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Abstract 

 Atmospheric aerosol plays a critical role in Earth’s climate by scattering or absorbing solar 

radiation, acting as cloud condensation and ice nuclei, and impacting air quality and public health. 

The physicochemical properties of aerosols dictate their climate and health impacts yet are 

challenging to measure accurately and quantitatively due to the complex nature of atmospheric 

aerosol. Specifically, the chemical composition, size, morphology, acidity, and viscosity have 

great interparticle variation. Methods enabling detailed quantitative investigation of individual 

aerosol properties are needed to understand the chemical transformation and climate effects of 

atmospheric aerosol. In this dissertation, atmospherically-relevant aerosol particles were examined 

using various state-of-the-art microspectroscopic techniques to measure the acidity, morphology, 

and viscosity of individual submicron particles, allowing better prediction of the climate and health 

impacts.  

 The acidity of aerosol is a critical property that affects the chemistry and composition of 

the atmosphere. However, there are challenges with quantifying aerosol acidity in individual 

particles due to the extremely small volumes of fine aerosol particles that have limited pH 

measurements. A novel single-particle acidity measurement was explored using the degradation 

of a pH-sensitive polymer. Submicron particles of known pH values (0 or 6) were deposited on a 

polymer thin film to erode the film. Particles were then rinsed off and the degradation of the 

polymer was characterized using atomic force microscopy (AFM) and Raman microspectroscopy. 

Acidic particles (pH=0) caused the polymer to degrade while near neutral particles (pH =6) did 

not. As particle size decreased, polymer degradation increased, indicating an increase in aerosol 

acidity at smaller particle diameters. 

 To further understand the impacts of aerosol acidity on the formation and evolution of 

secondary organic aerosol (SOA), inorganic sulfate particles with varying acidities (pH 1, 2, 3, 

and 5) reacted with gaseous isoprene-derived epoxydiols (IEPOX) for a range of times (30, 60, 

and 120 minutes). The morphology and chemical composition were systematically characterized 

at a single-particle level using AFM with photothermal infrared spectroscopy (AFM-PTIR) and 
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Raman microspectroscopy. Core-shell morphology of SOA particles was observed under acidic 

conditions after the IEPOX uptake and increasing aerosol acidity led to an increase in SOA 

viscosity and higher yield of organosulfates. These physicochemical properties have the potential 

to significantly alter the climate properties of the SOA particles.  

 To examine the effects of physicochemical properties in more complex atmospheric 

particles, the morphology and viscosity of submicron SOA from four different volatile organic 

compounds precursors (α-pinene, β-caryophyllene, isoprene, and toluene) were characterized 

before and after exposure to IEPOX. Dramatic morphological modifications were observed after 

the reactive uptake of IEPOX. SOA derived from α-pinene and β-caryophyllene were less viscous 

after IEPOX reactive uptake, while the viscosities did not change for isoprene and toluene-derived 

SOA. Additionally, a new glass transition temperature measurement was developed to reveal the 

viscosity of individual particles. The glass transition temperatures of atmospheric particles were 

measured for the first time under ambient atmospheric conditions using AFM-PTIR with thermal 

analysis. 

 The methods developed in this dissertation and their application to the study of atmospheric 

aerosol yield a wide range of possibilities to connect the physicochemical properties of aerosol 

particles with their chemical transformation processes and climate effects. Such characterization 

of individual submicron SOA particles provides new insights into the multiphase atmospheric 

processes and the ice nucleation/cloud formation of complex particles in the atmosphere. 
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Chapter 1. Introduction 

 

1.1 Characteristics of Atmospheric Aerosol 

 Atmospheric aerosol, also known as particulate matter (PM), is any solid or liquid particles 

suspended in the air that has a wide range of sizes from 1 nm to 100 µm in diameter.1,2 Atmospheric 

aerosols with submicron size in dimeter have strong impact on climate by scattering or absorbing 

solar radiation and can also act as cloud condensation nuclei (CCN) or ice nucleating particles 

(INP).2-4 According to estimates of the global radiative forcing (Figure 1.1), there are large 

uncertainties in predicting the climate effects of atmospheric aerosols due to their complex nature.5 

In addition to climate impacts, exposure to atmospheric aerosol particles is linked to adverse health 

effects, which lead to over four million global deaths annually, primarily from high concentrations 

of atmospheric aerosols. 6-9 The World Health Organization identified atmospheric aerosols as 

targets for mitigation efforts to reduce global health risks.6 Specifically, atmospheric aerosols can 

cause oxidative stress, as well as respiratory and cardiovascular diseases due to the complex 

chemical and physical properties of aerosol.10-14 Despite significant research advances in 

characterizing atmospheric aerosols, detailed knowledge of many key atmospheric processes 

remains incomplete. Improving the understanding of the chemical and physical properties of 

individual atmospheric aerosols is important to reduce the uncertainties of climate and health 

effects.  

 Atmospheric aerosols are formed from a variety of natural and anthropogenic sources, such 

as biomass burning, volcanic dust, desert dust, or fossil fuel combustion.14-16 Primary aerosols are 

directly emitted into the atmosphere, whereas secondary aerosols are formed through oxidation, 

condensation, and multiphase chemical processes of gaseous precursors.14,16 One of the most 

common types of secondary aerosol, secondary organic aerosol (SOA), is primarily formed after 

oxidation of volatile organic compounds (VOCs), resulting in low volatility products that either 

condense or undergo reactive uptake to existing inorganic particles (e.g., ammonium sulfate).17,18 
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In addition to secondary aerosol formation, particles can undergo modifications during multiphase 

processing which leads to changes in their physicochemical properties.19-21 

 

Figure 1.1 Radiative forcing estimates and uncertainties for greenhouse gases and aerosols. 
Reproduced from Stocker et al.22 

1.2 Aerosol Physicochemical Properties 

1.2.1 Aerosol Acidity 

Aerosol acidity (pH) is a critical property that determines the amount of SOA formation, 

as many of the key reactions are pH-dependent.23-25 For example, acid-catalyzed ring opening 

reactions of epoxides that are taken up into particles have lifetimes that are seconds in acidic 

particles, but days long in neutral particles.26 The ability to definitively state whether aerosols have 

a pH < 2 (highly acidic) would be transformative for the field of atmospheric chemistry, as the 

lifetime of key secondary precursor species range over multiple orders of magnitude. The 

importance of acidity has been identified primarily from studies in laboratory environmental 

chambers,24,27-29 where the acidic inorganic particles enhanced the amount of SOA formation. Prior 

results show that more acidic “seed” particles lead to greater SOA formation in comparison to 

neutral seed particles.30 However, there remains uncertainty regarding the role of acidity as other 
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aerosol components have also been connected to SOA formation. This key uncertainty limits the 

prediction of atmospheric particle burden and climate impacts. In addition, studies have shown 

that aerosol pH can impact health through the dissolution of metals in atmospheric fine particles,31 

leading to formation of reactive oxygen species which lead to negative health effects. Further study 

of aerosol acidity is needed to understand its impact on climate and health through secondary 

aerosol formation (Figure 1.2). 

 
Figure 1.2 Sources and receptors of aerosol and cloud droplet acidity. Major primary sources and 
occurrence in the atmosphere are identified in bold red text: sea salt, dust, and biomass burning 
(sources); and aerosols, fog droplets, cloud droplets, and precipitation (occurrence).Key aerosol 
processes are indicated by arrows and grey text: nucleation/growth, light scattering, cloud 
condensation nuclei (CCN) and ice nuclei (IN) activation, and gas–particle partitioning. Sinks 
(wet, dry, and occult deposition) are indicated by blue lines and text. The effects that aerosols have 
in the atmosphere, and on terrestrial and marine ecosystems and human health, are highlighted in 
pale yellow boxes. Approximate pH ranges of aqueous aerosols and droplets, seawater, and 
terrestrial surface waters are also given. Reproduced from Pye et al.32 

Despite the importance of atmospheric aerosol acidity for climate and health, scientific 

understanding is limited by the lack of accurate methods for directly measuring aerosol acidity. 

Recently, a method for the direct pH measurement of individual laboratory-generated aerosols was 
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developed utilizing an acid-conjugate base approach with Raman microspectroscopy (Figure 

1.3).33,34 However, this method has been limited to particles with diameters > 2.5 μm and simple 

systems with only a few components, due to the use of optical microscopy methods that are 

diffraction-limited (e.g. Raman microspectroscopy at 532 nm).30,31 This is a major limitation of 

prior studies as most pH-sensitive PM formation occurs in fine particles (<2.5 µm), which have 

complex chemical compositions that often contain thousands of species in a single particle.32 

Another direct, near real-time aerosol pH measurement has been developed using a colorimetric 

approach involving a pH indicator and cell phone camera.33 This method has been applied to 

measure submicron ambient particles (<0.4 μm), but is a bulk measurement technique. In addition, 

it requires samples to have a particulate mass of 65 μg for fine particles (<2.5 μm) with sufficient 

aerosol liquid water content for changes in the pH indicator color. Therefore, a new method was 

explored to determine acidity of submicron individual aerosol particles using pH sensitive polymer 

with atomic force microscopy (Chapter 2). Improved analytical techniques are still needed to 

measure individual submicron aerosol particles, particularly given the range and constantly 

evolving chemical composition of submicron atmospheric particles. 

 
Figure 1.3 Novel pH measurements of aerosol particles including acid conjugate base method 
using Raman Microspectroscopy; colorimetric method, and polymer degradation method using 
atomic force microscopy. Reproduced from Ault et al.35 
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1.2.2 Aerosol Morphology 

The morphology of aerosol particles has been intensively studied in recent years as it plays 

a critical role in heterogeneous chemistry that occurs in the atmosphere.19-21,36-41 It is important to 

characterize aerosol morphology in order to incorporate it into regional- and global-scale 

atmospheric chemistry models that are designed to predict the amount of aerosol mass, which have 

direct implications for determining the effects of aerosol on air quality, climate, and human health. 

Aerosol particles can have a range of possible morphologies, including spherical shape (e.g., 

SOA), crystals (e.g., salt), or chain agglomerates (e.g., soot).42-44 In the atmosphere, particles 

containing both organic and inorganic components can undergo phase transitions including 

deliquescence, efflorescence, and liquid-liquid phase separation (LLPS) based on the ambient 

relative humidity (RH).36,45-48 Atmospheric phase separated particles usually present core-shell 

morphology, which occurs when organic components (i.e., shell) coat onto inorganic species (e.g., 

core).40,49 Other morphologies such as homogenous, partially engulfed, and triphasic morphology 

have been observed during heterogenous reactions from laboratory studies,50,51 demonstrating that 

aerosol morphology can impact multiphase chemistry leading to SOA formation. Different 

morphologies of aerosols can also influence the gas/particle partitioning of semi-volatile organic 

compounds,19,52 heterogenous chemistry reaction rate,21,53 and water uptake.54 

1.2.3 Aerosol Viscosity and Phase State 

The viscosity of aerosol particles and their phase state are fundamental properties that 

affect aerosol lifetime and particle growth.55-57 Differing viscosities within particles can lead to a 

variety of phase states, such as liquid, semi-solid, and solid.58 In the past decades, atmospheric 

aerosol particles were considered highly viscous semi-solid or even amorphous solid particles, 

until recent studies showed evidence of liquid atmospheric particles with low viscosity.59-61 

Atmospheric aerosol particles can have a wide range of viscosities (η), spanning  over many orders 

of magnitude from liquid (i.e., liquid water, 10-3 Pa s) to solid (i.e., glass marbles, >1012 Pa s).58,62-

67 Understanding the viscosity of atmospheric aerosol is critical to predicting their atmospheric 

impacts. For instance, the rates of particle growth and evaporation are dependent on their 

viscosity,68,69 where liquid particles with low viscosity are more responsive to changes in gas phase 

composition and water uptake,39,70 which have direct implications for air quality, visibility, and 

climate. 



 6 

1.3 Physicochemical Characterization of Individual Aerosol Particles 

Physicochemical properties of individual aerosol particles can be characterized by single-

particle microscopic and spectroscopic techniques.71 Microscopy usually provides physical 

properties of aerosol particles (i.e., morphology, phase state, size), while spectroscopy can provide 

detailed chemical information based on the different functional groups present in the particle.72-78 

The non-destructive nature of microspectroscopic technique under ambient pressure and 

temperature allows the same sample to be analyzed by multiple techniques.34,78 Microscopic and 

spectroscopic analysis are offline techniques, which require collecting particles onto substrates 

using a size-resolved aerosol impactor. The single-particle microscopy and spectroscopy 

techniques used in this dissertation are introduced below. 

1.3.1 Raman Microspectroscopy 

Raman microspectroscopy has been frequently used to characterize morphology, size and 

chemical composition of aerosol particles using an optical microscope combined with vibrational 

spectra that identify different functional groups in individual particles.34,72,74,79-81 Raman 

microspectroscopy probes molecular vibrations to provide information on covalently bonded 

inorganic and organic species. Previous studies show that Raman spectroscopy can differentiate 

species in slightly different bonding environments (i.e., NaNO3 vs. NO3-)82 and determine the pH 

of individual particles based on the relative abundances of acids and their conjugate bases.34,74 The 

sensitivity and high spatial resolution have allowed for characterizing complex aerosol particles 

with core-shell morphology and differentiating the chemical compositions in the particle core and 

shell.19 Chemical mapping can also be performed to study the distribution of specific molecular 

species within an individual aerosol particle (Figure 1.4).83,84 Furthermore, Raman analysis is 

performed under ambient pressure and temperature that can prevent particle distortion. In addition, 

a relative humidity (RH) cell can be added to Raman microspectroscoy to study hygroscopic 

growth of aerosol particles.34 In order to provide more quantitative analysis, a computer-controlled 

method (CC-Raman) was developed that can analyze hundreds of particles per sample.85 Due to 

the diffraction limit of visible light,Raman microspectroscopy is typically limited to particles 

larger than 1µm. Thus, surface enhanced Raman spectroscopy (SERS) and tip enhanced Raman 

spectroscopy (TERS) were developed to allow for analysis of submicron particles.84,86,87 However, 

the uneven enhancements add difficulty to perform quantitative measurements, and some mineral 
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dust or biologic particles are likely to fluoresce,88,89 which often overwhelms the Raman signal. 

Thus, other vibrational spectroscopy techniques will be used to complement Raman 

microspectroscopy, such as infrared spectroscopy. 

 
Figure 1.4 Raman microspectroscopy analysis of an aerosol particle with highlighted region 
showing the location, chemical distribution, and detailed chemical composition characterization. 
a). Optical image of aerosol particle, (highlighted in red) against SERS substrates, and mapped 
area (blue box). b) Map of the aerosol particle (outlined in yellow dashes) showing the location of 
three different enhanced chemical species at 1022 cm−1 (green), 1370 cm−1 (red), and 1480 cm−1 
(blue). c) Raman spectra accompanying the mapped intensities. Reproduced from Craig et al.84 

1.3.2 Atomic Force Microscopy Photothermal Infrared Spectroscopy (AFM-PTIR) 

Atomic force microscopy with photothermal infrared spectroscopy (AFM-PTIR) is a 

powerful tool for single particle analysis, which can not only provide the morphology of individual 

particles down to 30 nm but also the chemical composition within the particle.90-92  AFM-PTIR is 

based on detecting the photothermal expansion of an individual particle by a tunable IR laser with 

AFM probe (Figure 1.5).73 This technique has been widely applied to study atmospheric aerosol 

particles,73 polymer degradation,93 particle hygroscopicity,94,95 and particle phase state.19,21,96 

AFM-PTIR can collect spatial distribution of the measured functional groups within a particle 

through its high resolution spectral images and maps under ambient conditions.97 Additionally, 

different AFM probes can be used to characterize physical properties of individual particles,73,91,92 

including surface tension98,99 and nano thermal analysis.72,100-102 The nano thermal analysis was 

applied to atmospheric aerosol particles for the first time in this work to reveal particle viscosity 
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(Chapter 5). AFM-PTIR has shown the potential to advance current understanding of atmospheric 

particles and their impacts on climate and public health. 

 
Figure 1.5 Schematic of AFM-IR operation. Local thermal expansion from the IR laser is detected 
by the cantilever, allowing IR spectra with ~50 nm resolution to be collected. IR spectra were 
collected from individual (NH4)2SO4 particles using AFM-IR (this study) and micro-FTIR. 
Reproduced from Bondy et al.73 

1.3.3 Optical Photothermal Infrared Spectroscopy (O-PTIR) 

Recently a new breakthrough technique, optical photothermal infrared spectroscopy (O-

PTIR), has been developed.78 This non-contact analytical method uses changes in the scattering 

intensity of a continuous wave visible laser to detect the photothermal expansion when a tunable 

IR laser was applied to excite vibrational modes (Figure 1.6).78,103-105 The modulated photothermal 

expansion causes the change in the intensity of the elastically (Rayleigh) scattered light, which can 

be processed to generate an IR spectrum. Meanwhile, inelastically (Stokes) scattered photons are 

also generated and collected simultaneously to obtain a Raman spectrum at the same location on 

the sample as the PTIR spectrum. Because the spatial resolution is determined by the visible laser, 

this technique overcomes the key limitation of traditional IR microscopy and improves spatial 

resolution to ~ 500 nm.106 Similar to the techniques mentioned above, O-PTIR also can provide 

detailed characterization of chemical composition for individual submicron particles and specific 

vibrational modes within individual particles,105,107,108 which allow us to further understand 

particle physicochemical properties. O-PTIR + Raman has been applied to study atmospheric 

aerosol particles to identify inorganic and organic modes in individual sub- and supermicrometer 
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particles.78 This powerful technique will provide insights into complex liquid particles, especially 

at single particle levels. 

 
Figure 1.6 a) Schematic of optical photothermal infrared spectroscopy (O-PTIR) and 
Ramanspectroscopy.Infrared and visible light are focused on the sample through a Cassegrain 
objective, inducing a photothermal expansion of the particle. Light scattered from the sample 
(Δpscat) is proportional to the photothermal expansion of the particle (Δh) and absorbance of IR 
light (AbsIR). Simultaneous IR and Raman spectra are obtained from a single point. b) Molecular 
vibrations are shown corresponding to antisymmetric (red) and symmetric (green) stretching 
modes of sulfate. c) IR and Raman spectra obtained from a sulfate-containing particle. Adapted 
from Olson et al.78  

1.4 Research Objectives and Scope of Dissertation 

In this dissertation, novel acidity and viscosity measurements of individual submicron 

aerosol particles have been developed, and detailed physicochemical properties of atmospherically 

relevant aerosol particles have been studied using single-particle microscopy and spectroscopy 

methods to improve our understanding of atmospheric aerosol formation. Chapter 2 explores a 

novel single-particle acidity measurement using the degradation of a pH-sensitive polymer. 

Chapter 3 investigates the morphology and viscosity changes of submicron SOA formed from 

different VOCs precursors after reactive uptake of isoprene epoxydiols (IEPOX). Chapter 4 

investigates morphology, phase state, and chemical composition of individual inorganic sulfate 

particles with different initial acidities after IEPOX reactive uptake, which highlights that aerosol 

acidity is critical for multiphase chemical reactions and SOA formation. Chapter 5 describes the 

application of thermal analysis to measure glass transition temperature of atmospheric particles for 

the first time. Finally, Chapter 6 discusses the conclusion of all the studies included in this 

dissertation and future directions for on-going projects. The results herein presented provide 

insights into physicochemical properties of atmospheric aerosol and their climate-relevant 
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properties. The novel methods allow us to provide detailed characterization of individual 

submicron atmospheric aerosols that can lead to improved prediction of SOA on climate and health 

impacts. 
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Chapter 2. Aerosol Acidity Sensing via Polymer Degradation 

 
 
Adapted with permission from Ziying Lei, Samuel E. Bliesner, Claire N. Mattson, Madeline E. 

Cooke, Nicole E. Olson, Kaseba Chibwe, Julie N. L. Albert, and Andrew P. Ault: Aerosol Acidity 

Sensing via Polymer Degradation, Anal. Chem. 2020, 92, 9, 6502–6511, 2020. 

https://doi.org/10.1021/acs.analchem.9b05766  

 

2.1 Introduction 

Air pollution episodes with high concentrations of particulate matter (PM) are increasing 

across many urban areas globally, each with complex emissions and atmospheric chemistry 

leading to secondary aerosol formation.109,110 Air pollution leads to an estimated 10% of global 

deaths annually,111 primarily from particles that have lifetimes of days-to-weeks in the 

atmosphere,73,112,113 particularly submicron particles.114 Atmospheric particles have complex 

chemical and physical properties, leading to the formation of reactive oxygen species, oxidative 

stress, and ultimately respiratory and cardiovascular disease.115-117 An important factor in the 

amount of PM formation during pollution events is aerosol acidity, which plays a critical role in 

determining the different reaction pathways that can dominate secondary aerosol formation.118,119 

During severe air pollution events in Beijing, China, the formation pathways for sulfate and nitrate 

are pH dependent, as is the multiphase chemistry leading to secondary organic aerosol (SOA) 

formation in regions where different volatile organic compounds (VOCs) oxidize to form high 

concentrations of PM.120 Atmospheric chamber experiments have observed that particles that have 

lower pH lead to greater SOA formation in comparison to particles at neutral pH.121,122 As an 

example, acid-catalyzed ring opening reactions of epoxides that are taken up into particles have 

lifetimes of less than a minute in acidic particles, but can last for days in particles at neutral 

pH.24,121-126 pH-dependent processes also impact particle water uptake,127,128 liquid-liquid phase 

separation,129,130 and gas-particle partitioning.110 However, there remains considerable uncertainty 

regarding the actual pH of atmospheric aerosol and its variation as a function of aerosol size, 

https://doi.org/10.1021/acs.analchem.9b05766
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composition, and time.110,131 This key uncertainty limits predictions of atmospheric particle 

concentrations, composition, and, ultimately, health and climate impacts.  

Despite the implications of atmospheric particle acidity for health and climate, scientific 

understanding is still limited due to the lack of methods available to measure individual 

atmospheric particle pH, with most methods relying on indirect and proxy approaches or 

thermodynamic modeling assuming equilibrium conditions.132,133 The challenge of measuring pH 

is due to the fact that the activity of the H+ ion (𝑎𝑎𝐻𝐻+ = 𝛾𝛾𝐻𝐻+ × [𝐻𝐻+]) is not conserved as water 

content changes (the activity coefficient (γ) typically decreases below 1 when water content 

decreases). Thus, if particle samples are collected on and extracted from a filter, analyzed under 

vacuum, or dried during or after collection, the pH of a single particle will no longer be 

representative of the particle’s pH in the atmosphere. Indirect pH measurement methods have used 

multiple approaches, such as taking the ion balance of common cations and anions and assuming 

the difference is the H+ ion,131,134-136 but indirect and proxy methods have considerable issues and 

limitations, as explored in detail by Hennigan et al.132 Other methods for estimating aerosol acidity 

have used thermodynamic models and phase partitioning approaches that take bulk concentrations 

of aerosol species combined with gas concentrations (when available) to predict water content and 

then pH.137-139 However, low water content, high ionic strengths (> 10 M), incorporation of 

inorganic ions (e.g., sulfate) into organic species (e.g., organosulfates),140 and formation of viscous 

organic phases leading to kinetic limitations can make thermodynamic equilibrium calculations 

challenging. Additionally, the expense and challenge of making simultaneous measurement of 

NH3 (g) and NH4 (aq), as well as the limitations of assuming thermodynamic equilibrium, inhibits 

the broad application of phase-partitioning for evaluation and prediction of atmospheric aerosol 

acidity.137,141-144 Given that acidity measurement methods for individual ambient particles are 

lacking, new analytical methods are needed to determine pH. 

Recently, a method for the direct pH measurement of individual laboratory-generated 

aerosols was developed utilizing an acid-conjugate base approach with Raman 

microspectroscopy.34 This acid-conjugate base method relates the concentrations from the 

vibrational modes of an acid and its conjugate base to a calibration curve, which are combined 

with activity coefficient (γ) calculations and used to determine the activity of the H+ ion and, thus, 

pH of individual particles. However, this method has been limited to particles with diameters > 

2.5 μm and simple systems with only a few components, due to the use of optical microscopy 
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methods that are diffraction-limited (e.g. Raman microspectroscopy with a 532 nm laser).74,145 

This is limiting as most pH-sensitive PM formation occurs in fine particles (< 2.5 µm), which have 

complex chemical compositions, often containing thousands of species in a single particle.146 

Another direct, near real-time aerosol pH measurement has been developed using a colorimetric 

approach involving a pH indicator and cell phone camera. This method has been applied to 

measure submicron ambient particles (< 0.4 µm), but is a bulk measurement approach. In addition, 

it requires samples to have a particulate mass of 65 μg for fine particles (< 2.5 μm) with sufficient 

aerosol liquid water content for changes in the pH indicator color and a lack of chromophores in 

the aerosol (e.g. soot) that interfere.147 Therefore, novel techniques are still needed to measure 

submicron individual particles, particularly given the range and constantly evolving chemical 

composition of submicron atmospheric particles, which have important impacts on climate and 

health.148-150    

Poly(ε-caprolactone) (PCL) is a hydrolytically degradable, aliphatic polyester that has 

exhibited utility for applications requiring a degradable material.151-154 PCL degrades with 

differing kinetics between pH 1 and pH 3,155 within the expected pH range of 0-3 for most 

atmospheric aerosols.110,156 Herein, we describe how the acid-initiated degradation of PCL films 

can be harnessed to measure the effective acidity of individual aerosol particles. By irreversibly 

degrading the polymer, this method provides information related to the pH of individual submicron 

particles, without requiring challenging coupled gas and particle composition measurements. PCL 

degradation by highly acidic (pH = 0) aerosol particles was investigated and compared to (lack of) 

degradation by mildly acidic (pH = 6) aerosol particles using a combination of atomic force 

microscopy (AFM) to monitor film thickness and Raman microspectroscopy to monitor chemical 

changes to the polymer. The degradation due to exposure to pH = 0 particles as a function of time 

and particle size was quantified using model systems containing components of atmospheric 

aerosols. This novel method provides an approach for studying the pH of individual submicron 

particles and proof-of-concept for future sensor development. 

2.2 Methods 

2.2.1 PCL Thin Film Preparation 

PCL brush-coated substrates were prepared by coating ultraviolet ozone (UVO) cleaned 

silicon substrates with a thick (~103 nm) PCL film (hydroxyl-terminated, Mn = 45 kDa; Sigma-
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Aldrich). After coating with the thick films, substrates were placed on a hotplate at 140 ºC 

overnight to allow the hydroxyl-terminated PCL polymer to graft to the native oxide layer of the 

silicon substrate. Thereafter, films were isothermally recrystallized at 25 ºC for 30 minutes. Then, 

the PCL thick films were rinsed off of the substrate with toluene, leaving behind a residual PCL 

brush film (~100 nm). Applying PCL brushes to silicon substrates inhibits dewetting of films cast 

onto these substrates.157-159 

All thin films in this study were cast via flow-coating from a solution of PCL in toluene 

onto substrates prepared as described above. Following casting, the PCL films were melted at 100 

ºC for 10 minutes and then isothermally recrystallized at 25 ºC for 30 minutes. Film thicknesses 

of approximately 21-25 nm, 50 nm, and 400 nm were measured via spectral reflectance (Filmetrics 

F20-UV). 

2.2.2 Aerosol Generation and Impaction 

For aerosol generation, standard solutions were prepared using sulfuric acid (H2SO4) 

(Sigma-Aldrich), ammonium sulfate (NH4)2SO4 (Alfa Aesar), and 18.2 MΩ Milli-Q water. All 

chemicals were > 98.0% purity and used without further purification. A solution of 30 mM 

(NH4)2SO4 with pH = 6 was used as a control in comparison to a 1 M H2SO4 solution with pH = 0 

that is mostly HSO4- (aq); the pH value of 0 was chosen based on prevalent pH values for 

atmospheric particles.133,137,143,160 All solution pH values were measured by a pH probe (AP110, 

Accumet Portable). Aerosols were generated from each solution using a Collison nebulizer (i.e., 

atomizer) operated with HEPA filtered air, and inertially impacted on PCL thin films using a mini-

multi orifice uniform deposit impactor (mini-MOUDI) (MOUDI model 135, MSP Corporation). 

The mini-MOUDI consists of 8 stages with different aerodynamic diameter (da) 50% size cuts, and 

the particles were impacted on stages 6, 7 and 8 with aerodynamic cut points leading to size ranges 

of < 180 nm, 180-320 nm, and 320-560 nm, respectively. Submicron particles were the focus of 

this study, as particles < 1 µm corresponds to the size regime where key pH-dependent sulfate, 

nitrate, and SOA formation reactions occur.110,114 Aerosol particles were generated under humid 

conditions, ~90% relative humidity (RH), to ensure they were aqueous and capable of degrading 

the PCL thin films. Aerosol particle pH was confirmed using the colorimetric pH method detailed 

by Craig et al.145 Particle impaction leads to spreading, which is substrate dependent.73 Prior work 

has shown on silicon wafers that spreading ratios of ~2.5:1 to 6:1 are common for atmospheric and 
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lab-generated particles.19,150,161 The role of phase in spreading and 3-dimensional morphology have 

also been shown.19,162 In this study, the focus is on aqueous particles and spreading ratios on the 

polymer are similar to those of aqueous particles on bare silicon. 

Following impaction of aqueous aerosol particles onto the PCL films, samples were 

promptly placed in a sealed humidity-controlled chamber at 50% RH to maintain the liquid state 

of aerosol particles. Since the particles are generated as aqueous droplets, to maintain the particles 

in an aqueous/liquid state they must be kept above the efflorescence RH (40%) to avoid undergoing 

a phase transition to an amorphous solid or crystal at 23 °C, the temperature of the laboratory.163-

166 To confirm that the particles were stable in their aqueous state and not undergoing reactions, 

beyond those with the polymer, two peaks were monitored with Raman microspectroscopy 

(instrumental details below): 1) the sulfate and bisulfate symmetric stretches (for pH = 6 and pH 

= 0, respectively) and 2) the ν(O-H) stretching region, which is associated with water in the 

particles.167 For the sulfate/bisulfate stretch, the continued observation of νs(SO42-) at 980 cm-1 and 

νs(HSO4-) at 1040 cm-1 throughout storage combined with a lack of a peak associated with 

organosulfates ν(ROSO3-) at ~1065 cm-1 confirms the stability of the particle composition.168 For 

the water vibration, the ν(O-H) mode in the Raman spectra (3350-3600 cm-1) of the sulfuric acid 

particles was monitored at different RHs to confirm that the particles remain liquid during storage 

(Figure A.1), as shown for previous single aerosol particle Raman studies.167 Following 

degradation, samples with aqueous particles still on the polymer-coated silicon substrate were 

rinsed with Milli-Q water to remove the soluble particles on the surface leaving only polymer and 

silicon behind. All PCL samples were dried before further characterization. 

2.2.3 Microscopic and Spectroscopic Characterization 

The size and depth of the depressions left in the polymer film from PCL degradation were 

characterized by atomic force microscopy (AFM). AFM imaging was carried out using a PicoPlus 

5500 AFM (Agilent) (NanoScience; resonance frequency 300 kHz, force constant 40 N/m). AFM 

images for PCL samples were collected in tapping mode across regions ranging from 4 µm by 4 

µm to 25 µm by 25 µm. A nanoIR2 system (Anasys Instruments, Santa Barbara, CA) was used to 

chemically characterize the PCL with photothermal infrared spectroscopy (PTIR). AFM height 

and deflection images and IR spectra of PCL before and after degradation were collected in contact 

mode (IR power 16.54%, filter in) at a scan rate of 0.75 Hz using a gold-coated contact mode 
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silicon nitride probe (Anasys Instruments, 13 ± 4 kHz resonant frequency, 0.07-0.4 N/m spring 

constant). IR spectra were collected over a frequency range of 900-3600 cm-1 using a tunable IR 

source (2.5-12 µm, 1 kHz) with a resolution of 4 cm-1/point.  

Raman microspectroscopy was used to characterize PCL chemical composition before and 

after its degradation at the same location. Raman spectra were collected using a LabRAM HR 

Evolution Raman microspectrometer (Horiba, Ltd.) consisting of confocal optical microscopy 

(100 × 0.9 N.A. Olympus objective), a Nd:YAG laser source (50 mW, 532 nm), and CCD detector. 

