleration trajectories used in the case of varying-speed
PV.

2.4.3 Preceding Vehicle with Speed from the Safety Pilot Dataset

Using the Safety Pilot dataset, we extract the cruising events from those in the

car-following scenario. Similar to the ride comfort analysis presented previously, if

the speed of an event in the car-following scenario is with variation less than 10% of

its average speed, we assign it as the speed of PV. There are in total 1,161 events of

local roads and 507 events of highways adopted in this simulation study. The total

driving durations are 8.5 and 11.4 hours for the local and highway events respectively.

The detailed distributions of these events are shown in Figure 2.14 and Figure 2.16.

For each event, the initial position of FV is at the desired range and two simulations

are implemented, one starting in pulsing and another starting in gliding. The average

MPG of these two simulations is then considered as the MPG result of this event.

Figure 2.15 and Figure 2.17 are the results for local roads and highways respec-

tively. For the local events, the root-mean-square acceleration is higher, on average

slightly over 0.2 m/s2. Therefore, the weighting factor for penalizing the slack variable
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Figure 2.12:
The simulation results of varying-speed PV at 40 mph with gear 6 and
starting in pulsing. The dashed lines indicate the allowed range error,
PV speed, and acceleration/deceleration limits for ride comfort.
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Figure 2.13:
The simulation results of varying-speed PV at 40 mph with gear 6 and
starting in gliding. The dashed lines indicate the allowed range error,
PV speed, and acceleration/deceleration limits for ride comfort.
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Figure 2.14:
The statistics of Safety Pilot data on local roads used in the simulations.

of the acceleration constraint is reduced from 1×106 to 100, such that the fuel saving

potential will not be degraded by the PV. Even so, we can see that the distribution of

FV acceleration is still highly overlapped with that of the PV acceleration in Figure

2.15. From our experience of PnG experiment, which will be presented in Chapter V,

this level of acceleration is very mild and does not cause discomfort. For the highway

events, the FV accelerations are on average lower and the MPG improvements are

less compared with the outcomes of local events, which follows the general trend of

PnG that fuel saving potential decreases as the speed increases.

However, we can that there are some cases where PnG actually leads to more

fuel consumption, either on local roads or on highways. The average of MPG im-

provements for local events is 17.1% with standard deviation 19.9%. For highway

events, the average of MPG improvements is 5.1% with standard deviation 5.5%. In

order to dive further into the individual cases, the MPG improvements against the

root-mean-square accelerations of PV are plot in Figure 2.18. It can be seen that
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Figure 2.15: The simulation results using the Safety Pilot data on local roads.

Figure 2.16: The statistics of Safety Pilot data on highways used in the simulations.
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Figure 2.17: The simulation results using the Safety Pilot data on highways.

the MPG improvements are roughly inversely proportional to the PV accelerations,

which suggests that the benefits of fuel saving by PnG tend to be smaller when the

PV accelerations are large. In orther words, if the PV is driving relatively aggres-

sively, following it tightly may end up burning more fuel. In this case, if the driver of

FV is willing to trade off ride comfort for fuel savings, higher fuel saving potentials

are still possible.

We further rerun the simulations using the Safety Pilot dataset with increased

alim, from 0.2 m/s2 in previous cases to 0.3 m/s2. Figure 2.19 and Figure 2.20 show

the simulations results of local roads and highways respectively, where the results

of 0.2 m/s2 acceleration limit from Figure 2.15 and Figure 2.17 are also added for

comparison. It can be seen that on local roads, using alim = 0.2 m/s2 or alim =

0.3 m/s2 does not lead to very different results, for both the MPG improvements and

FV accelerations. It is because smaller penalizing factor was previously used already

in the simulations with alim = 0.2 m/s2. However, for the highway cases, significant
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Figure 2.18:
The results of MPG improvements and the PV accelerations using the
Safety Pilot data.

MPG improvements are obtained alim = 0.3 m/s2. The average root-mean-square

accelerations of FV increases from about 0.25 m/s2 to 0.31 m/s2, and the average

of MPG improvements is 7.4% with standard deviation 4.6%, slightly improved from

5.1% with standard deviation 5.5% in the cases with alim = 0.2 m/s2.

From the the simulations using the Safety Pilot dataset, we discover that there are

some situations where PnG might lead to more fuel consumption, especially when the

PV is with larger accelerations. This also motivates the research in the next chapter

about PnG synchronization in platoons, since in PnG platoons, the PVs might have

considerable acceleration levels.

2.5 Conclusions and Future Work

In this chapter, a control approach for PnG operations of HEVs in car-following

scenario is presented. This framework is developed to achieve a balance between the
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Figure 2.19:
The simulation results using the Safety Pilot data on local roads with
different acceleration limits.

Figure 2.20:
The simulation results using the Safety Pilot data on highways with
different acceleration limits.
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fuel saving potential of pure Speed-PnG and the ride comfort of pure SOC-PnG while

maintaining SOC.

In the proposed framework, two minimum-time control problems are formulated,

one for the gliding phase and one for the pulse phase. With the linearization of

vehicle dynamics, the approximation of SOC dynamics with the convexification by

the McCormick envelope, and the convexification approach for sparsity optimization

in [77], these two problems become QP problems after being transcribed by the PS

method. Therefore, the proposed method can be solved efficiently. In the numerical

simulations of constant-speed PV, the improvements of fuel economy achieved range

from about 8% to 23%, corresponding to speed decreasing from 60 mph to 30 mph.

It is a significant improvement compared with the operation of SOC-PnG without

speed oscillation for the vehicle used in this study. For the simulations of naturalistic

PV speed using Safety Pilot dataset, we observe on average about 17% and 5% MPG

improvements on local roads and highways, respectively.

The conclusion is that the proposed framework is a promising approach to balance

the benefits of Speed-PnG and SOC-PnG, i.e., fuel saving and ride comfort respec-

tively. The results encourage the further development of the proposed strategy of

SOC-PnG with speed oscillation.

In this study, we simply assume that the allowed range oscillation and time head-

way of range policy are given. The proper values of these parameters are actually

related to the characteristics of the ego vehicle itself, the driver’s preferences, and

how the PV is driven. Based on the behaviors of PV, these parameters may need be

adjusted accordingly. For example, if the PV is driven aggressively with more drastic

acceleration and deceleration such that the acceleration/deceleration constraints need

to be adjusted often to fulfill the range constraints, it might be a good idea to increase

the inter-vehicle range. This higher level of design and control can be further studied

in the future to make the proposed PnG control more comprehensive.
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CHAPTER III

Pulse-and-Glide Synchronization for

Heterogeneous Platoons

3.1 Introduction

Pulse-and-glide (PnG) is an eco-driving technique that is promising in saving fuel

[18, 39]. In this study, we seek to achieve more fuel saving potential in vehicle pla-

tooning by introducing PnG into CACC. However, as shown in [48], a rule-based PnG

switching method developed based on homogeneous platoons may lead to undesired

PnG switchings in heterogenous platoons. Increasing the inter-vehicle ranges can im-

prove this issue as pointed out in [49]. However, it may not be ideal in terms of traffic

throughput.

Motivated by the need for a control method that is capable of handling heterogene-

ity in the platoons of PnG vehicles while keeping the platoon compact, we propose the

synchronization of PnG vehicles as a solution. This chapter focuses on the PnG syn-

chronization in heterogeneous platoons via V2V communication. By synchronization,

the individual vehicles are able to complete their desired PnG cycles while forming a

platoon. On the other hand, with synchronized PnG, the amount of range oscillations

can be reduced and thus a more compact platoon can be formed.

In the proposed method, the vehicles with different acceleration limits for ride
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comfort are synchronized to have the same PnG period and to reach the maximum

and minimum distance errors at the same time. The synchronization of PnG vehicles

is achieved via the synchronization of their virtual oscillators based on the Kuramoto

model, which provides a simple yet effective mechanism for synchronization with local

coupling [73].

Range keeping is achieved by adjusting the reference speeds and positions that

the PnG vehicles oscillate around to make the vehicles compensate the range errors.

The entire process is decentralized. Numerical simulations show that the method

can synchronize a PnG platoon of vehicles with different acceleration limits as the

requirements of ride comfort. Also, the amplitudes of range oscillations are reduced

after synchronization. The vehicles with higher acceleration limits are able to main-

tain higher fuel economy as a result of their uninterrupted PnG operations due to

synchronization. Therefore, the method provides a promising approach to increase

the overall fuel saving potential of PnG platoons while maintaining the desired range

with small amount of range oscillations.

The rest of this chapter is organized as follows. The problem setup is given in

Section 3.2, including the vehicle model used in this study. In Section 3.3 we present

a preliminary study on homogeneous platoons, which shows the potential of PnG

synchronization. Section 3.4 presents the proposed PnG synchronization method for

heterogeneous platoons, which is the main contribution of this chapter. Simulation

results are given in Section 3.5. Finally, conclusions and future work are given in

Section 3.6.
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3.2 Problem Setup

3.2.1 The Vehicle Platoon

Consider a series of N connected automated vehicles (CAVs) forming a platoon.

The vehicles implement PnG simultaneously around a desired speed v̄c with a desired

PnG period. Both the desired speed and PnG period are assumed to be given con-

stants. The desired speed can, for example, be set according to the speed limit of the

road. The desired PnG period could, for example, be determined via optimization

approaches to maximize the platoon performance. The desired speed and PnG period

are shared via V2V communication to every vehicle in the platoon. For the cases of

heterogeneous platoons, the heterogeneity in the PnG accelerations is assumed to

be due to the different ride comfort preferences of the individual drivers instead of

due to different vehicle types. Hence, all vehicles in the platoon are characterized

with the vehicle parameters given in Table 3.1, which correspond to a vehicle with

conventional powertrain and step-gear transmission. The engine brake specific fuel

consumption (BSFC) map is shown in Figure 3.1. Note that because in the pre-

sented method vehicle accelerations are controlled, variations of vehicle parameters,

even though not considered in this study, can be easily accommodated as long as the

target acceleration can be achieved by the controlled vehicles.

3.2.2 Vehicle Dynamics

Only the longitudinal vehicle dynamics are considered. The dynamics of the ith

vehicle are given as

ẋi = vi,

v̇i = ai = 1
Mv

(Fd,i − 1
2
CdρaAvv

2
i −Mvgfr),

(3.1)
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where xi, vi, and ai are respectively the position, speed, and acceleration, and Fd,i is

the driving force. Fd,i < 0 means braking. The definitions and values of the other

parameters are given in Table 3.1.

The constant time headway range policy is adopted; i.e.,

Rdes = d0 + hτ v̄c, (3.2)

where Rdes is the desired range to the immediate PV, d0 is the standstill range, and hτ

is the time headway. Unlike the usually used instantaneous speed of the ego vehicle

in the range policy (3.2), here the desired speed v̄c is used.

Parameter Description Value Unit
Mv vehicle weight 2948 kg
Cd air drag coefficient 0.4 -
Av vehicle frontal area 3.26 m2

ρa air density 1.202 kg/m3

fr rolling resistance 0.015 -
rw effective tire radius 0.3848 m
g acceleration of gravity 9.81 m/s2

rT gear ratio (gear 1-6) [4.03, 2.36, 1.53, -
1.15, 0.85, 0.67]

ηT gear efficiency (gear 1-6) [0.963, 0.971, 0.993, -
0.993, 0.995, 0.993]

r0 final drive ratio 3.23 -
η0 final drive efficiency 0.966 -

Table 3.1: The vehicle parameters of the simulation studies.

3.3 A Preliminary Study on the Potential of PnG Synchro-

nization

Before the presentation of the proposed method for heterogeneous platoons, a pre-

liminary study on the benefit of PnG synchronization is conducted using homogeneous

platoons to motivate this research.
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Figure 3.1: The engine map of the simulation studies.

Figure 3.2:
The schematic diagram of the virtual spring-damper approach for homo-
geneous platoons.

53



A virtual spring-damper system is introduced to provide the coupling mechanism

to synchronize the homogeneous platoons, as shown in Figure 3.2. The driving force

of the FVs is determined by the virtual spring-damper system, the acceleration of

their immediate PV, aP , and the speed difference (vP − vF ) as follows:

FF = MvaP +
[
Ksync(R−Rdes) +Bsync(vP − vF )

]
, (3.3)

where Mv is the mass of the vehicles, Ksync and Bsync are respectively the spring and

damping constants, and Rdes is the desired range, which is equal to the natural length

of the virtual spring L0,sync.

