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Abstract

Smallholder farmers constitute one of the world’s most vulnerable populations. Moreover, ris-

ing socioeconomic inequalities and biophysical degradation threaten to increase this vulnerabil-

ity. There is therefore a pressing need to build resilience in smallholder agriculture. Socio-

environmental systems (SES) modeling can support this goal, yet confronts two challenges that

may limit its usefulness for informing agricultural development. First, as agricultural systems are

highly heterogeneous and our ability to model them is imperfect, there is a risk that model-based

recommendations inadvertently increase vulnerability. Second, there exist a range of approaches

to agricultural development that prioritize distinct objectives (e.g., market integration versus social

equity), and conflicts between these approaches could undermine progress toward more resilient

futures. To build smallholder resilience therefore requires an integrated perspective on develop-

ment as well as robust methodologies for comparing and integrating alternative development strate-

gies. This dissertation uses agent-based modeling (ABM) to help address these challenges.

The first contribution of this dissertation is a set of methodological advances that improve

the robustness of model-based policy analysis. These advances question two analytical norms

within SES modeling. The first is a lack of attention to equity. For instance, by disregarding

heterogeneity in outcomes, model-based recommendations may benefit the well-off at the expense

of the vulnerable and thereby perpetuate inequity. Chapters two and three address this issue, first

by establishing a conceptual framework for the equity-ABM interface and then by applying an

agent-based model to examine equity in the effects of resilience-enhancing strategies. The second

analytical norm that this dissertation questions is the use of a single, “best-fit” model to assess

policy effects; due to our incomplete understanding of complex SES, multiple plausible models

may exist. This common condition is known as equifinality, but it is not often considered in SES

xx



modeling or policy analysis. To attend to this challenge, chapter four develops an approach for

identifying a set of diverse model calibrations and using these to achieve a more robust policy

analysis. Together, these methodological advances facilitate more robust and equitable policy

assessments, in agricultural systems and beyond.

The second principal contribution of this dissertation is substantive. Emerging from the model-

ing of smallholder resilience, I find complementarity between disparate agricultural development

approaches. For instance, chapter five compares the effects of legume cover cropping (a form of

ecological farm management) and microinsurance (a financial institutional support) on smallholder

climate resilience. Although these approaches are traditionally promoted by distinct academic

communities and development organizations, the results show that, when implemented together,

they are highly complementary. Next, chapter six investigates the potential for contract farm-

ing to overcome the negative effects of large-scale land acquisitions on smallholder food security.

Results suggest that preserving smallholder autonomy through contract farming can simultane-

ously improve smallholder food security and agricultural production, thereby better aligning the

preferences of developers and smallholders. Thus, these chapters together suggest the benefits of

reconciling perspectives on and approaches to agricultural development.

As a whole, this dissertation advances the application of agent-based modeling and resilience

thinking in smallholder agriculture. Beyond agricultural applications, it lays the groundwork for

identifying robust and equitable development strategies in SES.
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Chapter 1

Introduction

1.1 Fostering resilience in smallholder agriculture

Approximately two billion people worldwide rely on agriculture to support their livelihoods
(Hazell et al., 2010b). The vast majority of these are smallholder, subsistence farmers living in
low- and middle-income countries. Unfortunately, these people constitute some of the world’s
most vulnerable populations, whose livelihoods are threatened by a wide (and increasing) array
of challenges. These challenges range from direct stresses to the production system, such as
soil degradation and drought, to large-scale drivers affecting the broader socio-political context
in which agriculture operates, such as land access and globalization.

In the face of these interacting stresses, agricultural development will be central to global
poverty alleviation going forward. It is widely acknowledged that investments into agriculture
are some of the most effective toward this end (Webb and Block, 2012; Pray et al., 2017). There
exist, however, diverging perspectives on how agriculture should develop so as to simultaneously
support production, livelihoods, and the environment (Wiggins et al., 2010; Gaffney et al., 2019;
Pretty et al., 2018; Bommarco et al., 2013). Under some future visions, smallholder agriculture
becomes obsolete and is replaced by large-scale, mechanized farming systems with high levels of
external inputs. This most closely describes the development trajectories seen in the Global North.
Alternative perspectives take a more smallholder-centric view, with a range of opinions regard-
ing the relative importance of external inputs and internal ecological processes for crop nutrient
provisioning (Bernard and Lux, 2017).

Although the specifics of smallholder agriculture’s future remain uncertain, “resilience think-
ing” provides an encompassing and normative analytical lens through which to evaluate small-
holder vulnerability and agricultural development. In this context, resilience describes the capac-
ity of a smallholder agricultural system to persist in the face of sudden and incremental change, to
adapt to sustain development within current pathways, and to transform into other emergent path-
ways (Folke, 2016). Agricultural development strategies can act at different scales and through
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different components of the smallholder system (e.g., by building soil fertility versus providing
non-farm employment opportunities) to foster resilience across these dimensions (Hansen et al.,
2019).

1.2 Agent-based modeling of smallholder resilience

It is difficult to evaluate how development strategies might affect smallholder resilience. First, mul-
tidimensional outcomes and the unprecedented scales of intervention push the limits of historical
data, rendering empirical methods inappropriate (Egli et al., 2018). Second, agricultural systems
are complex (Liu et al., 2007); they evolve through the dynamic interplay of heterogeneous human
decision-makers (e.g., farmers, policymakers, consumers) and non-human processes (e.g., water
cycles, soil fertility, pollinators) (Peterson et al., 2018). This socio-environmental intertwined-
ness generates path dependencies that affect future system states (Haider et al., 2018). Together,
these characteristics can lead to non-linear responses that are difficult to predict without a nuanced
understanding of underlying processes and proximate drivers of change.

Agent-based modeling is a simulation-based approach for modeling complex systems. Agent-
based models (ABMs) simulate an interacting, heterogeneous population of autonomous actors.
They can be applied to investigate how both top-down interventions and bottom-up processes
generate emergent, system-level outcomes, as well as how effects are distributed throughout a
population. Due to these features, ABMs have been extensively applied to assess the effects of
policies and interventions in agricultural systems (Kremmydas et al., 2018) and can be useful for
characterizing system resilience (Egli et al., 2018).

Moreover, ABMs exhibit a relatively underexplored potential to act as boundary objects across
normative visions for agricultural development. Different research communities advocate for dis-
tinct development paradigms, for instance technology-oriented versus ecologically-oriented. Due
to their different epistemological foundations, these paradigms can be difficult to compare under
a common framework. ABMs can be used to examine synergies and tradeoffs between outcomes
(e.g., productivity, profit, soil degradation), both over time and between different types of actors.
Thus, ABMs facilitate the comparison of alternative development perspectives.

1.3 The need for robust and equitable resilience assessments

Given the current levels of poverty and alarming future projections for socio-environmental
change, timely action to improve resilience in smallholder systems is necessary. However, due
to the complexity and uncertainty inherent to agricultural systems, models may mis-estimate the
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true effects of proposed resilience-enhancing strategies. In extreme cases, model-based recommen-
dations therefore have the potential to inadvertently increase vulnerability, i.e., to be inequitable or
“maladaptive” (Barnett and O’Neill, 2010). This could be particularly problematic if interventions
are difficult or costly to counteract or affect other system components in unexpected ways (Leclère
et al., 2014).

There are several analytical norms within quantitative resilience analysis that could give rise
to maladaptive recommendations. First, most model-based assessments examine the average ef-
fect of an intervention across the population. It is possible, however, that increasing resilience
for one population group adversely impacts those most at risk (Barnett and O’Neill, 2010; Miller
et al., 2010). Thus, there is a need to integrate distributional equity more thoroughly into resilience
analysis. Second, given that many environmental processes operate at different temporal scales
to human decision-making (Rodrı́guez et al., 2006), the time horizon used for policy assessment
can exert a strong influence on model-based recommendations. Yet, most modeling studies do
not consider the impacts of the time horizon. Finally, due to the complexity of agricultural sys-
tems and the rising “complicatedness” of ABMs (Sun et al., 2016), it is possible that there exist
multiple plausible system representations. This condition is known as equifinality (Oreskes et al.,
1994). Yet, most modeling studies utilize a single model configuration. Maladaptation could arise
if multiple plausible descriptions exist and these lead to qualitatively different outcomes. In all
these cases, modeling advances are needed to address these challenges and facilitate more robust
resilience assessment.

1.4 Dissertation outline

In this dissertation, I employ a complex systems perspective to address the overarching question
of how to improve resilience in smallholder agricultural systems. The dissertation chapters, which
each act as stand-alone research articles, provide substantive insights into the relative merits of
strategies for enhancing smallholder resilience. In seeking to answer this overarching question,
however, shortcomings within predominant methodological practices became apparent. Corre-
spondingly, the dissertation also demonstrates methodological contributions to ABM development
and analysis, which are relevant beyond agriculture. The main body of the dissertation is split into
the following five chapters.

1.4.1 On equity in agent-based modeling

Advancing equity is a cross-cutting challenge to society, science, and policy. ABMs are increas-
ingly applied as scientific tools to advance system understanding, inform decision-making, and
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share knowledge. Yet, equity has not been thoroughly integrated or discussed within the agent-
based modeling community. This hinders the potential for agent-based modeling to be used in
future research aimed at improving equity.

In chapter 2, I develop a framework that elucidates the links between agent-based modeling
and equity. The framework positions the modeler as a filter and a lens through which knowledge
is projected into and out of the model. To operationalize the framework, I outline three “action
pathways” for advancing equity through ABM: (1) engage stakeholders and society, (2) recognize
modeler positionality and bias, and (3) assess equity with agent-based models. The framework and
examples can be used as guidance in future modeling efforts, so that agent-based modeling can
play a larger role in creating a more equitable future.

1.4.2 Resilience and equity

Strategies aiming to increase climate resilience in smallholder agricultural systems may not equally
benefit all groups of the smallholder population. To reduce the potential for aggravating existing
vulnerabilities, resilience analyses need to acknowledge the possibility for inequities in the effects
of resilience-enhancing strategies (RESs). However, distributional effects are seldom considered
in quantitative resilience analysis.

In chapter 3, I develop, validate, and apply a household-level ABM to explore the equity of
climate RESs in an Ethiopian smallholder farming system. The strategies include the provision
of seasonal climate forecasts, which allow households to make better-informed management deci-
sions, and an increase in the availability of non-farm wage labor, which can increase income and
purchasing power. Given the different mechanisms through which these two strategies act, het-
erogeneous households may respond differently (Kansiime et al., 2018), leading to asymmetries
in resilience between groups or even reinforcing poverty (Miller et al., 2010; Béné et al., 2012),
amounting to maladaptation.

Results reveal that different measures of resilience lead to divergent assessments of equity in
policy effects. In particular, in the wake of a drought, both RESs benefit the moderately vulnerable
households at the expense of the more vulnerable households—–i.e., they are inequitable. These
results demonstrate that a pure focus on poverty reduction may be insufficient to promote equitable
development. Given the prevalence of climate shocks in smallholder systems, future studies of
resilience should therefore jointly consider both poverty reduction and shock recovery, as well as
the potential for inequity in the effects of RESs.
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1.4.3 Assessing model equifinality

Equifinality describes a situation where there exist multiple plausible explanations for a single out-
come (Axtell and Epstein, 1994; Oreskes et al., 1994; Beven, 2006). Equifinality can arise when
our understanding of underlying processes is incomplete and there are few data against which to
validate hypothesized process-based descriptions. Although this condition is prevalent in socio-
environmental systems, model calibration most frequently seeks to identify a single, “best-fit”
model, thus not allowing for equifinality. If other feasible calibrations lead to qualitatively differ-
ent model behavior, prioritizing policy from a single, best-fit calibration could amount to maladap-
tation.

In chapter 4, I develop and demonstrate an approach for ABM calibration and analysis that
(1) identifies multiple model calibrations and (2) assesses the implications for policy analysis.
The optimization-based approach maximizes diversity in the model parameters and/or structural
configurations to efficiently represent any equifinality in the model set. I apply the approach to the
ABM developed in Chapter 3, in order to explore the robustness of the resilience assessment to
model equifinality.

Case study results demonstrate consistent policy effects over the set of diverse model calibra-
tions, enabling stronger conclusions than a single model analysis. More generally, the approach
facilitates more nuanced policy assessments in socio-environmental systems, because it identifies
the conditions under which policies may or may not be robust.

1.4.4 Ecological and financial strategies

There exist different and, at times, conflicting perspectives on how to best support climate re-
silience in smallholder agricultural systems. Institutional interventions such as microinsurance
schemes have recently gained traction as tools for agricultural development and poverty reduction
(Hazell et al., 2010a; SwissRe, 2013; Kramer et al., 2019). Simultaneously, there is an increasing
drive for ecological intensification to sustain or enhance both livelihoods and natural resources
(Bommarco et al., 2013; FAO, 2018; HLPE, 2019). Such approaches are traditionally advocated
for by different communities, with often strong ideological disagreements. However, given the
different mechanisms through which these two approaches act, they may in fact be complementary

when considered together.
In chapter 5, I examine the potential complementarities between selected ecological and fi-

nancial approaches for supporting smallholder climate resilience. To do this, I develop a social-
ecological simulation model of mixed crop-livestock smallholder farming. I apply the model to
examine how different combinations of legume cover cropping (ecological) and index-based crop
insurance (financial) affect smallholder farmers’ income over time and in the wake of droughts.
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The results underscore the complementary roles that ecological and financial strategies could
play in building smallholder resilience. Specifically, I find that microinsurance always provides
larger benefits during and in the wake of a drought, while cover cropping progressively reduces
poverty in the medium- to long-term. The stylized model constitutes an important social-ecological
foundation for future empirical research to inform agricultural innovation and development priori-
ties.

1.4.5 Large-scale land acquisitions

Over the past decade, the Global South has experienced a rapid increase in large-scale investment in
agricultural land (Deininger and Byerlee, 2011). Unfortunately, these large-scale land acquisitions
(LSLAs) frequently generate tradeoffs between agricultural production and smallholder livelihoods
(Müller et al., 2021). LSLAs remain a prevalent global phenomenon and thereby a risk to future
smallholder livelihoods. Yet, literature to date has focused almost exclusively on the causes and
effects of LSLAs over the past 12 years. Some work has sought to identify beneficial institutional
arrangements (Oberlack et al., 2016; Arndt et al., 2010; Baumgartner et al., 2015), but there have
been no process-driven assessments of how to facilitate positive outcomes for both smallholders
and large-scale investors. Agent-based modeling is well-poised to explore such dynamics.

For chapter 6, I examine the potential effects of contract farming (CF), an arrangement com-
patible with LSLAs that preserves some smallholder land rights, on smallholder food security and
regional productivity. To do this, I develop an ABM of smallholder livelihoods, calibrate it using
household survey data collected in four LSLA-affected areas within Ethiopia, and apply it to ex-
amine the distributional effects of various LSLA and CF arrangements. This analysis integrates
some of the conceptual advances from the previous chapters (namely, equifinality and equity) and
applies them to investigate a pressing threat to smallholder resilience.

Results show that contract farming can simultaneously increase commodity agricultural pro-
duction and support livelihoods in mixed crop-livestock smallholder systems. Importantly, ar-
rangements that preserve smallholders’ autonomy over their land led to the strongest and most
synergistic outcomes, positioning contract farming as a promising alternative to forms of intensifi-
cation by dispossession enacted by LSLAs.
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Chapter 2

On Equity in Agent-Based Modeling

Advancing equity is a cross-cutting challenge to society, science, and policy. Agent-based mod-
els are increasingly applied as scientific tools to advance system understanding, inform decision-
making, and share knowledge. Yet, equity has not received due attention within the agent-based
modeling (ABM) community. Integrating equity into ABM will both reduce the risk of ABM re-
search inadvertently perpetuating existing inequities and harness the opportunity for ABM to be
used in future research aimed at improving equity. In this chapter, we present a conceptual frame-
work that elucidates the links between ABM and equity. The framework positions the modeler as a
filter and a lens through which knowledge is projected into and out of the model. To operationalize
the framework, we outline three “action pathways” for advancing equity through ABM: (1) engage
stakeholders and society, (2) recognize modeler positionality and bias, and (3) assess equity with
agent-based models. Within each action pathway, we provide concrete guidance, examples, and
reflection questions for modelers. We hope that our framework and examples can guide future
modeling efforts, so that ABM can play a larger role in creating a more equitable future.

2.1 Introduction

The world is not fair. Resources and political power are chiefly held in the hands of a select few,
while vulnerable populations are left to cope with social and environmental burdens. This unfair-
ness transcends domains, scales, and contexts. For example, climate change, a global challenge
largely attributable to rich nations of the Global North, disproportionately affects poor people in the
Global South (Tol et al., 2004). Moreover, these populations often have less agency and political
leverage to adapt to climate change effects. Climate change, along with many other cross-cutting
global challenges, is therefore closely intertwined with notions of justice, power, and distribu-
tion. Correspondingly, promoting equity to reduce inequality is central to current scientific agen-
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das (Clark and Harley, 2020), policy priorities,1 and development goals (UN General Assembly,
2015).

Equity, a term often used in conjunction with the concepts of justice and fairness, provides the
conceptual lens for this chapter. We define equity as a moral and political ideal that aspires toward:
(1) fair distributions of goods within society, (2) fair inclusion within decision-making procedures,
and (3) recognition of diverse socio-cultural identities with unique needs and historical contexts
(Pereira et al., 2017; Tyler, 2000; Fraser, 1995; McDermott et al., 2013). For the purposes of this
chapter, we use the terms ‘equity’ and ‘justice’ interchangeably.2 ‘Fairness’ adds a normative and
plural angle to the dimensions of equity, meaning that there are debates around what is considered
fair by different people and in different contexts (Jacobs and Wallach, 2021; Fraser, 2009).

Quantitative models have an important role to play in achieving a more equitable future. Mod-
els are both useful tools for ex-ante exploration of equity-oriented interventions and boundary ob-
jects for stimulating societal debate and co-producing knowledge. Integrating equity into modeling
allows for reducing the risk of models inadvertently discriminating against marginalized popula-
tions as well as helps to identify strategies for guarding against future challenges to equity. In
order to leverage these opportunities and reduce these risks, concepts of equity are being increas-
ingly incorporated into modeling paradigms and practices. For example, there are nascent efforts
to develop and mainstream notions of ‘algorithmic fairness’ in machine learning models, particu-
larly in order to reduce potential for discriminatory model-based recommendations due to biases
in historical data and model design (Corbett-Davies et al., 2017; Feldman et al., 2015). In parallel,
there exist a growing number of conceptual frameworks linking equity theory to substantive appli-
cation domains, such as transportation (Pereira et al., 2017), ecosystem services (McDermott et al.,
2013), health (Rajkomar et al., 2018; Chandanabhumma and Narasimhan, 2020), urban planning
(Chu and Cannon, 2021), and sustainability (Leach et al., 2018).

Agent-based modeling (ABM)3 is applied across a comparably diverse range of topics and
particularly warrants integration with equity. Agent-based models simulate an interacting, hetero-
geneous population of autonomous actors and can be applied to investigate how both top-down
interventions and bottom-up processes generate emergent, system-level outcomes. Given these
features, agent-based models are particularly suited to represent problems of (in)equity, relative to

1An example is United States President Biden’s executive order to spend 40% of sustainability investments in
disadvantaged communities and create an Office of Health and Climate Equity in the Department of Health and Human
Services.

2We note that some scholars take the position that justice is more encompassing than equity, both in theory (Sikor
et al., 2014) and in practice (Ikeme, 2003), as it can include a wider range of ethical positions as well as notions of
rights and responsibility. However, in this chapter we use the word equity to describe the encompassing concept.

3In this chapter, we use the ABM acronym to refer to “agent-based modeling,” which we conceptualize as encom-
passing both the agent-based model itself (the noun: ‘model’) and the process through which this model is developed,
tested, and applied (the verb: ‘-ing’).
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other modeling approaches that work at larger scales or do not provide such a mechanistic descrip-
tion. Indeed, such challenges inspired some of the seminal advances within the ABM field, in-
cluding Schelling’s segregation model (1971) and Epstein and Axtell’s Sugarscape (1996), which
sought to explain the emergence of macro-level inequalities from micro-level processes. Since
then, ABM has been applied in upwards of 7500 publications in a broad range of academic dis-
ciplines (Janssen et al., 2020). However, there remains a lack of integration of equity into ABM
applications.4 Given the risk of ABM inadvertently discriminating against vulnerable populations
by not considering equity, as well as the time-pressing imperative to advance equity and the un-
tapped potential for ABM to play a role in doing so, such an integration is sorely needed.

A critical precondition is a solid conceptual and practical understanding of the equity-ABM
interface. In this chapter, we make two contributions to this end. To begin, in sections 2.2 and
2.3 we work toward a conceptual framework that positions equity within ABM. The framework
aims to provide a generalized conceptual understanding of this intersection. Then, in section 2.4,
we outline a set of practical strategies for better integrating equity within ABM research. We
intend our framework and strategies to be of interest to (agent-based) modelers and non-modelers
alike. For modelers, we illustrate a concrete set of approaches to draw from throughout the stages
of agent-based model development. For non-modelers interested in equity, we demonstrate how
ABM can uniquely contribute to questions on this theme.

2.2 Background

2.2.1 Equity

The concept of equity can be conceptualized as a triplet (Sikor et al., 2014):

Equity = (dimensions, objects and subjects, fairness criteria) (2.1)

Any complete description of equity requires these three elements. Equity is frequently under-
stood to have three principal material ‘dimensions’ relating to inputs, process, and outputs. First,
‘recognitional equity’ describes the perspectives and identities acknowledged and valued by so-
ciety, particularly seeking to eliminate forms of cultural domination and discrimination (Fraser,
1995; Sikor et al., 2014). Recognitional aspects emphasize equity as a situated phenomenon that
can only be understood within the culture, beliefs, practices, and institutions that guide actors (Mc-
Dermott et al., 2013). Second, ‘procedural equity’ describes the fairness in people’s inclusion in

4A Scopus search for the terms ( TITLE-ABS-KEY ( “agent-based” OR “agent based” ) AND TITLE-ABS-KEY (
model* ) ) on 31 March 2021 yielded over 30,000 results. Adding the search term (*equit* OR disparit* OR *justice*
OR *fairness*) reduced the results to 344 (i.e., just over 1% of publications).
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and ability to influence decision-making (Arnstein, 1969; Tyler, 2000). This dimension is closely
related to notions of power and agency. Third, ‘distributional equity’ describes the fairness in the
allocation of goods in society (Rawls, 2009). Although conceptually distinct, these three dimen-
sions are co-created and dynamically evolve as, for example, power differentials are both a cause
for and a consequence of distributional inequity (Clark and Harley, 2020; Leach et al., 2018). For
the purposes of this chapter, we assess equity across these three dimensions and consider inequity
to exist when there is unfairness in at least one of these dimensions. Further, we consider a process
(e.g., ABM) as ‘equitable’ or ‘equity-oriented’ when it improves at least one of these dimensions.

Within the material dimensions of equity, there exist the cross-cutting questions of “equity of
what” and “equity between whom,” i.e., the objects and subjects of equity. Such considerations are
inevitably context specific, but also invariably introduce value judgements. For example, Rawls
(2009) describes “equity of what” as relating to the ‘primary goods’ in society (e.g., health, civil
rights, income, social respect), yet this has been subsequently broadened to include human ‘capa-
bilities,’ which encompass the freedoms and opportunities available for people to choose and to
act (Nussbaum and Sen, 1993). Capabilities aim to recognize that people have different values and
capacities to utilize resources as a means to a good life. With respect to “equity between whom,”
people can be grouped or classified based on different dimensions of socio-cultural identity (e.g.,
class, occupation, gender, ethnicity, geography, sexual identity (Leach et al., 2018)). Here, it is crit-
ical to reflect on how the subjects of equity are decided (Fraser, 2009), due to risks of “othering”
people or cultural appropriation (Fraser, 1995; Smith, 2013).

Finally, underlying any assessment of equity is some notion of ‘fairness’. The principles used to
define fairness add a moral and normative angle to equity, therefore requiring critical reflection on,
and transparency around, what is considered fair (Fraser, 2009). Fairness criteria can be broadly
distinguished as pertaining to either consequences or rules (McDermott et al., 2013). The most
basic (and probably oldest) consequence-based notion of fairness is that of egalitarianism (Konow,
2003), i.e., desiring an equal distribution of outcomes between people or groups. Equity as equal-
ity is frequently operationalized through quantitative measures like the Gini coefficient, which
describes the deviation of a distribution from perfect equality. Rules-based principles, in contrast,
judge the fairness of distributional outcomes by the rules through which they arise (McDermott
et al., 2013). Prevailing notions of equity, for instance, adopt a needs-based principle that seeks to
favor the least advantaged in society (Rawls, 2001), so that people who need more of something
have access to more of it (Leach et al., 2018). Such perspectives acknowledge that people have
variable levels of need (Konow, 2003), due to inherent disadvantages suffered by different groups.
Other rules-based principles rest on alternative moral notions, such as ‘merit,’ in which rewards
should be proportional to an individual’s inputs (e.g., effort) (McDermott et al., 2013). There are
a range of perspectives on the conceptual boundaries of merit, for instance whether characteristics
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such as talent, intelligence, and educational opportunities should (or should not) affect rewards
(Konow, 2003). In any case, by articulating a fairness principle, equity seeks to make explicit the
values held by society. Equity is therefore unavoidably normative, as the fairness principle makes
a judgement about what should be. Because these values are culturally mediated and can evolve
over time, equity is also both plural and political (Leach et al., 2018).

2.2.2 The equity-modeling interface

Adopting equity as an analytical lens is unquestionably a difficult endeavor. It must be done
with much thought and critical reflection. Yet, integrating equity into analytical research is also
increasingly necessary; as modeling becomes more deeply integrated within societal decision-
making, so too does its potential to do harm. For example, in a highly publicized incident, a
machine learning algorithm designed to predict recidivism (a convicted criminal committing a
future crime) was biased against Black people. The algorithm, which was trained on historical data
and used to inform decision-making in the United States criminal justice system, was significantly
more likely to falsely flag Black defendants as future criminals (Angwin et al., 2016). In so doing,
it inadvertently perpetuated historical racial disparities contained within the data. Other prominent
model-based discriminatory failures have arisen in healthcare, facial recognition, and advertising
(Mehrabi et al., 2019).

Accordingly, the ‘equity-modeling interface’ is receiving increasing scrutiny within science.
These efforts pertain to two principal levels: within a model itself and within the broader process of
model development and application. Within models, inequity can exist in model inputs, processes,
and outputs. On the inputs side, data can be biased; historical data contain historical inequities
(Jacobs and Wallach, 2021) and it is possible that insufficient data exist for a socio-cultural group
(i.e., they are insufficiently recognized), either due to the size of the group or inadequate data
collection procedures (Rajkomar et al., 2018). Further, the variables or metrics selected as model
inputs can inadvertently lead to discriminatory model solutions. For example, an algorithm trained
to optimize health care costs as a proxy for health led to systemic bias against Black patients
(Obermeyer et al., 2019). This was because Black patients, due to barriers to accessing health
care, received less weight in the cost variable (i.e., at a given level of health, Blacks generate lower
costs than Whites) and thereby were attributed lower risk scores. Therefore, in line with the saying
“garbage in, garbage out,” we could also say “inequity in, inequity out.”

Within model processes, there is a fast-growing body of work in the machine learning com-
munity on algorithmic fairness, which recognizes that model formulations can inherently be prej-
udiced towards or against particular individuals or groups (O’Neil, 2016; Mehrabi et al., 2019).
This work focuses on formalizing measures of fairness (Feldman et al., 2015), as well as integrat-
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ing fairness objectives and constraints into optimization formulations (Corbett-Davies et al., 2017).
In these models, there is often found to be a ‘cost’ of fairness, in that the fairest solution is not nec-
essarily also optimal with respect to other decision objectives (e.g., economic cost) (Kleinberg
et al., 2016).

On the outputs side, equity is most commonly measured using inequality metrics. The most
well-known is the Gini index, which measures the distribution of a resource (e.g., income) across
a population. Other metrics such as the Atkinson and the Kolm-Pollak indices explicitly attach a
(normative) penalty to inequality (Logan et al., 2021) and therefore more fully engage with equity
as defined in this chapter. Beyond such metrics, notions of distributional equity are frequently in-
corporated in research on disparities in health and healthcare access (Jatoi et al., 2003; Speybroeck
et al., 2013) by stratifying participants based on socio-cultural identity (e.g., race) and comparing
outcomes between groups.

At the second level (i.e., the broader process of model development and application), there
are efforts to reduce inequity in model bias and to mitigate power asymmetries between mod-
elers and non-modelers. Models are not neutral objects (Voinov et al., 2014; Cruz Cortés and
Ghosh, 2020); many implicit value judgements are made when developing a model, and bias is
introduced when mapping theoretical constructs (e.g., socioeconomic status) to observable charac-
teristics (e.g., income) (Jacobs and Wallach, 2021). In order to reduce inequity introduced by these
biases, modelers first need to recognize if there is a problem. By engaging in a reflexive process
that questions assumptions and practices, modelers can understand and begin to deconstruct their
biases (Grieshaber, 2010; Steger et al., 2021b). Moving beyond reflection, equity can be improved
by involving stakeholders and societal groups within the model development process. When done
well, this helps to include a wider range of epistemologies to reduce the effect of the modeler’s
individual bias (Voinov and Bousquet, 2010), as well as to reduce power asymmetries between
modelers and non-modelers. There are a variety of levels of possible stakeholder engagement that
respectively achieve different levels of equity (Voinov et al., 2016). Notably, if not appropriately
managed, participatory modeling can perpetuate recognitional and procedural inequity by tokeniz-
ing or appropriating local or indigenous knowledge (Arnstein, 1969).

2.2.3 The equity-ABM interface

Agent-based models share many characteristics with other modeling approaches: they often aim
to and are increasingly applied to inform decision-making; they take inputs, transform them, and
produce outputs; and they require a large number of explicit and implicit design decisions. Thus,
many of the equity considerations developed in other fields are also relevant to ABM. Yet, agent-
based models exhibit unique characteristics that give rise to distinct opportunities for and risks to
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equity. This warrants an analysis of the ‘equity-ABM interface’. As far as the authors are aware,
this is the first attempt at such an analysis.

Several features of agent-based models position them uniquely to engage with equity. First, a
key characteristic of agent-based models is their ability to represent heterogeneity. Heterogeneity
can exist in agent characteristics (e.g., capacity or gender), experiences (e.g., success in finding
employment), and outcomes (e.g., wealth), thereby facilitating assessments across all three di-
mensions of equity. Moreover, agent-based models can represent multiple dimensions of agent
heterogeneity that can be both static (e.g., gender) and dynamic (e.g., social networks) throughout
a simulation. Equity-oriented agent-based models therefore have the potential to consider nuanced
socio-cultural identities (i.e., equity between whom). Second, relative to most other modeling
approaches, ABM allows for very flexible behavioral representations (utilitarian, prospect the-
ory, theory of planned behavior, heuristics, etc.) (Groeneveld et al., 2017). Agent-based models
are therefore useful tools for formalizing diverse decision-making processes to facilitate assess-
ments of procedural equity. Such procedural inequities can exist at a single scale (e.g., heteroge-
neous levels of agent capacity) or across scales (e.g., heterogeneous individual-level influence over
system-level decisions). Third, due to their dynamic, process-based nature, agent-based models
can represent complex feedbacks and interconnections between mechanisms and outcomes. They
therefore facilitate dynamic, integrated equity assessments (e.g., how distributional equity acts as
both an input to and an output of procedural equity (Leach et al., 2018)).

Yet, these very features also pose risks if agent-based models are not designed with equity con-
siderations at front of mind. First and foremost, ABM is a highly flexible modeling approach, in
that it allows for a near unlimited number of degrees of freedom (or ‘complicatedness’ in model
structure (Sun et al., 2016)). Beyond the issues of parameter identifiability, developing a compli-
cated model requires a huge number of structural decisions, each of which contains some level of
value judgement on the part of the modeler. An agent-based model is therefore a projection of the
modeler’s worldview, which is conditioned by their particular experiences and socio-cultural iden-
tity. Agent-based models thus may exclude or misinterpret non-dominant worldviews or theories,
thereby perpetuating recognitional inequity. Second, attempts to incorporate agent heterogeneity
may miss important dimensions of difference. For example, it may not be sufficient to consider het-
erogeneity only in who the agents are, but also in how they behave and are treated by system-level
rules. In extreme cases, this risks ascribing distributional inequity to innate characteristics rather
than procedural inequities (e.g., ascribing disparities between Black and White citizens’ income
to (genetic) differences in agent characteristics), which can be deeply problematic (VanderWeele
and Robinson, 2014). Thus, as is true for all modeling, improving equity within ABM must be
a balancing act between simplicity and interpretability on one hand and structural realism on the
other.
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Current ABM research and practices engage with some components of equity more than oth-
ers. Equity dimensions are often incorporated into the purpose of agent-based models, most fre-
quently through questions of distributional equity (i.e., disparities in outcomes across agents or
agent groups). Notions of procedural equity and power dynamics are explored in some cases, al-
beit less frequently (Lindkvist et al., 2020). Beyond the model itself, ABM development often
engages in participatory methods, thereby achieving a more equitable distribution of power be-
tween modelers and stakeholders (Biommel et al., 2016; Steger et al., 2021a) as well as facilitating
integration into policy- and decision-making (Will et al., 2021). Moreover, standardized ABM
frameworks such as the ODD protocol5 and TRACE documentation6 improve equity by encour-
aging modelers to be explicit about their assumptions and reasons for inclusion or exclusion of
particular actors and processes. Yet, rarely do modelers explicitly consider their positionality (i.e.,
their socio-cultural identities and how these relate to the modeled context (Holmes, 2020)) or more
meta-level reflections on the moral principles implicit within model purpose and design. Looking
forward, to facilitate wider uptake of equity considerations within ABM research, there is a need to
clearly define the ‘equity-ABM interface’ as well as to identify actionable strategies for equitable
ABM. These are the aims of the following sections.

2.3 Conceptual framework

We synthesize theories of equity with prevalent notions of ABM to establish a framework for the
equity-ABM interface (Figure 2.1). It is grounded on the following overarching premises:

1. Agent-based models are nested within a broader scientific and socio-political context (dashed
black lines, Figure 2.1).

2. The modeler,7 in engagement with stakeholders, acts as a filter and a lens for translating
knowledge to and from the model (solid black lines, Figure 2.1).

3. The three elements of equity (dimensions, subjects and objects, fairness criteria) cut across
all components and actors within ABM (orange boxes, Figure 2.1).

5The ODD (Overview, Design concepts, and Details) protocol is a standardized method for describing agent-based
models (Grimm et al., 2006, 2020). The ODD+D builds on this by adding more specificity around human decision-
making (Müller et al., 2013).

6TRACE stands for “TRAnsparent and Comprehensive model Evaludation,” where ‘evaludation’ describes an
integrated form of model evaluation and validation (Augusiak et al., 2014). The TRACE framework is a tool for
planning, performing, and documenting model evaluation and validation (Schmolke et al., 2010; Grimm et al., 2014).

7We refer to a single ‘modeler’ in our framework and action pathways, but intend it as also appropriate for collab-
orative modeling projects with multiple modelers. We discuss the limitations and extensions for multiple modelers in
the Discussion section.

14



Figure 2.1: Conceptual framework for the equity-ABM interface. ABM is a societally nested process (dashed black),
with the modeler as a filter and lens for translating knowledge to and from the model (solid black). Equity is a
cross-cutting issue (orange) and ABM can engage with it at three principal levels (blue).

4. Advancing equity through ABM will involve (i) engaging stakeholders and society in knowl-
edge co-production, (ii) recognizing modeler positionality and bias, and (iii) applying agent-
based models to assess equity (blue boxes, Figure 2.1).

The first premise underscores that agent-based models are not isolated, technical objects. All
agent-based models begin with a purpose (Grimm and Railsback, 2005), which generally should
relate to a topic of interest to science and society. Predominant societal narratives can influence
scientific priorities and funding, thereby motivating select model purposes. Thus, even before a
model has been designed or built, ABM cannot be separated from the broader scientific and socio-
political environment in which it operates.

The second premise positions the modeler as a primary locus for action on equity. The modeler
is an integrator who, in an iterative fashion, formulates the model’s purpose, translates it into a
model-based format, filters and interprets the model outputs, and communicates these to society
(Schmolke et al., 2010; Grimm and Railsback, 2005). Bias can enter through any of these processes
(i.e., the black arrows linked to the modeler in Figure 2.1). Using a metaphor of the modeler
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Figure 2.2: The modeler as a filter and a lens. The modeler’s positionality affects both what knowledge and how
knowledge is projected into the model. Engaging stakeholders can affect the filter (e.g., through broadening or nar-
rowing the modeling scope) and the lens (e.g., through offering alternative understandings of a process).

as a filter and a lens, we conceptualize this bias in two ways: through what the modeler sees
and allows to inform the model, i.e., the ‘filter’ that admits or blocks knowledge; and how the
modeler understands the world, i.e., the ‘lens’ that can morph knowledge (Figure 2.2). Both of
these are shaped by the modeler’s positionality. Engagement with stakeholders (and their own
filters and lenses) can reshape the modeler’s effective filter and lens, but never eliminate them, as
the modeler is generally responsible for translating stakeholder knowledge to model code and vice
versa, even in highly participatory research (Voinov and Bousquet, 2010). Finally, the adjacency
of the modeler and stakeholders underscores that the modeler is themselves a stakeholder in the
modeling process (Voinov et al., 2014).

Through the third premise, we emphasize the cross-cutting nature of equity within ABM. Each
equity element does not exclusively exist within specific components or actors, but is relevant
at multiple levels. For example, procedural inequity, which describes fairness within decision-
making processes, can be assessed within agent-based models by incorporating power dynamics.
Yet, procedural inequities can also exist between the modeler and the stakeholders or between the
stakeholders themselves (i.e., some stakeholders exert more influence over the modeling process).
Similarly, the subjects of equity (i.e., between whom?) can pertain to the modeled agent identities
as well as the stakeholders included within model development.

The final premise introduces three action pathways–—engage stakeholders, recognize position-
ality, and assess inequity—–for ameliorating inequities and leveraging opportunities to advance
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equity in ABM. First, at the highest level, modeler-stakeholder engagement can help to reduce
modeler biases or misunderstandings of system contexts that could perpetuate inequity (e.g., in-
correct characterization of cultural groups) as well as distribute power more equitably between
parties. In extreme cases, stakeholder engagement can leverage the modeling process to affect
structure and power dynamics within the stakeholder groups themselves. A further consideration
within this top level is society’s ability to derive benefit from the ABM process: how is the science
communicated, and to whom? Second, the middle level is about how the modeler engages in self-
reflexivity to deconstruct and acknowledge personal values, particularly how they may create bias
throughout agent-based model development (Grieshaber, 2010). Modeler reflection also aims to
make any value judgements (e.g., what is ‘fair’) transparent (Jacobs and Wallach, 2021). Finally,
the bottom level is about how the agent-based model itself engages with equity; agent-based mod-
els can be used to conceptualize inequities, better understand their implications, and investigate
mechanisms toward overcoming them (Campbell et al., 2015). The ultimate goal here is to use
equity-oriented agent-based assessments to inform societal decision-making.

2.4 Applying the framework: Three action pathways

The action pathways (blue boxes in Figure 2.1) illustrate the options that are available for modelers
to integrate equity within ABM research and therefore aim to make the framework operational. In
this section, we discuss each of these three pathways in more detail and provide examples and
concrete guidance to assist modelers in implementing them.

There are both challenges and opportunities associated with applying these pathways, which
we discuss more deeply in the Discussion section. However, we flag two key ideas upfront. First,
although the framework presents the action pathways as conceptually distinct, in practice they are
neither mutually exclusive nor independent. For example, an equity-oriented model assessment
may require stakeholder input to inform model process design and additionally requires the mod-
eler to critically reflect on their quantification of fairness.

Second, the action pathways are not prescriptive, and all may not always be appropriate. For
example, since we consider equity only in relation to human experiences, agent-based models
of non-human entities (e.g., animals or plants) cannot in themselves be used to assess equity.
Similarly, in theoretical or highly abstracted agent-based models it might be difficult to identify
who the stakeholders are. In such cases, modelers can simply state and justify why they do not
consider particular pathways relevant, or why it was impractical to attend to all aspects (e.g., due
to time or financial constraints).
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2.4.1 Assess equity in agent-based models

2.4.1.1 Overview

ABM can be used as a tool to mechanistically describe historical inequities as well as to assess
conditions that might mitigate them going forward. For this action pathway, we draw from pre-
vious agent-based model applications to demonstrate the capabilities of agent-based modeling for
assessing equity and to inspire future equity-oriented ABM research applications.

To develop a set of example applications, we conducted a keyword search in Scopus using the
terms (TITLE-ABS-KEY (“agent-based” OR “agent based”) AND TITLE-ABS-KEY (model*)
AND TITLE-ABS-KEY (*equit* OR disparit* OR *justice* OR *fairness*)). The search terms
include a variety of equity-related keywords in an attempt to capture publications from a broad
range of fields. We do not intend this as a formal literature review and acknowledge that we
have necessarily missed important resources in this process. However, we believe our scope to
be expansive enough to reveal general trends and to establish a sufficiently large set of example
applications. Within the articles returned by the Scopus search, we restricted our focus to those
that apply an agent-based model and indicate clearly within the abstract some link to equity (or
equality) in the model’s design or application. For each valid article, we categorized its application
field and the type(s) of equity assessed, including how equity was quantified and the objects and
subjects of equity.

The search8 returned 344 results, of which 141 we retained as relevant. These articles applied
agent-based models in a diverse array of systems (Table 2.1), ranging from abstracted, historical
analyses of socio-cultural evolution to detailed, forward-looking assessments of policies for cli-
mate change mitigation. The United States was by far the most prevalent location represented
in ABMs applied to location-specific case studies. Dominant framings included environmental
justice, economic inequality, and disparities in health outcomes and access to urban services. Al-
though rarely explicitly stated, these framings most frequently conceptualized fairness as either
applying preference to those with the greatest need or achieving equality in outcomes between
groups. The modeled outcomes generally represented measures of social ‘goods’ (e.g., wealth,
resources) or human ‘capabilities’ (e.g., access to employment, membership in social groups).
The modeled dimensions of agent heterogeneity included both continuous measures of variability
within a type (e.g., wealth, resources) and discrete, categorical identities (e.g., race, stakeholder
type). Further descriptive statistics are included in Table 2.1 and selected examples for each equity
dimension are shown in Table 2.2.

8Conducted on 31 March 2021.
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2.4.1.2 Recognitional equity

Recognitional equity describes the identities and perspectives acknowledged and valued by society
(Fraser, 1995). Accordingly, agent-based models can engage with recognitional equity by repre-
senting heterogeneity in agent attributes (i.e., identities) as well as objectives or decision-making
procedures (i.e., perspectives). Many agent-based models do this. For example, models of cultural
evolution often represent dynamic levels of agent altruism and cooperative tendencies to assess
how specific human behaviors are selected for in human societies (and thereby recognized and
valued by human societies) (Sánchez and Cuesta, 2005). Further, models of power dynamics im-
plicitly represent how power begets recognition, for example through receiving greater weight in
decision-making procedures (Orach et al., 2020). Similar ideas exist in literature and models on
gendered decision-making (Villamor et al., 2014; Beal Cohen et al., 2019).

Yet, only four articles within our sample specifically engaged with recognitional equity (Table
2.1). All of these articles assessed the implications of broadening the modeling scope to include
vulnerable group identities, such as the behavior of slum residents in India or the behavior of Black
men who have sex with men in the USA (Table 2.2). For example, Adiga et al. (2018) show that
explicitly representing the household sizes and network structures of slum dwellers in Delhi, India
is necessary to achieve more equitable public health outcomes. When these characteristics are not
represented, their model underestimates the risk to slum dwellers. These examples leverage ABM
as a virtual laboratory to test and demonstrate the equity impacts of different recognitional assump-
tions. Because this requires no methodological extension beyond representing agent heterogeneity,
recognitional equity could easily play a more central role in future ABM research.

2.4.1.3 Procedural equity

Procedural equity describes the fairness in peoples’ inclusion in and ability to influence decision-
making (Tyler, 2000). Because agent-based models explicitly represent decision-making pro-
cesses and interactions across scales, they are particularly well-poised to incorporate procedural
inequities. Accordingly, models focusing on procedural equity were moderately common in our
search results, occurring in 41 (29%) of the retained articles.

Within these articles, we observed five principal approaches for dealing with procedural eq-
uity (Table 2.1). The most common of these was to represent heterogeneity and/or fairness in
individual-level decision-making processes. This was most frequently applied in models in the
“culture and game theory” category, whereby agents are specified, for example, to have heteroge-
neous and dynamic preferences for individual satisfaction and system-wide resource distributions
((Motchoulski, 2019); Table 2.2). Although these dynamics are solely at the level of an individ-
ual agent, they relate to procedural equity because certain agents may have more or less ability to
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influence system-level dynamics through their own decisions.
The second-most common approach takes the procedural focus to a slightly larger scale: group

interactions. This was also most common in the “culture and game theory” category. Here, agents
interact with each other more directly, for example by sharing or competing over communal re-
sources ((Schank et al., 2015; Klein et al., 2017); Table 2.2). Power dynamics play an important
role in these kinds of interactions and can be surprisingly simple to represent. For example, Ma-
hault et al. (2017) model resource transfers within a population of agents and implement a version
of the “Matthew effect,” whereby the power to acquire wealth grows super-linearly with accumu-
lated wealth. Beyond the possession of physical or material resources, other forms of capital, such
the ability to influence others’ decisions (Dávid-Barrett and Dunbar, 2013), can confer power and
thereby represent procedural inequity.

A more complicated form of decision-making, identified in only four articles in our sample, is
governance. Governance is a form of collective decision-making in which people jointly collabo-
rate on system-level decisions. In these cases, agents may have diverging preferences, making it
difficult to come to an overarching decision. Deliberation processes can help to achieve better con-
sensus and governance outcomes (Choi and Robertson, 2013), but some cases may require a form
of adjudication (an authoritative process for reaching a common decision) ((Motchoulski, 2019);
Table 2.2). Different adjudicative mechanisms can be employed, such as a plurality vote (choose
the most popular option) (Motchoulski, 2019) or stricter majority or supermajority requirements
(50% or more in consensus) (Choi and Robertson, 2013). These mechanisms may disadvantage
minority groups, due to their smaller cumulative voting power. Overall, the limited presence of
governance elements within our sample reflects a general lacking within the agent-based modeling
community (Lindkvist et al., 2020). Yet, these examples demonstrate that governance dynamics
not only can be represented, but also have been represented in agent-based models, thus setting the
stage for future governance-oriented ABM research.

Beyond the bottom-up decision-making of individual agents, the fourth and fifth approaches
represent procedural equity through top-down processes. The fourth approach models decisions
made by a single system-level agent, which may systematically favor or disadvantage certain pop-
ulation groups, for example by preferentially locating environmental dis-amenities in communities
with low privilege (Eckerd et al., 2017) or allocating work to the best performing workers (Sobkow-
icz, 2016). Due to the focus on a single decision-maker, this approach is less unique to agent-based
models and is conceptually similar to objective functions in optimization problems or aggregated
actors in system dynamic or economic models. Yet, agent-based models can be used to examine
both the distributional effects of top-down procedural inequities (see the following subsection) as
well as explore bottom-up responses to top-down management decisions ((Farhadi et al., 2016);
Table 2.2).
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The fifth approach is more methodologically oriented and focuses on potential inequities in-
troduced by the simulation procedure itself. In particular, the order in which agent processes are
executed can affect both agent-level and system-level outcomes ((Page, 1997); Table 2.2). In some
cases, computational approaches such as multithreading may inadvertently lead some agents to ex-
ecute early within each time step (Welch and Ekwaro-Osire, 2010), thus creating an unfair playing
field. Although these features pose a risk when not adequately considered, they also introduce an
opportunity to represent mechanisms of power and privilege through simulation design.

2.4.1.4 Distributional equity

Distributional equity describes the fairness in the allocation of goods in society (Rawls, 2009).
Any model in which agents have heterogeneous experiences therefore implicitly deals with dis-
tributional equity. This is a feature of almost all agent-based models. Perhaps given this, dis-
tributional equity was the most prominent equity dimension within our sample, being present in
117 of the retained articles (83%). We structure our discussion of these articles according to three
principal modeling objectives: the conditions leading to distributional (in)equity, the distributional
(in)equity itself, and its implications.

There are a wide range of reasons to explore the conditions leading to distributional inequity.
For example, understanding the set(s) of equity-promoting or equity-degrading conditions can be
useful for identifying equitable policies or interventions among a large set of candidates (de Wildt
et al., 2020). Here, tools such as ‘scenario discovery’ can be used to find combinations of input
parameters leading to an outcome of interest (de Wildt et al., 2020). Similarly, agent-based mod-
els have been used to identify the behavioral conditions that give rise to desirable or undesirable
system-level outcomes, such as sustainable resource management (Schindler, 2012) or social strat-
ification (Dávid-Barrett and Dunbar, 2013). In some cases, the set of hypothesized mechanisms
may be insufficient to describe observed levels of distributional inequality (Goodreau et al., 2017),
motivating consideration of a wider range of factors.

The approach for analyzing distributional equity itself depends primarily on the type of agent
heterogeneity being modeled. In the simplest case of a single agent type, distributional equity is
assessed through variability within the type, for example a Lorenz curve or Gini index to represent
wealth inequality (Mahault et al., 2017). When heterogeneity exists in other agent characteristics
(i.e., there is a diversity of agent types (Page, 2010)), distributional analyses generally relate an
outcome measure to an agent attribute. Here, if agent attributes are discrete, a common approach
is to compute disparities between the categorical classes, such as two racial groups (e.g., (Orr
et al., 2014)). If, instead, the relevant agent attribute is continuous, studies frequently discretize
the attribute through stratification (e.g., high-income and low-income (Auchincloss et al., 2011)).

Several articles within our sample focused on the implications of distributional inequality. Two
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of these were based on economic disparities and their potential to lead to conflict (Kustov, 2017)
as well as instability within the US financial system (Cardaci, 2018). More generally, due to
the iterative nature of agent-based models, distributional (in)equity in one time step can affect
subsequent model procedures, in turn affecting subsequent distributional patterns. Thus, many
other applications implicitly internally model the implications of distributional inequity.

One final consideration relevant to distributional equity is how it relates to other outcome mea-
sures. Studies frequently reported tradeoffs between equity and economic outcomes (Ponsiglione
et al., 2015; Malik et al., 2015; Henry and Brugger, 2018), equity and environmental outcomes (Fi-
latova et al., 2011), or between stakeholder objectives (Farhadi et al., 2016). Only one study in our
sample reported win-win outcomes across equity and other dimensions (Bell et al., 2016). Thus,
agent-based models are a useful tool for characterizing such multidimensional relationships and
can be combined with other methods, such as multi-objective optimization, to identify conditions
that minimize tradeoffs across multiple dimensions (Farhadi et al., 2016).

Table 2.1: Descriptive statistics for articles that apply agent-based models to topics relating to equity. The overall
sample consists of 141 articles identified in a Scopus keyword search. The sample sizes do not always add up within
each category because some abstracts fit within multiple labels and some abstracts were too difficult to classify for
some categories.

Category Details # of
articles

General information
System Built environment (e.g., transportation, housing, energy systems) 38

Health (e.g., HIV/AIDS, infectious disease) 32
Culture and game theory (e.g., cooperation, evolution, anthropology, ultimatum games) 27
Environment (e.g., land-use, water systems) 21
Economy (e.g., wealth, markets, business) 18
Science and education (e.g., peer review, teaching) 6
Crime (e.g., policing, incarceration) 4
Other 9

Location Not stated / aspatial 79
North America 35
Asia 11
Europe 6
Africa 3
Global 3
Oceania 2
Central and South America 2

Journal JASSS 10
Lecture Notes in Computer Science 6
Computers, Environment, and Urban Systems 4
Other 120

Between whom? (subject)
Economic capital (wealth, income) 36
Race 20
Other forms of capital (e.g., social status, resource access) 16
Socioeconomic (i.e., combined social and economic) 11
Spatial (e.g., neighborhood, country) 11
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Category Details # of
articles

Decision-making characteristics (e.g., altruism, cooperativeness) 7
Stakeholder groups 6
Other 9

Of what? (object)
Access (e.g., housing, energy, travel time) 40
Health outcome (e.g., HIV/AIDS, influenza, diet) 23
Wealth or income 22
Environmental (e.g., water quality) 9
System-level outcome (e.g., equilibrium, emergence of cooperation) 8
Social (e.g., group membership, status, genetic selection) 7
Other 18

Fairness criterion
Vulnerability/need 38
Equality 32
Disparity † 13
Merit 3

Equity dimension
Recognitional
(n=4)

Implications of representing vulnerable group characteristics (e.g., incorporating gendered or
race-specific decision-making and behavior)

4

Procedural
(n=41)

Individual decision-making processes (e.g., agents with fairness objectives) 20
Group interactions (e.g., cooperation, power dynamics) 14
System-level decision-making processes (e.g., resource allocation) 5
Governance (multiple agents collaborating on a decision) 4
Simulation methodology (i.e., ordering of agent processes) 2

Distributional
(n=117)

Distributional effects by group identity (e.g., race, spatial location) 60
Conditions leading to inequality 40
Distributional effects over population (e.g., Gini index) 17
Implications of inequality 3

Table 2.2: Examples of approaches to represent or assess equity in agent-based models. We selected examples that
represent the range of approaches taken within papers in the Scopus search (Table 2.1).

Category Example Lessons and opportunities for
equity assessment

Recognitional Adiga et al. (2018) model the spread of influenza in Delhi, India. They
contrast two different network configurations: one that treats slum and
non-slum regions the same, and one that represents slum-specific
demographics and behaviors. They find that ignoring slum attributes can
lead to a 30-55% overestimation in vaccination efficacy, thereby
demonstrating the importance of representing vulnerable group
characteristics and behaviors in both models and public health policy.

It may be important to
represent heterogeneity not
only in agent attributes but also
their decision-making options
and procedures.

Goodreau et al. (2017) model the mechanisms leading to disparities in HIV
prevalence between Black and White men who have sex with men in
Atlanta, GA, USA. They find that racial assortativity (the tendency to
select same-race sexual partners) does not describe the observed racial
disparities. Their results demonstrate the importance of understanding
the effects of systemic biases and disparities in other mechanisms, such
as care and communication.

System-level processes may
treat different socio-cultural
groups unequally.
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Category Example Lessons and opportunities for
equity assessment

Procedural Page (1997) examines the importance of the simulation updating
procedure in affecting agent outcomes. They compare emergent system
dynamics under two conditions: one where agent states are updated in a
random order and one where the updating order is determined by the
agents’ relative utility increases (a.k.a. “incentive based asynchronous
updating”). The two different conditions contribute to vastly different
model dynamics.

The execution order for agents’
processes makes implicit
assumptions about power.

Motchoulski (2019) examines disagreements between agents’ conceptions
of distributive justice and the effectiveness of different ‘adjudicative’
governance mechanisms (an authoritative process for reaching a common
decision, e.g., through a third party) in resolving these disagreements. In
their model, agents have heterogeneous and dynamic preferences toward
individual satisfaction (i.e., self-interest regarding how many resources
they receive) and distributive justice (i.e., the distribution of resources
throughout society). Agents respond to the outcomes of adjudicative
mechanisms by adjusting the relative weights placed on self-interest and
justice.

Agents can have heterogeneous
decision-making preferences,
which can evolve throughout a
simulation based on their
experiences.

Governance is a form of
multi-level decision-making
through interaction of
bottom-up agent actions and a
top-down governance
procedure (e.g., plurality vote).
Agent-based models can
contrast alternative governance
arrangements.

Eckerd et al. (2017) model the emergence of environmental injustice in a
community through the siting decisions of environmental amenities and
dis-amenities. They vary the extent to which top-down decisions about
amenity location are driven by cost versus community privilege (e.g.,
dis-amenities preferentially selecting locations with low community
privilege). They find that amenities exert important influences on
environmental injustice, meaning that a pure focus on the politics of
dis-amenity siting is insufficient.

Agent-based models can
formalize and explore the
implications of bias in
top-down decision-making.

Schank et al. (2015) model the evolutionary origins of cooperation within
societies. In their model, agents play the “dictator game,” where one agent
decides how to divide a resource with another anonymous agent. They
examine the conditions under which individual preferences toward
cooperation, which are observed empirically but conflict with some
behavioral theories, are selected for in a group-based society.

Individual-level
decision-making procedures
can affect group structure and
dynamics.

Mahault et al. (2017) model different mechanisms for regulating power
imbalances in an artificial society. When no constraints are imposed on
wealth transfer between agents, the agent population invariably becomes
polarized, whereby the agents with more opportunity accumulate all of the
resources. As further constraints are imposed on wealth transfer, agents’
‘frustration,’ a measure of the degree to which they act to reduce
unsatisfied aspirations, mediates the effects of power imbalances within the
society.

Power dynamics can be
represented in agent
interactions
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Category Example Lessons and opportunities for
equity assessment

Distributional de Wildt et al. (2020) examine the conditions that give rise to inequality
through conflicts in agents’ capabilities (a measure of the freedom to
achieve wellbeing) in the deployment of decentralized energy systems.
Their model operationalizes the capability approach of Nussbaum and Sen
(1993) and their analysis examines a broad range of energy system and
geographic scenarios. They find distinct classes of capability conflicts:
sometimes conflicts are inherent to organizational characteristics of energy
systems; sometimes conflicts are specific to a type of population (e.g.,
affluent); and sometimes conflicts occur between population groups.

Scenario discovery can be used
to examine the conditions that
give rise to inequality.