All spectra from 500 to 4000 cm-1 were acquired for 60 s with three accumulations at a spectral 

resolution of 1.8 cm-1 using a 600 groove/mm grating. Initial calibration for the instrument 

involved nine different frequencies, including the laser line (0 cm-1 Raman shift), the Si wafer at 

520 cm-1, a calibration standard with a 1004 cm-1 peak, and a diamond band at 1332 cm-1. The 

instrument was checked in the laboratory for variation from the initial calibration using the laser 

line and the Si wafer peak at 520 cm-1. Variation in frequencies were < 1% due to thermal drift or 

other minor effects. The peak at 520 cm-1 was checked daily for shifts beyond a pixel on the 

detector (1.8 cm-1 for the 600 groove/mm grating used in this study), which if observed would 

have required further calibration; however this did not occur over the time period of the study as 

calibrations of this instrument have been stable for multiple years.74,84,169 

2.3 Results and Discussion 

As illustrated schematically in Figure 1a, for this study, a PCL film is fabricated, has 

aerosol impacted on it, is allowed to react and degrade, and is imaged with an AFM after the 

particles and most degradation byproducts are washed off. The pronounced holes in the polymer 

film in Figure 2.1b (right image) demonstrate the ability of the acidic particles to degrade the 

polymer. The degradation mechanism for the acid-catalyzed degradation of the PCL film is shown 

in Figure 2.1c. The H+ ion from the acid solution protonates the carbonyl group leading to an 

addition-elimination reaction and breaking of the polymer carbon-carbon backbone. The 

hydrolysis reaction that occurs leads to the formation of 6-hydroxyhexanoic acid and other 

degradation byproducts (oligomers).153,155 

The initial morphology of a non-degraded PCL thin film (21 ± 3 nm) is shown in Figure 

2.2a, as well as a height trace from the image in Figure 2.2d. Aerosol particles were generated 
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from pH = 6 and pH = 0 solutions and the particles with da 320-560 nm were impacted onto the 

PCL thin films. After 15 days, the particles on the PCL were rinsed off and the AFM images were 

collected that are shown in Figure 2.2b and 2.2c, respectively. Scanning electron microscopy 

(SEM) images corroborated the morphology observed by the AFM and further information is 

provided in the supporting information (Figure A.2) 

Based on visual inspection of the height trace, there is consistent variation in the height of 

the PCL material due to its semi-crystalline structure prior to aerosol impaction. The surface 

roughness of the initial PCL was characterized and a 2 nm root mean squared (RMS) roughness 

for the surface was calculated using Gwyddion and Nanoscope software (details in the Supporting 

Information); the spreading ratios of particles on these surfaces are similar to those reported for 

particles impacted on silicon wafers,19,150,161 suggesting that this low level of surface roughness 

does not affect particle deposition or surface wetting. Near neutral particles impacted on the films 

Figure 2.1 a) Schematic depicting the use of PCL thin film degradation for determining aerosol  
acidity; b) AFM 3D height image of PCL degradation process, the size (length × width × height) 
of AFM images from left to right are: 7 µm × 7 µm × 51 nm, 10 µm × 10 µm × 0.2 µm, 10 µm × 
10 µm × 41 nm; c) and acid-catalyzed degradation mechanism of PCL, based on Woodruff et al, 
2010.55 Note that “n” refers to the number of repeat units in the starting PCL material and that l + 
m < n. 
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did not appear to degrade the polymer and did not lead to particle-sized holes in the PCL thin films 

(Figures 2.2b and 2.2e). For the near-neutral particle sample, qualitative comparison of the height 

traces of the initial film and post-rinse film show similar profiles (Figures 2.2d and 2.2e). This 

result shows that particles with near neutral pH did not cause PCL degradation. In contrast, the 

acidic aerosol particles degraded the PCL, generating holes corresponding to individual particles 

(Figures 2.2c and 2.2f). The larger AFM height images of non-degraded PCL, the PCL after 

exposed to near-neutral particles, and a degraded PCL from numerous particles are shown in the 

Supporting Information to show the representativeness of the example regions in Figure 2.2 

(Figure A.3). It should be noted that the size of the hole (~2-3 µm) is larger than the da of the 

suspended particles (320-560 nm) due to the aqueous aerosol particles spreading on the PCL film 

upon impaction and the extent of spreading agrees with prior studies.19,73,170 Comparing the height 

trace of the initial PCL and the height trace of the degraded PCL indicates that the acidic aerosol 

particles degraded the full depth of the PCL thin film and reached the silicon substrate after 15 
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days. The height trace shows the edge of the hole is taller than the average height of the surface of 

the film. We believe this is due to accumulation of insoluble degradation byproducts of the PCL 

material at the edge of the hole, whereas soluble degradation products are removed when the 

particles are was washed off with water. The results from AFM illustrate the potential for aerosol 

particle acidity measurement through physical changes to the substrate. 

To expand beyond physical characterization, the changes to the PCL films were chemically 

characterized using Raman microspectroscopy prior to, during, and after the degradation process. 

Due to the limits of detection for the Raman microspectrometer, a thicker PCL film (50 nm) was 

used. Again, pH = 0 acidic aerosol particles were deposited for 15 days, but with a greater loading 

of particles, which coalesced into larger droplets, as seen in in Figure 2.3b. Since the Raman 

focused on chemical changes, not physical, the coalescence was not an issue and coalesced 

Figure 2.2 4 × 4 µm AFM height images of PCL films: a) non-degraded; b) following exposure to 
 ammonium sulfate pH 6 particles for 15 days; c) following exposure to sulfuric acid pH 0 particles 
for 15 days. The dark brown color represents the silicon substrate, and the golden color represents 
the PCL. d), e), and f) height traces corresponding to the white dash lines on the AFM height 
images. Black dash lines represent approximate PCL film thickness and 0 on the y-axis represents 
average PCL height. The bright spots on the AFM images are tip artifacts. 
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particles are only shown in Figure 2.3. The PCL film was analyzed at three different periods: non-

degraded PCL, before rinsing off the acidic particles that had merged into droplets, and after 

rinsing off the merged particles. 

The Raman spectrum of the non-degraded PCL shows modes in the ν(C-H) stretching 

region at 2871 cm-1 and 2916 cm-1, which correspond to asymmetric elongation of methylene-

oxygen vibrations ν(CH2-O) and symmetric elongation of methylene groups ν(CH2-). The carbonyl 

group ν(C=O) mode was observed at 1723 cm-1, corresponding to the aliphatic ester ν(CO2-) of 

the PCL.168,171 A peak at 1441 cm-1 was also observed that corresponds to the asymmetric 

elongation of the carbon-hydrogen δ(C-H) of the methylene (CH2) . After the pH 0 acidic aerosol 

particles were impacted and sat on the PCL for 15 days, the Raman spectra were collected before 

and after rinsing off the particles. When compared with the non-degraded PCL, three main 

differences were observed between the spectra collected after 15 days, but before particles were 

washed off. First, the carbonyl group ν(C=O) mode at 1723 cm-1 decreased, suggesting that, as 

expected, the carbonyl group of the PCL is a participant in the acid-driven reaction and is favorable 

for nucleophilic attack when exposed to acid during the PCL degradation process. Secondly, a 

weak peak was observed at 3460 cm-1 from either the hydroxyl of the carboxylic acid ν(O-H) that 

forms during the hydrolysis reaction or water from the sulfate-containing particles that were 

impacted. Lastly, strong peaks were observed from 2870 cm-1 to 3038 cm-1, which corresponds to 

C-H stretches of the methylene groups. A shoulder corresponding to the symmetric vibration of 

the carboxylate νs(COO-) functional group at 1416 cm-1 was also observed, which suggests the 

formation of carboxylic acid functional groups as the ester degrades (e.g. 6-hexanoic acid, as 

shown in mechanism in Figure 2.1c). These results are consistent with the degradation of 

polyesters, which have very similar structures to PCL. Raman spectra were also collected after 

rinsing off the acidic particles and PCL degradation products. A comparison of the degraded, 

rinsed PCL, and non-degraded PCL Raman spectra supports that the carbonyl group fully reacted 

with the acid, observed by the characteristic peaks of asymmetric elongation of methylene-oxygen 

ν(CH2–O) and symmetric elongation of methylene group δ(CH2–) at 2871 cm-1 and 2916 cm-1 

respectively.80,171 A strong sulfate peak ν(SO42-) at 978 cm-1 was also observed before wash off of 

the sulfuric acid particles, which confirmed the chemical composition of particle, and the peak is 

no longer present after washing off the substrate with water, which illustrates that the particles 
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were rinsed off (Figure A.4). To obtain more detailed Raman and IR spectra for mode assignments, 

spectra were collected of non-degraded PCL using 400 nm thick PCL (Figure A.5 and A.6).  

To investigate the PCL degradation rate, acidic aerosol particles with pH = 0 were 

generated and impacted on 22 ± 3 nm thick PCL films. Particles were rinsed off at different time 

intervals ranging from 0 days to 15 days. In Figure 2.4a, the yellow, spherical shapes are acidic 

particles with da 180-320 nm and heights of ~50 nm. The AFM images of non-degraded PCL were 

collected (Figure 2.4b) as comparison at 0 days. After degradation for 3 days, the acidic aerosol 

particles were rinsed off from PCL and shallow spherical holes (light brown) were observed 

(Figure 2.4c), denoting degradation of the polymer film by the acidic aerosol particles. An average 

of 42 individual particles were examined and used to calculate the PCL degradation thickness (the 

numbers of particles for each sample are listed in the Figure 2.4 caption and Table A.1). Some 

irregularly shaped and larger holes were observed after 3 days, likely due to some of the aqueous 

acidic particles merging for this specific sample. Although the PCL started reacting with H+ within 

Figure 2.3 a) Raman spectra of nondegraded PCL film background (black), PCL film with pH 0 
 acidic particles for 15 days (red), and PCL film after all particles were rinsed off (blue); b) a 
microscopic image after particle impaction and merging into larger droplets; c) microscopic image 
after particles were washed off; and d) microscopic image of nondegraded PCL. The green dots in 
the microscopic images correspond to the locations where spectra were collected. Spectra of the 
νs(SO42–) at 978 cm–1 are shown in the Appendices due to strong interference from the silicon 
wafer phonon mode in the same spectral window. 
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3 days, the degradation reaction was only occurring near the PCL surface, and the structure of the 

initial PCL was still visible underneath the holes (Figure 2.4c). For the films that degraded for 7 

days, distinct, clear holes that go through most of the film were observed after the acidic particles 

were washed off and the characteristic morphology of the initial PCL film became less apparent 

(Figure 2.4d). After 15 days, the PCL was completely degraded away down to the silicon substrate 

underneath the area of the acidic aerosol particles (Figure 2.4e). It should be noted that there may 

be some degradation horizontally, in addition to vertically, leading to holes slightly larger than the 

projected area of the impacted particle. The thickness of degraded PCL material was measured by 

subtracting the thickness of the holes from the initial PCL thickness measured by spectral 

reflectance to show the extent of PCL degradation (Figure 2.4f). The trend of increasing 

Figure 2.4 pH 0 aerosol particles with da 180–320 nm were impacted on PCL samples, and the 
 particles were rinsed off after different periods of time. a) Shows particles impacted on the 
polymer. AFM images were collected after b) 0 days (nondegraded PCL); c) 3 days (46 particles); 
d) 7 days (41 particles); and e) 15 days (40 particles). f) Plot of PCL degradation thickness changes 
over time. The error bars represent standard deviation of PCL degradation for each time period, 
and it is measured by 20 height traces across the AFM height image. 
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degradation with time is attributed to greater reaction of H+ with PCL to break the polymer chain 

and removal of degradation products when rinsed.  

Recent results have suggested the aerosol acidity may increase at smaller particle sizes, but 

this is not well understood.145 To further understand the PCL degradation as a function of particle 

size, PCL films had acidic particles of varying diameters impacted on them. The acidity of aerosols 

with different sizes was confirmed using a distinct colorimetric pH method.145 For pH = 0 particles 

with da of < 180 nm, 180-320 nm, and 320-560 nm bulk pH values of 0.00 ± 0.09, 0.00 ± 0.08, 

and 0.18 ± 0.04 respectively were observed colorimetrically (Figure A.7). It should be noted that 

the minimum pH value on the pH indicator paper is 0, and thus the particles < 320 nm are likely 

to be more acidic than large particles from pH = 0 due to lower water content in the small particles. 

Due to the range of the pH indicator paper, the aerosol particles with da < 180 nm, 180-320 nm, 

and 320-560 nm came from the same pH = 0 solution were collected simultaneously on PCL, 

respectively. Both AFM height and 3D height images show the spherical morphology for the PCL 

Figure 2.5 Left side: AFM height and 3D images of pH 0 acidic particles with different sizes 
 impacted on PCL and rinsed off after 10 days (the numbers of individual particles were specified). 
a) da 320-560 nm (27 particles); b) da 180-320 nm (34 particles); c) da < 180 nm (29 particles). d) 
Plot of PCL degradation thickness as a function of acidic particle sizes. The error bars represent 
the standard deviation of the degradation, which is measured by 20 height traces per image across 
the hole in the AFM height image. An average 30 individual particles were examined. 
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degradation caused by the individual acidic particles (Figure 2.5). An average of 30 particles were 

examined and used to calculate PCL degradation thickness and the detailed number of particles 

for each sample were listed in the caption and Table A.1. 

Smaller particle size corresponded to greater PCL degradation (Figure 2.5). For the pH 0 

acidic solution, particles with da of < 180 nm, 180-320 nm, and 320-560 nm had median PCL 

degradation thickness of 23 ± 1 nm, 16 ± 1 nm, and 6.9 ± 0.6 nm, respectively. The increasing 

PCL degradation thickness for the smaller particles (< 180 nm) indicates smaller particles were 

likely more acidic than the larger particles (320-560 nm). With lower water content at smaller 

sizes, the molar concentration of chemical species and ionic strength increase, particularly [H+] 

increases, resulting in increased acidity for the smaller particles. This result is consistent with Craig 

et al. who identified increased acidity with smaller particle sizes for similar solutions,44 but could 

not probe particles as small as probed in Figure 2.5. Overall, the result from this study and previous 

studies demonstrate that the acidity of particle varies by particle size, a result implying non-

thermodynamic equilibrium conditions. 

2.4 Conclusions 

This study presents a novel method for measuring the acidity of submicron aerosol particles 

through polymer thin film degradation. Acidic aerosol particles with aerodynamic size cuts of < 

180 nm, 180-320 nm, and 320-560 nm were generated and collected on PCL thin films, enabling 

the observation of different PCL degradation thickness based on particle size. Comparing this 

method with other established spectroscopic and colorimetric measurements of aerosol pH 

demonstrates its potential for determining whether individual particles are acidic without some of 

the limitations of Raman microspectroscopy and bulk colorimetric methods (ensemble average). 

The results presented herein focused on a difference in pH (ΔpH) that represents the highest and 

lowest pH values typical of the atmosphere (pH = 0 to pH = 6) as a proof of concept, but as a 

result, our findings are more qualitative and more work is needed with respect to connecting to 

discrete pH values and determining the precision with which ΔpH can be determined. Due to the 

complex nature of aerosol particles with respect to chemical composition and atmospheric 

conditions, there are many factors that influence aerosol acidity that need to be considered in future 

work, such as inorganic-organic mixtures. The effect of RH and water content need to be tested 

and explored to improve current understanding of how and why pH decreases with particle size, 



 25 

particularly given the interplay between pH and viscosity with respect to multiphase 

chemistry.140,172 To establish a complete pH measurement system based on polymer degradation 

rate and thickness, different polymers and detection methods will need to be investigated to 

determine figures of merit including range, sensitivity, and precision. We estimate that ΔpH will 

be roughly 1 pH unit for this system, but further testing and the use of more acid-sensitive polymers 

or co-polymers will be needed to experimentally determine sensitivity. Future aerosol acidity 

studies can utilize this single particle size-resolved pH measurement to study acidity of ambient 

aerosols, especially SOA formation and inorganic aerosol (e.g. sulfate and nitrate in Beijing haze 

conditions) that are strongly dependent on acidity. Acidity is a fundamental chemical property of 

aqueous aerosols and the polymer-based sensing approach developed in this study has the potential 

to advance our understanding of pH-dependent multiphase chemical processes, which in turn can 

improve the atmospheric models focused on relating aerosol particle properties to health and 

impacts. 
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Chapter 3. Morphology and Viscosity Changes after Reactive Uptake of Isoprene 

Epoxydiols in Submicrometer Phase Separated Particles with Secondary Organic Aerosol 

Formed from Different Volatile Organic Compounds   

 
Ziying Lei, Nicole E. Olson, Yue Zhang, Yuzhi Chen, Andrew T. Lambe, Jing Zhang, Natalie J. 

White, Joanna M. Atkin, Mark M. Banaszak Holl, Zhenfa Zhang, Avram Gold, Jason D. Surratt, 

Andrew P. Ault: Morphology and Viscosity Changes after Reactive Uptake of Isoprene 

Epoxydiols in Submicrometer Phase Separated Particles with Secondary Organic Aerosol Formed 

from Different Volatile Organic, ACS Earth & Space. 2021 (Under Review) 

3.1 Introduction 

Secondary organic aerosol (SOA) constitutes a significant fraction of the global aerosol 

budget,55 particularly for fine particulate matter (PM2.5, aerosol particles with aerodynamic 

diameters < 2.5 µm), which is the most important size range with respect to aerosol impacts on 

human health and climate.7-9 SOA is primarily formed from oxidation of volatile organic 

compounds (VOCs), resulting in lower-vapor pressure products that either nucleate, condense or 

undergo reactive uptake to existing particles (e.g., ammonium-sulfate particles).173 Since SOA is 

formed from a variety of biogenical and anthropogenic VOC precursors (α-pinene, β-

caryophyllene, isoprene, and toluene), this leads to SOA being composed of a wide range of 

chemical species with different physicochemical properties (e.g., viscosity and morphology).  

Viscous SOA can increase diffusion time scales from microseconds to weeks (i.e., longer 

than atmospheric particle lifetimes),59 which decreases the rate of SOA formation. For example, 

the reactive uptake of isoprene epoxydiols (IEPOX), a key oxidation product of isoprene,27,174,175 

can decrease diffusion by over an order of magnitude for viscous SOA formed on atmospherically-

relevant timescales (< 2 days).21,25,38 Koop et al. established a framework for understanding the 

viscosity of bulk organic material, which ranges from the dynamic viscosity (η) of liquid (η < 102 

Pa s) to semi-solid (102  ≤ η  ≤ 1012 Pa s) or glassy/amorphous solid (η > 1012 Pa s).58,60,63,64,96,176,177 

Renbaum-Wolff et al. probed viscosity as a function of relative humidity (RH) using a “bead-
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mobility” technique and a “poke-flow” technique for SOA derived from α-pinene,178 isoprene,65 

and toluene,66 which confirmed in ~100 micron particles that SOA has a wide range of viscosities. 

Organosulfates,179-181 which are a key component of atmospheric SOA, have been shown to 

increase particle viscosity after incorporation of inorganic sulfate ions into organic species.19,38 

Modeling used to study SOA viscosities has continued to improve, leading to better predictions of 

viscosity for multicomponent mixtures and surrogate SOA mixtures derived from the oxidation of 

different VOC precursors.62,182,183 Shiraiwa et al. have related molecular weight to glass transition 

temperature (Tg) and viscosity according to  the number of different C, H, and O atoms and C-H 

and C-O bonds in a molecular formula or the molecular weight (M), oxygen-to-carbon ratio (O:C), 

and coefficients (A-E) (Equation 1):184 

 𝑇𝑇𝑔𝑔 = 𝐴𝐴 + 𝐵𝐵𝑀𝑀 + 𝐶𝐶𝑀𝑀2 + 𝐷𝐷(𝑂𝑂:𝐶𝐶) + 𝐸𝐸𝑀𝑀(𝑂𝑂:𝐶𝐶)  Eq. 3.1 

 

Despite significant progress in understanding OA viscosity,21,36,57,64,185-187 understanding the 

impacts on viscosity within individual submicron particles from different VOC precursors on 

reactive uptake is still limited. 

Morphology is also critical to understand SOA formation, especially as aqueous and 

organic components can separate into distinct phases due to the low miscibility of many SOA 

species within high ionic strength aqueous particles.36,44,46,53 Example morphologies include 

homogeneous, core-shell, and partially engulfed, which all undergo reactive uptake differently, 

particularly when the organic phase is viscous.36,38,41,188 For example, laboratory studies have 

shown a ~50% decrease in reactive uptake of IEPOX to particles with a coating of viscous SOA 

from α-pinene ozonolysis (η = 9.3 × 107 Pa s)184,187 around acidic sulfate particles (pH = 1.5) versus 

aqueous (non-coated) acidic sulfate particles only.  

Most characterization of the impacts of morphology and viscosity on reactive uptake has 

focused on loss of gas-phase semi-volatile organic compounds,39 but it is also critical to understand 

how viscosity and morphology evolve within particles as they undergo reactive uptake. Recently, 

Olson et al. showed that the aqueous, sulfate-rich core of accumulation mode particles coated with 

α-pinene and toluene SOA was largely converted to viscous organosulfates after uptake of IEPOX 

in a flow tube.19 Atmospheric chambers enable studies over longer timescales (1 minute vs. hours) 

and there have been few chamber studies probing the impact of coating viscosity and morphology 
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on individual particles at atmospherically-relevant sizes (~100 nm).189 Additionally, few studies 

have analyzed uptake to mixed organic-inorganic particles, particularly submicron particles with 

complex morphologies, such as core-shell types. As atmospheric chemistry models continue to 

improve parameterizations for accurate predictions of SOA formation rates and 

concentrations,17,190,191 a detailed understanding of SOA formation at the single particle level is 

needed to provide improved modeling capabilities.  

SOA from α-pinene oxidation has been the most studied coating for core-shell (inorganic-

organic) particles with respect to reactive uptake,19,21,40,42,63 but it is important to understand how 

SOA coatings formed from oxidation of other VOC precursors impact morphology and viscosity. 

Herein, we probed the viscosity and morphology of size-selected, submicron, acidic particles 

coated with SOA formed from oxidation of four different VOC precursors (α-pinene, β-

caryophyllene, isoprene, and toluene), which were subsequently injected into an atmospheric 

chamber and exposed to IEPOX over the course of two hours. Individual particles were 

characterized using atomic force microscopy (AFM), AFM with photothermal infrared 

spectroscopy (AFM-PTIR), Raman microspectroscopy, and scanning electron microscopy with 

energy dispersive X-ray spectroscopy (SEM-EDX). Significant modification of viscosity and 

morphology was observed after the reactive uptake of IEPOX, which was highly dependent on the 

physicochemical properties of the SOA formed from the different VOC precursors examined in 

this study. The viscosities of α-pinene and β-caryophyllene SOA decreased significantly after 

IEPOX uptake, while the viscosities of isoprene and toluene SOA did not appreciably change. 

Phase separation occurred frequently for larger particles, and complex morphology was present 

for all four types of SOA particles. Overall, the changes in physicochemical properties and 

chemical composition of different SOA particle types after IEPOX reactive uptake increase our 

understanding of the impacts of multiphase chemical reactions on physicochemical properties and 

can lead to improved predictions of SOA formation. 

3.2 Methods 

3.2.1 Aerosol Particle Generation and Collection 

Aqueous seed particles, prior to coating with SOA, were generated from a solution of 0.06 

M ammonium sulfate (Sigma Aldrich, ≥ 99% purity) and 0.06 M sulfuric acid (Sigma Aldrich, ≥ 

98% purity) using a constant output atomizer (TSI Inc., Model 3076). This solution has a bulk pH 
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of 1.5,33 which was chosen based on a common pH value for submicron atmospheric particles.32,192 

Aerosol-laden air passed through one diffusion drier to remove excess water, but not to a low 

enough RH (i.e., RH > 40%) that they would effloresce and form solid particles. Particles with an 

electronic mobility diameter of 100 nm were size selected by a differential mobility analyzer 

(DMA, TSI Inc., Model 3080) with flow rates resulting in a semi-monodisperse size distribution.21 

They were then coated with SOA formed from OH-initiated oxidation of either toluene or isoprene, 

or by ozonolysis of either α-pinene or β-caryophyllene using a Potential Aerosol Mass (PAM) 

reactor (Aerodyne Research, Inc.).19,21,193 Aerosol size distributions from a scanning electrical 

mobility spectrometer (SEMS, BMI Inc., Model 2100) were measured to ensure acidified 

ammonium sulfate seed particles were evenly coated with SOA and that no nucleation mode SOA 

particles were observed before particles were injected into the University of North Carolina at 

Chapel Hill (UNC) 10-m3 indoor chamber facility.30,194 The PAM outflow and chamber were both 

equilibrated to 50% RH to represent the daytime RH in the southeastern United States.133 After 

SOA-coated inorganic sulfate particles were injected, the chamber was left static for at least 30 

minutes to ensure that the aerosol particles were stable and that the chamber was uniformly mixed. 

Then, trans-β-IEPOX, which was synthesized at UNC following a published procedure,195 was 

dissolved in ethyl acetate and gaseous IEPOX was generated by using a high-purity nitrogen flow 

of 2 L min–1 for 10 min and then 4 L min–1 for 50 min through a heated manifold (60 ℃). This 

approach to introducing gaseous IEPOX into the indoor chamber has been used in previous UNC 

chamber studies.19,21,30,38,196 Aerosol size distributions and number concentrations were 

continuously measured from the chamber to monitor particle growth using a SEMS. Before 

sampling for microscopy analysis, an additional DMA was used to select 150 nm particles formed 

from α-pinene, β-caryophyllene, isoprene, and toluene SOA, respectively, prior to IEPOX uptake.  

Additionally, 150, 200, and 250 nm SOA particles were size selected after IEPOX uptake for each 

VOC precursor. These sizes were chosen based on the size distributions of these four types of SOA 

in the chamber (Figure B.1). SOA particles were inertially impacted on silicon wafers (16013, Ted 

Pella Inc.) and quartz (26016, Ted Pella Inc.) substrates using a microanalysis particle sampler 

(MPS-3, California Measurements Inc.) at 50% RH, specifically the smallest stage with an 

aerodynamic diameter (da) < 400 nm size cut. A schematic figure showing aerosolization, coating, 

and UNC chamber experimental setup, along with relevant instrumentation is shown in Figure B.2. 
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3.2.2 Microscopy and Spectroscopy Analysis 

Individual inorganic-SOA mixed particles were analyzed to determine their size, 

morphology, and chemical composition using AFM, AFM-PTIR, Raman microspectroscopy, and 

SEM-EDX both before and after IEPOX uptake. Both AFM and Raman were conducted at room 

temperature (25°C), ambient pressure, and 50% RH, while SEM images and spectra were collected 

under vacuum (10-5 – 10-6 Torr). 

A PicoPlus 5500 AFM (Agilent, Santa Clara, CA) was used to characterize the morphology 

of individual inorganic-SOA mixed particles. Imaging was performed in tapping mode using 

Aspire CT300R probes (NanoScience; resonance frequency 300 kHz, force constant 40 N/m), to 

obtain height, amplitude, and phase images. The samples were scanned in 10 µm x 10 µm areas 

with line scans of 0.75 Hz and 512 × 512 pixels resolution. Raw data collected by AFM was 

processed by SPIP 6.2.6 software (Image Metrology, Hørsholm, Denmark) to measure height, 

projected area diameter, and volume, which is used to calculate volume equivalent diameter for 

individual particles. The spreading ratios of individual particles were calculated by using 

individual particle radius divided by particle height, as described in detail previously.19,96 T-tests 

were performed by comparing the spreading ratio of each SOA type before and after IEPOX 

uptake, and the spreading ratios were considered to be statistically different for p values < 0.05. 

A nanoIR2 system (Anasys Instruments, Santa Barbara, CA) was used to characterize the 

chemical composition of individual submicron SOA particles via photothermal infrared (PTIR) 

spectroscopy. AFM height, deflection images, and PTIR spectra of particles with SOA formed 

from toluene, α-pinene, isoprene, and β-caryophyllene after IEPOX uptake were collected in 

contact mode (IR power 16.54%) at a scan rate of 0.75 Hz using a gold-coated contact mode silicon 

nitride probe (Anasys Instruments, 13 ± 4 kHz resonant frequency, 0.07-0.4 N/m spring constant). 

The IR spectra were collected over a frequency range of 900-3600 cm-1 using a tunable IR source 

(2.5-12 µm, 1 kHz repetition rate, optical parametric oscillator, OPO) with a resolution of 4 cm-

1/point. A nanoIR3 system (Bruker, Santa Barbara, CA) with a tunable IR source (880-1950 cm-1 

frequency range, 100 kHz repetition rate, quantum cascade laser, QCL) was used to collect PTIR 

spectral maps of SOA particles. Tapping-IR mode was used and the amplitude of cantilever 

oscillation was mapped using 128 co-averages, 400 pixels resolution. The IR ratio map was 
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generated in Analysis Studio (Anasys Instruments software V3.15) to show differences in the 

spatial distribution of chemical components based on different vibrational modes. 

Raman microspectroscopy was conducted using a Horiba LabRAM HR Evolution Raman 

Spectrometer (Horiba Scientific) equipped with a 50 mW 532 nm Nd:YAG laser source and CCD 

detector coupled to a confocal optical microscope (Olympus, 100x objective NA:1.25). A 

diffraction grating with 600 groove/mm was used to obtain a spectral resolution of 1.7 cm-1. Raman 

spectra were collected in the range 500-4000 cm-1 for 3 accumulations × 15 seconds acquisitions 

for each particle.  

SEM analysis was conducted on a FEI Helios 650 Nanolab Dualbeam electron microscope 

that operated at an accelerating voltage of 10.0 kV and a current of 0.40 nA. An Everhart-Thornley 

secondary electron detector was used for imaging. EDX spectra were acquired for 20 seconds 

using an EDAX Silicon Drift Detector and GENESIS EDX software version 5.10 (EDAX Inc., 

Mahwah, NJ), as in prior work.19 

3.3 Results and Discussion 

Phase separated particles (organic coating around an aqueous/inorganic core) with SOA 

coatings from different VOC precursors (α-pinene, β-caryophyllene, isoprene, and toluene) were 

investigated before and after reactive uptake of IEPOX to understand the changes of individual 

particle morphology and viscosity (Figure 3.1). Models have predicted the viscosity of SOA 

formed from the different VOC precursors and suggest the following viscosities of α-pinene SOA 

(9.3 x 107 Pa s),178,186 β-caryophyllene SOA at (3.7 x 108 Pa s),67,197  isoprene SOA (3 x 101 - 2 x 

105 Pa s),65 and toluene SOA (7.8 x 104 Pa s) at 50% RH.66,184 Importantly, the viscosities of α-

pinene and β-caryophyllene ozonolysis SOA are orders of magnitude higher than isoprene and 

toluene SOA from OH oxidation.65-67,178,184,186,197 After the phase-separated SOA particles were 

exposed to IEPOX, particle-phase chemical reactions of IEPOX in the aqueous sulfate core formed 

viscous species, which can change the phase state of the core from liquid to semi-solid or solid.25,38 

Different types of SOA coatings on acidic inorganic sulfate particles can change the amount of 

IEPOX uptake.21  Specifically, high-viscosity SOA coatings can limit the ability of gaseous 

species, such as IEPOX, to diffuse into the aqueous acidic core of the particle, which will 

kinetically-limit heterogeneous/multiphase processes and reaction rates, as well as overall particle 
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morphology and viscosity.21,25 The average height profile can be used as a proxy for aerosol 

viscosity, with taller particles representing more viscous SOA coatings.162 The results show that 

α-pinene and β-caryophyllene SOA have a clear decrease in height, and thus viscosity. After 

IEPOX reactive uptake compared to minimal changes in height for toluene and isoprene SOA-

coated particles of the same size.  

