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ABSTRACT

Human language has the unique characteristic where we can create infinite and

novel phrases or sentences; this stems from the ability of composition, which allows

us to combine smaller units into bigger meaningful units. Composition involves us

following syntactic rules stored in memory and building well-formed structures incre-

mentally. Research has shown that neural circuits can be associated with cognitive

faculties such as memory and language and there is evidence indicating where and

when the neural indices of the processing of composition are. However, it is not yet

clear “how” neural circuits actually implement compositional processes. This disser-

tation aims to probe “how” composition of meaning is represented by neural circuits

by investigating the role of low-frequency neural activity in carrying out composition.

Neuroelectric signals were recorded with Electroencephalography (EEG) to examine

the functional interpretation of low-frequency neural activity in the so-called delta

band of 0.5 to 3 Hz. Activities in this band have been associated with the processing

of syntactic structures (Ding et al. 2016). First, whether these activities are indeed

associated with hierarchy remains under debate. This dissertation uses a novel con-

dition in which the same words are presented, but their order is changed to remove

the syntactic structure. Only entrainment with syllables was found in this “reversed”

condition, supporting the hypothesis that neural activities in the delta band entrain

to abstract syntactic structures. Second, we test the timing for language users to

ix



combine words and comprehend sentences. How comprehension correlates with this

low-frequency neural activity and whether it represents endogenous neural response

or evoked response remains unclear. This dissertation manipulates the length of

syllables and regularity between syllables to test the hypotheses. The results sup-

port the view that this neural activity reflects endogenous response and suggest that

it reflects top-down processing. Third, what semantic information modulates this

low-frequency neural activity is unknown. This dissertation examines several se-

mantic variables typically associated with different aspects of semantic processing.

The stimuli are created by varying the statistical association between words, world

knowledge, and the conceptual results of semantic composition. The current re-

sults suggest that low-frequency neural activity is not driven by semantic processing.

Based on the above findings, we propose that neural activities in the delta band re-

flect top-down predictive processing that involves syntactic information directly but

not semantic information.
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CHAPTER I

Introduction

When listening to speech input, language users need to decompose connected

speech into sounds and then combine sounds into syllables, syllables into words,

words into phrases, and phrases into sentences. This dissertation aims to probe how

human brains manage these concurrent processes by investigating low-frequency neu-

ral oscillations. This chapter begins by introducing the neural mechanisms regarding

sentence processing to be examined and provides an overview of the major research

questions in the dissertation.

1.1 Motivation

Language is a complex system that involves multiple processes interacted (Ha-

goort, 2019). When listening to an utterance, a parser needs to make pragmatic

inference and integrate linguistic and non-linguistic information to achieve intended

interpretation of the utterance. As Hagoort (2019) points out, language is not merely

a single-word processing but involves multiple networks interacted. This multiple

network model is contrary to the classical models of language processing, which

strictly specify that the Broca’s area in the left inferior frontal cortex relates to lan-

guage production while the Wernicke’s area in the temporal cortex correlates with

language comprehension. In the multiple network model, specifically, language is de-
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composed and encoded as linguistic units such as the acquired linguistic knowledge

(e.g. the meaning of the lexicon and the syntactic rules) and linguistic operations

(e.g. the ability of generating larger or new sentences and the ability of memory

retrieval). These processes are supported by the left inferior frontal gyrus (LIFG)

and other sub-regions in the temporal cortex. Next, in order to know whether the

utterance includes new information and integrate the current utterance into con-

nected utterances, the involvement of attentional control systems is also required.

The evidence of the above processes is observed in the right inferior frontal gyrus

and the right angular gyrus (Menenti et al., 2009). Finally, the parser needs to in-

tegrate linguistic and non-linguistic information in order to get the core meaning of

the utterance.

From the above, language processing involves complex and hybrid processes.

Brain areas involved in language processing are indeed more extended to both hemi-

spheres but biased with left. However, how computation for each process imple-

mented in the brain still needs further investigation. This dissertation aims to

focus on the compositional processes during sentence comprehension. The opera-

tions of syntactic rules and the retrieval of semantic knowledge are required when

language users combine words into phrases/sentences. How human brains manage

these compositional linguistic processes concurrently and achieve successful sentence

comprehension remain unclear. Previous studies have provided fruitful evidence for

“when” and “where” these processes occur (see review in Pylkkänen and Brennan,

2019; Lau, 2018). Many studies examine this compositional process by comparing

well-formed sentences and random word lists. For example, Bemis and Pylkkänen

(2011) examined the processing of two-word simple phrases by comparing the neural

activities between the phrase (e.g. red boat), the non-phrase (e.g. xkq boat) and

2



the word list (e.g. cup boat) during an MEG recording. Their results have shown

that an increased activity was found in the second word at roughly 250 ms in the

anterior temporal lobe (ATL) and at about 400 ms in the ventromedial prefrontal

cortex (vmPFC) for the phrase condition. In line with other relevant studies (e.g.

Bemis and Pylkkänen, 2013a; Bemis and Pylkkänen, 2013b), these results suggest

that the ATL may be a key region involved in linguistic combinatorics. In addition,

several recent fMRI studies have shown greater activation for sentences vs. word

lists in brain regions such as inferior frontal gyrus (Pallier et al., 2011; Schell et al.,

2017; Zaccarella et al., 2017), posterior superior temporal sulcus (Zaccarella et al.,

2017), anterior temporal lobe (Humphries et al., 2006; Matchin et al., 2017), angular

gyrus (Humphries et al., 2006; Matchin et al., 2017), and temporal parietal junction

(Matchin et al., 2017).

The above studies have shown the possible timing and location for compositional

processes. As mentioned before, compositional processes involve operations of syn-

tactic rules and semantic knowledge. Previous studies have also investigated to

what extent syntactic and semantic knowledge involve in the modulation of neu-

ral responses. Ample studies address this issue by adopting jabborwocky sentences,

which preserve grammatical elements but replace content words with pseudowords.

For example, Humphries et al. (2006) compared normal sentences with jabborwocky

sentences (e.g. the solims on a sonting grilloted a yome and a sovir) using fMRI

scanning. Greater blood-oxygen-level-dependent (BOLD) signals were observed in

the left inferior frontal gyrus, left angular gyrus, and left superior temporal gyrus for

the normal sentence, compared to the jabborwocky sentences, suggesting that these

regions involve word-level semantic access. They also found a greater activation in

the left temporal lobe and the left angular gyrus for the normal sentences, compared

3



to the semantic incongruent sentences, suggesting that an combinatorial semantic

effect involves in these regions. As Pylkkänen and Brennan (2019) point out, jab-

borwocky sentences are marked as “minus semantics” but still have rich argument

structure and grammatical relationships. However, it is still unclear how participants

comprehend jabborwocky sentences. In addition, several studies demonstrated var-

ious results: some studies found a greater activation in the LATL for jabborwocky

sentences (Friederici et al., 2000; Humphries et al., 2006) while other studies found

a greater activation in the LATL only for the normal sentences (Pallier et al., 2011;

Matchin et al., 2017). Another approach is to use artificial grammar to examine

pure syntactic processing, which requires participants to learn new syntactic rules

and semantics for a new language. Several studies have shown that the left infe-

rior frontal region (BA 44 and 45) involve in the processing of artificial grammar

(Friederici et al., 2006; Petersson et al., 2012). For example, Petersson et al. (2012)

have shown that a greater BOLD activation in BA 44 and 45 when participants read

the sentences with syntactic violation in an artificial grammar paradigm, relative

to the well-formed sentences. These results suggest that the hierarchical processing

may involve in BA 44 and 45. However, as Pylkkänen and Brennan (2019) point out,

activation for structure building is not robustly observed in these regions, contrary

to the hypothesis that these regions involve structure building.

The above studies have shown promising findings for examining the timing and

location of compositional processing from a formal experimental design. One critical

issue is that how to generalize the above findings in the lab to a more naturalistic set-

ting. Recent studies have built computational models to explicitly account for how

these compositional processes occur in a naturalistic stimuli. For example, different

from the previous formal approach, Brennan et al. (2012) had participants listen to
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a chapter from Alice’s Adventures in Wonderland. They used linear regression to

estimate the relationship between the BOLD signals and the number of phrase com-

pletion. Their results reveal that a positive correlation between the BOLD signals

and the number of word-by-word phrase completion in the LATL, but not the LIFG.

Moreover, Brennan and Pylkkänen (2016) also show that a correlation between the

number of parsing steps from a left-corner parsing strategy and the MEG activity

was found at around 350-500 ms post word onset in the LATL when participants lis-

tened to the story. Align with the results from the formal experimental design, these

computational models provide evidence from a naturalistic setting that the LATL

involves the processing of composition. However, as Pylkkänen and Brennan (2019)

mention, although computational models can explicitly quantify the fit between neu-

ral signals and predictors from the speech stimuli, these computational models indeed

require several assumptions such as what measures of predictors adopted may affect

model results. How to set parameters in computational models still requires more

future research.

Neural basis of composition may be affected by how parsers retrieve lexicon and

build structure incrementally. From the above studies, we see consistent results that

the LATL involves in compositional processing. However, the LIFG is not robustly

sensitive to this processing. Divergent results were also observed in control experi-

ments with jabborwocky sentences included. It remains unclear how to disentangle

syntactic and semantic processing to account for the neural activation in composi-

tional processing. Moreover, results from computational models may be affected by

the assumptions of parameters. It still requires more fine-grained research for how

to use computational models to quantify the relationship between neural signals and

predictors we are interested in composition. The dissertation aims to provide neural
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evidence from the frequency-domain. Similar to the basic two-word composition,

the dissertation uses four-syllable sentences and manipulates syntactic structure and

semantics in the stimuli to tease apart whether syntactic or semantic information

plays a role in modulating low-frequency neural responses, as detailed later.

From the above, we see some evidence for when and where the compositional

processes occur. However, it is still unclear “how” these compositional processes are

reflected on neural responses when we parse a continuous speech and segment it into

meaningful units. Some studies have proposed formal models to account for how

the computation of hierarchical and compositional processes integrate and modulate

neural activities. Specifically, Martin (2020) takes linguistic representations as N-

dimensional manifolds of neural trajectories. That is, multiple cell assemblies activate

over time and reflect different spatiotemporal patterns of neural signals from acoustic

realization to abstract high-level information during language comprehension. The

system coordinates the hierarchical information by neural gain modulation and then

neural representations are able to transform from one to another dimension. When a

parser listens to a speech input, the speech input would be transformed into acoustic

realization and then reduced to neural coding space by using high-level linguistic

knowledge. Gain modulation is used to combine the processes in between. For

example, when a speech envelope is recognized as a syllable or phoneme successfully,

the gain modulation would inhibit the process of edge detection of speech envelope

and then move forward to next process - lexical and morphological operations. These

processes are realized by neural oscillations. As Martin (2020) points out, neural

oscillations can offer insights from either latency in the time-domain and power and

phase in the frequency-domain. As the compositional processes involve multiple

concurrent processes, examining from neural oscillations serves as a critical step to
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see how these processes modulate neural responses across different timescales. It is

clear that our brains indeed use information from different timescales. However, as

Martin (2020) mentions, it remains unclear whether neural oscillations truly reflect

these computations and whether these oscillatory activities are endogenous neural

responses. Additionally, the functional interpretation of each frequency band remains

to be further investigated. The dissertation will offer neural evidence as the first

steps towards connecting these issues. The first steps involve connecting rhythmic

patterns of neural activity with specific aspects of sentence comprehension (syntax

and semantics) and also with whether the rhythmic activity is endogenous or evoked

response. By narrowing down the properties of that rhythmic activity, the way is

paved for explicit accounts of how neural oscillations might carry out such functions.

Moreover, there are some critiques for the traditional ERP studies and examining

from different approaches may be necessary for mapping the processing of linguis-

tic representations and neural activity. As Poeppel and Embick (2005) articulate,

studies examining ERP components associates these components with broad lin-

guistic domains. For example, the N400 is associated with “semantic processing”

and the P600 is usually associated with “syntactic processing”. However, the N400

cannot represent semantics, given that semantic processing indeed involves several

sub-processes with other linguistic levels such as phonological and hierarchical pro-

cessing and these sub-processes interact with each other. On the other hand, the

core components of linguistic theories, such as the syntactic operation of Merge, can

not be directly mapped to neurons. As Benítez-Burraco and Murphy (2019) point

out, it may be feasible to decompose linguistic operations and map them to cross-

frequency patterns, which denotes the association across multiple frequency bands

of neural oscillations. This idea builds on a growing trend that holds that oscillat-

7



ing patterns of neuronal circuits to be a computational primitive (e.g. Buzsáki and

Draguhn, 2004). Consequently, examining from neural oscillations offer a good way

to see how linguistic processes reflect on brain signals concurrently when continuous

speech unfolds.

Previous studies have shown that neural responses can be entrained to a rhyth-

mic input (e.g. pure tones) or quasi-rhythmic input (e.g. speech). That is, neural

activities can become synchronized to the rhythmicity of external input. Regarding

speech, as illustrate in Figure 1.1, previous studies have reported a robust neural

entrainment (i.e., the blue line in Figure 1.1) to speech envelope (i.e., the red line)

in syllable processing (e.g. Luo and Poeppel, 2007; Giraud and Poeppel, 2012).

However, how neural signals entrain to the structures above syllables (i.e., the green

lines) is still vague since the connected speech does not have physical boundaries

to indicate hierarchical information. In addition, how high-level information such

as semantic and syntactic information reflects on neural entrainment and guide lan-

guage comprehension is still unknown. The goal of the dissertation aims to examine

how high-level information modulate low-frequency oscillations and determine the

functional significance of low-frequency oscillations.
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Figure 1.1: An illustration of neural entrainment to speech

1.2 Research questions

This dissertation aims to examine the functional significance of delta-band (0.5

- 4 Hz), which fits the usual timing of processes above the syllable-level across lan-

guages. Delta-band activities are low-frequency brainwaves with high amplitudes,

which are usually observed during the stage of deep sleep. In terms of language

processing, neural activities in the delta band have been associated with auditory

processing or the process of chunking continuous speech into meaningful units. Pre-

vious studies also show that neural activities in the delta band can track abstract

syntactic structure, yielding hierarchical oscillations in delta frequencies (Ding et al.,

2016; Ding et al., 2017). However, whether those neural responses are modulated

by syntactic information, and to what extent those neural activities are affected by

semantic information, are both unclear. Indeed, what information guides these neu-

ral indices of the phrasal/sentence processing? Moreover, it is not well understood

what cognitive operations are indexed by those low-frequency neural activities. The
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following sections describe the three research questions of this dissertation.

1.2.1 Hierarchical representation vs. Lexical representation

Speech signals are complex; their envelope and fine structure change quickly over

time (Arnal et al., 2016). Previous studies have shown that the size of units cor-

respond to certain neural frequencies. That is, bigger units are signaled at slower

frequencies. To be specific, word and syllable boundaries are signaled at slow-wave

frequencies (delta-theta) and can be perceived as discrete events while phonemes are

signaled and perceived as discrete events at faster frequencies (alpha-beta). Fur-

thermore, recent studies have associated neural activities in the delta band with the

processing of different levels of hierarchical syntactic structures. In particular, Ding

et al. (2016) shows that neural responses entrained to the speech at 4 Hz reflect

the processing of syllables, 2 Hz reflects the processing of phrases, and 1 Hz reflects

the processing of sentences when native speakers of Mandarin listened to continu-

ous speech presented at 4 Hz for each syllable without prosodic cues and indication

for phrasal/sentence boundaries. Crucially, English speakers without Mandarin lin-

guistic knowledge only show entrainments at the syllable rate (4 Hz), but not at

the phrase (2 Hz) and sentence rate (1 Hz). In addition, the result that the low-

frequency neural activities entrained with hierarchical structures was replicated suc-

cessfully in MEG experiments using English structures and was able to be reflected

cross-linguistically.

In line with Ding et al. (2016), growing studies have shown that neural activities

in the delta band reflect the processing of chunking continuous speech into syntactic

phrases (e.g. Bonhage et al., 2017; Meyer et al., 2016). For example, Meyer et al.

(2016) shows that the internal grouping of words in ambiguous sentences modulates

phase in delta-band frequency, regardless of prosodic cues. Consistent with the
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results in Ding et al. (2016), these studies have demonstrated that neural activities

in the delta band reflect the process of chunking continuous speech into meaningful

units. The use of isochronous speech is able to dissociate the effects of prosody and

syntactic processing in the neural activities of the delta band.

However, whether these delta frequencies can be reliably interpreted as the en-

trainment of abstract hierarchical information is still under debate. The lexical

representation approach, a model built by Frank and Yang (2018), provides different

ways of interpreting the results from Ding et al. (2016). The model they built en-

codes word similarities and part of speech for each word and represents stimuli from

Ding et al. (2016) as sequences of high-dimensional numerical vectors. No further

syntactic information was encoded in their model. The results from their model

prediction show similar power spectra to the results from Ding et al. (2016). Their

simulation results suggest that the findings in Ding et al. (2016) may follow from

the tracking of lexical or part-of-speech sequence information and are not necessar-

ily interpreted as the cortical entrainment for hierarchical structures. For example,

verbs occur at the frequency of 1 Hz while nouns occur at a rate of 2 Hz. The

simulation from their model posits a question about what lexical properties are in-

volved in modulating low-frequency neural oscillations. The first issue addressed in

the dissertation is whether delta entrainment reflects sequence-based regularities or

hierarchical structure.

1.2.2 Temporal dynamics of cortical tracking in delta oscillations

The second goal of this dissertation aims to investigate the dynamics of cortical

tracking in neural activities in the delta band. Different timescales carry different

amount of information. Previous studies have shown that the rate for understandable

speech is between 2-10 Hz (Kösem and van Wassenhove, 2017) and speech with too
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fast or slow rate might cause the impairment of comprehension (Ghitza, 2014; Ghitza

and Greenberg, 2009). Previous studies have developed several models to explain

how syllables are perceived in speech (Ghitza, 2011; Giraud and Poeppel, 2012). For

example, the template matching model called TEMPO (Ghitza, 2011; Ghitza and

Greenberg, 2009), proposes that the cortical oscillations reflect the segmentation

of speech occurs roughly at 150-300 ms, which falls in theta cycles. In TEMPO,

phonetic features are matched within a beta cycle (about 50 ms) while syllables are

matched in a theta cycle (about 200 ms). This is basically in line with the other

“asymmetric sampling in time”model (Poeppel, 2003; Giraud and Poeppel, 2012),

suggesting that the auditory system integrates multiple temporal windows with fast

and slow rates concurrently. The fine-grained acoustic features are processed in a

shorter time window (~30 ms) while the acoustic structures are processed in a longer

time window (~200 ms).

However, few studies have addressed the issue about when a parser integrates

high-level information such as syntactic and semantic information and thus delta

entrainments are elicited. Ghitza (2017) has shown that TEMPO model can be gen-

eralized to explain the association of the delta and the word/phrasal processing by

demonstrating behavioral results from two context-free digit recall tasks, as detailed

in Chapter III. There is still a lack of neural evidence for how temporal dynamics

interacting with high-level linguistic information is reflected in neural activities of

the delta band. Furthermore, how top-down high-level information interacts with

low-level acoustic information in the modulation of neural activities in the delta band

remains elusive. In addition, whether the entrainments found in the previous litera-

ture are merely the results of evoke responses to external stimulus or the reflection of

endogenous entrainments is still under debate (Zoefel et al., 2018). This dissertation
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manipulates speech rate and regularity between syllables to determine the temporal

boundary for integration of syntactic and semantic information.

1.2.3 Semantic compositionality

Whether neural activities in the delta band are sensitive to semantic information

is still unknown. Previous studies have demonstrated that semantic information

can modulate high-frequency oscillations (e.g. Bastiaansen et al., 2010; Lewis and

Bastiaansen, 2015; Lewis et al., 2016; Lewis et al., 2017). For example, Hald et al.

(2006) showed that gamma-band power (≈ 35 - 45 Hz) increased in the semantically-

coherent condition (e.g. The Dutch train is YELLOW and blue.), as compared to the

semantically-incoherent condition (e.g. The Dutch train is SOUR and blue.), sug-

gesting the role of gamma-band oscillations reflects the semantic unification of lexical

items into sentence. Few studies have linked delta oscillations to the processing of

semantics and the semantic information examined in those studies vary a lot. Ad-

ditionally, low-frequency neural activities can be contributed by slow event-related

responses such as the P300, N400, and P600 (Zhou et al., 2016). If low-frequency neu-

ral activities are contributed by slow event-related responses such as the N400, which

is sensitive to semantic processing, we should find an association of what triggers both

low-frequency neural activities and the N400, in terms of semantic processing. In ad-

dition, previous studies did not disassociate the potential factors that modulates the

N400 such as predictability or plausibility to see which aspects of semantic process-

ing can modulate neural activities in the delta band. Furthermore, based on Frank

and Yang’s model, the pattern of delta observations reported by Ding et al. (2016)

can reflect lexical information only. To some degree, semantic information plays a

role in modulating neural activities in the delta band. This dissertation manipulates

semantic and hierarchical content by varying predictability, plausibility, semantic

13



relatedness, and specificity to examine whether neural activities in the delta band

can be driven by these semantic variables.