Farhadi et al. (2016) model tradeoffs between stakeholders’ objectives
in groundwater management: reducing water deficit (the farmers),
increasing equity of groundwater allocation (government executive sector),
and reducing groundwater drawdown (environmental protection institutes).
They model compromises between the three stakeholders and identify a
Pareto-optimal set of solutions using an optimization method. They then
use an agent-based model to represent how farmers respond to
management decisions and adjust the optimal solutions according to these
social conditions.

Distributional inequity can
arise both within agent groups
and between different types of
agents (/stakeholders).

Agent-based models can be
combined with other modeling
approaches that quantify
tradeoffs and generate
prescriptive solutions (i.e.,
multi-objective optimization).

Smart (2019) models ‘colorism,’ the prejudice toward allocating privilege
to lighter skin color, in the context of policing in the US criminal justice
system. Their model contains three citizen groups: lights, mediums, and
darks. They found that aggressive policies to counteract colorism yielded
counterintuitive distributional effects between groups. Specifically,
agents in the middle of the skin color spectrum experienced higher rates of
incarceration. The results demonstrate the importance of broadening the
description of colorism to include those in the middle of the color
spectrum.

Policy effects can be stratified
according to dimensions of
agent heterogeneity.

Cardaci (2018) models the implications of inequality for the 2007-08
financial crisis in the United States. Their model represents how inequality
in income can lead to expenditure cascades that result in accumulation of
household debt, increasing the fragility of the economy and paving the way
for the financial collapse.

Distributional inequity can be
used as an input.

2.4.2 Recognize modeler positionality and bias

2.4.2.1 Reflexive themes

In many cases of socio-cultural injustice, a necessary preliminary step toward systemic transfor-
mation is to recognize the problem. Accordingly, recognitional aspects appear at the forefront of
other equity-oriented science frameworks (Chandanabhumma and Narasimhan, 2020; Leach et al.,
2018), in qualitative research through ‘positionality statements’ (Milner, 2007; Holmes, 2020),
as well as through acknowledging ‘privilege’ in antiracist and feminist methodologies (McIntosh,
2020). Barnaud and Van Paassen (2013) succinctly state: “if a designer does not make his bi-
ases explicit, he risks imposing them unconsciously.” The issue of recognition is thus of utmost
importance for rigorous and equitable model development. Yet, such recognitional features are
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surprisingly absent in ABM research.
We conceptualize recognitional considerations as pertaining to five distinct themes: modeler

positionality, problem framing, data, process quantification, and model interpretation. The first
theme (positionality) is about the modeler’s identity, how this may have influenced their experi-
ence and perception of the world, and how it relates to the research context (Milner, 2007). Here,
‘identity’ constitutes a combination of social and cultural factors, such as race, gender, political be-
liefs, age, and experience. Different facets of a modeler’s identity may position them as an insider
or outsider with respect to the research context (Holmes, 2020), together forming a psychological
‘distance’ from the research phenomenon. For example, as an insider to the culture being studied,
the researcher has a ‘lived familiarity’ and a deeper a priori understanding of the culture, yet may
be unable to sufficiently detach themselves from the culture to study it without bias (Kusow, 2003).

The remaining four themes each correspond to an arrow entering and/or exiting the modeler
in our framework (Figure 2.1), thereby underscoring the importance of reflexivity at all stages of
agent-based model development and application. First, ‘problem framing’ describes the narratives
that motivate the research and what problems and solutions these narratives include, exclude, and
prioritize (Leach et al., 2010). Second, ‘data’ describes both how data contain embedded historical
inequities and how inequitable data-gathering procedures may generate bias in a dataset (Mehrabi
et al., 2019). Third, ‘process quantification’ encompasses bias associated with translating knowl-
edge into a model format.9 Fourth and finally, ‘model interpretation’ closes the loop by describing
how the modeler’s positionality affects their interpretation and communication of model outputs.

2.4.2.2 Applying the themes

In this action pathway, the modeler engages in a reflexive process of understanding, critiquing,
mitigating, and acknowledging sources of potential inequity. Although this does not necessitate
changes to the modeling focus or model design, recognition should be seen as an iterative and
ongoing component of good modeling practice that, over time, seeks to mitigate potential inequities
and therefore influences the direction of model development. Thus, it is important that such efforts
do not become perfunctory or solely post-hoc considerations; recognition should be understood
as a means for opening doors to deeper engagement with inequity, rather than an end in itself. A
critical approach is required to disentangle how each aspect of the modeling process is subjective,
what is included and/or might be excluded, who might be the winners and losers, and who has
decided about this. Yet, no matter how reflexive a researcher is, it is impossible to objectively
describe something as it is (Holmes, 2020) and therefore this process should seek to understand

9Subjectivity in quantification is a well-recognized issue in agent-based modeling, where different modelers reach
different conclusions given the same set of data, or independent implementations from a single model documentation
lead to different results (Zhang and Robinson, 2021).
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and acknowledge the model as a non-neutral object (Voinov et al., 2014; Barnaud and Van Paassen,
2013), rather than to neutralize or neuter it.

To assist modelers in this exercise, we enumerate a set of reflection prompts for each theme
(Table 2.3). We suggest two alternative approaches for operationalizing these considerations. The
first is through a “positionality and bias statement,” which synthesizes the insights from reflection
on these five themes into a standalone document. The document may be narrative or simply a list
of answers to the prompts. It can be updated over time, as necessary, and included with any written
communication of the model and its outputs (e.g., an appendix to an academic research article).

The second approach integrates the questionnaire into standardized modeling protocols within
the ABM field, as well as more generally into the presentation of models and results. In Table 2.3
we suggest how these reflections could be embedded into academic articles, the TRACE frame-
work, and the ODD protocol. TRACE and ODD are frequently used to document and describe
agent-based models (Grimm et al., 2020, 2014) and already encourage the modeler to reflect on
model design decisions. The questions outlined in Table 2.3 could supplement the existing prompts
in either of these frameworks, in order to give more targeted reflection on positionality and bias. In
line with the TRACE and ODD practices, if space or structure does not allow for comprehensive
exposition, we suggest briefly summarizing these themes within the main body of a manuscript
and including the full set of reflection questions as an appendix or supplement. Not all themes are
necessarily always relevant, for example if the model does not draw from data.

Appendix A provides an example standalone positionality and bias document, using the
prompts in Table 2.3, for an agent-based model of smallholder agriculture. The model draws
on secondary empirical data from Ethiopia and was used to examine the efficacy of alternative
strategies for building smallholder climate resilience. The principal modeler identifies as a White
male of European descent. Other members of the research team all identify as male and work at
predominantly White academic institutions in the United States. Two of the research team identify
as European American and one as a Marwari Bihari out of place. The research team therefore
identifies as outsiders to the research context. Further, they did not engage local communities or
decision-makers in the development of the model. The psychological distance and potential for
(inequitable) bias are therefore both large.

The reflexive exercise in Appendix A provided an opportunity for the modelers to reflect on
their positionality and how the research may have perpetuated existing inequities. Further, it helped
to make certain assumptions inherent to the problem framing transparent, in particular that the
adaptation strategies being examined were both top-down, external interventions that may not
agree with local belief systems. The exercise was conducted after the modeling project had con-
cluded and therefore was not able to affect the model development or application itself. As we have
stated, such reflection should ideally be embedded within the iterative modeling cycle. However,
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this example demonstrates an important point: that it is unreasonable to expect all ABM research
to immediately become “equitable” in every way. Realizing equity in ABM is a large (and per-
haps impossible) endeavor. The reflexivity statement, even when a post-hoc consideration or only
pertaining to a subset of the five themes, begins to push the needle toward this goal.

Table 2.3: Questions to assist a reflexive approach to recognize inequities in the modeling process. For all questions,
the researcher should consider how their answers relate to (in)equity. Responses to these questions can either be
synthesized into a standalone bias and positionality statement or integrated with other ABM communication. The
right-most column provides suggestions for where to include the recognitional themes within standardized ABM
documentation protocols.

Theme Questions Where to include

Positionality • What are the racial and cultural backgrounds and identities of the
modeler(s)?

• How might these identities have influenced how the modeler(s)
experience the world and approach research?

• How do these identities, worldviews, and objectives relate to the
participants and/or context of the research? (e.g., in what ways
are the modelers insiders or outsiders?)

• What is the social, institutional, and historical nature of inequity
in the context of the research?

• Article: methods; acknowledge-
ments

• TRACE: Problem formulation
(#1)

• ODD: Purpose

Framing • What narratives underlie the formulation of the challenge, prob-
lem, or research questions?

• What kinds of solutions does the problem framing open itself to?
• What entities are included/excluded? Who are the actors in-

volved within the framing of the problem and solutions?
• What outputs are included and prioritized?
• What is the scale of focus within the problem framing?
• What theories and/or relationships is the conceptual model pred-

icated on? If relevant, are there alternative explanations?

• Article: introduction; methods;
discussion

• TRACE: Problem formulation
(#1)

• ODD: Purpose; Entities, state
variables and scales; Design con-
cepts (basic principles)

Data • How could historical patterns of inequity exist within the data?
• How could marginalized people or groups be misrepresented in

or excluded from the data?
• How could the process of data collection have perpetuated in-

equity?

• Article: data and methods; dis-
cussion

• TRACE: Data evaluation (#3)
• ODD: patterns; input data

Process
quantification

• What subjectivity is involved in defining model variables and/or
translating information from data sources into the model format?
(e.g., are model variables latent constructs?)

• Could the inclusion or exclusion of model processes misrepresent
or lead to bias against certain groups?

• Article: methods
• TRACE: Model description (#2);

Conceptual model evaluation
(#4)

• ODD: process overview and
scheduling; input data; submod-
els

Model
interpretation

• How could calibration and validation procedures prioritize mod-
els that (dis)advantage certain modeled subgroups?

• How could pre-conceived understandings or objectives affect
which model structures and outputs are considered acceptable
and subsequently communicated?

• Article: methods (model calibra-
tion); results

• TRACE: Model output verifica-
tion (#5); Model output corrob-
oration (#8)

• ODD: purpose and patterns; ob-
servation

28



2.4.3 Engage stakeholders and society

In the final action pathway, the modeler engages stakeholders throughout the modeling process.
There exists a rich body of research on stakeholder engagement, participatory modeling, and co-
production of knowledge. Much of the guidance within this existing work already touches on eq-
uity dimensions. Our discussion of this action pathway is therefore relatively brief, and we use this
section to relate existing work to the equity language within our framework. For the purposes of
this chapter, we consider a stakeholder to be anyone who exists within the modeled system, could
use model outputs, or could be affected by decisions inspired by the model. Stakeholders comprise
actors across a spectrum of scales of agency, from individual behavioral change (e.g., community
members) to affecting institutional and governance structures (e.g., policymakers). This may pre-
clude the relevance of stakeholder engagement in some contexts, such as highly theoretical ABM
research.

Engaging stakeholders in ABM can improve equity through at least two mechanisms. The first
is through empowerment. Stakeholders each bring their own perspectives and opinions (i.e., posi-
tionalities) that can contribute to reducing the effects of the modeler’s individual bias. Including
a mix of diverse identities (i.e., ‘insiders’ and ‘outsiders’ (Holmes, 2020)) thus reshapes the filter
and lens through which knowledge is projected into the model (Figure 2.2) and has the potential to
profoundly affect the ABM process and outcomes (Steger et al., 2021a). For example, stakehold-
ers may identify actors omitted from the model (thereby improving recognitional equity) or offer
alternative descriptions for model processes. Stakeholder engagement at early stages can affect
the problem definition and framing (Voinov and Bousquet, 2010; Steger et al., 2021b) and thereby
the scope of the model (for instance, if some elements should not be modeled due to problems
with positivist interpretations of indigenous knowledge (Smith, 2013)). In all of the above, stake-
holder engagement improves procedural equity because it increases stakeholders’ influence over
the decisions made throughout the ABM process.

Second, engaging stakeholders improves equity in the distribution of access to science and
knowledge. Particularly when stakeholders are collaboratively involved in a process of co-
production, models can act as boundary objects to facilitate knowledge generation and shared
understanding (Voinov et al., 2016; Lemos et al., 2018). This two-way learning process increases
the legitimacy of models and drives better decisions (Reed, 2008). For example, modeling projects
with frequent exchanges between modelers and decision-makers have shown greater potential to
influence policymaking (Will et al., 2021). Additionally, integrating collaboration into scientific
funding can generate more effective and usable research outcomes (Arnott et al., 2020). The con-
tributions to equity through this mechanism are thus twofold: equity in access to knowledge and
increased propensity for ABM to drive equitable decision-making.

Yet, if stakeholders are not appropriately recognized and empowered, stakeholder engagement
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amounts to a co-opting or tokenizing of knowledge (Arnstein, 1969). Accordingly, researchers
have developed a range of guidelines for stakeholder engagement. Critical insights include the
importance of involving stakeholders early within the project (Reed, 2008; Steger et al., 2021b)
and taking time to develop trust (modeler-stakeholder, stakeholder-stakeholder, and stakeholder-
model) (Voinov and Bousquet, 2010). Attention should be paid to stakeholders’ motivations for
involvement (Voinov et al., 2016), the diversity of stakeholder interests and identities (Steger et al.,
2021a), who is selected as a leader (Hämäläinen et al., 2020), and potential power dynamics be-
tween stakeholders (Barnaud and Van Paassen, 2013; Voinov et al., 2018). In all cases, stakeholder
engagement takes significant time and effort (both for the stakeholders and the modeler) (Voinov
et al., 2018), and modeling objectives should be accordingly adjusted from the model as an end
product to participatory modeling as a process for shared learning (Reed, 2008). The process is not
one-size-fits-all and clearly must be tailored to individual contexts. Yet, neither is there only one
appropriate approach for a given context, and there are a range of levels of engagement possible
(Pretty, 1995).

Finally, at a more meta-level, this action pathway also pertains to the questions of who is al-
lowed to participate in science and who is given access to scientific knowledge. Some of these
considerations are beyond the scope of agent-based modeling per se, such as who makes decisions
on research funding priorities. However, modelers can improve access to scientific knowledge
by publicly posting their code (e.g., at CoMSES.net), using open-source software (e.g., Netlogo,
Python, R), and making research articles open access.10 Such considerations transcend the spec-
trum of theoretical to applied models and play an important role in the democratization of science.

2.5 Discussion

Historical, current, and future societal inequities demand that greater attention be paid to equity
within ABM research. This chapter contributes to this goal at two levels. First, it develops a con-
ceptual framework for understanding the equity-ABM interface. Second, it presents three action-
oriented pathways for achieving greater equity-ABM integration. These pathways, both individu-
ally and together, reduce the risk of ABM inadvertently perpetuating inequity and demonstrate the
opportunities for using ABM to advance equity.

10Albeit noting the issues of predatory journals and how publication fees can be prohibitive for researchers with less
financial means (ironically, the very populations open access systems are designed to benefit).
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2.5.1 Benefits and opportunities in the action pathways

A core conceptual advance in our framework is the centrality of modeler recognition and reflex-
ivity, which is rarely (if ever) addressed in ABM research. To attempt to narrow the gap between
theory of reflexivity and its practice, we presented a set of reflection questions to assist modelers in
a reflexive exercise (Table 2.3). Recent history in participatory modeling suggests that the uptake
of modeler reflexivity is possible. Participatory engagement of stakeholders was once a peripheral
consideration within the modeling field, yet is nowadays a mainstay in many modeling applica-
tion contexts (Voinov and Bousquet, 2010). The rise of participatory modeling to the mainstream
was, in part, precipitated by the increasing complexity of modern decision problems. These new
problems, for instance sustainability, pushed the boundaries of hegemonic positivist methodolo-
gies (Pretty, 1995) and demanded integration of more diverse ways of knowing. In these con-
texts, stakeholder engagement was demonstrated to achieve better decision outcomes and greater
learning (Reed, 2008), facilitating its uptake by scientists and funding organizations (Arnott et al.,
2020). In a similar vein, recent societal events (e.g., the Black Lives Matter movement) have chal-
lenged society to reflect on its positionality, biases, and (hidden) forms of discrimination. This has
already led to relatively radical changes in parts of the United States criminal justice system. We
believe that a similar recognition is both necessary and possible within the ABM field. Our action
pathway illustrates how these reflection questions are compatible with existing ABM frameworks
(Table 2.3), thereby facilitating their integration into good modeling practice. Future research is
needed to test whether modeler reflexivity contributes to better modeling outcomes in different
contexts.

With respect to assessing equity in agent-based models, the results to our keyword search
demonstrate a considerable existing research base. This suggests that representing equity is not
limited by methodological constraints. From the existing research, we synthesized a set of generic
approaches and specific examples of equity-oriented agent-based models (Table 2.1; Table 2.2),
which we hope can inspire future research on this theme. In particular, ABM research could more
deeply engage with issues of socio-cultural recognition, i.e., how society differentially treats dif-
ferent socio-cultural identities (e.g., race) and thereby contributes to disparities in outcomes. Such
research could use agent-based models to formalize multiple understandings of reality (i.e., engage
with nonpositivist methodologies (Lincoln et al., 2011)) to contrast a broader range of ontologies,
narratives, and definitions (Pretty, 1995; Wilson, 2001; Leach et al., 2010). Beyond this, our re-
sults contained relatively few models dealing with cross-scale power dynamics or governance,
which are important to many real-life contexts (Ostrom, 2009). Future research could therefore
integrate such dynamics more deeply, as well as explore cross-scale thresholds and tipping points
toward equitable system states (Radosavljevic et al., 2021). For example, there is considerable
research on ‘regime shifts’ in ecology (Lade et al., 2013; Filatova et al., 2016; Horan et al., 2011),
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which could be extended in agent-based models to include social thresholds and systemic shifts in
power balances and governance forms (Schlüter et al., 2021).

Yet, modeling advances are of limited value if agent-based models are not used to inform
decision-making or meaningfully contribute to societal knowledge. The insights gained from the
participatory modeling field (the ‘engage’ pathway within our framework) demonstrate the utility
of stakeholder engagement and knowledge co-production (Reed, 2008; Steger et al., 2021a). This
research underscores a need to shift focus from the model outputs to the modeling process itself
(Verburg et al., 2019; Voinov and Bousquet, 2010; Sandker et al., 2010). Future ABM research
could therefore more frequently use models as boundary objects to stimulate societal debates about
equity and work toward forming consensus in diverse stakeholder groups (Voinov et al., 2014).

Although the three action pathways are conceptually distinct, they are in practice highly inter-
dependent. For example, equity-oriented agent-based models must codify different socio-cultural
identities and this codification may demand greater stakeholder engagement. Further, processes of
stakeholder engagement need to reflect on the stakeholders’ own biases, and it may be useful to
develop (collaboratively with stakeholders) a statement of stakeholder bias and positionality. Thus,
equity-oriented ABM research may need to bundle approaches from different action pathways.

2.5.2 Pragmatic constraints and generalizability

As with any call for more rigorous modeling practice, our recommendations have the potential to
add considerable burden to modelers operating with limited time, financial, and social resources.
Thus, it is important to consider the benefits and costs of improving equity through any action
pathway. We have emphasized that reflection provides value in itself, meaning equity can be
improved without substantive changes to the model or the modeling process. Moreover, given that
many agent-based models already represent actor heterogeneity, transitioning from ‘heterogeneity’
to a focus on ‘equity’ may only require attaching a normative value to model output heterogeneity.
This can be as simple as acknowledging that inequality within an agent population is undesirable,
or that outcomes such as “the poor people get poorer” represent inequitable or unfair distributions.
Additional effort is required to deconstruct and mitigate inequities (e.g., by broadening the problem
framing or mitigating bias in data), but doing so early within the model design process is likely to
yield the largest benefit to cost ratio.

Equity considerations may be more or less relevant in different modeling contexts. Agent-
based model applications are incredibly diverse, both in terms of application area, level of realism,
and level of knowledge integration (Schlüter et al., 2019b; O’Sullivan et al., 2016). Moreover,
models and modeling projects have diverse objectives, such as system understanding, prediction,
forecasting, informing decision-making, and social learning (Kelly et al., 2013). It might seem
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intuitive that equity considerations are most relevant for highly applied models that address current
societal issues. However, this is not necessarily the case. For example, Sugarscape (Epstein and
Axtell, 1996) presents a highly abstracted description of society, but sheds considerable insight
into power dynamics and the emergence of inequality. Should Epstein and Axtell have engaged
with “stakeholders” in developing their model? Perhaps not. However, their unique positionalities
unquestionably shaped how they interpret the world and approached the modeling. Ultimately it
is difficult to develop generalized guidelines for when equity could or should be considered, and
we leave it as a task for modelers to reflect on in their individual contexts. However, reflecting on
equity is particularly important when there is a large degree of physical or psychological distance
between the researcher and the research context (Holmes, 2020).

There are several considerations that our framework and action pathways do not explicitly
address. One is how they generalize to collaborative modeling projects with multiple principal
modelers. In such cases, it may be necessary to describe the role that each modeler played within
the modeling project and develop a joint bias and positionality statement. Just as modelers are
themselves also stakeholders (Voinov et al., 2014), progress on equity can be made by ensuring that
the modeling team represents diverse socio-cultural identities and perspectives. A second question
not covered by our framework and pathways is how to determine whether ABM is an appropriate
methodological paradigm for the given research context (Schlüter et al., 2019b). Agent-based
models require extensive time and expertise to develop, validate, and apply (Voinov et al., 2018),
and these resource demands can be prohibitive. Related to this, we do not address how the equity
dimensions and action pathways generalize to other modeling approaches, for instance system
dynamics, economic equilibrium, state-and-transition models, or bioeconomic simulations. The
‘assess’ pathway is relatively specific to ABM, as it is underpinned by agent-based models’ abilities
to represent heterogeneity and nuanced decision-making processes, which are frequently limiting
factors in other modeling paradigms (Emmerling and Tavoni, 2021). Nevertheless, the ‘engage’
and ‘recognize’ action pathways are likely relevant in other process-based modeling domains, as
they rest on a more general description of a modeler who is nested within a socio-political context.

2.6 Conclusions

In this chapter, we developed an operational, conceptual framework for the equity-ABM interface.
The framework describes the modeler as a filter and a lens at the boundary of the model and
society, and thereby a key locus for action on equity. We identified three action pathways through
which agent-based modelers can improve equity, including engaging stakeholders, recognizing
positionality, and modeling (in)equity.

The challenge of “equitable ABM” is by no means insurmountable. We found that ABM
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research already engages with equity, to some extent, in many respects. There is thus ample prece-
dent and existing knowledge from which future modeling work can draw. We have also under-
scored that improving equity does not require drastically changing the direction or focus of the
modeling project. Rather, it minimally requires some time reflecting on how the problem is be-
ing framed and how this is conditioned by researcher positionality. By adopting a more reflexive
attitude, agent-based modelers can better engage with society and non-modelers to increase the
usability of knowledge derived from agent-based models. Further, ABM is uniquely positioned to
model recognitional, procedural, and distributional equity, so could be a useful tool for researchers
interested in equity but not experienced with ABM. Taken together, we believe the equity-ABM
interface is a fruitful area for future research and a mechanism through which ABM can achieve
greater societal impact.
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Chapter 3

Resilience and Equity1

Strategies aiming to increase the climate resilience of smallholder agricultural systems may not
equally benefit all groups of the smallholder population. To reduce the potential for aggravating
existing vulnerabilities, quantitative resilience analyses therefore need to acknowledge the pos-
sibility for inequities in the effects of proposed resilience-enhancing strategies (RESs). In this
study, we develop, validate, and apply a household-level agent-based model to explore the equity
of climate RESs in an Ethiopian smallholder farming system. Specifically, we study the poten-
tial effects of two RESs, involving access to seasonal climate forecasts and increases in non-farm
job availability, on household food security under climate variability. We measure these effects
in two distinct ways: “poverty-reduction,” which describes food security improvements relative to
existing conditions; and “shock-absorption,” which isolates the strategies’ effects on food security
during and following a drought. Our results reveal that the different measures of resilience lead
to divergent assessments of equity in policy effects. Relative to baseline levels of food security
(poverty-reduction), both strategies disproportionately favor the most vulnerable households—i.e.,
they are equity-enhancing. Under this assessment, increases in job availability provide slightly
stronger benefits to the most vulnerable households than climate forecasts. However, when iso-
lating the effect of a drought (shock-absorption), both RESs benefit the moderately vulnerable
households at the expense of the more vulnerable households—i.e., they are inequitable. These
results demonstrate that a pure focus on poverty reduction may be insufficient to promote equi-
table development. Given the prevalence of climate shocks in smallholder systems, future studies
of resilience should therefore jointly consider both poverty reduction and shock recovery, as well
as the potential for inequity in the effects of RESs.

1Published as Williams T.G., Guikema S.D., Brown D.G, Agrawal A. “Resilience and equity: Quantifying the
distributional effects of resilience-enhancing strategies in a smallholder agricultural system” Agricultural Systems
http://dx.doi.org/10.1016/j.agsy.2020.102832
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3.1 Introduction

Weather and climate directly affect the prosperity of smallholder agricultural communities. Vul-
nerability to climatic shocks often materializes as food insecurity and malnourishment, which cur-
rently affects over 800 million people around the world (FAO, 2008). In the pursuit of sustainable
development, many strategies for increasing climate resilience have been proposed. However, the
effects of such interventions are not necessarily shared equally throughout a population. This in-
vokes questions regarding equity; is it possible that by increasing resilience at an aggregate level,
vulnerable populations are left behind?

To evaluate and compare resilience-enhancing strategies (RESs) therefore requires an approach
that can represent the distribution of potential effects over a population, as well as include the
interactions and temporal dynamics inherent to socio-environmental systems. Agent-based mod-
eling can address these challenges and has been extensively used to model agricultural systems
(Matthews et al., 2007; An, 2012; Kremmydas et al., 2018), with common emphasis on the im-
pacts of policy interventions (Berger et al., 2017; Ng et al., 2011; Kiesling et al., 2012; Amadou
et al., 2018; Ziervogel et al., 2005). Application of agent-based models (ABMs) for resilience has
included, among others, evolving community vulnerability under repeated natural disasters (Reilly
et al., 2017; Tonn and Guikema, 2018), resilience of pastoral and common-pool resource systems
(John et al., 2019; Dressler et al., 2019a; ten Broeke et al., 2019), resilience of agricultural sys-
tems (Tian et al., 2016; Bitterman and Bennett, 2018), and infrastructure system resilience (Baroud
et al., 2014; Çağnan et al., 2006; Tabucchi et al., 2010).

However, distributional effects are seldom considered in quantitative resilience analysis. In
the context of smallholder agriculture, households are highly diverse, so may respond differently
towards policy initiatives (Kansiime et al., 2018) and agricultural coping strategies may lead to
asymmetries in resilience between different groups (Béné et al., 2012) or even reinforce poverty
(Miller et al., 2010). With an exclusive focus at the population level, these effects may be missed.
This has prompted discussions about the distribution of resilience and questions such as “resilience
for whom?” (Cutter, 2016). Such a perspective is also prevalent in “pro-poor” policy analyses
(Dorward et al., 2004; Tarawali et al., 2011). ABMs can represent a heterogeneous population of
interacting agents, so are well-suited to explore distributional effects (e.g., (Berger et al., 2017;
Evans et al., 2011; Dressler et al., 2019b)), facilitating a focus on equity when evaluating and
prioritizing potential RESs.

With a focus on equity, how we measure resilience is critical and should carefully consider the
ways in which vulnerable groups are represented by resilience measures. Applications of ABMs to
resilience are typically specific (i.e., resilience “of what, to what”) (Carpenter et al., 2001; Urruty
et al., 2016), focusing on the impact of shocks on some measure of system functionality, often
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desiring the return (or “bouncing back”) to some pre-shock state. These types of approaches have
been criticized, as such measures may overlook vulnerable populations (Miller et al., 2010; Cret-
ney, 2014; Manyena et al., 2011), potentially masking or even inadvertently increasing inequalities.

In this study we develop, validate, and apply an ABM to explore the distribution of climate
vulnerability in a stylized Ethiopian mixed crop-livestock smallholder agricultural system and the
potential resilience-enhancing benefits of selected interventions. Due to the historical prevalence
of food insecurity and poverty in Ethiopia, the diverse range of climatic zones and livelihoods,
and its development potential, Ethiopia provides a useful context in which to explore the effects of
climate and agricultural development on smallholder populations. The model is based on the no-
tion that time and resource allocation decisions made by smallholder households — influenced by
interactions with variable and uncertain climatic and economic conditions, as well as other house-
holds and communal grazing land — aggregate to monthly variations in food security. We measure
household food security as the monthly occurrence of food shortages. We measure resilience as the
extent to which food security might be compromised by a drought (vulnerability), in combination
with the time taken to recover (recovery).

In our analysis we examine the resilience-enhancing potential of two common measures for
supporting rural producers: increases in urban job availability, allowing households more steady
streams of income throughout the year; and seasonal climate forecasts that provide information that
enables better-informed agricultural decisions. Given the different mechanisms by which these
operate, we are interested in exploring how the interventions might benefit different groups of
people and how these ways might be different. We examine the effectiveness of these strategies
at maintaining food security during and following a drought relative to the levels of food security
in: (1) the absence of the drought (“shock-absorption”) and (2) the absence of the intervention
(“poverty-reduction”). In all cases, we interpret the results of this analysis in light of our interest
in understanding equity in quantitative resilience assessment.

There are four main contributions of this chapter. First, our exploration of the distributional
effects of drought and policy interventions is a much-needed advance for quantitative resilience
analysis. Second, in doing so, we operationalize resilience in a smallholder agricultural setting
and explore and discuss the implications of different resilience measures for policy assessment.
Third, for a case study set in an idealized Ethiopian community, we demonstrate the utility of this
approach and its potential to be used to assess resilience in socio-environmental systems. Finally,
because we conceive and operationalize resilience of food security in a more encompassing way
than other quantitative measures such as crop yield or agricultural production, we incorporate both
environmental and social processes into a single outcome measure of relevance for decision-makers
and sustainable development.

37



3.2 Methods

3.2.1 Approach

We use an ABM to model the livelihoods of smallholder households, including how these liveli-
hoods may be differently affected by climate shocks and policy interventions. Agent-based mod-
eling is a suitable tool for this purpose because it allows for the simulation of: (1) a population
that is heterogeneous in its characteristics and spatial location, which is critical when examin-
ing distributional effects; (2) the interactions and feedbacks inherent to agricultural systems; (3)
stochasticity and uncertainty, which are important to the notion of resilience; and (4) the effects of
ex-ante experimental intervention.

3.2.2 Model description

Our model description generally follows the ODD+D format (Müller et al., 2013). See Appendix
B.7 for further details.

3.2.2.1 Overview

Purpose The purpose of the model is to produce assessments of household-level and community-
wide resilience to climate shocks in a stylized Ethiopian smallholder mixed crop-livestock farming
setting. The model is not designed to make policy recommendations for a specific location. Rather,
we designed the model as an experimental platform to evaluate and prioritize interventions with
respect to their community-level and distributional resilience-enhancing potential more generally.

Entities and state variables Each agent represents a household that engages in farming and
livestock rearing and can partake in off-farm income-generating activities (Figure 3.1). Each agent
is defined by sets of (1) non-changing attributes such as household size, land ownership, and risk
aversion, (2) evolving state variables such as food stores and livestock herd size, and (3) beliefs
about variables such as crop prices and job availability. In addition, each agent has a non-evolving
preference for either income or leisure, which influences decision-making.

Each agent owns a livestock herd, which produces milk on a monthly basis and is grazed on a
combination of on-farm crop residues and communal rangeland. Livestock can be bought and sold
at the beginning of each year as well as sold as a coping mechanism throughout the year in order
to meet food and cash requirements.

The agents populate a spatially explicit environment, which consists of cropland and rangeland.
Each agent occupies a number of cropland pixels, which are each characterized by a static measure

38



Figure 3.1: The primary entities in the ABM. Bold: exogenous. Italics: constant over time. Underline: region-level.

of potential crop yield (i.e., agricultural suitability). A single crop type (maize) is modeled2, which
is grown in a single cropping season (Block et al., 2008). Agents cannot buy or sell cropland or
reclaim rangeland for agriculture. Rangeland pixels represent commonland used for grazing of
livestock. Rangeland is characterized at the regional level by an evolving livestock density and
grass biomass (Janssen et al., 2000).

Agents interact with their neighbors through shared beliefs, with the rangeland and its limited
capacity, and through the market, which has a limited supply of non-farm jobs and unlimited supply
and demand for crop and livestock products. Non-farm employment, for which agents earn a fixed
wage, could represent either employment in an urban center or on another farm.

Setting and spatio-temporal representation The model region is located in Amhara in the
Ethiopian highlands (Figure 3.2), primarily representing agro-ecosystem 1 of the Choke Moun-
tain area (Simane et al., 2013). This region is characterized by extensive production of sorghum,
tef, and maize, which are grown primarily for subsistence. The spatial resolution and extent of
the model landscape are 0.15 ha (39x39 m) and 11,600 ha (8.9x13.1 km) respectively. There are
approximately 4,250 agents. Spatially explicit climate and landcover information was used to pa-
rameterize the landscape, and agent population parameters were drawn from the World Bank’s
2015 Living Standards Measurement Study (LSMS), subsetted to Amhara. Because these demo-
graphic data come from a wider region, the agents are not representative of the exact conditions in

2This is a simplification of reality as crop diversification is an important aspect of smallholder agriculture (Tekle-
wold et al., 2013; Barrett et al., 2001). However, in the modeled region, soil type and quality pose major constraints
to crop production (Simane et al., 2013) and it is rare for farmers to switch crop types. Additionally, maize is fairly
sensitive to the effects of rainfall (Eggen, 2018), so it provides a useful backdrop against which to assess agricultural
resilience. This simplification is hence deemed to be reasonable for the purposes of this chapter, but we acknowledge
that it likely leads to an underestimation of resilience.
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Figure 3.2: The ABM is designed to be representative of an Ethiopian mixed crop-livestock smallholder farming
system. Climate and landcover data are drawn from Choke Mountain, Amhara, Ethiopia.

Choke, but this region serves as an exemplar of the types of places represented in the model and
its geographic conditions serve as the environmental backdrop for our analysis.

The model is run for a period of 30 years, with agents making annual agricultural management
decisions and monthly food consumption decisions. This time period enables the observation of
inter- and intra-annual recovery from climate shocks, but we do not model environmental degra-
dation, population growth, or climate change.

System boundaries First, we assume that the modeled region is of insufficient size to influence
regional market dynamics and that the agents cannot influence climate conditions through their de-
cisions. Hence, prices, labor wages, and climate are exogenous (see Figure 3.1). Second, the effect
of climate on yields is exogenous to the system; agents can influence their experienced yields by
shifting their planting date or applying fertilizer to their fields, but we do not model environmental
feedbacks in the farming system (e.g., soil degradation). Third, regional livestock reproduction/-
mortality is influenced by both the exogenous climate conditions and the regional population of
livestock, which is an emergent outcome of the agents’ decision-making process. Fourth, although
regional job availability is exogenous, the supply is limited and agents’ experiences are influenced
by individual labor allocations, which collectively determine the regional demand for wage labor.

Process overview and scheduling Income and food security are modeled at a monthly time step,
but the primary model processes operate on an annual basis (Figure 3.3). First, given their beliefs,
agents make their livelihood decisions. These decisions and the actual climate are then used to
calculate crop yields, prices, and job allocation. Monthly food consumption and income are then
simulated under these realized conditions, with agents having the ability to self-consume their own
yields as well as buy/sell from the market. Here, agents can engage in coping measures (stress
selling of livestock and food stores) if they cannot meet their food requirements. At the end of the
year, livestock reproduction and mortality are simulated (rangeland dynamics). Finally, informed
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Figure 3.3: Overall flow of the ABM. Bold: exogenous. Italics: constant over time. Underline: regional level.

by their and their neighbors’ experiences, agents update their beliefs.

3.2.2.2 Design concepts

Theoretical and empirical background The livelihood processes included in the model repre-
sent the main livelihood activities in Ethiopian mixed crop-livestock systems and are consistent
with previous agent-based modeling efforts (Berger et al., 2017; Hailegiorgis et al., 2018; Hajjar
et al., 2019). Rangeland dynamics are modeled using a simple system dynamics model (Janssen
et al., 2000) and the effects of water stress on crop yields are modeled using established process-
based methods (FAO, 1984, 1998; Block et al., 2008). We assume that the agents are boundedly
rational and pursue a method of satisficing inspired by Kaufman (1990). This acknowledges the
hierarchical objectives of smallholder farmers, in which poorer households have been observed to
be primarily motivated by risk minimization and income stabilization, while wealthier households
pursue maximization strategies (Demissie and Legesse, 2013). We assume that agents have a pref-
erence for either income or leisure. The preference of some agents for leisure is in accordance with
Chayanovian subsistence or “full belly” theory (Kaimowitz and Angelsen, 1998; Meyfroidt et al.,
2018; Chayanov, 1986), in which households seek to satisfy a consumption target with minimal
labor input.

Individual decision-making: annual livelihoods Each year, the agents choose between a finite
set of livelihood options (Figure B.1). These consist of agricultural management decisions (plant-

41



ing date and fertilizer application), livestock management (buying or selling from herd), and labor
allocation (water and firewood collection, farming, livestock, and off-farm). We conceptualize the
agents with preference for leisure as “traditional” households that always engage in farming. Un-
der the satisficing framework, agents have two levels of objective; they first pursue the option that
leads to the lowest levels of food insecurity (i.e., fundamentally they wish to be food secure), and
if two options are equal in this respect, they choose the option with the highest expected utility
(defined either by wealth or leisure).

Evaluations of decision options are made under imperfect knowledge, which is represented
through subjective agent-level beliefs. These beliefs form as a result of agent experiences and
interaction with their direct neighbors, both of which are spatially dependent. Beliefs are updated
each year using Bayesian updating.

We explicitly incorporate uncertainty in the decision-making process. The agents’ beliefs about
crop yields are formulated using a set of several forecasting models (similar to Magliocca et al.
(2013)), each of which will give different predictions and consequently different estimated levels of
food security. Agents evaluate each decision option using all of these forecasting models separately
and then calculate expected food security and an expected risk-averse utility on wealth to resolve
the uncertainty. Sections B.7.5 and B.7.4 give more details on beliefs and decision-making.

Individual decision-making: monthly food consumption In addition to this annual decision-
making process, we model monthly food consumption using a heuristic (Figure B.2). This heuris-
tic is employed using subjective beliefs in the livelihood decision-making stage and using realized
values (e.g., actual crop yields) after the decisions have been made. First, agents attempt to sat-
isfy their consumption requirements (section B.7.6) through their own crop stores and production.
Next, they purchase food from the market. If, after this, sustenance has not been satisfied (because
of inadequate food stores and cash availability), agents reduce their consumption for the month.
However, if the sustenance deficit is above some threshold and the agent has also experienced food
insecurity in the previous month, they sell livestock (if possible) as a coping mechanism to fill
this deficit. This threshold-based approach reflects the fact that selling livestock can be an impor-
tant coping mechanism (Dercon and Christiaensen, 2011; Bellemare and Barrett, 2006; Demeke
et al., 2011), but that people may prefer to reduce their consumption before selling livestock assets
(Mogues, 2006; Little et al., 2006).

Each month, agents that cannot satisfy their food requirements or that are forced to sell live-
stock are classified as food insecure. This is a binary measure of food insecurity representing the
incidence of food shortages at the household level. Although calorie deprivation is an imperfect
measure of food insecurity (Headey and Ecker, 2012), our model does incorporate the FAO’s pil-
lars of availability, access, and stability (FAO, 2008) at a household level. Additionally, it enables
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model calibration using questions from the LSMS.

Learning We do not model learning as defined by Müller et al. (2013) (i.e., the decision rules
themselves do not change).

Individual sensing Each year, agents observe their own crop yields, success at receiving off-
farm employment, livestock reproduction/mortality, and regional crop prices. Agents also observe
their immediate neighbors’ beliefs about these values. They do not make mistakes in these percep-
tions.

Individual prediction Agents predict future conditions using their beliefs, which are represented
using probability distributions. In all cases except crop yields, the expected value of the distribution
is used (see section B.7.4).

Interaction The model contains both direct and indirect interactions. First, agents interact di-
rectly with their immediate neighbors through the sharing of beliefs. This influences decision-
making. Second, agents interact indirectly through the rangeland; regional livestock density in-
fluences agent-level reproduction and mortality, so the decisions of one agent (e.g., increasing
herd size) affect all others. Additionally, crop residues can be used as fodder for livestock, so each
agent’s crop production influences the amount that their livestock must be grazed on the rangeland.
Third, agents interact indirectly through the job market; a finite number of jobs are distributed be-
tween the agents seeking employment, so a job taken by one agent is not available for another.

Collectives Agents do not form collectives.

Heterogeneity Agents are heterogeneous with respect to household size, land endowment, lo-
cation, initial number of livestock, risk aversion, time required for collecting water and fuelwood,
and their preference for wealth or leisure.

Stochasticity There is stochasticity in the initialization and assignment of agents to the landscape
as well as in the calculation of crop yields and the allocation of regional livestock reproduction/-
mortality and non-farm jobs between the agents.

Observation The primary output of interest is the monthly incidence of agent-level food inse-
curity, which emerges as a result of the various interacting components of the model. We also
observe agent-level livestock herd sizes as a measure of wealth, as well as the agents’ livelihood
decisions.
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3.2.2.3 Details

Implementation details The model is implemented in python 3. Source code can be made
available upon request.

Inputs, calibration, and initialization See Appendix B.1 for input data sources. Agent param-
eters were drawn collectively from the LSMS to account for dependencies (i.e., from the joint
rather than marginal distributions) (Berger and Schreinemachers, 2006). Due to the sample size of
the LSMS (484 households in Amhara), surveyed households are duplicated in the model, but the
overall population-level characteristics are preserved.

A number of parameters could not be determined directly from available data sources. We
selected the values for these parameters using pattern-oriented modeling (Grimm et al., 2005);
first, we combined several qualitative desired model characteristics with a variety of empirical
distributions created from LSMS data (labor allocations, food security, livestock ownership, and
subsistence levels). Second, we used a genetic algorithm to identify parameter sets for which the
ABM outputs most closely reflected these empirical distributions and qualitative characteristics
(section B.7.7). We chose to match the ABM with distributions rather than single values or ratios
as we are interested in the distributional nature of outcomes.

Crop yields We model crop yields to be dependent on climate, planting date, soil properties, and
fertilizer application. Each agent has the ability to directly influence their own yields by changing
their planting date and their application of fertilizer. To account for the effects of precipitation,
temperature, solar radiation, and planting date, we use a climate yield factor (CYF). A CYF is a
process-based representation of the cumulative effect of water stress on crop yields. Developed
using methodologies from the FAO’s Irrigation and Drainage Papers Nos. 33 and 56 (FAO, 1984,
1998), CYFs have been used in previous ABMs (Wossen et al., 2014) and Ethiopia-based modeling
exercises (Block et al., 2008). The calculation of the CYF simulates the infiltration of precipitation
through the soil, soil moisture change in the soil column, and actual evapotranspiration at a daily
time step. Critical values are taken for each crop growth stage to give an overall seasonal CYF.
CYFs range between 0 and 1, where 1 represents no water-induced yield reductions and 0 complete
crop failure, i.e., Y a

i,f = CY Fi∗Y p
i,f +εi, where Y a

i,f is the actual water-constrained yield at location
i under management condition f , Y p

i,f is the theoretical maximum attainable yield with no water
constraints, and εi is a random perturbation that we add when calculating yields each year. To
honor the yield variability within a single year between different fields in the region, we model the
CYFs and Y p heterogeneously (hence the dependence on location, i). Section B.7.1 gives more
details.
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Off-farm labor The different agent preferences imply qualitatively different behavior with re-
spect to off-farm labor; agents with preference for leisure will only engage in non-farm wage labor
if they expect to be food insecure, while agents with preference for wealth will allocate all remain-
ing labor to this activity. Given this, we assume that the “wealth maximizer” agents have access
to a different kind of labor market that has guaranteed employment options. For the leisure max-
imizer agents, we assume that there is a constant, finite amount of non-farm work available each
month. Jobs are allocated to these agents on a daily basis, with a probability dictated by the ratio
of the total job availability to the total demand for off-farm work in a given month.

Crop prices To provide a proxy for temporal crop price dynamics, we use a regression model
that predicts monthly crop prices in Amhara using regional climate variables (section B.7.2). In
using this statistical model, we must assume that the relationships discerned from the historical
data hold into the future and under drought conditions. An economic equilibrium model could
be used to calculate prices under hypothetical drought conditions and reduce these assumptions,
but this is beyond the scope of this study. In any case, historical prices alone would not represent
drought conditions and our approach is more thorough than assuming a constant price throughout
the simulation as is often done in agricultural ABMs.

Rangeland dynamics Livestock are an asset that can accumulate through reproduction. How-
ever, issues of overpopulation and drought can lead to mortality and population declines (Mogues,
2006; Crépin and Lindahl, 2009; Desta and Coppock, 2002). We model livestock population using
a simple system dynamics model inspired by Janssen et al. (2000, 2004). This model operates at
the regional level, with all livestock considered as a single object that shares the entire region’s
grazing land. It would be unnecessarily complicated for the purposes of this chapter to incorporate
spatially explicit herding behavior. Each year, based on current population and climate conditions,
grass growth is simulated and rainfall and overcrowding effects on livestock are calculated, giving
a net regional livestock growth or decline. This is apportioned randomly between the agents. This
simple representation provides a first approximation of these dynamics. Section B.7.3 gives the
model equations.

3.2.3 Representing droughts

The effect of a drought on food security will depend on both the antecedent and succeeding cli-
matic conditions. To account for this variability, we expose the system to droughts under multiple
background “climate time series,” which we created by repeatedly randomly sampling years from
the 2000-2015 observational climate record.
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We represent droughts through reductions in rainfall. For example, a 50% shock represents
a year in which the rainfall at every pixel location in the modeled region is reduced by 50%.
The rainfall reduction affects crop yield, grass growth, livestock mortality, and market prices.
The effects on yield, due to the CYF representation, are both spatially explicit and non-linear in
rainfall. To give a single metric to represent each climate shock, we do not vary the temperature in
our drought scenarios. In all cases, we run the model for 30 years and test the effect of a single-year
50% drought in the 5th year of the simulation.

3.2.4 Conceptualizing climate resilience

We conceptualize a resilient system as one that has the capacity to maintain high levels of food
security throughout and following a drought. At a regional level, we measure food security as
the fraction of the population in each month that is food secure. To assess distributional effects,
we examine how food security differs based on household characteristics and vulnerability. Food
security is an appropriate outcome metric for our study for several reasons (Ansah et al., 2019).
First, it is of relevance to development (e.g., refer to the United Nations’ Sustainable Development
Goals). Second, it is the outcome of a variety of interconnected social and environmental processes
(e.g., agricultural production, market access, and employment opportunities). Third, while it has
occasionally been questioned whether resilience is a desirable trait (e.g., resilient poverty systems)
(Miller et al., 2010; Cretney, 2014), we argue that higher levels of food security are inherently
desirable. Finally, with respect to equity, our measure of food insecurity identifies the most vul-
nerable households. Thus, higher levels of regional food security constitute improvements in food
security for the more vulnerable (i.e., food insecure) households.

The temporal evolution of regional food security in the wake of a drought can be split into
different dimensions (Figure 3.4). Vulnerability measures the maximum magnitude of the damage
to food security. Recovery describes the time taken for the system to recover to some state, which
we take here to be 90% recovery from the maximum damage. Additionally, one possible measure
of overall resilience can be formed by calculating the area over the curve. Figure 3.4 is a stylized
representation of a resilience curve; in reality (and in the model), food security will fluctuate both
within and between years.

Although we consider resilience with respect to a state of functionality (food security) to which
we desire the system to return, resilience is not conceptualized with respect to discrete equilibria
and our modeling approach does not necessitate that the system must achieve this functionality
through the same means. It is possible that the drought transitions the system into a new structure
with either inferior, on-par, or better functionality. For example, large livestock losses due to
drought-induced mortality may lead households to spend more time in off-farm labor, qualitatively
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Figure 3.4: Schematic representation of the dimensions of resilience.

changing their livelihoods and patterns of food security.
We emphasize that the pre-shock level of food security does not represent universal food se-

curity; there still exists food insecure population in the absence of a shock. Hence, it is indeed
possible and desirable for food security to increase above the “zero line”. This highlights the po-
tential for resilience assessments of this nature to overlook vulnerable populations that are always
food insecure, motivating the consideration of distributional impacts.

3.2.5 Scenario analysis

We explore the resilience-enhancing potential of increased availability of non-farm jobs and pro-
vision of seasonal climate forecasts. Both of these are common measures for supporting rural
producers and are in line with several of the options recently proposed by the Government of
Ethiopia (Federal Democratic Republic of Ethiopia, 2019).

Non-farm job availability is already increasing in rural Ethiopia through infrastructure and de-
velopment (Bachewe et al., 2016). Additionally, Ethiopia’s Growth and Transformation Plan II
calls for “industrial-led development,” which can be expected to result in future increases. Shifts
to non-farm employment can decrease smallholders’ dependence on agriculture and, through ex-
tension, climate, potentially increasing climate resilience (Headey et al., 2014). Non-farm em-
ployment can also act as a source of income in the lean period of the year (Bachewe et al., 2016),
potentially generating pro-poor effects (Van den Broeck et al., 2017; Herrmann, 2017). We repre-
sent increased non-farm job availability in our model by increasing the supply of non-farm jobs by
20%.

The ability for seasonal climate forecasts to have positive effects on smallholder communities
has been extensively debated. Previous studies have highlighted, for example, the importance of
implementation, communication, skill, and trust in the forecasts (Ziervogel et al., 2005; Narisi
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et al., 2018; Marshall et al., 2011; Luseno et al., 2003). However, if such barriers can be overcome,
forecasts can allow smallholders to make better-informed agricultural management decisions (Ris-
bey et al., 1999; Hansen et al., 2011). The provision of seasonal climate forecasts in our model
gives agents perfect information about the time at which it is optimal to plant. Also, they provide
information about the climate conditions for the upcoming year, which is of relevance for calculat-
ing crop yields, crop prices, and livestock dynamics. This information is not perfect, however, as
it does not resolve the random perturbation that is added when calculating agent-level crop yields
and does not give information about other agents’ livestock decisions and the implications of these
for rangeland dynamics. Agents have an evolving trust in the seasonal climate forecast, which is
influenced by its accuracy relative to their other methods for predicting yields (section B.7.4). The
extent to which the forecast affects agent decision-making is influenced by this trust as well as
their risk aversion.

3.2.6 Output analysis

We analyze the effect of each intervention on resilience both at the regional- and household-levels.
We assess the effect of each intervention (int) in two distinct ways. The first, which we refer to as
the “shock-absorbing” effect, isolates the effect of a drought in the presence of the intervention:

Rint,1 = FI(int, shock)− FI(int, no shock) (3.1)

where R denotes resilience and FI denotes the sum of food insecurity over the population at a
point in time. The second way, which we refer to as the “poverty-reducing” effect, combines the
effect of the drought with the effect of the intervention relative to the baseline:

Rint,2 = FI(int, shock)− FI(baseline, no shock) (3.2)

By isolating the effect of the shock, the first measure offers a more accurate assessment of
resilience as we have conceptualized it. However, it is more difficult to compare interventions,
since the FI(int, no shock) value for each intervention will be different. The second measure
gives a more accurate idea of the overall effect of the intervention on the system under drought
conditions. For example, an increase in job availability enables food insecure households to more
regularly engage in non-farm wage labor, potentially reducing their chance of experiencing food
insecurity both in regular, non-drought years and in the wake of a drought. Our first measure
isolates the drought-related impact, while the second incorporates both. We present both measures
of resilience in our results.
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Figure 3.5: Comparison of empirically-derived and ABM-generated distributions. Whiskers show the 1% and 99%
values over the ABM replications.

3.2.7 Simulation procedures

The two sources of variability relevant to our resilience assessment are (1) the climate time series
and (2) stochasticity in the ABM itself. We used 50 different climate time series as it enables robust
averaging yet is not overly computationally intensive. To adequately account for the stochasticity
of the ABM we conducted a convergence analysis, which determined that 50 replications were
sufficient to achieve a relative error of 0.1 with a confidence level of 90% (section B.7.8). This
therefore results in a total of 2,500 simulation replications for each experimental setting. We
use common random numbers to reduce the variability in the outputs when comparing between
policies. Finally, to reduce the impact of initialization (e.g., of agent beliefs) on our analysis, we
conducted a 13-year (2003-15) burn-in period before beginning each model run.

3.3 Results and discussion

After presenting the calibration results (section 3.3.1), we begin by assessing the effect of a drought
under baseline conditions (3.3.2). Then we evaluate the effects of the RESs (3.3.3), explore the
sensitivity of our results (3.3.4), and discuss limitations (3.3.5). In all cases, we focus primarily on
food security as our outcome of interest. Although this is a purely social outcome, it emerges as a
result of interactions within the different components of the ABM.

3.3.1 Calibration and cross-validation

Overall, the parameterized ABM reproduces the empirical distributions of several household-level
variables (Figure 3.5). However, the ABM overestimates the proportion of households without any
livestock. Potential reasons for this discrepancy and a cross-validation of the fitting metrics used
for the calibration procedure are discussed in Appendix B.4.
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Figure 3.6: Effects of a 50% drought on: (A) regional food security, measured as the additional percentage of the
population that is food insecure; and (B) agent-level livestock holdings (head). Thin lines represent the average effect
in each of the 50 climate time series. Bold lines represent the overall median effect.

3.3.2 The effect of a drought

3.3.2.1 Regional effects

The largest effect of the drought on regional food security is experienced in the year following the
drought (Figure 3.6A); this is because the agents that have received only small crop yields at the
end of the drought year begin the following year with insufficient food stored to last them until the
next harvest. Because the agents and the effects of the drought are heterogeneous, different agents
fall into food insecurity at different times, and hence the line in Figure 3.6A is sloping downwards
throughout year 5-6. This seasonality also exists in the subsequent years, with progressively more
agents over time able to replenish their assets sufficiently to restore levels of food security.

Drought-related livestock mortality occurs during the drought year, but the largest effect on
livestock is not felt until several years later (Figure 3.6B). This is a result of the food shortages
described above; many agents must destock their livestock herds as a coping measure in the years
following the drought. Livestock herds slowly recover (through both natural reproduction and
purchase from the market), but over the simulation period analyzed do not on average fully recover
to the levels of the drought-free counterfactual.

Together, these results demonstrate that the effects of drought on smallholder livelihoods persist
for many years. Agents may be able to cope with the immediate effects, but in doing so they
deplete their capital, causing increased levels of vulnerability even under regular conditions in the
following years.
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3.3.2.2 Distributional effects

Household characteristics play an important role in shaping the drought experience of the agents.
The most vulnerable agents (i.e., both most likely to be affected and slow to recover) include
those with high subsistence fractions, small land holdings, and small livestock herd sizes (Figure
3.7). These results are generally consistent with other discussions of food insecurity in smallholder
populations (Devereux and Sussex, 2000; Bogale et al., 2005; Beyene and Muche, 2010).

However, our results show a few counter-intuitive trends. First, although agents with large land
holdings are faster to recover, they are just as likely to be affected by the drought as those with
small land holdings (Figure 3.7). In part, this is because of the dramatic effects of the drought on
crop yield; agents with large land holdings rely heavily on agricultural production and hence are
strongly affected by the drought. However, this trend also can be explained as an artefact of the
model structure; in the model, it is impossible for the agents to farm only a fraction of their land,
so agents with large land endowments have large farming-based labor requirements. As the model
is parameterized, these labor requirements are sufficiently high that these agents in some cases
cannot farm their land. Their outcomes are consequently similar to those with very little land; that
is, high levels of food insecurity.

Another non-linear pattern is seen in household size; both small and large households are most
affected by the drought (Figure 3.7A). As household size increases in the model, so do both labor
capacity and consumption requirements. Our results suggest that small households are constrained
by their small labor capacity (because, for example, they are less able to engage in non-farm labor
to help mitigate the effects of the drought) and large households are constrained by their higher
consumption requirements, both of which can increase drought vulnerability. Larger households,
however, generally can recover more quickly from the drought (Figure 3.7B), suggesting that a
larger labor endowment is beneficial during the recovery period.

Together, these results have three implications. First, the strongly distributional nature of
the effect of drought on food security suggests that measures to increase agricultural productiv-
ity (through crop production and livestock holdings) could offer promise to substantially reduce
smallholder drought vulnerability and enhance recovery. From an assessment perspective, the
relationships between household characteristics and food insecurity are not necessarily linear. Al-
though this is in part an artefact of our model’s structure, model-based and empirical studies alike
should nonetheless acknowledge the potential for non-linear relationships in the data. Finally,
a high propensity for being affected (Figure 3.7A) need not imply a long recovery time (Figure
3.7B). Different priorities may prevail in different contexts, and this result demonstrates that a
single metric alone cannot fully represent resilience.
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Figure 3.7: Fraction of each population group that’s food insecurity is higher at the time of the maximum drought
impact (A) and the time taken for 90% of each group to recover (B).

3.3.3 Assessing and comparing interventions

3.3.3.1 Regional resilience: measurement method matters

When isolating the “shock-absorbing” effect of each RES (i.e., excluding their potential for food
insecurity reduction relative to baseline conditions; Equation 3.1), both strategies provide mixed
levels of benefit relative to the baseline (Figure 3.8A); both strategies do little to improve food
security in the year following the drought, but provide a mild benefit in the subsequent years.
Increased job availability even slightly reduces food security in the long term3. When both strate-
gies are implemented together (Figure 3.8A, right), there is also little benefit in the year following
the drought, but almost complete recovery occurs within three years, demonstrating an enhanced
benefit to having the strategies in conjunction.