Modifications to aerosol morphology and viscosity were quantitatively characterized 

before and after IEPOX uptake using spreading ratios calculated for size-selected 150 nm particles 

with α-pinene, β-caryophyllene, isoprene, and toluene SOA coatings. For α-pinene SOA, particles 

exhibited core-shell (inorganic-organic) morphology after coating with α-pinene ozonolysis 

Figure 3.1. Experimental design showing toluene, isoprene, α-pinene, and β-caryophyllene SOA 
 formation on acidic sulfate aerosol particles, and an average height profile of 10 particles changes 
before (solid lines) and after IEPOX uptake (dash lines). Images of four VOC precursor sources 
are from Flaticon.com. 
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products shown in the AFM phase images (Figure 3.2a), similar to previous observations.21,198 A 

thicker coating was observed for 150 nm α-pinene SOA after IEPOX uptake as shown by the larger 

dark outer portion in the AFM phase image. The morphology of the core indicates that after IEPOX 

reactive uptake, the aqueous core has been converted to a semi-solid or solid phase. Changes in 

SOA particle viscosity were quantified by calculating the average spreading ratios of ~100 

individual particles. Large spreading ratios represent liquid-like particles of lower viscosity, 

whereas a smaller spreading ratio suggests solid-like particles of higher viscosity.19,96 Before 

IEPOX uptake, both α-pinene and β-caryophyllene SOA are more viscous than isoprene and 

toluene SOA with lower spreading ratios, consistent with previous studies.65-67,178 The spreading 

ratio of α-pinene SOA-coated sulfate particles increased significantly after IEPOX uptake from 

3.4 ± 0.1 to 7.3 ± 0.4 at 50% RH. This surprising viscosity decrease is attributed to the formation 

of lower molecular weight (MW) organic species from IEPOX that have lower average MWs than 

α-pinene SOA,28,96,199-201  some of which formed in or diffused into the shell.  

Figure 3.2.  AFM phase images and spreading ratios of 150 nm SOA before and after IEPOX 
 uptake (numbers of individual particles were calculated). a) α-pinene SOA (101 and 55); b) β-
caryophyllene SOA (132 and 49 individual particles); c) isoprene SOA (99 and 61); d) toluene 
SOA (131 and 248); Single asterisks denote spreading ratios that are statistically different than 
SOA particles before IEPOX uptake (p < 0.05) and error bars represent 2σ from gaussian fit. 
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As indicated by AFM phase images (Figure 3.2b), 150 nm β-caryophyllene SOA-coated 

sulfate particles had partially engulfed morphology before IEPOX uptake After IEPOX uptake, 

the 150 nm β-caryophyllene SOA-coated sulfate particles retained their partially engulfed 

morphologies, and the spreading ratio significantly increased from 2.9 ± 0.3 to 5.4 ± 0.2. β-

caryophyllene has higher MW oxidation products202-204 compared to IEPOX SOA, as with α-

pinene SOA, and similarly increased spreading ratios and a lower viscosity were observed after 

IEPOX reactive uptake. Future work will focus on using specific species and functional groups to 

further characterize these changes, as opposed to MW.205 

Isoprene SOA-coated sulfate particles (150 nm) exhibited core-shell morphologies with a 

thick shell both before and after IEPOX reactive uptake (Figure 3.2c). Spreading ratios for 150 nm 

isoprene SOA-coated sulfate particles are similar before and after IEPOX uptake (4.9 ± 0.4 and 

4.9 ± 0.1) as the overall MW and oxidation of the SOA from IEPOX multiphase chemistry is not 

substantially changing the chemical composition of the shell,26,206 resulting in similar viscosities 

for the same size particles. 

For toluene SOA particles, a homogeneous morphology was most prevalent (Figure 

3.2d).19 The spreading ratios of toluene SOA-coated particles are similar before and after IEPOX 

uptake (4.1 ± 0.2 and 4.5 ± 0.3) at ~50% RH, likely due to the lower MW of toluene SOA being 

closer to isoprene SOA than SOA from α-pinene or β-caryophyllene.58,184,207 Larger area AFM 

phase images for the four types of SOA before and after IEPOX uptake with numerous particles 

are shown in the Supporting Information (Figure B.3) to demonstrate that the individual particles 

shown in detail in Figure 3.2 are representative. 

After IEPOX reactive uptake, the detailed morphology and viscosity for SOA-coated 

sulfate particles with different sizes were investigated. For α-pinene SOA-coated sulfate particles 

(Figure 3.3), a core-shell morphology was observed after IEPOX uptake (Figure 3.3b and 3.3c). 

Inclusions were observed for 150 nm particles and these inclusions could be viscous organosulfates 

or organosulfate oligomers that salt out when sufficient amounts form.19,30,38,175 However, the 

inclusions were too small for chemical analysis by the AFM-PTIR available at the time. As the 

particle size increased from 150 to 250 nm, the spreading ratio significantly decreased from 7.3 ± 

0.4 to 4.7 ± 0.2 (Figure 3.3a and 3.3d) at ~50% RH, indicating a more viscous particle likely due 

to an increase in the amount of sulfate available in the core for IEPOX to react with and form 



 35 

viscous species, such as organosulfates and their oligomers.168,175,208-210 This result is consistent 

with a previous study suggesting the viscosity of large (~1 µm) α-pinene SOA-coated sulfate 

particles increased after uptake of gaseous IEPOX.19 β-caryophyllene SOA-coated particles 

exhibited the same size-dependent spreading ratio behavior as α-pinene SOA-coated sulfate 

particles, with larger particles spreading less (Figure B.4).  

 

Figure 3.3. Morphology and the spreading ratio of size-selected α-pinene SOA after IEPOX 
uptake. a) Representative 3D AFM images; b) AFM amplitude images; c) AFM phase images; d) 
Bar charts show the average spreading ratio of individual particles for α-pinene SOA with 150 nm 
(55 particles), 200 nm (155 particles), and 250 nm (43 particles) diameters; single asterisks denote 
spreading ratios of larger particles that are statistically different than 150 nm particles (p < 0.05) 
and error bars represent 2σ from gaussian fit. 
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For size-selected isoprene SOA, morphology was more complex than traditional core-shell 

morphology and this complex morphology was observed for both larger sizes of particles (200 nm 

and 250 nm) (Figure 3.4b and 3.4c). This suggests that the products of IEPOX reactions were 

distributed heterogeneously within the particles,19,21 leading to irregular shapes. The average 

spreading ratio for all sizes of isoprene SOA particles ranges from 3.7 ± 0.2 to 4.9 ± 0.1 (Figure 

3.4a and 3.4d) at ~50% RH. As isoprene SOA size increased from 150 nm to 250 nm, the spreading 

ratio decreased from 4.9 ± 0.1 to 4.1 ± 0.1 at ~50% RH, suggesting higher viscosity with increasing 

particle size. While increased viscosity was observed for α-pinene, β-caryophyllene, and isoprene 

SOA particles with increasing size, toluene SOA particles did not follow this trend, potentially due 

to toluene SOA having homogeneous morphology versus the morphologies (core-shell, partially 

engulfed, and complex) for the other SOA (Figure B.5). 

Figure 3.4. Morphology and the spreading ratio of size-selected isoprene SOA after IEPOX 
uptake. a) Representative 3D AFM images; b) AFM amplitude images; c) AFM phase images; d) 
Bar charts show the average spreading ratio individual particles for isoprene SOA with 150 nm 
(61 particles), 200 nm (87 particles), and 250 nm (128 particles) diameters; single asterisks denote 
spreading ratios of larger particles that are statistically different than 150 nm particles (p < 0.05) 
and error bars represent 2σ from gaussian fit. 
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The chemical composition of individual submicron SOA particles is key to further 

understand the modification of SOA morphology and viscosity before and after IEPOX uptake and 

was analyzed using Raman microspectroscopy, AFM-PTIR, and SEM-. Raman spectra were taken 

of the particle core and shell of α-pinene SOA-coated particles before and after IEPOX uptake 

(Figure 3.5). Before IEPOX uptake, Raman spectra showed peaks representing νs(SO42-) at 973, 

νs(HSO4-) at 1049 cm-1, νs(R-OSO3-) 1074 cm-1, and the broad ν(N-H) region around 3160 cm-1 

indicating sulfate, bisulfate, α-pinene organosulfates, and ammonium located primarily in the 

particle core.85,211-216 A carbonyl group ν(C=O) mode was observed at 1708 cm-1,217 corresponding 

to α-pinene oxidation compounds, such as pinic acid or pinonic acid.218-220 A peak at 1448 cm-1 is 

assigned to the methyl/methylene group bend δ(CH3/CH2), whereas peaks at 2882 cm-1 and 2931 

cm-1 are assigned to symmetric stretches of νs(C-H) of methyl groups and asymmetric stretches 

νas(C-H) in methylene groups, respectively.211 The different chemical composition of the particle 

core and shell confirm the phase separations observed by microscopy, with acidic ammonium 

sulfate and some organosulfates in the particle core and organic material (α-pinene oxidation 

Figure 3.5. Raman spectra of representative α-pinene SOA core and shell before IEPOX uptake 
 (top); Representative α-pinene SOA core and shell after IEPOX uptake (bottom). The color dots 
in the optical images represent the different locations of Raman spectra were collected. 
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products) in the shell. An inclusion was observed for α-pinene SOA and the Raman spectrum 

suggests α-pinene organosulfates can be produced during the formation of the shell which could 

explain the inclusions were observed in AFM images (Figure 3.3b and 3.3c). After IEPOX uptake, 

IEPOX-derived organosulfate formation is observed by νs(R-OSO3-) at 1060 cm-1, which has been 

characterized previously,19,168 and peaks between 2800 to 3000 cm-1 indicative of the C-H 

stretching region. The shape of the C-H stretching region also shifts, from modes at 2931 and 2972 

before IEPOX to modes at 2880 and 2842 being most prominent afterwards, indicative of changes 

to the organic material in the shell (more symmetric methyl and methylene stretches). Raman 

spectra for toluene, isoprene, and β-caryophyllene SOA-coated sulfate particles before and after 

IEPOX show similar results as for α-pinene SOA, and are discussed in the Supporting Information 

(Figure B.6, B.7, B.8). EDX spectra were consistent with Raman spectra after IEPOX reactive 

uptake and showed sulfate and oxygen present in the particle cores (indicative of inorganic sulfate 

and/or organosulfate species), with carbon and oxygen primarily present in the shell (Figure B.9).  

IR spectra were collected for 250 nm toluene and β-caryophyllene SOA-coated sulfate 

particles after IEPOX uptake using AFM-PTIR (Figure 3.6a). A strong peak at 1104 cm-1 was 

observed, which corresponds to the highly IR-active anti-symmetric stretch of inorganic sulfate 

ions, νas(SO42-), in the particle core.73 The peaks at 1420 cm-1 for a β-caryophyllene SOA-coated 

particle and 1436 cm-1 for a toluene SOA-coated particle are assigned to ammonium δ(NH4+).73 A 

less intense N-H stretch of ammonium at 3136 cm-1 was also observed.73 The peaks detected at 

1072 cm-1 and 1068 cm-1 suggest the formation of organosulfates, νs(R-OSO3-).168,221 A symmetric 

methyl stretch νs(CH3) was observed at 2880 cm-1 for the β-caryophyllene SOA-coated particle, 

and an organic peak at 3060 cm-1 is assigned to unsaturated C-H moieties (i.e., less sp3 hybridized) 

within the organic species of the C-H stretching region.211 Peaks > 3150 cm-1 correspond to O-H 

stretching.167,217  As shown in Figure 3.6b, IR spectra of 250 nm isoprene SOA particle core and 

shell after IEPOX uptake display two strong modes, 1100 cm-1 and 1424 cm-1 suggestive of 

νas(SO42-) and δ(NH4+), respectively,73 in the particle core. A weak mode, ν(C=O) at 1690 cm-1 

was observed in both core and shell. The complex core of isoprene SOA (Figure 3.6c) suggests 

that some IEPOX diffused into the particle and reacted with inorganic sulfate. To directly visualize 

relative differences in the spatial distribution of sulfate and organic species between the core and 

shell of isoprene SOA-coated sulfate particles, a ratio map (Figure 3.6d) was generated using 1100 

cm-1/1690 cm-1. The areas enriched in sulfate (1100 cm-1) appear red (this may include some 
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organosulfates due to the peak widths and the proximity of the 1100 and 1074 cm-1 peak), while 

those with enhanced carbonyl concentrations (1690 cm-1) appear green. The ratio map confirms 

that most sulfate is in the particle core and isoprene-derived organic materials are in the shell, 

which is consistent with Raman and EDX spectra. 

3.4 Conclusions 

To understand the atmospheric impact of IEPOX uptake onto SOA-coated acidic sulfate 

particles, SOA coatings from different VOC precursors need to be understood. The viscosity and 

morphology of size-selected SOA formed from four different VOC precursors (α-pinene, β-

caryophyllene, isoprene, and toluene) before and after IEPOX uptake have been investigated in 

this study. The results demonstrate that changes in viscosity and morphology of initial inorganic 

core-SOA shell particles after IEPOX reactive uptake are strongly dependent on VOC precursor. 

α-Pinene and β-caryophyllene SOA-coated sulfate particles became less viscous after IEPOX 

uptake, while the viscosity of isoprene and toluene SOA-coated sulfate particles did not change 

Figure 3.6. a) AFM-PTIR spectra of β-caryophyllene SOA-coated and toluene SOA-coated 
 particles after IEPOX uptake with AFM amplitude images; b) IR spectra of isoprene SOA core 
and shell; c) AFM amplitude image of isoprene SOA; d) IR ratio map of 1100 cm-1/1690 cm-1 
for isoprene SOA. 
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appreciably after IEPOX uptake. The changes in particle viscosity can affect IEPOX diffusion and 

mixing time scales, which may alter SOA lifetime and the production of further SOA in these 

mixed organic-inorganic particles (i.e., self-limiting further atmospheric aging38,96). Additionally, 

different SOA particle sizes after IEPOX uptake (150, 200, and 250 nm from initially 150 nm 

particles) have been investigated, with phase separation and more particles with complex 

morphology being observed at larger particle sizes.19,222 After IEPOX uptake, the larger particles 

were more viscous for α-pinene, β-caryophyllene, and isoprene SOA-coated sulfate particles, 

indicating particle size could play an important role in morphology, affecting subsequent 

heterogeneous reactions. The VOC- and size-dependent morphology and viscosity changes are 

important to consider since inorganic-SOA mixed particles play an important role in overall 

aerosol mixing state,79,148-150 as well as cloud condensation nuclei (CCN) 223 and ice nucleating 

particle (INP) activity,177,224,225 which are important in cloud formation.226-228 
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4.1 Introduction 

Atmospheric aerosols significantly affect air quality, human health, and climate; 

particularly submicron particles, which have long atmospheric lifetimes, determine cloud 

nucleating properties, and penetrate deeply into the lungs after inhalation.229 Secondary organic 

aerosol (SOA) is ubiquitous, accounting for a large mass fraction of submicron aerosol 

particles146,230-232 and more than 50% of the total organic aerosol mass globally.17,233 Recent studies 

have shown that SOA is possibly linked to adverse human health outcomes upon inhalation 

exposure, including early biological changes within lung cells that are associated with 

inflammation and oxidative stress.10,234-237  

SOA is largely formed by the oxidation of volatile organic compounds (VOCs) followed 

by nucleation, condensation, or multiphase chemical reactions of the resulting lower volatility 

oxidation products, which all lead to increased SOA mass.20,210 Isoprene has the highest emissions 

of any non-methane VOC with global emission rates of ~600 Tg/y,238,239 and undergoes oxidation 

to form lower volatility gaseous species, such as isoprene epoxydiols (IEPOX).240,241 When the 

oxidation of isoprene to IEPOX occurs, the increasing molecular functionality and decreasing 

vapor pressure (3 × 10-6 atm)177 facilitate reactive uptake to existing aerosol particles,17,20,26,173,196 

particularly under low pH conditions when the epoxide can be opened via acid-catalyzed reaction 

pathways.242,243 Previous studies have shown that high IEPOX reactive uptake to inorganic sulfate 

particles leads to the formation of substantial amounts of aerosol mass (i.e., particulate matter < 

2.5 µm, PM2.5), especially in the Southeastern United States.244-247 Due to the large mass loadings 

of IEPOX-derived SOA, which can contribute up to 40% of the submicron organic aerosol mass 
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in isoprene-rich environments,244,248 the physicochemical properties (i.e., phase state and 

morphology) of these aerosol particle types can affect further SOA formation and the evolution of 

existing SOA.21,38,96 

The phase state (liquid, semi-solid, or solid) of atmospheric particles plays a critical role 

in determining their ability for further chemical reactions in the aerosol phase.21,47,249 In the past 

decade, studies have shown that SOA particles can exist in an amorphous semi-solid or solid state 

under different ambient conditions (e.g. relative humidity (RH) and temperature),45,58 and the 

viscosity of SOA particles can have a wide range of viscosities from 3 x 101 Pa s (similar to honey) 

to 3.7 x 108 Pa s (similar to tar pitch).58,66,67,178,250 Multiphase chemistry of IEPOX leads to the 

formation of organosulfates,168,174,175,208 polyols,17,27,30,251,252 and oligomers20,28,253 in the 

condensed phase, whose high molecular weights result in more viscous aerosol (i.e., 106 Pa s).25 

Increases in viscosity decrease molecular diffusion and lead to longer mixing timescales for 

molecules within particles, which have been shown to decrease subsequent gaseous IEPOX uptake 

and SOA formation.19,21,25,57 Due to decreased miscibility of organic components in high ionic 

strength aqueous phases, the viscous organic components of a particle salt out to form an outer 

layer (i.e. shell) at the edge of the inorganic components (i.e. core), commonly referred to as core-

shell morphology.37,46,254 For the resulting core-shell morphology, if the shell is highly viscous, it 

can kinetically inhibit further uptake of gaseous species,178,255 reactivity,25,38,256,257 and ultimately 

SOA growth and evolution in the atmosphere.178 Thus, understanding the phase state, viscosity, 

and morphology of SOA particles is central to predicting heterogeneous uptake of IEPOX leading 

to SOA formation. 

Aerosol pH also has substantial impacts on SOA formation by modifying the reaction rates 

of organic species within the condensed phase.258,259 Many atmospheric multiphase chemical 

processes are pH-dependent, including the reactive uptake of IEPOX to form SOA and many 

subsequent reactions in the condensed phase.24,26,196 Atmospheric chamber experiments have 

observed that greater SOA formation occurs under acidic conditions (pH 1.5) compared to neutral 

conditions (pH 5).30,242 As an example, the acid-catalyzed ring-opening reaction of IEPOX leads 

to lifetimes of less than one minute after uptake to particles with pH < 1, but IEPOX can have 

lifetimes of days or longer in particles at pH 5 under typical atmospheric conditions.26,210 However, 

there remains considerable uncertainty regarding how aerosol pH impacts the resulting 

morphology and viscosity after IEPOX uptake. 
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Further experimental data is needed in order to improve our current understanding of how 

exactly acid-catalyzed multiphase chemical reactions of gaseous IEPOX with particles of varying 

acidity subsequently affect particle morphology and viscosity. In this study, we investigated 

changes in particle phase state and morphology after gaseous IEPOX uptake onto particles with 

varying initial acidities (i.e., pH = 1, 3, and 5) and amounts of ammonium sulfate and sulfuric acid. 

We also characterized the time-resolved modification of particle morphology and chemical 

composition after different reaction times (i.e., 30, 60, and 120 minutes after gaseous IEPOX 

injection). Individual particles were characterized by using multiple microspectroscopy methods 

(atomic force microscopy coupled with photothermal infrared (AFM-PTIR), scanning electron 

microscopy (SEM), and Raman microspectroscopy) in order to provide detailed information on 

individual particle morphology, phase state, and chemical composition during and after IEPOX 

reactive uptake. These single particle data were compared with changes in aerosol size 

distributions and organosulfate concentrations of the total aerosol generated during our chamber 

studies. Establishing the physicochemical properties of SOA formed under varying initial pH 

conditions is crucial for resolving the impacts of atmospheric aerosol on human health and climate 

(e.g., cloud droplet or ice crystal nucleation).4,224,260 

4.2 Methods 

4.2.1 Chamber Experiments 

Aerosol particles were generated from solutions with different pH values where the 

concentration of the inorganic sulfate ions (sulfate ([SO42-]) + bisulfate ([HSO4-])) was kept at 0.12 

M for each solution. Solutions that were prepared using ammonium sulfate (Sigma Aldrich, ≥ 99% 

purity), sulfuric acid (Sigma Aldrich, ≥ 98% purity), and 18.2 MΩ Milli-Q water (Table 1), 

without further purification. The pH, chemical composition, and submicron size of the seed aerosol 

were chosen to represent conditions under which SOA formation reactions occur in the 

atmosphere.29,261,262 
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Table 4.1 Solutions used for seed aerosol, labels used in text, measured solution pH with 
uncertainty prior to aerosolization, and concentrations of sulfuric acid and ammonium sulfate. 

N/A = not applicable 

 

 The pH of the bulk solutions was measured by a pH probe (PHS-3C, Yantai Stark 

Instrument Co.). Aerosols were generated from a constant output atomizer (TSI Inc., Model 3076) 

and then passed through diffusion driers to reach 50% RH, which is above the efflorescence RH 

of ammonium sulfate and sulfuric acid to maintain the aerosol in an aqueous form. The number 

size distribution of the different seed aerosols (mode diameters: 83-103 nm) and SOA aerosols 

after reacted with IEPOX for 120 min (101-133 nm) are shown in Figure C.1. Acidic seed particles 

were injected into the 10-m3 indoor chamber at the University of North Carolina at Chapel Hill 

(UNC) chamber facility that was pre-humidified to 50% RH,30,38 and the concentration was 

allowed to stabilize for 30 min. Synthesized trans-β-IEPOX,195 which is the predominant IEPOX 

isomer in the atmosphere,241 was dissolved in ethyl acetate and gaseous IEPOX was injected into 

the chamber by using a high-purity nitrogen flow of 2 L min–1 for 10 min, and then 4 L min–1 for 

50 min through a heated manifold (60 ℃).19,21,30,38,196 The seed particles with different initial pH 

values reacted with gaseous IEPOX to form IEPOX-derived SOA. A scanning electrical mobility 

spectrometer (SEMS, BMI Inc., Model 2100) was used to monitor the particle growth by 

measuring aerosol size distributions, number concentrations (#/cm3), and volume concentrations 

(µm3/cm3) in the chamber. After the seed particles were exposed to the injected IEPOX for 30, 60, 

and 120 minutes, aerosol particles were inertially impacted onto substrates for microscopy using 

an eight-stage mini-multi orifice uniform deposit impactor (mini-MOUDI, Model 135, TSI Corp.). 

Particles were analyzed from stage 7, which has a 50% aerodynamic cut-point of 320 nm (d50) 

leading to particles with diameters of 180-320 nm on the substrates. Microscopy substrates 

included silicon wafers (16014, Ted Pella, Inc.), carbon-type-b Formvar-coated copper 

Seed Acidic Aerosol 

Solution 

Label Measured 

pH 

[H2SO4] [(NH4)2(SO4)] 

pH = 1 without ammonium pH 1 w/o NH4
+
 1.05 ± 0.01 0.12 M N/A 

pH = 1 with ammonium pH 1 w/NH4
+
 1.32 ± 0.01 0.06 M 0.06 M 

pH = 3 pH 3 2.99 ± 0.01 0.0025 M 0.1175 M 

pH = 5 pH 5 5.19 ± 0.01 N/A 0.12 M 
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transmission electron microscopy (TEM) grids (1GC50, Ted Pella, Inc.), and quartz pieces (26016, 

Ted Pella, Inc.).  

4.2.2 Microscopy Imaging and Spectroscopy 

The morphology and phase of individual submicron particles were analyzed using an 

AFM-PTIR (nanoIR2, Anasys Instruments, Santa Barbara, CA). Particles on silicon substrates 

were imaged in 5 × 5 μm2 and 10 × 10 μm2 regions with 0.7 Hz scan rates that operated at a 0.07-

0.4 N/m spring constant and 13 ± 4 kHz resonant frequency. Tapping IR mode was conducted with 

a gold-coated microfabricated silicon probe (AU.1000.SWTSG, Platypus Technologies). Raw data 

were processed using SPIP 6.2.6 software (Image Metrology, Hørsholm, Denmark) to measure 

single particle height, radius, and volume. The spreading ratios of individual particles were 

calculated by using particle radius divided by particle height (SR = r/h), as described in previous 

publications.19,73,96 Spreading ratio uncertainties are reported as 2σ of a Gaussian fit to the 

histogram of spreading ratios. T-tests were used to compare the spreading ratio of seed particles 

with mixed seed-SOA particles at discrete time points during the experiment (i.e., 30, 60, and 90 

minutes) and were considered to be statistically different for p values < 0.05. SEM images were 

also obtained for particles impacted onto TEM grids using a FEI Helios 650 Nanolab-Dualbeam 

electron microscope equipped with a high angle annular dark field (HAADF) detector operated at 

an accelerating voltage of 10.0 kV, a current of 0.80 nA, and pressures ranging from 10-5 to 10-6 

Pa.263 

AFM-PTIR (nanoIR2 system, Anasys Instruments, Santa Barbara, CA) was used to 

characterize the chemical composition of individual particles. IR spectra were collected using an 

optical parametric oscillator (OPO) source with a tuning range of 800 to 3600 cm-1 and an average 

spectral resolution of 2 cm-1. For each sample, the IR spectra were collected at a scan rate of 100 

cm-1/s for 5 minute acquisitions, and averaged after 3 accumulations.73  

Raman microspectroscopy was used to characterize the chemical composition of phase-

separated particles, as in prior studies.85 Spectra for both the particle core and shell were collected 

using a LabRAM HR Evolution Raman microspectrometer (Horiba, Ltd.) equipped with a 50 mW 

532 nm Nd:YAG laser source, a confocal optical microscope (Olympus, 100 × 0.9 N.A. objective), 

and a CCD detector. Each Raman spectrum was collected in the range of 500 to 4000 cm-1 with 

three accumulations at 60 s acquisition times. A diffraction grating with 1800 groove/mm was 
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used to yield a spectral resolution of 0.7 cm-1. Both PTIR and Raman spectra were collected at 

room temperature, RH, and ambient pressure. 

4.2.3 Characterization of Organosulfate Formation 

For each chamber experiment, particles were collected using a particle-into-liquid sampler 

(PILS, BMI model 4001). PILS samples were collected every 6 minutes with an air sampling rate 

~6.5 L min-1, resulting in a liquid sample volume of ~ 1.2 mL, which was used for offline chemical 

analysis by ion chromatography (IC).38 IC conditions have been previously summarized by Riva 

et al.38,264 PILS samples were stored in the dark at 2 ℃ immediately after collection and were 

analyzed within 24 hours, as validated in prior work.38 In this study, the sulfate concentration in 

the initial atomizer solution was kept constant at 0.12 M (Table 1) and the total particulate 

organosulfate concentrations with specific reaction time can be calculated by subtracting inorganic 

sulfate concentrations from the initial sulfate concentration measured by IC (which is initially all 

inorganic sulfate).25,38 The initial sulfate concentration of a seed aerosol only experiment was also 

analyzed (Figure C.2) to compare with IEPOX-derived SOA experiments. 

�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂�𝑡𝑡 = [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑡𝑡𝑂𝑂𝑇𝑇]0 − [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼]𝑡𝑡 

Additionally, a hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-

of-flight mass spectrometry (QTOFMS) was used to characterize 2-methyltetrols (2-MT) and its 

OS derivative (2-methyltetrol sulfate, IEPOX-OS).38,265  

4.3 Results and Discussion 

The relative fraction of the HSO4- and SO42- ions varies as a function of pH (Figure C.3), 

highlighting that bisulfate dominates (> 90 %) at pH 1 and sulfate dominates at pH 3 (> 90%) and 

pH 5 (> 99%) for the initial seed aerosol particles. After gaseous IEPOX was injected into the 

chamber, the volume concentration (µm3/cm3) of the aerosol increased, with the greatest volume 

growth observed with pH 1 seed aerosol particles either with or without ammonium (NH4+). The 

total aerosol particle volume reached its maximum value 30-60 minutes after the IEPOX injection 

finished (Figure 4.1). For less acidic seed particles, such as pH 3 and pH 5 particles, a slight 

increase in total volume occurred through both experiments and the slight decrease later on during 

the experiment is due to wall loss after IEPOX is no longer being injected. These results expand 
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on prior studies,24,210 which only examined acidic versus non-acidic seed particles and show here 

that high [H+] is needed for growth, with or without ammonium in the seed. 

To determine how quickly core-shell morphology formed, AFM phase images were 

collected after pH 1 seed particles (without NH4+ counter ion) were exposed to gaseous IEPOX 

(Figure 4.2a). Particles exhibited phase separation after exposure to IEPOX for 30-, 60-, and 120-

minutes reaction times. AFM phase images show that a coating (black color) formed quickly after 

the initially homogenous seed aerosol particle is exposed to IEPOX for 30 minutes, and the circular 

morphology indicates that the particles were liquid and had not effloresced prior to injection into 

the chamber.166,266,267 With increasing IEPOX : SO42- ratios throughout the reaction time (as SO42- 

is incorporated into organosulfates, Figure C.4),38 a thicker coating formed, consistent with the 

previous studies.21,25,38After 60 minutes of IEPOX uptake, the particle core became smaller, and a 

thicker coating was observed (Figure 4.2b). After 120 minutes of IEPOX uptake, the morphology 

of the core had inclusions, which may suggest the continuous reactive uptake of gaseous IEPOX 

continued to modify the core, even with a thicker coating, leading to less spherical, aqueous 

morphology. To further understand the viscosity change during IEPOX uptake, particle spreading 

ratios were calculated for individual particles. 

Figure 4.1. Particle volume concentration (μm
3
/cm

3
) after IEPOX uptake for different acidic  

inorganic sulfate particles: pH 1 (NH4+, HSO4- >> SO4-, H+, H2O) (pink solid circle), pH 1 (HSO4-

, H+, H2O) (red solid circle), pH 3 (NH4+, H+, SO42- >> HSO4-, H2O) (purple solid circle), and 
pH 5 (NH4+, H+, SO42-, H2O) (blue solid circle). The volume concentration is calculated from 
integrated size distributions and has not been corrected for particle wall loss. 
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Particle spreading ratios have been used as an indirect measurement of particle 

viscosity,19,96 as more viscous particles spread less on the substrate leading to a smaller spreading 

ratio. The spreading ratios of pH 1 seed particles (without NH4+) and reacted pH 1 seed particles 

exposed to IEPOX for 30, 60, and 120 min were calculated, and are shown in Figure 4.2c. The pH 

1 seed particles (without NH4+) before reaction with IEPOX had an average spreading ratio of 2.8 

± 0.2. Following IEPOX uptake, the average spreading ratios significantly decreased to 1.8 ± 0.1 

after 30 min, 2.4 ± 0.1 after 60 min, and 2.1 ± 0.1 after 120 min of reaction time. Reactive uptake 

of IEPOX for 30 minutes led to increased particle viscosity, which has been shown by both 

measurements by Olson et al.19 using an entrained-aerosol flow tube reactors with < 1 min 

residence times and modeling results from Zhang et al.62 The formation of organosulfates and other 

oligomers has been shown to increase particle viscosity and phase separations.19,38 After reacting 

for 60 and 120 min, a thicker coating formed and a smaller core was observed, which suggests that 

IEPOX was continuously reacting with seed particles, though the spreading ratios did not change 

significantly. This suggests most viscosity increases are likely facilitated by organosulfate 

Figure 4.2. a) AFM phase image of representative pH 1 w/o NH4+ seed particles, particles after 
 reaction with IEPOX for 30, 60, and 120 minutes; b) core volume fraction (blue) and shell volume 
fraction (green), the error bars represent standard error; c) Averaged spreading ratios of 249, 68, 
78, 74 particles, respectively, single asterisks denote spreading ratios that are statistically different 
than seed particles before IEPOX uptake (p < 0.05), error bars represent 2σ from gaussian fit.  
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formation that occurs within 60 minutes, and that the particles were stable for at least the next 

hour, possibly due to a potential self-limiting effect.25 These results demonstrate rapid 

modification of submicron particle phase states and viscosity during reactive uptake of gaseous 

IEPOX to pH 1 seed particles (without NH4+). 