1.3 Methodology

Three electroencephalogram (EEG) experiments were designed following the frequency-

tagging paradigm in Ding et al. (2016). That is, all syllables in the stimuli were pre-

sented in a fixed speech rate and then power and phase coherence can be examined

at the relevant frequencies of interest. All experiments are auditory experiments

and stimuli are isochronous speech recorded from a computer program to remove

prosodic cues. In addition, simulations from different computational models were

conducted to demonstrate the predictions from Frank and Yang (2018).

1.4 Dissertation outline

This dissertation aims to address the following issues: (1) whether the findings

from Ding et al. (2016) reflects the lexical sequence information or hierarchical in-

formation? (2) how temporal properties such as speech rate and rhythmicity are

reflected in low-frequency oscillations regarding sentence comprehension? (3) what

high-level information modulates low-frequency neural responses? Three EEG ex-

periments will be designed to address the above questions.

Chapter II aims to answer the above first issue by demonstrating the first EEG

experiment that tests the lexical representation hypothesis from Frank and Yang

(2018). Chapter III aims to provide empirical results by describing the second EEG

experiment which manipulates speech rate and rhythmicity. It provides an evidence

about whether low-frequency entrainments are evoked responses or endogenous oscil-

lations that are modulated by predictive processing. Chapter IV addresses the third

issue by describing the third EEG experiment which manipulated several seman-

14



tic variables to see what semantic information can modulate low-frequency neural

activities. Chapter V concludes the current findings and provides future directions.
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CHAPTER II

Lexical Representation Can’t Fully Capture the Functional
Role of Low-Frequency Neural Activity During Language

Comprehension

2.1 Introduction

Human language is compositional; we can create infinite and novel phrases or

sentences from a finite number of words. Importantly, this compositional ability

is highly structured; words must be combined according to syntactic rules to yield

well-formed and interpretable phrases and sentences. Previous studies have nar-

rowed down the location and timing of neural indexes for compositional processing

(see Pylkkänen and Brennan (2019) for review). For example, Bemis and Pylkkänen

(2011) examined how humans process two-word combinatorial phrases (e.g. red boat)

vs. non-combinatorial phrases (e.g. xkq boat) in Magnetoencephalography (MEG)

recording and found that an increased activity of combinatorial phrases was elicited

at 200-250 ms after the presentation of the second word at the left anterior tem-

poral lobe (LATL), compared to non-combinatorial phrases. Furthermore, Neufeld

et al. (2016) found a greater negativity in the similar time-window (184-256 ms) for

the combinatorial phrases compared to the non-word condition by using the same

experimental paradigm in electroencephalography (EEG) recording. In addition,

several recent fMRI studies have shown greater activation for sentences vs. word
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lists in brain regions such as inferior frontal gyrus (Pallier et al., 2011; Schell et al.,

2017; Zaccarella et al., 2017), posterior superior temporal sulcus (Zaccarella et al.,

2017), anterior temporal lobe (Humphries et al., 2006; Matchin et al., 2017), angular

gyrus (Humphries et al., 2006; Matchin et al., 2017), and temporal parietal junction

(Matchin et al., 2017), further supporting the role of these regions for compositional

processing.

Although many studies have provided neural evidence for when and where the neu-

ral indexes are for compositional processing, it is not yet clear “how” neural circuits

actually implement compositional processes. Examining language comprehension

from neural oscillations indeed provides a good way to see how these mechanisms

are implemented since oscillatory activities have the property of a repetitive or rhyth-

mic pattern that can be observed from a single neuron or a group of neurons in the

brain or central nervous system (Buzsáki and Draguhn, 2004). Neural oscillations

can be characterized by frequency, phase, and amplitude, and they may synchronize

with extraneous stimulation such as periodic acoustic or visual stimuli. The process

of synchronization is also called cortical entrainment. Neural oscillations have been

linked to many cognitive functions such as memory, attention, and language (e.g.

Jensen et al., 2007; Lakatos et al., 2008; Meyer, 2018).

For language specifically, different frequency bands have also been linked to differ-

ent stages of language comprehension and speech processing. As reviewed by Meyer

(2018), especially for language comprehension, delta-band oscillations (0.5-3 Hz)

have been associated with syntactic chunking, theta-band oscillations (4-8 Hz) have

been related to memory retrieval, alpha-band oscillations (9-13 Hz) can be linked

to the storage of syntactic categories, and higher-frequency bands such beta (14-30

Hz) and gamma (>30 Hz) appear to correlate with semantic prediction. However,
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previous studies focused more on the explanation of speech processing in examining

the relationship between oscillatory activity and low-level acoustics and phonology.

It remains unclear how high-level information (i.e., syntax and semantics) modulate

oscillatory activities. Detailed modulation for each frequency band during language

comprehension remains elusive and more fine-grained definitions for the functional

interpretation of each frequency band are necessary. As discussed in more detail be-

low, a recent study has shown that the low-frequency delta oscillations appear to be

entrained with abstract hierarchical structure (Ding et al., 2016; 2017). Martin and

Doumas (2017) further provides a computational model and supports the structural

explanation for the findings from Ding et al.. However, the lexical representation, a

model proposed by Frank and Yang (2018), suggests that the results from Ding et al.

are not necessarily entrained by hierarchical information, but can be explained by

lexical information or part-of-speech only. To get a clearer functional significance of

neural activity in the delta band, the current study tests the above two hypotheses by

having a novel experimental condition and simulating results from Frank and Yang’s

model with different word representations acquired from three language models.

2.1.1 Cortical tracking of abstract linguistic structure

Speech signals are complex; their acoustic envelope and fine structure change

quickly over time (Arnal et al., 2016). Previous studies have shown that the size of

units correspond to certain neural frequencies. That is, larger acoustic units show

entrainment with neural signals at slower frequencies. Namely, word and syllable

boundaries are signaled at slow-wave frequencies (delta-theta), which is linked with

the perception of these acoustic regularities as discrete events (Ghitza, 2011; Ghitza

and Greenberg, 2009). Phonemes are signaled and perceived as discrete events at

faster frequencies (gamma) (Giraud and Poeppel, 2012; Di Liberto et al., 2015).
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Ding and colleagues (2016) argue that such entrainment patterns extend to more

abstract properties of linguistic input as well. They used an isochronous speech

paradigm with sentence stimuli composed from four one-syllable words in Mandarin

Chinese. Each word lasted just 250 ms, so each sentence was exactly 1 second long.

With this design, syllables and words were repeated at 4 Hz, two-word phrases at

2 Hz, and sentences repeated at 1 Hz. When native speakers of Mandarin listened

to these stimuli during MEG recording, they observed spectral peaks from the neu-

romagnetic signals at 1, 2, and 4 Hz. The follow-up work by Ding and colleagues

(2017) confirmed such entrainment can also be observed using an EEG recording.

Ding et al. (2017) further shows that these peaks were observed in the so-called

evoked power (i.e., the power that is phase-synchronized with speech stimuli) and

also inter-trial phase coherence (i.e., whether the differences between phase angles

and speech stimuli across trials are consistent), but not induced power (i.e., the

power that is not not phase-aligned with speech stimuli). Crucially, English speak-

ers without Mandarin linguistic knowledge only show entrainment at the syllable

rate (4 Hz), but not at the phrase (2 Hz) and sentence rate (1 Hz). This result was

replicated cross-linguistically: English stimuli presented in the same paradigm to

English-speaking listeners also elicited entrainment patterns at sentence and phrasal

rates.

However, stimuli with structure elicit entrainment at phrase and sentence level

might be confounded by the following. First, previous studies have shown that delta

entrainment can be associated with prosody (Ghitza, 2013, Ghitza et al., 2012). Ding

et al. (2016) controlled this potential factor by using isochronous speech recorded by

a computer program to avoid prosodic cues. However, it is still impossible to rule

out the possibility that the parser would generate internal prosody when parsing
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the isochronous speech (Breen, 2014). Second, the transitional probability between

words might play a role when a sentence is being unfolded and the upcoming elements

become more predictable. Ding et al. (2016) also addressed this factor by having

the stimuli which have either equal or non-equal transitional probabilities between

words. Both equal and non-equal conditions show neural entrainment with abstract

hierarchical structures at its corresponding frequencies. Third, it is possible that the

delta entrainment at the phrase and sentence level correlates to the regularity of part-

of-speech. Stimuli in Ding et al. (2016) show the regular repetition. For example,

nouns occur at 2 Hz while verbs occur at 1 Hz. The consequence of entrainment might

reflect solely the part-of-speech repetition (Frank and Yang, 2018). The current study

focuses on whether the delta entrainment at the phrase and sentence level reflects

merely part-of-speech repetition.

As mentioned above, whether these peaks were indeed modulated by structural

information remains under debate. Two computational approaches were proposed

to interpret the functional significance of these peaks. The first is the structural

account, proposed by Martin and Doumas (2017). Their model adopts a time-based

binding mechanism which allows for representations to be bound by using asynchrony

of firing units and thus having different levels of representations without losing the

information for each representation. In the model, time is used to carry out informa-

tion and the model assumes independent values for variables. The independent value

for variables would allow a particular value for a variable represented in a specific

timing. In addition, this independence can allow the association between variables

computed based on statistics without changing any core representation. The model

has different layers representing different levels of a hierarchical structure. Take an

adjective phrase “dry fur” for example. The model encodes semantic features for
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each word at the lowest layer, word information such as [dry adj] and [fur noun] is

encoded in the second layer and they fire at an asynchrony. Then the layer above

encodes phrase information and will be activated after [dry adj] and [fur noun] fire.

They conducted a simulation by using the English stimuli from Ding et al. (2016).

The simulation results show that the grammatical condition (e.g. dry fur rub skin)

elicits spectral peaks at 1 Hz, 2 Hz, and 4 Hz, consistent with the experimental

results from (Ding et al., 2016). They further show that the word list condition (i.e.

no syntactic relationship between words) shows the 4-Hz peak only. Similar to the

grammatical condition, the jabberwocky condition, which preserved syntactic rela-

tionship between words without plausible semantic composition, shows the power

increases at 1 Hz, 2 Hz, and 4 Hz, suggesting that the hierarchical structures were

activated.

In addition, Martin and Doumas tested a three-layer recurrent neural network

(RNN), which does not encode time-based binding representations between words.

The RNN model was trained to predict the next word in a sentence and presented

one word at a time for every sentence in each condition. The simulation from the

RNN model shows that the power increases at 4 Hz in all conditions and the phrase

condition shows the increased power at 2 Hz. However, the grammatical and jabber-

wocky conditions failed to show the increased power at 1 Hz and 2 Hz, although the

RNN model was able to predict the next word accurately. These results suggest that

delta entrainment encodes hierarchical information, rather than reflects statistical

sequence-based prediction only.

Consistent with the model results from Martin and Doumas (2017), Kaufeld et al.

(2020) further support the view that neural activities in the delta band reflect the

combinatorial processes and high-level linguistic content (i.e. meaning and syntax)
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beyond prosody by using naturalistic stimuli during an EEG recording. Their results

reveal that the mutual information between neural signals and speech stimuli is higher

in the sentence condition, compared to the jabberwocky and word list conditions.

The second approach to address the functional role of low-frequency activities is

the lexical representation, proposed by Frank and Yang (2018). Instead of reflecting

hierarchical structure, they suggest, such entrainment could arise from regularities

at the lexical level that arise from the pattern of words repeated across the stimuli.

They test this hypothesis using a series of simulations with a model that encodes

words as vectors in a high-dimensional semantic space (a “word embedding”). Thus,

the stimuli from Ding et al. (2016) are cast as sequences of high-dimensional nu-

merical vectors (Mikolov et al., 2013). Such vectors capture semantic information

(e.g. words with similar meanings will have more similar vectors) and also linguistic

regularities like grammatical category of each word, such that two nouns tend to

have more similar vectors than a noun and a verb. No further syntactic information

was encoded in their model. The simulation results from their model show similar

power spectra to the results from Ding et al. (2016), suggesting that those neural en-

trainment patterns may follow from the tracking of lexical or grammatical category

sequence information and are not necessarily interpreted as the cortical entrainment

for hierarchical structures. That is, verbs occur at the frequency of 1 Hz while nouns

occur at a rate of 2 Hz and neural activities in the delta band could be modulated

by these regularities. The simulation for both English and Chinese grammatical

sentences elicits increased power at 1 Hz, 2 Hz, and 4 Hz. The Chinese VP elicits

increased power at 2 Hz and 4 Hz, but not 1 Hz. The shuffled Chinese syllables show

increased power at 4 Hz only.

The above two accounts provide different interpretations of the functional signifi-
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cance for the entrainment of delta frequencies. A summary for these two accounts is

given in Table 2.1. The model from Martin and Doumas (2017) shows how hierarchi-

cal information could be reflected by time-based binding mechanism. However, their

results fail to show the difference between the grammatical condition and the jabber-

wocky condition, suggesting that the increased power at corresponding frequencies

reflects purely hierarchical information in the model, but not semantic information.

On the other hand, Frank and Yang’s model suggests that the increased power

at corresponding frequencies does not necessarily represent the processing of hierar-

chical information. Their model suggests that the increased power at corresponding

frequencies might reflect lexical semantics or the part-of-speech information, without

considering syntactic information. These two accounts both provide similar predic-

tions for the grammatical sentences, phrases, and word list stimuli from (Ding et al.,

2016, 2017). Thus, it is still unclear what high-level information drive neural ac-

tivities in the delta band. In order to tease these two theories apart, the current

experiment uses reversed phases, where the semantic information and the frequency

of part-of-speech are still preserved but the sequences are reversed, yielding an un-

grammatical structure (see details in Materials section). The account offered by

Frank and Yang (2018) predicts that such stimuli will show 1 and 2 Hz peaks since

the frequencies of part-of-speech are still preserved. On the contrary, the account

offered by Martin and Doumas (2017) predicts such stimuli will not show 1 and 2

Hz peaks since the structure is not allowed in Mandarin by reversing the phrase.
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Table 2.1: Summary of two accounts and predictions for reversed phrases

Accounts Major study Critical simulation
results

Predictions for
reversed phrases

Structural
account

Martin & Doumas:
time-based encoding
representations

Sentence: 1, 2, 4 Hz
Phrase: 2, 4 Hz
Word list: 4 Hz
Jabberwocky: 1, 2, 4 Hz

4 Hz

Lexical
representation

Frank & Yang:
Lexical semantics
and POS

Grammatical: 1, 2, 4 Hz
Phrase: 2, 4 Hz
Word list: 4 Hz

1, 2, 4 Hz

2.1.2 Supporting evidence for the delta oscillations in language comprehension

How neural activities in the delta band relate to the syntactic processing is fur-

ther supported by multiple recent works (e.g. Bonhage et al., 2017, Meyer et al.,

2016). Neural activities in the delta band have been associated with the processing

of chunking continuous speech into phrases and sentences. Bonhage and colleagues

(2017) conducted an EEG recording to examine whether a chunking-related modula-

tion occurs during processing sentences, as compared to random word lists. During

the experiment, participants either saw the grammatical German six-word sentence

fragments (e.g. Sie wurden gestern Abend an der “they were yesterday evening at

the”) or ungrammatical word list (e.g. sie der an Abend gestern wurden “they the

at evening yesterday were”). Participants were asked to either memorize the stimuli

for 6 seconds and recall whether a specific word is followed by another word in the

trial, or decide whether a word is a real word or not. The results show that delta

power increases during encoding sentence fragments, compared to random word lists,

regardless of which task (i.e. working memory task or lexical decision task) is asked

after the encoding stage. Their results suggest that the increased delta power reflects

automatic linguistic chunking process and this process is effortless, automatic, and

highly effective retention for sentences, but not for random word lists. In addition

to increased power in delta-band oscillations, Meyer and colleagues (2016) show that
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grouping bias of words in ambiguous sentences, regardless of prosodic cues, mod-

ulates the phase in the delta-band. In other words, parsers follow their internal

grouping bias and chunk the words into meaningful phrases.

In addition to the processing of chunking, Meyer and Gumbert (2018) further

show evidence for the role of delta-band oscillations with the processing of syntactic

structure. Their results show that delta-band oscillations are phase-locked to the

syntactic structure of speech stimuli and a correlation between the syntactic sur-

prisal value and the phase was shown in the study, suggesting that the syntactic

knowledge for the incoming word facilitates language processing and thus cause the

alignment of neural excitability and syntactic information. However, as they noted,

their results cannot fully rule out the possibility that the phase alignment in delta

oscillations might merely reflect a transient prosodic/acoustic effect that is disguised

in oscillations. That is, the synchronization they found might merely reflect the

rhythmicity of the stimuli.

The above studies associated with the delta entrainment in syntactic process-

ing are indeed in line with Ding et al. (2016), although they adopted very different

methodologies to examine oscillations in delta bands. Specifically, consistent with

Ding et al. (2016), Meyer et al. (2016) show that the delta oscillations are modu-

lated by internal structure, but not prosody. However, as Meyer and Gumbert (2018)

noted, the modulation of entrainment might result from the rhythmicity in stimuli.

Previous studies have proposed that delta oscillations may correlate to two functions:

they are driven by either acoustic features or syntactic information (Ghitza, 2017;

Meyer et al., 2016). Under the acoustic account, delta is responsible for chunking

speech into discrete units based on acoustic cues. Under the syntactic account, delta

has the top-down process for applying internal syntactic knowledge to the speech
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sequences. Although these two processes are highly correlated with each other, as

shown in Meyer et al., 2016, these two processes may be disentangled since partici-

pants in that study show internal grouping bias and ignore prosodic boundaries. In

addition, while previous work argue that delta-band oscillations are domain-general

modulated function and are not necessarily interpreted as the modulation by syntac-

tic processing (see Meyer, 2018 for discussion), the current study focuses on providing

neural evidence to see to what extent neural activities in the delta band are driven by

higher level syntactic information. Specifically, the study will further answer what

kind of linguistic information (syntax or lexical sequences) would modulate neural

activities in the delta band.

2.2 Experiment

The experiment aims to test whether neural activities in the delta band reflect

lexical sequence or hierarchical information. If neural activities in the delta band

can be merely modulated by lexical information, specifically, verb occurring at a

frequency of 1 Hz and noun occurring at a frequency of 2 Hz, we would expect that the

entrainment still occur at its corresponding frequencies even when the part-of-speech

information is reversed (Frank and Yang, 2018). However, if neural activities in the

delta band are not modulated by the lexical information only, increased power should

not be observed in the reversed version of grammatical sentences since the hierarchical

information is distorted and the stimuli are ungrammatical. This experiment also

provides an opportunity to replicate results from Ding et al. (2016) using Mandarin

stimuli with EEG techniques. It should be noted that the signals measured in the

current study reflect low-frequency neural activities. One hypothesis is that the

measurements reflect neural oscillations. However, the current experiment does not
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allow us to conclude that the results can be directly mapped to neural oscillations.

2.2.1 Participants

Thirty-seven native speakers (22 females, 15 males) of Mandarin Chinese between

the age of 19 and 52 (mean = 27.7) participated in the experiment. They were all

right-handed and had normal hearing. They self-reported that they did not have any

neurological disorders. They gave informed consent and were reimbursed for their

time (15 USD/hour). Data from six participants were excluded from the analysis due

to having many noisy trials (>40 %). Thus, data from 31 participants (18 female,

13 males) were included in the final analysis.

2.2.2 Materials

All experimental items are four-syllable Chinese sequences. Four experimental

conditions are included in this experiment, as shown in Table 2.2. The first one is

Four-syllable sentence (ABCD). We used 50 items adapted from Ding et al. (2016),

with some modifications. The first two syllables constituted an NP, which is either

an Adjective + Noun NP (e.g. lao + niu ‘old + cattle’) or a Noun + Noun NP (e.g.

shu + mu ‘tree + wood (tree)’). The last two syllables constituted a VP (e.g. chi

+ cao ‘eat + grass’or disyllabic verb jiang jie ‘to explain’). Six items from Ding

et al. (2016)’s study were replaced or modified due to the following two reasons: (1)

Stimuli that do not sound natural for native speakers from either Taiwan or mainland

China were replaced since participants we recruited were either from mainland China

or Taiwan; (2) Stimuli including disyllabic morphemes such as heshang ‘monk’and

hudie ‘butterfly’were avoided since these NPs cannot be broken down further into

Adjective+Noun or Noun+Noun.
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Table 2.2: Stimuli design.