A different picture emerges when the overall “poverty-reducing” effect relative to the baseline
is included in the assessment (Figure 3.8B; Equation 3.2). Here, both RESs reduce the vulnera-
bility (i.e., the maximum impact of the drought), with the climate forecasts providing a slightly
greater benefit. This is because climate forecasts enable agents to engage in ex-ante coping mea-
sures; in the year of the drought, a portion of the agents anticipate the effects and choose not
to farm (Figure B.4), thus separating themselves from the drought-induced yield effects. Despite
smaller vulnerability-reduction benefits, the increased job availability scenario provides a faster re-
turn to the counterfactual levels of food insecurity (in year 8 of the simulation); this is because the
higher availability of non-farm wage labor, which facilitates benefits throughout the year, reduces

3This effect is because in the job availability scenario, the shock induces a permanent reduction in the number of
agents farming (Figure B.4). Because of the uncertainty in the non-farm wage labor market, higher reliance on this
contributes to increased levels of food insecurity for these agents.
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line. “A” isolates the “shock-absorbing” effect of each scenario (Equation 3.1) and “B” includes the food security
improvements (“poverty-reducing benefits”) relative to the baseline (Equation 3.2).

the extent to which agents must sell livestock as a coping mechanism (Figure B.5, Appendix B.3).
When both RESs are included, the drought only leads to increased food insecurity for one year,
beyond which food insecurity is lower than the {baseline, no shock} simulation. Additional anal-
ysis revealed that having both strategies together generally provided synergistic benefits to overall
resilience — i.e., larger benefits than the sum of the two RESs in isolation (Appendix B.5). In
general, the benefits provided by the strategies to the different components of resilience are similar
for different magnitudes of drought (Figure B.3, Appendix B.3).

Contrasting the resilience assessment of Figure 3.8B with that in 3.8A demonstrates that the
interventions enable a transformation of the state of food security in the modeled system; even
when affected by a 50% drought, the interventions enable better food security than the no-drought
baseline scenario (Figure 3.8B). In Figure 3.8A (Equation 3.1) this development transition is not
measured.

3.3.3.2 Effects on inequality

Using our measure of food security, we calculated the evolution of the Gini coefficient, a com-
mon measure of inequality (Figure 3.9). Our results show that, in all cases, the drought increases
inequality; by affecting only a portion of the households (Figure 3.7), the drought causes food
security to be less equally shared between the population, thus increasing the Gini coefficient. Ad-
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Figure 3.9: Effect of drought and interventions on the Gini coefficient, calculated with respect to food security, over
the simulation. “A” isolates the “shock-absorbing” effect (Equation 3.1) and “B” includes the “poverty-reduction”
relative to the baseline (Equation 3.2).

ditionally, in all cases, the interventions reduce the impact of the drought on inequality; an overall
increase in population-level food security necessitates that the cumulative food security is more
equally shared between the population, thus decreasing the Gini coefficient. When assessing the
overall effects relative to the baseline (Figure 3.9B), all interventions result in long-term inequality
reductions. These results demonstrate that enhancements to resilience as conceptualized here go
hand in hand with reductions in population-level inequality.

The form of resilience measurement influences the assessment of the relative benefits of the two
interventions on longer-term inequality; when isolating the shock-absorbing effect (Figure 3.9A),
the job availability scenario results in a long-term increase in inequality relative to the climate
forecast scenario, whereas it leads to similar long-term results when the poverty-reduction effect is
included (Figure 3.9B). This is largely because, as already mentioned, food security never recovers
following the shock in the job availability scenario (Figure 3.8A).

3.3.3.3 Distribution of effects based on vulnerability

The population-level analyses presented above do not tell us whether all groups receive equal
benefit. For example, even with a decrease in overall inequality, it is possible that the benefit for
some comes as the expense of others. Additionally, recall that the “zero” line in Figures 3.6 and
3.8 does not indicate that there is no food insecurity, rather that food insecurity is no worse than it
would have been had a shock not occurred. By this metric, those who are food insecure both with
and without the climate shock are overlooked. The distributional analysis we present here speaks
to some of these issues.

Assessing the effect of the drought on agent-level food insecurity under each intervention rel-
ative to each agent’s baseline state reveals that the largest benefits under all scenarios are expe-
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rienced by those that were moderately vulnerable under baseline conditions (i.e., 20-40% chance
of being affected by the drought with no intervention) (Figure 3.10A; Equation 3.1). The bene-
fits these agents experience are slightly stronger under the climate forecast scenario. Under all
scenarios, however, the more vulnerable agents (60% chance) are worse off. This suggests that,
when assessing solely the shock-absorbing effects of the interventions, a resilience benefit for some
comes at the expense of the more vulnerable.

Similar to before, including the poverty-reducing effects relative to the baseline gives rise to
a substantial difference in results (Figure 3.10B); under this measure, food security is improved
for everyone, with the agents that are most vulnerable under the baseline conditions receiving
the greatest overall benefit (i.e., the greatest vertical deviation from the 1:1 line). Although both
strategies improve outcomes for all agents, climate forecasts more strongly benefit the moderately
vulnerable agents than increased job availability, whereas increased job availability more strongly
benefits the most vulnerable agents.

Together, these results suggest that there may be differences between interventions that pro-
vide pro-poor benefits relative to existing vulnerability (Figure 3.10B) in comparison to pro-poor
benefits during and following a drought (Figure 3.10A). Given the prevalence of climate shocks in
smallholder systems, assessing drought recovery is critically important. Thus, a focus purely on
poverty reduction may be insufficient. To mitigate the potential for inequitable development, future
studies should therefore consider both poverty reduction and drought recovery in their assessments.

3.3.3.4 Distribution of effects based on household characteristics

Disaggregating the effects of the interventions by household-level characteristics (Figure 3.11) re-
veals a similar story, which we summarize in Table 3.1; both interventions increase the effect of
drought on food security in some of the most vulnerable population groups when the effect of the
shock is isolated (Figure 3.11B), but when food security improvements relative to the baseline are
considered, both interventions provide the largest benefits to the most vulnerable populations —
i.e., they are equitable (Figure 3.11C). Increased job availability provides slightly larger poverty-
reduction benefits to the most vulnerable groups — particularly those with few land and livestock
resources4 (Figure 3.11C). This is likely because an increased job availability provides an addi-
tional source of income, whereas climate forecasts enable better management of land and livestock
resources — resources that the more vulnerable agents do not possess.

In any case, it is noteworthy that both interventions provide similar levels of benefit to the
agent population. We do not model the mechanisms through which these system changes could be
achieved, but note that increased non-farm job availability in a country like Ethiopia could only be

4Though note that the outcomes for the agents with a large number of plots in the model are similar to those with
few plots. See section 3.3.2.2.
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Figure 3.10: Distributional effects of interventions on agent-level food insecurity (FI). The axes represent the prob-
ability that an agent’s food insecurity is higher in the drought simulation, calculated over all replications of the ABM.
The interventions are assessed with respect to their shock-absorbing effect (A; Equation 3.1) and including their
poverty-reducing effects (B; Equation 3.2). Values to the left of the 1:1 line indicate food security improvements
brought about by the intervention. For example, a point (x, y) = (0.1, 0.2) represents an agent with a 20% chance of
being affected by the drought under baseline conditions and 10% with the intervention.

Table 3.1: Summary of distributional results in Figures 3.10 and 3.11. Differences between the interventions under
each resilience measurement approach are italicized.

Shock-absorbing Poverty-reduction
Job avail-
ability

Inequitable
• Benefit moderately vulnerable
• Increase vulnerability for most vul-

nerable

Equitable
• Benefit all households
• Stronger benefit for most vulnerable

Climate
forecast

Inequitable
• More strongly benefit moderately

vulnerable
• Increase vulnerability for most vul-

nerable

Equitable
• Benefit all households
• Stronger benefit for moderately vul-

nerable
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Figure 3.11: Probability of the drought increasing total food insecurity as a function of agent characteristics (A) and
the impact of interventions on this when isolating the shock effects under each intervention (B) and when including
food security improvements relative to the baseline (C).

achieved through significant infrastructural development, which would entail large costs. Climate
forecasts, conversely, are limited both by their practical ranges of accuracy, information dissemi-
nation, and farmer trust (Hansen et al., 2011). In different contexts, different barriers may be more
or less important, favoring one type of strategy over another. Given that our results suggest that the
strategies offer similar resilience-enhancing potentials, practicality may be the most critical factor
in selecting between these options. In either case, however, our results underscore the importance
of ensuring that vulnerable populations benefit in the wake of a drought.

3.3.4 Sensitivity of results

We conducted a one-way sensitivity analysis on six uncertain model parameters. In most cases,
the parameter changes had little influence on the intervention comparison and the distribution of
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food insecurity throughout the population. However, there were some interesting effects. For
consideration of space, we present and discuss these results in Appendix B.6.

3.3.5 Limitations and extensions

These results emerged from our ABM. As such, they should be considered in light of the model
representation and may change upon inclusion or exclusion of processes, or under alternative for-
mulations of the modeled processes. Our sensitivity analysis does not assess the influence of model
structural uncertainty on our results. Here we mention several important considerations that may
affect the generalizability of our results to different contexts or real smallholder systems.

With no data with which to calibrate nutrient effects on crop yields, we did not model soil
parameters (e.g., organic matter or nutrient levels). In reality, soil erosion and quality are limiting
factors in Choke Mountain (Simane et al., 2013) and in many smallholder agricultural systems
(Sanchez et al., 1997). These exclusions may present trade-offs with resilience as defined in this
study and future research could incorporate environmental feedbacks in the farming system.

The decision-making framework and methodology is a critical component of any agent-based
model. Although our approach was informed by generalized empirical evidence, context-specific
information gathered through surveys or interviews would provide further knowledge about how
households make decisions (e.g., how households might incorporate forecast information into their
decision-making). Alternatively, if no such information is available, it would be possible to explore
the sensitivity of the conclusions to changes in the assumed decision-making framework (Schlüter
et al., 2017).

Future efforts could work to incorporate measures of dietary diversity into agent-based models
or to model issues of nutrient utilization (Nicholson et al., 2019). Representation of multiple crops
would also allow agents to diversify their production, which is a common strategy of smallholder
farmers (Teklewold et al., 2013; Barrett et al., 2001), and would most likely lead to increased
resilience under the same conditions.

We assumed that job availability is constant over time, livestock can always be bought and sold
from the market, and crop prices are influenced solely by climate. Especially in drought years,
these assumptions may not be appropriate. Additionally, we did not incorporate temperature varia-
tions in drought years, which would further affect our calculated crop prices. Efforts to endogenize
prices by integrating spatially-explicit ABMs with partial or general equilibrium models are wel-
comed and should be prioritized in future research agendas (van Wijk, 2014; Berger and Troost,
2014).

Finally, our parameterized ABM failed to accurately recreate the empirical distribution for live-
stock herd size. Livestock is a critical component of smallholder farming systems and important
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for food security and the specific policy implications of our analysis could be biased by this im-
portant limitation. First, it is possible that our results overestimate the drought vulnerability of
the smallholder system; we overestimate the proportion of households with no livestock relative
to the LSMS data, therefore underestimating the coping capacity. In the policy comparison, it is
possible that this leads to an underestimation in the benefit of the climate forecast scenario; the cli-
mate information provided to the agents can be used to inform livestock selling decisions, which
more households would benefit from in reality than do in the model. Future work can improve the
process description in the model to increase the policy-relevance of results.

3.4 Conclusions

We developed and analyzed results from an ABM to quantify drought resilience in a stylized
Ethiopian smallholder farming system and explore the effects of selected policy interventions,
including the provision of seasonal climate forecasts and increases in non-farm job availability.
We quantify resilience as the extent to which a measure of household food security is affected by
a drought, combined with the time taken to recover. We pay particular attention to equity in the
distribution of the effects of both shocks and interventions.

Our analysis has produced the following insights. First, considering the effect of drought on
the system, many households could cope with the immediate effects, but eroded their assets in
doing so, making them vulnerable even under normal climate variability in the following years.
The households most affected and taking the longest to recover included those with small land
holdings, small household sizes, and small livestock herds. Methods that increase the absorptive
and adaptive capacities of these households could reduce the extent to which assets are lost and
improve the speed of recovery.

Second, both of the strategies that we assessed generated similar effects to resilience at both
regional and household levels. This is noteworthy given the qualitatively different mechanisms
through which each strategy acts. These results suggest that, in the case of these interventions,
practical constraints with respect to implementation may be more important considerations than the
different levels of resilience enhancement provided. In particular, if reliable, trustworthy forecasts
are available, climate resilience could be increased without significant capital or infrastructure
investment. Further, the potential for synergistic benefits emphasizes the utility of considering
agricultural interventions as interacting, rather than in isolation.

Third, and most importantly for this study, when isolating the shock-absorbing effects of the
strategies, both strategies led to increased levels of vulnerability for the more vulnerable house-
holds — i.e., they were inequitable (Figures 3.10A and 3.11B). However, if the strategies’ poverty-
reducing benefits relative to the baseline were also included, both strategies benefited all house-
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holds (Figures 3.10B and 3.11C). Here, increased job availability provided stronger poverty re-
duction benefits for the most vulnerable households, while climate forecasts provided larger ben-
efits for the moderately vulnerable households (Figure 3.10B). These results emphasize the need
to jointly consider both poverty reduction and shock vulnerability when assessing the effects of
development interventions; in our case, this distinction led to discordant results. Thus, it is not
necessarily a question of if an intervention produces inequitable effects, rather in which ways an
intervention might be inequitable. Future studies should therefore clearly articulate their resilience
measurement approach and consider the implications that this might have.

In conclusion, the approach we have demonstrated in this chapter enables disparate devel-
opment strategies to be analytically compared under a common framework with a focus on the
potential for inequities in their effects. In the pursuit of sustainable development, we argue that
quantitative policy analyses should consider how benefits are shared across the population and
prioritize development that fosters resilience not just on average, but for everyone.
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Chapter 4

Assessing Model Equifinality1

Equifinality—a situation in which multiple plausible explanations exist for a single outcome—
presents a challenge for socio-environmental systems modeling. When equifinality is ignored
in model calibration, subsequent policy analyses may mis-estimate the range of potential policy
effects. In this chapter, we present and demonstrate an approach, called DMC-RPA, for generat-
ing a set of diverse model calibrations (DMC) to enable more robust policy analysis (RPA). The
optimization-based approach maximizes diversity in the model parameters and/or structural con-
figurations to efficiently represent any equifinality in the model set. We demonstrate the approach
for an agent-based model that is used to compare resilience-enhancing strategies in a smallholder
farming system. Results over the set of diverse model calibrations demonstrate consistent policy
effects, enabling stronger conclusions than a single model analysis. Going forward, this approach
can be applied in the development of socio-environmental systems models to facilitate more robust
policy analysis and inference.

4.1 Introduction

Process-based models are regularly used for ex-ante evaluation of policy interventions (Verburg
et al., 2016; Schulze et al., 2017; Kremmydas et al., 2018; Schmolke et al., 2010). However,
model outputs—and hence any policy recommendations derived from model analysis—are depen-
dent on both the chosen model structure and parameterization (van Vliet et al., 2016). In particular,
the complexity of socio-environmental systems (SES) and the corresponding uncertainty inherent
in modeling them (Hornberger and Spear, 1981; Liu et al., 2007; Ligmann-Zielinska et al., 2014)
means that there may exist multiple plausible model configurations that reasonably fit observed

1Published as Williams T.G., Guikema S.D., Brown D.G, Agrawal A. “Assessing model equifinality for robust
policy analysis in complex socio-environmental systems” Environmental Modelling & Software http://dx.doi.
org/10.1016/j.envsoft.2020.104831
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outcomes (Axtell and Epstein, 1994; Oreskes et al., 1994; Beven, 2006). This is known as “equi-
finality.” Under this condition, it is possible that a single model’s behavior does not represent the
full range of plausible outcomes, leading to biased policy recommendations. This can have large
implications when adaptation actions are limited in their reversibility or are costly to counteract,
potentially locking systems into maladaptive pathways (Leclère et al., 2014).

However, the vast majority of SES modeling studies employ single, “best-fit” models to con-
duct policy analysis (Parker et al., 2003; Huber et al., 2018; Brown et al., 2013; O’Sullivan et al.,
2016). To address equifinality in the development of SES models and prioritize robust policies for
sustainable development therefore requires that two questions be answered:

1. Do multiple plausible structural and/or parameter representations exist for a given SES
model? If so, how do they vary?

2. When applying a set of plausible models to new conditions (e.g., a policy analysis), do they
lead to qualitatively consistent results? If not, what can we learn from this?

To attend to these questions, we present an optimization-based approach for identifying equifi-
nal models and exploring their implications for policy analysis. We name the approach DMC-RPA:
Diverse Model Calibration for Robust Policy Analysis. First, we systematically identify multiple
parameter sets and/or model structural characteristics that each match calibration data within a
specified level of fitness, yet are as diverse as possible (DMC) (Brill et al., 1982; Zechman and
Ranjithan, 2004). Next, we conduct a policy analysis and explore the consistency of policy effects
over the equifinal model set (RPA). There are two main contributions in this approach. First, by ex-
plicitly maximizing diversity within the model set, our approach enables an efficient representation
of equifinality in a small number of models. This assists in the communication and understanding
of equifinal models, as well as reduces the computational complexity of subsequent model exper-
imentation. Second, we focus on the implications of equifinality for policy analysis, which allows
for more robust policy assessments and inference in SES modeling.

We demonstrate our approach using a case study, in which an agent-based model (ABM) is
used to compare strategies for enhancing climate resilience of smallholder farmers in an Ethiopian
context. We measure climate resilience with respect to the effect of drought on household food
security and examine which of two policy interventions provides the greatest resilience-enhancing
benefit. Using the DMC-RPA approach, we identify a set of plausible, diverse model configura-
tions and explore the implications for policy recommendations. We seek to examine what identi-
fying equifinal models can mean for inferences drawn throughout the modeling process, and what
implications it might have for model-based policy studies.
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4.2 Background: Equifinality in socio-environmental systems
models

Equifinality describes a situation in which a given set of observed patterns or outcomes can be pro-
duced by multiple distinct explanations (Beven and Freer, 2001). This is equivalent to the terms
“nonidentifiability,” “nonuniqueness,” “multi-realizability,” and the “parameter identification prob-
lem,” in which multiple parameterizations or generative process descriptions are observationally
equivalent (Oreskes et al., 1994; Conte and Paolucci, 2014; Walter, 2014; Guillaume et al., 2019).
A particularly strong case of equifinality is known as structural nonidentifiability, which is most
easily imagined in the case of a fully parametric equation-based model; if the model has more free
parameters than the number of data points used to calibrate it, an infinite number of observationally
equivalent parameterizations may exist (Schmidt et al., 2020).

Equifinality is relevant to SES modeling. Many SES models are highly complicated (Sun
et al., 2016; Lee et al., 2015); that is, they contain a large number of parameters and structural
assumptions. In many cases, there is limited knowledge of the processes driving the modeled sys-
tem (Ligmann-Zielinska et al., 2014), as well as limited empirical data against which to compare
model outputs (Augusiak et al., 2014). Given this potential mismatch between the dimensionality
of the model and the data, multiple structures and/or parameterizations may exist that generate out-
puts consistent with the data. In other words, “the mapping from micro-rules to macro-structures
may be many-to-one” (Axtell and Epstein, 1994). Due to stochasticity, feedbacks, and the non-
analytical nature (i.e., no fixed, structural form) of many SES models (Windrum et al., 2007), such
equifinality may be difficult to identify. Yet, due to this very nature, SES models can exhibit high
degrees of path dependence and non-linear dynamics, which may lead to significant implications
if the potential for equifinality is not acknowledged.

Equifinality is most pertinent to the calibration stage in the iterative model development cycle
(Grimm and Railsback, 2005). The purpose of model calibration is to improve a model’s fit to
real-world conditions by adjusting its parameter values and/or structural representations (van Vliet
et al., 2016; National Research Council, 2012). Typically, this involves finding the single, “best-
fit” model to utilize for subsequent analysis. Proponents of the equifinality thesis argue that the
possibility for multiple acceptable models should not be rejected and the model calibration process
should instead constitute “a mapping of the landscape into a space of feasible models” (Beven,
2006).

There exist various approaches for model calibration and analysis that either explicitly or im-
plicitly acknowledge equifinality. Table 4.1 gives a non-exhaustive overview. Approaches explic-
itly dealing with equifinality have been most extensively discussed and developed in the field of
hydrology (e.g., (Beven and Freer, 2001; Blazkova and Beven, 2009; Smith et al., 2008; Efstratiadis
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and Koutsoyiannis, 2010; Yen et al., 2014; Vrugt et al., 2008)). In these contexts, the objective of
allowing for multiple model configurations is typically to produce a wider uncertainty band on
model predictions that is more likely to contain the true value. In contrast, acknowledgement of
equifinality is surprisingly absent in process-based model evaluations of policy impacts in SES.
This literature could therefore benefit from an approach that builds from frequently used methods
in SES modeling to (1) identify equifinality and (2) explore its implications for policy analysis.

4.3 Approach: Diverse Model Calibration for Robust Policy
Analysis (DMC-RPA)

4.3.1 Overview

We propose an approach for incorporating equifinality into the model development cycle to enable
more robust policy analysis in socio-environmental systems (Figure 4.1; Figure 4.2; (Grimm and
Railsback, 2005; Latombe et al., 2011; Schmolke et al., 2010)). The approach consists of two steps,
which together we refer to as DMC-RPA: Diverse Model Calibration for Robust Policy Analysis.
First, an optimization-based model calibration procedure seeks to identify the maximally diverse
set of model configurations that can explain the observed data (diverse model calibration; DMC).
Second, this small set of maximally different models is applied to a policy analysis (robust pol-
icy analysis; RPA). If policy recommendations are qualitatively different over the set of diverse,
plausible model configurations, this is evidence to suggest that these policies may not be robust in
reality or that further information is needed to reduce equifinality. Conversely, if results are con-
sistent, this provides strength to any model-driven inferences and policy recommendations beyond
a best-fit model analysis. In either case, our approach enables a more robust policy analysis2.

The motivation underlying our approach is that, given the complexity of SES and the paucity of
empirical data in many situations, we cannot claim to have all potentially relevant data for model
calibration—i.e., there are inherently objectives that are unmeasured in the calibration process.
Thus, it is not instructive to focus only on the single, “optimal” calibration to this imperfect set
of data. Rather, it is more useful to generate a number of calibrated solutions that each “perform
well with respect to modeled issues, and are significantly different with respect to the decisions
they specify” (Brill et al., 1982). These diverse solutions may consequently behave considerably
differently under conditions not modeled in the calibration process, such as a policy analysis.

2We note the distinction in the use of the word “robust” between our approach and Robust Decision Making
(RDM); in RDM, a robust policy is one that is beneficial over a wide range of uncertain exogenous conditions (e.g.,
input data, future trajectories) (Kasprzyk et al., 2013), whereas we refer to a robust policy as one that is beneficial over
a range of equifinal model configurations. The more general phrase robust policy analysis (RPA) refers to our overall
approach, whether the policy itself is robust or not.
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Figure 4.1: Our approach identifies a set of models that each similarly match the calibration data, yet are as different
from each other as possible with respect to the parameters and/or structures that they specify. As a result, the models
may produce qualitatively different behavior when applied to new conditions (e.g., in a policy analysis).
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Figure 4.2: DMC-RPA in the model development cycle. A set of diverse model calibrations are identified and then
used to conduct a policy analysis.
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Table 4.1: Other approaches relevant to assessing equifinality in process-based modeling

Name Stage in
modeling
cycle

Description Relation to equifinality

Pattern-oriented
modeling (POM)

Calibration Identify the model configurations that can
simultaneously produce several desirable
“patterns” that are consistent with reality
(Wiegand et al., 2003; Grimm et al., 2005).
POM is similar to the “limits of
acceptability” approach (Beven, 2006),
which seeks to find “behavioral” models
that provide predictions within specified
limits.

Multiple model configurations may
generate the patterns or be behavioral,
thus allowing for equifinality.

Bayesian model
calibration

Calibration Use Markov chain Monte Carlo (MCMC)
simulation to derive distributional
estimates of model parameters and/or
structures. Each potential model
configuration is assessed using a measure
of “likelihood,” which may represent a true
likelihood function (i.e., P (Dobs|φ) where
Dobs denotes observed data and φ is a
model calibration) (Hartig et al., 2011;
Vrugt, 2016) or an informal likelihood
measure (Beven and Freer, 2001).

By probabilistically representing
parameter values and/or structures
(which may be multimodal), Bayesian
methods explicitly allow for
equifinality. In some cases, Bayesian
model averaging (BMA) is used to
aggregate over multiple models and
produce a single distribution of
estimates, where each model is
weighted by its likelihood
(Touhidul Mustafa et al., 2020; Ajami
et al., 2007).

Robust
decision-making
(RDM)

Analysis Evaluate policy alternatives on their ability
to succeed over a wide range of deeply
uncertain conditions (Lempert, 2003), as
well as identify the sets of conditions under
which policies may fail (see “scenario
discovery” (Bryant and Lempert, 2010)
and “robust regions” (Lempert, 2002)).

RDM incorporates model-level
uncertainty into the policy analysis.
However, this uncertainty is not
restricted to that which produces
results consistent with available data.
Thus, it does not explicitly incorporate
equifinality.

Sensitivity analysis Analysis Describe and explain the factors
contributing to the variability in model
outputs (Abreu and Ralha, 2018;
Ligmann-Zielinska et al., 2014; Lee et al.,
2015). Part of uncertainty quantification
(National Research Council, 2012).

Sensitivity analysis approaches the
problem of model-level uncertainty
from the perspective of a single model
and explores the sensitivity around this
single point. It also does not consider
the extent to which model-level
uncertainties contribute to outcomes
that are consistent with available
empirical data. As such, sensitivity
analysis does not address equifinality
in models directly.

Model
intercomparison

Post-
analysis

Compare common scenarios over a range
of independently developed models
(Robinson et al., 2014; Duan et al., 2019).
See also model “docking” (Axtell et al.,
1996).

This incorporates a large amount of
model uncertainty and even allows for
comparison of different model types
(e.g., simulation, economic
optimization), thus directly allowing
for equifinality.

By focusing on a small number of diverse, plausible solutions, this approach efficiently en-
compasses any equifinality, enabling each calibration to be individually examined and reducing
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the computational burden of subsequent policy experiments. This kind of approach—with an ex-
plicit focus on solution diversity—was first proposed as a method for generating a set of diverse
decision options in the context of land use planning (Brill et al., 1982) and has since been applied
as a decision support tool in other areas (DeCarolis et al., 2017; Ligmann-Zielinska et al., 2008;
Harrison et al., 2001). In this chapter, we extend this work to the context of model calibration and
its implications for policy analysis.

We note that the approach, as presented in this chapter, focuses on ABMs, but is also applicable
to any process-driven model that requires calibration (e.g., cellular automata, partial or general
equilibrium models, system dynamic models, or other simulation-based biophysical models). We
also note that the DMC-RPA approach focuses only on model calibration and application. It does
not attend to other stages of the model development cycle, such as model validation. Rather,
our approach simply suggests that the modeling process be modified to allow for the possibility
of multiple plausible model configurations through the model analysis stage (Figure 4.2). The
equifinal calibrated models could go through a further validation refinement before being applied
to assess policy; we discuss this in section 4.6.

4.3.2 Diverse Model Calibration (DMC)

We implemented the DMC approach in Python 3. Pseudocode is given in Online Appendix B for
the published article3 and the code for the case study application is hosted on comses.net.4

Our approach for diverse model calibration uses EAGA (evolutionary algorithm to generate
alternatives) (Zechman and Ranjithan, 2004), which is an extension of a conventional genetic al-
gorithm (GA)5. Using this approach, we are solving a multimodal, multiobjective optimization
problem (Efstratiadis and Koutsoyiannis, 2010; Singh and Deb, 2006) in which the uncertain model
parameters and/or structures constitute the decision variables. The objective function has two com-
ponents, the first representing the degree to which a model’s outputs match empirical data and the
second representing the degree to which a model’s configuration is different from other candidate
models. For ABMs of SES, which are stochastic and can exhibit nonlinear dynamics, evolutionary
approaches are a useful heuristic method for searching parameter spaces (Reed et al., 2013; Thiele
et al., 2014), so are appropriate in this context. Our operational definitions for various terms are
given in Table 4.2.

3http://dx.doi.org/10.1016/j.envsoft.2020.104831
4https://www.comses.net/codebases/5c7710b4-f9c1-47cc-ad61-8734febdb2f0/

releases/1.1.0/
5GAs are a form of optimization inspired by Darwin’s theory of evolution. A population of “individuals” is evolved

toward better solutions. Each individual is characterized by a vector of parameters (i.e., their genes). Selection and
reproduction occur within the population and are mediated by each individual’s “fitness,” which in this case represents
the degree to which an individual’s output matches calibration data.
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Table 4.2: Operational definitions and symbols for the DMC.

Term Symbol Definition
Model - A process-based representation of a socio-environmental system (e.g.,

an ABM)
Structure - A process-based abstraction of reality within a model
Parameter - A continuous or discrete value representing a level or state within a

modeled structure
Configuration S The set of structures and/or parameters that make up a model
Pattern r A qualitative or quantitative stylization of reality
Individual (/solution) k A single model within the genetic algorithm
Population p A set of individuals
Loss L A measure of the discrepancy between a model-generated and empirical

pattern
Hyperparameter - A value or setting for the genetic algorithm

4.3.2.1 Optimization procedure: Genetic algorithm

In an extension to a regular GA, which consists of a single population of individuals, the EAGA
consists of multiple subpopulations (SPs) of individuals (i.e., potential model configurations) that
coexist in the decision space (Figure 4.3). Each SP is analogous to the population of individuals
in a regular GA, but each individual evolves to both increase its fitness to the empirical data (i.e.,
reduce the “loss” in Equation 4.1, below) and increase its difference from the models in the other
SPs (Equation 4.4, below). Evolution and genetic selection occur within each SP (i.e., there is no
genetic spillover between SPs) and utilize standard GA evolution procedures.

One SP is defined a priori as the master SP. The master SP seeks to find the globally optimal
solution and each individual in the master SP evolves solely based on fitness (i.e., diversity is not
important). Solutions in other SPs are considered feasible when their fitness, given by Equation
4.1 below, lies within some tolerance of the best solution in the master SP (e.g., up to 20% larger).
The feasibility of solutions affects the selection of “parents” in the EAGA; the binary tournament
selection process selects individuals to act as parents by randomly pairing two individuals and
selecting one of these to pass on its genetic material using the following heuristic: if both potential
parents are feasible, select the more diverse of the two (i.e., higher Dq,k in Equation 4.4 below);
if only one potential parent is feasible, select this one; and if both potential parents are infeasible,
select the one with the better fitness (Equation 4.1 below).

4.3.2.2 Decision variables: Uncertain parameters and structures

Each continuous uncertain model parameter is defined within some specified bounds (i.e., con-
straints) and potential process descriptions and categorical parameters are represented using cate-
gorical decision variables. In this sense, uncertain structural characteristics are treated no differ-
ently than model-level parameters, with the specification of both falling under the general term
“configuration.”

68



Figure 4.3: DMC procedure

Specifically, each candidate model k is characterized by a set of S configuration elements
(xk = x1, ..., xS), which for these calculations are each normalized to the [0, 1] unit interval. In the
case of a categorical configuration element, it can be assumed that all categories are equidistant
from each other by specifying a single distance (e.g., 1) for models that are different with respect
to this element.

4.3.2.3 Objectives: Matching patterns and increasing disparity

The first objective is to minimize the discrepancy between a set of model-generated and
empirically-observed patterns. As such, our approach is a form of pattern-oriented modeling. For
each individual k, discrepancies are weighted and combined over the R patterns to give a single
measure of fit:

Lk =
R∑
r=1

weightr ∗ discrepancy(modelk,r, datar) (4.1)

The discrepancy measure (or “loss,” L) is an informal measure of likelihood (Hartig et al., 2011;
Smith et al., 2008) similar to those used in other studies (Calvez and Hutzler, 2006; Stonedahl and
Wilensky, 2010; Chica et al., 2017). The discrepancy measure could take a number of forms,
depending on the type of pattern to be fit (Table 4.3).

The second objective is a measure of difference between a given model configuration and the
other candidate models, which is measured as a distance in the configuration space. Because the
goal is to evolve increasingly disparate SPs, this difference is calculated between each individual
k in SP q and the centroid of each of the other SPs (SPp(p 6= q)). The centroid of the pth SP
(Cp) is calculated as a fitness-weighted average over its individuals’ configuration elements (i.e.,
parameters and/or structures):
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Table 4.3: Potential discrepancy measures for different fitting pattern types.

Pattern type Discrepancy measure
Model Data
binary binary 1(model == data) where 1 is an indicator function
categorical categorical 1(model == data) where 1 is an indicator function
numeric numeric (model − data)2

histogram histogram
∑B

b=1(modelb − datab)2 where b are the histogram bins
distribution distribution

∫∞
−∞(Fmodel(y) − Fdata(y))2dy where F () is the cumulative

distribution function
distribution numeric CRPS =

∫∞
−∞(Fmodel(y) − 1(y − data ≥ 0))2dy where

CRPS represents the cumulative ranked probability score
relational relational (βmodel − βdata)2 where β is some relation between two quan-

tities, such as a regression coefficient or correlation
spatial spatial sim(model, data) where sim() is some measure of similarity

between two mapped distributions or features

Cp =
1

K

K∑
k=1

weightk ∗ xp,k (4.2)

where the best-fitting individual in each SP receives a weight of one, the worst-fitting individual
receives a weight of zero, and there is a linear scaling in between based on fitness.

The distance, d, between model k in SP q and SPp’s centroid is calculated as the sum of the
absolute differences (Manhattan distance) in the normalized configuration space:

dq,k→p =
S∑
s=1

weights ∗ |xq,k,s − Cp,s| (4.3)

Different weighting schemes or distance calculations may be chosen, if desired. Finally, for
each model k in SP q, the second component of the objective function, Dq,k, is then evaluated as
the distance to the closest SP centroid:

Dq,k = min
p:p 6=q

dq,k→p (4.4)

4.3.2.4 Selecting models

Given the stochasticity in both the model and the GA, the objectives (Equations 4.1 and 4.4) are
likely to be non-monotonic and will fluctuate as each SP evolves. To assess convergence, the
modeler can visually assess the two components of the objective function and discern whether
they have stabilized. Because the DMC evolution is likely highly influenced by the dynamics of
the particular socio-environmental model, we do not present a quantitative measure for assessing
its convergence.

Once convergence has been reached, a single solution is chosen from each SP (not including
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the master SP). To prioritize diversity among the selected models, select the most diverse feasible
solution within each SP.

4.3.2.5 Selecting DMC hyperparameters

The DMC procedure contains several hyperparameters that need to be specified by the modeler.
For example, as the number of SPs (NSP ) is increased, the well-fitting regions of the parameter
space will become more crowded and, in turn, the solutions less diverse. There is hence a tradeoff,
whereby if NSP is too low, plausible regions of the parameter space may not be discovered, and
if NSP is too high, the solutions lose their diversity and begin to collapse on top of each other.
Applications of this approach should therefore explore the effect of varying NSP on the solutions
reached by the DMC procedure. Alternatively, practical considerations may drive the choice of
NSP . For example, if the individual models are to be presented to decision makers or if subse-
quent policy-related computational requirements are high, the number has to be manageable. The
example presented in the original description of the EAGA included four SPs (Zechman and Ran-
jithan, 2004). Other hyperparameters such as the number of generations and the population size
within each SP will also affect the solutions reached. Again, the effect of these values on the re-
sults should be assessed to encourage appropriate choices. We present an example assessment of
hyperparameter values for our case study application in Appendix C.1.

4.3.3 Robust Policy Analysis (RPA)

Following the identification of a diverse set of model calibrations, the second step is to assess
the implications for system behavior under policy intervention. This simply involves conducting
the same policy assessment for each selected model. There are two general possible classes of
outcome: (1) if results are consistent over the set of models, we can have greater confidence in
any policy recommendations; and (2) if results are qualitatively different between the selected
models, our approach has exposed sensitivities that may have been missed in an analysis using a
single, best-fit model. In this case, the equifinal models can be explored to suggest the potential
socio-environmental conditions or mechanisms that may give rise to the success or failure of a
policy intervention, or additional data can be included to attempt to restrict equifinality (see the
discussion in section 4.6). In either case, we achieve a more robust policy analysis.

4.4 Case study description: Smallholder climate resilience

Using an ABM of smallholder farmer resilience, we apply the DMC-RPA approach to generate a
diverse set of models and explore whether these lead to policy-related assessments that are qualita-
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tively consistent. We give a brief overview of the ABM here. An ODD+D protocol (Müller et al.,
2013) is provided in Online Appendix A for the published article and in Williams et al. (2020a).

4.4.1 ABM description

Smallholder agricultural systems are highly vulnerable to climatic variability (Vermeulen et al.,
2012). It is therefore important to identify ways through which their climate resilience can be
supported (Hansen et al., 2019). They also exhibit key properties of complex adaptive systems
(de Vos et al., 2019); smallholder populations are highly heterogeneous in their attributes and
access to capital, and household-level mechanisms to cope with shocks (e.g., selling of livestock
or assets) can lead to path dependencies and poverty traps (Haider et al., 2018). Additionally,
interactions between smallholder households and agroecosystems can give rise to dynamically
evolving system trajectories (Giller et al., 2011; Tittonell, 2014). Thus, agent-based modeling is
an appropriate tool through which to assess these resilience dynamics (Bitterman and Bennett,
2018; Schlüter et al., 2019b).

The purpose of the ABM is to provide temporal and distributional assessments of small-
holder drought vulnerability and the potential household- and community-level effects of selected
resilience-enhancing strategies. The ABM is designed to represent an Ethiopian smallholder mixed
crop-livestock farming system. It draws from several sources of empirical data to represent the
conditions of Amhara in the Ethiopian highlands. However, the model is not intended to produce
policy recommendations for a specific location; rather, it serves as an experimental platform to
evaluate the potential effects of resilience-enhancing strategies in smallholder systems more gen-
erally.

Each agent represents a single smallholder household. The modeled livelihood activities in-
clude farming, livestock rearing, and wage-based employment (Figure 4.4). Agents are hetero-
geneous with respect to their household size, land holding, and risk aversion. Additionally, each
agent has preference for either maximizing wealth or leisure. Livestock are grazed on a combina-
tion of on-farm crop residues and a communal rangeland system, which each provide amounts of
fodder that vary over time based on both climate and endogenously-driven rangeland demand. The
availability of wage-based employment is exogenous and does not vary over time. Climate affects
the following model components: crop yields, which are calculated at an agent-level on an annual
basis; rangeland dynamics, which is simulated at the regional level on an annual basis; and crop
prices, which vary each month at the regional level, but are exogenous to the modeled system.

At the beginning of each year, agents make decisions about how to manage their farmland
(fertilizer application, planting date), whether to buy/sell livestock from their herd, and how much
labor to allocate to non-farm wage-based employment. These options are represented as a finite
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Figure 4.4: Schematic overview of the smallholder resilience ABM. Light grey circles represent processes through
which a household directly or indirectly interacts with other households. Objects outside the large box are exogenous.

set of livelihood options. A single crop type (maize) is modeled. These start-of-year decisions are
made under a degree of uncertainty about the future climate and market conditions. Agent-level
beliefs about these conditions are formed from their previous experiences as well as interaction
with neighboring agents. Following these decisions, crop yields are calculated and monthly wage
employment allocations are made. Crop yields are influenced by both agent decisions and the
exogenous climate, and wage employment allocations depend on the regional demand for labor
(Figure 4.4).

At each month throughout the year, agents attempt to satisfy their food and cash consumption
requirements through their own crop production, food stores, and cash holdings. Agents can buy
and sell crops from the market each month as well as sell livestock as a coping measure to smooth
cash and food consumption. Each month that an agent cannot satisfy their food requirements
they are classified as “food insecure.” The primary output of the model is this binary, monthly,
household-level representation of food security, which emerges as a result of interactions between
the different modeled components of the agricultural system.
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4.4.2 Calibrating diverse models

4.4.2.1 Uncertain model characteristics

The ABM contains a variety of uncertain parameters and structures (Table B.4). Although the dif-
ferences in alternative model structures are relatively minor, they are sufficient to demonstrate how
the DMC procedure works to evaluate potential model structures. Other applications could inte-
grate DMC more thoroughly into model structure development, in addition to identifying model
parameter values.

Critically, what Table B.4 demonstrates is that uncertain model structural representations—
although fundamentally different from parameters in how they affect the ABM—are treated no
differently by the DMC approach, and are simply coded as binary or categorical switches. For
example, we allow the possibility for two alternative decision-making representations: expected
utility maximization and satisficing (exp util DM in Table B.4). In doing so, we apply our ap-
proach to contrast alternative theories (Grimm et al., 2005). Under expected utility maximization,
each agent chooses the livelihood option each year that maximizes either their wealth or their
leisure time, depending on their preference. Under satisficing, all agents have two levels of hierar-
chical objectives (Kaufman, 1990): (1) to choose the option that leads to the lowest food insecurity;
and (2) to choose the option that maximizes expected wealth or leisure time, depending on their
preference. The second-level objective only activates if multiple options tie with respect to the first
objective. These two alternatives represent different functional representations in the ABM, yet
their reduction to a binary switch is more an issue of model design than a qualitative difference in
the DMC procedure.

4.4.2.2 Patterns

Using data from the 2015 World Bank’s Living Standards Measurement Study (LSMS), we iden-
tified eight emergent outcomes (i.e., patterns) that we wish the model to match. To generate these
patterns, the ABM was run from 2003-2015 and outputs from the final year of the simulation were
compared against the calibration data, which represent the empirical conditions in Amhara in 2015.

Five of the patterns represent agent livelihood characteristics. We represent these using his-
tograms, thus combining information from the household level into a regional pattern. These dis-
tributions include: non-farm labor allocation, agricultural labor allocation (farming and livestock),
months of food insecurity, subsistence fraction (i.e., percent of production consumed), and large
livestock holdings.

In addition to these distributions, we include three binary indicators representing desirable
qualitative model-level characteristics. The first specifies that at least 70% of the agents choose
to farm their land on average. This indicator is included to encourage the generation of models
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Table 4.4: Uncertain parameters and structures in the ABM. All continuous parameters were initialized uniformly
over the specified ranges, which were defined as conservative bounds of expected realistic values.

Name Unit Range Description
Structures

exp util DM - {F, T} Agents make decisions to maximize expected utility
(T) or using a satisficing process (F)

labor hiring - {F, T} Ability for agents to hire others to work on their
own fields

job mkt participants - {all, leisure} The agents that experience limited non-farm
job availability (all=all agents, leisure=leisure-
maximizing agents only)

Continuous parameters
min sust % 20, 70 Sustenance deficit threshold for “severe” food inse-

curity
risk aversion mult - 1, 1000 Multiplier on risk aversion coefficient
frac income max - 0, 1 Fraction of income-maximizing agents
job availability hours/month 0, 5 Non-farm wage labor job availability per agent
labor wage Birr/day † 8, 100 Non-farm labor wage per day
per cap labor hours/day 5, 13 Total labor availability per adult equivalent
farm labor mag - 100, 1600 Multiplier on farm labor requirements
ls per head herding hours/head 0, 50 Monthly livestock labor requirement
planting fraction fraction 0.5, 1 Fraction of land that can be planted
grass regen - 1, 5 Rangeland grass regeneration rate
rf intercept - −1, 1 Rainfall effect on rangeland grass with zero rainfall
rf slope - 0.001, 0.004 Sensitivity of rangeland grass to rainfall
ls max growth - 0.2, 0.5 Maximum livestock reproduction rate
g max kg/ha 400, 10000 Maximum rangeland grass biomass

Discrete parameters
months b4 ls coping months {0, 1, 2, 3} Months of food insecurity before agent considers

selling livestock
† Birr is the Ethiopian currency
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in which farming is the dominant livelihood activity, which is consistent with empirical data for
the modeled region (CSA, 2017)6. The second indicator specifies that the grass biomass in the
communal rangeland does not decrease to zero at any time to discourage unrealistic rangeland
dynamics. The third indicator specifies that no agent should ever have more than 80 head of
livestock, which further encourages livestock holdings to be consistent with the empirical LSMS
data.

To measure the discrepancy between the model outputs and the histograms, we convert each
histogram into its empirical cumulative distribution function (ECDF) and calculate the average
squared difference between each ABM-generated and empirical ECDF step. This represents a dis-
cretized version of the “distribution-distribution” pattern type in Table 4.3. We chose this as it
bounds the maximum possible loss for each distributional pattern between zero and one, meaning
that each distribution exerts comparable influence on the total loss. We weight all distributions
equally, as each distribution was chosen to represent a relevant, independent livelihood character-
istic. An additional value of one is added to the total loss for each qualitative pattern that the model
does not generate. Thus, the overall loss is bounded between zero and eight.

4.4.2.3 Genetic algorithm

We conducted an experiment with four SPs (five total, including the master), each comprised of
30 individuals, run for 300 generations (Table 4.5). We chose to present the results for four SPs
in this chapter for visual clarity, but we also experimented with alternative numbers of SPs and
population sizes: see Appendix C.1. To select models, we selected the feasible individual from
each SP that is most distant from any other SP’s centroid.

Although the ABM is stochastic, for the calibration we ran a single simulation replication for
each model configuration and calculated the loss from this single set of outputs. We found the
variability in model outputs to be much larger between model configurations than within each
model configuration, so opted for this approach due to computational feasibility.

To assess the sensitivity of each parameterization, we conducted a local sensitivity analysis.
We systematically perturbed each parameter from its calibrated value and assessed the effect on
the fit to the empirical data (see Appendix C.5).

4.4.3 Policy analysis

The objective of the case study is to examine which of two resilience-enhancing strategies provides
the greatest benefit to climate resilience in the smallholder agricultural system. The strategies in-

6We note that the LSMS reports higher farming percentages than this (89% in Amhara in 2015 (CSA, 2017)).
We use a more permissive value because we do not model land rental dynamics, which is a common practice in the
modeled region but would unnecessarily complicate the model.
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Table 4.5: EAGA settings for the smallholder resilience case study.

Name Value Description
Number of SPs 4 Not including the master SP
Number of generations 300 -
Population size 30 -
Probability of mutation 2% -
Type of crossover Uniform Each of the offspring’s genes is chosen ran-

domly from their parents
Type of selection Binary tour-

nament
Objective function value is used as the selec-
tion criterion

Feasibility threshold 30% Individuals within 30% of the master SP’s
best solution are considered feasible

clude the provision of seasonal climate forecasts and a 20% increase in the availability of non-farm
employment opportunities. These are not necessarily explicit policies at a government or institu-
tional level, but represent potential policy-relevant interventions to the system (Federal Democratic
Republic of Ethiopia, 2019). The climate forecasts give the agents information at the start of each
year about the upcoming climate conditions. This information is not perfect, but enables the agents
to make better-informed agricultural decisions (e.g., shifting their planting date or choosing to not
apply fertilizer to their fields), potentially increasing their climate resilience. Increased job avail-
ability, in contrast, provides an opportunity for agents to diversify their livelihoods and can act as
an important source of income for agents that do not otherwise have access to land- or livestock-
based capital. Given the different mechanisms through which these strategies operate, they may
differently affect the households’ and, in turn, the system’s collective ability to respond to drought
under alternative socio-environmental conditions.

We quantify specific resilience (Carpenter et al., 2001) using a measure of the effect of drought
on the agents’ food security. We represent droughts by imposing reductions in rainfall; a 50%
drought represents a year in which the rainfall is reduced by 50%. This affects the crop prices,
rangeland dynamics, and crop yields. The effects on prices and rangeland dynamics are at the
regional level, while the effects on crop yields are both nonlinear in rainfall and spatially explicit.
To isolate the overall effect of a 50% drought, we run two simulations: one for 30 years under
regular climatic variability, and one for 30 years under the same climatic variability but with a
50% drought imposed in the fifth year of simulation. In every month of each simulation, we record
the percent of agents that are food insecure (i.e., are unable to satisfy their food consumption
requirements). We then take the difference between food insecurity in these two simulations,
giving a monthly measure of the additional percentage of the ABM agents that are food insecure
as a result of the drought. When analyzed over time, this incorporates both the initial impact of the
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drought and the long-term recovery of food security in the years following. Because food security
varies throughout the year, this will exhibit an annual cycle.

To isolate and compare the strategies’ resilience-enhancing benefits, we evaluate this measure
of resilience both under baseline conditions and with each of the two strategies in place. We assess
a strategy’s overall benefit as the cumulative amount of food insecurity that it avoids in the wake
of the drought—i.e., the total number of agent-insecurity months avoided in the 25 years following
the drought. Finally, we calculate the difference between the two strategies’ resilience benefits
(∆res) as:

∆res =
N∑
a=1

30∑
y=5

12∑
m=1

(
FIclimate forecasta,y,m − FIjob availabilitya,y,m

)
(4.5)

where a indexes the N agents, y indexes the years, m indexes the months, and FI denotes the
incidence of household-level food insecurity.

There are two levels of stochasticity relevant for this policy assessment, both of which will
affect the quantity in Equation 4.5. The first level represents within-model stochasticity introduced
in the assignment of the agents to the landscape, crop yield calculation, and allocation of regional
wage labor and livestock reproduction/mortality. To account for this, we replicate each simula-
tion 50 times7. The second level represents uncertainty associated with the drought; as already
described, we define our droughts using single-year reductions in rainfall. However, the ultimate
effects of this on the smallholder system will depend on both the preceding and succeeding climatic
conditions8. To account for this, we generated 40 “climate timeseries,” each 30 years long, by re-
peatedly randomly sampling years from the 2000-2015 observational climate record. We impose a
drought in the fifth year of each timeseries.

Finally, to assess sensitivity in the policy comparison, we conduct two additional experiments:
one with nine SPs (ten, including the master) and one assessing the effect of a 20% drought.

7A convergence analysis ((Law, 2008), pg. 502) determined that 50 replications were sufficient to achieve a
relative error of 0.1 (i.e., |X̄(n)− µ|/|µ| < 0.1 if X̄(n) is the estimate based on n replications and µ = E[X]) with a
confidence level of 90%.

8For example, the effects of the recent Ethiopian drought—in which some parts of the country only experienced
50-75% of the regular rainfall—were in part exacerbated by continued dry conditions in the following year (Singh
et al., 2016).
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Figure 4.5: Convergence of the genetic algorithm with four SPs. (A) Overall convergence of the objective function
(i.e., the loss; Equation 4.1). (B) The diversity of the feasible solutions (Equation 4.4 evaluated over the SP centroids).
(C) The percent of individuals in each SP that are within the specified tolerance of the master SP’s objective function.
(D) The separation within each SP. Note that the master SP (SP0) is only displayed in A, as measures of diversity are
not calculated for the master SP.

4.5 Case study results

4.5.1 Diverse model calibration

The master SP’s solutions converge in their fit to the empirical data after approximately 25 gener-
ations of the genetic algorithm (Figure 4.5A). After approximately 50 generations, the solutions in
all other SPs begin to become feasible (Figure 4.5A and C)—i.e., within 30% of the master SP’s
best solution. Once the solutions are feasible, their diversity begins to increase (Figure 4.5B) and
stabilizes after approximately 175 generations.

Overall, the ABM does well at matching the empirical patterns. The total summed loss in the
master SP is approximately 0.08 (Figure 4.5A) out of a maximum possible value of 8 and all other
SPs are within 30% of this, indicating that all qualitative patterns are matched and the levels of
fit to the empirical histograms are high. However, all calibrated models overestimate the percent-
age of households with no livestock herds (Figure 4.6 and Appendix C.2). Livestock represent an
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Figure 4.6: Comparison of empirical and ABM-generated patterns in SP 1. The patterns include: non-farm labor
(hours spent on non-farm activities); farm labor (hours spent on farming and livestock activities); household-level food
insecurity (number of months experiencing food shortages within the past year); subsistence fraction (the fraction of
crop production consumed by the household); and herd size (number of large livestock). Comparisons for the other
SPs are shown in Appendix C.2.

important coping mechanism both in reality and in the ABM; given this, our models may under-
estimate resilience or lead to biased policy assessments. For example, climate forecasts provide
the agents with information that can aid their livestock stocking/destocking decisions; because our
model underestimates the number of households with livestock, it may underestimate the benefits
of climate forecasts through this mechanism. In addition, the calibrated models exhibit different
levels of fit to the non-farm labor distribution (Figure 4.6 and Appendix C.2); SP2 underestimates
and SP4 overestimates the proportion of agents engaging in non-farm labor.

Some variation is to be expected in the performance of any set of equifinal models, and that
variation is important to provide structure to the variation in any policy-relevant conclusions. It is
therefore important to incorporate understanding of the variations in level of fit into policy analysis
based on the calibrated models, as different levels of fit may imply different degrees of credibility
over the model set. Future work could expand the range of structural representations included in
the model calibration to improve the level of fit to the livestock distribution, as well as include a
validation step to filter out models from the calibrated set that less adequately represent reality in
ways that might significantly affect the policy analysis and, in turn, bias conclusions.

4.5.2 Equifinality in the calibrated models

The selected model configurations are diverse (Figure 4.7), suggesting that the complexity in the
model allows for very different parameter sets to produce similar levels of fit to the data. Specifi-
cally, the distance between each of the SPs in the normalized parameter space is approximately 6
(Figure 4.5B). Given that there are 18 uncertain model elements (Table B.4), the maximum possi-
ble distance (Equation 4.3) between any two models is 18.

Different parameters are more or less consistent over the model set. For example, the risk aver-
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Figure 4.7: Parallel coordinate plot showing the resultant parameterizations. All parameters are normalized to a [0,1]
interval given by their initial lower and upper bounds (Table B.4). Black points represent the possible values for model
structural elements and discrete parameters. Variable descriptions are provided in Table B.4.

sion parameter (risk aversion mult), which represents a dimensionless multiplier on the agents’
risk aversion coefficient, is present over almost its entire range in the four models (Figure 4.7).
This implies that the model is insensitive to changes in this parameter. In contrast, parameters such
as planting fraction are only present over a smaller range in the calibrated model set (Figure
4.7). This implies that the model is more sensitive to changes in these parameters and that only
a narrow range of values produce plausible model outputs. Our analysis of the sensitivity of the
model calibrations (Appendix C.5) confirms these observations and additionally shows that the
SP3 and SP4 calibrations are less stable; slight perturbations in their parameters result in some of
the qualitative fitting patterns not being matched, thus degrading the calculated fit.

We observe an interesting result in the uncertain model structural representations; all four
models contain agents that utilize expected utility maximization to make their livelihood deci-
sions (exp util DM in Figure 4.7)—i.e., the satisficing decision-making representation is never
selected by the calibration procedure.
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Figure 4.8: The additional percentage of agents that become food insecure as a result of a 50% reduction in rainfall
in year 5 of the simulation. Lines plot the median response over all ABM replications. Shaded regions show 5/95%
intervals over all model replications.

4.5.3 Policy analysis: enhancing climate resilience

With no policy in place, the effect of the drought on household food security differs over the
selected models (Figure 4.8); for example, the model selected from SP1 exhibits the smallest
drought vulnerability, with only a maximum of 6% of households affected by the drought (at the
median simulation output). In comparison, in SP3, food insecurity is at the median 14% higher
in the year following the drought. SP3 also exhibits the highest levels of food insecurity under
baseline conditions (Appendix C.2). In terms of recovery, in no model does food security recover
completely to its level in the no-drought counterfactual (Figure 4.8), showing that, in all cases, the
drought permanently alters the livelihood trajectory of some households. The differences between
the SPs suggest that in this case there are implications of equifinality, as each of the equifinal
models exhibits different behavior when applied to a situation (drought event) not used in the
calibration.

When comparing the effects of the two interventions on the system’s resilience, all four models
yield the same directional result: climate forecasts offer larger potential benefits to food security
in the wake of a drought than an increase in job availability (Figures 4.9 and 4.10). Thus, in spite
of the differing model configurations (Figure 4.7) and baseline levels of vulnerability (Figure 4.8),
there are no large implications of equifinality for our policy analysis. In this case, the DMC-
RPA approach has therefore yielded a conclusion that is likely similar to that utilizing a single
model calibration, but the consistency of this result over the diverse calibrated models increases
the robustness of this conclusion.

4.5.4 Sensitivity analyses

Reducing the magnitude of the drought to 20% does not affect these conclusions; the 20% drought
has a smaller, yet similar effect on household-level food security, and the climate forecast still
consistently provides larger benefits under these drought conditions (Appendix C.3).
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Figure 4.9: Effects of resilience-enhancing strategies on food insecurity. Lines plot the median response over all
ABM replications, relative to the no-drought conditions.
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In an experiment with nine SPs, not all SPs become feasible after 300 generations and, due
to the larger number of solutions, are more closely located within the uncertain parameter space
(Appendix C.4). However, the overall diversity of the feasible solutions is higher; for example, in
contrast to the results above in which all models specified expected utility maximization, two SPs
in this experiment specify satisficing as the decision-making framework. Additionally, the overall
range of many continuous variables over these models is higher. This higher diversity between
parameterizations contributes to a higher diversity in drought responses and policy comparisons
(Appendix C.4). However, the result from above—that climate forecasts provide greater resilience
benefits—is demonstrated in seven of the eight retained parameterizations. Thus, we conclude that
this result is a robust one.

4.6 Discussion

4.6.1 DMC-RPA for model development and inference

The DMC-RPA approach allows the researcher to retain multiple hypotheses, represented by mul-
tiple disparate model configurations, through the analysis stage of the model development cycle
(Figure 4.2). Doing so is in accordance with the notion of strong inference (Platt, 1964). Al-
though we have focused on the implications for policy analysis, the DMC approach also presents
opportunities for model development, model-driven theory development, and systems inference.

First, the parameters and structures of the calibrated models themselves—i.e., the conditions
measured in the calibration—may suggest different socio-demographic and environmental con-
texts under which similar outcomes may be possible. Parameters that are especially variable or
consistent may represent critical or sensitive factors in driving the empirical outcomes. Alterna-
tively, if one process representation is consistently selected over another, this constitutes a form of
combined model-based and empirical evidence supporting its appropriateness for describing real-
ity in the modeled context. This could be compared against existing theory and evidence to aid in
developing more generalized knowledge (Magliocca et al., 2018; Schlüter et al., 2019b,c).