Particle volume concentrations of seed particles and particles after IEPOX uptake for 60 

min are shown in Figure 4.3 (top row). A significant increase in IEPOX-derived SOA formation 

was observed for pH 1 seed particles with and without NH4+, with volume concentrations 

increasing 34.0 ± 0.4% and 31.9 ± 0.1 %, respectively. Similarly, the less acidic seed particles led 

to less volume growth (12.8 ± 0.9 % for pH 3 ammonium sulfate and 17.3 ± 0.3 % for pH 5 

ammonium sulfate). These results are consistent with previous studies that show IEPOX-derived 

SOA formation is facilitated by acid-catalyzed particle-phase reactions.25,30 In addition, average 

height traces of 10 individual particles are included in Figure 4.3 (middle row), which shows the 

average aerosol growth after SOA formation. A taller particle with the same width indicates a more 

viscous particle while a shorter particle is less viscous and has spread more.19 As seed particles 

Figure 4.3 Particle volume concentration, average height trace of 10 individual particles, and 
 AFM phase images for a). pH 1 seed particles with ammonium after IEPOX uptake; b). pH 1 seed 
particles without ammonium after IEPOX; c) pH 3 ammonium sulfate particles after IEPOX 
uptake; d) pH 5 ammonium sulfate particles after IEPOX uptake. Blue color represents the seed 
particles, and the green color represents the IEPOX derived SOA particles. 
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became less acidic, the height and, by proxy, the viscosity of particles after IEPOX uptake was 

lower. This is because IEPOX-derived organosulfates (and oligomers) that increase particle 

viscosity are more likely to be formed under acidic conditions.19,21,38,268 To connect greater SOA 

formation and higher viscosity to core-shell morphology, phase imaging was used to characterize 

particles after gaseous IEPOX uptake onto particles with different initial pH values. AFM phase 

images in Figure 4.3 (bottom row) demonstrate that phase separation only occurs for the pH 1 

particles (with or without NH4+) after exposure to gaseous IEPOX. AFM phase images suggest 

that the SOA particles generated under acidic conditions formed a thick SOA coating and the 

circular core-shell morphology illustrates that those particles are phase separated. For less acidic 

seed particles, the shell was thinner (pH 3) or even formed an ammonium sulfate crystal in the 

core observed for near neutral (pH 5) seed particles. The crystallized morphology further indicates 

that minimal organic material has formed (consistent with aerosol volume concentration data), as 

organic material interferes with crystallization leading to round amorphous solids.269,270 SEM 

images were also collected to confirm the phase transition, and the result is consistent with AFM 

(Figure C.5). To understand the chemical composition in the individual core-shell IEPOX-derived 

SOA particles, PTIR and Raman spectra were collected.  

Chemical composition plays an important role in understanding phase-separated inorganic-

SOA mixed particles. Raman microspectroscopy and PTIR were used to identify functional group 

composition for the core and shell of these particles. Detailed spectra of pH 1 seed particles with 

NH4+ after IEPOX uptake for 60 min were collected (Figure 4.4), and the specific vibrational 

modes and full Raman spectra are listed in the Supporting Information (Table C.1). A strong 

sulfate peak νs(SO42-) at 976 cm-1 in the Raman spectra is clearly discernible and located in both 

core and shell of particles and the bisulfate νs(HSO4-) peak at 1041 cm-1 was also 

observed.80,85,212,271 Both the particle core and shell also showed signs of organosulfate formation 

with peaks around 1060 cm-1 in the Raman spectra and 1200 in the PTIR, indicative of 

νs(RO−SO3).168 Other organic peaks were observed for both core and shell; specifically, the 

asymmetric carbon-hydrogen δ(C-H) of the methylene at 1460 cm-1,168,272 symmetric and 

antisymmetric of methyl and methylene stretches were observed in the ν(C-H) region between 

2800 to 3000 cm-1,19,80 and carbonyl ν(C=O) at 1662 cm-1. The hydroxyl ν(O-H) peak was observed 

at 3419 cm-1 from either the IEPOX uptake reaction or water from the liquid particle.80,93 The 

Raman spectra of particle core and shell show that more organic compounds were formed in the 
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particle shell with a small amount of organics in the particle core, indicating that the gaseous 

IEPOX diffused through the entire inorganic particle to react and modify its physiochemical 

properties. Additionally, a PTIR spectrum was collected to provide complementary chemical 

composition information of an individual submicron particle. A strong asymmetric sulfate 

νas(SO42-) peak at 1108 cm-1 was observed,73 and another sulfate mode at 1076 cm-1 was observed. 

The peak at 1206 cm-1 is assigned to bisulfate ν(HSO4-) group and the peak at 1422 cm-1 is assigned 

to ammonium band δ (NH4+).73 The peak at 880, 914, and 1034 cm-1 have been identified as 

organosulfate group νs(RO-SO3-).  

To further understand how the pH of seed particles affects gaseous IEPOX uptake, single-

particle chemical compositions were characterized using PTIR and Raman microspectroscopy. 

Due to particle-to-particle variance, an average of 20 PTIR spectra and 15 Raman spectra were 

collected for each sample, with representative spectra shown in Figure 4.5. Organosulfate 

formations were observed in both the PTIR and Raman spectra after different acidic seed particles 

Figure 4.4 Raman spectra of pH 1 seed particles with NH4+ after IEPOX reactive uptake for 60  
min, showing the differences between core (blue) and shell (green) composition (top), AFM 3D 
image of individual submicron particles after impacted on the Si substrate (bottom left); 
representative PTIR spectra of the whole particle for a different core-shell SOA-inorganic particle 
formed from IEPOX uptake. 
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were exposed to gaseous IEPOX for 60 min. Organosulfates were identified by vibrational modes 

at 914, 1034, and 1206 cm-1.168 Those different organosulfate vibration modes can be either 

different organosulfates or different extents of their corresponding dimer, trimer, and oligomer 

formations, which will be probed in a future study. The reacted pH 1 seed particles with NH4+ 

formed the most organosulfates, followed by the pH 1 seed particles without NH4+ (Figure 4.5a 

and 4.5b). When the pH of the seed particles increased to 3 and 5, the formation of organosulfates 

decreased and more sulfate remained (Figure 4.5c and 4.5d). This result is consistent with previous 

studies that showed SOA formation is significantly higher under acidic conditions.30,242 Peaks in 

the PTIR spectra at ~1100 cm-1 and 1418 cm-1 are assigned to asymmetric sulfate νas(SO42-) and 

ammonium δ(NH4+), respectively, with primarily νas(SO42-) present with few organosulfates at pH 

3 and 5.73  

Figure 4.5 Representative PTIR spectra of individual particles after IEPOX reactive uptake  
for 60 minutes: a). pH 1 (NH4+, HSO4- >> SO4-, H+, H2O), b). pH 1 (HSO4- >> SO4-, H+, H2O) (red 
solid circle), c). pH 3 (NH4+, H+, SO42- >> HSO4-, H2O), d). pH 5 (NH4+, H+, SO42-, H2O) (left 
column). Raman spectra of four different types of SOA particles after IEPOX uptake for 60 
minutes showing composition differences between core and shell (right column).  
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Raman spectra were collected in the particle core and shell to obtain complementary 

chemical information. All SOA particles formed from seed particles with different pHs showed 

modes indicative of organosulfate formation with peaks around 1065 cm-1.168 The distinctly 

different Raman spectra for particle cores and shells demonstrate chemically that phase separation 

occurred under acidic conditions (Figure 4.5a, 4.5b, and 4.5c). The bisulfate ν(HSO4-) mode was 

observed at 1041 cm-1 for all acidic seed particles with pH 1 and pH 3 after IEPOX uptake, which 

suggests the remaining aqueous component within particles remain acidic after exposure to 

IEPOX.34,85,93 Though much smaller than the symmetric stretch in Raman, the asymmetric sulfate 

νas(SO42-) mode at 1096 cm-1 was observed for the seed particles containing ammonium sulfate.269 

Last, for pH 1 and pH 3 seed particles with NH4+, the δ(NH4+) peak around 3124 cm-1 was observed 

only in the particle core214,215 and peaks in the ν(C-H) region between 2800 and 3000 cm-1 indicate 

organic materials were present in the particle shell. Both PTIR and Raman spectra provide 

complementary information regarding morphology and chemical composition after IEPOX 

multiphase chemical reactions.  

 As organosulfate formation is consistently observed in IEPOX-derived SOA particles,175 

it is important to quantify the amount of organosulfates produced for each different seed pH. Figure 

4.6 shows that organosulfate formation was observed under all pH conditions, with a strong pH-

dependence leading to rapid conversion of inorganic sulfate to organosulfates under the most 

acidic conditions (pH 1). Organosulfate formation is higher with NH4+ at pH 1, as the NH4+ may 

help stabilize the particle pH, preventing pH from decreasing after generation. Since pH does not 

decrease, less sulfate is protonated to bisulfate (below the pka),  which is a weaker nucleophile,273 

that may slow organosulfate formation. The Raman spectra in Figure 4.5 also show more sulfate 

(ν(SO42-) = 1096 cm-1) in pH 1 seed particles with NH4+ than pH 1 seed particles without NH4+, 

supporting this hypothesis. For less acidic aerosol conditions (pH 3 and 5), organosulfate 

production was much slower due to lower [H+] to facilitate the epoxide ring-opening reactions. 

This and prior experimental studies are buttressed by computational chemistry modeling that 

predicts IEPOX rapidly produces organosulfates in acidic aerosols.274 The results from this study 

show that the most amount of inorganic sulfate was converted to organosulfates within 60 min 

under acidic conditions, and may indicate a self-limiting towards further IEPOX uptake at reaction 

times longer than 60 min.25 For the less acidic inorganic seed particles, the maximum formation 

of organosulfates was observed within 80-100 min before stabilization. To further understand the 
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particle morphology and phase impacts on organosulfates formations, AFM phase images were 

collected after 30-, 60-, and 120-min reactions. Core-shell morphology was observed for each 

experiment across the different reaction times, with thicker shells at lower pH where greater 

organosulfates are seen to form in the top of Figure 6. After the formation of a thicker shell (likely 

more viscous) and more solid core, the amount of organosulfate formation decreased.19,21 It should 

be noted that by 120 min, the SOA coating on the particles formed with the pH 1 seed particles 

(with NH4+) was so thick the core-shell morphology became difficult to resolve via phase imaging. 

Figure 4.6 . Organosulfates concentrations by conversion of inorganic sulfate during the  
reactive uptake of IEPOX (top), the different color lines and shades represent sigmoid fit with 
uncertainties under different acidic conditions, data was corrected for wall loss; AFM phase 
images of seed particles with varying pH reacted with gaseous IEPOX for 30, 60, and 120 minutes. 
Different colors corresponding to different seed particles. 
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4.4 Conclusions 

This study demonstrates that the initial acidity and composition of inorganic seed particles 

impacts their ultimate physicochemical properties (i.e., morphology and phase state) after 

exposure to gaseous IEPOX, which influences the continued formation, evolution, and reactivity 

of IEPOX-derived SOA. Phase separation was more pronounced under more acidic conditions, 

showing a clear core-shell morphology for individual submicron SOA particles. We further 

demonstrate that after reactive uptake of IEPOX on seed particles, the phase state of SOA particles 

shifts from a liquid phase to a semi-solid or solid phase, even at 50% RH. To further understand 

how acidity impacts the mechanism of organosulfates formation, future studies are needed that 

probe additional variables (e.g., RH and size). This study clearly demonstrates a significant 

modification of morphology and phase evolution during IEPOX uptake onto seed particles with 

varying aerosol acidities. As aerosols from a range of sources with different initial pH values can 

form SOA leading to complex aerosol mixing states,32,33,149,150,275 the strong effect of acidity on 

IEPOX-derived SOA physical and chemical properties may have substantial implications on SOA 

in isoprene-rich regions.150,276-278 
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Chapter 5. Direct Measurement of Glass Transition Temperature for Individual 

Submicron Atmospheric Aerosol 
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5.1 Introduction 

Atmospheric aerosol particles play a crucial role in climate, air quality, and public health.14 

Organic matter (OM) is one of the dominant components of atmospheric aerosol particles which 

account for over 50% of total fine particulate matter (PM2.5) mass.231 Many studies have found that 

organic aerosol particles have effects on the atmosphere and climate through undergoing reactions 

with atmospheric gases,19,25,242 interaction with water vapor and radiation, modification of their 

cloud condensation nuclei activities, and optical properties.225,255 Because of the complex 

formation mechanism of OM in atmospheric particles and incomplete understanding of their 

physical and chemical properties, the extent of atmospheric particles’ climate effects is highly 

uncertain. Additionally, submicrometer particles have great impacts on human health by depositing 

deeply in the alveoli and contribute to 8% of global deaths annually from air pollution.6 A detailed 

characterization of particle size, chemical composition, and phase state (liquid, semi-solid, or 

solid) is crucial for estimating their impacts on climate and health.162   

Traditionally, atmospheric particles were assumed to be liquid, but recent studies and 

evidence show that they can be semi-solid or glassy solid.60,96 Both ambient and laboratory-

generated aerosol particles have been observed to bounce off the smooth hard surface of an inertial 

impactor implying a non-liquid state.59,96 Particles can have a wide range of viscosities (η) and 

have over many orders of magnitude difference from liquid to solid substance, such as liquid water 

(10-3 Pa s) and glass marbles (>1012 Pa s).58,64 Many studies have measured the bulk diffusivity in 

organic particles to predict the viscosity based on the Stokes-Einstein equation.279,280 The challenge 

of this method is that the equation has been shown to work well for organic molecules diffusion in 

materials with η < 103 Pa s, which may underestimate the diffusivity of organic molecules in a 

highly viscous material by a few orders of magnitudes.281 Some viscosity methods have been 
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developed in recent years; for example, Renbaum-Wolff et al. introduced a poke-and-flow 

technique that uses a needle to poke the particle on a substrate and monitor the time required for 

the material to relax back to the equilibrium state, and then viscosity can be determined by 

comparison with simulated flow times.282 Furthermore, a bead-mobility technique uses melamine 

beads incorporated in large particles (30-50 µm) formed from an organic aerosol particle and the 

viscosity of the particle can be determined from the velocity of the beads.178 Other techniques infer 

viscosity by including resistance to an applied force, X-ray diffraction and differential scanning 

calorimetry (DSC), particles coalescence in optical tweezers, and particle rebound.283-285 These 

techniques provide important insights in estimating the viscosity of atmospheric aerosol particles. 

However, most of these methods are limited to supermicron particles, and a novel method that can 

measure the viscosity of individual submicron atmospheric aerosol is needed. 

Glass transition temperature (Tg) has been frequently used to determine particle phase 

state.58 Tg represents a non-equilibrium phase transition from a glassy solid state to a semi-solid 

state when the temperature increases. Different models have been improved to estimate the Tg of 

organic compounds, and a global chemistry-climate model can successfully predict Tg and the 

phase state of atmospheric aerosol particles.39,55 The results indicate that particles are mostly liquid 

or semi-solid in the planetary boundary layer. To improve model predictions, a novel analytical 

measurement of Tg has been developed that transfers the liquid aerosol into a glassy state by low 

temperature evaporation of solvent.283 This method can prevent nucleation of crystalline phases in 

the liquid aerosol droplets while avoiding chemical changes at room temperature, however, this is 

a bulk measurement that requires 2 – 5 mg of sample materials. Despite the current understanding 

of the viscosity and phase state of atmospheric and laboratory-generated aerosol being improved 

significantly, a new analytical measurement is needed to further understand submicrometer 

ambient particles at the single-particle level. This will have great implications in predicting the gas 

uptake,19 chemical transformation of organic compounds,57 new particle formation,17 and particles 

lifetime.281  

Atomic force microscopy coupled to photothermal infrared spectroscopy (AFM-PTIR) has 

recently been used to characterize the morphology and chemical compositions of individual 

particles down to 100 nm in diameter.73 The addition of a thermal probe with an end radius of 20 

nm adds a new capability of spatially resolved thermal analysis to the AFM, which enables the 

AFM to probe thermal properties at a sub – 100 nm size scale.101 This study develops a novel Tg 
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measurement for individual aerosol particles using AFM thermal analysis at the nanoscale. The 

melting temperature (Tm) of laboratory-generated standard aerosol particles was directly measured 

and the Tg was determined based on the Boyer-Beaman rule. The results were compared to 

traditional DSC bulk measurements and the Tg model to evaluate the accuracy of this method. 

Particle morphology, PTIR spectra, chemical mapping, and Tm were collected to provide a detailed 

characterization of phase-separated particles and ambient particles for the first time. These results 

highlight the capability of AFM thermal analysis to analyze individual submicron particles down 

to 76 nm under ambient atmospheric conditions and show the power of combined AFM thermal 

analysis with PTIR spectroscopy to further understand physicochemical properties of atmospheric 

aerosol particles.  

5.2 Method 

5.2.1 Aerosol Generation and Impaction 

Standard solutions were prepared using 18.2 MΩ Milli-Q water and the following 

chemicals: sucrose (C12H22O11, Fisher Scientific), poly(ε-caprolactone) (CH3(C6H10O2)nCH3, 

Sigma-Aldrich), ouabain (C29H44O12, Sigma-Aldrich), maltoheptaose (C30H52O26, Sigma-Aldrich), 

raffinose (C18H32O16, Grainger). All chemicals were > 95.0% purity and used without further 

purification. Aerosols were generated from 50 mL solutions using a Collison nebulizer operated 

with HEPA filtered air then passed through the diffusion driers to remove excess water and form 

solid particles. Particles were inertially impacted onto silicon substrate (Ted Pella Inc., product 

number 16013) using a microanalysis particle sampler (MPS, California Measurements Inc.), 

which consists of 3 stages with different aerodynamic diameter (da) 50% size cuts, and the particles 

were impacted on stage 3 (aerodynamic cut points leading to size < 0.4 μm). Submicron particles 

were the focus of this study as particles < 1 μm correspond to the size regime where SOA formation 

reactions occur.  All samples were sealed before characterization.  

5.2.2 Ambient Particles Sampling 

 Atmospheric particles were collected onto both silicon and gold substrates in Ann Arbor, 

MI on February 3rd, 2021 from 11:19- 13:36 EST using an MPS on stage 2 and 3 (aerodynamic 

diameter of 0.4 – 2.8 μm, and < 0.4 μm, respectively). 
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5.2.3 Differential Scanning Calorimetry Bulk Measurement 

The glass transition temperature of bulk particles was measured using a modulated 

differential scanning calorimetry (MDSC, model Q2000, TA Instruments). Aerosol particles were 

atomized from 1M dilute standard solutions for sucrose, ammonium bisulfate, and raffinose. After 

being through two diffusion driers the dried particles were collected in an aluminum MDSC 

sample pan via MPS until enough mass was accumulated for a MDSC measurement (about 3-5 

mg). Maltoheptaose and ouabain were directly measured from pure standards. The samples were 

collected at room temperature and immediately sealed before analysis.  

5.2.4 Single Particle Nano Thermal Analysis Characterization  

AFM with thermal analysis (Bruker, Santa Barbara, CA) was used to analyze single-

component standards in contact mode. A special thermal probe that can be controllably heated was 

used (VITA-HE-NANOTA-200, Bruker). After the AFM image was collected, the probe was 

placed on the particle and the temperature of the probe increased. The deflection change of the 

probe was monitored during the thermal ramp. The thermal probes were calibrated each time 

before analyzing the sample using three polymeric calibration materials with sharp melting points, 

which are polycaprolactone (PCL, Tm=55 °C), high-density polyethylene (HDPE, Tm=116 °C), 

and polyethylene terephthalate (PET, Tm=235 °C) (Figure D.1). The calibration figure is available 

in Supporting Information (SI) Figure S1. The thermal probe was cleaned for each sample by 

raising voltage/temperature of the probe through the software control. The slower heating rate 

1°C/s and the temperature range of 30–250°C was used for all the samples. At minimum, 30 

particles per sample were analyzed to ensure representative and reproducible thermal analysis data. 

5.2.5 Single Particle Chemical Characterization  

This study used AFM with photothermal infrared spectroscopy (AFM-PTIR, nanoIR3, 

Bruker, Santa Barbara, CA) to characterize chemical composition of ambient particles. Particles 

on silicon substrates were imaged in 5 × 5 μm2 and 10 × 10 μm2 regions with 0.7 Hz scan rates 

that operated at a 0.07-0.4 N/m spring constant and 13 ± 4 kHz resonant frequency. Tapping IR 

mode was conducted with a gold-coated microfabricated silicon probe (AU.1000.SWTSG, 

Platypus Technologies). A tunable IR source (880-1950 cm-1 frequency range, 100 kHz repetition 

rate, quantum cascade laser, QCL) was used to collect PTIR spectral maps of SOA particles. 
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Tapping-IR mode was used, and the amplitude of cantilever oscillation was mapped using 128 co-

averages, 400 pixels resolution. The IR ratio map was generated in Analysis Studio (Anasys 

Instruments software V3.15) to show differences in the spatial distribution of chemical 

components based on different vibrational modes. 

5.2.6 Glass Transition Temperature Prediction 

 This study also included an improved parameterization for Tg prediction based on the 

number of carbon, hydrogen, and oxygen for organic standards. The model is based on the recent 

study by Shiraiwa et al.184 using the equation shown below: 

𝑇𝑇𝑔𝑔 = (𝑛𝑛𝐼𝐼0 + ln(𝑛𝑛𝐼𝐼))𝑏𝑏𝐼𝐼 + ln(𝑛𝑛𝐻𝐻) 𝑏𝑏𝐻𝐻 + ln(𝑛𝑛𝐼𝐼) ln(𝑛𝑛𝐻𝐻) 𝑏𝑏𝐼𝐼𝐻𝐻 + ln(𝑛𝑛𝑂𝑂) 𝑏𝑏𝑂𝑂

+ ln(𝑛𝑛𝐼𝐼) ln(𝑛𝑛𝑂𝑂) 𝑏𝑏𝐼𝐼𝑂𝑂 

Eq. 5.1 

 

where 𝑛𝑛𝐼𝐼0 = 12.13 (± 2.66), 𝑏𝑏𝐼𝐼 = 10.95 (± 13.60), 𝑏𝑏𝐻𝐻 =-41.82 (± 14.78), and 𝑏𝑏𝑂𝑂 = 118.96 (± 9.72), 

which represent the contribution of each atom to Tg, 𝑏𝑏𝐼𝐼𝐻𝐻 = 21.61(± 5.30) and 𝑏𝑏𝐼𝐼𝑂𝑂 = -24.38 (± 4.21), 

which are coefficients that contribute from carbon-hydrogen and carbon-oxygen bonds, 

respectively.  

 We also calculated Tg from direct Tm measurements by using the Boyer-Beaman rule that 

relates Tg to Tm for the sample substance.  

𝑇𝑇𝑔𝑔 = 𝑔𝑔 × 𝑇𝑇𝑚𝑚 Eq. 5.2 

 

where the glass transition temperature Tg is proportional to the melting point temperature Tm and 

the g = 0.7009 (± 0.004).  

5.3 Results and Discussion  

A schematic graph in Figure 5.1a is used to illustrate the AFM thermal analysis process of 

individual submicron sucrose particles. When the temperature increases, the thermal expansion of 

the particle causes the deflection of the probe to continuously increase until the particle starts to 

melt which leads to a decrease in probe deflection (Figure 5.1a). The 3D AFM images of individual 

sucrose particles were collected before and after the AFM thermal analysis (Figure 5.1b). After the 

measurement, the hole generated by the heating probe was observed and the value for Tm was 

obtained (92 ℃). Additionally, PTIR spectra of sucrose particles were collected to provide 

chemical composition characterization (Figure 5.1c).  IR vibrational modes observed include ν(C-
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C) at 929 cm-1, ν(C-O) at 997 cm-1, 1055 cm-1 and 1111 cm-1, and σ(CH2) at 1437 cm-1.73,78,286 

AFM thermal analysis combined with PTIR spectroscopy technique provides a detailed physical 

and chemical characterization of individual submicron particles. 

To further evaluate AFM thermal analysis, aerosol particles from single-component 

solutions were generated and analyzed by multiple techniques for comparison. Particles with 

volume equivalent diameter (Dve, diameter of a sphere with volume equivalent to the impacted 

particle) ~ 76 – 611 nm were analyzed (Figure 5.2a), which are representative of the size range of 

atmospheric particles.280 The average melting temperatures of laboratory-generated particles 

Figure 5.1 a). Schematic graph of AFM heating probe measuring individual sucrose particle 
melting temperature process; b). AFM 3D height image of representative submicron sucrose 
particle, the red circle represents the location where heating probe melted the particle; c). averaged 
PTIR spectrum of submicron individual sucrose particles and the sucrose molecule was made in 
chemdraw. 
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(sucrose, ouabain, raffinose, and maltoheptaose) are shown in Figure 5.2b, which suggests that 

sucrose particles have the lowest melting temperature while maltoheptaose particles have the 

highest melting temperature, this result is consistent with previous studies.58,60,287 The similar 

melting temperatures of ouabain and raffinose particles were observed (142 and 149 ℃, 

respectively), which can be correlated to both compounds having a similar molecular weight 

(ouabain: 584 g/mol and raffinose: 594.5 g/mol). A previous study has related molecular weight to 

glass transition temperature (Tg) and viscosity according to the number of different C, H, and O 

atoms and C-H and C-O bonds in a molecular formula or the molecular weight (M).184 Individual 

temperature ramps for single particles are shown in Figure D.2. 

To compare AFM thermal analysis results to more traditional Tg techniques, DSC was used 

to collect melting temperature for those standards as well. The Tg of ouabain and raffinose particles 

Figure 5.2. a). AFM height images of submicron sucrose, ouabain, raffinose, and maltoheptaose 
particles; b). Average Tm of 20 induvial particles from AFM thermal analysis measurement; c) 
Tg of sucrose, ouabain, raffinose, and maltoheptaose measured by AFM thermal analysis, DSC, 
and model calculation. The maltoheptaose from pure standard was directly measured. 
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measured by AFM thermal analysis is consistent with DSC measurement. The higher Tg of sucrose 

particles measured by DSC was observed, which may be due to the different morphologies 

presented in different methods (crystal vs. sphere).288 Additionally, the minimum mass of sample 

for DSC measurement is 3 mg, the particles that were accumulated in the DSC pan could cause 

the water molecule to be trapped before the sucrose recrystallized, which can modify the sample 

composition and subsequently affect the Tg result.289 For maltoheptaose, the pure standard was 

used directly for DSC measurement to ensure the sample has enough mass without further dilution, 

which can lead to the slight difference in Tg results from AFM thermal analysis that measured 

individual submicron particles generated from solution. The agreement of different measurements 

and the Tg model provide robust evidence for the ability of AFM thermal analysis to study Tg of 

individual submicron particles.  

In the atmosphere, particles are frequently not homogeneous and have more complex 

morphologies (i.e., core-shell). In order to examine capabilities for multi-component particles with 

core-shell morphology, particles with an ammonium sulfate core and polyethylene glycol (PEG) 

shell were analyzed. The AFM height image showed the individual particles with Dve 80 – 300 nm 

(Figure 5.3a). To confirm the chemical compositions are different for the particle core and shell, 

the PTIR spectra were collected in the middle and the edge of the particle to represent the particle 

core and shell shown in Figure D.3. The peak at 1400 cm-1 was only observed in the particle core, 

Figure 5.3 a). AFM height images of PEG/AS phase-separated particles; b). Melting temperature 
ramps of particle core and shell; c) IR spectral map at 930 cm-1; d) IR spectral map at 1400 cm-1; 
e) the ratio of 930/1400 cm-1 
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which is assigned to δ(NH4+) from ammonium sulfate.73 The temperature ramps were collected 

from the particle core and shell to show different melting points based on the two distinct 

compositions (Figure 5.3b). The thermal probe couldn’t penetrate the organic shell in the middle 

of the particle to reach the core and the Tm of PEG at 70℃ was observed. At the edge of the particle, 

the thermal probe melted the shell and reached the silicon substrate. The single wavenumber PTIR 

mappings were collected for the mode at 930 cm-1 from PEG and the mode at 1400 cm-1 from 

ammonium sulfate, which show different spatial distributions (Figure 5.3c-e). The ratio map 

(Figure 5.3e) most clearly highlights differences in spatial distribution, which illustrates that the 

small ammonium sulfate core was coated by a thick PEG shell. 

To provide more detailed AFM Nano TA analysis within an individual particle, a line scan 

was performed and temperature ramps every 0.3 µm across a phase-separated particle were 

collected (Figure 4a). The holes caused by the AFM heating probe after the line scan are shown 

in Figure 4c. The Tm at each point in the line scan demonstrates that the thermal probe can measure 

Tg of minimum PEG on the edge of the particle with 146 nm thickness (Figure 4c). These results 

Figure 5.4 a). AFM height images of PEG/AS particles with line scan, each markers represent 
the location of Tm ramp were collected, the different colors represent the particle core (blue), shell 
(green), and substrate (purple); b). Individual Tm ramps of line scan correspond to a); c) AFM 3D 
image after thermal analysis; d) Tm as a function of particle distance. 
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provide evidence that AFM thermal analysis can measure Tg within individual particles related to 

particle morphology, which can be used to reveal aerosol viscosity and study the mixing state. 

To further explore the AFM thermal analysis technique, ambient particles were collected 

and analyzed for the first time. Core-shell morphology of ambient particles was observed (Figure 

5.5a), both temperature ramps and PTIR spectra were collected to determine Tg of particles and 

understand their chemical compositions (Figure 5.5b and c). Two distinct Tm for particle core and 

shell were observed for ambient particles where the shell has a relatively lower Tm at 80 ℃ and 

the Tm for particle core is 120 ℃ (Figure 5.5c). This result illustrates that the organic shell is more 

likely to be in the liquid or semi-solid phase and the core is more likely to be in a solid phase. The 

modes at 1104 and 1412 cm-1 in the particle core represent νs (SO42-) and δ(NH4+),73 respectively, 

indicative of ammonium sulfate. Other modes at 1336, and 1732 cm-1 identified as δ(C-H) and 

ν(C=O), respectively,78 which suggest that the particles also contained organics in the shell. The 

combined Tg measurement and chemical information on the submicron particles show that the 

detailed physicochemical characterization can be obtained from individual ambient particles and 

Figure 5.5 a). AFM 3D image of ambient particles; b). AFM deflection image, c). Averaged Tm 
ramp for particle core (blue) and shell (green); d). Averaged AFM-PTIR spectra of particle core 
(blue) and shell (green). 
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that this method can be applied to study the phase state of atmospheric particles containing 

complex mixtures of chemical species. 

5.4 Conclusion 

This study has demonstrated the new application of AFM thermal analysis on nanoscale 

particles and was applied to study single-component model systems, phase-separated particles, and 

ambient aerosol particles for the first time. The particle size, morphology, phase, chemical 

composition, and melting temperature can all be obtained. The novel application of this analytical 

method to atmospheric particles enabled the determination of Tg for the submicron individual 

particles, as well as identified the chemical compositions of phase-separated components within a 

particle size range that has not been studied previously. The high spatial scale analysis of Tm and 

chemical mapping within particles demonstrate the ability of this analytical technique to determine 

the intraparticle Tm difference caused by the distribution of chemical species, which impact the 

aerosol physicochemical properties in the atmosphere. Future work will be focused on 

understanding Tm of individual submicron particles changes as a function of RH and temperature. 

Different types of SOA particles with varying O: C ratios can be probed to further understand the 

particle viscosity and phase state, which will provide key insights regarding physicochemical 

properties of atmospheric particles in a critical size range for climate and human health. 
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Chapter 6. Conclusion and Future Directions 

 

6.1 Conclusion 

 Atmospheric aerosol has significant impacts on climate and human health, therefore 

understanding the chemical and physical properties of individual submicron particles is critical to 

reducing uncertainties in climate change and improving air quality. Although recent progress has 

been made, due to the complex nature of atmospheric aerosol, novel techniques and measurements 

are needed to provide more detailed physicochemical characterization. This dissertation focuses 

on the development and use of state-of-the-art instruments to characterize the physicochemical 

properties (i.e., acidity, morphology, size, viscosity) of laboratory-generated and ambient particles. 

The novel methods developed in this dissertation address some challenges of measuring the 

physicochemical properties of atmospheric aerosols. The application of these methods to study 

atmospheric aerosol provides insight into the complex chemical composition and reaction 

mechanisms of multiphase processes in the atmosphere. The findings from this dissertation 

improve the current understanding of aerosol impacts on climate and health, which further 

motivates future studies.  

 Chapter 2 developed a novel acidity measurement method for individual submicron aerosol 

particles using a pH-sensitive polymer, poly(ε-caprolactone). Acidic aerosol particles with pH 0 

were deposited on a polymer thin film (21-25 nm), which was then incubated in a sealed humidity 

chamber at 50% RH for up to 15 days. Acidic aerosol particles were rinsed from the polymer film, 

so that the degradation thickness could be characterized by AFM and Raman microspectroscopy. 

