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to-hearts too. There is a cliché line about “the friends you made along the way”, because
it’s important to remember and appreciate the people who make you smile. I will always
remember the camaraderie that we shared during graduate school. I had great times with
my D&D group too, which always gave me something to look forward to every week. Nick
H., thanks for all the time you put into DMing. Special thanks also goes to my therapist,
Catie, who was my lighthouse on stormy seas.

Finally, and most importantly, I give thanks to my family. Without their tremendous
support throughout my time in graduate school, I would not have made it this far. Though
times were often tough, they were always there to lend an ear and give advice. Very special
thanks go to my mother and sister. Mom, thanks so much for picking up the phone when-
ever I needed it and always encouraging me to keep going. Sydnee, thanks for supporting
me during the hard times and always having the best advice. I love you all, and know that
I will always remember the love and support that you have shown me.

iii

www.casl.gov
http://www.energy.gov/hubs


TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History of Transport Acceleration . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Neutron Transport Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Neutron Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 k-Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Stochastic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Deterministic Methods . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Transport Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Iterative Algorithms for Solving the NTE . . . . . . . . . . . . . . 26
2.4.2 Diffusion Acceleration Algorithms . . . . . . . . . . . . . . . . . . 29
2.4.3 Linear Solvers for the Low-Order Acceleration Equations . . . . 32

3 Coarse Mesh Finite Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Derivation of CMFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Iteration Scheme for Fixed-Source Problems . . . . . . . . . . . . 51

iv



3.3.2 Iteration Scheme for Eigenvalue Problems . . . . . . . . . . . . . 54
3.4 Power Iteration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Standard (Unshifted) Power Iteration . . . . . . . . . . . . . . . . 58
3.4.2 Power Iteration with Wielandt Shift . . . . . . . . . . . . . . . . . 58

3.5 CMFD Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.1 Homogenized Cross Sections . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Numerical Diffusion Coefficient . . . . . . . . . . . . . . . . . . . 61
3.5.3 Transport Correction Term . . . . . . . . . . . . . . . . . . . . . . 61
3.5.4 Multiplicative Prolongation Factor . . . . . . . . . . . . . . . . . . 62
3.5.5 Summary of CMFD Nonlinearities . . . . . . . . . . . . . . . . . . 62

4 Linear Diffusion Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Fredholm Alternative Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Derivation of LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Wielandt-Shifted LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Fourier Analysis of Source Iteration . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 CMFD Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.1 Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 LDA Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.1 Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1 Summary of Fourier Analysis . . . . . . . . . . . . . . . . . . . . . 121
5.5.2 Spatially Homogeneous Problems . . . . . . . . . . . . . . . . . . 126
5.5.3 Theoretical and Numerical Comparisons of LDA and CMFD . . . 129

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 1D Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1 Code Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 LDA Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.1 Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 147

v



6.2.3 Discussion of LDA Performance . . . . . . . . . . . . . . . . . . . 149
6.3 Nonlinear Numerical Stability of LDA and CMFD . . . . . . . . . . . . . 150

6.3.1 Instability due to the Diffusion Coefficient . . . . . . . . . . . . . 151
6.3.2 Instability due to the Transport Correction Term . . . . . . . . . . 154
6.3.3 Instability due to Prolongation of the Scalar Flux . . . . . . . . . . 154
6.3.4 Summary of Nonlinear Instability Studies . . . . . . . . . . . . . . 157

6.4 Wielandt-Shifted LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5 Discussion of LDA Linear Solver Methods . . . . . . . . . . . . . . . . . . 160

6.5.1 Direct Solver Considerations . . . . . . . . . . . . . . . . . . . . . 161
6.5.2 Iterative Solver Considerations . . . . . . . . . . . . . . . . . . . . 162

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 MPACT Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2 Wielandt Shift Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3 LDA Performance in MPACT . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.4 Nonlinear Instability Case Study . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

vi



LIST OF TABLES

5.1 Forms of the Overall Error Transition Matrix S̃ . . . . . . . . . . . . . . . . . . 122
5.2 Forms of H̃ andG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Forms of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Fourier Analysis Study Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Performance Comparison of LDA and CMFD for Study #1 with c = 0.4 . . . . 145
6.2 Performance Comparison of LDA and CMFD for Study #1 with c = 0.99 . . . 145
6.3 LDA Numerical Spectral Radii for Fixed-Source Problems w/ c = 0.99 . . . . . 147
6.4 CMFD Numerical Spectral Radii for Fixed-Source Problems w/ c = 0.99 . . . . 147
6.5 Performance of LDA & CMFD for Eigenvalue Problems w/ c = 0.95 . . . . . . 148
6.6 LDA Numerical Spectral Radii for Eigenvalue Problems w/ c = 0.99 . . . . . . 149
6.7 CMFD Numerical Spectral Radii for Eigenvalue Problems w/ c = 0.99 . . . . . 149
6.8 Results of the Spectral Shift Study for ∆ = 0.25 cm . . . . . . . . . . . . . . . . 160
6.9 Results of the Spectral Shift Study for ∆ = 0.05 cm . . . . . . . . . . . . . . . . 161

7.1 Selected MPACT Default Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2 MPACT Shift Study Results for Problem 5a 2D w/ PI Limit = 20 . . . . . . . . 171
7.3 MPACT Shift Study Results for Problem 5a 2D w/o PI Limit = 1000 . . . . . . 172
7.4 Comparison of LDA and CMFD Performance Metrics . . . . . . . . . . . . . . 175
7.5 LDA Adjoint Flux Computational Cost . . . . . . . . . . . . . . . . . . . . . . . 176
7.6 GE-12 Data w/ CMFD & TS/OI = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.7 GE-12 Data w/ LDA & TS/OI = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.8 Comparison of LDA and CMFD Solutions for GE-12 . . . . . . . . . . . . . . . 183

A.1 Eigenvalues for the Linear and ONEDANT (nonlinear) acceleration methods . 196

vii



LIST OF FIGURES

2.1 Material regions and computational mesh for a pin cell . . . . . . . . . . . . . . 18
2.2 Theoretical representation of multigroup cross sections for U-235 . . . . . . . . 21
2.3 TCP0 self-scatter XS for water at 293 K in the 47-group MPACT library . . . . 25
2.4 Comparison of diffusion and exact neutron scalar flux . . . . . . . . . . . . . . 31

3.1 Example fine and coarse spatial grids . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Depiction of heterogeneous problem . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 (Study #1) Example fixed-source and converged scalar flux distributions . . . 131
5.3 (Study #1) Numerical and Fourier analysis results . . . . . . . . . . . . . . . . . 132
5.4 (Study #2) Numerical and Fourier analysis results . . . . . . . . . . . . . . . . . 134
5.5 (Study #3) Numerical and Fourier analysis results . . . . . . . . . . . . . . . . . 135
5.6 (Study #4) Numerical and Fourier analysis results . . . . . . . . . . . . . . . . . 137
5.7 (Study #5) Spatial distribution of fine-cell optical thicknesses for Λ = 1.0 . . . 138
5.8 (Study #5) Numerical and Fourier analysis results . . . . . . . . . . . . . . . . . 139

6.1 # outer iterations for LDA and CMFD for different values of c . . . . . . . . . . 146
6.2 Number of outer iterations required for convergence for LDA and CMFD . . . 148
6.3 Figures for the D̃ study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.4 Figures for the D̂ study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Figures for the multiplicative prolongation study . . . . . . . . . . . . . . . . . 156
6.6 Results of the fsh studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1 MPACT MOC discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2 VERA Problem 5a core geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.3 MPACT runtime and # power iterations vs. fsh for VERA Problem 5a 2D . . 172
7.4 VERA Problem 3a geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.5 VERA Problem 4a geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.6 C5G7 Benchmark radial geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.7 Number of power iterations executed in each outer iteration . . . . . . . . . . . 177
7.8 GE-12 assembly radial geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.9 CMFD data for the divergent GE-12 case . . . . . . . . . . . . . . . . . . . . . . 180
7.10 Inscatter source magnitude vs. outer iteration for 1 and 2 TS/OI with LDA . . 182

viii



LIST OF ALGORITHMS

1 Source Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 Power Iteration Algorithm for Eigenvalue Problems . . . . . . . . . . . . . . . . 29
3 Diffusion-Accelerated Algorithm for Eigenvalue Problems . . . . . . . . . . . . 32
4 CMFD-Accelerated SI Applied to Fixed-Source Problems . . . . . . . . . . . . 54
5 CMFD-Accelerated SI Applied to Eigenvalue Problems . . . . . . . . . . . . . 57
6 Power Iteration Algorithm for CMFD-Accelerated Eigenvalue Problems . . . . 58
7 LDA Applied to Fixed-Source Problems . . . . . . . . . . . . . . . . . . . . . . 82
8 LDA Applied to Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



LIST OF ACRONYMS

BiCGSTAB Biconjugate Gradient Stabilized
BOL Beginning of Life
CMFD Coarse Mesh Finite Difference
CMR Coarse Mesh Rebalance
DNC Did Not Converge
DSA Diffusion Synthetic Acceleration
FAT Fredholm Alternative Theorem
GAML Gelbard, Adams, McCoy, and Larsen
GMRES Generalized Minimal Residual
HZP Hot Zero Power
ILU Incomplete LU
LDA Linear Diffusion Acceleration
LHS Left-Hand-Side
LU Lower-Upper
LWR Light Water Reactor
MPACT Michigan Parallel Characteristics-based Transport
MOC Method of Characteristics
MSED Multilevel-in-Space-and-Energy Diffusion
NBE Neutron Balance Equation
NDA Nonlinear Diffusion Acceleration
NTE Neutron Transport Equation
odCMFD optimally-diffusive CMFD
OI Outer Iteration
PARCS Purdue Advanced Reactor Core Simulator
PI Power Iteration
QD Quasi-Diffusion
RBBJ Red-Black Block Jacobi
RHS Right-Hand-Side
SDA Semilinear Diffusion Acceleration
SI Source Iteration
SOR Successive Over-Relaxation
TCP0 Transport-Corrected P0

TL Transverse Leakage
TS Transport Sweep
VERA Virtual Environment for Reactor Applications

x



ABSTRACT

Nuclear engineers are interested in solutions of the Neutron Transport Equation (NTE),
with the goal of improving the safety and efficiency of reactors and critical nuclear systems.
Complex simulations are used to obtain detailed solutions of the NTE, and can require
immense computational resources to execute. A variety of methods have been developed
to ease the computational burden of simulating full-scale, whole-core reactor problems.
Among these is transport acceleration, which improves the convergence rate of iterative
transport calculations.

In addition to the use of acceleration methods, certain approximations are often made
when solving the NTE. The 2D/1D approximation is used to generate a 3D solution of the
NTE by iteratively solving coupled 2D radial and 1D axial equations. This method is one
of the foundational techniques used in the neutronics code MPACT. Also, the Transport-

Corrected P0 (TCP0) approximation for neutron scattering is often used in reactor analysis
codes to simplify higher-order scattering physics. Unfortunately, both of these approxi-
mations allow for non-positive flux solutions of the NTE. More importantly, some spatial
discretizations of the NTE also permit negative solutions. Under certain conditions, this
can cause instability for nonlinear acceleration methods such as Coarse Mesh Finite Dif-

ference (CMFD). In this thesis, we propose a novel acceleration scheme called Linear

Diffusion Acceleration (LDA) that does not possess the nonlinearities present in CMFD.
This thesis work presents LDA as an alternative acceleration scheme to CMFD. As the

name suggests, the LDA method is linear with respect to the scalar flux. Therefore, LDA
is not susceptible to the same nonlinear modes of numerical failure as CMFD. In addition,
LDA is shown to possess similar convergence properties as CMFD for practical problems
that have no negative scalar fluxes. Transport acceleration with LDA allows for the use of
some of the aforementioned approximations, in which the positivity of the scalar flux is
not guaranteed. Fourier analysis of CMFD and LDA is performed to compare the theoret-
ical convergence rates of the two methods for simple, spatially-heterogeneous problems.
In addition, simple and practical case studies are presented in which CMFD fails due to
nonlinearity. For these cases, LDA is shown to retain stability. Certain other advantages of
LDA, which are a consequence of its mathematical structure, are also discussed.

xi



CHAPTER 1

Introduction

This chapter provides motivation for the use of acceleration methods to improve the
convergence rate of iterative methods for computational solutions of the Neutron Transport

Equation (NTE). Motivation for the formulation of a novel acceleration technology called
Linear Diffusion Acceleration (LDA), which is the focus of this thesis, is provided in Sec-
tion 1.1. A brief history of transport acceleration is then given for context in Section 1.2.
The novelty of LDA lies in the ability to accelerate Source Iteration (SI) using a set of
equations that are linear with respect to the scalar flux for eigenvalue problems. Lastly,
Section 1.3 outlines of the layout of this thesis document.

1.1 Motivation

For over 60 years, computers have been used in the design and analysis of nuclear
systems due to the impracticality of obtaining sufficiently accurate and detailed analytical
models [1]. The methods used in simulations have generally been constrained by the avail-
able computational resources. As computing power and availability have increased over
the intervening decades, simulation methods have evolved to reflect these advancements.
The accuracy and resolution of computational results have improved over time to keep up
with the demand of reactor designers and analysts.

For nuclear reactor design and analysis, the primary quantities of interest are the fun-
damental eigenvalue and eigenvector (sometimes referred to as the fundamental eigenpair)
of the Neutron Transport Equation (NTE). The NTE is a version of the Boltzmann trans-
port equation that describes the relevant features of neutron transport physics across seven
dimensions of phase space [2]. Though many solutions to this equation exist for a given
geometric configuration, only one corresponds to a given core power level in a reactor.
Generally, the reciprocal of the fundamental eigenvalue, called the multiplication factor
(keff), is used as a measure of the neutron multiplicity. The fundamental eigenvector, after

1



integrating over the angular variable, is denoted as the neutron scalar flux, which describes
the spatial and energy distribution of neutrons in the system for a given state. Useful infor-
mation, such as various types of reaction rates, fuel burnup, and power distribution can be
estimated using the scalar flux.

Accurate knowledge of the neutronic and thermal hydraulic properties of the system
allows for the crucial determination of reactor safety and efficiency. For example, the de-
termination of fuel temperature in a nuclear core can indicate locations where the melting
point may be exceeded. This illustrates the importance of computational modeling for re-
actor design and operation. In general, accurate simulations make it possible to reduce
the safety margins employed with legacy models that rely on approximations and coarse
discretizations. These older models require large safety margins, to account for inaccura-
cies [3]. Easing such excessive margins confidently with sufficiently-verified and validated
simulation tools can lead to improved efficiency and profit for power plant operators.

Two disparate classes of methods for solving the NTE have been widely used for the
aforementioned analyses. The first is deterministic methods, in which a solution of the
NTE is obtained through discretization of the phase space and the use of numerical algo-
rithms that are usually iterative in nature. Common discretization methods include discrete

ordinates (SN), spherical harmonics (PN), the Method of Characteristics (MOC), and
the multigroup approximation. Discrete ordinates, in which neutrons are assumed to travel
along discrete directions of flight, utilizes a quadrature set to approximate integrals over the
angular variable. The accuracy of this method depends largely on the choice of quadrature
set and the number of discrete angles used. Spherical harmonics uses a different angular
approximation, in which angularly-dependent quantities are expanded using moments of
the spherical harmonics functions. This leads to a set of coupled equations that can be
solved for the expansion coefficients that then determine the angular flux. The accuracy
of PN solutions depends largely on the number of moments used for the expansion. With
MOC, the NTE is cast along a set of characteristic rays that pass through the problem ge-
ometry. Solutions of the resulting ordinary differential equations, resembling traditional
representations of exponential attenuation, are used to construct the neutron flux distribu-
tion. MOC solution accuracy depends largely on the coverage of rays relative to the spatial
discretization. Finally, multigroup methods assume that neutrons exist in discrete energy
bands rather than a continuous spectrum. The accuracy of multigroup methods depends on
the number of groups, the choice of group energy bounds, and weighting functions.

The second class of solution techniques are stochastic (also known colloquially as
Monte Carlo) methods for solving the NTE [4]. These methods take an entirely different
approach than deterministic methods and do not require discretization of the phase space.
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Instead, the stochastic nature of neutron collision and nuclei fission is exploited by employ-
ing random number sequences, in conjunction with probability distribution functions that
describe each relevant element of physics, to model individual, random neutron histories.
Estimates of neutronic quantities, including the aforementioned eigenpair, can be obtained
by sampling the probability distributions of these events. A major advantage of Monte
Carlo methods is the avoidance of discretization of the phase space. Such discretization
can be intractable for highly-resolved cases. However, the trade-off compared to determin-
istic methods is the need for an extremely large (and often impractical) number of histories
to mitigate stochastic error for large and detailed models. Though both solution classes
possess their own advantages and disadvantages, this thesis work focuses on deterministic
applications.

Initially, two-group diffusion theory was the predominant deterministic method for ob-
taining the aforementioned eigenpair [5]. Diffusion theory is based on (among other ap-
proximations) the assumption that the neutron flux is a linear function of angle. The use
of two-group diffusion theory transitioned to multigroup diffusion theory as Light Water

Reactor (LWR) simulation became common and the need for more energy resolution in-
creased (due to the nuances of neutron moderation and fuel materials) [6]. Advancements
in computing power would allow for more complex and detailed simulations. This was
driven by the desire for higher power density in commercial nuclear plants, to increase
efficiency while ensuring safety. To fill the need for increased accuracy and resolution,
transport methods would replace diffusion approximations. Though diffusion theory pro-
vides a reasonable solution, the increased spatial resolution would create sharp material
discontinuities that cannot be accurately modeled by the neutron diffusion equation. Ad-
ditionally, diffusion theory is not accurate near strong neutron absorbers, such as control
rods. To solve the NTE without making assumptions such as the diffusion approximation,
different (previously mentioned) computationally intensive solution methodologies began
to be utilized. An algorithm called Source Iteration (SI) was used to iteratively solve the
NTE by updating the fission and scattering source using updated estimates of the neutron
flux. However, SI converges very slowly for problems containing materials with a high
scattering interaction probability and low leakage probability [7]. Unfortunately, the mod-
erator material for thermal reactors (water) is highly scattering to help slow the neutrons
down to thermal temperature, where the probability of fission is high for the fuel isotope
of choice (U-235). The result is slow convergence for many of the problems of interest.
Various methods have been developed to mitigate this issue.

For this thesis, acceleration methods refer to methods that “accelerate” the convergence
of SI by augmenting the base SI algorithm with additional steps. Each “outer” iteration
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consists of a “high-order” transport sweep, followed by an update of the scattering (and
fission, if applicable) source. Acceleration methods include in each outer iteration an extra
step, in which the transport sweep is followed by a “low-order” calculation. The inclusion
of the low-order calculation makes a single accelerated outer iteration more expensive than
the transport sweep alone. However, if this low-order calculation is able to significantly
reduce the number of outer iterations required for convergence, then the additional cost
of the low-order calculation will be worthwhile. For modern acceleration methods such
as Diffusion Synthetic Acceleration (DSA) and Coarse Mesh Finite Difference (CMFD),
the cost of the low-order calculation is (for many problems) at least one order of magnitude
smaller than the transport sweep. Therefore, the cost of the accelerated outer iteration is not
expected to be much greater than the cost of an “unaccelerated” outer iteration (consisting
of just the transport sweep). However, the number of outer iterations is drastically reduced –
from hundreds (or thousands, depending on the problem) to roughly 10. For such problems,
the small extra cost of the low-order calculation is very much worthwhile.

Certain acceleration methods utilize the solution of a diffusion-like problem that allows
for rapid convergence of SI for problems in which unaccelerated SI suffers from slow con-
vergence. One acceleration scheme that has become prolific in the last couple of decades
is CMFD [8, 9]. CMFD owes its popularity to ease of implementation, efficiency, and the
ability to accelerate the convergence of fission source problems. One major downside to
the method, however, is the presence of nonlinear terms in the CMFD formulation that
allow for the possibility of numerical instability. Specifically, these terms are nonlinear
with respect to the scalar flux. Nonlinear solution methodologies and approximations that
do not guarantee the positivity of the solution are susceptible to instability for cases in
which near-zero or negative discrete flux values appear. For example, some spatial dis-
cretization choices for the NTE (such as diamond-difference) allow for non-positive flux
iterates or converged solutions [10]. In these situations, the nonlinear terms in CMFD can
become unphysically large and degrade the performance of the method, even resulting in
divergence. We refer to these aspects of CMFD as nonlinear instabilities. In some com-
puter codes, algorithms have been implemented that prevent the possibility of negative flux
estimates [11]. These algorithms (i) are approximate, and (ii) almost always degrade the
accuracy of the final converged solution.

This thesis work is focused on the development of a new transport acceleration method
called Linear Diffusion Acceleration (LDA). In 1982 (prior to the introduction of CMFD),
a precursor of LDA was introduced by Gelbard, Adams, McCoy, and Larsen [12]. (We
refer to this method as GAML – an acronym built using the first letters of the last names
of the authors.) The GAML method was capable of accelerating SI for both fixed-source
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and eigenvalue problems, while avoiding local nonlinearities with respect to the scalar flux.
LDA is an adaptation of GAML for modern applications. (Appendix A discusses the dif-
ferences between GAML and LDA.) Though both LDA and CMFD are susceptible to
degraded performance as the optical thickness of the low-order mesh increases, LDA is
not susceptible to numerical failure due to the inclusion of nonlinear terms (LDA remains
stable for cases in which non-positive flux iterates or converged solutions are possible).
The former linear instability, pertaining to mesh cell optical thickness, is present for both
methods and most likely relates to disparate discretization choices for the transport and ac-
celeration problems. Resolving this linear instability is an open research problem outside
of the scope of this thesis. However, the nonlinear instabilities, pertaining to the presence
of nonlinear terms, is an issue for CMFD and other nonlinear methods, but not for LDA.
Recent work has shown that the convergence rate of LDA is the same as that of CMFD for
spatially-homogeneous problems where the nonlinear instabilities of CMFD do not present
issues [13]. For many practical, spatially-heterogeneous problems, LDA possesses a dif-
ferent but similar convergence rate as CMFD, while avoiding problematic nonlinearities.
For problems in which the nonlinear instabilities are present, LDA possesses an improved
convergence rate compared to CMFD. The motivation for developing LDA is to provide a
viable alternative to CMFD for cases in which CMFD exhibits the nonlinear instability. To

restate, LDA exhibits the linear instability related to mesh cell optical thickness, but avoids

the nonlinear instability observed in CMFD. Ideally, the advantages of LDA are such that
it can replace CMFD entirely.

There are two primary goals for the work presented in this thesis. The first goal is
to characterize how CMFD “breaks down” due to the aforementioned nonlinear instabili-
ties. To support this goal, LDA should be shown to have similar convergence properties as
CMFD for cases in which the nonlinear instability of CMFD is not relevant. This would
demonstrate that LDA can be used in place of CMFD for general cases without adding
additional computational expense. The second goal is to develop the LDA method to have
the following properties: (i) linearity with respect to the scalar flux, (ii) improved power
iteration properties, and (iii) potentially reduced linear solve computational effort. Because
LDA does not possess the nonlinear instabilities present in CMFD, numerical instability
due to non-positive quantities is avoided. The nonlinear instabilities of CMFD, which are
caused by non-positive flux quantities, can result not only in divergence, but also, in a sig-
nificantly slower rate of convergence. Negative fluxes cause neither slower convergence
nor divergence in LDA. Also, the power iteration convergence rate of LDA can be more
easily optimized as a result of the use of the fixed diffusion operator. Finally, the fixed
diffusion operator of LDA allows for the possibility of reduced computational work when
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solving the low-order problem (compared to cases in which the operator is not fixed, which
is the case for CMFD) using linear solver techniques that take advantage of this charac-
teristic. To achieve these goals, it should be demonstrated that LDA possesses similar or
better convergence properties and computational costs compared to CMFD for realistic
problems.

1.2 History of Transport Acceleration

The use and development of techniques to improve the iterative convergence of SI has
spanned several decades, beginning in the 1960s. Due to the slow convergence rate of SI
for typical reactor problems (which is a result of the presence of highly scattering materi-
als, such as water, or fissile materials), researchers sought methods to mitigate this issue.
Such methods are referred to as acceleration methods, referring to their ability to improve
the iterative convergence rate of SI (often drastically) using the solution of a lower-order
(relative to the angular and spatial order of the transport equation) set of equations. This
allows for accelerated SI schemes to converge to a given tolerance with fewer transport
sweeps, which are generally computationally expensive. To be practical, an acceleration
method should have a low-order component whose computational cost is a small fraction
of the cost of the high-order transport sweep. Accelerated SI algorithms usually consist of
the following components (each of which are performed every iteration): (i) solving the
transport equation given a source (referred to as a transport sweep), (ii) solving a set of
low-order acceleration equations (typically via the solution of a linear system), and (iii)
transfer of information from the low-order solution to the high-order solution.

Early acceleration methods include Chebyshev acceleration and Rebalance. The for-
mer uses a linear combination of previous scalar flux iterates, which amounts to a weighted
average informed by Chebyshev polynomials, to construct an improved estimate for the
final converged solution [14]. A major drawback of this method is that the performance is
dependent on the condition number of the transport operator. Therefore, the method can
be ineffective for certain problems. A different approach is taken by the Rebalance meth-
ods, which use direction-dependent rebalance factors (these can be chosen to exist on the
high-order transport mesh or a lower-order spatial mesh) to construct the Neutron Balance

Equation (NBE). This equation is solved for the rebalance factors, which are then used to
estimate the next scalar flux iterate. Some major drawbacks of rebalance methods are that
they diverge for problems with (i) a high scattering ratio (which are generally the problems
of interest for analysis of LWRs) and (ii) a highly-resolved spatial mesh (thus limiting the
resolution of problems accelerated by this method) [15]. Rebalance acceleration methods

6



were implemented in early transport codes such as ONETRAN, which uses the SN method
to solve the 1D multigroup transport equation [16].

Alongside the aforementioned methods, there were others that can be referred to as
preconditioning methods because they can be shown to be mathematically equivalent to
preconditioning matrix iteration schemes [17]. These methods have the effect of reducing
the condition number of the transport operator, extending their applicability to problems
that are considered difficult [18]. Though other similar methods exist, we will focus on
DSA, which was the dominant preconditioning method in the west. Initially proposed as
the synthetic method, DSA was applied to accelerate transport problems [19, 20, 21]. In
this method, low-order equations are constructed from the difference between two subse-
quent iterations. The low-order equations resemble the neutron diffusion equation, and the
solution to this system is an estimate of the additive correction to the transport scalar flux
(this correction limits to zero upon convergence). DSA was shown to solve some issues that
other acceleration methods suffered from. Namely, (i) DSA is stable for problems with a
high scattering ratio and (ii) much more efficient than previous acceleration schemes. How-
ever, a major drawback is that the linear form of this method (which is invulnerable to the
presence of near-zero or negative flux values) is strictly limited to fixed-source problems
and is not naturally extended to eigenvalue problems. DSA can be applied to eigenvalue
problems, but the method must be modified in a way that introduces nonlinearities. Al-
couffe acknowledged that the inclusion of nonlinearities into the DSA method introduced
the possibility of numerical complications [21]. Additionally, DSA loses efficiency for op-
tically thick mesh cells and eventually becomes divergent. It should be noted, however,
that if the discretization of the low-order problem is kept consistent with the discretization
of the high-order problem, the latter drawback is eliminated (this is currently limited to
situations in which the same spatial mesh is used for the high- and low-order problems,
and was shown in Alcouffe’s DSA paper) [21].

Another method for improving the convergence rate of SI is Quasi-Diffusion (QD),
which involves the use of angular moments of the angular flux that are higher than the first
moment. With QD, nonlinear Eddington factors, which contain the second moment of the
angular flux, are used to construct the low-order equations [22]. Though QD is rapidly con-
vergent, it is not considered a “true” acceleration method, because it does not preserve the
transport solution as a result of truncation errors (this is not true for acceleration methods
such as DSA) [18]. However, it has been shown that QD can be made a “true” acceleration
scheme with the proper choice of spatial discretization [23].

Initially aimed at reducing the storage requirements and cost of solving nodal diffu-
sion problems, CMFD was proposed in the early 1980s [8]. A couple of decades later,
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CMFD was shown to be useful for transport acceleration in the production code CASMO
[9]. Through the incorporation of terms that are nonlinear with respect to the scalar flux,
CMFD is naturally applicable to both fixed-source and eigenvalue problems without awk-
ward modifications (unlike DSA). The appeal of CMFD over other acceleration schemes
is (i) it is easily applicable to both fixed-source and eigenvalue problems, (ii) for fixed-
source problems, it has the same rapid convergence rate as DSA and other similar methods,
and (iii) CMFD was conceived for problems in which the low-order spatial grid can be a
“coarse,” Cartesian grid relative to the “fine,” possibly unstructured grid for the high-order
transport equation. Likewise, the energy grid for the low-order diffusion operator can be
coarse. Using a coarser spatial (or energy) mesh for the low-order problem is appealing
because it can reduce the computational cost of the acceleration step (however, this can
reduce the effectiveness of the acceleration step, so care must be taken when choosing
the low-order discretization). These features popularized the CMFD method, which has
become the method of choice for deterministic transport acceleration. The method has
even been successfully applied to stochastic transport problems [24]. However, the major
disadvantages of CMFD are (i) its performance degrades to the point of divergence with
increasing low-order mesh cell optical thickness, and (ii) it contains several nonlinear terms
that render it susceptible to numerical instability in certain scenarios.

In the last couple of decades, substantial work has been done to improve the CMFD
method. These improvements have focused exclusively on the aforementioned linear insta-
bility of the method (relating to the optical thickness of the low-order mesh cells) through
a variety of means including, but not limited to, (i) artificially increasing the diffusivity
of the low-order operator [25], relaxing the flux prolongation update [26], and modifying
the form of the prolongation update [27]. The linear instability of CMFD is suppressed by
each of these methods. Specifically, they improve the performance and stability for opti-
cally thick low-order meshes (often achieving near-unconditional stability as a function of
cell optical thickness for certain problems [26]) for cases in which the nonlinear instability
is not an issue. With these methods, the linear instability of CMFD is mitigated but not
eliminated. Additionally, a form of CMFD for parallel spatial domain decomposed cases
(in which different computational processors handle calculations relating to their assigned
portion of space) was developed and implemented in the neutron transport code Michigan

Parallel Characteristics-based Transport (MPACT) [11, 28, 29].
Measures to mitigate the effect of non-positive flux values have been taken in MPACT

and other codes in the form of source splitting [11, 30]. Due to the possibility of a negative
source as a consequence of negative cross sections or large leakage from a spatial region,
the source term can become negative, which may result in a negative flux solution for a re-
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gion of the phase space. Source splitting makes a modification that eliminates the negative
source through an adjustment to the cross sections of affected regions, at the expense of
solution accuracy. Also, negative cross sections may result from the Transport-Corrected

P0 (TCP0) scattering approximation, which adjusts the scattering cross section in an at-
tempt to maintain P1 accuracy when only explicitly treating P0 scattering physics [31]. The
susceptibility of CMFD to non-positive solutions has made it necessary to take preventa-
tive measures, such as source splitting, that can impact the overall accuracy of the solution
[32, 33], or a negative flux fix-up for intermediate iterates.

A key insight over the history of transport acceleration is that acceleration performance
degradation as a function of cell optical thickness is due to disparate discretization choices
for the transport and acceleration equations. Fourier analysis has been used to show that the
convergence rate of the iteration scheme is rendered independent of cell optical thickness if
the acceleration equation is derived directly from the discretized transport equation [21, 34].
However, such a “consistent” method that retains the ability to use a coarser spatial mesh
for the low-order problem has yet to be derived (such a method would be a breakthrough
in the field of transport acceleration).

Though much work has focused on the performance of CMFD for optically thick prob-
lems, the method remains susceptible to nonlinear instability. Negative flux fix-up meth-
ods, such as the aforementioned source splitting technique, circumvent the issue by avoid-
ing opportunities for numerical breakdown. However, doing so may impact the overall
convergence rate and solution accuracy. Changes to the low-order step that eliminate the
possibility of nonlinear instability have been ignored in favor of these detrimental fix-up
techniques. The reason for this is likely that the nonlinear instability is difficult to pre-
dict and diagnose in a transport code. Issues relating to nonlinearity only occur in certain
cases, and when a small detail of the problem or solution method is changed, the issue may
vanish. Notably, the GAML acceleration method that eliminates this issue while retaining
applicability to eigenvalue problems was proposed a year before the first paper on CMFD
[12]. We expand the functionality of GAML to modern practical applications through the
development of Linear Diffusion Acceleration (LDA), which is the principal contribution
of this thesis work.

LDA is designed to eliminate the nonlinear instabilities of CMFD through the explicit
avoidance of terms that are nonlinear with respect to the scalar flux. Therefore, LDA is
not susceptible to numerical failure in problems that are not guaranteed to have a strictly
positive solution. If CMFD or another nonlinear method is used for such problems, the
potential for numerical failure exists. LDA avoids this possibility, while retaining similar
linear stability properties as CMFD for both fixed-source and eigenvalue problems. How-
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ever, LDA is susceptible to the same linear instability of CMFD, in which performance
degrades with increasing optical thickness of the low order mesh cells. LDA possesses the
following additional advantageous qualities as a result of the fixed diffusion operator: (i)
enhanced Wielandt shift properties for eigenvalue problems, and (ii) the potential for re-
duced cost of solving the low-order linear system through the use of advanced linear solver
techniques.

1.3 Outline

Here we outline the remainder of this thesis. Chapter 2 provides a brief overview of
neutron transport theory, with a focus on the relevant topics of the present thesis work.
This includes descriptions of (i) the different terms that compose the NTE, (ii) some of the
most common deterministic solution methods for solving the NTE, (iii) the discretization
methods used in deterministic simulations, and (iv) acceleration methods. These topics
serve as necessary background for the main work of this dissertation.

Chapter 3 focuses on CMFD, providing an overview of the method. We provide the
detailed derivation of CMFD for different problem types to explain the inclusion of non-
linear terms. A description of the CMFD algorithm for transport applications is also given
for reference and later comparison to LDA. Additionally, some modifications that have
been made to the original method to improve the performance of Power Iteration (PI) are
described. Finally, we enumerate the nonlinear terms that are present in CMFD.

Chapter 4 introduces LDA, providing the derivation of the method and overviews of the
acceleration algorithm for different problem types. Utilization of the Fredholm Alternative

Theorem (FAT) in the derivation of LDA for eigenvalue problems is shown to allow for
the preservation of linearity with respect to the scalar flux. The advantages of LDA over
CMFD are described here, as a consequence of the derivation details. We also provide
the details of a Wielandt-shifted version of LDA that allows for improved PI convergence
(which is similar to shifted CMFD, but with an advantage). The differences between LDA
and the aforementioned GAML method are discussed in Appendix A.

Chapter 5 presents the process and results of discrete Fourier analysis of CMFD and
LDA for fixed-source and eigenvalue problems. Fourier analysis allows for the analytic
estimation of the asymptotic convergence rate of iterative, fixed-point methods by track-
ing the propagation of errors in the iterates across subsequent iterations. In this way, the
performance can be analytically predicted for model problems without the need of numer-
ical experiments. We compare the convergence rates of LDA and CMFD for spatially-
homogeneous and heterogeneous problems, and compare the analytic prediction to esti-
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mates from numerical experiments.
Chapter 6 presents the numerical results of LDA in a 1D SN transport test code, with

comparisons to CMFD. The analytic predictions of the Fourier analysis are tested for
problems to which the Fourier analysis cannot be applied. We also provide results that
show that LDA is not susceptible to the nonlinearities of CMFD for some contrived cases.
The properties of Wielandt-shifted LDA are explored for simple problems, and the potential
advantages of LDA within the context of linear solver methods are discussed as well.

In Chapter 7, we provide some implementation details of LDA in the transport code
MPACT. The behavior of Wielandt-shifted LDA is examined for a large, realistic case.
Then, the performance of LDA is compared to CMFD for realistic problems in which the
nonlinearities of CMFD do not present an issue. We also provide a case study for a problem
in which CMFD is shown to diverge due to nonlinear instability, and LDA remains stable.

Finally, Chapter 8 presents the conclusion of this work. This includes the motivation
for the development of the LDA technology, and a summary of the results of this thesis
work. Proposed future work for the LDA method is also discussed.
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CHAPTER 2

Neutron Transport Theory

This chapter provides an overview of some relevant topics to the present thesis work.
The Neutron Transport Equation (NTE), including each of its terms, is described. Addi-
tionally, the procedure for solving k-eigenvalue problems is given. Then, a brief overview
of computational methods for solving the NTE is provided, with an emphasis on deter-
ministic methods. This includes selected methods for discretizing the NTE. Finally, the
process of iteratively solving the NTE, with optional transport acceleration, is described.

2.1 Neutron Transport Equation

To mathematically describe the distribution of neutrons within the phase space of a
nuclear system for a given state, the steady-state NTE shown below is used:

Ω ⋅∇ψ(x,Ω,E) +Σt(x,E)ψ(x,Ω,E)

+∫
∞

0
∫

4π
Σs(x,Ω′ ⋅Ω,E′ → E)ψ(x,Ω′,E′)dΩ′ dE′

= 1

4π
(Q(x,E) + χ(x,E)∫

∞

0
νΣf(x,E′)∫

4π
ψ(x,Ω′,E′)dΩ′ dE′) ,

∀x ∈ V , ∀Ω ∈ 4π , ∀E ∈ [0,∞) ,

(2.1a)

ψ(x,Ω,E) = ψb(x,Ω,E) ,

∀x ∈ δV , ∀ (Ω ⋅n) < 0 , ∀E ∈ [0,∞) ,
(2.1b)

x ≡

⎡⎢⎢⎢⎢⎢⎢⎣

x

y

z

⎤⎥⎥⎥⎥⎥⎥⎦

, (2.1c)
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Ω ≡

⎡⎢⎢⎢⎢⎢⎢⎣

Ωx

Ωy

Ωz

⎤⎥⎥⎥⎥⎥⎥⎦

≡

⎡⎢⎢⎢⎢⎢⎢⎣

√
1 − µ2 cosγ√
1 − µ2 sinγ

µ

⎤⎥⎥⎥⎥⎥⎥⎦

. (2.1d)

The symbols in the NTE are the following: x is the spatial position vector, Ω is the direction
vector, E is the neutron energy, Σ is the macroscopic cross section, ψ is the neutron angular
flux, ν is the average number of neutrons produced per fission, χ is the fission spectrum,
Q is the inhomogeneous source, V is the convex physical domain, δV is the boundary of
the convex physical domain, and n is the outward surface normal vector. Additionally, µ
is the cosine of the polar angle, which is the angle that Ω makes with the z-axis, and γ is
the azimuthal angle.

Equation (2.1a) is a linear integro-differential equation spanning six dimensions of
phase space (three in space, two in angle, and one in energy). Time-dependence can also be
included for transient problems. In this thesis, we are primarily concerned with steady-state
problems. The solution of Eq. (2.1a) is the neutron angular flux ψ, which is the product
of the neutron number density and neutron velocity at a given point in phase space. For
problems with non-negative internal and boundary sources, the solution of Eq. (2.1a) is
guaranteed to be non-negative. The NTE describes the mean neutron flux averaged over an
infinite number of neutron histories. Therefore, it is only valid for cases with sufficiently
large neutron populations.

The NTE describes the “balance” of neutrons in a nuclear system and can be con-
sidered a conservation equation. For a given infinitesimally small piece of phase space,
the Left-Hand-Side (LHS) describes the mechanisms of neutron loss and the Right-Hand-

Side (RHS) describes the mechanisms of neutron gain. If neutron gain is greater than
neutron loss, or vice-versa, the neutron population will change with time. In this thesis
work, only steady-state problems are considered. Thus, overall neutron losses and gains
are equal (the rate of change in the neutron population with time is zero). The mechanisms
of neutron loss for steady-state problems are:

• streaming of neutrons (Ω ⋅∇ψ(x,Ω,E)), and

• collisional loss (Σt(x,E)ψ(x,Ω,E)).

The mechanisms of neutron gain are:

• scattering source (∫
∞

0 ∫4π Σs(x,Ω′ ⋅Ω,E′ → E)ψ(x,Ω′,E′)dΩ′ dE′),

• fission source (χ(x,E)

4π ∫
∞

0 νΣf(x,E′) ∫4π ψ(x,Ω′,E′)dΩ′ dE′), and

• neutrons born from an inhomogeneous source ( 1
4πQ(x,E)).
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When solving the NTE computationally, the scalar flux is generally stored rather than
the full angular flux. This is because most quantities of interest are a function of the scalar
flux, φ0. The scalar flux is the zeroth angular moment of the angular flux:

φ0(x,E) ≡ ∫
4π
ψ(x,Ω,E)dΩ , (2.2)

and can be interpreted as the neutron track length generated per unit volume and unit time.
When multiplied by the macroscopic cross section for a given reaction type, the scalar
flux can be used to obtain reaction rates. Another useful quantity that is necessary for
many acceleration methods is the neutron current, which is the first angular moment of the
angular flux, shown below:

φ1(x,E) ≡ ∫
4π

Ω ψ(x,Ω,E)dΩ . (2.3)

This and other vector quantities are represented in boldface notation.
Often, nuclear engineers are interested in a specific form of Eq. (2.1a) that is applicable

to physical nuclear cores. This form is mathematically described as an eigenvalue prob-
lem, and possesses an infinite number of solutions that differ by an arbitrary multiplicative
constant. The next section discusses the eigenvalue form of the NTE.

2.2 k-Eigenvalue Problems

Generally, if fissionable isotopes are present, Eqs. (2.1) are cast as an eigenvalue prob-
lem. To obtain the equation that describes k-eigenvalue problems, the following changes
are made to Eqs. (2.1): (i) the boundary and inhomogeneous sources are set to zero, and (ii)
the fission source is multiplied by the eigenvalue λ = 1

k . Thus, the fission source is scaled
to balance other forms of neutron gain and loss. By making these modifications, we obtain:

Ω ⋅∇ψ(x,Ω,E) +Σt(x,E)ψ(x,Ω,E)

= ∫
∞

0
∫

4π
Σs(x,Ω′ ⋅Ω,E′ → E)ψ(x,Ω′,E′)dΩ′ dE′

+λχ(x,E)
4π ∫

∞

0
νΣf(x,E′)∫

4π
ψ(x,Ω′,E′)dΩ′ dE′ ,

∀x ∈ V , ∀Ω ∈ 4π , ∀E ∈ [0,∞) ,

(2.4a)

ψ(x,Ω,E) = 0 ,

∀x ∈ δV , ∀ (Ω ⋅n) < 0 , ∀E ∈ [0,∞) ,
(2.4b)
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with the following arbitrarily-chosen normalization condition to define a unique solution:

P = ∫
V
∫

∞

0
∫

4π
νΣf(x,E)ψ(x,Ω,E)dΩ dE dV , (2.4c)

where P is the total neutron production rate of the system. As with all eigenvalue problems,
Eqs. (2.4a) and (2.4b) have the trivial solution ψ = 0. However, the goal is to obtain λ for
which a non-zero solution ψ exists. Specifically, we seek the fundamental eigenpair, which
we define as the pair of corresponding λ and ψ for which λ has the smallest real part.

Rather than report the λ-eigenvalue, nuclear engineers usually work with keff (referred
to as the criticality eigenvalue or multiplication factor) which describes the criticality of
the system. keff is the reciprocal of the fundamental eigenvalue of the NTE, defined below:

keff ≡
1

λ0

, (2.5)

where λ0 is the fundamental eigenvalue. If keff = 1, the system is considered critical and
a steady-state, non-negative solution of the NTE exists that corresponds to this criticality
eigenvalue. If keff > 1, the system is supercritical, and for a physical problem, the mag-
nitude of the flux would increase in time. If keff < 1, the system is subcritical, and for a
physical problem, the magnitude of the flux would decrease in time. By analyzing eigen-
value problems, it is possible to study systems that, in their natural physical state, would
not have steady-state solutions.

Equation (2.4a) is fundamental to reactor analysis, and obtaining a solution for nuclear
cores is usually computationally expensive. Iterative methods exist that are suitable for
computing a solution to Eq. (2.4a), including Power Iteration (PI). Section 2.4.1.2 de-
scribes PI in more detail. Prior to the discussion of iterative methods, the next section
provides a discussion of two classes of methods for solving the NTE computationally.

2.3 Computational Methods

There are two overarching categories of transport solution methods: stochastic and de-

terministic. Stochastic methods utilize random number generation and probability distribu-
tions to track individual particle interactions that collectively contribute to estimating quan-
tities of interest. Deterministic methods combine discretization methods that approximate
the NTE by a (hopefully, accurate) algebraic system of equations, and iterative methods
that solve the algebraic system (hopefully, efficiently). The two categories are described in
the following subsections (with emphasis on deterministic methods, which are the focus of
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this thesis).

2.3.1 Stochastic Methods

Often referred to colloquially as “Monte Carlo” methods, stochastic approaches to solv-
ing the NTE track the “history” of a large number of randomly generated, individual neu-
trons (and sometimes other particles, such as photons or electrons). The results are then
averaged to obtain an estimate of the collective neutron behavior. A “history” refers to the
events from inception to termination of a particle’s lifetime. Therefore, solution accuracy
and precision depends largely on (i) the number of particles simulated and (ii) properly
simulating the physics involved in the lifetime of each particle. Using a random number
generator, probability distributions that describe different phenomena can be sampled to
determine different quantities. For neutrons, these quantities include:

• the distance to collision with a nucleus,

• the type of collision interaction with a nucleus,

• the outgoing energy and angle from a scattering event,

• the number of neutrons born from fission, and

• the energy and angle of a neutron born from fission.

By sampling probability distributions that describe these phenomena, each event in a neu-
tron’s history can be simulated. A neutron history ends when it is absorbed or leaks from
the system.

Generally, the discretization of phase space is not needed for stochastic methods. There-
fore, detailed solutions obtained through these methods are considered highly accurate and
are often used as a reference for deterministic solutions [35]. Unfortunately, while accuracy
is a strength of stochastic methods, precision is a weakness. Each quantity of interest must
be selected for computation before the simulation is begun and is subject to statistical error
due to the probabilistic nature of the method. The statistical error reduces with the number
of particle histories, but the scaling of the statistical error is proportional to 1√

N
where N is

the number of histories simulated. Thus, the statistical error decreases increasingly slowly
as N increases. For example, to decrease the statistical error by a factor of 10, it is neces-
sary to increase the number of histories (and the total cost of the calculation) by a factor of
100.

The number of particle histories required to obtain reasonably precise results is ex-
tremely large for full-scale, whole-core calculations. Though techniques of variance re-
duction exist to reduce the number of particles required for a given precision, and the

16



simulation of particle histories is highly parallelizable, the number of particles required for
full-core simulations can be excessive and enormously computationally expensive.

For eigenvalue problems, stochastic simulations emulate PI by continuously updating
the fission source. “Batches” of neutrons are simulated in “cycles”, and the resulting fission
neutrons are stored in a fission bank. By carefully tracking the number of fission neutrons
between subsequent batches, keff can be estimated. However, the fission source must be
sufficiently converged before accurate estimates can be made. Therefore, several “inactive”
batches are typically simulated before results are recorded in the “active” cycles. [36]

2.3.2 Deterministic Methods

Deterministic methods provide solutions to the NTE by (i) discretizing the NTE,
thereby approximating it by a (typically large) algebraic system of equations, and (ii) typ-
ically, iteratively solving the (large) system of equations. This section discusses different
approximations that are made to discretize the NTE in space, angle, and energy. Addition-
ally, a relevant method for solving the 3D NTE is described, as well as a common method
used for simplifying the scattering physics.

2.3.2.1 Spatial Discretization

Spatial discretization refers to the partitioning of the continuous space into a system of
discrete cells. A system is composed of many different contiguous material regions that can
be subdivided into smaller cells. The material properties and flux solution within a cell are
typically assumed to be constant. The source can also be assumed to be constant within a
cell, but higher-order sources are possible. Depending on the type of deterministic method,
the true geometry may be homogenized within a computational cell so that the material
properties can be assumed constant. A potential computational mesh for a pin cell, such as
those used in MPACT, is shown in Fig. 2.1.

To discretize neutronics equations in space, there are three different classes of spatial
discretization methods that are commonly used. The first is finite difference methods in
which spatial derivatives are approximated by numerical differentiation. This method is
commonly used for the NBE, which is obtained by integrating the NTE over angle, and
also for SN transport (to be described shortly). In finite difference methods, a grid is first
imposed on the spatial domain. Then, spatial derivatives are approximated with numerical
difference relations. These methods are easily applied to problems with Cartesian meshes,
but are more difficult for problems with more complex spatial meshes. Finite difference is
also commonly used to discretize the low-order equations in acceleration methods, such as
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Figure 2.1: Material regions and computational mesh for a pin cell

CMFD or LDA. [37]
The second common spatial discretization method is finite volume, which involves (i) an

integral of the governing equation over a spatial cell (to obtain a “conservation” equation),
combined with (ii) auxiliary finite-difference-like equations. Often, the problem is divided
into a set of control volumes in which the solution is assumed to be flat. Neutron loss and
gain are carefully accounted for by keeping track of the incoming and outgoing particles,
as well as any internal losses or gains. One such method is the Method of Characteristics

(MOC), in which the NTE is cast along a set of characteristic lines that pass through the
spatial domain. In this way, the NTE is converted from a set of partial differential equations
to ordinary differential equations that can be more easily solved [38]. In 1D, MOC is
considered a finite volume method. In multidimensional problems, MOC is related to finite
volume methods.

Finally, there are finite element methods, in which the spatial domain is discretized into
a mesh of contiguous, non-overlapping finite elements. A set of basis functions are chosen
to represent the spatial shape of the solution, with unknown coefficients. Upon obtaining
these unknown coefficients, the solution is determined. Different choices for the mesh
shape and basis functions are available for finite element methods, which are becoming
more widely used in reactor physics codes. [37]

2.3.2.2 Energy Discretization (Multigroup Approximation)

For deterministic methods, the multigroup approximation is almost always made for the
energy discretization. The continuous energy spectrum is discretized into intervals in which
the microscopic cross sections are considered constant. For the energy bounds of each
group g, the value Eg is the group lower bound and Eg−1 is the group upper bound. Thus,
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a smaller group index refers to a higher energy. A total of G energy groups are defined in
this way. To reduce the computational resources to solve the energy-dependent NTE, a few
hundred energy groups are typically used, rather than the hundreds of thousands that would
be required to accurately “resolve” the continuous spectrum. Because the cross section has
a strong energy dependence, care must be taken when choosing the energy intervals for the
energy discretization. This is especially true in the resolved resonance region, where the
cross section can vary by orders of magnitude in very small energy intervals.