Second, the calibrated models could be compared along some unmeasured axes—i.e., infor-
mation not assessed in the calibration process, yet contained within the calibration simulations
(Wiegand et al., 2003; Khatami et al., 2019). If these unmeasured axes represent factors that are
unobservable or unobserved in reality, they could provide new information about the diverse mech-
anisms that may give rise to the observed outcomes, acting as a complement to studies that use
statistical methods to explore causal mechanisms in empirical data (Ferraro and Hanauer, 2014).
Alternatively, unobserved factors that differ over the set of models could be identified to prioritize
the collection of new empirical observations.
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A key context within which model equifinality is salient is when model complexity outstrips
the availability of calibration data (Schmidt et al., 2020). In these contexts, a single calibrated
model runs the risk of being “overfit” to the data—i.e., it could fit the available data well but have
low ability to recreate patterns not used in its calibration (van Vliet et al., 2016; Sun et al., 2016).
By using multiple, information-rich patterns, POM attempts to reduce this concern (Latombe et al.,
2011; Grimm and Railsback, 2012). Sensitivity analysis, such as in Appendix C.5, can indicate
the stability of each parameterization, but does not indicate the degree to which the calibrated
model may be overfit to the data. If the model outputs exhibit an extremely high variability under
conditions not used for the calibration (e.g., a policy analysis), this may indicate that overfitting
is occurring (Calvez and Hutzler, 2006). However, it is indeed possible that there are multiple
plausible, discordant model representations. In any case, acknowledging that there need not be a
single, “optimal” solution reduces the risk that incorrect inferences are made, even if each individ-
ual solution is overfit.

It is possible that including new tests of emergent model characteristics—i.e., testing against
data that are observable in reality, yet unmeasured in the original calibration procedure—would
reduce equifinality (Platt, 1964; Latombe et al., 2011; Guillaume et al., 2019). This could involve,
for example, a “model output corroboration” (Augusiak et al., 2014) or cross-validation procedure
that employs patterns or tests unmeasured in the calibration process itself (Wang et al., 2018;
Wiegand et al., 2003). If the model is spatial, it could be validated by applying it or comparing its
outputs to those from a different region (Magliocca et al., 2015; Brown et al., 2005). Alternatively,
consultation with domain experts could be used to filter out unreasonable model configurations
(van Vliet et al., 2016).

With respect to model development, our approach is similar to the virtual laboratory and “build-
ing block” approaches (Magliocca and Ellis, 2016), which use pattern-oriented modeling to sys-
tematically evaluate hypothesized model structures—potentially representing contrasting theories
or differing levels of complicatedness (Sun et al., 2016)—against empirical data. Our approach
builds on this by identifying multiple, diverse model configurations. Systematic procedures for
model structure and parameter specification that allow for equifinality have been more extensively
developed in the field of hydrology (Khatami et al., 2019; Touhidul Mustafa et al., 2020) and could
be turned to for future inspiration in the SES modeling community. In principle, DMCA-RPA is
a formalization of the pattern-oriented modeling approach and we situate it within this body of
research.

Finally, as we have previously stated, the policy assessment can lead to two general classes of
outcome; either the conclusions are similar over the set of models, or they are not. In our case
study example, we observed remarkably consistent effects over the four model configurations.
This implies a greater level of robustness of our conclusions than if we had used a single model
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parameterization. Had we instead observed inconsistent effects, these results could be used to shed
light on the socio-environmental conditions under which different interventions may be more or
less effective, helping to inform the targeting of policy interventions (Giller et al., 2011).

4.6.2 Comparison to alternative calibration approaches

There are three main features that set our approach apart from alternative model calibration meth-
ods: (1) identifying a small set of N models, (2) retaining these models as separate, and (3)
maximizing model diversity. These features have both philosophical and practical implications
in interpreting the model configurations and policy analysis results.

First, our approach identifies a small set of N models (in the case study application, we chose
N=4). As we have discussed, this allows for equifinality and is more appropriate than any “best-fit”
model calibration procedure. By calibrating a small set of distinct models, each model configura-
tion can be individually examined, enabling enhanced inference and communication with decision-
makers (Schwartz, 2012). Having a small number of models is also particularly advantageous in
situations when subsequent policy-related experiments are computationally expensive. In these
situations, it is desirable to not only have efficient sampling over the prior distributions for the pa-
rameters (Vrugt and Beven, 2018; Yen et al., 2014), but also to efficiently encompass equifinality
in a small set of models. MCMC-based calibration approaches require repeated sampling from the
posterior distribution, and in high-dimensional cases a large number of samples may be necessary.
For example, the application in an initial presentation of the MCMC-based DREAM algorithm
used 2,500 draws from the posterior distribution (Vrugt et al., 2009). Other implementations of
multimodal evolutionary algorithms for model calibration use diversity-based filtering to reduce
the number of solutions (Chica et al., 2017; Moya et al., 2019), so are comparable to our approach
in this respect.

Second, and related to the first, we do not assign a probability or relative likelihood to each
model, but present each model configuration and its policy assessment separately. This differs
from Bayesian model calibration methods that estimate a posterior distribution for the model pa-
rameters/structures and use this to produce a single predictive distribution (Ajami et al., 2007;
Vrugt et al., 2008; Hartig et al., 2011; Touhidul Mustafa et al., 2020). Similarly, Monte Carlo cali-
bration approaches typically aggregate outputs over the entire set of behavioral models (Beven and
Freer, 2001) (although an interesting exception exists in (Khatami et al., 2019)). Conceptually, our
approach is motivated by the deep uncertainty in modeling socio-environmental systems, which
makes it problematic to assign a probability to each model (Polasky et al., 2011). In this regard,
the DMC-RPA approach is similar to robust decision-making (Lempert, 2003) and we employ it
to identify policies that are beneficial over a wide range of potential states, without assigning a
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probability to these states. If a single predictive distribution is desired, however, our approach does
not preclude using the model fits (Equation 4.1) or, preferably, the success of each model in some
independent validation exercise to develop (informal) weights for each model.

That we do not assign a probability to each model configuration also demonstrates some sim-
ilarities (and differences) to both the “limits of acceptability” (LOA) (Beven, 2006) and the POM
concepts (Grimm et al., 2006). In LOA, models that satisfy a number of predetermined acceptable
limits (e.g., consistently produce outputs within 20% of an observed value) are characterized as
“behavioral.” No behavioral model is considered to be more or less behavioral than another. POM
also employs an equivalent behavioral notion. Similarly, in our approach, the final model config-
urations are each equally considered. However, our approach differs in that model configurations
are defined as feasible based on their fit relative to the master SP’s best solution. This feasibility
criterion is not defined a priori, but evolves with the algorithm (e.g., dashed line in Figure 4.5A).
This helps to maintain the balance between fit and diversity during the genetic algorithm’s evolu-
tion, but is not as strongly based on theory or domain expertise as is required for LOA or POM
(Beven, 2006).

Third, our approach is unique in how it maximizes diversity within the feasible model set while
staying within a specified tolerance of the “optimal” model. Other set-theoretic and MCMC-
based calibration approaches generally aim to maintain model diversity, which is accomplished
by removing or penalizing solutions that are similar in the configuration space (i.e., the parame-
ters and/or structures that they specify) (Singh and Deb, 2006; Olalotiti-Lawal and Datta-Gupta,
2015). Our approach, because of the dual objectives—i.e., model fit and diversity—is technically
a bi-objective optimization. These are not combined into a single objective, nor do we seek to find
a Pareto-optimal set of solutions. Our approach does not maintain that diverse models are more
desirable, rather that the diverse set of plausible models most efficiently encompasses equifinality.
The diversity component enters the objective function only in models that are feasible (e.g., with
an error within 30% of the master SP’s best solution). Due to this treatment of the two objectives,
combined with the fact that we do not seek to identify a posterior distribution, our approach could
not to the best of our knowledge be directly integrated into an MCMC procedure, at least without
modification. Thus, the DMC procedure constitutes a distinct approach to model calibration.

While providing important computational and inferential advantages, these features of the
DMC-RPA approach may also present tradeoffs in certain situations. Importantly, because the
number of models (NSP ) must be specified a priori, the algorithm is limited in its ability to charac-
terize the structure of unknown objective spaces. Other evolutionary approaches, such as niching
genetic algorithms (Goldberg and Richardson, 1987; Miller and Shaw, 1996; Deb et al., 2002),
can more flexibly identify an unknown number of local optima. These can be filtered to a smaller
number ex-post, if desired (Chica et al., 2017). Additionally, although Monte Carlo methods are
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inefficient in exploring the parameter space (Vrugt and Beven, 2018), they also do not place any
restrictions on the number of desired solutions. In our case study example, we conducted a sen-
sitivity analysis to the NSP hyperparameter (Appendix C.1) and found that increasing the number
of models did not significantly affect the fitness and diversity of the solutions. This showed that,
in this case, there are many possible equifinal model representations and that this can have impli-
cations for the policy analysis (Appendix C.4). Thus, applications of DMC-RPA should carefully
consider the choice of NSP .

Additionally, our approach does not consider the sensitivity of each parameterization. This
sensitivity can exist on at least two levels. First, model stochasticity and uncertainty in the input
data can both lead to drastically different system behavior under a single model configuration,
and our approach does not allow for this variability when evaluating a model configuration, in
contrast to probabilistic approaches (Olalotiti-Lawal and Datta-Gupta, 2015). Second, due to the
complexity of socio-environmental systems, small parameter or structural changes can massively
affect system behavior (Lempert, 2002; Liu et al., 2007); by identifying N discrete models, each
defined by a fixed set of parameter/structure values, our approach does not give information about
this sensitivity. In our case study example, we conducted a local sensitivity analysis to the resultant
model configurations, and found two of them to be highly sensitive to small changes in some of
the parameters (Appendix C.5). Thus, we recommend that sensitivity analyses are integrated with
future applications of DMC-RPA.

4.6.3 Potential extensions

Our intention has been to demonstrate diverse model calibration for robust policy analysis. We did
not conduct computational experiments to compare EAGA to alternative optimization procedures,
so we do not claim that EAGA represents the most computationally efficient or appropriate method
for diverse model calibration in all contexts. Niching genetic algorithms are an alternative evolu-
tionary approach that model a single population of solutions that evolve based on a combination
of feasibility and the density of other solutions in the parametric neighborhood (Miller and Shaw,
1996; Goldberg and Richardson, 1987; Singh and Deb, 2006). Multiobjective genetic algorithms
have also been developed in other contexts to identify sets of Pareto-optimal solutions (Deb et al.,
2002; Park et al., 2013; Komuro et al., 2006; Turley and Ford, 2009). Alternatively, the charac-
teristics of this approach could potentially be integrated into MCMC-based methods, for example
by including diversity requirements as a penalty in MCMC likelihood functions (Olalotiti-Lawal
and Datta-Gupta, 2015), prioritizing diversity when sampling from MCMC-generated posterior
distributions (e.g., some form of latin hypercube sampling), or through multi-objective MCMC al-
gorithms. Although DMC-RPA is not directly comparable to these other optimization approaches,
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in particular due to the way it treats the fit and diversity objectives, future work could (1) com-
pare the effectiveness of the EAGA with other adaptive sampling procedures in identifying a set of
plausible, diverse model configurations and (2) integrate diversity objectives more explicitly into
other calibration methods.

Within the DMC-RPA approach, there also exist promising avenues for future extension. Some
of these relate to the evaluation of model fit. For example, for our case study, we combined the
loss calculated for each histogram and system-level pattern into a single measure of fit (Equation
4.1). However, it has been demonstrated that such aggregation can inefficiently explore the en-
tire parameter space (Park et al., 2013; Deb et al., 2002). Thus, a multiobjective loss measure
may help to identify better calibrations. Additionally, to prioritize the generation of parsimonious
model structures, a “complicatedness”-based penalty could be integrated into the objective func-
tion (Magliocca and Ellis, 2016).

When experimenting with the algorithm, we noticed a tendency for non-influential parameters
to diverge to the extreme ends of the prescribed bounds (i.e., 0 and 1 in Figure 4.7). This is entirely
a result of the diversity objective; the algorithm exploits non-influential parameters to increase the
assessed diversity of the model configurations without measurably affecting the models’ fit to the
data. To reduce this effect and focus on diversity where it matters most, we encourage iterative
model development (Figure 4.2) integrated with sensitivity analysis (as in Appendix C.5) to se-
quentially refine the parameters/structures included in the genetic algorithm (Ligmann-Zielinska
et al., 2014).

To more comprehensively evaluate the policies’ robustness using the equifinal models, the
DMC-RPA approach could benefit from tools developed in the RDM literature. For example, the
policy analysis could also consider uncertainty related to model inputs, future exogenous con-
ditions, or elements of model configuration that cannot be fixed during the calibration process
(Kasprzyk et al., 2013). Efforts could also be made to more explicitly map the calibrated parame-
ter values and structural states to the scenario performance to identify “robust regions” within the
configuration space (Lempert, 2002; Bryant and Lempert, 2010).

Finally, in this chapter we have applied DMC-RPA to calibrate an agent-based model us-
ing distributional data from a single point in time. However, the approach could be applied to
any calibrated process-based model. In the most general sense, it requires simply a model (M )
that produces an output (Y ) that is dependent on some input parameters and/or structure X (i.e.,
Y = M(X)). Many other types of models (e.g., system dynamics, economic equilibrium, bio-
physical simulation) in many different fields (e.g., land system science, ecological economics,
natural resource management) fit this description. Additionally, the loss function (Equation 4.1)
is very flexible; it need not satisfy any statistical properties and only requires that a set of model
configurations can be cardinally evaluated according to their level of acceptability. Thus, it would
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be possible to integrate, for example: (1) timeseries data by either summing or multiplying the
discrepancy measure (in Equation 4.1) at each time point (Vrugt and Beven, 2018); (2) spatial
features using a measure of landscape pattern similarity (Parker and Meretsky, 2004; Brown et al.,
2005); or (3) other levels of uncertainty by either averaging losses over stochastic simulations or
assessing robustness over multiple types of uncertainty (Lempert, 2003).

4.6.4 Case study results: Smallholder resilience

Our results to the case study suggest that—under the conditions of the modeled system, and noting
the inaccuracy in the models’ abilities to recreate the empirical livestock herd size distribution—
climate forecasts may provide superior direct benefits to smallholder drought resilience than an
increase in non-farm job availability. This result was consistent over all four model parameter-
izations (Figure 4.10) and over seven of the eight parameterizations in the sensitivity analysis
(Appendix C.4). This suggests that dramatic improvements to resilience could be realized without
the significant infrastructural investment that would be required to increase non-farm employment
opportunities. Thus, “informational” forms of support like climate forecasting could play an im-
portant role in supporting smallholder resilience under a changing climate (Vermeulen et al., 2012;
Hansen et al., 2019). However, appropriate communication of forecasts and integration into farmer
decision-making would be necessary to achieve these benefits in reality (Hansen et al., 2011), in
conjunction with adequate accuracy of the climate forecasts themselves (Ziervogel et al., 2005).
Future modeling work could more thoroughly represent these elements and/or extend the structural
breadth and empirical grounding of the ABM to increase the policy relevance of these results.

Expected utility maximization and the “rational actor” constitute a common approach for rep-
resenting human decision-making in agent-based models (Kremmydas et al., 2018; Schlüter et al.,
2017; Klabunde and Willekens, 2016; Groeneveld et al., 2017). However, this type of approach
has long been criticized as not realistically representing how individuals actually make decisions
(Simon, 1955). Interestingly, our results (Figure 4.7) showed that models in which agents max-
imize their expected utility produced better levels of fit to the data than models in which agents
behave as “satisficers” that first attempt to ensure their food security, then maximize their utility
beyond this (Kaufman, 1990). Because some agents’ utility in the ABM is represented by leisure
time, even under utility maximization these agents do not behave as maximizers in the traditional
economic sense, potentially explaining this result. The DMC approach could be used in future
work to evaluate and compare alternative approaches for modeling decision-making based on the
degree to which they generate empirically-consistent behavior (Schlüter et al., 2017).
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4.7 Conclusions

We have argued in this chapter that, given the prevalence of complex process-based models in
socio-environmental policy analysis and the paucity of empirical data with which to calibrate these
models for their intended purposes, equifinality is an issue of general concern to this community.
We do not claim that process-based models are too sensitive to be useful. Rather, we advocate that
modelers seriously consider the implications that model structure and parameterization may have
on any model-generated inferences. The DMC-RPA approach that we outline and demonstrate in
this chapter can be used to identify policies that perform well over an entire set of equifinal models,
thus supporting robust decision making. Alternatively, the approach also can expose inconsisten-
cies that more completely represent uncertainty in the relative benefits of policy interventions. In
this case, divergent results may give information about the socio-environmental conditions under
which certain policies may be more or less beneficial. In either case, the DMC-RPA approach
facilitates more robust model development, policy analysis, and inference.
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Chapter 5

Ecological and Financial Strategies1

Researchers and development organizations regularly grapple with competing ecological and fi-
nancial strategies for building climate resilience in smallholder agricultural systems, but rarely
are such approaches considered in tandem. Using a social-ecological simulation model, we ex-
plore how different combinations of legume cover cropping—an “ecological insurance”—and
index-based crop insurance—a “financial insurance”—affect the climate resilience of mixed crop-
livestock smallholder farmers over time. The model simulates interactions between soil nutrient
dynamics, crop yields, and household wealth, which is carried solely in the form of livestock. We
assume cover cropping increases soil quality and productivity over time through biological nitro-
gen fixation, whereas microinsurance gives payouts in drought years that provide ex-post coping
benefits. Our model results indicate that the benefits of cover cropping to mean household income
strongly complement the shock-absorbing benefits of microinsurance. Specifically, we find: (1) in-
surance always provides larger benefits during and in the wake of a drought, while cover cropping
progressively reduces poverty in the medium- to long-term; (2) the use of crop insurance solely as
an ex-post coping strategy may not reduce the incidence of poverty; and (3) legume cover crop-
ping offers larger relative benefits in more degraded environments and for poor farmers. These
results underscore the complementary roles that ecological and financial strategies could play in
building resilience in smallholder agricultural systems. The stylized model constitutes an impor-
tant social-ecological foundation for future empirical research to inform agricultural innovation
and sustainable development priorities.

1Published as Williams T.G., Dreßler G., Stratton A.E., and Müller B. 2021 “Ecological and Financial Strategies
Provide Complementary Benefits for Smallholder Climate Resilience: Insights from a Simulation Model.” Williams,
T. G., G. Dressler, A. Stratton, and B. Müller. 2021. Ecological and financial strategies provide complemen-
tary benefits for smallholder climate resilience: insights from a simulation model. Ecology and Society 26(2):14.
https://doi.org/10.5751/ES-12207-260214
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5.1 Introduction

How to support climate resilience in smallholder agricultural systems remains a topic of uncer-
tainty and debate among researchers and development organizations (Hansen et al., 2019; Tomich
et al., 2019a). Institutional interventions such as microinsurance schemes have recently gained
traction as tools for agricultural development and poverty reduction in the Global South (Hazell
et al., 2010a; SwissRe, 2013; Kramer et al., 2019). Simultaneously, there is an increasing drive
for ecological intensification to sustain or enhance both livelihoods and natural resources (Bom-
marco et al., 2013; FAO, 2018; HLPE, 2019). Such financial and ecological strategies both act as a
form of “insurance” by reducing risk in agricultural production, yet they function through distinct
mechanisms: “ecological insurance” improves ecological functioning to stabilize and increase pro-
duction over time, whereas “financial insurance” stabilizes agricultural income on a seasonal basis
against climate shocks. Given these distinct mechanisms, ecological and financial strategies may
provide benefits for smallholder systems that are heterogeneous both throughout the population
and over time. Thus, when considered together, these disparate strategies may be complementary.
To make progress toward sustainable development therefore requires an integrated perspective on
the benefits of ecological and financial development strategies. In this chapter, we aim to provide
a valuable contribution toward this goal by conducting a rigorous comparative assessment of how
two particular ecological and financial strategies may affect smallholder climate resilience.

Microinsurance is a form of low-sum financial insurance specifically targeted at low-income
households. In recent decades it has gained traction in the international agricultural community as
a resilience-enhancing strategy (SwissRe, 2013; Müller et al., 2017; Kramer et al., 2019). By pro-
viding financial compensation during droughts, microinsurance directly builds the ex-post coping
capacity (i.e., following the occurrence of a shock event) of smallholder households. Additionally,
by reducing production risk, microinsurance can provide ex-ante benefits that enable risk-averse
households to engage in different production activities and escape poverty traps (Barrett et al.,
2007; Carter et al., 2018). Index-based insurance, which gives payouts based on a predetermined
climate index (e.g., rainfall) has been advocated as a tool for sustainable development, as it helps to
overcome some of the “moral hazard” issues associated with conventional indemnity-based insur-
ance (i.e., the tendency for insured households to reduce their own risk management and increase
costs for insurers) (Hazell et al., 2010a).

Farm management practices based on ecological principles take a different approach to small-
holder climate resilience. By increasing ecosystem functions and diversity, they provide farmers
a form of “natural insurance” (Finger and Buchmann, 2015; Valente et al., 2019; Schaub et al.,
2020). In particular, planting of nitrogen (N)-fixing leguminous cover crops to be incorporated
into the soil as “green manure” builds resilience by increasing soil organic matter (SOM) and
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nutrient availability, which help to maintain or increase crop yields over time without other ex-
ternal inputs (Drinkwater et al., 1998; Snapp et al., 2005; Blanco-Canqui et al., 2012; Bommarco
et al., 2013). Use of legume cover crops as green manures is receiving increasing attention in
the academic literature, from governments, and from non-profit and development organizations
advocating for conservation agriculture, regenerative agriculture, and agroecological approaches
to smallholder resilience (Florentin et al., 2011; Kaye and Quemada, 2017; Wittwer et al., 2017;
FAO, 2018; HLPE, 2019).

Despite their benefits, both microinsurance and legume cover cropping exhibit potential trade-
offs that may affect their relative performance. For example, insurance often does not incentivize
sustainable management practices (O’Connor, 2013) and may even lead to maladaptive outcomes
in socio-environmental systems (Müller et al., 2017). In contrast, adopting legume cover crop-
ping may lead to short-term losses in labor or yields as farmers transition to new management
practices and build soil fertility (Martini et al., 2004). The structure of the “payouts” that these
strategies provide may also contribute to divergent effects; although both entail annual costs, the
ex-post benefits of index-based microinsurance are only experienced during shock years in which
the index is triggered, whereas cover cropping provides a more consistent, though likely smaller,
economic benefit (Rosa-Schleich et al., 2019). When considered together, it is therefore possible
that microinsurance and cover cropping provide complementary benefits (Hansen et al., 2019).

However, it remains a challenge to understand the conditions–—when, where, and for
whom—–under which each of these strategies may be most appropriate or beneficial to smallholder
climate resilience. A deeper understanding of their benefits can help to inform and target agricul-
tural research and development and contribute to the debate on the relative merits of financial- and
ecological-centric development approaches (Tomich et al., 2019b). Given the nascence of research
on the impacts of both microinsurance and legume cover cropping on the global agricultural stage,
long-term observational datasets do not exist with which to systematically compare their relative
or complementary short-term, long-term, and distributional effects. In addition, both strategies
involve interactions and feedbacks between household assets and underlying ecological systems,
necessitating an integrated social-ecological perspective.

Process-based simulation models are powerful tools for extending the understanding of these
relationships and feedbacks beyond existing empirical datasets, as well as exploring changes in
conditions and processes that would be impossible to control for in the field (Magliocca et al.,
2013). Simulation models that combine social and ecological processes—henceforth “social-
ecological simulation models”—–have been extensively used to explore questions related to re-
silience and smallholder agricultural livelihoods (Kremmydas et al., 2018; Egli et al., 2018;
Dressler et al., 2019b). In the context of microinsurance, an agent-based model (ABM) was used to
show that there can exist long-term maladaptive feedbacks related to livestock insurance in pastoral
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systems (John et al., 2019). Models incorporating soil nutrient dynamics have shown that access
to credit, fertilizer, and improved seeds can help to reduce poverty but does not guarantee long-
term social-ecological sustainability (Schreinemachers et al., 2007). Process-based models have
been used to explore the effects of different policies to mitigate N losses (Kaye-Blake et al., 2019)
and to assess the emergence of poverty traps (Stephens et al., 2012). Yet, despite the suitability
of social-ecological simulation models to investigate short- and long-term tradeoffs and to com-
pare disparate resilience-enhancing strategies across a population, such temporal and distributional
effects are rarely studied (Williams et al., 2020a).

For this study, we developed a household-level social-ecological simulation model of a mixed
crop-livestock smallholder agricultural system. Rather than being calibrated to a specific location,
the model is purposely stylized and represents the general characteristics of many mixed crop-
livestock systems in the Global South. As such, the model is intended as a tool for generating
hypotheses to be empirically tested by researchers in specific contexts, as well as for illustrating
key social-ecological dynamics relevant for informing future interventions, programs, or public
policy directed at poverty alleviation.

Using the model, we address the following questions:

1. What are the relative effects of planting legume cover crops as green manure and index-based
crop insurance on smallholder households’ climate resilience?

2. Are there short- and long-term complementarities in these effects?

3. How do these strategies differentially affect rich and poor households?

In answering these questions, we operationalize the concept of resilience using measures of
household wealth and income. In the model, these economic measures are mediated by ecological
capital (i.e., soil nutrients). Our perspective is therefore an ecological-economic one. We hy-
pothesize that financial insurance provides greater benefits to resilience in the short-term, but that
over time the benefits of cover cropping for SOM will provide equal or superior resilience benefits.
Thus, when applied together, the strategies will demonstrate complementarity over time. Addition-
ally, because cover cropping constitutes a progressive ecological adaptation of the agroecosystem,
we expect its benefit to be strongest for poor households with degraded soil fertility.

5.2 Methods

Our model description generally follows the Overview, Design Concepts, Details, and Decisions
(ODD+D) format (Müller et al., 2013). We provide the full protocol in Appendix D.7. The model
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was implemented in Python and code is available at CoMSES.net2.

5.2.1 Model purpose

The social-ecological simulation model was developed to investigate climate resilience in small-
holder mixed crop-livestock farming systems, which are prevalent in many drylands regions in the
Global South, where crop growth is limited by rainfall (Powell et al., 2004; Thornton and Herrero,
2015). To more easily disentangle the key social-ecological dynamics, we sought to limit model
“complicatedness” (Sun et al., 2016). As such, the model does not draw from extensive empirical
data to represent a specific location, but we draw several parameters from Ethiopian data sources
to define the relative scales of model elements (e.g., crop and livestock prices). We affectionately
name the model SMASH: Stylized Model of Agricultural Smallholder Households.

Our model analysis examines the general mechanisms through which selected household-level
adaptation strategies affect climate resilience. Due to the model’s stylized nature, we do not seek
to directly generate policy-relevant recommendations through the model analysis. Rather, our as-
sessment intends to (1) generate hypotheses that can be tested by researchers in future empirical
studies and (2) provide theoretical grounding for future agricultural development and poverty re-
duction programs to integrate ecological and economic adaptation strategies.

5.2.2 Entities, state variables, and scales

The model (Figure 5.1) represents a population of smallholder households that engage in agricul-
ture and carry wealth solely in the form of livestock. Each household is defined by static land hold-
ings and consumption requirements and has dynamic income and wealth. Livestock are grazed on
a combination of on-farm crop residues and an external rangeland, which is not explicitly modeled.
Each household’s land—–or “field”—has an evolving level of organic and inorganic nutrients, the
dynamics of which influence crop yields. The model is spatially implicit, no environmental feed-
backs beyond the household scale are represented, and households do not interact.

5.2.3 Process descriptions

The model operates at an annual time step. Each year of the simulation involves calculation of (1)
soil nutrient flows, (2) crop yields, and (3) household income and wealth.

2https://www.comses.net/codebases/ee47544a-7eb0-4482-8967-42d6b0c05060/
releases/1.0.0/
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Figure 5.1: Conceptual diagram of the SMASH model showing the main interactions. Triangles pointing inwards
(/outwards) indicate points at which nutrients are added to (/lost from) the system.

5.2.3.1 Nutrient dynamics

The model represents two pools of soil nutrients: organic and inorganic. The organic pool repre-
sents SOM and soil organic N together in a stylized manner, with fluxes primarily corresponding to
the organic N portion of SOM. Although crop yields are also limited by other nutrients, we focus
on N because it is generally the most limiting nutrient for crop growth (Robertson and Vitousek,
2009). We henceforth refer to this pool as SOM, though we note that we quantify it using kg N/ha
rather than as a percentage of bulk soil. Each year, inorganic nutrients are mineralized from both
added organic matter and from the SOM pool (Figure 5.1). These inorganic nutrients are available
to that year’s food crop.

There are several points at which nutrients enter and leave the system (Figure 1). First, a
fraction of the mineralized nutrients is lost through leaching. This fraction is higher with lower
levels of SOM (Drinkwater et al., 1998; Bommarco et al., 2013). Second, all nutrients contained
in the harvested component of the crop are exported from the modeled system. Third, 10% of the
crop residues are assumed to be lost or removed (Assefa et al., 2013). Nutrients enter the system
through livestock manure, which qualitatively represents nutrient import from external grazing
land. Hence, households with larger livestock herds have larger SOM additions and consistent
cropping with no replenishment of SOM will slowly degrade soil fertility over time (Reeves, 1997).

In many mixed crop-livestock systems, households apply inorganic fertilizers to supplement
in-soil nutrients for crop growth. However, inorganic fertilizer is not included in this version
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of the model. Including fertilizer would require additional assumptions about household decision-
making related to fertilizer use and livestock nutrient management, as well as complicate the model
dynamics. We interpret our results in the light of this assumption.

5.2.3.2 Climate and crop yields

We model crop yields using the yield gap concept, in which yields are reduced from a maximum
potential value through water and/or nutrient limitations (Tittonell and Giller, 2013). We first sim-
ulate the regional climate condition, which is the same over all households and is independently
sampled each year from a normal distribution. Using this, we calculate field-level water reduc-
tion factors. Here, field-level SOM helps to reduce drought sensitivity (Bommarco et al., 2013).
Next, if the available field-level inorganic N is insufficient to produce this water-constrained yield,
production is limited by the available inorganic N. Finally, the resulting value is perturbed by a
field-level, normally distributed stochastic error term. This term conceptually represents all un-
controllable factors affecting crop yields and other positive or negative household-level shocks, as
well as local variability in the observed climate conditions within a region containing a population
of smallholder households.

5.2.3.3 Household income and wealth

The model makes several assumptions with respect to household income and wealth. First, house-
holds do not have access to financial savings and instead use livestock as a “bank account”. Hence,
“wealth” and “livestock” are equivalent in the model. Second, we do not consider non-farm em-
ployment markets. Third, households cannot purchase fodder for their livestock under baseline
conditions, making livestock a risky wealth stock. These conditions are characteristic of many
mixed crop-livestock systems in the Global South (Powell et al., 2004; Thornton and Herrero,
2015), in which livestock are the primary savings mechanism. We interpret our results in the light
of these assumptions.

Households have a fixed annual consumption requirement. They earn income solely from
harvested crops, which are sold each year at a constant price. If net income is in surplus, house-
holds add to their wealth stores by purchasing livestock. If net income is in deficit, households
sell the required amount of livestock as a coping measure (Bellemare and Barrett, 2006; Moyo
and Swanepoel, 2010). If income is in deficit and the household has no available wealth stores,
we assume that they can perfectly reduce their consumption (i.e., wealth cannot be negative, and
households do not exit the modeled system). Finally, we do not model livestock reproduction or
mortality.

The ability for households to accumulate wealth is constrained by fodder availability for live-
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stock (Valbuena et al., 2012; Assefa et al., 2013); we assume that a fixed percentage of livestock
feed requirements must come from on-farm crop residues and that households cannot keep live-
stock that they cannot feed. Hence, households with larger land area (i.e., producing a greater
quantity of crop residue) have larger wealth capacities. Additionally, this implies that in a year of
complete crop failure, households lose all livestock that were dependent on crop residues.

5.2.4 Feedback loops

The structure of the model implies the existence of a feedback loop; surplus income enables accu-
mulation of livestock, providing additional organic matter, which both decreases drought sensitiv-
ity and increases future crop yields and income. A household’s ability to experience this positive
feedback cycle is mediated by a combination of random and non-random factors; households’ at-
tributes such as land endowment and SOM determine their wealth-generating ability and hence
predispose them to certain trajectories. In addition, stochasticity through household-level random
yield effects introduces a degree of path dependence into the model; a household that is unlucky
one year (i.e., has a large, negative random effect in their crop yields) may be pushed into a poverty
trap (Tittonell, 2014; Haider et al., 2018), with decreasing livestock herds, SOM, crop yields, and
income.

5.2.5 Calibration and specification of household types

Given our interest in exploring the distributional effects of resilience strategies, we specify the
model with three types of household that differ exclusively in their land endowment. We refer
to these types as: land-poor, middle, and land-rich. We used pattern-oriented modeling (POM)
(Grimm et al., 2005) to estimate values for unknown model parameters that lead to a set of de-
sired emergent model behaviors. To qualitatively represent both chronic and transitory poverty
dynamics (Barrett, 2005), we selected baseline parameters such that the land-poor households are
“always poor” (i.e., never maintain positive levels of wealth throughout the simulation), the middle
households are “sometimes poor,” and the land-rich households are “never poor”. Additionally, we
required that SOM never increases to a maximum value under baseline conditions and that the
middle households can recover from shocks. See further details in Appendix D.7.

5.2.6 Resilience-enhancing strategies

We represent both microinsurance and legume cover cropping in the model as scenarios, rather than
as an outcome of an explicit decision-making process. Thus, we do not focus on the question of
how to expand the use of these strategies. Instead, we explore what the potential benefits might be
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if each strategy is taken up, when these benefits may be experienced, and by whom. We therefore
assume that households always engage in a given strategy, regardless of their previous experiences
or wealth.

We include a representation of index-based crop insurance. A household with insurance must
pay an annual premium to participate and receives a payout in any year that the climate condition
is below a pre-specified threshold (e.g., the 10th percentile). The payout rate is the same for all
households and is equivalent to the crop yield under average climate conditions, assuming a nutri-
ent limitation factor of 0.5. Insurance payouts supplement the households’ income and, in contrast
to regular income, can be used to buy fodder for livestock. Thus, the insurance de-risks the wealth
stock and represents a form of asset protection rather than replacement (Carter et al., 2018). Be-
cause we do not model fertilizer or other agricultural production investments, we consider only the
ex-post coping effects of microinsurance and not its ex-ante risk-reducing benefits.

Legume cover crops are grown in the fallow season and incorporated into the soil as green ma-
nures. Through biological N2 fixation and production of high-N biomass, green manures provide
additional organic N inputs to the soil. Livestock are not grazed on the cover crops. We assume
that the cover crops’ growth declines under adverse rainfall conditions in the same way as crop
yields; thus, in a year with no rainfall, cover crops fail and no N is fixed (Serraj et al., 1999). We
assume an annual financial cost equal to the annual cost of insurance. By assuming that the labor
required for cover cropping would otherwise be applied to other income-generating activities, this
financial proxy for labor is appropriate.

5.2.7 Outcome measures: Poverty reduction and shock absorption

We operationalize climate resilience in two distinct ways. We conceptualize both of these as nested
within “development resilience,” which describes “the capacity over time...to avoid poverty in the
face of various stressors and in the wake of myriad shocks” (Barrett and Constas, 2014). The first
measure represents the longer-term capacity of households to avoid poverty (i.e., retain positive
livestock holdings) in the presence of climate variability and evolving SOM levels. We refer to this
resilience measure as the “poverty-reducing” capacity, Rpov:

Rpov = P (wealtht=Tpov > 0) (5.1)

where the probability is evaluated over 300 model replications at time Tpov (e.g., Tpov = 50
years). We conducted a convergence analysis to determine the appropriate number of model repli-
cations that ensures our estimates are not strongly influenced by model stochasticity (Appendix
D.6). To compare a household’s poverty-reducing capacity under cover cropping (CC) and insur-
ance (Ins), we calculate:
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P (CC � Ins)pov = P (Rpov
CC > Rpov

Ins) (5.2)

where the � sign is read as “is preferable to”.
The second resilience measure assesses the shorter-term capacity of a household to maintain or

increase its income in the wake of a drought. We refer to this as the “shock-absorbing” capacity,
Rshock. Its measurement requires some explanation. First, we simulate the system under stochastic
climatic variability with a single-year “shock” (i.e., drought event) imposed in year Tshock. We
measure the drought’s severity by its percentile in the climate distribution. For example, a 5%
drought represents a one in 20-year event. The drought interacts with the model through its effect
on food crop and cover crop yields in the same year, as well as any possible insurance payout
(Figure 5.1). This can have long-term implications if the household is required to sell livestock, as
this both reduces their future buffering capacity and reduces organic N inputs to their field.

To investigate the temporal dynamics of the shock-absorbing capacity, we run experiments that
differ across two dimensions. The first dimension represents the point in time at which the shock
occurs in the simulation (Tshock). Since both strategies (microinsurance and cover cropping) are
applied in every year, Tshock is equivalent to the amount of time the given strategy has been in use.
The second dimension represents the period of time over which the effects of and recovery from
the shock are assessed (Tassess). Thus, we calculate:3

Rshock =

Tshock+Tassess∑
t=Tshock

incomet (5.3)

To compare the shock-absorbing capacity of a household under the two strategies, we calculate:

P (CC � Ins)shock = P (Rshock
CC > Rshock

Ins ) (5.4)

To investigate complementarities between the two strategies, we compare the resilience out-
comes with both strategies implemented together–—i.e., the households engage in both microin-
surance and cover cropping and pay the costs for both—–against the outcomes of each strategy in
isolation. We consider complementarity as a situation in which engaging in both strategies yields
additional benefit above that derived from engaging in one strategy alone–—either cover cropping
or microinsurance—–and a tradeoff as a situation in which engaging in both strategies is less bene-
ficial than engaging in a single strategy. Tradeoffs may occur, for example, if the benefits of adding
microinsurance to complement cover cropping do not offset the increased cost for the insurance

3For simplicity, we do not discount future income to a “net present value”. Thus, income in year Tshock + Tassess
is equivalent to income at year Tshock. In reality, households may be unwilling (or unable) to forgo short-term losses
for long-term benefits. We discuss this in the Discussion (section 5.4).
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premiums.
For both measures of resilience, our focus on wealth and income may appear to represent solely

economic outcomes and not ecological ones. However, since a household’s wealth- and income-
generating abilities are mediated over time by SOM, we indirectly incorporate ecological capital
into our resilience measures. Additionally, through our dual resilience measurement we combine
stability properties with the ability to resist or undergo qualitative changes in structure (Holling,
1973). Thus, a resilient household can both cope with drought-induced disturbance and resist
entering a social-ecologically degraded “poor” state. However, as we do not focus on household
decision-making or landscape-level processes, we do not consider facets of resilience related to
adaptive responses or transformative system-level transitions (Folke, 2016; Walker, 2020).

5.2.8 Simulation experiments

We structure our analysis into four main experiments (Table 5.1). The first and second experi-
ments respectively examine the shock-absorbing capacity (Rshock) and the poverty-reducing ca-
pacity (Rpov) of households under a range of time horizons. In these two experiments, we ex-
amine resilience under cover cropping and microinsurance, as well as with both strategies im-
plemented together. In the third experiment, we test how different assumptions about the costs
and benefits of the two strategies affect the resilience comparisons (i.e., P (CC � Ins)shock and
P (CC � Ins)pov) to identify “robust regions” within the parameter space (Lempert, 2002). Here,
we systematically vary the annual costs of both microinsurance and cover cropping, the microin-
surance “strike rate” (i.e., percent of years with a payout), and the amount of N fixed by the cover
crops. When the microinsurance cost factor is one, the insurance is actuarially fair. A cost factor
less than one represents subsidized insurance and a factor greater than one implies net profits to
the insurer.

In the final experiment, we explore how the resilience comparisons change under different
socio-environmental conditions. To do this, we conduct a sensitivity analysis on the parameters
of the model. We employ a meta-modeling approach for global sensitivity analysis (Iooss and
Lemaı̂tre, 2015) in which we first run our model under a wide range of perturbed parameter con-
figurations and then fit a non-parametric regression model to explain how both resilience assess-
ments change over the perturbed parameter space. From the meta-model we construct a measure of
“partial dependence,” which describes the relationship between each parameter and the resilience
measures as assessed by the meta-model. We describe this methodology in Appendix D.5.
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Table 5.1: Simulation parameters under each experiment.

Experiment Tpov Tshock Tassess Cover crop Microinsurance Complem-
entarity

Other
param-
eters

N2 fixation
(kg N/ha)

Cost
factor2

% of years
with
payout4

Cost
factor

1: shock absorption - 1-50 1-15 951 1 10 1 Yes Baseline

2: poverty reduction 50 - - 951 1 10 1 Yes Baseline

3: strategy
characteristics

20 10 3 40-200 0.1-4 1-30 0.1-4 No Baseline

4: socio-environmental
characteristics3

50 20 5 951 1 10 1 No Varied

1 Drawn from empirically measured values in temperate settings (Badgley et al., 2007).
2 This represents the annual cost of cover cropping relative to the baseline value for microinsurance.
3 We used different Tpov and Tassess in this experiment for visual clarity in the plotting. We verified that this does not
affect the shape of the relationships.
4 See Chantarat et al. (2017).

5.3 Results

5.3.1 Model dynamics

Before presenting the results of our main experiments, we first illustrate the representative behavior
of the model under three simulations: baseline conditions with regular climate variability (Figure
5.2A), in the wake of a drought (Figure 5.2B), and with the two strategies (Figure 5.2C). To most
effectively demonstrate the relevant characteristics of the model, we assess a different time period
and different outcome measures in each representative simulation.

First, as specified by the calibration approach, under baseline conditions and regular climate
variability, the land-poor households do not earn enough income to satisfy their consumption re-
quirements and so always become poor (i.e., have zero wealth), whereas the middle households
sometimes become poor and the land-rich households are never poor (Figure 5.2A). The diver-
gent outcomes for the middle households emphasize the path dependence in the model; all middle
households begin the simulation in the same condition, but the randomness in the calculation of
crop yields leads to divergent trajectories, particularly when droughts cause some households to
either irrevocably lose their wealth reserves or to experience transitory poverty. Households with
positive wealth reserves, through external nutrient input from livestock manure, are able to main-
tain their SOM, but SOM steadily declines for households with no wealth reserves (Figure 5.2A).
An imposed drought leads to a decline in wealth that persists for several years (Figure 5.2B).
Due to the wealth-SOM feedback in the model, this results in a marginally lower SOM than the

103



Figure 5.2: Model dynamics under representative simulation runs. “A” shows the evolving wealth and SOM of the
three household types under baseline conditions (i.e., without insurance or cover crops) and regular climate variability.
Each line represents a single household. Birr is the Ethiopian currency. “B” shows the average effect of an imposed
10% shock in year 15 on the middle household type under baseline conditions. “C” shows the average effect of the
two strategies on the middle household type under regular climate variability. The vertical lines in “C” indicate years
in which insurance payouts are triggered.
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drought-free counterfactual (Figure 5.2B).
Microinsurance and cover cropping affect the model dynamics in several ways. Microinsurance

premiums, which cost 10% of average yields, slightly decrease income under regular years, but
the insurance payouts effectively buffer the effects of drought when payouts are received (Figure
5.2C). Cover cropping’s benefit to income in general increases over time and is strongest in years
with higher rainfall (Figure 5.2C). These effects are due to the higher inorganic nutrient availability
(from mineralization of cover crop residues) that reduces the extent to which nutrients inhibit crop
yields. Because nutrient availability is more critical in high-rainfall years when water is not a
constraining factor, the largest benefits are therefore experienced at these times.

5.3.2 Shock absorption

Our results conform with our main hypothesis, showing that insurance as an ex-post coping strategy
is preferable in the short-term recovery from a drought, but that there is a time at and beyond which
cover cropping provides larger benefits (Figure 5.3). This is not a single point, however, but a line
of (Tshock, Tassess) pairs. When assessing the effects solely in the year of the shock (Tassess = 1),
insurance is the preferable strategy (i.e., P (CC � Ins) < 0.5) in 100% of the simulations over all
time. After 15 years of legume cover cropping, it takes approximately five years following a shock
for the cumulative benefits of cover crops to outweigh the benefit of the insurance payout (i.e.,
transition to red in Figure 5.3). After 25 years of cover cropping, this decreases to three. These
effects are qualitatively consistent for each of the three household types (Figure D.3), showing that
all types of household strongly benefit from insurance in the wake of a shock. However, when the
drought is not severe enough to trigger an insurance payout, cover cropping consistently provides
superior shock absorption benefits (Figure D.4).

Due to the strong power of microinsurance in buffering the effects of drought, adding microin-
surance to complement cover cropping always increases shock-absorbing capacity (Figure 5.4A).
In contrast, adding cover cropping to complement microinsurance leads to tradeoffs in the short-
term (black region in Figure 5.4B). This is for two reasons. First, in the year of the drought (i.e.,
Tassess = 1), crop yields are constrained by water availability rather than nutrient availability, so
cover cropping provides little or no direct benefit to offset its costs. Second, it takes time for cover
cropping to build SOM and, consequently, the water retention capacity of the soil. Thus, tradeoffs
are stronger when Tshock is lower. Nevertheless, as the amount of time for which cover cropping is
practiced increases (i.e., as Tshock increases), its direct benefits to water retention enabled through
higher SOM lead to complementary effects even in the year of the shock (Figure 5.4B). Similarly,
as Tassess increases, cover cropping provides progressively larger benefits that lead to long-term
complementarity. Additional experimentation reveals that the long-term benefits of microinsur-
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Figure 5.3: Comparison of strategies’ shock-absorption benefits. Probability that cover cropping provides larger
benefits to shock absorption (P (CC � Ins)shock) for a middle household type as a function of the year at which
the shock occurs (Tshock) and the number of years over which the effects are assessed (Tassess). Red areas represent
situations in which cover cropping provides larger benefits than microinsurance.

ance and legume cover crops are greater than the sum of both strategies in isolation–—i.e., are
synergistic (Appendix D.3).

5.3.3 Poverty reduction

Under regular climate variability, legume cover cropping leads to greater poverty reduction than
microinsurance (Figure 5.5). The effect is strongest for the land-poor households, who after 50
years of cover cropping are 21% more likely to avoid poverty. For the middle households, cover
cropping almost eliminates poverty altogether. These strong effects are explained by the ecological
feedback that cover cropping enables; higher SOM increases the productive ability of the house-
holds, thus increasing income over time (Figure D.1A). However, there is a 1-2 year period in
which the costs of cover cropping outweigh the benefits, resulting in decreased income for all
household types (Figure D.1A).

The results show a very different effect for insurance; for both the land-poor and middle house-
holds, insurance—–as it is modeled, with ex-post coping benefits only—–is not effective as a
poverty alleviation mechanism (Figure 5.5). Despite reducing income variability, the lower mean
income in non-drought years due to required insurance premium payments leads to lower mean
levels of wealth and SOM (Figure D.1). This demonstrates that although the insurance scheme is
actuarially fair, the required premium payments can enable an ecological feedback in the model
that results in the payouts in shock years not adequately compensating the income losses in regular
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Figure 5.4: Complementarity of strategies for shock absorption. Probability that implementing both strategies together
provides greater shock absorption benefit than (A) cover cropping in isolation and (B) insurance in isolation. Green
areas indicate complementarity, black indicates tradeoff.

Figure 5.5: The effects of the strategies on poverty reduction. P (wealth > 0) represents the probability that a
household has positive wealth reserves over time. We ran a 10-year burn-in period before implementing the strategies
to reduce the sensitivity to initial wealth levels (see Figure 5.7C).
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years.
With respect to complementarity, for both land-poor and middle households, adding cover crop-

ping to complement microinsurance successfully reduces poverty (Figure 5.5). However, particu-
larly for the land-poor households, the converse is not true; adding microinsurance to complement
cover cropping increases poverty above the levels seen with cover cropping by itself. Hence, under
the conditions of the model, increasing mean incomes—–in this case, through cover cropping—–is
a more effective strategy for poverty alleviation than reducing income variability.

The measure of poverty reduction assessed in Figure 5.5 is not relevant for the land-rich house-
holds, as they are not at risk of poverty under baseline conditions. Supplementary experimentation
reveals that, in contrast to land-poor and middle households, microinsurance enables a positive
ecological feedback with higher levels of wealth and SOM (Figure D.1). Thus, households not
vulnerable to poverty derive some benefit from the reduced income variability provided by mi-
croinsurance. To examine this more deeply for a land-rich household, in Appendix D.2 we assess
the strategies’ effects on a measure of risk-averse utility. Over a range of levels of risk aversion, mi-
croinsurance provides welfare benefits to land-rich households. This benefit is initially greater than
that of cover cropping, but over time cover cropping’s utility benefit surpasses microinsurance’s.

5.3.4 Influence of insurance and cover crop characteristics

The superiority of microinsurance for shock absorption is robust to changes in the assumed strategy
characteristics (Figure 5.6B and 5.6D). When evaluating shock absorption over a 3-year recovery
period, insurance provides on-par or superior benefits to cover cropping up to cost factors of around
2 (i.e., a case in which the annual premium is twice the expected annual payout). Cover crops
would need to be both freely available through household production (i.e., cost factor of zero) and
fix very high levels of N to provide benefits equivalent to insurance (top-left of Figure 5.6B). When
effects are assessed only during the year of the shock (i.e., Tassess = 1), insurance remains strongly
preferable for shock absorption under all conditions in which a payout is received (Figure D.5).

The superiority of cover crops for poverty reduction is also robust (Figure 5.6A and 5.6C). Only
at high cover cropping costs and low N2 fixation rates does insurance become preferable (Figure
5.6A). Similarly, the cost factor for microinsurance generally has to be lower than one for it to re-
duce poverty more than cover cropping (Figure 5.6C). Interestingly, more frequent microinsurance
payouts appear to provide better poverty reduction benefits (top-left of Figure 5.6C). Additional
experimentation with the microinsurance payout frequency revealed a tradeoff: providing more
regular payouts effectively buffers income losses from moderate shocks, but requires a higher an-
nual premium that leads to increased vulnerability during more extreme shocks even when payouts
are received (Appendix D.4).
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Figure 5.6: Influence of ecological and financial strategy characteristics on the resilience comparisons. The black
dots represent the baseline settings used in other experiments. For cover cropping (A and B), the cost factor represents
the annual cost of cover cropping relative to the baseline annual cost of insurance. For insurance (C and D), the cost
factor represents the ratio of the annual premium to the expected annual payout. When this equals one, the insurance is
actuarially fair. The vertical axis for insurance represents the percent of years in which an insurance payout is received.
In all cases, we show only the results for the middle household type; additional results are shown in Figure D.5 and
Figure D.6.
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Figure 5.7: Sensitivity of the resilience assessments to changes in model parameters. “x” marks indicate the default
parameter values used in the other experiments. Uncertainty bands represent 95% confidence intervals from 100
bootstrapped replications of the model outputs. The method used to generate these plots is described in Appendix D.5.
We plot only four “LAND” characteristics, which were selected based on sensitivity and social-ecological relevance.

5.3.5 Sensitivity to socio-environmental characteristics

We use the sensitivity analysis (Figure 5.7) both to assess the sensitivity of the model to its param-
eters and to draw insights about which resilience-enhancing strategy may be more preferable in
different socio-environmental contexts. In Figure 5.7, the slopes of the lines give an indication of
the magnitude and direction of the sensitivity of the P (CC � Ins) assessments for each parameter.
Because this was generated under a single set of settings for Tassess, Tshock, and Tpov (Table 5.1),
in this section we are more interested in the slopes of the lines than the absolute P (CC � Ins)

values.
As consumption requirements (i.e., household living costs) are increased in the model, cover

cropping becomes a more preferable strategy with respect to poverty reduction (i.e., the dashed line
is upwards sloping in Figure 5.7A). This complements the results of Figure 5.5; higher consump-
tion requirements result in more households becoming poor (Figure D.6A), thus accentuating the
poverty-reducing effects of cover cropping and further demonstrating cover cropping’s pro-poor
benefits. Other household-level parameters do not exert considerable influence on the comparisons
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(Figure 5.7B and C), and this low sensitivity provides strength to our results in the above sections.
Changes to the average climate condition have divergent and nonlinear effects on the resilience

strategy comparisons (Figure 5.7D). Cover cropping provides the largest relative poverty reduction
at moderate climate conditions. This is because under low climate conditions (i.e., low rainfall),
cover crops fix less N and so do not provide long-term SOM benefits (Figure D.6B), reducing their
relative ability as a poverty reduction strategy. Conversely, with high climate conditions (i.e., more
rainfall), more households have livestock and so are able to maintain SOM in their fields without
cover crops (Figure D.6B), also reducing cover crops’ relative poverty reduction effect. For shock
absorption, microinsurance is more beneficial than cover cropping under drier conditions (i.e.,
lower climate mean). Here, cover cropping more effectively buffers shocks under conditions of
higher average rainfall, due to SOM stabilizing yields during the more moderate shocks.

Under higher climate variability, cover cropping provides larger relative benefits to resilience
(Figure 5.7E). This is because cover cropping, through building of SOM, moderates the relation-
ship between climate variability and yield variability. Although microinsurance provides payouts
when climate conditions fall below the threshold, it does not buffer against climatic variability in
non-payout years. Thus, when climate variability is higher, microinsurance has a lower relative
benefit on average.

Cover cropping offers larger relative benefits to resilience under more adverse land charac-
teristics—specifically, situations with low external rangeland availability (Figure 5.7F), low soil
fertility returns from livestock (Figure 5.7G), low soil fertility (Figure 5.7H), and low yield poten-
tial (Figure 5.7I). This result is not surprising, as cover cropping progressively builds the system’s
natural capital. Relationships are qualitatively consistent between the two resilience measures.

5.4 Discussion

5.4.1 Microinsurance alone may not reduce poverty

Our results suggest that—when used solely as an ex-post risk coping strategy—microinsurance
alone may not help households to escape poverty (Figure 5.5; Figure 5.6). The premium payments
required for microinsurance pushed poor households into poverty traps, thus increasing poverty
relative to baseline conditions. The lack of benefit for poor households highlights potential con-
cerns regarding equity (Fisher et al., 2019) and is in accordance with some empirical research on
index-based livestock insurance (Chantarat et al., 2017). In addition, we found that the vulnera-
ble non-poor (i.e., “middle”) households also experienced higher poverty levels with the insurance
alone. In part, this result is explained by our exclusion of ex-ante effects of insurance that would
enable risk-averse households to engage in higher productivity livelihood activities (e.g., fertil-
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izer use, crop choice, and other drought management strategies) (Müller et al., 2011; Mobarak
and Rosenzweig, 2013; Karlan et al., 2014; Cole et al., 2017; Kramer et al., 2019). Inclusion of
these effects may change the outcomes for the middle households. Nevertheless, the potential for
microinsurance to cause vulnerable non-poor households to enter (transitory or chronic) poverty
warrants further consideration in models with more complex household behavioral representations
(including issues of moral hazard and interaction with other behavioral adaptations (O’Hare et al.,
2016)), as well as empirical investigation in different socio-environmental contexts.

5.4.2 Ecologically based farm management enhances resilience over time

The robustness of the relative benefit of legume cover cropping for poverty reduction in our model
is largely due to its assumed long-term benefits for agricultural productivity, which enable poor
households to “step up” out of poverty (Dorward, 2009). Other production technologies, such
as improved crop varieties, cropping system diversification, irrigation, or conservation agriculture
practices, may offer similar risk- and productivity-related benefits to cover cropping (Lin, 2011;
Hansen et al., 2019). Additionally, other studies have argued for fertilizer subsidies to break soil
quality poverty traps (Barrett and Bevis, 2015). Future research could evaluate and compare the
resilience effects of such productivity-enhancing technologies and policies.

Importantly, our analysis highlights the value of an integrated social-ecological perspective.
Our results show that legume cover cropping—–investing directly in soil fertility itself—–offers
substantial combined potential for long-term environmental improvement and poverty reduction
for smallholder farms, which may not exist with non-ecological technologies like inorganic fer-
tilizer. Beyond the modeled effects, ecologically based management strategies offer numerous
benefits to field- and landscape-level ecosystem services (Bommarco et al., 2013; Dainese et al.,
2019), as well as reduce dependence on external inputs (Shennan, 2008). Reduced externalities
and ancillary benefits may be difficult to quantify and slow to build, but ultimately contribute
to social-ecological synergies and resilience of a more “general” nature than the “specified” ver-
sion assessed by our model (Cabell and Oelofse, 2012; Jacobi et al., 2018; Stratton et al., 2020;
Weise et al., 2020). Thus, we recommend that future policies, projects, and programs for small-
holder poverty reduction empirically examine the benefits of integrated ecological and economic
approaches (Müller and Kreuer, 2016; Beck et al., 2019).

Our results revealed a 1-2 year period before cover cropping provided net benefits—–i.e., a
“transition period” (Martini et al., 2004; Lamine and Bellon, 2009). We did not focus on decision-
making or barriers to cover cropping adoption, but these results highlight that liquidity constraints
and large time discounting rates could make households unable or unwilling to forgo these short-
term losses to engage in cover cropping or similar productivity-enhancing practices (Quaas et al.,
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2019). Thus, a long-term view may not be pragmatic if focusing exclusively on cover crops.
Capacity-building, educational opportunities, and subsidies for cover crop seeds and labor during
the transition period may help to overcome this barrier (Baumgärtner and Quaas, 2010; DeLonge
et al., 2016; Duff et al., 2017). Integration of dynamic decision-making and interactions with
other institutional structures are avenues for future research on ecological resilience-enhancing
strategies.