Four-syllable sentence (ABCD)
綿 羊 吃 草
mian yang chi cao
Cotton sheep eat grass
‘Sheep eat grass.’

Semantically-mismatched sequence
–give the structure as in the others (ABCD)
軍 孩 奔 草
jun hai ben cao
Soldier child run grass

Two-syllable phrase (ABAB)
老 牛 青 草
lau niu qing cao
Old cattle green grass

Reversed phrase (BADC)
羊 棉 草 吃
yang mian cao chi
Sheep cotton grass eat

The second condition is Semantically-mismatched sequence. Following Ding et al.

(2016)’s design, we randomly replaced each of the four syllables in the Four-syllable

sentence condition independently with a new syllable from other sentences in the

same condition while keeping the original positions of the syllables unchanged. After

we had the sequences, we checked over all the items to make sure that these sequences

do not sound meaningful or even familiar to native speakers. This is important as

there are many syllables in Chinese that are completely different in meaning but

share the same sounds.

The third condition is Two-syllable phrase (ABAB). Fifty items were constructed

by extracting the first two syllables from the items in the first condition, combining

them two by two into NPNP sequences.

The fourth condition is Reversed phrase (BADC). Crucially, this is the condition

to examine whether neural activities in the delta band are entrained by merely lex-

ical information. Same as condition 1, this condition also includes regular lexical

sequences (i.e., noun at 2 Hz and verb at 1 Hz) but with reversed order, yield-

ing an ungrammatical structure in Mandarin. Neither phrasal nor sentential neural

encoding is expected in this condition if neural activities in the delta band reflect

hierarchical processing.

All stimuli were recorded with text-to-speech from the website developed by iFLY-
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Tek (https://www.xfyun.cn/services/online_tts). Each syllable was recorded sepa-

rately and the averaged duration of each recorded syllable is around 300 ms. Then

each syllable was compressed to 240 ms with pitch preserved and a 10-ms silence gap

was added after each syllable by using Praat (Boersma and Weenink, 2019). Thus,

the whole duration of each syllable is 250 ms. Therefore, a four-syllable item was 1-

second long and a trial that included ten four-syllable items was 10-second long. The

power spectrum of the speech stimuli is shown in Figure 2.1. The power spectrum

was computed using a fast Fourier transform based on the broadband envelope of the

stimulus defined by the absolute value of the Hilbert transformation of the stimuli.

The power spectrum was averaged over all 10-second trials for each condition. Only

the syllable-level peak was observed in every condition.

Figure 2.1: Power spectrum of speech stimuli

Eight blocks were included in this experiment. Each block included 20 plausible

and 20 implausible trials. Thus, 320 trials were used in the whole experiment. The

implausible trials serve not only to ensure the attentiveness of participants (as in Ding

et al., 2016), but also to address critical research questions in the present study. A
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plausible trial drew items from either Four-syllable sentence or Two-syllable phrase,

while an implausible trial drew from either Semantically-mismatched sequence or

Reversed phrase. A block either pairs items from Four-syllable sentence with those

from Semantically-mismatched sequence, or items from Two-syllable phrase with

those from Reversed phrase. The plausible trials and the implausible trials were

intermixed and presented randomly in each block.

2.2.3 Procedure

Participants sat comfortably in front of a computer screen in a quiet room. Prior

to the main session, participants were fitted with an electrode cap. Electrodes were

also affixed above and below the left eye. Electrolyte gel was applied to minimize

impedance. The setup took approximately 30 minutes. Then the stimulus volume

was set for each ear based on hearing level of each participant with the threshold of

45 dB determined using 1000 Hz tones (300 ms length). After setting up the volume,

a pre-test presenting 120 1,000 Hz tones was conducted to ensure the data quality

was sufficient to run the main session.

During the main session, participants were instructed to judge whether a trial

includes plausible sentences/phrases or not by button press. After the button press,

the next trial was played after a delay randomized between 800 - 1,400 ms (Ding

et al., 2016). Stimuli were presented with Psychopy2 (v1.84.2; Peirce, 2007, 2009).

Participants were also instructed not to frequently blink their eyes and avoid un-

necessary body position adjustment when the stimuli were presented. Participants

can take break between blocks. After the instructions, participants had 4 practice

trials to familiarize with the whole procedure of the experiment. The order of blocks

and the button press were counterbalanced across participants. The main experi-

ment took about 1.5 hours to finish. After the main session, participants washed
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their hair to remove the electrolyte gel and were debriefed about the goals of the

experiment.

2.2.4 EEG recording and data analysis

EEG data were recorded at 500 Hz from 61 active electrodes (actiCHamp, Brain-

Products GMBH) in a 0.01-200 Hz band with online reference to an electrode placed

on the left mastoid. Impedance were kept below 25 kOhms. FieldTrip software

(Oostenveld et al., 2011) was used to analyze the data. Artifacts related to eye blinks

were removed via Independent Component Analysis (Jung et al., 2000; Makeig et al.,

1995) and remaining artifacts were removed manually following visual inspection.

Following Ding et al. (2017), the first sentence from each trial was excluded to avoid

potential EEG responses to sound onset. Data were filtered from 0.1-25 Hz, and

re-referenced offline to a common average. For each condition, we computed evoked

power (EP), induced power (IP), and inter-trial phase coherence (ITPC) from 0.5

to 10 Hz in increments of 0.111 Hz (i.e., 1/9-second trial) when removing the first

sentence in a trial due to a possible transient effect (Ding et al., 2017). Evoked

power, induced power and inter-trial phase coherence were computed based on the

algorithms given in Ding et al. (2017), as listed and defined in (Equation 2.1-2.3).

While Ding et al. (2016) demonstrated the total power recording from MEG, the

current study follows the analysis from Ding et al. (2017). The total power can be

divided into the evoked power and the induced power, which shows the clear picture

of how stimuli are synchronized to the brain responses.

(1) Evoked power (EP) reflects the power of EEG responses that are phase-

locked and time-locked to speech stimuli. The Discrete Fourier Transform (DFT)

of the response in trial k is denoted as Xk(f) and Xk(f) is a complex-value Fourier

coefficient. Thus, evoked power is the summation of complex-value Fourier coefficient
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of trials averaged over the total number of trials K.

E(f) =
1

k
|
∑
k

Xk(f) |2 (2.1)

(2) Inter-trial phase coherence (ITPC) reflects phase coherence across trials

(Cohen, 2014). The summation of cosine and sine values of phase angle θk of each

complex-value Fourier coefficient is computed and then the square root of the sum-

mation is averaged over the total number of trials K1. Higher ITPC indicates that

phase angles are consistent across trials.

R(f) =

√
(
∑

k(cosθk))
2 + (

∑
k(sinθk))

2

K
(2.2)

(3) Induced power (IP) reflects the power of EEG responses that are time-

locked but not phase-locked to speech stimuli. Induced power is computed from the

difference between the complex-value Fourier coefficient and the mean over trials

(denoted < X(f) >) from each trial k. Then the summation of difference from each

trial is averaged over the total number of trials K.

I(f) =

∑
k | Xk(f)− < X(f) >|2

K
(2.3)

For statistical analysis, conditions were compared via one-way ANOVA for each

measure at each frequency of interest. For evoked power, in order to remove the

trend of 1/f noise in power spectra, evoked power at each frequency was normalized

by the neighboring frequency bins within ± 0.5 Hz via Equation 2.4 used in Ding

et al. (2017).
1The original formula in Ding et al. (2017) did not take the square root.
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(4) Normalized evoked power (EPn)

En(f) =
E(f)∑
w E(w)

, | w − f |< 0.5 Hz, w ̸= f (2.4)

w represents the neighboring frequency around the target frequency f.

2.2.5 Predictions

As summarized in Table 2.3, for Four-syllable sentence, we would expect entrain-

ment associated with syllable (4 Hz), phrase (2 Hz), and sentence (1 Hz) level should

be observed. For the two-syllable phrase, we expect peaks at the syllable (4 Hz) and

phrase level (2 Hz). As for the semantically-mismatch sequence, only the syllable-

level peak is expected since the whole sequence is implausible. Crucially, for the

reversed phrase, if neural activities in the delta band are modulated by lexical in-

formation only, we would expect the same results as the four-syllable sentence since

the lexical items and the frequency of each syntactic category are exactly the same.

However, if delta entrainment represents hierarchical information, we should expect

that the reversed phrase could elicit the syllable-level peak only since the structural

information is lost.

Table 2.3: Predictions of each condition

Conditions Predictions
Sentence 1, 2, 4 Hz
Mismatched 4 Hz
Phrase 2, 4 Hz

Reversed Structural: 4 Hz
Lexical: 1, 2, 4 Hz

2.2.6 Simulations

The current study also includes simulations to examine whether different word

embeddings trained from different architectures would result in entrainment within

the delta range. Since Frank and Yang (2018) have shown simulated results for
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phrases and word list, here we simulated the critical comparison between the four-

syllable sentence and the reversed phrase. Following Frank and Yang (2018), word

vectors were extracted for conditions Four-syllable sentence and Reversed phrase.

For the reversed phrases, we adopted Frank and Yang’s word vectors to create the

word embeddings by swapping columns, without changing other parameters. The

Matlab function for a Discrete Fourier Transform used by Frank and Yang (2018)

was used here. Twelve simulated subjects and fifty randomized items modified from

Ding et al. (2016) were tested in the model. The timing for each word is 250 ms.

Given the assumption that word information would appear later after word onset,

Word vectors were mapped to time between 0 and 250 ms by randomly sampling t

from a uniform distribution (see Frank and Yang (2018) for details). Word vectors

were then summed and a Discrete Fourier Transform was applied to obtain power

spectrum for each simulated subject.

Second, in order to know whether word representations trained from different lan-

guage models result in consistent outcomes above, different word embeddings from

Wikipedia2vec (Yamada et al., 2020) and a Chinese pre-trained Bidirectional En-

coder Representations from Transformers (BERT) (Cui et al., 2019) were encoded

separately. Different from the word embeddings in gensim or fastText, which are

trained by the conventional word-based skip-gram model, Wikipedia2vec was trained

from the word-based skip-gram model, as well as the anchor context model and the

link graph model, which learn embeddings by predicting the neighboring context

from the given words and the link graphs on Wikipedia. Wikipedia2vec provides a

better performance on the datasets of word analogy and word similarity. The second

word embeddings were extracted from a pre-trained Chinese BERT with whole word

masking (Cui et al., 2019). Different from the models from Frank and Yang (2018)
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and Yamada et al. (2020), BERT is trained with an unsupervised learning and bidi-

rectional approach, which means that the word vectors for the same word would be

different, depending on the context. The Chinese BERT with whole word masking,

different from the BERT developed by Google, takes the Chinese word segmenta-

tion into consideration before training. Thus, the model is trained from masking

the whole word, instead of the fragment of a Chinese word. This model did have

a good performance on various tasks, across the sentence-level and the document-

level. The current study compares word vectors extracted from different models to

see whether these models could elicit similar results in Frank and Yang (2018) for the

four-syllable sentences and simulate how word vectors from these models modulate

the delta oscillations for reversed phrases. These simulations serve as an important

control to demonstrate whether lexical properties within the stimuli, when words are

presented at the fixed rate as here, oscillate at 1 or 2 Hz.

2.3 Results

2.3.1 Results of the simulations

Figure 2.2 shows the simulated power spectra from 0-10 Hz. For Frank and Yang

(2018)’s word2vec model, model results show that lexical properties of the stimuli

oscillate at 1, 2, and 4 Hz in the reversed phrases. In addition, the results from

the Wikipedia2vec and the Chinese BERT also show that lexical properties of the

stimuli oscillate at 1, 2 and 4 Hz in both conditions.
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Figure 2.2: Simulated power spectra for three models

2.3.2 Results of the experiment

The results of evoked power are shown in Figure 2.3. The 4-Hz peak, which

indicates the processing of syllables, can be found in all condition. The 2-Hz peak,

which indicates the processing of phrasal level, is shown in the four-syllable sentence

and two-syllable phrases. The 1-Hz peak, which indicates the processing of sentence

level, is found only in the four-syllable sentences. Figure 2.4 shows the results of inter-

trial phase coherence, which are consistent with the results of evoked power. Peaks

at 4 Hz were found in all conditions. Peaks at 2 Hz were found in the four-syllable

sentence and two-syllable phrase. Peak at 1 Hz was shown only in the four-syllable

sentence. Figure 2.5 shows the results of induced power. Same as the results in Ding

et al. (2017), no peaks were found in any conditions for this measure.
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Figure 2.3: Evoked power for each condition
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Figure 2.4: Inter-trial phase coherence for each condition
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Figure 2.5: Induced power for each condition

Statistical comparison for each frequency of interest is shown in Figure 2.6. For

the normalized evoked power, statistical significance was found at 1 Hz (p < 0.001).

Post-hoc pairwise Tukey’s tests for the 1-Hz peak show significant difference in the

comparison of the four-syllable sentence condition and the other three conditions

(p < 0.001) and there was no statistically significant difference for the comparison

between the mismatched and the phrases (p = 0.67), the comparison between the

mismatched and the reversed (p = 0.99), and the comparison between the phrases

and the reversed (p = 0.6). A statistically reliable difference was also found for the

2-Hz peak (p < 0.001). Post-hoc pairwise Tukey’s tests for the 2-Hz peak show

significant difference in the comparison between the phrases and the reversed (p

< 0.001), the comparison between the phrases and mismatched (p < 0.001), the
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comparison between the sentence and the reversed (p < 0.001), and the comparison

between the sentence and the mismatched (p < 0.001). No significant effect was

found in the comparison between the sentence and the phrases (p = 0.98) and the

comparison between the mismatched and the reversed (p = 0.65). No statistical

significance was found at 4 Hz (p = 0.45).

Figure 2.6: EPn at each frequency of interest

As for inter-trial phase coherence (see Figure 2.7), consistent with results of evoked

power, a statistically reliable difference was also found at 1 Hz (p < 0.001). Post-hoc

pairwise Tukey’s tests for the 1-Hz peak show significance in the comparison between

the sentence and the other three conditions (p < 0.001) and no significance in the

comparison between the mismatched and the phrases (p = 0.8), the mismatched and

the reversed (p = 0.99), and the phrases and the reversed (p = 0.85). Statistical

significance was found at 2 Hz (p < 0.001). Post-hoc pairwise Tukey’s tests for the

2-Hz peak show significant difference in the comparison between the phrases and

the reversed (p < 0.001), the comparison between the phrases and mismatched (p <

0.001), the comparison between the sentence and the reversed (p < 0.001), and the
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comparison between the sentence and the mismatched (p < 0.001). No significance

was found in the comparison between the sentence and the phrases (p = 0.96) and

the comparison between the mismatched and the reversed (p = 0.45). No significance

was found in 4-Hz (p = 0.6).

Figure 2.7: ITPC at each frequency of interest

For induced power (Figure 2.8), no significance was found in any of the target

frequencies (1-Hz: p = 0.97, 2-Hz: p = 0.98, 4-Hz: p = 0.97).
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Figure 2.8: IP at each frequency of interest

2.4 Discussion

Neural activities in the delta band has been recently associated with the process-

ing of abstract linguistic structure (Ding et al., 2016). However, previous research

has not made clear what linguistic information modulate delta oscillations. Two

accounts were proposed for the functional interpretation of this entrainment. The

first one suggests that neural activities in the delta band might merely reflect word

information or part-of-speech information of each word (Frank and Yang, 2018). The

other structural account argues that this activity results from the syntactic structure

encoding in time (Martin and Doumas, 2017), suggesting that the entrainment of

delta frequencies is modulated greatly by hierarchical information. In order to tease

apart these two theories, we use reversed phrases, which exhibit the same regular

pattern of part-of-speech as the normal four-syllable sentences but result in ungram-

matical sentences. In addition, the semantic information for each word and sentence

is still preserved in this condition. If neural activities in the delta band merely re-
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flect lexical sequence information, the reversed phrases should elicit peaks at 1, 2,

and 4 Hz, same as the normal four-syllable sentences. However, if neural activities

in the delta band reflect structural information, the reversed phrases should elicit

syllable-level peak at 4 Hz only. Simulated power spectra by extracting word em-

beddings from three different models of lexical semantics were also provided. Word

vectors from three models indicate that the lexical information could modulate 1-Hz

and 2-Hz peaks. Inconsistent with the predictions from the three lexical models, our

experiment results show that the reversed phrases elicit peaks at 4 Hz only, sug-

gesting that neural activities in the delta band reflect the processing of hierarchical

information, but not lexical information or part-of-speech information only.

Our results replicate the findings from different measurements shown in Ding

et al. (2017). In Ding et al. (2016), they reported the total power, which computes

the combination of evoked power and induced power. Ding et al. (2017) further

separate total power into evoked power and induced power. In addition, the inter-

trial phase coherence was also computed to see whether the phase angles across

trials are consistent. In line with the finding of English in Ding et al. (2017), we do

find consistent results for the evoked power and the inter-trial phase coherence. In

addition, no significant peaks were found in the induced power.

The current study also successfully replicates several key results from Ding et al.

(2016) by using EEG recording. The four-syllable sentences elicit peaks at 1, 2,

and 4 Hz. The two-syllable phrases elicit peaks at 2 and 4 Hz, but not 1 Hz.

Some more nuance trends are also observed in evoked power and inter-trial phase

coherence. The peak value of the semantic-mismatched sequences and the reversed

phrases are higher than the value of the two-syllable phrases condition at 1 Hz,

although the difference is not statistically significant. On the contrary, the peak
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value of semantically-mismatched sequences and the reversed phrases are lower than

the value of the two-syllable phrases condition and the four-syllable condition at 2 Hz.

The above observations might further suggest that delta entrainment at 1 Hz serve

as an index of chunking by structure. In other words, the syntactic information at

some degree are preserved in the semantically-mismatched condition and the reversed

phrases. 1-Hz is an optimal timing for a parser to achieve the composition processes

by integrating structural and semantic information. Thus, the value of those two

conditions are higher than the value of the phrases condition at 1 Hz.

The current study also suggests that delta entrainment to speech may reflect

endogenous neural responses but not merely the reflection of repetitive stimuli. Pre-

vious studies have argued that neural oscillations may reflect the repetitive pattern

of external input. Whether neural oscillations reflect evoked responses or endogenous

oscillatory activities remains under debate (Martorell et al., 2020; Zoefel et al., 2018).

In our study, while the normal four-syllable sentences and the reversed phrases in-

cludes the same words, 1, 2 and 4 Hz peaks were observed in the normal four-syllable

condition but not the reversed phrases, suggesting that neural oscillations do not just

reflect the repetitive rhythms of external input, but involves the mechanism of using

hierarchical knowledge.

One concern in the current study would be how the results from this unnatural

experimental paradigm can map into a more naturalistic context and how we relate

the current results to other relevant findings in neural activities in the delta band.

This indeed requires future research to apply new methodologies or analysis to further

attest the current results against other studies that adopts different methodologies

(see Kaufeld et al., 2020). In addition, as Martorell et al. (2020) notes, it is unclear

whether these findings could be elicited in different groups such as patient with
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aphasia. Also, would similar peaks be elicited by using a different modality of stimuli

presentation (i.e. visual vs. listening)? Another interesting future direction is to

examine these low-frequency neural activities in language development (Getz et al.,

2018). While it is much more clear how these low-frequency neural activities relate

to language comprehension in adults, it is less clear when and how these patterns

of oscillation are revealed in children (Maguire and Abel, 2013). If the peaks on

delta could be an index of compositional processes, adopting the same experimental

paradigm on children might provide insights on how these neural activities vary from

children to adults.

2.5 Summary of the study

The current study investigates whether neural activities in the delta band repre-

sent the processing of sequence-based lexical items only or that of hierarchical struc-

ture also. First, our results replicate results from Ding et al. (2016) by using EEG

recording, confirming that cortical tracking of abstract hierarchical information can

be detected robustly across different languages and brain-imaging techniques. Sec-

ond, consistent with the English results from Ding et al. (2017), normal four-syllable

sentences show sentence-level and phrasal-level peaks and two-syllable phrases show

phrase-level peaks in evoked power and inter-trial phase coherence in Mandarin.