The multigroup approximation is made by integrating the NTE over a given energy
interval, as shown below:

[Ω ⋅∇ +Σt,g(x,Ω)]ψg(x,Ω) = 1

4π
[
G

∑
g′=1
∫

4π
Σs,g′→g(x,Ω ⋅Ω′)ψg′(x,Ω′)dΩ′

+
χg(x)
keff

G

∑
g′=1

(νΣf)g′ (x)φ0,g′(x)] ,

∀x ∈ V , ∀Ω ∈ 4π, {g ∣ g ∈ N,1 ≤ g ≤ G} ,

(2.6a)

with the following multigroup form of the previously-chosen normalization condition:

P =
G

∑
g=1
∫
V
(νΣf)g (x)φ0,g(x)dV , (2.6b)

where the group-wise scalar flux is defined as

φ0,g(x) ≡ ∫
4π
ψg(x,Ω)dΩ . (2.6c)

The multigroup quantities are defined below:

ψg(x,Ω) ≡ ∫
Eg−1

Eg

ψ(x,Ω,E′)dE′ , (2.7a)

χg(x) ≡ ∫
Eg−1

Eg

χ(x,E′)dE′ , (2.7b)

Σt,g(x,Ω) ≡
∫
Eg−1

Eg
Σt(x,E′)ψ(x,Ω,E′)dE′

ψg(x,Ω)
, (2.7c)

(νΣf)g (x) ≡
∫
Eg−1

Eg
νΣf(x,E′)φ0(x,E′)dE′

φ0,g(x)
, (2.7d)

Σs,g′→g(x,Ω,Ω′) ≡
∫
Eg−1

Eg ∫
Eg′−1

E′
g

Σs(x,Ω′ ⋅Ω,E′ → E)ψ(x,Ω′,E′)dE′ dE

ψg′(x,Ω′)
. (2.7e)
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No approximations have been made in Eq. (2.6a) and Eqs. (2.7). However, Eqs. (2.7)
require knowledge of the angular flux, which is the solution to be obtained by solving
the NTE. Therefore, it is necessary to assume a solution before the cross sections are
“collapsed” in Eqs. (2.7). A problem that is simplified in space can be solved to generate
a weighting function (or neutron spectrum) that approximates the true solution to evaluate
Eqs. (2.7) before performing a more rigorous spatial calculation with the collapsed cross
sections. The use of a weighting function assumes that the angular flux is separable in
angle and energy in a given energy group:

ψ(x,Ω,E) ≈ ϕ(x,E)Ψg(x,Ω) ,

Eg−1 < E < Eg ,
(2.8)

where ϕ is the energy-dependent weighting function and Ψg is the energy-independent
angular flux. One may preserve some spatial dependence by choosing a weighting function
that is a local solution for a spatial subregion of the problem. Upon making this assumption,
the multigroup cross sections can be defined for use in practical problems. As an example,
the total cross section then becomes:

Σt,g(x) ≡
∫
Eg−1

Eg
Σt(x,E′)ϕ(x,E′)dE′

∫
Eg−1

Eg
ϕ(x,E′)dE′

. (2.9)

Often, the angular dependence of the weighting function is neglected, and the scalar flux
is used. Once the cross sections have been collapsed, they may resemble those shown in
Fig. 2.2, which depicts a hypothetical set of collapsed multigroup cross section overlaid on
the continuous cross section spectrum [39].

2.3.2.3 Angular Discretization

There are two common treatments of the discrete directional variable: the spherical
harmonics (PN) expansion and discrete ordinates (SN). With SN, the angular variable is
approximated with a quadrature set of M discrete directions and weights (except for in 1D,
generally M > N ):

{Ωn,wn ∣ n ∈ N,1 ≤ n ≤M} . (2.10a)

Given this set, an integration of a function over angle can be approximated as

∫
4π
f(Ω)dΩ ≈∑

n

wnf(Ωn) , (2.10b)
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Figure 2.2: Theoretical representation of multigroup cross sections for U-235. Multigroup
cross section estimates are overlaid on the continuous spectrum. [39]

where

∑
n

wn = 4π . (2.10c)

The choice of quadrature set can change the accuracy of the solution for a given number of
discrete directions. Therefore, an informed choice can be made depending on the expected
angular dependence of the problem. Combining the multigroup approximation with the
discrete ordinates approximation yields the following form of the isotropically-scattering
NTE for eigenvalue problems:

[Ωn ⋅∇ +Σt,g(x)]ψg,n(x) =
G

∑
g′=1

N

∑
n′=1

wnΣs,g′→g,n′→n(x)ψg′,n′(x)

+λ
χg(x)

4π

G

∑
g′=1

(νΣf)g′ (x)φ0,g′(x)

∀x ∈ V , {g ∣ g ∈ N,1 ≤ g ≤ G} , {Ωn,wn ∣ n ∈ N,1 ≤ n ≤M} ,

(2.11a)
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ψg,n(x) = 0 ,

∀x ∈ δV , ∀ (Ωn ⋅n) < 0 , ∀g ,
(2.11b)

with the following previously-chosen normalization condition:

P =
G

∑
g=1
∫
V
(νΣf)g (x)φ0,g(x)dV . (2.11c)

With PN, the angular variable is removed entirely by expanding angularly-dependent
quantities in terms of the spherical harmonics functions. The multigroup angular flux is ex-
panded as shown in Eq. (2.12), where ψn,m,g(x) are the expansion coefficients and Y m

n (Ω)
are the spherical harmonics functions:

ψg(x,Ω) =
∞

∑
n=0

n

∑
m=−n

ψn,m,g(x)Y m
n (Ω) . (2.12)

In practice, the order of the expansion is truncated at N :

ψg(x,Ω) ≈
N

∑
n=0

n

∑
m=−n

ψn,m,g(x)Y m
n (Ω) . (2.13)

By utilizing this expansion method, the angular variable can be eliminated entirely from
the NTE. A set of equations can be obtained for the expansion coefficients that are solved
to obtain an approximation for the angular flux.

2.3.2.4 2D/1D Method

The 2D/1D method is based on the separation of the 3D NTE into a set of coupled radial
and axial equations, with Transverse Leakage (TL) terms that couple the two equations [40,
41]. This method is based on the observation that nuclear reactors are highly heterogeneous
in the radial (x, y) direction and mostly homogeneous in the axial (z) direction. Therefore,
different discretization choices and solution methodologies may be used for each equation
to more efficiently solve the problem while maintaining reasonable accuracy. Axially, the
core is split into a set of planes within which the radial equation is solved. Radially, the
core is usually discretized based on the grid of pin cells. In this section, k is used as the
plane index and ij are the radial cell indices.

The monoenergetic 2D/1D equations are shown in Eqs. (2.14), where Eq. (2.14a) is
the radial equation and Eq. (2.14b) is the axial equation. These equations are derived by
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separately integrating the NTE over the radial and axial directions:

[(Ω ⋅∇)xy +Σt,k(x, y)]ψk(x, y,Ω) = Qk(x, y)
4π

− TLk(x, y,Ω) , (2.14a)

[µ ∂
∂z

+Σt,k,ij(z,Ω)]ψij(z,Ω) =
Qij(z)

4π
− TLij(z,Ω) . (2.14b)

In these equations, TL represents the coupling leakage terms and Q represents the fission
and scattering sources. The assumed angular dependence of the TL terms that couple
the 2D and 1D equations can vary, which affects the solution accuracy, but the angular
dependence is generally assumed to be isotropic. Further details about other treatments are
not discussed here, but can be found in [32, 42].

The positivity of the solution of the 2D/1D equations is unknown. However, iterates of
the solution to these equations can be, and have been observed to be, negative. One way in
which the solution can become negative is if the TL term in a spatial region is large enough
to drive the RHS negative. In this case, the solution to the 2D/1D equations may contain
negative values for certain portions of the phase space. This can present issues for certain
nonlinear iterative methodologies, in which non-positive solutions can drive the iterative
process unstable.

The splitting method was developed to avoid the presence of negative source terms
[32, 43]. In this method, the RHS is combined with the total cross section in the LHS as
shown in Eqs. (2.15). This ensures that the source term is zero, and thus, non-negative.
Using this technique, we obtain:

[(Ω ⋅∇)xy + Σ̃t,k(x, y)]ψk(x, y,Ω) = 0 , (2.15a)

Σ̃t,k(x, y) ≡ Σt,k(x, y) +
4πL̃z

φ0,k(x, y)
, (2.15b)

L̃z ≡ − [Qk(x, y)
4π

− TLk(x, y,Ω)] , (2.15c)

where in Eq. (2.15b) we have made the following (detrimental) assumption:

ψk(x, y,Ω) ≈
φ0,k(x, y)

4π
, (2.15d)

which is made because the angular flux is unknown. Though splitting removes the issue
of negative sources, this approximation lowers the accuracy of the overall solution due
to incorrect weighting. The errors introduced by splitting can be significant enough to
overshadow other improvements to the 2D/1D method [42]. We hope to remove the need
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for splitting with this thesis work.

2.3.2.5 Transport-Corrected Scattering

The Transport-Corrected P0 (TCP0) scattering methodology was developed with the
aim of obtaining the accuracy of linearly-anisotropic scattering (P1) with the computa-
tional expense of modeling isotropic scattering (P0) [44]. This is accomplished in mo-
noenergetic problems by modifying the self-scatter and total cross sections, as shown in
Eqs. (2.16). A few TCP0 approximations exist, and in the most common formulation, the
linearly anisotropic moment of the scattering cross section is simply subtracted from the
zeroth scattering moment and the total cross section is modified accordingly:

Σ̂s0 ≡ Σs0 −Σs1 , (2.16a)

Σtr ≡ Σt −Σs1 , (2.16b)

where Σtr is the transport cross section. Intuitively, by reducing the total cross section,
neutrons will travel further in a given direction before colliding with the medium. This
emulates linearly-anisotropic scattering, in which neutrons may be preferentially forward-
scattered.

For multigroup problems, different methods have been developed to correct the self-
scatter and total cross sections, with one of the most accurate being the inscatter method.
In this method, an estimate of the neutron current spectrum φ1,g, often obtained by solving
a simple infinite medium problem, is used to weight the cross section modification:

Σ̂s0,g→g ≡ Σs0,g→g −
1

φ1,g

G

∑
g′=1

Σs1,g′→gφ1,g′ , (2.17a)

Σtr,g ≡ Σt,g −
1

φ1,g

G

∑
g′=1

Σs1,g′→gφ1,g′ . (2.17b)

Though the TCP0 method can provide improved accuracy over the assumption of
isotropic scattering, it opens the possibility of negative cross sections. In particular, the
transport-corrected self scatter cross section of water is often negative in the epithermal en-
ergy region due to the strong scattering anisotropy of hydrogen nuclei. Figure 2.3 shows a
plot of the transport-corrected self-scatter cross sections for water at 293 K in the 47-group
MPACT library [31], with many negative values in the epithermal range. This is especially
true for problems with a large number of energy groups G, due to the summation over
the anisotropic inscatter cross sections. For cases in which the cross sections can become
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Figure 2.3: TCP0 self-scatter XS for water at 293 K in the 47-group MPACT library [31]

negative, the solution can also become negative as a result of the TCP0 approximation. If
nonlinear iterative methods are employed to solve such approximate equations, the iterative
process may become unstable as a result of these non-positive solutions.

2.4 Transport Iterative Methods

In the previous sections, we have summarized methods for discretizing the NTE so
that it can be solved computationally. Now, we consider a sample discretized problem
solved using MPACT. For this problem, we assume the following reasonable number of
unknowns for each phase space variable: (i) O(106) spatial cells in a plane, (ii) O(102) ax-
ial planes, (iii)O(102) energy groups, and (iv)O(102) discrete angles. For such a problem,
there are O(1012) unknowns for each source iteration. If the problem converges slowly, re-
quiring O(103) iterations for sufficient convergence, then these O(1012) unknowns must
be computed O(103) times. Given these estimates, the total number of unknowns that
must be found (including intermediate values before convergence has been achieved) is
O(1015). Obtaining a solution within a reasonable amount of time given this amount of
computational work would be unrealistic with current computational resources, even with
high-performance machines.

Transport acceleration utilizes the solution of a simpler, low-order problem (relative to
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the transport problem) to reduce the computational effort required to iteratively obtain a so-
lution to the NTE. Modern acceleration methods generally reduce the number of iterations
to converge to a reasonable tolerance from O(103) to O(101). The subject of this thesis
is LDA, which has certain advantages over current acceleration methods. Sections 2.4.1
and 2.4.2 provide an overview of iterative transport and acceleration methods, with more
details on CMFD and LDA provided in Chapters 3 and 4, respectively. Section 2.4.3 pro-
vides a discussion of the linear solver methods used to obtain the low-order solution.

2.4.1 Iterative Algorithms for Solving the NTE

In this section, a few different iterative methods for solving the NTE are briefly de-
scribed. This includes Source Iteration (SI) for converging the scattering source and Power

Iteration (PI) for obtaining the fundamental eigenpair for eigenvalue problems. The termi-
nology used in this subsection refers to the case in which no acceleration method is used.

2.4.1.1 Source Iteration

Source Iteration (SI) refers to the process of converging the scattering source for a
given problem. In this type of iteration scheme, sources other than the scattering source are
considered to be constant. Thus, in the case of an eigenvalue problem, the fission source is
fixed and is not updated throughout the SI process. An iterative approach is usually taken
to converge the group-wise scattering source by first estimating the scattering source in
the highest energy group and then looping over the remaining lower energy groups. The
cumulative inscatter source from all other energy groups is used as the scattering source
for a given energy group. Within a given energy group, the source is updated for all spatial
regions.

The SI process is described in Algorithm 1. First, a guess is made for the initial scatter-
ing source. Then, a transport sweep is performed in which the angular flux is updated for
all spatial regions for a single group, starting with the highest energy group (usually corre-
sponding to g = 1) and working down through the lower groups. Multiple transport sweeps
can be performed, but the default in MPACT is one transport sweep per source iteration
per group. During the sweep process, the scalar flux is usually also computed and stored.
Other information, such as angular flux moments that are necessary for reconstructing the
scattering source, can also be stored. (We note that the default behavior in MPACT is to
setup the scattering source before the group and transport sweep loops.)
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Algorithm 1 Source Iteration Algorithm
1: Assume an initial guess for the scattering source in all energy groups
2: repeat
3: for each energy group g do
4: for each transport sweep do
5: Compute the scattering source from other groups for all regions and angles
6: Compute the angular flux estimate for all regions and angles
7: Compute and store the scalar flux and other relevant quantities
8: end for
9: end for

10: until convergence of the scattering source

SI is highly stable, but it converges slowly for scattering-dominated problems. The
physical interpretation of SI provides insight for the convergence rate of the iterative pro-
cess. For fixed-source cases, each source iteration l describes neutrons that have been
scattered l times. That is, the solution for the zeroth iteration is the uncollided flux (for
a zero initial guess), the solution to the first iteration is the once-collided flux, and so on.
Therefore, ψ(l) is the angular flux of neutrons that have experienced exactly l collisions
since their birth. Once this is understood, it is clear that problems with a high scatter-
ing ratio (meaning that for at least one material in at least one region of space, neutrons
will preferentially scatter rather than be absorbed) are slow to converge (requiring a large
number of iterations to arrive at a converged solution).

It can be shown mathematically through Fourier analysis that the convergence rate of
SI for fixed-source problems depends directly on two quantities: (i) the maximum non-
absorption probability and (ii) the maximum non-leakage probability. The product of these
two quantities is an upper bound of the spectral radius ρ, which mathematically represents
the error reduction in the scalar flux for each iteration. In other words, an upper bound of
the spectral radius is equal to the maximum probability that a neutron’s next event will not
be the termination of its history. For convergent iterative methods (in which the algorithm is
expected to produce a converged solution within a finite number of iterations), the spectral
radius exists in the interval 0 < ρ < 1. As ρ decreases, the number of iterations required to
converge to a specified tolerance decreases. The spectral radius describes the reduction in
error of the scalar flux (or more generally, the solution) and can be estimated in practice as:

ρ(l) ≡
∥φ(l)

0 − φ(l−1)
0 ∥

∥φ(l−1)
0 − φ(l−2)

0 ∥
. (2.18)
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As l → ∞, ρ(l) becomes a better estimate of the true spectral radius (which is why we
can also refer to the spectral radius as the asymptotic convergence rate). For eigenvalue
problems, Power Iteration (PI) (described in Section 2.4.1.2) effectively behaves like SI
for very highly-scattering fixed-source problems.

2.4.1.2 Power Iteration

PI refers to the process of iteratively solving an eigenvalue problem by (i) estimating
the neutron source, (ii) estimating the flux solution using the source estimate, and (iii)
checking for convergence of the quantities of interest. This process is repeated if sufficient
convergence has not been achieved. If the NTE is organized such that loss terms are on the
LHS and source terms are on the RHS (as in Eq. (2.1a)), then the operator form is shown
below, where the LHS operator L is the neutron loss operator, F is the fission source, and
S is the scattering source:

Lψ(x,Ω,E) = F + S , (2.19a)

L ≡ Ω ⋅∇ +Σt , (2.19b)

F ≡ 1

keff

χ(x,E)
4π ∫

∞

0
νΣf(x,E′)∫

4π
ψ(x,Ω′,E′)dΩ′ dE′ , (2.19c)

S ≡ ∫
∞

0
∫

4π
Σs(x,Ω′ ⋅Ω,E′ → E)ψ(x,Ω′,E′)dΩ′ dE′ . (2.19d)

In this approach, an initial guess is made for the fundamental eigenpair and the fission
source is calculated. The scattering source S(l) is computed for a given power iteration l
using SI as described in Algorithm 1. Then, an approximate solution for the next iteration
is calculated as shown below, where l is the power iteration index:

ψ(l+1) = (L − S(l))−1
F (l) . (2.20a)

Here, the iteration-dependent fission source, computed using the previous scalar flux iterate
φ
(l)
0 , is defined as

F (l) ≡ 1

k
(l)
eff

χ(x,E)
4π ∫

∞

0
νΣf(x,E′)φ(l)

0 (x,E′)dE′ , (2.20b)

and the scalar flux iterate is defined as

φ
(l)
0 ≡ ∫

4π
ψ(l)(x,Ω,E)dΩ . (2.20c)
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Additionally, keff for iteration l, which represents the multiplication of neutrons over suc-
cessive iterations, can be computed as shown below [2]:

k
(l+1)
eff = ∫V ∫

∞

0 νΣf(x,E′) ∫4π ψ(l+1)(x,Ω,E)dΩ dE dV
1

k
(l)
eff
∫V ∫

∞

0 νΣf(x,E′) ∫4π ψ(l)(x,Ω,E)dΩ dE dV
. (2.21)

If the quantities of interest are not converged (typically φ0 and keff), the next iteration is
started with the new estimates for φ0 and keff. Algorithm 2 describes the iterative process
of PI for eigenvalue problems.

Algorithm 2 Power Iteration Algorithm for Eigenvalue Problems

1: Assume an initial guess for φ(0)
0 and k(0)

eff

2: repeat
3: Compute the scattering source S(l) using Algorithm 1
4: Compute the fission source F (l) using Eq. (2.20b)
5: Compute the next flux estimate ψ(l+1) using Eq. (2.20a)
6: Compute the scalar flux φ(l+1)

0 using Eq. (2.20c)
7: Compute k(l+1)

eff using Eq. (2.21)
8: Normalize the flux according to the chosen normalization condition
9: until convergence {generally, convergence of φ0 and keff are checked}

PI can converge very slowly, and acceleration methods have been developed to improve
the convergence rate of this process. For PI, the convergence rate behaves as if the max-
imum non-absorption rate is unity. Thus, it can require hundreds or even thousands of
iterations to converge to a reasonable tolerance for common reactor physics cases. This
motivates the development and usage of acceleration methods to improve the convergence
rate, which are described in Section 2.4.2.

2.4.2 Diffusion Acceleration Algorithms

For iterative methods of solving the NTE, diffusion-based acceleration techniques gen-
erally involve exact, “low-order” representations of the governing equations. This low-
order problem is obtained by first integrating the NTE over angle, which eliminates all but
the isotropic differential scattering moment (resulting in the NBE). To obtain the NBE
for eigenvalue problems, Eq. (2.4a) is integrated over angle by operating by ∫4π (⋅)dΩ,
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resulting in the following:

∇ ⋅φ1(x,E) +Σt(x,E)φ0(x,E) = ∫
∞

0
Σs0(x,E′ → E)φ0(x,E′)dE′

+λχ(x,E)∫
∞

0
νΣf(x,E′)φ0(x,E′)dE′ .

(2.22)

Here, Σs0(x,E′ → E) is the zeroth Legendre moment of the differential scattering cross
section. Equation (2.22) requires a relationship between the scalar flux and neutron current
to obtain the scalar flux solution. Certain approximations, such as Fick’s Law, can provide
this relationship. After introducing Fick’s Law, the equation can be made exact through
a transport consistency term (which is, in practice, lagged in the iteration process). This
allows us to write the NBE in terms of only one unknown (the scalar flux φ0, as opposed to
both the scalar flux and neutron current).

If the angular flux is nearly linearly-anisotropic, meaning that it is a linear function of
angle, then Fick’s Law describes the approximate relationship between the neutron current
and scalar flux:

φ1(x,E) = −D(x,E)∇φ0(x,E) , (2.23a)

D(x,E) ≡ 1

3Σtr(x,E)
, (2.23b)

Σtr(x,E) ≡ Σt(x,E) −Σs1(x,E) . (2.23c)

In Eqs. (2.23), D is called the diffusion coefficient, Σs1 is the first angular moment of the
differential scattering cross section, and Σtr is the transport cross section. The assumption
that the angular flux is linearly-anisotropic is generally inaccurate near strong absorbers
or vacuum boundaries, where the gradient of the neutron scalar flux is not small. Fig-
ure 2.4 depicts the inaccuracy of the neutron scalar flux obtained through diffusion theory
compared to the exact solution near a vacuum or air boundary [5].

Different acceleration methods utilize the NBE as the foundation of the low-order prob-
lem through various modifications. For CMFD (the focus of Chapter 3), the divergence of
the neutron current in Eq. (2.22) is replaced by a combination of the Fick’s Law approxima-
tion (described in Eq. (2.23a)) and a nonlinear transport correction term, as shown below:

−∇ ⋅D(x,E)∇φ0(x,E) + [Σt(x,E) + D̂(x,E)]φ0(x,E)

= ∫
∞

0
Σs0(x,E′ → E)φ0(x,E)dE

+λχ(x,E)∫
∞

0
νΣf(x,E′)φ0(x,E′)dE′ ,

(2.24a)

30



Figure 2.4: Comparison of diffusion and exact neutron scalar flux [5]

where we define the transport correction term D̂ as

D̂(x,E) ≡ ∇ ⋅ [φ1(x,E) +D(x,E)∇φ0(x,E)]
φ0(x,E)

, (2.24b)

and the diffusion coefficient D is the same as in Eq. (2.23b). Eqs. (2.24) is an algebraically
equivalent form of Eq. (2.22), and if the term D̂ is known, then Eq. (2.24a) is a diffusion
equation with the same scalar flux solution as the transport equation. D̂ is usually small
since it is a correction to Fick’s Law, so it is generally “lagged” in the iteration scheme –
meaning that it is estimated from the most recent transport sweep. We note that Eq. (2.24a)
reduces to the traditional neutron diffusion equation if D̂ is set to zero (the solution of
which is generally different, and less accurate, than the transport equation). The presence
of D̂ and other nonlinear terms render CMFD-accelerated iteration schemes susceptible
to instability as a result of approximations such as 2D/1D or TCP0 (which are discussed
in more detail in Sections 2.3.2.4 and 2.3.2.5, respectively) that allow for non-positive
solutions. Section 3.5 provides a more detailed discussion of the nonlinearity of CMFD.

The low-order CMFD problem is obtained after discretizing Eqs. (2.24) in a specific
way. By carefully performing these steps, the high-order (transport) and low-order (accel-
eration) equations are kept consistent. Then, a linear system of equations that describes the
low-order problem is constructed, which can be solved directly or iteratively using various
methods as discussed in Section 2.4.3. The solution to the low-order problem can be used
to update the transport solution in a way that improves the rate of convergence without
modifying the solution.

By including a low-order “solve” in the iterative algorithm for solving the NTE and
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applying information from its solution to the high-order solution, the general “accelerated”
transport algorithm for eigenvalue problems is defined. When an acceleration method is
used, the terminology used to describe the iterative process changes. Rather than referring
to the outermost iterations as power iterations, they are now referred to as outer iterations.
Within a single outer iteration, SI is still used to converge the scattering source (as discussed
in Section 2.4.1.1). Then, PI is used to solve the low-order problem and obtain a low-order
form of the fundamental eigenpair. The details of the low-order PI process for obtaining
the fundamental eigenpair, as well as how the solution is used, are covered in Chapters 3
and 4.

Algorithm 3 Diffusion-Accelerated Algorithm for Eigenvalue Problems

1: Assume an initial guess for φ(0)
0 and k(0)

eff

2: repeat
3: Compute the scattering source and intermediate flux solution using SI as described

in Algorithm 1
4: Calculate D̂ [Eq. (2.24b)]
5: Compute the next scalar flux estimate φ(l+1)

0 and k
(l+1)
eff by solving the low-order

problem [Eq. (2.24a)] using PI
6: until convergence {generally, convergence of φ0 and keff are checked}

Acceleration methods such as DSA and CMFD have been shown to significantly reduce
the number of iterations required for convergence of the scalar flux iterates [7, 9]. This
corresponds with a reduction in the spectral radius. Specifically, for monoenergetic infinite-
medium 1D fixed-source problems with no discretization, these methods bound the spectral
radius to ∼ 0.2247c where c is the scattering ratio of the medium. For eigenvalue problems,
the spectral radius of CMFD behaves as it does for fixed-source problems with c = 1, i.e.
with a spectral radius of ∼ 0.2247. Another way to understand this is that each accelerated
outer iteration reduces the error in the scalar flux by a factor of approximately 1

5 .

2.4.3 Linear Solvers for the Low-Order Acceleration Equations

Generally, the low-order acceleration equations are solved by constructing and obtain-
ing the solution to a linear system of the form shown in Eq. (2.25), where A is the n × n
discrete diffusion operator, q is the n × 1 source vector, and f is the n × 1 solution vector
(which may be the next scalar flux iterate or a related quantity):

Af = q . (2.25)

32



(For the high-order problem previously considered, A would theoretically be 1012 × 1012

in size.) Because of the structure and size of A, which is generally a block matrix, the
operator is typically stored as a sparse matrix, in which only the non-zero elements and
their locations are stored. This system can be solved directly or iteratively, as discussed in
Section 2.4.3.1 and Section 2.4.3.2, respectively.

The low-order acceleration problem is generally much smaller than the transport prob-
lem, and is, thus, computationally cheaper to solve. To demonstrate this, let us consider the
same MPACT problem mentioned at the beginning of Section 2.4. For the low-order prob-
lem, homogenization is usually used to reduce the number of spatial unknowns. Addition-
ally, integration over angle eliminates angular unknowns entirely. Therefore, the following
estimates for the the number of unknowns can be made: O(104) coarse (pin) cells per
plane, O(102) axial cells, and O(102) energy groups. This brings the total number of un-
knowns toO(108) which is four orders of magnitude less than in the previously-considered,
high-order transport problem. By performing a group-collapse to O(10) groups, this can
be further reduced to O(107) unknowns. Therefore, the expense of solving Eq. (2.25) is
generally much less than performing a transport sweep.

2.4.3.1 Direct Methods

The most naı̈ve method of solving for f in Eq. (2.25) is by computing the inverse of A
and multiplying by it:

f = A−1q . (2.26)

However, computing A−1 in practice can be computationally expensive. Combining this
with the fact that A may change for each iteration of the accelerated algorithm, this method
is generally avoided. One method of computing the matrix inverse is a modified form of
Gaussian elimination called the Gauss-Jordan method [45]. This operation requires O(n3)
operations and is, therefore, computationally impractical for large n (and nearly intractable
for the high-order problem). If A is not fixed, then this inversion would need to be done
every outer iteration (for either the low- or high-order problem).

If the low-order operator A is fixed for all source iterations (as it is for LDA), then
an alternative direct method may be used that takes advantage of this characteristic. By
factorizing A into a set of operators that allow for quick and efficient solutions, the overall
computational complexity to solve for f is reduced compared to computing the inverse.
One method is Lower-Upper (LU) decomposition, in which A is factorized into a set of
lower- (L) and upper-triangular (U ) matrices (as well as an optional permutation matrix
P ) such that PA = LU and LUf = Pq. This can be expensive for a large A, but does
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not need to be repeated if A is constant (the factorization step generally requires O(n3)
operations and is, thus, more feasible for the low-order problem compared to the high-
order problem). Additionally, if the factorization of the low-order operator must be done
every outer iteration (in the case where A is not fixed, which is true for CMFD), then LU
decomposition becomes less desirable. After the factorization, the solution to Eq. (2.25) is
computed in two relatively efficient steps that are shown in Eqs. (2.27) which can be solved
by forward and backward substitution (requiring O(n2) operations each):

Ly = Pq , (2.27a)

Uf = y . (2.27b)

Thus, directly solving the low-order problem in this way is theoretically less expensive for
LDA compared to CMFD.

A drawback of the LU decomposition method is that the sparsity of the factors is not the
same as the sparsity of A. Thus, the storage requirement for this method can be impractical
for large problems. However, the literature suggests that some degree of sparsity for the
factors of A can be preserved [46, 47] in the LU decomposition. Additionally, advanced
procedures exist for computing the LU decomposition that are more computationally effi-
cient [48]. We note that the advantages of the LU decomposition approach are speculative,
as it has not been compared with other solver methods for large, practical problems.

2.4.3.2 Iterative Methods

Rather than computing f directly, iterative methods can also be used in which the so-
lution is obtained through an iterative algorithm. Often, iterative methods are used for very
large and sparse linear systems where direct solutions are less computationally efficient.
One such method is the Generalized Minimal Residual (GMRES) method, which approx-
imates f by minimizing the residual in a Krylov subspace [49]. Other iterative methods
exist, such as Successive Over-Relaxation (SOR) and Red-Black Block Jacobi (RBBJ), but
we will focus on GMRES in this work because it is the default solver method in MPACT
for the low-order problem. Iterative solver methods such as these can reduce the amount of
computational work required to solve for f , but require multiple iterations (which we refer
to as inner iterations) to converge the solution within a specified tolerance. For a dense ma-
trix, GMRES requires approximately O(kn2) operations, where k is the number of inner
iterations. In the worst case, GMRES can require n inner iterations to arrive at a converged
solution, resulting in overall O(n3) operations. The number of iterations required depends
on the properties of A, and can be reduced through informed preconditioning. Because
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the amount of computational resources varies, the solver method of choice depends on the
computational resources available and the problem complexity.

One property that can affect the convergence rate of GMRES is the condition number of
the operatorA. This metric describes how sensitive the solution vector f is to a perturbation
in the source vector q. If the condition number becomes too large, the solution can become
inaccurate due to numerical roundoff. The condition number of a matrix is defined as

κp(A) ≡ ∥A∥p∥A−1∥
p
, (2.28)

where ∥(⋅)∥p is the operator p-norm. The magnitude of the condition number depends on
the choice of p. In many cases, the operator 2-norm is used. Generally, the condition
number of the low-order diffusion operator increases with the number of mesh cells in the
problem [50].

As the operator A becomes more singular and κp(A) → ∞, the convergence rate of
most iterative solvers suffer. In these cases, the matrix is considered to be ill-conditioned.
Though a high condition number is more of a concern for iterative methods, the accuracy of
direct methods can also degrade when the condition number is extremely large. Therefore,
one must take care when handling ill-conditioned problems. We discuss how the fixed
nature of the LDA operator may offer advantages for iterative linear solvers in Section 6.5.

2.4.3.3 Practical Application to LDA and CMFD

The methods discussed in this section are available in high performance computing
packages that are accessible to code developers. Due to the size of transport problems,
they are not typically used for the high-order transport calculation. However, the low-order
problem generally contains several orders of magnitude fewer unknowns, depending on the
choice of the low-order grid. As a consequence, the computational cost of the low-order
step is much lower than the high-order transport solve. Thus, these linear solver methods
are applied to the low-order problem in practice.

Though the linear systems of both CMFD and LDA can be solved directly or iteratively,
one difference provides an advantage for LDA. The diffusion operator of LDA is fixed
between outer iterations, while the CMFD operator changes between outer iterations. This
is because the terms that maintain consistency between the high- and low-order solutions
are located in the diffusion operator (referred to in this section as A) for CMFD, but reside
in the source vector (referred to in this section as q) for LDA. One may be able to take
advantage of this characteristic to reduce the computational cost of solving the LDA system
(as discussed here and in Section 6.5). However, these advantages are still speculative in
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nature and may not manifest in practice.
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CHAPTER 3

Coarse Mesh Finite Difference

This chapter provides a detailed description of the Coarse Mesh Finite Difference

(CMFD) acceleration method. This includes: (i) background information about CMFD
in Section 3.1, (ii) a derivation of CMFD for fixed-source and eigenvalue problems in
Section 3.2, (iii) algorithm overviews for CMFD-accelerated fixed-source and eigenvalue
problems in Section 3.3, (iv) information on variations of Power Iteration (PI) that can be
used to solve the CMFD equations for eigenvalue problems in Section 3.4, and (v) details
of the nonlinearities in CMFD in Section 3.5.

3.1 Background

CMFD is a nonlinear acceleration method that can be used to improve the convergence
rate of iteration schemes for linear neutron transport problems. The method was first de-
veloped to reduce the storage of nodal diffusion problems in the early 1980s [8]. Once iter-
ative transport schemes became a popular method to simulate nuclear systems, CMFD was
adapted for this purpose [9]. The popularity of CMFD can be attributed to the following
properties: (i) superior performance compared to some previous acceleration methods (like
Coarse Mesh Rebalance (CMR)), (ii) ease of application to eigenvalue problems (which
other methods with similar performance, such as DSA, lacked [21]), and (iii) focus on a
“coarse” mesh for the low-order problem that reduces the computational cost of the accel-
eration step. We refer to the mesh employed in the acceleration step as the “coarse” mesh
or “low-order” mesh interchangeably.

CMFD is closely related to Nonlinear Diffusion Acceleration (NDA), which is a similar
nonlinear acceleration method that utilizes the same transport consistency term as that used
for CMFD. This consistency term, which will be derived later in this chapter, is usually
denoted as D̂. It ensures that the solution of the high- and low-order problems are con-
sistent. In effect, D̂ corrects the approximation made by introducing Fick’s Law into the
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low-order equations as discussed in Section 3.2. CMFD and NDA are identical if the low-
order spatial mesh is the same as that used for the high-order transport problem. However,
the low-order spatial mesh is usually chosen to be coarser than the high-order spatial mesh,
in an effort to reduce the computational cost of solving the low-order problem. Therefore,
CMFD is more common in reactor physics codes than NDA. In MPACT, the coarse mesh
exists on the pin cell grid. The spatial mesh used for the CMFD problem is usually regular,
but has been extended to unstructured spatial meshes [51].

In contrast with other acceleration methods such as DSA, CMFD is well-suited for
eigenvalue problems. Nonlinear terms are introduced to set up a traditional eigenvalue
problem for the CMFD linear system. Specifically, the low-order differential equation
takes the form of a traditional eigenvalue problem as shown below:

Mf = λFf , (3.1)

where M is the low-order migration operator, F is the fission operator, f is a given eigen-
vector, and λ is the corresponding eigenvalue. Then, a method such as Power Iteration (PI)
is used to iteratively solve Eq. (3.1) to a suitable tolerance. DSA can be modified for appli-
cation to eigenvalue problems, but is made nonlinear in the process [21].

Like other similar acceleration methods, CMFD possesses a linear instability in which
the performance of the method degrades with increasing coarse cell optical thickness. This
degradation continues to the point of divergence (when the coarse grid optical thickness
is equal to approximately two mean free paths) and the iterative process must be restarted
with a different choice of low-order grid. Over the last few decades, the initial formulation
of CMFD has been modified to suppress the linear instability [25, 26, 27].

In addition to the aforementioned linear instability, CMFD also possesses a less-
common and less-studied nonlinear instability. This nonlinear instability is disparate from
the linear instability, and is a consequence of the presence of terms that are nonlinear with
respect to the scalar flux in the low-order system of equations. Nonlinear instability shows
up in cases where the strict positivity of the flux iterates is not guaranteed. If the flux can
become near-zero or negative in a portion of phase space for any iteration, then nonlinear
instability may affect the iterative process. Nonlinear instability is much less systematic
and predictable than the linear instability, and can manifest in a reactor physics code as
degradation in the performance of the acceleration method up to the point of divergence.
The signs of nonlinear instability are convergence issues (reduced performance or diver-
gence) in a case that would not otherwise exhibit the linear instability. In cases affected by
nonlinear instability, normally small nonlinear terms (such as D̂) may become unreason-
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ably large and numerically unstable. Certain techniques have been employed to mitigate
this issue, such as negative flux fix-ups, that retain iterative stability at the cost of solution
accuracy [32, 33]. Additionally, a limitation can be placed on the magnitude of D̂ that
may affect the iterative properties. The goal of this thesis is to present a viable alternative
acceleration method to CMFD called Linear Diffusion Acceleration (LDA) (discussed in
Chapter 4) that avoids these issues without the need to resort to fix-up techniques.

3.2 Derivation of CMFD

In this section, the low-order CMFD equation is derived from the steady-state, mo-
noenergetic, 1D NTE for both fixed-source and eigenvalue problems. Each problem type
is treated separately. As an overview, the following steps are performed: (i) integration
of the NTE over angle to obtain the Neutron Balance Equation (NBE), (ii) substitution of
the neutron current with a combination of Fick’s Law and a transport correction term, and
(iii) integration over a given coarse cell. The resulting set of equations is solved differently
depending on whether the problem type is fixed-source or eigenvalue. For a fixed-source
problem, the system is solved once every outer iteration using one of the methods discussed
in Section 2.4.3. If CMFD is applied to an eigenvalue problem, PI is used to iteratively
solve for the fundamental eigenpair. In this situation, the system of equations must be
solved multiple times to converge the low-order problem for a given outer iteration.

3.2.1 Fixed-Source Problems

We begin with the steady-state, monoenergetic, 1D NTE for a fixed-source problem
shown below, with prescribed incident flux boundary conditions:

µ
d

dx
ψ(x,µ) +Σt(x)ψ(x,µ) =

1

2
(∫

1

−1
Σs(x,µ,µ′)ψ(x,µ′)dµ′ +Q(x)) ,

0 ≤ x ≤X ,

(3.2a)

ψ(0, µ) = ψb(µ) , µ > 0 , (3.2b)

ψ(X,µ) = ψb(µ) , µ < 0 , (3.2c)

where X is the width of the spatial domain and ψb(µ) is the boundary source function.
Next, we average this equation over a given spatial cell j by operating by 1

hj ∫
x
j+ 1

2
x
j− 1

2

(⋅),
where hj is the width of cell j and xj± 1

2
are the edges of cell j. Additionally, we apply

the discrete ordinates approximation in which angular integrals are approximated by the
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following sum:

∫
1

−1
f(µ)dµ ≈

N

∑
n=1

wnf(µn) , (3.3a)

where
f(µn) ≡ fn , (3.3b)

and
N

∑
n=1

wn = 2 . (3.3c)

The integer N is the total number of discrete angles, µn is the cosine of a given discrete
polar angle n, and wn is the weight (or angular bin size) for a given angle index n. If
we assume that scattering is isotropic, these steps yield the following discretized form of
Eqs. (3.2):

µn
hj

(ψn,j+ 1
2
− ψn,j− 1

2
) +Σt,jψn,j =

1

2
(Σs,jφj + qj) , (3.4a)

φj ≡
N

∑
n=1

wnψn,j = cell-average scalar flux , (3.4b)

ψn,j ≡
1

hj
∫

x
j+ 1

2

x
j− 1

2

ψn(x)dx = cell-average angular flux , (3.4c)

ψn,j± 1
2
≡ ψn(xj± 1

2
) = cell-edge angular flux , (3.4d)

{j ∣ j ∈ N,1 ≤ j ≤ J} ,

ψn, 1
2
= ψbn , µn > 0 , (3.4e)

ψn,J+ 1
2
= ψbn , µn < 0 , (3.4f)

{n ∣ n ∈ N,1 ≤ n ≤ N} .

In these equations, cross sections are assumed to be constant in a given spatial bin. Ad-
ditionally, the set N refers to the set of natural integers. To form a complete system of
equations for ψn,j± 1

2
∀ j ∀ n, a spatial closure relationship must be assumed that relates the

cell-edge (ψn,j± 1
2
) and cell-center (ψn,j) angular flux quantities. We assume the diamond-

difference relationship shown below (we note, though, that other relationships are possi-
ble):

ψn,j =
1

2
(ψn,j+ 1

2
+ ψn,j− 1

2
) . (3.4g)

With this, we have a total of N(2J + 1) equations to compute the cell-edge angular flux.
Next, we integrate over angle by operating by∑Nn=1wn (⋅) to obtain the discrete NBE shown
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below,
1

hj
(φ1,j+ 1

2
− φ1,j− 1

2
) +Σa,jφ0,j + qj , (3.5a)

where the neutron current φ1,j± 1
2

at the edge of a given fine cell j is defined as

φ1,j± 1
2
≡

N

∑
n=1

µnwnψn,j± 1
2
. (3.5b)

We next define the “coarse” mesh, in which each coarse cell k contains a contiguous set
of fine cells referred to as j ∈ k. There are a total of K coarse cells, and the total number of
coarse cells is less than or equal to the total number of fine cells J (K ≤ J). If K = J , then
the coarse mesh is identical to the fine mesh. We define the following relationship between
the fine and coarse mesh indices:

Xk+ 1
2
≡ xpk+ 1

2
, (3.6)

where pk is the index of the rightmost fine cell in coarse cell k. An example of a fine and
coarse grid is shown in Fig. 3.1, in which each coarse cell contains 3 fine cells. In reality,
each given coarse cell can contain an arbitrary number of fine cells.

0 =X 1
2

X 3
2

X 5
2

XK− 3
2

XK− 1
2

XK+ 1
2

0 = x 1
2

x 7
2

x 13
2x2 x5

xJ− 11
2

xJ− 5
2

xJ+ 1
2xJ−4 xJ−1

1st coarse cell 2nd coarse cell (K − 1)th coarse cell Kth coarse cell

Fine grid:

Coarse grid:

Figure 3.1: Example fine and coarse spatial grids. There are 3 fine cells per coarse cell, J
fine cells, and K coarse cells in the problem. The center of the jth fine cell is located at
xj , with the left and right edges located at xj± 1

2
. Similarly, the center of the coarse cell k is

located at Xk, with left and right edges located at Xk± 1
2
.

After operating by ∑j∈k (⋅)hj on Eq. (3.5a), we obtain the following discretized NBE
on the coarse mesh:

(Φ1,k+ 1
2
−Φ1,k− 1

2
) + Σ̄a,kΦ0,k∆k = Q̄k∆k (3.7a)

where we define the flux- and volume-weighted average absorption cross section in a coarse
cell as

Σ̄a,k ≡
∑
j∈k

Σa,jφ0,jhj

∑
j∈k
φ0,jhj

, (3.7b)
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the volume-average coarse-cell scalar flux Φ0,k as

Φ0,k ≡
∑
j∈k
φ0,jhj

∆k

, (3.7c)

the coarse-cell width ∆ as
∆k ≡∑

j∈k

hj , (3.7d)

the volume-average source Q̄k as

Q̄k ≡
∑
j∈k
qjhj

∆k

, (3.7e)

and the neutron current at a coarse-cell edge Φ1,k+ 1
2

as

Φ1,k+ 1
2
≡

N

∑
n=1

µnwnψn,pk+ 1
2
. (3.7f)

To obtain the CMFD equation, we create the following definition for the coarse cell-
edge neutron current:

Φ1,k+ 1
2
≡ −D̃k+ 1

2
(Φ0,k+1 −Φ0,k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fick’s Law

+ D̂k+ 1
2
(Φ0,k+1 +Φ0,k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transport correction term

, (3.7g)

where D̃ is the numerical diffusion coefficient, defined as

D̃k+ 1
2
≡ 2

3 (Σ̄t,k+1∆k+1 + Σ̄t,k∆k)
, (3.7h)

and D̂ is the transport correction term, defined as

D̂k+ 1
2
≡

Φ1,k+ 1
2
+ D̃k+ 1

2
(Φ0,k+1 −Φ0,k)

Φ0,k+1 +Φ0,k

. (3.7i)

In Eq. (3.7g), the first term is the discretized form of Fick’s Law and the second term is a
“transport correction” to Fick’s Law. This term accounts for the deficiency in Fick’s Law
to treat neutron streaming and should be small if Fick’s Law is reasonably accurate. To
obtain Eq. (3.7i), we simply rearrange Eq. (3.7g) for D̂. We note that different choices can
be made for Eq. (3.7g), resulting in different definitions of D̂ [52].

Next, we introduce iteration superscripts, where the index l denotes the outer iteration
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number and l exists in the set
{l ∣ l ∈ N,0 ≤ l < L} , (3.8a)

where L is the required number of outer iterations performed to achieve a desired conver-
gence criterion. Fractional indices are used to denote quantities that are computed within
a given outer iteration, and larger indices indicate quantities that are computed later in the
iteration process. Because we assume D̂ to be small, we choose to lag this term in the iter-
ation process. This amounts to computing D̂ from known quantities. If the transport sweep
is done before the acceleration step, then D̂ is computed from quantities computed in the
transport sweep. In this case, we define the transport equation with iteration superscripts as

µn
hj

(ψ(l+ 1
2
)

n,j+ 1
2

− ψ(l+ 1
2
)

n,j− 1
2

) +Σt,jψ
(l+ 1

2
)

n,j = 1

2
(Σs,jφ

(l)
0,j + qj) , (3.8b)

ψ
(l+ 1

2
)

n,j = 1

2
(ψ(l+ 1

2
)

n,j+ 1
2

+ ψ(l+ 1
2
)

n,j− 1
2

) , (3.8c)

where the superscript (l + 1
2
) denotes the solution to the transport equation in Eq. (3.8b).

Next, we place iteration superscripts on the CMFD equations. As previously discussed, we
lag the transport consistency term when solving the low-order problem:

(Φ
(l+1)

1,k+ 1
2

−Φ
(l+1)

1,k− 1
2

) + Σ̄
(l+ 1

2
)

a,k Φ
(l+1)
0,k ∆k = Q̄k∆k ,

{k ∣ k ∈ N,1 ≤ k ≤K} ,
(3.8d)

where in Eq. (3.8d) we have

Φ
(l+1)

1,k+ 1
2

≡ −D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+1)
0,k+1 −Φ

(l+1)
0,k ) + D̂(l+ 1

2
)

k+ 1
2

(Φ
(l+1)
0,k+1 +Φ

(l+1)
0,k ) ,

{k ∣ k ∈ N,1 ≤ k <K} ,
(3.8e)

at the interior coarse-cell edges, with

D̃
(l+ 1

2
)

k+ 1
2

≡ 2

3(Σ̄
(l+ 1

2
)

t,k+1 ∆k+1 + Σ̄
(l+ 1

2
)

t,k ∆k)
, (3.8f)

D̂
(l+ 1

2
)

k+ 1
2

≡
Φ

(l+ 1
2
)

1,k+ 1
2

+ D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
)

0,k+1 −Φ
(l+ 1

2
)

0,k )

Φ
(l+ 1

2
)

0,k+1 +Φ
(l+ 1

2
)

0,k

, (3.8g)
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and

Σ̄
(l+ 1

2
)

u,k ≡
∑
j∈k

Σu,jφ
(l+ 1

2
)

0,j hj

∑
j∈k
φ
(l+ 1

2
)

0,j hj

,∀ u ∈ {a, s, t} . (3.8h)

Here the superscript (l + 1) denotes the solution to the low-order problem. We must also
derive the boundary conditions for the low-order problem from the prescribed incident flux
boundary conditions stated in Eqs. (3.4). This is done for the left boundary as shown below:

2Φ+

1, 1
2

= 2 ∑
µn>0

µnwnψ
b
n (3.8i)

=
N

∑
n=1

(µn + ∣µn∣)wnψn, 1
2

(3.8j)

= Φ1, 1
2
+
⎛
⎜⎜⎜
⎝

N

∑
n=1

∣µn∣wnψn, 1
2

Φ0,1

⎞
⎟⎟⎟
⎠

Φ0,1 . (3.8k)

Now, we choose to lag the nonlinear term in the following way:

2Φ+

1, 1
2

= Φ
(l+1)

1, 1
2

+B(l+ 1
2
)

1
2

Φ
(l+1)
0,1 , (3.8l)

where the term B
(l+ 1

2
)

1
2

is defined as

B
(l+ 1

2
)

1
2

≡

N

∑
n=1

∣µn∣wnψ
(l+ 1

2
)

n, 1
2

Φ
(l+ 1

2
)

0,1

. (3.8m)

Following a similar procedure for the right side of the boundary yields:

2Φ−

1,K+ 1
2

= −Φ
(l+1)

1,K+ 1
2

+B(l+ 1
2
)

K+ 1
2

Φ
(l+1)
0,K , (3.8n)

where we define the incoming current Φ−

1,K+ 1
2

as

Φ−

1,K+ 1
2

≡ ∑
µn<0

µnwnψ
b
n , (3.8o)
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and the lagged term B
(l+ 1

2
)

K+ 1
2

as

B
(l+ 1

2
)

K+ 1
2

≡

N

∑
n=1

∣µn∣wnψ
(l+ 1

2
)

n,J+ 1
2

Φ
(l+ 1

2
)

0,K

. (3.8p)

Lastly, we seek to update the fine-mesh transport solution with information from the
solution of the CMFD equations. This is done by scaling each fine-cell scalar flux value
by the ratio of the low-order solution to the homogenized transport scalar flux, as shown
below:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j

⎛
⎜
⎝

Φ
(l+1)
0,k

Φ
(l+ 1

2
)

0,k

⎞
⎟
⎠
,∀ j ∈ k . (3.8q)

With this, we have obtained all necessary equations for CMFD applied to fixed-source
problems. The method described here is traditional CMFD, but various modifications can
be made to Eqs. (3.8) [27]. In section Section 3.3.1, we carefully describe how the equa-
tions derived here are used when CMFD is applied to accelerate fixed-source transport
problems.