5.4.3 Harnessing ecological and financial complementarities for climate re-
silience

Our results illustrate the strong complementarity of microinsurance and cover cropping: when
implemented together, the strategies can provide greater benefit than either in isolation (Figure
5.4). Climate resilience and poverty reduction programs, development agendas, and empirical
studies could further test this complementarity and investigate “bundling” of adaptation strategies
(Kramer and Ceballos, 2018; Kramer et al., 2019; Wong et al., 2020). Our study demonstrates the
promise of simulation models—–whether empirically calibrated to specific locations or stylized as
in this study—–as tools for ex-ante examination of resilience dynamics and interactions between
strategies over long timescales. Particularly in situations where empirical evidence is lacking,
simulation modeling can provide important information about time lags, barriers to adoption, and
required investments, which can help to inform the design of poverty reduction programs and aid
allocation.

Different types of household may require different forms of intervention; our results showed
that chronically poor (i.e., land-poor) households benefited greatly from the ecological strategy of
cover cropping, which acted as a necessary “cargo net” to mitigate risk and increase asset bases
(Barrett, 2005), but that adding microinsurance to complement cover cropping did not provide
complementary poverty reduction benefits (Figure 5.5). Thus, risk mitigation strategies such as
cover cropping could be emphasized for enabling chronically poor households to step up out of
poverty. However, because cover cropping alone did not bring all land-poor households out of
poverty (Figure 5.5), bundling with additional interventions, such as social protection measures
(Hansen et al., 2019), may be necessary and should be investigated in future research. Bundled
cover cropping and microinsurance appears to offer the greatest benefit for the vulnerable non-poor
(i.e., middle) and non-poor (i.e., land-rich) households. For the middle households, the bundled
strategies reduced poverty by a comparable amount to cover cropping in isolation (Figure 5.5),
as well as provided long-term complementarity in the wake of a drought (Figure 5.4). For the
land-rich households, particularly those with higher risk aversion, the bundled strategies provided
immediate welfare improvements (Appendix D.2).
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Environmental context can exert additional influences on the appropriate combination of finan-
cial and farm-based strategies. For example, legume cover cropping had a comparative advantage
in harsher and more degraded landscapes (Figure 5.7). Yet, annual cover cropping may not be
an appropriate agricultural practice in contexts with very low rainfall, as this can limit potential
biomass accumulation and N fixation, as well as potentially reduce soil moisture content and sub-
sequent vegetable crop yields (Unger and Vigil, 1998). In these contexts, drought-tolerant cover
crops or other sustainable agriculture practices, such as mulching or agroforestry (Shankarnarayan
et al., 1987; Ewansiha and Singh, 2006; Bayala et al., 2012), may be more effective—both in iso-
lation and in combination with insurance. Additionally, future case-based studies should target
the insurance strike rate to the given social-ecological context (Lybbert and Carter, 2015; Kramer
et al., 2019), as context will affect climate-yield relationships, cover cropping performance, and
poverty dynamics.

5.4.4 Generalizability of our results

We made several strong assumptions in our model that may influence the generalizability of our
results. Most importantly, the wealth-based feedback loop in which wealth (livestock) directly
fosters organic nutrient imports and improves crop productivity is critical to our model. In situa-
tions where financial resources other than livestock are available (e.g., savings accounts), wealth
would not be as strongly linked to field-level nutrient import. Additionally, large areas of grass-
land may be required to graze livestock to sustain nutrient applications on cropland, which might
be infeasible given socio-political constraints on land ownership and access (Dell’Angelo et al.,
2017). Furthermore, perfect import of nutrients from rangelands is an optimistic assumption due
to competing uses for nutrients (Tittonell and Giller, 2013; Berre et al., 2021). In all cases, the
implication is that the wealth-based feedback loop in our model may be exaggerated and thus the
strategies’ effects on poverty overestimated. However, this exaggeration is the same under each
strategy, so by focusing on the relative benefits of the two strategies, we reduce (though do not
eliminate) the implications of this bias for our assessment.

Our modeled system most closely approximates an isolated rural community in which non-
farm employment opportunities do not exist, use of fertilizer is low, and wealth is constrained by
local environmental conditions (i.e., no access to savings accounts or fodder for purchase). Small-
holder systems globally are undergoing diverse structural transformations driven by population
growth and globalization, leading to increased livelihood diversification both within agriculture
and into non-agricultural activities, increased intensification, and commodification and consolida-
tion of land ownership (Barrett et al., 2010; De Schutter, 2011b; Alobo Loison, 2015). Inclusion
of such processes would affect our results. For example, including inorganic fertilizer as another
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mechanism to increase productivity would likely diminish the relative benefits of cover cropping,
though fertilizer does not directly build SOM. Moderate fertilizer application and cover cropping
could therefore be complementary practices (Giller et al., 1997). Non-farm employment opportu-
nities may help to increase smallholder resilience under baseline conditions by providing a means
through which the poor can step out of poverty (Hansen et al., 2019). Additionally, households
may be willing to buy fodder to smooth their asset stocks even at the expense of their own con-
sumption (Morduch, 1995), which would reduce the effects of drought on asset stocks seen in our
results. Future research could expand the scope of this stylistic model to include additional liveli-
hood activities, behaviors, or exogenous drivers and better match it to specific empirical contexts.

Our study focused on potential benefits if support systems existed such that smallholders were
able to adopt legume cover cropping and microinsurance. We did not incorporate household
decision-making with respect to uptake of the strategies or their spillover effects on other manage-
ment practices. In reality, there exist financial, social, and informational barriers to the adoption
of both ecological and financial strategies that have led to limited uptake in smallholder systems to
date. Integrating decision-making and approaches from ecological economics with the resilience
perspective in this chapter is a promising avenue for future research.

5.5 Conclusions and recommendations

We assessed the effects of microinsurance and legume cover cropping on climate resilience in a
stylized mixed crop-livestock smallholder agricultural system. Our study offers a fresh, reconcil-
iatory approach to the current debate on pathways toward climate risk management and poverty
reduction (Hansen et al., 2019). Distinct agricultural development communities and organizations
advocate for microinsurance and ecologically based management, sometimes with strong ideolog-
ical disagreements. By providing a rigorous comparative assessment of these strategies, we hope
to bring these paradigms together, illuminate their complementarity, and seed future collaborative
empirical assessments and integrated applications to programs and policies for sustainable devel-
opment.

Our model results can essentially be boiled down to this: insurance provides an important
buffering effect to climate shocks, while legume cover cropping progressively decreases poverty
and the impacts of shocks over time. Together, these benefits underscore the potential comple-
mentarity of economic and ecological adaptation strategies for smallholder resilience. Future de-
velopment programs and empirical research could test this complementarity in different socio-
environmental contexts, including how it develops over time and throughout a heterogeneous pop-
ulation of households. Finally, development resilience provides a useful conceptual framework for
quantitative resilience analyses that jointly considers the capacities for poverty reduction and shock
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absorption (Dou et al., 2020). An integrated approach to resilience assessment shows promise to
mitigate tradeoffs and harness complementarities so as to improve smallholder livelihoods and
social-ecological functioning.
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Chapter 6

Smallholder Agency in Large-Scale Land
Acquisitions

Large-scale land acquisitions (LSLAs) are a means for agricultural intensification in low- and
middle-income countries, but are frequently implemented by dispossessing smallholders of their
land, thereby generating tradeoffs between market-oriented production and smallholder liveli-
hoods. Given that LSLAs remain a prevalent global phenomenon, the question remains of how
to reconcile these conflicting goals. For this chapter, we examined the potential effects of con-
tract farming (CF), an arrangement compatible with LSLAs that preserves some smallholder land
rights, on smallholder food security and regional productivity. To do so, we developed an agent-
based model of mixed crop-livestock smallholder livelihoods and calibrated it using household
survey data collected in four LSLA-affected areas of Ethiopia. Using the model, we examined
smallholder livelihood adaptations under different LSLA/CF implementation conditions and their
effects on household food security and regional productivity. Our results point to the importance of
supporting smallholder land rights and hence autonomy over CF participation to avoid the tradeoffs
generated by LSLA-induced displacement. CF schemes that retained smallholder land ownership
within the LSLA led to positive food security outcomes and comparable regional productivity in-
creases. Further, allowing smallholders to choose to participate in the CF scheme (i.e., retaining
smallholder autonomy) resulted in stronger accordance between the two outcomes and larger food
security benefits, particularly for poorer households. To realize these benefits, it is imperative to
ensure contract compliance to maintain smallholder trust in the contracting firm. Going forward,
our results highlight that LSLA governance, implementation, and monitoring could aim to foster
conditions that empower smallholder land rights and autonomy and thereby contribute to sustain-
able development.
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6.1 Introduction

Recent years have seen rising levels of commodification in smallholder agricultural systems. One
important contributing mechanism is “large-scale land acquisitions” (LSLAs), where domestic or
international actors (states and/or private investors) purchase or lease large tracts of land for agri-
cultural development, primarily in the Global South (Deininger and Byerlee, 2011). The pace and
scale of contemporary LSLAs are inarguably massive, and are estimated to impact up to 90 mil-
lion hectares globally (Müller et al., 2021). Although proponents argue that LSLAs can benefit
rural livelihoods by closing yield gaps and prompting infrastructure investments and technology
spillovers (von Braun and Meinzen-Dick, 2009; World Bank et al., 2010; Rulli and D’Odorico,
2014), ample empirical evidence reveals negative impacts on adjacent populations, frequently due
to dispossession of smallholder land and livelihoods (a.k.a. “land grabbing”) (Oberlack et al., 2016;
Dell’Angelo et al., 2017; Schoneveld, 2017; Nanhthavong et al., 2021). To reduce the future risks
of LSLAs, we need a more nuanced understanding of mechanisms for addressing potential tensions
between smallholder wellbeing and market-oriented agricultural development. In this chapter, we
focus in particular on contract farming (a smallholder-centric approach to market-oriented agricul-
tural production) to assess how it may affect smallholder wellbeing and productivity in the context
of LSLAs.

Contract farming (CF) describes an arrangement in which a buyer of agricultural produce
(henceforth, “firm”) forms contractual relationships with individuals or collectives of small-scale
growers ahead of production for a specific crop (Little and Watts, 1994). The precise contrac-
tual arrangements are incredibly diverse (Bellemare and Lim, 2018), but often guarantee a fixed
buying price and require the small-scale producers to sell specified levels of production from the
contracted land to the firm. By providing smallholders with access to commodity markets as well
as agricultural inputs, credit, and technology, CF addresses many challenges facing smallhold-
ers in the Global South (Wiggins et al., 2010; Barrett et al., 2012). A growing base of empirical
evidence shows that, although context matters, CF can effectively increase smallholder income
and food security relative to traditional subsistence arrangements (Prowse, 2012; Bellemare and
Bloem, 2018; Ton et al., 2018; Meemken and Bellemare, 2020). In the context of LSLAs, CF is
most relevant in places with considerable existing smallholder agriculture. It allows for increases
in market-oriented production while retaining smallholder land ownership and management and
therefore has been praised as a desirable middle ground between traditional smallholder agricul-
ture and large-scale agribusiness (De Schutter, 2011a; Chamberlain and Anseeuw, 2019).

Contract farming also poses risks to smallholder livelihoods. Several mechanisms are rele-
vant. First, and particularly pertinent in the context of land acquisition, it is possible for small-
holders to retain land ownership but be forced to participate in a CF scheme, thus losing auton-
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omy in decision-making. This has been observed in Ethiopia, where households forced to par-
ticipate in a sugarcane outgrower program had significantly lower income and asset stocks than
non-participants (Wendimu et al., 2016). The term “contract farming” therefore can encompass a
variety of levels of smallholder autonomy. Second, even when smallholder autonomy is retained,
power imbalances can limit accountability if the firm breaches the contract (e.g., does not accept
the production at the agreed price), particularly when smallholder side-selling of crops is difficult
due to limited alternative output markets (Barrett et al., 2012). In these contexts, smallholders’ trust
in the contracting firm can be an important determinant of their decision to participate (Nguyen
et al., 2019). Third, higher labor requirements and production costs for contracted crops (e.g.,
sugarcane) may trade off against other livelihood activities that traditionally support food produc-
tion and income diversification (Bellemare, 2018; Ragasa et al., 2018; Bottazzi et al., 2018). This
can exclude resource-constrained farmers from the benefits of participation, thereby generating
inequitable effects on livelihoods. Fourth, as CF schemes often involve production of non-food
crops for export markets (Oya, 2012), productivity benefits may not improve local food security.

Given these risks, there is a need to better understand the conditions under which CF may
be a desirable LSLA governance strategy by promoting dual benefits to smallholder wellbeing
and market-oriented production. This is a necessary step toward better LSLA governance and an
important area for research (Agrawal et al., 2019). For example, identifying smallholder-inclusive
tenure arrangements and LSLA structures can jointly help to inform decision-making of value
chain actors (e.g., contract conditions set by contracting firms) and state actors regulating land
governance and investment (Debonne et al., 2021). However, identifying these conditions ex-
ante is difficult due to the many mechanisms at play, coevolving outcomes, and heterogeneity of
smallholder populations.

Process-based simulation models are a promising tool to extend beyond the range of empiri-
cal data and mechanistically compare alternative governance arrangements. They have been ex-
tensively applied for agricultural policy assessment (Kremmydas et al., 2018), yet are relatively
underutilized in the context of LSLAs. Previous household-level models of LSLAs have primarily
focused on “representative” households (Baumgartner et al., 2015; Kleemann and Thiele, 2015;
Schuenemann et al., 2017) and thus do not incorporate interaction or other behavioral dynamics.
Such factors are particularly important for CF, where heterogeneity, trust, and learning are critical
determinants of smallholder decisions and outcomes (Barrett et al., 2012; Nguyen et al., 2019).

Ethiopia, the empirical context for our study, has experienced one of the largest rates of LSLA
in Africa (Schoneveld, 2011). Similar to other countries, empirical studies in Ethiopia have found
negative effects of LSLAs on smallholder livelihoods and food security (Shete and Rutten, 2015;
Wendimu et al., 2016), little evidence of technology spillovers from large farms (Ali et al., 2019),
as well as both gendered (Hajjar et al., 2019) and ethnic (Moreda, 2015) differentiation in LSLA
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impacts. In contrast to more highly forested regions targeted by LSLAs in places like South Amer-
ica and Southeast Asia, Ethiopia’s dominant agro-pastoral lands hold potential for LSLAs to be
implemented using CF schemes. Despite this, little CF has been reported in Ethiopian LSLAs to
date. There is therefore an underexplored potential for CF to alleviate some of the concerns of
LSLAs in Ethiopia, as well as similar contexts targeted by LSLAs globally.

We leveraged household survey data collected from four LSLA-affected regions of Ethiopia
to develop and calibrate an agent-based model (ABM) of smallholder livelihoods. We applied
the ABM to examine how regional productivity and household food security (measured as access
to a single, representative staple crop) may change under different LSLA and CF arrangements.
Motivated by the tradeoffs that CF may pose, we focus on the following questions:

1. How do LSLA/CF arrangements that retain different levels of smallholder autonomy over
land management differentially affect regional productivity and household food security?

2. How are the effects on food security distributed between richer and poorer households?

3. How does contract breaching by the firm affect households’ trust and thereby mediate the
regional effects?

Given the global scope and predominance of negative implications of LSLAs thus far, our
analysis provides an important step toward reconciling the goals of market-oriented “development”
and smallholder livelihoods in the Global South. Our household-level focus and assessment of
multiple outcomes enables us to identify synergies and pro-poor governance arrangements. We use
the model—–empirically grounded in the Ethiopian context–—as a virtual laboratory to examine
how effects might be distributed under different LSLA/CF arrangements, as well as to generate
hypotheses that could be tested in future empirical studies.

6.2 Data and methods

6.2.1 Site selection and empirical data

We focused our assessment in Oromiya (OR), Ethiopia. Within this context, we selected four
LSLA-affected “sites,” which we label as OR1-OR4 (Figure 6.1). These sites were selected to
represent the diversity of land uses targeted by LSLAs in Oromiya: OR1 solely on smallholder
agriculture, OR2 solely on shrubland, and OR3 and OR4 on a mix of agriculture, shrubland, and
forest. Tenure changes included both transitions from previous state farms to foreign ownership
(OR2 and OR3) and LSLAs enacted by the Ethiopian government and managed by domestic actors
(OR1 and OR4) (Table 6.1). In none of these cases was a CF scheme implemented. Given the
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Figure 6.1: Location and pre-LSLA landcover of the four sites within Oromiya (OR), Ethiopia. “Natural” land
represents woodland/shrubland, grassland, and forest, which we assume to be communally managed. The displayed
data represent 2km buffers around the surveyed households, which are not shown to protect privacy.

different land use histories, we expected the levels of smallholder displacement and livelihood
effects to vary between sites.

We conducted approximately 100 household surveys at each site, asking questions about agri-
cultural management and yields, livestock holdings, income, labor allocation, and food security.
Across all sites, most households pursued mixed crop-livestock livelihoods. Agriculture was rain-
fed and the primary crops were maize, teff, and beans, which were grown for both subsistence and
sale to market. Some households engaged in non-farm employment, but this was not a dominant
livelihood activity, where crop sales provided the majority of most households’ income.

6.2.2 Agent-based model

A complete model description following the ODD+D (Overview, Design concepts, Details, and
Decisions) protocol (Grimm et al., 2006, 2020; Müller et al., 2013) is provided in Appendix E.6.
The purpose of the model is to understand and support generalized conclusions about how alter-
native LSLA and CF configurations may affect household food security and regional productivity
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Table 6.1: LSLA information and effects on land cover within a 2km buffer of surveyed households.

LSLA information Land cover
LSLA Smallholder agriculture Common land

Site Ownership Year Previous
use

Crop % of
site

% in
small-
holder
ag.

% of
site

% lost to
LSLA

% of
site

% lost to
LSLA

OR1 Domestic 2012 Smallholder Sugarcane 12 100 97 13 3 0
OR2 USA 2012 State farm Maize 20 0 65 0 35 56
OR3 India 2003 State farm Sugarcane 17 19 82 4 18 76
OR4 Domestic 2008 Forests Maize 15 30 77 6 23 45
ORX* - 2010 - - 15 Variable 80 Variable 20 Variable
* This is a synthetic representative site created for the subsequent simulation experiments.

within mixed crop-livestock smallholder systems.
The agents in the model represent a population of smallholder households (Figure 6.2; (Frelat

et al., 2016)). Each agent manages a fixed amount of agricultural land and an evolving herd of
livestock, which they graze on a communal rangeland and on their own and others’ crop residues.
The agents interact directly with their neighbors in forming their beliefs about climate, prices, and
the availability of off-farm employment, as well as indirectly through competition for fodder in
the rangeland and jobs in the off-farm employment markets. All agents have equal access to the
rangeland and employment markets (i.e., they are not spatially explicit), though each agent has a
distinct set of neighbors for sharing beliefs and crop residues.

The simulation proceeds at an annual time step. The main model processes are shown in Table
6.2. Principal model outputs include region-level agricultural production and average household
food security status. Regional production is calculated as the sum of all agents’ crop produc-
tion and production within the LSLA, which is influenced by the exogenous climate as well as
agents’ fertilizer decisions. Household food security emerges from a combination of model in-
puts (e.g., household-level landholdings) and dynamic processes (e.g., receiving non-farm em-
ployment). Region-level food security is the probability of food security across all agents. We
note that the food security measure represents staple food availability and does not imply that food
secure households have access to adequate nutrients to meet their dietary needs.

We used the empirical data to initialize, calibrate, and validate the ABM (see Appendix E.4).
These procedures verified the ABM’s ability to generate sets of empirical patterns from each of
the four sites, as well as approximate the effects of the LSLAs on food security. However, given
the similarities between the sites and their small number, we utilized a single Oromiya-level ABM
structure and parameterization to represent all four sites for our main experiments. To account for
the uncertainty introduced by the calibration procedure, we identified six plausible model calibra-
tions and estimated scenario outcomes with each plausible model (Williams et al., 2020b).
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Figure 6.2: Overview of the exogenous drivers, region-level interactions, and household livelihood activities within
the ABM. Black boxes and lines represent the baseline subsistence structure. LSLA with displacement (A; blue solid
lines) takes smallholder land and employs smallholders on the large-scale farm. Under contract farming (B; blue
dashed lines), smallholders produce cash crops on their own land. Grey shaded squares represent the primary model
outputs: food security and agricultural productivity.
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Table 6.2: ABM process overview and scheduling. Processes are listed in the order in which they are executed at each
annual time step. Principal model outputs are in bold. More detailed descriptions are included in Appendix E.6.

Process Description
Update model
environment

• Simulate regional climate condition.
• Simulate regional crop prices (food crop and cash crop).

LSLA/CF
implementation

• Only run this process in the LSLA/CF implementation year.
• See details in section 6.2.3.

Agent
decision-making

• Under baseline conditions, decision options include all feasible combinations of fertilizer
purchase (Y/N), invest savings in stocking livestock herd (Y/N), and off-farm salary employ-
ment (no change, decrease, increase).

• When agents have the choice to participate in the contract farm, their decision set is expanded
to incorporate the CF participation decision (no change, increase by one field, or decrease by
one field).

• The spatial resolution of the agents’ agricultural land is 0.25 hectares, conceptually repre-
senting a field.

• The decision options are evaluated over each agent’s uncertain beliefs about in climate, crop
prices, and the probability of finding off-farm employment.

• Agents pursue an explicit objective, which is a risk-averse utility function.
• Utility is calculated on anticipated wealth levels (cash and livestock) after attempting to sat-

isfy food requirements.
Allocate regional
salaried
employment

• There is a limited regional availability of off-farm employment.
• Agents can retain salaried jobs over consecutive years.
• Jobs available in the market are randomly allocated between agents that seek them.

Crop yields • Households grow a single staple crop.
• Crop yields are calculated using the “yield gap” concept (van Ittersum et al. 2013), in which

yields can be limited by water and/or nutrient availability.
• Under baseline conditions, crop water is provided exclusively by rainfall (i.e., no irrigation)

and is homogeneous each year across all agents.
• Households have heterogeneous levels of soil productivity that are held static throughout the

simulation.
• Nutrients available for crop growth depend on an agent’s soil productivity and their inorganic

fertilizer application.
• We proxy an additional effect of labor on crop yields, in which households with low labor

availability relative to their landholdings experience yield reductions.
• Finally, the calculated yield is perturbed by a random error (household and time dependent).
• Crop yields within firm-operated land (i.e., within the LSLA) are calculated using the same

procedure, assuming a fixed fertilizer application rate and no labor constraints.
• Total regional crop production is calculated as the sum of all agents’ crop production and

(if relevant) the production within the LSLA.
Income, food
consumption, and
food security

• Households have an annual non-food expenditure requirement and an annual food consump-
tion requirement for a single food product, which they can satisfy through their own crop
production as well as purchase from the market.

• The buying price is higher than the selling price, representing transaction costs.
• Agents that are unable to meet their consumption requirements through their livelihood

sources are classified as “food insecure”.
• Regional food security is calculated as the probability of food security across all agents.
• Note: because we model the production and consumption of a single, staple food crop, our

measure of household food security represents staple food availability and does not imply
that food secure households have access to adequate nutrients to meet their dietary needs.
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Process Description
Livestock grazing,
reproduction, and
stocking

• Each head of livestock represents a large ruminant and has a fixed annual food consumption
requirement.

• There is no purchase of fodder.
• Livestock consumption is preferentially met through on-farm crop residues.
• If a livestock consumption deficit remains, livestock are then grazed on others’ leftover crop

residues and then on communal grassland, which produces a fixed amount of biomass at the
regional level.

• Livestock that cannot be supported through these mechanisms are destocked without com-
pensation.

• Each year, each animal has an exogenous probability of reproducing. Animal age and sex are
not modeled.

Agent coping
measures

• Food insecure agents can reduce their food consumption to a limited extent.
• If the severity of food shortage is larger than this, agents resort to two coping measures to

(attempt to) make up the deficit.
• First, agents seek wage-based off-farm work. There is a limited availability of wage employ-

ment, which is allocated randomly between agents on a (pseudo-)daily basis.
• Second, if food insecurity remains, agents destock from their livestock herds.

Update agent
beliefs

• Beliefs are represented probabilistically and are updated using Bayesian conjugate priors
with agents’ and their neighbors’ experiences.

6.2.3 LSLA/CF scenarios and simulation experiments

We designed our simulation experiments to address the three questions outlined in the Introduction.
For all experiments, we used the six region-level ABM calibrations with household inputs pooled
from the four sites and landcover inputs from the synthetic representative ORX site (Table 6.1).
We ran each simulation for 30 years and 30 replications (Appendix E.3).

6.2.3.1 LSLA/CF scenarios and smallholder autonomy

We constructed three LSLA/CF scenarios that represent increasing levels of smallholder land man-
agement autonomy (Figure 6.3):

A Displacement. This represents the observed situation (i.e., no CF), where the LSLA dis-
places existing land uses and employs people on the firm-operated farm.

B CFforced. Households within the transacted area are forced to participate in the CF scheme.
Affected households must cultivate a non-food crop on all land within the LSLA, using
inputs provided by the firm, and sell all production to the firm (Figure 6.2).

C CFchoice. No land acquisition occurs. Smallholders can choose their level of participation in
the CF scheme each year.

Within these three LSLA/CF scenarios, we examined a variety of implementation and contract
configurations (Table 6.3). Because our empirical data did not contain CF, these dimensions were
selected to represent variation documented in empirical literature (Oya, 2012; Bellemare and Lim,
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Figure 6.3: Conceptual illustration of land use under baseline conditions and the three LSLA/CF scenarios of in-
creasing smallholder autonomy. Yellow represents firm-managed cash crop production. Blue represents smallholder-
managed cash crop production.

2018) as well as factors relevant to agricultural productivity and food security. We ran the ABM
for each valid combination of these factors, which yielded 4,644 unique simulation conditions. We
measured the effects on regional production and average agent food security relative to baseline
subsistence conditions. We also examined which implementation characteristics most strongly
influenced the outcomes in each scenario.

6.2.3.2 Distributional impacts

To examine distributional effects on household food security, we stratified the agents into quintiles
using their cash income under baseline subsistence conditions.

6.2.3.3 Contract breaching and trust

Within the CFchoice scenario, we allowed the firm to breach the contract.1 We assume that the
firm has an exogenous “trustworthiness,” i.e., probability of honoring each contract. If the firm
breaches an agent’s contract, the agent must sell their crop at the subsistence market price (Nguyen
et al., 2019) and incurs some lost production (representing, for instance, losses in transportation
or marketing). Each agent has a trust in the firm (i.e., trustworthiness belief), which they update
at the end of each year based on both their own and their neighbors’ experiences with the firm
(Michelson, 2017). Trust factors into the agents’ decision-making by reducing the expected returns

1In reality, smallholders sometimes can breach their contract by “side selling” their produce to alternative markets
(Barrett et al., 2012). For simplicity, we do not focus on this behavior in our analysis.
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to CF. For this experiment, we systematically varied the firm’s trustworthiness and smallholders’
initial trust in the firm.

Table 6.3: Set of LSLA implementation conditions. All conditions are exogenous to the ABM. Bold values denote
the default settings used for model calibration and in subsequent experiments. ‘x’ symbols represent the relevant
scenario(s) for each implementation condition.

Condition Settings Scenario Description
Displa−
cement

CFforced CFchoice

Implementation 0%, 50%,
100%

x x When the LSLA is not fully implemented,
displacement occurs but the benefits (through
employment or increased productivity) are not
experienced.

Fraction
smallholder †

0, 0.5, 1 x x The fraction of smallholder agricultural land in
the LSLA (0=no agricultural displacement,
1=full displacement). Equivalent to “% in
smallholder ag.” in Table 6.1.

Employment 0, 0.15, 0.3
jobs/ha

x Employment is available to all households in
the region, including those that are not
displaced.

Land taking
type

Random field,
random
percent

x x This describes the allocation of the site-level
land-use change between the agents. Random
field: select fields at random. Random percent:
randomize the agents, then take a random
percent of each agent’s land until the overall
land-use change is met.Note: random percent
is the default option used in the model
calibration as it better approximates the
available empirical data.

Irrigation False, True x x Irrigation removes the water limitations on
crop yields.

Intensification 1, 1.5, 2 x x x Fertilizer application for cash crop relative to
baseline subsistence conditions.

Price premium 1, 1.5 x x Average selling price for cash crop relative to
food crop.

Harvest period 1, 2 years x x With a two-year harvest period, agents receive
the cumulative crop yield at the end of the
second year.

Labor
requirement

1, 1.5 x x Agricultural labor requirement for cash crop
relative to food crop.

Production
costs

1, 1.5 x x Fixed costs for production of cash crop relative
to food crop.

Land
requirement

0.25, 0.5 ha x Minimum amount of land in a contract. Each
field is 0.25 ha.

Trustworthiness 0.5, 0.75, 1 x Probability that the firm honors each agent’s
contract in each year.

Production
losses

0, 0.25, 0.5 x Fraction of production lost when the firm does
not honor the contract.

Initial trust in
firm

0, 0.5, 1 x Agents’ initial expected trustworthiness belief.

†The site-level values from Table 6.1 were used for model calibration.
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Figure 6.4: Spread of region-level food security and productivity outcomes under the three LSLA/contract farming
(CF) scenarios, relative to baseline subsistence conditions. Each point represents the mean region-level output under a
single model calibration and set of LSLA/CF implementation conditions (from Table 6.3). All six model calibrations
are included in this plot and did not generate discernably different patterns of effects.

6.3 Results

6.3.1 Smallholder autonomy and LSLA/CF characteristics

The three LSLA/CF scenarios generate distinct patterns of effects on regional food security and
productivity (Figure 6.4). LSLAs involving displacement (Displacement) lead to the strongest
tradeoffs–—the “paradox” of LSLAs (Müller et al., 2021)–—with increased regional productivity
at the expense of smallholder food security. Involving smallholders within the acquired land as
outgrowers (CFforced) provides comparable productivity increases while better supporting small-
holder food security. CFforced also reduces the risk of decreasing regional productivity, as ob-
served the Displacement scenario. Finally, allowing smallholders to decide to join the CF scheme
(CFchoice) generates the largest potential food security benefits (up to ∼14% increase), but lower
maximum productivity increases (up to ∼17% increase) than the other scenarios. Under this
CFchoice arrangement, the food security effects are more strongly correlated with regional pro-
ductivity gains than in the other arrangements (Figure 6.4), suggesting a closer alignment of firm
and smallholder preferences.

Within each LSLA/CF scenario, the effects are mediated by a number of implementation char-
acteristics (Figure 6.5). Under the arrangements involving LSLA (Displacement and CFforced),
high levels of implementation in non-smallholder land generate the largest productivity increases.
This is because these conditions bring non-agricultural land into production (i.e., entail agricultural
expansion; Figure 6.3). In contrast, the CFchoice scenario does not allow for agricultural expansion
and so does not provide as large benefits to regional productivity (Figure 6.4). Under CFchoice, the
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Figure 6.5: Sensitivity of the food security and productivity outcomes to the LSLA/contract farming (CF) implemen-
tation characteristics. The sensitivity for each characteristic x is calculated as E[Y (x = H) − Y (x = L)], where E
is the expectation operator over all model replications and calibrations, Y is the outcome, and L and H are respec-
tively the characteristic’s lowest and highest settings (Table 6.3). Sensitivity values are scaled between zero and their
maximum value for each outcome. Black and red bars represent positive and negative sensitivity, respectively.

level of intensification exerts the largest effect on regional productivity (Figure 6.5C).
For smallholder food security, the amount of displacement in the Displacement scenario

(through ”% in smallholder ag.”) is much more important than the amount of employment of-
fered by the LSLA (Figure 6.5A). This implies that LSLA-based employment does little to offset
the negative effects of displacement. Within the CFforced scenario, the largest food security ben-
efits are experienced when the LSLA is fully implemented in smallholder land with high levels of
intensification, large price premiums, and using a crop with a single-year harvest period (Figure
6.5B). The same general patterns are seen for food security under the CFchoice scenario, where
both firm trustworthiness and agents’ initial trust also support better outcomes.

For some implementation characteristics, the direction of sensitivity changes between
LSLA/CF scenarios. This is most clearly illustrated by the cash crop harvest frequency (“CF
harvest period” in Figure 6.5). Within the ABM, cash crops with a two-year harvest period (e.g.,
sugarcane) increase income variability and thereby increase food insecurity in non-harvest years.
This effect is particularly strong for households that are forced to contribute a large fraction of
their land (Figure E.3). Under CFforced, the harvest frequency has little influence on the regional
productivity (Figure 6.5B). However, when smallholders can choose to participate (CFchoice), a
two-year harvest period is associated with smaller regional productivity increases (Figure 6.5C),
as fewer smallholders decide to join (Figure E.2). In this case, allowing the smallholders to choose
to join internalizes the negative effects of the two-year harvest period to the firm.
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Figure 6.6: Distribution of food security effects under each LSLA/contract farming (CF) scenario, relative to the
baseline subsistence conditions. Households are grouped into income quintiles under the baseline subsistence condi-
tions, where quintile 1 contains the poorest households. Each line plots the mean response under a different model
calibration.

6.3.2 Distribution of effects

Under the default settings (Table 6.3), the Displacement scenario negatively affects food security
across the entire population (Figure 6.6A). Yet, the poorest households are least strongly affected.
This is for two reasons. First, due to the empirical data, approximately 45% of these agents do
not own any land and so are not directly affected by the LSLA-induced displacement. Second,
the poorer agents, with less land on average and hence a larger dependence on off-farm income,
benefit from the employment generated by the LSLA. Further inspection reveals that levels of
employment above 1.0-1.5 jobs/ha begin to offer net-positive effects on average (Figure 6.7A),
which are experienced primarily by the poorest group of households (Figure 6.7B).

Under the scenarios involving CF, the food security effects are non-negative across all quintiles
and the CFchoice scenario yields strictly better effects than CFforced (Figure 3.10B and C). In both
scenarios, poorer households generally experience larger benefits. This is for two reasons. First,
poorer households have higher food insecurity under baseline conditions and so there is more room
for improvement. Second, the richest households are less likely to join the CF scheme (Figure E.2)
because they already experience high utility under baseline conditions and so the relative utility of
joining is not as high. Yet, the lowest income quintile does not benefit from CF as much, which
is due primarily to the land constraints described above (i.e., 45% of this group are landless, so
cannot participate in CF).

6.3.3 Trust and contract breaching

Varying the firm’s trustworthiness and smallholders’ initial trust reveals distinct patterns of sensi-
tivity; moderate declines in smallholders’ initial trust do not substantially affect the food security
outcomes, whereas small declines from perfect firm trustworthiness have comparatively large ef-
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Figure 6.7: How much employment is required to offset the negative effects of displacement? Effect of the LSLA on
food security in the Displacement scenario, under different levels of LSLA employment. (A) shows the effect over
all agents, where each line represents the mean response under a different model calibration. (B) shows the effect for
each income quintile, where each line represents the mean over all model calibrations.

fects (Figure 6.8). The lower sensitivity to declines in agents’ trust is because trust is repaired
over time, assuming the firm consistently honors the contract. In contrast, moderate reductions in
the firm’s trustworthiness generate a feedback between food security and trust: by the model’s de-
sign, contract breaches degrade both food security and trust, consequently reducing smallholders’
subsequent likelihood of participation in CF. At very low levels of trustworthiness, food security
outcomes are worse than under baseline conditions (Figure 6.8). This is due to the mismatch be-
tween the firm’s trustworthiness and smallholders’ initial trust, which causes agents to still enter
the CF scheme despite it being welfare-reducing.

6.4 Discussion

6.4.1 Supporting smallholder autonomy for pro-poor development

The main message emerging from our analysis is the potential benefits of supporting smallholder
land rights and agency in LSLA policy and design. By shifting the locus of decision-making to-
ward the smallholder, either by implementing the LSLA as a CF scheme (CFforced scenario) or
through CF with no land acquisition (CFchoice), we observed larger food security benefits as well
as greater alignment of food security and agricultural production outcomes. Similar results have
been observed in other modeling studies (Arndt et al., 2010; Baumgartner et al., 2015; Schuene-
mann et al., 2017) and underscore a need to reflect on the balance of agency smallholders have
over agricultural land management (Debonne et al., 2021; Preston et al., 2015). In line with our
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Figure 6.8: Impact of varying smallholder trust in the firm (solid lines) and the firm’s trustworthiness (dashed lines)
on regional food security. Outcomes are scaled between the baseline subsistence arrangement (the lower bound,
conceptually representing ubiquitous contract breaches) and the CFchoice arrangement with perfect trust (the upper
bound). The smallholder trust experiments (solid black) assume that the firm always honors the contract. The firm
trustworthiness experiments (dashed black) assume an initial smallholder trust level of 1. Each line plots the mean
response under a different model calibration.

results, empirical evidence has separately shed light on the tradeoffs generated by LSLAs with
displacement (Müller et al., 2021), the risks of forcing smallholders to participate in CF (Wendimu
et al., 2016), and the potential welfare benefits of opt-in CF schemes (Meemken and Bellemare,
2020). Our study is the first to investigate this continuum within a consistent framework.

The hypothesis that higher smallholder agency leads to better alignment of smallholder and
firm outcomes merits further scrutiny in both modeling and empirical research. Future simulation-
based studies could expand the scope of smallholder decisions—–such as input intensity (Belle-
mare and Lim, 2018), side-selling of production (Barrett et al., 2012; Nguyen et al., 2019), or other
forms of resistance to LSLAs (Hall et al., 2015)–—to understand the importance of agency over

what in affecting CF outcomes, as well as how social-political context conditions smallholders’
reactions to LSLA/CF institutions (Tamura, 2021). Beyond this, deviations in the firm’s behavior
may undermine the empirical plausibility of the win-win outcomes we observed. Because small-
holders will not accept a contract that they expect to decrease their welfare, allowing smallholders
the choice to join theoretically incentivizes large-scale actors to support smallholder welfare. Yet,
contract breaching is a pertinent concern in CF schemes worldwide (Barrett et al., 2012), and
our results demonstrate the potential feedbacks between contract breaching, smallholder trust, and
smallholder food security. Accountability mechanisms therefore need to be designed and enforced,
in conjunction with arrangements, such as cooperatives, for distributing power more equitably be-
tween parties (De Schutter, 2011a).

Our results also show that opt-in CF schemes (CFchoice) could increase regional productivity,
though the maximum increases were smaller than under conditions of land acquisition (Figure
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6.4). This is because productivity increases in CFchoice occurred solely through agricultural inten-
sification and not expansion, as in Displacement and CFforced (Figure 6.3). Beyond these results,
empirical research on outgrower schemes in Ethiopia has found higher crop yields on smallholder-
managed fields than factory-operated fields (Wendimu et al., 2017), and more generally there is
convincing evidence of higher productivity of small farms (Ricciardi et al., 2021). Therefore, there
could be large productivity benefits to opt-in CF and enhanced smallholder agency without the
need for agricultural expansion. Yet, in any case, there are financial costs and risks involved in
contracting with a large number of independent smallholders (Barrett et al., 2012) and production
volumes must be sufficient to ensure firm profitability. Future work could expand the modeling
scope to include the firm’s profits (Nguyen et al., 2019) to understand how profitability constraints
mediate the results observed in this study.

6.4.2 Alternative approaches to transformation of smallholder systems

Both LSLAs and CF have the potential to play important roles in the broader processes of rural de-
velopment and structural transformation. Although our model is not a predictive tool, the levels of
employment required to offset the negative effects of displacement (Figure 6.7A) are considerably
larger than previous empirical estimates, which extend to at most 0.7 jobs per hectare (Arndt et al.,
2010; Deininger and Byerlee, 2011; Baumgartner et al., 2015). A similar result was observed in
another simulation-based study of LSLAs (Hailegiorgis and Cioffi-Revilla, 2018). Thus, LSLAs
involving displacement likely need to be coupled with other forms of rural development or value
addition to succeed as a pro-poor development strategy (Nanhthavong et al., 2021).

Contract farming, in contrast, offers a more smallholder-centric approach to structural trans-
formation (Wiggins et al., 2010; De Schutter, 2011a). Yet, this pattern introduces some unique
considerations. First, our results show that households contributing only a fraction of their land
benefit the most from CF (Figure E.3). CF schemes should therefore allow market-oriented agricul-
ture to coexist with subsistence production and traditional livelihoods (Bellemare, 2018; Bottazzi
et al., 2018). Second, although CF improved the average household’s food security in our model,
land-poor households could not join or benefit. CF does not solve problems of limited land access,
which even in the absence of LSLAs are increasingly prevalent in the Global South (Anseeuw and
Baldinelli, 2020). Third, CF does not preclude other forms of dispossession and accumulation
from occurring, for example through elite capture (Oberlack et al., 2016). As we did not include
such processes within our model, our results potentially overestimate CF’s benefits to the poor.

All of our scenarios represent transitions toward agricultural intensification and integration
with commodity markets. However, such approaches to development have been criticized for fur-
thering integrating into exploitive market-based economies (Borras and Franco, 2010; Martiniello,
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2020) and legitimizing agribusiness under the guise of smallholder inclusivity (Oya, 2012; Oliveira
et al., 2020). CF can result in other kinds of losses to smallholder agency, leading to relations of
dependence (Oliveira et al., 2020) and compromising food sovereignty (Moreda, 2018). Moreover,
agricultural intensification can undermine underlying ecosystems and contribute to environmental
degradation (Singh, 2002; Debonne et al., 2021). Future empirical and modeling work could ex-
pand the scope of processes and outcomes to contrast rural development through intensification
with alternative paradigms, such as sustainable intensification or agroecology (Matson et al., 1997;
Anderson et al., 2019), and contribute to broader debates about land sparing versus land sharing
(Vongvisouk et al., 2016).

6.4.3 Generalizability of findings

Our model is a simplification of LSLA and CF processes, and does not include all the social-
ecological complexity that qualitative and ethnographic approaches tend to articulate (Oya, 2012;
Tamura, 2021; Oliveira et al., 2020). A “win-win” outcome as observed in our model therefore
does not imply that effects are strictly positive, especially for dimensions not included in our sim-
ulation. With this in mind, we have used our model results to identify hypotheses and patterns that
warrant further empirical and model-based investigation (Schlüter et al., 2019a) and for assessing
generalizability across contexts.

We modeled a mixed crop-livestock smallholder system. This type of system represents at most
two thirds of the areas targeted by LSLAs globally (i.e., densely populated croplands and moder-
ately populated shrub- and grasslands (Messerli et al., 2014)). The question remains as to how
our results generalize to LSLAs targeted at forested landscapes. In such contexts, processes other
than displacement of agricultural land (e.g., deforestation and agricultural expansion) dominate
(Debonne et al., 2018) and the LSLA/CF scenarios we tested are not as directly relevant.

Beyond this, the ABM necessarily excludes processes that may be important in some real-world
agricultural systems. For example, due to lack of data on decision-making processes, we assumed
that households are risk averse and seek to increase their income, subject to meeting food require-
ments. Other factors may dominate decision-making in some places, such as social norms and
pressures. Additionally, our model did not include land degradation, which is a major challenge
facing smallholder agriculture globally (Sanchez et al., 1997). CF could either exacerbate soil
degradation issues (Debonne et al., 2021) or help to prevent natural resource-based poverty traps
(Barrett and Bevis, 2015; Haider et al., 2018), thereby affecting the relative benefits of CF over
time. Smallholder agricultural systems face many other challenges that often intersect with the
drivers and effects of LSLAs (e.g., climate change (Franco and Borras, 2019)). We did not attempt
to include such processes, but instead flag these as additional opportunities for model extension
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and future empirical research.

6.5 Conclusions

There is a need to better align the development preferences of large-scale actors with the wellbeing
of smallholder populations. LSLAs represent a globally pertinent conflict between these objec-
tives (Müller et al., 2021). In this study, we sought to examine the potential for contract farming
(CF) as an alternative implementation of LSLA to generate outcomes beneficial to both regional
productivity and smallholder food security. We developed an agent-based model of smallholder
livelihoods and calibrated it using household survey data from Oromiya, Ethiopia, a region repre-
sentative of many areas targeted by LSLAs globally. Our simulation-based approach enabled us
to cover a large set of experimental conditions and to examine the distributional effects of LSLAs
and CF across the smallholder population.

Our results show that CF offers potential to simultaneously increase agricultural productivity
and support livelihoods in mixed crop-livestock smallholder systems. In particular, arrangements
that gave smallholders greater agency over their land led to better food security outcomes that
aligned more closely with productivity increases. CF therefore should be seriously considered
as an alternative to forms of intensification by dispossession enacted by LSLAs. Nevertheless, we
neither claim that CF is “the solution” nor seek to promote the proliferation of “sustainable” LSLAs
through CF. Rather, we suggest that moving the needle toward enhanced smallholder agency is a
step toward greater smallholder benefit, within the paradigm of commodity agricultural production.
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Chapter 7

Conclusions

7.1 Dissertation contributions

7.1.1 Significance

This dissertation attends to the overarching question of how to improve resilience in smallholder
agricultural systems. It contributes to this at two levels. First, substantively, I quantitatively com-
pare development approaches in smallholder agricultural systems, finding that there exists a degree
of complementarity between different paradigms. Second, methodologically, I develop and demon-
strate approaches that enable more robust and equitable policy analysis for socio-environmental
systems. As a whole, the research is underpinned by a resilience perspective and integrates ap-
proaches from risk analysis, complex systems, and operations research. Given the broad use of
both resilience thinking and policy analysis in social sciences, natural sciences, and engineering,
the advances within this thesis are relevant to a broad academic community.

7.1.2 Reconciling development perspectives

In smallholder agricultural systems, there exists a wide range of perspectives on how to manage
the intertwined domains of livelihood, environment, and economy (Pretty et al., 2018; Bommarco
et al., 2013; Gaffney et al., 2019). Disputes surrounding these perspectives have become highly
political. In this dissertation, I used agent-based modeling to quantitatively evaluate, compare, and
integrate disparate development approaches. An emerging conclusion is that there is a degree of
complementarity between alternate development paradigms.

In chapter 5, I compared the effects of cover cropping and microinsurance. Cover cropping is
an ecologically-based farm management practice traditionally discussed within agroecology and
conservation agriculture, whereas microinsurance is a financial support for sustainable develop-
ment. I found that, due to the different mechanisms through which these two approaches operate,
they offer strongly complementary benefits to smallholder drought resilience. Thus, this research
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advocates for a greater integration of ecological and financial development approaches. This could
have significant impacts by informing future research and programs aimed at agricultural develop-
ment.

In chapter 6, I examined the potential for contract farming to simultaneously support small-
holder livelihoods and increase market-oriented agricultural production. This research was situ-
ated in the context of large-scale land acquisitions (LSLAs), which are a strategy for increasing
commodity agricultural production but pose a large risk to smallholders through dispossession of
land rights. I found that contract farming offers potential as a more smallholder-centric devel-
opment approach, relative to LSLAs. Thus, this research offers a reconciliatory perspective on
market-oriented agricultural development, particularly underscoring the importance of preserving
smallholder land rights and autonomy.

A broader consideration within this theme is how to measure resilience and development. A
diverse range of objectives can be prioritized within smallholder systems, and these objectives may
favor or discount certain groups or development strategies. For example, in Chapter 3 I found that
assessments based on “poverty reduction,” measured as the reduction of food insecurity over time,
suggested that climate forecasts and increased non-farm employment availability could lead to
equitable effects, i.e., most strongly benefit the most food insecure households. However, similar
assessments based on “shock absorption,” measured as the reduction of food insecurity in the
wake of a drought, led to inequitable effects, i.e., benefits to the less vulnerable at the expense of
the food insecure. Thus, future research and programs for smallholder resilience need to consider
a suite of indicators that measure distinct objectives. “Resilience thinking” is a promising holistic
lens through which to understand development as a set of distinct yet intertwined objectives that
encompass the capacity to persist, adapt, and transform.

7.1.3 Robust and equity-oriented policy analysis

This thesis presents methodological advances to quantitative resilience assessment and model-
driven policy analysis. Despite the very real potential for policy recommendations to be maladap-
tive (to lead to unintended increases in vulnerability), concepts such as equity, temporal tradeoffs,
and model uncertainty are rarely considered in model-based analyses. These contributions, de-
scribed below, facilitate more robust policy assessments and therefore reduce the potential for mal-
adaptation. They are relevant beyond the context of smallholder agriculture and could be applied
to models in a diverse range of socio-environmental systems.

First, in Chapter 2, I developed an encompassing framework for the interface of equity and
agent-based modeling. This framework can be used to guide future agent-based modeling re-
search, both in agriculture and elsewhere, to integrate equity more thoroughly into its design and
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application. This has two principal benefits. First, it facilitates the use of ABMs to understand
and identify strategies for ameliorating societal inequities. Second, by critically reflecting on po-
tential inequities within the modeling process more generally, it reduces the risk of inadvertently
perpetuating societal inequities through agent-based modeling, which has led to highly publicized
criticism in other modeling fields (i.e., machine learning).

In Chapter 3, I applied an ABM to examine equity in the effects of development interventions
within a smallholder agricultural system. To do so, I stratified the smallholder households by
demographic characteristics (e.g., land area, household size) and baseline vulnerability (using a
measure of food security). These simple analytical extensions allowed me to assess equity in the
distribution of the interventions’ effects, thereby providing a more robust assessment. Other ABMs
could easily use a similar approach.

In Chapter 4, I presented an approach for acknowledging equifinality in model-based policy
analysis. My approach identifies a set of diverse model calibrations, which can be independently
applied to a policy analysis, resulting in a more robust policy assessment that incorporates the
effects of model equifinality. Equifinality is a common concern in complex systems, yet is not
frequently accounted for in model calibration. This approach is therefore applicable to a wide
range of application areas.

A final analytical consideration that proved to be important in comparative policy assessment
was the time horizon. In Chapter 5, I compared the relative effects of cover cropping and mi-
croinsurance over two time dimensions: the time at which a drought occurs and the time over
which the drought’s effects are assessed. I found that these features exerted a strong influence on
the comparison, leading to drastically different recommendations at different points in time. In
other application areas, interventions likely work over different time scales and so comparative
assessments should carefully consider the effect of time.

7.2 Future research directions

Building from the findings within this dissertation on complementarity, more work is needed to
encourage productive conversations between communities with paradigmatically different devel-
opment perspectives. Although this is not solely a research frontier, agent-based modeling shows
promise to act as a boundary object in such efforts (Reilly et al., 2018). By formalizing and con-
trasting alternative system representations and interventions, agent-based models can be used to
facilitate discussions between stakeholders and work toward common understanding. There al-
ready exists a large amount of work on participatory modeling in socio-environmental research
and beyond (Steger et al., 2021a; Voinov et al., 2016; Loureiro et al., 2020), so leveraging partic-
ipatory processes with diverse actors to contrast agricultural system futures is a fruitful area for

138



future research.
With respect to robustness and maladaptation, there exist vast literatures on robust decision-

making, equifinality, and uncertainty quantification. In a socio-environmental context, my impres-
sion is that these ideas and methods have been developed and applied mainly within hydrology,
water, and energy systems (Kasprzyk et al., 2013; Reed et al., 2013; Ekblad and Herman, 2021;
Vrugt and Beven, 2018), but not sufficiently integrated into agriculture and food systems. There is
therefore a great deal to be learnt at these intersections, which can help to develop robust models
and identify robust policies for resilient food systems.

Beyond the content of the model analysis itself, there exist many ways in which agent-based
modeling can more thoroughly engage with and seek to mitigate societal inequities. This includes
embedding equity considerations within standardized agent-based modeling practices and presen-
tation, such as the ODD and TRACE protocols (Augusiak et al., 2014; Grimm et al., 2014, 2020).
More consistent emphasis should be placed on integrating stakeholder values and participation
within model-based analysis, including using models as boundary objects to stimulate debates and
work toward consensus within diverse stakeholder groups (Steger et al., 2021b).

Finally, in keeping with the resilience perspective of this dissertation, more work is needed in
the realm of modeling food system “transformation”. Much research has focused on system per-
sistence and response to shocks, as well as adaptive actions within current system configurations
(Egli et al., 2018). Yet, the future will bring unprecedented threats that will require (or, alterna-
tively, cause) social-ecological systems to fundamentally reconfigure. There exists a growing body
of social science perspectives on system transformation (e.g., (Geels, 2002; Moore et al., 2014;
Scoones et al., 2020)) that can be learned from and operationalized in current and future modeling
frameworks. Some transformative modeling work is beginning to emerge (Zagaria et al., 2021), but
there is a need for more empirically informed assessments of multiscale agricultural transformation
drivers, inhibitors, and pathways, including how these are conditioned by context.
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Appendix A

Supplement to Equity in Agent-based Modeling

A.1 Example bias and positionality statement

This statement was written by the principal researcher and reflects on bias and positionality with
respect to the ABM research in Williams et al. (2020a), which examines strategies for increasing
the resilience of smallholder farmer livelihoods.

A.1.1 Positionality

What are the racial and cultural backgrounds and identities of the modeler(s)?

The principal researcher identifies as a White male of European descent. He is a Ph.D.
student within an engineering department at a research institute in the United States. The other
members of the research team identify with a range of identities. All identify as male and work at
predominantly White academic institutions in the United States. Two of the research team identify
as European American and one identifies as a Marwari Bihari out of place. Although the entire
team played a role in shaping the direction of the research, the following reflection is from the
perspective of the principal researcher.

How might these identities have influenced how the modeler(s) experience the world and

approach research?

The principal researcher acknowledges the privilege he has experienced throughout his life and
seeks to use this position of relative power to work to deconstruct global and societal inequities.
Conditioned by his academic training, the principal researcher assumes a primarily positivist
paradigm but seeks to integrate critical theory to acknowledge the subjectivity in how people
perceive reality.

How do these identities, worldviews, and objectives relate to the participants and/or con-

text of the research? (e.g., in what ways are the modelers insiders or outsiders?)
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Given his advantaged position, the principal researcher has never personally experienced food
insecurity or lived in poverty and so lacks understanding of the lived experiences of Ethiopian
smallholder farmers. Thus, he approaches the research context from an inherently outsider’s
perspective.

What is the social, institutional, and historical nature of inequity in the context of the re-

search?

Imperialism has historically imposed Western values on non-Western countries, such as
Ethiopia, frequently through forms of domination and subjugation. More recently, globalization
has radically transformed smallholder farming systems. Thus, there is a pervasive antecedent land-
scape of inequity within the research context. The principal researcher acknowledges this and
how the modeling exercise may risk repeating historical colonialist practices, such as information
extraction and cultural appropriation.

A.1.2 Framing

What narratives underlie the formulation of the challenge, problem, or research questions?

The framing of the research contends that the livelihoods of smallholder farmers in Ethiopia
(and elsewhere) are vulnerable to the effects of climate. Further, it contends that this vulnerability
is problematic–—i.e., that it should be reduced.

What kinds of solutions does the problem framing open itself to?

Through its focus on region-level ‘resilience-enhancing strategies,’ the research contends that
this vulnerability could—and thereby should—be reduced through top-down external intervention.
The strategies that are tested (seasonal climate forecasts and increased non-farm employment)
both originate from the “West” and were not co-developed with local farmers or decision-makers
to inform this modeling work. For these reasons, these solutions may perpetuate recognitional
and/or procedural inequities. For example, seasonal climate forecasts are technology-centric and
may not agree with local belief systems. Non-farm employment displaces labor from agriculture
and catalyzes industrialization, which do not necessarily align with community priorities.

What entities are included/excluded? Who are the actors involved within the framing of the

problem and solutions?

The principal actor within the model is the smallholder farmer. Farmers are modeled as het-
erogeneous with respect to their land endowment and family size, but we do not represent hetero-
geneous ethnocultural groups, gender, or other dimensions of identity.
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Due to the region-level focus of the resilience-enhancing strategies, the problem’s framing
places the onus for adaptation on the government or higher institutions. We do not explicitly
model these actors, the political processes for implementing the strategies, or the politics of
unequal access to the strategies.

What outputs are included and prioritized?

The principal model output is a measure of food insecurity. Because the most vulnerable
households are food insecure, our model outputs are most sensitive to the experiences of these
households and we therefore assume a needs- or vulnerability-based perspective on equity.

What is the scale of focus within the problem framing?

The scale of intervention is the region- or community-level, whereas the scale of modeling is
the household-level. Yet, the scale of the narrative (i.e., that smallholder farmers are vulnerable
to the effects of climate) frames the problem as one of global concern. This framing does not
mention context-specificity in drivers of vulnerability or the appropriateness of the interventions
within specific smallholder systems, which are incredibly diverse.

What theories and/or relationships is the conceptual model predicated on? If relevant, are

there alternative explanations?

The model is predicated on the notion that climatic disturbances (i.e., drought) affect small-
holder food security, but that these effects are mediated by both household attributes and chosen
livelihood strategies. Livelihoods comprise farming, livestock rearing, and non-farm employment.
We assume that smallholder farmers have some agency to affect their own outcomes through their
livelihood decision-making, but are to some extent constrained by the structure of the system.

A.1.3 Data

How could historical patterns of inequity exist within the data?

The data used for model calibration were drawn from the World Bank’s Living Standards
Measurement Study (LSMS). In particular, we focused on households’ reported experience of
food shortages to form our food insecurity measure. This variable specifically aims to measure
relative household vulnerability and so, by design, represents historical distributional inequities.

How could marginalized people or groups be misrepresented in or excluded from the data?

The LSMS surveyed one person in each household (the household head). Yet, there are
frequently intra-household gender differentials in power and food access, so the survey responses
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may not include these perspectives. Our research team did not conduct these surveys and so we
are not knowledgeable about whether survey enumerators could have biased participants’ answers
or selected households in a biased way.

How could the process of data collection have perpetuated inequity?

As we did not conduct these surveys, we are not well positioned to answer this question. How-
ever, because the LSMS surveys are global in scope, it is unlikely that the World Bank partnered
with local communities to collect the data and so critics may view the collection process as extrac-
tive.

A.1.4 Process quantification

What subjectivity is involved in defining model variables and/or translating information from data

sources into the model format? (e.g., are model variables latent constructs?)