Furthermore, our results of Reversed phrases are inconsistent with the lexical rep-

resentation hypothesis. Only peaks at 4 Hz were elicited in the Reversed phrase

condition, suggesting that delta oscillations are not modulated by part-of-speech or

word information only but reflect structural information.
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CHAPTER III

Testing Temporal Boundaries of Composition in
Low-Frequency Neural Activity

3.1 Introduction

Successful speech comprehension relies on temporal integration of linguistic units

at different time-scales; comprehenders combine phonemes into syllables, syllables

into words, and words into phrases/sentences. In natural Speech, these units are

quasi-rhythmic and overlapping, without any physical cues for boundaries, which

means that speech comprehension is more than sound recognition. Many previous

studies have adopted electroencephalography (EEG) and magnetoencephalography

(MEG) techniques to examine the event-related potentials (ERP) or event-related

fields (ERF) for time-locked events of speech stimuli reflected in the brain (e.g.

Bendixen et al., 2009; Herrmann et al., 2013; Huotilainen et al., 1998). However, due

to the irregularity and temporal dynamics in speech, the investigation of ERP/ERF

has the limitation that the time-locked event to speech stimuli is not well suited

to fully capture the temporal dynamics in continuous speech (Wöstmann et al.,

2016). While some work approaches this challenge by fitting computational models

to examine how neural activity maps to continuous speech (e.g. Lalor et al., 2009;

Lalor and Foxe, 2009), it remains largely puzzling how linguistic units with different

temporal properties are integrated in the brain.
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Thus, in addition to probing how neural responses reflect speech stimuli in the

time-domain, examining from the frequency-domain can serve as another way to

overcome the above limitation by decomposing neural signals into phase and ampli-

tude across different frequency bands (Shannon et al., 1995; Smith et al., 2002; Zeng

et al., 2005). Moreover, as Wöstmann et al. (2016) points out, examining neural

phase in cortical synchronization may offer precise timing of neural activity and how

neural networks interact by knowing phase coupling across different frequencies (see

also Sauseng and Klimesch, 2008; Tallon-Baudry et al., 1997).

Previous studies have shown that neural activity has the property of repetitive or

rhythmic pattern that can be observed from a single neuron or a group of neurons in

the brain or central nervous system; this is a neural oscillation (Schnitzler and Gross,

2005). Neural oscillations can be characterized by frequency, phase, and amplitude,

and they may synchronize with extraneous stimulation such as periodic acoustic

or visual stimuli. The process of synchronization is also called entrainment and

neuronal populations entrain with different linguistic units. For example, previous

studies have shown that word and phrases can be entrained with the frequencies at

the delta band (0.5 - 3 Hz) (Ding et al., 2016) and syllables are synchronized with

the theta band (4 - 8 Hz) (Ghitza, 2013; Giraud and Poeppel, 2012; Poeppel, 2003).

However, given that language comprehension is sensitive to temporal properties of

speech, how these entrainments interact with temporal dynamics remain unknown.

Moreover, whether these entrainments reflect merely repetitive pattern of external

punctual events or whether they are tie to functionally-specific bands are also under

debate. The current study manipulates temporal properties of speech to investigate

temporal dynamics of cortical tracking in the delta band.
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3.1.1 Comprehension in low-frequency oscillations

Neural activities in the delta band have been associated with the processing of

low-level acoustic information (Ding et al., 2014; Gross et al., 2013; Kayser et al.,

2015) and high-level syntactic and semantic knowledge (Bonhage et al., 2017; Ding

et al., 2016; Meyer et al., 2016). As Ding and Simon (2014) point out, delta oscil-

lations might reflect onset tracking due to the sharpness of sound edges (Doelling

et al., 2014), spectral-temporal feature tracking (Ding and Simon, 2012b), syllable

parsing (Giraud and Poeppel, 2012), and sensory selection from noisy background

(Ding and Simon, 2012a; Schroeder and Lakatos, 2009). These findings suggest that

delta oscillations correlate with language comprehension significantly. However, lan-

guage comprehension is sensitive to various factors such as temporal properties of

speech. How temporal properties such as speech rate and rhythmicity interacting

with high-level linguistic knowledge and thus resulting in neural tracking of speech

remains unknown. In addition, given that language comprehension involves dynamic

interaction between top-down and bottom-up processing, whether language compre-

hension requires neural responses phase-locked to speech envelope and how high-level

linguistic knowledge guides language comprehension are still unclear. This section re-

views previous work about the functionality of delta oscillations and the relationship

between delta oscillations and language comprehension.

Delta oscillations have been linked to the decoding of low-level linguistic informa-

tion such as extracting acoustic features or segmenting discrete units and also the

integration of high-level information such as syntactic or semantic information (e.g.

Bonhage et al., 2017; Bourguignon et al., 2013; Mai et al., 2016; Meyer et al., 2016).

For high-level information processing specifically, neural activities in the delta band

have been associated with the processing of abstract linguistic structure with dif-
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ferent approaches (e.g. Ding et al., 2016; Kaufeld et al., 2020). For example, Ding

et al. (2016) used a frequency-tagging paradigm, where native speakers of Mandarin

listened to Mandarin four-syllable sentences devoid of prosodic contours that lasted 1

sec in total during MEG recording. Under these conditions, they observed that neu-

ral entrainment at 4 Hz reflect the processing of syllables, 2 Hz reflects the processing

of phrases, and 1 Hz reflects the processing of sentences. Crucially, English speakers

without Mandarin linguistic knowledge only show entrainment at the syllable rate

(4 Hz), but not at the phrase (2 Hz) and sentence rate (1 Hz). Furthermore, Ding

et al. (2017) conducted an English follow-up experiment using EEG and their results

replicates the previous results from MEG. They observed neural tracking of syllable,

phrase, and sentence-level peaks in evoked power (i.e. the power that is time-locked

and phase-locked to speech stimuli) and inter-trial phase coherence (i.e. whether the

differences between phase angles and speech stimuli across trials are consistent), but

not induced power (i.e., the power that is not synchronized with speech stimuli).

However, it is not yet clear from their studies whether neural activities in the delta

band are indeed elicited by abstract structure information robustly or can be mod-

ulated only by lexical information of the stimuli (Martin and Doumas, 2017; Frank

and Yang, 2018). Chapter II tested whether these patterns reflected entrainment to

hierarchy or lexical properties of the stimulus. We offer evidence that delta entrain-

ment correlates with abstract linguistic structure, rather than merely the reflection

of lexical representation. A reversed phrase condition, which preserves the frequency

of syntactic category but lost the structural information in the normal Mandarin sen-

tence, was compared with the normal structure in Mandarin. Only a 4-Hz peak was

observed in the reversed phrase, suggesting that structural information indeed plays

a crucial role in the modulation of delta entrainment. A second open question is
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whether neural activies in the delta band underlie hierarchical processing in natural

speech, or whether the modulation seen here is specifically a function of entrainment

due to highly rhythmic, artificial, isochronous speech. To answer this question, the

current study manipulates temporal properties of speech to examine whether oscilla-

tions reflect arbitrary entrainment to external input or are ties to specific functional

bands.

To probe the role of neural activities in the delta band in more natural speech,

Kaufeld et al. (2020) further support the view that delta oscillations reflect the

combinatorial processes and high-level linguistic content (i.e. meaning and syntax)

beyond prosody by using naturalistic stimuli during an EEG recording. Four types

of stimuli were tested in the study: (1) sentence condition which includes structure,

lexical semantics, and prosody, (2) jabberwocky condition which includes structure

and prosody, but not lexical semantics, (3) word-list condition which includes lexical

semantics, but not prosody and structure, and (4) reversed speech as a control.

By computing mutual information (MI) between neural signals and speech stimuli,

they were able to quantify the relationship between different levels of structure (i.e.,

sentence, phrase, word) and the cortical tracking of speech. Their results reveal that

higher MI values were shown at the phrase-level (0.8-1.1 Hz) and word-level (1.9-2.8

Hz) in the sentence condition, compared to the jabberwocky and word list conditions.

Other studies relate delta oscillations to the processing of chunking continuous

speech into phrases and sentences (Bonhage et al., 2017; Meyer et al., 2016). For

example, Meyer et al. (2016) show that grouping bias of words in ambiguous sen-

tences, regardless of prosodic cues, modulates the phase in the delta band, suggesting

a relationship between the internal grouping processes and delta entrainment. How-

ever, whether delta entrainement is sensitive to high-level linguistic content remains
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under debate in part because delta oscillations have also been associated with lower-

level aspects of acoustic processing, discussed below. Boucher et al. (2019) examines

low-frequency oscillations when people listened to tones, nonsense sequences and nor-

mal speech with similar timing, pitch and energy contours. The peaks of inter-trial

phase coherence in the delta range were observed in both nonsense sequences and

normal speech, suggesting that delta oscillations associate with the sensory chunking

of speech and the sequential properties of speech and indirectly link to the processing

of the high-level content.

In terms of acoustic decoding, low-frequency neural oscillations have been associ-

ated with speech intelligibility. Previous research has identified that theta entrain-

ment reflects syllable intelligibility in different experimental manipulations, given

that the average syllable duration falls between 2.5 and 8 Hz (about 125-400 ms)

(see Ding and Simon, 2014; Poeppel and Assaneo, 2020). For example, Peña and

Melloni (2012) found that the theta power increased more in normal speech stimuli

than reversed stimuli, suggesting the theta oscillations reflect some aspect of syllable

tracking. Other studies manipulated the temporal structure of speech stimuli. Luo

and Poeppel (2007) found that theta oscillations were phase-locked to the speech

stimuli and this mechanism correlates with speech intelligibility. They manipulated

the fine structure and speech envelope of speech stimuli and found that the reduc-

tion of intelligibility decreases the phase dissimilarity but not power dissimilarity

in the theta range. Consistent with the above finding, Howard and Poeppel (2010)

found that the speech stimuli from both the normal and time-reversed speech can

be discriminated in theta-band phase, suggesting that the theta-band phase tracking

pattern reflects early processing of acoustic properties in auditory cortex, but not

the processing of lexicon, semantics and syntax.
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While low-frequency oscillations have been linked to the processes of acoustic

information, previous research suggests different functionalities for theta and delta

bands. As Kayser et al. (2015) suggests, theta entrainment may relate to syllable

parsing and speech segmentation directly while delta entrainment relates to the top-

down processes that are sensitive to factors such as speech rate. Gross et al. (2013)

found phase alignment between the speech envelope and the delta and theta ranges

when participants listen to a normal story as compared to the backward condition,

consistent with the hypothesis that the observed entrainment in the normal speech

reflects a top-down mechanism. Ding et al. (2014) found that the delta-band synchro-

nization is enhanced while the spectral resolution of stimuli is reduced, suggesting

the possible role for delta entrainment as the top-down attention following an ear-

lier proposal by Schroeder and Lakatos (2009). This reduction was considered as a

“high-level entrainment of speech features” in Zoefel and VanRullen (2015), meaning

that the entrainemnt can be observed even when the low-level features are removed.

As Zoefel and VanRullen (2015) point out, this is distinct from entrainment that

involves high-level processing is “the high-level modulations of phase entrainment”,

meaning that oscillations are driven by the low-level information such as speech

amplitude and further modulated by high-level processes such as prediction and at-

tention. For example, Kerlin et al. (2010) had participants listened to two different

speech streams simultaneously during EEG recording while attending to one speech

stream only. Results showed greater enhancement for phase-locking response in the

theta range in the attended speech, relative to the unattended speech.

Previous studies have shown that there is a dynamic interaction between bottom-

up processing and top-down processing and it facilitates language comprehension

(Davis and Johnsrude, 2007; Gwilliams et al., 2018; Gwilliams, 2020; Sohoglu et al.,
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2012). From the above, multiple studies have provided some evidence for the func-

tional significance of a specific frequency band. However, since neural responses

track information from multiple time scales concurrently, cross-frequency coupling

can demonstrate how different levels of processing influence each other. For example,

Keitel et al. (2018) found that phase at the phrasal-level (0.6-1.3 Hz) is coupled to

the power at beta range (13-30 Hz) in motor area, which has been associated with

the predictive processing of rhythms or beats (Arnal et al., 2015). These results sug-

gest that a top-down prediction at the phrasal level may involve the cross-frequency

coupling with the beta range. In addition, Rimmele et al. (2019) found that the

phase at 2 Hz is coupled with the amplitude at 4 Hz in MTG when German native

speakers listened to real German and Turkish words during MEG recording with a

frequency-tagging paradigm, but not the Turkish psudo-words, which does not re-

quire the grouping of syllables into words. The above two studies suggest that we

do not rely only on the bottom-up processing and provide evidence that the interac-

tion between low-level and high-level information can be captured by cross-frequency

coupling. Moreover, Park et al. (2015) found that stronger causal top-down effects

at both delta and theta ranges in left auditory cortex when people listened to the

intelligible speech, compared to the backward speech. In addition, they found that

stronger top-down effects in the delta band, relative to the theta band, suggesting

that a longer time window is preferred to extract high-level information. These find-

ings suggest that there is an interaction between the high-level linguistic information

from word to phrase level and the low-level acoustic processing and this interaction

can be indexed by neural oscillations in the delta band.

Evidence further suggests that such oscillations are causally connected to speech

processing. Specifically, speech intelligibility is also affected by whether oscillators
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can track the amplitude of speech input well. Whether speech can be tracked well

is largely affected by the speech rate. The optimal syllable rate for understand-

able speech is between 2 - 8 Hz (Poeppel and Assaneo, 2020). Comprehension de-

creases when the syllable rate falls outside of that frequency range (Ghitza, 2014;

Ghitza and Greenberg, 2009). For example, Ahissar et al. (2001) examined the

correlation between neural signals and comprehension of speech with four different

time-compressed ratios (i.e., 0.2, 0.35, 0.5, 0.75). The results of comprehension sig-

nificantly drop in the ratio of 0.2 and 0.35. They found that speech comprehension

is correlated with the difference between the frequencies of the speech envelop and

the cortical signals, and also the phase-locking values between the speech envelope

and the neural signals. Their results suggest that speech comprehension requires the

cortical responses phase to be locked to the speech envelope and that such phase-

locking is only possible within a limited range. This phase-locking appears to be

necessary for accurate segmentation of continuous speech into syllables. In addi-

tion, Nourski et al. (2009) found that power spectra of the low-frequency ECoG

components matched the frequency of the stimulus envelope of sentences when time-

compressed speech has a compressed ratio above 0.4. Moreover, a positive correlation

between speech comprehension and the above frequency matching was observed in

the study. However, they also observed that the synchronization between event-

related band power and speech stimuli in the high-frequency range of the ECoG

across all speech rates. Their results yield the question whether evoked responses

should be modulated within certain time interval. Moreover, Assaneo and Poeppel

(2018) recorded MEG responses when participants listened to trials included sylla-

bles with various speech rates. They found that brain responses can be synchronized

with the speech envelope across different speech rates (i.e., 2.5 syl/s, 3.5 syl/s, 4.5
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syl/s, 5.5 syl/s, 6.5 syl/s). From the above, it remains unclear how speech rates

modulate low-frequency oscillations and whether there is an optimal time-scale for

brain responses to achieve language comprehension. Moreover, while most studies

focus on how low-level information processing reflects on low-frequency oscillations,

it remains elusive how the integration between the high-level information and these

low-level acoustic information modulates low-frequency oscillations during language

comprehension.

3.1.2 Oscillation-based model vs. Evoked-response model

The hypotheses mentioned earlier for speech perception may also characterize the

functional interpretation of delta entrainment in sentence comprehension. Specif-

ically, the role of syllable parsing can be generalized to explain the relationship

between delta oscillations and high-level information processing. Under the syllable

parsing hypothesis, parsers are able to segment continuous speech into syllable-level

chunks since syllables can be matched well in speech envelope and this matching

process occurs in the theta cycle (Ghitza, 2013; Giraud and Poeppel, 2012). The

cortical oscillations within a theta cycle are thus viewed as the reflection of “packag-

ing” acoustic features of speech signals (Ghitza, 2011). To be specific, since speech

involves various linguistic units processed in multiple time frames simultaneously,

the oscillation-based model TEMPO (Ghitza and Greenberg, 2009; Ghitza, 2011)

proposed that syllables are matched in a theta cycle (about 200 ms) while finer

phonetic features are matched within a beta cycle (about 50 ms). In TEMPO, if

the oscillator is able to track the amount of information from the input, given the

necessary decoding time, intelligibility can be achieved. This theory carries the pre-

diction that intelligibility decreases if the speech rate falls outside of its corresponding

frequency range (i.e., theta range for the syllable rate). In terms of sentence com-
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prehension, the evidence reviewed so far suggests that delta oscillations are driven

either by acoustic features or higher-level information and these two factors are highly

interconnected (Meyer et al., 2016; Ghitza, 2017). The TEMPO model can be gen-

eralized to the word/phrasal level, meaning that the process for decoding phrases

is guided by prosodic segmentation as long as neural activities in the delta band

can be synchronized to the speech rhythm (Ghitza, 2017). Ghitza (2017) suggests

that delta can be a acoustic marker for the segmentation by conducting two recall

task of context-free digits. In their second experiment, syllable rate was manipulated

so that the chunking rate of a phrase can be inside or outside the delta frequency

band. The chunking rate was manipulated by inserting different silence gaps, but

not changing the length of syllables. Four bands of chunking rates were examined

(i.e., 2-2.5 Hz, 2.5-3 Hz, 3-3.5 Hz, and 3.5-4 Hz). Their results show that the error

rate of behavioral responses increases when the chunking rate increases, supporting

their hypothesis that a successful segmentation occurs only when the chunking rate

falls in the delta range.

Other studies manipulating speech rates also provides supporting evidence for

oscillatory models. Kösem et al. (2018) examined whether there is a causal role of

neural oscillations in speech processing. Participants listened to Dutch sentences

with either fast or slow speech rate from the beginning to the word before the target.

The participants judged whether the target with the original speech rate contained

a short or long vowel. The sustained oscillatory activities were observed from the

carrier window to the target word. Also, the perception bias was observed while

people tended to choose the long vowel in the fast preceding context and short vowel

in the slow preceding context. These findings suggest that entrainment to the pre-

ceding context affect how parsers perceive the subsequent words. Most importantly,
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the results further support oscillation-based models. That is, by varying the time

frame of syllables, theta oscillations actively adapt to the speech rate and modify the

expected duration of syllables in one cycle. This mechanism then guides how parsers

perceive speech, leading different selections of vowels to form different meanings.

However, it is also possible to consider neural activities in the delta band as

tracking the transient events in sentences. Lau and Liao (2018) point out that re-

sults shown in Ding et al. (2016) might reflect purely punctual events at critical

timescales during structure-building processes, but not the sustained activity for

maintaining the structure over time, proposed by Pallier et al. (2011). Alexandrou

et al. (2020) also suggest that “cortical entrainment” in most studies are stimulus-

driven responses or evoked responses, given that the stimuli in most studies are

unnatural and the results are difficult to generalize to the naturalistic settings such

as spontaneous speech. Moreover, Zoefel et al. (2018) also point out that the ob-

served neural entrainments with repetitive stimuli may reflect merely the repetitive

evoked responses (see also Capilla et al., 2011, Keitel et al., 2014). However, how

to dissociate evoked responses and endogenous oscillatory activities is difficult. The

oscillations and the repetitive evoked responses share multiple properties (e.g., the

dominant frequency corresponds to the rhythmicity of stimuli) and sometimes the

signals are the combination of both types (Doelling et al., 2019; Zoefel et al., 2018).

Previous studies manipulate jittered inter-stimulus intervals to test whether the

elicited neural signals are endogenous oscillatory activities or evoked responses. The

assumption is that the neural responses actively adapt the upcoming changes if the

oscillatory activities are indeed a predictive process. Whereas for the evoked re-

sponses, the neural signals are expected to passively follow the timing of stimuli.

Capilla et al. (2011) conducted two EEG experiments by using checkerboard stimuli
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with different presentation rates and simulated models from both oscillation and

evoked response accounts. Their results show that neural responses do not adapt

changes depending on the preceding inter-stimulus intervals as they hypothesized

and thus the neural responses are better explained by the evoked response. How-

ever, in contrast to Capilla et al. (2011), Kayser et al. (2015) manipulates jitter in

speech by either expanding or shrinking the gaps between words but still maintain-

ing a constant average inter-stimulus interval. In line with the account of oscillatory

activity, they found that the mutual information between the delta range and the

speech stimuli reduces when jitters increase, along with the lack of change in early

auditory responses across conditions. These results suggest that delta entrainment

can be affected by regularity of speech, rather than the transient evoked responses

to the syllable onsets.