3.2.2 Eigenvalue Problems

We begin with the steady-state, monoenergetic, 1D NTE for eigenvalue problems with
vacuum boundary conditions shown below:

µ
d

dx
ψ(x,µ) +Σt(x)ψ(x,µ)

= 1

2
(∫

1

−1
Σs(x,µ,µ′)ψ(x,µ′)dµ′ + λνΣf(x)∫

1

−1
ψ(x,µ′)dµ′) ,

0 ≤ x ≤X ,

(3.9a)

ψ(0, µ) = 0 , µ > 0 , (3.9b)

ψ(X,µ) = 0 , µ < 0 , (3.9c)

where the term νΣf(x) ∫
1

−1ψ(x,µ′)dµ′ is the fission source and λ is the eigenvalue corre-
sponding to the eigenvector ψ(x,µ). A normalization condition must be imposed to select
a unique solution. As an example, we impose the following condition:

P = ∫
X

0
∫

1

−1
νΣf(x)ψ(x,µ)dµdx , (3.9d)
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in which P is the desired neutron production rate. To discretize Eqs. (3.9) in space and
angle, we follow the same steps as those taken in Section 3.2.1. Namely, we average over
a spatial cell and apply the discrete ordinates approximation. For the case of isotropic scat-
tering the resulting discrete SN transport equation is shown below, where we have applied
the diamond-difference closure relation:

µn
hj

(ψn,j+ 1
2
− ψn,j− 1

2
) +Σtψn,j =

1

2
(Σs,j + λ (νΣf)j)φ0,j , (3.10a)

ψn,j =
1

2
(ψn,j+ 1

2
+ ψn,j− 1

2
) , (3.10b)

φ0,j ≡
N

∑
n=1

wnψn,j , (3.10c)

{j ∣ j ∈ N,1 ≤ j ≤ J} ,

ψn, 1
2
= 0 , µn > 0 , (3.10d)

ψn,J+ 1
2
= 0 , µn < 0 , (3.10e)

{n ∣ n ∈ N,1 ≤ n ≤ N} ,

P =
J

∑
j=1

(νΣf)j φ0,jhj . (3.10f)

As with the fixed-source case, we begin the derivation of the CMFD equations by first
integrating over angle by operating on Eq. (3.10a) by ∑Nn=1wn (⋅), yielding

1

hj
(φ1,j+ 1

2
− φ1,j− 1

2
) +Σa,jφ0,j = λ (νΣf)j φ0,j . (3.11a)

Next, we perform a spatial integration over a given coarse cell by operating by ∑j∈k hj (⋅),
yielding

(Φ1,k+ 1
2
−Φ1,k− 1

2
) + Σ̄a,kΦ0,k∆k = λ(νΣf)kΦ0,k∆k , (3.11b)

where the flux- and volume-weighted production cross section is defined as

(νΣf)k ≡
∑
j∈k

(νΣf)j φ0,jhj

∑
j∈k
φ0,jhj

, (3.11c)
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and the width of a given coarse cell is defined as

∆k ≡∑
j∈k

hj . (Eq. (3.7d) revisited)

The same substitution made for the coarse cell-edge neutron current that was done for the
fixed-source case is done here:

Φ1,k+ 1
2
≡ −D̃k+ 1

2
(Φ0,k+1 −Φ0,k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fick’s Law

+ D̂k+ 1
2
(Φ0,k+1 +Φ0,k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transport correction term

, (Eq. (3.7g) revisited)

D̃k+ 1
2
≡ 2

3 (Σ̄t,k+1∆k+1 + Σ̄t,k∆k)
, (Eq. (3.7h) revisited)

D̂k+ 1
2
≡

Φ1,k+ 1
2
+ D̃k+ 1

2
(Φ0,k+1 −Φ0,k)

Φ0,k+1 +Φ0,k

. (Eq. (3.7i) revisited)

Now, we introduce iteration superscripts where we “lag” the RHS source in the iteration
scheme. In addition, we lag the transport correction term D̂. The purpose of this is to
be able to write the iteration scheme as a power iteration, which is similar to the source
iteration in fixed-source problems. Upon placing these iteration superscripts, the following
set of SN equations is obtained:

µn
hj

(ψ(l+ 1
2
)

n,j+ 1
2

− ψ(l+ 1
2
)

n,j− 1
2

) +Σt,jψ
(l+ 1

2
)

n,j = 1

2
(Σs,j + λ(l) (νΣf)j)φ

(l)
0,j , (3.12a)

ψ
(l+ 1

2
)

n,j = 1

2
(ψ(l+ 1

2
)

n,j+ 1
2

+ ψ(l+ 1
2
)

n,j− 1
2

) , (3.12b)

and the following set of low-order CMFD equations:

(Φ
(l+1)

1,k+ 1
2

−Φ
(l+1)

1,k− 1
2

) + Σ̄
(l+ 1

2
)

a,k Φ
(l+1)
0,k ∆k = λ(l)(νΣf)kΦ

(l+ 1
2
)

0,k ∆k ,

{k ∣ k ∈ N,1 ≤ k ≤K} ,
(3.12c)

Φ
(l+1)

1,k+ 1
2

≡ −D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+1)
0,k+1 −Φ

(l+1)
0,k ) + D̂(l+ 1

2
)

k+ 1
2

(Φ
(l+1)
0,k+1 +Φ

(l+1)
0,k ) ,

{k ∣ k ∈ N,1 ≤ k <K} ,
(Eq. (3.8e) revisited)

D̃
(l+ 1

2
)

k+ 1
2

≡ 2

3(Σ̄
(l+ 1

2
)

t,k+1 ∆k+1 + Σ̄
(l+ 1

2
)

t,k ∆k)
, (Eq. (3.8f) revisited)
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D̂
(l+ 1

2
)

k+ 1
2

≡
Φ

(l+ 1
2
)

1,k+ 1
2

+ D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
)

0,k+1 −Φ
(l+ 1

2
)

0,k )

Φ
(l+ 1

2
)

0,k+1 +Φ
(l+ 1

2
)

0,k

. (Eq. (3.8g) revisited)

We note that Eq. (3.8e) holds only for the interior coarse-cell edges. To obtain the boundary
conditions for the low-order problem, we follow the same steps as for the fixed-source case.
However, there is a slight difference in this derivation as a result of the vacuum boundary
conditions. For the left side of the problem, the derivation is as follows:

0 =
N

∑
n=1

(µn + ∣µn∣)wnψn, 1
2

(3.12d)

= Φ1, 1
2
+
⎛
⎜⎜⎜
⎝

N

∑
n=1

∣µn∣wnψn, 1
2

Φ0,1

⎞
⎟⎟⎟
⎠

Φ0,1 . (3.12e)

Here, we lag the nonlinear term:

0 = Φ
(l+1)

1, 1
2

+B(l+ 1
2
)

1
2

Φ
(l+1)
0,1 , (3.12f)

B
(l+ 1

2
)

1
2

≡

N

∑
n=1

∣µn∣wnψ
(l+ 1

2
)

n, 1
2

Φ
(l+ 1

2
)

0,1

. (3.12g)

Similarly, for the right side we obtain:

0 = −Φ
(l+1)

1,K+ 1
2

+B(l+ 1
2
)

K+ 1
2

Φ
(l+1)
0,K , (3.12h)

B
(l+ 1

2
)

K+ 1
2

≡

N

∑
n=1

∣µn∣wnψ
(l+ 1

2
)

n,J+ 1
2

Φ
(l+ 1

2
)

0,K

. (3.12i)

We recognize that the low-order CMFD problem listed in Eq. (3.12c) is an eigenvalue
problem, and as such, cannot be solved directly. Rather, we employ PI to obtain a converged
CMFD solution, which requires multiple iterations. To do so, we introduce the power
iteration index m. If the same convention of lagging the RHS terms is used, the following
set of equations is obtained:

(Φ
(l+ 1

2
,m+ 1

2
)

1,k+ 1
2

−Φ
(l+ 1

2
,m+ 1

2
)

1,k− 1
2

) + Σ̄
(l+ 1

2
)

a,k Φ
(l+ 1

2
,m+ 1

2
)

0,k ∆k

= λ(l,m)(νΣf)
(l+ 1

2
)

k Φ
(l+ 1

2
,m)

0,k ∆k ,

(3.13a)
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Φ
(l+ 1

2
,m+ 1

2
)

1,k+ 1
2

≡ −D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
,m+ 1

2
)

0,k+1 −Φ
(l+ 1

2
,m+ 1

2
)

0,k )

+D̂(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
,m+ 1

2
)

0,k+1 +Φ
(l+ 1

2
,m+ 1

2
)

0,k ) ,
(3.13b)

0 = Φ
(l+ 1

2
,m+ 1

2
)

1, 1
2

+B(l+ 1
2
)

1
2

Φ
(l+ 1

2
,m+ 1

2
)

0,1 , (3.13c)

0 = −Φ
(l+ 1

2
,m+ 1

2
)

1,K+ 1
2

+B(l+ 1
2
)

K+ 1
2

Φ
(l+ 1

2
,m+ 1

2
)

0,K . (3.13d)

Here we can make the following initial guesses for the low-order eigenpair:

Φ
(l+ 1

2
,0)

0 ≡ Φ
(l+ 1

2
)

0 , (3.13e)

λ(l,0) ≡ λ(l) , (3.13f)

in which we define the vector Φ0 as

Φ0 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

Φ0,1

Φ0,2

⋮
Φ0,K

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Φ0 ∈ RK×1 , (3.13g)

where RK×1 denotes real number space of dimension K ×1. These equations can be rewrit-
ten in operator form as shown below:

M(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 = λ(l,m)F(l+ 1
2
)Φ

(l+ 1
2
,m)

0 , (3.13h)

where M(l+ 1
2
) is the migration operator, and F(l+ 1

2
) is the fission operator. Solving

Eq. (3.13h) yields Φ
(l+ 1

2
,m+ 1

2
)

0 .
Next, we wish to obtain the next eigenvalue iterate λ(l,m+1). To do so, we first make the

following observation using Eq. (3.13h):

M(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ≊ λ(l,m+1)F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 . (3.13i)

Now, combining Eqs. (3.13h) and (3.13i) results in:

λ(l,m+1)F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ≊ λ(l,m)F(l+ 1
2
)Φ

(l+ 1
2
,m)

0 . (3.13j)
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By weighting each side of Eq. (3.13j) by F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 , we obtain:

λ(l,m+1) ⟨F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩

≊ λ(l,m) ⟨F(l+ 1
2
)Φ

(l+ 1
2
,m)

0 ,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩ ,
(3.13k)

where the ⟨⋅, ⋅⟩ notation indicates a vector inner product such that

⟨f ,g⟩ ≡∑
k

fkgk∆k . (3.13l)

Rearranging Eq. (3.13k) for λ(l,m+1) allows us to make the following definition:

λ(l,m+1) ≡ λ(l,m)

⟨F(l+ 1
2
)Φ

(l+ 1
2
,m)

0 ,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩

⟨F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩
. (3.13m)

Because the coarse-mesh scalar flux is unique up to an arbitrary multiplicative constant,
we must impose a normalization condition to obtain a unique solution. As an example, we
will impose the following condition:

P = ⟨1,F(l+ 1
2
)Φ

(l+ 1
2
,m+1)

0 ⟩ , (3.13n)

where P is the desired total neutron production rate of the system, and 1 is a one-vector of
length K. To enforce the condition stated in Eq. (3.13n) and obtain Φ

(l+ 1
2
,m+1)

0 , we make
the following definition:

Φ
(l+ 1

2
,m+1)

0 ≡
⎛
⎜⎜⎜
⎝

P

⟨1,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩

⎞
⎟⎟⎟
⎠

Φ
(l+ 1

2
,m+ 1

2
)

0 . (3.13o)

With these definitions, a single power iteration consists of obtaining Φ
(l+ 1

2
,m+1)

0 and
λ(l,m+1) using Φ

(l+ 1
2
,m)

0 and λ(l,m). Once M power iterations have been completed and suf-
ficient convergence of the quantities of interest has been achieved, we update the eigenpair
iteration indices to be only in terms of the outer iteration index:

Φ
(l+1)
0 ≡ Φ

(l+ 1
2
,M)

0 , (3.13p)

λ(l+1) ≡ λ(l,M) . (3.13q)
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Finally, the fine mesh scalar flux is updated with the solution of the CMFD equations
as shown in Eq. (3.8q) to obtain φ(l+1)

0 such that

φ0 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

φ0,1

φ0,2

⋮
φ0,j

⎞
⎟⎟⎟⎟⎟⎟
⎠

, φ0 ∈ RJ×1 . (3.13r)

Section 3.3.2 carefully describes how the equations derived here are used for CMFD-
accelerated transport problems.

3.3 Algorithm Overview

In this section, the CMFD-accelerated transport algorithm is fully described for fixed-
source and eigenvalue problems. We have placed the transport calculation at the beginning
of the iteration, but the order of the high- and low-order calculations can be reversed (as it
is in MPACT). For simplicity, we assume a discretized 1D, 1-group SN transport problem.
Outer iterations are indexed with l and power iterations are indexed withm (which are only
relevant for eigenvalue problems). The fine-mesh cells of the transport problem are indexed
with j and the coarse cells of the low-order problem are indexed with k; each coarse cell
consists of a contiguous set of fine cells. For the closure relation of the fine-mesh cell-edge
and cell-average angular fluxes, the diamond-difference scheme is assumed.

3.3.1 Iteration Scheme for Fixed-Source Problems

0. Setup: This first step is done only once before the iterative process begins. We make
the following initial guess for the fine mesh scalar flux:

φ
(0)
0 ≡ f , (3.14)

where f is an arbitrarily-chosen initial guess vector.

1. Transport Sweep: The transport problem is solved using the latest transport scalar
flux estimate for the scattering source. The fixed-source SN transport problem is
shown below:

µn
hj

(ψ(l+ 1
2
)

n,j+ 1
2

− ψ(l+ 1
2
)

n,j− 1
2

) +Σt,jψ
(l+ 1

2
)

n,j = 1

2
(Σs,jφ

(l)
0,j + qj) , (Eq. (3.8b) revisited)
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ψ
(l+ 1

2
)

n,j = 1

2
(ψ(l+ 1

2
)

n,j+ 1
2

+ ψ(l+ 1
2
)

n,j− 1
2

) , (Eq. (3.8c) revisited)

{j ∣ j ∈ N,1 ≤ j ≤ J} ,

ψ
(l+ 1

2
)

n, 1
2

= ψbn , {n ∣ µn > 0} , (3.15a)

ψ
(l+ 1

2
)

n,J+ 1
2

= ψbn , {n ∣ µn < 0} , (3.15b)

{n ∣ n ∈ N,1 ≤ n ≤ N} .

Rather than store the full angular flux ψ, which can require a large amount of mem-
ory, the following quantities (scalar flux and neutron current) are used as the iterates
during the transport sweep:

φ
(l+ 1

2
)

0,j ≡
N

∑
n=1

wnψ
(l+ 1

2
)

j , (3.16)

Φ
(l+ 1

2
)

1,k+ 1
2

≡
N

∑
n=1

wnµnψ
(l+ 1

2
)

n,pk+
1
2

. (3.17)

We also wish to note that the neutron current need only be stored on the edges of the
coarse mesh. The vector containing all coarse cell-edge currents is defined as:

Φ1 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

Φ1, 1
2

Φ1, 3
2

⋮
Φ1,K+ 1

2

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Φ1 ∈ R(K+1)×1 . (3.18)

2. Restriction: The next step is restriction, in which information on the fine mesh
is collapsed onto the coarse mesh. This information takes the form of the quanti-
ties defined below, and represents the coarse-mesh scalar flux, coarse-cell physical
thickness, homogenized cross sections, the coarse-mesh transport correction factor
(defined in terms of the coarse-mesh scalar flux and neutron current obtained from
the transport sweep, as well as mesh and material properties), and the numerical
diffusion coefficient:

Φ
(l+ 1

2
)

0,k ≡
∑
j∈k
hjφ

(l+ 1
2
)

0,j

∆k

, (3.19)

∆k ≡∑
j∈k

hj , (Eq. (3.7d) revisited)
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Σ̄
(l+ 1

2
)

u,k ≡
∑
j∈k

Σu,jφ
(l+ 1

2
)

0,j hj

∑
j∈k
φ
(l+ 1

2
)

0,j hj

,∀ u ∈ {a, s, t} , (Eq. (3.8h) revisited)

D̂
(l+ 1

2
)

k+ 1
2

≡
Φ

(l+ 1
2
)

1,k+ 1
2

+ D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
)

0,k+1 −Φ
(l+ 1

2
)

0,k )

Φ
(l+ 1

2
)

0,k+1 +Φ
(l+ 1

2
)

0,k

, (Eq. (3.8g) revisited)

D̃
(l+ 1

2
)

k+ 1
2

≡ 2

3(Σ̄
(l+ 1

2
)

t,k+1 ∆k+1 + Σ̄
(l+ 1

2
)

t,k ∆k)
. (Eq. (3.8f) revisited)

We note that the definition of D̃ does not affect the accuracy of the solution, but can
affect the performance of the acceleration method. Additionally, of the quantities
defined above, the following are nonlinear with respect to the scalar flux: the homog-
enized cross sections (Eq. (3.8h)), the transport correction term (Eq. (3.8g)), and the
numerical diffusion coefficient Eq. (3.8f). These quantities will be further discussed
in Section 3.5.

3. Low-Order Solve: Now, the low-order CMFD equation is solved as a linear system
(using one of the methods discussed in Section 2.4.3):

(Φ
(l+1)

1,k+ 1
2

−Φ
(l+1)

1,k− 1
2

) + Σ̄
(l+ 1

2
)

a,k Φ
(l+1)
0,k ∆k = Q̄k∆k ,

{k ∣ k ∈ N,1 ≤ k ≤K} ,
(Eq. (3.8d) revisited)

Φ
(l+1)

1,k+ 1
2

≡ −D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+1)
0,k+1 −Φ

(l+1)
0,k ) + D̂(l+ 1

2
)

k+ 1
2

(Φ
(l+1)
0,k+1 +Φ

(l+1)
0,k ) ,

{k ∣ k ∈ N,1 ≤ k <K} ,
(Eq. (3.8e) revisited)

2 ∑
µn>0

∣µn∣wnψbn =
⎛
⎜⎜⎜
⎝

N

∑
n=1

∣µn∣wnψ
(l+ 1

2
)

n, 1
2

Φ
(l+ 1

2
)

0,1

⎞
⎟⎟⎟
⎠

Φ
(l+1)
0,1 +Φ

(l+1)

1, 1
2

, (3.20a)

2 ∑
µn<0

∣µn∣wnψbn =
⎛
⎜⎜⎜
⎝

N

∑
n=1

∣µn∣wnψ
(l+ 1

2
)

n,J+ 1
2

Φ
(l+ 1

2
)

0,K

⎞
⎟⎟⎟
⎠

Φ
(l+1)
0,K −Φ

(l+1)

1,K+ 1
2

. (3.20b)

4. Prolongation: Last is the prolongation step, in which information from the low-
order solution is transferred to the high-order solution. The fine-mesh scalar flux in
a given coarse cell is scaled by the ratio of the low-order scalar flux solutions from

53



before and after the evaluation of Eqs. (3.20). This correction is shown below:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j

⎛
⎜
⎝

Φ
(l+1)
0,k

Φ
(l+ 1

2
)

0,k

⎞
⎟
⎠
,∀ j ∈ k . (Eq. (3.8q) revisited)

This step is also nonlinear, and will be discussed in Section 3.5. If the quantities of
interest (usually the fine mesh scalar flux) are not converged, we return to step 1 and
resume the iterative process. To check convergence of the fine mesh scalar flux, the
following normalized L2 norm formulation can be used,

XXXXXXXXXXX

φ
(l+1)
0 −φ(l)

0

φ
(l+1)
0

XXXXXXXXXXX2

< ε1 , (3.21)

where ε1 is the chosen flux tolerance. This convergence check is code-dependent.

The algorithm presented in this section is summarized in Algorithm 4.

Algorithm 4 CMFD-Accelerated SI Applied to Fixed-Source Problems

1: Assume an initial guess for the fine mesh scalar flux φ(l)
0 as defined in Eq. (3.14)

2: repeat
3: Obtain φ

(l+ 1
2
)

0 and Φ
(l+ 1

2
)

1 by solving Eq. (3.8b), Eq. (3.8c), and Eqs. (3.15)

4: Obtain Φ
(l+ 1

2
)

0 using Eq. (3.19) and other coarse mesh quantities
5: Obtain Φ

(l+1)
0 by solving Eqs. (3.8d) and (3.8e) and Eqs. (3.20)

6: Obtain φ(l+1)
0 using Eq. (3.8q)

7: until convergence {generally, convergence of φ0 is checked}

3.3.2 Iteration Scheme for Eigenvalue Problems

0. Setup: Just as with the fixed-source algorithm, this step is done only once before the
iterative process begins. An initial guess for the fundamental eigenpair is made, as
below:

φ
(0)
0 ≡ f , (3.22a)

λ(0) ≡ λini , (3.22b)

where f is an arbitrary initial guess vector and λini is a positive constant.

1. Transport Sweep: The transport problem is solved using the latest transport scalar
flux and λ-eigenvalue estimates in the scattering and fission source terms. This prob-
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lem is outlined below:

µn
hj

(ψ(l+ 1
2
)

n,j+ 1
2

− ψ(l+ 1
2
)

n,j− 1
2

) +Σt,jψ
(l+ 1

2
)

n,j = 1

2
(Σs,j + λ(l) (νΣf)j)φ

(l)
0,j ,

(Eq. (3.12a) revisited)

ψ
(l+ 1

2
)

n,j = 1

2
(ψ(l+ 1

2
)

n,j+ 1
2

+ ψ(l+ 1
2
)

n,j− 1
2

) , (Eq. (3.12b) revisited)

{j ∣ j ∈ N,1 ≤ j ≤ J} ,

ψ
(l+ 1

2
)

n, 1
2

= 0 , {n ∣ µn > 0} , (3.23a)

ψ
(l+ 1

2
)

n,J+ 1
2

= 0 , {n ∣ µn < 0} , (3.23b)

{n ∣ n ∈ N,1 ≤ n ≤ N} .

After the above fixed-source transport problem has been solved, the scalar flux and
neutron current are stored as defined in Eqs. (3.16) and (3.17).

2. Restriction: Next is the restriction step, in which the low-order quantities, defined
in Eqs. (3.7d), (3.8f) to (3.8h) and (3.19), are computed.

3. Low-Order Solve & Eigenvalue Calculation: The transport-corrected diffusion
“power iteration” process is now begun. We define an initial guess for the low-order,
transport-corrected scalar flux. In this case, we use our most recent estimate from the
transport sweep:

Φ
(l+ 1

2
,0)

0 ≡ Φ
(l+ 1

2
)

0 , (Eq. (3.13e) revisited)

λ(l,0) ≡ λ(l) . (Eq. (3.13f) revisited)

For our power iterations we use the iteration index m. We proceed with a total
number of M power iterations which take on values m + 1 = 1, . . . ,M . The total
number of power iterations executed depends on the convergence criterion of the
low-order problem, and we may choose to limit the total number of power iterations
that can be executed.

First, in the power iteration, we solve the problem given below for Φ
(l+ 1

2
,m+ 1

2
)

0 :

(Φ
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2
,m+ 1

2
)
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2

−Φ
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2
,m+ 1

2
)

1,k− 1
2

) + Σ̄
(l+ 1

2
)

a,k Φ
(l+ 1

2
,m+ 1

2
)

0,k ∆k

= λ(l,m)(νΣf)
(l+ 1

2
)

k Φ
(l+ 1

2
,m)

0,k ∆k ,

(Eq. (3.13a) revisited)
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Φ
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)

1,k+ 1
2

≡ −D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
,m+ 1

2
)

0,k+1 −Φ
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0,k+1 +Φ
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0,k ) ,
(Eq. (3.13b) revisited)
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⎝
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∣µn∣wnψ
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n, 1
2

Φ
(l+ 1

2
)

0,1

⎞
⎟⎟⎟
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, (3.24a)
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⎝

N
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n=1

∣µn∣wnψ
(l+ 1

2
)

n,J+ 1
2

Φ
(l+ 1

2
)

0,K
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2
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2
)

0,K −Φ
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. (3.24b)

Next, the λ-eigenvalue is computed:

λ(l,m+1) ≡ λ(l,m)

⟨F(l+ 1
2
)Φ

(l+ 1
2
,m)

0 ,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩

⟨F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩
. (Eq. (3.13m) revisited)

Additionally, we enforce the normalization condition:

Φ
(l+ 1

2
,m+1)

0 ≡
⎛
⎜⎜⎜
⎝

P

⟨1,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩

⎞
⎟⎟⎟
⎠

Φ
(l+ 1

2
,m+ 1

2
)

0 . (Eq. (3.13o) revisited)

After M power iterations have been completed and the quantities of interest have
been sufficiently converged for the low-order problem, we update the outer iteration
scalar flux and λ-eigenvalue estimates with those from the power iteration process:

Φ
(l+1)
0 ≡ Φ

(l+ 1
2
,M)

0 , (Eq. (3.13p) revisited)

λ(l+1) ≡ λ(l,M) . (Eq. (3.13q) revisited)

4. Prolongation: Lastly, the prolongation step is performed using Eq. (3.8q) to obtain
φ

(l+1)
0 . If the fundamental eigenvalue and eigenvector have converged between outer

iterations, then the overall iteration scheme is halted after L steps. For the scalar flux,
the convergence check in Eq. (3.21) can be used, and the following can be used for
the eigenvalue,

∣λ
(l+1) − λ(l)

λ(l+1)
∣ < ε2 , (3.25)
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where ε2 is the chosen eigenvalue tolerance.

Algorithm 5 summarizes the algorithm presented in this section, where the nested it-
erative process starting on line 7 is PI. We have focused on the use of PI to solve the
low-order eigenvalue problem, but other methods exist for obtaining the eigenpairs of a
system. Some of these other methods are: Arnoldi iteration [53], Generalized Davidson
[54], and Wielandt-shifted PI (also known as the shifted power method) [55]. Section 3.4
will discuss PI and Wielandt-shifted PI, which are common methods used in reactor physics
calculations to obtain the fundamental eigenpair. These methods are also relevant for solv-
ing the low-order LDA problem described in Chapter 4.

Algorithm 5 CMFD-Accelerated SI Applied to Eigenvalue Problems
1: Assume an initial guess for the eigenpair as defined in Eqs. (3.22)
2: repeat
3: Obtain φ

(l+ 1
2
)

0 and Φ
(l+ 1

2
)

1 by solving Eq. (3.12a), Eq. (3.12b), and Eqs. (3.23)

4: Obtain Φ
(l+ 1

2
)

0 using Eq. (3.19) and other coarse mesh quantities

5: Φ
(l+ 1

2
,0)

0 ←Φ
(l+ 1

2
)

0

6: λ(l,0) ← λ(l)

7: repeat
8: Obtain the scalar flux Φ

(l+ 1
2
,m+ 1

2
)

0 using Eq. (3.13a), Eq. (3.13b), and Eqs. (3.24)
9: Compute the eigenvalue λ(l,m+1) using Eq. (3.13m)

10: Obtain the normalized scalar flux Φ
(l+ 1

2
,m+1)

0 using Eq. (3.13o)
11: until convergence {generally, convergence of Φ0 and λ are checked}
12: Φ

(l+1)
0 ←Φ

(l+ 1
2
,M)

0

13: λ(l+1) ← λ(l,M)

14: Obtain φ(l+1)
0 using Eq. (3.8q)

15: until convergence {generally, convergence of φ0 and λ are checked}

3.4 Power Iteration Methods

For eigenvalue problems, Power Iteration (PI) is performed to compute the fundamental
eigenpair for the low-order CMFD problem. It can be shown that the PI process yields the
smallest eigenvalue, which is the eigenvalue of interest for reactor applications. (Though
we colloquially refer to this process as power iteration in the field of reactor physics, it
is known mathematically as the inverse power method or simply inverse iteration.) For
the discussions in this section, the CMFD equation (defined in Eq. (3.13a)) is depicted in
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operator notation as defined below:

M(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 = λ(l,m)F(l+ 1
2
)Φ

(l+ 1
2
,m)

0 , (Eq. (3.13h) revisited)

where M is the neutron loss operator and F is the fission source operator. By modifying
this eigenvalue problem, the convergence rate of PI can be improved.

3.4.1 Standard (Unshifted) Power Iteration

With the operator form of the CMFD equation shown in Eq. (3.13h), the PI algorithm
for CMFD can be summarized as shown in Algorithm 6. A single power iteration consists
of the execution of steps 3 through 5.

Algorithm 6 Power Iteration Algorithm for CMFD-Accelerated Eigenvalue Problems

1: Assume an initial guess for Φ
(l+ 1

2
,0)

0 and λ(l,0)

2: repeat
3: Compute the scalar flux Φ

(l+ 1
2
,m+ 1

2
)

0 by solving Eq. (3.13h)
4: Compute the eigenvalue λ(l,m+1) using Eq. (3.13m)

5: Normalize the scalar flux using Eq. (3.13o) to obtain Φ
(l+ 1

2
,m+1)

0

6: until convergence {generally, convergence of Φ0 and λ are checked}

The convergence rate of PI is dependent on the eigenvalues of the problem. Specifically,
the rate of convergence, ρPI, is equal to the ratio of the second largest eigenvalue to the
largest eigenvalue:

ρPI =
∣λ2nd largest∣
∣λlargest∣

, (3.26)

which is also referred to as the dominance ratio [55]. (As a reminder, we are interested
in computing the smallest eigenvalue using the PI process, which we simply refer to as λ
throughout this chapter.) Therefore, PI can converge slowly if there is an eigenvalue that
is close in magnitude to the dominant eigenvalue. Unfortunately, this is often the case for
reactor physics problems. Thus, a modified iterative process, discussed in the following
section, can be used to improve the convergence rate of PI.

3.4.2 Power Iteration with Wielandt Shift

Here, we discuss the Wielandt-shifted eigenvalue problem [56, 57] (also known as
inverse-shifted power method or simply inverse power method in the field of mathemat-
ics [55]). A simple modification is made to Eq. (3.13h), in which the term λshF(l+ 1

2
)Φ

(l+ 1
2
)

0
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is subtracted from the equation, as shown below:

(M(l+ 1
2
) − λshF(l+ 1

2
))Φ

(l+ 1
2
,m+ 1

2
)

0 = (λ(l,m) − λsh)F(l+ 1
2
)Φ

(l+ 1
2
,m)

0 ,

0 ≤ λsh < λ(l,m) .
(3.27)

The shift amount may be constant, iteration-dependent, or even space-dependent [11]. Each
of these approaches affect the performance of PI differently, but the general goal is to
select a shift magnitude λsh such that λsh < λ and ∣λ − λsh∣ is small. This improves the
convergence rate of PI, thereby reducing the total number of power iterations required for
convergence to a given tolerance (and a corresponding reduction in computation expense).
By default, the shift amount is constant and equal to 2

3 in MPACT.
MPACT also contains an option for an “adaptive” shift in which the magnitude of the

shift is changed each power iteration. This method is based on the Purdue Advanced Reac-

tor Core Simulator (PARCS) code [58], and an optimal shift is estimated using the follow-
ing empirical formula:

λ
(l,m)

sh ≡ max{λ(l,m) − c1∣λ(l,m) − λ(l,m−1)∣ − c0 , λmin} , (3.28)

where c0 and c1 are user-specified constants. By computing the shift in this way, the shift
magnitude should always be close to λ but never larger (due to the small, positive con-
stant c0, which adds a degree of conservatism to the shift estimate). Additionally, the shift
magnitude will never be smaller than the chosen value of λmin. In this way, the risk of λsh

exceeding λ is minimized while maintaining that λsh is close in magnitude to λ.
By shifting the eigenvalue problem as shown in Eq. (3.27), the dominance ratio is effec-

tively reduced. As a result, the convergence rate of PI with this modification is improved
compared to the unshifted case. The convergence rate of the shifted case is shown below
[59]:

ρsh,PI =
1 − λsh

λ2nd largest

1 − λsh

λlargest

⋅ ρPI , (3.29)

where the convergence rate of the unshifted case, ρPI, is defined in Eq. (3.26). Because
λlargest > λ2nd largest > λ(l,m) > λsh, ρsh,PI is always less than ρPI.

There are two notable limitations to the Wielandt shift method. The first is that choos-
ing the optimal shift relies on knowledge of λ(l,m) beforehand. However, this quantity is
unknown until the problem reaches sufficient convergence. Thus, the shift quantity must
be estimated. The second limitation is that the shift must be less than the fundamental
(smallest) eigenvalue of the system, as shown in Eq. (3.27). If λsh = λ(l,m), then the op-
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erator M(l+ 1
2
) − λshF(l+ 1

2
) is singular and, therefore, non-invertable. In this case, the linear

system is unsolvable by traditional means. Additionally, if λsh > λ(l,m) then the problem
may converge to the incorrect eigenpair. Care must be taken when choosing a suitable shift
parameter to avoid these issues. (As previously stated, the adaptive shift method attempts
to avoid these issues but still requires some degree of conservatism.)

One additional consideration for Wielandt-shifted cases is that the condition number
of the shifted LHS operator increases as λsh approaches λ(l,m). Linear solver methods for
which performance is affected by the condition number of the operator may suffer if λsh is
very close to λ(l,m). In this case, one may choose λsh such that the iterative performance
of PI is sufficiently improved while avoiding a dramatic reduction in performance of the
iterative linear solver method.

3.5 CMFD Nonlinearities

The CMFD formulation contains terms that are nonlinear with respect to the scalar flux.
In other words, there are terms in the formulation that involve division by (i) the scalar flux
or (ii) quantities that depend on the scalar flux. For iterative transport schemes that do not
explicitly guarantee the following strict positivity condition for the scalar flux iterates:

φ(l)(x,E, t) > 0 ,

∀x ∈ V , ∀E ∈ [0,∞) , ∀t , ∀l ,
(3.30)

(where l is the iteration index and t is the time variable) such as the 2D/1D method, the
possibility of numerical failure exists due to these nonlinear terms. This is fundamentally
due to the possibility that terms in the denominator become very small, resulting in large
changes in a nonlinear term for a small change in the solution. The nonlinear terms in
CMFD that are susceptible to numerical instability are listed in this section. A 1D formula-
tion is assumed for simplicity, but these nonlinear terms are present regardless of the spatial
dimensionality.
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3.5.1 Homogenized Cross Sections

The definition of iteration-dependent homogenized cross sections in a coarse cell is
reproduced here:

Σ̄
(l+ 1

2
)

u,k ≡
∑
j∈k

Σu,jφ
(l+ 1

2
)

0,j hj

∑
j∈k
φ
(l+ 1

2
)

0,j hj

,∀ u ∈ {a, s, t} . (Eq. (3.8h) revisited)

As a result of the flux- and volume-weighting of the cross sections on the fine mesh, the
denominator contains a volume sum of the scalar flux iterate in a coarse cell. If the scalar
flux iterates are not strictly positive in the coarse cell, or if the magnitude of the flux in the
cell is very small, then the homogenized cross section in that cell is susceptible to numerical
instability if ∑

j∈k
hjφ0,j evaluates to near zero.

3.5.2 Numerical Diffusion Coefficient

The traditional expression for the diffusion coefficient used in Fick’s Law is reproduced
here:

D̃
(l+ 1

2
)

k+ 1
2

≡ 2

3(Σ̄
(l+ 1

2
)

t,k+1 ∆k+1 + Σ̄
(l+ 1

2
)

t,k ∆k)
. (Eq. (3.8f) revisited)

The numerical expression for D̃ possesses the potential for numerical instability in the
denominator term. Specifically, the terms Σ̄

(l+ 1
2
)

t,k ∆k and Σ̄
(l+ 1

2
)

t,k+1 ∆k+1 have the potential to
be equal in magnitude and opposite in sign for any iterate. Since Σ̄t is a flux-weighted
average over a coarse cell, there is a possibility that the presence of negative scalar flux
quantities can result in a negative cross section. If the two denominator terms are nearly
equal in magnitude and opposite in sign, D̃ can become numerically unstable.

3.5.3 Transport Correction Term

The transport correction term to the diffusion equation, D̂, is reproduced here:

D̂
(l+ 1

2
)

k+ 1
2

≡
Φ

(l+ 1
2
)

1,k+ 1
2

+ D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
)

0,k+1 −Φ
(l+ 1

2
)

0,k )

Φ
(l+ 1

2
)

0,k+1 +Φ
(l+ 1

2
)

0,k

. (Eq. (3.8g) revisited)

D̂ possesses the potential for numerical instability in two ways:
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1. The first is due to the presence of D̃ in the numerator. If D̃ becomes unstable, D̂ will
as well.

2. If the coarse cell flux in two adjacent cells are equal in magnitude and opposite in
sign, D̂ can become unstable.

These issues are possible for any iteration l.

3.5.4 Multiplicative Prolongation Factor

The prolongation equation for updating the fine-mesh scalar flux using the most recent
coarse-mesh scalar flux solution is reproduced here:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j

⎛
⎜
⎝

Φ
(l+1)
0,k

Φ
(l+ 1

2
)

0,k

⎞
⎟
⎠
,∀ j ∈ k . (Eq. (3.8q) revisited)

If the scalar flux Φ
(l+ 1

2
)

0,k in a single coarse cell approaches zero for any iterate, the update
ratio that scales the fine mesh scalar flux can become sensitive to small fluctuations. In this
case, the fine mesh scalar flux can become numerically unstable.

3.5.5 Summary of CMFD Nonlinearities

The CMFD formulation contains several nonlinear terms that render the method sus-
ceptible to nonlinear instability. These terms are nonlinear with respect to either (i) the
scalar flux iterates or (ii) terms that depend on the scalar flux iterates. If any of these terms
become numerically unstable, then the performance of CMFD can suffer and the method
can behave unexpectedly. If the converged solution contains non-positive flux values, the
nonlinear instability can appear. Additionally, this issue can also appear for any scalar flux

iterate that is non-positive. Evidence of this phenomenon is provided in Chapters 5 to 7.
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CHAPTER 4

Linear Diffusion Acceleration

This chapter describes the novel Linear Diffusion Acceleration (LDA) method, which
is the focus of this thesis. All chapters before this contain known and published knowl-
edge, and the novelty of this thesis project begins here. Some background and supporting
information for LDA is provided first in Sections 4.1 and 4.2, before the method is derived
for both fixed-source and eigenvalue problems in Section 4.3. Next, algorithm overviews
are given for both problem types in Section 4.4. A “shifted” variation of the method is
presented in Section 4.5 that allows for improved Power Iteration (PI) convergence when
LDA is applied to eigenvalue problems. Lastly, we provide a discussion on the implications
of the LDA formulation in Section 4.6.

4.1 Background

LDA is a transport acceleration method that is designed to avoid nonlinearities with
respect to the scalar flux. The LDA method possesses some similarities to the GAML
method [12], which was previously discussed in Chapter 1. In the GAML paper, the authors
point out that nonlinear terms render a method susceptible to numerical instability. This is
the same nonlinear instability that is discussed in Section 1.1, in which the algorithm can
become numerically unstable if certain quantities (generally the scalar flux) are not strictly
positive. The authors of the GAML method cite the use of modified DSA to accelerate
eigenvalue problems as the motivation for the development of their method. DSA, in its
“original” form, is a linear acceleration method that can only be used for fixed-source
problems. However, a few different modifications to the method were proposed that allow
it to be used for eigenvalue problems [21]. Each modification introduces nonlinearities into
the DSA method. For example, one proposed modification to DSA suggested the following
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alternate definition of the diffusion coefficient:

{Dg(x)}ii = −
φ1,g,i(x)
∇iφ0,g(x)

,

{i ∣ i ∈ N ,1 ≤ i ≤ 3} ,

{g ∣ g ∈ N ,1 ≤ g ≤ G} ,

(4.1)

where g is the energy group index, i is one of the orthogonal coordinate directions, φ0 is
the scalar flux, and φ1 is the neutron current [21]. In this way, the diffusion coefficient
becomes a diagonal tensor and is lagged in the iteration process. However, it is nonlinear
with respect to the gradient of the scalar flux, rendering the method susceptible to nonlinear
instabilities. The GAML method was a response to the nonlinearity of DSA when used for
eigenvalue problems in the transport code ONEDANT [60].

In the GAML method, the low-order problem is formulated as a non-invertable operator
acting on the scalar flux. Rather than embedding a nonlinear transport consistency term in
the low-order LHS operator, linear consistency terms are placed in the source vector. To
solve this singular problem, the Fredholm Alternative Theorem (FAT) is employed so that
the fundamental transport eigenvalue is computed in such a way that allows for a solution
to be obtained. The GAML method serves as the inspiration for the LDA method. LDA
extends the capabilities of the GAML method to cases in which the low-order and high-
order problems do not necessarily have the same spatial grids. Further, LDA employs the
use of a Wielandt shift that improves the iterative performance of PI for solving the low-
order eigenvalue problem (as shown later in Chapters 6 and 7). Appendix A reproduces
the GAML paper, and provides a short discussion of the differences between GAML and
LDA.

An intermediate version of LDA called Semilinear Diffusion Acceleration (SDA) was
developed during this thesis project [13]. SDA more closely resembles the GAML method
than LDA, with the focus of SDA being problems in which the spatial discretization of
the transport and low-order problems are the same. Like LDA, SDA was developed to
avoid nonlinearities in the low-order problem. However, SDA was not well-developed
for problems in which the low-order problem possesses a different spatial mesh than the
transport problem. As a result, when the SDA method was adapted for these types of
problems, a substantial amount of additional computational work would be required to
satisfy the FAT. LDA was adapted from SDA with the coarse low-order grid in mind,
resulting in a more computationally efficient method.

In Chapter 3, the nonlinearities of CMFD were discussed. The presence of nonlinear
terms render CMFD susceptible to nonlinear instabilities, in much the same way as DSA
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becomes susceptible with nonlinear modifications for application to eigenvalue problems.
For cases in which the positivity of the scalar flux is not guaranteed, such as when using
the 2D/1D method or TCP0 scattering approximation, these nonlinear quantities have the
potential to cause numerical instabilities. The motivation for using LDA comes from the
desire to avoid numerical failure due to the presence of nonlinear terms.

Therefore, in cases where CMFD does not fail due to these nonlinear terms, LDA should

have similar convergence behavior. For cases where CMFD exhibits degradation in per-

formance as a result of its nonlinear instability, LDA should demonstrate superior perfor-

mance. Therefore, LDA would not need to be only used instead of CMFD for cases in
which CMFD is susceptible to numerical instability. LDA could then serve as a replace-
ment to CMFD because it has similar linear stability properties. Because (i) the occurrence
of nonlinear instabilities is generally unpredictable, and (ii) the cost of running CMFD and
LDA would be comparable, it is hoped that LDA will be viewed as a more robust alternative
to CMFD for all practical problems. We investigate these properties of LDA in Chapters 5
to 7.

For the notation in this chapter, boldface quantities represent spatial vectors. As an
example, the term φ0 represents the spatial vector of fine-grid scalar flux values. Ad-
ditionally, lower-case terms generally represent fine-grid quantities and upper-case terms
represent coarse-grid quantities. For example, the term Φ0 represents a spatial vector of
coarse-grid scalar flux values.

4.2 Fredholm Alternative Theorem

The Fredholm Alternative Theorem (FAT) is a useful mathematical tool that we employ
in the formulation of LDA for eigenvalue problems. Specifically, the FAT states the condi-
tions under which a solution of a system with a singular LHS operator exists by ensuring
that a certain solvability condition is satisfied for the RHS vector. This section provides an
overview of the FAT, as it is central to the LDA method.

The FAT applies when seeking a solution f of the following equation:

Lf = q , (4.2)

where L is a linear, singular operator. This implies that L possesses an eigenvalue λ = 0.
In this work, we assume that the eigenvalue λ = 0 is simple – it has a single eigenfunction.
This assumption is valid for all practical neutron transport problems. Now, let us consider
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the following:
Lg = 0 , (4.3)

where g is the eigenfunction of L corresponding to λ = 0. Additionally, we consider:

L∗g∗ = 0 , (4.4)

where L∗ is the adjoint of L and g∗ is the eigenfunction of L∗ corresponding to λ = 0. The
FAT states that Eq. (4.2) has a solution if and only if the following equations hold:

q ∈ R(L) , (4.5a)

q ∈ N(L∗)⊥ , (4.5b)

⟨g∗,q⟩ = 0 , (4.5c)

where R(L) refers to the range of L, N(L∗)⊥ is the orthogonal complement of the
nullspace of L, and the ⟨⋅, ⋅⟩ notation indicates the inner product of vectors. Given that
these conditions are satisfied, Eq. (4.2) has a unique particular solution f̃ satisfying the
same solvability condition as q: ⟨g∗, f̃⟩ = 0. The general solution of Eq. (4.2) is then
shown below:

f = f̃ + ag, −∞ < a <∞ , (4.6)

where a is an arbitrary multiplicative constant.
To summarize, the FAT states that a solution to Eq. (4.2) exists (where the operator L

is singular) if the RHS of Eq. (4.2) is orthogonal to the adjoint eigenfunction (the solution
of Eq. (4.4)). This ensures that the RHS vector of Eq. (4.2) exists in the range of the
operator L. In the derivation of LDA for eigenvalue problems, the low-order problem
initially resembles Eq. (4.2). We note that the FAT simply states the conditions under
which a solution to Eq. (4.2) exists. However, it does not provide the means to solve this
linear system for f , which would require inverting the singular operator L. Thus, we make
some modifications to the low-order problem to avoid the need to invert a singular operator.
In doing so, the actual LDA system to be solved in a practical application will not explicitly
resemble Eq. (4.2). As shown in Section 4.3.2, we ultimately make use of the solvability
condition in Eq. (4.5c) to derive an expression for the transport eigenvalue.
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4.3 Derivation of LDA

This section describes the derivation of the LDA equations for both fixed-source and
eigenvalue problems. For clarity, we derive the LDA equations for simple 1D, monoener-
getic problems. However, LDA can easily be applied to more complex problem types in a
straightforward way.

4.3.1 Fixed-Source Problems

Our goal in this section is to derive the low-order LDA equations on the coarse grid
from the transport equation for fixed-source problems. The LDA equations will consist of
(i) a coarse-grid balance equation with transport correction terms, (ii) equations to relate
fine-grid quantities to coarse-grid quantities, and (iii) an equation to update the fine-grid
solution from the coarse-grid solution.

We begin with the steady-state, monoenergetic, 1D NTE with prescribed boundary con-
ditions shown below:

µ
∂

∂x
ψ(x,µ) +Σt(x)ψ(x,µ) =

1

2
(∫

1

−1
Σs(x,µ,µ′)ψ(x,µ′)dµ′ +Q(x)) ,

0 ≤ x ≤X , −1 ≤ µ ≤ 1 ,

(4.7a)

ψ(0, µ) = ψb(µ) , µ > 0 , (4.7b)

ψ(X,µ) = ψb(µ) , µ < 0 , (4.7c)

whereQ(x) is the inhomogeneous source. We first obtain the NBE by integrating Eq. (4.7a)
over angle (by operating by ∫

1

−1(⋅)dµ) and rearranging:

d

dx
φ1(x) +Σa(x)φ0(x) = Q(x) . (4.8a)

Boundary conditions are obtained by operating on Eqs. (4.7b) and (4.7c) by ∫
1

−1 µ(⋅)dµ, as
shown below:

φ1(0) = ∫
0

−1
µψ(0, µ)dµ + ∫

1

0
µψb(µ)dµ , (4.8b)

φ1(X) = ∫
0

−1
µψb(µ)dµ + ∫

1

0
µψ(X,µ)dµ . (4.8c)

To discretize Eq. (4.8a) in space, we average over a given “fine cell” that spans from
xj− 1

2
to xj+ 1

2
. This amounts to operating by 1

hj ∫
x
j+ 1

2
x
j− 1

2

(⋅)dx, where hj is the width of fine
cell j, which yields the following discretized NBE (the cross sections are assumed to be
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constant in a given fine cell):

(φ1,j+ 1
2
− φ1,j− 1

2
) +Σa,jφ0,jhj = qjhj ,

{j ∣ j ∈ N,1 ≤ j ≤ J} ,
(4.9a)

φ1, 1
2
= ∫

0

−1
µψ 1

2
(µ)dµ + ∫

1

0
µψb(µ)dµ , (4.9b)

φ1,J+ 1
2
= ∫

0

−1
µψb(µ)dµ + ∫

1

0
µψJ+ 1

2
(µ)dµ . (4.9c)

In Eqs. (4.9), φ1,j± 1
2

is the neutron current at a fine-cell edge, qj is the magnitude of the
neutron source in fine cell j, N is the set of natural integers, and J is the number of fine
spatial cells. Next, Eq. (4.9a) is spatially integrated over a given “coarse cell” by operating
by∑j∈k(⋅) where k is the coarse cell index. A coarse cell consists of a contiguous collection
of fine cells, which are referred to as j ∈ k. The following coarse-grid balance equation is
obtained:

(Φ1,k+ 1
2
−Φ1,k− 1

2
) + Σ̄a,k ⟪φ0⟫Φ0,k∆k = Q̄k∆k , (4.10a)

with the various terms defined as:

Φ1,k± 1
2
≡ ∫

1

−1
µψ(Xk± 1

2
, µ)dµ , (4.10b)

Σ̄a,k ⟪f⟫ ≡
∑
j∈k

Σa,jfjhj

∑
j∈k
fjhj

, (4.10c)

Φ0,k ≡
∑
j∈k
φ0,jhj

∆k

, (4.10d)

∆k ≡∑
j∈k

hj , (4.10e)

Q̄k ≡
∑
j∈k
qjhj

∆k

, (4.10f)

{k ∣ k ∈ N,1 ≤ k ≤K} .

We note that the g ⟪f⟫ notation indicates that the coarse-mesh quantity g is constructed
using the fine-mesh weighting vector f .