First, food insecurity is a subjective measure and households likely have different perceptions
around what it means to “experience a food shortage” (in the language of the LSMS survey). For
example, households may compare their experience to others in their networks and therefore the
empirical survey measure is likely geographically biased. In particular, it may underrepresent food
insecurity in vulnerable regions.

Second, our model-based representation of food consumption is also imperfect; we model
production and consumption of a single cereal crop and develop a threshold of food consumption
below which a household is considered food insecure. Thus, there may be a mismatch between
the theoretical understanding of food insecurity and our operationalization of it.

Could the inclusion or exclusion of model processes misrepresent or lead to bias against

certain groups?

There are several potentially important processes not included within the model. First, the
model does not include forest-based livelihoods, which are particularly important for land-poor and
resource-constrained households. Second, we do not model social networks or sharing of resources
(e.g., food) between households. Third, we do not model other social support systems, such as the
productive safety net program in Ethiopia. Fourth, we do not model land degradation, which
may affect crop yields and thereby the relative prevalence of food insecurity over time. These
mechanisms have potentially divergent implications for equity and so it is difficult to speculate
about their net effect on food insecurity.

More generally, we did not involve Ethiopian stakeholders during model development. This
likely limits the model’s acceptability in the modeled context and does not ameliorate power im-
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balances between the researchers (i.e., scientists in the Global North) and the research subjects
(smallholder farmers in Ethiopia).

A.1.5 Model interpretation

How could calibration and validation procedures prioritize models that (dis)advantage certain

modeled subgroups?

We used a genetic algorithm to calibrate the model to data from the LSMS. The model’s fit was
relatively accurate over most patterns, but the model overestimated the proportion of households
with no livestock. Given its accurate fit to the food security outcome and the less accurate fit
to livestock, the model potentially contains a biased representation of the relationship between
these two variables. It may therefore attribute food insecure households with more or less adaptive
capacity than they possess in reality.

More generally, the optimization procedure within the genetic algorithm sought to minimize
the total discrepancy between the empirical distributions and comparable model-derived distribu-
tions. This therefore treated all fitting patterns and all households equally and was not designed to
ensure accurate representation of the most vulnerable households.

How could pre-conceived understandings or objectives affect which model structures and

outputs are considered acceptable and subsequently communicated?

The model calibration process was highly iterative and required many rounds of model devel-
opment and experiments until we arrived at an acceptable level of fit. The ‘acceptable’ level of
fit was not defined ahead of the modeling exercise and was ultimately determined by pragmatic
constraints (researcher time availability).

With respect to the resilience-enhancing strategies, the research team did not enter the project
with pre-conceived opinions around which of the two strategies is preferable, so we believe our
assessment was relatively unbiased in this respect. However, we viewed the focus on equity and
distributional effects to be a novel scientific contribution and so were motivated to communicate
and frame our results around this story. Thus, we focused on the model outputs that yielded the
most interesting story about equity and, through this process, discounted some outputs. We do
not believe that this process discriminated against particular socio-cultural groups and therefore is
unlikely to be inequitable in this way, but it is an issue in science more generally.
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Appendix B

Supplement to Resilience and Equity
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B.1 Data sources

Table B.1: Data used to initialize the model. “rast” means that the data are represented as a raster. “dist” means that a
distribution of values is used.

Object Parameter Unit Value Description/source
Market Wood sell birr/m3 515 CSA Monthly Retail Prices

(Amhara, 2015-16 average) 1

Livestock sell birr/head 3536 ””
Milk sell birr/100L 1554 ””
Fertilizer cost birr/ha 1000 LSMS 2015 median urea expen-

diture
Maize prices birr/kg - FAO GIEWS portal 2

Environment Landcover - rast Cropland / non-cropland classi-
fication, 30m resolution (Xiong
et al., 2017)

Agents Household size Adult eq. dist LSMS 2015/16 survey
Landholdings #plots dist ””
Livestock head dist ””
Water collection hrs/pp/day dist ””
Fuelwood collection hrs/pp/day dist ””
Distance to market km 49.8 ””
Sustenance require-
ment

quint/pp/mo 0.18 (CAADP, 2013; Worku et al.,
2017)

Initial food stores months 12 -
Decision horizon years 5 -
Discount rate % 70.6 (Holden et al., 1998)
Labor days per month days 30 -

Climate Rainfall3 mm (/day) rast CHIRPS (Funk et al., 2014)
Temperature3 oC (daily

high/low)
rast GDAS 4

Yield Maize yields kg/ha dist Annual agricultural sample sur-
vey, Ethiopian Central Statistical
Agency

1 http://www.csa.gov.et/monthly-retail-price
2 http://www.fao.org/giews/food-prices/tool/public/#/dataset/domestic
3 All data were bias-corrected and downscaled to a 25km resolution using MicroMet for-
mulations (Liston and Elder, 2006) in the NASA Land Information System (Kumar et al.,
2006) and then interpolated over the model grid to give a spatially explicit representation of
climate.
4 http://www.emc.ncep.noaa.gov/gmb/gdas/
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B.2 Decision algorithms

Figure B.1: Start-of-year decision-making process employed by the agents. Agents iterate through livelihood options,
which are landuse-livestock combinations. The planting date decision is described in section B.7.5 in SM B.7. The
yield forecasting models refer to a discrete number of heuristics agents may use to predict yields (see section B.7.5,
SM B.7).
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Figure B.2: Monthly food consumption and coping measures process.

B.3 Additional figures
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Figure B.3: The benefits of each intervention on different dimensions of resilience: (A) overall resilience (area
between food security curves), (B) vulnerability (the maximum damage), and (C) 90% recovery time. The boxplots
indicate the distribution of benefits over all simulations.
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Figure B.4: Impact of interventions on farming practices. Dashed lines represent the shock simulations and solid lines
the no-shock simulations.

Figure B.5: Impact of interventions on livestock. Dashed lines represent the shock simulations and solid lines the
no-shock simulations.
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B.4 Cross validation of calibration distributions

Overall, the ABM is qualitatively in accordance with the empirical distributions (Figure 3.5). How-
ever, it does not accurately recreate the shape of the herdsize distribution: the ABM overestimates
the number of households with no livestock. Given the structure of our model, we found that to
generate levels of food insecurity comparable to the empirical values (i.e., approximately 20% of
households food insecure) required a substantial amount of agents to have no livestock. In the
empirical data, there are more food insecure households than households with no livestock, yet our
model does not conform with this. By making households hesitant to sell their livestock (i.e., only
selling livestock after experiencing repeated months of food insecurity) we hoped to improve this
fit, yet were not able to do so. Further refinement of the coping mechanism heuristic, as well as
potentially the rangeland model, may be required to improve this fit.

One of the recommendations for pattern-oriented modeling is that the patterns against which
model outputs are compared are independent (Grimm et al., 2005; Latombe et al., 2011); that is,
each fitting distribution should offer some additional information. However, given the flexibility
of the ABM, there is a risk that we have overfit the model to these distributions. There is there-
fore a trade-off between selecting patterns that are sufficiently independent and designing a model
structure that can robustly reproduce patterns on which it has not been calibrated. To test this,
we conducted a cross validation by running the genetic algorithm parameterization procedure five
times, each time excluding one of the fitting distributions from the objective function. Our results
(Figure B.6) show that there is a reduction in fit when each distribution is excluded. The largest
effect - almost a 4000% relative decrease in fit - is observed in the subsistence fraction measure,
suggesting that the fitting procedure relies very heavily on this distribution. The smallest absolute
effects are seen for the two labor distributions (on- and off-farm labor), suggesting some redun-
dancy in the information contained in these data and/or robustness in the structure of the labor
components of the ABM. For food insecurity - the main outcome of interest for the resilience
assessment - the loss metric increases by 70% when this distribution is excluded.

Together, these results suggest that in the spectrum of this trade-off between independent, use-
ful patterns and model structure robustness, our calibrated model more closely aligns with the
former; that is, each distribution offers considerable value to the fitting process. We therefore rely
on our justifications for the structural assumptions within the ABM in our resilience analysis.

B.5 Assessing synergistic effects

To investigate the potential for synergistic effects, we calculated the additional benefit realized
by having both policies in conjunction compared to the sum of the two in isolation (i.e. both -
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Figure B.6: Cross validation of fitting metrics. Comparison of the ABM-generated and empirical distributions for
each fitting characteristic when that characteristic was not used in the parameterization process. The “histogram
difference” represents the loss metric used in the genetic algorithm.

(job availability + climate forecast)). The majority of the simulations exhibited a synergy with
respect to our measure of overall resilience (Figure B.7A), with, for example, 65% of simulations
under a 50% magnitude shock showing synergistic effects. This is because the two interventions
work through different pathways, with the climate forecasts helping to inform agricultural man-
agement decisions and wage labor availability working as an additional coping strategy throughout
the year. Though not shown here, the combined interventions only resulted in a tradeoff (i.e., net
benefits lower than an individual intervention) in a maximum of 4% of the simulations (for the
50% magnitude shock).

The combined interventions are less synergistic with respect to vulnerability reductions; for
the 50% shock, only 30% of the simulations were synergistic with respect to this measure (Fig-
ure B.7B). Given that the measure of vulnerability is equivalent to our overall resilience measure
assessed over a single year time horizon (i.e., maximum additional population food insecure in a
single year versus total additional population food insecure over all time), this demonstrates that the
synergistic effects of the interventions take time to accrue. In general, the potential for synergies
is an important result and agrees with other studies recommending that agricultural interventions
can be most beneficial in portfolios (Berger et al., 2017; Wossen et al., 2017). We note that we do
not display synergies in the time to 90% recovery measure because this calculation relies on the
vulnerability value, which is different under each intervention.

B.6 Sensitivity analysis

To explore the robustness of our results to the calibrated values of the uncertain parameters we
conducted a one-way sensitivity analysis in which we set six of the uncertain parameters to 60%,
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Figure B.7: Distribution of the synergistic benefits realized through implementing both policies in conjunction for:
(A) overall resilience, measured as the area between the food security-time curves (Figure 3.4); and (B) vulnerability,
measured as the maximum impact of the shock. In this graph, resilience Equation 3.2 is used.

80%, 120% and 140% of their fitted values and reran our experiments. Here, due to computational
time requirements, we selected only these six parameters and ran only five replications of the
model.

We explored the impact of these changes on the relative effect of the two policies on overall
resilience (Figure B.8) and on the distribution of food insecurity throughout the population (Figure
B.9). We note that the cases in which it appears that no data are plotted in Figure B.9 represent
situations where the given parameter change had no effect on the distribution of food insecurity,
thus providing evidence for the robustness of the distributional results.

A: Planting fraction: This represents the fraction of each agent’s land that can be farmed. The
reason that this is an uncertain parameter is due to a mismatch between the LSMS data used to
parameterize agent-level land holdings and the Ethiopian Central Statistical Agency (CSA) field-
level data used to parameterize the crop yield model; assuming that all land could be planted and
that crop yields were in line with those reported by the CSA resulted in production that was much
too great to achieve levels of subsistence in accordance with that calculated from the LSMS data.
As a result, we assumed that agents are only able to plant some fraction of their land. This could
also represent yield losses or fallowing practices.

The results show that when little land is available for agriculture (or yield losses are very high),
the agents with large land holdings become more food secure (Figure B.9). This is because, under
the calibration presented in the main body of the paper, agents with large land endowments are
in some cases not able to farm their land due to large labor requirements. A reduced planting
fraction therefore lowers this labor requirement and allows these agents to engage in farming,
thus improving their food security. At the same time, agents with lower land holdings become
more food insecure due to lower planting fractions limiting their production capacity. Together,
this contributes to an increased relative benefit in the climate forecast intervention (Figure B.8A);
agricultural productivity is more limited, so increased information about climate conditions is more
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important in the wake of a drought.
B: Grass regeneration rate: This parameter represents the rate at which the rangeland is able to

regenerate. The results are insensitive to changes in this parameter.
C: Farm labor factor: As the labor requirements for farming are increased, the relative benefit

of the climate forecast policy increases (Figure B.8C). An explanation of this effect is that as more
labor is required for farming, agents have less remaining time to engage in other activities and
therefore less of an ability to diversify their incomes. As such, they rely heavily on agriculture and
thus are strongly impacted by a drought. The availability of climate forecasts, even though they do
not provide perfect information, enables agents to divert effort away from farming in the year of
the drought, which has larger implications when farming labor requirements are high.

Changes to this parameter have substantial distributional effects (Figure B.9), with reductions
in the labor requirements for farming greatly benefiting those with large amounts of land. The
reason for this is the same as the effect described in the planting fraction above; lower labor re-
quirements enables more of these households to engage in farming.

D: Risk aversion: The model is insensitive to changes in the risk attitude of the agents. This is
interesting, and suggests that risk aversion does not have strong implications for decision-making
in the model.

E: Job availability: We have already discussed the impacts of an increased availability through-

Figure B.8: Sensitivity analysis: Effect of varying selected parameters on overall resilience under each intervention.
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Figure B.9: Impact of varying selected parameters on the distribution of food insecurity. The units of the vertical axis
represent the fraction of each population group experiencing food insecurity at some point in the simulation (median
over all replications) (Baseline, blue) and the effect of parameter changes on this (all others, red). Variable names
correspond to those in Table B.4 and the 0 6 and 1 4 respectively represent the variables being set to 60% and 140%
of their original values.
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out the rest of the paper. Here we test how these conclusions may change as the assumed baseline
job availability is varied. Interestingly, the job availability intervention has a lower benefit when
the baseline job availability is decreased (Figure B.9E). This is likely simply a result of the way
in which the job availability intervention was implemented (i.e., as a percentage increase from the
baseline value); when baseline job availability is low, a 20% increase amounts to a lower absolute
increase in jobs, and hence the absolute benefits are lower.

F: Fraction income maximizers: This parameter represents the fraction of the agent popula-
tion that have a preference for income maximization. Here, the job availability intervention has
increasingly strong benefits as the proportion of income-maximizing population increases (Figure
B.9F). Given that the income-maximizing agents are assumed to be independent of the limited
availability job market, increasing the proportion of these agents therefore increases the number of
jobs that are available to the “leisure-maximizing” agents. When this change in the makeup of the
agent population is combined with the effects of an externally-imposed increase in job availabil-
ity, the combined effect is that the leisure-maximizing agents are able to more effectively leverage
increased job availability in the wake of a shock.
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B.7 Additional ABM details

B.7.1 Crop yields

B.7.1.1 Climate yield factors

The climate yield factor (CYF) is defined using the ratio of the simulated actual evapotranspiration
(ET) (ETA) to the potential ET (ETC):

CY F = 1−Ky

(
1− ETA

ETC

)
(B.1)

where Ky is a yield response factor, which is crop-specific and varies over the growth stages
of the crop (vegetative, flowering, yield formation, and ripening) (FAO, 1984, 1998). The meteo-
rological inputs required to calculate the CYF include precipitation, temperature, solar radiation,
cloud cover, humidity, and wind speeds. The calculation of actual ET is made on a daily ba-
sis throughout the growing season, accounting for crop water demand, soil moisture, and root
growth. Critical values of the CYF are taken for each crop growth stage to give an overall sea-
sonal CYF. We note that similar representations of the effect of water on yields (i.e., some ra-
tio of potential and actual evapotranspiration) are used in other process-based crop yield mod-
els such as FAO’s AquaCrop (http://www.fao.org/aquacrop/), CENTURY (USDA, 1993), APSIM
(https://www.apsim.info/), and EPIC (https://epicapex.tamu.edu/epic/).

B.7.1.2 Calculating agent-level yields

The following procedure was implemented to calculate agent-level yields:

1. Derive a region-wide log-normal distribution from which to sample Y p values.

2. Randomly assign each agent an inherent “position” in this distribution (i.e., a quantile).

3. At each time step (t) in the simulation, add some noise to this quantile (i.e., qt=t,a=a =

qa + εt,a, where a represents an agent and εt,a ∈ (−ε,+ε) is some noise) .

4. Calculate the agent’s plot-level yield as Y act.
t,a = CY Ft,a ∗ Y p

t,a where Y p
t,a represents the

perturbed quantile qt,a from step 3.

First, to calibrate the magnitude of the potential yield (Y p), we used observational yield data
from Ethiopia’s Central Statistical Agency’s (CSA’s) Annual Agricultural Sample Survey (AgSS).
We created Y p distributions under fertilized and non-fertilized conditions. In doing so, we proxy
the effects of nutrient limitations on crop yields, constraining these effects such that they recreate
historically-observed discrepancies between fertilized and non-fertilized crop yields. For both
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Figure B.10: Comparison of empirically-observed maize yield distribution (overall) and simulated yields with and
without fertilizer.

fertilization options we fitted a log-normal distribution using plot-level maize yield data from the
CSA’s AgSS from 2005-2010 and 2012. The data were cropped to a 50km buffer around the
model region. First, empirical Y p values were estimated as Y p

emp = Y obs./CY F obs.. The mean of
this distribution was then taken for fertilized and unfertilized fields and used as the mean parameter
in the log-normal distribution. The standard deviation was chosen to fit the spread of data from
the simulated log-normal distribution (adjusted by the observed CYF values) to the spread of the
empirically-observed yields. Figure B.10 compares the empirically-observed distribution of maize
yields in the model region with simulated yields using the corresponding historic CYF values.
Figure B.11 shows the simulated yield distributions for fertilized fields over a range of potential
CYF values.

Our approach for calculating crop yields preserves the population-level distribution of yield.
However, we do not evaluate it based on its ability to predict field-level yields. We admit that this is
an imperfect method for calculating crop yields, and other process-based methods that are validated
using observational data from the modeled region may give more defensible yield estimates or be
used to incorporate the effects of nutrient limitations in a process-based sense. However, given
our focus on drought and lack of site-specific observational yield data, we judge our method to be
sufficient for the purposes of this paper. Additionally, it is more computationally feasible within
an ABM.
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Figure B.11: Simulated crop yield distributions for a range of CYF values. Note: density smoothing was applied to
the simulated distributions - there is no probability of negative yields.

B.7.2 Crop prices

Crop prices can vary considerably over time. In countries like Ethiopia, cereal prices are driven by
many factors, ranging from local supply-demand dynamics to global market forces (Baffes et al.,
2017; Brown et al., 2017). To represent temporal price dynamics in the ABM and proxy the effects
of region-level market dynamics, we created a regression model that relates a variety of climate
covariates (Table B.2) to monthly crop prices for the region of Amhara1. The dataset spanned from
2005 to 2015. Although the LSMS contains data about crop prices, we did not use this for two
main reasons: (1) given there are only three LSMS waves, it would be difficult to develop temporal
relationships for a single region; and (2) reported prices in the LSMS are not consistent between
households, thus adding an additional layer of heterogeneity that may obscure the climate-induced
drought effects.

Figure B.12 shows the application of a multiple linear regression model to predict these historic
prices using the variables in Table B.2. These figures show the results for in-sample predictions for
maize in Amhara, so are over-estimating the effectiveness of the model at predicting values that it
has not seen, but the results show that the model does well at predicting maize prices using solely
climatic information.

Figure B.13 shows the out-of-sample predictive accuracy of the linear model, determined using
a 50-fold random holdout analysis. The model struggles to predict the high/low prices, but captures
the general trends and deviations (though notably underpredicting the price spike in 2008, due
to the global food crisis). Inclusion of a greater number of covariates generally improves the
predictive accuracy (Figure B.13b), so a model using all 10 covariates was used in the ABM.
Finally, Figure B.13c shows the predictive accuracy of a model that contains solely a lag term,

1Sourced from the FAO GIEWS portal: http://www.fao.org/giews/food-prices/tool/public/#/dataset/domestic
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Table B.2: Covariates used to predict crop prices. All covariates were developed at monthly intervals for the region
of Amhara.

Column Description
Price Price (birr / 100kg)
Month Month
EDDs Regionalized average extreme degree days (EDDs) for this month
GDDs Regionalized average growing degree days (GDDs) for this month
avg sum pre Regionalized average total precipitation for this month
rain lag Regionalized average total precipitation from the previous year
EDD lag Regionalized average total EDDs from the previous year
GDD lag Regionalized average total GDDs from the previous year
rain Y TD Total year-to-date sum of rainfall
EDD Y TD Total year-to-date sum of EDDs
GDD Y TD Total year-to-date sum of GDDs

Figure B.12: In-sample predictive accuracy of the price regression model.
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Figure B.13: Out-of-sample predictive accuracy of the price regression model, assessed using a 50-fold repeated
random holdout. (a) predicted vs. actual values. (b) mean absolute predictive error (MAE) as a function of the number
of covariates included. (c) the out-of-sample MAE of a persistence model, which uses the previous price to predict the
subsequent price.

i.e., a model that simply predicts that next month’s price will be the same as this month’s. This
can be used as a benchmark against which to compare the results of the climate-based regression
models. We can never achieve as accurate predictions as a lag-only model, and our median MAE
is approximately twice as high as the persistence model. However, for the purposes of the ABM,
we will not know what last month’s price was, and therefore desire a method that can predict price
with reasonable accuracy independently of antecedent price levels. Hence, we conclude that the
model developed is sufficient for its purpose.

Finally, we note that due to our representation of droughts solely through reductions in rainfall,
the effects of temperature on crop prices during the drought are not incorporated.

B.7.3 Livestock dynamics

The state of the aggregated livestock herd density (head/ha) is updated at the end of each year,
representing the net effect of rainfall, grazing pressure, and buying/selling on regional livestock re-
production/mortality. Our rangeland model, including the values for some parameters (Table B.3),
was inspired by Janssen et al. (2000, 2004). However, we use the genetic algorithm calibration
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Table B.3: Coefficients used in the livestock-rangeland dynamics model. ‘**’ values were determined by the genetic
algorithm (section B.7.7).

Symbol Description Value Source
α1 Maximum livestock reproduction rate ** -
α2 Maximum livestock mortality rate 0.1 (Janssen et al., 2000)
g0 Initial grass value ** -
β Grass regeneration rate ** -
gmax Maximum grass biomass ** -
a Rainfall intercept value ** -
b Rainfall slope value ** -
cf Livestock consumption rate 400 (Janssen et al., 2000)

process to set values for several of these due to lack of site-specific environmental data.
Not all livestock are grazed on the rangeland; we assume that livestock are preferentially grazed

on crop residues, and that the portion of livestock fed by residues does not face any climate- or
sustenance-related mortality and thus reproduce at the maximum rate. The amount of crop residue
available for livestock consumption at the agent level is two times the harvestable crop yield in the
same year, with a 10% loss factor applied (Bogale et al., 2008; Assefa et al., 2013). The portion
of livestock that are not grazed on residues are grazed on the communal rangeland. The rangeland
model operates at the regional scale and is characterized by a livestock density (xt) and a grass
biomass (gt).

In updating the livestock density, we assume that reproduction is constrained by the scarcity of
grass and that mortality is higher under low rainfall conditions (i.e., due to lower water availability).
We included this rainfall-dependent mortality effect so that drought affects livestock in the year of
the drought and not only indirectly through grass biomass (Angassa and Oba, 2007). The updating
of the livestock density (xt) is completed as follows:

xt+1 − xt = α1 ∗ xt
(

1− cf ∗ xt
gt

)
− α2 ∗ xt ∗ (2− rft) (B.2)

where α1 is a constant representing the unconstrained reproduction rate, α2 is a constant rep-
resenting the unconstrained death rate, cf is a constant consumption factor, and rft is the rainfall
modifier effect. In using this representation, we assume that grazing pressure and rainfall affect
reproduction and mortality respectively, and that these effects are independent.

In line with (Janssen et al., 2000), climate is assumed to affect livestock herds solely through
annual precipitation amounts. The rainfall modifier effect is calculated as:

rt = a+ b ∗Rt (B.3)

where a and b are constants and Rt is the rainfall in year t. Note that it is possible for rt to be
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either negative or positive.
The growth or decline of grass biomass is influenced by both rainfall and livestock grazing. To

update the grass biomass, we use:

gt+1 − gt = β ∗ rt ∗ gt ∗
(

1− gt
gmax

)
− cf ∗ xt (B.4)

where β is the unconstrained grass regeneration rate and gmax is the maximum possible grass
biomass.

B.7.4 Beliefs and learning

Agents have beliefs about the probability they will receive a job, crop yields, crop price, livestock
growth, the effectiveness of fertilizer, and the timing of rainfall onset. In most cases, beliefs are
modeled using probability distributions, which are updated using Bayesian updating - a commonly-
used approach for representing beliefs for farmer decision-making (Ng et al., 2011).

Priors: The extent to which new information influences a belief is given by the strength of the
agent’s prior. Priors indirectly represent the “learning rate” of the agents; agents with stronger
priors will have slower learning rates, as new information has a smaller effect on their overall
beliefs. Agents are initialized with heterogeneous prior strengths, which are generated from a uni-
form distribution (∼ U(1, 10)). The bounds on this uniform distribution were chosen so that there
is considerable heterogeneity over the agent population, and so that agents’ beliefs significantly
develop over the course of the simulation period. It is assumed that each agent’s initial prior is the
same for all beliefs, but is scaled by a factor in some cases. A 13-year burn-in period (2003-15) is
run in each simulation, which reduces the sensitivity of the model to the belief initialization.

Job probability: This represents the agent’s belief about the probability that they will receive a
non-farm job on a given day. Since this is a belief about a probability, it is contained on the interval
[0, 1], and is modeled using a beta distribution:

π(θ) ∼ Beta(α, β) (B.5)

where π(θ) is the density of the agent’s believed job probability and α and β are hyperparam-
eters. These are updated using the beta-binomial conjugate prior, where, given n successes out of
m trials, the parameters are updated as:

α′ = α + n (B.6)

β′ = β +m− n (B.7)
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The agents’ initial mean beliefs (i.e., expected job probability, E[π(θ)]t=0) are generated from
U(0.1, 0.9), and the initial values for α and β are chosen such that this expectation is honored and
such that α + β (a representation of prior strength in a beta distribution) is equal to their prior
strength.

Fertilizer effectiveness: From the agents’ perspective, fertilizer is assumed to have some scal-
ing effect on baseline yields (i.e., Yfert = f ∗ Yno fert, where f is the scaling factor). This is a
simplistic representation, but creating a belief that is conditional/dependent on the yield belief or
perceived soil conditions would require additional parameters and complexity. However, we note
that a constant scaling effect will result in larger absolute yield differences in high-yield situations;
for example, if the baseline value is 1 t/ha, a factor of 1.3 amounts to a 0.3 t/ha difference, whereas
with a baseline value of 2 t/ha the same factor amounts to a 0.6 t/ha difference. Given that fertil-
izer generally provides larger benefits in non-drought years, our model qualitatively captures this
property.

The scaling factor (f ) is represented using a normal model with known variance (assumed to be
0.1). After each growing season, agents observe their and their neighbors’ yields with and without
fertilizer, and calculate an observed fertilizer effectiveness (x) representing the observed ratio of
fertilizer:no-fertilizer yields. Their prior belief is given by:

f ∼ N(µ0, σ
2
0) (B.8)

and is updated as:

f |x ∼ N

(
σ2
0

σ2 + σ2
0

x+
σ2

σ2 + σ2
0

µ0,
( 1

σ2
0

+
1

σ2

)−1)
(B.9)

where σ2 is the assumed known variance (0.1).
Agents are initialized with a µ0 ∼ U(1, 2), and σ2

0 = 0.1 ∗ prior strengtht=0.
Crop yields: Yields take on continuous, positive values. Agents evaluate the anticipated yield

of a potential farming option as a perceived baseline yield, multiplied by a perceived fertilizer

effectiveness value (if applicable). What follows is a description of agents’ baseline yield beliefs.
Drawing from (Magliocca et al., 2013), agents employ a number of backward-looking expecta-

tion models. Each of these models makes a prediction about an upcoming observation (of yields),
given a history of observations. All agents employ every one of these models, but have differing
levels of “trust” in each of them. Trust is influenced by the historical accuracy of the models at
predicting their yields, and determines the weight that the agent places on each model’s prediction
when making their decisions.

The motivation for representing these weights is so that agents consider multiple potential
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realizations of future yields when making their decisions. Given that the purpose of this model is
to assess climate resilience, explicit representation of agent-level uncertainty about future climate
is important. The range of models implemented here represent potential heuristics that farmers
could use when predicting what their (climate-influenced) yields will be in the upcoming year.
Future extensions of the ABM could include further or refined forecasting models.

The models employed are as shown below. Y refers to yield (quintals per hectare).

1. Last period model: Y (t+ 1) = Y (t)obs

2. Mean model: predict that Y (t + 1) will be the same as the mean of the last n periods. For
simplicity, let n = 2.

3. Trend model: predict that Y (t+1) will be an extrapolation of the previous two years’ values,
i.e., Y (t+ 1)pred = Y (t)obs + (Y (t)obs − Y (t− 1)obs).

4. Neighbor model: predict that Y (t+ 1) will be the same as the average of the agent’s imme-
diate neighbors’ previous beliefs.

Agents’ trust in each of these models is represented using weights (w), which are categorical
probabilities. These weights are interpreted as the probability that a given forecasting model is the
most accurate. Weights are represented using a Dirichlet-categorical distribution:

w1, ..., wn ∼ Dir(α1, ..., αn) (B.10)

y ∼ Cat(w1, ..., wn) (B.11)

where the subscripts 1, ..., n refer to each of the forecasting models, wi are weights/probabili-
ties, αi are hyperparameters, and y is an observation. These hyperparameters are updated as:

α′i = αi + 1(yt = i),∀i (B.12)

where 1 is an indicator function, and yt is the model that most accurately predicted the observed
value at time t. When evaluating a believed probability, the expected value is used, i.e.

P belief
i =

αi∑
j αj

(B.13)

All agents begin the simulation with equal trust in each of the forecasting methods (i.e., αi,t=0

are equal ∀i for each agent). An agent’s values for αi,t=0 are equal to their initial prior strength (i.e.,
∈ (1, 10)). Additionally, when initializing the model, it is not possible to calculate previous yields
for the forecasting models, so an initial value is drawn for each agent ∼ U(15, 25) and assigned to
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all prediction models. The 13-year burn-in period reduces the sensitivity of the resilience analysis
to this initialization.

When including the climate forecast in the simulation, this acts as a fifth forecasting model and
behaves exactly the same as the other models. The predicted yield is evaluated using the actual
CYF for the year. However, their information is not perfect, as they do not know the random
perturbation (εt from step 3 in section B.7.1).

Prices: Prices also take on continuous, positive values and are modeled in the same way as
yields, using an independent set of weights. However, explicit incorporation of uncertainty in
price beliefs would increase the computational burden of the decision module without justifiably
enriching the model, so agents only consider one value when making their decisions. This is the
weighted average prediction from each model, i.e.

Price(t)pred =
n∑
i=i

P belief
i ∗ Price(t)pred,i (B.14)

where i indexes the n forecasting models.
Agents are initialized with prior beliefs (for all models) equal to a simulated price using climate

data from the year preceding the simulation period. Initial model weights are set equal to agents’
initial prior strength.

Although prices are calculated on a monthly basis (section B.7.2), agents’ beliefs are equivalent
to the average annual price.

Livestock growth: Agents have a belief about the growth of their livestock herds. This growth
represents the net effect of reproduction and mortality, and is expressed as a fraction, where, for
example, -1 represents 100% of the herd dying, 0 represents no net change, and 0.5 represents a
50% increase in herd size. These beliefs are also modeled using the forecasting models described
above, and agents have an independent set of weights for their livestock growth beliefs. Again,
to limit the computational burden, the expected value over all forecasting models is used in the
decision-making process.

Agents are initialized with prior beliefs (for all models) ∼ U(−0.05, 0.05) and model weights
equal to their initial prior strength.

Rainfall onset: The onset of rainfall is modeled discretely as either early, on-time, or late.
Agents have a belief about the probability of each of these three events. These are modeled using a
Dirichlet-categorical distribution as described above. The expected value is used when evaluating
the probabilities (Equation B.13).

165



B.7.5 Decision-making

We employ a version of bounded rationality to represent the agents’ decision making.
Agent objectives: A common measure of prosperity in Ethiopia is the accumulation of live-

stock. Livestock can act as a “walking bank account” (Bellemare and Barrett, 2006), providing
income in times of need and growing through reproduction. As such, the accumulation of live-
stock is analogous to the accumulation of capital, or wealth, and can be said to be a primary goal
of many Ethiopian smallholders. However, a variety of factors often may prohibit the ability of
households to achieve this goal, and trade-offs must be made between wealth accumulation and
shorter-term priorities such as stabilization of welfare by reducing risk (Dercon, 2004), for example
ensuring the provision of food to sustain the family. This tendency has been empirically observed,
in which wealthy households are primarily motivated by profit maximization and poor households
by risk minimization and income stabilization (Demissie and Legesse, 2013).

In tandem to this, Chayanovian models represent peasant households making tradeoffs be-
tween consumption and labor (Chayanov, 1986), generally seeking to minimize the “drudgery” of
work. Here, income maximization is not a priority; rather, households seek to satisfy some level
of consumption with the minimal required labor input.

Given this, we assume that all agents’ primary concern is the satisfaction of their own food
consumption requirements (i.e., fundamentally, agents wish to be food secure). Above this, we
assume that each agent has a preference for either wealth accumulation or leisure (i.e., given an
agent is not at risk of being food insecure, they seek to maximize either their wealth or leisure).
Food insecurity is represented as a perceived number of months with food shortages. Wealth is
composed of cash, food stores, and livestock holdings converted to a monetary value.

To operationalize this into an objective function for the agents, we draw from Kaufman’s (1990)
theory of satisficing, and our agents have two levels of objective:

1. First, agents restrict their considered options to those that they believe will lead to the lowest
level of food insecurity.

2. If more than one option remains, agents then choose the option with the highest expected
utility.

Since decisions are made under uncertainty, the wealth and food security components of a de-
cision option both represent subjectively-perceived values. In addition, it is well-documented that
smallholder farmers are highly risk averse (Devereux and Sussex, 2000; Wossen et al., 2015; Ju-
mare et al., 2018) and that this can affect their decision-making (e.g., leading to so-called “poverty
traps” (Dercon and Christiaensen, 2011; Barrett and Carter, 2013)). Our model assumes that there
is no uncertainty in the allocation of labor. Hence, agents with leisure preferences simply maxi-
mize free time in step 2. For agents with wealth preferences, the returns to each decision option
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are uncertain. These agents calculate the expected utility of the wealth component of a decision
option d using the following exponential utility function:

EU =
n∑
i=1

wi ∗ (1− exp(−Wealthi
R

)) (B.15)

where wi is the weight (trust) that the agent places on yield forecasting model i (see section
B.7.4), andR is the agent’s risk tolerance parameter, the overall distribution of which is determined
by the genetic algorithm.

When evaluating the value of a livestock herd, a net present value (NPV) is calculated. Em-
pirical evidence suggests that rural households in Ethiopia have very high discounting rates, and
drawing from Holden et al. (1998), a discount rate (over a single year) of 71% is used 2.

Decision options: At the beginning of each year, agents make decisions about land, labor, and
livestock. The livelihood options considered are all feasible combinations of:

• Land-use - {farm, not farm}. This assumes that agents either plant crops on all or none
of their plots.

• Fertilizer - {yes, no}. Agents can choose to fertilize their fields. This is a binary decision.

• Livestock - {sell, do nothing, buy}. Here, sell represents an agent selling half of their exist-
ing herd, and buy represents buying the maximum number of livestock possible, given their
cash and labor availability.

• Non-farm - {0, 25, 50, 75, 100}. This represents the percentage of remaining labor that is
allocated to non-farm wage labor.

Additionally, agents choose the time at which they plant their crop (either early, normal, or
late). This decision is given by their perceived probabilities of rainfall onset time. For example,
if P (Late) = 0.2, there is a 20% chance that they will choose to plant late. Shifting of planting
date is a common ex-ante adaptation mechanism employed in an attempt to reduce the impacts of
climatic shocks (Bryan et al., 2009; Amare and Simane, 2017). Policies such as the provision of
seasonal climate forecasts can help to give farmers more information about the expected timing of
rainfall onset (Ziervogel et al., 2005; Luseno et al., 2003).

The livelihood options considered by the agents represent the major livelihood components
in the Ethiopian highlands and are similar to previous agent-based modeling efforts (Berger et al.,
2017). With respect to agriculture, agents have the option to apply fertilizer to their fields. Fertilizer

2In the survey carried out by Holden et al. (1998), respondents were asked how much money they would have to be
given today to subsitute for 100 birr in a year’s time. In Ethiopia, the average present equivalent was 58.6 birr, which
is equivalent to a discount rate of 70.6%
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use is relatively high in Ethiopia (for example, 75% of maize fields in Ethiopia were fertilized in
2015 (CSA, 2017)). We therefore do not model fertilizer choices using an explicit technology
diffusion model similar to other studies (Kiesling et al., 2012; Swinerd and McNaught, 2014).
Households also have the option to completely disengage from agriculture and leave their fields
unfarmed. Given the growing population pressure in Ethiopia, this is relatively uncommon in
practice (and indeed uncommon in the model), and households who do not themselves farm are
more likely to lease or rent their land out to others or engage in some form of sharecropping
(CSA, 2017). However, we do not believe that these practices would enhance the achievement of
the objectives of this paper and so have excluded them from our model. Additionally, as we are
not modeling land degradation, we do not include notions of leaving plots fallow or engaging in
land conservation measures in our model. This does not mean that we consider these decisions
irrelevant to long-term resilience of agricultural communities.

We have chosen to model a single crop. In reality, farmers often grow a diverse portfolio of
crops in order to minimize risk. However, in the modeled region, soil type and quality pose a major
constraint to crop production (Simane et al., 2013), and it is rare for farmers to switch crop types.
Hence, for the purposes of this paper we have made this simplification. If anything, this leads to
an underestimation of resilience.

Decision process: The decision-making process proceeds as shown in Algorithm B.1 (Ap-
pendix B.2). For each livelihood option, agents begin by sequentially allocating their labor between
different activities. First, labor is allocated to domestic activities (water and firewood collection).
The time required for each of these activities is constant throughout the year and over the simu-
lation, but is heterogeneous over the agent population. Time spent on these activities was drawn
directly from the LSMS survey data when making the artificial populations of agents. Second,
agents allocate time to agriculture (if relevant). Agricultural labor requirements vary throughout
the year, and are divided into land preparation, planting, weeding, and harvesting. Labor require-
ments scale linearly with land area, but we assume that plowing requirements are 50% lower for
agents that have at least two livestock (loosely drawn from (Lawrence et al., 1997)). This indirectly
builds in a preference for the leisure maximizing agents to maintain livestock herds. Third, labor is
allocated for livestock grazing. The LSMS contains no specific questions about livestock-related
labor allocations, so we assumed that labor requirements followed a simple linear model with a
herdsize-dependent value (slope). The coefficient for this model was determined by the genetic
algorithm. Finally, any remaining labor is allocated to off-farm wage-based labor based on the per-
centage of non-farm labor allocation imposed by the decision option in question (ranging from 0%
to 100%). The labor allocation for the above activities is not a decision per se, as the requirements
for domestic and farm labor are fixed for each agent and the requirement for livestock is fixed,
given the herd size.
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After allocating labor for the decision option being assessed, agents then estimate their monthly
wealth and food security status under each potential yield realization (given by the yield belief fore-
casting models (section B.7.4)). They do this by assessing whether they will be able to satisfy their
consumption requirements through their own food stores (from previous crop harvest), expected
returns from livestock, and food purchase from the market. Monthly fixed expenditures are im-
posed, which are higher for larger and wealthier households 3. Expected wealth is then calculated
at the end of the year as the discounted value of all livestock assets, stored crop, and cash. Us-
ing this expected wealth, wealth-maximizing agents then calculate an overall expected risk-averse
utility (Equation B.15) for the option. Finally, agents select the option that they believe will lead
to the lowest level of food insecurity. If there is a tie, the remaining option with the highest utility
(based on either wealth or leisure) is selected.

Uncertainty: Because the concept of resilience is inherently related to uncertainty, it is neces-
sary that agent-level uncertainty is specifically represented in the decision-making model. This is
often ignored in agent-based models of agriculture. Agent-level uncertainty is represented through
beliefs about crop yields. When evaluating the overall utility of a decision-option, each wealth-
maximizing agent calculates a utility for each of the different belief forecasting models. These
separate utilities are then weighted by the agent’s trust in each forecasting model to give an overall
expected utility. Refer to section B.7.4 for an overview of the representation of agent beliefs.

Although agents also have different levels of trust in the forecasting models for their beliefs
on prices and livestock growth rates, only the expectation of these beliefs is evaluated in their
decision-making. This simplification has been made for computational reasons, as evaluating
the probability of each distinct forecasting model combination (e.g., (price, yield, livestock) =
(linear trend, neighbor, last period)) would involve m3 distinct computations (where m is the
number of forecasting models).

Discussion: Clearly, human decision-making is incredibly complex, heterogeneous, and
context-specific. We (as a society) are far from a universal, causal mathematical decision model,
and the decision-making model in the ABM is far from perfect. Rationality and utility maxi-
mization have long been criticized as inaccurate and founded on erroneous assumptions (Simon,
1955, 1979; Kahneman and Tversky, 1979). However, utility maximization remains the primary
decision methodology implemented in previous ABMs of agriculture (Kremmydas et al., 2018).
This has also been subject to criticism (Schulze et al., 2017; Malawska and Topping, 2016; Levine
et al., 2015). Ideally we would conduct specialized farmer interviews to shed light on the decision-
making processes relevant for representing livelihoods and household-level responses to shocks.

3We fit the following linear model using the 2015 LSMS data: [cost] = 891.3 + 18.7[nonag hrs pw] +
305.1[adulteq]+83.6[livestock], where cost is the annual fixed cost for the household, nonag hrs pw is the amount
of hours the household spends per week on non-agricultural (wage-based) activities, adulteq is the household size in
adult equivalents, and livestock is the number of livestock owned.
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This would give us a better understanding of (1) which alternatives are considered and by whom,
and (2) how options are evaluated and assessed against other alternatives. However, absent of such
information, and to not become overly distracted from the purpose of this model (to demonstrate
the assessment of agricultural resilience), we have opted for the above framework that incorpo-
rates many of the major livelihood processes and models decision-making using a bounded ratio-
nality, satisficing framework. Future work could refine and test the sensitivity of the model to the
decision-making process to provide more realistic policy-relevant conclusions for Ethiopia.

B.7.6 Food consumption and food security

In the ABM: Food requirements are expressed with respect to calorie intake. The baseline per-
capita calorie requirements are set at 2,200kCal/day. This is in line with (CAADP, 2013), as well as
values used in previous Ethiopia-specific studies (Clay et al., 1999; Bogale et al., 2005). Since the
model is focused on cereal crop production, the assumption is made that agents receive all of their
calories from cereal crops. This is a simplification, and ideally dietary diversity would be explicitly
modeled to give a more comprehensive picture of food security, but this would complicate the
model and the simplification was deemed to be appropriate for the purposes of this study. The
per-capita calorie requirement was converted into a weight-based crop requirement using cereal
crop calorie densities were taken from the USDA Food Composition Database 4. This resulted in
a monthly per-capita requirement of 0.18 quintals (18 kg) of cereal crop.

Generalizing: The FAO’s (2008) widely-employed definition defines food security as consist-
ing of four pillars: (1) The availability of an adequate quantity of food (i.e., sufficient supply/pro-
duction); (2) adequate access to this food, both in a physical and monetary sense; (3) sufficient
biological utilization of any consumed food (which could be compromised by, for example, gas-
trointestinal viruses); and (4) stability of the above three factors over time. The ABM incorporates
elements 1, 2, and 4. Food availability is influenced by farming decisions and climate, which
interact to influence household-level yields. Access to food is explicitly represented, as agents
must have the (financial) means to procure food for their consumption. Additionally, transport and
transaction costs are included in the model, reflecting the fact that buying and selling prices are
not necessarily equal. The ABM allows for measurement of household-level and regional food
insecurity on a monthly basis, so also incorporates the stability pillar. Utilization of food is beyond
the scope of the model and is an interesting avenue for future work (Nicholson et al., 2019).

Empirically, the measurement of food insecurity is an elusive concept (Barrett, 2010), and there
exists a wide variety of food insecurity indicators. One of the oldest (and simplest) indicators of
food security is calorie intake and deprivation. However, the relevance of this to food security

4https://ndb.nal.usda.gov/ndb/
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outcomes (e.g., stunting and wasting) has been subject to debate (Headey and Ecker, 2012). Other
methods, such as dietary diversity, are argued to be more robust food security indicators (Headey
and Ecker, 2012; Leroy et al., 2015; Pangaribowo et al., 2013), however its quantification is more
complex and involved than other measures. Given that the ABM only models a single crop, we
represent food security with respect to calorie intake. Cereals make up the majority of consumption
in rural Ethiopia (Worku et al., 2017), and the majority of agriculture is cereal-based, so this is an
appropriate place to start. Future efforts could increase the number of crops represented in the
model, and work towards quantifying food security with respect to dietary diversity or another
more complete measure.

B.7.7 Empirical parameterization - genetic algorithm

Overview: An indirect calibration approach (Windrum et al., 2007) was taken to parameterize
the model empirically. Where possible, parameters (e.g., household size, number of plots, labor
availability) were taken directly from empirical data. However, a number of uncertain parameters
remained. We employed a parameterization approach using a genetic algorithm (GA).

Uncertain parameters: Table B.4 identifies the uncertain parameters. For each of these, a wide
range of plausible values was specified. The purpose of the GA was to refine the range of these
uncertain parameters by identifying regions of the parameter space that lead to model outputs in
accordance with empirically-observed data.

Empirical data: The Living Standards Measurement Study (LSMS) has been conducted in three
waves in Ethiopia (2011/2013/2015) and provides household-level demographic, agricultural, and
consumption data that is representative at the regional level (e.g., Amhara). We generated five dis-
tributions from the LSMS data to be used for the parameterization procedure (refer to Figure 3.5).
These distributions were generated using the 2015 LSMS data, subsetted to Amhara. The distri-
butions selected for fitting were chosen because of (1) their direct mapping to emergent outcomes
of the ABM, and (2) their relevance for the assessment of resilience. For example, labor allocated
to non-farm activities is not something imposed by the structure of the ABM, but emerges as a
result of the interaction between the different processes. Similarly, the distribution of food security
throughout the population is not imposed, but emerges, and forms the basis of the assessment of
resilience. Ideally, for the most robust validation of the model, we would compare model outputs
to empirically-observed effects of shocks on food security. However, as far as we are aware, these
data are not available. Hence, the best we can do is to compare food insecurity measures from the
LSMS with outputs from the ABM run under historical climatic conditions.

Objective function: The goal of the GA is to optimize an objective function by finding the
combinations of parameter values that lead to the best objective values. Here, our goal was to both
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Name Unit Range Description Fitted
value

Agent properties
1 min sust % 0.2, 0.7 Sustenance deficit threshold for “se-

vere” food insecurity
0.65

2 frac income max fraction 0, 1 Fraction of agents with income maxi-
mization preference

0.21

3 risk aversion mult - 1, 1000 Multiplier on risk aversion coefficient 834
Market
4 job availability hrs/mo/ag. 0, 100 Job availability 2.65
5 crop capital birr/ha 0, 500 capital cost required to engage in agri-

culture
282

6 labor wage birr/day 8, 100 Labor wage per day 67.4
Labor
7 per cap labor hrs/pp/day 5, 13 Labor availability 7.21
8 farm labor mag - 100, 1600 Multiplier on farm labor requirements 247
9 ls per head herding hrs/head/mo 0, 50 Livestock labor requirements 26.3
Environment
10 planting fraction fraction 0, 1 Fraction of land that is planted 0.90
Rangeland
11 grass regen - 1, 5 Grass regeneration rate 2.32
12 rf intercept - −1, 1 Rainfall effect with no rainfall -0.91
13 rf slope fraction 0.001, 0.004 Change in rainfall effect per mm of rain 0.0013
14 ls max growth fraction 0.2, 0.5 Unconstrained livestock reproduction

rate
0.45

15 g max kg/ha 400, 10000 Maximum grass biomass 1077
16 g0 kg/ha 400, 4000 Initial grass biomass 1001

Table B.4: Uncertain parameters refined by the genetic algorithm. All parameters were generated uniformly over the
specified range.

minimize the difference between the empirically-observed (E) and ABM-generated (A) distribu-
tions and have the model recreate several desired qualitative patterns (Table B.5). We refer to this
overall difference as the “loss”. For each distribution, we calculate the loss using a measure of
comparability between the E and A histograms. To describe this, we refer to x as the histogram
value (e.g., 5 livestock) and y as the height of the histogram bin height (e.g., 10% of households).
The histogram loss is composed of two components. The first component (L1) is equal to the sum
of the squared differences between each histogram bin height in E and A:

L1 =
X∑
x=1

(yAx − yEx )2 (B.16)

whereX denotes the maximum x value inE. The second component of the loss is an additional
penalty added when A contains data that is outside the bounds of E (e.g., if the ABM produced
livestock herd sizes greater than any empirically-observed values). This is calculated as:

L2 =
1

Nagents

∑
agents:x>X

(x−X
X

)2
(B.17)

These two loss components are added to give an overall loss for each distribution. The losses
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Description
1 The grass biomass does not decrease to zero at any time
2 At least 70% of agents engage in farming on average
3 There is uncertainty in the job market: the probability of getting a non-farm

job is always less than 1
4 No agent ends the simulation with more than 80 livestock

Table B.5: Qualitative patterns used for the genetic algorithm

Name Value
Number of generations 200
Population size 38
Chance of mutation 2%
Type of crossover Uniform
Type of selection Binary tournament

Table B.6: Genetic algorithm parameters

are then summed over all distributions.
For each qualitative pattern, a large value (10) is added to the objective function if the model

does not generate the pattern. This is a large penalty in comparison to the histogram losses; thus,
the GA prioritizes models that generate the qualitative patterns, then seeks to maximize the his-
togram fits.

For the fitting, the ABM was run from 2003-2015, and the histogram loss functions were
computed by taking the average of the final three years’ of data in the ABM.

Genetic algorithm: The genetic algorithm settings are displayed in Table B.6. The GA was
initialized with a population of “solutions”, each characterized by a randomly-generated set of
parameters (generated uniformly over the ranges defined in Table B.4). For each of these solu-
tions, the ABM was run and the loss computed. We only ran a single replication of the ABM for
each potential parameter set as we found that changes in model parameters contribute much more
variability than model stochasticity itself.

After calculating the loss, parents are identified through a binary tournament selection (repeat-
edly randomly identifying two individuals and selecting the fitter of the two to be a parent). A
population of parents equivalent to the original population size is created, these parents are paired,
and each set of parents generates two children, combining their parameters (genes) using uniform
crossover. There is a chance that each gene will undergo mutation, whereby a random value is
generated from the defined uniform distribution.

These children then comprise the subsequent “generation” in the algorithm. The ABM is run
for the new population, loss values are calculated, and further selection takes place. The GA is run
for a pre-defined number of generations.

Results: Table B.4 shows the resulting restricted parameter values and Figure 3.5 in the main
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body of the paper compares the empirical distributions with the ABM-generated distributions under
the final parameterization.

B.7.8 Model convergence

Since the ABM is stochastic, another factor to consider to give confidence in the validity of any
estimates generated by the model is convergence. A sufficient number of model replications must
be conducted so that the estimates are not excessively influenced by randomness. The required
number of simulations, n∗, was determined as suggested in Law (2008), by conducting an initial
number of simulations (n) and then determining n∗ as:

n∗(γ) = min
{
i ≥ n :

ti−1,1−α/2
√
S2(n)/i

|X̄(n)|
≤ γ′

}
(B.18)

where S2(n) is the variance of the mean in the initial n replications, X̄(n) is the mean estimate
in the initial n replications, and γ′ = γ/(1 + γ) is the adjusted relative error. The outcome of
interest for the model convergence testing was the overall estimated resilience of a simulation (i.e.,
the area above the resilience curve).
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C.1 EAGA hyperparameter experiments

The specification of hyperparameters for the EAGA presents tradeoffs between model fit, model di-
versity, and computational burden. Practical considerations will likely influence decisions in most
applications, and different ABMs will respond differently to hyperparameter changes. Thus, we
do not present concrete guidelines for hyperparameter selection here, but qualitatively explore the
effects of hyperparameter changes in our case study application. The experiments we conducted
are summarized in Table C.1. Due to stochasticity in the initialization of the EAGA solutions, we
repeated each experiment three times (i.e., three different random number seeds). Computational
requirements prohibited us from running more replications, but we believe our results reveal the
general trends.

C.1.1 Number of subpopulations (NSP )

The primary effect that we expect as NSP is increased is that the solutions will reduce in diversity
(i.e., the configuration space becomes more crowded). We observe this effect, with a dramatic
decrease in diversity above three SPs, and then a progressive decrease beyond this (Figure C.1A).
Increasing beyond 20 SPs has little effect on the solution diversity, suggesting that the additional
solutions in the 25SP and 30SP experiments populate different regions of the configuration space.

VaryingNSP had little effect on the fitness to the empirical data in the selected solutions (Figure
C.1B) or the spacing within each SP (Figure C.1C). This suggests that, for all NSP considered,
the EAGA is able to find a set of reasonable solutions and that 250 generations are sufficient to
converge in the objective function value for these selected solutions.

Finally, at allNSP above three, there were some SPs that contained no feasible solutions (Figure
C.1D), thus reducing the number of model configurations that can be selected. This could suggest

Table C.1: Number of model replications required for hyperparameter experiments.

Experiment # gens NSP † pop size # seeds # model runs
NSP 250 3 20 3 45,000

5 75,000
10 150,000
15 225,000
20 300,000
25 375,000
30 450,000

1,575,000
pop size 250 5 10 3 37,500

20 75,000
30 112,500
40 150,000

375,000
† Note that this value includes the master SP
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issues with the genetic algorithm getting stuck in local minima that do not fit the data well enough
to be considered feasible. A larger number of GA replications may help these SPs to escape
these regions. Because the fraction is not strictly increasing in NSP , this demonstrates that the
configuration space is not yet fully “saturated” even with 30 SPs; there likely exist more model
configurations that could satisfy the feasibility requirements.

Choosing the “appropriate” number of SPs, given this information, is clearly a subjective deci-
sion. As stated in the main body of the paper, practical considerations also have to be considered
(e.g., computational requirements or ease of communication). For ease of display and to enable
investigation of each individual SP, we chose four SPs (five, including the master) in the main
body of the paper. However, policy-relevant applications investigating the robustness of policy in-
terventions may choose to use a larger number of SPs to more fully cover the model configuration
space.
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Figure C.1: Influence of the number of subpopulations (NSP ) on EAGA convergence. The plotted values in A, B, and
C represent the minimum / maximum / mean over the selected final solutions (i.e., the most diverse feasible solution
in each SP). D shows the fraction of SPs that contained no feasible solutions.

C.1.2 Population size

The results reveal a slight tradeoff between solution diversity and objective function value as pop-
ulation size is varied; small population sizes are unable to achieve as good fits to the data within
the modeled number of generations (Figure C.2B and D), yet foster slightly more diverse solutions
(Figure C.2A). The progressive reduction in diversity is because larger population sizes result in a
greater degree of “smoothing” of the centroid locations as the parameter values of a larger, more
diverse (Figure C.2C) population of solutions are averaged.

Again, choosing an appropriate population size is a subjective decision. We chose to use a
population size of 30 in our application because it achieves a good balance between diversity and
fitness, yet does not have issues with invalid SPs (Figure C.2D).
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Figure C.2: Influence of the population size within each SP on EAGA convergence. The plotted values represent the
minimum / maximum / mean over the selected final solutions (i.e., the closest feasible solution to each SP centroid).

C.2 Comparison of ABM-generated and empirical patterns
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Figure C.3: ABM-empirical comparison for SP 2.
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Figure C.4: ABM-empirical comparison for SP 3.
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Figure C.5: ABM-empirical comparison for SP 4.

C.3 Resilience analysis with a 20% drought
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Figure C.6: Effect of a 20% drought on household food security.
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Figure C.7: Relative benefit of the two interventions under a 20% drought.
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C.4 Case study experiments with nine SPs

C.4.1 Diverse model calibration

An experiment with nine SPs yielded similar results, but one of the SPs did not become feasible
after 300 generations of the EAGA (Figure C.8). As a result, only eight parameterizations were
selected for the resilience analysis.

The final parameterizations in this experiment are on average around five units apart in the
normalized parameter space (Figure C.8B), which is slightly less diverse than the experiment with
four SPs and indicates a crowding of the parameter space. However, there are now two models that
contain the satisficing decision-making representation (SP1 and SP3; Figure C.9) and a greater
overall diversity in some parameters such as the planting fraction.
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Figure C.8: EAGA convergence measures with nine SPs.
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displayed here.
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C.4.2 Resilience analysis

The greater overall model diversity leads to a greater diversity in the effects of drought on house-
hold food security (Figure C.10). In particular, the maximum effect is not experienced until several
years after the drought in SP3, and there is a permanently decreased level of food security in SP1.

The relative benefits of the interventions are also more variable over the eight selected models
(Figure C.10). Five of these models show results similar to those in Figure 4.10 in the main
body of the paper, while SPs 3, 4, and 9 show some evidence of a greater benefit in increased
job availability. However, in seven of the eight retained parameterizations, provision of climate
forecasts provides larger benefits to resilience than increased job availability.

SP3 displays the most discordant behavior of the SPs. The main way in which SP3 differs
from the other SPs is in the livestock reproduction rate (ls growth rate; Figure C.9); SP3’s lower
livestock reproduction rate contributes to a slower recovery time in the wake of a drought (Figure
C.10), as more livestock must be purchased to recover herd sizes and, in turn, food security. As a
result of this, the additional financial capital provided by an increased job availability yields larger
benefits to food security than the climate forecasts, which only provide financial capital indirectly
through better agricultural management.
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Figure C.10: Effect of a 50% drought on household food security with nine SPs. Note that no solutions in SP2 were
feasible so it was not included in the resilience analysis.
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Figure C.11: Comparison of policy effects with nine SPs.

