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ABSTRACT

The energy sector in modern society is undergoing a rapid transformation from fuel-

based generation to renewable generation. Further, distributed supply and demand,

grid-responsive demand management, and other complex technology increasingly

rely on environmental data throughout the energy supply chain, from power produc-

tion to end uses. However, data analysis in energy systems presents major techni-

cal challenges, including spatio-temporal heterogeneity, localized characteristics, and

disparate data sources.

This dissertation study aims to design data science solutions that address some

of these challenges and model the dynamics of ambient environmental conditions

that are closely tied with energy system operations. Climate conditions are often

temporally and spatially correlated and exhibit a non-stationary nature, constantly

changing all the time. To fully characterize these characteristics, this study utilizes

the rich data available from multiple sources, including data collected at spatially

distributed locations and data generated from disparate sources, e.g., field meteoro-

logical data and physics-based numerical weather prediction data.

This dissertation initiates two major ideas: (a) making use of data collected

from multiple spatially dispersed locations; and (b) integrating data generated from

physics-based numerical weather prediction models with actual climate measure-

ments through a linkage function. Specifically, the following three research topics

are investigated.

ix



The first study develops a probabilistic model for assessing wind resources at a

target location by utilizing wind data collected at nearby meteorological stations. By

quantifying daily and spatially correlated diurnal patterns of the wind speed at mul-

tiple locations, the developed integrative approach provides compelling capabilities

for evaluating the wind variability at non-observational locations, while quantify-

ing prediction uncertainties. The results will provide rich information for deciding

suitable wind farm sites.

Next, we make use of temperature projections from physics-based global climate

models for the purpose of long-term electricity load predictions. While the physics-

based climate models can provide useful climate projections in the long run, they

inevitably exhibit systematic discrepancies (also called ‘bias’), compared to actual

climate conditions, because of incomplete characterization of local or regional vari-

ations. We calibrate the climate model projections to address possible biases and

provide a long-term density prediction of peak electricity load. The results provide

useful insights on how the daily peak demand densities would change over time, in

response to climate change and other socio-economic factors.

Finally, we present another bias correction model that quantifies the spatially

and temporally correlated bias from the physics-based numerical model output for

urban temperature modeling. By combining both types of data, our approach can

successfully characterize localized environmental variations over space and time and

greatly improve the prediction accuracy compared to that of the original physics-

based numerical model. The proposed approach helps understanding temperature

variations over dispersed locations, depending on urbanization intensity. Such results

can be useful for predicting electricity demand and effectively managing power system

operations such as demand response programs.

x



The advantages of all proposed approaches are demonstrated with case studies

using actual data. The results validate that the proposed approaches successfully

address some of the challenges discussed above that arise in energy and environmental

systems.

xi



CHAPTER I

Introduction

Modern society increasingly relies on electric power systems. The U.S. end use of

electricity reached 3.99 trillion kilowatt hours (kWh) in 2019, and the total demand is

expected to increase in the next decades [2–4]. The nation’s renewable energy sources

play an important and integral role in attaining energy independence, sustainability,

and affordability. Among all of the renewable energy sources, wind and solar power

are the fast-growing renewable sources in the U.S. Their market share had grown

to 19% in 2019 and is expected to double over the next 30 years [5]. The U.S.

Department of Energy (DOE)’s goal is that wind power will account for 20% of

the total resource mix by 2030 [6]. On the demand side, smart communication

capabilities facilitate demand management services, such as shedding, shifting, and

modulating the electricity end use [7].

Facing such transformation, data science can play a key role in providing system-

wide, integrated approaches to managing modern power systems because it can pro-

vide predictions of renewable energy generation (supply side) and energy end use

(demand side). It should be noted that both wind/solar renewable generation and

electricity demand highly depend on ambient weather conditions. Wind conditions,

such as wind speed, turbulence intensity, and wind direction, mainly determine the

1
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amount of wind power generation, whereas solar power depends on radiation inten-

sity and other environmental factors. From the perspective of demand, the electricity

demand highly depends on ambient weather conditions, including temperature and

humidity. Therefore, environmental systems are closely tied with energy systems.

This dissertation research focuses on analyzing ambient climate data and studies

three applications in energy and environmental systems. In Section 1.1, we present

the characteristics of ambient climate data. Section 1.2 summarizes three appli-

cations of data science in energy and environmental systems using multiple data

sources.

1.1 Ambient environmental data characteristics

Ambient weather conditions represent a few key characteristics: (a) weather con-

ditions are temporally and spatially correlated; (b) they are non-stationary, con-

stantly changing all the time. To fully address these characteristics, this study takes

full advantage of the rich data available from multiple sources. Here, data from mul-

tiple sources include data collected at spatially distributed locations, as well as data

collected from disparate sources such as field environmental data and physics-based

data. Below we elaborate ambient data characteristics in more detail.

1.1.1 Data collected from disparate sources

In the operations and planning of energy and environmental systems, forecasting

can be conducted on different time horizons, such as short-term [8–11], medium-term

[11–13], and long-term forecasts [12, 13]. Among them, short-term forecasts typically

focus on a time horizon of fewer than 6-12 hours, impacting intra-day operations [14].

Medium-term forecasts, typically hours to weeks-ahead, are often used for negotiat-

ing energy and electricity-related contracts [15]. Long-term forecasting is generally
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associated with a time horizon of months or years, up to several decades [16], which

plays an important role in the generation, transmission, and distribution system

planning.

Depending on the purpose of the analysis and the time horizon of the predic-

tion, the effectiveness of data collected from disparate sources can differ. First, field

data collected from meteorological stations are often used for short-term forecasting.

Typically, data-driven approaches for short-term forecasting identify the character-

istics of the current state and predict the near future trend by analyzing temporal

correlation among data points. Hence, the prediction capability of pure data-driven

approaches deteriorates and prediction uncertainties rapidly grow as the forecasting

horizon gets longer. This is because these approaches do not account for external

influences, such as climate change and/or other meteorological changes, on the local

weather conditions.

For medium- or long-term forecasting, physics-based approaches are known to

be useful. Physics-based approaches use physical descriptions of the mechanisms

of atmospheric conditions. One of the most popular models in this approach is

the numerical weather prediction (NWP) model, which simulates atmospheric pro-

cesses. However, data from physics-based models have several shortcomings. First,

they typically generate outputs with coarser-level spatial and temporal resolutions,

which makes it hard to capture local characteristics successfully. Next, a system-

atic discrepancy between the real measurements and corresponding model outputs

is oftentimes observed, arising from imperfect model formulations and/or incorrect

initial and boundary conditions for running the model [17]. Furthermore, in general,

physics-based models provide deterministic point predictions that cannot quantify

prediction uncertainties. Lastly, due to high computational cost and complexity,
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running NWP models is computationally costly.

Therefore, depending on the problems and prediction time horizon, it is important

to choose appropriate data sources and use them in an intelligent manner. This

dissertation study investigates how to combine both field observational data and

physics-based projections effectively to improve prediction performance.

1.1.2 Spatial data collected at distributed locations

Statistical temporal models for forecasting future observations at specific loca-

tions have been extensively studied in the literature. The fundamental concept is

that the environmental conditions at each time are strongly correlated with their

near-past conditions and thus, studying the correlation pattern between consecutive

data points allows us to predict future conditions. Autoregressive moving averages

and their variants have been used [18–24], and machine learning models including

neural network models [10]. nonparametric approaches [21–24], and other stochastic

processes [25, 26] have been proposed in the literature.

Recently, researchers have noted that more valuable information can be obtained

by utilizing information collected over space [27–36]. In general, data at sites located

close to each other exhibit greater similarity, compared to those at widely separated

locations. Spatio-temporal modeling deals with such spatial correlation, as well as

temporal correlation.

To illustrate, Figure 1.1 shows a partial layout of actual meteorological stations

in West Texas Mesonet [37]. West Texas Mesonet is an integrated network of me-

teorological monitored stations designed to observe meteorological conditions in the

West Texas region [37]. The x- and y-axes in Figure 1.1 represent the longitude

and latitude, respectively. The solid circles denote the meteorological stations where
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wind speed data is collected.

Figure 1.1: Layout of multiple stations in the West Texas region.

Figure 1.2 shows hourly average wind speeds at three stations, ANTO, REES,

and SEMI, during the first week of January 2008. It is observed that the overall

wind speed pattern during each day shows a diurnal cycle and the diurnal patterns

among the three stations are highly correlated. In particular, the patterns in ANTO

and REES are more similar to each other than they are to those in SEMI, because

ANTO and REES are more closely located.

A typical approach is to directly formulate the correlation among observations.

However, this has limitations with regard to integrating other information, such

as NWP projections, with field observations. To address these limitations, in this

study, we employ varying coefficient models and treat model coefficients as latent
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Figure 1.2: Wind speed patterns at three stations, ATNO, REES, and SEMI in West
Texas in the first week of January 2008.

processes [38]. In particular, we formulate the model coefficients to vary spatially

and temporally to capture the spatial and temporal correlation.

We briefly explain the underlying idea here. More detailed discussions will be pro-

vided in subsequent chapters. Let y(s, t) and x(s, t), s = 1, . . . , S and t = 1, . . . , T,

denote the dependent and independent variables at the space s and time t, respec-

tively. T and S, respectively, represent the numbers of temporal and spatial data.

The dependent variable, y(s, t), which can be the measured climate condition at

station s and time t, can be modeled by

(1.1) y(s, t) = β0(s, t) + β1(s, t)x(s, t) + ε(s, t),

where β0(s, t) and β1(s, t), respectively, represent the intercept and slope coefficients

that evolve over space and time and ε(s, t) is Gaussian random noise such that

ε(s, t) ∼ N(0, σ2). Here, x(s, t) is a basis function. Depending on the problems,

there can be multiple basis functions. Here, we use one basis function for brevity.

We note that the climate conditions at stations located close to each other and

at temporally adjacent points exhibit greater similarity, compared to those at widely
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separated locations and/or times. This implies that the model in (1.1) should similar;

in other words, β0(s, t) ≈ β0(s
′, t′) and β1(s, t) ≈ β1(s

′, t′), for s ≈ s′ and t ≈ t′. To

reflect such temporal and spatial correlations, instead of using fixed coefficients, we

formulate βi(s, t) for i = 0, 1 as random effects. In particular, we treat them as

latent Gaussian processes (GPs). Thus, the collection of coefficients, denoted by

Bi = [βi(s1, t1), . . . , βi(sS, tT )]T becomes

(1.2) Bi ∼ GP (0,Σi),

where Σi is the spatial and temporal covariance matrix for i = 0, 1.

The proposed model structure has a similar model formulation as a linear linkage

model, so it provides easy interpretation. It also offers wide flexibility due to its

semi-parametric formulation [38–40].

1.2 Dissertation Outline

In this dissertation, we study three specific topics (Figure 1.3) arising in energy

and environmental systems, which are briefly outlined below.

Figure 1.3: Overview of dissertation study.
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1.2.1 Probabilistic Characterization of Wind Diurnal Variability for Wind
Resource Assessment

In Chapter II, we present a new probabilistic modeling approach to quantifying

variation in the wind diurnal pattern for assessing wind resources at unmonitored

locations. As wind energy penetration is expected to grow in the future, wind re-

source assessment becomes important in modern power grid operations. Selecting

an appropriate wind farm site can made easier by understanding the nonstationary

characteristics of wind speeds. In particular, wind speed exhibits a diurnal pattern

and the pattern varies, day-by-day and site-by-site.

The goal of this chapter is to develop a new probabilistic modeling approach

to quantifying variation in the wind diurnal pattern for assessing wind resources at

unmonitored locations. Specifically, we formulate the coefficient of the wind model

as a latent random process and incorporate both day-to-day and spatial variability

into the latent process. The estimation performance of the proposed approach is

validated with actual data collected in West Texas.

1.2.2 On the long-term density prediction of peak electricity load with
demand side management in buildings

Long-term daily peak demand forecast plays an important role in the effective and

economic operation and planning of power systems. However, many uncertainties and

building demand variability, which are associated with climate and socio-economic

changes, complicate demand forecasting and expose power system operators to the

risk of failing to meet electricity demand. Chapter III presents a new approach to

providing long-term density prediction of the daily peak demand.

Specifically, we make use of temperature projections from physics-based global

climate models and calibrate the climate model projections with actual temperature



9

measurements. In addition, the effects of population growth and demand side man-

agement efforts in buildings are taken into consideration. Finally, the daily peak

demands are modeled with the nonhomogeneous generalized extreme value distribu-

tion where the parameters are allowed to vary, depending on the predicted tempera-

ture and population. We conduct a case study using actual building use data in the

south-central region in Texas. The result suggests that a well-established building

demand saving strategy is predicted to buffer against the growing needs of long-term

peak electricity demand.

1.2.3 Spatio-temporal bias correction in a Numerical Weather Prediction
model with application to urban temperature modeling during heat
wave events

Characterizing localized climate conditions is becoming important in many as-

pects of modern society, e.g., for energy planning. The Weather Research and Fore-

casting (WRF) models, which are mesoscale NWP models, have been widely used

to predict localized environmental variations. Further, the recently developed Urban

Canopy Model (UCM), which is derived from energy balance equations, captures

more detailed urban characteristics when it is coupled with the WRF model. How-

ever, as discussed earlier, such physics-based numerical models can exhibit a system-

atic discrepancy (also called ‘bias’). The discrepancy pattern is often heterogeneous,

varying over time and space.

In Chapter IV, we devise a new model that post-calibrates spatially and tempo-

rally varying discrepancies from the NWP model compared with measured climate

conditions in an integrative framework. We test the proposed approach on urban

temperature data collected in the Central Texas region during heat wave events.

Finally, Chapter V concludes the dissertation and discusses other possible future
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directions for the data science in energy and environmental systems.

Chapters II-III include works in [41, 42]. Note that each chapter is self-contained

and that the same notations or variables may be used in different chapters with

different meanings. Thus, we define them in each chapter individually.



CHAPTER II

Probabilistic Characterization of Wind Diurnal

Variability at Non-observational Locations For

Wind Resource Assessment

2.1 Introduction

Selecting an appropriate wind farm site is vital for the success of wind energy

in both financial and operational aspects. Among several factors to be considered

for assessing potential wind farm site suitability, wind speed is clearly one of the

most important factors. In general, windy areas are desired for installing a new wind

farm. However, due to the wind’s nonstationary characteristics, quantifying the wind

variability is also inevitable for effective power grid operations [43].

One of the most effective ways for comprehensive wind resource assessment is

to construct a wind model that characterizes its diurnal pattern. However, weather

measurement at a candidate site may not be necessarily available in practice. For

such a non-observational site, a meteorological tower can be installed to collect wind

speed measurement. For more reliable wind resource assessment, it is essential to

collect and analyze long-term wind resource (e.g., a year). However, installing new

meteorological towers to collect long-term data is expensive and time-demanding for

practical purposes.

11
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Instead, one can collect wind measurement at a target site for a short-period of

time. Such data collection activity is called measurement campaign [44, 45]. When

a weather station, which collects long-term data, exists at a location close to the

target site, the relationship of wind speeds between the two sites can be established

and the speed at the target site can be estimated using the measurement at the

weather station. Kwon [46] formulates the wind velocity at the target site as a linear

function of the velocity at the weather station and estimates the linear function

using the measurement collected at two locations. Jung et al. [47] further extend

the approach in [46] and propose the Bayesian framework to handle various types

of uncertainties due to limited data collected during the short-term measurement

campaign. Similarly, Martinez-Cesena et al. [48] use the linear model between

the annual average mean wind speeds at the target and measured locations. Even

though these studies do not require long-term collection of measurement at the target

location, short-term measurement is still needed. Moreover, they generally focus

on quantifying the annual distribution of wind speed without considering its time-

varying and nonstationary characteristics.

Another approach is to use NWP model. Zhang et al. [44] compare several

NWP-based wind resource assessment methods using three datasets, including the

Modern-Era Retrospective Analysis for Research and Applications dataset which

is a low-resolution dataset, the Wind Integration National Dataset (WIND) which

is a high-resolution dataset based on the WRF model, and short-term campaign

measurement. It was shown that the analog ensemble method, which integrates

the low-resolution NWP dataset with the short-term measurement, provides the

best estimate of wind distribution in most sites considered in their study, whereas

the WIND is suitable for estimating the distribution of the difference between two
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consecutive hourly wind speeds. Jimenez et al. [49] compare two different weather

prediction models at six locations, including offshore, onshore and island sites. In the

study by [50], six different WRF simulations are conducted with different initial and

boundary conditions and their estimation performances are compared with measured

data at thirteen weather stations in Portugal. Their study shows that the new

initial and boundary datasets improve the prediction accuracy over the old datasets.

However, running NWP models requires considerable computational burden, and

appropriate initial and boundary conditions need to be set a priori.

Unlike these prior studies, we consider a case where wind measurement at nearby

locations are available. Recent advances in sensing technology make meteorological

measurement increasingly available at many locations. This motivates us to assess

wind resource when measurement at the target site does not exist, but data near the

target site is available. Some recent studies propose a spatial model for predicting

wind speed at a non-observational location. Lenzi et al. [27] apply the GP to wind

measurements collected at neighbor locations at each time point. Byon et al. [51]

spatially interpolate wind speeds at neighbor monitored stations for estimating the

speed at a target unmonitored station. Although the models in [27, 51] provide

estimates at non-observational sites, they only provide a snapshot estimate at each

time instance, rather than providing wind models at the target site. As such, the

spatial snapshot approach cannot fully describe the wind variability over time.