Another way to distinguish them is that brain oscillations can occur without

actual external stimuli input. More relevantly, Zoefel et al. (2018) consider that

findings in Ding et al. (2016) as the endogenous neural oscillations, rather than the

repetitive evoked responses, since the speech stimuli only display syllable peaks at

4 Hz but neural responses are able to generate the internal rhythms at the phrase

and sentence level by demonstrating phrase/sentence-level peaks at 1 Hz and 2 Hz.

Instead of taking side from one of the above hypotheses, Zoefel and VanRullen (2015)

consider results from most studies are a mixture of evoked responses and endogenous

entrainment, given that entrainment can still be observed even when the low-level

features are absent.

From the above, whether the regular pattern observed in neural signals represents

the endogenous oscillations or repetitive evoked responses is still under debate. If we

also consider how speech rate modulates neural activities, results from Ahissar et al.
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(2001) and Nourski et al. (2009) would carry the prediction that neural signals can be

evoked for each particular as long as the event occurs within a certain time threshold.

However, part of results from Nourski et al. (2009) indicates that evoked signals can

be observed even for very rapid compressed speech. The present study manipulates

different speech rates to disentangle whether the observed neural activities represents

oscillation-based model or evoked responses.

3.1.3 Speech rhythmicity in low-frequency oscillations

Regularity can also modulate delta entrainment. Cravo et al. (2013) had partici-

pants look at a series of pictures that include the Gaussian noisy patches (standard)

and the Gabor patches embedded in the Gaussian noise (target) with either regu-

lar or irregular stimulus-onset asynchrony between each standard during an EEG

recording. They found that phase alignment of delta frequency and better behav-

ioral performance were shown in the regular non-speech visual stimuli, compared to

the irregular ones. Daily speech is quasi-rhythmic. Speech includes various infor-

mation such as the acoustic features of syllables and the production and perception

of speech are affected largely by the neighbouring contexts. Recent studies have

shown that regularity in speech also plays an important role in modulating delta

oscillations. To be specific, Kayser et al. (2015) manipulated the temporal structure

of speech by expanding or shrinking the pauses between syllables. Crucially, this

manipulation reduces entrainment in delta, but not theta, to the speech envelope.

Their results suggest that delta entrainment reflects the top-down processes that

are sensitive to speech regularities, rather than the bottom-up encoding processes of

acoustic features.

However, as Ding and He (2016) point out, while the behavioral results show high

accuracy for each condition with different percentage of jitters in Kayser et al. (2015),
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how regularity in speech affect language comprehension remains unclear if the brain

relies on the temporal regularities to predict upcoming sequences. Moreover, whether

rhythm variations at the phrasal level are sufficiently regular for a flexible delta

mechanism to drive a reliable segmentation process is yet to be tested (Ghitza, 2017).

A recent study has shown that regularity in speech does not affect the behavioral

results from a digit-recall task, as long as the rate for the target sequence falls in the

delta range. Ghitza (2017) conducted a context-free digit recall task and manipulated

the regularity of chunk size (regular chunk (e.g. 22222), and irregular chunk (e.g.

424)) and two prosodic cues (stimuli were recorded either consecutively as chunks

or recorded individually and connected afterwards), The psychophysical data show

that similar error patterns in both prosodic conditions, as long as the chunking rate

falls in the delta range. Based on the above findings, delta oscillations should adjust

rhythmicity in speech flexibly during language comprehension.

3.1.4 Summary

The current study aims to investigate how altering the temporal dynamics of

isochronous linguistic events affects entrainment to low-frequency neural activities.

Following Ding et al. (2016), the frequency-tagging paradigm is adopted in the exper-

iment. Speech rate and regularity in speech are manipulated. The frequency-tagging

paradigm, as Keitel et al. (2014) points out, can associate multiple concurrent events

to multiple frequencies of interest. That is, as mentioned earlier, if a syllable lasts

for 250 ms, then a two-syllable phrase lasts for 500 ms and a four-syllable sentence

lasts for 1 sec. Thus, the syllable-level processing is tagged at 4 Hz, the phrasal-level

processing at 2 Hz, and the sentence-level processing at 1 Hz. Two broad questions

are addressed in the present study. The first issue is the relationship between speech

comprehension and neural activities in the delta band. Four different syllable rates
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(250 ms, 200ms, 100 ms, 75ms) were tested and the accuracy of comprehension for

trials was computed. While the lowest compressed ratio is 0.3 for the 75ms/syl

condition in the current study, we would expect that comprehension is significantly

impaired in this condition, but not other conditions. Following Nourski et al. (2009),

we should find high comprehension accuracy, along with synchronization of speech

stimuli and cortical activities in the conditions of 250ms/syl, 200ms/syl, and 100ms/-

syl.

The second issue is whether neural activities in the delta band reflect a process

of packaging information from the input or a process of punctual events. Ghitza

(2017) focuses on examining acoustic-driven delta in the bottom-up segmentation

by using context-free digits recall tasks and providing psychophysical evidence. The

current study examines entrainment for the real sentences and aims to test pre-

dictions from the TEMPO model. The processing of real sentence would require

both bottom-up segmentation and top-down parsing and results in the interaction

between the acoustic-driven and context-driven delta. Since Ghitza (2017) have al-

ready shown that delta can be a acoustic-driven marker, the current study can show

the product of the interaction between acoustic-driven and context-driven delta. We

can indeed test whether TEMPO can be extended to explain the chunking processes

at the phrasal level. Similar to the second experiment in Ghitza (2017), syllable

rate was manipulated so that the chunking rate of a phrase can be either inside or

outside the delta frequency band. Different from Ghitza (2017), the current study

used time-compressed speech and controlled the length of syllables. Building on

the results from Ghitza (2017), we should not find the phrasal-level peaks if the

timing for phrasal composition falls outside of the delta range. However, if delta

entrainment reflects evoked responses, we would expect entrainment shown in every
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condition with a fixed speech rate. Also, based on Nourski et al. (2009), it is ex-

pected to find entrainment if the compressed ratio is above 0.4 and the sentences

are comprehensible. In addition, we would not expect entrainment in the conditions

with irregular speech rates, if the responses are hypothesized to actively adjust the

upcoming changes under the oscillation-based models. The current study also tests

how irregularity reflects on low-frequency oscillations. Three different syllable rhyth-

micity (regular, semi-regular, and irregular) were included. Based on Ghitza (2017),

if delta entrainment can flexibly adapt regularity in speech, we expect entrainments

to be observed in all conditions.

It should be noted that the signals measured in the current study reflect low-

frequency neural activities. One hypothesis is that the measurements reflect neural

oscillations. However, the current experiment does not allow us to conclude that the

results can be directly mapped to neural oscillations.

3.2 Experiment

3.2.1 Participants

Forty-two native speakers (28 females, 14 males) of Mandarin Chinese between

the age of 18 and 38 (mean = 24.6) participated in the experiment. They were all

right-handed and had normal hearing. They self-reported that they did not have any

neurological disorders. They gave informed consent and were reimbursed for their

time (15 USD/hour). Data from twelve participants were excluded from the analysis

due to having excessive noisy trials (>30 %). Thus, data from 30 participants (19

female, 11 males) were included in the final analysis.
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3.2.2 Materials

Following the experimental paradigm in Ding et al. (2016), syllables used in the

stimuli were recorded from the website developed by iFLYTek (https://www.xfyun.

cn/services/online_tts). Then syllables were compressed to 240 ms by using Praat

vocal toolkit (Corretge, 2020) and appended 10 ms silence to have the length of

250 ms in Praat (Boersma and Weenink, 2019). Table 3.1 shows the experimental

conditions and the frequency of interest for each condition. Three different syllable

rates were included: 250 ms, 200 ms, and 100 ms. Syllables with the rates of 200 ms

and 100 ms were compressed from the length of 250 ms, using Praat vocal toolkit also

(Corretge, 2020). Then syllables were combined into four-syllable sentences. Three

different rhythmicities were tested. That is, the regular condition included the fixed

syllable rate at 250 ms. The semi-regular condition included the fixed sequencing

syllable rate: 300 200 300 200 ms, and thus the sentence length was kept at 1

second. The irregular condition included random syllable length (either 200 ms or

300 ms) and the sentence length was also 1 second. Thus, total of five conditions were

included. Each condition had 60 trials in total and was presented in two separate

blocks composed into 30 trials. Each trial was made up of 10 sentences. In each

block, 30 trials included 20 grammatical trials and 10 semantically-implausible trials

(Table 3.2). For the semantically-implausible trials, we randomly select syllables

from the grammatical condition and assign them to the new four-syllable sequences

with their original syntactic positions unchanged. The stimuli were the same as the

conditions of the four-syllable sentence and the semantically-mismatched sequence

in the Chapter II, listed in the Appendix A.1. The whole experiment included 10

blocks (300 trials in total). Only grammatical four-syllable sentences were analyzed.

In addition to the above conditions, we added a condition with 75 ms per syllable
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during the middle of data collection. We found overall performed high accuracy in

all conditions. Thus we decided to include the 75 ms/syl condition to see whether

comprehension would be impaired under the ratio of 0.4. We report the intermediate

results from 17 subjects for this condition.

Table 3.1: Experimental conditions and frequency of interest

Condition
Regular:
250 ms/syl
(4Hz/syl)

Regular:
200 ms/syl
(5Hz/syl)

Regular:
100 ms/syl
(10Hz/syl)

Regular:
75 ms/syl
(13 Hz/syl)

Frequency of
interest

Sentence: 1 Hz
Phrase: 2 Hz
Syllable: 4 Hz

Sentence: 1.25 Hz
Phrase: 2.5 Hz
Syllable: 5 Hz

Sentence: 2.5 Hz
Phrase: 5 Hz
Syllable: 10 Hz

Sentence: 3.33 Hz
Phrase: 6.66 Hz
Syllable: 13.3 Hz

Condition Semi-regular:
300 200 300 200 ms

Irregular:
300 200 300 200,
300 300 200 200...

Frequency of
interest

Sentence: 1 Hz
Phrase: 2 Hz
Syllable: 4 Hz

Sentence: 1 Hz
Phrase: 2 Hz
Syllable: 4 Hz

Table 3.2: Example stimuli

Grammatical four-syllable sentence Semantically-implausible sequence
綿 羊 吃 草
mian yang chi cao
Cotton sheep eat grass
‘Sheep eat grass.’

軍 孩 奔 草
jun hai ben cao
Soldier child run grass

The power spectrum of the speech stimuli for different speech rates is shown in

Figure 3.1. We used Hilbert transformation to obtain the analytic signal from each

stimulus trial, and used the power of the analytic signal to compute the broad-band

envelope. We then computed the power spectrum by using fast Fourier transform.

The power spectrum was averaged over all trials for each condition. All the analyses

were done in Matlab. Only the syllable-level peak was found in these power spectra

(see Figure 3.1). Peaks appearing after the first peak are harmonic series. The

power spectrum for different rhythmicity is shown in Figure 3.2. Note that there

is a peak at 2 Hz in the semi-regular condition. It likely reflects the fact that the

temporal sequence is always 200ms 300ms 200ms 300ms. Every two syllables forms
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a rhythmicity at each 500 ms.

Figure 3.1: Power spectrum of speech stimuli for different speech rates

Figure 3.2: Power spectrum of speech stimuli for different rhythmicity
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3.2.3 Procedure

Participants sat comfortably in front of a computer screen in a quiet room. Prior

to the main session, participants were fitted with an electrode cap. Electrodes were

also affixed above and below the left eye. Electrolyte gel was applied to minimize

impedance. The setup took approximately 30 minutes. Then the stimulus volume

was set for each ear based on hearing level of each participant with the threshold of

45 dB determined using 1000 Hz tones (300 ms length). After setting up the volume,

a pre-test presenting 120 1,000 Hz tones was conducted to ensure the data quality

was sufficient to run the main session.

During the main session, participants were instructed to judge whether a trial

includes plausible sentences/phrases or not by button press. After the button press,

the next trial was played after a delay randomized between 800 - 1,400 ms (Ding

et al., 2016). Stimuli were presented with Psychopy2 (v1.84.2; Peirce, 2007, 2009).

Participants were also instructed not to frequently blink their eyes and avoid un-

necessary body position adjustment when the stimuli were presented. Participants

could take a short break between blocks. After the instructions, participants had a

practice session that included the training and testing phases to ensure that partici-

pants are used to different speech rates and familiar with the whole procedure of the

experiment. The training phase included 22 trials in total with different speech rates

and different answers controlled. Speech rates with 75 ms, 100 ms, 200 ms, 250ms,

300 ms, semi-regular 250 ms and irregular 250 ms were included. Four trials were

included for each 75 ms, 100 ms, 200 ms, 300 ms condition. Two trials were included

for each 250 ms, semi-regular 250 ms and irregular 250 ms condition to balance the

condition of syllable length and shorten the training phase. Participants completed

the training phase with the experimenter. The testing phase included 12 trials (2/per
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condition). During the training and testing phases, participants got feedback on the

screen for each trials. Comprehension in the testing phase was assessed and reported

in the result section. The order of blocks was counterbalanced across participants.

The main experiment took about 1 hour to finish. After the main session, partici-

pants washed their hair to remove the electrolyte gel and were debriefed about the

goals of the experiment.

3.2.4 EEG recording and data analysis

EEG data were recorded at 500 Hz from 61 active electrodes (actiCHamp, Brain-

Products GMBH) in a 0.01-200 Hz band with online reference to an electrode placed

on the left mastoid. Due to the technical issues caused by the machine, impedance

measurements were not available; electrodes with excessive noise were identified by

visual inspection. FieldTrip software (Oostenveld et al., 2011) was used to analyze

the data. Artifacts related to eye blinks were removed via Independent Component

Analysis (Jung et al., 2000; Makeig et al., 1995) and remaining artifacts were removed

manually following visual inspection. Following Ding et al. (2017), the first sentence

from each trial was excluded to avoid potential EEG responses to sound onset. Data

were filtered from 0.1-25 Hz, and re-referenced offline to a common average. Since

each condition differs in length, they afford different spectral resolution. To facili-

tate comparison between conditions, evoked power and ITPC were computed from

0.5 to 20 Hz in increments of 0.1 Hz with Hanning tapers after zero padding with

10 seconds. Inter-trial phase coherence and evoked power were computed based on

the equations given in Ding et al. (2017), as listed and defined in Equation (3.1-3.2).

To remove the trend of 1/f in the power spectra and test the statistical reliability,

evoked power at each frequency was normalized by the neighboring frequency bins

within ± 0.5 Hz via Equation 3.3 used in Ding et al. (2017). For statistical analysis,
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conditions were compared via one-way ANOVA for each measure at each frequency

of interest.

(1) Inter-trial phase coherence (ITPC) reflects phase coherence across trials

(Cohen, 2014). The summation of cosine and sine values of phase angle θk of each

complex-value Fourier coefficient is computed and then the square root of the sum-

mation is averaged over the total number of trials K. Higher ITPC indicates that

phase angles are consistent across trials.

R(f) =

√
(
∑

k(cosθk))
2 + (

∑
k(sinθk))

2

K
(3.1)

(2) Evoked power (EP) reflects the power of EEG responses that are phase-

locked and time-locked to speech stimuli. The Discrete Fourier Transform (DFT)

of the response in trial k is denoted as Xk(f) and Xk(f) is a complex-value Fourier

coefficient. Thus, evoked power is the summation of complex-value Fourier coefficient

of trials averaged over the total number of trials K.

E(f) =
1

k
|
∑
k

Xk(f) |2 (3.2)

(3) Normalized evoked power (EPn)

En(f) =
E(f)∑
w E(w)

, | w − f |< 0.5 Hz, w ̸= f (3.3)

w represents the neighboring frequency around the target frequency f.

3.2.5 Predictions

The regular 250ms/syl condition serves as a control condition. As in Ding et al.,

2016, 2017, and Chapter II, evoked power should be elicited at 1 Hz for sentence

rate, 2 Hz for phrasal rate, and 4 Hz for syllable rate. For the regular 200ms/syl

condition, the syllable rate falls in the theta range while the sentence rate and the

68



phrasal rate fall in the delta range. According to TEMPO and results from Ding

et al. (2016), cortical tracking should be observed at its corresponding frequency.

As for the regular 100ms/syl and 75ms/syl conditions, these are crucial conditions

since the phrase-level composition falls in the theta range, but not the delta. In

addition, the syllable rate falls out of the theta range in these two conditions. While

the sentence-level composition falls in the delta range and phrase-level composition

falls in the theta range, the functionalities of theta and delta entrainment can be

compared in these two conditions. That is, if delta entrainment, but not theta,

correlates with phrase/sentence-level comprehension, we should expect to see peaks

in the delta range, but not theta. However, if delta entrainment does not specifically

correlate with phrase/sentence-level comprehension, we might see the peaks related

to the phrasal-level processing appearing in the theta range. Based on the TEMPO

oscillation-based model, it is expected that neural responses might lose track of

syllables for the 75ms/syl condition. However, it is unknown whether the failure

of tracking syllables leads to the failure of tracking the higher information. As for

the semi-regular and irregular conditions, based on the psychophysical data that

different prosodic cues do not affect the error pattern in Ghitza (2017), we should

expect that entrainments can be observed in both conditions if delta oscillations can

flexibly adapt rhythmicity.

3.3 Results

3.3.1 Comprehension score

The overall accuracy percentage in the practice session is 98%. The overall accu-

racy in the main session is 98%. Figure 3.3 shows the accuracy percentage for each

condition. This indicates that even at very rapid rates, participants show a high

degree of comprehension after just a few minutes of exposure (Ahissar et al., 2001;
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Nourski et al., 2009).

Figure 3.3: Accuracy percentage for each condition (Red dot: mean; Red line: +/-1 SD)

3.3.2 EEG results

The current experiment manipulates different speech rates and different rhythmic-

ities to examine the functional significance of low-frequency neural activities. The

following results first compare the conditions with different speech rates and then

conditions with different rhythmicities.

First, we computed ITPC and EPn for each condition with different speech rates.

ITPC measures the phase consistency of neural responses to stimuli across trials

while EPn computes the normalized amplitude synchronized with speech stimuli.

Figure 3.4 shows the ITPC and Figure 3.5 shows EPn computed from 0 to 14 Hz for

each condition. Note that there is an edge effect shown in the results of EPn across
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conditions. The edge effect might come from the algorithm that removes 1/f trend.

Figure 3.4: Inter-trial phase coherence for conditions with different speech rates. Regular:75ms
shows the results from the subset of N = 17.
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Figure 3.5: Normalized evoked power for conditions with different speech rates. Regular:75ms
shows the results from the subset of N = 17.

Peak values for each frequency of interest are plotted in Figure 3.6. Peaks at 7

Hz in the 250/syl condition serves as a baseline activation. For ITPC, no significant

difference in the amplitude of the sentence-level peak across the conditions (p = 0.25,

η2 = 0.032). For the phrasal-level, there is a statistical significance (p < 0.001, η2 =

0.18). Post-hoc pairwise Tukey tests were also conducted for the phrase-level. There

is no difference between 250ms/syl and 200ms/syl (p = 0.71). A difference was found

between 250ms/syl and 100ms/syl (p < 0.001) and between 200ms/syl and 100ms/syl

(p < 0.01). As for the syllable-level, a statistically significant effect was found when

comparing the speech rates (p = 0.001, η2 = 0.84). The post-hoc pairwise Tukey

tests show that there was no significant difference between 250ms/syl and 200ms/syl

(p = 0.83). A significant difference was found between the 250ms/syl and 100ms/syl
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(p < 0.001) and 200ms/syl and 100ms/syl (p < 0.001). Summarizing, syllable and

phrasal peaks are significant lower for 100 ms than for 200 ms and 250 ms speech

rates, while the sentence-level peak shows a small decline for 100 ms alone. The

results suggest neural responses lose tracking of syllable if syllable rates fall outside

of the theta band and also lose tracking of phrase if the rate of composing a phases

falls outside of the delta band.

For EPn, the one-way ANOVA test shows that there is a statistical reliable effect

at the sentence-level (p < 0.001, η2 = 0.36). Post-hoc pairwise Tukey tests show

that there is no significant difference between 250ms/syl and 200ms/syl(p = 0.09).