The results suggest that the polymer degradation thickness is a function of time; the longer the 

particles stayed on the polymer, the larger the polymer degradation. As particle size decreased, 

polymer degradation thickness increased, indicating an increase in aerosol acidity at smaller 

particle diameters. This method presents the potential of studying submicron individual aerosol 

particles without constraints on complex chemical compositions and relative humidity. 
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 Chapter 3 studied the morphology and viscosity of size-selected submicron SOA particles 

formed from oxidation of four different VOC precursors (α-pinene, β-caryophyllene, isoprene, and 

toluene) before and after exposure to IEPOX for two hours. The physicochemical properties and 

chemical composition of individual particles were characterized using AFM-PTIR, Raman 

microspectroscopy, and SEM-EDX. The changes in viscosity and morphology were observed after 

IEPOX reactive uptake, and the results demonstrate that the modification of SOA physicochemical 

properties is highly dependent on their VOC precursors. Specifically, the viscosities of α-pinene 

and β-caryophyllene SOA decreased significantly after IEPOX uptake, while the viscosities of 

isoprene and toluene SOA did not appreciably change. Additionally, the phase separation and more 

particles with complex structure were observed at larger particle size after IEPOX uptake, 

suggesting that particle size could play an important role in morphology and heterogeneous 

reactions. The findings from this study increase our understanding of the impacts of multiphase 

chemical reactions and can improve predictions of SOA formation.  

 Chapter 4 investigated morphology, phase state, and chemical composition of individual 

organic-inorganic particles with different initial acidities (pH = 1, 3, and 5) after IEPOX uptake 

using AFM-PTIR and Raman microspectroscopy. Enhanced IEPOX reactive uptake to the most 

acidic seed particles (pH = 1) resulted in 23% more formation of organosulfates compared to less 

acidic seed particles (pH 3 and 5). Distinct phase separations (i.e., core-shell morphologies) 

primarily occurred for initial pH values < 3. Increased aerosol acidity (lower pH) also led to more 

viscous organic components of SOA particles and more irregularly shaped morphologies as the 

organic phase transitioned to semi-solid or solid. Conversion of inorganic sulfate to organosulfates 

corresponded with the transition to the higher viscosity of the organic phase and more complex 

structures. This study highlights that aerosol acidity controls key multiphase chemical reactions 

and the subsequent modification of aerosol physicochemical properties, such as viscosity and 

morphology, which can be used to improve predictions of SOA formation, as well as subsequent 

climate and health impacts. 

Chapter 5 applied a new microspectroscopic technique, AFM thermal analysis, to measure 

the glass transition temperature of individual submicron atmospheric aerosol particles for the first 

time. An AFM heating tip sits on the top of the particle and the melting temperature will be 

detected when the particle melts. This method was validated by analyzing different standard 

laboratory-generated aerosol particles and comparing the result to DSC measurement and model 
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predictions. Ambient particles were collected in Ann Arbor that are complex mixtures of organic 

and inorganic materials, and the melting temperature was measured for the core and shell of phase-

separated particles. This unique measurement provides new fundamental molecular insight into 

the viscosity of atmospheric aerosol that has important implications for the climate and health. 

6.2 Future Directions  

 The research described in this dissertation provides insight into detailed physicochemical 

characterizations of atmospherically relevant aerosol particles using advanced microspectroscopic 

methods. The novel methods developed in the research chapters address the challenge of 

measuring the acidity and viscosity of individual submicron aerosol particles. However, further 

work can be performed to improve those methods and apply them to understand more about the 

physicochemical properties of ambient aerosol particles and optimize current model systems.  

 In Chapter 2, a novel pH measurement was developed to understand the acidity of 

individual submicron aerosol particles using a thin degradable polymer. This study demonstrates 

its potential for determining whether individual submicron particles are acidic without some of the 

limitations of bulk pH measurements. However, different atmospherically relevant pH values 

between 0 and 6 need to be investigated to better understand the acidity of atmospheric aerosol 

particles for future sensor development. Additionally, due to the complex nature of aerosol 

particles under atmospheric conditions, other factors (i.e., RH and temperature) that can influence 

aerosol acidity need to be considered in future studies. The effect of RH and a systematic range of 

particle size (100 – 800 nm) need to be examined to understand why the smaller particles are more 

acidic. In this study, the thinnest polymer with 25 nm thickness was used that was completely 

degraded by pH 0 acidic particles for up to 15 days. To establish a pH measurement system using 

polymer degradation rate and thickness, a more sensitive and precise polymer will need to be tested 

to measure ambient particles in regions with different VOC precursors.  

 In Chapter 3, the impacts of multiphase chemical reactions on physicochemical properties 

of different types of SOA particles were studied using multiple microscopic and spectroscopic 

techniques. Although different oxidized organic coatings were investigated, many different factors 

can affect heterogeneous reactions, such as different acidity of ammonium bisulfate seed particles, 

RH conditions, and types of seed particles (e.g., sodium sulfate). This study shows that the 

significant decrease in viscosities of α-pinene and β-caryophyllene SOA particle after IEPOX 
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uptake is attributed to the formation of lower molecular weight, but future work needs to identify 

specific species and functional groups to further characterize this change. The additional 

mechanism study using online mass spectrometry will help to explain the chemical composition 

change in those multiphase reactions. The SOA particles with 150, 200, 250, and 300 nm diameters 

were examined, and the results suggest that the changes in morphology and viscosity of different 

SOA particles are dependent on particle sizes, however, a wider range of particles size (i.e., 100 – 

800 nm) needs to be studied in the future. A more quantitative analysis of particle viscosity is 

needed for future studies to further assess the extent to which viscosity impacts multiphase 

reactions and aerosol climate properties.  

 In Chapter 4, the impacts of inorganic seed particle acidity (pH 1, 3, and 5) on reactive 

uptake of gaseous species and on aerosol physicochemical properties were studied. The 

ammonium bisulfate seed particles and different pH values were chosen are based on the 

abundance of ammonium bisulfate particles in the atmosphere and atmospherically-relevant pH 

values; however, the other pH values (i.e., pH 0, 2, 4, and 6) and types of inorganic seed particles 

(i.e., sodium sulfate) need to be considered in the future studies. Recently, a new technique, O-

PTIR, was applied to study atmospheric aerosol particles and it can collect both Raman and PTIR 

spectra at the same location on individual particles, and PTIR mapping can be used to visualize 

the spatial distribution of chemical species78. This novel technique can be used for future studies 

to provide more detailed chemical characterization for complex SOA particles. Though this study 

demonstrates that acidic seed particles lead to a significant increase in organosulfate formation, to 

further understand how acidity impacts the mechanism of organosulfate and SOA formation, future 

studies are needed that probe other variables (e.g., RH and size).  

 In Chapter 5, AFM-PTIR with thermal analysis were applied for the first time on 

atmospheric aerosol particles to directly measure the melting temperature of submicron individual 

particles. This study shows that this novel method can improve the current understanding of 

individual particle viscosity under atmospheric conditions. Further work is needed to 

systematically study the viscosity as a function of RH and particle size at a single-particle level, 

and the particles with complex chemical compositions and morphologies (e.g., core-shell SOA 

particles) can be investigated. Furthermore, thermal mapping combined with chemical mapping of 

individual particles can be collected in future studies to further understand the functional group 

distribution that leads to the viscosity change. The characterization of ambient particles is needed 
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to examine aerosol particles from different sources and different regions, which can provide insight 

for atmospheric models.  

 This dissertation sought to address the current challenge of measuring aerosol physical 

properties, as well as to improve our understanding of the physicochemical properties of 

submicron individual SOA particles. Although work remains to fully characterize the 

physicochemical properties of atmospheric aerosols, many advancements have been made 

throughout this dissertation. The novel acidity and glass transition temperature measurements 

provide insight into physicochemical properties of submicron aerosol particles at single-particle 

level. The detailed physical and chemical characterization of SOA help to further understand the 

key atmospheric reactions and physical processes. The future directions listed above will improve 

the accuracy of the current model system to predict the aerosol formation and climate impacts on 

a global scale. 
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Appendix A. Aerosol Acidity Sensing via Polymer Degradation Supplemental Information1 

 

A.1 Raman spectra of pH 0 acidic particles under different RH conditions 

To ensure the pH 0 particles were aqueous while interacting with the polymer, Raman 

microspectroscopy was used to investigate particle composition under different RH conditions 

varying from 10% - 90%. pH 0 acidic particles were generated under wet condition with 90% RH 

and impacted on silicon substrate. The sample was placed in a sealed chamber to maintain the high 

relative humidity when the Raman spectra were collected. The intensity of the O-H stretching 

region, ν(O-H) at 3435 cm-1, correlated with increasing the RH.  

 

Figure A.1 Raman spectra of sulfuric acid particles with pH 0 under different RH. Each color 
corresponds to a Raman spectrum of sulfuric acid particles under different RH condition. 

  

 
1 Appendix A details supplemental information corresponding to Chapter 2 
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A.2 SEM images of PCL after rinsing off neutral particles and acidic particle 

SEM analysis of PCL was performed by a FEI Helios 650 Nanolab-Dualbeam electron microscope 

equipped with using an Everhart-Thornley secondary electron detector that operated at an 

accelerating voltage of 10.0 kV and a current of 0.80 nA under vacuum conditions (10-3 to 10-5 

Pa). SEM images of PCL were obtained orthogonal to the beam and at a 45-degree angle (tilted).  

 

Figure A.2 SEM images of PCL a) after ammonium sulfate pH 6 particles that had been impacted 
on PCL were rinsed off after 15 days; b) after sulfuric acid pH 0 particles that had been impacted 
on the PCL were rinsed off after 15 days. Top images are orthogonal to the beam, while the bottom 
images are at 45 degree tilt. 
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A.3 AFM height image showing the degradation of PCL thin film  

After acidic particles were rinsed off after impaction on the PCL thin film for 15 days, distinct, 

clear holes were observed, which demonstrate the degradation of PCL caused by acidic particles. 

 

Figure A.3 a). 14 µm × 14 µm AFM height image of non-degraded PCL; b) 9 µm × 9 µm AFM 
height image of PCL film following exposure to ammonium bisulfate pH = 6 particles for 15 days; 
c) 25 µm × 25 µm AFM height image of PCL film following impaction and rinse off (15 days) of 
acidic pH = 0 particles. The bright spots are AFM tip artifacts 
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A.4 Root mean squared (RMS) roughness equation 

The root mean squared (RMS) roughness of the initial PCL was 2 nm. This was calculated from 

10 µm2 AFM height images using Gwyddion according to the definition of RMS roughness: 

𝑅𝑅𝑞𝑞 = �
1
𝑛𝑛
�𝑦𝑦𝑂𝑂2
𝑂𝑂

𝑂𝑂=1

 

Eq. A.1 

Where n is spaced points along the trace, and yi is the vertical distance from the mean line to the 

ith data point.290 This was independently confirmed with the Nanoscope software. 

The spreading ratios of particles on these surfaces are similar to those reported for particles 

impacted on silicon wafers,19,73,168 suggesting that this low level of surface roughness does not 

affect particle deposition or surface wetting.   
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A.4 Raman spectra of PCL degradation process 

Raman spectra were collected at three points during degradation process: non-degraded PCL film; 

PCL film before wash particle off; and PCL film after wash particle off. A clear sulfate peak at 

978 cm-1 was observed before sulfuric acid particle wash off, confirming the particle chemical 

composition. The mode is at the same frequencies as a mode intrinsic to the silicon, making the 

intensity in this region much greater that of other peaks in Figure 3 of the manuscript, though the 

sulfate peak is clearly visible on top. 

 

Figure A.4 Raman spectra of non-degraded PCL film background (black), PCL film with pH 0 
acidic particles for 15 days (red), PCL film after all particles were rinsed off (blue). 
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A.5 Raman spectra of non-degraded PCL 

To charactrize and confirm the chemical composition of the PCL film, Raman spectra of a non-

degraded PCL film were collected at different locations on the PCL film. The spectra are consistent 

with the main peaks observed corresponding to modes in the C-H stretching region (symmetric 

elongation of methylene groups δ(CH2-) at 2865 cm-1 and 2914 cm-1, respectively), the δ(CH2) 

mode at 1440 cm-1, and the carbonyl group ν(C=O) at 1723 cm-1, and multiple modes in the C-H 

stretching region (ν(C-H)).73,80,171 

 

Figure A.5 Raman spectra and optical image of 400 nm thick non-degraded PCL film; the colors 
represent individual Raman spectra collected at different points spatially on a single PCL film. 
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A.6 AFM-IR spectra of non-degraded PCL 

AFM image and PTIR spectra of a non-degraded PCL film were collected, and the result is 

consistent with the Raman spectra. The main IR peaks are: the ν(C-H) stretching region at 2852 – 

2956 cm-1, ν(C=O) mode at 1728 cm-1, and δ(C-H) of the methylene groups at 1364 cm-1.73 

 

Figure A.6 AFM-IR spectra of 400 nm thick initial non-degraded PCL film; colors indicate the 
location at which each spectrum was acquired.  The four spectra from different locations on the 
PCL film are consistent. 
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A.7 Numbers of individual particles characterized in Figure 2.4 and Figure 2.5  

 

Table A.1 Numbers of individual particles were examined 

 Number of individual particles were characterized 

Figure 4 3 days 7 days 15 days 

46 41 40 

Figure 5 320-560 nm 180-320 nm <180 nm 

27 34 29 
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A.8 pH indicator paper measurement of acidic aerosol particles with varying sizes 

The pH values of aerosol particles generated from the pH 0 sulfuric acid bulk solution were 

confirmed using colorimetric pH measurements.147 The particles were collected on stages 6, 7 and 

8 with size ranges of 320-560 nm, 180-320 nm, and < 180 nm, respectively, of the mini-MOUDI 

on pH indicator paper. The image of the pH indicator strip for each sample was taken immediately 

and analyzed with a custom MATLAB script based on the pH color scale.147    

 

Figure A.7 Sulfuric acid (pH = 0) aerosol particles were generated and impacted on pH indicator 
paper by mini-MOUDI on stage 6, 7, and 8 with aerodynamic diameter size cuts of 320-560 nm, 
180-320 nm and < 180 nm, respectively. 
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Appendix B. Morphology and Viscosity Change after Reactive Uptake Isoprene Epoxydiols 

in Submicrometer Phase Separated Particles with Secondary Organic Aerosol Formed 

from Different Volatile Organic Compounds Supplemental Information2 

 

B.1 Size Distribution of Four Types of SOA 

The size distribution of four types of SOA were collected using a scanning electrical mobility 

spectrometer (SEMS, BMI Inc., Model 2100) to ensure the inorganic sulfate particles were coated 

uniformly, and to monitor the particle growth after IEPOX uptake. Based on the size distribution 

of the four SOA types after IEPOX uptake, 150, 200, and 250 nm inorganic-SOA mixed particles 

were investigated in this study. 

 
2 Appendix B details supplemental information corresponding to Chapter 3 

Figure B.1 Size distribution plots of a) toluene SOA; b) isoprene SOA; c) α-pinene SOA; d) β-
caryophyllene SOA. Blue lines represent the size distribution of SOA-coated inorganic sulfate 
particles, and the pink lines represent the size distribution of SOA-coated inorganic sulfate particles 
after IEPOX uptake. 
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B.2 Experimental Details 

The inorganic seed particles were generated by atomizing (NH4)2HSO4 and passed through a 

diffusion drier that lowers the relative humidity (RH), but above efflorescence RH (30%).291 

Particles with an electrical mobility diameter of 100 nm were selected by differential mobility 

analyzer (DMA) and entered the potential aerosol mass (PAM) reactor to coat inorganic seed 

particles with SOA coatings generated from the oxidation of either toluene, isoprene, α-pinene, or 

β-caryophyllene. The charcoal denuders and an O3 scrubber were used to remove excess VOCs 

and O3 before entering the UNC indoor chamber facility. A scanning mobility particle sizer 

(SMPS) was used to ensure particles were coated with SOA before entering the indoor chamber. 

After injection of SOA-coated inorganic seed particles, the chamber was left static to ensure the 

particles were uniformly mixed. Then gaseous trans--IEPOX was injected into the chamber. 

Particles with 150 nm diameter were collected before IEPOX uptake, and 150, 200 and 250 nm 

particles were collected after IEPOX uptake using a microanalysis particle sampler (MPS). 

 

 

Figure B.2 Experimental design showing instrumental setup and SOA formation. 
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B.3 AFM Phase Images of Four Types of SOA Particles Before and After IEPOX Uptake 

The larger size of AFM phase images shows the morphology and phase of 150 nm α-pinene SOA-

, β-caryophyllene SOA-, isoprene SOA-, and toluene SOA-coated sulfate particles before and after 

IEPOX reactive uptake.  

 

Figure B.3 AFM phase images of 150 nm SOA-coated sulfate particles before and after IEPOX 
uptake:  a) α-pinene SOA; b) β-caryophyllene SOA; c) isoprene SOA; d) toluene SOA. 
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B.4 Morphology and Spreading Ratio of β-caryophyllene SOA Particles 

After IEPOX reactive uptake, the detailed morphology and viscosity changes for β-caryophyllene 

SOA-coated sulfate particles with different sizes were investigated. A clear core-shell morphology 

was observed for larger particles (200 nm and 250 nm) (Figure B.3). This result is consistent with 

a previous study that showed phase separation of aerosol particles is strong size-dependent.254 The 

spreading ratio of all sizes of  β-caryophyllene SOA-coated sulfate particles ranges from 4.6 ± 0.3 

to 5.4 ± 0.2. With an increase of β-caryophyllene SOA-coated sulfate particle size, the spreading 

ratios decreased significantly, suggesting larger particles were more viscous.  

 

Figure B.4 Morphology and spreading ratio of size-selected β-caryophyllene SOA-coated sulfate 
particles after IEPOX uptake. a) Representative 3D AFM images; b) AFM amplitude images; c) 
AFM phase images; d) Bar charts show the average spreading ratio of individual particles for β-
caryophyllene SOA with 150 nm (49 particles), 200 nm (195 particles), and 250 nm (116 particles) 
diameters; single asterisks denote spreading ratios of larger particles that are statistically different 
than 150 nm particles (p < 0.05) and error bars represent  2σ from gaussian fit. 
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B.5 Morphology and Spreading Ratio of Toluene SOA Particles 

For toluene SOA-coated sulfate particles, complex morphologies were observed after IEPOX 

uptake and the core-shell morphologies were observed for larger particles (200 nm and 250 nm) 

(Figure B.3). The irregular shape suggests the IEPOX diffused through the organic shell and 

reacted with inorganic core. The average spreading ratio for toluene SOA-coated sulfate particles 

with different sizes ranges from 4.0 ± 0.3 to 5.2 ± 1.4. Following the same trend as other SOA 

particle types, the toluene SOA with 250 nm diameter is more viscous than smaller sizes (i.e., 150 

nm).  

 

Figure B.5 Morphology and spreading ratio of size-selected toluene SOA-coated sulfate particles 
after IEPOX uptake. a) Representative 3D AFM images; b) AFM amplitude images; c) AFM phase 
images; d) Bar charts show the average spreading ratio of individual particles for toluene SOA 
with 150 nm (248 particles), 200 nm (136 particles), and 250 nm (262 particles) diameters; single 
asterisks denote spreading ratios of larger particles that are statistically different than 150 nm 
particles (p < 0.05) and error bars represent 2σ from gaussian fit. 
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B.6 Raman Spectra of β-caryophyllene SOA 

For β-caryophyllene SOA, the Raman spectra of particle core and shell were collected for both 

before and after IEPOX uptake. The peak at 975 cm-1 is be assigned to sulfate νs(SO42-) and it only 

was observed in particle core. More organic peaks at 2889 cm-1, 2936 cm-1, and 2976 cm-1 were 

observed after IEPOX uptake, which are corresponding to symmetric stretches of C-H in methyl 

groups, asymmetric stretches of C-H in methylene group, and asymmetric stretches of C-H in 

methyl groups, respectively.217 

 

Figure B.6 Raman spectra of representative individual β-caryophyllene SOA particle core and 
shell before and after IEPOX uptake, spectra were offset vertically for clarity. 
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B.7 Raman Spectra of Isoprene SOA 

Raman spectra were collected for isoprene SOA before and after IEPOX uptake. The νs(SO42-) at 

975 cm-1 was observed before IEPOX, while after IEPOX uptake the peaks at 1012 cm-1 and 1052 

cm-1 are assigned to IEPOX-derived organosulfates and bisulfate,211 respectively. A peak at 1446 

cm-1 is assigned to the asymmetric methylene group δ(C-H). Peaks at 2845 cm-1 and 2941 cm-1 are 

assigned to the symmetric and asymmetric stretches of C-H in methylene groups, respectively, 

whereas peaks at 2879 cm-1 and 2981 cm-1 are assigned to the symmetric and asymmetric stretches 

of C-H in methyl groups, respectively.  

 

Figure B.7 Raman spectra of representative individual isoprene SOA-coated sulfate particles 
before and after IEPOX uptake. 
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B.8 Raman Spectra of Toluene SOA 

Raman spectra were collected for toluene SOA before and after IEPOX uptake to understand the 

chemical composition modification. Raman spectra show the νs(SO42-) at 975 cm-1 before and after 

IEPOX uptake, and the strong band at 1039 cm-1 suggests bisulfate.292 A strong peak at 1064 cm-

1 was observed, and can be assigned to IEPOX-derived organosulfates.168 Before IEPOX uptake, 

the peaks observed at 1175 cm-1, 1343 cm-1, 1457 cm-1 are corresponding to C-H group and the 

peaks at 1583 cm-1 and 1602 cm-1 are corresponding to carbon-carbon double bond (C=C).293 After 

IEPOX uptake, the symmetric stretches of C-H in methyl group and asymmetric stretches in 

methylene group were observed at 2888 cm-1 and 2948 cm-1, respectively.211 

 

  

Figure B.8 Raman spectra of representative individual toluene SOA-coated sulfate particles before 
and after IEPOX uptake. 
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B.9 SEM-EDX Characterization 

Scanning electron microscopy coupled to energy dispersive x-ray spectroscopy (SEM-EDX) was 

used to analyze the elemental composition and morphology of the four SOA-coated sulfate particle 

types. The spectra show particle cores contained sulfur and oxygen, indicative of sulfate and 

organosulfate, while the particle shells mainly contained organic compounds, which is similar to 

previous observations.19  

 

Figure B.9 SEM images and EDX spectra of representative individual particles for the 4 different 
SOA-coated sulfate particle types after IEPOX uptake: a) toluene SOA; b) isoprene SOA; c) α-
pinene SOA; and d) β-caryophyllene SOA. Blue color represents the spectrum was collected at 
particle core and red color represents the spectrum was collected at particle shell. 
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Appendix C. Initial pH Governs Secondary Organic Aerosol Viscosity and Morphology 

after Uptake of Isoprene Epoxydiols (IEPOX) Supplemental Information3 

 

C.1 Size Distribution of Seed Particles 

Size distribution of seed particles were measured to understand particle growth after IEPOX 

uptake.  

 

Figure C.1 Size distributions of seed aerosol particles with varying pH values were measured 
using a scanning electrical mobility spectrometer (SEMS, BMI Inc., Model 2100) with a size range 
of 10 – 1000 nm: a) pH 1 with ammonium (NH4+); b) pH 1 without NH4+; c) pH 3 ammonium 
sulfate; and d) pH 5 ammonium sulfate. 

  

 
3 Appendix C details supplemental information corresponding to Chapter 4 
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C.2 Initial Sulfate Concentration of a Seed Aerosol Only Experiment 

A seed aerosol (i.e., ammonium bisulfate) only experiment was conducted, and the aerosol samples 

were collected for IC measurements. Comparing to the IEPOX-derived SOA experiments in Figure 

4.6, this plot demonstrates that the IEPOX was converting inorganic sulfate to organosulfates and 

was not due to chamber wall loss.   
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Figure C.2 Initial sulfate concentration of ammonium bisulfate seed only experiment, the data 
has been corrected for wall loss. 
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C.3 Relative Fraction of the HSO4- and SO42- Ions  

The relative fraction of the HSO4- and SO42- ions as a function of solution pH, which suggests 

that HSO4- is dominant in the pH 1 solution while SO42- is dominant in the pH 3 and 5 solutions.  

 

Figure C.3 Relative fraction for HSO4- (red) and SO42- (blue) concentrations as a function of pH, 
using the dissociation constant (Ka = 0.01)294 and assuming equilibrium conditions. 
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C.4 Chemical Composition Characterization  

The SOA particles formed from pH 1 seed particles without ammonium were characterized by 

hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-of-flight mass 

spectrometry (QTOFMS). The concentration of 2-methyltetrols (2-MT) and its OS derivative (2-

methyltetrol sulfate, IEPOX-OS) were measured, which suggests SO42- was incorporate into 

organosulfates. 
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Figure C.4 2MT (pink) and 2MTOS (green) concentrations of IEPOX-derived SOA particles 
formed from pH 1 seed particles without ammonium. The lines represent sigmoid fit. 
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C.5 SEM Images for Morphology Characterization  

SEM images were collected to confirm the morphology of different acidic inorganic particles 

exposed to IEPOX during the first hour. The images show that phase separation occurred under 

acidic conditions (pH=1, with or without NH4+), while the increased pH limited the IEPOX 

reactive uptake (e.g., pH=5 homogeneous particles). 

  

Figure C.5 SEM (FEI Helios 650) images of four types of inorganic sulfate particles after IEPOX 
reactive uptake for an hour, a) pH 1 seed particles without NH4+; b) pH 1 seed particles with NH4+; 
c) pH 3 ammonium bisulfate seed particles; d) pH5 ammonium sulfate seed particles. 
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C.6 Raman and PTIR Vibration Modes Assignments 

Raman and PTIR spectra were collected for pH 1 seed particles with ammonium after reactive 

uptake of IEPOX during the first hour, the specific vibration modes were assigned for chemical 

characterization for representative individual particles.  

Table C. 1 Experimentally determined Raman modes and tentative assignments for pH1 
ammonium bisulfate particle after IEPOX uptake for an hour.168 

 

 

 

 

Assignments Raman (cm-1) PTIR ( cm-1) 

νs(SO42-) 978 - 

νs(HSO4-) 1045 - 

νs(RO-SO3-) 1069 880 

νs(RO-SO3-) - 914 

νs(RO-SO3-) - 1034 

νs(SO42-) - 1076 

νas(SO42-) 1096 1108 

νs(ROSO3-) - 1206 

δ(COO-) 1413 - 

δ(CH2 & CH3) 1461 - 

δ(CH2) 1616 - 

νs(CH3) 2890 - 

νas (CH3) 2944 - 

νs(NH4+) 3124 1448 

ν(OH) 3431 - 
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Appendix D. Direct Measurement of Glass Transition Temperature for Individual 

Submicron Atmospheric Aerosol Supplemental Information4 

D.1 AFM thermal analysis was calibrate using HDPE, PCL, and PET 

 

Figure D.1 Heating voltage of calibration standards were collected and converted to corresponding 
temperature. 

 

  

 
4 Appendix D details supplemental information corresponding to Chapter 5 
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D.2 Single temperature ramps were collected for four standards including: sucrose, ouabain, 

raffinose, and maltoheptaose.  

 

Figure D.2 Temperature ramp of individual particles made from sucrose, ouabain, raffinose, and 
maltoheptaose, the black line represents the average of individual temperature ramp. 
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D.3 PTIR spectra of phase-separated particles  
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Figure D.3 PTIR spectra of individual phase separated particle core (blue) and shell (green) 



 100 

References 

1. Seinfeld, J.; Pandis, S. In Atmospheric Chemistry and Physics: From Air Pollution to 
Climate Change, John Wiley& Sons, Inc New York: 2006. 
2. Pöschl, U., Atmospheric aerosols: composition, transformation, climate and health effects. 
Angew Chem Int Ed Engl 2005, 44 (46), 7520-40. 
3. Prather, K. A.;  Hatch, C. D.; Grassian, V. H., Analysis of atmospheric aerosols. Annu Rev 
Anal Chem (Palo Alto Calif) 2008, 1, 485-514. 
4. Lambe, A. T.;  Onasch, T. B.;  Massoli, P.;  Croasdale, D. R.;  Wright, J. P.;  Ahern, A. T.;  
Williams, L. R.;  Worsnop, D. R.;  Brune, W. H.; Davidovits, P., Laboratory studies of the chemical 
composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) 
and oxidized primary organic aerosol (OPOA). Atmos. Chem. Phys. 2011, 11 (17), 8913-8928. 
5. Stocker, T. F. Q., D. Climate change 2013: The physical science basis. Working group I 
contribution to the fifth assessment report of the intergovernmental panel on climate change.; 
Cambridge, UK and New York, NY, USA, 2013. 
6. Evaluation-IHME, I. f. H. M. a. Global Burden of Disease Compare Data Visualization. . 
http://www.healthdata.org/data-visualization/gbd-compare. 
7. Pope, C. A.; Dockery, D. W., Health Effects of Fine Particulate Air Pollution: Lines that 
Connect. Journal of the Air & Waste Management Association 2006, 56 (6), 709-742. 
8. Ren-Jian, Z.;  Kin-Fai, H.; Zhen-Xing, S., The Role of Aerosol in Climate Change, the 
Environment, and Human Health. Atmospheric and Oceanic Science Letters 2012, 5 (2), 156-161. 
9. Shiraiwa, M.;  Ueda, K.;  Pozzer, A.;  Lammel, G.;  Kampf, C. J.;  Fushimi, A.;  Enami, 
S.;  Arangio, A. M.;  Fröhlich-Nowoisky, J.;  Fujitani, Y.;  Furuyama, A.;  Lakey, P. S. J.;  
Lelieveld, J.;  Lucas, K.;  Morino, Y.;  Pöschl, U.;  Takahama, S.;  Takami, A.;  Tong, H.;  Weber, 
B.;  Yoshino, A.; Sato, K., Aerosol Health Effects from Molecular to Global Scales. Environmental 
Science & Technology 2017, 51 (23), 13545-13567. 
10. Arashiro, M.;  Lin, Y. H.;  Zhang, Z.;  Sexton, K. G.;  Gold, A.;  Jaspers, I.;  Fry, R. C.; 
Surratt, J. D., Effect of secondary organic aerosol from isoprene-derived hydroxyhydroperoxides 
on the expression of oxidative stress response genes in human bronchial epithelial cells. Environ 
Sci Process Impacts 2018, 20 (2), 332-339. 
11. Lakey, P. S. J.;  Berkemeier, T.;  Tong, H.;  Arangio, A. M.;  Lucas, K.;  Pöschl, U.; 
Shiraiwa, M., Chemical exposure-response relationship between air pollutants and reactive oxygen 
species in the human respiratory tract. Scientific Reports 2016, 6 (1), 32916. 
12. Shiraiwa, M.;  Ueda, K.;  Pozzer, A.;  Lammel, G.;  Kampf, C. J.;  Fushimi, A.;  Enami, 
S.;  Arangio, A. M.;  Fröhlich-Nowoisky, J.;  Fujitani, Y.;  Furuyama, A.;  Lakey, P. S. J.;  
Lelieveld, J.;  Lucas, K.;  Morino, Y.;  Pöschl, U.;  Takahama, S.;  Takami, A.;  Tong, H.;  Weber, 
B.;  Yoshino, A.; Sato, K., Aerosol Health Effects from Molecular to Global Scales. Environ Sci 
Technol 2017, 51 (23), 13545-13567. 
13. Pope, C. A., 3rd; Dockery, D. W., Health effects of fine particulate air pollution: lines that 
connect. J Air Waste Manag Assoc 2006, 56 (6), 709-42. 
14. Pöschl, U., Atmospheric Aerosols: Composition, Transformation, Climate and Health 
Effects. Angewandte Chemie International Edition 2005, 44 (46), 7520-7540. 

http://www.healthdata.org/data-visualization/gbd-compare


 101 

15. Tomasi, C.; Lupi, A., Primary and Secondary Sources of Atmospheric Aerosol. In 
Atmospheric Aerosols, 2017; pp 1-86. 
16. Andreae, M. O.; Rosenfeld, D., Aerosol–cloud–precipitation interactions. Part 1. The 
nature and sources of cloud-active aerosols. Earth-Science Reviews 2008, 89 (1), 13-41. 
17. Hallquist, M.;  Wenger, J. C.;  Baltensperger, U.;  Rudich, Y.;  Simpson, D.;  Claeys, M.;  
Dommen, J.;  Donahue, N. M.;  George, C.;  Goldstein, A. H.;  Hamilton, J. F.;  Herrmann, H.;  
Hoffmann, T.;  Iinuma, Y.;  Jang, M.;  Jenkin, M. E.;  Jimenez, J. L.;  Kiendler-Scharr, A.;  
Maenhaut, W.;  McFiggans, G.;  Mentel, T. F.;  Monod, A.;  Prévôt, A. S. H.;  Seinfeld, J. H.;  
Surratt, J. D.;  Szmigielski, R.; Wildt, J., The formation, properties and impact of secondary 
organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9 (14), 5155-5236. 
18. Ziemann, P. J.; Atkinson, R., Kinetics, products, and mechanisms of secondary organic 
aerosol formation. Chemical Society Reviews 2012, 41 (19), 6582-6605. 
19. Olson, N. E.;  Lei, Z.;  Craig, R. L.;  Zhang, Y.;  Chen, Y.;  Lambe, A. T.;  Zhang, Z.;  
Gold, A.;  Surratt, J. D.; Ault, A. P., Reactive Uptake of Isoprene Epoxydiols Increases the 
Viscosity of the Core of Phase-Separated Aerosol Particles. ACS Earth Space Chem. 2019, 3 (8), 
1402-1414. 
20. Riva, M.;  Budisulistiorini, S. H.;  Zhang, Z.;  Gold, A.;  Thornton, J. A.;  Turpin, B. J.; 
Surratt, J. D., Multiphase reactivity of gaseous hydroperoxide oligomers produced from isoprene 
ozonolysis in the presence of acidified aerosols. Atmospheric Environment 2017, 152, 314-322. 
21. Zhang, Y.;  Chen, Y.;  Lambe, A. T.;  Olson, N. E.;  Lei, Z.;  Craig, R. L.;  Zhang, Z.;  
Gold, A.;  Onasch, T. B.;  Jayne, J. T.;  Worsnop, D. R.;  Gaston, C. J.;  Thornton, J. A.;  Vizuete, 
W.;  Ault, A. P.; Surratt, J. D., Effect of the Aerosol-Phase State on Secondary Organic Aerosol 
Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX). Environmental 
Science & Technology Letters 2018, 5 (3), 167-174. 
22. Stocker, T. F.; Qin, D., Climate change 2013: The physical science basis. Working group 
I contribution to the fifth assessment report of the intergovernmental panel on climate change. 
Cambridge University Press: Cambridge, UK and New York, NY, USA, 2013. 
23. Zhang, Q.;  Jimenez, J. L.;  Worsnop, D. R.; Canagaratna, M., A Case Study of Urban 
Particle Acidity and Its Influence on Secondary Organic Aerosol. Environmental Science & 
Technology 2007, 41 (9), 3213-3219. 
24. Surratt, J. D.;  Lewandowski, M.;  Offenberg, J. H.;  Jaoui, M.;  Kleindienst, T. E.;  Edney, 
E. O.; Seinfeld, J. H., Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene. 
Environmental Science & Technology 2007, 41 (15), 5363-5369. 
25. Zhang, Y.;  Chen, Y.;  Lei, Z.;  Olson, N. E.;  Riva, M.;  Koss, A. R.;  Zhang, Z.;  Gold, 
A.;  Jayne, J. T.;  Worsnop, D. R.;  Onasch, T. B.;  Kroll, J. H.;  Turpin, B. J.;  Ault, A. P.; Surratt, 
J. D., Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from 
Isoprene Epoxydiols (IEPOX) in Phase Separated Particles. ACS Earth and Space Chemistry 2019, 
3 (12), 2646-2658. 
26. Gaston, C. J.;  Riedel, T. P.;  Zhang, Z.;  Gold, A.;  Surratt, J. D.; Thornton, J. A., Reactive 
Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles. Environmental Science 
& Technology 2014, 48 (19), 11178-11186. 
27. Surratt, J. D.;  Murphy, S. M.;  Kroll, J. H.;  Ng, N. L.;  Hildebrandt, L.;  Sorooshian, A.;  
Szmigielski, R.;  Vermeylen, R.;  Maenhaut, W.;  Claeys, M.;  Flagan, R. C.; Seinfeld, J. H., 
Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of 
Isoprene. The Journal of Physical Chemistry A 2006, 110 (31), 9665-9690. 