In this simulation study of homogeneous platoons, three levels of traffic volumes

are adopted. They are low, medium, and high traffic volumes with 150, 200, and

250 vehicles passing through a 2.7 km straight and flat road. The initial speeds of

the vehicles in the three traffic volumes range from 30 to 40 mph, with randomized

initial inter-vehicle ranges. In the baseline cases, the vehicles are controlled by the

intelligent driver model [47]. In the PnG cases, the vehicles implement Speed-PnG

around 40 mph with 0.2 m/s2 acceleration limit. A parameter called critical range

Rc = 53 m is introduced. Only when the inter-vehicle range is within Rc does the FV

implement the approach of (3.3) to catch up with its PV and maintain the desired

range. As a benchmark, the rule-based method for PnG platoons proposed in [48] is

also implemented, with the same critical range assigned. This approach decides the

PnG switching timing based only on the current speed difference and range to the

PV, without any synchronization mechanism.

The average MPG improvements are summarized in Figure 3.3, where the results

of the benchmark method proposed in [48] is referred to as without synchronization.

We can see that even though significant MPG improvements can be obtained with or

without synchronization, the performance of fuel saving is better with PnG synchro-
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Figure 3.3:
The MPG improvements of the study of PnG synchronization for homo-
geneous platoons under different traffic volumes.

nization. Such performance improvement is more obvious with higher traffic volumes.

It is because with denser traffic, the PnG behaviors tend to be interfered by the nearby

vehicles such that the target fuel saving potential cannot be achieved. However, with

synchronization, the vehicles are able to fulfill the desired PnG patterns. Therefore,

better fuel saving performance is obtained.

From this preliminary study, we can understand the benefit of PnG synchroniza-

tion for fuel saving. However, the approach of virtual spring-damper system (3.3) is

not suitable for heterogeneous platoons, since it will impose the same PnG pattern

for all the vehicles in the platoon. Some fuel saving potential and/or ride comfort

will be lost accordingly. Therefore, we develop a PnG synchronization method specif-

ically for heterogeneous platoons, which is the main contribution of this chapter and

is presented in the following.

3.4 Methodology

3.4.1 The Pulse-and-Glide Strategy

During PnG, we keep the same gear without shifting as in Chapter II. The engine

turns on and off periodically, complying with the acceleration limit during the pulsing

phase. This acceleration limit is assumed to have been determined by the driver of
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Figure 3.4: Illustration of the control concept.

each vehicle according to the preferred ride comfort. The reference speed v̄i of the

ith vehicle is equal to v̄c, the desired speed for the platoon, except when it needs to

adjust the range to its immediate PV. The vehicle speed is equal to the reference

speed v̄i at the boundaries of the maximum and minimum allowable distance errors.

The distance error is defined as the deviation from the distance that would be covered

if the vehicle were to cruise at a constant speed of v̄i. The upper and lower bounds for

the speed and distance error are determined from the acceleration limit as explained

in the next section.

3.4.2 Solution Strategy

The basic control concept is illustrated in Figure 3.4 and summarized as follows.

Each vehicle maintains its own virtual oscillator and establishes its PnG target phase

portrait, which is parameterized with the phase angle. Synchronizing the virtual os-

cillators is achieved via the Kuramoto model [73], and the vehicles are controlled to

track their own virtual oscillators. This way, the PnG oscillations are also synchro-

nized after the virtual oscillators are synchronized. The information that needs to
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be shared includes the PnG period TPnG, the desired speed v̄c, and the phase an-

gles of the virtual oscillators. The reference speed of the PV, v̄i−1, also needs to be

transmitted to the vehicle i. An adaptive cruise controller (ACC) is implemented in

parallel for safety considerations. The whole control strategy is explained in detail in

the remainder of this section.

3.4.3 Safety Monitoring

For safety considerations, an ACC controller with proportional-derivative (PD)

control is implemented to monitor the status of the ego vehicle. With the range error

defined as ∆Ri := Ri − Rdes based on the range policy (3.2), where Ri is the range

to the PV, the acceleration demanded by the ACC controller is given by

aACC,i = KP,i ·∆Ri +KD,i · (vi−1 − vi). (3.4)

If the deceleration (when aACC,i < 0) demanded by the ACC controller is larger than

the deceleration of free gliding by a preset tolerance, it is judged that the current

situation is not suitable for PnG operations due to safety concerns. In this work,

a brake force is provided according to the ACC controller to mitigate the possible

collision. If this situation happens during the pulsing phase, the engine also stops

providing any driving force. In practical applications, the monitoring of this ACC

controller can be referenced to advise the drivers whether to activate the PnG or not.

3.4.4 Synchronization of Pulse-and-Glide Operation

3.4.4.1 The Target Phase Portrait and Definition of Phase Angle of the

Virtual Oscillators

The first step for a vehicle is to create the target phase portrait of the PnG

operation that fulfills the desired PnG period. For the ith vehicle, with the distance
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traveled with v̄i given as

x̄i(t) =

t∫
0

v̄i(τ)dτ, (3.5)

the current distance error ∆xi is obtained as

∆xi(t) = ∆xi(0) + x̄i(t)− xi(t),

xi(t) =
∫ t

0
vi(τ)dτ.

(3.6)

Here ∆xi(0) is the initial distance error, determined by the initial speed, depending

on whether the vehicle is in pulsing or gliding phase initially. The speed difference

between the reference speed and actual speed is

∆vi(t) = v̄i(t)− vi(t). (3.7)

With the assumption of small amount of speed oscillation, the air drag and rolling

resistance are assumed to be constant and represented with the values calculated

using v̄i, the reference around which the vehicle speed oscillates. Then, similar to

[39], the target phase portrait of PnG based on ∆xi and ∆vi is obtained, which are

given by

∆vi = −āpls,i · t

∆xi = ∆xmax,i − 1
2
āpls,i · t2, t ∈ (−∞,+∞)

(3.8)

for pulsing, and

∆vi = −āgld,i · t

∆xi = ∆xmin,i − 1
2
āgld,i · t2, t ∈ (−∞,+∞)

(3.9)

for gliding. In the pulsing curve (3.8), āpls,i is a constant acceleration for pulsing, and

the ∆xmax,i is the designed maximum distance error. On the other hand, in the gliding

curve (3.9), āgld,i is also constant, and the ∆xmin,i is the designed minimum distance
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error. The pulsing acceleration āpls,i is set equal to alim,i, the acceleration limit for ride

comfort, while the gliding acceleration āgld,i is the free gliding acceleration (negative)

for v̄i. With (3.8) and (3.9), the time required to travel to every point from any other

point on the target phase portrait can be calculated for a given set of āpls,i, āgld,i,

∆xmax,i > 0, and ∆xmin,i < 0. In this study, āgld,i is not controllable in the stage of

target phase portrait generation, because braking or using the engine to control the

deceleration would be against the philosophy of PnG. Recall, however, if braking is

necessary for safety at any time, it is applied by the ACC as described in Section

3.4.3 above. If braking is needed for range keeping, it is applied according to the

range keeping algorithm that is described in Section 3.4.5 below. Therefore, adjusting

∆xmax,i and ∆xmin,i is the only way to change the PnG period. For simplicity, we

let ∆xmax,i = −∆xmin,i. When a target PnG period is given, each vehicle finds its

target PnG curve iteratively by updating the ∆xmax,i. Convergence can be achieved

in 0.3 s on a laptop with Intel® i5 CPU in MATLAB, and once solved, it can be used

for all future times if the PnG acceleration and/or the PnG period do not change.

For example, the target phase portraits for āpls,i = 0.3 m/s2 and āpls,i = 0.5 m/s2

are plotted in Figure 3.5. The dashed lines are derived from (3.8) and (3.9), which

then define the target phase portraits denoted with circles. These two target phase

portraits both fulfill the PnG period of 25 s; i.e., the vehicles will go along the phase

portraits counterclockwise and finish one PnG period in 25 s if they switch to pulsing

or gliding phase according to the intersections of pulsing and gliding curves. Note

that the distance error is enlarged to accommodate the larger pulsing acceleration for

preserving the same PnG period.

Once the target PnG phase portrait that fulfills the target PnG period is obtained,

it is parameterized with the phase angle. Figure 3.6 shows an example. The phase

angle is assigned proportionally to the traveling time on the target phase portrait

from −180◦ to 180◦. The point where ∆xmax is achieved is chosen as 0◦, while ∆xmin
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Figure 3.5:
The target phase portraits for (1) āpls,i = 0.3 m/s2 and (2) āpls,i =
0.5 m/s2, both fulfilling PnG period 25 s. The dashed lines are pulsing
and gliding curves. The red (orange) circles indicate the pulsing phase
and the blue (green) circles indicate the gliding phase, and together they
form the target phase portrait for āpls,i = 0.3 m/s2 (āpls,i = 0.5 m/s2).

corresponds to ±180◦. The other locations of phase angles depend on the pulsing and

gliding durations of the specific PnG operation.

3.4.4.2 The Coupling of Virtual Oscillators

The proposed method for PnG synchronization is based on the Kuramoto oscil-

lator. Assuming there are N virtual oscillators, one for each vehicle in the platoon,

the dynamics of the Kuramoto model is as follows:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), (3.10)

where θi and ωi are respectively the phase angle and natural frequency of the ith

oscillator, and K > 0 is the coupling gain. The coupling gain K can be different for

every pair of oscillators, but here we assign the same K to provide a uniform coupling

strength for the vehicles.
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Figure 3.6:
The parameterization of the target phase portrait for an example of PnG
period TPnG = 25 s, pulsing duration TP = 8 s, and gliding duration
TG = 17 s.

An important property of Kuramoto oscillators is that when the natural frequen-

cies of all the oscillators are the same, they will converge to the same phase angle

without any phase difference. In our case, the natural frequency is defined by the

PnG period, which is common for all the vehicles, and thus converging to the same

phase angle in all vehicles is theoretically guaranteed.

3.4.4.3 The Tracking Controller

With the target phase angle from the Kuramoto oscillator (3.10), the target states

are interpolated from the phase-angle-parameterized target phase portrait. Then, a

state feedback tracking controller is designed so that the vehicle states converge to

the target states.

In the following discussion, the superscript K denotes the values from the Ku-

ramoto oscillator. Assuming the initial time is zero, the Kuramoto oscillator of a

vehicle is initialized with the current phase angle, i.e., θKi (0) = θi(0). This implies
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∆xKi (0) = ∆xi(0). From (3.6) and (3.7) we know that

d∆xi/dt = ∆vi,

d∆vi/dt = āi − ai.
(3.11)

Similarly, because the values of x̄i, v̄i, and āi are shared between the vehicle and

virtual oscillator, we have

d∆xKi /dt = ∆vKi ,

d∆vKi /dt = āi − aKi .
(3.12)

Define the error vector

ei := [∆xKi −∆xi , ∆vKi −∆vi]
T . (3.13)

The error dynamics can be expressed as

ėi =

0 1

0 0

 ei +

0

1

 (−aKi + ai), (3.14)

where the target acceleration aKi is from the Kuramoto oscillator (3.10):

aKi = CK,ji · θ̇i, (3.15)

where j is an index for pulsing or gliding. The constant coefficient CK,ji is from the

relation between the phase angle and vehicle speed defined during the parameteriza-

tion of the target phase portrait, which is linear, but the coefficients are different for

pulsing and gliding phases:

vKi = CK,ji · θKi +DK,ji , (3.16)

where the coefficients are solved from the parameterized target phase portrait directly.
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Then, a state feedback controller is designed to control ai so that the error dynamics

(3.14) can converge to zero:

ai = −Ks,i · ei − CK,ji · θKi , (3.17)

where Ks,i is the controller gain. When implementing the control, if the vehicle

is currently in pulsing phase, then (3.17) is used to control the engine torque. If

the vehicle is in gliding phase, brake is applied according to (3.17) if it demands a

deceleration that is beyond the deceleration of free gliding. After synchronization,

this brake due to (3.17) will vanish, because the target phase portrait is established

based on the free gliding deceleration.