To illustrate, Figure 2.1 is the same layout of actual meteorological stations in

West Texas Mesonet [37] shown in Figure 1.1 in Chapter I. Suppose that the red

star in Figure 2.1 is a potential wind farm site where wind measurement is not

available. As we seen in Figure 1.2, the patterns at closely located sites show similar

diurnal patterns. Therefore, we can borrow information of time-series characteristics
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at neighbor stations to assess wind resources at the target site. It is also observed

that diurnal cycles change day-by-day. For example, the pattern on the first day is

quite different from that on the last day in Figure 1.2.

Figure 2.1: Layout of multiple stations in west Texas region.

Figure 2.2 further shows daily patterns at BROW during January 2008, where

the thick curve represents the average diurnal pattern during January. Although

there is commonality, wind patterns substantially differ day-by-day. As such, one

cannot fully characterize wind variability with the average pattern only. Therefore,

the wind resource assessment requires thorough understanding of the spatially- and

daily-varying nonstationary characteristics.

This chapter develops a systematic approach to estimate diurnal patterns of wind

speed and to quantify estimation uncertainties by using measurements collected at
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Figure 2.2: Day-to-day variations at BROW on January 2008.

spatially dispersed nearby stations. We present a new modeling approach that for-

mulates the time-varying pattern with daily- and spatially-varying coefficients. The

parameters in the proposed model are estimated in a Bayesian hierarchical frame-

work.

The main contribution of this chapter is two-fold: (1) Unlike the aforementioned

studies that use the short-term measurement campaign data and/or NWP data, our

approach uses wind measurement collected at nearby locations; (2) In contrast to the

studies in [27, 51], the proposed approach provides a probabilistic wind model, which

enables us to fully characterize the time-varying pattern of wind speed and quantify

the uncertainties. The resulting model can generate scenarios of wind speed trajec-

tories, which can be used for investment decision-making in wind power projects [48].
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A case study is carried out using actual data collected in West Texas Mesonet. The

implementation results demonstrate that the proposed approach is capable of suc-

cessfully characterizing the wind variability at unmonitored sites, which provides

useful insights for wind resource assessment.

The remainder of this chapter is organized as follows. Section 2.2 discusses

the proposed modeling approach and parameter estimation procedure. Section 2.3

presents a case study and Section 2.4 concludes the chapter.

2.2 Methodology

This section develops an integrative framework for quantifying the day-to-day

and spatial variability in wind’s diurnal pattern at non-observational locations.

2.2.1 Integrative Modeling Approach

We formulate the wind model using trigonometric functions to characterize a non-

stationary pattern. Considering that diurnal patterns at neighbor locations should

exhibit similarity and could change over different days, we make the model coeffi-

cients spatially correlated and daily-varying.

Let Y (s, d, t) denote the wind speed at a location s at time t on day d. In this

chapter, an hourly average measurements are considered, but the proposed approach

can be applied to data with different temporal resolutions. To address the cyclic di-

urnal pattern, the wind speed, Y (s, d, t), is formulated using L pairs of trigonometric

functions [32, 33] as follows.

(2.1) Y (s, d, t) = µ(s, d, t) + ε(s, d, t)

with

(2.2) µ(s, d, t) = β0(s, d) +
L∑
`=1

[
β1,`(s, d) sin

2`πt

24
+ β2,`(s, d) cos

2`πt

24

]
,
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where ε(s, d, t) ∼ N(0, σ2) is a Gaussian random noise. As a remark, an additional

seasonal cycles can be included in µ(s, d, t) [51]. But such model assumes that

the diurnal pattern remains the same in different seasons, which may not hold in

practice. Instead, we suggest building monthly models with the formulation in (2.2),

so heterogeneous diurnal patterns which could vary, depending on seasons, can be

captured.

To capture day-to-day and location-to-location variations, we formulate each

model coefficient as a latent process and decompose it into day-specific and site-

specific random effects (Figure 2.3). The day-specific latent process captures the

day-to-day variation, whereas the site-specific random effects quantify the spatial

correlation among multiple sites. Specifically, let β(s, d) denote a vector of model

coefficients, i.e.,

β(s, d) = [β0(s, d), β1,1(s, d), β2,1(s, d), . . . , β1,L(s, d), β2,L(s, d)]T .(2.3)

and βi(s, d) denote the ith coefficient of β(s, d). Depending on the flexibility to

specify βi(s, d), three different models, referred to as integrative model 1, 2 and 3

(shortly, IM1, IM2 and IM3) are proposed as follows.

• IM1 assumes that the day-specific parameter on day d are dependent on that

on day d− 1, implying that wind diurnal patterns on the two consecutive days

are similar each other.

• IM2 allows more flexibility in describing day-to-day variations. It lets the day-

specific parameter randomly vary day-by-day. Thus, IM2 is appropriate when

the daily pattern changes significantly.
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Figure 2.3: Overall framework of the integrated model 1 (IM1).

• IM3 further allows the spatial correlation structure to be heterogeneous on

different days, in contrast to IM1 and IM2 which implicitly assume the homo-

geneous spatial correlation structure.

Below we describe each model in more detail.

2.2.2 Integrative Model 1 (IM1)

To quantify spatial and daily variations, βi(s, d) is decomposed into two compo-

nents as

(2.4) βi(s, d) = βiS(s) + βiD(d)

where βiD(d) is a day-specific coefficient and βiS(s) is a location-specific coefficient.

Figure 2.3 shows the overall framework of IM1 model.

First, to capture the spatial correlation, the site-specific coefficient βiS(s) in (2.4)

is formulated as a spatially-varying parameter [52, 53]. It should be noted that the

pattern at closely located sites is similar to one another, as observed in Figure 1.2.

Accordingly, βiS(sj) should be similar to βiS(sk) for closely located sites, sj and sk.

To characterize such spatial dependency, βiS(s) is modeled with the latent GP [54]
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as

(2.5) βiS(s) ∼ GF(µi(s), Ci),

for i = 1, 2, · · · , 2L + 1, where µi and Ci denote the mean and covariance functions

for βiS(s), respectively.

By the consistency property of GP, a collection of βiS(s)’s jointly follow mul-

tivariate normal distribution [54]. Suppose that there are N monitored stations,

s = s1, s2, · · · , sN . Let βiS,obs denote an N × 1 vector of βiS(s)’s, i.e., βiS,obs =

[βiS(s1), β
i
S(s2), · · · , βiS(sN)]T . Then, we have

(2.6) βiS,obs ∼MVN(0,Σi),

where Σi denotes an N × N covariance matrix whose (j, k)th component, ci(sj, sk),

is the covariance function between stations sj and sk. Here ci(sj, sk) is a positive

definite kernel function. Among several choices for modeling ci(sj, sk), one of the

commonly used covariance functions is the Matérn covariance function, defined as

(2.7) ci(sj, sk) =
τ 2i

2ν−1Γ(ν)
(κi||xj − xk||)νKν(κi||xj − xk||),

where xj is the location of station sj, τ
2
i is the marginal variance, Kν is the modified

Bessel function of second kind of order ν > 0, Γ(·) is the Gamma function, || · ||

is the Euclidean distance, and κi is the decay parameter [55]. The parameter, ν,

is a smoothness parameter, affecting differentiability of the underlying process. In

general, ν is fixed to 1 for computational convenience [56]. Due to its flexibility and

computational advantage, the Matérn covariance function is employed in our im-

plementation, however, other covariance functions can be employed in the proposed

framework [57].
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Using the coefficients, βiS(s)’s (s = s1, s2, · · · , sN), the coefficient at an unmon-

itored site is obtained. Let s0 denote a non-observational location. Given the pa-

rameter vector, βiS,obs, the coefficient, βiS(s0), at the non-observational site becomes

normally distributed as

(2.8) βiS(s0)|βiS,obs ∼ N(µi(s0), τ
2
i (s0)),

with

µi(s0) = ci(s0)
T · Σ−1i · βiS,obs,(2.9)

τ 2i (s0) = τ 2i − ci(s0)TΣ−1i ci(s0),(2.10)

where ci(s0) = [ci(s0, s1), ci(s0, s2), · · · , ci(s0, sN)]T is anN×1 vector for i = 1, 2, · · · , 2L+

1. The results implies that once the spatial parameters at monitored sites are esti-

mated, the parameter at an unmonitored site can be estimated accordingly. While

we present the estimation procedure at a single unmonitored site in (2.8)-(2.10), the

results can be extended for simultaneously estimating parameters at multiple sites

[54].

Next, in describing the day-to-day variability, we observe that the daily pattern

in one day tends to be similar to the pattern in the next day (Figure 1.2). Therefore,

the day-specific parameter, βiD(d), could be highly correlated with βiD(d − 1). To

characterize such temporal correlation, we apply the autoregressive (AR) process to

βiD(d) as

(2.11) βiD(d) = βiD,0 + ρiβ
i
D(d− 1) + εiD,

where εiD denotes the random noise, εiD ∼ N(0, δ21i). Here, we present AR1 for

simplicity, but a higher order AR process can be employed.
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2.2.3 Integrative Model 2 (IM2)

The second model, IM2, uses the same decomposition structure in (2.4) with the

same spatial term. However, unlike IM1 that restricts the day-specific parameter to

be temporally correlated, IM2 lets βiD(d) be fully random day-by-day.

Specifically, βiD(d) is formulated as random effects. Let βiD denote D × 1 vector

of βiD(d)’s, i.e., βiD = [βiD(1), βiD(2), . . . , βiD(D)]T . Then we have

(2.12) βiD ∼MVN(0, δ22iI),

for i = 1, 2, . . . , 2L+1, where I is a D×D identity matrix and δ22i is the corresponding

variance term.

2.2.4 Integrative Model 3 (IM3)

In IM1 and IM2, the spatial correlation is assumed to be homogeneous in different

days (note that βiS(s) is the same for all d’s in (2.4)). To allow the heterogeneous

spatial correlation structure on different days, IM3 breaks down βi(s, d) into two

components as follows.

(2.13) βi(s, d) = βiS(s, d) + βiD(d).

Note that the spatial effect, βiS(s, d), also depends on d, unlike βiS(s) that depends

on s only in IM1 and IM2 (see (2.4)).

As in IM1 and IM2, βiS(s, d) is modeled as a latent GP. Let βiS,obs(d) denote

an N × 1 vector of βiS(s, d)’s at monitored stations on day d, i.e., βiS,obs(d) =

[βiS(s1, d), βiS(s2, d), · · · , βiS(sN , d)]T . Then,

(2.14) βiS,obs(d) ∼MVN(0,Σi(d)),

Here, Σi(d) is an N ×N covariance matrix on day d. It is assumed that βiS,obs(d) is

independent of βiS,obs(d
′) for d 6= d′.
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For the day-specific parameter βiD(d), it is modeled as random effects in (2.12)

as in IM2. Table 2.1 summarizes the decomposition structure in three integrative

models.

Table 2.1: Decomposition structure in latent process

IM1 IM2 IM3

Decomposition
Structure

βiS(s) + βiD(d) βiS(s) + βiD(d) βiS(s, d) + βiD(d)

Spatial
parameter

βiS(s) ∼ GP βiS(s) ∼ GP βiS(s, d) ∼ GP (d)

Temporal
parameter

βiD(d) ∼ AR βiD(d) ∼ random effects βiD(d) ∼ random effects

2.2.5 Implication

Before discussing the parameter estimation procedure, it is worthwhile to dis-

cuss the primary difference between the proposed approach and the snapshot ap-

proach in [27, 51]. The snapshot approach directly formulates the correlation among

Y (s, d, t)’s through interpolation techniques such as GP and kriging. For example,

GP is applied to the measurement at monitored locations to estimate wind speed

at the unmonitored location at each time instant. The salient feature of the pro-

posed approach is that we characterize the correlation structure through the latent

process, βi(s, d)’s, instead of Y (s, d, t)’s. Assuming that the day-specific effect and

spatial random effect, are independent, the covariance of model coefficients in IM1

is given by

Cov(βi(sj, d), βi(sk, d
′))

= Cov(βiD(d), βiD(d′)) + Cov(βiS(sj), β
i
S(sk))(2.15)
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where Cov(βiS(sj), β
i
S(sk)) is given in (2.7) and Cov(βiD(d), βiD(d′)) in AR1 [58] is

Cov(βiD(d), βiD(d′)) = δ21i
ρ
|d−d′|
i

1− ρ2i
.(2.16)

Therefore, we get

Cov(βi(sj, d), βi(sk, d
′))

=



τ 2i + δ21i
1

1−ρ2i
, for j = k, d = d′

ci(sj, sk) + δ21i
1

1−ρ2i
, for j 6= k, d = d′

τ 2i + δ21i
ρ
|d−d′|
i

1−ρ2i
, for j = k, d 6= d′

ci(sj, sk) + δ21i
ρ
|d−d′|
i

1−ρ2i
, for j 6= k, d 6= d′

(2.17)

where ci(sj, sk) is the (j, k)th component of the covariance matrix, Σi, in (2.14).

Note that βiD(d) and βiD(d′) are strongly correlated when d and d′ are closer, thereby

making βi(sj, d) and βi(sj, d
′) similar to each other. Likewise, βiS(sj) and βiS(sk) at

closely located sj and sk have larger covariance, ci(sj, sk). The covariance structures

in IM2 and IM3 can be similarly specified. We omit them to save space.

2.2.6 Parameter Estimation

This section discusses the parameter estimation procedure. We focus our discus-

sion on estimating parameters in IM1. The parameter estimation in IM2 and IM3

can be performed in a straightforward way. We use wind measurement at N moni-

tored stations at time t = 1, 2, . . . , T (e.g., T = 24 for hourly collected data) during

D days (d = 1, 2, · · · , D). Because the day-specific and site-specific parameters are

formulated as latent processes, the proposed model has a multi-level hierarchical

structure. The first level formulates the data model in (2.1). The second level spec-

ifies the latent processes for the spatially- and daily-varying parameters. The last

level provides a prior density for hyperparameters.
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We estimate the parameters in the Bayesian inference framework [59]. Let D

denote the dataset used for inference, and let Θ denote a set of all parameters in the

model. The joint posterior density of Θ is given by

p(Θ|D) ∝
[
Πs,d,tf(Y (s, d, t)|µ(s, d, t), σ2)

]
p(σ2)

× Πi

[
MVN(0,Σi)p(ρi)p(δ

2
1i)p(τ

2
i )p(κi)

]
,

(2.18)

where f(Y (s, d, t)|µ(s, d, t), σ2) represents the likelihood of wind speed with Y (s, d, t) ∼

N(µ(s, d, t), σ2), p(ρi) and p(δ21i) imply the priors in the latent AR process for the

daily-varying coefficient in (2.12), and MVN(0,Σi) denotes the latent Gaussian pro-

cess in (2.14) for spatially-varying coefficients. Lastly, p(ρi), p(δ
2
1i), p(τ

2
i ), p(κi), and

p(σ2) denote prior densities for their corresponding parameters and hyperparameters.

The posterior mean from the posterior density in (2.18) is used for estimating

parameters. Obtaining the posterior density requires multi-dimensional integration,

and it is not derived in a closed form. Therefore, simulation-based methods such

as Markov chain Monte Carlo (MCMC) can be used to approximate the posterior

density. However, implementing MCMC demands expensive computational cost, so

we use an approximation method. In particular, we employ the integrated nested

Laplace approximations (INLA) in our analysis [57]. For more details on the INLA

approximation procedure, please refer to [57]. In our analysis, ‘R-INLA’ package in

the statistical software, R [56] is used. In our implementation, priors are specified

as suggested in INLA. When parameters are estimated in the Bayesian hierarchical

framework, it has been known that the deviance information criterion (DIC) is useful

for choosing a model order, L, in our model [60]. For more details on DIC, please

refer to [60].
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Once the parameters are estimated, the estimated distribution of the wind speed

at the target site s0 is provided by

Y (s0, d, t) ∼ N(µ̂(s0, d, t), σ̂
2(s0, d, t))(2.19)

with

µ̂(s0, d, t) = β̂0(s0, d) +
L∑
`=1

[
β̂1,`(s0, d) sin

2`πt

24
+ β̂2,`(s0, d) cos

2`πt

24

]
,(2.20)

where β̂(·)’s in (2.20) denote the posterior means for the corresponding parameters

and σ̂2(s0, d, t) is the posterior variance of Y (s0, d, t).

2.3 Case Study

We use wind measurement collected at 16 stations in West Texas Mesonet in this

chapter. The shortest and average distances between two adjacent stations are 18.6

km and 36.3 km, respectively. The location information of the stations can be found

in [37].

As discussed earlier, we suggest building monthly diurnal models to account for

heterogeneous diurnal patterns in different seasons. Wind resource assessment re-

quires quantification of year-long wind pattern. Due to the time limitation, we were

not able to estimate year-long pattern, but we implement our method using four

months data, including January, April, July and November in 2008. The original

data contains 5-minute average wind speeds at a height of 10 meter above the sur-

face. In this chapter, hourly-averaged wind speeds are used.

2.3.1 Alternative Two-step Approach

This section presents an alternative approach that extends the spatial snapshot

approach [51]. First, the snapshot estimate, Ỹ (s0, d, t), for the target station, s0,
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is estimated by spatially interpolating wind speeds at neighbor stations, Y (s, d, t)

(s = s1, s2, · · · , sN), through the ordinary kriging as

(2.21) Ỹ (s0, d, t) = wTYd,t,

for each d and t, d = 1, 2, . . . , D, and t = 1, 2, · · · , T . Here Yd,t is a vector whose ith

component is Y (si, d, t) and w = [w1, . . . , wN ]T is the weight matrix, defined as

(2.22) w = C−1c− C−111TC−1c

1TC−11
+

C−11

1TC−11
,

where C is an N × N covariance matrix among Yd,t, c is an N × 1 dimensional

covariance between Yd,t and Ỹ (s0, d, t) and 1 is an N × 1 dimensional vector with

1 elements. Although we present the ordinary kriging, other kriging models (e.g.,

universal kriging), or GP, can be employed for performing the spatial interpolation.