A significance was found between 250ms/syl and 100ms/syl (p < 0.001) and between

200ms/syl and 100ms/syl (p < 0.001). As for the phrase-level, a significant effect was

found (p < 0.001, η2 = 0.46). Post-hoc pairwise Tukey tests show that no significant

difference was found between the 250ms/syl and 200ms/syl (p = 0.37). A significant

difference was found between 200ms/syl and 100ms/syl (p < 0.001) and between

250ms/syl and 100ms/syl (p < 0.001). For the syllable-level, a significant effect was

found (p < 0.001, η2 = 0.64). Post-hoc pairwise Tukey test shows that a significant

difference in all paired comparisons (250ms/syl vs. 200ms/syl: p < 0.05; 250ms/syl

vs. 100ms/syl: p < 0.001; 200ms/syl vs. 100ms/syl: p < 0.001).
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Figure 3.6: ITPC and EPn across conditions with different speech rates. Peaks at 7-Hz in the
250/syl condition serves as a baseline activation.

Second, we compare different regularities. Figure 3.7 shows the ITPC and Figure

3.8 shows EPn computed from 0 to 14 Hz for each condition.
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Figure 3.7: Inter-trial phase coherence for conditions with different rhythms.
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Figure 3.8: Evoked power for conditions with different rhythms.

Peak values for each frequency of interest are plotted in Figure 3.9. Peaks at 7

Hz in the irregular condition serves as a baseline activation. For ITPC, there is also

no statistical reliable effect in the comparison of sentence-level peaks (p = 0.08, η2

= 0.06). There is also no significant differences in the comparison of phrasal-level

peaks (p = 0.87, η2 = 0.003). As for the syllable-level, a significant difference was

found (p < 0.001, η2 = 0.2). Post-hoc pairwise Tukey tests show that no significant

difference was found between the regular 250ms/syl and semi-regular condition (p <

0.05). A significant difference was found between the regular 250ms/syl and irregular

condition (p < 0.001) and between the semi-regular and irregular conditions (p <

0.05). Overall, the results suggest that delta entrainment can flexibly adjust speech

rhythmicity, in line with the behavioral results from Ghitza (2017).

As for EPn, a significant difference was found in the comparison of sentence-level
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EPn (p < 0.01, η2 = 0.1). Post-hoc pairwise Tukey tests show that no significant

difference was found between the regular 250ms/syl and the semi-regular condition (p

= 0.6) and between the semi-regular and irregular conditions (p = 0.1). A significant

difference was found between the regular 250ms/syl and the irregular condition (p <

0.05). For the phrasal-level EPn, no significant difference was found (p = 0.85, η2 =

0.003). As for the syllable-level EPn, a significant difference was found (p < 0.001,

η2 = 0.19). Post-hoc pairwise Tukey tests show that there is a significant difference

between the regular 250ms/syl and the irregular condition (p < 0.001) and between

the semi-regular and irregular condition (p < 0.05). There is no significant difference

between the regular 250ms/syl and the semi-regular condition (p = 0.17).

Figure 3.9: ITPC and EPn across conditions with different rhythmicities. Peaks at 7-Hz in the
250/syl condition serves as a baseline activation.
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We added a new 75ms/syl condition during the middle of data collation. Here

we compared different speech rates with the condition 75ms/syl included for a sub-

set of N=17 subjects. Peak values for ITPC and EPn are shown in Figure 3.10.

Peaks at 7 Hz in the 75/syl condition serves as a baseline activation. Overall, the

statistical results including 75ms/syl are in line with previous results. For ITPC, no

significant difference was found between all conditions at the sentence-level. As for

the phrasal-level, post-hoc pairwise Tukey tests show that no significant difference

was found between 250ms/syl and 200ms/syl (p = 0.99) and between 100ms/syl and

75ms/syl (p = 0.99). A significant difference was shown in other paired comparisons

(250ms/syl vs. 100ms/syl:p < 0.001; 250ms/syl vs. 75ms/syl: p < 0.001; 200ms/syl

vs. 100ms/syl: p < 0.001; 200ms/syl vs. 75ms/syl: p < 0.001). As for the syllable-

level, post-hoc pairwise Tukey tests show that no significant difference was found

between 250ms/syl and 200ms/syl (p = 0.99) and between 100ms/syl and 75ms/syl

(p = 0.99). A significant difference was shown in other paired comparisons (250ms/-

syl vs. 100ms/syl: p < 0.001; 250ms/syl vs. 75ms/syl: p < 0.001; 200ms/syl vs.

100ms/syl: p < 0.001; 200ms/syl vs. 75ms/syl: p < 0.001).

As for EPn, in the sentence-level peaks, post-hoc pairwise Tukey tests show that

no significant difference was found between 250/ms and 200/ms (p = 0.7) and be-

tween 100ms/syl and 75ms/syl (p = 0.99). A significant difference was shown in other

paired comparisons (250ms/syl vs. 100ms/syl:p < 0.001; 250ms/syl vs. 75ms/syl: p

< 0.001; 200ms/syl vs. 100ms/syl: p < 0.001; 200ms/syl vs. 75ms/syl: p < 0.001).

For the phrase-level, post-hoc pairwise Tukey tests show that no significant differ-

ence was found between 250ms/syl and 200ms/syl (p = 0.34) and between 100ms/syl

and 75ms/syl (p = 0.87). A significant difference was shown in other paired com-

parisons (250ms/syl vs. 100ms/syl:p < 0.001; 250ms/syl vs. 75ms/syl: p < 0.001;
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200ms/syl vs. 100ms/syl: p < 0.001; 200ms/syl vs. 75ms/syl: p < 0.001). As for

the syllable-level, post-hoc pairwise Tukey tests show that no significant difference

was found between 250ms/syl and 200ms/syl (p = 0.09) and between 100ms/syl and

75ms/syl (p = 0.99). A significant difference was shown in other paired comparisons

(250ms/syl vs. 100ms/syl:p < 0.001; 250ms/syl vs. 75ms/syl: p < 0.001; 200ms/syl

vs. 100ms/syl: p < 0.001; 200ms/syl vs. 75ms/syl: p < 0.001).

Figure 3.10: The comparison of inter-trial phase coherence and evoked power for conditions with
different speech rates (17 subjects included). Peaks at 7-Hz in the 250/syl condition serves as a
baseline activation.

3.4 Discussion

In this frequency-tagging experiment, we investigate temporal dynamics at dif-

ferent scales with variation of speech rates and regularities. Results have shown
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that all conditions have high accuracy in comprehension. As for the results of os-

cillatory activities, as a control, we see the syllable-level peak at 4 Hz, phrasal-level

peak at 2 Hz, and sentence-level peak at 1 Hz for both ITPC and EPn in 250ms/-

syl condition. In 200ms/syl condition, we also see robust peaks occurring at 5 Hz

for the syllable-level processing, 2.5 Hz for the phrasal-level processing, and 1.25

Hz for the sentence-level processing for ITPC. Robust peaks were also observed in

EPn for the phrasal-level and sentence-level processing, but statistical weaker peak

for the syllable-level processing, compared to the baseline. As for the 100ms/syl

condition, only the sentence-level peak is not statistically different from the above

two conditions in ITPC. Same results were also shown in the 75ms/syl condition.

However, EPn results show that statistically weaker peaks in all levels of process-

ing in 100ms/syl, compared to the 250ms/syl and 200ms/syl conditions. As for the

variation of regularity, ITPC results show that a significant difference was found

at the syllable-level processing, but not the phrasal-level and sentence-level process-

ing, suggesting rhythmicity plays a role in syllable tracking, but not influence the

higher-level processing. EPn results show that the irregular condition has weaker

peak at the sentence-level and the syllable-level processing, but not the phrasal-level

processing.

In the current study, high accuracy of comprehension was found among all con-

ditions. Inconsistent with the previous findings (Ahissar et al., 2001; Nourski et al.,

2009), high accuracy of comprehension was even found in 75ms/syl conditions (a

compression ratio of 0.3). For the 250ms/syl and 200ms/syl conditions, as expected,

syllables are tracked well when the frequency of syllable falls in the theta range.

In addition, the phase consistency is robust in both the phrase and sentence levels.

The 100ms/syl and 75ms/syl conditions show no statistically reliable effect at the
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sentence-level, compared to the 250ms/syl and 200ms/syl conditions, suggesting a

phase consistency at the sentence-level was also found in both conditions. Taken

together the higher accuracy of comprehension and the robust phase consistency in

these two conditions, the results provide supporting evidence for the relationship be-

tween delta entrainment and the processes of comprehension that involve high-level

information.

Consistent with the previous studies (Ding et al., 2014; Kayser et al., 2015; Park

et al., 2015), theta and delta entrainments play different role in language comprehen-

sion. In the present study, the preservation of delta entrainment and the reduction

of theta entrainment suggest different functionalities at different time scales. Since

the timing for the completion of a whole sentence in these two conditions falls in

the delta range, parsers have time to extract semantic and syntax information and

achieve a successful comprehension. On the other hand, the data also shows that

this high-information processing relates to the delta range specifically, but not the

theta range. In both fast conditions, the frequency of the phrase-level processing 5

Hz and 6.6 Hz respectively, which fall in the theta range. The phase consistency are

significantly lower than the ones in the other two conditions. These results support

the view from Howard and Poeppel (2010), that theta entrainment reflects the pro-

cesses of directly encoding acoustic features and syllable parsing, but not processes

relating to syntax and semantics.

The results also support the view that delta entrainment reflects a top-down pre-

dictive process. Previous fMRI studies have shown that activities from the high-order

frontal regions modulate the activities from the lower-order temporal regions when

speech is intelligible but distorted (Davis and Johnsrude, 2003; Giraud et al., 2004).

However, as pointed out by Davis and Johnsrude (2007), it is difficult to dissociate
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the bottom-up processing and the top-down processing and align the neural responses

with these processes separately in the time domain since speech unfolds over time.

The present study provides evidence from the frequency-domain and suggests that

the observed sentence-level phase coherence with the absence of the syllable-level

phase coherence indicates a top-down predictive process. From the 100ms/syl and

75ms/syl conditions, the syllables do not appear to lead to neural entrainment but

there is still a robust phase consistency found at the sentence-level and the high

accuracy of comprehension is shown. Even though losing track in syllables from the

bottom-up processing, the top-down processing allows parser to access the high-level

information in a longer time window and aid language comprehension. However, as

Lewis (2020) points out, it is still unclear when the system knows that it is time

to rely more on the top-down or bottom-up information to modulate low-frequency

neural activities. The current results suggest that we rely more on top-down infor-

mation when speech becomes fast. However, whether there is an ongoing change

of weighting between the top-down and bottom-up information remains unknown.

More fine-grained future studies are needed to test how low-frequency neural re-

sponses reflect the balance between the top-down and bottom-up processing.

The high accuracy may reflect the fact that comprehension was measured with

an offline task. Participants had at least 3 seconds, up to 10 seconds, to process

input before rendering a judgment and they could make the judgment having just

processed a few phrases in the trial. In addition, parsers are possible to get used to

the faster speech rates by listening multiple times. This would require more future

work to rule out this possibility.

Inconsistent with evoked models, our results suggest that delta oscillations elicited

from the frequency-tagging paradigm are not responses that merely reflect the rhythms
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from the external speech or internally generated punctual operations. In line with the

oscillation-based models, theta and delta oscillators are expected to flexibly adapt the

speech rates so that each cycle of theta and delta is able to segment discrete syllables

or words/phrases from connected speech. Our results have shown that entrainment

was found among conditions with different speech regularities. Furthermore, the

current results also provide neural evidence supporting the behavioral results from

Ghitza (2017). If the chunking rate of a phrase falls in the delta range, comprehen-

ders are able to achieve successful segmentation. This is shown in the 100ms/syl and

75ms/syl conditions, where display the sentence-level phase coherence only but not

the phrase and syllable levels of phase coherence.

Consistent with Ghitza (2017), the results show that delta entrainment can flexi-

bly adapt to rhythmicity in speech. As shown in Figure 3.9, no significant difference

was found at the sentence and phrase levels, suggesting a robust phase consistency

in all conditions with different regularities. This rhythmicity is not reflected on the

syllable-level oscillations. As shown in Figure 3.9, when the syllable rhythm became

more irregular, the phase consistency (ITPC) became lower gradually. These find-

ings also support that the role for delta entrainment reflects the quality of speech

perception Kayser et al. (2015).

3.5 Summary of the study

The current study investigates the temporal dynamics of information integration

reflected on low-frequency neural activities by manipulating temporal properties of

stimuli. Different speech rates and regularities were manipulated and a frequency-

tagging paradigm was used during an EEG recording. High accuracy of comprehen-

sion was shown among all conditions. Phase consistency was shown at the sentence-
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level in all conditions with different speech rates, suggesting a top-down predictive

role for neural activities in the delta band. Furthermore, inconsistent with evoked

models, phase consistency across conditions with different regularities was observed

and delta entrainment at the sentence-level across conditions with different speech

rates were shown, suggesting that the observed neural oscillations reflect endoge-

nous signals, as proposed by the oscillation-based models. Moreover, the results also

support the view that delta entrainment reflects a flexible process as it can adapt

to different speech rhythms of stimuli. Taken together, these results narrow down

how speech rates and regularity can affect language comprehension and how these

processes are reflected on low-frequency neural activities.
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CHAPTER IV

Testing Semantic Compositionality in Low-Frequency
Neural Activity

4.1 Introduction

Cortical oscillatory activity plays a critical role in transferring and conveying infor-

mation for multiple fundamental cognitive functions such as memory, attention, and

language (Meyer, 2018; Ward, 2003). For language particularly, a growing number

of studies have associated different ranges of neural oscillatory activity with different

levels of linguistic representation in speech and language processing (see review in

Meyer, 2018). Specifically, delta oscillations (0.5-4 Hz) have been linked with the

processing of abstract hierarchical structure (Ding et al., 2016), theta oscillations (4-

8 Hz) have been associated with syllable processing (Giraud and Poeppel, 2012; Luo

and Poeppel, 2007), and the high-frequency ranges such as beta and gamma have

been linked with the processing of phonemic feature in speech (Di Liberto et al.,

2015; Gross et al., 2013) and predictive coding framework in semantic processing

(Lewis and Bastiaansen, 2015; Lewis et al., 2017).

Recent work has associated delta oscillations with the chunking processes of con-

tinuous speech and the reflection of hierarchical information processing (Bonhage

et al., 2017; Meyer et al., 2016; Meyer and Gumbert, 2018). These studies look at

oscillatory power and phase to linguistic stimuli that vary structure and semantics.
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For example, Bonhage et al. (2017) report that delta power increases when partic-

ipants encode German six-word sentence fragments, relative to random word lists,

suggesting the role of delta oscillations in an automatic linguistic chunking process.

In line with the above finding, Meyer et al. (2016) have shown phase modulation

of the delta range in the processing of ambiguous German sentences, regardless of

prosodic cues.

In addition to the above studies, there are findings with isochronous speech show-

ing that neural activities in the delta band may entrain to syntactic structure (Ding

et al., 2016; Ding et al., 2017). Ding et al. (2016) observed spectral peaks at 1 Hz,

2 Hz, and 4 Hz from a MEG recording when Mandarin native speakers listened to a

continuous speech presented at a fixed rate of 4 syllables-per-second. Without phys-

ical cues for the two-word phrase and the four-word sentence in the speech stimuli,

the neural signals shown at 1 Hz thus reflect the processing of sentence-level while

the signals at 2 Hz reflect the phrasal-level processing. However, numerous linguistic

processes correlate with hierarchical structure, including syntactic parsing, semantic

composition, conceptual processing (Pylkkänen, 2019). It is not yet clear whether,

and in what way semantic information engages in modulating neural activities in the

delta band. Using isochronous speech, the current study focuses on a variety of fac-

tors associated with different aspects of semantic combinatorial processing in order

to narrow down the kinds of representations that are associated with low-frequency

entrainment to linguistic structure.

4.1.1 Delta oscillations correlate with syntactic and semantic processing

As mentioned above, neural activities in the delta band may reflect the processing

of hierarchical information. However, what high-level information modulates neu-

ral activities in the delta band remains unclear. Prior work has shown that delta
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oscillations can be associated with the processing of syntactic information. Meyer

and Gumbert (2018) show evidence for the role of delta-band oscillations with the

processing of syntactic structure. Electrophysiological signals were recorded when

participants listened to sentences with morphological violations and then were asked

to detect violations. They observed that delta-band oscillations are phase-locked

to the syntactic structure of speech stimuli and a correlation between the syntactic

surprisal value and the phase is shown in the study, suggesting that the syntactic

knowledge for the incoming word facilitates language processing and thus cause the

alignment of neural excitability and syntactic information.

In addition, delta oscillations have been associated with combinatorial processes

which involve syntax and semantics. Kaufeld et al. (2020) recorded EEG signals

when participants listened to naturalistic stimuli. Four types of stimuli were tested

in the study: (1) sentence condition which includes structure, lexical semantics, and

prosody, (2) jabberwocky condition which includes structure and prosody, but not

lexical semantics, (3) word-list condition which includes lexical semantics, but not

prosody and structure, and (4) reversed speech as a control. Their results reveal

that the mutual information between neural signals and speech stimuli is higher at

the phrasal (0.8-1.1 Hz) and word (1.9-2.8 Hz) timescales in the sentence condition,

compared to the jabberwocky and word list conditions. The results suggest that

combinatorial semantics plays a role in modulation of delta oscillations.

Moreover, delta oscillations have been linked to the reflection of word-level seman-

tics. Frank and Yang (2018) simulated a model which encodes words and syntactic

categories as vectors in a high-dimensional semantic space (a “word embedding”).

Similar as findings from Ding et al. (2016), they found peaks at 1, 2, 4 Hz in the

sentence condition, suggesting that neural activities in the delta band may follow
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from the tracking of word-level semantics or the regularities of syntactic categories

and are not necessarily interpreted as the cortical entrainment for hierarchical struc-

tures. Based on the results, neural activities in the delta band may correlate with

lexical semantics of each word to some degree.

From the above, neural activities in the delta band may be modulated by syntac-

tic information, combinatorial semantics, and lexical semantics. However, whether

neural activities in the delta band can be modulated by semantic information is still

under debate. Mai et al. (2016) conducted an EEG experiment using Mandarin nine-

syllable sentences as stimuli. Three conditions were included: real-word (as shown

in 1), pseudo-word (as shown in 2), and backward condition of real-word or pseudo-

word. In order to prevent participants making prediction, the sentences in real-word

condition were actually semantically-anomalous but syntactically-acceptable. For

the pseudo-word condition, two adjacent syllables did not form a meaningful word

(i.e. word list). They did not find increased delta power in the real-word condition

as compared to the pseudo-word condition, inconsistent with the results from Ding

et al. (2016). They only found that increased delta power in the real-word and the

pseudo-word conditions, relative to backward condition. They suggest that the delta

frequencies track the phonetic features and involve in phonological processing, but

not semantic processing. However, inconsistent with the above finding, Mai and

Wang (2019) re-analyzed the data from Mai et al. (2016) and had a different inter-

pretation for delta oscillations. While Mai et al. (2016) computed normalized EEG

power after the Hilbert transform, Mai and Wang (2019) adopted multivariate tem-

poral response functions (mTRF) to directly map multiple bands of speech envelopes

to EEG signals. They found that the entrainment in the delta band was larger in

the pseudo-word condition than the real-word and backward condition. Additionally,

88



the absolute weighting of temporal properties for mTRF, which reflects the degrees

of neural entrainment across time series, was greater for the theta band in the early

time lags (0-160 ms), compared to the late time lags (160-300 ms). Contrast to the

the results of the theta band, the delta shows no significant difference between the

early and late time series, suggesting that delta oscillations involve both phonological

and high-level processing.

(1) wanglu

internet

xihuan

enjoy

jianjiang

tough

DE

DE

kongqi

air

(2) shu

book

xi

learn

sheng

born

yu

universe

shu

tree

fei

fly

DE

DE

shi

vision

shen

body

Aligned with the above findings with non-entrainment approach, as mentioned al-

ready, other studies have shown that neural signals appear to be entrained to abstract

linguistic structures when listening to isochronous speech (Ding et al., 2016;Ding

et al., 2017). Martin and Doumas (2017) propose a model to account for the findings

in Ding et al. (2016). The model adopts a time-based binding mechanism, which

demonstrates the fully parsing steps and allows the representations to be bound by

using asynchrony of firing units and thus having different levels of representations

without losing the information for each representation. The model has different layers

representing different levels of a hierarchical structure. Take an adjective phrase “dry

fur” for example. The model encodes semantic features for each word at the lowest

layer, word information such as [dry adj] and [fur noun] is encoded in the second layer

and they fire at an asynchrony. Then the layer above encodes phrase information

and will be activated after [dry adj] and [fur noun] fire. A simulation was conducted

by using the English stimuli from Ding et al. (2016). The simulation results show
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that the grammatical condition (e.g. dry fur rub skin) elicits spectral peaks at 1 Hz,

2 Hz, and 4 Hz, consistent with the experimental results from Ding et al. (2016).

They further show that the word list condition (i.e. no syntactic relationship be-

tween words) shows the 4-Hz peak only. Similar to the grammatical condition, the

jabberwocky condition (i.e., Syntactic relationship between words is preserved but

no plausible semantic composition is possible.) shows the power increases at 1 Hz,

2 Hz, and 4 Hz, suggesting that the hierarchical structures were activated. Their

results suggest that neural activities in the delta band correlate with syntactic and

semantic composition. Moreover, in our Chapter II, by using isochronous speech,

we observed the 4-Hz peak only when the speech stimuli are semantically-anomalous

but syntactically-preserved, suggesting that semantic information indeed plays a role

in delta oscillations to some degree.