Now, we define a weighted diffusion operator Ld,fs ⟪f⟫ (with the subscripts d for “dif-
fusion” and fs for “fixed-source”) operating on the coarse-mesh scalar flux vector Φ0 de-
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fined as

Φ0 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

Φ0,1

Φ0,2

⋮
Φ0,K

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Φ0 ∈ RK×1 . (4.11)

The operator Ld,fs requires a fine-mesh weighting function f that is used when generating
the coarse-mesh cross sections and D̃. This operator represents a weighted version of

the migration operator of the neutron diffusion equation that corresponds to the transport

problem that we are solving. The operator is defined as

(Ld,fs ⟪f⟫Φ0)k ≡ −D̃k+ 1
2
⟪f⟫(Φ0,k+1 −Φ0,k) + D̃k− 1

2
⟪f⟫(Φ0,k −Φ0,k−1)

+Σ̄a,k ⟪f⟫Φ0,k∆k ,
(4.12a)

D̃k± 1
2
⟪f⟫ ≡ 2

3 (Σ̄t,k ⟪f⟫∆k + Σ̄t,k±1 ⟪f⟫∆k±1)
, (4.12b)

{k ∣ k ∈ N,2 ≤ k ≤K − 1} ,

for the interior coarse cells, where the D̃ term is the numerical diffusion coefficient from
the traditional form of Fick’s Law (shown in Eq. (2.23a)). However, Eq. (4.12a) does not
hold at the boundaries of the system. (If this equation were applied to the boundaries, the
unphysical terms Φ0,0 and Φ0,K+1 would appear.) At the boundaries, we make the following
definitions of the diffusion operator:

(Ld,fs ⟪f⟫Φ0)1 ≡ −D̃ 3
2
⟪f⟫(Φ0,2 −Φ0,1) −Φ1, 1

2
,d

+Σ̄a,1 ⟪f⟫Φ0,1∆1 ,
(4.12c)

(Ld,fs ⟪f⟫Φ0)K ≡ Φ1,K+ 1
2
,d + D̃K− 1

2
⟪f⟫(Φ0,K −Φ0,K−1)

+Σ̄a,K ⟪f⟫Φ0,K∆K ,
(4.12d)

where Φ1, 1
2
,d and Φ1,K+ 1

2
,d are “diffusion neutron current” terms that are determined by the

diffusion boundary conditions (which are discussed next).
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Now, we derive boundary conditions for the diffusion problem stated in Eqs. (4.12):

2Φ+
1 = 2 ∑

µn>0

µnwnψ
b
n (4.13)

=
N

∑
n=1

(µn + ∣µn∣)wnψn, 1
2

(4.14)

= Φ1, 1
2
,d +

N

∑
n=1

∣µn∣wnψn, 1
2
. (4.15)

In the diffusion approximation, the angular flux is assumed to a linear function of angle:

ψn, 1
2
= 1

2
Φ0, 1

2
+ 3

2
µnΦ1, 1

2
. (4.16)

Upon substituting Eq. (4.16) into the second term on the RHS of Eq. (4.15) and simplifying,
we obtain:

N

∑
n=1

∣µn∣wnψn, 1
2
= 1

2
Φ0, 1

2
. (4.17)

Inserting Eq. (4.17) into Eq. (4.15) yields the following diffusion boundary condition for
the left side of the system:

2Φ+
1 = Φ1, 1

2
,d +

1

2
Φ0, 1

2
. (4.18)

Φ0, 1
2

can be found in terms of Φ1, 1
2
,d and Φ0,1 and eliminated from Eq. (4.18) by applying

Fick’s Law at the system boundary. As an example, we will perform these steps for the
left side of the problem. Using the following definition of Fick’s Law at the left side of the
system,

Φ1, 1
2
,d = −D̃ 1

2
⟪f⟫(Φ0,1 −Φ0, 1

2
) , (4.19)

where D̃ 1
2
⟪f⟫ is defined as

D̃ 1
2
⟪f⟫ ≡ 2

3Σ̄t,1 ⟪f⟫∆1

, (4.20)

we find the following relationship between Φ0, 1
2
, Φ0,1, and Φ1, 1

2
,d:

Φ0, 1
2
= Φ0,1 +

Φ1, 1
2
,d

D̃ 1
2
⟪f⟫

. (4.21)
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Upon substituting Eq. (4.21) into Eq. (4.18) we obtain:

Φ1, 1
2
,d =

4D̃ 1
2
⟪f⟫

1 + 2D̃ 1
2
⟪f⟫

Φ+
1 −

D̃ 1
2
⟪f⟫

1 + 2D̃ 1
2
⟪f⟫

Φ0,1 . (4.22)

Then, inserting Eq. (4.22) into Eq. (4.12c) and rearranging yields the following:

(Ld,fs ⟪f⟫Φ0)1 ≡ −D̃ 3
2
⟪f⟫Φ0,2

+
⎛
⎝

D̃ 1
2
⟪f⟫

1 + 2D̃ 1
2
⟪f⟫

+ D̃ 3
2
⟪f⟫ + Σ̄a,1 ⟪f⟫∆1

⎞
⎠

Φ0,1 −
4D̃ 1

2
⟪f⟫

1 + 2D̃ 1
2
⟪f⟫

Φ+
1 .

(4.23)

With this, we have fully determined the form of Eq. (4.12c) with the diffusion boundary
conditions incorporated into the operator.

A similar procedure to that started in Eq. (4.13) for the right side yields the following
boundary condition for the diffusion system:

2Φ−
1 = −Φ1,K+ 1

2
,d +

1

2
Φ0,K+ 1

2
. (4.24)

One can eliminate Φ0,K+ 1
2

from the system in a similar manner to that shown for the left
side. The terms Φ+

1 and Φ−
1 are the prescribed incoming neutron current at the left and right

edges of the system, respectively, and are defined as

Φ+
1 ≡ ∑

µn>0

µnwnψ
b
n , (4.25)

Φ−
1 ≡ ∑

µn<0

µnwnψ
b
n . (4.26)

For problems with vacuum boundary conditions, these incoming current terms are zero.
Further, for problems with reflective boundary conditions, the diffusion current (Φ1,d) at the
reflecting boundary is simply zero. With this, we have derived the operator (Ld,fs ⟪f⟫Φ0)k
for all coarse cells, including at the boundaries (which incorporate the diffusion boundary
conditions).

We choose the weighting function f to be a one-vector, defined as

1 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

1

⋮
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, 1 ∈ RJ×1 . (4.27)
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This choice causes the coarse-grid cross sections to be volume-weighted (not flux- and

volume-weighted, as with CMFD), and is made to ensure positivity of the mesh quantities

contained in the diffusion operator. After adding the term (Ld,fs ⟪1⟫Φ0)k to both sides of
Eq. (4.10a) and rearranging, we obtain the operator form of the coarse-mesh, fixed-source

LDA equation shown below:

(Ld,fs ⟪1⟫Φ0)k = Q̄k∆k + (Φ1,k− 1
2
−Φ1,k+ 1

2
)

+ (Ld,fs ⟪1⟫Φ0)k − Σ̄a,k ⟪φ0⟫Φ0,k∆k ,

{k ∣ k ∈ N,1 ≤ k ≤K} ,

(4.28)

where the operator (Ld,fs ⟪1⟫Φ0)k is defined for all coarse cells in Eqs. (4.12). The dif-
fusion boundary conditions, shown in Eqs. (4.18) and (4.24), are incorporated into the
definitions of this operator at the boundaries of the system, yielding a system of K equa-
tions. We recognize that one of the RHS terms of Eq. (4.28) can be simplified into a linear
form, as shown below:

Σ̄a,k ⟪φ0⟫Φ0,k∆k =
∑
j∈k

Σa,jφ0,jhj

�
����∑

j∈k
φ0,jhj

⋅ �
�

���∑
j∈k
φ0,jhj

�
�∆k

⋅��∆k (4.29)

=∑
j∈k

Σa,jφ0,jhj (4.30)

≡ Σ̇a,k ⟪φ0⟫ , (4.31)

where

φ0 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

φ0,1

φ0,2

⋮
φ0,J

⎞
⎟⎟⎟⎟⎟⎟
⎠

, φ0 ∈ RJ×1 . (4.32)

The term Σ̇a,k ⟪φ0⟫ represents the total absorption rate in a coarse cell, and is linear with
respect to φ0.

To finalize the derivation of the low-order, fixed-source LDA equation, iteration super-
scripts are added. The LHS quantities are denoted as the solution of the LDA equations,
and the RHS quantities are constructed from the most recent estimate of the scalar flux. In
this formulation, the most recent estimate of the scalar flux Φ

(l+ 1
2
)

0 is computed as the ho-
mogenized solution of the transport equation, before the LDA equation is solved for Φ

(l+1)
0 :

Ld,fs ⟪1⟫Φ
(l+1)
0 = Q̃(l+ 1

2
) , (4.33a)
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Q̃
(l+ 1

2
)

k ≡ Q̄k∆k + (Φ
(l+ 1

2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

) + (Ld,fs ⟪1⟫Φ
(l+ 1

2
)

0 )
k

− Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ , (4.33b)

Φ
(l+ 1

2
)

0,k ≡
∑
j∈k
φ
(l+ 1

2
)

0,j hj

∆k

, (4.33c)

{k ∣ k ∈ N,1 ≤ k ≤K} .

Equation (4.33a) represents a system of K equations with K unknowns (Φ(l+1)
0 ). Practi-

cally, the operator Ld,fs ⟪1⟫ takes the form of a K ×K matrix that acts on the K × 1 vector
Φ

(l+1)
0 . The RHS of Eq. (4.33a) is a K × 1 vector as well, with elements corresponding to

a given coarse cell k defined in Eq. (4.33b).
To check that the solution of Eq. (4.33a) results in the coarse-mesh transport solution,

we take the limit as l →∞. First, we consider the following form of Eq. (4.33a) with Q̃(l+ 1
2
)

expanded (as defined in Eq. (4.33b)):

(Ld,fs ⟪1⟫Φ
(l+1)
0 )

k
= Q̄k∆k + (Φ

(l+ 1
2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

)

+(Ld,fs ⟪1⟫Φ
(l+ 1

2
)

0 )
k

− Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ .
(4.34)

Now, we take the limit as l → ∞ and cancel the identical diffusion operators on each side
of the equation:

����������
(Ld,fs ⟪1⟫Φ

(∞)

0 )
k
= Q̄k∆k + (Φ

(∞)

1,k− 1
2

−Φ
(∞)

1,k+ 1
2

)

+
����������
(Ld,fs ⟪1⟫Φ

(∞)

0 )
k
− Σ̇a,k ⟪φ(∞)

0 ⟫ .

(4.35)

Upon rearranging, we obtain the following converged neutron balance equation:

(Φ
(∞)

1,k+ 1
2

−Φ
(∞)

1,k− 1
2

) + Σ̇a,k ⟪φ(∞)

0 ⟫ = Q̄k∆k , (4.36)

which is the same as Eq. (4.10a) (derived directly from the NTE). We note the following
equivalence:

Σ̄a,k ⟪φ0⟫Φ0,k∆k = Σ̇a,k ⟪φ0⟫ , (4.37)

as shown in Eq. (4.29). Thus, we have shown that the solution of the LDA equation limits
to the coarse-mesh transport equation upon convergence.
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If we use Eq. (4.12a) to expand the Q̃
(l+ 1

2
)

k operator and rearrange, we obtain:

Q̃
(l+ 1

2
)

k = Q̄k∆k

+(Φ
(l+ 1

2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

) − D̃k+ 1
2
⟪1⟫(Φ

(l+ 1
2
)

0,k+1 −Φ
(l+ 1

2
)

0,k ) + D̃k− 1
2
⟪1⟫(Φ

(l+ 1
2
)

0,k −Φ
(l+ 1

2
)

0,k−1)

+Σ̄a,k ⟪1⟫Φ
(l+ 1

2
)

0,k ∆k − Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ ,

(4.38)

where the second line of the equation represents the error in Fick’s Law for approximat-
ing neutron streaming in the operator (Ld,fs ⟪1⟫Φ0)k. This term is analogous to D̂ in the
CMFD method, which also accounts for the error introduced by Fick’s Law. However, an
additional error is present in (Ld,fs ⟪1⟫Φ0)k due to the use of volume-weighted cross sec-
tions (as opposed to flux- and volume-weighted cross sections). The third line in Eq. (4.38)
accounts for this error. We expect the terms in the second and third lines to be small, and
therefore, stable throughout the iteration process. This is reinforced by the linearity of
Eq. (4.38), which prevents numerical instability as a result of nonlinear terms. None of the
terms in Eqs. (4.33) are nonlinear with respect to the scalar flux, which is the primary goal
and motivation for the construction of LDA.

Once the low-order solution Φ
(l+1)
0 is obtained by solving Eq. (4.33a), a prolongation

step is performed to update the fine-mesh solution φ
(l+ 1

2
)

0 with information from the low-
order solution. With CMFD, this is typically done through multiplicative prolongation as
shown below:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j

⎛
⎜
⎝

Φ
(l+1)
0,k

Φ
(l+ 1

2
)

0,k

⎞
⎟
⎠
,∀ j ∈ k . (Eq. (3.8q) revisited)

To linearize this step, a simple equation can be constructed in which we wish to obtain the
additive update term c

(l+1)
k that provides an update that is equivalent to the multiplicative

term:

φ
(l+ 1

2
)

0,j + c(l+1)
k = φ(l+ 1

2
)

0,j

⎛
⎜
⎝

Φ
(l+1)
0,k

Φ
(l+ 1

2
)

0,k

⎞
⎟
⎠
, (4.39)

where c(l+1)
k is constant in a coarse cell. After volume averaging over a coarse cell and

solving for c(l+1)
k , the following result is obtained:

c
(l+1)
k = Φ

(l+1)
0,k −Φ

(l+ 1
2
)

0,k . (4.40)

With this term defined, an additive prolongation equation may be developed as shown be-
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low. This is a linear form of Eq. (3.8q):

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j + (Φ
(l+1)
0,k −Φ

(l+ 1
2
)

0,k ) ,∀ j ∈ k . (4.41)

At this point, the next iterate of the scalar flux φ(l+1)
0 has been determined, and the

iteration process can proceed until sufficient convergence is achieved. It should be noted,
once again, that all terms in the LDA formulation are linear with respect to the solution

vector.

4.3.2 Eigenvalue Problems

In this section, we have the same aim as the previous section: to derive the LDA equa-
tions from the transport equation – except we now focus on the eigenvalue form instead of
the fixed-source form. We begin again with a continuous, monoenergetic, steady-state, 1D
NTE, now with vacuum boundary conditions and an eigenvalue to represent multiplying
media:

µ
∂

∂x
ψ(x,µ) +Σt(x)ψ(x,µ)

= 1

2
(∫

1

−1
Σs(x,µ,µ′)ψ(x,µ′)dµ′ + λtνΣf(x)∫

1

−1
ψ(x,µ′)dµ′) ,

0 ≤ x ≤X , −1 ≤ µ ≤ 1 ,

(4.42a)

ψ(0, µ) = 0 , µ > 0 , (4.42b)

ψ(X,µ) = 0 , µ < 0 , (4.42c)

where λt is the fundamental transport eigenvalue. We choose this notation to distinguish
the fundamental transport eigenvalue from the fundamental diffusion eigenvalue λd, which
will become relevant later in this derivation. To select a unique solution to Eqs. (4.42),
a normalization condition must be imposed. As an example, we enforce the following
condition:

P = ∫
X

0
νΣf(x)φ(x)dx , (4.42d)

where the scalar flux is defined as

φ(x) ≡ ∫
1

−1
ψ(x,µ)dµ , (4.42e)

and P is the neutron production rate for the system.
First, we operate on Eq. (4.42a) by ∫

1

−1(⋅)dµ and on Eqs. (4.42b) and (4.42c) by
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∫
1

−1 µ(⋅)dµ to obtain:

d

dx
φ1(x) +Σa(x)φ0(x) = λtνΣf(x)φ0(x) , (4.43a)

φ1(0) = ∫
0

−1
µψ(0, µ)dµ , (4.43b)

φ1(X) = ∫
1

0
µψ(X,µ)dµ . (4.43c)

Then we discretize Eq. (4.43a) in space by averaging over a given fine cell. This is done by
operating on Eqs. (4.43) by 1

hj ∫
x
j+ 1

2
x
j− 1

2

(⋅)dx, resulting in the following discrete form:

(φ1,j+ 1
2
− φ1,j− 1

2
) +Σa,jφ0,jhj = λt (νΣf)j hj ,

{j ∣ j ∈ N,1 ≤ j ≤ J} ,
(4.44a)

φ1, 1
2
= ∫

0

−1
µψ 1

2
(µ)dµ , (4.44b)

φ1,J+ 1
2
= ∫

1

0
µψJ+ 1

2
(µ)dµ , (4.44c)

where fine mesh quantities are assumed to be constant within a fine cell (just as in the
fixed-source derivation).

Now, Eq. (4.44a) is integrated over all fine cells j in a given contiguous coarse cell k
by operating by ∑j∈k(⋅), resulting in the following:

(Φ1,k+ 1
2
−Φ1,k− 1

2
) + Σ̄a,k ⟪φ0⟫Φ0,k∆k = λt(νΣf)k ⟪φ0⟫Φ0,k∆k , (4.45a)

Σ̄a,k ⟪φ0⟫ ≡
∑
j∈k

Σa,jφ0,jhj

∑
j∈k
φ0,jhj

, (4.45b)

(νΣf)k ⟪φ0⟫ ≡
∑
j∈k

(νΣf)j φ0,jhj

∑
j∈k
φ0,jhj

. (4.45c)

Before continuing, we first consider the uniformly-weighted critical diffusion operator
Ld,eig ⟪1⟫ (with the subscripts d for diffusion and eig for eigenvalue) acting on the scalar
flux Φ0:

(Ld,eig ⟪1⟫Φ0)k ≡ −D̃k+ 1
2
⟪1⟫(Φ0,k+1 −Φ0,k) + D̃k− 1

2
⟪1⟫(Φ0,k −Φ0,k−1)

+ (Σ̄a,k − λd(νΣf)k)⟪1⟫Φ0,k∆k ,
(4.46a)

76



D̃k± 1
2
⟪1⟫ ≡ 2

3 (Σ̄t,k ⟪1⟫∆k + Σ̄t,k±1 ⟪1⟫∆k±1)
, (4.46b)

{k ∣ k ∈ N,2 ≤ k ≤K − 1} ,

which holds at the interior coarse cells. For the boundary cells, we make the following
definitions of the critical diffusion operator:

(Ld,eig ⟪1⟫Φ0)1 ≡ −D̃ 3
2
⟪1⟫(Φ0,2 −Φ0,1) −Φ1, 1

2
,d

+ (Σ̄a,1 − λd(νΣf)1)⟪1⟫Φ0,1∆1 ,
(4.46c)

(Ld,eig ⟪1⟫Φ0)K ≡ Φ1,K+ 1
2
,d + D̃K− 1

2
⟪1⟫(Φ0,K −Φ0,K−1)

+ (Σ̄a,K − λd(νΣf)K)⟪1⟫Φ0,K∆K ,
(4.46d)

where Φ1, 1
2
,d and Φ1,K+ 1

2
,d are “diffusion current” terms that are determined by the diffusion

boundary conditions (as in Section 4.3.1). Here λd is the fundamental eigenvalue of the
following neutron diffusion equation:

−D̃k+ 1
2
⟪1⟫(Φ0,d,k+1 −Φ0,d,k) + D̃k− 1

2
⟪1⟫(Φ0,d,k −Φ0,d,k−1)

+Σ̄a,k ⟪1⟫Φ0,d,k∆k = λd(νΣf)k ⟪1⟫Φ0,d,k∆k ,
(4.47)

with the following boundary conditions:

0 = Φ1, 1
2
,d +

1

2
Φ0, 1

2
, (4.48)

0 = −Φ1,K+ 1
2
,d +

1

2
Φ0,K+ 1

2
. (4.49)

(The boundary conditions were derived in Section 4.3.1, and the prescribed incoming neu-
tron current is zero for eigenvalue problems.) The operator Ld,eig ⟪1⟫ defined in Eq. (4.46a)
is obtained by rearranging Eq. (4.47). When the weighting vector 1 is used, the coarse mesh
quantities are only volume-weighted over each coarse spatial cell.

We note that the fundamental eigenpair of Eq. (4.47) is different than the fundamental
eigenpair of the NTE. Therefore, the subscript d is used for the solutions to this equation
in order to distinguish the two solutions. The Ld,eig ⟪1⟫ operator is referred to as critical

because the following equation holds:

Ld,eig ⟪1⟫Φ0,d = 0 . (4.50)

Therefore, the Ld,eig ⟪1⟫ operator represents a critical diffusion system. The eigenvalue λd
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in this operator is the fundamental eigenvalue corresponding to the fundamental eigenvector
Φ0,d. Additionally, we note that Ld,eig ⟪1⟫ is singular and non-invertable.

Equation (4.50) is an eigenvalue problem, and a normalization condition must be im-
posed to select a unique solution. We impose the following normalization condition on the
neutron production rate that corresponds to the condition stated in Eq. (4.42d):

P =
K

∑
k=1

(νΣf)k Φ0,d,k∆k , (4.51)

where P is the desired neutron production rate.
Next, we add (Ld,eig ⟪1⟫Φ0)k to both sides of Eq. (4.45a) and rearrange. The following

LDA equation is obtained:

(Ld,eig ⟪1⟫Φ0)k = (Φ1,k− 1
2
−Φ1,k+ 1

2
)

+ (Ld,eig ⟪1⟫Φ0)k + (λt ˙(νΣf)k − Σ̇a,k)⟪φ0⟫ ,
(4.52a)

Σ̇a,k ⟪φ0⟫ ≡∑
j∈k

Σa,jφ0,jhj , (4.52b)

˙(νΣf)k ⟪φ0⟫ ≡∑
j∈k

(νΣf)j φ0,jhj , (4.52c)

where the diffusion boundary conditions are incorporated into the definition of
(Ld,eig ⟪1⟫Φ0)k (in Eqs. (4.46)) at the edges of the problem. We note that the mesh quanti-
ties have been linearized in the same way as in Section 4.3.1. Finally, iteration superscripts
are added in a similar fashion as the fixed-source problem:

Ld,eig ⟪1⟫Φ
(l+1)
0 = Q̃(l+1) , (4.53a)

Q̃
(l+1)
k ≡ (Φ

(l+ 1
2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

) + (Ld,eig ⟪1⟫Φ
(l+ 1

2
)

0 )
k

+ (λ(l+1)
t

˙(νΣf)k − Σ̇a,k)⟪φ(l+ 1
2
)

0 ⟫ .
(4.53b)

Just as in Section 4.3.1, we take the limit as l → ∞ to check that the LDA equa-
tion shown in Eq. (4.53a) produces the coarse-mesh transport solution. First, we expand
Eq. (4.53a):

(Ld,eig ⟪1⟫Φ
(l+1)
0 )

k
= (Φ

(l+ 1
2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

) + (Ld,eig ⟪1⟫Φ
(l+ 1

2
)

0 )
k

+ (λ(l+1)
t

˙(νΣf)k − Σ̇a,k)⟪φ(l+ 1
2
)

0 ⟫ .
(4.54)
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Taking the limit as l → ∞ yields the following, with the diffusion operators cancelling on
each side of the equation:

����������
(Ld,eig ⟪1⟫Φ

(∞)

0 )
k
= (Φ

(∞)

1,k− 1
2

−Φ
(∞)

1,k+ 1
2

) +
����������
(Ld,eig ⟪1⟫Φ

(∞)

0 )
k

+ (λ(∞)

t
˙(νΣf)k − Σ̇a,k)⟪φ(∞)

0 ⟫ .
(4.55)

Rearranging yields the following equivalent form of the NBE shown in Eq. (4.45a):

(Φ
(∞)

1,k+ 1
2

−Φ
(∞)

1,k− 1
2

) + Σ̇a,k ⟪φ(∞)

0 ⟫ = λ(∞)

t
˙(νΣf)k ⟪φ

(∞)

0 ⟫ . (4.56)

Thus, we conclude that the solution of the LDA equation is the same as the solution of the
NBE upon convergence.

The term Q̃ contains correction terms that are analogous to D̂ in CMFD. Specifically,
the first line of Eq. (4.53b) acts as the linear transport correction to Fick’s Law. The oper-
ator Ld,eig ⟪1⟫ contains numerical representations of Fick’s Law, and the lagged transport
current difference accounts for this error. Similarly, the last line of Eq. (4.53b) accounts for
the use of volume-weighted mesh quantities in the Ld,eig ⟪1⟫ operator. With these lagged
transport corrections, which we assume to be small in much the same way that D̂ is as-
sumed to be small in CMFD, the LDA solution is made consistent with the solution of the
NTE.

As previously discussed, the LHS operator of Eq. (4.53a) is singular and non-invertable.
However, according to the FAT, this equation has a solution if and only if the solvability
condition shown below is satisfied [61]:

⟨Φ∗
0,d, Q̃

(l+1)⟩ ≡
K

∑
k=1

Φ∗
0,d,kQ̃

(l+1)
k = 0 , (4.57)

where the term Φ∗
0,d is the fundamental eigenvector of the adjoint diffusion equation defined

below:
L∗d,eig ⟪1⟫Φ∗

0,d = 0 . (4.58)

Thus, Φ∗
0,d must be obtained before a solution to Eq. (4.53a) can be found. In these equa-

tions, the ∗ superscript on a matrix refers to the adjoint (or conjugate transpose) of that
matrix. For square matrices containing real numbers (which is the case here), the adjoint is
the same as the transpose.

By expanding and rearranging Eq. (4.57), the solvability condition provides the defini-
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tion for λ(l+1)
t , shown below:

λ
(l+1)
t =

K

∑
k=1

Φ∗
0,d,k [(Φ

(l+ 1
2
)

1,k+ 1
2

−Φ
(l+ 1

2
)

1,k− 1
2

) + Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ − (Ld,eig ⟪1⟫Φ
(l+ 1

2
)

0 )
k

]

K

∑
k=1

Φ∗
0,d,k

˙(νΣf)k ⟪φ
(l+ 1

2
)

0 ⟫
. (4.59)

Once λ(l+1)
t is computed, Q̃(l+1) can be computed and the solution to Eq. (4.53a) can be

obtained using PI. In practice, a modified form of Eq. (4.53a) is solved to obtain the low-
order solution, as described in Section 4.4.2. The final step to determine φ(l+1)

0 is additive
prolongation, which was derived in Section 4.3.1.

The FAT states that if a solution to Eq. (4.53a) exists, λ(l+1)
t must be defined as in

Eq. (4.59) (which satisfies the solvability condition). However, the method for obtaining
this solution is not provided by the FAT. We will make some changes to allow Eq. (4.53a)
to be solved practically. Further, the FAT states that an infinite number of solutions to
Eq. (4.53a) exist of the following form:

Φ0 = Φ̃0 + αΦ0,d , (4.60)

where the particular solution, Φ̃0, satisfies the following solvability condition:

⟨Φ∗
0,d, Φ̃0⟩ = 0 , (4.61)

and α is an arbitrary multiplicative constant. To obtain a unique solution, the value of
α is computed such that the resulting unique solution satisfies the imposed normalization
condition. The process of solving Eq. (4.53a) in practice and determining α are described in
Section 4.4.2. However, in practice, this specific normalization procedure can be modified
because the actual linear system to be solved differs from Eq. (4.53a).

4.4 Algorithm Overview

This section describes how LDA is used to accelerate both fixed-source and eigenvalue
transport problems. Specifically, we describe the sequence of calculations by which the
equations derived in the previous section are evaluated. We note that the method used to
calculate the high-order solution is arbitrary as long as the required quantities are obtained
and the solution is kept consistent with the low-order solution. In these equations, the outer
iteration index is l and the power iteration index for eigenvalue problems is m.
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4.4.1 Fixed-Source Problems

The following description of the LDA method applies to the steady-state, fixed-source,
monoenergetic, planar problem described by Eqs. (4.7). This algorithm can be extended in
a straightforward manner to multidimensional, multigroup problems.

0. Setup: Before the iterative process begins, we first construct the coarse-grid operator
Ld,fs ⟪1⟫ as defined in Eqs. (4.12):

(Ld,fs ⟪f⟫Φ0)k ≡ −D̃k+ 1
2
⟪f⟫(Φ0,k+1 −Φ0,k) + D̃k− 1

2
⟪f⟫(Φ0,k −Φ0,k−1)

+Σ̄a,k ⟪f⟫Φ0,k∆k ,
(Eq. (4.12a) revisited)

which is reproduced here for the problem interior. This operator is fixed throughout
the outer iteration process and serves as the LHS operator for the low-order LDA
system. Thus, this operator can optionally be factorized (using LU decomposition or
other method) at this point to reduce the computational cost of performing the low-
order solve in step 3. Additionally, an initial guess for the fine-mesh scalar flux is
made. For example, a one-vector can be chosen:

φ
(0)
0 = 1 . (4.62)

1. Transport Sweep: A discrete solution φ
(l+ 1

2
)

0 to the discrete form of Eq. (4.7a) is
obtained on the fine mesh by performing a transport sweep. (The discrete form of
Eq. (4.7a) is shown in Eq. (3.8b) with iteration superscripts.) During this process, the

current at the coarse mesh edges (Φ
(l+ 1

2
)

1,k± 1
2

∀ k) is also stored.

2. Restriction: The next step is restriction, in which the low-order coarse mesh quan-
tities are computed from the fine-mesh quantities. We compute Φ

(l+ 1
2
)

0 as defined in
Eq. (4.33c):

Φ
(l+ 1

2
)

0,k ≡
∑
j∈k
φ
(l+ 1

2
)

0,j hj

∆k

, (Eq. (4.33c) revisited)

and Q̃(l+ 1
2
) as defined in Eq. (4.33b):

Q̃
(l+ 1

2
)

k ≡ Q̄k∆k + (Φ
(l+ 1

2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

)

+(Ld,fs ⟪1⟫Φ
(l+ 1

2
)

0 )
k

− Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ .
(Eq. (4.33b) revisited)

3. Low-Order Solve: Now, the solution, Φ
(l+1)
0 , to Eq. (4.33a) is obtained by solving
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the LDA system:

Ld,fs ⟪1⟫Φ
(l+1)
0 = Q̃(l+ 1

2
) . (Eq. (4.33a) revisited)

4. Prolongation: Finally, the prolongation step is performed in which the fine mesh
solution is updated with information from the low-order solve. This is done using
Eq. (4.41) to obtain φ(l+1)

0 :

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j + (Φ
(l+1)
0,k −Φ

(l+ 1
2
)

0,k ) ,∀ j ∈ k . (Eq. (4.41) revisited)

If sufficient convergence of the quantities of interest is not achieved, then the next
outer iteration is begun (at step 1).

The outer iteration process for LDA is summarized in Algorithm 7.

Algorithm 7 LDA Applied to Fixed-Source Problems

1: Construct Ld,fs ⟪1⟫ as defined in Eq. (4.12a) and assume an initial guess for φ0

2: repeat
3: Calculate φ

(l+ 1
2
)

0 and Φ
(l+ 1

2
)

1,k± 1
2

∀ k by solving the discrete form of Eq. (4.7a)

4: Calculate Φ
(l+ 1

2
)

0 using Eq. (4.33c) and construct Q̃
(l+ 1

2
)

f using Eq. (4.33b)

5: Calculate Φ
(l+1)
0 by solving Eq. (4.33a)

6: Calculate φ(l+1)
0 using Eq. (4.41)

7: until convergence {generally, convergence of φ0 is checked}

4.4.2 Eigenvalue Problems

The following description of the LDA method applies to the monoenergetic, planar,
eigenvalue problem described by Eqs. (4.42).

0. Setup: This step is performed only once, before the outer iteration process begins. To
satisfy the solvability condition imposed by the FAT when solving the low-order LDA
equations for eigenvalue problems, we must first obtain the forward Φ0,d and adjoint
Φ∗

0,d solutions of the neutron diffusion equation defined in Eq. (4.46a). Because these
are eigenvalue problems, a method such as PI must be used to obtain a converged
solution. The fundamental eigenvalue λd is the same for both of these solutions, and
must also be recorded during this process.
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Here we outline the solution of the diffusion equation using PI. We note that the
spatial mesh of this equation is the same as the mesh for the LDA equations. The fol-
lowing set of equations (reproduced here for the problem interior, with the boundary
operators defined in Eqs. (4.46)) is solved iteratively until the forward eigenfunction
is converged:

Ld,eig ⟪1⟫Φ
(m+1)
0,d = λ(m)

d Fd ⟪1⟫Φ
(m)

0,d , (4.63a)

(Ld,eig ⟪1⟫Φ
(m+1)
0,d )

k
≡ −D̃k+ 1

2
⟪1⟫(Φ0,d,k+1 −Φ0,d,k)

+D̃k− 1
2
⟪1⟫(Φ0,d,k −Φ0,d,k−1) + Σ̄a,k ⟪1⟫Φ0,d,k∆k ,

(4.63b)

(Fd ⟪1⟫Φ0,d)k ≡ (νΣf)k ⟪1⟫Φ0,d,k∆k , (4.63c)

λ
(m)

d =
⟨Fd ⟪1⟫Φ

(m)

0,d ,Fd ⟪1⟫Φ
(m)

0,d ⟩

⟨Fd ⟪1⟫Φ
(m+1)
0,d ,Fd ⟪1⟫Φ

(m)

0,d ⟩
, (4.63d)

P = ⟨1,FdΦ(m+1)
0,d ⟩ , (4.63e)

where P is the chosen total neutron production rate. The normalization condition
in Eq. (4.63e) can be arbitrarily chosen. The same PI procedure is repeated using
L∗d ⟪1⟫ and F∗d ⟪1⟫ to obtain Φ∗

0,d by solving the following system:

L∗d,eig ⟪1⟫Φ
∗,(m+1)
0,d = λdF∗d ⟪1⟫Φ

∗,(m)

0,d , (4.64)

where the converged λd from the forward diffusion problem is used. At the end of
this step, the following quantities have been obtained and stored: Φ0,d , Φ∗

0,d , and
λd.

Additionally, an initial guess for the fine-mesh scalar flux and transport eigenvalue
are made. Optionally, these can be set to the solutions of the forward diffusion equa-
tion:

φ
(0)
0,j = Φ0,d,k ∀ j ∈ k ∀ k , (4.65a)

λ
(0)
t = λd , (4.65b)

as the solution of the diffusion equation is most likely closer to the converged trans-
port solution than a flat guess.

1. Transport Sweep: The fine mesh solution φ
(l+ 1

2
)

0 to the discrete form of Eqs. (4.42)
is obtained by performing a transport sweep. During this step, the coarse mesh neu-

tron current (Φ
(l+ 1

2
)

1,k± 1
2

∀ k) is also stored.
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2. Restriction: In this restriction step, the following low-order mesh quantities are com-
puted: Φ

(l+ 1
2
)

0 using Eq. (4.33c):

Φ
(l+ 1

2
)

0,k ≡
∑
j∈k
φ
(l+ 1

2
)

0,j hj

∆k

, (Eq. (4.33c) revisited)

Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ using Eq. (4.52b):

Σ̇a,k ⟪φ0⟫ ≡∑
j∈k

Σa,jφ0,jhj , (Eq. (4.52b) revisited)

and ˙(νΣf)k ⟪φ
(l+ 1

2
)

0 ⟫ using Eq. (4.52c):

˙(νΣf)k ⟪φ0⟫ ≡∑
j∈k

(νΣf)j φ0,jhj . (Eq. (4.52c) revisited)

3. Eigenvalue Calculation: The next iterate of the transport eigenvalue λ(l+1)
t is com-

puted using Eq. (4.59):

λ
(l+1)
t =

K

∑
k=1

Φ∗
0,d,k [(Φ

(l+ 1
2
)

1,k+ 1
2

−Φ
(l+ 1

2
)

1,k− 1
2

) + Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ − (Ld,eig ⟪1⟫Φ
(l+ 1

2
)

0 )
k

]

K

∑
k=1

Φ∗
0,d,k

˙(νΣf)k ⟪φ
(l+ 1

2
)

0 ⟫
.

(Eq. (4.59) revisited)

4. Low-Order Solve: Now, the solution Φ
(l+1)
0 to the low-order LDA equations is com-

puted. We have used the solvability condition of the FAT to obtain λ(l+1)
t such that a

solution to Eq. (4.53a) exists.

We choose the PI process to outline the path to a converged solution, although other
approaches are possible. A modification is made to the LDA equations derived in
Section 4.3.2. Specifically, the diffusion fission source is added to both sides of the
system and lagged on the RHS in the PI process. This is done to avoid inverting a sin-
gular operator when finding the solution of the linear system. After this modification
is made, the LDA equations are defined as:

(Ld,eig + λdFd)⟪1⟫Φ
(l+ 1

2
,m+ 1

2
)

0 = Q̃(l+1) + λdFd ⟪1⟫Φ
(l+ 1

2
,m)

0 , (4.66a)
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(Ld,eig ⟪1⟫Φ0)k ≡ −D̃k+ 1
2
⟪1⟫(Φ0,k+1 −Φ0,k) + D̃k− 1

2
⟪1⟫(Φ0,k −Φ0,k−1)

+ (Σ̄a,k − λd(νΣf)k)⟪1⟫Φ0,k∆k ,

(Eq. (4.46a) revisited)

Q̃
(l+1)
k ≡ (Φ

(l+ 1
2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

) + (Ld,eig ⟪1⟫Φ
(l+ 1

2
)

0 )
k

+ (λ(l+1)
t

˙(νΣf)k − Σ̇a,k)⟪φ(l+ 1
2
)

0 ⟫ ,
(Eq. (4.53b) revisited)

Φ
(l+ 1

2
,m+1)

0 = Φ
(l+ 1

2
,m+ 1

2
)

0 + α(l+ 1
2
,m+ 1

2
)Φ0,d , (4.66b)

α(l+ 1
2
,m+ 1

2
) ≡

P − ⟨1,Fd ⟪1⟫Φ
(l+ 1

2
,m+ 1

2
)

0 ⟩

⟨1,Fd ⟪1⟫Φ0,d⟩
, (4.66c)

where α is a multiplicative constant determined by the normalization condition stated
in Eq. (4.63e). (The LHS operator shown here is for the problem interior, with the
full definition shown in Eqs. (4.46).) Because an infinite number of solutions to
Eq. (4.66a) exist, a particular solution that satisfies the chosen normalization condi-
tion can be selected through the choice of α. To derive Eq. (4.66c), we simply insert
Eq. (4.66b) into Eq. (4.63e).

Upon sufficient convergence of the coarse mesh scalar flux after performingM power
iterations, the LDA power iteration process concludes and we make the following
update:

Φ
(l+1)
0 = Φ

(l+ 1
2
,M)

0 . (4.67)

5. Prolongation: The last step is prolongation, in which the fine mesh scalar flux is
updated with information from the LDA solution. We obtain φ(l+1)

0 using Eq. (4.41):

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j + (Φ
(l+1)
0,k −Φ

(l+ 1
2
)

0,k ) ,∀ j ∈ k . (Eq. (4.41) revisited)

The fine mesh scalar flux is also normalized with the chosen normalization condition,
such as the one defined below:

P =∑
j

(νΣf)j φ
(l+1)
0 hj . (4.68)

(In practice, this additional normalization step may not be necessary if Φ
(l+1)
0 is prop-

erly normalized during PI.)

If the quantities of interest are not converged, we return to step 1 and resume the
outer iteration process.
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The iterative algorithm for LDA applied to an eigenvalue problem is summarized in Algo-
rithm 8.

Algorithm 8 LDA Applied to Eigenvalue Problems

1: Construct (Ld,eig + λdFd)⟪1⟫ as defined in Eqs. (4.46a) and (4.63c)
2: Calculate Φ0,d , Φ∗

0,d , and λd iteratively using Eqs. (4.63) and (4.64)

3: λ
(0)
t ← λd {optional, but recommended}

4: φ
(0)
j ← Φ0,d,k ∀ j ∈ k ∀ k {optional, but recommended}

5: repeat {outer iteration loop, indexed with l ∈ 0, . . . , L − 1}
6: Calculate φ

(l+ 1
2
)

0 and Φ
(l+ 1

2
)

1,k± 1
2

∀ k by solving the discrete form of Eq. (4.42a)

7: Calculate Φ
(l+ 1

2
)

0 , Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ ∀ k, and ˙(νΣf)k ⟪φ
(l+ 1

2
)

0 ⟫ ∀ k using Eqs. (4.33c),

(4.52b) and (4.52c), respectively
8: Calculate λ(l+1)

t using Eq. (4.59)
9: Construct Q̃(l+1) using Eq. (4.53b)

10: Φ
(l+ 1

2
,0)

0 ←Φ
(l+ 1

2
)

0

11: repeat {power iteration loop, indexed with m ∈ 0, . . . ,M − 1}
12: Calculate Φ

(l+ 1
2
,m+ 1

2
)

0 by solving Eq. (4.66a)
13: Calculate α(l+ 1

2
,m+ 1

2
) using Eq. (4.66c)

14: Calculate Φ
(l+ 1

2
,m+1)

0 using Eq. (4.66b)
15: until convergence {generally, convergence of Φ0 is checked}
16: Φ

(l+1)
0 ←Φ

(l+ 1
2
,M)

0

17: Calculate φ(l+1)
0 using Eq. (4.41)

18: Normalize the scalar flux using Eq. (4.68)
19: until convergence {generally, convergence of φ0 and λt are checked}

4.5 Wielandt-Shifted LDA

In this section, we discuss a technique to improve the convergence rate of PI for LDA
applied to eigenvalue problems. This technique is similar to the Wielandt shift technique
for CMFD discussed in Section 3.4. Notably, LDA offers a unique advantage over CMFD
in this regard. With CMFD, one must take care not to “over-shift” the problem because the
upper bound of the shift is unknown. Therefore, one must be conservative when choosing
the magnitude of the shift for CMFD. When applying this technique to LDA, the upper
bound of the shift is known beforehand. This is a consequence of constructing the LDA
equations such that the LHS operator is the critical diffusion operator.

As discussed in Section 4.4.2, an initial diffusion calculation is performed before the
outer iteration process is started. One of the outcomes of solving this initial diffusion
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problem is that the diffusion eigenvalue becomes known and is fixed for a given steady-state
problem. Because the LHS operator for the LDA equations is the same critical diffusion
operator, we can take advantage of the known diffusion eigenvalue in a shifted problem.
This offers the following advantages over shifted CMFD problems:

1. there is no danger of over-shifting because the upper bound is known (unlike with
CMFD, in which over-shifting can result in divergence or an inaccurate solution),
and

2. the shift parameter does not need to change throughout the outer iteration process,
which lends the LHS operator to factorization (or another technique that takes ad-
vantage of the fixed nature) to improve the efficiency of solving the linear system.

To apply a Wielandt shift to the LDA equations, we redefine the LHS operator for
eigenvalue problems (initially defined in Eq. (4.46a)) as shown below:

(Ld,eig,sh ⟪f⟫Φ0)k ≡ −D̃k+ 1
2
⟪f⟫(Φ0,k+1 −Φ0,k) + D̃k− 1

2
⟪f⟫(Φ0,k −Φ0,k−1)

+ (Σ̄a,k − fshλd(νΣf)k)⟪f⟫Φ0,k∆k ,

0 ≤ fsh < 1 ,

(4.69)

where fsh represents a fraction of the fundamental diffusion eigenvalue. With this new
LHS operator, we make the following modification to Eq. (4.66a):

Ld,eig,sh ⟪1⟫Φ
(l+ 1

2
,m+ 1

2
)

0 = Q̃(l+1) + (1 − fsh)λdFd ⟪1⟫Φ
(l+ 1

2
,m)

0 . (4.70)

With these new definitions, the operator Ld,eig,sh ⟪1⟫ becomes more singular as fsh
approaches unity. Therefore, one has the choice of how “shifted” the problem will be. To
avoid a singular operator, fsh should not be set to unity. Additionally, as fsh approaches
unity, the condition number of the LHS operator increases. If the performance of the linear
solver is dependent on the condition number, then caution should be taken when choosing
fsh. The effect of fsh on the convergence rate of PI for LDA, and the effect of a “high”
(near-unity) shift, are explored in Chapters 6 and 7.

4.6 Discussion

In this chapter, we present the novel LDA method for accelerating the convergence of
transport problems. This method is intended to serve as a viable replacement for CMFD,
which is vulnerable to nonlinear instability as a result of nonlinear terms. Because LDA is
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linear with respect to the scalar flux (and quantities derived from the scalar flux), it should
not be subject to the same type of instability. Evidence for this is provided in Chapters 5
to 7.

During the course of the derivation of LDA, we assumed a uniform weighting function
(1) for each operator, resulting in the overall volume-weighting of coarse-grid quantities.
This choice was made because it is constant throughout the iteration process. If the weight-
ing function is not constant, then the diffusion forward and adjoint eigenpair would need
to be recalculated any time the weight function is updated. (The choice of the weighting
function is arbitrary, as long as it is strictly positive to avoid the possibility of nonlinear
instability.) However, the result is that there are a few extra terms included in the RHS
vector of the LDA system to account for the improper weighting of these quantities (effec-
tively maintaining consistency with the transport solution). These terms are in addition to
terms that account for the inaccuracy of the Fick’s Law approximation. In lagging these
terms throughout the iterative process, we assume that they are “small”. This is also done
for CMFD, but because flux- and volume-weighted quantities are used, the former correc-
tive terms, relating to the weighting choice, are not present. Therefore, LDA lags more
terms in the iterative process compared to CMFD. This leads to the possibility of slower
convergence for LDA compared to CMFD, depending on how large the lagged terms may
become. In a sense, the “price” paid for avoiding nonlinear instabilities is the possibility of
worse iterative performance compared to CMFD. Chapters 5 to 7 present results regarding
this topic.

A possible approach to mitigating reduced performance compared to CMFD is to use
a “better” choice for the weighting function. For example, rather than a uniform function,
an approximation of the converged fine-grid scalar flux could be used. One might use the
solution from the first transport sweep to reconstruct the LDA operator, while ensuring
that any negative flux values are omitted from the weighting function (to guarantee that
nonlinear instability is avoided). Conceivably, this would reduce the magnitude of the
lagged terms that account for incorrect weighting – ultimately leading to improved iterative
properties compared to the case with uniform weighting. We suggest the testing of this
approach as future work.

Further, we consider the method of normalizing the low-order LDA scalar flux for
eigenvalue problems. Specifically, we consider Eq. (4.66b), which is reproduced below:

Φ
(l+ 1

2
,m+1)

0 = Φ
(l+ 1

2
,m+ 1

2
)

0 + α(l+ 1
2
,m+ 1

2
)Φ0,d , (Eq. (4.66b) revisited)

where Φ0,d is the forward diffusion solution. This method of normalization comes directly
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from the FAT, which states that the general solution to Eq. (4.53a), reproduced below:

Ld,eig ⟪1⟫Φ
(l+1)
0 = Q̃(l+1) , (Eq. (4.53a) revisited)

(where Ld,eig ⟪1⟫ is a singular operator) is a linear combination of the solution to
Eq. (4.53a) and the forward diffusion solution Φ0,d. We maintain this normalization method
throughout this chapter. However, in practice we manipulate Eq. (4.53a) such that the LHS
operator is no longer singular by moving the fission source (or a fraction of the fission
source) to the lagged RHS, as shown in Eq. (4.66a) which is reproduced below:

(Ld,eig + λdFd)⟪1⟫Φ
(l+ 1

2
,m+ 1

2
)

0 = Q̃(l+1) + λdFd ⟪1⟫Φ
(l+ 1

2
,m)

0 . (Eq. (4.66a) revisited)

Because the resulting system no longer resembles one to which the FAT applies, the nor-
malization method shown in Eq. (4.66b) is not necessary. As such, obtaining the forward
diffusion solution no longer becomes necessary (because it is only used in Eq. (4.66b), and
λd can be obtained from the adjoint calculation) and the low-order solution can be normal-
ized using conventional means such as that shown in Eq. (3.13o), reproduced below:

Φ
(l+ 1

2
,m+1)

0 ≡
⎛
⎜⎜⎜
⎝

P

⟨1,F(l+ 1
2
)Φ

(l+ 1
2
,m+ 1

2
)

0 ⟩

⎞
⎟⎟⎟
⎠

Φ
(l+ 1

2
,m+ 1

2
)

0 , (Eq. (3.13o) revisited)

where P is the global neutron production rate. In a practical implementation of LDA,
omitting the unnecessary work of converging the forward diffusion solution can reduce the
overall computational cost (as was done for the implementation of LDA in MPACT). We
note that the adjoint diffusion flux calculation is still necessary, as it is used to compute the
transport eigenvalue.
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CHAPTER 5

Fourier Analysis

In this chapter, we perform Fourier analyses for heterogeneous, spatially-periodic,
fixed-source and eigenvalue transport problems. First, some background is provided in
Section 5.1. Then, the analysis is conducted for the following iteration schemes: (i) unac-
celerated SI (Section 5.2), (ii) SI accelerated with CMFD (Section 5.3), and (iii) SI acceler-
ated with LDA (Section 5.4). This analysis is used to compare the asymptotic convergence
rates, in the form of the spectral radius (ρ), of each case for different spatial configura-
tions. The results of the heterogeneous Fourier analysis are shown to also be applicable
to spatially homogeneous problems. Additionally, the analytic prediction of the spectral
radius for spatially homogeneous and heterogeneous problems is compared to estimates
obtained with numerical experiments using a 1D, SN research code in Section 5.5. We also
present analytic and numerical results that show the prediction of the nonlinear instability
of CMFD. LDA is shown to be insensitive to this nonlinear instability. Finally, we present
the conclusions of this chapter in Section 5.6.

5.1 Background

Fourier analysis is a mathematical tool that can be used to theoretically predict the
convergence rate of a fixed-point iterative algorithm, and to compare the performance of
different algorithms. Due to the complex nature of the process of performing the Fourier
analysis, problems that are analyzed are simplified compared to relatively complex practical
problems. In this chapter, we employ Fourier analysis to compare the convergence rate of
LDA and CMFD. With this tool, the iterative properties of the two acceleration methods are
theoretically characterized for certain, “idealized” problems under a range of conditions.

Previous work has shown that CMFD and DSA are equivalent for fixed-source prob-
lems, provided the traditional DSA formulation is modified to allow for a coarser spatial
mesh to be used for the low-order problem [62]. Other previous work has taken advantage
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of the predictive capabilities of Fourier analysis to improve the convergence rate of CMFD
[25, 26, 63]. Specifically, a “stability parameter” has been used to tune the diffusivity of
the low-order problem for a range of problems types based on Fourier analysis. Careful se-
lection of this parameter, introduced by Yamamoto, has been shown to suppress the linear
instability of CMFD. However, the introduction of this parameter does not affect the non-
linear instability of CMFD, since the inclusion of the stability parameter does not eliminate
nonlinear terms from the formulation.