C.5 Sensitivity of selected model configurations

We conducted a univariate sensitivity analysis to assess the stability of the selected model con-
figurations. To do so, we sequentially perturbed each of the continuous parameters from their
calibrated values and assessed the effect of this on the fit to the empirical data. We did not include
the model structural elements or the categorical parameter in this assessment. We note that a uni-
variate sensitivity analysis does not capture potential dependencies between parameters (Lee et al.,
2015), and, as such, we view these results in an exploratory manner.

The results reveal a wide variability in the stability of the models to parameter perturbations
(Figure C.12). SP1 and SP2 are in general more stable parameterizations than SP3 and SP4 (i.e.,
their shaded bands in Figure C.12 are wider). Additional experimentation confirmed that the points
at which the decline in fit increased above 20% were generally due to the model failing to generate
one of the qualitative patterns, thus having a value of one added to its loss. SP3 and SP4 were each
on the verge of not recreating one of these patterns, so small deviations in many of the parameters
resulted in a dramatic decrease in calculated fit.

Some parameters (particularly rf slope, rf intercept, and risk aversion mult) exert very
little influence on the models’ fit to the data. Given these results, these parameters could likely be
excluded from the DMC process with little effect on the results. This kind of sensitivity analysis
could inform the iterative development of a model by sequentially excluding the parameters that
the model is not sensitive to.
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D.1 Additional figures

Figure D.1: Effects of the strategies on various model characteristics relative to the baseline scenario for each type
of household. In all cases, the horizontal line at zero represents no change relative to the baseline model conditions.
“Change in P(coping rqd)” refers to change in the probability that a household must sell their livestock at each time
step. “Change in P(wealth ¿ 0)” refers to change in the probability that a household has positive wealth (i.e., livestock)
at each time step.
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Figure D.2: Comparison of insurance and cover cropping on P (CC � Ins)shock for the three types of household,
which differ solely in their land holdings. Land-poor households have 1 ha of land, middle households have 1.5 ha,
and land-rich households have 2 ha.

Figure D.3: Comparison of insurance and cover cropping on shock absorption as the magnitude of the drought is
varied, with Tshock = 10. The vertical threshold at 0.25 represents the microinsurance climate index.

Figure D.4: Influence of strategy characteristics on the shock absorption comparison. The black dots represent the
baseline settings used in other experiments. In all cases, we simulated a 0.2 magnitude shock with Tshock = 10 and
averaged results over all household types. Results were qualitatively similar for each individual household type.
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Figure D.5: Influence of strategy characteristics on the poverty reduction assessment for different household types
with Tdev = 20. Note that poverty reduction measures households that have lost all their wealth; since the land-rich
households (2 ha) very rarely lose their wealth even under baseline conditions (Figure 5.5), the stark differences seen
in this assessment (right-most plots) for these households are not meaningful.
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Figure D.6: Evolution of model metrics under different parameter settings. Plotted values represent averages over all
household types. “P(livestock sale required)” represents the probability that any livestock sale is required, independent
of the number.
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D.2 Utility analysis

The focus in the main body of the paper centered primarily around the two measures of resilience:
shock absorption and poverty reduction. Our results showed that—–predicated on the structure of
the model and scenarios–—cover cropping reduces poverty by increasing income over time, while
microinsurance effectively buffers income in the wake of a drought. However, other economic
indicators may be relevant for households that are not as vulnerable to poverty (i.e., land-rich in
our analysis). In particular, risk-averse households may be interested in reducing income variability
in addition to increasing mean income. Hence, microinsurance may provide benefit to these types
of household that our resilience analysis does not identify.

To formalize this benefit, we calculated an expected risk-averse utility on income over time
under each scenario. We used an exponential utility function of the form 1− exp(−X/R), where
X represents income and R represents the household’s risk tolerance. Figure D.7 shows that the
utility of more risk-averse households (i.e., with lower risk tolerance) is more strongly benefited
by insurance than cover cropping. Due to the delay in cover cropping’s benefits on income, cover
cropping leads to a short-term reduction in utility, which after 20-50 years increases to eventually
exceed that of microinsurance. At lower levels of risk aversion (i.e., higher risk tolerance), the
shape of the utility effects more closely mirrors that of expected income (Figure D.7). Hence,
by reducing income variability (specifically, the downside income risk), microinsurance may be a
more promising strategy for risk-averse households that are not in poverty or whose crop yields
are not highly nutrient limited.

When both strategies are implemented together, the long-run utility exceeds that of both strate-
gies in isolation, demonstrating a complementary effect on utility. However, due to the short-term
financial tradeoffs associated with cover cropping, the shorter-term utility of both options together
is lower than with microinsurance. Nevertheless, particularly for a risk-averse household, at no
point does the combined utility decrease below the baseline condition. This demonstrates that,
from a utility perspective, the welfare impacts of the short-term losses associated with cover crop-
ping may be offset by the risk reduction offered by microinsurance.
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Figure D.7: Expected utility over time for a land-rich household under three levels of risk tolerance. Higher risk
tolerance corresponds to lower risk aversion.

D.3 Synergies

The analysis in the main body of the article reveals a story of complementarity between microin-
surance and cover cropping. Here, we examine whether the strategies, when implemented together,
lead to synergistic effects. We conceptualize a synergy as a situation in which “the sum is greater
than the parts”. In this case, this represents:

Benefitboth > BenefitCC +BenefitIns (D.1)

where the “Benefit” is measured in the same way as shock absorption (Equation 5.3).
The results (Figure D.8) reveal that the modeled strategies exhibit synergies with respect to

shock absorption in the long-term. In the short term, however, the combined effect is less than
the sum of its parts. This is mainly explained by cover cropping’s short-term detriment to shock
absorption while soil organic matter (SOM) is being built. The long-term synergy is not surprising,
given the structure of the model; each strategy operates through distinct mechanisms: cover crop-
ping through the building of SOM and microinsurance through income stabilization. Each of these
mechanisms enables the wealth-SOM feedback loop, consequently contributing to higher income.
Due to this feedback, the combined effect of the strategies is heightened, and therefore synergistic.
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Figure D.8: Probability that both strategies together provide larger benefits than the sum of both strategies separately.
This represents the outcomes for a “middle” household and a 0.2 magnitude drought.

D.4 Effect of microinsurance climate index

The microinsurance scheme is structured such that the insurance is “fair”. For instance, if the
insurance provides payouts in 5% of the years, the annual cost is 1/20th of the payout. Similarly,
if the insurance provides payouts in 20% of the years, the annual cost is 1/5th of the payout. Thus,
an insurance scheme with more frequent payouts entails higher premium costs. As a result, an
insurance scheme that provides more regular payouts provides a lower net benefit to the household
in a year in which the insurance is triggered. (Note that the strike rate affects the rainfall value at
which the insurance is triggered.)

This characteristic results in a tradeoff in our model with respect to the microinsurance cli-
mate index (Figure D.9). Here, “climate condition” represents the annual realization of climate.
The probability of a given climate condition occurring is influenced by the climate distribution
(i.e., climatic context; here ∼ N(0.5, 0.2)), but the outcomes in Figure D.9 under a given climate
condition depend only on the climate condition itself.

For example, under the most extreme plotted climate condition (0.05), an insurance payout is
received for all insurance indexes (strike rates). This payout is the same for all insurance indexes
(5% insured, 10% insured, etc.). However, the cost of the premium is highest in the 30% insured
case (i.e., 30% of the payout). This high premium means that, despite the payout being received,
the household receives a lower net benefit in this year. As a result, the probability with which
it must sell livestock is higher (0.55) than under an insurance scheme that provides less regular
payouts (e.g., 0.10 probability under the 5% insurance index).
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However, the higher insurance indexes (e.g., 30% insured) also provide payouts under less
extreme drought conditions. For example, when the climate condition is 0.4, a payout is received
under the 30% insurance index but not under any of the other assessed indexes. As a result, the
probability with which livestock selling is required is lowest for the 30% insurance index under
this climate condition.

Together, this represents a tradeoff in which insurance that provides more regular payouts offers
protection under moderate climate conditions at the expense of vulnerability under more severe
climate conditions, whereas insurance that provides less regular payouts protects against the severe
climate conditions at the expense of vulnerability under more moderate conditions. Depending on
the distribution of the climate condition (here, ∼ N(0.5, 0.2) truncated at 0 and 1), the net effect
of this tradeoff will change as the probability of more and less extreme climate conditions shifts.
In addition, farmer-level risk preferences may influence the aversion to different kinds of loss.
Thus, the robust design of index-based microinsurance schemes in case study applications should
consider the potential for this type of tradeoff.

Figure D.9: The probability that livestock selling as a coping measure is required as a function of the annual climate
condition in a simulation under regular climate variability (∼ N(µ = 0.5, σ = 0.2)) and different insurance coverages.
For example, a point (0.4,0.7) represents a case in which during a year with a climate condition at 0.4 (affecting crop
production) there is a 70% chance that the household’s annual income is insufficient to satisfy their consumption and
they must sell livestock resources. 5% insured represents an index-based insurance in which a payment is received in
5% of years. This is for a land-poor household only.
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D.5 Sensitivity analysis methodology and additional results

D.5.1 Parameter sampling

We conducted a global sensitivity analysis on the majority of the parameters of the model (see Table
D.1 in the ODD+D description for the selected parameters). To generate perturbed parameter sets
we employed the following procedure:

1. Generate a random deviation ai for each of the P parameters (a = a1, ..., aP ), allowing the
deviation to be 30% upwards or downwards: a ∼ U(0.7, 1.3)P

2. Perturb each parameter from its baseline valueXi(X = X1, ..., XP ) by this simulated value,
giving a perturbed parameter set: S′

r = aX

3. Repeat this procedure 10,000 times, giving S
′

= S
′
1, ...,S

′
10000. Here, we used latin hyper-

cube sampling to increase the efficiency of the sampling of the parameter space.

D.5.2 Model evaluation

For each set of perturbed parameters S
′
r calculate the Quantity of Interest (QoI), where the QoI

takes two forms:

1. QoIshock represents P (CC � Ins)shock in Experiment 1 (Table 5.1) with Tassess = 5 and
Tshock = 10 and a 10% shock.

2. QoIpov represents P (CC � Ins)pov in Experiment 2 (Table 5.1) with Tpov = 50.

The model evaluation procedure results in a “dataset” of sorts, where the independent variables
are the parameters (S′, with P columns and 10,000 rows) and the dependent variable is the quantity
of interest (QoIpov or QoIshock of size 10,000).

D.5.3 Gradient-boosted regression forest

The goal of the sensitivity analysis is to assess how changes in the parameters affect the QoI.
Hence, we are interested in exploring the function f in the relationship QoI = f(S′). This
function may be non-linear. We trained a gradient-boosted regression forest (GBRF) to yield a
non-parametric representation of f . A GBRF consists of a set of simple regression trees that are fit
in a stagewise manner, with each successive tree being fit to the residuals of the previous. GBRFs
originated in the machine learning community, and generally exhibit a high predictive performance
(Elith et al., 2008). We do not discuss this method in detail here and refer interested readers to Elith
et al. (2008).
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D.5.4 Assessing variable influence

We use partial dependence plots (PDPs)-—a common visualization technique for non-parametric
models—to visualize the associations between changes in each parameter and the QoI, as assessed
by the GBRF. Each point (x, y) on a partial dependence plot for parameter pi represents the average
prediction made by the GBRF (y value) if every instance of pi is set to x, keeping all other param-
eters (p−i) at their original values. The slope of the PDP gives an indication of both the magnitude
and direction of influence of the parameter on the QoI. A PDP for a linear regression model would
show a straight line representing the regression coefficient (β). To generate confidence bounds on
our PDPs we bootstrap the “dataset” 100 times, each time re-training the GBRF and re-estimating
the PDP. We also report a measure of variable importance using the scikit-learn package in Python
(Pedregosa et al., 2011) (Figure D.10).

D.5.5 Supplemental results

Figure D.10: Importance of different model parameters in the sensitivity analysis, as calculated by the GBRF. The
“variable importance” measure is calculated by scikit-learn in Python and is a measure of the amount of variance that
each variable explains.
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D.6 Convergence analysis

The goal of the convergence analysis was to estimate how many replications of the model are
required to generate model outputs that are not significantly influenced by stochasticity within
the model. We refer to this number of replications as r∗. In our case, the quantity of interest is
P (CC � Ins)shock. We expect that this probability will vary considerably with both Tshock and
Tassess. Hence, we choose r∗ = max(r∗Tshock,Tassess), ∀(Tshock, Tassess) over Tshock ∈ {5, 10, 20}
and Tassess ∈ {1, 3, 5, 7, 9, 11, 13}.

Our approach for estimating each r∗Tshock,Tassess was as follows:

1. Run a large number of model replications (1000).

2. Assume the estimated P (CC � Ins)shock over these replications (X̂1000) is the “true” value.

3. For each r ∈ {1, ..., 1000}, calculate the absolute error (AE) from the true value. For exam-
ple, AE50 = |X̄1000 − X̄50|, where X̄50 represents P (CC � Ins)shock calculated over the
first 50 replications.

4. Choose r∗ as the number of replications at which the absolute error in the estimated proba-
bility falls below 5%, i.e., r∗ = argmaxn(AEn > 0.05).

The threshold of 5% was chosen as we do not require highly precise estimates of P (CC �
Ins)shock for our assessment. We acknowledge that our approach is relatively ad-hoc and not for-
mally statistically grounded. However, it captures the essence of what we desire: estimates of
P (CC � Ins)shock that are robust to within-model stochasticity. We considered using the ap-
proach presented in Abreu and Ralha (2018), but the coefficient of variation (i.e., the standard
deviation of P (CC � Ins)shock divided by the mean) is unstable with estimates near zero. Ad-
ditionally, we considered the approach presented in Law (2008) (pg. 502), but because our model
is not computationally intensive it was feasible to run a large number of simulations and calculate
X̄n∀n and we adopted the approach described above.

The results indicate that r∗ = 188 is sufficient (Figure D.11). To be conservative, we run
the model at least 300 times for all experiments. For some figures we used a higher number of
replications to improve visual clarity.
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Figure D.11: Absolute error in the estimate of P (CC � Ins)shock as the number of model replications is increased.
Each black line represents a unique (Tshock, Tassess). The red lines show the point at which the absolute error falls
below 0.05 for all (Tshock, Tassess).
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D.7 ODD+D model description

D.7.1 Overview

D.7.1.1 Purpose

The model was developed to investigate the short- and long-term resilience of a smallholder agri-
cultural farming system and the effects of different household-level adaptation strategies on this
resilience. It is intended to be used by researchers interested in exploring long-term dynamics of
agricultural adaptation options. The model represents a mixed crop-livestock agricultural system,
designed to be generally representative of a smallholder agricultural system in the Global South.
Given the interest in exploring the general mechanisms through which different adaptation options
affect resilience, the model is intentionally stylized and does not draw from empirical data to be
representative of a specific location.

D.7.1.2 Entities, state variables, and scales

The model represents smallholder households that engage in agriculture and carry their wealth in
the form of livestock. Each household is defined by a static land holding and has dynamic in-
come and livestock holdings. Livestock are grazed on a combination of on-farm crop residues
and an external rangeland, which is not explicitly modeled. The household’s land has an evolving
level of organic nutrients, which represent SOM and soil organic N together in a stylized man-
ner. The model is spatially implicit, no environmental feedbacks beyond the household scale are
represented, and households do not interact with each other.

D.7.1.3 Process overview and scheduling

The model operates at an annual time scale. Each year of the simulation involves calculation of:
(1) soil nutrient flows; (2) crop yields; (3) household income; and (4) household wealth and coping
measures (Figure D.12).

D.7.2 Design concepts

D.7.2.1 Theoretical and empirical background

The model represents soil nutrient dynamics in a stylized way. It models slow-evolving stocks
of SOM and faster-acting pools of mineralized nutrients. Our representation is consistent with
soil representations in biogeochemical models (Manzoni and Porporato, 2009) and is qualitatively
comparable to other more complicated process-based models of soil nutrient dynamics used for
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Figure D.12: Overview of annual simulation process.
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agricultural applications (e.g., CENTURY (Metherell, 1993), DSSAT (Jones et al., 2003), and
APSIM (Keating et al., 2003)).

Our crop yield model assumes that yields are influenced jointly by climate and nutrient avail-
ability. This representation generally follows Liebig’s law of the minimum, which assumes that
yields are influenced solely by the most constraining of these factors and plateau when each factor
is above some threshold (Tittonell and Giller, 2013; Ferreira et al., 2017) (i.e., the crop can be
water- or nutrient-limited). Similar representations are used in other more complicated process-
based models of crop yield (e.g., CENTURY (Metherell, 1993), STICS (Brisson et al., 2003)) and
in other simulation models (Grillot et al., 2018).

Together, our soil nutrient and crop yield representations exhibit the following qualitative char-
acteristics:

1. Consistent cropping without replenishment of organic matter will slowly degrade soil quality
and hence crop yields over time (Giller et al., 1997; Reeves, 1997; Bennett et al., 2012);

2. Soil quality can be maintained and built through organic inputs (e.g., manure or leguminous
cover crops) (Giller et al., 1997; Drinkwater et al., 1998; Wittwer et al., 2017); and

3. Soil organic matter has benefits for drought sensitivity and nutrient losses (Drinkwater et al.,
1998; Bommarco et al., 2013).

Household decision-making represents wealth accumulation and coping measures, and is mod-
eled using a simple heuristic. This heuristic assumes that: (1) households store their wealth in the
form of livestock and do not have cash savings; (2) livestock are sold if necessary to meet immedi-
ate cash needs (Bellemare and Barrett, 2006; Moyo and Swanepoel, 2010); and (3) total herd size
is limited by feed availability (Valbuena et al., 2012; Assefa et al., 2013).

D.7.2.2 Individual decision making

The household makes two decisions related to their livestock wealth reserves, both of which are
governed by simple heuristics. First, if the household’s income in a given year is negative, they
make up the deficit by drawing from their wealth reserves (a proxy for the selling of livestock).
If wealth reserves are insufficient to make up the deficit, we assume that the household reduces
their consumption. Both livestock selling and consumption reduction are considered as coping
mechanisms. If, instead, their income is positive, they add this surplus to their wealth reserves
(a proxy for the buying of livestock). This latter case is mediated by the second heuristic; if a
household’s livestock herd (i.e., wealth reserves) is larger than could be fed by their crop residues
(assuming some percentage of their herd is grazed on common pastures), they are forced to destock
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these animals that cannot be fed. Given that wealth can only be held in the form of livestock-—
i.e., we do not model financial resources—the household receives no monetary benefit for this
destocking.

These heuristics are not influenced by any other factors and there are no notions of beliefs,
memory, learning, adaptation, or social or cultural norms.

D.7.2.3 Learning

There is no notion of learning in the household’s decision-making.

D.7.2.4 Individual sensing

Each year, the household observes its crop yields, residue production, and income, which influence
the decision heuristics.

D.7.2.5 Individual prediction

The household does not predict future conditions.

D.7.2.6 Interaction

There are no interactions between households. Livestock are assumed to be partially grazed on
common rangeland, which implies interactions with other households, but we do not explicitly
model the rangeland dynamics, so this interaction is not endogenous to the model.

D.7.2.7 Collectives

The household does not form collectives.

D.7.2.8 Heterogeneity

The household is defined by its initial wealth reserves, initial soil quality, and land holdings. In our
simulations, we consider only the implications of different levels of land holdings. Given that there
are no interactions in our model, running the simulation for three households with heterogeneous
land endowments is equivalent to running it three times separately with a single household.

D.7.2.9 Stochasticity

There are two sources of stochasticity in the model: (1) the generation of yearly climate conditions,
which is constant across all households; and (2) a household-level random effect in the calculation
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of crop yields. The household-level effect conceptually represents other non-modeled factors that
may influence crop yields, household-level (positive or negative) shocks, and household-level vari-
ability in the experience of the regional climate condition. Together, this requires us to simulate a
set of hypothetical climate time series and, for each time series, run the model for a set of house-
holds that experience different random crop yield effects. Under the baseline model settings, the
variability of the household-level effect is approximately half that of the region-level effect. The
model therefore allows for considerable path dependencies introduced by household-level stochas-
ticity.

D.7.2.10 Observation

Model outputs include yields, income, wealth, soil organic matter, and mineralized nutrients.
These are observed at the household level at an annual basis.

D.7.2.11 Emergence

There exists a positive feedback loop, in which positive income enables accumulation of livestock
(wealth reserves), providing additional soil organic matter, which in turn increases future crop
yields and income. The ability for the household to experience this positive feedback cycle is
mediated by their land endowment, initial soil organic matter, climate, and random yield effects. As
such, household “trajectories” emerge as a combination of these random and non-random factors.
Given the importance of stochasticity, there exists a considerable degree of path dependence in the
model; a household that is unlucky one year (i.e., has a large, negative random effect in their crop
yields) may be pushed into a downward spiral of decreasing livestock herds, soil organic matter,
crop yields, and income. We investigate the possibility for household adaptation options (cover
cropping and insurance) to influence these trajectories and hence contribute to different emergent
outcomes.

D.7.3 Details

D.7.3.1 Implementation details

The model is implemented in Python 3.6. Code is available online at CoMSES.net.1

1https://www.comses.net/codebases/ee47544a-7eb0-4482-8967-42d6b0c05060/
releases/1.0.0/
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D.7.3.2 Initialization

The model is stylized and does not draw from any extensive empirical datasets. To initialize a
single simulation, the climate time series is first generated, followed by a population of households
with heterogeneous land endowments. Household initial wealth and soil organic matter levels are
homogeneous and are specified by exogenous parameters (see section D.7.3.3). As stated above,
a single model with multiple households is functionally no different to multiple models with a
single household, but we do it in this way both for computational efficiency (through vectorization
of calculations) and simpler management of random number seeds. Within an experiment, the
random number seed is the only factor that is varied upon initialization.

D.7.3.3 Input data and parameterization

Model parameterization is achieved through a combination of information from literature and a
pattern-oriented modeling calibration process. All model parameters are displayed in Table D.1.
The calibration process is described in section D.7.3.5. Although we do not intend the model to be
representative of any specific region or location, we chose to draw several of the parameters from
Ethiopian data sources. Ethiopia’s population is primarily engaged in smallholder agriculture—
many in mixed crop-livestock systems—and thus Ethiopia serves as a relevant setting from which
to draw stylized information. This enabled us to represent the relative scales of different model
elements (e.g., maximum crop yields and crop selling prices) without requiring these values to be
determined by the calibration process, thus reducing the dimensionality of the uncertain parameter
set.

Additionally, although our representation of soil nutrient dynamics is stylized and we do not
claim to realistically represent actual nutrient flows, we measure the SOM pool in units of kilo-
grams of nitrogen per hectare (kg N/ha). This again allowed us to ground several parameters in
empirically observed values (e.g., nitrogen-fixation of cover crops), reducing the number of uncer-
tain parameters. However, we note that some values, particularly the C:N ratios, remain unrealistic
in this model parameterization.

The derivation of several parameters requires some explanation:

• Initial and maximum SOM: In reality, baseline amounts of organic matter in a non-
degraded soil are sufficient to provide nutrients for moderate levels of crop yield. To param-
eterize the initial SOM, we used information from other parameters to give a rough estimate
of a reasonable value. Specifically, we assumed that the soil itself would initially be able
to provide 4,000 kg/ha crop yield (approximately 2/3 of the maximum yield) in the absence
of other inputs. Using the C:N ratio in the crop (50), this is equivalent to 80 kg N/ha of
mineralized inorganic N that is produced solely through mineralization from SOM. With a
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mineralization rate of 0.02, this requires an initial SOM level of 4,000 kg/ha. We then chose
the maximum SOM level to be double the initial SOM level.

• Wealth to nitrogen conversion: Using values from Newcombe (1987), we calculated that
a cattle might produce 6,165 kg of fresh dung or, equivalently, 5,364 kg of dry matter per
year. Assuming that 1.46% of the dry weight is nitrogen (also comparable to Lupwayi et al.
(2000)), this equates to 78.3 kg N/cattle/year. Assuming a price of 3,000 birr (the Ethiopian
currency) for a single animal, this is equivalent to 0.026 kg N/year/birr.

• Land endowment: In reality, smallholder land holdings vary by a larger degree than we
represent in the model. However, we assume that each household – regardless of their
land endowment and wealth – has the same annual living costs. In reality, land-rich house-
holds might have more household members, and consumption also generally increases with
wealth. For simplicity in the analysis, our households vary over a single dimension (land
endowment), so we do not incorporate such secondary effects and hence parameterize the
variability in land endowment from only 1 to 2 ha. These values respectively correspond to
the 47th and 75th quantiles of household landholdings in the Ethiopia 2015 LSMS data.

Table D.1: Parameter values and sources.

Parameter Symbol Value Unit Source Uncer-
tain
¶

Sensit-
ivity
anal-
ysis

Description

Simulation settings
Number of

households

NA 200 - Varied over simulation runs.

Random seed s 0 -

Households
Land endowment L {1, 1.5, 2} ha x Varied over households. See

text in section D.7.3.3.

Initial wealth W0 36,165 birr x x Proxy for livestock.

Cash requirement CR 6,001 birr x x Annual cash requirement

for consumption.

Market
Crop sell price Pcrop 2.17 birr/kg FAO† Mean 2015 price for maize

in Addis Ababa.

Livestock price Pls 3,000 birr/head CSA‡ Averae 2015 price.

Yields
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Parameter Symbol Value Unit Source Unce-
rtain
¶

Sens.
anal-
ysis

Description

Crop C:N CNcrop 50 gC/gN (Metherell,

1993)

x Carbon to nitrogen ratio in

harvested crop. Value

loosely taken from the

CENTURY model

description.

Residue C:N CNresidue196 gC/gN x x Carbon to nitrogen ratio in

crop residue. In (Elias et al.,

1998) this is approximately

four times the ratio of the

harvested crop.

Maximum yield Ymax 6,590 kg/ha LSMS§ x 95th percentile maize yield

over Ethiopia in 2011, 2013,

and 2015.

Climate upper

threshold

Cupper 0.8 - (Metherell,

1993)

x Climate condition above

which crop yields plateau

Climate lower

threshold (low SOM)

Clower
low 0.3 - x x Climate condition below

which crop failure occurs

when SOM is zero.

Climate lower

threshold (high

SOM)

Clower
high 0 - Climate condition below

which crop failure occurs

when SOM is at its

maximum.

Crop yield random

effect

σy 0.3 - x Standard deviation of the

crop yield random effect,

simulated as ∼ N(1, 0.3)

Residue loss factor lresidue 10 % (Assefa

et al.,

2013)

Percentage of crop residues

not returned to the soil or

fed to livestock

Residue multiplier mult 2 - (Bogale

et al.,

2008;

Assefa

et al.,

2013)

Residue production per unit

of harvested crop.

Soil
SOM mineralization

rate

kslow 2 %/year (Schmidt

et al.,

2011)

x 50-year turnover time of

bulk SOM

Applied organic

matter

mineralization rate

kfast 10 %/year x x The percentage of applied

organic matter (manure

and/or crop residues) that

mineralizes in the year of

application.
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Parameter Symbol Value Unit Source Unce-
rtain
¶

Sens.
anal-
ysis

Description

Initial SOM SOM0 4,000 kg N/ha - x See text in section D.7.3.3.

Maximum SOM SOMmax 8,000 kg N/ha - x See text in section D.7.3.3.

Maximum leaching

rate

lmax
N 25 % (Giller

et al.,

1997; Di

and

Cameron,

2002)

x x Rate of leaching of

mineralized organic matter

when SOM is zero.

Minimum leaching

rate

lmin
N 5 % (Di and

Cameron,

2002)

x Rate of leaching of

mineralized organic matter

when SOM is at its

maximum.

Livestock
Wealth:nitrogen ratio SNconv 0.0018 kg

N/year/birr

- x x 0.026 kgN/year/birr is the

derived value for

comparison (see text in

section D.7.3.3)

Percent crop grazing cresidues 52 % (Keftasa,

1988;

Bediye

et al.,

2001)

x x Percentage of livestock food

requirements that come

from crop residues. The

remainder comes from a

non-modeled external

rangeland.

Consumption

requirement

cf 2,280 kg

DM/TLU

/year |

(Amsalu

and

Addisu,

2014)

x We assume all residues are

dry matter

Climate
Mean µc 0.5 - x

Standard deviation σc 0.2 - x

Climate
Climate percentile Insperc 10 % Climate threshold

(percentile of cumulative

distribution function) below

which an insurance payout

is received.
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Parameter Symbol Value Unit Source Unce-
rtain
¶

Sens.
anal-
ysis

Description

Payout magnitude Inspayout 1 - Insurance payout relative to

the expected yield. For

example, if this is 1, the

insurance payout will equal

the income from an average

year’s yields (assuming no

nutrient limitations on crop

growth).

Cost factor Inscost 1 - Fairness of insurance. A

value of 1 indicates an

actuarially fair policy,

where the annual cost is

equivalent to the expected

annual benefit.

Cover cropping
Nitrogen fixation CCN fix 95 kg N/ha (Büchi

et al.,

2015;

Wittwer

et al.,

2017;

Couëdel

et al.,

2018)

Maximum value with no

water limitation.

Cost factor CCcost 1 - Annual cost of cover

cropping relative to the cost

of insurance.

¶The values displayed for the uncertain parameters were calibrated using the pattern-oriented modeling

process (section D.7.3.5)

†http://www.fao.org/giews/food-prices/tool/public/

‡CSA = Ethiopian Central Statistical Agency. Source = annual retail price sheets.

§LSMS = Living Standards Measurement Study

| DM = dry matter, TLU = tropical livestock unit

D.7.3.4 Sub-models

Soil nutrients The model contains two main pools of soil nutrients: organic and mineralized.
The states of these pools are measured in kg N/ha. Each year, a portion of the organic pool of
nutrients (SOM) mineralizes according to a linear decay process. Organic nutrients applied to the
soil (manure and crop residues; Nadded) also are partially mineralized in the year of application
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(with a linear rate constant larger than that of the SOM), with the non-mineralized component
added to the bulk SOM. We do not differentiate between the addition of “organic matter” and
“nitrogen” and use a single variable to retain simplicity.

NSOM
mineralized = kslow ∗ SOMt (D.2)

Nadded
mineralized = kfast ∗Nadded (D.3)

N total
mineralized = NSOM

mineralized +Nadded
mineralized (D.4)

SOMt+1 = (SOMt −NSOM
mineralized) + (Nadded −Nadded

mineralized) (D.5)

After mineralization, a percentage of the mineralized nutrients is leached from the system.
Higher levels of SOM contribute to lower leaching rates (Drinkwater et al., 1998). Specifically, we
assume a maximum leaching rate with no SOM (lmaxN ) and a minimum leaching rate when SOM
is at its maximum (lminN ), with a linear interpolation between these two points (see Table D.1 for
parameter values).

Mineral N that remains after leaching is assumed to be fully available to the crop. If this is
higher than the crop’s N requirements, any excess mineral N is assumed to be lost from the system
via leaching (i.e., the mineral nutrient pool is reset each year).

This nutrient balance is partial and we do not model soil erosion (Cobo et al., 2010), yet the loss
pathways that we include represent the largest magnitude pathways in mixed cropping-livestock
systems (Tittonell et al., 2006). However, in its stylization, our representation of soil nutrient
dynamics contains a number of simplifying assumptions, namely: (1) no endogenous or dynamic
representation of C:N ratios, (2) a single soil layer, (3) a single pool of organic nutrients with a
single mineralization rate, (4) no explicit modeling of soil microbial biomass or other labile SOM
pools, (5) no climate dependence in nutrient mineralization or leaching, (6) no nutrient dependence
(e.g., N-limitations) in mineralization, (7) no differentiation between ammonium and nitrate as
forms of inorganic N, and (8) no atmospheric losses of N through denitrification. Despite these
assumptions, we believe that our representation provides a reasonable first-level approximation of
more complicated soil dynamics and requires far less parameterization.

Climate Climate is represented through a single value, which is drawn each year from a normal
distribution (parameters in Table D.1) that is bounded between 0 and 1. This value does not repre-
sent a specific physical climate characteristic (e.g., rainfall), but a stylized notion of the “climate
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Figure D.13: Effect of climate on crop yields.

condition”. Under baseline conditions, the simulated climate values interact with the model solely
through crop yields. Under the insurance scenario, payouts are received in years in which the
climate condition is below the insurance index value, which is defined as some percentile of the
cumulative distribution of the climate condition (i.e., a 10% index represents the 10th percentile of
the cumulative distribution). With cover cropping, the climate condition also affects cover crop ni-
trogen fixation. The climate value is qualitatively similar to the outputs of process-based methods
that calculate ratios of actual evapotranspiration to potential evapotranspiration (e.g., applications
of the FAO crop water requirements methodology (FAO, 1984; Block et al., 2008) and the CEN-
TURY model (Metherell, 1993)), but requires far less parameterization.

Crop yields Crop yields can be reduced from a maximum potential value (Ymax) through water
and/or nutrient limitations (Tittonell and Giller, 2013). First, we calculate a water factor, Cwater,
with 0 ≤ Cwater ≤ 1. It is assumed that (see Figure D.13): (1) if the climate value is greater than
Cupper (0.8 in the parameterized model), then Cwater = 1; (2) there is a critical climate value (≥ 0)
at which Cwater = 0; (3) higher levels of SOM lead to higher drought tolerance and hence a lower
critical climate value; and (4) Cwater scales linearly between the critical value and Cupper. The
maximum water-constrained yield (Yw) is then assumed to be:

Yw = Cwater ∗ Ymax (D.6)

Second, we determine the maximum attainable nutrient-constrained crop yield (YN ) given the
available mineral N in the soil (N total

mineralized):

YN =
N total
mineralized

1
CNcrop

+ mult
CNresidue

(D.7)

This represents a partitioning of the N total
mineralized between the N in the harvested crop (adjusted

by CNcrop) and the crop residues (adjusted by CNresidue and multiplied by mult).
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Figure D.14: Distribution of cover crop N fixation (kg N/ha) in temperate climates reported in Badgley et al. 2007.
The median value is 95 kg N/ha.

The actual yield (Y obs) is then calculated as:

Y obs = min(YW , YN) ∗ ε (D.8)

where ε ∼ N(1, σ2
y) is a household-level stochastic effect with σy given in Table D.1.

In this stylized crop yield model, we omit or simplify several processes that are included in
more detailed process-based crop yield models, for example: (1) our one-dimensional representa-
tion of the effects of climate proxies any non-linearities in relationships between climate and yield
as well as potential interactions between rainfall and temperature; (2) we do not model solar irradi-
ation and growth of leaf area; and (3) we do not model the partitioning of growth between above-
and below-ground biomass. Given the modular nature of our yield model, additional reduction fac-
tors could be added (e.g., see (Schreinemachers et al., 2007)) or more sophisticated process-based
calculations could replace the existing calculations of water and nutrient limitations. However, this
increased complication would require a greater amount of data and calibration, as well as reduce
transparency in how specific inputs and structures mechanistically influence yields and the broader
model dynamics.

Cover crop N2 fixation As with vegetable crops, cover crops’ biomass generation, and thereby
their soil organic matter contributions, is also constrained by rainfall (Ewansiha and Singh, 2006).
We assume that the N fixed by the cover crop follows the same water response function as vegetable
crop yields (i.e., Figure D.13). Thus, in a year with no rainfall, no N is fixed. We set the default
upper bound on N2 fixation as 95 kg N/ha (Figure D.14; (Badgley et al., 2007)).

D.7.3.5 Pattern-oriented modeling (POM)

Description We use latin hypercube sampling to generate 100,000 potential parameter sets,
where each parameter is drawn uniformly from the ranges in Table D.2. For each potential pa-
rameterization we run the model 10 times (to encompass climate variability) for a population of
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Table D.2: Parameters included in the POM calibration.

Parameter Symbol Minimum Maximum Notes
1 Households: initial wealth W0 5,000 50,000
2 Households: annual cash

requirement
CR 5,000 30,000 Median annual expenditure in 2015

LSMS is 17,261 birr.
3 Yields: climate lower threshold

(low SOM)
Clower

low 0 0.5

4 Yields: residue C:N CNresidue 25 200 Bounding the crop C:N ratio
5 Livestock: percent crop

grazing
cresidues 0.5 1 Livestock are often grazed

primarily on crop residue (Keftasa,
1988; Bediye et al., 2001).

6 Livestock: wealth:nitrogen
conversion

WNconv 0.01 0.05 Bounding the empirically-derived
value (section D.7.3.3).

7 Soil: applied organic matter
mineralization rate

kfast 0.05 0.95 Must be faster than the SOM
mineralization.

8 Soil: maximum leaching rate lmax
N 0.05 0.95

Table D.3: Patterns included in the POM calibration.

Pattern Requirements
1 Divergent household wealth

trajectories
(a) All land-rich households finish the simulation with positive wealth AND
(b) All land-poor households finish the simulation with no wealth AND (c)
20%-80% of the middle households finish the simulation with positive wealth.

2 Households can recover from
shocks

There is at least one middle household that: (a) Has no wealth at some point
during the simulation AND (b) Has positive wealth at the end of the
simulation.

3 No saturation of SOM There are no households consistently at the maximum level of SOM
throughout the last 10 years of the simulation.

4 Some households can build
SOM

At least 10% of households finish the simulation with a higher SOM than the
initial value

100 households (to encompass variability induced by the random yield effect) for a period of 100
years. We choose only 10 model replications here due to computational reasons.

We assess whether each simulation generates a set of qualitative “patterns” (Table D.3). These
patterns collectively represent desired model behavior under baseline simulation conditions. To
evaluate a potential parameter set we: (1) measure which patterns are generated in each simulation,
(2) calculate the probability that each pattern is generated over the 10 replications, and (3) sum
these averages over all patterns.

Results Of the 100,000 parameter sets, three generated on average 3.2 of the four patterns (Fig-
ure D.15). We retained one of these parameterizations for the analysis presented in this paper.
Experimentation with the other two parameterizations yielded qualitatively similar results that do
not affect the conclusions drawn in this paper.
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Figure D.15: Scaled parameter values of the resultant POM parameterizations. The red line represents the selected
parameterization. Blue lines represent the other parameterizations that reproduced the same number of patterns. Grey
lines show parameterizations that were within 20% of the best.
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Appendix E

Supplement to Large-scale Land Acquisitions
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E.1 Additional outputs

E.1.1 Illustrative simulation output

To illustrate the general dynamics of the calibrated ABM, we first present the model’s outputs
under a representative simulation (Figure E.1). Under the Displacement scenario, by decreasing
the overall amount of land cultivated by the agents (Figure E.1 A1), the LSLA reduces the agents’
crop production (Figure E.1 B1) and increases the amount of time spent in off-farm employment
(Figure E.1 D1). Yet the increased off-farm employment is insufficient to curb the impacts of land
loss on food security and livestock holdings (Figure E.1 E1 and F1). Conversely, the CF scenarios
contribute to higher population-level food security (Figure E.1 F1), which progressively increases
over time in the CFchoice scenario as more agents join the CF scheme (Figure E.1 A1).

The experience of any single agent is more dynamic than the regional outcomes. For example,
a selected land-poor agent, which originally owned 0.75 ha of land and lost 0.25 ha to the LSLA,
is food insecure in most years under baseline conditions and consistently food insecure with the
LSLA (Figure E.1 F2). The CF arrangements, through increases in crop productivity, increase
the agent’s food security (Figure E.1 F2) and in the long run also increase its livestock holdings
(Figure E.1 E2). At times, the agent allocates all of its land to the contract farming scheme in the
CFchoice scenario (Figure E.1 A2), but this fluctuates between years due to the agent’s evolving
beliefs about the returns to contract farming. This agent uses non-farm employment as a coping
mechanism and hence the time allocated to non-farm activities is higher in years and scenarios
with lower crop production—when the extra income is needed most (Figure E.1 D2). A selected
land-rich agent, in contrast, originally owns 1.75 ha of land and loses 0.75 ha to the LSLA (Figure
E.1 A3). It is able to achieve higher levels of crop production and livestock holdings, and under
baseline conditions it rarely allocates labor to non-farm employment and is rarely food insecure.
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Figure E.1: Illustrative ABM output showing selected variables under baseline conditions and the three LSLA/con-
tract farming (CF) scenarios. Vertical grey lines denote the LSLA/CF implementation year. The left-hand panel shows
outputs averaged over the agent population. The middle and right-hand panels each show the outputs for a single
agent. Note that crop production (B) only includes smallholder production and not that produced within the LSLA.
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E.2 Supplemental results

Figure E.2: Distribution of effects under the CFchoice scenario. (A) shows the effects on food security. (B) shows
the probability of joining the contract farming scheme. Each line plots the average response from a different model
calibration. Results are disaggregated by the cash crop harvest frequency.

Figure E.3: Distribution of effects for households forced to participate in contract farming (CFforced) based on the
fraction of their overall land in the contract farming scheme. The outcomes are disaggregated by the cash crop’s
harvest frequency (1-year and 2-year). Each line represents the mean response under a different model calibration.
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E.3 Convergence Analysis

We conducted a convergence analysis to calculate the required number of model replications such
that our model outputs are not significantly biased by stochasticity within the ABM. To do this,
we examined how the regional productivity and food security outcomes depend on the number of
model replications, under a range of model conditions. Specifically, we ran a set of simulations
under default settings for the four LSLA/CF scenarios (i.e., baseline, Displacement, CFforced, and
CFjoin) for all four sites and all six model calibrations. This resulted in a total of 96 simulation
conditions. For each condition, we ran a large number of replications (300) and assumed that
the output values estimated over these replications approximate the asymptotic mean values, i.e.,
Ŷ300 ≈ Ȳ . Then, we calculated the absolute relative error (ARE) for all replication sizes, r, less
than 300:

AREr =

∣∣Ŷr − Ȳ ∣∣
Ȳ

(E.1)

Finally, we calculated the maximum value of r at which the ARE is larger than 0.05 (i.e., 5%) for
either outcome. This yields a value of 30 (Figure E.4). We therefore run 30 replications for all
experiments in the main body of the paper.

Figure E.4: Absolute relative error (ARE) as a function of the number of model replications. Each line plots the
response under a different simulation condition (i.e., site-calibration-LSLA combination). 30 replications are required
to achieve an ARE of less than 5% in both outcomes across all simulation conditions.
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E.4 Model calibration

E.4.1 Procedure

We used a genetic algorithm to calibrate parameter values that could not be specified from available
empirical data sources. There were 14 parameters included within the model calibration. These
parameters, including their bounding ranges, are listed along with all other model parameters in
Table E.3 and Table E.4 in the ODD+D description (section E.6).

The calibration procedure aimed to identify the set of parameter values from within the bound-
ing ranges that leads to ABM outputs best matching a set of “patterns” derived from the household
survey dataset. Although the household survey was cross-sectional, some questions asked house-
holds to recall information from before the LSLA, providing a proxy for pre-LSLA conditions. We
used these pre-LSLA proxies to initialize the ABM, then the post-LSLA data (collected in 2019)
to create the calibration patterns.

We took two approaches to reduce the chances of overfitting our model to the available data.
First, we aimed to find a single set of region-level parameters that could generate the patterns across
all four sites, thereby considerably reducing the dimensionality of the unknown parameter set
(calibrating to each of the four sites separately would have required four times as many parameters).
Second, in order to acknowledge the potential for equifinality (i.e., multiple plausible descriptions
of the calibration data), we used the genetic algorithm to identify six sets of parameter values that
similarly match the empirical data and are as different from each other as possible (Williams et al.,
2020b). We retained all six parameterizations for the main simulation experiments.

We developed a set of patterns to span the range of modeled livelihood activities, including
the distribution of these throughout the smallholder population (Table A 5 1). For each set of
potential region-level model parameters, we ran the ABM for all four sites, using the site-level
input data. For each pattern in each site, we calculated a measure of “loss” that represents the level
of disagreement between the ABM outputs and the empirical data. For distributional patterns, the
loss measured the mean squared difference in the height of the empirical and model-generated
cumulative distribution functions:

Lossdistrib =

∫ ∞
−∞

(
Fmodel(y)− Fdata(y)

)2
dy (E.2)

where F () is the cumulative distribution function, which we discretized into equal-sized bins.
For probabilistic patterns, the loss measured the squared difference between the modeled and em-
pirical values:

Lossprob = (model − data)2 (E.3)
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Both loss measures are bounded between zero and one. To calculate a total discrepancy for a
region-level parameter set, we summed the loss over all (five) patterns and all (four) sites.

Table E.1: Fitting patterns

Pattern Description Discrepancy
measure

1 Livestock herd size (TLU) Total livestock holdings. Distributional

2 Non-farm labor (fraction of total) Fraction of total productive household labor allocated to

off-farm employment activities

Distributional

3 Crop yield (kg/ha) Total reported crop production per cultivated area. Distributional

4 Food security (probability) Probability that a household experienced no difficulty in

meeting household food needs throughout the past year.

Probability

5 Fertilizer use (probability) Probability that a household applied inorganic fertilizer to their

land in the past year.

Probability

E.4.2 Results

E.4.2.1 Comparison to empirical data

The resulting six model calibrations demonstrate relatively low levels of bias, with all loss values
falling below 0.08 (Figure E.5). Similar patterns of bias exist across the sites and fitting patterns.
The models have relatively low bias in the non-farm labor distribution, crop yield, and fertilizer use.
There is a moderate bias for livestock holdings in OR4, as well as in the food security outcomes in
sites OR1 and OR3. Examining the model-derived and empirical patterns (Figure E.6) suggests a
tradeoff between the food security outcomes in these two sites in the model calibration: the model
overpredicts food security in OR3 and underpredicts in OR1.

Calibrating separate parameters for each site would have led to a lower bias in these outcomes,
but we consider the observed levels of bias to be acceptable for the intended application, which
seeks to evaluate generalized impacts of LSLA configurations across all four sites in the region. We
therefore retain the region-level calibration in order to reduce the model variance (i.e., overfitting
to the empirical data).

E.4.2.2 Calibrated parameter values

Some calibrated parameter values are highly consistent between the six models (e.g., the non-food
cost, risk tolerance, and mean soil fertility) (Figure E.7), suggesting that the model outcomes are
sensitive to these parameters. Other parameters are present over their entire range in the calibrated
models (for example, the three parameters pertaining to livestock). There are two potential expla-
nations for this. First, it is possible that there is a degree of equifinality, in that there are multiple
distinct explanations of the empirical data. Alternatively, it is possible that the model is not sen-
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Figure E.5: Final loss values for each fitting pattern and site. Each line (“SP”=sub-population) represents the results
for a different model calibration.

Figure E.6: Comparison of surveyed household livelihood characteristics to the calibrated ABM outputs for each site
(OR=Oromiya) under a single model calibration. Bias across all six calibrations is relatively similar (Figure E.5) so
we present only one here. ABM outputs above the 99th percentile are excluded from A, B, and C for visual clarity.
The uncertainty bands in D and E represent the 95% prediction interval over 20 model replications. The data used to
create the empirical patterns are summarized in Table E.1.
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sitive to these parameters and so they have little effect on the loss calculations. As the different
calibrations do not lead to structurally different results in the main analysis within this paper, the
latter explanation (i.e., non-sensitivity) is the most likely. Nevertheless, in either case, presenting
the results to the six calibrations achieves a higher level of robustness.

Figure E.7: Calibrated parameter values. Each line represents a different model calibration. Parameter ranges are
bounded by the values given in Table E.3 and Table E.4 in the ODD+D description (section E.6).
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E.5 Model validation experiment

E.5.1 Overview

We ran an additional experiment in which we isolate the effect of the LSLAs on smallholder food
security. We compare the ABM-derived effects to empirical estimates using the household survey
data. We disaggregate the effect both by site and by household displacement status. As we did
not calibrate the model to match the empirical LSLA effects, this experiment serves as a form of
model validation.

E.5.2 ABM effect estimation

For each site and each model calibration, we ran two simulations: control and treatment. The
control simulation modeled the baseline subsistence conditions (i.e., no LSLA) and the treatment
simulation included the LSLAs with displacement. For each agent, we calculated the difference
in food security between these two simulations (i.e., what is the additional probability the agent is
food (in)secure with the LSLA). We report the mean, 2.5%, and 97.5% agent-level effects.

E.5.3 Empirical effect estimation

To enable more robust empirical estimates of the LSLAs’ effects on smallholder livelihoods, each
“Treatment” site (shown in Figure 6.1 in the main manuscript and used to initialize the ABM) was
matched with a nearby “Control” site (not pictured) that had not experienced an LSLA but had
similar pre-LSLA socio-environmental characteristics. More details are given in (Williams et al.).
The same household survey was given to approximately 100 households in each Control site. This
Treatment-Control design enables us to conduct a two-stage matching procedure that controls for
both site-level selection bias and household-level characteristics.

To control for the potential effects of unbalanced household-level characteristics between the
Treatment and Control sites, we used covariate matching to match each Treatment household to
a similar Control household (with replacement). We matched on a set of characteristics (Table
E.2) that hypothetically affect both household food security and the LSLAs’ placement within the
landscape. Wherever possible, we drew from data recalling conditions before the LSLA.

When calculating site-level effects, we calculated the average difference in household food
security between the matched Treatment-Control household pairs (i.e., what is the additional prob-
ability a Treatment household experienced food insecurity relative to its matched Control house-
hold). When calculating the overall effect for displaced households, we selected households within
the Treatment sites that reported reductions in their landholdings, matched each of these to a single
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household within the corresponding Control site, then calculated the average difference in food se-
curity, pooled over all sites. In both cases, we report the estimated mean effect and 95% confidence
interval on the estimate.

We note that this household-level matching is intended to give a general sense of the empirical
patterns. We did not run comprehensive tests to verify the robustness of our results and so do not
claim that they are free from statistical bias.

Table E.2: Covariates included within the household-level matching. All pre-LSLA variables were collected post-
LSLA but asked households to recall pre-LSLA conditions.

Variable Time Unit
Total land cultivated Pre ha

Household size Post people

Livestock holdings Pre TLU

Use of inorganic fertilizer Pre Binary

Non-farm income Pre Binary

Access to electricity Pre Binary

Distance to forest Pre km

E.5.4 Results

The empirical estimates of the LSLAs’ effects on food security reveal two main trends (Figure
E.8): (1) the site-level effects are weak and inconsistent (significant decrease in food security
in OR1, significant increase in OR3,1 and non-significant outcomes in OR2 and OR4); and (2)
households that lost land to the LSLA experienced substantially reduced food security. Together,
these empirical results suggest a form of “selective marginalization” within the sites (Oberlack
et al., 2016): some households were strongly affected and others not at all. These trends, combined
with the difficulty we had in mechanistically explaining these effects with the available empirical
data, provide motivation for our pooled analysis across sites (i.e., synthetic site “ORX”) and our
focus on land loss as the primary mechanism.

The ABM-derived effects roughly agree with the site-level empirical patterns (Figure E.8A)
and reasonably match the magnitude of food security impacts for households losing land (Figure
E.8B). In reality, LSLAs affect smallholder communities through a variety of additional mecha-
nisms, and displaced households may receive compensation or adapt in ways that we do not model.
We therefore do not expect to perfectly recreate the empirically estimated effects and rely on the-
oretical evidence supporting the structures within our ABM—–in conjunction with the acceptable
levels of fit to the empirical data—–to justify its suitability for the intended application.

1Additional examination of the empirical data revealed a considerable site-level difference in the climatic condi-
tions and crop yields between the OR3 Treatment and Control sites. This empirical effect should therefore be treated
with caution.
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Figure E.8: Comparison of ABM-estimated and empirical LSLA effects. Probability that the LSLA increases house-
hold food security, disaggregated by (A) site and (B) land loss pooled over the sites. The empirical estimates represent
the average difference between household food security in the Treatment sites and comparable households in the Con-
trol sites (selected using covariate matching). The ABM estimates represent the average and 2.5%/97.5% agent-level
differences over 30 simulations and six calibrated parameter sets.

E.6 ODD+D model description

Here we provide an overview of the ABM in the ODD+D (Overview, Design Concepts, Details,
and Decisions) format (Müller et al., 2013), including suggested modifications provided by Grimm
et al. (2020).

E.6.1 Overview

E.6.1.1 Purpose and patterns

What is the purpose of the study? The model was designed to understand how alternative con-
figurations of large-scale land acquisitions (LSLAs) and contract farming (CF) schemes may affect
household food security and regional productivity within mixed cropping-livestock smallholder
systems.

The model does not aim to make predictions of food security or productivity or to generate
results directly relevant for informing policy in a specific socio-environmental context. Rather, the
model is intended as an exploratory tool for examining how smallholder farmers may respond to
changes in land access and intensification opportunities, as well as the potential implications of
these changes for food security throughout a heterogeneous population.

For whom is the model designed? Researchers interested in development within smallholder
agricultural systems.
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What patterns are used as criteria for evaluating the model’s suitability for its purpose? We
evaluate our model by its ability to produce several patterns of livelihood characteristics, drawn
from household survey data collected within four LSLA-affected regions of Ethiopia.

The patterns were selected to fulfil the following criteria:
• To provide information encompassing the range of dominant livelihood activities within

these regions, as well as the outcomes of food security and productivity that we are interested
in.

• To leverage the questions included in the household survey to inform modeled processes and
decision-making alternatives.

• To represent the distribution of livelihood characteristics within the heterogeneous popula-
tion, which is important given our focus on food (in)security.

The patterns include:
• Food shortages. Regional probability of a household experiencing difficulty meeting their

food needs at some point within the past year.
• Crop yield (kg/ha).
• Livestock holdings (tropical livestock units (TLU)).
• Fertilizer application. Regional probability of applying inorganic fertilizer to agricultural

land.
• Non-farm labor. Fraction of total productive labor allocated to non-farm income-generating

activities.
As the patterns represent quantitative information, we cannot evaluate whether a given model

configuration does or does not reproduce a given pattern. Instead, we used a genetic algorithm
to identify model parameterizations that best match the empirical patterns, in conjunction with an
iterative process of model structure development and refinement. Further details are provided in
Appendix D.7.3.5.

E.6.1.2 Entities, state variables and scales

What kinds of entities are in the model?
• Agents. Each agent represents a single smallholder household. There are N agents (N=200

for the experiments in the main body of the manuscript).
• Livestock. Each agent manages a livestock herd.
• Agricultural land. Each agent manages a set of “fields”.
• Common land. Used for grazing of livestock and represented as a single region-level stock.
• Model environment. This encompasses the exogenous drivers of the model:

– LSLA/CF scenarios
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– Climate
– Crop prices

Rationale: The above entities were included to encompass the primary livelihood activities
(farming, livestock rearing, non-farm employment) and exogenous stressors (climate, prices) iden-
tified within the household survey data. We did not include forest-based aspects of smallholder
livelihoods (e.g., firewood collection, hunting and gathering) as these are not dominant within
the Oromiya region. We do not model the LSLA and CF schemes as agents, as we are inter-
ested in understanding the effects of given LSLA/CF arrangements on smallholder systems, rather
than understanding drivers of LSLA/CF location or feedbacks from smallholders to the LSLA/CF
decision-makers.

By what attributes (i.e. state variables and parameters) are these entities characterised?
Definitions:

• Static (/dynamic) – does (/does not) evolve throughout a simulation.
• Homogeneous (/heterogeneous) – constant (/variable) over the agent population.
Agents:
• Landholding (static, heterogeneous). Each agent manages a fixed, discrete number of fields.

Agents do not buy, sell, or rent land, but it may be lost under conditions of LSLA.
• Household size (static, heterogeneous). Determines labor availability and food demand.
• Network (static, heterogeneous). Set of other agents with which experiences are shared and

crop residues can be shared.
• Livestock herd size (dynamic, heterogeneous). See “livestock” below.
• Risk tolerance (static, heterogeneous).
• Beliefs (dynamic, heterogeneous). Beliefs are represented probabilistically and updated each

year using Bayesian methods. See section 1.2.10.
• Behavior (dynamic, heterogeneous): o Fertilizer application (yes/no) o Livestock stocking

(yes/no) o Salary employment allocation (no change, increase, decrease) o Contract farming
land allocation (if relevant) (no change, increase, decrease)

• Salary employment (dynamic, heterogeneous). May be less than agents’ allocation if re-
gional demand is greater than supply.

• Wage employment (dynamic, heterogeneous). Used as a coping mechanism.
• Food security (dynamic, heterogeneous).
Livestock:
• Owner id (static, heterogeneous). Reference to the agent owning the livestock herd.
• Herd size (dynamic, heterogeneous). Represents large livestock and measured using integer

values.
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Agricultural land:
• Soil fertility (static, heterogeneous). Affects nutrients available for crop growth. We assume

that the soil fertility is homogeneous over each agent’s fields (i.e., soil fertility is represented
at the agent-level, not the field-level).

• Fertilizer application (dynamic, heterogeneous).
• Crop yield (dynamic, heterogeneous).
Common land:
• Demand. Region-level sum of livestock requiring grazing on common land (dynamic, NA).
• Availability (hectares) (static, NA). As we do not endogenously model indirect land-use

change, this is constant throughout the simulation. However, LSLAs and CF schemes can
reduce common land availability from their time of implementation.

Model environment:
• Climate: rainfall amount (dynamic, homogeneous).
• Market: selling price for subsistence and cash crops (dynamic, homogeneous).
• Employment markets: region-level availability of salaried and wage employment (static,

NA). This is static except under LSLA scenarios that provide employment.

What are the exogenous factors / drivers of the model?
• Climate. This affects crop yields.
• Crop prices for subsistence (/food) and cash (/non-food) crops.
• Employment markets. There is a limited availability of off-farm employment, which is mod-

eled in two separate pools: salary and wage labor. The availability of employment within
each market is static throughout the simulation but may be affected by the LSLA.

• LSLAs and CF. These are the primary exogenous drivers in our analysis. A LSLA or CF
scheme is implemented at a pre-specified year within the simulation. We model three distinct
LSLA/CF scenarios:

– (1) LSLA with displacement. Agricultural and common land located within the LSLA
are lost and converted to cash crop production (managed by the firm). Additional
salary-based employment is created, depending on the implementation extent and em-
ployment intensity.