 102 

28. Tolocka, M. P.;  Jang, M.;  Ginter, J. M.;  Cox, F. J.;  Kamens, R. M.; Johnston, M. V., 
Formation of Oligomers in Secondary Organic Aerosol. Environmental Science & Technology 
2004, 38 (5), 1428-1434. 
29. Guo, H.;  Xu, L.;  Bougiatioti, A.;  Cerully, K. M.;  Capps, S. L.;  Hite Jr, J. R.;  Carlton, 
A. G.;  Lee, S. H.;  Bergin, M. H.;  Ng, N. L.;  Nenes, A.; Weber, R. J., Fine-particle water and pH 
in the southeastern United States. Atmos. Chem. Phys. 2015, 15 (9), 5211-5228. 
30. Lin, Y.-H.;  Zhang, Z.;  Docherty, K. S.;  Zhang, H.;  Budisulistiorini, S. H.;  Rubitschun, 
C. L.;  Shaw, S. L.;  Knipping, E. M.;  Edgerton, E. S.;  Kleindienst, T. E.;  Gold, A.; Surratt, J. 
D., Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed 
reactive uptake studies with authentic compounds. Environmental science & technology 2012, 46 
(1), 250-258. 
31. Desboeufs, K. V.;  Sofikitis, A.;  Losno, R.;  Colin, J. L.; Ausset, P., Dissolution and 
solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere 
2005, 58 (2), 195-203. 
32. Pye, H. O. T.;  Nenes, A.;  Alexander, B.;  Ault, A. P.;  Barth, M. C.;  Clegg, S. L.;  Collett 
Jr, J. L.;  Fahey, K. M.;  Hennigan, C. J.;  Herrmann, H.;  Kanakidou, M.;  Kelly, J. T.;  Ku, I. T.;  
McNeill, V. F.;  Riemer, N.;  Schaefer, T.;  Shi, G.;  Tilgner, A.;  Walker, J. T.;  Wang, T.;  Weber, 
R.;  Xing, J.;  Zaveri, R. A.; Zuend, A., The acidity of atmospheric particles and clouds. Atmos. 
Chem. Phys. 2020, 20 (8), 4809-4888. 
33. Craig, R. L.;  Peterson, P. K.;  Nandy, L.;  Lei, Z.;  Hossain, M. A.;  Camarena, S.;  Dodson, 
R. A.;  Cook, R. D.;  Dutcher, C. S.; Ault, A. P., Direct Determination of Aerosol pH: Size-
Resolved Measurements of Submicrometer and Supermicrometer Aqueous Particles. Analytical 
Chemistry 2018, 90 (19), 11232-11239. 
34. Rindelaub, J. D.;  Craig, R. L.;  Nandy, L.;  Bondy, A. L.;  Dutcher, C. S.;  Shepson, P. B.; 
Ault, A. P., Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and 
Variation in Acidity with Relative Humidity. The Journal of Physical Chemistry A 2016, 120 (6), 
911-917. 
35. Ault, A. P., Aerosol Acidity: Novel Measurements and Implications for Atmospheric 
Chemistry. Accounts of Chemical Research 2020, 53 (9), 1703-1714. 
36. Freedman, M. A., Phase separation in organic aerosol. Chemical Society Reviews 2017, 46 
(24), 7694-7705. 
37. Qiu, Y.; Molinero, V., Morphology of Liquid–Liquid Phase Separated Aerosols. Journal 
of the American Chemical Society 2015, 137 (33), 10642-10651. 
38. Riva, M.;  Chen, Y.;  Zhang, Y.;  Lei, Z.;  Olson, N. E.;  Boyer, H. C.;  Narayan, S.;  Yee, 
L. D.;  Green, H. S.;  Cui, T.;  Zhang, Z.;  Baumann, K.;  Fort, M.;  Edgerton, E.;  Budisulistiorini, 
S. H.;  Rose, C. A.;  Ribeiro, I. O.;  e Oliveira, R. L.;  dos Santos, E. O.;  Machado, C. M. D.;  
Szopa, S.;  Zhao, Y.;  Alves, E. G.;  de Sá, S. S.;  Hu, W.;  Knipping, E. M.;  Shaw, S. L.;  Duvoisin 
Junior, S.;  de Souza, R. A. F.;  Palm, B. B.;  Jimenez, J.-L.;  Glasius, M.;  Goldstein, A. H.;  Pye, 
H. O. T.;  Gold, A.;  Turpin, B. J.;  Vizuete, W.;  Martin, S. T.;  Thornton, J. A.;  Dutcher, C. S.;  
Ault, A. P.; Surratt, J. D., Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio 
Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for 
Aerosol Physicochemical Properties. Environmental Science & Technology 2019, 53 (15), 8682-
8694. 
39. Shiraiwa, M.;  Zuend, A.;  Bertram, A. K.; Seinfeld, J. H., Gas–particle partitioning of 
atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Physical 
Chemistry Chemical Physics 2013, 15 (27), 11441-11453. 



 103 

40. Song, M.;  Ham, S.;  Andrews, R. J.;  You, Y.; Bertram, A. K., Liquid–liquid phase 
separation in organic particles containing one and two organic species: importance of the average 
O&thinsp;:&thinsp;C. Atmos. Chem. Phys. 2018, 18 (16), 12075-12084. 
41. Song, M.;  Marcolli, C.;  Krieger, U. K.;  Lienhard, D. M.; Peter, T., Morphologies of 
mixed organic/inorganic/aqueous aerosol droplets. Faraday Discussions 2013, 165 (0), 289-316. 
42. Song, M.;  Marcolli, C.;  Krieger, U. K.;  Zuend, A.; Peter, T., Liquid-liquid phase 
separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water 
particles. Atmos. Chem. Phys. 2012, 12 (5), 2691-2712. 
43. Xu, L.;  Fukushima, S.;  Sobanska, S.;  Murata, K.;  Naganuma, A.;  Liu, L.;  Wang, Y.;  
Niu, H.;  Shi, Z.;  Kojima, T.;  Zhang, D.; Li, W., Tracing the evolution of morphology and mixing 
state of soot particles along with the movement of an Asian dust storm. Atmos. Chem. Phys. 2020, 
20 (22), 14321-14332. 
44. Freedman, M. A., Liquid–Liquid Phase Separation in Supermicrometer and 
Submicrometer Aerosol Particles. Accounts of Chemical Research 2020, 53 (6), 1102-1110. 
45. Martin, S. T., Phase Transitions of Aqueous Atmospheric Particles. Chemical Reviews 
2000, 100 (9), 3403-3454. 
46. O’Brien, R. E.;  Wang, B.;  Kelly, S. T.;  Lundt, N.;  You, Y.;  Bertram, A. K.;  Leone, S. 
R.;  Laskin, A.; Gilles, M. K., Liquid–Liquid Phase Separation in Aerosol Particles: Imaging at 
the Nanometer Scale. Environmental Science & Technology 2015, 49 (8), 4995-5002. 
47. Pajunoja, A.;  Hu, W.;  Leong, Y. J.;  Taylor, N. F.;  Miettinen, P.;  Palm, B. B.;  Mikkonen, 
S.;  Collins, D. R.;  Jimenez, J. L.; Virtanen, A., Phase state of ambient aerosol linked with water 
uptake and chemical aging in the southeastern US. Atmos. Chem. Phys. 2016, 16 (17), 11163-
11176. 
48. Pankow, J. F., Gas/particle partitioning of neutral and ionizing compounds to single and 
multi-phase aerosol particles. 1. Unified modeling framework. Atmospheric Environment 2003, 37 
(24), 3323-3333. 
49. Cosman, L. M.;  Knopf, D. A.; Bertram, A. K., N2O5 reactive uptake on aqueous sulfuric 
acid solutions coated with branched and straight-chain insoluble organic surfactants. J Phys Chem 
A 2008, 112 (11), 2386-96. 
50. Huang, Y.;  Mahrt, F.;  Xu, S.;  Shiraiwa, M.;  Zuend, A.; Bertram, A. K., Coexistence of 
three liquid phases in individual atmospheric aerosol particles. Proc Natl Acad Sci U S A 2021, 
118 (16). 
51. Ham, S.;  Babar, Z. B.;  Lee, J. B.;  Lim, H. J.; Song, M., Liquid–liquid phase separation 
in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene 
photooxidation with/without ammonia. Atmos. Chem. Phys. 2019, 19 (14), 9321-9331. 
52. Zuend, A.; Seinfeld, J. H., Modeling the gas-particle partitioning of secondary organic 
aerosol: the importance of liquid-liquid phase separation. Atmos. Chem. Phys. 2012, 12 (9), 3857-
3882. 
53. You, Y.;  Renbaum-Wolff, L.;  Carreras-Sospedra, M.;  Hanna, S. J.;  Hiranuma, N.;  
Kamal, S.;  Smith, M. L.;  Zhang, X.;  Weber, R. J.;  Shilling, J. E.;  Dabdub, D.;  Martin, S. T.; 
Bertram, A. K., Images reveal that atmospheric particles can undergo liquid–liquid phase 
separations. Proceedings of the National Academy of Sciences 2012, 109 (33), 13188. 
54. Fuzzi, S.;  Andreae, M. O.;  Huebert, B. J.;  Kulmala, M.;  Bond, T. C.;  Boy, M.;  Doherty, 
S. J.;  Guenther, A.;  Kanakidou, M.;  Kawamura, K.;  Kerminen, V. M.;  Lohmann, U.;  Russell, 
L. M.; Pöschl, U., Critical assessment of the current state of scientific knowledge, terminology, 



 104 

and research needs concerning the role of organic aerosols in the atmosphere, climate, and global 
change. Atmos. Chem. Phys. 2006, 6 (7), 2017-2038. 
55. Shiraiwa, M.;  Li, Y.;  Tsimpidi, A. P.;  Karydis, V. A.;  Berkemeier, T.;  Pandis, S. N.;  
Lelieveld, J.;  Koop, T.; Pöschl, U., Global distribution of particle phase state in atmospheric 
secondary organic aerosols. Nature Communications 2017, 8 (1), 15002. 
56. Reid, J. P.;  Bertram, A. K.;  Topping, D. O.;  Laskin, A.;  Martin, S. T.;  Petters, M. D.;  
Pope, F. D.; Rovelli, G., The viscosity of atmospherically relevant organic particles. Nature 
Communications 2018, 9 (1), 956. 
57. Schmedding, R.;  Rasool, Q. Z.;  Zhang, Y.;  Pye, H. O. T.;  Zhang, H.;  Chen, Y.;  Surratt, 
J. D.;  Lopez-Hilfiker, F. D.;  Thornton, J. A.;  Goldstein, A. H.; Vizuete, W., Predicting secondary 
organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale 
air quality model. Atmos. Chem. Phys. 2020, 20 (13), 8201-8225. 
58. Koop, T.;  Bookhold, J.;  Shiraiwa, M.; Pöschl, U., Glass transition and phase state of 
organic compounds: dependency on molecular properties and implications for secondary organic 
aerosols in the atmosphere. Physical Chemistry Chemical Physics 2011, 13 (43), 19238-19255. 
59. Virtanen, A.;  Joutsensaari, J.;  Koop, T.;  Kannosto, J.;  Yli-Pirilä, P.;  Leskinen, J.;  
Mäkelä, J. M.;  Holopainen, J. K.;  Pöschl, U.;  Kulmala, M.;  Worsnop, D. R.; Laaksonen, A., An 
amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467 (7317), 
824-827. 
60. Zobrist, B.;  Marcolli, C.;  Pedernera, D. A.; Koop, T., Do atmospheric aerosols form 
glasses? Atmos. Chem. Phys. 2008, 8 (17), 5221-5244. 
61. Mikhailov, E.;  Vlasenko, S.;  Martin, S. T.;  Koop, T.; Pöschl, U., Amorphous and 
crystalline aerosol particles interacting with water vapor: conceptual framework and experimental 
evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry & 
Physics 2009, 9, 9491. 
62. Gervasi, N. R.;  Topping, D. O.; Zuend, A., A predictive group-contribution model for the 
viscosity of aqueous organic aerosol. Atmos. Chem. Phys. 2020, 20 (5), 2987-3008. 
63. Huang, W.;  Saathoff, H.;  Pajunoja, A.;  Shen, X.;  Naumann, K. H.;  Wagner, R.;  
Virtanen, A.;  Leisner, T.; Mohr, C., α-Pinene secondary organic aerosol at low temperature: 
chemical composition and implications for particle viscosity. Atmos. Chem. Phys. 2018, 18 (4), 
2883-2898. 
64. Reid, J.;  Bertram, A.;  Topping, D.;  Laskin, A.;  Martin, S.;  Petters, M.;  Pope, F.; Rovelli, 
G., The viscosity of atmospherically relevant organic particles. Nature Communications 2018, 9. 
65. Song, M.;  Liu, P.;  Hanna, S.;  Li, Y.;  Martin, S.; Bertram, A., Relative humidity-
dependent viscosities of isoprene-derived secondary organic material and atmospheric 
implications for isoprene-dominant forests. Atmospheric Chemistry and Physics 2015, 15. 
66. Song, M.;  Liu, P. F.;  Hanna, S. J.;  Zaveri, R. A.;  Potter, K.;  You, Y.;  Martin, S. T.; 
Bertram, A. K., Relative humidity-dependent viscosity of secondary organic material from toluene 
photo-oxidation and possible implications for organic particulate matter over megacities. Atmos. 
Chem. Phys. 2016, 16 (14), 8817-8830. 
67. Maclean, A. M.;  Smith, N. R.;  Li, Y.;  Huang, Y.;  Hettiyadura, A. P. S.;  Crescenzo, G. 
V.;  Shiraiwa, M.;  Laskin, A.;  Nizkorodov, S. A.; Bertram, A. K., Humidity-Dependent Viscosity 
of Secondary Organic Aerosol from Ozonolysis of β-Caryophyllene: Measurements, Predictions, 
and Implications. ACS Earth and Space Chemistry 2021, 5 (2), 305-318. 



 105 

68. Maclean, A. M.;  Butenhoff, C. L.;  Grayson, J. W.;  Barsanti, K.;  Jimenez, J. L.; Bertram, 
A. K., Mixing times of organic molecules within secondary organic aerosol particles: a global 
planetary boundary layer perspective. Atmos. Chem. Phys. 2017, 17 (21), 13037-13048. 
69. Liu, P.;  Li, Y. J.;  Wang, Y.;  Gilles, M. K.;  Zaveri, R. A.;  Bertram, A. K.; Martin, S. T., 
Lability of secondary organic particulate matter. Proceedings of the National Academy of Sciences 
2016, 113 (45), 12643. 
70. Krieger, U. K.;  Marcolli, C.; Reid, J. P., ChemInform Abstract: Exploring the Complexity 
of Aerosol Particle Properties and Processes Using Single Particles Techniques. ChemInform 
2012, 43 (48). 
71. Fletcher, R. A.;  Ritchie, N. W. M.;  Anderson, I. M.; Small, J. A., Microscopy and 
Microanalysis of Individual Collected Particles. In Aerosol Measurement, 2011; pp 179-232. 
72. Ault, A. P.; Axson, J. L., Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic 
Advances. Analytical Chemistry 2017, 89 (1), 430-452. 
73. Bondy, A. L.;  Kirpes, R. M.;  Merzel, R. L.;  Pratt, K. A.;  Banaszak Holl, M. M.; Ault, 
A. P., Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol 
Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis. Analytical 
Chemistry 2017, 89 (17), 8594-8598. 
74. Craig, R. L.;  Nandy, L.;  Axson, J. L.;  Dutcher, C. S.; Ault, A. P., Spectroscopic 
Determination of Aerosol pH from Acid–Base Equilibria in Inorganic, Organic, and Mixed 
Systems. The Journal of Physical Chemistry A 2017, 121 (30), 5690-5699. 
75. Investigation of the chemical mixing state of individual Asian dust particles by the 
combined use of electron probe X-ray microanalysis and Raman microspectrometry. 2012, 84 (7), 
3145-54. 
76. Sobanska, S.;  Hwang, H.;  Choël, M.;  Jung, H. J.;  Eom, H. J.;  Kim, H.;  Barbillat, J.; Ro, 
C. U., Investigation of the chemical mixing state of individual Asian dust particles by the combined 
use of electron probe X-ray microanalysis and Raman microspectrometry. Anal Chem 2012, 84 
(7), 3145-54. 
77. Sobanska, S.;  Falgayrac, G.;  Rimetz-Planchon, J.;  Perdrix, E.;  Brémard, C.; Barbillat, J., 
Resolving the internal structure of individual atmospheric aerosol particle by the combination of 
Atomic Force Microscopy, ESEM–EDX, Raman and ToF–SIMS imaging. Microchemical Journal 
2014, 114, 89-98. 
78. Olson, N. E.;  Xiao, Y.;  Lei, Z.; Ault, A. P., Simultaneous Optical Photothermal Infrared 
(O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles. Analytical 
Chemistry 2020, 92 (14), 9932-9939. 
79. Kirpes, R. M.;  Bondy, A. L.;  Bonanno, D.;  Moffet, R. C.;  Wang, B.;  Laskin, A.;  Ault, 
A. P.; Pratt, K. A., Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol 
in the winter Arctic. Atmos. Chem. Phys. 2018, 18 (6), 3937-3949. 
80. Ault, A. P.;  Zhao, D.;  Ebben, C. J.;  Tauber, M. J.;  Geiger, F. M.;  Prather, K. A.; Grassian, 
V. H., Raman microspectroscopy and vibrational sum frequency generation spectroscopy as 
probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Physical 
Chemistry Chemical Physics 2013, 15 (17), 6206-6214. 
81. Kirpes, R. M.;  Bonanno, D.;  May, N. W.;  Fraund, M.;  Barget, A. J.;  Moffet, R. C.;  Ault, 
A. P.; Pratt, K. A., Wintertime Arctic Sea Spray Aerosol Composition Controlled by Sea Ice Lead 
Microbiology. ACS Central Science 2019, 5 (11), 1760-1767. 
82. Ault, A. P.;  Guasco, T. L.;  Baltrusaitis, J.;  Ryder, O. S.;  Trueblood, J. V.;  Collins, D. 
B.;  Ruppel, M. J.;  Cuadra-Rodriguez, L. A.;  Prather, K. A.; Grassian, V. H., Heterogeneous 



 106 

Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between 
and within Individual Particles. J Phys Chem Lett 2014, 5 (15), 2493-500. 
83. Bondy, A. L.;  Bonanno, D.;  Moffet, R. C.;  Wang, B.;  Laskin, A.; Ault, A. P., The diverse 
chemical mixing state of aerosol particles in the southeastern United States. Atmos. Chem. Phys. 
2018, 18 (16), 12595-12612. 
84. Craig, R. L.;  Bondy, A. L.; Ault, A. P., Surface Enhanced Raman Spectroscopy Enables 
Observations of Previously Undetectable Secondary Organic Aerosol Components at the 
Individual Particle Level. Analytical Chemistry 2015, 87 (15), 7510-7514. 
85. Craig, R. L.;  Bondy, A. L.; Ault, A. P., Computer-controlled Raman microspectroscopy 
(CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles. 
Aerosol Science and Technology 2017, 51 (9), 1099-1112. 
86. Tirella, P. N.;  Craig, R. L.;  Tubbs, D. B.;  Olson, N. E.;  Lei, Z.; Ault, A. P., Extending 
surface enhanced Raman spectroscopy (SERS) of atmospheric aerosol particles to the 
accumulation mode (150–800 nm). Environmental Science: Processes & Impacts 2018, 20 (11), 
1570-1580. 
87. Ofner, J.;  Deckert-Gaudig, T.;  Kamilli, K. A.;  Held, A.;  Lohninger, H.;  Deckert, V.; 
Lendl, B., Tip-Enhanced Raman Spectroscopy of Atmospherically Relevant Aerosol 
Nanoparticles. Analytical Chemistry 2016, 88 (19), 9766-9772. 
88. Doughty, D. C.; Hill, S. C., Raman spectra of atmospheric particles measured in Maryland, 
USA over 22.5 h using an automated aerosol Raman spectrometer. Journal of Quantitative 
Spectroscopy and Radiative Transfer 2020, 244, 106839. 
89. Doughty, D. C.; Hill, S. C., Automated aerosol Raman spectrometer for semi-continuous 
sampling of atmospheric aerosol. Journal of Quantitative Spectroscopy and Radiative Transfer 
2017, 188, 103-117. 
90. Or, V. W.;  Estillore, A. D.;  Tivanski, A. V.; Grassian, V. H., Lab on a tip: atomic force 
microscopy – photothermal infrared spectroscopy of atmospherically relevant organic/inorganic 
aerosol particles in the nanometer to micrometer size range. Analyst 2018, 143 (12), 2765-2774. 
91. Dazzi, A.;  Prater, C. B.;  Hu, Q.;  Chase, D. B.;  Rabolt, J. F.; Marcott, C., AFM-IR: 
combining atomic force microscopy and infrared spectroscopy for nanoscale chemical 
characterization. Appl Spectrosc 2012, 66 (12), 1365-84. 
92. Dazzi, A.;  Prazeres, R.;  Glotin, F.; Ortega, J. M., Local infrared microspectroscopy with 
a subwavelength spatial resolution using an AFM tip as a photothermal sensor. Optics letters 2005, 
30, 2388-90. 
93. Lei, Z.;  Bliesner, S. E.;  Mattson, C. N.;  Cooke, M. E.;  Olson, N. E.;  Chibwe, K.;  Albert, 
J. N. L.; Ault, A. P., Aerosol Acidity Sensing via Polymer Degradation. Analytical Chemistry 
2020, 92 (9), 6502-6511. 
94. Laskina, O.;  Morris, H. S.;  Grandquist, J. R.;  Qin, Z.;  Stone, E. A.;  Tivanski, A. V.; 
Grassian, V. H., Size matters in the water uptake and hygroscopic growth of atmospherically 
relevant multicomponent aerosol particles. J Phys Chem A 2015, 119 (19), 4489-97. 
95. Morris, H. S.;  Estillore, A. D.;  Laskina, O.;  Grassian, V. H.; Tivanski, A. V., Quantifying 
the Hygroscopic Growth of Individual Submicrometer Particles with Atomic Force Microscopy. 
Analytical Chemistry 2016, 88 (7), 3647-3654. 
96. Slade, J. H.;  Ault, A. P.;  Bui, A. T.;  Ditto, J. C.;  Lei, Z.;  Bondy, A. L.;  Olson, N. E.;  
Cook, R. D.;  Desrochers, S. J.;  Harvey, R. M.;  Erickson, M. H.;  Wallace, H. W.;  Alvarez, S. 
L.;  Flynn, J. H.;  Boor, B. E.;  Petrucci, G. A.;  Gentner, D. R.;  Griffin, R. J.; Shepson, P. B., 
Bouncier Particles at Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive 



 107 

Diel Variations in the Aerosol Phase in a Mixed Forest. Environmental Science & Technology 
2019, 53 (9), 4977-4987. 
97. Dazzi, A.; Prater, C. B., AFM-IR: Technology and Applications in Nanoscale Infrared 
Spectroscopy and Chemical Imaging. Chem Rev 2017, 117 (7), 5146-5173. 
98. Morris, H. S.;  Grassian, V. H.; Tivanski, A. V., Humidity-dependent surface tension 
measurements of individual inorganic and organic submicrometre liquid particles. Chemical 
Science 2015, 6 (5), 3242-3247. 
99. Hritz, A. D.;  Raymond, T. M.; Dutcher, D. D., A method for the direct measurement of 
surface tension of collected atmospherically relevant aerosol particles using atomic force 
microscopy. Atmos. Chem. Phys. 2016, 16 (15), 9761-9769. 
100. Mostofa, M. G. Nano Mechanical Machining Using AFM Probe. 2014. 
101. Hammiche, A.;  Reading, M.;  Pollock, H. M.;  Song, M.; Hourston, D. J., Localized 
thermal analysis using a miniaturized resistive probe. Review of Scientific Instruments 1996, 67 
(12), 4268-4274. 
102. Harding, L.;  King, W. P.;  Dai, X.;  Craig, D. Q. M.; Reading, M., Nanoscale 
Characterisation and Imaging of Partially Amorphous Materials using Local Thermomechanical 
Analysis and Heated Tip AFM. Pharmaceutical Research 2007, 24 (11), 2048-2054. 
103. Hale, R. C.;  Seeley, M. E.;  La Guardia, M. J.;  Mai, L.; Zeng, E. Y., A Global Perspective 
on Microplastics. Journal of Geophysical Research: Oceans 2020, 125 (1), e2018JC014719. 
104. Li, X.;  Zhang, D.;  Bai, Y.;  Wang, W.;  Liang, J.; Cheng, J.-X., Fingerprinting a Living 
Cell by Raman Integrated Mid-Infrared Photothermal Microscopy. Analytical Chemistry 2019, 91 
(16), 10750-10756. 
105. Zhang, D.;  Li, C.;  Zhang, C.;  Slipchenko, M. N.;  Eakins, G.; Cheng, J.-X., Depth-
resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer 
spatial resolution. Science Advances 2016, 2 (9), e1600521. 
106. Takahama, S.;  Johnson, A.; Russell, L. M., Quantification of Carboxylic and Carbonyl 
Functional Groups in Organic Aerosol Infrared Absorbance Spectra. Aerosol Science and 
Technology 2013, 47 (3), 310-325. 
107. Li, C.;  Zhang, D.;  Slipchenko, M. N.; Cheng, J.-X., Mid-Infrared Photothermal Imaging 
of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution. Analytical Chemistry 
2017, 89 (9), 4863-4867. 
108. Furstenberg, R.;  Kendziora, C. A.;  Papantonakis, M. R.;  Nguyen, V.; McGill, R. A. In 
Chemical imaging using infrared photothermal microspectroscopy, June 01, 2012; 2012; p 
837411. 
109. Gentner, D. R.;  Jathar, S. H.;  Gordon, T. D.;  Bahreini, R.;  Day, D. A.;  El Haddad, I.;  
Hayes, P. L.;  Pieber, S. M.;  Platt, S. M.;  de Gouw, J.;  Goldstein, A. H.;  Harley, R. A.;  Jimenez, 
J. L.;  Prévôt, A. S. H.; Robinson, A. L., Review of Urban Secondary Organic Aerosol Formation 
from Gasoline and Diesel Motor Vehicle Emissions. Environ. Sci. Technol. 2017, 51 (3), 1074-
1093. 
110. Pye, H. O. T.;  Nenes, A.;  Alexander, B.;  Ault, A. P.;  Barth, M. C.;  Clegg, S. L.;  Collett 
Jr, J. L.;  Fahey, K. M.;  Hennigan, C. J.;  Herrmann, H.;  Kanakidou, M.;  Kelly, J. T.;  Ku, I. T.;  
McNeill, V. F.;  Riemer, N.;  Schaefer, T.;  Shi, G.;  Tilgner, A.;  Walker, J. T.;  Wang, T.;  Weber, 
R.;  Xing, J.;  Zaveri, R. A.; Zuend, A., The Acidity of Atmospheric Particles and Clouds. Atmos. 
Chem. Phys. 2020, in press. 
111. Kennedy, I. M., The health effects of combustion-generated aerosols. Proc. Combust. Inst. 
2007, 31, 2757-2770. 