Though Fourier analysis is commonly performed for spatially-homogeneous problems,
it has also been used for spatially-heterogeneous problems [64, 65]. We take the approach
of performing the analysis for spatially-heterogeneous problems, rather than homogeneous,
for the following reasons:

1. analysis of heterogeneous problems provides results for more realistic cases com-
pared to homogeneous problems,

2. the homogeneous result is easily obtained from the heterogeneous analysis,

3. we are interested in the analytic prediction of the nonlinear instability of CMFD
(and the stability of LDA) which is demonstrated more effectively in heterogeneous
problems, and

4. we are interested in the performance differences between LDA and CMFD as a result
of the use of different (i) weighting functions for the homogenization of the macro-
scopic cross sections and (ii) prolongation operators.

To clarify the final point, we consider the definition of homogenized cross sections in
the CMFD formulation, which are weighted by the scalar flux and volume of the contiguous
fine cells that make up a coarse cell (j ∈ k):

Σ̄u,k ≡
∑
j∈k

Σu,jφ0,jhj

∑
j∈k
φ0,jhj

,∀ u ∈ {a, s, t} . (5.1)

In contrast, LDA utilizes volume-weighted cross sections (if the chosen weighting function
is uniform, as in Chapter 4):

Σ̄u,k ≡
∑
j∈k

Σu,jhj

∑
j∈k
hj

,∀ u ∈ {a, s, t} , (5.2)
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the use of which is “corrected” by the inclusion of linear reaction rate sums in the source:

Σ̇u,k ≡∑
j∈k

Σu,kφ0,jhj . (5.3)

Additionally, the numerical diffusion coefficient D̃ is generated using uniformly-weighted
cross sections rather than flux- and volume-weighted cross sections. We are interested
in possible differences in the iterative properties of LDA and CMFD as a result of these
different weighting functions for the cross sections.

Beyond the different weighting functions for cross sections, LDA and CMFD also use
different prolongation operators. The prolongation operator in CMFD is nonlinear and
multiplicative:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j

⎛
⎜
⎝

Φ
(l+1)
0,k

Φ
(l+ 1

2
)

0,k

⎞
⎟
⎠
,∀ j ∈ k , (Eq. (3.8q) revisited)

while the LDA prolongation operator is linear and additive:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j + (Φ
(l+1)
0,k −Φ

(l+ 1
2
)

0,k ) ,∀ j ∈ k , (Eq. (4.41) revisited)

where outer iterations are indexed with l. We are interested in any differences in the itera-
tive properties of each method resulting from these disparate prolongation operators.

The ultimate goal of the Fourier analysis is to obtain the spectral radius ρ. This pa-
rameter represents the overall error reduction rate and asymptotic convergence rate of the
scalar flux for the iteration scheme. In words, it is the quantity by which the error in the
scalar flux is scaled each outer iteration. If 0 < ρ < 1, the method is considered convergent
since

lim
l→∞

ρl = 0 . (5.4)

On the other hand, if ρ > 1, then the method is considered divergent because

lim
l→∞

ρl =∞ . (5.5)

In the case where ρ = 1, the method is also considered divergent because the error is con-
stant. The value of ρ depends on the approximations used in the problem, the problem
type, the solution methodology, the spatial configuration of the problem, and the accelera-
tion scheme used (or lack thereof). In a practical application, the numerical spectral radius,
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computed as

ρ(l) ≈
∥φ(l)

0 −φ(l−1)
0 ∥ 2

∥φ(l−1)
0 −φ(l−2)

0 ∥ 2

, (5.6)

can be compared to the analytic prediction.
The Fourier analysis is performed for an “idealized” problem that does not represent

practical reactor physics problems. Therefore, the results of the Fourier analysis can be
reasonably accurate but will not exactly represent the behavior of practical simulations.
However, the convergence characteristics predicted by the Fourier analysis can establish
general trends that practical problems may exhibit. For example, the results in this chapter
show that the performance of certain accelerated problems degrades with increasing coarse
cell optical thickness. This trend has also been seen in practical problems, and the Fourier
analysis can provide an estimated range of coarse cell optical thickness values that allow
for rapid convergence. Further, Fourier analysis can be used to derive modifications to the
acceleration scheme that mitigate this performance degradation (as previously mentioned
[25, 26]).

The process of theoretically obtaining ρ is nuanced and somewhat abstract. A general
description of the steps are as follows:

1. first, the transport and acceleration equations are perturbed around the converged
solution,

2. second, the equations are linearized with respect to the scalar flux, and

3. finally, the Fourier ansatz is introduced to the linearized equations.

The goal of step 1 is to obtain a set of equations that describes how the error in the scalar
flux changes between subsequent iterations. Step 2 is only required for a nonlinear method
such as CMFD, and allows for a linear system of equations to be formulated for the spec-
tral radius. Lastly, step 3 allows for the formulation of spectral relation equations, which
describe how the error reduction rate relates to the iteration index. These equations can
then be used to construct an overall error transition matrix, S̃, which is part of an eigen-
value problem that can be solved for the spectral radius. S̃ can also be referred to as the
iteration matrix. This matrix contains separate contributions from the transport sweep and
the application of the acceleration step.

The Fourier ansatz contains a spatial modulation function that is dependent on the
Fourier frequency ω, which may only take on a discrete set of allowable values that sat-
isfy the boundary conditions. An eigenspectrum of error reduction rates θ can be obtained
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for a given error transition matrix:

θ(ω) = eig (S̃) , (5.7)

where S̃ is the error transition matrix corresponding to a particular discrete Fourier fre-
quency ω, and eig (S̃) represents the eigenspectrum of S̃. The spectral radius is defined as
the error reduction rate (or eigenvalue of S̃) with the largest magnitude over all allowable
Fourier frequencies:

ρ ≡ max
ω

∣θ(ω)∣ . (5.8)

Once the analytic spectral radius is derived, it can be compared to the numerical estimate
that is computed with Eq. (5.6) to confirm the correctness of the analytic result.

In this chapter, we perform a Fourier analysis for spatially-periodic fixed-source and
eigenvalue transport problems, optionally accelerated with either CMFD or LDA. Periodic
boundary conditions are used for all cases, and the transport equation is solved using dis-
crete ordinates with the Gauss-Legendre quadrature set. A given coarse cell, consisting of
p fine cells, is repeated periodically throughout space, with a total of K coarse cells and
pK fine cells. The k index is omitted from certain quantities that are identical for all coarse
cells. Spatial heterogeneity within a coarse cell is described using vector quantities of the
following form:

a ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1

a2

⋮
ap

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (5.9)

where aj indicates a property of the jth fine cell. In this way, the spatial heterogeneity of
the problems is incorporated into the operators that compose the error transition matrices.
Additionally, the following notation for mathematical space is used throughout this chapter:

1. N: the set of natural numbers,

2. R: real number space, and

3. C: complex number space.

This notation will be used to denote the space in which each operator lies, with superscripts
indicating the dimensionality of the operator. For example, the notation Cn×n indicates that
a given n × n operator lies in complex number space. Finally, we use the terms “operator”
and “matrix” interchangeably.
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5.2 Fourier Analysis of Source Iteration

In this section, we perform a Fourier analysis of the SN transport equations for spatially-
periodic, heterogeneous, fixed-source and eigenvalue problems. Because the steps in this
analysis are necessary for the CMFD and LDA Fourier analyses, we present them first. In
the subsequent CMFD and LDA sections, the equations and operators obtained here will
be reused for brevity.

5.2.1 Fixed-Source Problems

5.2.1.1 Problem Statement

We begin with the steady-state, monoenergetic, discretized SN equations for a periodic
fixed-source problem with the diamond-difference spatial closure scheme and isotropic
scattering:

µn
hj
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)
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, (5.10d)

{j ∣ j ∈ N,1 ≤ j ≤ pK} ,

with the following boundary condition:

ψ
(l+ 1

2
)

n, 1
2

= ψ(l+ 1
2
)

n,pK+ 1
2

,{n ∣ n ∈ N,1 ≤ n ≤ N} . (5.10e)

These equations describe unaccelerated SI and were previously presented in Chapter 3
(with different boundary conditions). For this problem, we have imposed a periodic bound-
ary condition as stated in Eq. (5.10e). We also include the following equation to complete
the iteration scheme:

φ
(l+1)
j = φ(l+ 1

2
)

j , ∀ j . (5.10f)

The equations are presented in this way so that the results from this section can be reused
for accelerated cases (which assume the same iteration indexing as that in Eqs. (5.10a)
to (5.10e)) to avoid unnecessary repetition. Equation (5.10f) does not apply to accelerated
problems because φ(l+1)

j ∀ j is obtained differently (by solving the low-order equations).
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In this problem, K coarse cells are present, with p fine cells per coarse cell, resulting in
a total number of pK fine cells. Material properties of the problem repeat periodically in
space, meaning that the following relationship holds for the macroscopic cross sections:

Σu,j = Σu,j+p , (5.10g)

and the fixed source:
qj = qj+p , (5.10h)

for all values of j. The solution iterates (referring to estimates of the solution obtained
during the iteration process), however, are generally not spatially periodic as they converge.
This is due to the possibility of a random, non-periodic initial guess for the solution as a
function of space, resulting in ψ and φ0 solution iterates that are not spatially periodic until
convergence. As the outer iterations progress, the solution iterates approach the spatially-
periodic, converged solution (if the iteration scheme is convergent). Figure 5.1 depicts the
periodicity of the material properties and the lack thereof for the φ0 solution iterates.

(j)th fine cell (j + 1)th fine cell

φ
(l)
0,j

qj

Σu,j

φ
(l)
0,j+1

qj+1

Σu,j+1

(j + 2)th fine cell (j + 3)th fine cell

φ
(l)
0,j+p

qj+p = qj

Σu,j+p = Σu,j

φ
(l)
0,j+p+1

qj+p+1 = qj+1

Σu,j+p+1 = Σu,j+1

(K)th coarse cell (K + 1)th coarse cell

Figure 5.1: Depiction of heterogeneous problem. Spatially-periodic material properties
(Σu,j, qj) and non-periodic solution iterates (φ(l)

0,j) are shown for p = 2.

5.2.1.2 Perturbation

First, we perturb each of the equations in Eqs. (5.10) around the converged, periodic
solution. The following substitutions are made:

ψ
(l+ 1

2
)

n,j = ψ(∞)

n,j + εψ̃(l+ 1
2
)

n,j , (5.11a)

ψ
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, (5.11b)

φ
(l)
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0,j , (5.11c)

φ
(l+ 1

2
)

0,j = φ(∞)

0,j + εφ̃(l+ 1
2
)

0,j , (5.11d)

{j ∣ j ∈ N,1 ≤ j ≤ pK} ,
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∣ε∣ ≪ 1 , (5.11e)

where the superscript (∞) is used for converged quantities, the constant ε that scales the
error quantities is small, and tilde quantities (̃⋅) represent the error relative to the converged
solution for the corresponding quantity.

After Eqs. (5.11) are substituted into Eqs. (5.10) and the resulting equations are simpli-
fied, we obtain the following SN error equations:
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τj ≡ Σt,jhj , (5.12c)

cj ≡
Σs,j

Σt,j

, (5.12d)
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N
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wnψ̃
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2
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n,j , (5.12e)

{j ∣ j ∈ N,1 ≤ j ≤ pK} ,
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2
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N

∑
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µnwnψ̃
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n,pk+ 1
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, {k ∣ k ∈ N,0 ≤ k ≤K} , (5.12f)

ψ̃
(l+ 1

2
)

n, 1
2

= ψ̃(l+ 1
2
)

n,pK+ 1
2

, {n ∣ n ∈ N,1 ≤ n ≤ N} . (5.12g)

We note that the O(1) terms cancel out and the O(ε2) and higher terms are neglected,
leaving only the leading O(ε) terms. Additionally, these equations have been cast in terms
of the following fundamental material properties: (i) the optical thickness, τj , defined in
Eq. (5.12c) and (ii) the scattering ratio, cj , defined in Eq. (5.12d).

5.2.1.3 Insertion of the Fourier Ansatz

The next step is to insert the Fourier ansatz into the error equations. The general form
of the solution in the Fourier domain contains the following terms: (i) a spatial function
modulated by the Fourier frequency (eiωΣ̄tXk), (ii) an error reduction rate (θ) raised to the
power of the iteration index l, and (iii) parameters with the same dimensionality as the error
term. Our goal is to use this ansatz to construct an eigenvalue problem to determine the
spectral radius, which is the largest error reduction rate over all Fourier frequencies. An
iteration matrix will be constructed from the relationship between each scaling parameter,
with the error reduction rates serving as the eigenvalues of this matrix.
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For the scaling parameters, the following are defined on the basis of fine cells or fine
cell edges: a, b, E, and d. The term g is defined at the left and right edges of a coarse cell.
Keeping the periodic nature of the system in mind, we define these parameters locally for
a coarse cell. Due to the periodic nature of the system, these values are the same for all
coarse cells. Therefore, we only define a single set of scaling parameters that apply to all
coarse cells in the problem. The local index r is used for parameters defined on the basis
of the fine cells, with r ranging from 1 to p. For the error terms, the combination of the
local spatial index r and global coarse-cell index k correspond to a given global fine-cell
index j. For periodic properties of the fine cells, the local index r will be substituted for
the global index j when relevant. Because there are only two values of g, these terms are
simply subscripted with the side of the coarse cell to which it corresponds.

Each parameter is an unknown to be determined for the Fourier analysis, and the di-
mensionality of the scaling term matches the dimensionality of the term it represents. For
example, the parameter b that scales ψ̃ has values for each angle n and fine spatial cell with
local index r. Thus, there is a total of pN unique values of b. The ansatz substitutions are
shown below:

ψ̃
(l+ 1

2
)

n,j± 1
2

= θlan,r± 1
2
eiωΣ̄tXk , (5.13a)

ψ̃
(l+ 1

2
)

n,j = θlbn,reiωΣ̄tXk , (5.13b)

{n ∣ n ∈ N,1 ≤ n ≤ N} ,

φ̃
(l)
0,j = θlEreiωΣ̄tXk , (5.13c)

φ̃
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2
)

0,j = θldreiωΣ̄tXk , (5.13d)

{j ∣ j ∈ N,1 ≤ j ≤ pK} , {r ∣ r ∈ N,1 ≤ r ≤ p} ,

Φ̃
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2
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1,k− 1
2

= θlglefte
iωΣ̄tXk , (5.13e)

Φ̃
(l+ 1

2
)

1,k+ 1
2

= θlgrighte
iωΣ̄tXk , (5.13f)

{k ∣ k ∈ N,1 ≤ k ≤K} , {l ∣ l ∈ N,0 ≤ l < L} ,

where Xk is the geometric center of a given coarse cell k, L is the total number of outer
iterations performed, and ω is the Fourier frequency.

Now, the Fourier ansatz is substituted into the linearized error equations so that the error
reduction rate can be computed. The resulting equations are referred to as the spectral

relation equations, since they describe the relationships between the constants that scale
the error reduction rate for a given Fourier frequency. We substitute Eqs. (5.13a) to (5.13c)
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into Eq. (5.12a) to yield the following form of the SN transport equation:

µn
τr

(an,r+ 1
2
− an,r− 1

2
) + bn,r =

1

2
crEr . (5.14a)

Next, Eqs. (5.13a) and (5.13b) are substituted into Eq. (5.12b) to yield the following form
of the diamond-difference closure relationship:

bn,r =
1

2
(an,r+ 1

2
+ an,r− 1

2
) . (5.14b)

Now, we tackle the definitions of the scalar flux and neutron current defined in Eqs. (5.12e)
and (5.12f) by inserting Eqs. (5.13a), (5.13b) and (5.13d) to (5.13f):

dr =
N

∑
n=1

bn,rwn , (5.14c)
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∑
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µnwnan, 1
2
, (5.14d)
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µnwnan,p+ 1
2
. (5.14e)

This implies that the relationship between gleft and gright is the same as that between an, 1
2

and
an,p+ 1

2
. To obtain an explicit relationship between gleft and gright, we consider Eq. (5.13e)

and insert the index k + 1:
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)

(k+1)− 1
2

= Φ̃
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2
)
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2

= θlglefte
iωΣ̄tXk+1 , (5.14f)

which can then be equated with Eq. (5.13f). Doing so yields:

θlgrighte
iωΣ̄tXk = θlglefte

iωΣ̄tXk+1 , (5.14g)

which simplifies to the following relationship:

gright = glefte
iωΛ . (5.14h)

Further, we note that Eq. (5.14c) can be written in vector form:

d =
N

∑
n=1

bnwn , (5.14i)
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where

d ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

d1

d2

⋮
dp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, d ∈ Cp×1 , (5.14j)

and

bn ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

bn,1

bn,2

⋮
bn,p

⎞
⎟⎟⎟⎟⎟⎟
⎠

, bn ∈ Cp×1 . (5.14k)

Finally, we obtain a spectral relation equation for the coarse-cell edges by equating
Eq. (5.13a) for the right edge of coarse cell k (corresponding to the right edge of fine cell
j = pk) and the left edge of coarse cell k + 1 (corresponding to the left edge of fine cell
j = pk + 1):

θlan, 1
2
eiωΣ̄tXk+1 = θlan,p+ 1

2
eiωΣ̄tXk . (5.14l)

This simplifies to
an, 1

2
eiωΛ = an,p+ 1

2
, (5.14m)

where the coarse-cell total optical thickness Λ is defined as

Λ ≡ Σ̄t∆ =
p

∑
r=1

Σt,rhr . (5.14n)

The relationship in Eq. (5.14m) can now be inserted into Eq. (5.14e) to yield:

gright = eiωΛ
N

∑
n=1

µnwnan, 1
2
. (5.14o)

Then, we can insert Eq. (5.14d) to obtain the following relation:

gright = glefte
iωΛ , (5.14p)

which agrees with Eq. (5.14h). With this, we have obtained the spectral relation equations
corresponding to the SN transport equations.

The next step is to construct operators that describe the relationships between the pa-
rameters present in Eqs. (5.14) for a given coarse cell. We begin by defining a closure
operator that relates the parameters corresponding to the cell-edge and cell-center angular
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flux. Using Eqs. (5.14b) and (5.14m) we can define the following equation:

Ȳ an = bn , (5.15a)

where the diamond-difference operator Ȳ is defined as

Ȳ ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
2

1
2 0 ⋯ 0

0 1
2

1
2 0 ⋯
⋮ ⋱

1
2e
iωΛ 0 ⋯ 0 1

2

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Ȳ ∈ Cp×p , (5.15b)

and
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, an ∈ Cp×1 . (5.15c)

With this, we have obtained the relationships between each of the parameters that scale the
error reduction rate for the cell-edge and cell-center angular flux.

Similarly, we can obtain a streaming operator Yn that relates a for a given angle n and
fine cell r to Er using Eq. (5.14a):

Ynan =
1

2
CE , (5.16a)

where we define the streaming operator Yn for a given angle n as

Yn ≡ Ȳ +

⎛
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⎝

−µnτ1
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⎠

, Yn ∈ Cp×p , (5.16b)

and the vector E as

E ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

E1

E2

⋮
Ep

⎞
⎟⎟⎟⎟⎟⎟
⎠

, E ∈ Cp×1 . (5.16c)

Notably, E, the elements of which scale φ̃0,j for a given iteration l, will serve as the eigen-
vector of the eigenvalue problem that we will ultimately construct to compute the spectral
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radius. We also define the diagonal matrix C as

C ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

c1 0 0 ⋯ 0

0 c2 0 ⋯ 0

0 0 ⋮ ⋱
0 0 ⋯ 0 cp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, C ∈ Rp×p , (5.16d)

with elements corresponding to the scattering ratio in a given fine cell (cr). With the oper-
ators Ȳ , Yn, and C defined, the following relationship between an and E can be obtained
using Eq. (5.16a):

an =
1

2
Y −1
n CE , (5.16e)

where Y −1
n is the inverse of the streaming operator Yn. Further, a relationship between bn

and E can be obtained by inserting Eq. (5.16e) into Eq. (5.15a), yielding

bn =
1

2
Ȳ Y −1

n CE . (5.16f)

A relationship between d and E is found by inserting Eq. (5.16f) into Eq. (5.14i),
yielding

d = 1

2

N

∑
n=1

wnȲ Y
−1
n CE . (5.16g)

This can be written as
d = H̃fsE , (5.16h)

where the matrix H̃fs is defined as

H̃fs ≡
1

2

N

∑
n=1

wnȲ Y
−1
n C , H̃fs ∈ Cp×p . (5.16i)

H̃fs relates the parameters that correspond to the error in the scalar flux from the previous
outer iteration to the next outer iteration by solving the SN transport equation. Therefore,
we refer to H̃fs as the transport error transition matrix. The H̃fs matrix describes how
errors in φ(l) propagate into errors in φ(l+1). For unaccelerated, fixed-source, transport
problems, H̃fs is the overall error transition matrix (or iteration matrix). The spectral radius
of unaccelerated SI applied to fixed-source problems can then be computed by solving
the following eigenvalue problem for the eigenvalue θ with the largest magnitude over all
allowable Fourier frequencies:

θE = H̃fsE . (5.16j)
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The equations and definitions obtained in this section are relevant for accelerated cases,
and will be used in Sections 5.3 and 5.4. Rather than repeat these steps in subsequent sec-
tions, they are stated here. However, the relationship between φ(l+ 1

2
) and φ(l+1) stated in

Eq. (5.10f) is much different in these later sections. Additionally, the overall error transi-
tion matrix (denoted as S̃ for accelerated cases) will take a different form that includes H̃
and a separate contribution from the low-order problem. Therefore, H̃ is replaced with S̃
in Eq. (5.16j) for accelerated problems. Next, we perform the Fourier analysis for unac-
celerated SI applied to eigenvalue problems (in which H̃ takes a different form than that
derived here for fixed-source problems).

5.2.2 Eigenvalue Problems

5.2.2.1 Problem Statement

For the transport equations, the only difference between the fixed-source and eigenvalue
equations lies in the RHS of the NTE, which now contains the fission source scaled by the
fundamental mode eigenvalue. Therefore, we state only this equation to avoid unnecessary
repetition:

µn
hj

(ψ(l+ 1
2
)

n,j+ 1
2

− ψ(l+ 1
2
)

n,j− 1
2

) +Σt,jψ
(l+ 1

2
)

n,j = 1

2
[Σs,j + λ(l) (νΣf)j]φ

(l)
0,j , (5.17)

{j ∣ j ∈ N,1 ≤ j ≤ pK} ,

which replaces Eq. (5.10a). The remaining equations are the same as those in Eqs. (5.10).

5.2.2.2 Perturbation

For the perturbation step, the same perturbations listed in Eqs. (5.11) are used, with the
addition of the following perturbation equation for the fundamental eigenvalue:

λ(l) = λ = Σ̄
(∞)
a

νΣf
(∞)

, (5.18)

which takes advantage of the faster convergence of the eigenvalue compared to the flux.
After inserting Eqs. (5.11) and Eq. (5.18) into the SN transport equations we obtain the

same set of equations as those listed in Eqs. (5.14) with the exception of Eq. (5.14a). This
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equation now takes the following form:

µn
τj

(ψ̃(l+ 1
2
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n,j+ 1
2

− ψ̃(l+ 1
2
)

n,j− 1
2

) + ψ̃(l+ 1
2
)

n,j = 1

2
γjφ̃

(l)
0,j , (5.19a)

where we define γj as
γj ≡ cj + λfj , (5.19b)

and fj as

fj ≡
(νΣf)j

Σt,j

. (5.19c)

Next, we insert the Fourier ansatz.

5.2.2.3 Insertion of the Fourier Ansatz

We now insert the Fourier ansatz listed in Eqs. (5.13) into the SN error equations. This is
the same ansatz used for fixed-source problems. After the substitution and performing the
same steps as those in Section 5.2.1, we obtain the following SN spectral relation equation
for the NTE:

µn
τr

(an,r+ 1
2
− an,r− 1

2
) + bn,r =

1

2
γrEr , (5.20a)

which replaces Eq. (5.14a). The remaining equations are the same as those in Eqs. (5.14).
Using the spectral relation equations, we define the error transition matrix H̃eig for the

eigenvalue SN transport equations as

H̃eig ≡
1

2

N

∑
n=1

wnȲ Y
−1
n Γ , H̃eig ∈ Cp×p , (5.20b)

where the Γ operator is defined as

Γ ≡ C + λF , Γ ∈ Rp×p , (5.20c)

and the F operator is defined as

F ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

f1 0 0 ⋯ 0

0 f2 0 ⋯ 0

0 0 ⋮ ⋱
0 0 ⋯ 0 fp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, F ∈ Rp×p . (5.20d)

The only difference between Eq. (5.16i) and Eq. (5.20b) is that C is replaced with Γ, which
accounts for both the scattering and fission sources. With this, we have obtained the set
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of spectral relation equations and associated operators resulting from the SN equations for
eigenvalue problems. The spectral radius of unaccelerated SI applied to eigenvalue prob-
lems is computed by solving the eigenvalue problem shown in Eq. (5.16j), with H̃fs replaced
by H̃eig. As previously stated, the results from this section will be reused for accelerated
cases. Next, the Fourier analysis for CMFD-accelerated problems is performed.

5.3 CMFD Fourier Analysis

This section provides the process and details of a spatially-periodic, heterogeneous
Fourier analysis for CMFD for both fixed-source and eigenvalue problems. We make use of
many of the equations derived in Section 5.2, since the fine-mesh solution is still obtained
by solving the transport equations. Because CMFD is nonlinear with respect to the scalar
flux, the equations that describe the low-order step must be linearized before insertion of
the Fourier ansatz.

5.3.1 Fixed-Source Problems

5.3.1.1 Problem Statement

We begin with the steady-state, monoenergetic, CMFD equations for a periodic, fixed-
source problem:
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Q̄ ≡
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∆
, (5.21f)
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These equations were derived in Section 3.2.1. Next, we linearize these equations and
perturb them around the converged solution.

5.3.1.2 Perturbation & Linearization

First, we perturb each of the CMFD equations around the converged solution. The
following perturbation equations are substituted into Eq. (5.21a):

φ
(l+ 1

2
)

0,j = φ(∞)

0,j + εφ̃(l+ 1
2
)

0,j , (5.22a)

Φ
(l+ 1

2
)

0,k = Φ
(∞)

0,k + εΦ̃(l+ 1
2
)

0,k , (5.22b)

Φ
(l+1)
0,k = Φ

(∞)

0,k + εΦ̃(l+1)
0,k , (5.22c)

Φ
(l+ 1

2
)

1,k± 1
2

= Φ
(∞)

1,k± 1
2

+ εΦ̃(l+ 1
2
)

1,k± 1
2

, (5.22d)

∣ε∣ ≪ 1 . (5.22e)

The CMFD equations are nonlinear with respect to the scalar flux, and will not yield a
linear system of equations that are conducive to computing the spectral radius. Therefore,
we must linearize the CMFD equations after making the substitutions in Eqs. (5.22). This
is accomplished with a Taylor expansion about ε (̃⋅) = 0, and by neglecting O(ε2) terms.
Each nonlinear term is treated separately. We begin with the absorption term in a given
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coarse cell:

Σ̄
(l+ 1

2
)

a,k Φ
(l+1)
0,k =

∑
j∈k

Σa,j (φ(∞)

0,j + εφ(l+ 1
2
)

0,j )hj

∑
j∈k

(φ(∞)

0,j + εφ(l+ 1
2
)

0,j )
(Φ

(∞)

0,k + εΦ̃(l+1)
0,k )

=
Φ

(∞)

0,k ∑
j∈k

Σa,jφ
(∞)

0,j hj + ε(Φ
(∞)

0,k ∑
j∈k

Σa,jφ
(l+ 1

2
)

0,j hj + Φ̃
(l+1)
0,k ∑

j∈k
Σa,jφ

(∞)

0,j hj) +����O(ε2)

Φ
(∞)

0,k ∆ + ε ∑
j∈k
φ̃
(l+ 1

2
)

0,j hj

,

(5.23a)
with the following definition of the converged coarse cell scalar flux:

Φ
(∞)

0,k ≡
∑
j∈k
φ
(∞)

0,j hj

∆
. (5.23b)

We make use of the following first-order Taylor expansion for the denominator of
Eq. (5.23a):

1

Φ
(∞)

0,k ∆ + ε ∑
j∈k
φ̃
(l+ 1

2
)

0,j hj

≈ 1

Φ
(∞)

0,k ∆

⎛
⎝

1 − ε

Φ
(∞)

0,k ∆
∑
j∈k

φ̃
(l+ 1

2
)

0,j hj
⎞
⎠
. (5.23c)

With the above substitution, we obtain:

Σ̄
(l+ 1

2
)

a,k Φ
(l+1)
0,k ≈ 1

Φ
(∞)

0,k ∆

⎛
⎝

1 − ε

Φ
(∞)

0,k ∆
∑
j∈k

φ̃
(l+ 1

2
)

0,j hj
⎞
⎠

⎡⎢⎢⎢⎣
Φ

(∞)

0,k ∑
j∈k

Σa,jφ
(∞)

0,j hj+

ε
⎛
⎝

Φ
(∞)

0,k ∑
j∈k

Σa,jφ
(l+ 1

2
)

0,j hj + Φ̃
(l+1)
0,k ∑

j∈k

Σa,jφ
(∞)

0,j hj
⎞
⎠

⎤⎥⎥⎥⎥⎦

≈ Φ
(∞)

0,k Σ̄
(∞)

a,k + ε
⎡⎢⎢⎢⎣

1

∆
∑
j∈k

(Σa,j − Σ̄
(∞)
a ) φ̃(l+ 1

2
)

0,j hj + Σ̄
(∞)
a Φ̃

(l+1)
0,k

⎤⎥⎥⎥⎦
+�

���O(ε2) ,

(5.23d)

using the following definition for the converged, flux- and volume- weighted macroscopic
cross section:

Σ̄
(∞)

a,k ≡
∑
j∈k

Σa,jφ
(∞)

0,j hj

∑
j∈k
φ
(∞)

0,j hj
. (5.23e)

Next, we obtain the linearized form of the neutron current at the right side of the coarse
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cell by inserting Eq. (5.22b) into Eq. (5.21b):

Φ
(l+1)

1,k+ 1
2

= − 1

3Σ̄
(∞)

t,k ∆
(Φ̃

(l+1)
0,k+1 − Φ̃

(l+1)
0,k ) + D̂(l+ 1

2
)

k+ 1
2

(Φ̃
(l+ 1

2
)

0,k+1 + Φ̃
(l+ 1

2
)

0,k ) , (5.24a)

where the linearized form of D̂
(l+ 1

2
)

k+ 1
2

is defined as

D̂
(l+ 1

2
)

k+ 1
2

= Φ̃
(l+ 1

2
)

1,k+ 1
2

+ 1

3Σ̄
(∞)

t,k ∆
(Φ̃

(l+ 1
2
)

0,k+1 − Φ̃
(l+ 1

2
)

0,k ) . (5.24b)

Eqs. (5.24) also hold for a given left coarse cell edge, where k is replaced with (k − 1). We
note that converged quantities with superscript (∞), such as Σ̄

(∞)

t,k , are the same for all k.
With these terms defined, we can now insert the linearized expressions into Eq. (5.21a).

After cancelling like terms and rearranging, the following linearized form of the fixed-
source CMFD equation is obtained:

1

3Σ̄
(∞)

t,k ∆
(2Φ̃

(l+1)
0,k − Φ̃

(l+1)
0,k+1 − Φ̃

(l+1)
0,k−1) + Σ̄

(∞)

a,k Φ̃
(l+1)
0,k ∆

= (Φ̃
(l+ 1

2
)

1,k− 1
2

− Φ̃
(l+ 1

2
)

1,k+ 1
2

) + 1

3Σ̄
(∞)

t,k ∆
(2Φ̃

(l+ 1
2
)

0,k − Φ̃
(l+ 1

2
)

0,k+1 − Φ̃
(l+ 1

2
)

0,k−1)

+Σ̄
(∞)

a,k Φ̃
(l+ 1

2
)

0,k ∆ −∑
j∈k

Σa,jφ̃
(l+ 1

2
)

0,j hj .

(5.25a)

Next is the restriction equation defined in Eq. (5.21h). We insert Eqs. (5.22a)
and (5.22b) into Eq. (5.21h) to yield:

Φ
(∞)

0,k + εΦ̃(l+ 1
2
)

0,k =
∑
j∈k

(φ(∞)

0,j + εφ̃(l+ 1
2
)

0,j )hj

∆
. (5.25b)

After simplifying and cancelling like terms, the following error restriction equation is ob-
tained:

Φ̃
(l+ 1

2
)

0,k =
∑
j∈k
φ̃
(l+ 1

2
)

0,j hj

∆
. (5.25c)

Lastly, we consider the prolongation equation defined in Eq. (5.21g). We first insert
Eqs. (5.22b) and (5.22c) into Eq. (5.21g), yielding:

φ
(∞)

0,j + εφ̃(l+1)
0,j =

φ
(∞)

0,j Φ
(∞)

0,k + ε(φ(∞)

0,j Φ̃
(l+1)
0,k +Φ

(∞)

0,k φ
(l+ 1

2
)

0,j )

Φ
(∞)

0,k + εΦ̃(l+ 1
2
)

0,k

. (5.25d)
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A Taylor expansion around εΦ̃
(l+ 1

2
)

0,k = 0 is employed to linearize this equation:

φ
(∞)

0,j + εφ̃(l+1)
0,j ≈ [φ(∞)

0,j Φ
(∞)

0,k + ε(φ(∞)

0,j Φ̃
(l+1)
0,k +Φ

(∞)

0,k φ
(l+ 1

2
)

0,j )]
⎛
⎜⎜
⎝

1

Φ
(∞)

0,k

− ε
Φ̃

(l+ 1
2
)

0,k

(Φ
(∞)

0,k )
2

⎞
⎟⎟
⎠
.

(5.25e)
After simplifying and cancelling like terms, the following linearized error prolongation
equation is obtained:

φ̃
(l+1)
0,j = φ̃(l+ 1

2
)

0,j + βj (Φ̃
(l+1)
0,k − Φ̃

(l+ 1
2
)

0,k ) ,∀ j ∈ k , (5.25f)

where we define βj as

βj ≡
φ
(∞)

0,j

Φ
(∞)

0,k

. (5.25g)

With this, we have obtained the linearized error forms of the CMFD equations that de-
scribe how the errors in the quantities of interest evolve across different outer iterations.
Specifically, we have obtained the linearized error form of (i) the main CMFD equation
shown in Eq. (5.25a) and (ii) the prolongation equation shown in Eq. (5.25f). These equa-
tions will be used for the remaining step of the Fourier analysis, which is the insertion of
the Fourier ansatz.

5.3.1.3 Insertion of the Fourier Ansatz

The ansatz substitutions for the CMFD equations are shown below:

Φ̃
(l+ 1

2
)

0,k = θlAeiωΣ̄tXk , (5.26a)

Φ̃
(l+1)
0,k = θlReiωΣ̄tXk , (5.26b)

{k ∣ k ∈ N,1 ≤ k ≤K} ,

{l ∣ l ∈ N,0 ≤ l < L} ,

which are used in combination with the ansatz equations stated in Eqs. (5.13). In
Eqs. (5.26), the parameters A and R are scalar unknowns to be determined. First, using
Eqs. (5.12f), (5.13a) and (5.13e), the following spectral relation is obtained for the left
edge of a given coarse cell:

gleft =
N

∑
n=1

µnwnan, 1
2
. (5.27a)
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This requires an explicit definition of an, 1
2
, which can be obtained using Eq. (5.16e) and a

unit vector to select a at the left edge of a coarse cell:

gleft =
1

2
eT1

N

∑
n=1

µnwnY
−1
n CE , (5.27b)

where the unit vector e1 is defined as

e1 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, e1 ∈ Np×1 . (5.27c)

Now, we define the operator

Gfs ≡
1

2
eT1

N

∑
n=1

µnwnY
−1
n C , Gfs ∈ C1×p , (5.27d)

which allows us to define gleft as
gleft =GfsE . (5.27e)

A similar procedure yields the following definition for gright:

gright = eiωΛGfsE , (5.27f)

which uses the relationship defined in Eq. (5.14m). Thus, we have determined that gleft and
gright are related by the constant eiωΛ:

glefte
iωΛ = gright , (5.27g)

which confirms the relationships established in Eqs. (5.14h) and (5.14p).
With the spectral relation equations for the cell-edge terms defined, we move on to the

main CMFD error equation shown in Eq. (5.25a). First, we substitute Eqs. (5.13e), (5.13f),
(5.26a), (5.26b), (5.27e) and (5.27f) into Eq. (5.25a). After simplifying and cancelling like
terms, the following main CMFD spectral relation equation is obtained:

R

3Σ̄
(∞)

t,k ∆
(2 − eiωΛ − e−iωΛ) + Σ̄

(∞)

a,k R∆ = (1 − eiωΛ)GfsE

+ A

3Σ̄
(∞)

t,k ∆
(2 − eiωΛ − e−iωΛ) + Σ̄

(∞)

a,k A∆ −∑
r

Σa,rhrdr .

(5.27h)
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We can rewrite the above equation in terms of more fundamental quantities in vector form:

vφ(∞)

3τφ(∞)
R (2 − eiωΛ − e−iωΛ) +

(Ċτ)T φ(∞)

vφ(∞)
R = (1 − eiωΛ)GfsE

+ vφ
(∞)

3τφ(∞)
A (2 − eiωΛ − e−iωΛ) +

(Ċτ)T φ(∞)

vφ(∞)
A − (Ċτ)T d ,

(5.27i)

where the converged coarse-grid cross sections have been recast in terms of the optical
thickness, τ , absorption ratio, ċ, and volume fraction, v. The following definitions are
relevant to Eq. (5.27i):

Ċ ≡ I −C , Ċ ∈ Rp×p , (5.27j)

τ ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

τ1

τ2

⋮
τp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, τ ∈ Rp×1 , (5.27k)

v ≡ 1

∆

⎛
⎜⎜⎜⎜⎜⎜
⎝

h1

h2

⋮
hp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, v ∈ Rp×1 , (5.27l)

φ
(∞)

0 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

φ
(∞)

0,1

φ
(∞)

0,2

⋮
φ
(∞)

0,p

⎞
⎟⎟⎟⎟⎟⎟
⎠

, φ
(∞)

0 ∈ Rp×1 , (5.27m)

where I is the p × p identity matrix. In this way, the spatial heterogeneity of the periodic
lattice is captured in vector and matrix quantities. Solving Eq. (5.27i) for the constant R
yields:

R = FCMFD,fsE +A , (5.27n)

where we define the row vector FCMFD,fs as

FCMFD,fs ≡
(1 − eiωΛ)Gfs − (Ċτ)T H̃fs

2vTφ
(∞)
0

3τTφ
(∞)
0

(1 − cosωΛ) + (Ċτ)
T
φ
(∞)
0

vTφ
(∞)
0

, FCMFD,fs ∈ C1×p . (5.27o)

We note that the following substitution has been made to obtain Eq. (5.27o):

(2 − eiωΛ − e−iωΛ) = 2 (1 − cosωΛ) . (5.27p)
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Lastly, we obtain the CMFD prolongation spectral relation equation by inserting
Eqs. (5.13c), (5.13d), (5.26a) and (5.26b) into Eq. (5.25f), resulting in the following:

θE = S̃CMFD,fsE , (5.27q)

where the overall error transition matrix S̃CMFD,fs, containing information from the transport
sweep and low-order CMFD solve, is defined as

S̃CMFD,fs ≡ H̃fs +βCMFDFCMFD,fs , S̃CMFD,fs ∈ Cp×p , (5.27r)

and the vector βCMFD is defined as the ratio of the converged fine-cell scalar flux to the
converged coarse-cell average scalar flux:

βCMFD ≡ φ
(∞)

0

Φ
(∞)

0

, βCMFD ∈ Rp×1 . (5.27s)

In Eq. (5.27r), the matrix H̃fs is the contribution to the overall error transition matrix
from the transport sweep, and βCMFDFCMFD,fs is the contribution from the CMFD solve.
With this, we have obtained an eigenvalue problem (Eq. (5.27q)) that can be solved for ρ.

5.3.2 Eigenvalue Problems

5.3.2.1 Problem Statement

In this section, we reuse many of the same steps from Section 5.3.1 for brevity. Addi-
tionally, many of the definitions in Section 5.2.2 are relevant here. The following CMFD
equations for eigenvalue problems are used for the Fourier analysis:

(Φ
(l+ 1

2
,m+1)

1,k+ 1
2

−Φ
(l+ 1

2
,m+1)

1,k− 1
2

) + Σ̄
(l+ 1

2
)

a Φ
(l+ 1

2
,m+1)

0 ∆ = λ(l)(νΣf)
(l+ 1

2
)

k Φ
(l+ 1

2
,m)

0,k ∆ , (5.28a)

Φ
(l+ 1

2
,m+1)

1,k+ 1
2

≡ −D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
,m+1)

0,k+1 −Φ
(l+ 1

2
,m+1)

0,k )

+D̂(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
,m+1)

0,k+1 +Φ
(l+ 1

2
,m+1)

0,k ) ,
(5.28b)

(νΣf)
(l+ 1

2
)

k ≡
∑
j∈k

(νΣf)j φ
(l+ 1

2
)

0,j hj

∑
j∈k
φ
(l+ 1

2
)

0,j hj

, (5.28c)
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with the remaining equations being the same as those in Eqs. (5.21). These equations were
presented in Section 3.2.2. As a reminder, the outer iteration index is l and the power
iteration index is m. The first step is to linearize and perturb these equations around the
converged solution.

5.3.2.2 Perturbation & Linearization

For the perturbation step of the Fourier analysis, the same perturbation equations from
Eq. (5.18) and Eqs. (5.22) are used. First, we linearize and perturb the CMFD equation
shown in Eq. (5.28a). The same linearization techniques from Section 5.3.1.2 are employed
in this process (mainly, the use of Taylor expansions), which yields the following error
equation from the CMFD equation:

1

3Σ̄
(∞)

t,k ∆
(2Φ̃

(l+ 1
2
,m+1)

0,k − Φ̃
(l+ 1

2
,m+1)

0,k+1 − Φ̃
(l+ 1

2
,m+1)

0,k−1 ) + Σ̄
(∞)

a,k Φ̃
(l+ 1

2
,m+1)

0,k ∆

= (Φ̃
(l+ 1

2
)

1,k− 1
2

− Φ̃
(l+ 1

2
)

1,k+ 1
2

) + 1

3Σ̄
(∞)

t,k ∆
(2Φ̃

(l+ 1
2
)

0,k − Φ̃
(l+ 1

2
)

0,k+1 − Φ̃
(l+ 1

2
)

0,k−1)

+λ∑
j∈k

(νΣf)j φ̃
(l+ 1

2
)

0,j hj + Σ̄
(∞)

a,k Φ̃
(l+ 1

2
,m)

0,k ∆ −∑
j∈k

Σa,jφ̃
(l+ 1

2
)

0,j hj .

(5.29)

The remaining CMFD equations are the same as those from the fixed-source analysis
listed in Eqs. (5.25), with Eq. (5.29) replacing Eq. (5.25a). These describe how the errors
in the iterates evolve across different outer iterations and power iterations. Next, we insert
the Fourier ansatz for each quantity of interest.

5.3.2.3 Insertion of the Fourier Ansatz

In this section, we insert the Fourier ansatz for acceleration equations. The ansatz
relates the error magnitude for each iterative quantity to the iteration index. For eigenvalue
problems, we are working with two different iteration indices: outer iterations indexed
with l and power iterations indexed with m. The same ansatz equations as those listed in
Eqs. (5.13) and Eq. (5.26a) are used. However, since the coarse-mesh scalar flux is now
indexed by the outer and power iterations, Eq. (5.26b) is replaced with the following:

Φ̃
(l+ 1

2
,m)

0,k = θlR(m)eiωΣ̄tXk , (5.30)

{k ∣ k ∈ N,1 ≤ k ≤K} ,

{l ∣ l ∈ N,0 ≤ l < L} ,
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{m ∣m ∈ N,0 ≤m <M} .

We note that the superscript m on the R term in Eq. (5.30) is not an exponent, but rather an
index that indicates that R is also an iterative quantity.

The ansatz equations are now substituted into the CMFD error equation (Eq. (5.29)),
yielding the following spectral relation equation:

R(m+1)

⎡⎢⎢⎢⎢⎣

1

3Σ̄
(∞)

t,k ∆
(2 − eiωΛ − e−iωΛ) + Σ̄

(∞)

a,k ∆

⎤⎥⎥⎥⎥⎦
= λ∑

r

(νΣf)r hrdr + Σ̄
(∞)

a,k R
(m)∆ −∑

r

Σa,rhrdr

+ A

3Σ̄
(∞)

t,k ∆
(2 − eiωΛ − e−iωΛ) + (1 − eiωΛ)GeigE ,

(5.31a)

where the row vectorGeig is defined as

Geig ≡
1

2
eT1

N

∑
n=1

µnwnY
−1
n Γ , Geig ∈ C1×p . (5.31b)

Just as in Section 5.3.1, this equation can be cast in terms of the previously-defined funda-
mental mesh properties:

R(m+1)

⎡⎢⎢⎢⎢⎣

vTφ
(∞)

0

3τ Tφ
(∞)

0

(2 − eiωΛ − e−iωΛ) +
(Ċτ)T φ(∞)

0

vTφ
(∞)

0

⎤⎥⎥⎥⎥⎦

= [λ (Fτ )T − (Ċτ)T ] H̃eigE +R(m)
(Ċτ)T φ(∞)

0

vTφ
(∞)

0

+ v
Tφ

(∞)

0

3τ Tφ
(∞)

0

A (2 − eiωΛ − e−iωΛ) + (1 − eiωΛ)GeigE .

(5.31c)

To solve for R, we first rearrange Eq. (5.31c) for R(m+1):

R(m+1) = α1R(m) + α2

α3

, (5.31d)

where we have defined the following constants:

α1 ≡
(Ċτ)T φ(∞)

0

vTφ
(∞)

0

, (5.31e)
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α2 ≡ (1 − eiωΛ)GeigE+2A (1 − cosωΛ) v
Tφ

(∞)

0

3τ Tφ
(∞)

0

+[λ (Fτ )T − (Ċτ)T ] H̃eigE , (5.31f)

α3 ≡
2vTφ

(∞)

0

3τ Tφ
(∞)

0

(1 − cosωΛ) +
(Ċτ)T φ(∞)

0

vTφ
(∞)

0

. (5.31g)

Equation (5.31d) is a recurrence relation for R(m) with the following solution:

R(m) =
α2 (α1

α3
)m + α1R(0) (α1

α3
)m − α3R(0) (α1

α3
)m − α2

α1 − α3

. (5.31h)

To complete the calculation for R, we assume that the low-order problem is always “fully
converged”. This corresponds to taking the limit of R(m) as m → ∞. Because the ratio
α1

α3
< 1 for all allowable Fourier frequencies, the following holds:

lim
m→∞

(α1

α3

)
m

= lim
m→∞

⎛
⎜⎜⎜
⎝

(Ċτ)
T
φ
(∞)
0

vTφ
(∞)
0

2vTφ
(∞)
0

3τTφ
(∞)
0

(1 − cosωΛ) + (Ċτ)
T
φ
(∞)
0

vTφ
(∞)
0

⎞
⎟⎟⎟
⎠

m

= 0 . (5.31i)

Therefore, upon making this assumption, we obtain:

lim
m→∞

R(m) ≡ R(∞) (5.31j)

= α2

α3 − α1

(5.31k)

=
(1 − eiωΛ)GeigE + [λ (Fτ )T − (Ċτ)T ] H̃eigE

2vTφ
(∞)
0

3τTφ
(∞)
0

(1 − cosωΛ)
+A . (5.31l)

Now, we can insert R(∞) into the spectral relation form of the prolongation equation,
shown below:

θE = H̃eigE +βCMFD (R(∞) −A) , (5.31m)

which yields the following eigenvalue problem:

θE = S̃CMFD,eigE . (5.31n)

We note that the parameter A cancels upon substituting Eq. (5.31l) into Eq. (5.31m). Here
the overall error transition matrix S̃CMFD,eig is defined as

S̃CMFD,eig ≡ H̃eig +βCMFDFCMFD,eig , S̃CMFD,eig ∈ Cp×p , (5.31o)
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and the row vector FCMFD,eig is defined as

FCMFD,eig ≡
(1 − eiωΛ)Geig + [λ (Fτ )T − (Ċτ)T ] H̃eig

2vTφ
(∞)
0

3τTφ
(∞)
0

(1 − cosωΛ)
, FCMFD,eig ∈ C1×p . (5.31p)

With this, we have obtained the spectral relation form of all relevant equations. The spectral
radius for CMFD applied to eigenvalue problems can be obtained by solving the eigenvalue
problem in Eq. (5.31n).

5.4 LDA Fourier Analysis

Here, we present the Fourier analysis procedure for spatially-heterogeneous cases for
both fixed-source and eigenvalue problem types accelerated with LDA. Many of the results
from Section 5.2 are used here. Because LDA is linear with respect to the scalar flux, it
does not need to be linearized before the introduction of the Fourier ansatz.

5.4.1 Fixed-Source Problems

5.4.1.1 Problem Statement

We begin with the monoenergetic LDA equations for a periodic, fixed-source problem:

D̃ (2Φ
(l+1)
0,k −Φ

(l+1)
0,k−1 −Φ

(l+1)
0,k+1) + Σ̄aΦ

(l+1)
0,k ∆

= Q̄∆ + (Φ
(l+ 1

2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

) + D̃ (2Φ
(l+ 1

2
)

0,k −Φ
(l+ 1

2
)

0,k−1 −Φ
(l+ 1

2
)

0,k+1)

+Σ̄aΦ
(l+ 1

2
)

0,k ∆ −
p

∑
j=1

Σa,jφ
(l+ 1

2
)

0,j hj ,

(5.32a)

D̃ ≡ 1

3 ∑
j∈k

Σt,jhj
, (5.32b)

Σ̄a ≡
∑
j∈k

Σa,jhj

∑
j∈k
hj

, (5.32c)

Q̄ ≡
∑
j∈k
qjhj

∆
, (5.32d)

φ
(l+1)
0,j = φ(l+1)

0,j + (Φ
(l+1)
0,k −Φ

(l+ 1
2
)

0,k ) ,∀ j ∈ k , (5.32e)
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Φ
(l+ 1

2
)

0,k ≡
∑
j∈k
φ
(l+ 1

2
)

0,j hj

∆
, (5.32f)

Φ
(l+ 1

2
)

1, 1
2

= Φ
(l+ 1

2
)

1,K+ 1
2

, (5.32g)

Φ
(l+ 1

2
)

1,k+ 1
2

≡
N

∑
n=1

µnwnψ
(l+ 1

2
)

n,pk+ 1
2

, {k ∣ k ∈ N,0 ≤ k ≤K} . (5.32h)

These equations were presented in Section 4.3.1. Next, we perturb these equations around
the converged solution.