Once the snapshot estimate is estimated, the time series model at the unmoni-

tored site, s0, is fitted as follows.

Ỹ (s0, d, t) = β0(s0, d)

+
L∑
`=1

[
β1,`(s0, d) sin

2`πt

24
+ β2,`(s0, d) cos

2`πt

24

]
+

p∑
i=1

γh(s0, d)Ỹ (s0, d, t− i) + ε(s0, d, t),

(2.23)

where p denotes the model order in the AR process, which is decided based on the

Akaike information criterion (AIC). The noise term, ε(s0, d, t), is assumed to be an

independent Gaussian random variable. We estimate parameters using maximum

likelihood estimation.

Below this two-step alternative approach is summarized.

• Step 1: At each time point, obtain a snapshot estimate by spatially interpolat-

ing the wind measurements collected at neighbor stations using (2.21)-(2.22).

• Step 2: Fit the linear model with the snapshot estimates, using (2.23).
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2.3.2 Implementation Results

For evaluating the estimation performance, we divide the 16 stations into two sets:

training set (in-sample) and testing set (out-of-sample). The training set includes

measurements at 15 stations, representing observational sites, whereas the testing set

contains data collected at the remaining station which represents a non-observational

site. Using data from the 15 stations in the training set, we estimate the wind speed

at the testing station and evaluate the prediction performance by comparing its

estimated and measured wind speeds. This procedure is repeated 16 times to get

all estimation results for 16 testing stations. Therefore, with four months data, our

case study includes 16 stations × 4 months = 64 testing cases.

We measure the estimation performance with several criteria. First, for evaluating

the point estimation capability, root mean square error (RMSE) is used. We also

employ the continuous ranked probability score (CRPS) [61, 62], defined as follows,

when parameters are estimated in the Bayesian framework [61, 62].

CRPS =
1

DT

D∑
d=1

T∑
t=1

[ 1

m

m∑
j=1

|Ŷ (j)(s0, d, t)− Y (s0, d, t)|

− 1

2m2

m∑
j=1

m∑
k=1

|Ŷ (j)(s0, d, t)− Ŷ (k)(s0, d, t)|
](2.24)

where m is the number of posterior samples in the posterior predictive density and

Ŷ (j)(s0, d, t) denotes the jth samples. For the alternative approach, CRPS measure

presented in [61] is used. The smaller CRPS indicates better performance.

Tables 2.2 and 2.3 summarize the RMSE and CRPS results for four months,

respectively, for 16 testing stations where each testing station is considered as a non-

observational site. Overall, the estimation performance at testing stations located in

the center of monitored stations (e.g., REES and BROW) is generally better than

that at boundary stations (e.g., ABER, GAIL and MORT). This is understandable
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because the central stations have more informative spatial information from their

neighbor stations than boundary stations. Overall, IM3 consistently provides the

smallest values in most testing sites in both criteria. For example, on average it gen-

erates 14% lower RMSE and 18% lower CRPS, compared to the alternative approach

on January.

It is worthwhile to mention that, although IM1 and IM2 generate performance

comparable to the alternative approach, they do so with much lower model com-

plexity. In the alternative approach, three parameters need to be estimated to get

a snapshot estimate using the ordinary kriging at each time instant. Therefore, it

requires 3DT +2L+p+2 parameters in total for each month. With D = 31, T = 24,

L = 5, and p = 2, it uses 2,246 parameters. On the contrary, IM1 uses 4(2L+ 1) + 1

parameters (4 parameters, τi, κi, β
i
D,0, and ρi, for each i and variance parameter, σ2),

whereas IM2 uses 3(2L + 1) + 1 parameters (3 parameters, τi, κi, and δ22i, for each

i and variance parameter). Thus, IM1 and IM2, respectively, employ 45 and 34 pa-

rameters only, which account for about 1.5% and 2% of the alternative’s. With such

remarkably smaller number of parameters, they lead to the estimation performance

similar to the alternative approach. The number of parameters required in IM3 is

larger than those in IM1 and IM2, because its spatial parameters differ day-by-day,

however, IM3 still reduces the model complexity over the alternative approach by

about 69%.

Another advantage of the proposed approach is that it can better quantify the

estimation uncertainty. The proposed approach can obtain the posterior predictive

density and prediction interval (PI) in the Bayesian framework. Figure 2.4 presents

the measured and estimated speeds at a testing station, BROW, for the first week

of January, along with PI. The bold central lines denote the predicted values and
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Table 2.2: Comparison of RMSEs at 16 testing stations (unit: m/s, SD in the last
row represents standard deviation)

January April

IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step

ABER 1.28 1.28 1.09 1.33 1.41 1.36 1.08 1.35
REES 0.96 0.96 0.78 0.96 1.07 1.07 0.88 1.08
RALL 1.21 1.21 1.10 1.10 1.23 1.25 1.10 1.23
ANTO 1.20 1.20 0.97 1.18 1.20 1.20 0.96 1.16
SLAT 1.33 1.34 1.23 1.37 1.44 1.46 1.31 1.45
LEVE 1.12 1.11 0.91 1.14 1.12 1.12 0.93 1.13
MORT 1.36 1.37 1.12 1.45 1.42 1.42 1.25 1.52
BROW 0.92 0.92 0.83 0.94 0.97 0.97 0.90 0.98
MALL 0.97 0.97 0.76 0.98 1.01 1.01 0.84 0.99
ODON 1.12 1.12 1.00 1.05 1.44 1.44 1.32 1.35
FLUV 1.48 1.49 1.19 1.15 1.55 1.56 1.30 1.26
PLAI 1.19 1.18 0.94 1.18 1.29 1.31 1.04 1.20
GAIL 1.48 1.47 1.31 1.38 1.63 1.61 1.40 1.52
SEAG 1.21 1.20 1.00 1.19 1.33 1.34 1.09 1.29
LAMS 1.16 1.14 0.96 1.10 1.31 1.31 1.10 1.25
SEMI 1.30 1.31 1.06 1.18 1.37 1.35 1.09 1.22

Average 1.20 1.20 1.01 1.17 1.30 1.30 1.10 1.25
(SD) (0.17) (0.17) (0.15) (0.15) (0.19) (0.19) (0.17) (0.16)

July November

IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step

ABER 0.97 0.98 0.87 0.95 0.91 0.90 0.85 0.97
REES 1.07 1.08 0.92 1.04 0.77 0.78 0.69 0.80
RALL 0.99 0.99 0.87 0.91 1.02 1.04 0.97 1.02
ANTO 0.94 0.94 0.83 0.93 0.96 0.97 0.83 0.96
SLAT 1.20 1.20 1.08 1.17 1.18 1.18 1.16 1.20
LEVE 0.83 0.82 0.70 0.83 0.75 0.75 0.67 0.76
MORT 1.03 1.01 0.92 1.00 1.13 1.13 0.95 1.16
BROW 0.95 0.95 0.90 1.01 0.85 0.84 0.79 0.85
MALL 0.83 0.83 0.71 0.80 0.85 0.86 0.71 0.86
ODON 0.80 0.80 0.76 0.78 0.95 0.98 0.86 0.90
FLUV 1.09 1.10 1.00 1.06 1.35 1.36 1.22 1.20
PLAI 0.93 0.93 0.79 0.88 0.99 0.99 0.79 0.96
GAIL 1.16 1.17 1.10 1.07 1.21 1.21 1.17 1.11
SEAG 0.90 0.89 0.77 0.86 1.01 1.01 0.90 0.99
LAMS 0.96 0.96 0.88 0.97 1.06 1.02 0.86 0.91
SEMI 1.01 1.00 0.85 0.95 1.03 1.03 0.90 0.96

Average 0.98 0.98 0.87 0.95 1.00 1.00 0.90 0.98
(SD) (0.11) (0.11) (0.12) (0.11) (0.16) (0.11) (0.17) (0.13)
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Table 2.3: Comparison of CRPSs at 16 testing stations (unit: m/s, SD in the last
row represents standard deviation)

January April

IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step

ABER 0.71 0.71 0.58 0.77 0.78 0.74 0.59 0.75
REES 0.54 0.54 0.42 0.53 0.60 0.60 0.48 0.59
RALL 0.68 0.68 0.61 0.53 0.68 0.69 0.60 0.68
ANTO 0.66 0.66 0.54 0.68 0.67 0.67 0.54 0.66
SLAT 0.74 0.75 0.68 0.84 0.80 0.81 0.74 0.87
LEVE 0.61 0.61 0.49 0.65 0.62 0.62 0.51 0.64
MORT 0.77 0.76 0.62 0.86 0.80 0.80 0.70 0.90
BROW 0.52 0.52 0.46 0.54 0.55 0.55 0.49 0.56
MALL 0.55 0.55 0.42 0.56 0.57 0.57 0.46 0.56
ODON 0.61 0.61 0.54 0.66 0.79 0.79 0.73 0.79
FLUV 0.86 0.85 0.67 0.66 0.88 0.89 0.74 0.72
PLAI 0.65 0.66 0.52 0.68 0.70 0.71 0.56 0.68
GAIL 0.82 0.82 0.74 0.86 0.93 0.92 0.82 0.96
SEAG 0.68 0.68 0.56 0.73 0.73 0.73 0.59 0.78
LAMS 0.63 0.64 0.54 0.65 0.72 0.73 0.61 0.73
SEMI 0.73 0.72 0.59 0.69 0.75 0.74 0.60 0.72

Average 0.67 0.67 0.56 0.68 0.72 0.72 0.61 0.72
(SD) (0.10) (0.10) (0.09) (0.11) (0.11) (0.11) (0.11) (0.12)

July November

IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step

ABER 0.53 0.54 0.48 0.53 0.51 0.50 0.46 0.55
REES 0.60 0.60 0.52 0.62 0.44 0.43 0.38 0.46
RALL 0.55 0.55 0.48 0.54 0.57 0.58 0.53 0.61
ANTO 0.52 0.52 0.45 0.52 0.53 0.54 0.46 0.57
SLAT 0.68 0.67 0.61 0.71 0.67 0.67 0.66 0.74
LEVE 0.45 0.46 0.38 0.47 0.43 0.43 0.38 0.44
MORT 0.57 0.55 0.51 0.59 0.63 0.63 0.52 0.69
BROW 0.53 0.53 0.50 0.60 0.48 0.47 0.43 0.50
MALL 0.46 0.47 0.39 0.44 0.48 0.48 0.40 0.50
ODON 0.45 0.45 0.43 0.45 0.53 0.53 0.48 0.54
FLUV 0.61 0.61 0.57 0.64 0.77 0.77 0.69 0.71
PLAI 0.52 0.53 0.44 0.51 0.55 0.55 0.44 0.57
GAIL 0.66 0.66 0.64 0.66 0.68 0.68 0.67 0.66
SEAG 0.49 0.49 0.43 0.51 0.57 0.57 0.51 0.61
LAMS 0.53 0.52 0.48 0.58 0.60 0.58 0.49 0.55
SEMI 0.56 0.57 0.47 0.56 0.57 0.58 0.57 0.57

Average 0.54 0.54 0.49 0.56 0.56 0.56 0.50 0.58
(SD) (0.07) (0.07) (0.07) (0.08) (0.09) (0.09) (0.10) (0.09)



31

(a) IM1

(b) IM2

(c) IM3

(d) Two-step approach

Figure 2.4: Comparison of observed and predicted wind speeds and prediction in-
tervals at the testing station, BROW, in January
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the dotted upper and lower lines denote the 90% PIs. It shows that most estimated

speeds in IM1, IM2, and IM3 belong to the PIs.

However, it is difficult, if not possible, to accommodate all uncertainties in the

alternative approach, because it characterizes the spatial and temporal correlation

separately through the two-step procedure. Therefore, we alternatively treat the

snapshot estimates as real values and build the PI with the model in (2.23). Fig-

ure 2.4(d) shows that the resulting PIs are unduly narrow and thus, several data

points are located outside the intervals, indicating underestimated uncertainties. As

a result, the coverage rate of the alternative model is much lower than ours. Here,

the coverage rate implies the ratio of the number of estimates within PIs to the to-

tal number of estimates. Ideally, the coverage rate should be close to the nominal

rate. For example, in January, the average coverage rate of the alternative approach

remains at 67.6% for the 90% PI, whereas the coverage rates from IM1, IM2, and

IM3 are 89.3%, 89.5%, and 86.7%, respectively, which are close to the nominal rate.

It is also worthwhile to mention that the PIs from our approach are wider, because

it fully quantifies uncertainties for estimating spatial and day-to-day variability.

To further assess probabilistic estimation performance, reliability diagram [27] is

employed. To construct the reliability diagram, an indicator variable that compares

an actual speed, Y (s0, d, t) with its α-quantile forecast, Ŷ (α)(s0, d, t), for 0 ≤ α ≤ 1

is obtained as

I
(α)
s0,d,t

=

 1, if Y (s0, d, t) ≤ Ŷ (α)(s0, d, t)

0, if Y (s0, d, t) > Ŷ (α)(s0, d, t),

(2.25)

Then, similar to the PI coverage, the empirical coverage in the reliability diagram is

obtained as

â(α)s0
=

1

DT

D∑
d=1

T∑
t=1

I
(α)
s0,d,t

.(2.26)
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The reliability diagram compares the empirical coverage with the nominal cov-

erage. The empirical coverage becomes close to the nominal coverage, α, when the

probabilistic estimation is performed appropriately. We compare the empirical cover-

age at nominal levels from 5% to 95% on increments of 5% in Figure 2.5. The average

reliability diagram in Figure 2.5(c) is constructed by taking the average of empirical

coverage from all 16 testing stations. The empirical coverage from IM1, IM2, and

IM3 align with the diagonal line in all cases, while those from the two-step approach

deviate from the diagonal line. This result demonstrates a stronger probabilistic

assessment capability of the proposed approach over the alternative one.

In summary, although the proposed integrative and alternative two-step ap-

proaches provide comparable point estimation capability, our approach quantifies

wind variability better so its estimated density is more accurate. Our strong prob-

abilistic assessment performance is mainly due to the fact that our approach can

capture different types of uncertainties arising from spatial and diurnal variations in

an integrative way.

Among the studied models, the performance of IM1 and IM2 were comparable in

most cases. This result coincides with our observation in Figure 2 where the daily

pattern is similar on consecutive days. Therefore, when the diurnal patterns do not

rapidly change, either the AR formulation in (2.11) or random effect formulation

in (2.12) would provide similar results. When the diurnal pattern changes consider-

ably, we suggest the random effect formulation used in IM2. Regarding the spatial

correlation, it has been known that the dominating wind direction substantially af-

fects the correlation structure [59]. Therefore, IM3 would perform better than IM1

and IM2 when wind direction varies substantially even during the same month.
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(a) Testing station: BROW

(b) Testing station: MORT

(c) Average

Figure 2.5: Reliability diagram in January
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2.4 Summary

This chapter develops a probabilistic model for assessing wind resource by charac-

terizing the spatial and temporal correlations through the model parameters. Specifi-

cally, the model parameters are treated as latent spatially- and daily-varying random

processes. Such collective treatment enables the proposed integrative approach to

provide compelling capabilities for evaluating the wind variability at non-observational

locations.

A case study with west Texas Mesonet data demonstrates that the proposed

approach is capable of fully quantifying wind variations, which provides insights

for selecting wind farm locations. The proposed approach can be applied to the

wind resource assessment in other regions where time-series of wind measurements

at spatially dispersed locations are available.

The proposed approach can be also extended to other environmental factors, such

as temperature and air pollutant level, which exhibit spatially and daily varying

patterns. Finally, the proposed framework can be extended to a large-scale analysis.

In this case, some approximation methods (e.g., variational inference) may be needed

to reduce the computational time for estimating model parameters.



CHAPTER III

On the Long-term Density Prediction of Peak

Electricity Load with Demand Side Management

in Buildings

3.1 Introduction

Accurate electricity load forecasting is critical for reliable operations and long-

term planning of the electric power grid and its infrastructure systems [63]. Such load

forecasting methods help to support the cost-efficient scheduling of energy-producing

resources, as well as decisions for the construction of new and upgrading of existing

electric grid components. These both lead to reliable availability of power, which is

critical to today’s modern and highly electricity-dependent society.

This chapter is concerned with the long-term daily peak demand forecasting.

In many cases, utilities and grid operators consider short and medium-term load

predictions for their planning purposes. However, in the face of changes in climate

conditions and other socio-economic factors, it is important to consider the potential

impacts of such changes on the power grid load over time. In particular, this chapter

focuses on peak electricity demands, as peak demands often define the required

capacity of generation and transmission systems [64, 65]. The purpose of this chapter

is to evaluate the potential impacts of predicted climate change of a particular region

36
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on this peak load, rather than only consider historical weather and prior peak loads

in the prediction. This provides, as opposed to the short-term prediction, a longer

term evaluation to understand, over longer timescales, what potential needs for grid

infrastructure planning are needed, and/or what types of peak load reduction or

grid service participation development might be needed at longer time horizons, to

mitigate any resource adequacy issues that may arise.