3.4.5 Range Keeping

Due to the different PnG accelerations, the range between two consecutive vehi-

cles oscillates even after the PnG synchronization is successfully achieved. If a PD

controller with feedforward of PV’s acceleration based on measured range and speed

difference (e.g. [35]) is used for range keeping, it will interfere with the synchroniza-

tion because of the phase difference between this force for range keeping and the force

for synchronization.

To still keep the desired range, an approach integrated into the above tracking

control of synchronization is designed as follows. The ego vehicle records the range

to the PV at the time when it reaches its minimum distance error ∆xmin,i, denoted as

tx,min,i. If the range violation exceeds a certain tolerance, it attempts to compensate

the range violation in the following PnG period(s). The reason for picking this time

instance as the reference is safety, since the ego vehicle reaches the foremost posi-

tion of PnG at this time instance. The reference speed v̄i and position x̄i are then

manipulated to facilitate the range compensation as explained below. Performing

63



these manipulations once in every PnG period is suitable given that safety is already

guaranteed with the monitoring ACC given in Section 3.4.3.

Denote the range error at tx,min,i as ∆Re,i. If ∆Re,i > 0, it means the ego vehicle

needs to catch up. Then, the reference speed v̄i is temporarily changed by the ego

vehicle in the following PnG period to guide the ego vehicle to travel more distance

by the amount of ∆Re,i. On the contrary, if ∆Re,i < 0, v̄i is changed temporarily

in the same way to increase the range. The reference trajectory is designed using a

5th-order polynomial:

x̄i(t) = c5,it
5 + c4,it

4 + c3,it
3 + c2,it

2 + c1,it+ c0,i. (3.18)

The coefficients of (3.18) are solved with the final boundary conditions

x̄i(tx,min,i + TPnG) = x̄i(tx,min,i) + v̄cTPnG + ∆Re,i,

v̄i(tx,min,i + TPnG) = v̄c,

āi(tx,min,i + TPnG) = 0,

(3.19)

and the initial boundary conditions as x̄i, v̄i, and āi at tx,min,i. This way, the speed at

which the PnG operation switches is also adjusted, since v̄i is changed. For the case

of ∆Re,i > 0, the switching speed increases, which increases the distance traveled in

the next PnG cycle. For ∆Re,i < 0, the switching speed is lowered such that the

averaged speed and distance traveled in the next PnG cycle are reduced.

We can also exploit V2V communication in the range keeping in the following

way. If v̄i−1 is transmitted to vehicle i, vehicle i can take action earlier to catch up.
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This way, (3.18) becomes

x̄i(t) = v̄i−1 ·∆t

+c5,it
5 + c4,it

4 + c3,it
3 + c2,it

2 + c1,it+ c0,i

v̄i(t) = (v̄i−1 − v̄c) + dx̄i/dt,

(3.20)

where ∆t is the sample time period.

This range keeping approach, although described separately from the PnG syn-

chronization, happens simultaneously under the tracking control (3.17) introduced

previously for synchronization.

3.5 Simulation Results and Discussions

In the simulation study, a four-vehicle platoon traveling around the desired speed

v̄c = 40 mph is set up. The target PnG period is chosen as TPnG = 25 s. The

four vehicles, labeled in sequence as PV, FV1, FV2, and FV3, are driven with gear 5

without any gear shifting. Since v̄c is constant, the desired range Rdes is also constant,

chosen as 20 m. Initially, the ranges between each pair of consecutive vehicles are

all 25 m, while the speeds are 40, 42, 38, 36 mph for PV, FV1, FV2, and FV3,

respectively. The acceleration limits are given as 0.3, 0.4, 0.5, and 0.6 m/s2 for the

four vehicles in the same order. The Kuramoto coefficient is K = 0.1, while the

natural frequencies for all virtual oscillators are ωi = 2π/TPnG. The control gains Ks,i

in (3.17) are [0.05, 0.3] for all four vehicles.

The trajectories of ranges, speeds, and accelerations are plotted in Figure 3.7.

The synchronization is achieved at around t = 50 s, earlier than the completion of

range keeping, which happens around t = 150 s. The ranges are maintained roughly

within 1.5 m of the desired range of 20 m. From the trajectories of accelerations

it is seen that, except for the early transients, the accelerations satisfy the preset

65



Figure 3.7: The trajectories of the case with synchronization.

limits. Note that before t = 100 s, FV2 and FV3 slightly apply the brake to facilitate

synchronization and/or range keeping, as indicated by the red arrows in Figure 3.7.

The trajectories of the phase angles of the virtual oscillators are shown in Figure

3.8. Initially, the phase angles are distributed in the range of roughly 75◦, which are

initialized to the phase angles corresponding to their vehicles’ initial states. However,

based on the Kuramoto model, the virtual oscillators are synchronized within 10 s,

setting the target for the vehicles to track to be synchronized.

The phase portraits of the four vehicles for t ∈ [250, 300] s are plotted in Figure

3.9 and converge to the target phase portraits defined by the pulsing curve (3.8) and

gliding curve (3.9). Also note the gradual expansion of the target phase portraits to

accommodate the given PnG period as the acceleration limits of the vehicles increase
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Figure 3.8: The synchronization of the phase angles of the virtual oscillators.

towards the end of the platoon. The bounds of the distance error slightly increase,

as well.

Taking FV1 as an example, the deviations of its reference speed v̄2 from v̄c and

reference position x̄2 from the distance traveled by v̄c, which is equal to v̄c · t, are

plotted in Figure 3.10. To keep the desired range, the reference speed of FV1 is

temporarily increased. Also, the reference position gradually deviates from v̄c · t, and

the amount of deviation finally converges close to 5 m, compensating the initial range

error of 5 m.

To show the benefits of PnG synchronization, the same parameters and settings

are reused in another simulation run without synchronization. The four vehicles in

the platoon still keep the same PnG period TPnG = 25 s and carry out their target

accelerations as in the synchronization case. The results are shown in Figure 3.11.

As expected, the vehicles never achieve phase synchronization. Even though a steady

state is achieved, the range oscillations are larger than those with synchronization,

which leads to a longer platoon. In particular, the total oscillation of inter-vehicular

distance reaches 18 m without synchronization as opposed to 5 m with synchro-

nization. In addition, as seen in the acceleration trajectories, more frequent brake

intervention and PnG switching are observed, which may negatively influence the ride
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The phase portraits of all four vehicles at steady state (t ∈ [250, 300] s).
The red and blue dashed lines are the pulsing curve (3.8) and gliding curve
(3.9), respectively. The black lines correspond to the allowed position
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The deviations of the reference speed and position of FV1 from the
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Figure 3.11: The trajectories of the case without synchronization.

comfort and fuel economy.

Finally, the fuel economy improvements in steady state during t ∈ [200, 300] s are

summarized in Figure 3.12. For PV and FV1, the MPG improvements are almost the

same for both the cases with and without synchronization. Those for FV2 and FV3,

however, increase significantly with synchronization. For example, when synchroniza-

tion is used, an MPG improvement of 31% is observed for FV3 compared to the best

fuel economy possible at constant speed. Without synchronization, this improve-

ment drops down to 22%, leading to a 29% loss in MPG improvement. The frequent

braking and PnG switching that are observed when synchronization is not used fur-

ther raises concerns about ride comfort. The fuel economy improvements increase

roughly linearly with the increase of the acceleration limits when synchronization is
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The MPG improvements in steady state during t ∈ [200, 300] s. The
baseline: constant-speed driving with gear 6 (30.4 MPG, best fuel econ-
omy possible for constant speed at 40mph).

used, highlighting that the trade-off between fuel economy and ride comfort is better

balanced with synchronization.

3.6 Conclusions and Future Work

In this study, a decentralized control method is proposed that synchronizes PnG

vehicles with different acceleration requirements in a platoon. Using this method,

vehicles with different acceleration of PnG, which lead to different fuel saving poten-

tials, can still form a platoon and complete their PnG cycles while remaining close to

their desired ranges.

Specifically, the PnG synchronization happens via the synchronization of a series

of virtual oscillators, each of them maintained by a vehicle. Given a PnG period,

every vehicle in the platoon individually creates and parameterizes with the phase

angle its own target phase portrait fulfilling the target PnG period. Then, the tar-

get vehicle states given by the virtual oscillator are tracked using a state feedback

controller. The PnG vehicles are gradually synchronized after the synchronization of

the virtual oscillators based on the coupling mechanism of the Kuramoto model. A

platoon of four vehicles traveling around 40 mph with different PnG accelerations is

numerically simulated. With the proposed method, the PnG vehicles are synchro-
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nized successfully, reaching a total oscillation of inter-vehicle range of roughly 5 m,

compared to 18 m of the case without synchronization. Hence, a more compact pla-

toon is achieved with synchronization. In steady state, MPG improvements reach up

to 31% with synchronization, whereas without synchronization these benefits drop by

up to 29%. Without synchronization, more frequent braking and PnG switching are

observed, raising concerns about ride comfort.

In conclusion, the proposed method is a promising approach for platooning of

PnG vehicles with heterogeneous acceleration, allowing the vehicles to improve fuel

economy while maintaining the desired range and ride comfort.

In this study, the focus is on developing a mechanism of PnG synchronization

for heterogeneous platoons. The proposed synchronization method based on the

Kuramoto model is flexible such that more advanced and sophisticated methods for

controlling individual vehicles can be easily integrated. On the other hand, in this

study we do not work on string stability but simply propose the deactivation of PnG

if the traffic environment is risky. Nevertheless, a proper design and control for

platooning PnG vehicles can avoid frequent PnG deactivation, which increases the

potential of fuel saving. This leads to the focus of the next chapter. In addition,

the suitable and flexible range policies are also very important in ensuring safety in

driving environment while maintaining the platoon compactness. Developing such

range policies compatible with the proposed PnG synchronization method is thus a

topic for future research.
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CHAPTER IV

Analysis on Pulse-and-Glide Platoons

4.1 Introduction

In the last chapter, a control method based on virtual oscillators was proposed to

achieve synchronization in PnG platoons. This method is decentralized and scalable,

only requiring local communication. In particular, the Kuramoto model [72] is ex-

ploited to synchronize the virtual oscillators, which provide the target vehicle states

for individual vehicles to track. Threfore, PnG vehicles in a platoon can be synchro-

nized after the synchronization of virtual oscillators. More detailed information on

the Kuramoto model can be found in [73, 74]. Simulation results showed that PnG

synchronization can help fulfill the target PnG cycles so that the desired fuel saving

potentials can be maintained. On the other hand, it was pointed out that more com-

pact platoons are possible using the proposed synchronization method, because the

oscillations of inter-vehicle range could be reduced.

This chapter is devoted to analyzing the proposed PnG synchronization method,

which is important since we introduce the Kuramoto model for the virtual oscillators.

The interaction between it and the PnG operations need further study to ensure

the success of the proposed method. Specifically, the questions that are intended to

be answered via the analysis include: How does the PnG period influence the PnG

platoons and how can it be properly determined? How do we design the individual

72



controllers? How do the Kuramoto oscillators affect the PnG synchronization and how

can we design them such that the desired synchronization behaviors can be achieved?

The analysis conducted to answer the above questions starts from the sensitivity

analysis of a single PnG vehicle. Since the speed oscillations form the key challenge

in PnG synchronization, only Speed-PnG is focused. From the sensitivity analysis of

a single PnG vehicle, it is discovered that different amounts of speed oscillations do

not influence the fuel saving potentials as long as they are small, which is practically

the case in general. This finding helps us narrow down our scope to only concentrate

on the platoon compactness, without worrying about the fuel economy. As will be

explained later, the PnG period influences the platoon compactness via the tracking

capabilities of individual controllers of vehicles.

For safety, in this research it is assumed that properly assigned range policies can

create enough safety distance between vehicles based on the tracking capabilities and

behaviors of surrounding vehicles. As to how to design the range policies, it is left for

the future work. We then summarize the key findings of the analysis by proposing the

guidelines for choosing the PnG period and the design of control gains and Kuramoto

gain. A series of simulation studies are also presented to validate these ideas and

arguments.