 108 

112. Fitzgerald, E.;  Ault, A. P.;  Zauscher, M. D.;  Mayol-Bracero, O. L.; Prather, K. A., 
Comparison of the mixing state of long-range transported Asian and African mineral dust. Atmos. 
Environ. 2015, 115 (0), 19-25. 
113. Uno, I.;  Eguchi, K.;  Yumimoto, K.;  Takemura, T.;  Shimizu, A.;  Uematsu, M.;  Liu, Z. 
Y.;  Wang, Z. F.;  Hara, Y.; Sugimoto, N., Asian dust transported one full circuit around the globe. 
Nature Geosci. 2009, 2 (8), 557-560. 
114. Seinfeld, J. H.; Pandis, S. N., Atmospheric chemistry and physics: from air pollution to 
climate change. John Wiley & Sons: 2016. 
115. Fang, T.;  Guo, H. Y.;  Zeng, L. H.;  Verma, V.;  Nenes, A.; Weber, R. J., Highly Acidic 
Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol 
Toxicity. Environ. Sci. Technol. 2017, 51 (5), 2611-2620. 
116. Eaves, L. A.;  Smeester, L.;  Hartwell, H. J.;  Lin, Y.-H.;  Arashiro, M.;  Zhang, Z.;  Gold, 
A.;  Surratt, J. D.; Fry, R. C., Isoprene-derived Secondary Organic Aerosol Induces the Expression 
of micro RNAs (miRNAs) Associated with Inflammatory/Oxidative Stress Response in Lung 
Cells. Chem. Res. Toxicol. 2019. 
117. Fang, T.;  Guo, H.;  Verma, V.;  Peltier, R. E.; Weber, R. J., PM2.5 water-soluble elements 
in the southeastern United States: automated analytical method development, spatiotemporal 
distributions, source apportionment, and implications for heath studies. Atmos. Chem. Phys. 2015, 
15 (20), 11667-11682. 
118. Wang, G.;  Zhang, R.;  Gomez, M. E.;  Yang, L.;  Zamora, M. L.;  Hu, M.;  Lin, Y.;  Peng, 
J.;  Guo, S.;  Meng, J.;  Li, J.;  Cheng, C.;  Hu, T.;  Ren, Y.;  Wang, Y.;  Gao, J.;  Cao, J.;  An, Z.;  
Zhou, W.;  Li, G.;  Wang, J.;  Tian, P.;  Marrero-Ortiz, W.;  Secrest, J.;  Du, Z.;  Zheng, J.;  Shang, 
D.;  Zeng, L.;  Shao, M.;  Wang, W.;  Huang, Y.;  Wang, Y.;  Zhu, Y.;  Li, Y.;  Hu, J.;  Pan, B.;  
Cai, L.;  Cheng, Y.;  Ji, Y.;  Zhang, F.;  Rosenfeld, D.;  Liss, P. S.;  Duce, R. A.;  Kolb, C. E.; 
Molina, M. J., Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. 
Sci. U. S. A. 2016, 113 (48), 13630-13635. 
119. Guo, H.;  Weber, R. J.; Nenes, A., High levels of ammonia do not raise fine particle pH 
sufficiently to yield nitrogen oxide-dominated sulfate production. Sci. Rep. 2017, 7, 7. 
120. Lin, Y. H.;  Zhang, H. F.;  Pye, H. O. T.;  Zhang, Z. F.;  Marth, W. J.;  Park, S.;  Arashiro, 
M.;  Cui, T. Q.;  Budisulistiorini, H.;  Sexton, K. G.;  Vizuete, W.;  Xie, Y.;  Luecken, D. J.;  Piletic, 
I. R.;  Edney, E. O.;  Bartolotti, L. J.;  Gold, A.; Surratt, J. D., Epoxide as a precursor to secondary 
organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. 
Natl. Acad. Sci. U. S. A. 2013, 110 (17), 6718-6723. 
121. Lin, Y. H.;  Zhang, Z. F.;  Docherty, K. S.;  Zhang, H. F.;  Budisulistiorini, S. H.;  
Rubitschun, C. L.;  Shaw, S. L.;  Knipping, E. M.;  Edgerton, E. S.;  Kleindienst, T. E.;  Gold, A.; 
Surratt, J. D., Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-
Catalyzed Reactive Uptake Studies with Authentic Compounds. Environ. Sci. Technol. 2012, 46 
(1), 250-258. 
122. Jang, M.;  Czoschke, N. M.;  Lee, S.; Kamens, R. M., Heterogeneous Atmospheric Aerosol 
Production by Acid-Catalyzed Particle-Phase Reactions. Science 2002, 298 (5594), 814-817. 
123. Surratt, J. D.;  Chan, A. W. H.;  Eddingsaas, N. C.;  Chan, M. N.;  Loza, C. L.;  Kwan, A. 
J.;  Hersey, S. P.;  Flagan, R. C.;  Wennberg, P. O.; Seinfeld, J. H., Reactive intermediates revealed 
in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 
(15), 6640-6645. 



 109 

124. Jang, M.;  Carroll, B.;  Chandramouli, B.; Kamens, R. M., Particle growth by acid-
catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols. Environ. Sci. 
Technol. 2003, 37 (17), 3828-3837. 
125. Riva, M.;  Bell, D. M.;  Hansen, A. M. K.;  Drozd, G. T.;  Zhang, Z. F.;  Gold, A.;  Imre, 
D.;  Surratt, J. D.;  Glasius, M.; Zelenyuk, A., Effect of Organic Coatings, Humidity and Aerosol 
Acidity on Multiphase Chemistry of Isoprene Epoxydiols. Environ. Sci. Technol. 2016, 50 (11), 
5580-5588. 
126. Gaston, C. J.;  Riedel, T. P.;  Zhang, Z. F.;  Gold, A.;  Surratt, J. D.; Thornton, J. A., 
Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles. Environ. Sci. 
Technol. 2014, 48 (19), 11178-11186. 
127. Prenni, A. J.;  DeMott, P. J.; Kreidenweis, S. M., Water uptake of internally mixed particles 
containing ammonium sulfate and dicarboxylic acids. Atmos. Environ. 2003, 37 (30), 4243-4251. 
128. Ghorai, S.;  Laskin, A.; Tivanski, A. V., Spectroscopic Evidence of Keto-Enol 
Tautomerism in Deliquesced Malonic Acid Particles. J. Phys. Chem. A 2011, 115 (17), 4373-4380. 
129. Losey, D. J.;  Parker, R. G.; Freedman, M. A., pH Dependence of Liquid–Liquid Phase 
Separation in Organic Aerosol. J. Phys. Chem. Lett. 2016, 7 (19), 3861-3865. 
130. You, Y.;  Smith, M. L.;  Song, M.;  Martin, S. T.; Bertram, A. K., Liquid–liquid phase 
separation in atmospherically relevant particles consisting of organic species and inorganic salts. 
Int. Rev. Phys. Chem. 2014, 33 (1), 43-77. 
131. Feng, J.;  Guo, Z.;  Zhang, T.;  Yao, X.;  Chan, C.-K.; Fang, M., Source and formation of 
secondary particulate matter in PM2. 5 in Asian continental outflow. J. Geophys. Res.: Atmos. 
2012, 117 (D3). 
132. Hennigan, C. J.;  Izumi, J.;  Sullivan, A. P.;  Weber, R. J.; Nenes, A., A critical evaluation 
of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 2015, 
15 (5), 2775-2790. 
133. Guo, H.;  Xu, L.;  Bougiatioti, A.;  Cerully, K. M.;  Capps, S. L.;  Hite, J. R., Jr.;  Carlton, 
A. G.;  Lee, S. H.;  Bergin, M. H.;  Ng, N. L.;  Nenes, A.; Weber, R. J., Fine-particle water and pH 
in the southeastern United States. Atmos. Chem. Phys. 2015, 15 (9), 5211-5228. 
134. Trebs, I.;  Metzger, S.;  Meixner, F. X.;  Helas, G.;  Hoffer, A.;  Rudich, Y.;  Falkovich, A. 
H.;  Moura, M. A.;  da Silva Jr, R. S.; Artaxo, P., The NH4+‐NO3−‐Cl−‐SO42−‐H2O aerosol 
system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral 
cations and soluble organic acids? J. Geophys. Res.: Atmos. 2005, 110 (D7). 
135. Brauer, M.;  Koutrakis, P.;  Keeler, G. J.; Spengler, J. D., Indoor and Outdoor 
Concentrations of Inorganic Acidic Aerosols and Gases. J. Air Waste Manage. 1991, 41 (2), 171-
181. 
136. Koutrakis, P.;  Wolfson, J. M.;  Slater, J. L.;  Brauer, M.;  Spengler, J. D.;  Stevens, R. K.; 
Stone, C. L., Evaluation of an annular denuder/filter pack system to collect acidic aerosols and 
gases. Environ. Sci. Technol. 1988, 22 (12), 1463-1468. 
137. Weber, R. J.;  Guo, H. Y.;  Russell, A. G.; Nenes, A., High aerosol acidity despite declining 
atmospheric sulfate concentrations over the past 15 years. Nature Geosci. 2016, 9 (4), 282-285. 
138. Bougiatioti, A.;  Nikolaou, P.;  Stavroulas, I.;  Kouvarakis, G.;  Weber, R.;  Nenes, A.;  
Kanakidou, M.; Mihalopoulos, N., Particle water and pH in the eastern Mediterranean: source 
variability and implications for nutrient availability. Atmos. Chem. Phys. 2016, 16 (7), 4579-4591. 
139. Tao, Y.; Murphy, J. G., The sensitivity of PM2.5 acidity to meteorological parameters and 
chemical composition changes: 10-year records from six Canadian monitoring sites. Atmos. Chem. 
Phys. 2019, 19 (14), 9309-9320. 



 110 

140. Riva, M.;  Chen, Y.;  Zhang, Y.;  Lei, Z.;  Olson, N.;  Boyer, H. C.;  Narayan, S.;  Yee, L. 
D.;  Green, H.;  Cui, T.;  Zhang, Z.;  Baumann, K. D.;  Fort, M.;  Edgerton, E. S.;  Budisulistiorini, 
S.;  Rose, C. A.;  Ribeiro, I.;  e Oliveira, R. L.;  Santos, E.;  Szopa, S.;  Machado, C.;  Zhao, Y.;  
Alves, E.;  de Sa, S.;  Hu, W.;  Knipping, E.;  Shaw, S.;  Duvoisin Junior, S.;  Souza, R. A. F. d.;  
Palm, B. B.;  Jimenez, J. L.;  Glasius, M.;  Goldstein, A. H.;  Pye, H. O. T.;  Gold, A.;  Turpin, B. 
J.;  Vizuete, W.;  Martin, S. T.;  Thornton, J.;  Dutcher, C. S.;  Ault, A. P.; Surratt, J. D., Increasing 
Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol (IEPOX:Sulfinorg) Ratio Results in Extensive 
Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol 
Physicochemical Properties. Environ. Sci. Technol. 2019. 
141. Guo, H.;  Sullivan, A. P.;  Campuzano‐Jost, P.;  Schroder, J. C.;  Lopez‐Hilfiker, F. D.;  
Dibb, J. E.;  Jimenez, J. L.;  Thornton, J. A.;  Brown, S. S.; Nenes, A., Fine particle pH and the 
partitioning of nitric acid during winter in the northeastern United States. J. Geophys. Res.: Atmos. 
2016, 121 (17). 
142. Bougiatioti, A.;  Nikolaou, P.;  Stavroulas, I.;  Kouvarakis, G.;  Weber, R.;  Nenes, A.;  
Kanakidou, M.; Mihalopoulos, N., Particle water and pH in the eastern Mediterranean: source 
variability and implications for nutrient availability. Atmos. Chem. Phys. 2016, 16 (7), 4579-4591. 
143. Battaglia Jr, M. A.;  Douglas, S.; Hennigan, C. J., Effect of the urban heat island on aerosol 
pH. Environ. Sci. Technol. 2017, 51 (22), 13095-13103. 
144. Liu, M.;  Song, Y.;  Zhou, T.;  Xu, Z.;  Yan, C.;  Zheng, M.;  Wu, Z.;  Hu, M.;  Wu, Y.; 
Zhu, T., Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett. 2017, 
44 (10), 5213-5221. 
145. Craig, R. L.; Ault, A. P., Aerosol Acidity: Direct Measurement from a Spectroscopic 
Method. In Multiphase Environmental Chemistry in the Atmosphere, American Chemical Society: 
2018; Vol. 1299, pp 171-191. 
146. Kroll, J. H.; Seinfeld, J. H., Chemistry of secondary organic aerosol: Formation and 
evolution of low-volatility organics in the atmosphere. Atmospheric Environment 2008, 42 (16), 
3593-3624. 
147. Craig, R. L.;  Peterson, P. K.;  Nandy, L.;  Lei, Z.;  Hossain, M. A.;  Camarena, S.;  Dodson, 
R. A.;  Cook, R. D.;  Dutcher, C. S.; Ault, A. P., Direct Determination of Aerosol pH: Size-
Resolved Measurements of Submicrometer and Supermicrometer Aqueous Particles. Anal. Chem. 
2018. 
148. Riemer, N.;  Ault, A. P.;  West, M.;  Craig, R. L.; Curtis, J. H., Aerosol Mixing State: 
Measurements, Modeling, and Impacts. Rev. Geophys. 2019, 57 (2), 187-249. 
149. Bauer, S. E.;  Ault, A.; Prather, K. A., Evaluation of aerosol mixing state classes in the 
GISS modelE-MATRIX climate model using single-particle mass spectrometry measurements. J. 
Geophys. Res.: Atmos. 2013, 118 (17), 9834-9844. 
150. Bondy, A. L.;  Bonanno, D.;  Moffet, R. C.;  Wang, B.;  Laskin, A.; Ault, A. P., The diverse 
chemical mixing state of aerosol particles in the southeastern United States. Atmos. Chem. Phys. 
2018, 18 (16), 12595-12612. 
151. Li, S.; Vert, M., Biodegradation of Aliphatic Polyesters. 1995; pp 43-87. 
152. Tserki, V.;  Matzinos, P.;  Pavlidou, E.;  Vachliotis, D.; Panayiotou, C., Biodegradable 
aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene 
adipate). Polymer Degradation and Stability 2006, 91 (2), 367-376. 
153. Woodruff, M. A.; Hutmacher, D. W., The return of a forgotten polymer—Polycaprolactone 
in the 21st century. Prog. Polym. Sci. 2010, 35 (10), 1217-1256. 



 111 

154. Li, S., Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and 
glycolic acids. J. Biomed. Mater. Res. 1999, 48 (3), 342-353. 
155. Jung, J. H.;  Ree, M.; Kim, H., Acid- and base-catalyzed hydrolyses of aliphatic 
polycarbonates and polyesters. Catal. Today 2006, 115 (1-4), 283-287. 
156. Freedman, M. A.;  Ott, E.-J. E.; Marak, K. E., Role of pH in Aerosol Processes and 
Measurement Challenges. J. Phys. Chem. A 2019, 123 (7), 1275-1284. 
157. Kelly, G. M.; Albert, J. N. L., Ultrathin film crystallization of poly(ε-caprolactone) in 
blends containing styrene-isoprene block copolymers: The nano-rose morphology. Polymer 2017, 
117, 295-305. 
158. Ma, M.;  He, Z.;  Yang, J.;  Chen, F.;  Wang, K.;  Zhang, Q.;  Deng, H.; Fu, Q., Effect of 
Film Thickness on Morphological Evolution in Dewetting and Crystallization of 
Polystyrene/Poly(ε-caprolactone) Blend Films. Langmuir 2011, 27 (21), 13072-13081. 
159. Reiter, G., Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 
9 (5), 1344-1351. 
160. Nenes, A.;  Krom, M. D.;  Mihalopoulos, N.;  Van Cappellen, P.;  Shi, Z.;  Bougiatioti, A.;  
Zarmpas, P.; Herut, B., Atmospheric acidification of mineral aerosols: a source of bioavailable 
phosphorus for the oceans. Atmos. Chem. Phys. 2011, 11 (13), 6265-6272. 
161. Sobanska, S.;  Falgayrac, G.;  Rimetz-Planchon, J.;  Perdrix, E.;  Bremard, C.; Barbillat, J., 
Resolving the internal structure of individual atmospheric aerosol particle by the combination of 
Atomic Force Microscopy, ESEM-EDX, Raman and ToF-SIMS imaging. Microchem J. 2014, 
114, 89-98. 
162. Ray, K. K.;  Lee, H. D.;  Gutierrez, M. A.;  Chang, F. J.; Tivanski, A. V., Correlating 3D 
Morphology, Phase State, and Viscoelastic Properties of Individual Substrate-Deposited Particles. 
Analytical Chemistry 2019, 91 (12), 7621-7630. 
163. Imre, D. G.;  Xu, J.;  Tang, I.; McGraw, R., Ammonium bisulfate/water equilibrium and 
metastability phase diagrams. J. Phys. Chem. A 1997, 101 (23), 4191-4195. 
164. Cziczo, D.; Abbatt, J., Deliquescence, efflorescence, and supercooling of ammonium 
sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol phase in 
the atmosphere. J. Geophys. Res.: Atmos. 1999, 104 (D11), 13781-13790. 
165. Tang, I.;  Fung, K.;  Imre, D.; Munkelwitz, H., Phase transformation and metastability of 
hygroscopic microparticles. Aerosol Sci. Technol. 1995, 23 (3), 443-453. 
166. Onasch, T. B.;  Siefert, R. L.;  Brooks, S. D.;  Prenni, A. J.;  Murray, B.;  Wilson, M. A.; 
Tolbert, M. A., Infrared spectroscopic study of the deliquescence and efflorescence of ammonium 
sulfate aerosol as a function of temperature. Journal of Geophysical Research: Atmospheres 1999, 
104 (D17), 21317-21326. 
167. Ault, A. P.;  Guasco, T. L.;  Baltrusaitis, J.;  Ryder, O. S.;  Trueblood, J. V.;  Collins, D. 
B.;  Ruppel, M. J.;  Cuadra-Rodriguez, L. A.;  Prather, K. A.; Grassian, V. H., Heterogeneous 
reactivity of nitric acid with nascent sea spray aerosol: large differences observed between and 
within individual particles. J. Phys. Chem. Lett. 2014, 2493-2500. 
168. Bondy, A. L.;  Craig, R. L.;  Zhang, Z.;  Gold, A.;  Surratt, J. D.; Ault, A. P., Isoprene-
Derived Organosulfates: Vibrational Mode Analysis by Raman Spectroscopy, Acidity-Dependent 
Spectral Modes, and Observation in Individual Atmospheric Particles. The Journal of Physical 
Chemistry A 2018, 122 (1), 303-315. 
169. Tirella, P. N.;  Craig, R. L.;  Tubbs, D. B.;  Olson, N. E.;  Lei, Z.; Ault, A., Extending 
Surface Enhanced Raman Spectroscopy (SERS) of Atmospheric Aerosol Particles to the 
Accumulation Mode (150-800 nm). Environ. Sci.: Processes Impacts 2018. 



 112 

170. Slade, J. H.;  Ault, A. P.;  Bui, A. T.;  Ditto, J. C.;  Lei, Z.;  Bondy, A. L.;  Olson, N. E.;  
Cook, R. D.;  Desrochers, S. J.;  Harvey, R. M.;  Erickson, M. H.;  Wallace, H. W.;  Alvarez, S. 
L.;  Flynn, J. H.;  Boor, B. E.;  Petrucci, G. A.;  Gentner, D. R.;  Griffin, R. J.; Shepson, P. B., 
Bouncier Particles at Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive 
Diel Variations in the Aerosol Phase in a Mixed Forest. Environ. Sci. Technol. 2019. 
171. Hernández, A. R.;  Contreras, O. C.;  Acevedo, J. C.; Moreno, L. G. N., Poly (ε-
caprolactone) degradation under acidic and alkaline conditions. Am. J. Polym. Sci, 2013, 3, 70-75. 
172. Zhang, Y.;  Chen, Y.;  Lei, Z.;  Olson, N.;  Riva, M.;  Koss, A. R.;  Zhang, Z.;  Gold, A.;  
Jayne, J. T.;  Worsnop, D. R.;  Onasch, T. B.;  Kroll, J. H.;  Turpin, B. J.;  Ault, A. P.; Surratt, J. 
D., Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from 
Isoprene Epoxydiols (IEPOX) in Phase Separated Particles. ACS Earth Space Chem. 2019, 3 (12), 
2646-2658. 
173. Carlton, A. M.;  Wiedinmyer, C.; Kroll, J., A review of Secondary Organic Aerosol (SOA) 
formation from isoprene. Atmospheric Chemistry and Physics 2009, 9. 
174. Surratt, J. D.;  Chan, A. W. H.;  Eddingsaas, N. C.;  Chan, M.;  Loza, C. L.;  Kwan, A. J.;  
Hersey, S. P.;  Flagan, R. C.;  Wennberg, P. O.; Seinfeld, J. H., Reactive intermediates revealed in 
secondary organic aerosol formation from isoprene. Proceedings of the National Academy of 
Sciences 2010, 107 (15), 6640. 
175. Surratt, J. D.;  Gómez-González, Y.;  Chan, A. W. H.;  Vermeylen, R.;  Shahgholi, M.;  
Kleindienst, T. E.;  Edney, E. O.;  Offenberg, J. H.;  Lewandowski, M.;  Jaoui, M.;  Maenhaut, W.;  
Claeys, M.;  Flagan, R. C.; Seinfeld, J. H., Organosulfate Formation in Biogenic Secondary 
Organic Aerosol. The Journal of Physical Chemistry A 2008, 112 (36), 8345-8378. 
176. Zhang, Y.;  Katira, S.;  Lee, A.;  Lambe, A. T.;  Onasch, T. B.;  Xu, W.;  Brooks, W. A.;  
Canagaratna, M. R.;  Freedman, A.;  Jayne, J. T.;  Worsnop, D. R.;  Davidovits, P.;  Chandler, D.; 
Kolb, C. E., Kinetically controlled glass transition measurement of organic aerosol thin films using 
broadband dielectric spectroscopy. Atmos. Meas. Tech. 2018, 11 (6), 3479-3490. 
177. Zhang, Y.;  Nichman, L.;  Spencer, P.;  Jung, J. I.;  Lee, A.;  Heffernan, B. K.;  Gold, A.;  
Zhang, Z.;  Chen, Y.;  Canagaratna, M. R.;  Jayne, J. T.;  Worsnop, D. R.;  Onasch, T. B.;  Surratt, 
J. D.;  Chandler, D.;  Davidovits, P.; Kolb, C. E., The Cooling Rate- and Volatility-Dependent 
Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy. 
Environmental Science & Technology 2019, 53 (21), 12366-12378. 
178. Renbaum-Wolff, L.;  Grayson, J. W.;  Bateman, A. P.;  Kuwata, M.;  Sellier, M.;  Murray, 
B. J.;  Shilling, J. E.;  Martin, S. T.; Bertram, A. K., Viscosity of α-pinene secondary organic 
material and implications for particle growth and reactivity. Proceedings of the National Academy 
of Sciences 2013, 110 (20), 8014. 
179. Hatch, L. E.;  Creamean, J. M.;  Ault, A. P.;  Surratt, J. D.;  Chan, M. N.;  Seinfeld, J. H.;  
Edgerton, E. S.;  Su, Y. X.; Prather, K. A., Measurements of Isoprene-Derived Organosulfates in 
Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry-Part 2: Temporal Variability and 
Formation Mechanisms. Environ. Sci. Technol. 2011, 45 (20), 8648-8655. 
180. Surratt, J. D.;  Kroll, J. H.;  Kleindienst, T. E.;  Edney, E. O.;  Claeys, M.;  Sorooshian, A.;  
Ng, N. L.;  Offenberg, J. H.;  Lewandowski, M.;  Jaoui, M.;  Flagan, R. C.; Seinfeld, J. H., Evidence 
for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41 (2), 517-527. 
181. Hettiyadura, A. P. S.;  Al-Naiema, I. M.;  Hughes, D. D.;  Fang, T.; Stone, E. A., 
Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic secondary organic 
aerosol formation. Atmos. Chem. Phys. 2019, 19 (5), 3191-3206. 



 113 

182. Li, Y.;  Day, D. A.;  Stark, H.;  Jimenez, J. L.; Shiraiwa, M., Predictions of the glass 
transition temperature and viscosity of organic aerosols from volatility distributions. Atmos. Chem. 
Phys. 2020, 20 (13), 8103-8122. 
183. Tikkanen, O. P.;  Hämäläinen, V.;  Rovelli, G.;  Lipponen, A.;  Shiraiwa, M.;  Reid, J. P.;  
Lehtinen, K. E. J.; Yli-Juuti, T., Optimization of process models for determining volatility 
distribution and viscosity of organic aerosols from isothermal particle evaporation data. Atmos. 
Chem. Phys. 2019, 19 (14), 9333-9350. 
184. DeRieux, W. S. W.;  Li, Y.;  Lin, P.;  Laskin, J.;  Laskin, A.;  Bertram, A. K.;  Nizkorodov, 
S. A.; Shiraiwa, M., Predicting the glass transition temperature and viscosity of secondary organic 
material using molecular composition. Atmos. Chem. Phys. 2018, 18 (9), 6331-6351. 
185. Marcolli, C.; Krieger, U. K., Relevance of Particle Morphology for Atmospheric Aerosol 
Processing. Trends in Chemistry 2020, 2 (1), 1-3. 
186. Järvinen, E.;  Ignatius, K.;  Nichman, L.;  Kristensen, T.;  Fuchs, C.;  Höppel, N.;  Corbin, 
J.;  Craven, J.;  Duplissy, J.;  Ehrhart, S.;  Haddad, I.;  Frege, C.;  Gates, S.;  Gordon, H.;  Hoyle, 
C.;  Jokinen, T.;  Kallinger, P.;  Kirkby, J.;  Kiselev, A.; Schnaiter, M., Observation of viscosity 
transition in α-pinene secondary organic aerosol. Atmospheric Chemistry and Physics Discussions 
2015, 15, 28575-28617. 
187. Zhang, Y.;  Sanchez, M. S.;  Douet, C.;  Wang, Y.;  Bateman, A. P.;  Gong, Z.;  Kuwata, 
M.;  Renbaum-Wolff, L.;  Sato, B. B.;  Liu, P. F.;  Bertram, A. K.;  Geiger, F. M.; Martin, S. T., 
Changing shapes and implied viscosities of suspended submicron particles. Atmos. Chem. Phys. 
2015, 15 (14), 7819-7829. 
188. Kwamena, N. O. A.;  Buajarern, J.; Reid, J. P., Equilibrium Morphology of Mixed 
Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative Humidity and 
Surfactants. The Journal of Physical Chemistry A 2010, 114 (18), 5787-5795. 
189. O'Brien, R. E.;  Neu, A.;  Epstein, S. A.;  MacMillan, A. C.;  Wang, B.;  Kelly, S. T.;  
Nizkorodov, S. A.;  Laskin, A.;  Moffet, R. C.; Gilles, M. K., Physical properties of ambient and 
laboratory-generated secondary organic aerosol. Geophysical Research Letters 2014, 41 (12), 
4347-4353. 
190. Carlton, A. G.;  Wiedinmyer, C.; Kroll, J. H., A review of Secondary Organic Aerosol 
(SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9 (14), 4987-5005. 
191. Tsigaridis, K.;  Daskalakis, N.;  Kanakidou, M.;  Adams, P. J.;  Artaxo, P.;  Bahadur, R.;  
Balkanski, Y.;  Bauer, S. E.;  Bellouin, N.;  Benedetti, A.;  Bergman, T.;  Berntsen, T. K.;  Beukes, 
J. P.;  Bian, H.;  Carslaw, K. S.;  Chin, M.;  Curci, G.;  Diehl, T.;  Easter, R. C.;  Ghan, S. J.;  Gong, 
S. L.;  Hodzic, A.;  Hoyle, C. R.;  Iversen, T.;  Jathar, S.;  Jimenez, J. L.;  Kaiser, J. W.;  Kirkevåg, 
A.;  Koch, D.;  Kokkola, H.;  Lee, Y. H.;  Lin, G.;  Liu, X.;  Luo, G.;  Ma, X.;  Mann, G. W.;  
Mihalopoulos, N.;  Morcrette, J. J.;  Müller, J. F.;  Myhre, G.;  Myriokefalitakis, S.;  Ng, N. L.;  
O'Donnell, D.;  Penner, J. E.;  Pozzoli, L.;  Pringle, K. J.;  Russell, L. M.;  Schulz, M.;  Sciare, J.;  
Seland, Ø.;  Shindell, D. T.;  Sillman, S.;  Skeie, R. B.;  Spracklen, D.;  Stavrakou, T.;  Steenrod, 
S. D.;  Takemura, T.;  Tiitta, P.;  Tilmes, S.;  Tost, H.;  van Noije, T.;  van Zyl, P. G.;  von Salzen, 
K.;  Yu, F.;  Wang, Z.;  Wang, Z.;  Zaveri, R. A.;  Zhang, H.;  Zhang, K.;  Zhang, Q.; Zhang, X., 
The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. 
Phys. 2014, 14 (19), 10845-10895. 
192. Zheng, G.;  Su, H.;  Wang, S.;  Andreae, M. O.;  Pöschl, U.; Cheng, Y., Multiphase buffer 
theory explains contrasts in atmospheric aerosol acidity. Science 2020, 369 (6509), 1374-1377. 
193. Lambe, A. T.;  Ahern, A. T.;  Williams, L. R.;  Slowik, J. G.;  Wong, J. P. S.;  Abbatt, J. P. 
D.;  Brune, W. H.;  Ng, N. L.;  Wright, J. P.;  Croasdale, D. R.;  Worsnop, D. R.;  Davidovits, P.; 



 114 

Onasch, T. B., Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, 
secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmos. 
Meas. Tech. 2011, 4 (3), 445-461. 
194. Riva, M.;  Budisulistiorini, S. H.;  Zhang, Z.;  Gold, A.; Surratt, J. D., Chemical 
characterization of secondary organic aerosol constituents from isoprene ozonolysis in the 
presence of acidic aerosol. Atmospheric Environment 2016, 130, 5-13. 
195. Zhang, Z.;  Lin, Y. H.;  Zhang, H.;  Surratt, J. D.;  Ball, L. M.; Gold, A., Technical Note: 
Synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement 
products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran. Atmos. Chem. Phys. 2012, 12 
(18), 8529-8535. 
196. Riedel, T. P.;  Lin, Y.-H.;  Budisulistiorini, S. H.;  Gaston, C. J.;  Thornton, J. A.;  Zhang, 
Z.;  Vizuete, W.;  Gold, A.; Surratt, J. D., Heterogeneous Reactions of Isoprene-Derived Epoxides: 
Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates. Environmental 
Science & Technology Letters 2015, 2 (2), 38-42. 
197. Champion, W. M.;  Rothfuss, N. E.;  Petters, M. D.; Grieshop, A. P., Volatility and 
Viscosity Are Correlated in Terpene Secondary Organic Aerosol Formed in a Flow Reactor. 
Environmental Science & Technology Letters 2019, 6 (9), 513-519. 
198. Robinson, E. S.;  Saleh, R.; Donahue, N. M., Probing the Evaporation Dynamics of Mixed 
SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements. 
Environmental Science & Technology 2015, 49 (16), 9724-9732. 
199. Gao, S.;  Keywood, M.;  Ng, N. L.;  Surratt, J.;  Varutbangkul, V.;  Bahreini, R.;  Flagan, 
R. C.; Seinfeld, J. H., Low-Molecular-Weight and Oligomeric Components in Secondary Organic 
Aerosol from the Ozonolysis of Cycloalkenes and α-Pinene. The Journal of Physical Chemistry A 
2004, 108 (46), 10147-10164. 
200. Docherty, K. S.;  Wu, W.;  Lim, Y. B.; Ziemann, P. J., Contributions of Organic Peroxides 
to Secondary Aerosol Formed from Reactions of Monoterpenes with O3. Environmental Science 
& Technology 2005, 39 (11), 4049-4059. 
201. Witkowski, B.; Gierczak, T., Early stage composition of SOA produced by α-pinene/ozone 
reaction: α-Acyloxyhydroperoxy aldehydes and acidic dimers. Atmospheric Environment 2014, 
95, 59-70. 
202. Kundu, S.;  Fisseha, R.;  Putman, A. L.;  Rahn, T. A.; Mazzoleni, L. R., Molecular formula 
composition of β-caryophyllene ozonolysis SOA formed in humid and dry conditions. 
Atmospheric Environment 2017, 154, 70-81. 
203. Kanawati, B.;  Herrmann, F.;  Joniec, S.;  Winterhalter, R.; Moortgat, G., Mass 
spectrometric characterization of β -caryophyllene ozonolysis products in the aerosol studied using 
an electrospray triple quadrupole and time-of-flight analyzer hybrid system and density functional 
theory. Rapid communications in mass spectrometry : RCM 2008, 22, 165-86. 
204. Kahnt, A.;  Vermeylen, R.;  Iinuma, Y.;  Safi Shalamzari, M.;  Maenhaut, W.; Claeys, M., 
High-molecular-weight esters in α-pinene ozonolysis secondary organic aerosol: structural 
characterization and mechanistic proposal for their formation from highly oxygenated molecules. 
Atmos. Chem. Phys. 2018, 18 (11), 8453-8467. 
205. D'Ambro, E. L.;  Lee, B. H.;  Liu, J.;  Shilling, J. E.;  Gaston, C. J.;  Lopez-Hilfiker, F. D.;  
Schobesberger, S.;  Zaveri, R. A.;  Mohr, C.;  Lutz, A.;  Zhang, Z.;  Gold, A.;  Surratt, J. D.;  
Rivera-Rios, J. C.;  Keutsch, F. N.; Thornton, J. A., Molecular composition and volatility of 
isoprene photochemical oxidation secondary organic aerosol under low- and high-
NOx conditions. Atmos. Chem. Phys. 2017, 17 (1), 159-174. 