From the above, studies from both non-entrainment and entrainment approaches

support the role of neural activities in the delta band in hierarchical processing.

However, this hierarchical processing can be related to either syntactic or semantic

information. Even from the very basic two-word composition, prior work has shown

that the combinatorial processes indeed involve a semantic component (Bemis and

Pylkkänen, 2011; Bemis and Pylkkänen, 2013a; Bemis and Pylkkänen, 2013b). Be-

mis and Pylkkänen (2011) examined the processing of two-word simple phrases by

comparing the neural activities between the phrase (e.g. red boat), the non-phrase

(e.g. xkq boat and the list condition (e.g. cup boat) during an MEG recording. An

increased activity was found in the noun at roughly 250 ms in the anterior temporal

lobe (ATL) for the phrase condition. Moreover, as the studies with non-entrainment

approach show (e.g. Kaufeld et al., 2020), results support either direction and thus

it remains unclear what high-level information is reflected in the modulation of delta
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oscillations.

4.1.2 Semantic variables in semantic processing

Semantic information can affect hierarchical processing in various ways. Specif-

ically, predictability, which indicates the predicted lexico-semantic activation, and

plausibility, which indexes post-semantic result of semantic composition, are asso-

ciated with the ERP component N400 in previous work (Nieuwland et al., 2019).

Semantic similarity, which indexes lexical activation, is also a key factor examined

in semantic processing. Semantic specificity, which is used to index conceptual com-

binatorics, has been associated with basic composition in the ATL. Taken together,

the present study probes which, if any, of semantic variables might modulate delta

oscillations. The following reviews the above semantic variables that may involves

in hierarchical processing.

Low-frequency oscillations can be contributed by slow event-related responses

such as the P300, N400, and P600 (Park et al., 2015, Zhou et al., 2016). For exam-

ple, Park et al. (2015) found that the top-down information, which was computed

from the difference between the transfer entropy (i.e., the directed statistical de-

pendencies between two signals) in story and backward condition, modulate the

phase of low-frequency oscillations in the left auditory cortex, consistent with the

finding that the context-specific N400 observed in the left hemisphere (Federmeier,

2007). Additionally, Park et al. (2015) point out that the N400 originates from the

delta and theta oscillations and they are all localized in the left hemisphere. Previ-

ous studies have demonstrated that various semantic variables modulate the N400,

which is a negative-going ERP component occurring centro-parietally within roughly

250-500 ms post-stimulus and sensitive to semantic processing (Kutas and Hillyard,

1980, 1984). Specifically, the N400 can be modulated by word predictability, which
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indicates the statistical association between words. Word predictability can be for-

malized by different methodologies. For example, it can be obtained from cloze

probability and acquired from an offline fill-in-blank task. Words with high cloze

probability means that a word is highly-predicted based on its sentence context.

Kutas and Hillyard (1984) have shown that the amplitude of the N400 is negatively

correlated to the cloze probability. That is, less-expected words show a greater N400

than highly-expected words. Word predictability can also be obtained from lan-

guage models and may be characterized as surprisal (Hale, 2001), which indicates

the amount of information conveyed by a word w in a context C, as formulated in

(3). Words with high surprisal values indicate that words are less-predicted as they

convey more information. Prior work such as Frank et al. (2015) has shown that

word surprisal correlates with the amplitude size of the N400, providing supporting

evidence for the relationship between word predictability and the N400.

(3) surprisal(w) = -log2(p(w|C))

Several studies have shown that word predictability modulates high-frequency

neural activities in the beta and gamma ranges (Lewis and Bastiaansen, 2015; Moli-

naro et al., 2013; Wang et al., 2012a; Wang et al., 2012b). For example, Wang and

colleagues (2012a) recorded brain’s magnetic fields when participants listened to sen-

tences including either congruent ending or incongruent ending. Their results have

shown a positive linear relationship between the N400m and the beta power (16-19

Hz). That is, decreased beta power was found in the sentences with incongruent

ending and also a N400m component was shown in that condition, compared to the

sentences with congruent ending. In addition, Wang et al. (2012b) further show that

the increased gamma power (40-50 Hz) was found in the sentences that are both
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congruent and highly predictable, relative to the sentences that are congruent but

less predictable and the sentences that are incongruent and unpredictable. The re-

sults suggest the gamma power change relates to the predictability of the upcoming

word. Contrary to the high-frequency neural activities, low-frequency neural activ-

ities are not sensitive to predictability. Ding et al. (2016) manipulated transitional

probability between words. Words with equal transitional probability and varying

transitional probability are included. They found that neural tracking of sentence

is shown in both conditions, suggesting that low-frequency neural activities are not

affected by predictability.

In addition to word-level processing, sentence plausibility, which indicates the

consequence of semantic composition and world knowledge, is also considered as a

critical factor for the modulation of the N400 (Nieuwland et al., 2019). The plausi-

bility of sentence can be acquired by asking people to judge whether the sentence is

plausible or not. Some studies have shown that less plausible words are difficult to

be integrated in world knowledge and context as compared to highly-plausible words

(Hagoort et al., 2004; van Berkum et al., 1999). Moreover, Nieuwland et al. (2019)

found that the N400 is correlated to word predictability at roughly 200-500 ms post-

stimulus with the peak occurring at about 330 ms. As for plausibility, the N400

is elicited at approximately 200-650 ms post-stimulus with the peak at about 350

ms. The association of the N400 and two different processing timings for word pre-

dictability and plausibility suggest that the N400 reflects prediction from beginning

and integration afterwards, which supports the view of multiple processes occurring

in the N400 time window. In other words, people tend to form predictions by pre-

activating the upcoming word based on the semantic features or previous context

and then integrate the word into context and world knowledge in the sentence-level.
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A growing number of studies also show that plausibility relates to high-frequency

neural activities (Hald et al., 2006; Hagoort et al., 2004). For example, Hagoort

et al. (2004) relates gamma power changes to high integration demands. An in-

creased gamma power was shown in the sentences that violates world-knowledge but

still semantically congruent (e.g. The Dutch train are WHITE and very crowded),

compared to the sentences that are semantically congruent (e.g. The Dutch train are

YELLOW and very crowded) and the sentences that are semantically incongruent

(e.g. The Dutch train are SOUR and very crowded). However, inconsistent with the

above findings, Hald et al. (2006) found that an increased gamma power change was

found in the semantically-correct sentences (e.g. The Dutch trains are YELLOW

and blue.), relative to the semantically-incongruent sentences (e.g. The Dutch trains

are SOUR and blue.). These studies show that sentence plausibility might play a role

in modulating oscillations but it remains unclear whether these oscillations could be

robustly modulated by sentence plausibility.

In addition, semantic similarity between words, which indicates lexical-level se-

mantic relationship between words, can affect semantic processing. Semantic sim-

ilarity can be computed from using latent semantic analysis, which extracts and

represents meaning by using vectors to indicate semantic distance in a large corpus

(Landauer and Dumais, 1997) or word2vec, which trains a neural network to pre-

dict words from a context (Mikolov et al., 2013). Previous studies have shown that

semantic similarity can modulate semantic priming effects in naming tasks (Jones

et al., 2006) and lexical decision tasks (Günther et al., 2016). Several studies have

shown that the modulation of the N400 correlates to semantic similarity. For ex-

ample, Ettinger et al. (2016) computed semantic distance between the critical word

and its previous context for the stimuli in Federmeier and Kutas (1999) and found
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the correlation between the N400 and the semantic distances. Frank and Willems

(2017) also found that the N400 is affected by both surprisal model and semantic

similarity model. Both models show the similar onset and offset of the effect and

also the similar effect size. However, inconsistent with the above findings, Nieuwland

et al. (2019) did not find that the semantic similarity affects the modulation of the

N400.

A recent study also suggests that the semantic relatedness does not modulate low-

frequency neural activities. Jin et al. (2020) tests the association between semantic

similarity and chunking structure by using MEG recording. During the experiment,

participants were asked to chunk a sequence of words into 2-word chunks and find

whether there is an invalid chunk in a trial. Stimuli are either living things (L) or

non-living things (N). Two conditions were included: the same-category condition

consists of LL and NN as valid chunks while the different-category condition consists

of NL and LN as valid chunks. The two conditions were presented in separate blocks.

Both conditions was either presented in a regular order or in a random order. Three

simulation models were built based on different hypotheses. The lexical property

model was built by encoding word-level information only. The semantic relatedness

model was built based on semantic similarity between words but no further infor-

mation for syntactic structures. The rule-based chunking model assumes a constant

change of neural responses within a chunk and predicts different neural trackings for

different chunk rules. The MEG results show that the significant increased power at

the chunk rate, which is consistent with the predictions from the semantic related-

ness model and rule-based model, regardless of the alternating order or the random

order of the stimuli presentation. Moreover, consistent with the simulation from

the rule-based model, the phase difference between conditions is closer to 0 while

95



the semantic relatedness model predicts a 180 phase difference. Their results show

that neural activities in the delta band track the chunking rules, rather than word

properties.

Another approach looks into semantic processing by examining the neural basis

of semantic composition and conceptual combination in simple phrases (Bemis and

Pylkkänen, 2011; Westerlund and Pylkkänen, 2014; Zhang and Pylkkänen, 2015).

For example, Westerlund and Pylkkänen (2014) conducted a MEG experiment to

compare the conditions where the general nouns (e.g. boat) and the specific nouns

(e.g. canoe) are modified by an adjective (e.g. blue). In addition, they included the

conditions that block the composition by having consonant clusters (e.g. qktz) in

the modifier position. They found that the general noun with the modifier elicited

greater activity than the specific noun with the modifier at 221-264 ms. Also, they

found that the specific noun elicited greater activity than general noun in the non-

combinatorial conditions. Their results suggest that the left anterior temporal lobe

(LATL) involves both the processing of composition and also the processing of the

conceptual specificity. Crucially, they demonstrated that the conceptual specificity

involves in the modulation of neural activities at very early processing stage. Based

on the findings, neural activity can be modulated by conceptual specificity during

semantic processing.

To sum up, semantic processing involves several different components such as

pre-activating an upcoming word, composing two elements to form meaning, and

integrating the word into sentences as sentence unfolds. How to integrate different

semantic components to achieve successful sentence processing and how this process

reflects on the neural oscillations remains unclear. The current study examines the

above four factors (i.e., predictability, plausibility, semantic similarity, and concep-
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tual specificity) to see how these factors modulate the neural activities in the delta

band and provide a link between the slow-wave event-related response N400 and the

low-frequency neural responses.

4.2 Experiment

The goal of the current experiment is to examine what aspects of semantic infor-

mation modulate neural activities in the delta band. The current experiment tests

the following semantic variables: (i) predictability, which denotes statistical associ-

ation between words; (ii) plausibility, which represents the consequence of semantic

composition and world knowledge; (iii) specificity, which reflects the outcome of

composition itself; and (iv) semantic similarity, which represents the basic semantic

relationship based on the co-occurrence of words within a context. It should be noted

that the signals measured in the current study reflect low-frequency neural activities.

One hypothesis is that the measurements reflect neural oscillations. However, the

current experiment does not allow us to conclude that the results can be directly

mapped to neural oscillations.

4.2.1 Participants

Twenty-one native speakers (10 females, 11 males) of Mandarin Chinese between

the age of 18 and 31 (mean = 24) participated in the experiment. They were all

right-handed and had normal hearing. They self-reported that they did not have

any neurological disorders. They gave informed consent and were reimbursed for

their time (15 USD/hour). Data from nine participants were excluded from the

analysis due to having many noisy trials (>40 %) and one participant was excluded

due to the recording error. Thus, data from 11 participants (6 female, 5 males) were

included in the final analysis. Due to COVID-19, we report the intermediate results
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here.

4.2.2 Materials

Eight-syllable Chinese sentences were constructed to cross two variables: plausi-

bility and specificity, as described in detail below. Then subsequently, the stimuli

were assessed on additional two variables: predictability and semantic similarity.

The sentence sequence is bisyllabic subject + bisyllabic transitive verb + bisyllabic

modifier + bisyllabic object. Table 4.1 shows an example of the stimuli. The whole

stimuli were shown in the Appendix B.1. Sixty sentence sets were created and fifty

sentence sets were selected for the main experiment based on the norming results.

During the norming process, participants were asked to judge whether the sentence is

plausible or not. 24 native Mandarin speakers were recruited on-line for the norming

test. During the main experiment, only four-syllable noun phrases (i.e. bisyllabic

modifier + bisyllabic object) were used to elicit stronger neural signals.

Table 4.1: Example stimuli for the norming process.

+specific, +plausible

爸爸 摘了 新鮮 蕃茄
baba zhai-le xinxian fanqie
Father pluck-ASP fresh tomato
‘The father plucked fresh tomato.’

-specific, +plausible

爸爸 摘了 新鮮 蔬菜
baba zhai-le xinxian shucai
Father pluck-ASP fresh vegetable
‘The father plucked fresh vegetables.’

+specific, -plausible

爸爸 摘了 初生 番茄
baba zhai-le chusheng fanqie
Father pluck-ASP new-born tomato
‘The father plucked new-born tomato.’

-specific, -plausible

爸爸 摘了 初生 蔬菜
baba zhai-le chusheng shucai
Father pluck-ASP new-born vegetable
‘The father plucked new-born vegetables.’

Conceptual specificity was controlled by manipulating the object (e.g. tomato vs.

vegetable). Specificity was defined relatively by using E-HowNet (http://ehownet.

98

http://ehownet.iis.sinica.edu.tw/index.php
http://ehownet.iis.sinica.edu.tw/index.php


iis.sinica.edu.tw/index.php), which provides semantic relations between Mandarin

words. Am example is shown in 4.1. In E-Hownet, the items marked in blue (e.g.

vegetable) is the main category, which includes several subcategories (marked in pink)

such as celery, potato, onion, etc. Thus a non-specific noun would be “vegetable”

and a specific noun would be one of the subcategories.

Figure 4.1: An example for word relations in E-HowNet.

Plausibility was defined by manipulating the modifier (e.g. fresh vs. newly-

appointed). The implausible stimuli was created by replacing the modifier in the

plausible sentence with an implausible modifier with a similar meaning based on

E-HowNet. For example, the adjective xin ren ‘newly-appointed’ in the implausible

item was created by replacing the second syllable from the adjective in the plausible

item xin xian ‘fresh’. Then we also made sure that the implausible item (e.g. xin ren

fan qie ‘newly-appointed tomato’) is impossible using a google search.

The results of plausibility (i.e., the offline judgment results) for each of the four

conditions are shown in Figure 4.2. A two-way ANOVA shows that there is a sta-

tistically significant difference in plausibility (p < 0.001) and in specificity (p <

0.05). There is no significance in interaction effects (p = 0.61). As expected, highly
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plausible sentences were rated higher than less plausible sentences. Additionally,

non-specific sentences were rated higher than specific sentences.

Figure 4.2: Results of plausibility and specificity

Predictability was computed quantified in two separate ways. The first is from

Google Chinese BERT model (Devlin et al., 2019). We obtained the values by mask-

ing the last character of the stimuli, as shown in Algorithm 4.1. As BERT was trained

bidirectional, we computed the value for the last syllable to avoid the bidirectional

prediction. An example is shown in Table 4.2. Additionally, we computed word

surprisal values from a Chinese GPT-2 model (Du, 2019), as shown in Algorithm

4.2. GPT-2 model was not trained for any specific tasks and it performs well in sev-

eral language tasks such as generating text or answering questions. We obtained the

values for the third syllable in the stimuli as it is the first syllable of the upcoming

noun.

Predictability = P(last word|BERT left context) (4.1)
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Table 4.2: An example for extracting the value from Google BERT

Example stimuli Predictability from BERT
xin-xian fan ____: “qie” 0.94
xin-xian shu ____: “cai” 0.16
xin-ren fan ____: “qie” 0
xin-ren shu ____: “cai” 0.85

Surprisal(w) = −log2(P(third word|first two-word context)) (4.2)

The results of Predictability are shown in Figure 4.3. There is a significant differ-

ence in plausibility (p < 0.001). No significance was found in specificity (p = 0.07)

and interaction effect (p = 0.48). Predictability was higher in the plausible sentences

than the implausible sentences.

Figure 4.3: Results of predictability

The results of word surprisal are shown in Figure 4.4. A statistically reliable effect

was found in plausibility (p < 0.001). In addition, there is a significant difference

in specificity (p < 0.05). There is no interaction effect (p = 0.12). As expected,

surprisal values in the implausible sentences were higher than the plausible sentences.

101



In addition, surprisal values were higher in the specific items than the non-specific

ones.

Figure 4.4: Results of word surprisal

Semantic similarity was obtained from computing cosine similarity by extracting

word embeddings from Wikipedia2vec (Yamada et al., 2020). An example is shown

in Table 4.3. The similarity between the adjective xin xian ‘fresh’ and the both

noun fan qie ‘tomato’ and shu cai ‘vegetable’ are equally higher than the similarity

between xin ren ‘newly-appointed’ and the both noun.

Table 4.3: An example for semantic similarity

Example stimuli Semantic similarity
xin-xian fan-qie
fresh tomato 0.41

xin-xian shu-cai
fresh vegetable 0.43

xin-ren fan-qie
newborn tomato 0.08

xin-ren shu-cai
newborn vegetable 0.12

The results of semantic similarity are shown in Figure 4.5. A statistical signif-

icance was found in plausibility (p < 0.001). No statistically significant difference
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was found in specificity (p = 0.19) and interaction effect (p = 0.35). As expected, se-

mantic similarity differed across the four conditions; the highly plausible conditions

showed higher values for similarity than the less plausible conditions.

Figure 4.5: Results of semantic similarity

From the above, we see high correlation between predictability, plausibility, and

semantic similarity, as they all show higher values for the plausible items. In addition,

non-specific items have higher values than the specific items. As for predictability

and word surprisal, the results extracted from two language models and different

syllables also match for the stimuli.

All stimuli were recorded from the website developed by iFLYTek (https://www.

xfyun.cn/services/online_tts). Each syllable was recorded separately, and the dura-

tion of each syllable was around 250 ms. Then each syllable was compressed to 240

ms and a 10-ms silence gap was added after each syllable by using Praat (Boersma

and Weenink, 2019). Thus, the whole duration of each syllable is 250 ms. Therefore,

a four-syllable item was 1-second long and a trial that included ten four-syllable

items was 10-second long. Eight blocks were included in the current experiment.
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Each block included 20 plausible and 20 implausible trials. Thus, 320 trials were

used in the whole experiment.

4.2.3 Procedure

Participants sat comfortably in front of a computer screen in a quiet room. Prior

to the main session, participants were fitted with an electrode cap. Electrodes were

also affixed above and below the left eye. Electrolyte gel was applied to minimize

impedance. The setup took approximately 30 minutes. Then the stimulus volume

was set for each ear based on hearing level of each participant with the threshold of

45 dB determined using 1000 Hz tones (300 ms length). After setting up the volume,

a pre-test presenting 120 1,000 Hz tones was conducted to ensure the data quality

was sufficient to run the main session.