The rest of this chapter is organized as follows. The sensitivity analysis for a

single PnG vehicle is given in Section 4.2. In Section 4.3, the results of analysis on

PnG platoons are presented, which is summarized with the guidelines for the design

of related parameters. Section 4.4 shows the simulations that validate the findings

from the analysis for our proposed PnG synchronization method. In Section 4.5 some

analysis results are further discussed. Finally, conclusions and future work are given

in Section 4.6.
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4.2 Sensitivity Analysis of a Single PnG Vehicle

The sensitivity analysis of one single vehicle conducting Speed-PnG is imple-

mented. First the assumption of constant acceleration and deceleration in PnG

operations is made and validated to be reasonable in our research. Based on this

assumption, analytical expressions for the sensitivity coefficients of average required

power in one PnG cycle are presented. These results help us gain the insights about

the influences from different parameters. Furthermore, the MPG results under the

variations of parameters of interest by simulations are given, which directly provide

us with the ideas of how the fuel savings will be affected by those parameters.

4.2.1 The Assumption of Constant Acceleration and Deceleration

In the case where the acceleration and deceleration limits for ride comfort, alim

and dlim, are active, the PnG operation can be seen as with constant acceleration

during pulsing and constant deceleration during gliding and they are equal to the

accelerations at the average speed, āpls and −āgld, respectively. On the other hand,

when the acceleration/deceleration limits are not active, strictly speaking the accel-

erations are not constant due to the fact that the aerodynamic drag is quadratic in

the vehicle speed. However, in practical PnG operations, they can still be viewed as

constant as shown below.

The validity of the assumption of constant acceleration and deceleration is con-

firmed numerically using the vehicle model in Chapter III with the parameters defined

in Table 3.1. Here the cases with 10% and 30% speed oscillations of the average speeds

are simulated with inactive constraints of acceleration/deceleration limits. The aver-

age speeds range from 30 mph to 70 mph. In Figure 4.1 to Figure 4.4 the simulated

speed trajectories and those approximated using constant accelerations at the average

speeds are compared. We can see that the relative errors of the approximated speeds

against the actual speeds are very small, less than 0.15 % in the case of 10% cases
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and less than 1.5% in the 30% cases. However, the 30% speed oscillations might be

too large and thus are not ideal in practical applications. For example, the speed of

the case of 30% speed oscillation around 70 mph can be between 60 mph and 80 mph.

Figure 4.1:
Validation of the constant acceleration assumption in pulsing with 10%
speed oscillation.

Figure 4.2:
Validation of the constant acceleration assumption in pulsing with 10%
speed oscillation.

From the above analysis, we can conclude that the PnG operations can be viewed

as with constant acceleration and deceleration during pulsing and gliding phases,

respectively, as long as the speed oscillations are sufficiently small. Practically, the

amount of speed oscillations are indeed small enough to make this assumption valid.

75



Figure 4.3:
Validation of the constant acceleration assumption in pulsing with 30%
speed oscillation.

Figure 4.4:
Validation of the constant acceleration assumption in pulsing with 30%
speed oscillation.

This assumption further simplifies the analysis presented in the following sections.

4.2.2 The Sensitivity Analysis of Speed-PnG

The sensitivity analysis of Speed-PnG is presented here. The effects of variations

of specific parameters on the fuel economy of PnG operations hinge on the changes

of average power required in PnG cycles and the characteristics of engines that are

illustrated by the concave-convex fuel rate curves as shown in Figure 1.3. Specifically,
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if the concave regions of the fuel rate curves are larger, the influences of variations

of vehicle parameters on the fuel savings tend to be small. On the contrary, if the

concave regions are small, we might easily fall into the convex regions and PnG is no

longer beneficial.

4.2.2.1 The Sensitivity Coefficients of Required Power in Speed-PnG

To begin with, the required power of PnG is focused. We denote PPnG as the

average power required in one PnG cycle and it can be expressed as

PPnG =
Ed,pls + Ed,gld

TPnG

, (4.1)

where Ed,pls and Ed,gld are energy dissipated due to road load in the pulsing and gliding

phases and TPnG is the PnG period. The vehicle will return to its initial states when

it completes one PnG cycle. Therefore, the required average power can be expressed

as the dissipated energy in one cycle divided by the PnG period, which is equal to

Tpls +Tgld, the addition of durations of pulsing and gliding phases. In addition, based

on the assumption of constant acceleration and deceleration, the durations of pulsing

and gliding phases can be expressed respectively as

Tpls =
∆vPnG

āpls

=
vmax − vmin

āpls

, (4.2)

and

Tgld =
−∆vPnG

āgld

=
vmin − vmax

āgld

, (4.3)

with ∆vPnG = vmax − vmin the amount of speed oscillation. The energy dissipated

due to the road load in gliding is nothing but the change of kinetic energy during the

gliding phase:

Ed,gld =
1

2
Mv(v

2
max − v2

min) = Mvv̄∆vPnG, (4.4)
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while that during the pulsing phase is

Ed,pls =

Tpls∫
0

Fr(t)v(t)dt =
v̄∆v2

PnG

8āpls

[
CdρaAvv̄

2 + 2Mvg · sin(θr) + 2Mvfrg · cos, (θr)
]
,

(4.5)

where Fr = 1
2
CdρaAvv

2 + Mvg · sin(θr) + Mvg · cos(θr) is the road load, with θr the

road grade and other parameters defined in Table 3.1.

The analytical expression of average power required in one PnG cycle derived

from (4.1) to (4.5) can then be used for sensitivity analysis. Here the vehicle mass

Mv, aerodynamic drag coefficient Cd, rolling resistance coefficient fr, speed oscillation

∆vPnG, and road grade θr are studied using the one-at-a-time technique for the local

sensitivity analysis [84]. The sensitivity coefficients defined as the normalized partial

derivatives of PPnG with respect to the parameters of interest are as follows:

φSMv
:=

∂PPnG

∂Mv

( Mv

PPnG

)
=

2Mvg[sin(θr) + frcos(θr)]

CdρaAvv̄2 + 2Mvgsin(θr) + 2Mvgfrcos(θr)
, (4.6)

φSCd
:=

∂PPnG

∂Cd

( Cd
PPnG

)
=

CdρaAvv̄
2

CdρaAvv̄2 + 2Mvgsin(θr) + 2Mvgfrcos(θr)
, (4.7)

φSfr :=
∂PPnG

∂fr

( fr
PPnG

)
=

2Mvgfrcos(θr)

CdρaAvv̄2 + 2Mvgsin(θr) + 2Mvgfrcos(θr)
, (4.8)

φS∆vPnG
:=

∂PPnG

∂∆vPnG

(∆vPnG

PPnG

)
= 0, (4.9)
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sensitivity coefficient w.r.t. 30 mph 40 mph 50 mph 60 mph 70 mph
vehicle mass (4.6) 0.75 0.63 0.53 0.43 0.36

aerodynamic drag coefficient (4.7) 0.25 0.37 0.47 0.57 0.64
rolling resistance coefficient (4.8) 0.75 0.63 0.53 0.43 0.36
amount of speed oscillation (4.9) 0 0 0 0 0

Table 4.1:
Values of the sensitivity coefficients of average power required for Speed-
PnG at nominal parameter values.

and

φSθr :=
∂PPnG

∂θv

( θr
PPnG

)
=

2Mvgθr[cos(θr)− frsin(θr)

CdρaAvv̄2 + 2Mvgsin(θr) + 2Mvgfrcos(θr)
. (4.10)

We can immediately observe that the sensitivity coefficient with respect to speed

oscillation is always zero (4.9). It is due to the fact that varying the amount of

speed oscillation does not change the ratio of durations between pulsing and gliding

phase if the acceleration and deceleration are kept the same in cases of different speed

oscillations. This is also the outcome of the assumption of constant acceleration and

deceleration, which is valid when ∆vPnG is sufficiently small as described in Section

4.2.1. On the other hand, we can see that in (4.10) the sensitivity coefficient with

respect to road grade is with θr in the numerator. If we evaluate φSθr at θr = 0,

the nominal value of road grade, the result will be always zero at different speeds.

Therefore, direct simulations are applied to understand how the road grade influences

the PnG performance and will be presented in Section 4.2.2.2.

The values of the sensitivity coefficients for different average speeds v̄ obtained

using the parameters in Table 3.1 as the nominal values are summarized in Table

4.1, The nominal value for road grade is assumed to be zero and the nominal speed

oscillation is assumed to be 10% for all cases, since the sensitivity with respect to it

is negligible as suggested by (4.9).

From Table 4.1, it is observed that sensitivity coefficients with respect to the
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vehicle mass are exactly the same as those with respect to the rolling resistance

coefficient. It can be known from (4.6) and (4.8) that they are identical when the road

is totally flat. In addition, the values of sensitivity coefficients with respect to vehicle

mass (or rolling resistance coefficient) and those with respect to aerodynamic drag

coefficient sum up to one at every speed. It is because they respectively represent the

components of rolling resistance and aerodynamic drag and these two components

together constitute the total road load if the road grade is zero. We can also see

that the sensitivity with respect to aerodynamic drag coefficient is more and more

significant when speed increases. It is due to the fact that the aerodynamic drag is

quadratic in the vehicle speed. When speed is higher, aerodynamic drag plays a more

important role.

The above analysis gives the idea that which parameters are more influential at

different speeds, as indicated by the sensitivity coefficients of average power required

in one PnG cycle. Nevertheless, in order to obtain the MPG variations due to varia-

tions of specific parameters, we need to take into considerations the fuel rate curves

derived from the engine map, which is relatively difficult to analytically expressed.

Therefore, numerical simulations are resorted to. In the following, vehicle mass and

road grade, two parameters that might relatively important in real applications, are

studied using the simulation approach. The simulations with different amounts of

speed oscillations are also conducted to validate the argument drawn from (4.9) that

MPG is not affected by the amounts of speed oscillations.

4.2.2.2 The Influences on Fuel Saving Potentials

Here the numerical simulations of Speed-PnG are conducted to examine the MPG

variations due to the variations of some parameters of interest. The chosen parameters

include vehicle mass and road grade. The simulations with different speed oscillations

are also conducted to confirm the argument that the amount of speed oscillation does
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not affect the fuel economy, as implied by (4.9). For all cases, the transmission is

set to gear 6 and the acceleration limit for ride comfort is 0.2 m/s2. The parameter

values in Table 3.1, again, are the nominal values. The simulation results of 40 mph

and 60 mph are respectively shown in Figure 4.5 and Figure 4.6 as examples.

First we can see that different speed oscillations do not change the MPG results,

which confirm the argument that the amount of speed oscillation does not affect the

fuel economy. Then, from Figure 4.5 and Figure 4.6, the MPG does drop as total

mass increases. If we assume that one driver/passenger is 80 kg (176 lbs) and there

are totally five people onboard, the additional mass added to the vehicle mass is 400

kg (880 lbs), which is almost 15% of the nominal vehicle mass. This 15% additional

mass leads to roughly 5.9% drop in MPG in the case of 40 mph and 4.5% drop in

the case of 60 mph. Even so, the PnG operation is still able to provide fuel savings

as compared with the constant-speed driving, the MPG of which is also provided in

Figure 4.5 and Figure 4.6 as well.

The fuel economy is, however, more sensitive to road grade. We can see that

for driving only slightly uphill with the vehicle in this research, the MPG drops

significantly. Nevertheless, driving slightly downhill can increase the MPG by PnG

even more, compared with the constant-speed driving. Practically, on average roads

are flat. This fact implies that we may encounter downhill driving after being uphill,

which is supported by the road grade statistics in Figure 4.7 from [85]. From Figure

4.7, roughly 25% of the time the road is flat, and 85% of the time the road grade is

within ±5 percent (2.86 degrees). More importantly, it can be observed that the road

grade distribution is almost symmetric around 0% road grade. Statistically, under

the influence of road grade variations, PnG might save even more fuel compared with

PnG on perfectly flat road, since the MPG curves are ”convex” in road grade in

Figure 4.5 and Figure 4.6.
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Figure 4.5:
Variations of MPG with respect to the variations of vehicle mass, speed
oscillation, and road grade: 40 mph. The MPG for constant-speed driving
with gear 5 and gear 6 are also shown for reference.