Electric loads depend on a range of factors, including weather conditions and

socio-economic factors. Among the factors, it has been reported that electricity

demand is significantly impacted by ambient temperature [16, 66, 67]. A recent

review on the relationship between electricity demand and weather conditions [68]

also supports that outdoor temperature is a crucial factor for load forecasting. This

relationship exists because during the cooling season, for a cooling-dominated climate

(e.g. ASHRAE Climate Zones 1-3), close to 100% of residential and commercial

buildings rely on electricity-powered cooling from the heating, ventilation and air

conditioning (HVAC) systems in the U.S [69, 70]. A similar relationship exists in the

heating season, however, since many buildings, particularly in colder climates, use

gas or other non-electricity based heating fuels, this relationship is not typically as

pronounced.

For the short-term and medium-term load forecasting, considering that the load

is largely correlated with recent loads under similar weather conditions, historical

data are often employed [66]. Recent literature suggests, however, that the historical

weather trends and temperature extremes change over time [71]. The Intergovern-

mental Panel on Climate Change (IPCC) publishes reports every several years which

include projections of long-term changes in temperature extremes. The Third As-

sessment Report [72] concluded that there very likely had been an increase in the
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frequency of extremely high temperatures. The IPCC Special Report on Extremes in

2012 [73] and the IPCC Fifth and Sixth Assessment Reports in 2013 and 2018 [74, 75],

respectively, have made even firmer statements. Such climate changes have strong

implications for the electric grid, including peak demands, generation efficiency and

availability, and transmission and distribution congestion and capacities. To address

the varying weather conditions in the long term, global climate model (GCM) pro-

jections [76] can be considered. The GCMs are mathematical representations of the

earth’s climate components and their interactions, including the atmosphere, land,

ocean, and sea ice, that are simulated over periods of time to project future weather

conditions. A detailed description about GCMs is available in [71].

Along with weather conditions, electricity peak loads also largely depend on the

socio-economic factors, including the population size and buildings‘ electricity use

patterns [77]. To reduce the peak load during the extreme heat of summer when the

electricity usage typically is at highest, a range of demand side management (DSM)

programs have been developed, piloted and used in recent years. DSM includes the

building demand reduction measures such as energy efficiency (EE) and demand

response (DR) programs. While EE programs aim to reduce the electricity demand

in general, DR programs mainly focus on the buildings‘ peak demand reduction by

modifying the end-use electricity consumption patterns and changing the timing and

level of instantaneous demand [78].

A broad range of DSM programs for residential and commercial buildings are

currently implemented throughout the United States, typically run by utility com-

panies and third party aggregators [79], where end-use customers receive an incentive

and/or other monetary or non-monetary benefits by participating in DSM programs.

Such incentives help electric utilities and power network companies to maintain a
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predictable level of demand adjustments that can be made to support the reliable

operation of the electricity system. Although many DSM efforts for buildings are

still in the pilot stages, DSM programs are projected to significantly increase moving

forward, particularly as the electric grid is increasingly powered by more variable

renewable energy sources [80].

The objective of this chapter is to develop an integrative modeling framework

to estimate the long-term daily peak load with DSM efforts in buildings. We col-

lectively use multiple data sources, including GCM projections, actual temperature

measurements, population, and participation rates in building DSM programs. Con-

sidering the nature of forecasting uncertainties and demand variability associated

with socio-economic and climate changes, we provide probability density predictions

that allow for the quantification of how the prediction intervals, means and medians

would evolve in the long-run.

Specifically, for characterizing the future daily peak temperature uncertainties, we

calibrate GCM projections with actual temperature measurements. Although GCMs

provide useful information, an actual trend in a specific region may deviate from the

GCM projections, because physics-based climate models do not fully account for

local, or regional, characteristics [71]. To address this challenge, we adjust the GCM

projections using a parametric approach. In particular, considering that the daily

peak temperature represents the block maximum (i.e. a maximum value during a

specific interval), we employ the extreme value distribution and assume that actual

daily peak temperatures during the summer period follow the generalized extreme

value (GEV) distribution. To reflect the influence of climate changes and temporal

variations which possibly makes the temperature distribution nonstationary over a

period of years, we allow the GEV density parameters to vary, depending on the
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GCM projections.

Further, to characterize the influence of the socio-economic factors on the peak

demand, we analyze the population growth pattern and participation rates in DSM.

To quantify the long-term effects of DSM efforts on the demand saving in buildings,

we analyze the number of participants in the DSM programs using the Bass diffusion

model [81]. We also characterize the population growth pattern using the logistic

growth model and incorporate it into the Bass diffusion model.

In summary, the main contributions of this chapter are as follows. First, we

characterize the future temperature uncertainties by calibrating GCM projections

with actual measurements using a parametric density model. Second, we analyze

the impacts of socio-economic factors (characterized by building DSM efforts and

population growth) on the future long-term daily peak electricity demand reduc-

tion. Lastly, we provide a united framework for quantifying forecasting uncertainties

through a probabilistic modeling approach.

A case study using actual building use data is conducted in the region of Texas

that includes the city of Austin, which is located in ASHARE Climate Zone 3a. The

electric grid in Texas experiences significant peak demand during the summer periods

when high peak temperatures occur. Our implementation results demonstrate that

the proposed approach can characterize the nonstationary characteristics of the ex-

treme pattern of the daily peak demand and quantify the forecasting uncertainty and

demand variability associated with the climate and population change, and building

demand reduction in the future.

The remainder of this chapter is organized as follows. Section 3.2 reviews relevant

studies in the literature. Section 3.3 describes the datasets used in this chapter.

Section 3.4 introduces the proposed long-term daily peak demand density prediction
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method. Section 3.5 presents a case study for evaluating the density prediction

performance of the proposed approach and providing long-term densities. Finally,

Section 3.6 summarizes the findings, implications, and future research.

3.2 Literature Review

In the literature, there has been substantial progress in developing models for

short-term load forecasting. Such statistical models include linear and nonlinear re-

gression models [82, 83], time series methods including autoregressive, autoregressive

moving average, autoregressive integrated moving average models and their varia-

tions [18–20]. Different types of neural networks and their variations [10, 21–24], as

well as other machine learning techniques and hybrid or ensemble models [84–86],

have been also studied.

In comparison with the short-term load forecasting, limited research has been

conducted on the long-term prediction due to difficulties in quantifying forecasting

uncertainties and demand variability. The climate change community has tended

to prefer physics-based climate models, including GCMs, resisting of statistical ap-

proaches for long-term forecasting [87, 88]. On the other hand, much of the work

studying extreme heat events in the statistical field focuses on analyzing historical

temperatures and detecting trends in temperature extremes without considering cli-

mate change trends. Below we summarize relevant studies on long-term temperature

and load forecasting.

Chen [89] proposes a collaborative fuzzy-neural approach, utilizing multiple ex-

pert opinions about the peak or average value of annual demand forecasts. This

approach mainly relies on expert opinions, aiming to minimize individual deviations

and biases. However, forecasts are made based on individuals’ subjective judgments.
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AlRashidi et al. [90] propose linear and quadratic models based on particle swarm

optimization for five years-ahead load forecasting. In their study, the annual peak

load is formulated as the linear or quadratic functions of time.

Andersen et al. [91] identify the relationship between the aggregated hourly elec-

tricity consumption and different categories of customers such as households, agri-

culture, industry, and private and public services. They construct the model for

each customer using the calendar effect. The future aggregated hourly consumption

for each category of customers is then estimated using the weights calculated by an

annual econometric model that considers the effects of the socio-economic factors.

Xia et al. [92] employ artificial neural networks to provide short- to long-term load

forecasts using historical weather data only. They do not take other socio-economic

factors into account. Further, these studies [90–92] provide the point estimates of

the long-term peak demands and do not fully address the uncertainty quantification.

Hyndman et al. [93] propose the semi-parametric additive model to forecast an-

nual and weekly peak demand densities for the next ten years by regressing half-hour

demand on the half-hour temperature, calendar effects, and the annual economic and

demographic information. The future economic and demographic scenarios obtained

from the Australian Energy Market Operator, as well as temperature simulated by

a bootstrap method, are fed into the fitted model for the density forecast. However,

they assume that the temperature is stationary for the long-term time horizon, thus

they do not characterize the evolving characteristics of temperature caused by cli-

mate changes. Hong et al. [94] propose the use of multiple linear regression for one

year-ahead load forecasting using hourly temperature and annual gross state product

(GSP). They generate cross scenarios of future economic scenarios and hourly tem-

peratures for the density prediction, however, a limited number of scenarios (ninety
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scenarios in total) are considered.

Some studies, based on the extreme value theory, employ nonhomogeneous GEV

to characterize the nonstationary trend, where the long-term trend is quantified using

historical data [95–98]. Different from the aforementioned studies that use historical

data only, Trotter et al. [88] propose the probabilistic long-term electricity demand

forecasting using the multiple linear regression with GCM outputs as wells as other

demographic and economic factors.

In summary, most statistical approaches employ historical data for characterizing

the long-term trend. On the other hand, as discussed earlier, meteorologists rely on

climate models such as GCMs to predict long-term future temperatures. We believe

both historical temperature data and climate models provide useful information;

historical data contains information on local (or regional) characteristics, whereas

GCMs are based on first principles and expected climate changes. The study by

Trotter et al. [88] is one of the few studies that consider both, however it does not

address the possible bias of GCM projections. This chapter fills the research gap in

the literature by connecting the GCM temperature projections with the peak load

forecasting. Our approach also collectively uses other socio-economic variables for

providing future density prediction.

3.3 Datasets

This section describes the datasets used in this chapter, including GCM projec-

tions, actual temperature measurements, population, and participation rate in the

considered DSM program. As the focus of this chapter is the extreme peak tempera-

ture and its impact on electricity demand, we use the temperature and demand data

collected in July and August. Therefore, the daily peak temperature and demand
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each year consist of 62 data points.

The actual daily peak temperature measurements are collected from the Auto-

mated Surface Observing System (ASOS) data. This dataset includes weather data

from a broad network of weather stations supported by the Federal Aviation Ad-

ministration and the National Weather Service [99]. We use the temperature data

collected at the ATT site which is located in the urban area of Austin, TX, from

2002 to 2016. For the GCM projections, we use data from the downscaled CMIP3

and CMIP5 Climate and Hydrology Projections archive, which is publicly available

in [100]. We use 1-degree bias-corrected GCM outputs for daily maximum surface

air temperature in Austin, TX, from 42 climate models under the RCP 4.5 scenario.

The RCP 4.5 scenario represents mild climate change [74, 75]. The GCM outputs

are available from 2006 to 2100. Besides temperature, humidity also has some im-

pacts on electric demand, as latent loads are also addressed by heating and cooling

systems in buildings. However, for modeling the long-term peak density, we believe

the temperature is a sufficient factor [93, 94].

Next, the daily peak demand is obtained from the Electric Reliability Council of

Texas (ERCOT) [101]. Unlike the actual temperature data providing the temper-

ature measurements in a specific location, the demand data is provided in a large

spatial domain. ERCOT divides Texas into eight distinct weather zones. Each zone

represents a geographic region in which climatological characteristics are similar, and

ERCOT provides the total aggregated electricity demand in each region. Thus, we

use the daily peak demand data in the south-central region, which includes the city

of Austin.

Figure 3.1 depicts the box plot of daily peak demand during the summer from

2002 to 2016 in the south-central region of Texas, where each box plot shows the
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density of daily peak demands using 62 data points per year. There is a clear

increasing trend over time. We note that the daily peak demand in 2011 is noticeably

higher than that in the surrounding years. This is because of the extreme heatwave

events that occurred in Texas during this year, which caused an increase in electricity

demand due to the increasing usage of air conditioners and cooling appliances [102].

Figure 3.1: Box plots of actual daily peak demands during the summer from 2002 to
2016 in the south-central region of Texas

Electricity usage is also largely affected by socio-economic factors, such as gross

domestic product (GDP), industrial production, and the population density [77, 93].

Among them, this chapter uses the population as one of the major factors for the

daily peak demand modeling. The population data consists of the yearly population

estimates for every county in the south-central region of Texas from 2002 to 2016,

obtained from the United States Census Bureau [103]. Figure 3.2 shows the total

number of population estimates in thousands from 24 counties in the south-central

region of Texas. The x- and y-axis represent year t and the corresponding total

population in thousands pt, respectively. This shows the increasing linear trend of
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Figure 3.2: Total population growth in 24 counties in the south-central region of
Texas from 2002 to 2016

the population over time in this region. It should be noted that other economic

factors can be additionally considered in our modeling efforts, however, they are

often positively correlated with the population growth (or decay) trends. As such

we consider the population to represent the economic condition of the studied area.

Further, due to the increasing interest in DSM efforts for residential and com-

mercial buildings, the demand saving from EE/DR activities should be taken into

account in the long-term demand predictions. For example, Austin Energy, the ex-

clusive electricity provider to the city of Austin, operates the EE/DR program titled

the Custom Energy Solutions (CES) program. The participants of the program con-

tinue to grow. We use the number of participants and demand saving data reported

in the Austin Energy 2017 report [1]. For example, Figure 3.3 shows the number of

residential participants in the DR program in year t and the cumulative number of

participants up to year t from 2011 to 2016. Here, the unit of the residential par-

ticipants in the DR program is the number of smart thermostat devices. Typically,
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one residential house adopts one device. Although there are year-to-year variations,

overall we observe an increasing trend. The original Austin Energy report includes

demand saving data since 2007, but we note that the number of residential partici-

pants from 2007 to 2010 exhibits a decreasing trend. As the number of participants

is expected to grow over years, we use the data from 2011 to 2016 for building the

demand saving model. We also use the demand saving data from the community-

and municipal-level DR/EE programs, obtained from the Austin Energy report [1]

and the U.S. Energy Information Administration (EIA) reports [79].

3.4 Methodology

This section presents the long-term daily peak demand density prediction method.

We first formulate the daily peak temperature with the nonhomogeneous GEV model.

To incorporate the influence of climate changes on the future temperature, we pa-

rameterize the GEV density parameters as functions of GCM projections. Such

parameterization also enables us to calibrate the GCM projections with actual data.

Next, the socio-economic factors that include the population growth and building

DSM efforts are, respectively, modeled by the logistic growth model and the Bass

diffusion model. Finally, the daily peak demand density is obtained by integrating

the forecasts of future temperature, population, and demand saving by DSM efforts.

Figure 3.4 shows the overall framework of the proposed approach.
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(a) Number of participants in year t

(b) Number of cumulative participants up to year t

Figure 3.3: The number of residential participants in Austin Energy’s demand saving
program [1]
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Figure 3.4: Overall framework of the proposed approach

3.4.1 Modeling Long-term Daily Peak Temperature

The daily peak temperatures represent the block maxima. Based on the limit

theorem for block maxima [104, 105], we employ the GEV distributions. The GEV

distribution is a family of continuous probability distributions that combines the

Gumbel, Fréchet and Weibull distributions. Specifically, we formulate the density of

daily peak temperature yd,t in year t with a GEV distribution as

yd,t ∼ ft(y|x)

= GEV (µt, σt, ηt)

=


1
σt

[
1 + ηt

(
y−µt
σt

)]−(1/ηt+1)

exp
{
−
[
1 + ηt

(
y−µt
σt

)]−1/ηt}
, for ηt 6= 0

1
σt

exp
{
−
(
y−µt
σt

)
− exp

{
−
(
y−µt
σt

)}}
, for ηt = 0

(3.1)

for {y : 1 + ηt(y − µt)/σt > 0}, where µt ∈ R, σt > 0, ηt ∈ R are the location,

scale, and shape parameters, respectively [45]. The location parameter µt affects

the central value of the density. The scale parameter σt quantifies the spread of

the distribution, and the shape parameter ηt controls the weight of the distribution

tail. Depending on the shape parameter ηt, the GEV distribution is categorized into
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Gumbel, Fréchet and Weibull distributions [45].

To capture the long-term yearly varying temperature characteristics affected by

climate changes, we parameterize the temperature distribution using the GCM out-

puts. We use 42 different GCM models. Let g
(j)
d,t denote the daily peak temperature

projection on day d in year t from the jth GCM model. Because the GCM model

focuses on the long-term projection, the daily variability in each GCM model is

incoherent. Rather, an average across 62 days during July and August would repre-

sent the overall climate change influence on the summer temperature. As such, we

take the grand ensemble average of g
(j)
d,t ’s to quantify the forced temperature change

caused by climate change. We define the grand ensemble average xt as

(3.2) xt =
1

62× 42

62∑
d=1

42∑
j=1

g
(j)
d,t .

Then we parameterize the location and scale parameters as linear functions of

xt and use a constant value for the shape parameter in order to avoid an overly

complicated model [45], as follows.

µt = α0 + α1xt,

σt = β0 + β1xt,

ηt = η0,

(3.3)

where α0, α1, β0, β1, and η0 becomes the density parameters that need to be estimated

with actual temperature measurements.

The nonhomogeneous GEV temperature formulation with the GCM outputs has

several important implications. First, as discussed earlier, it incorporates the pos-

sible temperature changes due to climate change into the long-term forecasts. Sec-

ond, even the downscaled 1-degree bias-corrected GCM models do not account for

local/regional characteristics. The formulation in (3.3) enables us to correct the
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inherent systematic bias and discrepancy with actual data. Third, the GEV den-

sity function quantifies prediction uncertainties, whereas original GCM projections

provide deterministic forecasting.

We estimate the model parameters using the maximum likelihood estimation

(MLE). Specifically, we maximize the log-likelihood function `(θ;Dy) where Dy im-

plies a dataset with the measured daily peak temperature, i.e., Dy = {yd,t, d =

1, 2, · · · , D, t = 1, 2, · · · , T}. Let θ = [α0, α1, β0, β1, η0] denote the parameter vector.