5.4.1.2 Perturbation

Because LDA is already linear with respect to the scalar flux, we do not need to lin-
earize the set of equations (as was necessary for CMFD in Section 5.3). The perturbation
equations are the same as those used for CMFD, and are listed in Eqs. (5.22). Upon in-
sertion of Eqs. (5.22) into Eqs. (5.32a) and (5.32e), we obtain the following LDA error
equations:

1

3Λ
(2Φ̃

(l+1)
0,k − Φ̃

(l+1)
0,k−1 − Φ̃

(l+1)
0,k+1) + Σ̄aΦ̃

(l+1)
0,k ∆ = (Φ̃

(l+ 1
2
)

1,k− 1
2

− Φ̃
(l+ 1

2
)

1,k+ 1
2

)

+ 1

3Λ
(2Φ̃

(l+ 1
2
)

0,k − Φ̃
(l+ 1

2
)

0,k−1 − Φ̃
(l+ 1

2
)

0,k+1) + Σ̄aΦ̃
(l+ 1

2
)

0,k ∆ −
p

∑
j=1

Σa,jφ̃
(l+ 1

2
)

0,j hj ,
(5.33a)

φ̃
(l+1)
0,j = Φ̃

(l+ 1
2
)

0,j + (Φ̃
(l+1)
0,k − Φ̃

(l+ 1
2
)

0,k ) ,∀ j ∈ k . (5.33b)

These equations describe how errors in the quantities of interest evolve across iterations.
Next, we introduce the Fourier ansatz.

5.4.1.3 Insertion of the Fourier Ansatz

The next step is to cast the error equations in terms of the error reduction rate, Fourier
frequency, and a spatial modulation function. We use the same Fourier ansatz equations
listed in Eqs. (5.13) and (5.26). After inserting these equations into Eqs. (5.33), we obtain
the following LDA spectral relation equation:

R

3Λ
(2eiωΣ̄tXk − eiωΣ̄tXk−1 − eiωΣ̄tXk+1) + ċTτReiωΣ̄tXk

= (glefte
iωΣ̄tXk − grighte

iωΣ̄tXk) + A

3Λ
(2eiωΣ̄tXk − eiωΣ̄tXk−1 − eiωΣ̄tXk+1)

+ċTτAeiωΣ̄tXk − (Ċτ)T eiωΣ̄tXkH̃fsE .

(5.34a)
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Dividing Eq. (5.34a) by eiωΣ̄tXk and substituting in Eqs. (5.27e) and (5.27f) results in

R [ 1

3Λ
(2 − eiωΛ − e−iωΛ) + ċTτ ]

= (1 − eiωΛ)GfsE +A [ 1

3Λ
(2 − eiωΛ − e−iωΛ) + ċTτ ] − (Ċτ)T H̃fsE .

(5.34b)

Then, rearranging for R yields:

R = FLDA,fsE +A , (5.34c)

where the row vector FLDA,fs is defined as

FLDA,fs ≡
(1 − eiωΛ)Gfs − (Ċτ)T H̃fs

2
3Λ (1 − cosωΛ) + ċTτ

, FLDA,fs ∈ C1×p . (5.34d)

Lastly, we substitute the Fourier ansatz into Eq. (5.32e), resulting in

θl+1EeiωΣ̄tXk = θldeiωΣ̄tXk +βLDA (θlReiωΣ̄tXk − θlAeiωΣ̄tXk) (5.34e)

where we define βLDA as
βLDA ≡ 1 , βLDA ∈ Np×1 . (5.34f)

After dividing by θleiωΣ̄tXk and substituting in Eqs. (5.16h) and (5.34c), we obtain the
following eigenvalue problem:

θE = S̃LDA,fsE , (5.34g)

where the overall error transition matrix S̃LDA,fs is defined as

S̃LDA,fs = H̃fs +βLDAFLDA,fs , S̃LDA,fs ∈ Cp×p . (5.34h)

This eigenvalue problem can be used to solve for the spectral radius ρ.

5.4.2 Eigenvalue Problems

5.4.2.1 Problem Statement

In this section, we again utilize some of the work already presented in Section 5.3.2 to
avoid unnecessary repetition. The LDA equations for an eigenvalue problem are the same
as Eqs. (5.32), with the exception of Eq. (5.32a), which is replaced with the following LDA

118



equation:

D̃ (2Φ
(l+ 1

2
,m+1)

0,k −Φ
(l+ 1

2
,m+1)

0,k−1 −Φ
(l+ 1

2
,m+1)

0,k+1 ) + Σ̄aΦ
(l+ 1

2
,m+1)

0 ∆

= λdνΣfΦ
(l+ 1

2
,m)

0,k ∆ + (Φ
(l+ 1

2
)

1,k− 1
2

−Φ
(l+ 1

2
)

1,k+ 1
2

) + D̃ (2Φ
(l+ 1

2
)

0,k −Φ
(l+ 1

2
)

0,k−1 −Φ
(l+ 1

2
)

0,k+1)

+Σ̄aΦ
(l+ 1

2
)

0,k ∆ −
p

∑
j=1

Σa,jφ
(l+ 1

2
)

0,j hj + λ(l+1)
t

p

∑
j=1

(νΣf)j φ
(l+ 1

2
)

0,j hj − λdνΣfΦ
(l+ 1

2
)

0,k ∆ .

(5.35)

This equation was presented in Section 4.3.2. Next, we perturb the LDA equations around
the converged solution.

5.4.2.2 Perturbation

Here, we perturb the LDA equations about the converged solution by substituting
Eq. (5.18) and Eqs. (5.22) into Eq. (5.35), yielding:

1

3Λ
(2Φ̃

(l+ 1
2
,m+1)

0,k − Φ̃
(l+ 1

2
,m+1)

0,k−1 − Φ̃
(l+ 1

2
,m+1)

0,k+1 ) + Σ̄aΦ̃
(l+ 1

2
,m+1)

0 ∆ = λdfTτ Φ̃
(l+ 1

2
,m)

0,k

+(Φ̃
(l+ 1

2
)

1,k− 1
2

− Φ̃
(l+ 1

2
)

1,k+ 1
2

) + 1

3Λ
(2Φ̃

(l+ 1
2
)

0,k − Φ̃
(l+ 1

2
)

0,k−1 − Φ̃
(l+ 1

2
)

0,k+1)

+λ
p

∑
j=1

(νΣf)j φ̃
(l+ 1

2
)

0,j hj −
p

∑
j=1

Σa,jφ̃
(l+ 1

2
)

0,j hj .

(5.36a)

The remaining LDA error equations are the same as those in Eqs. (5.33), with Eq. (5.36a)
replacing Eq. (5.33a). By casting Eq. (5.36a) in terms of previously-defined fundamental
mesh properties, we obtain:

1

3Λ
(2Φ̃

(l+ 1
2
,m+1)

0,k − Φ̃
(l+ 1

2
,m+1)

0,k−1 − Φ̃
(l+ 1

2
,m+1)

0,k+1 ) + ċTτ Φ̃
(l+ 1

2
,m+1)

0 = ċTτ Φ̃
(l+ 1

2
,m)

0,k

+(Φ̃
(l+ 1

2
)

1,k− 1
2

− Φ̃
(l+ 1

2
)

1,k+ 1
2

) + 1

3Λ
(2Φ̃

(l+ 1
2
)

0,k − Φ̃
(l+ 1

2
)

0,k−1 − Φ̃
(l+ 1

2
)

0,k+1)

+λ (Fτ )T φ̃(l+ 1
2
)

0 − (Ċτ)T φ̃(l+ 1
2
)

0,j .

(5.36b)

Lastly, we insert the Fourier ansatz.

5.4.2.3 Insertion of the Fourier Ansatz

The same Fourier ansatz equations that were used for the CMFD eigenvalue case are
used here. These are given in Eqs. (5.13), Eq. (5.26a), and Eq. (5.30). Substituting the
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ansatz into Eq. (5.36b) yields:

D̃ (2R(m+1)eiωΣ̄tXk −R(m+1)eiωΣ̄tXk−1 −R(m+1)eiωΣ̄tXk+1) + ċTτR(m+1)eiωΣ̄tXk

= (glefte
iωΣ̄tXk − grighte

iωΣ̄tXk) + D̃ (2AeiωΣ̄tXk −AeiωΣ̄tXk−1 −AeiωΣ̄tXk+1)

+ċTτR(m)eiωΣ̄tXk + [λ (Fτ )T − (Ċτ)T ] H̃eigE .

(5.37a)

Dividing by eiωΣ̄tXk and rearranging forR(m+1) results in the following recurrence relation:

R(m+1) = α1R(m) + α2

α3

, (5.37b)

where
α1 = ċTτ , (5.37c)

α2 ≡ (1 − eiωΛ)GeigE +A [D̃ (2 − eiωΛ − e−iωΛ)] + [(λF − Ċ)τ ]T H̃eigE , (5.37d)

α3 ≡ D̃ (2 − eiωΛ − e−iωΛ) + ċTτ . (5.37e)

Following the same procedure as that done in Section 5.3.2 to solve the recurrence relation
and take the limit as m→∞ yields the following for R(∞):

R(∞) = FLDA,eigE +A , (5.37f)

where the row vector FLDA,eig is defined as

FLDA,eig ≡
(1 − eiωΛ)Geig + [(λF − Ċ)τ ]T H̃eig

2D̃ (1 − cosωΛ)
, FLDA,eig ∈ C1×p . (5.37g)

With these definitions, the overall error transition matrix S̃LDA,eig can be constructed as

S̃LDA,eig ≡ H̃eig +βLDAFLDA,eig , S̃LDA,eig ∈ Cp×p . (5.37h)

The following eigenvalue problem can be solved for the spectral radius ρ:

θE = S̃LDA,eigE . (5.37i)

5.5 Results & Discussion

Now, we discuss the results of the Fourier analysis in Sections 5.2 to 5.4. First, the
equations are summarized in a concise form. Then, the spectral relation equations for LDA
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and CMFD are compared for cases that are spatially homogeneous. Finally, the spectral
relation equations are used to compare the iterative properties of LDA and CMFD for ho-
mogeneous and heterogeneous problems.

5.5.1 Summary of Fourier Analysis

The final spectral relation equations of the Fourier analysis are presented here. These
results are for spatially-periodic cases, with p fine cells per coarse cell. Discrete ordinates
is used for the transport problem, with N discrete angles. For the spatial closure scheme,
we use diamond-difference. Results from the four following combinations are presented:

1. CMFD for fixed-source problems,

2. CMFD for eigenvalue problems,

3. LDA for fixed-source problems, and

4. LDA for eigenvalue problems.

In each of the four cases, we seek to solve the following eigenvalue problem:

θE = S̃E , (5.38a)

for the θ eigenvalues. The spectral radius is the largest magnitude eigenvalue of the overall
error transition matrix S̃ over all discrete allowable Fourier frequencies:

ρ ≡ max
ω∈Ω

∣θ(ω)∣ , (Eq. (5.8) revisited)

where the set Ω is defined as

Ω = {ω ∣ ω = 2πk

ΛK
,k ∈ N ,1 ≤ k <K} . (5.38b)

In all accelerated cases, S̃ takes the following form:

S̃ ≡ H̃ +βF , S̃ ∈ Cp×p , (5.38c)

and the different forms of S̃ for each of the four cases are shown in Table 5.1.
We now focus on the form of H̃ , which is the component of S̃ that comes from the

transport sweep. (H̃ is independent of the acceleration method.) For fixed-source problems,
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Table 5.1: Forms of the Overall Error Transition Matrix S̃

Acceleration Method Fixed-Source Eigenvalue

CMFD H̃fs +βCMFDFCMFD,fs H̃eig +βCMFDFCMFD,eig

LDA H̃fs +βLDAFLDA,fs H̃eig +βLDAFLDA,eig

H̃ is defined as

H̃fs ≡
1

2

N

∑
n=1

wnȲ Y
−1
n C , H̃fs ∈ Cp×p , (Eq. (5.16i) revisited)

with the following related definitions:

Yn ≡ Ȳ +

⎛
⎜⎜⎜⎜⎜⎜
⎝

−µnτ1
µn
τ1

0 ⋯ 0

0 −µnτ2
µn
τ2

0 ⋯
⋮ ⋱

µn
τp
eiωΛ 0 ⋯ 0 −µnτp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Yn ∈ Cp×p , (Eq. (5.16b) revisited)

Ȳ ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
2

1
2 0 ⋯ 0

0 1
2

1
2 0 ⋯
⋮ ⋱

1
2e
iωΛ 0 ⋯ 0 1

2

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Ȳ ∈ Cp×p , (Eq. (5.15b) revisited)

C ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

c1 0 0 ⋯ 0

0 c2 0 ⋯ 0

0 0 ⋮ ⋱
0 0 ⋯ 0 cp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, C ∈ Rp×p , (Eq. (5.16d) revisited)

Λ ≡
p

∑
r=1

Σt,rhr , (Eq. (5.14n) revisited)

cr ≡
Σs,r

Σt,r

, (Eq. (5.12d) revisited)

τr ≡ Σt,rhr . (Eq. (5.12c) revisited)

For eigenvalue problems, H̃ takes the following slightly different form:

H̃eig ≡
1

2

N

∑
n=1

wnȲ Y
−1
n Γ , H̃eig ∈ Cp×p , (Eq. (5.20b) revisited)
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with the following definition of Γ:

Γ ≡ C + λF , Γ ∈ Rp×p , (Eq. (5.20c) revisited)

where λ is the transport eigenvalue and

F ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

f1 0 0 ⋯ 0

0 f2 0 ⋯ 0

0 0 ⋮ ⋱
0 0 ⋯ 0 fp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, F ∈ Rp×p , (Eq. (5.20d) revisited)

fr ≡
(νΣf)r

Σt,r

. (Eq. (5.19c) revisited)

Next, we define β for each acceleration method. This vector comes from the prolon-
gation equation of the low-order problem. The form of β is independent of the problem
type (fixed-source or eigenvalue), and differs only between LDA and CMFD. For LDA, β
is defined as

βLDA ≡ 1 , (Eq. (5.34f) revisited)

where

1 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

1

⋮
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, 1 ∈ Np×1 . (5.41a)

For CMFD, β takes the form:

βCMFD ≡ φ
(∞)

0

Φ
(∞)

0

, (Eq. (5.27s) revisited)

and represents the relative scalar flux distribution in the coarse cell. In CMFD variants with
higher-order spatial prolongation, β will differ. φ(∞)

0 is the converged fine-mesh scalar flux:

φ
(∞)

0 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

φ
(∞)

0,1

φ
(∞)

0,2

⋮
φ
(∞)

0,p

⎞
⎟⎟⎟⎟⎟⎟
⎠

, φ
(∞)

0 ∈ Rp×1 , (Eq. (5.27m) revisited)
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and Φ
(∞)

0 is the converged coarse-mesh scalar flux:

Φ
(∞)

0 ≡

p

∑
r=1
φ
(∞)

0,r hr

∆
. (Eq. (5.23b) revisited)

Lastly, we define the forms of the row vector F , which takes a different form for each
of the four combinations of problem type and acceleration method. This term comes from
the solution of the low-order acceleration equations. For fixed-source CMFD, FCMFD,fs is
defined as

FCMFD,fs ≡
(1 − eiωΛ)Gfs − (Ċτ)T H̃fs

2vTφ
(∞)
0

3τTφ
(∞)
0

(1 − cosωΛ) + (Ċτ)
T
φ
(∞)
0

vTφ
(∞)
0

, FCMFD,fs ∈ C1×p , (Eq. (5.27o) revisited)

where the row vectorGfs for fixed-source problems is defined as

Gfs ≡
1

2
eT1

N

∑
n=1

µnwnY
−1
n C , Gfs ∈ C1×p , (Eq. (5.27d) revisited)

and the following supporting definitions are made:

Ċ ≡ I −C , Ċ ∈ Rp×p , (Eq. (5.27j) revisited)

τ ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

τ1

τ2

⋮
τp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, τ ∈ Rp×1 , (Eq. (5.27k) revisited)

v ≡ 1

∆

⎛
⎜⎜⎜⎜⎜⎜
⎝

h1

h2

⋮
hp

⎞
⎟⎟⎟⎟⎟⎟
⎠

, v ∈ Rp×1 , (Eq. (5.27l) revisited)

e1 ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, e1 ∈ Np×1 . (Eq. (5.27c) revisited)
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For CMFD applied to eigenvalue problems, FCMFD,eig takes the form

FCMFD,eig ≡
(1 − eiωΛ)Geig + [(λF − Ċ)τ ]T H̃eig

2vTφ
(∞)
0

3τTφ
(∞)
0

(1 − cosωΛ)
, FCMFD,eig ∈ C1×p ,

(Eq. (5.31p) revisited)
where the row vectorGeig for eigenvalue problems is defined as

Geig ≡
1

2
eT1

N

∑
n=1

µnwnY
−1
n Γ , Geig ∈ C1×p . (Eq. (5.31b) revisited)

Table 5.2 summarizes the forms of H̃ andG for each problem type.

Table 5.2: Forms of H̃ andG

Term Fixed-Source Eigenvalue

H̃ 1
2 ∑

N
n=1wnȲ Y

−1
n C 1

2 ∑
N
n=1wnȲ Y

−1
n Γ

G 1
2e

T
1 ∑

N
n=1 µnwnY

−1
n C 1

2e
T
1 ∑

N
n=1 µnwnY

−1
n Γ

Next, we define FLDA,fs for fixed-source LDA cases:

FLDA,fs ≡
(1 − eiωΛ)Gfs − (Ċτ)T H̃fs

2
3Λ (1 − cosωΛ) + ċTτ

, FLDA,fs ∈ C1×p , (Eq. (5.34d) revisited)

and FLDA,eig for eigenvalue cases:

FLDA,eig ≡
(1 − eiωΛ)Geig + [(λF − Ċ)τ ]T H̃eig

2
3Λ (1 − cosωΛ)

, FLDA,eig ∈ C1×p .

(Eq. (5.37g) revisited)
The forms of F for each case are summarized in Table 5.3. With these results, all of the

Table 5.3: Forms of F

Acceleration Method Fixed-Source Eigenvalue

CMFD (1−eiωΛ)Gfs−(Ċτ)
T
H̃fs

2vTφ
(∞)
0

3τTφ
(∞)
0

(1−cosωΛ)+
(Ċτ)Tφ(∞)

0

vTφ
(∞)
0

(1−eiωΛ)Geig+[(λF−Ċ)τ ]
T
H̃eig

2vTφ
(∞)
0

3τTφ
(∞)
0

(1−cosωΛ)

LDA (1−eiωΛ)Gfs−(Ċτ)
T
H̃fs

2
3Λ

(1−cosωΛ)+ċT τ

(1−eiωΛ)Geig+[(λF−Ċ)τ ]
T
H̃eig

2
3Λ

(1−cosωΛ)

spectral relation equations for each configuration have been provided.
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We note that the form of β is interchangeable between the two acceleration methods.
Linear prolongation can also be used for CMFD, and multiplicative prolongation can be
used for LDA, without compromising the consistency of the low-order solution with the
transport solution. This would change the form of S̃, and as a result, change the itera-
tive properties of the method. These modifications are straightforward; thus, the original
prolongation equations for each method are used for the results in this chapter.

5.5.2 Spatially Homogeneous Problems

For spatially homogeneous problems, the spectral radii of LDA and CMFD are iden-
tical. Rather than perform an additional Fourier analysis for spatially homogeneous prob-
lems to show this, we can simply use the results of the spatially heterogeneous analysis
and assume a spatially-homogeneous geometry. To do this, we begin with the definition of
β for CMFD. In an infinite, homogeneous problem, the converged scalar flux solution is
uniform:

φ
(∞)

0 ≡ Φ
(∞)

0 1 , (5.45a)

where Φ
(∞)

0 is the magnitude of the scalar flux. Inserting this into the definition of β for
CMFD yields

β = 1 , (5.45b)

which is the same as for LDA.
Next, we turn our attention to the row vector F , which depends on the operators H̃ and

G. In the homogeneous case for fixed-source problems, H̃fs reduces to the following form:

H̃fs ≡
1

2

N

∑
n=1

wnȲ Y
−1
n c , H̃fs ∈ Cp×p , (5.46a)

where c is the scattering ratio of the problem. Additionally, the definition of Yn becomes

Yn ≡ Ȳ +

⎛
⎜⎜⎜⎜⎜⎜
⎝

−µnτ
µn
τ 0 ⋯ 0

0 −µnτ
µn
τ 0 ⋯
⋮ ⋱

µn
τ e

iωΛ 0 ⋯ 0 −µnτ

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Yn ∈ Cp×p , (5.46b)

where τ is the optical thickness of each fine cell. Similarly,Gfs becomes

Gfs ≡
1

2
eT1

N

∑
n=1

µnwnY
−1
n c , Gfs ∈ C1×p . (5.46c)
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In the case of eigenvalue problems, these operators contain the matrix Γ. For a spatially
homogeneous case, the transport eigenvalue simply becomes

λ = Σa

νΣf

= ċ

f
. (5.46d)

Therefore, Γ becomes
Γ = cI + ċ

f
fI = (c + ċ)I = I . (5.46e)

Then, for eigenvalue problems H̃eig andGeig become

Geig ≡
1

2
eT1

N

∑
n=1

µnwnY
−1
n , Geig ∈ C1×p , (5.46f)

and

H̃eig ≡
1

2

N

∑
n=1

wnȲ Y
−1
n , H̃eig ∈ Cp×p , (5.46g)

which are the same as the fixed-source forms where c = 1.
Lastly, we obtain the homogeneous forms of F . For CMFD applied to fixed-source

problems, the quantity (Ċτ)T becomes ċτ1T . Also, the vector of fine-cell volume fractions
v becomes 1

p1. Then, FCMFD,fs reduces to

FCMFD,fs ≡
(1 − eiωΛ)Gfs − ċτ1T H̃fs

2
3Λ (1 − cosωΛ) + ċΛ

, FCMFD,fs ∈ C1×p . (5.47)

If we make the same substitutions for FLDA,fs, we obtain

FLDA,fs ≡
(1 − eiωΛ)Gfs − ċτ1T H̃fs

2
3Λ (1 − cosωΛ) + ċΛ

, FLDA,fs ∈ C1×p , (5.48)

which is identical to Eq. (5.47). In the case of CMFD-accelerated eigenvalue problems,
we first consider the following term, present in the numerator of FCMFD,eig, for spatially
homogeneous cases:

λ (Fτ )T − (Ċτ)T = ċ

f
fτ1T − ċτ1T , (5.49)

= (ċτ − ċτ)1T , (5.50)

= 0T . (5.51)
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Therefore, FCMFD,eig becomes

FCMFD,eig ≡
(1 − eiωΛ)Geig
2

3Λ (1 − cosωΛ)
, FCMFD,eig ∈ C1×p . (5.52)

Similarly, FLDA,eig simplifies to

FLDA,eig ≡
(1 − eiωΛ)Geig
2

3Λ (1 − cosωΛ)
, FLDA,eig ∈ C1×p , (5.53)

which is again identical to the CMFD case (and also to the fixed-source case with c = 1).
With this, we have shown that the spectral relation equations for LDA and CMFD are the
same for a given homogeneous problem type. Therefore, ρ is the same for each acceleration
method for these homogeneous problems.

The spectral relation equations for LDA and CMFD differ for spatially-heterogeneous
cases. This is due to different weighting choices for cross sections and different prolon-
gation operators. With CMFD, the cross sections are weighted by the scalar flux, which
is apparent by the presence of φ(∞)

0 in Eqs. (5.27o) and (5.31p), and prolongation is done
multiplicatively. With LDA, the cross sections are volume-weighted, with linear correction
terms that cancel out in the Fourier analysis (this is apparent by the lack of the converged
scalar flux vector in Eqs. (5.34d) and (5.37g)), and prolongation is done additively. Other
than these differences, the spectral relation equations for the two methods are similar for
spatially-heterogeneous problems. Further, the equations in this section show that the spec-
tral relation equations are the same for the two methods if the solution is spatially uniform
(this is also true for problems with one fine cell per coarse cell). Thus, we expect that
the two methods will have similar iterative properties for cases with low heterogeneity and
possibly different iterative properties for cases with high heterogeneity.

We note that the presence of the scalar flux distribution in the heterogeneous Fourier
analysis results for CMFD potentially allows for the analytic prediction of performance
degradation due to these nonlinearities. The same nonlinearities are not present in the result
for LDA. Theoretically, one could induce instability in CMFD for a contrived problem in
which the nonlinear terms become numerically unstable. We explore this in Section 5.5.3
and Chapter 6.

There is an additional implication from the conclusion that LDA and CMFD possess the
same spectral relation equations for homogeneous problems. Previous work has focused on
scaling the diffusion coefficient of CMFD to optimize the spectral radius for optically thick
problems [25, 26] with the resulting modified method called optimally-diffusive CMFD

(odCMFD). Specifically, a stabilization parameter, θod (not to be confused with the error
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reduction rate, θ), is multiplied by the coarse cell geometric thickness, ∆, and added to
the diffusion coefficient D for the low-order problem. The values of θod are chosen to
minimize ρ as a function of the coarse cell optical thickness Λ by using the Fourier analysis
result in an optimization problem. This study was performed for spatially homogeneous
problems. Therefore, since LDA possesses the same spectral relation equations as CMFD
for homogeneous problems, we expect that the same stability parameters could be used to
improve the convergence properties of LDA.

5.5.3 Theoretical and Numerical Comparisons of LDA and CMFD

From the final forms of the spectral relation equations derived in this chapter, the de-
pendence of the spectral radius on the spatial configuration of the lattice is apparent from
the presence of space-dependent terms (C, Ċ,τ , etc.) in the overall error transition matrix,
S̃. LDA and CMFD possess different dependencies on these terms, and as a result, the two
methods behave differently for spatially-heterogeneous problems. As previously discussed,
these differences are due to different weighting choices for the coarse-mesh cross section
homogenization and the different prolongation operators. This section examines the dif-
ferent convergence properties of the two methods that arise from these different choices.
We compare estimates of ρ obtained through “numerical experiments” using a 1D S16 re-
search code to the analytic values of ρ from the Fourier analysis. The Gauss-Legendre
S16 quadrature set and diamond-difference spatial closure scheme are used in all numerical
calculations.

A number of studies are presented in this section, with each focusing on different itera-
tive characteristics of LDA and CMFD. The goal of performing these studies is to explore
the differences between the two methods for model problems. For reference, we provide
Table 5.4, which briefly describes the focus of each study.

Table 5.4: Fourier Analysis Study Descriptions

Study # Focus

1 Nonlinear instability of CMFD due to multiplicative prolongation
2 Linear instability of LDA & CMFD (homogeneous cases)
3 Effect of p on linear instability of LDA and CMFD (homogeneous cases)
4 Linear instability of LDA & CMFD (heterogeneous cases)
5 Effect of p on linear instability of LDA and CMFD (heterogeneous cases)
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5.5.3.1 Nonlinear Instability of CMFD

We can observe the nonlinearity of CMFD through the presence of terms in the error
transition matrix that are nonlinear with respect to the converged scalar flux. This is present
in (i) the prolongation operator β and (ii) terms in the denominator of F . Regarding the
former term, instability can occur if the converged coarse-cell scalar flux approaches zero.
Regarding the latter term, instability can occur in multiple ways. The prolongation insta-
bility is present for both the fixed-source and eigenvalue form of the CMFD algorithm.
Though other nonlinearities exist for CMFD, we focus on the prolongation nonlinearity for
simplicity. (We note that alternate linear prolongation methods for CMFD have been inves-
tigated [27, 66]. However, the conventional nonlinear prolongation method is still widely
used in many reactor physics codes.)

The presence of nonlinear terms in the spectral relation equations for CMFD suggests
that the susceptibility of CMFD to degraded performance as Φ

(∞)

0 approaches zero can be
analytically predicted through the use of the Fourier analysis. This can be demonstrated
through the introduction of a negative source into the periodic lattice problem. For LDA,
the prolongation operator is not dependent on the scalar flux and is, thus, not susceptible
to this nonlinear instability. In this section, we present analytic predictions of the spectral
radius made using the previously-derived spectral relation equations and compare them to
results of numerical experiments. The focus of this study is on the nonlinear instability of

CMFD and the lack thereof in LDA. This study is referred to as study #1.
A simple periodic problem in which p = 5 and the middle fine cell (j = 3) possesses a

negative source that is nearly equal in magnitude to the sum of the source in the other cells
of the lattice, that possess equal and positive sources, was used to demonstrate the afore-
mentioned vulnerability of CMFD to a near-zero solution. We modify the magnitude of the
negative source in the middle cell while keeping the other material properties constant. For
clarity, we have provided example plots of the source distribution and scalar flux for the 5
fine cells in a repeated coarse cell in Fig. 5.2. In Fig. 5.2a, we show the case in which the
magnitude of the source in the center cell is equal to the sum of the sources in the other
fine cells. The scalar flux solution corresponding to the source distribution in Fig. 5.2a and
c = 0.9 is shown in Fig. 5.2b. As a result of the negative source, we see that the scalar
flux solution is negative in the middle three fine cells. Because of these negativities, the
corresponding coarse-cell scalar flux,

Φ0,k =
1

∆k
∑
j∈k

φ0,jhj , (5.54)

is nearly zero. This is the condition needed to activate the nonlinear instability in CMFD.
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Figure 5.2: (Study #1) Example fixed-source and converged scalar flux distributions

In Fig. 5.3, the x-axis indicates the value of the total source in the coarse cell (Qtot),
defined as

Qtot =
p

∑
j=1

qjhj . (5.55)

In other words, as the x-axis values approach zero, so does the volume-sum of the sources
over all fine cells in a given coarse cell. The characteristics of each cell in the lattice are
Σt = 1.0 cm−1 and h = 0.2 cm. Numerically-estimated spectral radii (markers) are shown
alongside predicted spectral radii from the Fourier analysis (lines). This study was repeated
for the following values of the scattering ratio c: 0.1, 0.3, 0.5, 0.7, and 0.9. As the x-axis
values approach zero, the quantity Φ

(∞)

0 also approaches zero, and the performance of
CMFD degrades. Once this term is sufficiently small, CMFD diverges while LDA remains
stable. As the outer iterations progress, the CMFD prolongation equation resembles the
following:

φ
(∞)

0,j = φ(∞)

0,j

⎛
⎝

Φ
(∞)

0,k

Φ
(∞)

0,k

⎞
⎠
,∀ j ∈ k , (5.56)

where Φ
(∞)

0,k approaches zero asQtot approaches zero. Thus, the multiplicative prolongation
factor (which is the term in parentheses in Eq. (5.56)) becomes numerically unstable due
to division by zero (or near zero). These results demonstrate the vulnerability of CMFD
to nonlinear instability, and the insensitivity of LDA to this effect. As c increases, the
sensitivity of the nonlinear instability of CMFD increases. That is, the range of instability
for CMFD is larger for higher values of c.

The results of study #1 are significant because they show that LDA fundamentally lacks

the nonlinear instability of CMFD due to prolongation. That is, the performance of LDA
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Figure 5.3: (Study #1) Numerical and Fourier analysis results. Analytic (solid lines for
LDA and dashed lines for CMFD) and numerical (square markers for LDA and circle mark-
ers for CMFD) spectral radii of LDA and CMFD are shown for sample fixed-source prob-
lems with different scattering ratios in which the total coarse-cell source (Qtot) approaches
zero.

does not degrade in cases where the nonlinearity of CMFD causes numerical instability.
In fact, LDA is shown to have superior performance in the region surrounding the range
of divergence for CMFD. This supports our main goal for developing the LDA method,
as discussed in Chapter 1. Additional studies that support this conclusion are provided in
Chapters 6 and 7. In the next section, we compare the performance of the two acceleration
methods for spatially-homogeneous problems.

5.5.3.2 Performance Comparisons for Spatially-Homogeneous Problems

A known property of CMFD and other acceleration methods is the effect of coarse-cell
optical thickness on the spectral radius [18, 26, 43]. Generally, the spectral radius of coarse-
mesh, diffusion-based acceleration methods (such as LDA and CMFD) increases with the
optical thickness of the coarse cell. We refer to this effect as linear instability. In this
section, we investigate the linear instability of LDA and CMFD for spatially homogeneous
problems with the following goals: (i) to confirm that the two methods have the same
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convergence properties for spatially-homogeneous problems (as stated in Section 5.5.2) and
(ii) to confirm the correctness of the heterogeneous Fourier analysis results. Regarding the
latter goal, the results in this section are obtained with the heterogeneous Fourier analysis
equations (rather than the homogeneous equations shown in Section 5.5.2). However, the
problems examined are homogeneous in space. First, we examine the effect of the coarse
cell optical thickness on the spectral radius for fixed-source (study #2a) and eigenvalue
problems (study #2b). Then, the effect of the number of fine cells per coarse cell p on the
spectral radius is investigated for fixed-source (study #3a) and eigenvalue problems (study
#3b) for a range of coarse-cell optical thicknesses. Therefore, the studies in this section are

focused on the linear instability of LDA and CMFD for spatially-homogeneous problems.

For the fixed-source problems in study #2a, the convergence properties are dependent
on the scattering ratio c. Therefore, we examine the following set of fine cell scattering
ratios: 0.1, 0.3, 0.5, 0.7, and 0.9. For each value of c, a range of coarse cell optical thick-
nesses is tested and the analytic spectral radius is compared to the results of numerical
experiments. Five fine cells are present in a coarse cell (p = 5), and the width of each fine
cell h is 1.0 cm. The source magnitude is set to unity in each fine cell. To vary the optical
thickness of the coarse cell (Λ), the total cross section in all fine cells is modified to achieve
a given Λ.

The results of study #2a are shown in Fig. 5.4a. From these results, we observe that
both the analytic and experimental spectral radii of LDA and CMFD are identical (within
numerical noise) for all cases. The solid lines, indicating the LDA results, overlap the
dashed lines, indicating the CMFD results. With the exception of c = 0.9, the spectral
radius increases with Λ up to the value of c. In the case of c = 0.9, there is a range of Λ

in which the methods become divergent. Once Λ becomes sufficiently large, the spectral
radius decreases and then plateaus at the value of c. This behavior only occurs for values of
c near unity in fixed-source problems. These results confirm the two aforementioned goals
for fixed-source cases.

For study #2b, we examine the effect of Λ on the spectral radius for eigenvalue prob-
lems. We expect the spectral radius to increase with Λ, with no dependence on the scat-
tering ratio (based on the discussion in Section 5.5.2). In these cases, the scattering ratio
is fixed at 0.75 and f is set to unity. Otherwise, the cell properties are the same as those
in study #2a. A smaller range of Λ is examined in this study because all cases become
divergent above a critical value of Λ (around Λ = 2).

From the results in Fig. 5.4b, we observe that the analytic predictions of ρ for each
acceleration method is the same for all values of Λ. Additionally, the experimental estimate
of ρ is nearly the same for each method within numerical noise. Thus, we can confirm
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the applicability of the heterogeneous Fourier analysis results to homogeneous problems.
Further, we observe that each of the two acceleration methods possess the same spectral
radii for homogeneous problems.
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Figure 5.4: (Study #2) Numerical and Fourier analysis results. Analytic (solid lines for
LDA and dashed lines for CMFD) and numerical (square markers for LDA and circle mark-
ers for CMFD) spectral radii are shown for sample problems as a function of coarse-cell
optical thickness.

Next, we examine the results of study #3a, in which the number of fine cells per coarse
cell (p) is changed for fixed-source problems. In this study, a range of coarse-cell optical
thicknesses (Λ) is tested for each p value. As in the previous studies, a given Λ is obtained
by scaling Σt in all of the fine cells. The scattering ratio is fixed at 0.85 for all cells (this
value was chosen to be large so that differences can be observed for each p value), the width
of each fine cell is 1.0 cm, and the fixed-source magnitude is unity. The following values
of p were tested: 1, 5, 10, and 15.

Figure 5.5a shows the results of study #3a, in which p is varied for fixed-source prob-
lems. There are very slight differences in the spectral radius for different p values, except
for p = 1 (which is the case where the fine and coarse mesh are identical). For values of p
greater than 1, tangible differences are only observed in the region where Λ isO(1). Within
this region, larger values of p result in slightly smaller spectral radii. There are no observed
differences between LDA and CMFD in any case.

Lastly, we examine the results of study #3b in which p is varied for eigenvalue prob-
lems. The same fine-cell properties are used here as those in study #3a, except that the
fixed-source is absent and the value of f is equal to unity. From the results in Fig. 5.5b, we
observe no tangible differences in the spectral radius when changing p for a given value of
Λ except for p = 1. Further, LDA and CMFD have the same spectral radius for all cases
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within numerical noise.
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(a) (Study #3a) Fixed-source results
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Figure 5.5: (Study #3) Numerical and Fourier analysis results. Analytic (solid lines for
LDA and dashed lines for CMFD) and numerical (square markers for LDA and circle mark-
ers for CMFD) spectral radii are shown for sample problems as a function of Λ for different
numbers of fine cells per coarse cell (p) and c = 0.85.

The results in this section show that the convergence properties of LDA and CMFD
are identical for the homogeneous problems studied here. These results support one of the
main goals for developing LDA discussed in Chapter 1, which is to develop an acceleration
method that is more robust than CMFD but possesses similar convergence properties. By
showing that the two methods behave identically for spatially-homogeneous problems, we
are supporting this goal. The behavior of the two methods for spatially-heterogeneous
problems is examined next.

5.5.3.3 Performance Comparisons for Spatially-Heterogeneous Problems

The results of the Fourier analysis of LDA and CMFD for heterogeneous problems
show that the two methods possess different spectral radii. We are interested in how differ-
ent degrees of heterogeneity affect the convergence properties of each method. Therefore,

this section is focused on the linear instability of each method for spatially-heterogeneous

problems. The following studies are performed in this section:

1. study #4a examines the effect of varying the optical thickness of one fine cell in the
lattice for fixed-source problems,

2. study #4b examines the effect of varying the optical thickness and scattering ratio of
one fine cell in the lattice for fixed-source problems,

3. study #4c is similar to study #4a, but performed for eigenvalue problems,
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4. study #5a examines the effect of changing p for fixed-source cases, and

5. study #5b is the same as study #5a but for eigenvalue problems.

Study #4a contains fixed-source cases in which the sensitivity of each acceleration
method to spatial heterogeneity was investigated for different values of coarse-cell optical
thickness Λ. For each of these cases, the material properties of the center fine cell (j = 3)
were changed relative to the other fine cells (j ≠ 3) in a given coarse cell. Additionally, we
assumed p = 5 and h = 1.0 cm for all fine cells. The fixed-source is uniform and equal to
unity. For study #4, the value α, which is defined as the ratio of the optical thickness of the
center cell relative to the other fine cells in the coarse cell, was varied. In equation form, α
is defined as

α ≡
Σt,3

Σt,j≠3

. (5.57)

Thus, the total cross section of the center fine cell is changed relative to the other fine cells
before normalizing the total cross sections of the fine cells such that a given Λ is achieved.

For the results of study #4a in Fig. 5.6a, the scattering ratio is uniform and equal to
0.75. This study demonstrates that there are differences in the two acceleration methods
for heterogeneous problems, and that both methods exhibit the same qualitative behavior
for sufficiently large fine-cell optical thicknesses. For Λ that is O(1), LDA is observed to
possess slightly worse convergence behavior compared to CMFD. However, both methods
are seen to be sensitive to heterogeneity for Λ in this range. Previous work, which ex-
amined the impact of different heterogeneous parameters on convergence rate, has shown
that CMFD performance is highly dependent on the fine-cell scalar flux distribution [67].
These results support this conclusion, since the heterogeneity of the converged scalar flux
distribution corresponds to the heterogeneity of the material properties within a coarse cell.

In Fig. 5.6b for study #4b, the same variation in α is studied, but the scattering ratio in
the center cell is set to 0.1, while is it is set to 0.75 in the adjacent cells. This study is in-
tended to investigate a pin-cell-like lattice, where the optically-thick and highly-absorbing
center “fuel” cell is surrounded by optically-thin (less than 1 mfp) and highly-scattering
“moderator” cells. In this study, we see almost no difference in performance between the
two acceleration methods, and no predicted instability, indicating that for the practical reac-
tor problem either method is not expected to become unstable and should perform similarly
insofar as the local nonlinearities do not become problematic.

A similar study to #4a was performed for eigenvalue problems, in which the value of
α is modified in study #4c. For these cases, the same mesh properties are used as in study
#4a (Σt = 1.0 cm−1, h = 1.0 cm, c = 0.75, p = 5) and the value of f is uniform and
equal to unity. We see very little difference between the homogeneous case and the highly
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Figure 5.6: (Study #4) Numerical and Fourier analysis results. Analytic spectral radius
of LDA (solid lines) and CMFD (dashed lines) compared to numerical estimates (square
markers for LDA and circle markers for CMFD) as a function of coarse cell optical thick-
ness when varying the relative optical thickness of the central fine cell (α) for sample
problems.

heterogeneous case, in which α = 100. Therefore, Fig. 5.6c only includes the homogeneous
(α = 1) and highly heterogeneous case (α = 100) for readability. In these cases, the
difference in convergence rate for LDA and CMFD is very small. In fact, the analytic
prediction of the spectral radius is essentially identical for the two methods for a given
value of α. Differences in the experimental results can be attributed to that fact that the
experimental spectral radius is an estimate made using a finite problem. These results
indicate that the differences in iterative performance for the two methods is less pronounced
for eigenvalue problems than it is for fixed-source cases.

Next, we investigate the effect of the number of fine cells per coarse cell (p) on ρ for
spatially-heterogeneous problems over a range of Λ in study #5a. To accomplish this, we
consider a unit consisting of two fine cells. The right cell possesses an optical thickness
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Figure 5.7: (Study #5) Spatial distribution of fine-cell optical thicknesses for Λ = 1.0

that is fifty times that of the left cell. By scaling the total cross section of the right cell
relative to the left cell, we obtain these relative optical thickness values. This two-cell unit
is repeated the required number of times to fill a single coarse cell with a given value of
p. For example, if p = 4 then the two-cell unit is repeated twice to generate the coarse
cell. Figure 5.7 shows the spatial distribution of fine-cell optical thicknesses for p = 4

and Λ = 1.0. Once the coarse cell is generated, the total cross section for all fine cells
is normalized to achieve a given value of Λ. This process preserves the relative optical
thickness of each fine cell. By conducting the study in this way, the spatial structure of
the problem is the same for all cases except for the value of p. The following values of p
are tested: 4, 8, and 12. Otherwise, the each fine cell possesses the following properties:
h = 1.0 cm and c = 0.85. In study #5a, the fixed-source magnitude is equal to unity. For
study #5b, the value of f is set to unity.

Figure 5.8a shows the results of study #5a, in which p is varied for fixed-source cases.
We observe that the spectral radius is larger for larger values of p, which is the opposite
trend compared to the results of study #3a for spatially-homogeneous problems. For these
problems, LDA and CMFD possess similar spectral radii for all cases. Therefore, we con-
clude that changing the value of p does not result in tangible differences between the two
acceleration methods for this study.

Finally, we focus on the results of study #5b, which is the same as study #5a except
it is an eigenvalue problem. We observe very similar results as those in study #5a, with
no tangible differences between LDA and CMFD for all cases. Additionally, we observe
smaller differences between cases for different values of p compared to the fixed-source
cases. Thus, eigenvalue problems appear to be less sensitive to this parameter.

The results in this section demonstrate that the differences in performance between
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Figure 5.8: (Study #5) Numerical and Fourier analysis results. Analytic (solid lines for
LDA and dashed lines for CMFD) and numerical (square markers for LDA and circle mark-
ers for CMFD) spectral radii are shown for sample problems as a function of Λ for different
numbers of fine cells per coarse cell (p) and c = 0.85.

LDA and CMFD are tangible only in cases with very high degrees of heterogeneity (as
seen in study #4a). This observation supports one of the goals of this work discussed in
Chapter 1, which is to develop an acceleration method with similar performance as CMFD
for cases in which the nonlinear instability of CMFD is not an issue. We have also shown
that the differences between the two methods is less significant for eigenvalue problems
compared to fixed-source problems. Since the primary application of LDA is for eigenvalue
problems, this is a favorable result.

5.6 Conclusions

In this chapter, we perform Fourier analyses for LDA and CMFD with the goal of
comparing the convergence properties of each method. These analyses are carried out
for simplified problems that are heterogeneous and periodic in space. The results of the
Fourier analysis show that there are slight differences in the convergence properties of the
two acceleration methods for spatially heterogeneous problems, which are attributed to (i)
different choices of weighting functions for the coarse-mesh quantities and (ii) different
prolongation operators. These differences are not expected to be significant for the practi-
cal problem. If the problem is uniform in space, which corresponds to volume-weighting
functions for coarse-mesh quantities, the performance of the methods is identical.

By comparing the analytic prediction of the convergence rate of LDA and CMFD to es-
timates of this metric using a 1D research code, we have tested the accuracy of the Fourier
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analysis. Overall, the analytic prediction of the convergence rate is highly accurate for
both homogeneous and heterogeneous problems. Further, we observe tangible differences
between the performance of the two acceleration methods only for cases with very high de-
grees of heterogeneity. These differences are much less significant for eigenvalue problems
than for fixed-source cases.

Through these studies, we have shown that LDA lacks the nonlinear instability of
CMFD. Additionally, the linear instability properties of LDA are shown to be identi-
cal to CMFD for spatially-homogeneous problems and similar to CMFD for spatially-
heterogeneous problems. These significant results support some of the goals for LDA es-
tablished in Chapter 1. Chapters 6 and 7 present further numerical results for more complex
problems to provide evidence in support of remaining goals relating to the development of
LDA.
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CHAPTER 6

1D Numerical Results

This chapter focuses on the use of LDA in a 1D research code. Section 6.1 provides
a description of the code that was used to gather the results for this chapter. Then, we
demonstrate the performance of LDA compared to CMFD when used to accelerate trans-
port problems in Section 6.2. In Section 6.3, we show the nonlinear instability of CMFD,
and the stability of LDA for some demonstrative cases. Section 6.4 contains a study of
the fsh parameter (discussed in Section 4.5) used to shift the LDA eigenvalue problem,
resulting in faster convergence of the power iteration process. The potential advantages of-
fered by LDA pertaining to linear solvers are discussed in Section 6.5. Finally, Section 6.6
provides a summary of the results in this chapter.

6.1 Code Description

A research code was developed to test the performance and iterative properties of LDA
in relation to CMFD, and was used to obtain the results in this chapter. The code com-
putes the numerical solution to the discrete, monoenergetic NTE in planar geometry using
the discrete ordinates angular discretization. Angular integrals are approximated using a
quadrature set, which was chosen to be the 1D Gauss-Legendre quadrature. The mth mo-
ment of the angular flux is represented numerically as:

∫
1

−1
Pm(µ)ψ(x,µ)dµ ≈

N

∑
n=1

Pm(µn)wnψ(x,µn) (6.1a)

=
N

∑
n=1

Pm(µn)wnψn(x) , (6.1b)
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where µn is the cosine of the polar angle corresponding to angular index n, wn is the width
of the “bin” corresponding to angular index n such that

N

∑
n=1

wn = 1 − (−1) = 2 , (6.1c)

Pm is the mth Legendre polynomial, and ψn(x) represents the angular flux in angular bin
n. Unless otherwise stated, all cases use N = 16. The scalar flux is the zeroth moment of
the angular flux, corresponding to m = 0, and the neutron current corresponds to m = 1.

The fine spatial mesh is used for the transport problem, and is defined as shown in
Fig. 3.1, where xj± 1

2
are the spatial locations of the edges of fine cell j. The following

exact NBE (shown here for a fixed-source problem), presented in Chapter 3, is used to
obtain the scalar flux solution on the fine mesh:

µn
hj

(ψn,j+ 1
2
− ψn,j− 1

2
) +Σt,jψn,j =

1

2
(Σs,jφj + qj) . (Eq. (3.4a) revisited)

Here ψn,j± 1
2

represents the angular flux at the edges of fine cell j, and hj is the width of
fine cell j. To relate the cell-edge and cell-average angular flux quantities, the diamond-
difference relation is used:

ψn,j =
1

2
(ψn,j+ 1

2
+ ψn,j− 1

2
) , (Eq. (3.4g) revisited)

where ψn,j represents the cell-average angular flux in angular bin n and fine cell j. Each
coarse cell k is a contiguous union of fine cells, and is also depicted in Fig. 3.1. We use the
notation j ∈ k to refer to the fine cells that compose a given coarse cell k. Further details of
the spatial and angular discretization of the NTE are provided in Chapter 3.

To accelerate the process of obtaining the numerical solution of the NTE, either LDA
or CMFD can be used, and each acceleration method can be applied to both fixed-source
and eigenvalue problems. The algorithms for these two acceleration methods are shown in
Sections 3.3 and 4.4, respectively. For the convergence criterion, an L∞ norm is used to
test the relative difference between the fine-mesh scalar flux vector φ0 across two iterations
as shown below:

max
j

⎛
⎜
⎝

∣φ(l)
0 −φ(l−1)

0 ∣

φ
(l−1)
0

⎞
⎟
⎠
< ε1 , (6.2)

where l is the outer iteration index and ε1 is a user-specified tolerance. Once the condition in
Eq. (6.2) is satisfied, code execution stops. A similar tolerance on the transport eigenvalue
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λ is imposed for eigenvalue problems:

(∣λ(l) − λ(l−1)∣
λ(l−1)

) < ε2 , (6.3)

where ε2 is a user-specified tolerance for the eigenvalue. Regarding power iterations, a
similar convergence criterion to Eq. (6.2) for the coarse-mesh scalar flux Φ0 is imposed:

max
j

⎛
⎜⎜⎜
⎝

∣Φ(l+ 1
2
,m+1)

0 −Φ
(l+ 1

2
,m)

0 ∣

Φ
(l+ 1

2
,m)

0

⎞
⎟⎟⎟
⎠
< ε3 , (6.4)

where ε3 is the convergence criterion for the coarse-mesh scalar flux. Power iterations
cease for outer iteration l once the condition in Eq. (6.4) is satisfied. To clarify, Eq. (6.2)
is a condition on the fine-mesh scalar flux, and Eq. (6.4) is a condition on the coarse-
mesh scalar flux. If LDA is used to accelerate an eigenvalue problem, the same condition
in Eq. (6.4) is used for the initial forward and adjoint solutions of the diffusion problem.
Unless otherwise stated, we use a tolerance of ε1 = ε2 = ε3 = 10−8 for the results in this
chapter.