4.2.2.3 Road Grade and Fuel Saving Potentials

In Section 4.2.2.2, it is argued that road grade variations might even increase the

fuel economy of PnG, compared with PnG on totally flat road. Here we present the

simulation results based on the profile of Sutton Road in Michigan, the road that we

also used to conduct PnG experiments, to show this phenomenon.

Figure 4.8 is the road grade profile of Sutton Road. Also shown is the distribution

of its road grade. We can see that almost 30% of the time the road is flat but with

slightly more downhill in this direction. Therefore, in the simulations we conceptually

make round trips such that the road grade distribution is symmetrical with respect to

zero degree. On the other hand, a round trip also removes the influence of potential

energy in computing the MPG. Also, in order to study the case with larger road grade

variations, we manually adjust the road grade profile of Sutton Road by increasing
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Figure 4.6:
Variations of MPG with respect to the variations of vehicle mass, speed
oscillation, and road grade: 60 mph. The MPG for constant-speed driving
with gear 5 and gear 6 are also shown for reference.

Figure 4.7: Road grade statistics from [85].
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Figure 4.8: The road grade profile and statistics of Sutton Road in Ann Arbor.

the road grade by 1.5 times but limiting it within ±3 degrees, The original and

adjusted road grade profiles in one round trip are plotted in Figure 4.9 and Figure

4.10, respectively.

In the simulations, gear 5 is used and the acceleration limit for ride comfort is 0.2

m/s2. For each grade profile four round trips are implemented. The MPG trajectories

along the distance travelled are shown in Figure 4.11. We can see that, even though

the MPG trajectories fluctuate, the ones with road grade converge to higher MPG,

with the adjusted profile rendering higher values. Therefore, this simulation study

validates the argument that statistically road grade variations are possible to lead to

better fuel saving results, compared with PnG on flat roads.

4.3 Analysis on the Proposed Approach for PnG Platooning

4.3.1 The Role of the PnG Period

In Section 4.2.2, it is shown that the amount of speed oscillation does not change

the fuel saving potentials of PnG, as long as it is sufficiently small. It is because when

84



Figure 4.9:
The road grade profile and statistics of Sutton Road in Ann Arbor in one
round trip.

Figure 4.10: The adjusted road grade profile and statistics in one round trip.
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Figure 4.11: The MPG results for different road grade profiles.

the speed oscillation is small, the aerodynamic drag can be viewed as linear in the

PnG process. The PnG synchronization approach proposed in Chapter III modulates

this speed oscillation such that the heterogeneous PnG vehicles in a platoon are able

to achieve the same PnG period and be synchronized, even given different pulsing

accelerations for individual fuel saving purposes. In other words, in the proposed

method, fuel saving potentials by PnG are not influenced by the PnG period. What

PnG period affects is the platoon compactness.

In heterogeneous platoons, if with longer PnG period larger inter-vehicle ranges

may be required for safety, because longer PnG period tends to result in larger amount

of speed oscillations as just mentioned, and thus larger position oscillations. On

the other hand, shorter PnG period may put more requirements on the tracking

performance of individual controllers, otherwise the vehicles might not be able to

track the target states in time and synchronization cannot be achieved. Therefore, in

our proposed method, PnG period will influence the vehicle following ranges, which
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further influence the compactness of the platoons. The individual tracking controllers

tailored to be compatible with the individual vehicle response, also play a role here

as well, in deciding a proper PnG period to use.

4.3.2 The Influence of Virtual Oscillators on Platooning

In our proposed method for PnG platooning presented in Chapter III, each vehicle

maintains its own virtual oscillator and the virtual oscillators are coupled via the

Kuramoto model. Recall the Kuramoto oscillator for the ith vehicle in a N -vehicle

platoon:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi). (4.11)

Using the Kuramoto coupling mechanism, PnG synchronization can be achieved after

the virtual oscillators are synchronized to evolve with identical phase angles. There-

fore, we can say that the influence of Kuramoto oscillators happens during transient,

since after synchronization the sinusoidal terms in (4.11) will vanish. Similar to deter-

mining a proper PnG period, the decision of the coupling strength characterized by

K in (4.11) also needs to take into considerations the controller tracking capabilities

and vehicle response.

4.3.3 The Individual Tracking Controllers

In Chapter III, a full state-feedback control was adopted for tracking the target

states given by the Kuramoto oscillators. Here the analysis and design of individual

tracking controllers with actuator dynamics considered are presented.

Recall in Chapter III the error dynamics of tracking the target vehicle state

[∆xKi , ∆vKi ]T for the ith vehicle is defined as

ėi =

0 1

0 0

 ei +

0

1

 (−aKi + ai), (4.12)
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where ei := [∆xKi −∆xi , ∆vKi −∆vi]
T is the error vector and aKi = CK,ji · θ̇i with θ̇i

following (4.11) and CK,ji the constant from the parameterization of the target phase

portrait. The control input is the acceleration command ai to the vehicle. In this

Section the actuator dynamics and disturbance are considered and the control loop

for the ith vehicle is shown in Figure 4.12. The transfer function Gi corresponds to

the error dynamics (4.12) but with the input defined as

ui = aa,i + di − aKi , (4.13)

where di is the disturbance while aa,i is the vehicle acceleration after actuator dy-

namics. The actuator dynamics is modeled as

Pi(s) =
1

τis+ 1
, (4.14)

where τi is the actuator time constant for vehicle i and s is the Laplace variable.

In constructing the control, we ”feedforward” the signal aKi and use a proportional-

integral-derivative (PID) controller to ensure converging to zero errors. The reason to

involve an integral term in the control is to eliminate the steady-state errors in pulsing

and gliding phases, while the derivative term provides us the degree-of-freedom to

place the closed-loop poles at desired locations. Therefore, the controller Ki is

Ki(s) = [kP1,i kP2,i] + [kI1,i kI2,i]/s+ s[kD1,i kD2,i]. (4.15)

In the following, the output of a signal u(t) fed into a transfer function G(s) is

denoted as G(s)[u(t)]. The relationship between disturbance and the tracking errors
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can be expressed via the transfer functions as

ei =

 τis
2+s

pc(s)

τis
3+s2

pc(s)

 [di], (4.16)

with

pc(s) := τis
4 + (1 + kD2,i)s

3 + (kP2,i + kD1,i)s
2 + (kP1,i + kI2,i)s+ kP1,i (4.17)

the characteristic polynomial. Similarly, the relationship between the signal aKi due

to the virtual oscillator and the tracking errors can be expressed as

ei =

 τis
2+2s
pc(s)

τis
3+2s2

pc(s)

 [aKi ]. (4.18)

It can be seen that the transfer functions in (4.16) and (4.18) are all with the same

characteristic polynomial (4.17), which is of 4th-order. Then proper design of the PID

gains ensures the stability and convergence of the system in Figure 4.12. We choose

the dominant poles sdom,i as a complex conjugate pair, the real parts of which are

determined based on the actuator dynamics as Re(sdom,i) = −1/5τi. Conceptually, we

want the controller to be five times slower than the actuator, such that the actuator

is able to achieve the control command given by the controller.

As explained in Section 4.3.1, the PnG period needs to be compatible with the per-

formance of tracking controllers. If the PnG period is too short, then the controllers

may not have sufficient time to converge. In determining a suitable PnG period, we

assume that the closed-loop system in Figure 4.12 is dominantly a 2nd-order system

by proper design of the PID controller. Then the 5% settling time for this system

with a unit step input is Ts,i = −3/Re(sdom,i). With this design criterion and the

assumption that the actuator dynamics is the same during both pulsing and gliding
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Figure 4.12:
The control loop of target state tracking in PnG synchronization with
disturbance and actuator dynamics.

phases, the requirement for PnG period is

TPnG ≥ 2 · Ts,i = −2 · 3

Re(sdom,i)
= 30τi, (4.19)

with Re(sdom,i) = −1/5τi. In a PnG platoon, the vehicles need to achieve the same

PnG period in order to by synchronized, so (4.19) needs to be satisfied by every

vehicle in the platoon.

4.3.4 The Influence of Communication Topology

Previously, an all-to-all communication (A2A) topology was assumed in the sim-

ulations in Chapter III. Actually synchronization can be achieved as long as the

communication graph is connected, meaning for each node in the graph (each vehi-

cle), there is a path linking to all the other nodes (other vehicles) [73]. Therefore,

other types of communication topology that are with connected communication graph

are also feasible. For example, some connected communication topology in CACC

that has been studied in literature include predecessor-follower communication (PF)

[86, 87], bidirectional communication (BD) [88, 89], two-predecessor-follower com-

munication (2PF) [90, 91], and predecessor-leader-follower communication (PLF)

[92, 93].

For undirected communication topology, e.g., BD and A2A [94, 95], a theorem in
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[96] can be used to estimate the convergence rate of Kuramoto oscillators. Before the

introduction of this theorem, some related background knowledge about the graph

theory is introduced [97]. Consider an undirected graph G(N, e) with N vertices and

e edges. An orientation σ can be applied to turn G into a directed graph Gσ. Then

the incidence matrix B is an N × e matrix defined on Gσ with entries Bij = 1 if the

edge j is incoming to vertex i, Bij = −1 if the edge j is outcoming from vertex i,

and Bij = 0 otherwise. Furthermore, the symmetric matrix defined as: L = BBT

is called the Laplacian of G and is independent of the choice of orientation σ. The

second smallest eigenvalue of L, denoted as λ2(L), is called the algebraic connectivity

or the Fiedler eigenvalue, which is greater than 0 if and only if graph G is a connected

and is a measure of how well-connected the graph is [98]. In this formulation of graph,

the N number of Kuramoto oscillators (4.11) can be rewritten as

θ̇ = ω − K

N
B sin(BT θ), (4.20)

with θ = [θ1, θ2, ..., θN ]T and ω = [ω1, ω2, ..., ωN ]T .

Theorem 1 in [96] is summarized as follows. Consider the Kuramoto model (4.11)

defined over an arbitrary undirected connected graph with incidence matrix B. For

any value of the coupling K > 0, all trajectories will converge to the set of equilib-

rium solutions. In particular the synchronized state is locally stable and the rate of

approaching to the synchronized state is no worse than (2K/πN)λ2(L) exponentially,

where λ2(L) is the Fiedler eigenvalue or the algebraic connectivity of the graph.

Therefore, if we have a desired time constant of the Kuramoto oscillators τK, the

corresponding Kuramoto gain can be computed as

K =
πN

2λ2(L)τK
. (4.21)

A reasonable choice in our research here is τK = TPnG.

91



Conceptually, if the communication topology is less connected, like the BD com-

munication, the Kuramoto oscillators will converge slower. However, the Kuramoto

gain can also be tuned to adjust the convergence speed. Using the theorem in [96], a

proper Kuramoto gain can be determined for a given communication topology if it is

undirected. A proper Kuramoto gain is also important for transient behaviors, which

will be further explained next in presenting the guidelines for the designing control

gains and the Kuramoto gain.

4.3.5 The Guidelines for Control Design

In the proposed method for platooning PnG vehicles, there are three time scales,

which correspond to actuator dynamics, tracking controller dynamics, and virtual

oscillator dynamics. A proper design shall separate these three dynamics such that the

PnG synchronization can happen successfully. Conceptually, the control command

from the tracking controller should not be too fast to be realized by the actuator, and

similarly the virtual oscillator should not be too fast such that the target states can

be tracked by the vehicle. Here the discussions on the analysis above are summarized

and presented as the guidelines for deciding the related control parameters.

• Figure out the time constants of the actuator dynamics τi’s.

• Design the dominant poles of the characteristic polynomial (4.17) such that

the dynamics of the close-loop system in Figure 4.12 is slow enough compared

with the individual actuator dynamics. In this research the dominant poles of

vehicle i are designed to be a complex conjugate pair with Re(sdom,i) = −1
5τi

, five

times slower than the actuator dynamics. Therefore, this combined system of

actuator and controller behaves like a 2nd-order system.

• Assign a suitable damping ratio to the combined system of actuator and con-

troller. In this research a damping ratio of 0.78 is applied. Then together with
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Re(sdom,i) = −1
5τi

, the locations of the dominant poles are decided.