During the main session, participants was instructed to judge if they heard the

sentence item appeared on the screen by button press. After the button press, the

next trial was played after a delay randomized between 800 - 1,400 ms. Stimuli

was presented with Psychopy2 (v1.84.2; Peirce, 2007, 2009). Participants was also

instructed not to blink their eyes or move their body a lot when the stimuli were

presented. Participants can take breaks between blocks. After the instructions,

participants had 8 practice trials to familiarize with the whole procedure of the

experiment. The plausible trials and the implausible trials were intermixed and

presented randomly in each block. The order of blocks was counterbalanced across

participants. The main experiment took about 1.5 hours to finish. After the main

session, participants washed their hair to remove the electrolyte gel and was debriefed

about the goals of the experiment.
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4.2.4 EEG recording and data analysis

EEG data was recorded at 500 Hz from 32 active electrodes (actiCHamp, Brain-

Products GMBH) in a 0.01-200 Hz band with online reference to an electrode placed

on the right mastoid. Impedance will be kept below 25 kOhms. FieldTrip soft-

ware (Oostenveld et al., 2011) was used to analyze the data. Artifacts related to

eye blinks were removed via Independent Component Analysis (Jung et al., 2000;

Makeig et al., 1995) and remaining artifacts were removed manually following visual

inspection. The first sentence from each trial was excluded to avoid potential EEG

responses to sound onset (Ding et al., 2017). Data were filtered from 0.1-25 Hz, and

re-referenced offline to a common average. For each condition, we computed evoked

power and inter-trial phase coherence from 0.5 to 10 Hz in increments of 0.111 Hz

since the whole trial after removing the first sentence is 9-second long and therefore

the frequency resolution of the DFT is 0.111 Hz. Inter-trial phase coherence and

evoked power were computed following Ding et al. (2017), as listed and defined in

(Equation 4.3-4.4). To remove the trend of 1/f in the power spectra and test the

statistical reliability, evoked power was normalized via Equation 4.5 used in Ding

et al. (2017). The evoked power at each frequency was normalized by the neighboring

frequency bins within ± 0.5 Hz. For statistical analysis, conditions were compared

via two-way ANOVA for each measure at each frequency of interest.

(2) Inter-trial phase coherence (ITPC) reflects phase coherence across trials.

The summation of cosine and sine values of phase angle θk of each complex-value

Fourier coefficient is computed and then the square root of the summation is averaged

over the total number of trials K. Higher ITPC indicates that phase angles are

consistent across trials.
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R(f) =

√
(
∑

k(cosθk))
2 + (

∑
k(sinθk))

2

K
(4.3)

(3) Evoked power (EP) reflects the power of EEG responses that are phase-

locked and time-locked to speech stimuli. The Discrete Fourier Transform (DFT)

of the response in trial k is denoted as Xk(f) and Xk(f) is a complex-value Fourier

coefficient. Thus, evoked power is the summation of complex-value Fourier coefficient

of trials averaged over the total number of trials K.

E(f) =
1

k
|
∑
k

Xk(f) |2 (4.4)

(4) Normalized evoked power (EPn)

En(f) =
E(f)∑
w E(w)

, | w − f |< 0.5 Hz, w ̸= f (4.5)

w represents the neighboring frequency around the target frequency f.

4.2.5 Predictions

As plausibility typically correlates with predictability and semantic similarity, if

one of these three variables modulates delta oscillations, we should expect a main

effect of plausibility based on the experimental design. As for specificity, if delta

oscillations can be modulated by specificity, we should see a positive correlation

between the EPn/ITPC and specificity.

4.3 Results

Figure 4.6 and Figure 4.8 show the ITPC and EPn results for each condition. From

both ITPC and EPn, peaks are shown at 4 Hz, 2 Hz, and 1 Hz for every condition.

The target frequency that tags the composition of the whole phrase is 1 Hz. The

results of ITPC and EPn at 1 Hz are shown in Figure 4.7 and Figure 4.9. A two-way
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ANOVA was conducted for these two measures. For ITPC, no statistical significance

was found in plausibility (p = 0.79), specificity (p = 0.15), nor for their interaction

(p = 0.33). As for EPn, there is also no statistical significance in plausibility (p =

0.57), specificity (p = 0.27), nor for their interaction (p = 0.36).

Figure 4.6: ITPC for each condition
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Figure 4.7: ITPC at 1 Hz

Figure 4.8: EPn for each condition
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Figure 4.9: EPn at 1 Hz

4.4 Discussion

The current experiment tests different semantic variables to examine whether

neural activities in the delta band are driven by semantic processing. The results have

shown that no statistical difference is found in ITPC and EPn between conditions. In

addition, the results for plausibility, predictability and semantic similarity show that

a significant difference in plausibility and no difference in specificity. As these three

predictors are highly correlated, the ITPC and EPn do not show difference between

conditions, suggesting that plausibility, predictability, and semantic similarity do

not modulate neural activities in the delta band. Although there is no statistical

reliable effect for the partial N = 11 data, we observed a trend towards increased

synchronization for non-specific, compared to the specific conditions.

While keeping the structure consistent across conditions, the results of ITPC

and EPn show peaks at 1 Hz across all conditions and do not reflect the results

of predictability, plausibility, and semantic similarity. We see no evidence that
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delta oscillations are modulated by combinatorial semantics and lexical semantics.

There is a trend showing that delta oscillations may be modulated by conceptual

specificity. Inconsistent with the current findings, in the Chapter II, the absence of

phrasal-level and sentence-level peaks in the semantically-mismatched condition and

the appearance of 1, 2, and 4 Hz peaks in the normal four-syllable sentences suggest

combinatorial semantics plays a role in modulating delta oscillations to some degree.

If neural activities in the delta band could be modulated by pure syntactic informa-

tion, we would expect that peaks at the phrasal and sentence level should be elicited

in the semantically-mismatched condition of that earlier study, which preserved the

syntactic information without semantics. This combinatorial processes may inter-

act with temporal properties such as word length in the stimuli, as detailed below.

Taken together, the current study suggest that delta oscillations reflect syntactic

information more directly than semantic information.

Peaks at 1 Hz across all conditions do not reflect the pattern of predictability.

Values for predictability were obtained from Google Chinese BERT and word sur-

prisal was obtained from a Chinese GPT-2. Based on the current results, we see no

evidence that neural activities in the delta band reflect predictability and we suggest

that prediction that modulates neural activities in the delta band may come from

syntactic prediction, but not semantic prediction. The current results are indeed

consistent with the findings for transitional probability in Ding et al. (2016). They

also observed sentence-level peaks in both equal and varying probability conditions.

However, results in our Chapter III suggest that neural activities in the delta band

reflect a top-down predictive processing. What parsers exactly predict and thus mod-

ulate neural activities in the delta band remain elusive. In addition, the processing

between semantics and syntax does not have a clear cut. For example, the lexi-
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cal category is syntactic information but it is realized via semantic interpretation.

More fine-grained manipulations may be required in the future study. Moreover,

predictability and word surprisal computed in the current study were obtained from

the output layer of the language models. It is possible that low-frequency neural

responses may reflect the internal or intermediate stage of predictability. One future

direction would be obtaining predictability and word surprisal in the internal layers

of the language models and then do FFT to examine whether predictability or word

surprisal oscillate in the stimuli.

For plausibility, we also did not see that peaks at 1 Hz reflect the pattern of plau-

sibility. However, the results in our Chapter II show peaks at 1, 2, 4 Hz in the normal

four-syllable condition, but only 4-Hz peak in the semantically-mismatched condi-

tion. The above seems to suggest that semantics should play a role in modulating

neural activities in the delta band. The inconsistency of results in the current study

and the Chapter II might due to the fact that the length for a word/phrase should

be taken into account. To be specific, in the Chapter II, each syllable represents one

word and thus each word lasts only 250 ms, which falls in the theta band. However,

in the current study, each word consist of two syllables, which falls in the delta band.

Thus, parsers might have enough time to access the meaning of a word. The current

results are still in line with our previous findings, suggesting that neural activities in

the delta band correlate with comprehension above syllable-level processing.

For semantic similarity, we also see no evidence that peaks at 1-Hz from neural

signals reflect the results of semantic similarity. In line with Nieuwland et al. (2019)

and Jin et al. (2020), the current study shows that semantic relatedness does not

modulate neural activities in the delta band. The current results are inconsistent with

the simulation from Frank and Yang (2018), which suggests that neural activities in
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the delta band may reflect the tracking of word information. The current results and

findings from the Chapter II may suggest that neural activities in the delta band do

not reflect semantics at word-level processing.

As for specificity, we see that peak values at 1 Hz in the non-specific conditions

are higher than the values in the specific conditions, although this is not statisti-

cally significant. The intermediate results suggest that the compositionality reflect

conceptual semantics might play a role in modulating neural activities in the delta

band. However, there are many other ways to manipulate conceptual specificity.

More future studies are needed for adopting various semantic stimuli to test whether

conceptual semantics modulate the delta oscillations. In the current experiment,

conceptual specificity was manipulated by the noun only. It would be interesting

to create stimuli by manipulating specificity for the first and second noun such as

“vegetable dish vs. tomato dish vs. vegetable soup vs. tomato soup” in Zhang and

Pylkkänen (2015). This kind of stimuli may force participants to combine two words

and yield a more direct connection between combinatorial processing and modulation

of low-frequency neural activities.

4.5 Summary of the study

The current study tests different semantic variables to see whether neural activ-

ities in the delta band correlate with combinatorial semantics or lexical semantics.

Predictability, plausibility, conceptual specificity, and semantic similarity were ex-

amined. 1-Hz peaks of neural signals were observed across all conditions. We see no

evidence that the patterns of predictability, plausibility, and conceptual specificity

reflect the results of 1-Hz peaks. However, there is a trend towards synchronization

in non-specific condition. The overall results suggest that neural activities in the

112



delta band may reflect the processing of syntactic information more directly than

the semantic processing.
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CHAPTER V

Conclusion

5.1 Summary of contributions

To summarize, this dissertation investigates what high-level linguistic informa-

tion modulates neural activities in the delta band and how high-level information

interact with temporal properties using a frequency-tagging paradigm. Three EEG

experiments were conducted. In Chapter II, we tested whether neural activities in

the delta band are modulated by hierarchical information or lexical information. By

including reversed phrases that preserved syntactic regularities but lost structure in

Mandarin, we only found a 4-Hz peak, but not peaks at 1 and 2 Hz in the reversed

phrases, suggesting that neural activities in the delta band may be modulated by

hierarchical information. In Chapter III, different speech rates and rhythmicities

were manipulated to examine the interaction between high-level information and

temporal properties. High accuracy of comprehension across all conditions and the

sentence-level peaks observed in the faster conditions suggest that neural activities

in the delta band may reflect a top-down predictive processing and this processing

guides language comprehension when speech is fast. In addition, the results sug-

gest that the observed neural signals represent endogenous oscillatory activities, not

just a reflection of rhythms from external speech input. In Chapter IV, we tested
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several semantic variables to see what semantic information may modulate neural

activities in the delta band. the observed 1-Hz peaks across all conditions did not

reflect the results of predictability, plausibility, and semantic similarity. There is

a trend towards the synchronization of non-specific stimuli. The results from these

three studies suggest that neural activities in the delta band reflect a predictive top-

down processing and may be modulated more directly by syntactic information, not

semantic information. Moreover, the results suggest that these low-frequency neural

responses reflect endogenous oscillatory activities, not merely evoked responses.

5.2 Directions for future work

Finally, we discuss some potential future directions to probe the functional in-

terpretation of low-frequency oscillations, as well as some extensions related to the

dissertation.

First, how neural patterns of composition represent in different groups of people

is unknown. One future direction is to examine these low-frequency neural activities

in language development (Getz et al., 2018). If low-frequency neural activities can

be an indicator of linguistic chunking or compositional processes, can it be observed

in children and what age can we observe the neural patterns? Adopting the same

experimental paradigm on children might provide insights on how these neural ac-

tivities vary from children to adults. Moreover, we can also compare children with

or without developmental language disorders (Montgomery et al., 2018). How dif-

ficulty of structural chunking for children with certain language disorder reflects on

low-frequency neural activities would be a potential future direction.

The other direction that extends the current work is to develop a unified oscillation-

based model to explain how the structure-building processes and semantic composi-
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tion associate with other cognitive faculties. Specifically, how memory architecture

or attention interacts with language processing and how these processes integrate and

are reflect by low-frequency neural activities are unclear. In particular, we can imple-

ment a cognitive architecture, adaptive control of thought - rational model (ACT-R,

Anderson et al., 2004; Lewis and Vasishth, 2005; Lewis et al., 2006), to examine how

memory mechanisms incorporated to language comprehension are reflected by neural

signals.

Whether neural signals elicited from the frequency-tagging paradigm can be ex-

tended to explain language processing in a naturalistic setting remains unclear.

One future direction is to develop a more naturalist approach to examine this low-

frequency neural activity (e.g. Kaufeld et al., 2020). One related future direction

would be examining this low-frequency neural activity in conversation. There is still

a lack of understanding of how this low-frequency neural activity reflects in conversa-

tion (e.g. brain-to-brain entrainment while speaking and listening, Pérez et al., 2017)

and how general cognitive processes such as retrieval of linguistic information from

memory and planning are carried out by these neural activities during conversation.

Our third study includes several semantic variables but we see no evidence that

these semantic variables play a role in modulating neural activities in the delta band.

However, one possibility might be these semantic variables are not well-disentangled

in the current study. Different methods of manipulating semantic variables can be

further examined. For example, like the stimuli design in Zhang and Pylkkänen

(2015), we can manipulate the specificity of the first noun and also the second noun

to have four conditions (e.g. vegetable dish vs. vegetable soup vs. tomato dish vs.

tomato soup).

Our first study simulated brain responses from using word embeddings from dif-
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ferent language models to do FFT. It is yet to be tested whether these low-frequency

neural activities can be modulated by other factors. One future direction could be

examining word surprisal extracted from large-scale language models and do FFT to

see whether surprisal can also predict low-frequency neural responses. In addition,

we can also use this method to examine different layers in large-scale language mod-

els to investigate which layer might elicit similar responses, which may provide an

insight of the ongoing status and timing for modulating these low-frequency neural

responses.
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Table A.1: Stimuli for Chapter II and III

Condition Four-syllable
sentence

Semantically-mismatched
sequence

Two-syllable
phrase

Reversed
phrase

1 老牛耕地 行争爬解 老牛青草 牛老地耕
2 樹木生長 厨生鼓跑 樹木太陽 木樹長生
3 冰雪融化 軍孩奔草 冰雪醫生 雪冰化融
4 嬰兒哭泣 小客融舞 嬰兒駿馬 兒嬰泣哭
5 獵犬奔跑 開鼠看馳 獵犬小偷 犬獵跑奔
6 老師講課 松士倒泳 老師觀众 師老課講
7 綿羊吃草 英刀判覺 綿羊風争 羊綿草吃
8 學生寫字 母師劃退 學生行人 生學字寫
9 觀众鼓掌 朋船做山 觀众烏龜 众觀掌鼓
10 演員跳舞 公魚轉掌 演員電腦 員演舞跳
11 朋友請客 游司過架 朋友英雄 友朋客請
12 汽車轉彎 姐羊跌行 汽車外公 車汽彎轉
13 燈泡發光 剪泡打閉 燈泡開水 泡燈光發
14 農民種菜 輪水彈蛋 農民朋友 民農菜種
15 青草發芽 法馬告針 青草飛機 草青芽發
16 太陽落山 電友降走 太陽汽車 陽太山落
17 開水沸騰 學果戰客 開水老師 水開騰沸
18 導游講解 叛子種掉 導游軍隊 游導解講
19 叛徒告密 護徒落航 叛徒法官 徒叛密告
20 蘋果爛掉 飛兒開字 蘋果獅子 果蘋掉爛
21 厨師做飯 農犬發彎 厨師護士 師厨飯做
22 外公看報 醫民生光 外公導游 公外報看
23 小孩跌倒 嬰隊打報 小孩樹木 孩小倒跌
24 鴨子游泳 導民游倒 鴨子老鷹 子鴨泳游
25 美女彈琴 冰鷄下化 美女冰雪 女美琴彈
26 鯨魚噴水 老陽爬水 鯨魚演員 魚鯨水噴
27 小偷逃走 獅官吵落 小偷游客 偷小走逃
28 松鼠睡覺 鯨鷹救長 松鼠鯨魚 鼠松覺睡
29 英雄救火 獵公吃密 英雄剪刀 雄英火救
30 獅子打架 演游發菜 獅子學生 子獅架打
31 電腦開機 烏草講船 電腦小孩 腦電機開
32 輪船起航 外偷請鬥 輪船獵犬 船輪航起
33 士兵戰鬥 蘋兵看飯 士兵松鼠 兵士鬥戰
34 老鷹飛翔 美師講落 老鷹士兵 鷹老翔飛
35 風争墜落 駿員噴琴 風争厨師 争風落墜
36 公司倒閉 祖牛奔架 公司叛徒 司公閉倒
37 姐妹吵架 小機下火 姐妹綿羊 妹姐架吵
38 駿馬奔馳 燈生耕病 駿馬蘋果 馬駿馳奔
39 母鷄下蛋 太众生騰 母鷄輪船 鷄母蛋下
40 飛機降落 汽龜逃街 飛機祖父 機飛落降
41 游客爬山 觀父寫地 游客姐妹 客游山爬
42 漁民划船 漁子飛案 漁民公司 民漁船劃
43 軍隊撤退 老雪哭課 軍隊漁民 隊軍退撤
44 剪刀生銹 鴨雄爛泣 剪刀農民 刀剪銹生
45 祖父下棋 青木起翔 祖父燈泡 父祖棋下
46 醫生看病 風人沸棋 醫生老牛 生醫病看
47 護士打針 老腦睡機 護士鴨子 士護針打
48 烏龜爬行 士車跳銹 烏龜母鷄 龜烏行爬
49 行人過街 樹女墜芽 行人嬰兒 人行街過
50 法官判案 綿妹撤山 法官美女 官法案判
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Table B.1: Stimuli for Chapter IV

Condition specific,
plausible

non-specific,
plausible

specific,
implausible

non-specific,
implausible

1 新鮮蕃茄 新鮮蔬菜 新任番茄 新任蔬菜
2 黑暗石窟 黑暗空間 暗自石窟 暗自空間
3 奇怪藥味 奇怪氣味 奇遇藥味 奇遇氣味
4 完整密碼 完整符號 周到密碼 周到符號
5 罐裝咖啡 罐裝飲料 纏足咖啡 纏足飲料
6 國内競走 國内比賽 之内競走 之内比賽
7 地方喜訊 地方新聞 地步喜訊 地步新聞
8 徹底緝毒 徹底搜索 無疑緝毒 無疑搜索
9 高級海鮮 高級菜肴 跳高海鮮 跳高菜肴
10 精密核彈 精密武器 中肯核彈 中肯武器
11 實際法案 實際建議 結實法案 結實建議
12 明確録音 明確記録 明知録音 明知記録
13 重要鋪路 重要建設 重聽鋪路 重聽建設
14 優秀才女 優秀人才 優惠才女 優惠人才
15 管理網路 管理系統 褲管網路 褲管系統
16 健康餅乾 健康食品 健談餅乾 健談食品
17 暢銷小説 暢銷書籍 暢飲小説 暢飲書籍
18 貴重水晶 貴重珠寶 貴庚水晶 貴庚珠寶
19 專業銀行 專業組織 面熟銀行 面熟組織
20 勞工糾紛 勞工事務 工整糾紛 工整事務
21 新興柔道 新興武術 繁盛柔道 繁盛武術
22 大型會議 大型聚會 重型會議 重型聚會
23 嚴重癌症 嚴重疾病 威嚴癌症 威嚴疾病
24 個人成績 個人能力 私怨成績 私怨能力
25 多元課程 多元教育 多汁課程 多汁教育
26 生活惡習 生活習慣 生路惡習 生路習慣
27 木制鋼琴 木制樂器 木屑鋼琴 木屑樂器
28 學術論文 學術文章 學乖論文 學乖文章
29 熱門電玩 熱門游戲 趁熱電玩 趁熱游戲
30 臨時班會 臨時會議 時針班會 時針會議
31 知名外商 知名公司 著稱外商 著稱公司
32 創意食譜 創意書籍 重創食譜 重創書籍
33 周邊道路 周邊設備 周報道路 周報設備
34 綜合筆試 綜合審查 無疑筆試 無疑審查
35 嚴格口試 嚴格考驗 嚴斥口試 嚴斥考驗
36 年終奬金 年終待遇 年輪奬金 年輪待遇
37 众多居民 众多人民 充沛居民 充沛人民
38 合法釣魚 合法捕捉 清白釣魚 清白捕捉
39 有利證據 有利訊息 上風證據 上風訊息
40 基礎數學 基礎科目 基調數學 基調科目
41 全面辦案 全面厘清 全票辦案 全票厘清
42 安全巡邏 安全檢查 安息巡邏 安息檢查
43 年度預算 年度方案 年僅預算 年僅方案
44 高級牛肉 高級食物 高樓牛肉 高樓食物
45 優良政黨 優良團體 優劣政黨 優劣團體
46 有效簽證 有效公文 靈驗簽證 靈驗公文
47 改革草案 改革構想 改天草案 改天構想
48 精密平台 精密設施 精壯平台 精壯設施
49 龐大家産 龐大財富 遠大家産 遠大財富
50 巨大資助 巨大幫助 高大資助 高大幫助
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