The research code was written in the Julia programming language [68], and uses
double-precision floating-point numbers. To solve the linear system of equations for the
low-order problem, the LU method is used. This is a direct solver method, and the follow-
ing procedure is followed for obtaining the low-order solution: (i) the Ld ⟪1⟫ operator is
decomposed before outer iterations begin, and (ii) to solve the low-order problem for each
outer iteration, forward and backward substitution are used. Thus, the decomposition step
only occurs once for a given problem setup. This method utilizes built-in capabilities of the
Julia language, or readily available packages (the LinearAlgebra package was used).

6.2 LDA Performance

Here, we provide the results of sample fixed-source and eigenvalue cases, with the
goal of comparing the performance of LDA and CMFD. We are interested in problems
that were unable to be examined with the Fourier analysis in Chapter 5. In Chapter 5,
each problem was conceptually (but not practically) infinite, with periodically-repeating
material properties and converged solutions. This section provides results for test problems
that are not infinite. Specifically, all problems possess vacuum boundary conditions on the
left boundary and a reflective boundary condition on the right.
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To measure the performance of each method, we provide either the total number of
iterations required for convergence or the numerically-estimated spectral radius (ρ). As
discussed in Chapter 5, the spectral radius describes the convergence rate of the method
and can be estimated using the following equation:

ρ(l) ≈
∥φ(l)

0 −φ(l−1)
0 ∥ 2

∥φ(l−1)
0 −φ(l−2)

0 ∥ 2

, (Eq. (5.6) revisited)

where φ0 is the spatial scalar flux vector, l is the outer iteration index, and ∥(⋅)∥ 2 is the
L2 norm. For unaccelerated PI, the number of iterations refers to the number of power
iterations. For accelerated cases, this refers to the total number of outer iterations (OI),
with one outer iteration consisting of a transport sweep and low-order solve.

We provide the results of two different studies for each problem type (fixed-source
and eigenvalue). First, we examine cases with a fixed (i) number of total fine cells
(J = pK = 500), (ii) fine cells per coarse cell (p = 5), and (iii) fine cell width (h = 1.0 cm).
For these cases, a range of coarse-cell optical thicknesses (Λ) is studied, with the total
cross section adjusted to achieve a given value of Λ. This will be referred to as study #1.
For study #2, we vary the total number of fine cells (pK) in the problem while keeping
the number of fine cells per coarse cell and fine-cell width fixed (p = 5 and h = 0.2 cm,
respectively). Additionally, the scattering ratio is fixed (c = 0.99). In effect, changing pK
changes the overall optical thickness of the system. For each value of pK, different values
of Λ are tested. To achieve a given value of Λ, the total cross section is adjusted. Thus,
study #1 examines the effect of increasing the optical thickness of an individual coarse cell,
while study #2 examines the effect of increasing the total optical thickness of the system.
A limit of 104 iterations was imposed for each problem, with “DNC” representing “Did
Not Converge” within the imposed iteration limit.

6.2.1 Fixed-Source Problems

This section presents the results of study #1 and #2 for fixed-source cases. For all
problems in this section, the internal fixed source is taken to be constant within the system,
with a magnitude of 1.0 neutrons/(cm⋅s).

6.2.1.1 Study #1: Variable Optical Thickness by Increasing Total Cross Section

For this study, we examine the following values of the scattering ratio c: 0.4, 0.6, 0.8,
0.9, and 0.99. Figure 6.1 depicts the OI for LDA and CMFD, with the tabular data for
c = 0.4 and c = 0.99 provided in Table 6.1 and Table 6.2, respectively. From these results,
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we observe that the performance of each method worsens (the spectral radius increases)
with increasing Λ and c, which is expected from the Fourier analysis. For problems with
small Λ, LDA and CMFD possess essentially the same performance (regardless of the
scattering ratio). Unfortunately, the performance of LDA is worse than CMFD for problems
with optically thicker coarse cells. This performance gap increases with increasing c, which
can be clearly observed in Fig. 6.1. Specifically, for Λ = 10.0 and c = 0.4, LDA requires
30% more iterations to converge. For larger values of c, both acceleration methods become
divergent for large Λ (as predicted by the Fourier analysis).

Table 6.1: Performance Comparison of LDA and CMFD for Study #1 with c = 0.4

Λ #OI - PI #OI - LDA #OI - CMFD

0.1 23 8 8
0.25 24 9 8
0.5 25 10 9

0.75 26 12 10
1.0 26 13 11
2.5 27 19 15
5.0 28 23 18
7.5 28 25 19

10.0 29 26 20

Table 6.2: Performance Comparison of LDA and CMFD for Study #1 with c = 0.99

Λ #OI - SI #OI - LDA #OI - CMFD

0.1 824 12 12
0.25 1200 13 12
0.5 1218 15 14

0.75 1187 18 17
1.0 1312 22 21
2.5 DNC DNC DNC
5.0 DNC DNC DNC
7.5 DNC DNC DNC

10.0 DNC DNC DNC

These performance differences were observed in the heterogeneous Fourier analysis in
Chapter 5, and are not unexpected. In Chapter 5, the spectral radius of LDA was shown to
be larger than CMFD for heterogeneous problems with O(1) Λ. However, in these cases
this difference persists for larger values of Λ, which was not observed in the Fourier anal-
ysis. This behavior may be a result of the (i) different weighting functions for LDA and
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Figure 6.1: # outer iterations for LDA and CMFD for different values of c

CMFD (resulting in more lagged RHS terms for LDA), (ii) different prolongation operators
for the two methods, or (iii) different boundary conditions for the problems studied here
compared to the periodic boundary conditions assumed during the Fourier analysis. These
differences may contribute to the performance differences seen here. Though the perfor-
mance difference is significant for large Λ, the difference is much smaller for Λ around 1.0
mfp.

6.2.1.2 Study #2: Variable System Optical Thickness by Increasing Cell Number

In this study, we examine the effect of increasing the total optical thickness of the
problem by increasing the number of fine cells pK. This is repeated for different values
of Λ, which are achieved by adjusting Σt in a given fine cell. In all cases, c = 0.99. The
numerically-estimated spectral radii of LDA and CMFD are reported for comparison to
the prediction of the Fourier analysis. Because the leakage of the problem decreases with
increasing pK, we expect the spectral radii to increase to the value predicted by the Fourier
analysis (in which we assume no leakage).

Table 6.3 and Table 6.4 provide the tabular data for LDA and CMFD, respectively.
From these results, we observe that LDA does not quite display the expected behavior.
As pK increases, the spectral radius decreases slightly for small values of Λ and stays
relatively constant for larger Λ. With CMFD we observe more expected behavior, with
the numerically-estimated spectral radius increasing toward the Fourier analysis predic-
tion as the optical thickness of the problem increases. In many cases with large pK, the
numerically-estimated spectral radius is smaller for LDA compared to CMFD.
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Table 6.3: LDA Numerical Spectral Radii for Fixed-Source Problems w/ c = 0.99

pK
Λ

0.3 0.6 0.9 1.2 1.5

10 0.20 0.30 0.39 0.46 0.59
25 0.20 0.29 0.37 0.45 0.56
50 0.17 0.25 0.34 0.43 0.61

100 0.15 0.22 0.33 0.43 0.60
250 0.14 0.23 0.34 0.44 0.61
500 0.15 0.23 0.34 0.44 0.61

∞ (Fourier Analysis) 0.24 0.31 0.40 0.50 0.66

Table 6.4: CMFD Numerical Spectral Radii for Fixed-Source Problems w/ c = 0.99

pK
Λ

0.3 0.6 0.9 1.2 1.5

10 0.18 0.25 0.36 0.37 0.55
25 0.21 0.30 0.33 0.43 0.59
50 0.22 0.29 0.35 0.47 0.60

100 0.22 0.29 0.37 0.49 0.64
250 0.22 0.28 0.37 0.49 0.64
500 0.23 0.28 0.37 0.48 0.65

∞ (Fourier Analysis) 0.24 0.31 0.40 0.50 0.66

6.2.2 Eigenvalue Problems

This section presents the results of study #1 and #2 for eigenvalue cases. For all prob-
lems in this section, νΣf is set equal to Σt. The material properties are uniform throughout
the system.

6.2.2.1 Study #1: Variable Optical Thickness by Increasing Total Cross Section

For this study, the scattering ratio is fixed at c = 0.95. We examine the effect of increas-
ing the optical thickness of each coarse cell on OI. From the Fourier analysis, we expect
the performance of LDA, CMFD, and unaccelerated PI to degrade with increasing Λ. We
omit values of Λ > 1.6 because both acceleration methods become divergent in this range.
Additionally, one value of c is tested because the impact of c on the convergence rate is
negligible.

The results of this study are shown in Table 6.5 and plotted in Fig. 6.2. For low values
of Λ, LDA and CMFD are observed to possesses similar performance. However, the linear
instability of LDA is seen to be more sensitive to Λ compared to CMFD for optically-
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thicker problems. For Λ = 1.6, #OI for LDA is about 62% larger than for CMFD. This
behavior was not observed in the Fourier analysis in Chapter 5, which assumed periodic
boundary conditions.

Though the linear instability of LDA is seen to worsen with Λ more quickly than
CMFD, this issue is significant only when Λ approaches the point of divergence for the
two methods. For Λ = 1.0, LDA is seen to require only 13% more OI compared to CMFD.
These performance differences are further explored for practical problems in Chapter 7.

Table 6.5: Performance of LDA & CMFD for Eigenvalue Problems w/ c = 0.95

Λ #OI - PI #OI - LDA #OI - CMFD

0.2 942 13 12
0.4 3240 17 14
0.6 6712 23 16
0.8 DNC 23 19
1.0 DNC 26 23
1.2 DNC 36 31
1.4 DNC 55 44
1.6 DNC 123 76

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

20

40

60

80

100

120

# 
Ou

te
r I

te
ra

tio
ns

LDA
CMFD

Figure 6.2: Number of outer iterations required for convergence for LDA and CMFD

6.2.2.2 Study #2: Variable System Optical Thickness by Increasing Cell Number

In this section, the results of study #2 are presented for eigenvalue problems, in which
the total optical thickness of the problem is varied by changing pK. This is repeated for
different values of Λ, and the scattering ratio c is fixed at 0.99. The tabular data is provided
in Table 6.6 and Table 6.7 for LDA and CMFD, respectively. We again observe some
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anomalous behavior for LDA compared to the Fourier analysis. Though the spectral radius
is generally seen to increase with pK for LDA, it slightly exceeds the Fourier analysis
prediction for the most optically thick problems with optically-thick coarse cells. This
behavior is not seen with CMFD, in which the spectral radius increases with K but does
not exceed the Fourier analysis prediction. The use of different boundary conditions for
these problems (compared to those used in the Fourier analysis) may contribute to these
results.

Table 6.6: LDA Numerical Spectral Radii for Eigenvalue Problems w/ c = 0.99

pK
Λ

0.3 0.6 0.9 1.2 1.5

10 0.25 0.27 0.40 0.46 0.64
25 0.23 0.29 0.38 0.55 0.73
50 0.23 0.30 0.41 0.59 0.76

100 0.23 0.31 0.40 0.59 0.77
250 0.23 0.29 0.44 0.60 0.77
500 0.20 0.30 0.47 0.64 0.83

∞ (Fourier Analysis) 0.25 0.32 0.44 0.60 0.78

Table 6.7: CMFD Numerical Spectral Radii for Eigenvalue Problems w/ c = 0.99

pK
Λ

0.3 0.6 0.9 1.2 1.5

10 0.24 0.28 0.38 0.46 0.67
25 0.23 0.29 0.38 0.54 0.73
50 0.22 0.29 0.42 0.58 0.76

100 0.23 0.28 0.42 0.59 0.77
250 0.23 0.27 0.43 0.60 0.77
500 0.22 0.29 0.46 0.57 0.75

∞ (Fourier Analysis) 0.25 0.32 0.44 0.60 0.78

6.2.3 Discussion of LDA Performance

In this section, we observe that LDA exhibits worse convergence properties than CMFD
for problems in which the mesh is optically-thick. In Chapters 4 and 5, the possible con-
tributors to the performance differences between LDA and CMFD are discussed. Namely,
these are:
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1. the different weighting function used for the coarse-mesh quantities (flux- and
volume-weighting for CMFD and volume-weighting for LDA), and

2. the different prolongation operators for each method (multiplicative for CMFD and
additive for LDA).

In Chapter 5, we observe that the spectral radius of LDA is larger than CMFD for highly
heterogeneous problems with relatively optically-thick meshes. The same behavior is seen
here, with a highly heterogeneous solution being a result of an optically-thick mesh and the
presence of a vacuum boundary condition. For problems with optically-thick mesh cells,
an extreme material discontinuity is present at the vacuum edge of the system. In this case,
the scalar flux changes sharply at this vacuum edge. For optically-thinner meshes, neutrons
travel longer distances without a collision on average, resulting in a smoother changes in
the scalar flux as a function of space compared to optically-thicker problems.

For optically-thick problems, the volume-weighting for coarse mesh quantities is likely
the largest contributor to the observed poorer performance of LDA compared to CMFD.
Considering that the choice of numerical diffusion coefficient can affect the convergence
properties of CMFD, the use of a diffusion coefficient that is not informed by the transport
solution iterate may significantly impact the performance of LDA. As discussed in Chap-
ter 4, the use of a “better” weighting function may improve the convergence properties
of LDA. We suggest the investigation of improved weighting functions for LDA as fu-
ture work. Additionally, the use of different boundary conditions (rather than the diffusion
boundary conditions used here) that incorporate information from the transport sweep may
improve performance.

6.3 Nonlinear Numerical Stability of LDA and CMFD

This section presents three case studies that are paired with the proposed nonlinear
instability failure modes of CMFD that were described in Section 3.5. Each of the three
cases is a contrived problem designed to demonstrate the susceptibility of a numerical
implementation of CMFD to failure as a result of the nonlinear instability inherent to the
method. For each case, a range of configurations is investigated. In this range, CMFD
transitions from stable to unstable. This manifests as an increase in the number of outer
iterations required to converge the CMFD-accelerated problem to the point of divergence,
where the number of outer iterations exceeds the imposed limit. The number of outer
iterations required for convergence with CMFD and LDA is plotted, as well as the quantity
that results in instability for CMFD.
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For these problems, we consider the degradation in CMFD performance to be due to
nonlinear terms becoming unphysically large during the iterative process. This is ultimately
due to division by small quantities that depend on the scalar flux. As the denominator of
each of the three nonlinear quantities decreases, magnitude of the term increases. Once the
term becomes sufficiently large, the iterative process destabilizes. This phenomenon is ob-
served in each of the three studies here. Further, there is a range in which the performance
of CMFD suffers but the method still converges. Considerable noise in the number of itera-
tions required for convergence is observed in this range, which we attribute to floating-point
error. We note that the range over which instability occurs is small in these studies, and
is much more “zoomed-in” than the plot shown in Fig. 5.3, so the noise associated with
floating-point error is visible in the plots for these studies.

In each of the three studies, a fixed-source problem with 10 fine spatial mesh regions
of width 0.1 cm is considered. Therefore, the width of the slab is 1.0 cm. The boundary
conditions are vacuum on each side of the system. Unless otherwise stated, the source
magnitude and total cross section are equal to unity. The coarse cells contain two fine cells
each (p = 2), resulting in a total of 5 coarse cells of width 0.2 cm. A cap of 1000 outer
iterations was imposed, with iterations halted once this limit is reached.

To probe the nonlinearities of CMFD, we set the fixed source in a single fine cell to
a negative value. This emulates a negative source (possibly as a result of high transverse
leakage from a spatial region in the 2D/1D method), which may cause the scalar flux so-
lution to become non-positive in a portion of space. Further, if the negative source causes
a coarse-mesh cross section to become negative, then the scenario emulates a case where
the use of TCP0 results in negative cross sections and, ultimately, negative flux values.
Once this happens, the possibility of nonlinear instability exists for the CMFD method.
In specific scenarios, explored in this section, each of the nonlinear terms in the CMFD
formulation can become unphysically large and numerically unstable, leading to reduced
performance and, eventually, divergence (as predicted by the Fourier analysis in Chapter 5).
These issues are not observed for LDA.

6.3.1 Instability due to the Diffusion Coefficient

In this case, the value of the source in the 7th cell from the left side of the geometry
is varied over a range of negative values. Around a critical value of the negative source in
the corresponding coarse cell (4th from the left side), the volume- and flux-weighted total
cross section for the cell becomes opposite in sign and equal in magnitude to the total cross
section of the coarse cell to the right (5th from the left side). In this case, the value of
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D̃ at the interface of these cells becomes unstable, leading to divergence of CMFD. The
equation for D̃ is reproduced below for reference:

D̃
(l+ 1

2
)

k+ 1
2

≡ 2

3(Σ̄
(l+ 1

2
)

t,k+1 ∆k+1 + Σ̄
(l+ 1

2
)

t,k ∆k)
, (Eq. (3.8f) revisited)

where the homogenized cross section for a given reaction type u is defined as

Σ̄
(l+ 1

2
)

u,k ≡
∑
j∈k

Σu,jφ
(l+ 1

2
)

0,j hj

∑
j∈k
φ
(l+ 1

2
)

0,j hj

,∀ u ∈ {a, s, t} . (Eq. (3.8h) revisited)

In contrast, the corresponding term in LDA is defined as

D̃k± 1
2
⟪f⟫ ≡ 2

3 (Σ̄t,k ⟪f⟫∆k + Σ̄t,k±1 ⟪f⟫∆k±1)
, (Eq. (4.12b) revisited)

where the homogenized cross section is defined as

Σ̄t,k ⟪f⟫ ≡
∑
j∈k

Σt,jfjhj

∑
j∈k
fjhj

, (Eq. (4.10c) revisited)

and the weighting function f is chosen to be 1. Because this weighting function is not the
fine-mesh scalar flux, LDA is not susceptible to this failure mode.

Figure 6.3a shows the number of outer iterations required for convergence as a function
of the negative source magnitude in the 7th cell from the left for both CMFD and LDA.
Because LDA uses volume-weighted cross sections, with linear correction terms in the
source to account for error due to the lack of applying the flux weight, it remains stable
in the region of instability for CMFD. Figure 6.3b shows the largest value of D̃ over
all iterations at the cell interface when using CMFD, which becomes unphysically large
(O(108)) in the region where CMFD diverges. For clarity, the approximate magnitude of
the fixed source in each fine cell is provided in Fig. 6.3c for the cases in which CMFD
diverges.

We observe that the peak magnitude of D̃ does not necessarily correspond directly
with an increase in the number of outer iterations required for convergence. Rather, there
is some degree of unpredictability pertaining to this failure mode as a result of floating-
point error and the use of the L∞ norm for the convergence criterion. What is clear is that
the performance of the CMFD method is unstable and degrades significantly in the range

152



4.6 4.8 5.0 5.2 5.4 5.6
|Q| 5.3832

10 5

102

103

# 
Ou

te
r I

te
ra

tio
ns

CMFD
LDA

(a) Number of outer iterations to achieve
convergence vs. negative source magnitude
in the 7th fine mesh cell

4.6 4.8 5.0 5.2 5.4 5.6
|Q| 5.3832

10 5

105

106

107

108

D

(b) Peak value of D̃ at the interface of the
4th and 5th coarse cells over all iterations vs.
negative source magnitude

1 2 3 4 5 6 7 8 9 10
j

5

4

3

2

1

0

1

Fi
xe

d-
So

ur
ce

 M
ag

ni
tu

de

(c) Example fixed-source distribution in fine
cells for a case where CMFD diverges

Figure 6.3: Figures for the D̃ study

where D̃ becomes large. There is also a “gap” between the number of iterations required
for convergence for LDA and CMFD in Fig. 6.3a for the full range of source values tested.
It is possible for D̃ to become unphysically large and CMFD to still converge. However,
once the method is strained beyond a certain point, the iterative process cannot recover
and divergence occurs. Limiting the magnitude of D̃ is a potential remedy to the issues
seen here. However, this could negatively impact the convergence rate of CMFD (since
changing the magnitude of D̃ has been done to improve the convergence rate [25, 26]).
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6.3.2 Instability due to the Transport Correction Term

For this study, the negative source magnitude was adjusted to result in CMFD failure
due to instability in the D̂ quantity, which is reproduced below:

D̂
(l+ 1

2
)

k+ 1
2

≡
Φ

(l+ 1
2
)

1,k+ 1
2

+ D̃(l+ 1
2
)

k+ 1
2

(Φ
(l+ 1

2
)

0,k+1 −Φ
(l+ 1

2
)

0,k )

Φ
(l+ 1

2
)

0,k+1 +Φ
(l+ 1

2
)

0,k

. (Eq. (3.8g) revisited)

This term can become numerically unstable if the two denominator terms become equal in
magnitude and opposite in sign. In LDA, transport consistency is achieved by lagging the
numerator of D̂ in the iteration process.

A critical range of negative source magnitudes in the 7th fine cell from the left side
allows for the coarse cell scalar flux for the 4th and 5th coarse cells to become opposite
in sign and nearly equal in magnitude. CMFD is seen to diverge once the two quantities
are sufficiently close, as shown in Fig. 6.4a. LDA does not contain D̂ in its formulation,
and therefore remains stable. Figure 6.4b shows the largest value of D̂ over all iterations at
the interface of the 4th and 5th coarse cells, which becomes large (O(107)) in the region
where CMFD diverges. For clarity, Fig. 6.4c shows the approximate source magnitudes for
the cases where CMFD diverges.

In these results, we again observe certain cases where the unstable quantity becomes
large but CMFD still converges. We attribute this to the unpredictability of the nonlinear
instability. It is possible that in these cases, the magnitude of D̂ was large enough to
interfere with the convergence process but not large enough to prevent convergence. A
large value of D̂ does not necessarily directly result in divergence of the iterative method.
Yet, we see that once the method is sufficiently strained, divergence occurs. If a limit was
placed on the magnitude D̂, the consistency of the low-order and transport solutions could
be compromised since the purpose of D̂ is to ensure this consistency. Therefore, such an
approach could result in the code producing an inaccurate solution.

6.3.3 Instability due to Prolongation of the Scalar Flux

This section focuses on the multiplicative prolongation scalar that is used to update
the fine-mesh scalar flux once the low-order problem has been solved. The multiplicative
prolongation equations are shown below:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j c
(l+1)
k ,∀ j ∈ k , (6.5a)
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Figure 6.4: Figures for the D̂ study

where the scalar c(l+1)
k is defined as the ratio of the newly-computed coarse mesh scalar flux

to that from the transport sweep:

c
(l+1)
k ≡

⎛
⎜
⎝

Φ
(l+1)
0,k

Φ
(l+ 1

2
)

0,k

⎞
⎟
⎠
. (6.5b)

If the scalar flux in a coarse-mesh cell becomes small, this quantity can become unstable
as shown in Fig. 6.5a. In LDA, the prolongation update is linear:

φ
(l+1)
0,j = φ(l+ 1

2
)

0,j + (Φ
(l+1)
0,k −Φ

(l+ 1
2
)

0,k ) ,∀ j ∈ k . (Eq. (4.41) revisited)

We note that this same linear prolongation update could be used in the CMFD method, but
the multiplicative update is traditionally used in many reactor physics codes. Additionally,
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the use of Eq. (4.41) in CMFD may increase the probability of negative scalar flux iterates
that could perturb the other nonlinearities of the method.

The number of outer iterations required for convergence for each method is shown in
Fig. 6.5a. Figure 6.5b shows the largest value of c(l+1)

k over all outer iterations, which grows
in magnitude as a critical value of the negative source in the 7th fine cell is approached.
Figure 6.5c shows the approximate source magnitude for cases in which CMFD diverges.
We observe that the performance of CMFD is significantly worse than LDA in the range
near the critical point of instability. Though the magnitude of the prolongation scalar does
not directly correspond to the number of outer iterations required for convergence, CMFD
is shown to break down once sufficient strain is imposed on the method. Because prolon-
gation in LDA is done in an additive manner, this instability is irrelevant.
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Figure 6.5: Figures for the multiplicative prolongation study

We note that Fig. 6.5a possesses much less noise in the number of outer iterations
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compared to Fig. 6.3a and Fig. 6.4a. In part, this is due to the larger range of divergence for
the prolongation study. Additionally, divergence in the D̃ and D̂ studies depends on two
denominator terms approaching the same magnitude. In contrast, one denominator term is
the focus for the prolongation study. The smaller number of degrees of freedom lends the
prolongation study to less noise compared to the other studies.

We consider the possibility of placing a limit on the magnitude of the prolongation
factor. Because this factor updates the transport solution with information from the low-
order solve, such a limit could affect the convergence rate of CMFD. Further, an incorrect
solution could be produced if the low-order problem converges to an incorrect solution as
a result of the limit.

6.3.4 Summary of Nonlinear Instability Studies

In this section, we have presented performance comparisons between LDA and CMFD
for problems in which CMFD becomes unstable as a result of nonlinear instability. Specif-
ically, we have examined scenarios where the following nonlinear terms in CMFD become
numerically unstable: (i) the flux-weighted numerical diffusion coefficient D̃, (ii) the trans-
port consistency term D̂, and (iii) the multiplicative prolongation factor. By introducing a
negative source, which emulates realistic scenarios where negative flux solutions are pos-
sible, these terms are forced to become unphysically large and unstable over a range of
source values.

The results of each study show that CMFD diverges in a critical nonlinear instability
range corresponding to a range of negative source values. This divergence is due to nonlin-
ear terms in the CMFD formulation, which are normally assumed to be “small”, becoming
unphysically large. Further, the performance of CMFD degrades as this critical nonlinear
instability range is approached. For these same cases, LDA is shown to be insensitive to
these nonlinear instabilities, and retains the expected convergence behavior. These results

support the main goal for development of the LDA method as established in Chapter 1,

which is to create a method that is not susceptible to the nonlinear instabilities inherent to

CMFD.

6.4 Wielandt-Shifted LDA

Here, we examine the effect of changing the “shift parameter” fsh on the performance
of PI for LDA applied to eigenvalue problems. We expect the condition number of the
LDA operator to increase with fsh, since the operator becomes more singular as fsh ap-
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proaches unity. Additionally, the condition number of the Laplace operator (contained in
the LDA matrix) is expected to increase more quickly for more spatially-refined problems
[50] (or problems with more spatial cells). Thus, we examine the effect of changing fsh
for problems with different coarse cell widths (∆). As the problem becomes more refined,
corresponding to smaller ∆, it should become more sensitive to numerical roundoff error.
The goal of the studies in this section is to quantitatively estimate the range of reasonable
values for fsh and to observe the effect of spatial refinement on the upper bound of fsh.

The fsh parameter specifies the fraction of the diffusion fission source that is subtracted
from the LHS operator for the LDA method applied to an eigenvalue problem. For refer-
ence, the shifted LDA equations discussed in Section 4.5 are reproduced here:

Ld,eig,sh ⟪1⟫Φ
(l+ 1

2
,m+ 1

2
)

0 = Q̃(l+1) + (1 − fsh)λdFd ⟪1⟫Φ
(l+ 1

2
,m)

0 , (Eq. (4.70) revisited)

where the shifted LDA operator is defined as

(Ld,eig,sh ⟪f⟫Φ0)k ≡ −D̃k+ 1
2
⟪f⟫(Φ0,k+1 −Φ0,k) + D̃k− 1

2
⟪f⟫(Φ0,k −Φ0,k−1)

+ (Σ̄a,k − fshλd(νΣf)k)⟪f⟫Φ0,k∆k ,

(Eq. (4.69) revisited)
and fsh exists in the range

0 ≤ fsh < 1 .

As fsh approaches unity, the shifted LDA operator becomes more critical, and thus, more
singular. Compared to CMFD, there is no risk of “over-shifting”, in which the shift magni-
tude is large enough to result in an inaccurate solution (due to an extremely large condition
number). With CMFD, one must be conservative with the shift magnitude because the up-
per bound is not known beforehand (as it is with LDA). This is a significant advantage of
LDA compared to CMFD. However, numerical roundoff issues as a result of a large shift
is a concern for both acceleration methods.

A set of test problems with 1000 fine cells and 5 fine cells per coarse cell (resulting
in 200 coarse cells) was used to examine the effects of changing fsh. The chosen metric
for measuring the performance of PI is the total number of power iterations required for
convergence (referred to as #PI for brevity). This value is the sum of the number of power
iterations over all outer iterations. A range of fsh was tested for the following values of fine
cell width (h): 0.05, 0.04, 0.03, 0.02, and 0.01 cm. These choices of h correspond to coarse
cell widths of 0.25, 0.20, 0.15, 0.10, and 0.05 cm, respectively. The left boundary condition
is vacuum and the right is reflective. Each fine cell possesses the following properties:
Σt = 0.2 cm−1 , c = 0.95 , and νΣf = 1.0 neutrons/cm. The LU linear solver method is
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used for all problems. To check the accuracy of the solution, the shifted LDA scalar flux
φ0,LDA,sh (for fsh > 0) was compared to the unshifted solution φ0,LDA (for fsh = 0) using the
following equation:

Flux Error ≡ max
j

(
∣φ0,LDA,sh −φ0,LDA∣

φ0,LDA
) . (6.7)

Normally, the solution accuracy would not be relevant because LDA preserves the trans-
port solution. However, in this context, we expect the accuracy of the solution to degrade
as the condition number approaches ∞ (this is effectively true for any shifted eigenvalue
problem). Therefore, the solution accuracy is reported in addition to performance metrics.

The results of these studies are shown in Fig. 6.6, with Fig. 6.6a showing the #PI and
Fig. 6.6b showing the condition number. As ∆ becomes smaller, the optimal value of fsh
corresponding to the minimum #PI decreases. This is expected behavior based on the data
in Fig. 6.6b, which shows that the condition number for a given value of fsh increases with
decreasing ∆. At a certain ∆, the condition number becomes large enough to affect the
convergence behavior of PI. We note that this is an extreme situation that is not likely to
be encountered in practice. For ∆ = 0.25 cm, the optimal shift value is fsh = 0.98. When
∆ = 0.05 cm, the optimal shift decreases to fsh = 0.8. Therefore, the choice of fsh is
influenced by the spatial refinement of the problem.

For values of fsh that are small enough not to cause numerical roundoff issues, the
decrease in #PI decreases approximately linearly with fsh. However, once the condition
number approaches O(106) for this problem, the convergence rate of PI starts to become
affected by numerical roundoff error. Thus, we observe an increase in #PI for values of
fsh near unity. Further, when the condition number becomes very large, the solution accu-
racy becomes unacceptable. Tables 6.8 and 6.9 show the tabular data for ∆ = 0.25 cm
and ∆ = 0.05 cm, respectively. From these tables, we see that the solution error be-
comes vastly greater than the convergence tolerance (10−8) when the condition number
approaches O(107) for this problem.

From this study, we have determined that one can estimate a conservative value for
fsh that is applicable to a range of practical problems with similar spatial refinement. One
can reasonably choose a conservative value for fsh in the approximate range 0.8 − 0.95.
Choosing a shift value greater than 0.95 would offer little benefit, due to the linear decrease
in #PI with fsh. In Chapter 7, we determine the optimal shift value for a large, practical
case.

159



0.0 0.2 0.4 0.6 0.8 1.0
fsh

40

50

60

70

80

90

100

110

120

# 
Po

we
r I

te
ra

tio
ns

 = 0.25 cm
 = 0.20 cm
 = 0.15 cm
 = 0.10 cm
 = 0.05 cm

(a) Number of power iterations required for
convergence as a function of fsh for different
values of ∆

0.0 0.2 0.4 0.6 0.8 1.0
fsh

104

105

106

107

108

Co
nd

iti
on

 #

 = 0.25 cm
 = 0.20 cm
 = 0.15 cm
 = 0.10 cm
 = 0.05 cm

(b) LDA operator condition number as a
function of fsh for different values of ∆

Figure 6.6: Results of the fsh studies

Table 6.8: Results of the Spectral Shift Study for ∆ = 0.25 cm

fsh #PI Flux Error Condition #

0.0 117 4.879E-09 9.319E+03
0.2 108 8.721E-10 1.165E+04
0.4 92 5.545E-10 1.553E+04
0.6 76 1.813E-09 2.330E+04
0.8 63 1.170E-09 4.659E+04
0.9 51 8.852E-10 9.318E+04

0.95 47 9.353E-10 1.864E+05
0.96 46 4.930E-09 2.330E+05
0.97 46 4.905E-10 3.106E+05
0.98 45 4.669E-09 4.659E+05
0.99 46 1.174E-09 9.318E+05

0.999 156 3.467E-02 9.318E+06

6.5 Discussion of LDA Linear Solver Methods

In this section, we consider the implications of the LDA method possessing a fixed LHS
operator on the process of solving the low-order linear system. As discussed in Chapter 4,
the LHS LDA operator is fixed for a given state. Additionally, the operator is generally
sparse (containing relatively few non-zero elements compared to the matrix size). These
properties can be taken advantage of in various ways, some of which will be briefly dis-
cussed here. Doing so can reduce the computational cost of solving the low-order problem
for different source vectors (which change every power iteration) compared to other sys-
tems in which the LHS operator is not fixed (such as CMFD).
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Table 6.9: Results of the Spectral Shift Study for ∆ = 0.05 cm

fsh #PI Flux Error Condition #

0.0 72 4.767E-10 7.913E+04
0.2 69 1.429E-10 9.891E+04
0.4 66 1.503E-09 1.319E+05
0.6 62 1.563E-09 1.978E+05
0.8 57 1.639E-09 3.956E+05
0.9 59 1.998E-09 7.913E+05

0.95 74 2.560E-09 1.583E+06
0.96 86 5.813E-09 1.978E+06
0.97 118 1.126E-08 2.638E+06
0.98 341 6.754E-08 3.956E+06
0.99 130 7.993E-02 7.913E+06

0.999 24 1.890E-01 7.913E+07

6.5.1 Direct Solver Considerations

The cost of solving a linear system directly is usually considered prohibitive for large
problems, as the cost scales with n3 (for an n × n matrix). However, this cost can be re-
duced by decomposing the operator in a way that allows for reduced computational cost
when solving the linear system. For the LU method (discussed in Section 2.4.3.1), the
LDA operator can be decomposed once before the iterative process begins, which classi-
cally requires O(n3) operations to factor the operator. Then, the computational complexity
reduces to O(n2) for each direct linear solve (using forward and backward substitution).
In this way, the upfront work of factoring the operator is more than made up for by the
reduced cost of solving the system (which is done every power iteration). This method
would not be beneficial for CMFD, since the operator is not fixed.

We note that though the LU method can reduce the computational expense of the low-
order step, it will increase the memory requirement. The low-order operator (for both
LDA and CMFD) generally takes the form of a sparse matrix, but the LU decomposition
will not possess the same sparsity. For a given n × n matrix, the fill-in (number of non-
zero elements) for the matrix factors will generally be higher than the original matrix.
This could significantly increase the memory requirements of the algorithm, especially for
large, multigroup problems. However, the literature suggests that some degree of sparsity
can be preserved for the matrix factors through specific procedures [46, 47]. This includes
methods of dissecting the operator in a way that maximally leverages its sparsity structure,
which reduces the fill-in of the LU factors [48]. However, the memory cost is still shown to
become prohibitive for large 3D problems. Specialized software also exists for preserving
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the sparsity of the matrix factors, such as the SuperLU software package [69].
In a practical application, the size of the low-order operator can be O(108) or larger (as

discussed in Chapter 2), but is generally sparse. If the decomposition method does not pre-
serve a high degree of sparsity for the matrix factors compared to the LDA operator, then
the method discussed here becomes impractical due to computer memory limitations. Fur-
ther, most neutronics applications that are used for large-scale problems (such as MPACT)
require a high degree of parallelism to simulate realistic problems. Thus, the software
employed to decompose the LDA operator and perform the direct linear solve must also
employ parallelism and possess favorable parallel scaling. If this is not the case, then
the LU method will likely be less favorable compared to a highly-efficient iterative solver
method. A suggestion for future work is to implement the LU method in MPACT in a way
that avoids the aforementioned issues, and compare the performance to iterative solvers
such as GMRES.

6.5.2 Iterative Solver Considerations

Regarding iterative Krylov solvers such as GMRES or the Biconjugate Gradient Sta-

bilized (BiCGSTAB) method [70], a preconditioner is generally used to improve the con-
vergence of solving the low-order linear system. The preconditioner can consist of two
matrices whose product approximates the original operator, and possesses a smaller con-
dition number compared to the original operator. Because the convergence rate of Krylov
methods depends on the condition number of the matrix, this can dramatically improve the
convergence rate. If such an iterative method is used to solve the LDA linear system, then
some computational work may be saved compared to CMFD because the LDA operator is
fixed. For example, we consider the Incomplete LU (ILU) preconditioner [71]. In this case,
the operator is decomposed into a lower and upper triangular matrix, and small values are
“dropped”, or omitted, to reduce the memory cost of storing the factors. As a result, the
product of these matrices approximates the original matrix rather than producing the exact
original. If this is done once before the outer iterations begin, then the preconditioner will
always resemble the LDA matrix, because it is constant for a given state. We suggest the
investigation of parallel ILU preconditioners in MPACT as future work. (A parallel method
for computing the ILU preconditioner is considered difficult, but work on this topic exists
in the literature [72, 73].)

Turning our attention to CMFD, we note that for this method, the low-order operator is
not fixed. In this case, the preconditioner may need to be recomputed during the iteration
process to retain the improved convergence rate if the CMFD operator changes significantly
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as iterations progress. These changes are likely to be larger during the first few outer
iterations, as the homogenized cross sections and transport consistency terms converge.
Thus, the preconditioner may be less effective for later iterations.

As further future work, we suggest the implementation and testing of solver methods
that are focused on linear systems with multiple right hand sides in a practical application
such as MPACT. “Linear systems with multiple right hand sides” refers to systems in which
the LHS operator is fixed, and we wish to solve multiple systems with this same LHS and
different RHS vectors. Many methods exist that are focused on situations in which all RHS
vectors are known before solving. However, this is not the case with LDA because the
RHS vector changes every power iteration. Therefore, the method must be conducive to
these types of situations. Some methods make use of related RHS, which could potentially
be applicable to LDA since the RHS vector contains lagged terms that we expect to be
“small”. In practice, this should mean that the RHS vector of the LDA low-order system
does not change significantly between outer iterations (especially when the problem is close
to convergence).

A concept for Krylov-based methods (such as GMRES) in which the Krylov subspace
is generated and reused is called Krylov subspace recycling. This is a way of reducing com-
putational work by saving the Krylov subspace that is generated in the process of obtaining
an iterative solution. One such method that fits these requirements described above is a
variation of GMRES called MHGMRES [74] (the acronym is not defined in the source).
This method generates a Krylov subspace for the residual of one system and projects the
remaining residuals onto that subspace, and employs certain methods to share information
among the systems. The MHGMRES method is shown to perform best when the right-hand
sides share spectral information. Another method called Generalized Conjugate Residual
Method with Inner Orthogonalization and Deflated Recycling (GCRO-DR) makes no as-
sumptions about the relationship between each right hand side vector, and focuses on the
selection of the subspace to be recycled [75]. Iterative methods such as these that take ad-
vantage of the fixed LHS operator and similar RHS vectors could reduce the computational
cost of solving the linear system compared to more traditional iterative solvers.

We further consider more recent direct linear solver technology related to computing
the LU decomposition of an operator [48]. This work is recent and is the focus of current
research in the field of numerical analysis, and the efficient, parallel implementation of the
method discussed here is stated to be a challenging task. In this reference, there is a dis-
cussion of a fast direct sparse solver (referred to as FDSS). Because the low-order operator
is a sparse system, this method is appropriate to apply to LDA. Though the name of the
solver implies its use to solve linear systems directly, it is more appropriate to generate a

163



preconditioner for use with an iterative solver. This is because the computational cost of
the method scales with the required accuracy of the decomposition. For 3D problems, this
cost can become prohibitive if high accuracy is desired (as would be the case for LDA).
However, the method becomes significantly cheaper if the desired accuracy is low. Thus,
this method could be used to generate an ILU decomposition of the LDA operator for use
with an iterative method. The basis of the method is called nested dissection partitioning,
and the goal is to cleverly decompose and restructure the matrix into sub-matrices, which
can then be compressed to allow for reduced computational work when obtaining the LU
decomposition. This is shown, in the most favorable case, to reduce the computational cost
of the LU decomposition to O(n) compared to O(n3) for the classical implementation.
Though this the the best case scenario, this method could reduce the cost of generating the
ILU preconditioner for an iterative method such as GMRES or BiCGSTAB.

6.6 Summary

In this chapter, we investigate the use of LDA in a 1D research code. From the per-
formance comparisons of LDA and CMFD in Section 6.2, LDA is shown to be more sus-
ceptible to linear instability compared to CMFD. These differences were observed in the
Fourier analysis for fixed-source problems, but not eigenvalue problems. Different choices
for coarse-mesh weighting functions, the prolongation operator, or boundary conditions
may be the cause of these discrepancies. However, the performance difference is significant
only for cases in which the optical thickness is large and both methods are near divergence.
For values of Λ near 1.0, the performance difference is tangible but not significant. The
use of weighting functions that more resemble the converged scalar flux may improve the
convergence properties of LDA.

Though the performance difference between LDA and CMFD is unfortunate, we have
also demonstrated the lack of nonlinear instability in LDA, which is the primary motivation

of developing the method. In Section 6.3, we showed that LDA is insensitive to the nonlin-
earities of CMFD through contrived problems in which the nonlinear terms of CMFD are
intentionally forced to become unstable. This is done through the introduction of a nega-
tive source into one fine cell, which emulates situations in which a negative flux solution
becomes possible. For a range of source values, CMFD becomes divergent. Further, the
performance of CMFD is shown to degrade when the method nears divergence as a result
of nonlinear instability. For these same problems, LDA remains stable.

We also present results of studies that show improved power iteration convergence prop-
erties as a function of the LDA shift parameter (fsh). As fsh increases, the number of
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power iterations required for convergence decreases up to a certain point. Once the condi-
tion number of the LDA operator becomes sufficiently large, the method begins to suffer
from numerical roundoff. As the problem becomes more spatially refined, condition num-
ber increases more quickly with fsh. Thus, the optimal value of fsh depends on the spatial
discretization of the problem. However, one can reasonably estimate a value of fsh for a
wide variety of practical problems with similar spatial refinement. Further, the risk of over-
shifting is not present with LDA as it is with CMFD. With CMFD, the shift magnitude
must be estimated and chosen conservatively to avoid over-shifting.

Finally, we discuss the advantages offered by LDA pertaining to solving the low-order
linear system. Because the LDA operator is fixed and sparse, specialized solver meth-
ods can be used to reduce the computational cost of solving the LDA system compared to
those methods typically used for CMFD. One direct method is LU decomposition, which
can reduce the solve cost but increase the memory requirement. Other iterative methods
take advantage of the fixed operator using Krylov subspace recycling, which improves the
convergence rate of the solver method by reusing previously-computed subspaces. Other
methods are focused on reducing the memory requirements and computational cost of ob-
taining a complete or incomplete LU decomposition. We suggest the implementation and
testing of these methods in MPACT as future work.
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CHAPTER 7

MPACT Numerical Results

The focus of this chapter is the use of LDA in the neutron transport code MPACT. First,
we provide some relevant implementation details for LDA in MPACT in Section 7.1. Then,
we perform a study to determine a suitable shift fraction using the Virtual Environment for

Reactor Applications (VERA) problem 5a [76] in Section 7.2. In Section 7.3, the perfor-
mance of LDA is compared to CMFD for several practical cases. The relative numerical
stability of LDA compared to CMFD is demonstrated in Section 7.4. Finally, a summary
of the results in this chapter is provided in Section 7.5.

7.1 Implementation Details

MPACT [11, 77] is a deterministic neutron transport code that uses the 2D/1D method
[38] to solve the NTE. The Method of Characteristics (MOC) is used to obtain the radial
solution in the x-y plane. For the axial direction, a nodal solver is used to solve the 1D
P3 equations on the coarse mesh. To accelerate the convergence of the transport problem,
and to provide a framework for coupling the 2D and 1D solutions, various forms of CMFD
are used. In contrast to the 1D code used in Chapter 6, the acceleration step is performed
before the transport sweep. This choice should not significantly impact the performance of
the accelerated algorithm.

The LDA method was implemented in MPACT using a similar algorithm as that de-
scribed in Section 4.4, except for the following differences:

1. the acceleration step takes place before the transport sweep (as with the CMFD im-
plementation in MPACT),

2. the low-order problem is 3D and multigroup, and

3. the problem is not normalized using the forward diffusion scalar flux solution,

4. the convergence criteria are different.
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Regarding the first difference, this change should not have a substantial effect on the con-
vergence properties of the accelerated method. In the first outer iteration, the low-order
problem is solved using the initial guess for the scalar flux (rather than the solution from
the transport sweep, which has not yet been performed). Regarding the second difference,
the low-order problem becomes a sparse block matrix rather than a tridiagonal matrix (as
it is in 1D, 1-group cases).

Regarding the third difference, there is a discussion in Chapter 4 about the normaliza-
tion of the low-order LDA scalar flux during PI. In Chapter 4, the scalar flux is normalized
during PI using the forward diffusion solution. However, normalizing this way is unneces-
sary because the low-order LDA problem is not of a form to which the FAT applies during
the PI process. Therefore, the scalar flux can be normalized using traditional means. For
the MPACT implementation of LDA, the scalar flux is not normalized using the forward
diffusion solution. Thus, some computational expense is spared because the converged
forward diffusion solution does not need to be obtained.

Regarding the fourth difference, the default convergence criterion for each of the it-
eration levels are as follows. For the outer iteration convergence criteria, the following
conditions are used: ¿

ÁÁÀ 1

Nfj
∑
j

(f (l)
j − f (l−1)

j )
2
< 5 ⋅ 10−5 , (7.1)

where l is the outer iteration index, Nfj is the number of spatial cells on the transport
grid containing a fission source, and fj is the normalized fission source in the fine cell j.
Additionally, the following convergence criterion is imposed on the eigenvalue:

∣λ(l) − λ(l−1)∣ < 10−6 . (7.2)

Outer iterations cease once these two conditions are met.
For the convergence criterion of the low-order CMFD problem, power iterations cease

once the normalized residual of the linear system is reduced by a factor of 100. If the
low-order problem is written in operator notation, as below:

M(l)φ
(l,m+1)
0 = λ(l,m)F(l)φ

(l,m)

0 , (7.3)

where m is the power iteration index, M is the migration operator, and F is the fission
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operator, then the convergence condition is

(
∥M(l)φ(l,m)0 −λ(l,m)F(l)φ(l,m)0 ∥

∥φ
(l,m)
0 ∥

)

(
∥M(l)φ(l,0)0 −λ(l,0)F(l)φ(l,0)0 ∥

∥φ
(l,0)
0 ∥

)
< 0.01 . (7.4)

For the power-iteration dependent eigenvalue, the following condition is imposed:

∣λ(l,m) − λ(l,m−1)∣ < 10−6 . (7.5)

Because the LDA linear system is not set up in the same way as the CMFD system,
and contains a source term that is fixed during the power iteration process, a different
convergence criterion is used. For reference, the structure of the low-order LDA problem
is reproduced below:

Ld,eig ⟪1⟫Φ
(l+ 1

2
,m+1)

0 = Q̃(l+1) + λdFd ⟪1⟫Φ
(l+ 1

2
,m)

0 . (Eq. (4.70) revisited)

If the same convergence criterion is used for LDA, then the relative magnitude of
Ld,eig ⟪1⟫Φ

(l+ 1
2
,m+1)

0 − λdFd ⟪1⟫Φ
(l+ 1

2
,m)

0 and Q̃(l+1) become a factor for convergence. To
avoid issues and confusion related to this, a simpler condition is imposed that avoids the
need to include Q̃(l+1). Power iterations cease once the following criterion is met:

max
k

( ∣f(l,m)−f(l,m−1)∣
f(l,m−1) )

max
k

(
∣f(l,0)−f(l−1,Ml−1)∣

f(l−1,Ml−1) )
< 0.01 , (7.6)

where k is the low-order grid index, Ml is the number of power iterations executed in outer
iteration l, and f is the normalized fission source on the low-order grid. Thus, we have
replaced Eq. (7.4), which checks 2-norms of the residual of the low-order problem, with an
∞-norm for successive changes in f . (The use of the ∞-norm for the convergence crite-
rion was chosen conservatively.) As discussed in Section 4.4.2, the transport eigenvalue is
updated once every outer iteration using Eq. (4.59). Because the eigenvalue is not updated
during every power iteration (as it is with CMFD), it does not play a role in the convergence
of LDA power iterations. Rather, the convergence of the transport eigenvalue is checked
using Eq. (7.5) once every outer iteration.

As previously mentioned, the low-order calculation is performed before the transport
sweep in MPACT. Therefore, in the first outer iteration, there is no transport correction
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information. Thus, we set Q̃ to zero in the first outer iteration. Once this is done, the LDA
equations reduce to the neutron diffusion equations. In this way, we obtain the adjoint
diffusion solution before the outer iterations begin. The tolerance for the adjoint diffusion
calculation is conservatively set to be a fixed fraction of 0.005 times the imposed outer
iteration convergence criterion on the fission source to ensure sufficient convergence of the
diffusion solutions. Because the adjoint diffusion solution is used to compute the transport
eigenvalue, a converged solution must be obtained.

Unless otherwise stated, the default MPACT settings for code version 4.3 are used with
the 51-group cross section library. Selected default settings are listed in Table 7.1. In
MPACT, the fuel pins are divided into a specified number of radial and azimuthal regions
that make up the fine mesh. Characteristic rays with a specified spacing are cast through
these regions for the MOC calculation, as shown in Fig. 7.1a. A coarse cell for the low-
order problem is generally composed of an axial slice of a single pin cell. Pin cells are
arranged in an assembly as shown in Fig. 7.1b, which are arranged in a specified pattern to
comprise the reactor core.