• Choose the locations of the other remaining poles and solve for the PID control

gains in (4.15). In this research, it is designed such that the real parts of the

remaining two poles are at least 5 times away from the dominant poles and

render the least summation of the absolute values of the PID gains. We wish

to use smaller gains that can achieve the desired locations of the poles yet

preventing too drastic control.

• Decide a settling time Ts,i for the PID controller of the ith vehicle. Here the

5% settling time under the unit step input for a 2nd-order system is adopted,

i.e. Ts,i = 15τi.

• The PnG period TPnG should be compatible with the settling time Ts,i’s for all

the vehicles. By assuming the same actuator dynamics for both the pulsing and

gliding phases for each vehicle, we set the criterion for deciding PnG period:

Ts,i ≥ 30τi for all i.

• Assuming the communication topology is undirected, e.g. A2A or BD, we use

the theorem in [96] to estimate the convergence rate for the Kuramoto model as

2K
πN
λ2(L), where λ2(L) is the second smallest eigenvalue for the graph Laplacian

of the communication topology, Then by assuming the time constant of the

Kuramoto oscillators equal to the PnG period, i.e., τK = TPnG, the Kuramoto

gain can be determined as

K =
πN

2λ2(L)TPnG

. (4.22)

Next, a series of studies are presented to support some key arguments discussed

above using the guidelines to design the related parameters.
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4.4 Simulation Studies

4.4.1 Actuator Dynamics and PnG Platooning

The goal of this study is to see how a vehicle with relatively slow actuator dynamics

will influence the whole PnG platoon. Practically, sometimes there are heavy vehicles

in the traffic, e.g. heavy duty trucks. These vehicles may lead to less compact

platoons, which will be shown in the following.

Assume there are 4 identical vehicles, PV, FV1, FV2, and FV3, travelling around

40 mph but with different acceleration limits for ride comfort. From PV to FV3, alim

is 0.2, 0.3, 0.4, and 0.5 m/s2 respectively. The vehicle models and parameters are

the same as those used in Chapter III except for the actuator dynamics, which was

not considered previously. In the first case of this study of actuator dynamics, the

actuator time constants τi’s are 0.5 s for all four vehicles, while in the second case

that of PV is increased to 1 s.

We choose the PnG period based on the criterion (4.19). Therefore, TPnG is 15

s and 30 s for the first case and second case respectively. The corresponding target

phase portraits are plotted in Figure 4.13 and Figure 4.14. It can be seen that in

order to fulfill TPnG = 30 s, even only due to one single vehicle (PV), the position

deviations are larger, as denoted by the black lines in Figure 4.13 and Figure 4.14.

The position deviation ∆xmax −∆xmin for FV4 in the second case almost reaches 19

m, significantly increased from roughly only 5 m in the first case. Due to the large

position deviations in PnG, the inter-vehicle ranges may need to be larger in order to

maintain safety. Therefore, the platoon in the second case will be longer than that

in the first case, even though the number of vehicles are the same in both cases.

The outcome from this study of influence of actuator dynamics on platooning

suggests that synchronizing PnG vehicles with too different actuator dynamics may

not be a good idea. The other faster response vehicles need to have unnecessarily
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Figure 4.13:
The target phase portraits of the case with τPV = 0.5 s, the same as all
the other vehicles. The black lines indicate the maximum and minimum
position deviations.

long PnG period and thus they tend to have large position oscillations especially if

they wish to save more fuel by choosing less constrained accelerations. Practically,

we can group vehicles with similar actuator dynamics to form a platoon. This will

reduce the degree of sacrificing for some vehicles in a platoon and optimize the whole

performance, which is a topic worth exploring in the future.

4.4.2 All-to-All and Bidirectional Communication Topology

In this study of communication topology, it is intended to validate the theory used

to design the Kuramoto gain (4.22) and see whether it can accommodate A2A and

BD topology.

Here four PnG vehicles try to form a platoon. The simulation setup is the same

as that in the first case in Section 4.4.1, with identical actuator dynamics τi = 0.5

s. However, the first case in this study of communication topology is with A2A
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Figure 4.14:
The target phase portraits of the case with τPV = 1 s, while the other
vehicles are with τPV = 0.5 s. The black lines indicate the maximum
and minimum position deviations.

communication and the second case with BD communication. For four vehicles (N =

4) the second smallest eigenvalues λ2(L) for the communication graph Laplacian are

4 and 0.5858 respectively for A2A and BD topology. From (4.22) we obtain the

Kuramoto gain K = 0.1047 for the A2A case and K = 0.7151 for the BD case.

The trajectories from simulations of these two cases are presented in Figure 4.15

and Figure 4.16. It can be observed that both cases achieve steady state around t = 60

s to t = 70 s and there is not obvious difference between the two after synchronization.

The results of MPG improvements are summarized in Figure 4.17 and there is not

significant difference between these two cases also.

From this study, we can see that by using the guideline of designing the Kuramoto

gain based on the theorem in [96], similar performance can be achieved in spite of

different communication topology.
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Figure 4.15: The trajectories of the case with all-to-all communication.
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Figure 4.16: The trajectories of the case with bidirectional communication.
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Figure 4.17:
The results of MPG improvements of the study of communication topol-
ogy.

4.4.3 The Influence of Kuramoto Gain

The purpose of this study of Kuramoto gain is to show what will happen if an

improper Kuramoto gain is used. The results also promote the use of the suggested

approach for design of the Kuramoto gain.

Again, the same setup of four vehicles travelling around 40 mph is adopted, but

here the two cases studied are both with A2A communication and τi = 0.5 s for

all vehicles. In the first case of this study of Kuramoto gain, K = 0.1047 from the

guideline is used. Therefore, it is exactly the same case as the first case in Section

4.4.2, of which the simulation results are show in in Figure 4.15. For the second

case here, the Kuramoto gain is intentionally increased to 10 times larger than the

one obtained from the suggested approach, i.e. K = 1.047 in the second case. The

simulation results of the second case are shown in Figure 4.18. It can be seen that

compared to the first case in Figure 4.15, which is with K from proper design, the

acceleration during transient for the second case is more drastic. This more drastic

transient behavior leads to the drop of MPG improvements, as summarized in Figure

4.19.

From (4.11), we can see that the virtual oscillators will simply evolve their phase

angles with the same frequency after synchronization, since the sinusoidal terms will

vanish when they achieve the same phase angles. In other words, the Kuramoto gain
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Figure 4.18:
The trajectories of the case with with 10 times the Kuramoto gain from
theory.
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Figure 4.19: The results of MPG improvements of the study of Kuramoto gain.
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mainly affects the transient behavior before synchronization. Too large a Kuramoto

gain will thus lead to more drastic transient as shown in this simulation study. On

the other hand, if the Kuramoto gain is too small, the synchronization process will

take longer time than desired. Again, the proposed guidelines provide an approach

to choosing suitable Kuramoto gain, if the communication is undirected.

4.5 Further Discussions on the Analysis Results

One of the major goals of this chapter is to detail how to design the parameters

of the PnG synchronization method proposed in Chapter III. The major results were

previously summarized and presented by giving the step-by-step guidelines of the

parameter design for the proposed PnG synchronization method in Section 4.3.5.

Here, some key points are further elaborated with a gradually enlarged scope.

From the sensitivity analysis of a single PnG vehicle, it is discovered that the MPG

values are not sensitive to the amounts of speed oscillations. This finding will simplify

the study on platoon performance, since we can remove fuel saving from the scope and

only focus on synchronization and platoon compactness. Therefore, in determining

the PnG period, only the capabilities of the tracking controllers, characterized by the

settling time, are considered, but not about the fuel economy. The tracking controllers

are important for the success of synchronization,

In the case study of different communication topology, the results show that by

using the presented approach to determine the Kuramoto gain, similar performance

in terms of convergence and fuel savings can be achieved. However, for less connected

communication topology (e.g. BD), the Kuramoto gain needs be larger if we wish to

achieve the same convergence performance as that of more connected topology like

A2A. This“high gain” control may raise some concerns in practical applications. In

this research, the communication delay is not considered. A large Kuramoto gain

may lead to less robustness if communication delay or other uncertainties exist.
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It is also pointed out that mixing PnG vehicles with too different actuator dy-

namics in a platoon would result in large range oscillations for those vehicles with

faster actuator dynamics. It is similar to the concept that the load that can be carried

through by a series circuit is limited by the weakest component. Therefore, separating

vehicles with different actuator dynamics to form different platoons would maintain

the platoon compactness, while not letting individuals sacrifice.

4.6 Conclusions and Future Work

In this chapter, the research of PnG synchronization is continued by conducting

the analysis of the proposed synchronization method. The analysis starts from the

sensitivity analysis of Speed-PnG of a single vehicle. It is shown that the amount of

speed oscillation does not influence the fuel savings of Speed-PnG as long as the speed

oscillation is small. From the sensitivity analysis, we also find out that even though

the fuel saving potentials by PnG are sensitive to road grade, statistically PnG may

be able to achieve higher MPG compared with PnG on totally flat roads. It is based

on the assumption that on average the roads people encounter are flat. Numerical

simulations based on real road profiles with round trips validate this finding.

Further, the conclusion that speed oscillation does not affect the fuel saving po-

tentials leads us to focus only on the role of PnG period for successful synchronization

and not for fuel savings. Then based on the principle of not having interfered actua-

tor dynamics, controller dynamics, and virtual oscillator dynamics, the step-by-step

guidelines for the design of the controller gains, the Kuramoto gain, and PnG period

are presented. In particular, the theorem in [96] on the convergence rate of Ku-

ramoto oscillators considering the undirected communication topology is utilized to

design proper Kuramoto gain. A series of simulation studies are also demonstrated

to validate the key findings and arguments from the analysis.

In this research, we focus on how to successfully synchronize the PnG platoons.
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From simulations, we can see that after synchronization, the oscillations of inter-

vehicle ranges can be significantly reduced and thus argue that PnG synchronization

is able to maintain the compactness of platoons. However, proper range policies that

are flexible enough and able to take care of different requirements/preferences of ride

comfort and fuel savings, are still needed. The development of such range policies,

which ensure safety while keeping the platoon compact, is the work worth pursuing in

the future. Also, the influence of communication delay and the measures to counter

this influence is worth more research.
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CHAPTER V

Experimental Study

5.1 Introduction

This chapter presents the experimental study using an automated Lincoln MKZ

hybrid vehicle. The experiment is conducted on open roads, including locals and

highways. In literature, the examples of PnG experiments using real vehicles include

Toyota Prius (hybrid) on a chassis dynamometer [18], Renault Clio 3 Eco 2 (ICE)

[50] on a test track, and Nissan X-trail (ICE) [22] on a test course. In these three

papers, only [22] is carried out with an automated vehicle, but with relatively low

speed (around 40 kph). With the automated Lincoln MKZ hybrid, we can more easily

implement PnG at different speeds. From the experiment, we wish to obtain more

comprehensive knowledge of PnG operations.

The rest of this chapter is as follows. In Section 5.2, the test vehicle is introduced.

Section 5.3 details the experimental procedure and the data processing. The experi-

ment result is presented in Section 5.4. Finally, Section 5.5 gives the conclusions and

future work.
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Parameter Description Value Unit
Mv vehicle weight 1950 kg
Cd air drag coefficient 0.275 -
Av vehicle frontal area 2.08 m2

ρa air density 1.225 kg/m3

fr rolling resistance 0.01 -
rw effective tire radius 0.347 m
g acceleration of gravity 9.81 m/s2

Cbat battery capacity 1.4 kWh

Table 5.1: The vehicle parameters of 2015 Lincoln MKZ hybrid.

5.2 The Test Vehicle

The test vehicle is an automated 2015 Lincoln MKZ hybrid, which is a power-

split hybrid with a 2.0L Atkinson engine and CVT transmission. The drive-by-wire

control capability of this platform is developed by the provider of autonomous tech-

nology projects, AutonomouStuff, in collaboration with Dataspeed Inc. The control

of the test vehicle is in the framework of robotic operating system (ROS). In the ROS

framework, signals are published and subscribed with the concept of nodes. In ex-

periment, a laptop connected to the vehicle computer via an ethernet cable serves as

the control node. The control node receives signals about the current vehicle status

and then determines the control commands to be published.