– (2) forced CF. Common land located within the LSLA is lost and converted to cash
crop production (managed by the firm). Agents retain agricultural land located within
the LSLA but are forced to produce cash crops for the firm.

– (3) opt-in CF. No land change occurs. All agents now have the ability to contribute land
to the contract farming scheme. Each year agents can choose to increase, decrease, or
make no change to their previous level of contribution.
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If applicable, how is space included in the model? The model is spatially implicit.
• Agents are initialized in a 1D “space” (i.e., agent 1, 2, ..., N).
• Agents occupy heterogeneous areas of land that are conceptually contained within a 2D

plane, however the land is not mapped into a 2D plane.
• All agents are assumed to have equal access to the reservoir of common land as well as

agricultural and employment markets.
• Agents’ networks are comprised of adjacent agents in both directions within the 1D agent

“space”.
• Agents are probabilistically affected by the LSLA.

What are the temporal and spatial resolutions and extents of the model?
• The temporal resolution is one year.
• In the main body of the paper, experiments are run for 30 years, conceptually representing

the period of 2000-2029.
• Each field is 0.25 ha.
• The overall spatial extent is dependent on the number of agents, the agricultural land held by

these agents, and the amount of common land. For example, households in OR2 each hold
an average of 1.75 ha and agricultural land comprises 65% of the overall site area. Thus,
with 200 agents there is 350 ha of agricultural land and 189 ha of common land, making a
total of 539 ha, which is approximately 23 km x 23 km.

Rationale: We selected a one-year temporal resolution as it represents the frequency at which
primary agricultural decisions are made and a 0.25 ha spatial resolution as it represents the resolu-
tion at which relevant agricultural management decisions are made. We selected a 30-year simula-
tion period to ensure that our results encompass the long-term effects of LSLAs and CF schemes.
A longer temporal extent would make modeling of processes such as demographic change and
environmental degradation more critical. Although these processes are unquestionably important
over a 30-year time period, we exclude them so as to focus on the direct effects of LSLA/CF on
smallholder livelihoods.

E.6.1.3 Process overview and scheduling

What entity does what, and in what order? A single simulation step proceeds as follows:
1. Update the model environment:

• The regional climate condition. The climate condition is simulated from a normal
distribution truncated between 0 and 1. There is no correlation between years.

• The regional crop prices for subsistence and cash crops. There is a correlation (ρprice)
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between years for each crop type, such that Pt = ρpricePt−1 + (1 − ρprice)x where P
denotes price, x ∼ N(µprice, σ

2
price), and µprice is defined separately for subsistence

and cash crops. There is no correlation between the two crop prices in each year.
Parameters are given in Table E.4.

2. If LSLA/CF implementation year: implement the LSLA/CF (see section E.6.4.3). This can
affect the agents’ landholdings, common land availability, and the regional employment

availability.
3. Agents make annual livelihood decisions (fertilizer use, livestock stocking, salary labor al-

location, contract farming land allocation). See section E.6.4.4.
4. The market allocates salaried employment among the candidate agents to determine their

realized salary employment. See section E.6.4.5.
5. The model environment calculates each agent’s crop yields. See section E.6.4.6.
6. Agents consume and purchase food using their available livelihood sources. This determines

their food security. See section E.6.4.7.
7. Update livestock and rangeland (see section E.6.4.8):

• Livestock consume crop residues from their owners’ land
• Livestock (if necessary) consume crop residues remaining on their neighbors’ land
• Livestock (if necessary) consume fodder from the common land
• If fodder on common land is insufficient, destocking is apportioned between agents

using the common land
• Livestock reproduce, determining the final herd size

8. Agents engage in coping measures: wage-based employment, livestock selling (affecting
herd size), and consumption reduction. See section E.6.4.9.

9. Agents update their beliefs. See section E.6.4.10.
Rationale: For all processes in which there is competition between the agents (employment

allocation, livestock grazing on communal rangeland), the agent order is randomized at each time
step to avoid artefacts of execution order. The loss of land to the LSLA is also randomly allocated
between the agents. Refer to the “Stochasticity” section.

The model scheduling outlined above describes the chronological order of activities in small-
holder agricultural systems (e.g., households make agricultural management decisions under un-
certainty about crop yields, and production decisions are made asynchronously with consumption
decisions (Sadoulet and De Janvry, 1995)). However, to simplify the scheduling, we assume that
crop yields within year t are also consumed within year t (i.e., food consumption (step 6 above)
occurs after food production (step 5)). This is somewhat discordant with reality, in which through-
out a year, households consume crop yields from the previous harvest. This simplification should
have no important implications for model dynamics.
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E.6.2 Design concepts

E.6.2.1 Theoretical and Empirical Background

Which general concepts, theories or hypotheses are underlying the model’s design at the
system level or at the level(s) of the submodel(s) (apart from the decision model)? What is
the link to complexity and the purpose of the model? The model is predicated on the notion
that household food security is a complex, emergent outcome in smallholder agricultural systems.
That is, food security emerges as a result of multiscale interactions between: socio-environmental
context (land availability, soil fertility, climate); household-level attributes, decision-making, and
interactions; and top-down institutional structures (LSLA/CF). Many types of models attend to
these concepts (Müller et al., 2020).

Within the model, we measure food security using a version of a “food availability ratio” (Fre-
lat et al., 2016), in which a food secure household has sufficient staple food available to meet their
food needs. We do not represent a more comprehensive measure of food security that has em-
pirical analogues (e.g., the household dietary diversity score (HDDS)) (Headey and Ecker, 2012;
Nicholson et al., 2019), as this would considerably complicate the model and could not be val-
idated against the available household survey data, which did not ask sufficient questions about
dietary diversity. Yet, our model incorporates (to some extent) the availability, access, and stability
pillars of the FAO’s widely-employed definition of food security (FAO, 2008).

The other primary model output is agricultural production. Crop yields are calculated using
the “yield gap” concept (Tittonell and Giller, 2013; Ferreira et al., 2017), which assumes that
yield is influenced by the most constraining factor on production. We consider the effects of
water, nutrient, and labor availability. Further details are given in section E.6.4.5. Although our
implementation is stylized and not calibrated to field-level empirical measurements of yield under
alternative climate and management conditions, it is conceptually similar to more complicated
process-based yield models (e.g., CENTURY (Metherell, 1993), STICS (Brisson et al., 2003)) and
through its simplicity enables more transparent mapping of relations between inputs and outputs.

On what assumptions is/are the agents’ decision model(s) based? Agents are assumed to be
boundedly rational actors that maximize a utility function using subjective, imperfect beliefs. The
utility function considers the household’s net income, subject to satisfaction of their food needs
and expenditures.

Why is /are certain decision model(s) chosen? Unfortunately, the available household survey
data did not provide sufficient information regarding decision-making processes for us to specify
an empirically informed decision-making model. We therefore chose this approach as it does not
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require the specification of a large number of parameters (e.g., thresholds in satisficing or reference
points for prospect theory).

If the model / submodel (e.g. the decision model) is based on empirical data, where do the
data come from? Empirical data used to parameterize and calibrate the model were drawn from
household surveys conducted by our research team in four regions of Oromiya, Ethiopia. Each of
these regions was targeted by an LSLA.

At which level of aggregation were the data available? Household-level

E.6.2.2 Individual Decision Making

What are the subjects and objects of the decision-making? On which level of aggregation
is decision-making modelled? Are multiple levels of decision making included? Decision-
making is modeled at the household level. Households (the subjects) make decisions about their
labor allocation, land management, and livestock management (the objects). Specifically, house-
holds choose between all feasible combinations of: fertilizer purchase (Y/N), invest savings in
stocking livestock herd (Y/N), and off-farm salary employment (no change, decrease, increase).
Under the CFjoin scenario, households also make decisions about allocation of their land to the
CF scheme (no change, decrease, increase).

What is the basic rationality behind agent decision-making in the model? Do agents pursue
an explicit objective or have other success criteria? Agents pursue an explicit objective: they
maximize the utility function U(Xi) = 1 − exp(−Xi/R), where R is a risk tolerance and X rep-
resents anticipated net cash availability under decision option i. We note that concerns have been
raised regarding economic optimization in agent-based models (Groeneveld et al., 2017; Schlüter
et al., 2017). Although our utility function operates on a financial measure (i.e., net income),
this represents the cash available after attempting to satisfy food and expenditure needs through
own production and purchase from the market. Thus, food availability is implicit to the util-
ity function. This is consistent with descriptions of household objectives in smallholder agricul-
tural systems, where food provisioning and risk reduction are critical considerations in household
decision-making (Demissie and Legesse, 2013).

How do agents make their decisions? Agents consider a finite set of decision options and select
the one that (1) is feasible with respect to cash, land, and labor availability and (2) maximizes risk
averse utility.
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Do the agents adapt their behaviour to changing endogenous and exogenous state variables?
And if yes, how? The decision-making process does not change throughout the simulation, how-
ever agents’ beliefs about climate, prices, and the availability of off-farm employment evolve
throughout the simulation, based on observation of endogenous (employment allocation) and ex-
ogenous (climate, prices) state variables. This affects the anticipated returns to different livelihood
activities and therefore can affect agent behavior.

Do social norms or cultural values play a role in the decision-making process? No.

Do spatial aspects play a role in the decision process? No. The model is spatially implicit.
However, agents observe their neighbors’ outcomes (in a hypothetical 1D space), which affects the
updating of beliefs.

Do temporal aspects play a role in the decision process? In the baseline model implementa-
tion, decisions are evaluated over a single-year time horizon. The only instance in which a longer
horizon is considered is when cultivating a crop with a two-year harvest period (as part of the CF
scheme). Here, agents consider the outcomes over two years, applying a time discounting rate to
outcomes from the second year.

To which extent and how is uncertainty included in the agents’ decision rules? Agent beliefs
are represented probabilistically. In evaluating each decision option, agents consider a range of
potential outcomes (e.g., a range of potential realized climate conditions), conditional on their
probabilistic beliefs. This leads to a distribution of anticipated utility outcomes under each decision
option. Agents then calculate the expectation of these utility values for each decision option. See
further details in section E.6.4.4.

E.6.2.3 Learning

Is individual learning included in the decision process? How do individuals change their
decision rules over time as consequence of their experience? No.

Is collective learning implemented in the model? No.

E.6.2.4 Individual sensing

What endogenous and exogenous state variables are individuals assumed to sense and con-
sider in their decisions? Is the sensing process erroneous? Each year, agents observe the
following:
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• Climate: effect of climate on their own and their neighbors’ crop yields
• Off-farm employment: their success (only if they sought it) and their neighbors’ success (if

they sought it)
• Regional crop prices
• Contract breaching: (if relevant) whether the firm honored their contract farming arrange-

ment and their neighbors’ arrangements.
These observations are not erroneous and are used to update agent beliefs.

What state variables of which other individuals can an individual perceive? Is the sensing
process erroneous? Effect of climate on yields, off-farm employment success, contract breach-
ing (as above).

What is the spatial scale of sensing? Household (agent) level.

Are the mechanisms by which agents obtain information modelled explicitly, or are individ-
uals simply assumed to know these variables? No mechanisms are modeled.

Are the costs for cognition and the costs for gathering information explicitly included in the
model? No.

E.6.2.5 Individual prediction

Which data do the agents use to predict future conditions? Their probabilistic beliefs (see
section E.6.4.10).

What internal models are agents assumed to use to estimate future conditions or conse-
quences of their decisions? For each decision option and realization of their probabilistic be-
liefs, agents estimate food and cash availability (steps 4-6 in section E.6.1.3) to calculate the utility
of the option. This “internal model” is the same as the “external model,” but is evaluated using the
subjective, imperfect beliefs rather than the realized values.

Might agents be erroneous in the prediction process, and how is it implemented? No. Agents
evaluate decision options under uncertainty, but it is not erroneous.

E.6.2.6 Interaction

Are interactions among agents and entities assumed as direct or indirect?
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• Direct: information sharing through observations; grazing livestock on neighbors’ leftover
fodder.

• Indirect: agents compete in the employment market and for the limited availability of fodder
in the communal rangeland.

On what do the interactions depend? All agents have equal access to employment markets and
communal rangeland. Beliefs and livestock fodder are shared between neighbors.

If the interactions involve communication, how are such communications represented?
Communication is not modeled.

If a coordination network exists, how does it affect the agent behaviour? Is the structure of
the network imposed or emergent? N/A

E.6.2.7 Collectives

Do the individuals form or belong to aggregations that affect and are affected by the in-
dividuals? Are these aggregations imposed by the modeller or do they emerge during the
simulation? No.

How are collectives represented? N/A

E.6.3 Heterogeneity

Are the agents heterogeneous? If yes, which state variables and/or processes differ between
the agents? Yes. Agents are heterogeneous in their landholding, household size, network con-
nections (neighbors), livestock herd size, risk tolerance, and beliefs.

Are the agents heterogeneous in their decision-making? If yes, which decision models or
decision objects differ between the agents? Agents have heterogeneous risk tolerances and
beliefs, but utilize the same decision-making model.

E.6.3.1 Stochasticity

What processes (including initialisation) are modelled by assuming they are random or partly
random? All stochasticity is controlled using random number seeds. Multiple replications are
run to produce distributions over this (within-model) stochasticity. Variability between experimen-
tal settings is reduced by using common random numbers across experiments.
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Initialization:
• Generation of time series for climate, crop prices, and random perturbations for crop yields
• Sub-sampling of N agents from the surveyed households
• Assignment of agent-level risk tolerances and soil fertility
Simulation:
• Distribution of land loss between the agents in the LSLA simulations. There are two stochas-

tic processes: (1) the order of agents from which land is sequentially taken and (2) the
amount of each agent’s land that is taken.

• Sampling over uncertain beliefs in decision-making.
• Allocation of non-farm employment between candidate agents
• Livestock reproduction
• Agent order for: sharing of leftover crop residues for livestock, destocking of livestock if

communal rangeland is in deficit
• Contract breaching

E.6.3.2 Observation

What data are collected from the ABM for testing, understanding and analysing it, and how
and when are they collected?

• Testing: to verify the model structure and implementation, we examined a range of model
dynamics over time, including agent decisions, food security, crop yields, coping measures,
and non-farm employment, as well as the effect of various LSLA and CF arrangements on
these. We examined these both as averages/distributions over the population and by looking
at individual agent trajectories.

• Calibration: to match with the timing of the household surveys, we ran simulations from
2000-2019 and collected the following household-level variables in the final year of the
simulation: livestock herd sizes, fertilizer decisions, non-farm employment, food security,
and crop yields. See Appendix E.4.

• Analysis: the primary outputs include household-level food shortages and household-level
crop production. In the main body of the paper, we aggregate these over the agents and take
the average over the simulation years following the LSLA/CF implementation.

What key results, outputs or characteristics of the model are emerging from the individuals?
(Emergence) We consider food security to be an emergent outcome from the processes and in-
teractions within the model. Some agents are predisposed to experience more or less food security
(e.g., through their landholdings, which determines productive ability), yet transient or chronic
food security can emerge from other interactions and stochasticity within the model, for example
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receiving a salaried job or being required to destock a livestock. Food security can be examined
at the regional level (i.e., what percent of agents are food secure in year t) or disaggregated along
dimensions of agent heterogeneity (e.g., how does food security compare between agents that did
and did not lose land to the LSLA).

The second primary model output is regional productivity. In addition to direct effects result-
ing from the exogenous characteristics of the LSLA/CF scheme and (static) distributions of soil
fertility, regional crop production is driven by agent-level fertilizer decisions, as well as agent-
level decisions about contract farming participation (if relevant). These decisions are influenced
by agent attributes (e.g., the financial ability to apply fertilizer), beliefs (e.g., the expected returns
to applying fertilizer), and interactions (e.g., observation of contract breaches with neighboring
agents). Each of these factors is dynamic and heterogeneous within the simulation.

E.6.3.3 Implementation Details

How has the model been implemented? Python 3.

Is the model accessible, and if so where? All data inputs and model and analysis code will be
made publicly available on CoMSES.net upon acceptance of the publication.

E.6.3.4 Initialisation

What is the initial state of the model world, i.e. at time t=0 of a simulation run? Agents:
The agents’ initial state variables—landholding, household size, livestock herd, fertilizer use, and
salary labor—are drawn from the household survey data, using the available recall questions. For
the model calibration, we run a different model experiment for each site (i.e., OR1, OR2, OR3,
OR4). For the experiments in the main body of the paper, we run a single synthetic site (ORX)
by pooling the household data across all four sites. All variables are drawn jointly to account for
dependencies in the data.

In all experiments, we initialize 200 agents. This number was chosen so that for each simulation
there is a subsampling from the overall empirical household population (approximately 400 house-
holds, 100 from each site). Thus, for each random number seed, the population of households is
different. We chose this approach to represent uncertainty more fully in household characteristics
between simulations, which will result in wider prediction intervals.

For the agent state variables not drawn from the empirical data:
• Risk tolerance is drawn from a normal distribution (see parameters in Table E.4)
• Each agent’s network is comprised of the m closest agents (m is an even number). For

example, if m=4, agent i’s network includes agents i-2, i-1, i+1, i+2.
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• Beliefs are initially homogeneous over the agents and are set using the input parameters.
This is described in more detail in section E.6.4.1.

Agricultural land: Soil fertility is drawn from a lognormal distribution (see parameters in Table
E.4).

Common land: Remote sensing data was used to derive estimates of pre-LSLA common-land
availability.

Is the initialisation always the same, or is it allowed to vary among simulations? The ini-
tialization process is always the same. However, the assignment of some state variables is prob-
abilistic. The purpose of the model analysis is to understand the effects of LSLA/CF on model
outcomes, so we desire to reduce the impact of this stochasticity. We do so by running the model
multiple times for each LSLA/CF scenario using different random number seeds.

Are the initial values chosen arbitrarily or based on data? As described above, some initial
state variables are derived from the household survey data. The initialized model therefore approx-
imates the conditions in Oromiya, Ethiopia, but could be adapted in future work with survey data
from different regions that are dominated by similar livelihood activities.

Variables not contained within this data were chosen as reasonable values as well as through the
model calibration procedure. For the initialization of agent beliefs (which comprises the majority
of arbitrary parameters), we reduce the impact of the initialization by (1) using a moderately weak
prior, so agents’ beliefs quickly adjust based on their experiences and (2) only recording the outputs
after the LSLA/CF scheme is implemented (i.e., effectively a ∼10-year burn-in period).

E.6.3.5 Input data

Does the model use input from external sources such as data files or other models to represent
processes that change over time? The only input data that drives model processes over time is
the empirically estimated amount of common land within the LSLA, which is used to update
common land availability when the LSLA is implemented.

E.6.4 Model and sub-model details

E.6.4.1 Additional initialization details

Table E.3 shows the parameters used in model initialization. Agent beliefs are represented proba-
bilistically. Beliefs about non-negative, continuous quantities (rainfall and crop prices) are repre-
sented using normal distributions—i.e., ∼ N(µ, σ2). Their initialization requires several param-
eters. The use of these parameters is described in more detail in section E.6.4.10. Beliefs about
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probabilities (the probability of receiving salary labor and the probability of the firm honoring the
contract) are represented using beta distributions–—i.e., ∼ Beta(α, β). Agent beliefs for these
quantities are initialized with a strength (γ) and an expectation (E), such that:

α = E ∗ γ (E.4)

β = α/µ− α (E.5)

The second equation satisfies the property of a beta distribution that:

E =
α

α + β
(E.6)

Together, the equations also mean that γ = α + β, a measure of the strength of knowledge under-
lying the beta distribution. With a higher strength (γ), new observations have a weaker effect on
the overall belief.

Table E.3: Values used in ABM initialization.

Entity Parameter name Symbol Description Value
Agent Network N cnetwork Number of agents in network 4

Risk tolerance: mean µrisk Mean value of normal distribution (75,7500)‡

Risk tolerance: coefficient

of variation

CVrisk Ratio of mean and standard deviation in the

normal distribution

0.1

Agent

(beliefs)

Binomial strength γ Strength of prior beliefs on binomially

distributed quantities

10

Binomial expectation E Expected prior belief on binomially

distributed quantities

- Receiving salary labor 0.2

- Firm honors contract 1

Normal mean E[µ0] Prior expectation on the mean

- Rainfall µrain†

- Crop prices µprice†

Normal variance E[σ2
0 ] Prior expected variance

- Rainfall 0.25

- Crop prices 0.5

n0 Prior strength on the mean 1

α0 Prior strength on the variance 1

Land Soil fertility Conceptually represents log(kg

Nitrogen/ha). Affects the nutrients

available for crop growth.

- Mean µsoil (7,9)‡

- Standard deviation σsoil (0,0.6)‡

‡These parameters are set by the calibration process. Given that we calibrate multiple models, these parameters assume

multiple values. The values within parentheses indicate the range of values the parameter can take. See details in Appendix

E.4.
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Entity Parameter name Symbol Description Value
†The expectations for these beliefs are accurate—–i.e., they are equal to the actual expected values used to simulate rainfall

and crop prices (see Table E.4).

E.6.4.2 Parameter values

Table E.4: ABM parameter values.

Parameter Symbol Value Unit Source Description/notes
Model
Number of agents NA 200
Time extent T 30 years
Random seed seed 0 Varied upon initialization

Agents
Living cost $nonfood (10,5000)‡ birr/year/

person ¶
Annual non-food expenditure requirement.

Food requirement reqfood 206 kg/person/
year

(Williams
et al.,
2020a)

Represents 18 kg of staple crop
consumption per person per month.

Number of years for
smoothing

Nyr smooth 3 years Agents can choose to voluntarily destock
from their herds at the end of the year if
they do not anticipate they will be able to
support them (see section E.6.4.8). When
making this consideration, they recall the
fodder availability over the previous 3 years.

Coping threshold ccoping (0,1)‡ Fraction of food deficit before agents
engage in coping measures. If zero, then
agents engage in coping measures with any
amount of food shortage. If one, then agents
can perfectly reduce their food
consumption.

Agricultural labor
requirement

reqag lbr 1 person/ ha Agricultural labor requirements do not
preclude agents from farming their land, but
can lead to reduced yields when labor
availability is low relative to land cultivated
and livestock held (section E.6.4.6).

Livestock labor
requirement

reqls lbr 0.2 person/ head Similar to above, livestock labor
requirements do not preclude agents from
holding livestock. Livestock herd sizes are
constrained by fodder availability.

Discount rate cdiscount 0.586 (Holden
et al.,
1998)

Only applied when producing crops with a
two-year harvest period.

Number of simulations
in utility calculations

Nsim 10 Within the decision-making process, we
simulate a sampling over agents’
probabilistic beliefs. This parameter denotes
the number of samples that are taken. See
details in section E.6.4.4. We chose a small
number (10) for both computational reasons
and so that there is some
variability/stochasticity between model
replications in the belief sampling.

Land
Field size cfieldsize 0.25 Ha HH

survey
Minimum increment in household survey
data.
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Parameter Symbol Value Unit Source Description/notes
Fertilizer application
rate

cfert app 100 kg Nitrogen /
ha

HH
survey

Approximately median value for Oromiyan
households in household survey data.

Soil organic matter
mineralization rate

cmineralize 0.02 (Schmidt
et al.,
2011)

50-year turnover rate of bulk soil organic
matter (SOM)

Minimum nutrient loss
rate

cN lost min 0.05 Minimum fraction of nutrients lost through
leaching (with high soil fertility)

Maximum nutrient
loss rate

cN lost max 0.5 Maximum fraction of nutrients lost through
leaching (with low soil fertility)

Crop yields
Maximum yield cyield max 20,000 kg/Ha HH

survey
Tail from the distribution of maize yields in
the household survey data.

Critical rainfall value crain crit 0.8 Rainfall value below which water begins to
limit crop yield. Although the
representation of water constraints is
different, 0.8 is used in the CENTURY
model (Metherell, 1993).

Random effect std.
dev.

σyield error (0,0.6)‡ Standard deviation for the
normally-distributed error term in crop
yields.

Crop residue
multiplier

cresidue mult 2 (Bogale
et al.,
2008;
Assefa
et al.,
2013)

Residue production per unit of harvested
crop.

Crop residues lost cresidue lost 0.1 (Assefa
et al.,
2013)

Fraction of crop residues lost from system

Nitrogen composition
- Residues Nresidue 0.37 % of total

yield
(Elias
et al.,
1998)

- Crop Ncrop 1.2 % of total
yield

(Elias
et al.,
1998)

Market
Crop price
- Mean µprice 6 Birr/kg HH

survey
Median selling price for maize reported
within the household survey data

- Std. dev. σprice 0.5 Birr/kg
- Inter-annual
correlation

ρprice 0.7

Markup for buying
food

cmarkup 1.2 Ratio of the buying price to selling price.
This proxies the effect of transaction costs.

Fixed farming cost $farm 100 birr/ha Represents all miscellaneous costs
associated with farming. Insufficient
information was available in the survey to
empirically estimate.

Livestock cost $livestock 3,000 birr/ head CSA†
Fertilizer cost $fertilizer 13.2 birr/ kg LSMS Median value from the 2015 Living

Standards Measurement Study (LSMS) in
Ethiopia.

Labor allocation
increment
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Parameter Symbol Value Unit Source Description/notes
- Salary incrsalary 0.5 person-years Increment at which salary labor can be

allocated. 0.5 represents one person
working half of their time.

- Wage incrwage 0.005 person-years Increment at which wage labor can be
allocated. 0.005 = 1/200, conceptually
representing 1 day.

Returns to non-farm
work
- Salary $salary (1e4, 2e4)‡ birr/ person/

year
- Wage $wage (1e4, 2e4)‡ birr/ person/

year
Regional job
availability
- Salary availsalary (0,0.1)‡ person-

years/ year/
agent

- Wage availwage (0,0.5)‡ person-
years/ year/
agent

Climate
Rainfall
- Mean µrain (0.4,0.8)‡
- Std. dev. σrain 0.2

Rangeland
Fodder availability availfodder (750,4000)‡ kg/ha

Livestock
Birth rate creprod (0,0.5)‡ Probability that a livestock head reproduces

each year.
Consumption cls cons (2000,4000)‡ kg/ head/

year

Income $livestock earn 175 birr/ head/
year

Derived from (Redda, 2002): 240-480
birr/year with a local cow. Assume
mid-point of ∼350 birr/year and 50%
female animals, which gives 175
birr/head/year.

‡These parameters are set by the calibration process. Given that we calibrate multiple models, these parameters assume
multiple values. The values within parentheses indicate the range of values the parameter can take. See details in Appendix
E.4.
¶Birr is the Ethiopian currency.
†CSA = CSA = Ethiopian Central Statistical Agency; http://www.csa.gov.et/monthly-retail-price

E.6.4.3 LSLA/CF implementation

Change in model parameters and processes In all cases, the LSLA/CF is implemented at the
beginning of a pre-specified year, based on the best available information (OR1: 2012, OR2: 2012,
OR3: 2003, OR4: 2008, ORX: 2010). The event permanently affects some parameters and state
variables, and in some cases opens up new livelihood opportunities (i.e., affects processes within
the model). The parameters associated with the LSLA/CF implementation are shown in Table 6.3
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in the main manuscript. Table E.5 describes the changes associated with each modeled LSLA/CF
scenario.

Table E.5: Effects of LSLA/CF scenarios on model state variables and processes.

Geographic
scenario

Parameter / process
affected

Details

Displacement Increase salary labor
supply

Conceptually represents employment on the plantation-style farm.
Employment addition (jobs) = employment rate (jobs/ha) * LSLA area (ha) *
implementation fraction

Reduce common land
availability

Common land lost (ha) = LSLA area (ha) * fraction in common land

Displace agricultural
land

Agricultural land lost (ha) = LSLA area (ha) * (1 – fraction in common land)
To apportion this between the agents:
• Generate a random ordering for the N agents: random index
• Generate a list of N values between 0 and 1: random fraction
• Set land taken← 0 ha
• Set r ← 1
• while land taken < agricultural land lost:

– Take random fraction of agent random index[r]’s land
– Add this to land taken
– Set r ← r + 1

Grow plantation crops
• This process operates every year after the LSLA’s implementation.
• Set the soil fertility within the LSLA as the median over all agents’ soil

fertility.
• Assume fertilizer is applied at the cash crop rate, which is the baseline

subsistence rate multiplied by the “intensification” parameter (e.g., 1.5),
shown in Table 6.3 in the main manuscript.

• Calculate crop yield using the same process as for agent crop yields,
described in section E.6.4.6.

• Crop production = crop yield * LSLA area * implementation fraction

CFforced Reduce common land
availability

As in Displacement above

Assign agents to
contract farming
scheme

Use the same process as “Displace agricultural land” above, but instead of
each agent losing this amount of land, this denotes the amount of land they
must contribute to the contract farming scheme.

Farm cash crops Note: The way in which cash crops interact with agents’ income and food
consumption is described in section E.6.4.7. Here we summarize the key
differences between farming of subsistence crops and cash crops.
• Agents apply fertilizer at the cash crop rate.
• Cash crop production cannot be consumed and must be sold to the market at

the cash crop price.
• Agents know this price with certainty at the beginning of the year (i.e.,

during their decision-making process). This represents the price guaranteed
by the firm.

Grow plantation crops Same as “Grow plantation crops” above, but only operates on the area of
LSLA within common land.
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Geographic
scenario

Parameter / process
affected

Details

CFchoice Add contract farming
to decision options

Complement the set of agents’ decision options with the contract farming
decisions: {no change, increase, decrease}. The magnitude of the
increase/decrease is specified by the “land requirement” parameter in Table 6.3
in the main manuscript (e.g., 0.25 ha – equivalent to one field).

Add possibility for
contract breaching

If contract breaching is enabled:
• Activate agents’ belief about the probability of the firm honoring the

contract.
• Within the utility calculations in the decision-making: include agents’

uncertainty about the outcome of the contract farming. More details are
included in section E.6.4.4.

• After crop yields are calculated: probabilistically simulate contract breaches.
• If a contract is breached, the agent loses some cash crop production

(specified by “production losses” in Table 6.3 in the main manuscript) and
must sell their remaining cash crop production at the subsistence crop price
(i.e., without the market premium).

Attributing household-level land losses In developing the model, we experimented with several
different methods for attributing the LSLA-induced land losses between the agents. There were
two available potential sources of empirical information for this: the household survey data and the
remotely sensed LULC data. The household survey data provided estimates at the household-level
about changes in cultivated land area, in both the Treatment and paired Control sites. Although
these data most closely approximate the empirical conditions, we decided not to use them. The
primary factor motivating this choice was that households in both Treatment and Control sites
reported both increases and decreases in land cultivation. It was difficult to empirically identify
the LSLA-induced component of these changes, making it difficult to identify the LSLA-induced
effect within the ABM. Because we do not endogenously model decisions around land cultivation
(e.g., land rental), we opted for an arrangement that more directly isolates the effects of the LSLAs
on smallholder agricultural land.

To do this, we used the site-level LULC data. These data provide site-level estimates of
LSLA-induced losses of smallholder agricultural land (see Figure 6.1 and Table 6.1 in the main
manuscript). We experimented with two methods to attribute these site-level changes between the
agents. In the first option—–“random percent” described in Table E.5–—the order of the agents is
randomized and each agent sequentially loses a random percentage of their land until the site-level
changes are satisfied (Figure E.9B). In the second option—–“random field”—–fields are randomly
selected from the landscape until the site-level changes are satisfied (Figure E.9C). The first op-
tion generates a higher degree of differentiation, whereby many agents are unaffected but some
agents lose large amounts of land. This better approximated the distribution of land changes in the
household survey data (Figure E.9A), so we chose to use this as the default method.
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Figure E.9: Changes in cultivated land area for households reporting change (i.e., excluding households with no
change). (A) shows the values reported by the surveyed households, with data pooled across sites. (B) and (C)
respectively show the distribution across households in the ABM using the “random percent” and “random field”
algorithms.

E.6.4.4 Agent decision-making

Decision options Under baseline conditions, decision options include all (maximum 12 (2*2*3))
feasible combinations of:

• Fertilizer purchase

– Yes: Apply inorganic fertilizer at a rate of cfert app (Table E.4) to all land; or
– No: Do not apply inorganic fertilizer.

• Livestock stocking

– Yes: Purchase livestock with any leftover cash from the previous year; or
– No: Do not purchase any livestock.

• Off-farm salary employment:

– No change: allocate the same amount of labor as the previous year; or
– Increase: increase allocation by an increment of incr salary (Table E.4); or
– Decrease: decrease allocation by an increment of incr salary.

Under the CF choice arrangement, the decision set is expanded to all include all (maximum
36) feasible combinations of:

• Contract farming:

– No change: allocate the same amount of land as the previous year; or
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– Increase: increase the amount of land contracted by one increment (given in Table 6.3
in the main manuscript); or

– Decrease: decrease the amount of land contracted by one increment.

Incorporating uncertainty in beliefs Agents anticipate the returns they might receive under
each decision option, given their uncertain beliefs about climate, prices, and non-farm employment
allocation. The beliefs are represented using two different distributions (see section E.6.4.1): nor-
mal (climate and prices) and binomial (non-farm employment allocation and, if relevant, contract
breaching). To explicitly represent uncertainty over all beliefs–—without relying on an analytical,
multivariate probability distribution—–we conduct a sampling over the individual distributions.

For the normally distributed quantities, we achieve this through the following steps:
1. Draw N sim values (N sim = 10) from a standard normal distribution: Za ∼ N(0, 1)Nsim

2. Scale to a sequence of real-valued quantities using agent a’s beliefs: Xa = E[µ]a+E[σ]a∗Za
For the binomially distributed quantities, we achieve this through the following steps:

1. Draw Nsim values from a uniform distribution: Za ∼ U(0, 1)Nsim

2. Convert to a sequence of success/failure using agent a’s beliefs: Xa = 1(Za ≤ Ea), where
1 is an indicator function and Ea is the expected value of agent a’s belief.

Evaluation procedure To evaluate each option–—in order to calculate a utility—–agents run an
internal process that simulates their livelihood if they were to choose this option, using the Nsim

artificial realizations of climate, prices, and employment. The process contains the steps:
1. Calculate the start-of-year cost of the option, including non-food expenditure, livestock in-

vestment, and costs for farming and fertilizer application.
2. Estimate income from livestock and salary employment, using the Nsim realizations of em-

ployment allocation.
3. Estimate crop yields, using theNsim realizations of climate and the known fertilizer and crop

residue applications.
4. If contract farming: Estimate income from cash crops, using the Nsim realizations of crop

yields and the cash crop price guaranteed by the contracting firm.
5. If contract breaching is active: Reduce cash crop production and income, using the Nsim

realizations of contract honoring/breaches.
6. If subsistence crop production exceeds food consumption requirements: Sell excess subsis-

tence crop production using the Nsim realizations of subsistence crop prices.
7. Else: Purchase food to fill the consumption deficit using the Nsim realizations of subsistence

crop prices.
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8. Return the Nsim values of net cash availability, accounting for the value of livestock. Here,
each value could be positive or negative, respectively representing cash surplus and deficit.
A cash deficit indicates that coping measures will be required, but these are not simulated
here.

Finally, agent a calculates the expected utility of the decision option as:

EUa =
1

Nsim

Nsim∑
i=1

1− exp
(
− cashi,a

Ra

)
(E.7)

where R is the risk tolerance.

Feasibility Each decision option is subject to a feasibility check. An option is infeasible if any
of the following conditions are met:

1. A labor allocation is negative (e.g., if attempting to decrease salary employment below zero);
2. A non-farm labor allocation is larger than the household’s labor capacity;2

3. Total land cultivation is larger than the household’s land availability (e.g., if attempting to
increase contract farming land); or

4. For a two-year cash crop only: the two-year crop is being abandoned half-way through its
growth period.

Selection procedure Agents select the feasible option with the highest utility.

E.6.4.5 Salary employment allocation

Agents compete for a finite supply of salaried employment. Except in simulations where the LSLA
provides additional salaried employment (Table E.5), employment availability remains constant
throughout the simulation. We assume that there is some inertia in salaried employment: agents
retain salaried employment between years. Salaried jobs are allocated using the following proce-
dure:

• For agents previously with salaried employment and choosing to retain previous allocation:

– Agents retain jobs.
• For agents previously with salaried employment and reducing their previous allocation:

– Add these jobs back to the market.

2Note: we only incorporate labor constraints in the allocation of non-farm labor, and not in the allocation of labor
to farming or livestock rearing (i.e., labor availability does not directly constrain the ability to cultivate crops or hold
livestock). This is because some households in the survey data led to infeasible allocations of labor (i.e., higher labor
use than labor availability) under the conditions within the initialization data. Labor allocated to farming and livestock
therefore only affects households through reductions in their crop yield (see section E.6.4.6).
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• For agents seeking to increase allocation:

– If total new demand < jobs available:

* All agents receive jobs.
– Else:

* Randomize the order of agents.

* Allocate jobs in this order at the incr salary rate (Table E.4) until none remain.

E.6.4.6 Crop yields

Crop yields are calculated using a stylized, process-based model, slightly adapted from (Williams
et al., 2021). In contrast to other more complicated process-based yield models (e.g., DSSAT), this
yield model does not attempt to predict site-level yields. Rather, our yield model has two aims:
(1) to be simple, so as to retain interpretability; and (2) to recreate the distribution of crop yields
reported by the surveyed households. Hence, we retain a simple structure and include the empirical
yield distribution as an ABM fitting pattern (Table E.1).

All agents grow a single staple food crop, which conceptually represents maize–—the dominant
crop in the modeled region. Crop yields are calculated using the yield gap concept (Tittonell and
Giller, 2013), in which yields are constrained by the most limiting factor to crop growth. We proxy
the effects of water availability, nutrient availability, and labor intensity. We describe these effects
below.

Water availability Under baseline conditions, water is provided exclusively by rainfall (i.e., no
irrigation) and is homogeneous each year across all agents. The water limitations are calculated as
follows (using parameters from Table E.4):

1. Sample the annual rainfall value:

rain ∼ N(µrain, σ
2
rain) (E.8)

2. Convert to a water factor:{
1 ifrain ≥ crain crit

1− crain crit−rain
crain crit

else

}
(E.9)

In the LSLA/CF experiments involving irrigation, cwater = 1 in all years for irrigated land.
The water factor provides a linear scaling on maximum yield:

Y water = cwater ∗ cyield max (E.10)
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Nutrient availability We represent the effects of nutrient availability using a generic “nutrient”
and a partial nutrient balance. To ground parameter values in empirical data, we measure this in
units of kg Nitrogen (N)/ha. N is an important nutrient for crop growth and is frequently a limiting
factor for yields in smallholder agricultural systems (Giller et al., 1997). Crops can only uptake
inorganic forms of N, which are provided by inorganic fertilizer, mineralization of soil organic
matter, and mineralization of applied organic nutrients. Agents have heterogeneous levels of soil
fertility that provide inorganic N for crop growth each year through a linear decay process. We do
not model soil degradation and so soil fertility is held static throughout the simulation. A portion
of this organic matter mineralizes within the year to provide nutrients for crop growth. The total
amount of inorganic nutrients available for agent a is given by:

N total
a = N fertilizer

a + kslow ∗ soil fertilitya + kfast ∗N crop residue
a (E.11)

where
• N fertilizer

a = cfert app if the agent has chosen to apply fertilizer and 0 otherwise
• kslow and kfast are rate constants given in Table E.4
• N crop residue

a = cresidue mult ∗ (1− cresidue lost ∗ crop productiona,t−1). That is, applied crop
residues are a scaled value of the previous year’s crop yields.

Next, some fraction of N total
a is lost through leaching.

Navailable
a = N total

a ∗ (1− loss ratea) (E.12)

where higher soil fertility contributes to lower leaching rates (Drinkwater et al., 1998):

loss ratea = cN lost min +
max fertility − soil fertilitya

max fertility
∗
(
cN lost max − cN lost min

)
(E.13)

where max fertility denotes the highest soil fertility over all agents.
The maximum possible crop yield, given these nutrients, is then calculated as:

Y nutrient
a =

Navailable
a

Ncrop + cresidue mult ∗Nresidue

(E.14)

This represents a partitioning of the available N between the residues and harvested crop.

Labor intensity We proxy an effect of limited labor availability on crop yields. This affects
agents with small household sizes relative to their landholdings, as well as agents allocating a lot
of labor to non-farm activities, who must negotiate a tradeoff with crop yields. The labor effect is

248



calculated as:
labor effecta = 1− exp

(
− household sizea
labor allocateda

)
(E.15)

where labor allocated is the sum of all labor allocated to farming, livestock, and non-farm
employment.

Yield calculation These three reduction factors are then combined to calculate the crop yield:

Y ielda = min(Y water, Y nutrient
a ) ∗ labor effecta ∗ ε (E.16)

where ε ∼ N(1, σ2
yield error) is a household-level stochastic effect.

E.6.4.7 Income, food consumption, and food security

This process simulates the agents’ satisfaction of food and expenditure requirements through their
set of livelihood sources. It allows for self-consumption of food crop production as well as buying
and selling of food from the market. The process is similar to the internal evaluation procedure
conducted by agents in their decision-making (see section E.6.4.4), but it utilizes realized values of
crop yields, employment, and prices, rather than the agents’ beliefs. The process runs as follows.

Income balance The income balance accounts for the agents’ non-food expenditures and earn-
ings:

net income = herd size ∗ $livestock earn + salary labor ∗ $salary − $nonfood − $farm total (E.17)

where all cost parameters are as specified in Table E.4 and $farmtotal includes the fixed costs
of farming (at rate $farm in Table E.4) and the costs for fertilizer (at rate $fertilizer ∗ cfert app). It
is possible that this income balance is negative (i.e., the agent is in debt). In this income balance,
we assume that surplus income cannot be carried from the previous year (i.e., agents do not have
access to cash savings accounts). We made this model design decision to prevent the emergence
of “runaway” households that, if earning a net-positive income in an average year, accumulate
progressively more and more cash over time. In reality, richer households in such contexts likely
spend a large proportion of their excess income (e.g., on weddings or celebrations) and thus savings
is not as high. As we do not model such behavior, we simply assume that any surplus cash at the
end of the time step is spent.

Crop production First, agents sell any cash crops (produced through contract farming) at the
prevailing cash crop market rate. If contract breaching is included, agents with whom the firm
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breaches lose a fraction of their cash crop production (specified in Table 6.3 in the main manuscript)
and sell at the market price for subsistence crops. Next, agents account for their food crop produc-
tion, with the following priority ordering:

1. Sell food crops to absolve any remaining debts from the income balance (i.e., to repay re-
quired costs)

2. Satisfy own food consumption needs (i.e., self-consume production)
3. Sell any remaining production.

Food purchase If a food consumption deficit remains, agents then purchase food from the market
at the prevailing market rate with an added markup (cmarkup in Table E.4) that proxies the effects
of transaction costs. It is possible that agents have insufficient cash to do this–—i.e., a food deficit
remains.

Food shortages If a food deficit remains after this process—i.e., the agent has insufficient pro-
duction and income sources to procure the required food and non-food quantities—they are classi-
fied as “food insecure”. This is a binary measure that is modeled at the household-level within the
ABM. It incorporates to some extent the FAO’s food security dimensions of availability, access,
and stability (FAO, 2008). However, given that we model production and consumption of a single
cereal food item, our food security measure does not imply that a household consumes adequate
nutrients to meet dietary needs or is able to utilize these nutrients within their bodies. Additionally,
we do not model the distribution of food between different household members.

E.6.4.8 Livestock consumption, reproduction, and stocking

Consumption Livestock consumption requirements are met through three pathways. First, each
agent’s livestock are grazed on the agent’s own crop residues. The volume of available crop residue
is calculated using a multiplication factor (cresidue mult in Table E.4) and loss factor (cresidue lost in
Table E.4) on crop production within the same year. Second, agents unable to meet their live-
stock’s consumption needs through their own crop residues graze their livestock on their neigh-
bors’ leftover residues (if any remain). To do so, the order of agents is randomized and each agent
sequentially grazes livestock on their neighbors’ remaining residues.3 Third, remaining livestock
consumption shortfalls are met by the communal rangeland. The communal rangeland has a lim-
ited availability of fodder, dictated by its area and biomass density (availfodder in Table E.4). If
this reserve is insufficient to meet all livestock needs, the livestock that cannot be fed must be de-
stocked. Destocking is allocated randomly between the livestock that are grazed on the communal

3In reality, smallholder households have an incentive to let other livestock graze on their land due to its benefits to
soil quality (e.g., through livestock manure).
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rangeland. Agents do not earn money for these lost livestock.

Reproduction Each animal has a probability of reproducing in a given year (creprod in Table
E.4). Each livestock herd’s reproduction is simulated using sampling from a binomial distribution.

Destocking If, after these processes, an agent holds more livestock than they anticipate to be
able to feed in the subsequent year, they destock from their herd. Agents use their previous levels
of fodder availability (on-farm and off-farm) to estimate the maximum number of livestock they
will be able to support. Any animals destocked here are sold at the market rate ($livestock in Table
E.4).

E.6.4.9 Agent coping mechanisms

Agents that cannot meet their food or cash needs engage in the following three coping mechanisms.
1. Reduce food consumption: Agents have a coping threshold (ccoping in Table E.4), which rep-

resents the degree to which they are able to reduce their food consumption before engaging
in other coping measures. Agents that have food deficits reduce their food consumption up
to this coping threshold.

2. Casual labor: Agents with remaining food or cash deficits then attempt to find casual, wage-
based non-farm employment. There is a limited availability of wage-based jobs at the re-
gional level (availwage). If the total demand exceeds the supply, jobs are allocated randomly
between the agents seeking employment. The allocation is conceptually made on a daily
basis (e.g., an agent might seek 20 days of work but only receive 12), using the incrwage
parameter in Table E.4.

3. Sell livestock: If a food or cash deficit remains after the above two coping measures, agents
then sell the required number of livestock to make up this shortfall. Agents that have insuffi-
cient livestock to do so sell the maximum number possible and are absolved of their debt at
the end of the year (i.e., shortfalls cannot carry between simulation time steps).

E.6.4.10 Agent belief updates

Agents’ beliefs are represented probabilistically (see section E.6.4.1 for initialization details) and
are updated with Bayesian methods using agents’ own experiences and observation of their neigh-
bors’ experiences. For simplicity, we assume that agents treat their neighbors’ experiences with
equal weight to their own experiences.
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Normally distributed beliefs We assume that crop prices and climate (symbolically: X) follow
a normal distribution with unknown mean and variance:

X ∼ N(µ, τ) (E.18)

where τ = 1/σ2 is the precision. The agent has beliefs on the µ and τ parameters as follows:

µ ∼ N(µ0, n0τ) (E.19)

τ ∼ Ga(α, β) (E.20)

where n0 is the prior strength on the mean. Using an observation, x, these beliefs are updated
using:4

µ1 =
n ∗ x ∗ n0 ∗ µ0

n0 + n
(E.21)

n1 = n0 + n (E.22)

α1 = α0 +
n

1
(E.23)

and when n = 1 (i.e., for a single new observation)

β1 = β0 + 1/2 ∗
(
x− µ0

)2(
1 +

n ∗ n0

2 ∗ (n+ n0)

)
(E.24)

When using their beliefs to make predictions of future conditions, agents evaluate the expecta-
tion of µ and τ :

E[µ] = µ0 (E.25)

E[τ ] =
1

E[σ2]
= α/β (E.26)

Beta distributed beliefs Beliefs that follow a beta distribution—probabilities of receiving non-
farm employment and firm honoring contract—are updated using the (more standard) beta-
binomial conjugate prior. Given n successes out of m tries, α and β are updated as:5

α1 = α0 + n (E.27)
4Simplified from Lemma 12 in https://people.eecs.berkeley.edu/˜jordan/courses/

260-spring10/lectures/lecture5.pdf
5Note that this refers to different α and β than for the normally distributed beliefs
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β1 = β0 +m− n (E.28)

Again, when using their beliefs to make predictions of future conditions, agents use the expected
value of the Beta distribution:

E[X] =
α

α + β
(E.29)
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M. Schlüter, E. Lindkvist, and X. Basurto. The interplay between top-down interventions and
bottom-up self-organization shapes opportunities for transforming self-governance in small-
scale fisheries. Marine Policy, page 104485, Mar. 2021.

M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber,
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H. Teklewold, M. Kassie, B. Shiferaw, and G. Köhlin. Cropping system diversification, conserva-
tion tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical
use and demand for labor. Ecological economics: the journal of the International Society for
Ecological Economics, 93:85–93, 2013.

G. A. ten Broeke, G. A. K. van Voorn, A. Ligtenberg, and J. Molenaar. Cooperation can improve
the resilience of common-pool resource systems against over-harvesting. Ecological Complex-
ity, 40:100742, Dec. 2019.

J. C. Thiele, W. Kurth, and V. Grimm. Facilitating parameter estimation and sensitivity analysis
of agent-based models: A cookbook using NetLogo and R. Journal of Artificial Societies and
Social Simulation, 17(3):11, 2014.

P. K. Thornton and M. Herrero. Adapting to climate change in the mixed crop and livestock
farming systems in sub-Saharan Africa. Nature climate change, 5(9):830–836, Sept. 2015.

Q. Tian, J. H. Holland, and D. G. Brown. Social and economic impacts of subsidy policies on
rural development in the Poyang Lake Region, China: Insights from an agent-based model.
Agricultural systems, 148:12–27, Oct. 2016.

285



P. Tittonell. Livelihood strategies, resilience and transformability in African agroecosystems. Agri-
cultural systems, 126:3–14, Apr. 2014.

P. Tittonell and K. E. Giller. When yield gaps are poverty traps: The paradigm of ecological
intensification in African smallholder agriculture. Field crops research, 143:76–90, Mar. 2013.

P. Tittonell, P. A. Leffelaar, B. Vanlauwe, M. T. van Wijk, and K. E. Giller. Exploring diversity of
crop and soil management within smallholder African farms: A dynamic model for simulation
of N balances and use efficiencies at field scale. Agricultural systems, 91(1):71–101, Nov. 2006.

R. S. J. Tol, T. E. Downing, O. J. Kuik, and J. B. Smith. Distributional aspects of climate change
impacts. Global environmental change: human and policy dimensions, 14(3):259–272, Oct.
2004.

T. P. Tomich, P. Lidder, M. Coley, D. Gollin, R. Meinzen-Dick, P. Webb, and P. Carberry. Food and
agricultural innovation pathways for prosperity. Agricultural systems, 172:1–15, June 2019a.

T. P. Tomich, P. Lidder, J. Dijkman, M. Coley, P. Webb, and M. Gill. Agri-food systems in interna-
tional research for development: Ten theses regarding impact pathways, partnerships, program
design, and priority-setting for rural prosperity. Agricultural systems, 172:101–109, June 2019b.

G. Ton, W. Vellema, S. Desiere, S. Weituschat, and M. D’Haese. Contract farming for improving
smallholder incomes: What can we learn from effectiveness studies? World development, 104:
46–64, Apr. 2018.

G. L. Tonn and S. D. Guikema. An Agent-Based Model of Evolving Community Flood Risk. Risk
analysis: an official publication of the Society for Risk Analysis, 38(6):1258–1278, June 2018.

S. Touhidul Mustafa, J. Nossent, G. Ghysels, and M. Huysmans. Integrated Bayesian Multi-model
approach to quantify input, parameter and conceptual model structure uncertainty in groundwa-
ter modeling. Environmental Modelling & Software, page 104654, Feb. 2020.

M. C. Turley and E. D. Ford. Definition and calculation of uncertainty in ecological process
models. Ecological modelling, 220(17):1968–1983, Sept. 2009.

T. R. Tyler. Social justice: Outcome and procedure. International journal of psychology: Journal
international de psychologie, 35(2):117–125, Apr. 2000.

UN General Assembly. Transforming our world : the 2030 Agenda for Sustainable Development.
Technical report, United Nations, 2015.

P. W. Unger and M. F. Vigil. Cover crop effects on soil water relationships. Journal of Soil and
Water Conservation, 53(3):200–207, July 1998.

N. Urruty, D. Tailliez-Lefebvre, and C. Huyghe. Stability, robustness, vulnerability and resilience
of agricultural systems. A review. Agronomy for Sustainable Development, 36(1):15, Mar. 2016.

USDA. CENTURY Model, 1993.

286



D. Valbuena, O. Erenstein, S. Homann-Kee Tui, T. Abdoulaye, L. Claessens, A. J. Duncan,
B. Gérard, M. C. Rufino, N. Teufel, A. van Rooyen, and M. T. van Wijk. Conservation Agri-
culture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa
and South Asia. Field crops research, 132:175–184, June 2012.

D. Valente, P. P. Miglietta, D. Porrini, M. R. Pasimeni, G. Zurlini, and I. Petrosillo. A first analysis
on the need to integrate ecological aspects into financial insurance. Ecological modelling, 392:
117–127, Jan. 2019.

G. Van den Broeck, J. Swinnen, and M. Maertens. Global value chains, large-scale farming, and
poverty: Long-term effects in Senegal. Food policy, 66:97–107, Jan. 2017.

J. van Vliet, A. K. Bregt, D. G. Brown, H. van Delden, S. Heckbert, and P. H. Verburg. A review of
current calibration and validation practices in land-change modeling. Environmental Modelling
& Software, 82:174–182, Aug. 2016.

M. T. van Wijk. From global economic modelling to household level analyses of food security and
sustainability: How big is the gap and can we bridge it? Food policy, 49:378–388, Dec. 2014.

T. J. VanderWeele and W. R. Robinson. On the causal interpretation of race in regressions adjusting
for confounding and mediating variables. Epidemiology, 25(4):473–484, July 2014.

P. H. Verburg, J. A. Dearing, J. G. Dyke, S. v. d. Leeuw, S. Seitzinger, W. Steffen, and J. Syvitski.
Methods and approaches to modelling the Anthropocene. Global environmental change: human
and policy dimensions, 39:328–340, July 2016.

P. H. Verburg, P. Alexander, T. Evans, N. R. Magliocca, Z. Malek, M. D. A. Rounsevell, and
J. van Vliet. Beyond land cover change: towards a new generation of land use models. Current
Opinion in Environmental Sustainability, 38:77–85, June 2019.

S. J. Vermeulen, P. K. Aggarwal, A. Ainslie, C. Angelone, B. M. Campbell, A. J. Challinor, J. W.
Hansen, J. S. I. Ingram, A. Jarvis, P. Kristjanson, C. Lau, G. C. Nelson, P. K. Thornton, and
E. Wollenberg. Options for support to agriculture and food security under climate change.
Environmental science & policy, 15(1):136–144, Jan. 2012.

G. B. Villamor, M. van Noordwijk, U. Djanibekov, M. E. Chiong-Javier, and D. Catacutan. Gender
differences in land-use decisions: shaping multifunctional landscapes? Current Opinion in
Environmental Sustainability, 6:128–133, Feb. 2014.

A. Voinov and F. Bousquet. Modelling with stakeholders. Environmental Modelling & Software,
25(11):1268–1281, Nov. 2010.

A. Voinov, R. Seppelt, S. Reis, J. E. M. S. Nabel, and S. Shokravi. Values in socio-environmental
modelling: Persuasion for action or excuse for inaction. Environmental Modelling & Software,
53:207–212, Mar. 2014.

A. Voinov, N. Kolagani, M. K. McCall, P. D. Glynn, M. E. Kragt, F. O. Ostermann, S. A. Pierce,
and P. Ramu. Modelling with stakeholders – Next generation. Environmental Modelling &
Software, 77:196–220, Mar. 2016.

287



A. Voinov, K. Jenni, S. Gray, N. Kolagani, P. D. Glynn, P. Bommel, C. Prell, M. Zellner,
M. Paolisso, R. Jordan, E. Sterling, L. Schmitt Olabisi, P. J. Giabbanelli, Z. Sun, C. Le Page,
S. Elsawah, T. K. BenDor, K. Hubacek, B. K. Laursen, A. Jetter, L. Basco-Carrera, A. Singer,
L. Young, J. Brunacini, and A. Smajgl. Tools and methods in participatory modeling: Selecting
the right tool for the job. Environmental Modelling & Software, 109:232–255, Nov. 2018.

J. von Braun and R. Meinzen-Dick. ”Land grabbing” by foreign investors in developing countries:
Risks and opportunities. Technical Report 13, International Food Policy Research Institute (IF-
PRI), 2009.

T. Vongvisouk, R. B. Broegaard, O. Mertz, and S. Thongmanivong. Rush for cash crops and forest
protection: Neither land sparing nor land sharing. Land use policy, 55:182–192, Sept. 2016.

J. A. Vrugt. Markov chain Monte Carlo simulation using the DREAM software package: Theory,
concepts, and MATLAB implementation. Environmental Modelling & Software, 75:273–316,
Jan. 2016.

J. A. Vrugt and K. J. Beven. Embracing equifinality with efficiency: Limits of Acceptability
sampling using the DREAM(LOA) algorithm. Journal of Hydrology, 559:954–971, Apr. 2018.

J. A. Vrugt, C. J. F. Ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson. Treatment of
input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte
Carlo simulation. Water resources research, 44(12), 2008.

J. A. Vrugt, C. J. F. ter Braak, H. V. Gupta, and B. A. Robinson. Equifinality of formal (DREAM)
and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic environmental
research and risk assessment: research journal, 23(7):1011–1026, Oct. 2009.

B. Walker. Resilience: what it is and is not. Ecology and Society, 25(2), 2020.

E. Walter. Identifiability of Parametric Models. Elsevier, May 2014.

M. Wang, N. White, V. Grimm, H. Hofman, D. Doley, G. Thorp, B. Cribb, E. Wherritt, L. Han,
J. Wilkie, and J. Hanan. Pattern-oriented modelling as a novel way to verify and validate
functional-structural plant models: a demonstration with the annual growth module of avocado.
Annals of botany, 121(5):941–959, Apr. 2018.

P. Webb and S. Block. Support for agriculture during economic transformation: impacts on poverty
and undernutrition. Proceedings of the National Academy of Sciences of the United States of
America, 109(31):12309–12314, July 2012.
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