Assuming yd,t’s are independently distributed, we obtain its MLE estimates θ̂MLE as

follows.

θ̂MLE = arg max
θ

`(θ;Dy)

= arg max
θ

T∑
t=1

D∑
d=1

log(ft(yd,t; θ))

= arg max
θ

−D
T∑
t=1

log σt −
T∑
t=1

D∑
d=1

(
1 + 1/ηt

)
log
[
1 + ηt

(yd,t − µt
σt

)]
−

T∑
t=1

D∑
d=1

[
1 + ηt

(yd,t − µt
σt

)]−1/ηt
,

for ηt 6= 0, where µt, σt, and , ηt are formulated in (3.3), D(= 62) is the number of

summer days each year, and T is the number of years in the data used for getting the

MLE estimates. Since there is no analytical solution, we obtain θ̂MLE numerically.

In our analysis, we use ‘ismev’ package in the statistical software, R, for solving the

optimization problem [105]. Similarly, we also obtain the MLE estimates for ηt = 0

and between two, we choose the estimates that provides higher log-likelihood values.

3.4.2 Modeling Long-term Socio-economic Pattern

This section discusses the modeling of socio-economic factors, including popu-

lation growth and building DSM efforts. We note that the population is the rep-

resentative factor among many possible factors and it is often positively correlated
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with other economic conditions in the developed countries [106, 107]. Moreover, it

is relatively easier to predict the population growth (or decay) than other factors at

the local or regional level.

In the studied south-central region of Texas, clearly the population has been

linearly increasing over years, as we observed in Fig. 3.2. However, it is unrealistic

to assume the same growth rate for the long-term future. Furthermore, the U.S.

Census Bureau predicts the population growth rate will likely decrease over longer

time scale [108]. Thus, we expect that the population would continue to grow, but

at a slower rate farther in the future. To represent such growth pattern, we adopt

the logistic growth model that formulates an increasing trend yet at a slower rate

until it reaches to the certain limit [109] as

(3.4) pt ∼ gt(p) = N
( a

1 + exp{−(t− b)/c}
, σ2

p

)
,

where a is the maximum population, b is the point where the growth rate turns from

increase to decrease, and c is the logistic growth rate, which controls the steepness

of the curve. The error is assumed to be normally distributed with zero mean and

constant variance σ2
p. Although the logistic growth model is typically used for char-

acterizing growth pattern, it is flexible enough to represent the decreasing pattern

as well. When c in (3.4) is positive, the logistic growth model shows an increasing

pattern, whereas it exhibits a decay pattern with the negative c value.

To estimate the parameters in (3.4), we use Levenberg-Marquardt nonlinear least-

squares algorithm [110, 111]. However, the resulting a is around 10,000, implying

the maximum population is 10 million in south-central Texas, which appears too

large, considering that the U.S. Census Bureau predicts the population growth rate

will likely decrease over longer time scale [108]. This unduly large value was ob-
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tained because the sample size is limited to 2002 to 2016 and the south-central Texas

population linearly grew during these years. To adjust, we consider the maximum

population in the south-Central Texas region would be no more than 6 million and

set a = 6000 (note that the unit of pt is in 1000). Then we estimate b and c using

the Levenberg-Marquardt algorithm and use the sample variance from the residuals

to estimate σ2
p.

The predicted population is depicted in Figure 3.5 where the black circle rep-

resents the historical population from 2002 to 2016 and red solid and dashed lines,

respectively, represent the point prediction and 90% prediction interval (PI). The re-

sult suggests that the population would continue to grow, but the growth rate would

decrease gradually over time.

Figure 3.5: Population prediction in the south-central region of Texas from 2002 to
2040

Next, for predicting future demand saving in buildings, we formulate the par-

ticipation rates in DSM programs. The challenge is that data is scarce, as many

programs are relatively young, with limited historical data. Thus, statistical mod-



54

els, e.g., regression and time series models, are not appropriate. To address this,

we employ the Bass diffusion model, which has been widely used for forecasting the

sales of new products or adoption of new technologies [81]. The Bass diffusion model

describes how the new products or technology can be adopted by investigating a

relationship between current adopters and the potential adopters [81]. The Bass

diffusion model typically assumes a constant market potential, that is, it is assumed

that the maximum number of potential adopters remains the same over time. How-

ever, in our case, the maximum number of potential adopters would change over

time, as populations change. Thus, we modify the original Bass diffusion model and

consider a varying potential market [112].

The DSM participants consist of residential households, commercials, communi-

ties and municipals in EE and DR programs, among which we first model the house-

hold participant growth pattern in the DR program. Let M(t) be the maximum

number of potential participants in year t. As the number of households changes

over time, we let M(t) be proportional to the households each year as

(3.5) M(t) = ds · ht,

where ht is the number of households in year t and ds is the maximum portion of

total household size that potentially adopts the DR program.

Individual households may participate in the DR program in year t, or they

may wait. As the program operates, M(t) potential entities eventually join the DR

program. Because it is unrealistic to expect all households joins the program, ds is

typically less than 1. With very limited DR participation data accumulated to date,

it is difficult to estimate an appropriate value for ds. Therefore, in this chapter,

we consider 20% − 50% of the total households would be the maximum number of
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potential participants, i.e., ds is assumed to range from 0.2 to 0.5. We perform the

sensitivity analysis with different values of ds from 0.2 to 0.5 with an increment of

0.05 in Section 3.5.

Let `(t) be the portion of the potential entities that participate in the DR program

in year t, i.e., `(t) = a(t)
M(t)

, where a(t) is the number of entities that newly participate

in year t, and let L(t) be the portion of the entities that have participated up to

year t, i.e., L(t) = A(t)
M(t)

, where A(t) is the cumulative number of participants up to

year t. The Bass diffusion model formulates the portion of new participates to non-

participants in year t, i.e., `(t)
1−L(t) , as a linear function of those who had participated

[81] as

(3.6)
`(t)

1− L(t)
= m+ nL(t),

where m is the coefficient of the innovation (or external influence) and n is the

imitation among participants (or internal influence).

By multiplying 1− L(t) in both sides in (3.6), the portion of the participants in

year t becomes

(3.7) `(t) =
dL(t)

dt
= (m+ nL(t))(1− L(t)) = m+ (n−m)L(t)− nL(t)2.

We solve the nonlinear differential equation with the initial value of L(0) = 0 with

the fixed value of ds to estimate the parameters m and n [81] and get

(3.8) L(t) =
1− exp{−(m+ n)t}

1 + n
m

exp{−(m+ n)t}
,

(3.9) `(t) =
(m+n)2

m
exp{−(m+ n)t}(

1 + n
m

exp{−(m+ n)t}
)2 ,

Using the relationship of `(t) = a(t)
M(t)

and L(t) = A(t)
M(t)

, we obtain a(t) and A(t) as

(3.10) a(t) = `(t)M(t) =
(m+n)2

m
exp{−(m+ n)t}(

1 + n
m

exp{−(m+ n)t}
)2 · dsht,
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and

(3.11) A(t) = L(t)M(t) =
1− exp{−(m+ n)t}

1 + n
m

exp{−(m+ n)t}
· dsht,

With the resulting A(t), the demand saving in year t, denoted by s(t), can be

calculated as

(3.12) s(t) = C · A(t),

where C denotes the demand saving per participant (unit: kW).

The parameters m and n in the Bass diffusion model define the participation

pattern. To estimate them, we use the Austin Energy’s demand saving data from

2011 to 2016 [1]. For C, we employ the average saving per residential participant

and get C = 0.8765kW . In obtaining the number of households, we collect the

population information from the U.S. Census Bureau and use the fact that each

household consists of 2.84 people on the average [103].

Ideally we should use the peak demand saving data in other utility companies to

cover the entire south-central Texas, as Austin is a part of the area. However, no

detailed information from other utility companies is available to us. As a remedy,

the residential DR pattern in south-central Texas is assumed to be similar to that

in Austin. Specifically, once we estimate m and n with Austin data, we use the

same m and n values, but plug the number of households in the south-central area

into ht in (3.10) and (3.11). To predict a number of future residential participants,

we employ the estimated population pt in year t, obtained from the logistic growth

model in (3.4), and use ht = pt/2.84.

Similar approaches can be applied to the community- and municipal-level DR

demand saving projections. However, their potential markets M(t) are not easily

quantified and estimated. Therefore, we assume the proportion of community- and



57

municipal-level demand saving to the residential-level saving remains similar in the

future. Noting the residential-level demand reduction has been about 35% of the total

demand saving from the DR program on average in south-central Texas [1], we obtain

the total demand saving from DR programs by multiplying 1/0.35 to the residential-

level demand saving. Likewise, we can obtain the peak demand saving from EE

programs using the Bass diffusion model. However, there are many categories in

EE programs and data in each category is scarce. We note that the ratio of the

total peak demand saving from EE programs to that from DR programs is about

50% on average in south-central Texas [79]. Based on this fact, we approximate the

demand saving from EE programs by multiplying 0.5 to the demand saving from DR

programs.

3.4.3 Daily Peak Load Density Prediction

Let zd,t denote the daily peak demand on day d in year t without considering the

demand saving. Similar to the daily peak temperature, the daily peak demand in

year t is assumed to follow nonhomogeneous GEV distribution and its location and

scale parameters are parameterized by the linear function of the population pt, the

daily peak temperature yt, and year t. Let zd,t denote the daily peak demand on day

d in year t without considering the demand saving. Then the conditional density of

zt, given the daily peak temperature and population, is given by

(3.13) zd,t|yd,t, pt ∼ ht(z|yd,t, pt) = GEV (µ′d,t, σ
′
d,t, η

′
t),

with

µ′d,t = α′0 + α′1yd,t + α′2pt + α′3t,

σ′d,t = β′0 + β′1yd,t + β′2pt + β′3t,

η′t = η′0.

(3.14)
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An alternative formulation for µ′t and σ′t would be to exclude the year term t, while

keeping yt and pt in (3.14). However, with the studied datasets from the south-central

Texas area, we notice that excluding the year term result in underestimations of the

daily peak load. This result indicates that each individual’s energy consumption has

been increasing over years, possibly due to the escalated dependence on electricity

in modern society and increasing trend in the conditioned area per home [113].

Similar to the procedure in (3.4), the parameters in (3.14) can be estimated

using MLE by maximizing the loglikelihood with the daily peak load measurements

zd,t. Recall that zd,t is the daily peak load without considering the demand saving.

However, the daily peak load data from ERCOT represents the realized peak load

with DSM efforts. Thus, we need to recover the daily peak loads without the demand

saving by adding the DSM demand saving to ERCOT’s reported peak demand data.

As no exact daily demand saving data in south-central Texas is available to us, we

approximate it using demand saving information provided by the Austin Energy’s

report [1] and EIA reports [79]. Figure 3.6 shows the adjusted box plots of daily

peak demand, assuming no DSM efforts. In the beginning years, there were no, or

very limited, DSM efforts in buildings, so the box plots in those years are similar to

the corresponding box plots in Figure 3.1. As the DSM efforts become more active,

demand saving became more significant. So, in later years, the box plots in Figure 3.6

became more shifted upward, compared to those in Figure 3.1. We use the adjusted

daily peak demand data to estimate the parameters in (3.14).

Next, the density function of the daily peak demand in year t, denoted by ut(z),

can be obtained by

(3.15) ut(z) =

∫
ht(z|yt, pt)gt(p)ft(y|xt)dpdy,
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Figure 3.6: Adjusted Box plots of daily peak demands without DSM efforts in build-
ings during the summer in the south-central region of Texas

where ht(z|yt, pt) is the conditional probability density function (pdf) of the daily

peak demand in year t in (3.13), gt(p) is the pdf of the population in year t in (3.4),

and ft(y|x) is the pdf of the daily peak temperature in year t in (3.1), given the

grand ensemble temperature projection xt from GCMs in (3.2).

The predictive density ut(z) in (3.15) does not take a closed-form. Thus, we

determine the density using Monte Carlo sampling [114]. Specifically, n1 and n2

realizations of the daily peak temperature and population are sampled from the cor-

responding nonhomogeneous GEV ft(y|xt), and logistic growth model, gt(p), respec-

tively. Then, given each sampled yt and pt, we draw n3 samples from the conditional

daily peak load density, ht(z|yt, pt). With the total n = n1×n2×n3 realizations, we

obtain the unconditional daily peak load density, ut(z) in each year. Note that these

random samples can be treated as potential scenarios of the daily peak temperature,

population, and electricity demand. The sampling distribution from n realizations

converges to the theoretical distribution ut(z), when n is sufficiently large. We use
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n1 = n2 = n3 = 1, 000 to get 109 samples each year in our implementation. Lastly,

let zst denote the the daily peak demand that accounts for the demand saving. We

get zst by subtracting the peak demand saving, discussed in Section 3.4.2, from zt.

3.5 Case Study

3.5.1 Validation

We use temperature and electricity usage data collected in south-central Texas

in 2002-2016, as discussed in Section 3.3. For evaluating the density prediction

performance, we divide the 15 years (2002-2016) of data into the two sets: training

and test sets. The training set includes the data from 2002 to 2010 for the parameter

estimation, whereas the testing set contains data from 2011 to 2016. The density

estimation performance is validated by comparing the predicted densities of daily

peak temperature and demand with their real histograms in the testing set. Since the

explanatory variables have different units, which can possibly contribute unequally

in the analysis, we first standardize them by subtracting the sample mean and scaling

to unit variance.

First, Figure 3.7 compares the histogram of actual standardized daily peak tem-

perature with its density estimation (red curve) ft(y) in the testing set. Here, the

histogram is obtained from 62 daily peak temperatures during July and August each

year. Overall, the estimated density successfully characterizes the yearly varying non-

stationary temperature pattern. In 2011, the actual histogram somewhat deviates

from its predicted one. There were extraordinary extreme heatwaves in 2011 [115].

The daily peak temperature in the summer of 2011 ranged from 36.7◦C to 43.0◦C

and its mean was 39.2◦C. However, the GCM projections did not properly capture

such record-breaking extreme events. In other years, we observe good agreements
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between the actual and predicted densities.

Next, we compare the histogram of the actual daily peak demand and its density

estimation (red curve) ht(z|yt, pt) in Figure 3.8. The density estimation for the daily

peak demand successfully matches the histogram of actual data across all years.

Both comparisons in Figures 3.7 and 3.8 suggest that the nonhomogeneous GEV

distributions provide reasonably good fits for modeling the future daily peak tem-

perature and demand densities. In both densities, the estimated shape parameters

ηt and η′t are negative, implying that the GEV distributions become the Weibull

distributions. Therefore, the projected densities are negatively skewed (left-heavy

tailed).

We further compare the peak load density estimation performance of the proposed

approach with the alternative the trend-based approach discussed in [90]. AlRashidi

et al. [90] consider the historical trend to make predictions, using the linear and

quadratic functions of year, unlike our approach that incorporates the effect of cli-

mate change and socio-economic factors on the daily peak loads. Their approach

provides the point prediction only, so it cannot be directly compared with our ap-

proach. Alternatively, we formulate a similar structure by modeling the peak load

as a function of year under the Normality assumption and estimate the parameters

using the maximum likelihood estimation.

Figure 3.9 shows the density prediction results, where the red solid and blue

dashed lines, respectively, represent the estimated densities from the trend-based

model and proposed approach. While both prediction results are comparable in

most cases, the trend-based model cannot capture the sudden changes in the daily

peak loads in 2011 when heat wave events occurred. This result demonstrates the

advantage of the proposed approach that uses GCM to capture the yearly-varying
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climate conditions.

(a) 2011 (b) 2012

(c) 2013 (d) 2014

(e) 2015 (f) 2016

Figure 3.7: Comparison between empirical and estimated densities of daily peak
temperature in the testing set
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(a) 2011 (b) 2012

(c) 2013 (d) 2014

(e) 2015 (f) 2016

Figure 3.8: Comparison between empirical and estimated densities of daily peak
demand in the testing set
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(a) 2011 (b) 2012

(c) 2013 (d) 2014

(e) 2015 (f) 2016

Figure 3.9: Comparison of the estimated densities of daily peak load from the trend-
based and proposed approach in the testing set
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3.5.2 Density Prediction of Daily Peak Demand

This section presents the predictive densities of daily peak demands from 2021

to 2040 with and without considering the effect of the demand saving from the

DSM programs. Long-term grid asset planning typically studies 5 years to a few

decades [116, 117]. In this chapter, 20 years was chosen to illustrate the demand

change pattern during the typical planning horizon. First, Figure 3.10 shows the

grand ensemble average of the daily peak temperature projections from GCMs.

Overall GCMs suggest an increasing trend, which represents the influence of climate

changes on the temperature.

Figure 3.11 depicts the box and density plots of the predicted daily peak demand

from 2021 to 2040 without considering the buildings‘ demand saving. In general, we

can observe an increasing pattern over time in Figure 3.11a. The predictive mean

and median of daily peak demands in 2040 are about 22.4 GW, if there would be

no DSM efforts. Figure 3.11b further shows the predicted density in several selected

years. As the prediction uncertainty increases in the long-term future, the predictive

density becomes more flattened in later years.

To account for the effect of the demand saving from DSM programs, we consider

different values of ds in (3.5). Figure 3.12 shows the expected demand saving in the

south-central region of Texas from 2021 to 2040 with multiple values of ds from 0.2

to 0.5 with an increment of 0.05. The demand saving increases and the range of the

demand saving with different values of ds becomes wider over time. In 2040, the

demand saving is expected to range between 2.1GW to 4.1GW with ds ∈ [0.2, 0.5].