The instantaneous fuel consumption information is not provided through the

framework of ROS. Instead, a controller area network (CANbus) interface is used

to access the fuel rate signal, as well as other important signals, via the on-board

diagnostics (OBD) port. This test vehicle is also equipped with the real-time kinet-

ics (RTK) GPS, which can provide accurate positioning information. The vehicle

parameters used in this study are summarized in Table 5.1.
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5.3 Methodology

This section explains how the PnG experiment is conducted. Since the detailed

model and engine map of the test vehicle are not available, we assign different target

pulsing accelerations to change the engine operating points as a way to explore the

unknown engine map. The fuel economy of PnG cases is then compared with that of

the constant-speed (CS) cases to see whether we can benefit from PnG operations in

terms of fuel saving. The details of the experimental process are as follows.

5.3.1 Experiment Setup

Five different speeds, ranging from 30 mph to 70 mph, are tested. Each speed is

with a CS case as the baseline and with the PnG cases oscillating around this speed

with different levels of pulsing acceleration. For speeds of 30, 40, and 50 mph, the

tests are conducted on Sutton road, a countryside road north of Ann Arbor, Michigan,

while the cases of 60 and 70 mph are on the Michigan highway M-14 between Exit

10 and Exit 15. The length and elevation obtained from Google Earth of these two

test routes are shown in Figure 5.1 and Figure 5.2 respectively. The highway route is

flat with slope between only ±0.8% in both directions, while the route for low speeds

is a little hilly, with maximum slope 5.7% and -3.7%. The slope of test routes may

influence the fuel consumption and is therefore compensated as explained later in this

section.

In addition to the fuel rate information, other signals such as torque and speed of

engine, motor, and generator, and battery SOC, voltage, current, and temperature,

are accessed from CANbus via the OBD port. As to the vehicle location, speed, and

traveled distance, we rely on the RTK recordings. The RTK base station is at the

Mcity test facility of the University of Michigan. Even though RTK is a high-precision

positioning technology, it is not able to provide very accurate elevation information

as other GPS devices due to the limitations of satellites. Therefore, in computing
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Figure 5.1:
The test route for low speed cases: Sutton road. The distance is measured
from the upper point of the road segment (north: up).

the corrected MPG for compensating the influence of road slope, we resort to the

Google Earth elevation and assume that it is more reliable than the RTK elevation.

In particular, the latitude and longitude signals from RTK, which are not affected by

the satellite limitations as for elevation, are utilized to interpolate for the elevation

information given by the Google Earth data.

For each trial of the cases, including CS and PnG ones, a round trip is conducted.

In other words, a trial of low speeds includes driving southbound once and northbound

once on the Sutton road; a trial of high speeds included driving from Exit 10 to Exit

15 once and from Exit 15 to Exit 10 once on the highway M-14. In addition, because

of relative short route and long duty cycles of pure motor driving, four trials are
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Figure 5.2:
The test route for high speed cases: Michigan highway M-14 between exit
10 and exit 15 (north: up).
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conducted for CS cases from 30 to 50 mph, whereas all the PnG cases and CS cases

of 60 and 70 mph contain only one trial. The target pulsing accelerations of PnG

cases for low speeds, 30 to 50 mph, are assigned as 0.2, 0.5, and 0.8 m/s2. For 60

mph, 0.2 and 0.5 m/s2 are used, and 0.1 and 0.2 m/s2 are implemented for 70 mph.

However, due to missing data segments from CANbus recording, the result of 30 mph

with 0.5 m/s2 will not be presented.

5.3.2 Control Implementation

For the CS cases the built-in cruise control function of the test vehicle is used. As

to the PnG cases, the control commands to vehicle are sent via the ROS framework.

To better react to the traffic and test environment, only the longitudinal dynamics

is controlled automatically while the steering wheel is operated by a driver. Orig-

inally, it is intended to switch to neutral gear while in the gliding phase, which is

anticipated to achieve higher PnG potential. However, the test vehicle is not able to

fulfill this command, likely due to the inner safety strategy. The details of how PnG

is implemented are as follows.

5.3.2.1 Pulse-and-Glide Switching

Since there is no preceding vehicles to follow, the switching between pulsing and

gliding phases is decided solely by the vehicle speed. The switching speeds are derived

based on the rule-based switching approach in [39]. This approach involves a target

phase portrait as shown in Figure 5.3 that is constructed from the defined pulsing

curve

∆v = −āpls · t

∆x = ∆xmax − 1
2
āpls · t2, t ∈ (−∞,+∞)

(5.1)
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and gliding curve

∆v = −āgld · t

∆x = ∆xmin − 1
2
āgld · t2, t ∈ (−∞,+∞),

(5.2)

where ∆v and ∆x are respectively the speed error with respect to the average speed

(30 to 70 mph in the experiment) and the distance error with respect to the dis-

tance traveled with the average speed, and āpls and āgld are the pulsing and gliding

accelerations. The pulsing acceleration āpls is assigned as the value of target pulsing

acceleration in each case, while the gliding acceleration āgld is as the free-gliding ac-

celeration derived from the vehicle parameters in Table 5.1. Ideally, the vehicle will

travel following the target phase portrait and we can then solve for the intersection

points of the pulsing and gliding curves after assigning the allowed distance error,

∆xmax and ∆xmin. The solved intersection points give the switching speeds. When

the vehicle speed reaches upper switching speed, it switches from pulsing to gliding.

On the contrary, it switches from gliding to pulsing once the lower switching speed

has been reached. In the experiment, the allowed distance error, ∆xmax and ∆xmin

are set as 3 m and -3 m respectively.

5.3.2.2 Pulsing Control

In the pulsing phase, the vehicle is controlled to follow the target acceleration; in

the gliding phase, it is let glide freely. When to switch to the other phase is determined

with the approach introduced above. Because the engine and motor operations of the

test vehicle cannot be directly controlled due to the limitation of the test platform,

we send the throttle command as the control input instead. As to how this throttle

command will be fulfilled, it is determined by the strategy of the test vehicle itself.

This subsection describes the control implemented in the pulsing phase.

First, a throttle map is constructed using the test vehicle in the Mcity test facility
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Figure 5.3:
The example of the phase portrait for deciding the PnG switching timing.
The dashed lines are the pulsing and gliding curves defined in (5.1) and
(5.2), and the circles highlight the phase portrait with red corresponding
to the pulsing phase and blue to the gliding phase. The black lines indicate
the allowed distance errors.
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of the University of Michigan. Multiple runs starting from zero speed with different

throttle commands are conducted. Each run is with a fixed throttle command. The

acceleration and speed trajectories are then recorded to construct the throttle map.

By looking up this throttle map, we can determine how much the throttle level should

be commanded at a given speed to achieve the target acceleration. In addition, to

cope with the influence of road slope, the accelerations of the throttle map are also

compensated. The slope of the road segment used for the runs to construct the

throttle map is roughly 2.5%. In the experiment, the current road slope is computed

from the RTK signals. A low-pass filter is also applied on-line to remove the high-

frequency noises of the computed road slope. Then, the target acceleration with the

addition of the acceleration resulting from road slope is used to obtain the throttle

command via the throttle map.

Furthermore, a feedback mechanism is necessary to deal with the uncertainties

and measurement errors in the experiment, e.g., the RTK elevation error mentioned in

Section 5.3.1. In this experimental study, the proportional-integral-derivative (PID)

control is used. Even though in the experiment we directly have a target acceleration

to be tracked, due to the high noise of instantaneous acceleration signal, the PID

control is implemented with the feedback of vehicle speed rather than acceleration.

More specifically, the target acceleration is integrated to obtain the target speed, and

the error between current speed and target speed is fed into the PID controller to

adjust the throttle command that is decided from the throttle map.

In summary, a feedback-feedforward control composed of the PID control and the

outcome of the throttle map gives the final throttle command to the test vehicle.

This throttle command will try to fulfill the target acceleration in the pulsing phase.

This way, we can test whether fuel saving can be achieved by changing the powertrain

operating points with different pulsing accelerations.
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Figure 5.4:
The schematic diagram of the linear regression approach for correcting
MPG due to SOC variations. The red circle corresponds to the corrected
MPG with zero SOC variation. SOCf and SOC0 are final and initial
SOC.

5.3.3 Data Processing

From the CANbus, we can access the fuel rate information. It is then combined

with the traveled distance computed from the RTK signals to obtain the MPG values.

However, the MPG values need to be corrected to consider the battery SOC changes

in all cases to have a fair comparison.

The linear regression method in [99] is adopted to correct the MPG values. The

concept of this approach can be understood via Figure 5.4. For each test scenario,

the MPG values and the differences between the final and initial SOCs of each trial

are recorded. Then a straight line that best fits the data points of test trials is

constructed. The corrected MPG value corresponding to zero SOC variation, which

represents the fuel economy of this test scenario, can be obtained through this fitted

straight line.

To have reliable results from the linear regression method for correcting the MPG

values, more data points are required. For this reason, a moving window approach is

applied to the CS cases. Similar concept is applied to the PnG cases, but based on the
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PnG cycles. Figure 5.5 shows the idea of the moving window approach. Each time,

we fix a window length and move the window along the time axis with a 5 s step.

Then, we can obtain several MPG values corresponding to each window of this window

length. Those MPG values are corrected using the linear regression method explained

above. The window length is gradually increased such that the corrected MPG values

under different window length can be drawn. However, with the segmentation of the

data of the trials, if the road slope variation in each segment is large, then it becomes

a factor influencing the MPG results. Therefore, we extend the linear regression

method to include one more dimension, the elevation change, for the low speed cases.

As we can see from Figure 5.1, there are large road slope variations on the Sutton

road. Therefore, the linear regression method for low speed cases corrects both the

SOC and elevation variations, as schematically shown in Figure 5.6. The corrected

MPG thus represents the fuel economy with zero changes of SOC and elevation. As

to the PnG cases, the data segmentation is based on the PnG cycles to better capture

the performance of PnG operations. The corrected MPG is computed by considering

one PnG cycle, two PnG cycles, and so on and so forth. In this approach, shorter

window length or less number of PnG cycles renders less averaging effect on the data

segments. The averaging effect is anticipated to be able to remove the disturbances

and/or measurement errors. On the contrary, longer window length or covering more

PnG cycles leads to less reliable results due to less data points in the linear regression.

For each case, at last the corrected MPG corresponding to the tightest 95% confidence

interval is chosen as the fuel economy of this case.

As explained in Section 5.3.1, the elevation information is obtained from inter-

polating the Google Earth data using the RTK’s longitude and latitude instead of

resorting to the RTK’s elevation directly.
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Figure 5.5:
The schematic diagram of the moving window approach for correcting
MPG.

Figure 5.6:
The schematic diagram of the linear regression approach for correcting
MPG for both SOC variation and elevation variation for low speed cases.
The red circle corresponds to the corrected MPG with zero SOC variation
and zero elevation change. SOCf and SOC0 are final and initial SOC,
and zf and z0 are final and initial elevation.
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Figure 5.7:
The latitude, longitude, and elevation from RTK in low speed cases com-
pared with the Google Earth data. The blue lines with circles are the
Google Earth data.

5.4 Results and Discussions

5.4.1 The RTK Performance

Unlike the highway M-14, the Sutton road is less flat, of which the road slope

can reach as high as 5.7%. Therefore, the MPG correction for elevation variation is

required for low speed cases. The RTK readings for low speed cases are plotted along

with the Google Earth data in Figure 5.7. We can see that the elevation from RTK

deviates from the Google Earth elevation as much as roughly 10 m. Some parts of

the RTK elevation are not simply the vertical shifts of the Google Earth elevation.

Therefore, in the MPG correction process the elevation variations happening in the

data segments may be different, even if in reality the test vehicle was driving through

exactly the same road segments. On the other hand, we can also see that there

are some deviations of the RTK latitude and longitude from the Google Earth data.

However, since the Sutton road is almost in north-south direction, we assume that the

errors in RTK latitude are negligible. The RTK latitude is still used to interpolate

the Google Earth data for the elevation, as explained previously.
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Figure 5.8:
Part of the speed trajectory of the PnG case at 30 mph with 0.8 m/s2

target pulsing acceleration. The actual root-mean-square acceleration
during pulsing is 1.1 m/s2.