(a) Example transport mesh (blue lines) and
characteristic rays (dashed green arrows) in
a fuel pin

(b) Example assembly-level discretization

Figure 7.1: MPACT MOC discretization [42]

7.2 Wielandt Shift Study

In Section 6.4, the optimal shift parameter fsh for LDA was found to be dependent on
the spatial discretization of the problem. We wish to determine the best shift for a realistic
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Table 7.1: Selected MPACT Default Settings

Setting Value

Quadrature set Chebyshev-Yamamoto
Azimuthal angles per octant 16
Polar angles per octant 2
MOC Ray spacing 0.05 cm
Scattering treatment TCP0

# Radial fuel divisions 3
# Azimuthal fuel divisions 8
# Radial moderator divisions 1
# Azimuthal moderator divisions 8

case, with a much larger linear system. To do so, a study was conducted in which the shift
parameter fsh was varied in MPACT for the 2D version of VERA problem 5a with default
settings. This problem was chosen due to its size and complexity. Parallelization was used
in the form of spatial decomposition, with 8 MPI processes.

The 2D version of VERA Problem 5a is a radial slice of a quarter-core at Beginning of

Life (BOL) (no fuel burnup) and Hot Zero Power (HZP) (operating temperature but very
low power) conditions. Reflecting boundary conditions are used on the top and left sides
and vacuum boundary conditions on the bottom and right. This model contains a reflector,
barrel, and neutron pad in the regions surrounding the core. Westinghouse 17x17-type fuel
assemblies are used, with various fuel enrichments used in different fuel regions. The core
configuration is shown in Fig. 7.2. Complete details of VERA Problem 5a are available in
[76].

The results of the study are shown in Table 7.2. Each table entry is described below:

1. fsh: the value of the shift parameter as defined in Eq. (4.69),

2. Power Iterations: total number of power iterations executed across all outer iterations,

3. Runtime (s): runtime of the full calculation in seconds,

From the results, we observe that the computation effort (in terms of runtime and the total
number of power iterations) does not monotonically decline as fsh increases for small val-
ues of fsh. We note that by default, there is a limit of 20 power iterations per outer iteration
in MPACT. The total runtime is observed to increase with fsh for fsh < 0.8. This behavior
can be explained with the following rationale: the condition number of the low-order oper-
ator is increasing with fsh, which outweighs the effect of reducing the number of required
power iterations. Because the condition number increases with fsh (as seen in Chapter 6),
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Figure 7.2: VERA Problem 5a core geometry [76]

the difficulty of solving the linear system using GMRES increases (since the convergence
rate of GMRES iterations is dependent on the matrix condition number). This suggests that
fsh should either be set to zero or near unity.

Table 7.2: MPACT Shift Study Results for Problem 5a 2D w/ PI Limit = 20

fsh Power Iterations Runtime (s)

0.0 163 680
0.2 131 656
0.4 129 716
0.6 124 765
0.8 126 820
0.9 99 741

0.95 72 659
0.98 53 595
0.99 158 914
0.999 151 905

The results of this study suggest that the optimal value of fsh is approximately 0.98, as
can be seen from the plot of the runtime and total number of power iterations vs. fsh in
Fig. 7.3. For fsh = 0.98, the total runtime and number of power iterations was minimized.
Thus, this is the recommended value for this problem. However, the optimal value will
likely be different for other cases due to the wide range of problems that are simulated
with MPACT. If fsh is greater than 0.98, the computation effort is seen to increase. This
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is likely a result of the large condition number of the near-singular operator. In the range
0.98 < fsh < 1.0, the improved convergence of PI is overshadowed by the difficulty of
convergence encountered by GMRES. An increase in required power iterations in this
range indicates that the linear solver has trouble producing a converged solution.

For comparison, we also provide the results of the same study with the maximum num-
ber of power iterations per outer iteration set to 1000. Tabular and graphical data are shown
in Table 7.3 and Fig. 7.3b, respectively. We observe the same trend in these cases, with the
runtime increasing with fsh for small values of fsh. The only values of fsh that result in
reduced runtime compared to the unshifted case (fsh = 0.0) are 0.9, 0.95, and 0.98, with
fsh = 0.98 again providing the smallest runtime. For greater values of fsh, the number of
power iterations reached the imposed limit of 1000, so these results are not reported. This
behavior is again likely a result of the large condition number of the LDA operator, leading
to convergence issues when iteratively solving the linear system with GMRES.

0.0 0.2 0.4 0.6 0.8 1.0
fsh

600

650

700

750

800

850

900

M
PA

CT
 R

un
tim

e 
(s

)

60

80

100

120

140

160

# 
Po

we
r I

te
ra

tio
ns

(a) Power Iteration Limit = 20 (default)
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(b) Power Iteration Limit = 1000

Figure 7.3: MPACT runtime and # power iterations vs. fsh for VERA Problem 5a 2D

Table 7.3: MPACT Shift Study Results for Problem 5a 2D w/o PI Limit = 1000

fsh Power Iterations Runtime (s)

0.0 316 861
0.2 283 960
0.4 243 974
0.6 201 993
0.8 146 892
0.9 101 755

0.95 72 663
0.98 53 592
0.99 * *
0.999 * *
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We observe a small range of fsh in which the computational effort is reduced for the
default settings: 0.95 ≤ fsh ≤ 0.98. A value of fsh outside this range may not be beneficial
for a large problem such as the one tested here. If the previously-discussed LU method
is used, which has not been implemented in MPACT, then we may observe more of a
monotonic decline in computational effort with fsh, as observed in Section 6.4 (since the
increasing condition number with fsh will not affect the performance of a direct linear
solver).

7.3 LDA Performance in MPACT

In this section, we explore the performance of LDA in MPACT in comparison to the
CMFD method for several practical cases. The studies here investigate how the linear sta-

bility of LDA and CMFD compare for cases in which the nonlinear instability of CMFD is

not present. We compare the performance of the two acceleration methods for the following
practical cases:

1. VERA Problem 3a: A 3D Westinghouse 17x17 assembly at BOL and HZP conditions
with 3.1% enriched UO2 fuel in quarter symmetry. This is one of the assembly types
present in VERA problem 5a. The radial boundary conditions are reflective and
axial boundary conditions are vacuum. Figure 7.4 shows the quarter-assembly radial
geometry plot for this problem.

Figure 7.4: VERA Problem 3a geometry. The colors indicate fuel (red), cladding (green),
and moderator (blue). The guide tubes are visible as empty tubes. [76]
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2. VERA Problem 4a: Nine 3D Westinghouse 17x17 fuel assemblies arranged in a
3x3 checkerboard pattern (taken directly from the center of VERA problem 5a) at
BOL and HZP conditions in quarter symmetry. The radial boundary conditions are
reflective and the axial boundary conditions are vacuum. Figure 7.5 shows the radial
quarter-symmetry geometry for this problem.

Figure 7.5: VERA Problem 4a geometry. The colors indicate fuel (red), cladding (green),
and moderator (blue). Control rods are shown as black in the center assembly and Pyrex
rods are shown as yellow. [76]

3. VERA Problem 5a: Described in Section 7.2.

4. C5G7: A 3D benchmark problem with two UO2 fuel assemblies and two MOX as-
semblies with reflective boundary conditions on the top and left sides and vacuum
boundary conditions on the bottom and right [35]. Moderator surrounds the assem-
blies on the non-reflective sides. The unrodded configuration was used, with no
control rods inserted. Figure 7.6 shows the geometry for this problem.

Further details for each of these problems can be found in the following references: [35,
76].

For CMFD, the “adaptive” shift method in MPACT is used for the low-order eigenvalue
problem (as described in Section 3.4.2). Additionally, the optimally-diffusive version of
CMFD (odCMFD) [25] is used. This method adjusts the diffusion coefficient of each
coarse cell based on its optical thickness to improve the convergence rate. The LDA results
do not include these adjustments, so we expect slightly worse convergence behavior for
LDA compared to odCMFD. For LDA, the value of fsh = 0.98 determined in Section 7.2
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Figure 7.6: C5G7 Benchmark radial geometry [35]

is used. Otherwise, the default MPACT settings are used. We compare the total runtime
using each method, as well as the number of outer iterations required for convergence. For
each outer iteration, the number of power iterations is reported.

Table 7.4 presents the following performance metrics for each case:

1. CMFD OI: the number of outer iterations required for convergence when using
CMFD as the low-order acceleration method,

2. LDA OI: the number of outer iterations required for convergence when using LDA
as the low-order acceleration method,

3. CMFD Runtime (s): the total runtime in seconds of the calculation with CMFD as
the acceleration method,

4. LDA Runtime (s): same as above for LDA, and

5. # Cores: the number of MPI processes used for the spatially decomposed problem.

Table 7.4: Comparison of LDA and CMFD Performance Metrics

Case CMFD OI LDA OI CMFD Runtime (s) LDA Runtime (s) # Cores

VERA 3a 9 10 55 78 29
VERA 4a 12 12 553 873 29
VERA 5a 8 11 455 595 8
3D C5G7 13 13 328 387 60
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From these results, we observe that the LDA runtime is higher than the CMFD runtime
for all cases, and significantly higher for some. This is an unfortunate consequence of the
following two contributors: (i) the initial adjoint diffusion calculation and (ii) the slightly
different convergence rate of LDA compared to CMFD. For the former effect, the initial
adjoint diffusion calculation is an additional expense that is used to update the transport
eigenvalue in each outer iteration. This calculation requires a non-trivial amount of com-
putational resources in MPACT to converge to the required tolerance, which is contrary to
the discussion of the low-order problem in Chapter 2. Such an issue may be inherent to
large, realistic, 3D calculations. This effect is the most significant contributor to the ad-
ditional runtime for LDA compared to CMFD (which does not require this initial adjoint
diffusion solution).

To demonstrate the effect of the additional adjoint calculation on the runtime, we pro-
vide the runtime of just the initial adjoint diffusion calculation in Table 7.5. In this table,
the following metrics are provided:

1. Adjoint Flux Calculation (s): the time in seconds required to converge the initial
adjoint flux calculation only,

2. CMFD Runtime (s): same as above, and

3. LDA Runtime w/o AC: the total LDA runtime minus the time to complete the initial
adjoint diffusion calculation.

Table 7.5: LDA Adjoint Flux Computational Cost

Case Adjoint Flux Calculation (s) CMFD Runtime (s) LDA Runtime w/o AC

VERA 3a 23 55 55
VERA 4a 305 553 568
VERA 5a 110 455 485
3D C5G7 50 328 337

From the results in this table, we can see that the LDA runtime minus the time to complete
the initial diffusion calculation is much closer to the CMFD runtime. The time requirement
and efficiency for the low-order solve in MPACT is a known issue and has served as partial
motivation for previous work [78].

As seen from the results in Table 7.4, LDA-accelerated cases may require a few ad-
ditional outer iterations for convergence compared to CMFD. This is somewhat expected
from the 1D results in Chapter 6, which show that the spectral radius of LDA is slightly
worse than CMFD for spatially heterogeneous, finite problems. Additionally, odCMFD is
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used for these results, which slightly improves the convergence rate of the method com-
pared to standard CMFD (which was tested in Chapter 6). We are also interested in the
number of power iterations required for convergence within each outer iteration using the
chosen fsh value, which indicates the effectiveness of the shift method. In Fig. 7.7, we ob-
serve that the number of required power iterations for LDA is similar to CMFD using the
chosen shift methods. The number of additional power iterations for LDA is small for all
cases and does not exceed 3. The use of a more conservative norm for the PI convergence
criterion (∞-norm for LDA compared to L2-norm for CMFD) is likely contributing to the
increase in the number of power iterations compared to CMFD.
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Figure 7.7: Number of power iterations executed in each outer iteration

The results in this section suggest that the additional computational expense for LDA
compared to CMFD is largely due to the initial adjoint diffusion calculation. Some ad-
ditional work is due to the extra power iterations per outer iteration and additional outer
iterations, but this is small relative to the former contribution. The use of a Wielandt shift
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for the adjoint diffusion calculation could potentially reduce this additional computational
expense. Reducing the LDA linear solve time (potentially using one of the methods dis-
cussed in Section 6.5) may also help to offset the additional expense.

7.4 Nonlinear Instability Case Study

In this section, we investigate an example problem in which the nonlinearity of the
CMFD method causes numerical instability in MPACT. When the problem is accelerated
with LDA, the numerical instability is not observed. The problem in question is a 2D slice
of a 2x2 GE-12 assembly case with the control blade inserted [79]. Each 10x10 assembly
contains fuel pins of various enrichments. Large water rods are present in this assembly
type as shown in Fig. 7.8. For this problem, the TCP0 scattering treatment is used. The
ray spacing is set to 0.01 cm, and there are 8 and 2 azimuthal and radial angles per octant,
respectively. There are 5 radial divisions in the fuel and 1 in the moderator. For the water
rods, there are 7 radial divisions in the rod and 1 in the outer region. The 47-group MPACT
cross section library is used. Finally, the flux and eigenvalue tolerances are both set to
5 ⋅10−5. We vary the number of transport sweeps per outer iteration for this problem (which
is 1 by default). Otherwise, the default settings are used.

Figure 7.8: GE-12 assembly radial geometry [80]

When the number of transport sweeps per outer iteration is set to 1, the problem con-
verges with CMFD. However, when the number of transport sweeps per outer iteration
is set to 2, the problem diverges with CMFD. For shorthand, we refer to the number of
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transport sweeps per outer iteration as TS/OI. The underlying issue responsible for the di-
vergence is most likely due to the presence of negative cross sections on the transport grid
from TCP0 scattering treatment, which invoke the nonlinear instability of CMFD. How-
ever, the presence of negative cross sections alone is not enough to cause this issue. The
code must also encounter a state from which it cannot recover, which occurs when TS/OI is
changed. When the scattering treatment is changed to P2, the case converges with CMFD
with no issues.

For the divergent case (TS/OI = 2), we inspect the value of the eigenpair residuals and
D̂ when using the CMFD method, as well as the presence of negative flux values on the
transport and low-order grids. These metrics are tabulated in Table 7.6 as a function of
outer iteration #, with the following datasets:

1. Eigenvalue Res.: the difference in the eigenvalue as defined in Eq. (7.2),

2. Fission Source Res.: the fission source difference as defined in Eq. (7.1),

3. # Neg. FF: the number of negative scalar flux values on the transport grid, and

4. # Neg. CF: the number of negative scalar flux values on the low-order grid.

When using CMFD as the acceleration method, we observe divergence beginning in outer
iteration 8. At this point, the fission source and eigenvalue residuals stop decreasing, as
shown in Fig. 7.9a, where each residual at the end of a given outer iteration is plotted. Ad-
ditionally, the peak value of D̂ begins to increase significantly at this point in the iteration
process, as shown in Fig. 7.9b. Negative flux values appear on the fine mesh very early
in the iteration process, but do not result in negative coarse mesh values until iteration 8.
We can infer that the presence of negative cross sections on the coarse grid destabilize the
value of D̂, ultimately leading to divergence.

Flux-weighted cross sections are not used in the low-order problem when LDA is used
as the acceleration method, so negative coarse-grid cross sections are not expected. Addi-
tionally, LDA does not possess nonlinear terms such as D̂. Therefore, the problem con-
verges with no issues. Upon examining the same metrics as before with LDA in Table 7.7,
we observe that no negative cross sections appear on the coarse grid. Without negative
coarse mesh cross sections, the scalar flux solution on the coarse mesh does not become
negative.

In the case of divergence as a result of nonlinearity, the cause is likely to be a combi-
nation of the following three contributors: (i) the use of an approximation that allows for
a non-positive solution (in this case, the use of the TCP0 scattering treatment), (ii) the use
of a nonlinear method, such as CMFD, that is susceptible to nonlinear instability, and (iii)
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Table 7.6: GE-12 Data w/ CMFD & TS/OI = 2

Outer Iteration # Eigenvalue Res. Fission Source Res. # Neg. FF # Neg. CF

1 2.005E-01 2.599E-01 0 0
2 6.610E-02 4.178E-02 0 0
3 6.858E-02 1.448E-02 320 0
4 1.887E-02 3.512E-03 800 0
5 4.340E-03 1.084E-03 800 0
6 1.508E-03 4.544E-04 780 0
7 3.324E-04 1.225E-04 792 0
8 1.348E-03 1.058E-03 896 8
9 7.664E-03 3.361E-03 1588 64
10 1.080E-02 4.888E-03 1136 56
11 7.876E-04 3.711E-03 2057 24
12 2.146E-03 4.128E-03 592 12
13 5.958E-03 5.793E-03 866 12
14 4.118E-03 2.360E-03 799 6
15 1.353E-03 3.776E-03 706 17
16 3.122E-03 4.608E-03 1049 38
17 2.976E-03 6.949E-03 876 41
18 4.169E-04 6.983E-03 700 28
19 2.030E-02 4.634E-02 1311 36
20 2.020E-02 1.425E-01 10453 230
21 8.911E-03 1.239E-01 47840 951
22 7.574E-05 7.308E-02 8523 194
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Figure 7.9: CMFD data for the divergent GE-12 case

a specific setup that results in the problem entering a divergent state. Regarding the latter
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Table 7.7: GE-12 Data w/ LDA & TS/OI = 2

Outer Iteration # Eigenvalue Res. Fission Source Res. # Neg. FF # Neg. CF

1 2.005E-01 2.600E-01 0 0
2 1.374E-02 2.043E-02 64 0
3 7.224E-02 1.668E-02 480 0
4 1.559E-02 5.427E-03 800 0
5 8.070E-03 3.325E-03 840 0
6 3.723E-03 2.040E-03 884 0
7 2.106E-03 1.300E-03 924 0
8 1.234E-03 8.590E-04 964 0
9 7.666E-04 5.618E-04 1000 0
10 4.845E-04 3.739E-04 1032 0
11 3.112E-04 2.476E-04 1064 0
12 1.998E-04 1.650E-04 1096 0
13 1.280E-04 1.099E-04 1100 0
14 8.052E-05 7.334E-05 1108 0
15 4.867E-05 4.900E-05 1120 0

point, we refer to the specific options used for this case. In particular, the specification
of 2 transport sweeps per outer iteration as opposed to 1. When 2 transport sweeps are
performed, the code passes through an unrecoverable state when accelerated with CMFD.
This unrecoverable state is avoided when this option is changed, underscoring the unpre-
dictability of nonlinear instability. The use of LDA allows the problem to pass through this
otherwise unrecoverable state because it is tolerant of a non-positive solution.

To determine the difference between the simulations for each case, we investigate the
difference in the convergence of the inscatter source when TS/OI = 1 or 2. Since source
iteration is performed in each transport sweep, and the space- and energy-dependent scat-
tering source is updated each transport sweep, the inscatter source is expected to converge
faster when TS/OI is increased. The total magnitude of the inscatter source (with units of
neutrons/cm3⋅s) is graphed as a function of outer iteration number in Fig. 7.10 for 1 and
2 TS/OI. For these results, LDA is used as the acceleration method. The total inscatter
source for a given outer iteration is defined as

Total Inscatter Source ≡∑
j

∑
g
∑

g′, g′≠g
Σs,j,g′→gφ

(l)
0,j,g′ , (7.7)

where l is the outer iteration index, j is the transport grid index, and g is the group index.
Though there is only a slight difference in the convergence rate of the inscatter source
between the two options, we observe that the scattering source possesses slightly smaller
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values when TS/OI = 2. These smaller values likely lead to smaller scalar flux iterates
across outer iterations, which then allow for negative coarse-grid cross sections. As a
result of this difference, the nonlinearity of CMFD is encountered and the code becomes
divergent. Specifically, at outer iteration 8, which is where the code enters an unrecoverable
state when using CMFD and 2 TS/OI, the inscatter source magnitude is slightly smaller
than the convergent case where TS/OI = 1. This is enough of a perturbation relative to the
case where TS/OI = 1 to result in divergence with CMFD.
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Figure 7.10: Inscatter source magnitude vs. outer iteration for 1 and 2 TS/OI with LDA

To ensure that the converged solutions with LDA for both TS/OI options are correct,
we have provided comparisons to the CMFD solution with TS/OI = 1 in Table 7.8. Because
the TS/OI option should not affect the converged solution, we expect differences that are
on the order of the convergence criterion. The pin power difference is defined as

Pin Power Difference ≡
√

1

Nk
∑
k

(pk,LDA − pk,CMFD)2
, (7.8)

where pk is the pin power in a given pin k and Nk is the number of pins. This metric was
chosen based on the convergence criterion of MPACT. The eigenvalue difference is given
in percent mille (pcm) and is defined as

pcm difference ≡ ∣keff,LDA − keff,CMFD∣
keff,CMFD

⋅ 105 . (7.9)

We expect the LDA solution for both of these options to be the close to the CMFD solution
with TS/OI = 1. From the data in Table 7.8, we observe that the LDA pin power and pcm
differences are slightly larger than but close to the convergence criterion of 5 ⋅ 10−5. Based
on these small differences, we conclude that LDA converges to the same solution as that
obtained by CMFD when CMFD is convergent.
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Table 7.8: Comparison of LDA and CMFD Solutions for GE-12

Case Pin Power Difference pcm difference

LDA w/ TS/OI = 1 22E-05 9
LDA w/ TS/OI = 2 30E-05 18

7.5 Summary and Discussion

In this chapter, we investigate the use of LDA in MPACT. The optimal shift fraction is
determined to be approximately 0.98 in Section 7.2 for a large practical case, but we note
that this value may change for other problems. For larger shift fractions, the code perfor-
mance suffers due to issues related to the convergence of the linear solver. In Section 7.3,
the performance of LDA is shown to be slightly worse than CMFD. This is due to the large
computational effort of solving the adjoint diffusion calculation and the lack of diffusion
coefficient tuning for LDA compared to CMFD. Though the runtime for LDA is signifi-
cantly larger than CMFD, the convergence properties are shown to be similar. Finally, we
present a case study in which the nonlinear instability of CMFD (likely driven by the TCP0

scattering approximation) results in divergence. When the same case is accelerated with
LDA, the code is shown to accurately converge. These results support the goals for the

development of LDA as established in Chapter 1.

Section 7.4 presents the results of a nonlinear instability study of CMFD in MPACT
related to the TCP0 scattering approximation. However, we also discussed the possibility
of CMFD failure when used with the 2D/1D method in Section 2.3.2.4. Use of the 2D/1D
method without splitting can drive the solution negative due to high transverse leakage
in 3D problems. In such cases, the possibility of CMFD failure exists due to nonlinear
instability.

In [42], a number of improvements were made to the axial solver in MPACT. Among
these were the inclusion of anisotropic angular dependence for the transverse leakage terms
and the homogenized cross sections used to couple the 1D and 2D equations. Normally, the
angular dependence of these terms is assumed to isotropic, but this can reduce the accuracy
of the solution for problems with large axial gradients. In [42], the splitting method was
often necessary to allow MPACT to converge for problems in which these improvements to
the axial solver were enabled. (When anisotropic transverse leakage is enabled, a negative
solution is much more likely.) However, the splitting method contains assumptions that can
also degrade the solution accuracy. When the improvements to the angular coupling of the
2D and 1D solutions were enabled, the use of splitting overshadowed these improvements
(in some cases, to a certain degree). Though the exact cause of the convergence issues seen
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when splitting was disabled was unclear, we originally hoped that the use of LDA in place
of CMFD in these cases would resolve the iteration issues. That is, if the nonlinear insta-
bility CMFD was the cause of these issues, then replacing it with LDA would potentially
allow for the code to converge for cases with (i) axial solver improvements enabled and (ii)
splitting disabled. In this thesis work, such cases were tested with LDA.

Unfortunately, when LDA was used in place of CMFD for the aforementioned cases,
MPACT still exhibited convergence issues. The cause of these issues may be the nodal
solver in MPACT. This reasoning comes from the following observations:

1. LDA has been shown to lack the nonlinear instability of CMFD (in Chapter 5, Chap-
ter 6, and this chapter), so it is almost certainly not the cause of the convergence
issues, and

2. upon investigation of the convergence issues for the aforementioned 3D cases, the
solution produced by the nodal solver was seen to become unphysical immediately
upon the appearance of negative flux values on the coarse mesh.

Therefore, we are unable to provide evidence that LDA alleviates the convergence issues
seen in [42] (and, subsequently, ascertain the solution accuracy improvements due to the
work in [42] without splitting enabled). However, we have shown in this thesis that the use
of LDA (without other methods that are potentially susceptible to nonlinear instability) in
place of CMFD allows for convergence of cases that, otherwise, cannot be accelerated with
CMFD. We suggest the investigation and improvement of the stability of the nodal solver
in MPACT (or any other source of nonlinear instability in the code) as future work.
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CHAPTER 8

Conclusions

This chapter provides a brief summary of the work presented in this thesis. We review
the initial motivation for the development of LDA in Section 8.1. Then, the principal
findings are reported in Section 8.2. Lastly, suggested directions for future work are given
in Section 8.3.

8.1 Motivation

CMFD is a diffusion-based transport acceleration method that has been shown to dra-
matically improve the convergence rate of SI for both fixed-source and eigenvalue prob-
lems. By utilizing the solution to the low-order CMFD problem, the computational work
required to obtain a converged solution to the NTE can be substantially reduced (provided
the optical thickness of the coarse mesh stays relatively small). We refer to the degradation
in the ability of CMFD to accelerate SI with increasing coarse cell optical thickness as
linear instability. Our focus is not on the linear instability of CMFD, but rather, the non-

linear instability. This type of instability refers to the susceptibility of CMFD to exhibit
reduced performance, and even divergence, when certain nonlinear terms become unphys-
ically large under certain conditions. These nonlinear terms contain division by quantities
that may become very small during the iterative process, resulting in deviation from the
expected behavior of the method. In practice, nonlinear instabilities are encountered seem-
ingly randomly. LDA, which is the focus of this thesis, is a novel diffusion-based transport
acceleration method that contains no local nonlinearities with respect to the scalar flux, and
was specifically developed as a potential replacement for CMFD. The primary goal for the
development of LDA was to construct a method with no local nonlinearities that can rival
the performance of the widely-used CMFD acceleration method.

The nonlinear instability that CMFD exhibits is primarily caused by the possibility of
non-positive flux iterates that may arise during the process of computing a converged solu-
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tion. Certain approximations that are commonly applied to the NTE allow for non-positive
iterates or solutions, including the TCP0 scattering treatment and the 2D/1D approximation.
Both of these approximations are present in the neutronics code MPACT, with the 2D/1D
method being the basis of computing solutions for 3D models. Further, some spatial dis-
cretization choices for the NTE allow for the possibility of non-positive flux solutions. The
presence of non-positive scalar flux quantities on either the transport or low-order mesh
(for any iterate) can cause terms that are normally small, such as the transport consistency
term D̂, to become unphysically large. Other nonlinearities of CMFD that can cause is-
sues are the flux- and volume-weighted macroscopic cross sections and the multiplicative
prolongation factor.

The LDA is a novel diffusion-based transport acceleration method that was developed
with the nonlinear instabilities of CMFD in mind. By avoiding the nonlinearities that are
present in the CMFD formulation, LDA is not susceptible to performance degradation or
divergence under the same conditions where CMFD exhibits nonlinear instability. There-
fore, LDA can be used as a replacement for CMFD in situations where non-positive flux
iterates or solutions can occur. However, because LDA possesses similar linear instability
properties as CMFD, it can also be used generally. Certain properties of the LDA linear
system of equations can also offer additional advantages compared to CMFD, although
some disadvantages of LDA exist at the current state of the work.

8.2 Summary

LDA is inspired by a previously-proposed acceleration method, which we refer to as
the GAML method [12]. The foundation of both methods is the Fredholm Alternative

Theorem (FAT), which allows one to compute the solution to a linear system with a singular
operator. The LDA linear system can be thought of as a critical diffusion system with linear
transport consistency terms – that are analogous to D̂ – in the source vector. By applying
the FAT, the transport eigenvalue can be computed in a way that allows for a unique scalar
flux solution to the low-order LDA system to exist. This requires the computation of the
adjoint diffusion solution (and, optionally, the forward diffusion solution), which amount
to additional computational work exclusive to LDA.

Because the LHS operator of the LDA system is the critical diffusion operator, it does
not change during the iteration process. This is different from CMFD, which contains
transport consistency terms in the LHS operator. Therefore, the CMFD operator must be
reconstructed every outer iteration in order for the low-order solution to maintain consis-
tency with the transport solution. The fixed nature of the LDA operator offers the following
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advantages:

1. the constant nature of the LDA operator may be utilized to reduce the computational
work of solving the low-order linear system, either directly or iteratively, and

2. if the low-order eigenvalue problem is Wielandt-shifted (to improve the convergence
rate of the PI process), then the upper bound of the shift is known (as opposed to
CMFD, where one must conservatively choose the magnitude of the shift).

In addition to the derivation of CMFD, including the rise of nonlinear terms, Chapter 3
provides the rationale for the need to choose a conservative shift magnitude for the CMFD
system. The detailed derivation of LDA, including the Wielandt-shifted variation, are pro-
vided in Chapter 4.

Because we intend for LDA to serve as a replacement acceleration method for CMFD,
we are interested in the relative convergence properties of the two methods. Chapter 5 pro-
vides the details and results of a Fourier analysis that was performed for both acceleration
methods. This analysis produced a set of deterministic equations that could be used to pre-
dict the convergence rate, in the form of the spectral radius ρ, for either LDA or CMFD in
conceptually-infinite, spatially-heterogeneous, planar systems. The results of the analysis
show that LDA and CMFD possess the same ρ for infinite, homogeneous systems. This
was confirmed through numerical experiments using a 1D research code. However, the
spectral radii of the two methods differ in the heterogeneous case. Studies in which various
properties of the planar system are varied show that the difference in the spectral radius
for LDA compared to CMFD is significant only in cases with very high spatial heterogene-
ity. Additionally, these differences become trivial for eigenvalue problems, which is the
primary intended application for LDA. We also analytically demonstrate the nonlinear in-
stability of CMFD, and the lack thereof for LDA. Overall, the Fourier analysis predictions
are shown to be highly accurate compared to the numerical results from the research code.

In Chapters 6 and 7, the performances of LDA and CMFD are compared for finite
problems that cannot be analyzed using the Fourier analysis. Chapter 6 compares them in
a 1D research code, and Chapter 7 compares them for practical problems in MPACT. LDA
is shown to be more susceptible than CMFD to linear instability, with the spectral radius
of LDA increasing faster than CMFD as coarse cell optical thickness increases. However,
the performance difference is small for moderate optical thickness values. In addition,
the nonlinear instability of CMFD is demonstrated for contrived cases in Chapter 6 and
a practical case in Chapter 7. LDA is shown to remain stable when used to accelerate
these same cases. In Chapter 7, we also show that the additional computational work
of computing the initial diffusion solution when using LDA becomes non-trivial in large,
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practical problems simulated with MPACT. We note that the efficient determination of the
coarse-grid diffusion eigenfunction is an implementation issue in MPACT that should be
considered to be independent of the LDA method. Efficient computational methods for
solving such discrete diffusion problems exist and, in principle, should be used.

We also explore the behavior of LDA for Wielandt-shifted problems in Chapters 6
and 7. For small, 1D cases, the convergence rate of PI is shown to decrease monoton-
ically with an increasing shift fraction for values that are not near unity. However, this
behavior is not observed in practical MPACT cases, where the performance of the iterative
linear solver suffers from the increasing condition number of the low-order operator with
increasing shift fraction. In these cases the shift fraction must be large enough to outweigh
this drawback. However, one must take care not to choose a shift fraction that is too close
to unity. We show that the linear solver (either direct or iterative) suffers from roundoff
error in these cases, resulting in inaccurate low-order solutions and degradation in the per-
formance of the acceleration method. One can estimate a reasonable shift fraction that
avoids these issues for practical problems with similar spatial refinement. In Chapter 7,
we determine the optimal shift fraction for a large, practical problem. The performance of
LDA with this shift fraction is shown to be close to, but slightly worse than, that of CMFD
with a more advanced adaptive shift method.

Overall, these results support the goals for the development of the LDA method as es-
tablished in Chapter 1. Namely, we have shown that LDA lacks the nonlinear instabilities
of CMFD for both contrived and practical problems. Further, we have shown that the per-
formance of LDA is comparable to CMFD, albeit under certain conditions. However, the
additional computational work of obtaining the initial adjoint diffusion solution in MPACT
has proven to be problematic for the use of LDA to accelerate large cases. We note that this
may be an implementation issue in MPACT and is not inherent to LDA. The convergence
rate of LDA is shown to be poor under extreme circumstances, but is more manageable in
the practical context.

8.3 Future Work

As future work, we suggest the implementation of linear solvers that take advantage of
the properties of LDA in a practical code such as MPACT. These solvers should utilize
the fixed nature of the LDA LHS operator. For example, if the operator is LU decomposed
before the outer iteration process begins, then the linear system can be efficiently solved
using forward and backward substitution. Such an implementation would need to scale
well in parallel, and take measures to mitigate the additional memory requirements of this
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approach. In Section 6.5, we provide some examples of past and present work that may
provide promising research avenues on this topic. The implementation of advanced solver
methods in MPACT may also allow for improved performance when obtaining the initial
diffusion solution. Because this calculation amounts to significant additional computational
work in MPACT, this work would improve the practical use of LDA in MPACT.

In this work, the computational expense of solving the low-order diffusion adjoint prob-
lem has proven to be non-trivial. Previous work has focused on reducing this expense
through multilevel methods, in which the solution of lower-order systems with coarser
spatial and/or energy grids are employed [78]. The Multilevel-in-Space-and-Energy Dif-

fusion (MSED) method makes use of a “grey” diffusion equation, which is self-adjoint.
By leveraging the solutions to these coarsened problems, the overall runtime of obtaining
the CMFD solution is reduced. We suggest the extension of this technology to LDA, so
that problems accelerated with LDA can also benefit from reduced computational expense.
Additionally, the use of multilevel methods for the initial adjoint diffusion problem (which
must be fully converged, and as such, adds non-trivial computational expense to problems
accelerated with LDA) should also be investigated.

We further suggest that the procedure taken to obtain the “optimally-diffusive” adjust-
ment to the diffusion coefficient be applied to spatially-heterogeneous problems. This study
was originally performed for spatially-homogeneous problems, resulting in an adjustment
that depends only on the optical thickness of the coarse cell. However, we have shown that
high spatial heterogeneity can also affect the convergence rate of an acceleration method.
Additionally, heterogeneity affects LDA and CMFD differently. One may be able to deter-
mine a method-dependent adjustment that takes into account both the optical thickness and
the degree of heterogeneity. The value of this adjustment would likely differ between LDA
and CMFD. This may take the form of (i) an adjustment to the numerical diffusion coeffi-
cient of a given coarse cell or (ii) more fine-grained adjustments to the diffusion coefficients
of the fine cells in a coarse cell (ultimately resulting in a change in the numerical diffusion
coefficient of the coarse cell). This work may help to mitigate the linear instability of LDA
and CMFD for spatially-heterogeneous problems.

Further, the use of higher-order prolongation has been shown to improve the con-
vergence rate of CMFD [66, 81]. In this method, information from neighboring coarse
mesh fluxes is incorporated into the prolongation operator for the low-order problem. This
method has a similar effect on the convergence rate as the aforementioned adjustments to
the diffusion coefficient. The use of this method for LDA may also be able to improve the
convergence rate of accelerated problems.

We provide a discussion of the choice of weighting function for the LDA operators in
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Section 4.6. This weighting function, which is used to compute coarse-grid quantities for
the low-order problem, is chosen to be uniform in space. This choice was made such that
the diffusion operator that is present in the LDA equation is fixed throughout the iteration
process. If the weighting function is not fixed, then the diffusion eigenpair would need
to be recomputed each time the weighting function is updated. However, the choice of
the uniform weighting function likely has a detrimental affect on the convergence prop-
erties of LDA. This is because there are additional lagged terms in the LDA formulation
that are not present in CMFD (which uses flux- and volume weighting) to account for the
incorrect weighting of homogenized quantities. The use of a “better” weighting function
may improve the convergence properties of LDA by reducing the magnitude of the lagged
terms. For example, one might use the scalar flux solution of the first transport sweep as
the weighting function. In this case, the diffusion solution would need to be recomputed
once, but subsequent iterations may see a benefit. (To prevent the possibility of nonlinear
instability, the weighting function should always be strictly positive.)

In addition to the choice of weighting function, we also consider the boundary con-
ditions for the LDA system. The boundary conditions used for LDA are those of the
corresponding diffusion problem, which are contained in the diffusion operators. Upon
convergence, these operators cancel out – leaving the neutron balance equation (as shown
in Chapter 4). This choice for the boundary conditions may not be optimal in terms of the
spectral radius of the method. The use of different boundary conditions that incorporate
more information from the transport problem may improve the convergence properties of
LDA. We suggest the investigation of alternate boundary conditions for the low-order LDA
system as future work.

As discussed in Section 7.5, we were unable to show that LDA alleviates the conver-
gence issues shown in [42] for cases in which improvements to the MPACT axial solver
were enabled. These convergence issues, which were thought to be potentially brought
about by the nonlinearities in CMFD, are still present when problems are accelerated with
LDA. A potential source of these issues is the nodal solver in MPACT, which is observed
to produce an unphysical solution once negative coarse mesh fluxes are present. We sug-
gest the investigation of these issues as future work. If these issues are resolved, then the
improvements in [42] may be able to be better observed.

Lastly, we consider multi-physics neutronics problems with nonlinear feedback. These
are problems in which “feedback” in the form of material state information (such as tem-
perature) from a separate solver affects the values of the cross sections in the neutronics
calculation. In turn, information from the neutronics solver (such as the power distribution)
provides the heat source for the temperatures calculated by the feedback solver. For this
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“coupled” calculation, the normally well-behaved convergence properties of CMFD can de-
grade compared to problems without feedback. Previous work has shown that incorporating
some aspects of nonlinear feedback in the low-order problem can improve the convergence
rate of multi-physics problems [82, 83]. For example, if the value of the cross sections is
assumed to be dependent on the scalar flux (which serves as a proxy for the more detailed
physics) then the low-order solver can be modified to incorporate this information. The
result is improved convergence of CMFD-accelerated multi-physics problems. We suggest
the extension of this idea to LDA, so that it can be used to better accelerate problems with
feedback (while avoiding nonlinear instability).
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APPENDIX A

Comparison of GAML and LDA

As previously discussed, the LDA method has some similarities to the GAML method
(so named based on the last names of the authors of the paper) [12]. Here, we reproduce
the GAML paper for reference in Appendix A.1 (because the original paper is not easily
available), and then we provide a short discussion on the differences between GAML and
LDA in Appendix A.2.

A.1 Reproduction of the GAML Paper

ACCELERATION OF TRANSPORT EIGENVALUE PROBLEMS

E. M. Gelbard
C. H. Adams

Applied Physics Division
Argonne National Laboratory

Argonne, Illinois 60439

and

D. R. McCoy
E. W. Larsen

Theoretical Division
University of California

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

SUMMARY
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A general linear procedure has recently been developed for the acceleration of iteration
methods for fixed-source discrete-ordinates transport problems in slab geometry [34, 84].
This procedure leads to unconditionally stable diffusion-synthetic acceleration methods for
many spatial discretization schemes applicable to the discrete-ordinates equations. How-
ever, the procedure is not directly applicable to the acceleration of iteration schemes for
eigenvalue problems. Alcouffe’s diffusion-correction method [21], encoded in ONEDANT
[60], has been developed for the acceleration of diamond-differenced eigenvalue problems,
but this method is nonlinear and must be used with a negative flux fixup – even if negative
fluxes occur in groups that have only slight influence on the eigenvalue – and the method
is not easily generalizable to other differencing schemes. Here we derive an acceleration
method that is based on the general fixed-source procedure mentioned above, and that does
not have these two drawbacks.

We wish to solve the eigenvalue problem

µ
dψ

dx
(x,µ) + σTψ(x,µ) = (σS + λHνσf)φ0(x) , (A.1)

where Eq. (A.1) holds in some system with suitable boundary conditions, and we define

φn(x) =
1

2 ∫
1

−1
Pn(µ)ψ(x,µ)dµ , n = 0,1,2,

with Pn the n-th Legendre polynomial. Taking the zero-th and first angular moments of
Eq. (A.1) and eliminating φ1 gives

HLφ0 = (λH − λL)νσfφ0 +
d

dx

2

3σT

d

dx
φ2 , (A.2)

where HL is the operator

HL ≡ −
d

dx

1

3σT

d

dx
+ σT − σS − λLνσf

and λL is the smallest positive number such that

HLφL = 0 .

Multiplying Eq. (A.2) by the adjoint eigenfunction φ∗L and operating by the inner product
⟨⋅, ⋅⟩ gives the condition on λH

0 = (λH − λL) ⟨φ∗L, νσfφ0⟩ + ⟨φ∗L,
d

dx

2

3σT

d

dx
φ2⟩ , (A.3)
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which must be satisfied for a solution of Eq. (A.2) to exist. Now, Eqs. (A.1) to (A.3) suggest
the iteration scheme

µ
dψ(l+ 1

2
)

dx
+ σTψ(l+ 1

2
) = (σS + λ(l)

H νσf)φ
(l)
0 , (A.4)

λ
(l+1)
H = λL +

⟨φ∗L,
d

dx
2

3σT
d

dxφ
(l)
2 ⟩

α ⟨φ∗L, νσfφ
(l+ 1

2
)

0 ⟩ + 1 − α
, (A.5)

HLφ
(l+1)
0 = (λ(l+1)

H − λL)νσf [αφ
(l+ 1

2
)

0 + (1 − α)φ(l)
0 ] + d

dx

2

3σT

d

dx
φ
(l+ 1

2
)

2 , (A.6)

⟨φ∗L, νσfφ
(l+1)
0 ⟩ = 1 . (A.7)

Equation (A.5) is a necessary and sufficient condition for Eq. (A.6) to have a solution,
and Eq. (A.7) is a normalization which makes the solution of Eq. (A.6) unique. [This
normalization is used in the denominator of Eq. (A.5).] The parameter α in Eqs. (A.5)
and (A.6) is arbitrary and will be discussed below.

This method can be rewritten in a more useful form as follows. Taking the zero-th and
first moments of Eq. (A.4), eliminating φ

(l+ 1
2
)

1 , and subtracting the resulting equation from
Eq. (A.6) gives

HL (φ(l+1)
0 − φ(l+ 1

2
)

0 ) = σS (φ(l+ 1
2
)

0 − φ(l)
0 )

+νσf {[λ(l+1)
H φ

(l+ 1
2
)

0 − λ(l)
H φ

(l)
0 ]

+ (1 − α) [λL (φ(l+ 1
2
)

0 − φ(l)
0 ) + (λ(l+1)

H − λ(l)
H )φ(l)

0 ]} .

(A.8)

An alternative expression [but equivalent to Eq. (A.6)] for λ(l+1)
H , found by operating on

Eq. (A.8) by ⟨φ∗L, ⋅⟩, is

λ
(l+1)
H = λL −

⟨φ∗L, σS (φ(l+ 1
2
)

0 − φ(l)
0 ) + νσf (λLφ

(l+ 1
2
)

0 − λ(l)
H φ

(l)
0 )⟩

α ⟨φ∗L, νσfφ
(l+ 1

2
)

0 ⟩ + 1 − α
. (A.9)

The alternative (but equivalent) scheme consists of replacing Eq. (A.5) by Eq. (A.9) and
Eq. (A.6) by Eq. (A.8). Thus, the l-th iteration consists of determining ψ(l+ 1

2
) from

Eq. (A.4), λ(l+1)
H from Eq. (A.9), and φ(l+1)

0 from Eq. (A.8) and Eq. (A.7). This process
repeats until convergence.

Numerical schemes are derived by repeating the above analysis basically line-for-line,
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but starting with the discretized (rather than the continuous) form of the transport equation.
This procedure directly follows that which has been developed for fixed-source problems
[34, 84]. From Eq. (A.6), it is apparent that the choice α = 1 introduces the most recent
information into the equation for φ(l+1)

0 , whereas the choice α = 0 equally apparently sim-
plifies the equation for λ(l+1)

H . In practice, we have found that for the diamond-differenced
transport equation, either choice of α leads to virtually the same results. The form of
Eq. (A.9) with α = 0 has been used to obtain eigenvalue estimates (i.e., Eq. (A.9) was eval-
uated with l = 0 which gives a first-order perturbation theory estimate). These eigenvalue
estimates were then used to assess the error in the low order SN eigenvalue computations
[85].

In comparing our diamond-differenced acceleration method with that in ONEDANT
for one-group slab-geometry eigenvalue problems, we find that the two methods require
essentially an equal amount of computational effort for problems in which both methods
converge. Our method does not require the transport solution to be everywhere positive and
we do not employ a negative-flux fixup; probably because of this, we have never observed
our method to diverge. The ONEDANT method however does require a negative flux fixup
and for coarse meshes this fixup can either degrade the results or cause divergence. As a
very simple example, let us consider a three-region system: the left-boundary is reflecting;
the leftmost region is 2 cm thick with σT = 1.0, σa = 0.1, and νσf = 0.0; (all cross sections
have units of cm−1); the center region is 20 cm thick with σT = 1.0, σa = 0.1, and νσf = 0.1;
the rightmost region is 20 cm thick with σT = 2.0, σa = 0.02, and νσf = 0.0; and the right
boundary is vacuum. The S8 eigenvalues k = λ−1 are tabulated in Table A.1 for the two
methods and for four separate meshes. (The numbers of equal cells in each region are
given in parentheses.) The finest mesh solutions are seen to agree. For the next two meshes
the solutions do not agree due to ONEDANT’s use of a negative flux fixup; although the
differences are slight, our results are closer to that of the fine mesh solution. Finally, for
the coarsest mesh, the ONEDANT algorithm diverges.

In summary, we have developed an acceleration method for transport eigenvalue prob-
lems that is stable with respect to mesh size. Also, our method is applicable in multidimen-
sional geometry and to non-diamond differencing schemes, subjects that we are currently
investigating.
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Mesh Linear Nonlinear

(4,40,80) 0.952901 0.952901
(3,30,60) 0.952881 0.952880
(2,20,40) 0.952833 0.952822
(1,10,20) 0.952827 *

Table A.1: Eigenvalues for the Linear and ONEDANT (nonlinear) acceleration methods.
(* denotes divergence.)

A.2 GAML vs. LDA

The GAML and LDA methods possess some similarities in their formulations, but also
some distinct differences. These differences come about through the practical consideration
of LDA, which is derived with the assumption that the method will be used with a coarser
spatial mesh than the transport problem. Further, the GAML equations are set up such
that the correction to the most recent scalar flux (rather than the next scalar flux iterate)
is computed, which is also done in DSA [21]. Additionally, we have discussed practical
considerations of the use of LDA for large, complex problems in this thesis.

GAML uses a critical diffusion operator (HL) for the low-order equation. To account
for the differences between the diffusion operator and the transport problem, correction
terms are present in the RHS of Eq. (A.6). In LDA, the low-order problem is set up dif-
ferently, with the diffusion operator (Ld,eig) being present on both sides of the low-order
equation, as reproduced below:

(Ld,eig ⟪1⟫Φ0)k = (Φ1,k− 1
2
−Φ1,k+ 1

2
)

+ (Ld,eig ⟪1⟫Φ0)k + (λt ˙(νΣf)k − Σ̇a,k)⟪φ0⟫ .
(Eq. (4.52a) revisited)

Upon convergence, these operators cancel out, leaving the NBE. In GAML, the equations
are written in such a way that the diffusion operator is present only on the LHS. Also, the

correction to the most recent scalar flux estimate (φ(l+1)
0 − φ(l+ 1

2
)

0 ) is computed in GAML

(using Eq. (A.8)), whereas the next scalar flux iterate (φ(l+1)
0 ) is the solution of the LDA

equation.
The GAML equations are presented in continuous form, with no information on how

to obtain the discrete form of the low-order equation. (Numerical results are presented
for the case in which there is only one spatial grid – that is, the transport and low-order
problems use the same spatial grid.) The LDA equation is derived from the discrete NBE,
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and considers the coarse-mesh case in which the RHS correction factors take a specific form
to account for volume-weighting of coarse-mesh quantities in the LHS diffusion operator.
These correction factors must be carefully handled to avoid the appearance of nonlinearities
in the LDA method. Specifically, the correction factors for the cross sections take the
following form:

Σ̇u,k ⟪φ0⟫ ≡∑
j∈k

Σu,jφ0,jhj , ∀ u ∈ {a, s, t} , (A.10)

which are a function of the transport flux on the fine grid (φ0). LDA also considers a
linear prolongation operator to avoid a nonlinear prolongation update. Additionally, the
transport eigenvalue calculation for LDA takes a different form than for GAML due to the
consideration of the coarse mesh, as reproduced below:

λ
(l+1)
t =

K

∑
k=1

Φ∗
0,d,k [(Φ

(l+ 1
2
)

1,k+ 1
2

−Φ
(l+ 1

2
)

1,k− 1
2

) + Σ̇a,k ⟪φ
(l+ 1

2
)

0 ⟫ − (Ld,eig ⟪1⟫Φ
(l+ 1

2
)

0 )
k

]

K

∑
k=1

Φ∗
0,d,k

˙(νΣf)k ⟪φ
(l+ 1

2
)

0 ⟫
.

(Eq. (4.59) revisited)
Both methods utilize a critical (singular) LHS diffusion operator, and the FAT is used

to obtain a formulation for the transport eigenvalue. In this work, we consider (i) how to
modify the low-order LDA problem so that it can be solved practically (by moving some
fraction of the fission source to the RHS) as discussed in Chapter 4, (ii) the implications
of the fixed LHS LDA operator (as discussed in Section 6.5), and (iii) the linear instability
properties of LDA. Limited numerical results are presented in the GAML paper, with no
information regarding the linear instability characteristics of the method.

In summary, the GAML and LDA methods have a similar goal. Namely, the avoidance
of nonlinearities so that negative flux fix-ups do not need to be used in the neutronics
calculation (which can degrade the solution accuracy). To achieve this goal, both methods
utilize a diffusion operator and the FAT to obtain an expression for the transport eigenvalue.
However, the low-order equations of each method take on different forms, with LDA taking
into account the implications of a coarse spatial mesh (among other considerations).
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