Figure 3.13 presents the predictive density of the daily peak demand after ac-

commodating the effect of demand saving. Each sub-figure shows the densities with

ds = 0.2, 0.3, 0.4, and 0.5. In the near future, the demand savings are not signifi-
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Figure 3.10: Grand ensemble average of daily peak temperature projections from
GCMs

cantly different with different values of ds, so the corresponding densities are highly

overlapped. This is due to the fact that a small number of participants join the de-

mand saving program in early years. As more people join DSM programs, the effect

of the demand saving becomes more substantial so the predicted densities become

more shifted to the left in later years. Moreover, the difference in demand savings

with ds = 0.2 and ds = 0.5 become more clear in later years.

Table 3.1 summarizes the predicted mean and median and 90% PI of the daily

peak demand every 5 years from 2025 to 2040. It is expected that the average peak

demand would be reduced by 9.43%, 12.62%, 15.64%, and 18.46%, respectively, in

2040 with ds = 0.2, 0.3, 0.4, and 0.5, compared to the case with no demand saving

(i.e., ds = 0). We also observe that the 90% PI becomes wider over time due to the

increasing uncertainty in the long-term future.

To further explore the impact of the DSM participation rate on the long-term peak

demand, Figure 3.14 shows the predictive mean trajectories in a range of ds value.
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(a) Box plot

(b) Density plot

Figure 3.11: Box plot (top) and density plot (bottom) of predicted daily peak de-
mands in 2021-2040 without buildings‘ demand saving
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Figure 3.12: Predicted demand saving from DR programs from 2021 to 2040 in the
south-central region of Texas

It echos our previous observation: as the DSM program proceeds, its effectiveness

becomes more clear in the long-run. In particular, an aggressive adoption of demand

saving that can possibly lead to higher ds can substantially alleviate the burden on

the electric power grid to meet the increasing demand.
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(a) 2025 (b) 2030

(c) 2035 (d) 2040

Figure 3.13: Daily peak density prediction with and without demand saving from
DR programs
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Table 3.1: Predicted mean and median and 90% PI of daily peak demand with DR
programs (unit: GW)

Year
Demand saving

rate (ds)
Predicted

mean
Predicted
median

90% PI

2025 0 16.4 16.4 (14.6, 18.0)
0.2 14.6 14.7 (12.8, 16.3)
0.3 14.4 14.4 (12.6, 16.0)
0.4 14.3 14.3 (12.5, 15.9)
0.5 14.2 14.2 (12.4, 15.8)

2030 0 18.6 18.7 (16.6, 20.5)
0.2 16.2 16.2 (14.2, 18.0)
0.3 16.2 16.2 (14.2, 18.0)
0.4 15.8 15.9 (13.8, 17.7)
0.5 15.6 15.6 (13.6, 17.4)

2035 0 20.6 20.6 (18.4, 22.6)
0.2 18.5 18.6 (16.3, 20.5)
0.3 17.9 17.9 (15.7, 19.9)
0.4 17.3 17.4 (15.1, 19.3)
0.5 16.8 16.9 (14.6, 18.8)

2040 0 22.4 22.4 (20.1, 24.5)
0.2 20.2 20.3 (18.0, 22.4)
0.3 19.5 19.6 (17.3, 21.7)
0.4 18.9 18.9 (16.6, 21.0)
0.5 18.2 18.3 (16.0, 20.4)

Figure 3.14: Predictive mean of the daily peak demand with and without demand
savings participation
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3.6 Summary

This chapter projects the long-term density of the daily peak demand with the

goal of understanding its growing pattern and ultimately reducing the resulting bur-

den on the power grid. Our approach accounts for the changes both in temperature

due to climate change and in the socio-economic variables. Specifically, the proposed

daily peak temperature model with the nonhomogeneous GEV framework allows us

to adjust the possible biases in the GCM projections while keeping the temporal

variation suggested by the GCMs. In addition, the expected population growth (or

decay) pattern and the building demand saving from DSM programs are formulated

with the logistic growth model and Bass diffusion model, respectively. The presented

approach is validated in the case study with actual data collected in the south-central

region of Texas.

DSM activities for buildings could substantially affect daily peak loads, as we

observe in Section 3.5. Although we use actual building use data collected in south-

central Texas, DSM programs and their effectiveness will evolve over time. At the

same time, electricity usage patterns, as well as the willingness to participate in DSM

programs will possibly change in the future, as a result of technology advance such as

growing popularity of smart appliances and electric vehicles, distributed renewable

energy and improved internet connectivity. As such, our demand reduction model

due to DSM needs to be updated and refined, as we get more data in the future. Other

socio-economic variables, such as gross domestic product, industrial production, can

be additionally considered to enhance the prediction capability in our future study.



CHAPTER IV

Spatio-temporal Bias Correction in Numerical

Weather Prediction Model with Application to

Urban Temperature Modeling During Heat Wave

Events

4.1 Introduction

Ambient environmental condition affects many aspects of human life. For exam-

ple, the energy consumption from residential and commercial buildings, consisting

of a significant portion of the U.S. electricity demand, is largely affected by weather

conditions [118]. To understand and forecast environmental conditions, physics-

based models such as the WRF model are often employed [119]. The WRF is a

mesoscale NWP model that also has been used to study climate change with region-

ally downscaled versions. However, these simulations do not completely account for

local climate characteristics [71]. To better estimate localized weather conditions in

urban areas, studies in [120, 121] have coupled WRF with a UCM that parameterizes

urban canopy features such as building and street properties [119].

This chapter is, in particular, concerned with the spatio-temporal temperature

characterization within the WRF/UCM model during extreme heat wave events.

The excessive electricity consumption during extreme heat waves can result in power

72
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blackouts and brownouts, which can put occupants of the buildings at risk [122].

Extreme heat waves can also cause adverse effects on public health, seriously af-

fecting vulnerable populations such as seniors, infants, young children, and people

with chronic health problems [122]. According to the study reported in [123], a 1◦C

increase in temperature during a heat wave can result in a 4.5% increase in mortal-

ity risk. Even worse, the so-called urban heat island effect produces additional heat

stresses due to interactions between the built-environment and the atmosphere, caus-

ing higher temperatures in highly urbanized areas as compared to their surrounding

areas [71].

Although UCM coupled with WRF, referred to as WRF/UCM in this chapter,

can provide more accurate localized weather profiles, substantial discrepancy is possi-

ble between actual and WRF/UCM-predicted temperature. To illustrate, Figure 4.1

shows a network of ground-based weather stations around Austin, Texas, where each

black circle represents the location of a weather station. Figure 4.2 compares actual

temperatures (black curves) at these locations with their corresponding WRF/UCM

projections (red curves) during three heat wave events. A large discrepancy is ob-

served during the daytime on these heat wave days. Interestingly, WRF/UCM tends

to underestimate the temperature from the late afternoon to the evening hours.

This is mainly because heat is stored in thermal mass of buildings and asphalt paved

roads, which causes the ambient temperatures to decrease more slowly. It appears

that WRF/UCM cannot fully account for such local climate characteristics.

Such discrepancies likely arise due to inappropriate settings in the WRF and UCM

models, e.g, inaccurate initial and/or boundary conditions and model formulation in

WRF, and/or incorrect parameterization in UCM [124–126]. In particular, UCM

employs several parameters such as land use, land cover information, percentage
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Figure 4.1: Ground-based weather stations in Central Texas

of impervious surface, building dimensions, and surface albedo. When information

on these parameters is not available or is unknown, educated guesses from domain

experts are often employed, but inappropriate assumptions can cause substantial

deviations in model results from actual climate conditions [126]. One remedy is to

adjust the parameter values iteratively, but doing so can be challenging and cum-

bersome when a large number of such parameters is involved. Furthermore, running

WRF/UCM with each new parameter setting is computationally demanding.

The discrepancy between measured ambient conditions and the output from nu-

merical weather models is referred to as bias in the literature [127] (note that, in the

present chapter, the definition of bias is different from that in the statistical litera-

ture.) To explain the bias/discrepancy, Figure 4.3 shows bias patterns on 8/8/2013

at three locations: ASTSL, ASTPK, and BDDHL identified in Figure 4.1. As ob-
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Figure 4.2: Discrepancy (or bias) between actual temperature and WRF/UCM
prediction
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served in Figure 4.2, WRF/UCM output suggests a clear bias pattern over the day at

each location. Further, we see that bias patterns at two nearby locations, ASTSL and

ASTPK, are more similar to each other but somewhat different from the pattern seen

at BDDHL; this suggests possible spatial correlation in bias patterns. In summary,

WRF/UCM yields unevenly distributed systematic bias patterns both spatially and

temporally.
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Figure 4.3: WRF/UCM bias patterns at three stations, ASTSL, ASTPK, and BD-
DHL on 8/8/2013

In the literature, several approaches have been proposed to reduce bias. Bias

correction in the physics-based forecasting models is also called post-processing or

forecast calibration [128]. The most common approach is the so-called model output

statistics (MOS) approach [129]. The basic idea of MOS is to identify a relation-

ship between actual weather observations and the corresponding NWP projections.

[129] employed a linear regression model to quantify the relationship between two

data sources in applications related to the probability of precipitation, surface wind,
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maximum temperature, conditional frozen precipitation, and cloud cover. Similarly,

[130] used linear regression to calibrate the bias in wind speed forecasts from NWP

and predicted hourly and sub-hourly wind speed and wind power output.

Note that, in the aforementioned studies, the climate model bias is assumed to

be stationary, implying that the relationship between numerical model outputs and

measurements is assumed not to change over time and space. In other words, they

adjust bias in NWP projections by the same amount, regardless of the time of day and

location. Clearly, this assumption appears to be unjustified, given what is observed

in Figures 4.2 and 4.3.

Another approach, called the delta change method, computes the average bias

in historical projections from NWP models and adds this to projections from NWP

models [131, 132]. [131] employed the delta method to calibrate bias in temperature

prediction from a regional climate model (RCM). [132] calibrated the bias in monthly

mean temperature and precipitation predictions from an RCM. [133] computed the

average bias at each hour to accommodate a time-varying bias pattern. Similar to

the MOS approach, the delta change method does not consider temporal correlation

in the bias. Further, it does not address spatially-varying bias patterns.

To address these issues, we propose a new bias correction method that lever-

ages the spatial and temporal bias dependence for more accurate and reliable post-

processing of WRF/UCM. By utilizing information collected at geographically dis-

persed locations in both WRF/UCM projections and actual measurements, we aim to

learn heterogeneous bias pattern in a collaborative manner. The main contribution

of this chapter is three-fold:

(1) Unlike the aforementioned studies that assume stationary assumptions, our

approach captures nonstationary bias characteristics which are uneven across
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a day-long period and over space.

(2) The proposed approach fully harnesses spatio-temporal uncertainties and gen-

erates probabilistic bias corrections.

(3) It provides an integrative framework that can produce bias-corrected estimates

even in places where WRF/UCM projections are unavailable, different from

existing approaches that require WRF/UCM projections for all target places.

We conduct a case study using actual and WRF/UCM predicted temperatures

in the central Texas region during three extreme heat wave events. Our implemen-

tation results demonstrate that the proposed approach is capable of characterizing

time- and space-varying bias patterns. The advantage of the proposed approaches is

reflected by better point and probabilistic bias correction performance, compared to

the WRF/UCM projections and alternative approaches.

The remainder of this chapter is organized as follows. Section 4.2 introduces the

proposed bias correction approach. Section 4.3 extends the approach to provide bias-

corrected temperature for sites without WRF/UCM projections. Section 4.4 presents

a case study for evaluating bias correction performance of the proposed approach.

Finally, Section 4.5 summarizes the chapter and outlines future research plans.

4.2 Spatio-temporal Bias Correction Method

This section presents the spatio-temporal bias correction model and model pa-

rameter estimation procedure.

4.2.1 Model Formulation

Let y(s, t) and x(s, t), s = 1, · · · , S and t = 1, · · · , T , denote the measured and

WRF/UCM-predicted temperature at site s and time t, respectively. In our analysis
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we use hourly data (thus, T = 24), and S denotes the number of weather stations.

We first consider a linear MOS model, specifically, a linear regression model [129],

to post-process the WRF/UCM projection as

(4.1) y(s, t) = β0 + β1x(s, t) + ε(s, t),

where β0 and β1 are the intercept and slope coefficients, respectively, and ε(s, t)

represents a random noise.

We apply the linear MOS model to the datasets during each heat wave event

shown in Figure 4.2. Figure 4.4 shows temporal patterns in the residuals, which

shows underestimation in the morning and overestimation in the daytime in general.

Clearly, the main issue with this linear MOS model is that it assumes homogeneous

bias across time and space.

To reflect noted heterogeneous bias patterns, we allow the model coefficients to

vary as a function of space and time [41]. Specifically, we decompose each model

coefficient into fixed as well as spatially- and temporarily-varying components as

follows:

y(s, t) = β0(s, t) + β1(s, t)x(s, t) + εy(s, t)

=
[
β
(F )
0 + β

(R)
0 (s, t)

]
+
[
β
(F )
1 + β

(R)
1 (s, t)

]
x(s, t) + εy(s, t)

=
[
β
(F )
0 + β

(F )
1 x(s, t)

]
+
[
β
(R)
0 (s, t) + β

(R)
1 (s, t)x(s, t)

]
+ εy(s, t),

(4.2)

where β
(F )
0 and β

(F )
1 represent fixed effects, whereas β

(R)
0 (s, t) and β

(R)
1 (s, t) are ran-

dom effects. Here, β
(F )
0 + β

(F )
1 x(s, t) provides the global (or common) trend in tem-

perature at all sites and hours, while β
(R)
0 + β

(R)
1 x(s, t) captures the location- and

time-specific bias. Lastly, εy(s, t) represents random noise, which is assumed to obey

a Gaussian distribution with zero mean and variance σ2
y
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Figure 4.4: Residuals in the linear regression model
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We note that the bias patterns at stations located close to each other and tem-

porally adjacent points exhibit greater similarity, compared to those for widely sepa-

rated locations and/or times. This implies that the model coefficient β
(R)
i (s, t) should

be similar to β
(R)
i (s′, t′) for s close to s′ and t close to t′, for i = 0, 1. To reflect such

temporal and spatial correlation, we formulate the site- and time-specific effects

β
(R)
i (s, t) as latent random processes and further decompose them into temporal and

spatial random effects, denoted by β
(T )
i (t) and β

(S)
i (s), respectively.

First, to describe the temporal correlation at consecutive time points, β
(T )
i (t)

should depend on β
(T )
i (t− 1). We employ an autoregressive (AR) process to capture

temporal dependency as follows [41, 134]:

(4.3) β
(T )
i (t) = ρiβ

(T )
i (t− 1) + ξi(t),

for i = 0, 1, where |ρi| ≤ 1 represents the AR parameter, quantifying the dependence

intensity between two consecutive time points, and ξi(t) ∼ N(0, δ2i ) is assumed to be

Gaussian random noise. A higher-order AR process can be employed, however, we

adopt AR(1) in this chapter due to its simplicity.

The AR(1) formulation in (4.3) implies that the collection of temporal random

effects, B(T )
i = [β

(T )
i (1), β

(T )
i (2), · · · , β(T )

i (T )]T for i = 0, 1, follows a multivariate

Gaussian distribution as

B(T )
i ∼ N(0,Σ

(T )
i ),

where Σ
(T )
i represents a T × T temporal covariance matrix [135], whose (t, t′)th com-

ponent is defined as

Σ
(T )
i (t, t′) = δ2i

ρ
|t−t′|
i

1− ρ2i
,

for t, t′ = 1, · · · , T . This implies that the correlation intensity gets stronger, leading

to a more similar bias pattern when t and t′ are more adjacent.
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Next, the temperature at closely spaced locations should be similar to one an-

other, as observed in Figure 4.3. In other words, each site-specific random ef-

fect β
(R)
i (s) at location s should be similar (less similar) to β

(R)
i (s′) for a close

(remote) location s′ for i = 0, 1 [53, 59]. To address such spatial dependency

across sites, we employ a GP. Due to its nonparametric nature, a GP can flexi-

bly represent the spatial variation. For the collection of site-specific random effects,

B(S)
i = [β

(S)
i (1), β

(S)
i (2), · · · , β(S)

i (S)]T for i = 0 and 1, we have

B(S)
i ∼ N(0,Σ

(S)
i ),

where Σ
(S)
i represents an S × S spatial covariance matrix. Among several possible

covariance functions, we use the exponential covariance function in this chapter.

Thus, the (s, s′)th element of Σ
(S)
i is defined as

Σ
(S)
i (s, s′) = τ 2i exp

{
− ||Ls − Ls

′ ||2

`i

}
,

for i = 0, 1 and s, s′ = 1, · · · , S, where Ls is the location of site s, || · || denotes

the Euclidean distance, and τ 2i and `i, respectively, represent the variance term and

scale parameter. Note that βSi (s) and βSi (s′) are strongly correlated when s and s′

are closer.

Finally, we combine the temporal and spatial random effects to represent β
(R)
i (s, t)

in (4.2) for i = 0, 1. We consider the separable covariance structure in time and

space with either additive or multiplicative structure. With the additive structure,

β
(R)
i (s, t) = β

(S)
i (s) + β

(T )
i (t) and its covariance function becomes

Σ
(R)
i ((s, t), (s′, t′)) = Σ

(S)
i ⊗ IT×T + IS×S ⊗ Σ

(T )
i

= τ 2i exp
{
− (Ls − Ls′)2

`i

}
+ δ2i

ρ
|t−t′|
i

1− ρ2i
,

for i = 0, 1, where ⊗ implies a Kronecker product. Alternatively, the multiplicative
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structure β
(R)
i (s, t) = β

(S)
i (s)β

(T )
i (t) can be employed and its covariance function can

be derived in a similar manner.