5.4.2 The Performance of Throttle Control

As described in Section 5.3.2.2, the PID control with feedforward is applied to set

the throttle command to achieve the target pulsing acceleration. This PID control

is based on the speed tracking error rather than the acceleration tracking error due

to high noise of the instantaneous acceleration signal. However, the delay of the

powertrain response tends to result in higher acceleration. Shown in Figure 5.8 is

part of the speed trajectory of the PnG case at 30 mph with 0.8 m/s2 as an example.

We can see that in the pulsing phases, the vehicle speed starts to increase roughly 1

s slower than the target speed. The PID controller then will demand higher throttle

level to compensate for the resulting speed error, then leading to higher acceleration.

The actual root-mean-square acceleration of this example is 1.1 m/s2, higher than

the target acceleration 0.8 m/s2.

Even though the throttle control may lead to higher accelerations than the target

values, the purpose is to create different pulsing accelerations to explore the unknown

engine map. Precise control of the acceleration is not necessary in this experimental

study.
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target pulsing acceleration 30 mph 40 mph 50 mph 60 mph 70 mph
0.2 m/s2 (0.1 m/s2 for 70 mph) 2.8% -0.2% -0.7% -16.0% -16.9%
0.5 m/s2 (0.2 m/s2 for 70 mph) - 13.1% 1.4% -28.1% -15.4%

0.8 m/s2 -7.2% -12.0% -31.8% - -

Table 5.2:
Improvements of corrected MPG in the PnG experiment. The result of
0.5 m/s2 at 30 mph is not presented due to data missing resulted from
CANbus recording issues.

5.4.3 The Fuel Saving Results of PnG Operation

The engine operating points and the corrected MPG results with actual root-

mean-square pulsing acceleration are shown in Figure 5.9 to Figure 5.13 for cases of

30 mph to 70 mph, respectively. The result of the case with 0.5 m/s2 is not presented

due to the incomplete data recording from CANbus. It can be observed that the

engine operating points gradually migrate away from those of the CS cases as the

pulsing acceleration increases. The improvements of corrected MPG are summarized

in Table 5.2. We can see that the improvement of fuel economy from PnG is achieved

in low speed cases, reaching 13.1% at 40 mph. However, at 60 mph and 70 mph, PnG

operation leads to lower fuel economy compared with the constant-speed driving.

The CS cases controlled by the built-in cruising control function of the test vehicle

behave like SOC-PnG at low speeds. We can see from Figure 5.14 as an example that

while the vehicle is driven by engine, the battery is also charged at the same time.

This leads to the increase of battery SOC. When the engine is turned off, the vehicle

is driven by the motor to maintain the constant speed, which results in the decrease

of SOC. On the other hand, from Figure 5.15 we can see that the engine is switched

on and off with much higher frequency compared with the CS case in Figure 5.14 due

to the PnG operation. During pulsing, the powertrain uses both engine and motor

to provide the driving force. During gliding, regenerative braking happens. However,

the regenerative braking here is not desired due to the energy conversion loss. The

kinetic energy from pulsing is originally intended to let the vehicle glide freely in
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the gliding phase. However, the regenerative braking shortens the gliding durations,

which leads to more frequent engine turning on compared with the situation where

the powertrain can be disengaged and there is no regenerative braking in the gliding

phase. The involvement of the electric path of powertrain, including motor driving

in the pulsing phase and regenerative braking in the gliding phase, results in the

degradation of PnG performance of fuel saving. This is because the vehicle body is a

more efficient energy buffer than the battery.

Figure 5.16 and Figure 5.17 plot respectively the trajectories of the CS case and

PnG case of 60 mph as examples for high speeds. It can be observed that the behavior

of powertrain in PnG is similar to that of the low speed PnG cases, but the SOC-PnG

behavior is not shown in the CS case at high speeds. Instead, the engine is turned on

to drive the vehicle in the whole process.

Theoretically, the fuel saving potential for both the SOC-PnG and the Speed-PnG,

and the combination of the two like the PnG operations in this experiment, decreases

with the increase of vehicle speed. As the speed increases, the required driving power

also increases. When the driving power gradually reaches the point where the concave

region of the fuel-rate curve ends (Figure 1.3), the fuel saving potential becomes less.

This is likely the reason why the SOC-PnG behavior disappears for CS cases at 60

and 70 mph in the experiment. As shown by the PnG cases at low speeds, the fuel

saving potential may be lost if the pulsing acceleration is too high. On the contrary,

too low a pulsing acceleration may not be able to effectively let the engine be operated

at more efficient points.

Overall, the fuel savings obtained in our experiment are not as significant as those

reported in literature, e.g. 43% in [22]. The reasons can be summarized as follows.

• Unknown engine map. The sweet spot of the engine for this test vehicle is un-

available, so we sort of conducted trial-and-errors by assigning different pulsing

accelerations. The sweet spot was thus difficult to visit during the experiment.
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• Indirect control of the powertrain. The test vehicle only accepted the throttle

command as the control input, rather than the engine and motor torques. In

other words, as we gave the throttle command translated from the target pulsing

acceleration, how the powertrain fulfilled this throttle is its own decision, which

made visiting the engine sweet spot even more difficult.

• Interference of the regenerative braking. The test vehicle automatically started

regenerative braking as we switched to gliding phases. This behavior shortened

the gliding phases and wasted the kinetic energy stored during the pulsing

phases. Therefore, the overall PnG fuel saving potentials were much degraded.

Also, the test vehicle did not allow to shift to the neutral gear when the vehicle

was moving, so we could not prevent the regenerative braking by switching to

the neutral gear.

In a nutshell, if with engine map and the direct control of powertrain and transmission,

we anticipate to see significant fuel saving results in the experiment.

5.5 Conclusions and Future work

In this chapter, the experimental study of PnG using an automated Lincoln MKZ

hybrid is presented. Even though the engine cannot be directly controlled and the

engine map is not available, by giving the throttle command based on different target

pulsing accelerations, improved fuel economy by PnG operation is observed in some

cases. At low speeds, the MPG improvement reaches 13.1%. Even without PnG,

the test vehicle is already efficient as a result of the hybrid control strategy, e.g., the

SOC-PnG behavior in CS cases at low speeds. On the other hand, being unable to

switch to neutral gear during gliding degrades the PnG potential, as the regenerative

braking will be automatically activated in gliding phases.

In this experiment, the powertrain of the test vehicle is a black box. How the
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Figure 5.9:
The engine operating points and corrected MPG of the experiment results
of cases with 30 mph. The result of 0.5 m/s2 at 30 mph is not presented
due to data missing resulted from CANbus recording issues.

vehicle fulfills the throttle command is decided by the unknown powertrain control

strategy. Therefore, in the future, if production vehicles are intended to have PnG

functions, the powertrain control must be developed along with the consideration of

PnG operations. Also, ride comfort is still an important aspect that is highly linked

to the success of PnG commercialization.
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Figure 5.10:
The engine operating points and corrected MPG of the experiment re-
sults of cases with 40 mph.

Figure 5.11:
The engine operating points and corrected MPG of the experiment re-
sults of cases with 50 mph.
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Figure 5.12:
The engine operating points and corrected MPG of the experiment re-
sults of cases with 60 mph.

Figure 5.13:
The engine operating points and corrected MPG of the experiment re-
sults of cases with 70 mph.
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Figure 5.14:
The experiment trajectories of one trial of the CS case at 40 mph. The
data segments during turning in the round trip are removed.
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Figure 5.15:
The experiment trajectories of the PnG case at 40 mph with 0.5 m/s2

target pulsing acceleration. The data segments during turning in the
round trip are removed.
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Figure 5.16:
The experiment trajectories of the CS case at 60 mph. The data seg-
ments during turning in the round trip are removed.
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Figure 5.17:
The experiment trajectories of the PnG case at 60 mph with 0.2 m/s2

target pulsing acceleration. The data segments during turning in the
round trip are removed.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

The overarching goal of this research is to realize CACC through PnG as a way

to pursue more possibilities for fuel saving. In Chapter II, a control method based

on MPC is proposed for the purpose of effectively leveraging ride comfort require-

ment for fuel saving. Chapter III presents a PnG synchronization method based on

the Kuramoto oscillator model for heterogeneous platoons and the analysis of this

method is in Chapter IV. The results of real experiments using an automated Lincoln

MKZ hybrid are presented in Chapter V. The contributions of this research can be

summarized as follows.

• A control method based on the minimum-time control is developed for PnG im-

plementation on HEVs in car-following. This method is on-line implementable

and helps address the trade off between fuel saving and ride comfort, while

achieving SOC sustenance.

• Real driving data from Safety Pilot dataset [75] is analyzed to set the ride

comfort requirement for PnG. The PnG fuel saving potential is also studied

using the naturalistic driving data from Safety Pilot dataset.
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• A decentralized control approach for PnG synchronization in heterogeneous pla-

toons based on the Kuramoto oscillation model is presented. This approach only

relies on local communication and is able to maintain the fuel saving potentials

of different vehicles while keeping the platoons compact.

• The guidelines for designing control and platooning parameters for the proposed

method for PnG synchronization are presented. These step-by-step design in-

structions ensure the successful implementation of the proposed control method.

• The PnG experiment is conducted using an automated Lincoln MKZ hybrid

vehicle and 13% MPG improvement is observed at low speed.

6.2 Future Work

In this research, we seek the fuel saving potential of combining PnG and CACC,

starting from the car-following problem and then to the platooning of PnG vehicles.

With the encouraging results demonstrated in this dissertation, there are some poten-

tial research directions that can be explored further to facilitate the implementation

of PnG in real applications.

Study of ride comfort requirements under PnG operations. Ride comfort

is one of the major concerns that people have for PnG. In this research, a control

framework for PnG with ride comfort considered is developed. Due to the lack of re-

search on ride comfort under very low frequency oscillation, the Safety Pilot dataset

is used to obtain a requirement of ride comfort. However, from our experience of

real PnG experiment, this requirement may be too conservative such that part of

the fuel saving potential is not exploited. Therefore, a thorough study on the reac-

tions of human bodies under PnG operations is necessary, which can promote the

commercialization of PnG.

A high-level decision making strategy for (de)activating PnG or not.
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From the simulation study using the Safety Pilot data as the PV speed in car-

following, we see that there are cases where PnG will result in more fuel consumption.

Therefore, it is necessary to have a high-level decision making strategy to tell whether

the current driving environment is suitable for PnG or not.

High-level controls that can wisely optimize the performance of PnG

operations in different situations. In this dissertation, it is assumed that the al-

lowed range oscillation and time headway of range policy are given. These parameters

can be wisely chosen with the considerations of the characteristics of ego vehicle, the

driver’s preferences, and how the PV is driven. Moreover, the approaches for decid-

ing these parameters should have the capabilities to handle the changing environment

efficiently.

Design of range policies for vehicle platooning. In this research, it is shown

that the inter-vehicle range oscillations can be reduced using the proposed PnG syn-

chronization method. However, the design of range policies that can further keep the

platoons compact while ensuring safety is needed.

A strategy for vehicle grouping. In the simulation study, it is pointed out

with slowly-responsive vehicles in a platoon, other PnG vehicles may need to have

large position oscillations in order to synchronize with those slow vehicles. Therefore,

grouping vehicles with similar characteristics to form platoons might still a good idea

in terms of the whole platoon performance, even though the proposed method is for

heterogeneous platoons.

Study of the influence of communication delay on PnG synchronization

In this research, the communication delay is not considered. Further study of it on

the PnG platooning method proposed is needed, as it might degrade the robustness

of the PnG platoons.

The study of component durability under PnG operations. The PnG

operations alternately turn on and off the engine to achieve fuel savings. Whether
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this type of operations poses any substantial effects on the related hardware and how

to improve it is also an important topic.

Low-level actuator controller design. In this dissertation, we focus on the

ride comfort requirement of acceleration at a higher level. In fact, how the PnG

is implemented by the powertrain may also play an important role for ride comfort,

especially at the moments of PnG switchings. This low-level actuator control may also

directly influence the durability of related hardware. For HEVs, a possible solution

that could be explored is to utilize the electric machines to improve the NVH issues,

as in [100] the vibration during engine start is reduced by the motor control.
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