4.2.2 Parameter Estimation and Prediction

To estimate the parameters in the proposed bias correction model with latent

spatial and temporal processes, we derive the density of y(s, t) in (4.2). Let us express

the proposed model in a matrix form. Let Y = [y(s1, t1), y(s1, t2), . . . , y(sS, tT )]T

denote the vector of measured temperature, X(F ) = [1,x] ∈ RST×2 denote a design

matrix for the fixed effect terms with 1 ∈ RST×1 being a vector of ones and x =

[x(s1, t1), x(s1, t2), . . . , x(sS, tT )]T , IST denote a ST × ST idenity matrix, Dx denote

the diagonal matrix whose diagonal elements are WRF/UCM projections, and εy =

[εy(s1, t1), εy(s1, t2), . . . , εy(sS, tT )]T denote the vector of random noise. Then, the

proposed model becomes

(4.4) Y = X(F )B(F ) + ISTB(R)
0 + DxB(R)

1 + εy,

where B(F ) = [β
(F )
0 , β

(F )
1 ]T ∈ R2×1 is a vector of the fixed effects, and B(R)

0 and

B(R)
1 are (ST × 1)-dimensional vectors of intercept random effects and slope random

effects, respectively.

Because the mean of the random effects is zero, the mean of Y becomes X(F )B(F ).

Recall that the covariance matrices of B(R)
0 and B(R)

1 , denoted by Σ
(R)
0 and Σ

(R)
1 ,

respectively, can be obtained from (4.4). Assuming the independence among B(R)
0 ,

B(R)
1 , and the random noise, the covariance of Y becomes

(4.5) ΣY = Σ
(R)
0 + DxΣ

(R)
1 Dx + σ2

yIST .

As such, Y follows a multivariate Gaussian distribution as

Y ∼ N(X(F )B(F ),ΣY ).
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The distribution in (4.6) holds for both additive and multiplicative covariance

structure. For the additive covariance structure in (4.4), we introduce slightly mod-

ified forms to facilitate parameter estimation as follows.

K
(R)
0 ((s, t), (s′, t′)) = exp

{
− (Ls − Ls′)2

`0

}
+
δ20
τ 20

ρ
|t−t′|
0

1− ρ20
,

and

K
(R)
1 ((s, t), (s′, t′)) =

τ 21
τ 20

exp
{
− (Ls − Ls′)2

`1

}
+
δ21
τ 20

ρ
|t−t′|
1

1− ρ21
.

Then, the covariance matrix of the response vector Y becomes

ΣY = Σ
(R)
0 + DxΣ

(R)
1 Dx + σ2

yIST

= τ 20 (K
(R)
0 + DxK

(R)
1 Dx + gIST )

= τ 20KY ,

with g = σ2
y/τ

2
0 and KY = K

(R)
0 + DxK

(R)
1 Dx + gIST .

Finally, we estimate the parameters and hyperparameters in the proposed model

by maximizing the likelihood, which is denoted by LY|x, as follows:

LY|x = (2πτ 20 )−ST/2|KY |−1/2 exp
{
− 1

2τ 20
(Y −X(F )B(F ))TK−1Y (Y −X(F )B(F ))

}
.

Let θ1 = {l0, l1, ρ0, ρ1, δ0, δ1, τ 21 , g} denote the set of hyperparameters. We obtain

the log-likelihood `Y|x(B(F ), τ 20 ,θ1) as

`Y|x(B(F ), τ 20 ,θ1) = −ST
2

log(2π)− ST

2
log(τ 20 )− 1

2
log |KY |(4.6)

− 1

2τ 20
(Y −X(F )B(F ))TK−1Y (Y −X(F )B(F )).

By taking partial derivatives of the log-likelihood with respective to B(F ) and τ 20

and setting them to 0, we obtain the maximum likelihood estimators (MLEs) for

B(F ) and τ 20 as

(4.7) B̂(F ) = (X(F )TK−1Y X(F ))−1X(F )TK−1Y Y,
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and

(4.8) τ̂ 20 =
1

ST
(Y −X(F )B̂(F ))TK−1Y (Y −X(F )B̂(F )),

respectively.

Plugging B̂(F ) and τ̂ 20 into (4.6), the log-likelihood function in (4.6) becomes a

function of θ1 as follows.

`Y|x(θ1) = −ST
2
− ST

2
log(2π)

−ST
2

log
{ 1

ST
(Y −X(F )(X(F )TK−1Y X(F ))−1X(F )TK−1Y Y)TK−1Y

(Y −X(F )(X(F )TK−1Y X(F ))−1X(F )TK−1Y Y)
}
− 1

2
log |KY |.

We obtain the MLE of θ1 using the L-BFGS-B algorithm, a numerical optimization

methods. In our case study in Section 4.4, the ‘optim’ function in ‘stats’ package in

the statistical software R is used for implementing the L-BFGS-B algorithm [136].

Once we obtain the MLE of θ1, we introduce it into (4.7) and (4.8) and attain the

MLEs of B(F ) and τ 20 .

Once the parameters are estimated, we can obtain the predictive distribution of

the bias-corrected temperature prediction at an unmeasured location. Suppose we

have the WRF/UCM temperature projection x∗ (or equivalently, x(s∗, t∗)) at location

s∗ and time point t∗, but do not have the corresponding temperature measurement.

Then, given the dataset DST = [{x(s1, t1), y(s1, t1)}, . . . , {x(sS, tT ), y(sS, tT )}]T used

for model fitting, the predictive density of temperature y∗ at x∗, follows a Gaussian

distribution as

(4.9) y∗|(x∗,DST ) ∼ N(µy∗|x∗ , σ
2
y∗|x∗),
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with

µy∗|x∗ = X∗B(F ) + cT∗Σ−1Y (Y −X(F )B(F )),(4.10)

and

σ2
y∗|x∗ = c∗∗ − cT∗Σ−1Y c∗ + σ2

y,(4.11)

where X∗ = [1, x∗] is the design matrix and c∗ is a covariance vector whose com-

ponents provide the covariance between the training and test points (i.e., between

y|x(s, t) and y|x(s∗, t∗)), defined as

(4.12) c∗ = c0,∗ + Dxc1,∗x
∗,

and c∗∗ is the variance at the test point as

c∗∗ = c0,∗∗ + (x∗)2c1,∗∗.(4.13)

Here, ci,∗ is the covariance vector constructed from the training and test points for

β
(R)
i for i = 0, 1, and ci,∗∗ is the variance term of test points as follows. B(R)

i

β
(R)
i (s∗, t∗)

 ∼ N


0

0

 ,

Σ
(R)
i ci,∗

cTi,∗ ci,∗∗


 ,(4.14)

for i = 0, 1.

Equations (4.9)-(4.13) define the predictive distribution at a specific location and

time. Predictive distributions at multiple locations and times can be easily obtained

in a similar manner, but for brevity we omit those details.

4.3 Integrative Spatio-temporal Bias Correction Model

This section formulates the integrative spatio-temporal bias correction model and

derive the prediction procedure at sites where WRF/UCM projections are unavail-

able.
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4.3.1 Model Formulation

The bias correction model discussed in Section 4.2 provides the adjusted temper-

ature at sites where the WRF/UCM projections are available. Suppose we would like

to estimate the temperature at places without WRF/UCM temperature projections.

In this case, one may re-run the WRF/UCM model to obtain temperature projec-

tions at those locations. However, running the WRF/UCM model is computationally

expensive and time-demanding [137]. This section extends the bias correction ap-

proach presented in Section 4.2 and estimates temperature at sites where WRF/UCM

projections are absent.

Our approach is to integrate the temperature field projected by WRF/UCM

with the bias correction model. Specifically, we create the spatially and tempo-

rally correlated WRF/UCM temperature projection field using GP, i.e., we formu-

late x(s, t) with a GP model. Suppose we obtain WRF/GCM projections x =

[x(s1, t1), x(s1, t2), . . . , x(sS, tT )]T . Then the marginal density of x follows the multi-

variate Gaussian denstiy as

x ∼ N(0,Σx),

where Σx is the spatial and temporal covariance matrix, similar to (4.4) but with

different hyperparameters.

Finally, the integrative model combines the WRF/UCM temperature field with

the bias-correction model in Section 4.2 as follows.

x ∼ N(0,Σx)

y|x(s, t) =
[
β
(F )
0 + β

(F )
1 x(s, t)

]
+
[
β
(R)
0 (s, t) + β

(R)
1 (s, t)x(s, t)

]
(4.15)

+εy(s, t),

where the random effects β
(R)
0 (s, t) and β

(R)
1 (s, t) are formulated in (4.3)-(4.4).
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4.3.2 Parameter Estimation and Prediction

This section discusses how to estimate the parameters in the integrative model.

The likelihood of the integrative model, given (x,Y), is L = Lx · LY|x, where LY|x

is in (4.6) and Lx is

Lx = (2π)−ST/2|Σx|−1/2 exp
{
− 1

2
xTΣ−1x x

}
.

Let θ2 denote a set of hyperparameters in the WRF/UCM temperature field. Then

the log-likelihood becomes

`x(θ2) = −ST
2

(2π)− 1

2
|Σx| −

1

2
xTΣ−1x x.

We estimate the parameters and hyperparameters of the integrative model by

maximizing the log-likelihood. From L = Lx · LY|x, the log-likelihood becomes

`(B(F ), τ 20 ,θ1,θ2) = `Y|x(B(F ), τ 20 ,θ1) + `x(θ2)

This implies that we can estimate the parameters in the bias correction model

and the WRF/UCM temperature field separately. In other words, the MLEs of B(F ),

τ 20 , and θ1 in the integrative model are the same as those in the bias correction model

obtained in Section 4.2. We get the MLE of θ2 by maximizing `x(θ2). Similar to the

optimization procedure discussed in Section 4.2, we use the L-BFGS-B algorithm to

attain the MLE of θ2 using the ‘optim’ function in ‘stats’ package in the statistical

software R [136].

We now derive the predictive distribution of bias-corrected temperature at loca-

tion s∗ and time t∗ where the corresponding WRF/UCM projection is absent. The

uncertainties in both the WRF/UCM temperature field model and the bias-corrected

model complicate the derivation of the predictive density. First, following the proper-

ties in the GP, the predictive distribution of the WRF/UCM temperature projection
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x∗ (or x(s∗, t∗)) is given by

(4.16) x∗|x ∼ N(µx∗ , σ
2
x∗),

with

(4.17) µx∗ = dT∗Σ−1x x,

(4.18) σ2
x∗ = d∗∗ − dT∗Σ−1x d∗ + σ2

x,

where d∗ is a covariance vector constructed by all pairs of the training and test points

in the WRF/UCM projection and d∗∗ is constructed by test points as

(4.19)

 x

x∗

 ∼ N


0

0

 ,

Σx d∗

dT∗ d∗∗


 .

Next, to obtain the predictive distribution of bias-corrected temperature y∗, we

combine the predictive density of x∗ in (4.16)-(4.19) with the predictive density y∗|x∗

in (4.9)-(4.14). Given DST , p(y∗|DST ) becomes

p(y∗|DST ) =

∫
p(y∗|x∗,DST )p(x∗|x)dx∗.

Because both x∗|x and y∗|(x∗,DST ) follow a Gaussian distribution, y∗|DST also obeys

a Gausssian distribution as

y∗ = y(s∗, t∗) ∼ N(µy∗ , σ
2
y∗)

where µy∗ and σ2
y∗ denote the mean and variance of y∗ [138].

Next, we derive µy∗ and σ2
y∗ using the law of total expectation and the law of

total variance, respectively, as follows.

µy∗ = E
[
E[y∗|x∗]

]
= E

[
β
(F )
0 + β

(F )
1 x∗ + cT∗Σ−1Y (Y −X(F )B(F ))

]
(4.20)

= β
(F )
0 + β

(F )
1 µx∗ + (c0,∗ + Dxc1,∗µx∗)

TΣ−1Y (Y −X(F )B(F )),(4.21)
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where (4.20) is obtained using (4.10), and (4.21) is due to (4.12). Further, using (4.10)

and (4.11), we get

σ2
y∗ = E

[
V ar[y∗|x∗]

]
+ V ar

[
E[y∗|x∗]

]
= E

[
c∗∗ + σ2

y − cT∗Σ−1Y c∗

]
+ V ar

[
β
(F )
0 + β

(F )
1 x∗ + cT∗Σ−1Y (Y −X(F )B(F ))

]
,(4.22)

Below we derive each term in (4.22). First, E
[
c∗∗ + σ2

y

]
becomes

E
[
c∗∗ + σ2

y

]
= E

[
c0,∗∗ + (x∗)2c1,∗∗ + σ2

y

]
(4.23)

= c0,∗∗ + E
[
(x∗)2

]
c1,∗∗ + σ2

y

= c0,∗∗ + (µ2
x∗ + σ2

x∗)c1,∗∗ + σ2
y.

Here, (4.23) is due to (4.13). We also attain E
[
cT∗Σ−1Y c∗

]
as

E
[
cT∗Σ−1Y c∗

]
= E

[
(c0,∗ + Dxc1,∗x

∗)TΣ−1Y (c0,∗ + Dxc1,∗x
∗)
]

= (c0,∗ + Dxc1,∗µx∗)
TΣ−1Y (c0,∗ + Dxc1,∗µx∗) + σ2

x∗tr(c
T
1,∗DxΣ−1Y Dxc1,∗),

where the last equation is obtained using the mean of a quadratic form. Finally, the

last term of (4.22) becomes

V ar
[
β
(F )
0 + β

(F )
1 x∗ + cT∗Σ−1Y (Y −X(F )B(F ))

]
= V ar

[
β
(F )
0 + β

(F )
1 x∗ + (c0,∗ + Dxc1,∗x

∗)TΣ−1Y (Y −X(F )B(F ))
]

= σ2
x∗

(
β
(F )
1 + cT1,∗DxΣ−1Y (Y −X(F )B(F ))

)2
.

In this integrative model, the uncertainty in predicting x(s∗, t∗) is seemlessly

incorporated into the estimation of bias-corrected temperature y∗. Compared to the

predictive density in (4.9)-(4.11) for the cases where WRF/UCM projection x(s∗, t∗)

is available, the primary difference here is the inflated variance in (4.22) (mainly the

second term of (4.22)). In Section 4.4, we study how the prediction results change,

depending on whether a WRF/UCM projection is available or not.
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4.4 Case Study

We use hourly temperature measurements collected at multiple locations in Austin,

Texas on August 28, 2011, August 8, 2013, and July 24, 2017, when heat wave events

occurred as illustrated in Figure 4.2. Due to missing data at some weather stations,

we have a different number of measurements available for each heat wave event:

temperature measurements from 12, 16, and 18 stations are available in 2011, 2013,

and 2017, respectively. The distance between adjacent weather stations ranges from

1.16 km to 61.86 km. We also obtain WRF/UCM temperature projections at those

sites. The WRF model ver. 3.9 [139] coupled with an UCM [140–142] was used

to simulate a heat wave event along with urban heat effects in the Austin, Texas

region. The initial and boundary conditions of the outer 36 km WRF domain were

taken from Global Forecast System data provided by the NOAA National Centers

for Environmental Information. For a detailed description of the WRF/UCM model

considered in this chapter, we refer the readers to the study in [126].

4.4.1 Implementation Results of Bias Correction Model

We implement our proposed bias-correction model developed in Section 4.2. In

our implementation, we employ the additive covariance structure. As the bias pat-

terns are different in the three heat wave events as shown in Figure 4.2, we apply

the proposed procedure to each event separately. For evaluating the bias correction

performance, we perform leave-one-out cross-validation. We divide the multiple sites

into training and testing sites. The training set (in-sample) includes the temperature

measurements at S−1 locations, whereas the testing set (out-of-sample) includes the

measurements for 24 hours at the remaining one location. With the training set, we

calibrate the bias. Then the resulting bias correction model is applied to post-correct
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the bias of WRF/UCM projection at the testing site. This procedure is repeated

S times so every site becomes the testing site. Due to the limited data (1 day of

data for each heat wave event) available to us, we can only apply our approach to

the spatial out-of-sample evaluation, but we intend to extend the procedure to make

temporal out-of-sample predictions when more data become available to us in the

future.

Figure 4.5 compares the measured temperature and the post-calibrated temper-

ature from the proposed bias correction model when each site is selected as a testing

site. Overall, the proposed approach successfully captures spatial and temporal vari-

ability in the bias, and we note that bias-corrected temperatures are close to actual

observations. The proposed approach reduces the average root mean square error

(RMSE) of the WRF/UCM projection by about 60% from 1.87 to 0.77. In the next

section, we provide additional details on these results.

One notable advantage of the proposed bias correction model is that it can quan-

tify different types of variability. The overall variability (i.e., the variance of the

data) of actual temperature at multiple sites can be explained by temporal, spatial,

and unstructured contributions. Table 4.1 shows that temporal variability explains

more than 90% of the total variability. This is due to the diurnal temperature pattern

over a day. While spatial variability appears to be less substantial, it still exceeds

the unstructured variability from the random noise in two cases. This implies that

accounting for spatial correlation can help improve estimation performance.
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(b) Estimated temperature (2011)
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(c) Measured temperature (2013)
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(d) Estimated temperature (2013)
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(e) Measured temperature (2017)
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(f) Estimated temperature (2017)

Figure 4.5: Comparison between measured temperature (left panel) and bias-
corrected temperature estimate (right panel) by the proposed approach
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Table 4.1: The average ratio (expressed in percent) of the spatial, temporal, and un-
structured variabilities (the values parentheses are standard deviations at the testing
sites)

Type of variability Formula 8/28/2011 8/8/2013 7/25/2017

Spatial
τ20+[x(s,t)]2τ21
V ar(y(s,t))

4.69 (1.58) 1.87 (0.73) 3.07 (1.12)

Temporal

δ20
1−ρ20

+[x(s,t)]2
δ21

1−ρ21
V ar(y(s,t))

89.21 (3.90) 96.68 (0.92) 95.75 (1.15)

Unstructured σ2

V ar(y(s,t))
6.08 (3.00) 1.45 (0.43) 1.18 (0.19)

We further study the role of spatio-temporal random effects in the intercept and

slope parameters of our model. Table 4.2 shows the average ratio of variability in β
(R)
0

and β
(R)
1 , and the random noise. In the heat wave event cases of 2011 and 2017, most

of the variability is explained by the random effect in the intercept coefficient β
(R)
0 ,

whereas the random effect in the slope coefficient β
(R)
1 captures a greater portion of

the variability in 2013. This result demonstrates that including random effects in

both the intercept and slope coefficients provides greater flexibility in the model. In

all cases, the two random effects explain greater than 90% of the variability in total,

greatly exceeding the unstructured variability resulting from the random noise.

Table 4.2: The average ratio (expressed in percent) of the variability in random

effects β
(R)
0 and β

(R)
1 and unstructured variability (the values in parentheses are the

standard deviations at the testing sites)

Variability type Formula 8/28/2011 8/8/2013 7/25/2017

β
(R)
0

τ20+
δ20

1−ρ20
V ar(y(s,t))

63.61 (35.56) 44.65 (20.68) 96.84 (1.63)

β
(R)
1

[x(s,t)]2
(
τ21+

δ20
1−ρ20

)
V ar(y(s,t))

30.30 (36.77) 53.90 (20.56) 1.98 (1.57)

Unstructured σ2

V ar(y(s,t))
6.09 (3.00) 1.45 (0.43) 1.18 (0.19)
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4.4.2 Comparison with Alternative Approaches

We compare the bias correction performance of the proposed approach with

WRF/UCM projection and two alternative approaches, namely, linear MOS and

the delta change approach. First, the linear MOS assumes a linear relationship be-

tween the measured temperature y(s, t) and its prediction x(s, t) from WRF/UCM,

modeled as in (4.1). As it assumes a stationary relationship, it does not account for

spatially and temporally heterogeneous bias patterns.

The second alternative approach is the delta change approach [133]. It simply

adds an average bias to the real observation at each time point. Specifically, let

B̄(s, t) denote the average bias computed from all sites except site s at each time

point t. Then, this delta change approach merely adds B̄(s, t) to the temperature

prediction from WRF/UCM at site s, i.e.,

(4.24) ŷ(s, t) = x(s, t) + B̄(s, t),

where

(4.25) B̄(s, t) =
1

S − 1

∑
s′∈Sc

[y(s′, t)− x(s′, t)],

where Sc is the set of sites not including the target site s. While the delta method

appears to provide only a point estimation at first glance, we note that it is equivalent

to the following linear regression model that does not include a slope parameter.

y(s, t) = α0(t) + x(s, t) + ε(s, t),

for s ∈ Sc at each time t. Then the least squares estimate of the intercept α0(t)

becomes equivalent to B̄(s, t) in (4.25), and the temperature at the target site s at

each time point t can be obtained using (4.24).
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Because the delta change approach does not correct the slope parameter, it is less

flexible than the linear MOS in some sense. However, it adjusts the bias at each hour

to account for the temporally varying bias pattern. Still, the temporal correlation

of bias is not taken into consideration in the delta change approach, because it com-

putes the temporal bias separately in each hour. Thus, this approach addresses the

temporal variation only partially. Moreover, it does not address spatial correlation.

On the contrary, our approch provides a collabrative learning framework [143] to

identify WRF/UCM bias. Table 4.3 shows whether or not each method accounts for

spatially and temporally varying bias patterns.

Table 4.3: Comparison of alternative methods (X: not addressed, 4: partially ad-
dressed, ©: fully addressed)

Spatial Temporal
bias pattern bias pattern

Linear MOS X X
Delta change approach X 4
Proposed approach © ©

We measure the bias correction performance in terms of both point and proba-

bilistic estimation capability using several metrics. First, for the point estimation

performance, we use RMSE, defined as

RMSE =

√∑T
t=1{y(s, t)− ŷ(s, t)}2

T
,

for s = 1, · · · , S, where ŷ(s, t) denotes the estimated temperature at testing site

s at hour t. For evaluating the probabilistic performance, the continuous ranked

probability score (CRPS) is employed [61], defined as

CRPS =
1

T

T∑
t=1

σ̂(s, t)
[y(s, t)− ŷ(s, t)

σ̂(s, t)

{
2Φ
(y(s, t)− ŷ(s, t)

σ̂(s, t)

)
+ 1
}

+2φ
(y(s, t)− ŷ(s, t)

σ̂(s, t)

)
− 1√

π

]
,
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where φ and Φ, respectively, denote the standard Gaussian probability density func-

tion and cumulative density function, and σ̂(s, t) is the estimated standard deviation

of the temperature at station s and time t. A smaller value of CRPS indicates

better performance. In addition, other probabilistic performance metrics, including

the width of the prediction interval (PI) and PI coverage rate are also examined for

assessing probabilistic bias correction performance.

First, Table 4.4 summarizes the average RMSE from the spatial leave-one-out

evaluation, where each site is considered as a testing site. Our proposed approach

provides noteworthy improvement over the original WRF/UCM and alternatives.

The RMSE values for our proposed approach are substantially lower than those

of the original WRF/UCM in all three heat wave events. The proposed approach

also results in the lowest RMSE value compared to other alternatives. Next, we

evaluate the probabilistic performance. Table 4.5 presents average CRPS values at

the testing sites. Note that the WRF/UCM provides deterministic projections, so

its CRPS cannot be computed. The proposed bias correction model consistently

performs better than the alternative approaches in all cases, demonstrating strong

probabilistic prediction capability.

Table 4.4: Average RMSE over the testing sites from spatial out-of-sample testing
(the values in parentheses are the standard deviation values of the RMSE at the
testing sites, unit: celsius)

8/28/2011 8/8/2013 7/25/2017 Average

WRF/UCM 2.12 (0.47) 1.81 (0.55) 1.69 (0.55) 1.87 (0.52)
Linear MOS 1.51 (0.21) 1.63 (0.43) 1.59 (0.51) 1.58 (0.38)
Delta change approach 0.98 (0.21) 0.90 (0.52) 1.34 (0.66) 1.09 (0.55)
Bias correction model 0.90 (0.13) 0.64 (0.33) 0.80 (0.35) 0.77 (0.33)
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Table 4.5: Average CRPS over the testing sites from spatial out-of-sample testing
(the values in parentheses are the standard deviation values of CRPS at the testing
sites)

8/28/2011 8/8/2013 7/25/2017 Average

WRF/UCM - - - -
Linear MOS 0.87 (0.18) 0.93 (0.25) 0.93 (0.32) 0.91 (0.25)
Delta change approach 0.59 (0.12) 0.57 (0.27) 0.81 (0.35) 0.66 (0.25)
Bias correction model 0.52 (0.09) 0.39 (0.22) 0.49 (0.20) 0.46 (0.21)

Tables 4.6 summarizes average PI widths that are indicators of prediction sharp-

ness. The proposed model provides the narrowest PIs in all cases. In comparison

with the PIs from the linear MOS and the delta change approaches, the proposed

bias correction model results in 50% and 35% reductions, respectively, in PI widths

on average. This result is an indication of greatly reduced uncertainty in the bias-

corrected prediction.

Table 4.6: Average width of 95% PIs over the testing sites from spatial out-of-sample
testing (the values in parentheses are the standard deviations at the testing sites,
unit: celsius)

8/28/2011 8/8/2013 7/25/2017 Average

WRF/UCM - - - -
Linear MOS 5.94 (0.08) 6.52 (0.02) 6.41 (0.02) 6.29 (0.04)
Delta change approach 4.35 (0.75) 4.13 (1.57) 5.79 (2.53) 4.83 (2.01)
Bias correction model 3.49 (0.21) 2.73 (0.26) 3.29 (0.61) 3.15 (0.36)

Table 4.7 further shows the coverage rate with the 95% PI. An ideal coverage rate

is 95%, implying that 95% of the actual measurements are located within their 95%

PIs. Our coverage rates are slightly lower than the delta change approach: however,

they are close to the desired rate of 95%. It should be also noted that, while the delta

change approach achieves the highest coverage rate on average, it does so with much

greater PIs; its average PI width (4.83) is much wider than the proposed approach’s
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(3.15) (see Table 4.6).

Table 4.7: Average 95% PI coverage rate (%) over the testing sites from spatial
out-of-sample testing (the values in parentheses are the standard deviations at the
testing sites)

8/28/2011 8/8/2013 7/25/2017 Average

WRF/UCM - - - -
Linear MOS 98.21 (2.69) 80.73 (6.78) 89.58 (17.11) 89.51 (8.86)
Delta change approach 96.15 (6.24) 94.79 (10.15) 94.44 (17.68) 95.04 (12.64)
Bias correction model 95.14 (5.57) 92.97 (16.30) 92.59 (13.30) 93.39 (11.72)

To elaborate further on the issue of PI width, Figure 4.6 compares actual and

bias-corrected temperatures and their prediction intervals at the site ASPLS in 2013,

when ASPLS is a testing site. The black circle denotes the measured temperature and

the blue curve represents the WRF/UCM temperature projections. The red solid and

dashed curves are the bias-corrected temperature estimates from each method and

their corresponding 95% PIs. Figure 4.6a shows that the linear MOS vertically shifts

the WRF/UCM output by the same amount, failing to capture large biases between

11:00 and 16:00. This is because it does not take the temporally heterogeneous

bias pattern into consideration. Figure 4.6b shows that the delta change approach

provides a better point correction performance, compared to the linear MOS, because

it calibrates the WRF/UCM projection in each time point. However, there is still a

discrepancy between the real and bias-corrected estimate between 9:00 to noon. We

believe that this is because the delta method does not account for spatial variation

but adjusts the WRF/UCM output by the same amount over multiple locations at

each time.

In contrast, the proposed approach provides better calibration performance as is

evident in Figure 4.6c. Its point estimates align well with actual measurements. We

also observe that the PI from the proposed approach is narrower, exhibiting sharper
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estimation, than those from the alternative approaches. Despite its narrow interval,

our approach includes most measurements within the 95% PIs. We will explain

Figure 4.6d in the next section.

4.4.3 Implementation Results with the Integrative Bias Correction Model

This section evaluates the estimation performance of the integrative bias cor-

rection model discussed in Section 4.3 to predict temperature when WRF/UCM

projections at testing sites are absent. The alternative linear MOS and delta change

approaches discussed in Section 4.4.2 cannot correct the bias for those sites, which

attests to another advantage of the proposed approach. To measure the predictive

performance of the integrative model, we use the bias correction model in Section 4.2

as a baseline model. Recall that the original bias correction model provides the pre-

dictive density of y∗|x∗, given the WRF/UCM projection x∗ = x(s∗, t∗), whereas the

integrative model generates the predictive density of y∗ without knowing x∗.

Table 4.8 compares the average RMSE, CRPS, 95% PI width, and the PI cover-

age rate in the leave-one-out testing. The integrative model provides slightly higher

RMSE and CRPS values, indicating that both point and probabilistic prediction

performance gets slightly worse. This is understandable primarily due to the addi-

tional estimation of x∗ needed with the integrative model. However, the difference is

not significant. Interestingly, even with the absence of the WRF/UCM projection,

our integrative approach provides much better prediction results than alternative

approaches with WRF/UCM projections (see Tables 4.4∼4.7).

As expected, the integrative model results in a larger variance in the predictive

density, leading to wider PIs than the original bias correction model, because of

the inflated uncertainty indicated in (4.22). On the other hand, the wider PIs of
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(d) Integrative bias correction model

Figure 4.6: Comparison of measured and bias-corrected temperatures and their
prediction intervals at the testing site ASPLS in 2013 from spatial out-of-sample
estimation
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the integrative model slightly improve the coverage rates, although the difference is

minimal. Figure 4.6d shows the bias-corrected temperature and its 95% PI when the

site ASPLS is used as a testing site. Results are similar to that from the baseline bias

correction model in Figure 4.6c, consistent with our summary in Table 4.8. Overall,

while the added uncertainty increases prediction error with the integrative model, its

performance is comparable to the original bias correction model and is substantially

better than alternative approaches.

Finally, Figure 4.7 depicts heat maps showing bias-corrected temperatures for

the three heat wave events in the Austin, Texas region. We can clearly see spatially

heterogeneous temperature patterns in each case. Ambient temperatures in the re-

gion are seen to vary by 1◦C ∼ 2◦C, which can be explained by the urban heat

island effect. Interestingly, the spatial variation pattern for each heat wave event

is different. We believe that this is because the regional characteristics (e.g., pop-

ulation, building density) have rapidly changed over the years in this study region.

The population in the city of Austin grew by 30% over the 2010-2019 period with

rapid urbanization [144], intensifying the urban heat island effects when the heat

wave event occurred. This explains the higher temperatures in the central part of

Figures 4.7e and 4.7f.

4.5 Summary

Although NWP models can provide useful climate information, they inevitably

exhibit systematic bias patterns because of incomplete characterization of local or re-

gional variations. This chapter presents a new probabilistic bias correction approach

that takes into consideration the spatially and temporally heterogeneous bias. We

formulate the bias correction model with random effect coefficients that vary over
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Figure 4.7: Heatmaps for the bias-corrected temperatures as predicted by the inte-
grative bias correction model at 12:00 and 17:00 for three heat wave events in the
Austin, Texas region (the darker color is, the higher temperature is; each curve shows
the contour plot of the same temperature.)
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space and time. A case study using actual temperature data and associated tem-

perature predictions from WRF/UCM demonstrates that the proposed framework

can successfully yield reliable solutions for limiting the systematic bias presented in

WRF/UCM, while substantially reducing the average RMSE by about 60% from

1.87◦C to 0.77◦C. Our approach also provides accurate and reliable probabilistic

bias correction performance, outperforming the alternative linear MOS and delta

change approaches in most performance criteria evaluated in this chapter, including

consideration of CRPS, PI width, and coverage rates.

In the future, we plan to evaluate temporal prediction performance (e.g., day-

ahead bias correction performance) with larger datasets. In this chapter, due to

the limited WRF/UCM data available to us, we were not able to validate the bias

correction performance on multiple consecutive days. We intend to extend our ap-

proach for providing day(s)-ahead bias-corrected prediction by adaptively learning

daily bias patterns. We will also incorporate other factors, such as seasonal effects

and socio-economic factors, in the bias correction model in our future work. Lastly,

the extension of this work for electricity usage prediction and decision-making in

power system operations remains a subject for future study.
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CHAPTER V

Conclusion and Future Research Directions

This dissertation study develops statistical methods dealing with multiple data

sources in energy and environmental systems, when field environmental data and

physics-based model projections are available and/or when data is collected at mul-

tiple dispersed locations. We summarize the major accomplishments of this disser-

tation as follows.

• In Chapter II, we propose a probabilistic approach that can quantify the daily

and spatially varying diurnal patterns of the wind speed collected from multiple

weather stations. The varying coefficient model enables the proposed approach

to provide the capability to evaluate the wind variability at non-observational

locations, which provides useful insights for selecting wind farm locations.

• In Chapter III, the integrated model for the long-term density prediction of the

daily peak demand is proposed by incorporating the uncertainties associated

with the climate, population growth, and socio-economic changes. The long-

term temperature prediction is obtained by GCM temperature projections,

one of the physics-based models. The proposed integrated model deals with

the bias in GCM projections and provides the predictive density of the daily

peak demand for the long-term future.

106
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• Chapter IV addresses the systematic bias from the physics-based model output

due to incomplete characterization of local or regional variations. We present

a new probabilistic bias correction approach that takes account of the spa-

tially and temporally heterogeneous bias from WRF/UCM in an integrative

framework. The model can be extended to the case when the WRF/UCM pro-

jections at testing locations are absent, which can reduce additional effort and

time to re-run the WRF/UCM to obtain the WRF/UCM projections at those

locations.

The approaches developed in this dissertation could be further extended in mul-

tiple directions, as outlined below.

• We plan to incorporate different levels of prediction time horizons to further

improve prediction accuracy. For example, in the wind power system, the

physics-based NWP model generates multiple-periods ahead wind forecasting,

e.g., 1 hour ahead to 12 hour ahead. In such cases, we can calibrate the bias

from the physics-based model sequentially whenever new projections become

available. We will investigate online, adaptive learning approaches [145] to

further reduce the NWP model bias.

• When data size becomes large, one can face the curse of dimensionality. Re-

cent developments in Bayesian analysis, such as sparse GP approximations [146,

147], will help alleviate the computational burden. We will also explore stochas-

tic optimization approaches that use a subset of data. Variance reduction

techniques can be useful when identifying effective samples in stochastic opti-

mization [148–150].

• In this study, stationary spatial and temporal correlation structures are as-
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sumed. That is, the correlation intensity is decided based on temporal dif-

ference and distance among sites. This might not hold for some applications.

For example, in wind power systems, some sites with similar terrains may ex-

hibit analogous power generation patterns, even though they are not located

nearby. In the future, we will explore nonstationary correlation patterns to pro-

vide more flexibility and improve the applicability of the proposed modeling

framework.
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