 115 

206. Surratt, J. D.;  Chan, A. W. H.;  Eddingsaas, N. C.;  Chan, M.;  Loza, C. L.;  Kwan, A. J.;  
Hersey, S. P.;  Flagan, R. C.;  Wennberg, P. O.; Seinfeld, J. H., Reactive intermediates revealed in 
secondary organic aerosol formation from isoprene. Proceedings of the National Academy of 
Sciences 2010, 107 (15), 6640-6645. 
207. Song, M.;  Liu, P. F.;  Hanna, S. J.;  Martin, S. T.; Bertram, A. K., Relative humidity-
dependent viscosities of isoprene-derived secondary organic material and atmospheric 
implications for isoprene-dominant forests. Atmospheric Chemistry and Physics Discussions 2015, 
15 (1), 1131-1169. 
208. Budisulistiorini, S. H.;  Nenes, A.;  Carlton, A. G.;  Surratt, J. D.;  McNeill, V. F.; Pye, H. 
O. T., Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol 
Production During the 2013 Southern Oxidant and Aerosol Study (SOAS). Environmental Science 
& Technology 2017, 51 (9), 5026-5034. 
209. Surratt, J. D.;  Chan, A. W.;  Eddingsaas, N. C.;  Chan, M.;  Loza, C. L.;  Kwan, A. J.;  
Hersey, S. P.;  Flagan, R. C.;  Wennberg, P. O.; Seinfeld, J. H., Reactive intermediates revealed in 
secondary organic aerosol formation from isoprene. Proc Natl Acad Sci U S A 2010, 107 (15), 
6640-5. 
210. Riva, M.;  Bell, D. M.;  Hansen, A.-M. K.;  Drozd, G. T.;  Zhang, Z.;  Gold, A.;  Imre, D.;  
Surratt, J. D.;  Glasius, M.; Zelenyuk, A., Effect of Organic Coatings, Humidity and Aerosol 
Acidity on Multiphase Chemistry of Isoprene Epoxydiols. Environmental Science & Technology 
2016, 50 (11), 5580-5588. 
211. Ault, A. P.;  Zhao, D.;  Ebben, C. J.;  Tauber, M. J.;  Geiger, F. M.;  Prather, K. A.; Grassian, 
V. H., Raman microspectroscopy and vibrational sum frequency generation spectroscopy as 
probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Phys 
Chem Chem Phys 2013, 15 (17), 6206-14. 
212. Venkateswarlu, P.;  Bist, H. D.; Jain, Y. S., Laser excited Raman spectrum of ammonium 
sulfate single crystal. Journal of Raman Spectroscopy 1975, 3 (2‐3), 143-151. 
213. Vargas Jentzsch, P.;  Kampe, B.;  Ciobota, V.;  Rosch, P.; Popp, J., Inorganic salts in 
atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim Acta A Mol 
Biomol Spectrosc 2013, 115, 697-708. 
214. Sobanska, S.;  Hwang, H.;  Choël, M.;  Jung, H.-J.;  Eom, H.-J.;  Kim, H.;  Barbillat, J.; 
Ro, C.-U., Investigation of the Chemical Mixing State of Individual Asian Dust Particles by the 
Combined Use of Electron Probe X-ray Microanalysis and Raman Microspectrometry. Analytical 
Chemistry 2012, 84 (7), 3145-3154. 
215. Zhou, Q.;  Pang, S.-F.;  Wang, Y.;  Ma, J.-B.; Zhang, Y.-H., Confocal Raman Studies of 
the Evolution of the Physical State of Mixed Phthalic Acid/Ammonium Sulfate Aerosol Droplets 
and the Effect of Substrates. The Journal of Physical Chemistry B 2014, 118 (23), 6198-6205. 
216. Hyttinen, N.;  Elm, J.;  Malila, J.;  Calderón, S. M.; Prisle, N. L., Thermodynamic properties 
of isoprene- and monoterpene-derived organosulfates estimated with COSMOtherm. Atmos. 
Chem. Phys. 2020, 20 (9), 5679-5696. 
217. Larkin, P., Infrared and raman spectroscopy : principles and spectral interpretation / Peter 
Larkin. Amsterdam 
Boston : Elsevier, c2011.: Amsterdam 
Boston, 2011; p x, 228 p. : ill. 
218. Feltracco, M.;  Barbaro, E.;  Contini, D.;  Zangrando, R.;  Toscano, G.;  Battistel, D.;  
Barbante, C.; Gambaro, A., Photo-oxidation products of α-pinene in coarse, fine and ultrafine 



 116 

aerosol: A new high sensitive HPLC-MS/MS method. Atmospheric Environment 2018, 180, 149-
155. 
219. Yu, J.;  Cocker, D. R.;  Griffin, R. J.;  Flagan, R. C.; Seinfeld, J. H., Gas-Phase Ozone 
Oxidation of Monoterpenes: Gaseous and Particulate Products. Journal of Atmospheric Chemistry 
1999, 34 (2), 207-258. 
220. Cahill, T. M.;  Seaman, V. Y.;  Charles, M. J.;  Holzinger, R.; Goldstein, A. H., Secondary 
organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra 
Nevada Mountains of California. Journal of Geophysical Research: Atmospheres 2006, 111 
(D16). 
221. Fankhauser, A. M.;  Lei, Z.;  Daley, K. R.;  Xiao, Y.;  Ault, B. S.; Surratt, J. D., Atmospheric 
Organosulfate Protonation State as a Function of Aerosol Acidity from Raman and Infrared 
Spectroscopy in prep 2021. 
222. Veghte, D. P.;  Altaf, M. B.; Freedman, M. A., Size dependence of the structure of organic 
aerosol. J Am Chem Soc 2013, 135 (43), 16046-9. 
223. Pierce, J. R.;  Leaitch, W. R.;  Liggio, J.;  Westervelt, D. M.;  Wainwright, C. D.;  Abbatt, 
J. P. D.;  Ahlm, L.;  Al-Basheer, W.;  Cziczo, D. J.;  Hayden, K. L.;  Lee, A. K. Y.;  Li, S. M.;  
Russell, L. M.;  Sjostedt, S. J.;  Strawbridge, K. B.;  Travis, M.;  Vlasenko, A.;  Wentzell, J. J. B.;  
Wiebe, H. A.;  Wong, J. P. S.; Macdonald, A. M., Nucleation and condensational growth to CCN 
sizes during a sustained pristine biogenic SOA event in a forested mountain valley. Atmos. Chem. 
Phys. 2012, 12 (7), 3147-3163. 
224. Wolf, M. J.;  Zhang, Y.;  Zawadowicz, M. A.;  Goodell, M.;  Froyd, K.;  Freney, E.;  
Sellegri, K.;  Rösch, M.;  Cui, T.;  Winter, M.;  Lacher, L.;  Axisa, D.;  DeMott, P. J.;  Levin, E. J. 
T.;  Gute, E.;  Abbatt, J.;  Koss, A.;  Kroll, J. H.;  Surratt, J. D.; Cziczo, D. J., A biogenic secondary 
organic aerosol source of cirrus ice nucleating particles. Nature Communications 2020, 11 (1), 
4834. 
225. Murray, B. J.;  Wilson, T. W.;  Dobbie, S.;  Cui, Z.;  Al-Jumur, S. M. R. K.;  Möhler, O.;  
Schnaiter, M.;  Wagner, R.;  Benz, S.;  Niemand, M.;  Saathoff, H.;  Ebert, V.;  Wagner, S.; 
Kärcher, B., Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. 
Nature Geoscience 2010, 3 (4), 233-237. 
226. Ehn, M.;  Thornton, J. A.;  Kleist, E.;  Sipilä, M.;  Junninen, H.;  Pullinen, I.;  Springer, 
M.;  Rubach, F.;  Tillmann, R.;  Lee, B.;  Lopez-Hilfiker, F.;  Andres, S.;  Acir, I.-H.;  Rissanen, 
M.;  Jokinen, T.;  Schobesberger, S.;  Kangasluoma, J.;  Kontkanen, J.;  Nieminen, T.;  Kurtén, T.;  
Nielsen, L. B.;  Jørgensen, S.;  Kjaergaard, H. G.;  Canagaratna, M.;  Maso, M. D.;  Berndt, T.;  
Petäjä, T.;  Wahner, A.;  Kerminen, V.-M.;  Kulmala, M.;  Worsnop, D. R.;  Wildt, J.; Mentel, T. 
F., A large source of low-volatility secondary organic aerosol. Nature 2014, 506 (7489), 476-479. 
227. Scott, C. E.;  Spracklen, D. V.;  Pierce, J. R.;  Riipinen, I.;  D'Andrea, S. D.;  Rap, A.;  
Carslaw, K. S.;  Forster, P. M.;  Artaxo, P.;  Kulmala, M.;  Rizzo, L. V.;  Swietlicki, E.;  Mann, G. 
W.; Pringle, K. J., Impact of gas-to-particle partitioning approaches on the simulated radiative 
effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 2015, 15 (22), 12989-13001. 
228. Riipinen, I.;  Yli-Juuti, T.;  Pierce, J. R.;  Petäjä, T.;  Worsnop, D. R.;  Kulmala, M.; 
Donahue, N. M., The contribution of organics to atmospheric nanoparticle growth. Nature 
Geoscience 2012, 5 (7), 453-458. 
229. Seinfeld, J. H.; Pandis, S. N., Atmospheric Chemistry and Physics. John Wiley & Sons, 
Inc.: NJ, 2016. 



 117 

230. Au - Zhang, Y.;  Au - Gong, Z.;  Au - Sa, S. d.;  Au - Bateman, A. P.;  Au - Liu, Y.;  Au - 
Li, Y.;  Au - Geiger, F. M.; Au - Martin, S. T., Production and Measurement of Organic Particulate 
Matter in the Harvard Environmental Chamber. JoVE 2018,  (141), e55685. 
231. Jimenez, J. L.;  Canagaratna, M. R.;  Donahue, N. M.;  Prevot, A. S. H.;  Zhang, Q.;  Kroll, 
J. H.;  DeCarlo, P. F.;  Allan, J. D.;  Coe, H.;  Ng, N. L.;  Aiken, A. C.;  Docherty, K. S.;  Ulbrich, 
I. M.;  Grieshop, A. P.;  Robinson, A. L.;  Duplissy, J.;  Smith, J. D.;  Wilson, K. R.;  Lanz, V. A.;  
Hueglin, C.;  Sun, Y. L.;  Tian, J.;  Laaksonen, A.;  Raatikainen, T.;  Rautiainen, J.;  Vaattovaara, 
P.;  Ehn, M.;  Kulmala, M.;  Tomlinson, J. M.;  Collins, D. R.;  Cubison, M. J.;  Dunlea, J.;  
Huffman, J. A.;  Onasch, T. B.;  Alfarra, M. R.;  Williams, P. I.;  Bower, K.;  Kondo, Y.;  Schneider, 
J.;  Drewnick, F.;  Borrmann, S.;  Weimer, S.;  Demerjian, K.;  Salcedo, D.;  Cottrell, L.;  Griffin, 
R.;  Takami, A.;  Miyoshi, T.;  Hatakeyama, S.;  Shimono, A.;  Sun, J. Y.;  Zhang, Y. M.;  Dzepina, 
K.;  Kimmel, J. R.;  Sueper, D.;  Jayne, J. T.;  Herndon, S. C.;  Trimborn, A. M.;  Williams, L. R.;  
Wood, E. C.;  Middlebrook, A. M.;  Kolb, C. E.;  Baltensperger, U.; Worsnop, D. R., Evolution of 
Organic Aerosols in the Atmosphere. Science 2009, 326 (5959), 1525. 
232. Ng, N. L.;  Canagaratna, M. R.;  Zhang, Q.;  Jimenez, J. L.;  Tian, J.;  Ulbrich, I. M.;  Kroll, 
J. H.;  Docherty, K. S.;  Chhabra, P. S.;  Bahreini, R.;  Murphy, S. M.;  Seinfeld, J. H.;  Hildebrandt, 
L.;  Donahue, N. M.;  DeCarlo, P. F.;  Lanz, V. A.;  Prévôt, A. S. H.;  Dinar, E.;  Rudich, Y.; 
Worsnop, D. R., Organic aerosol components observed in Northern Hemispheric datasets from 
Aerosol Mass Spectrometry. Atmos. Chem. Phys. 2010, 10 (10), 4625-4641. 
233. Zhang, H.;  Yee, L. D.;  Lee, B. H.;  Curtis, M. P.;  Worton, D. R.;  Isaacman-VanWertz, 
G.;  Offenberg, J. H.;  Lewandowski, M.;  Kleindienst, T. E.;  Beaver, M. R.;  Holder, A. L.;  
Lonneman, W. A.;  Docherty, K. S.;  Jaoui, M.;  Pye, H. O. T.;  Hu, W.;  Day, D. A.;  Campuzano-
Jost, P.;  Jimenez, J. L.;  Guo, H.;  Weber, R. J.;  de Gouw, J.;  Koss, A. R.;  Edgerton, E. S.;  
Brune, W.;  Mohr, C.;  Lopez-Hilfiker, F. D.;  Lutz, A.;  Kreisberg, N. M.;  Spielman, S. R.;  
Hering, S. V.;  Wilson, K. R.;  Thornton, J. A.; Goldstein, A. H., Monoterpenes are the largest 
source of summertime organic aerosol in the southeastern United States. Proceedings of the 
National Academy of Sciences 2018, 115 (9), 2038. 
234. Khan, F.;  Kwapiszewska, K.;  Zhang, Y.;  Chen, Y.;  Lambe, A. T.;  Kołodziejczyk, A.;  
Jalal, N.;  Rudzinski, K.;  Martínez-Romero, A.;  Fry, R. C.;  Surratt, J. D.; Szmigielski, R., 
Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and Its Molecular 
Tracers in Human Lung Cell Lines. Chemical Research in Toxicology 2021, 34 (3), 817-832. 
235. Chowdhury, P. H.;  He, Q.;  Lasitza Male, T.;  Brune, W. H.;  Rudich, Y.; Pardo, M., 
Exposure of Lung Epithelial Cells to Photochemically Aged Secondary Organic Aerosol Shows 
Increased Toxic Effects. Environmental Science & Technology Letters 2018, 5 (7), 424-430. 
236. Chowdhury, P. H.;  He, Q.;  Carmieli, R.;  Li, C.;  Rudich, Y.; Pardo, M., Connecting the 
Oxidative Potential of Secondary Organic Aerosols with Reactive Oxygen Species in Exposed 
Lung Cells. Environmental Science & Technology 2019, 53 (23), 13949-13958. 
237. Jason D. Surratt, Y.-H. L., Maiko Arashiro, William G. Vizuete, Zhenfa Zhang, Avram 
Gold, Ilona Jaspers, and Rebecca C. Fry Understanding the Early Biological Effects of Isoprene-
Derived Particulate Matter Enhanced by Anthropogenic Pollutants; Health Effects Institute: 
Boston, Massachusetts, 2019. 
238. Guenther, A.;  Jiang, X.;  Shah, T.;  Huang, L.;  Kemball-Cook, S.; Yarwood, G. In Model 
of Emissions of Gases and Aerosol from Nature Version 3 (MEGAN3) for Estimating Biogenic 
Emissions, Air Pollution Modeling and its Application XXVI, Cham, 2020//; Mensink, C.;  Gong, 
W.; Hakami, A., Eds. Springer International Publishing: Cham, 2020; pp 187-192. 



 118 

239. Guenther, A.;  Karl, T.;  Harley, P.;  Wiedinmyer, C.;  Palmer, P. I.; Geron, C., Estimates 
of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols 
from Nature). Atmospheric Chemistry & Physics 2006, 6, 3181. 
240. Paulot, F.;  Crounse Jd Fau - Kjaergaard, H. G.;  Kjaergaard Hg Fau - Kürten, A.;  Kürten 
A Fau - St Clair, J. M.;  St Clair Jm Fau - Seinfeld, J. H.;  Seinfeld Jh Fau - Wennberg, P. O.; 
Wennberg, P. O., Unexpected epoxide formation in the gas-phase photooxidation of isoprene.  
(1095-9203 (Electronic)). 
241. Bates, K. H.;  Crounse, J. D.;  St. Clair, J. M.;  Bennett, N. B.;  Nguyen, T. B.;  Seinfeld, J. 
H.;  Stoltz, B. M.; Wennberg, P. O., Gas Phase Production and Loss of Isoprene Epoxydiols. The 
Journal of Physical Chemistry A 2014, 118 (7), 1237-1246. 
242. Jang, M.;  Czoschke, N. M.;  Lee, S.; Kamens, R. M., Heterogeneous Atmospheric Aerosol 
Production by Acid-Catalyzed Particle-Phase Reactions. Science 2002, 298 (5594), 814. 
243. Czoschke, N. M.;  Jang, M.; Kamens, R. M., Effect of acidic seed on biogenic secondary 
organic aerosol growth. Atmospheric Environment 2003, 37 (30), 4287-4299. 
244. Budisulistiorini, S. H.;  Baumann, K.;  Edgerton, E. S.;  Bairai, S. T.;  Mueller, S.;  Shaw, 
S. L.;  Knipping, E. M.;  Gold, A.; Surratt, J. D., Seasonal characterization of submicron aerosol 
chemical composition and organic aerosol sources in the southeastern United States: Atlanta, 
Georgia,and Look Rock, Tennessee. Atmos. Chem. Phys. 2016, 16 (8), 5171-5189. 
245. Xu, L.;  Guo, H.;  Boyd, C. M.;  Klein, M.;  Bougiatioti, A.;  Cerully, K. M.;  Hite, J. R.;  
Isaacman-VanWertz, G.;  Kreisberg, N. M.;  Knote, C.;  Olson, K.;  Koss, A.;  Goldstein, A. H.;  
Hering, S. V.;  de Gouw, J.;  Baumann, K.;  Lee, S.-H.;  Nenes, A.;  Weber, R. J.; Ng, N. L., Effects 
of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the 
southeastern United States. Proceedings of the National Academy of Sciences 2015, 112 (1), 37. 
246. Budisulistiorini, S. H.;  Li, X.;  Bairai, S. T.;  Renfro, J.;  Liu, Y.;  Liu, Y. J.;  McKinney, 
K. A.;  Martin, S. T.;  McNeill, V. F.;  Pye, H. O. T.;  Nenes, A.;  Neff, M. E.;  Stone, E. A.;  
Mueller, S.;  Knote, C.;  Shaw, S. L.;  Zhang, Z.;  Gold, A.; Surratt, J. D., Examining the effects 
of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 
2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. 
Atmos. Chem. Phys. 2015, 15 (15), 8871-8888. 
247. Budisulistiorini, S. H.;  Canagaratna, M. R.;  Croteau, P. L.;  Marth, W. J.;  Baumann, K.;  
Edgerton, E. S.;  Shaw, S. L.;  Knipping, E. M.;  Worsnop, D. R.;  Jayne, J. T.;  Gold, A.; Surratt, 
J. D., Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from 
Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical 
Speciation Monitor. Environmental Science & Technology 2013, 47 (11), 5686-5694. 
248. Hu, W. W.;  Campuzano-Jost, P.;  Palm, B. B.;  Day, D. A.;  Ortega, A. M.;  Hayes, P. L.;  
Krechmer, J. E.;  Chen, Q.;  Kuwata, M.;  Liu, Y. J.;  de Sá, S. S.;  McKinney, K.;  Martin, S. T.;  
Hu, M.;  Budisulistiorini, S. H.;  Riva, M.;  Surratt, J. D.;  St. Clair, J. M.;  Isaacman-Van Wertz, 
G.;  Yee, L. D.;  Goldstein, A. H.;  Carbone, S.;  Brito, J.;  Artaxo, P.;  de Gouw, J. A.;  Koss, A.;  
Wisthaler, A.;  Mikoviny, T.;  Karl, T.;  Kaser, L.;  Jud, W.;  Hansel, A.;  Docherty, K. S.;  
Alexander, M. L.;  Robinson, N. H.;  Coe, H.;  Allan, J. D.;  Canagaratna, M. R.;  Paulot, F.; 
Jimenez, J. L., Characterization of a real-time tracer for isoprene epoxydiols-derived secondary 
organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmos. Chem. 
Phys. 2015, 15 (20), 11807-11833. 
249. Chan, L. P.; Chan, C. K., Role of the Aerosol Phase State in Ammonia/Amines Exchange 
Reactions. Environmental Science & Technology 2013, 47 (11), 5755-5762. 



 119 

250. Pajunoja, A.;  Malila, J.;  Hao, L.;  Joutsensaari, J.;  Lehtinen, K. E. J.; Virtanen, A., 
Estimating the Viscosity Range of SOA Particles Based on Their Coalescence Time. Aerosol 
Science and Technology 2014, 48 (2), i-iv. 
251. Claeys, M.;  Graham, B.;  Vas, G.;  Wang, W.;  Vermeylen, R.;  Pashynska, V.;  Cafmeyer, 
J.;  Guyon, P.;  Andreae, M. O.;  Artaxo, P.; Maenhaut, W., Formation of Secondary Organic 
Aerosols Through Photooxidation of Isoprene. Science 2004, 303 (5661), 1173. 
252. Claeys, M.;  Wang, W.;  Ion, A. C.;  Kourtchev, I.;  Gelencsér, A.; Maenhaut, W., 
Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products 
through reaction with hydrogen peroxide. Atmospheric Environment 2004, 38 (25), 4093-4098. 
253. Lin, Y.-H.;  Budisulistiorini, S. H.;  Chu, K.;  Siejack, R. A.;  Zhang, H.;  Riva, M.;  Zhang, 
Z.;  Gold, A.;  Kautzman, K. E.; Surratt, J. D., Light-Absorbing Oligomer Formation in Secondary 
Organic Aerosol from Reactive Uptake of Isoprene Epoxydiols. Environmental Science & 
Technology 2014, 48 (20), 12012-12021. 
254. Veghte, D. P.;  Altaf, M. B.; Freedman, M. A., Size Dependence of the Structure of Organic 
Aerosol. Journal of the American Chemical Society 2013, 135 (43), 16046-16049. 
255. Lienhard, D. M.;  Huisman, A. J.;  Krieger, U. K.;  Rudich, Y.;  Marcolli, C.;  Luo, B. P.;  
Bones, D. L.;  Reid, J. P.;  Lambe, A. T.;  Canagaratna, M. R.;  Davidovits, P.;  Onasch, T. B.;  
Worsnop, D. R.;  Steimer, S. S.;  Koop, T.; Peter, T., Viscous organic aerosol particles in the upper 
troposphere: diffusivity-controlled water uptake and ice nucleation? Atmos. Chem. Phys. 2015, 15 
(23), 13599-13613. 
256. Zhou, S.;  Hwang, B. C. H.;  Lakey, P. S. J.;  Zuend, A.;  Abbatt, J. P. D.; Shiraiwa, M., 
Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and 
diffusion limitations. Proceedings of the National Academy of Sciences 2019, 116 (24), 11658. 
257. Drozd, G.;  Woo, J.; McNeill, V. F., Self-limited uptake of α-pinene oxide to acidic aerosol: 
The effects of liquid-liquid phase separation and implications for the formation of secondary 
organic aerosol and organosulfates from epoxides. Atmospheric Chemistry & Physics Discussions 
2013, 13, 7151-7174. 
258. Guo, H.;  Otjes, R.;  Schlag, P.;  Kiendler-Scharr, A.;  Nenes, A.; Weber, R. J., 
Effectiveness of ammonia reduction on control of fine particle nitrate. Atmos. Chem. Phys. 2018, 
18 (16), 12241-12256. 
259. Rindelaub, J. D.;  McAvey, K. M.; Shepson, P. B., The photochemical production of 
organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis. Atmospheric 
Environment 2015, 100, 193-201. 
260. Dubois, C.;  Cholleton, D.;  Gemayel, R.;  Chen, Y.;  Surratt, J. D.;  George, C.;  Rairoux, 
P.;  Miffre, A.; Riva, M., Decrease in sulfate aerosol light backscattering by reactive uptake of 
isoprene epoxydiols. Physical Chemistry Chemical Physics 2021. 
261. Nenes, A.;  Krom, M. D.;  Mihalopoulos, N.;  Van Cappellen, P.;  Shi, Z.;  Bougiatioti, A.;  
Zarmpas, P.; Herut, B., Atmospheric acidification of mineral aerosols: a source of bioavailable 
phosphorus for the oceans. Atmos. Chem. Phys. 2011, 11 (13), 6265-6272. 
262. Battaglia, M. A.;  Douglas, S.; Hennigan, C. J., Effect of the Urban Heat Island on Aerosol 
pH. Environmental Science & Technology 2017, 51 (22), 13095-13103. 
263. Bondy, A. L.;  Wang, B.;  Laskin, A.;  Craig, R. L.;  Nhliziyo, M. V.;  Bertman, S. B.;  
Pratt, K. A.;  Shepson, P. B.; Ault, A. P., Inland Sea Spray Aerosol Transport and Incomplete 
Chloride Depletion: Varying Degrees of Reactive Processing Observed during SOAS. 
Environmental Science & Technology 2017, 51 (17), 9533-9542. 



 120 

264. Riva, M.;  Budisulistiorini, S. H.;  Chen, Y.;  Zhang, Z.;  D’Ambro, E. L.;  Zhang, X.;  
Gold, A.;  Turpin, B. J.;  Thornton, J. A.;  Canagaratna, M. R.; Surratt, J. D., Chemical 
Characterization of Secondary Organic Aerosol from Oxidation of Isoprene 
Hydroxyhydroperoxides. Environmental Science & Technology 2016, 50 (18), 9889-9899. 
265. Cui, T.;  Zeng, Z.;  dos Santos, E. O.;  Zhang, Z.;  Chen, Y.;  Zhang, Y.;  Rose, C. A.;  
Budisulistiorini, S. H.;  Collins, L. B.;  Bodnar, W. M.;  de Souza, R. A. F.;  Martin, S. T.;  
Machado, C. M. D.;  Turpin, B. J.;  Gold, A.;  Ault, A. P.; Surratt, J. D., Development of a 
hydrophilic interaction liquid chromatography (HILIC) method for the chemical characterization 
of water-soluble isoprene epoxydiol (IEPOX)-derived secondary organic aerosol. Environmental 
Science: Processes & Impacts 2018, 20 (11), 1524-1536. 
266. Imre, D. G.;  Xu, J.;  Tang, I. N.; McGraw, R., Ammonium Bisulfate/Water Equilibrium 
and Metastability Phase Diagrams. The Journal of Physical Chemistry A 1997, 101 (23), 4191-
4195. 
267. Cziczo, D. J.; Abbatt, J. P. D., Deliquescence, efflorescence, and supercooling of 
ammonium sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol 
phase in the atmosphere. Journal of Geophysical Research: Atmospheres 1999, 104 (D11), 13781-
13790. 
268. Cheng, Z.;  Sharma, N.;  Tseng, K.-P.;  Kovarik, L.; China, S., Direct observation and 
assessment of phase states of ambient and lab-generated sub-micron particles upon humidification. 
RSC Advances 2021, 11 (25), 15264-15272. 
269. Ault, A. P.;  Moffet, R. C.;  Baltrusaitis, J.;  Collins, D. B.;  Ruppel, M. J.;  Cuadra-
Rodriguez, L. A.;  Zhao, D.;  Guasco, T. L.;  Ebben, C. J.;  Geiger, F. M.;  Bertram, T. H.;  Prather, 
K. A.; Grassian, V. H., Size-Dependent Changes in Sea Spray Aerosol Composition and Properties 
with Different Seawater Conditions. Environmental Science & Technology 2013, 47 (11), 5603-
5612. 
270. May, N. W.;  Axson, J. L.;  Watson, A.;  Pratt, K. A.; Ault, A. P., Lake spray aerosol 
generation: a method for producing representative particles from freshwater wave breaking. Atmos. 
Meas. Tech. 2016, 9 (9), 4311-4325. 
271. Vargas Jentzsch, P.;  Kampe, B.;  Ciobotă, V.;  Rösch, P.; Popp, J., Inorganic salts in 
atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochimica Acta 
Part A: Molecular and Biomolecular Spectroscopy 2013, 115, 697-708. 
272. Doughty, D. C.; Hill, S. C., Raman spectra of atmospheric aerosol particles: Clusters and 
time-series for a 22.5 hr sampling period. Journal of Quantitative Spectroscopy and Radiative 
Transfer 2020, 248, 106907. 
273. Eddingsaas, N. C.;  VanderVelde, D. G.; Wennberg, P. O., Kinetics and Products of the 
Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols. The Journal 
of Physical Chemistry A 2010, 114 (31), 8106-8113. 
274. Piletic, I. R.;  Edney, E. O.; Bartolotti, L. J., A computational study of acid catalyzed 
aerosol reactions of atmospherically relevant epoxides. Physical Chemistry Chemical Physics 
2013, 15 (41), 18065-18076. 
275. Fitzgerald, E.;  Ault, A. P.;  Zauscher, M. D.;  Mayol-Bracero, O. L.; Prather, K. A., 
Comparison of the mixing state of long-range transported Asian and African mineral dust. Atmos. 
Environ. 2015, 115, 19-25. 
276. Gunsch, M. J.;  May, N. W.;  Wen, M.;  Bottenus, C. L. H.;  Gardner, D. J.;  VanReken, T. 
M.;  Bertman, S. B.;  Hopke, P. K.;  Ault, A. P.; Pratt, K. A., Ubiquitous influence of wildfire 



 121 

emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great 
Lakes region. Atmos. Chem. Phys. 2018, 18 (5), 3701-3715. 
277. Gunsch, M. J.;  Schmidt, S. A.;  Gardner, D. J.;  Bondy, A. L.;  May, N. W.;  Bertman, S. 
B.;  Pratt, K. A.; Ault, A. P., Particle growth in an isoprene-rich forest: Influences of urban, 
wildfire, and biogenic air masses. Atmos. Environ. 2018, 178, 255-264. 
278. May, N. W.;  Gunsch, M. J.;  Olson, N. E.;  Bondy, A. L.;  Kirpes, R. M.;  Bertman, S. B.;  
China, S.;  Laskin, A.;  Hopke, P. K.;  Ault, A. P.; Pratt, K. A., Unexpected Contributions of Sea 
Spray and Lake Spray Aerosol to Inland Particulate Matter. Env. Sci. Tech. Lett. 2018, 5 (7), 405-
412. 
279. Einstein, A., The motion of elements suspended in static liquids as claimed in the molecular 
kinetic theory of heat. Annalen der Physik 1905, 322 (8), 549-560. 
280. Seinfeld, J. H. a. P., S.N., Atmospheric Chemistry and Physics: From Air Pollution to 
Climate Change. John Wiley & Sons: Hoboken, 2016. 
281. Shiraiwa, M.;  Ammann, M.;  Koop, T.; Pöschl, U., Gas uptake and chemical aging of 
semisolid organic aerosol particles. Proceedings of the National Academy of Sciences 2011, 108 
(27), 11003-11008. 
282. Renbaum-Wolff, L.;  Grayson, J. W.; Bertram, A. K., Technical Note: New methodology 
for measuring viscosities in small volumes characteristic of environmental chamber particle 
samples. Atmos. Chem. Phys. 2013, 13 (2), 791-802. 
283. Dette, H. P.;  Qi, M.;  Schroder, D. C.;  Godt, A.; Koop, T., Glass-forming properties of 3-
methylbutane-1,2,3-tricarboxylic acid and its mixtures with water and pinonic acid. J Phys Chem 
A 2014, 118 (34), 7024-33. 
284. Bzdek, B. R.;  Collard, L.;  Sprittles, J. E.;  Hudson, A. J.; Reid, J. P., Dynamic 
measurements and simulations of airborne picolitre-droplet coalescence in holographic optical 
tweezers. J Chem Phys 2016, 145 (5), 054502. 
285. Bateman, A. P.;  Belassein, H.; Martin, S. T., Impactor Apparatus for the Study of Particle 
Rebound: Relative Humidity and Capillary Forces. Aerosol Science and Technology 2014, 48 (1), 
42-52. 
286. Brizuela, A. B.;  Bichara, L. C.;  Romano, E.;  Yurquina, A.;  Locatelli, S.; Brandan, S. A., 
A complete characterization of the vibrational spectra of sucrose. Carbohydr Res 2012, 361, 212-
8. 
287. Slade, L.; Levine, H., Water and the Glass Transition — Dependence of the Glass 
Transition on Composition and Chemical Structure: Special Implications for Flour Functionality 
in Cookie Baking**The full version of this paper, complete with ali Tables and accompanying 
references, will appear in a later issue of Journal of Food Engineering. (Slade, L. & Levine, H. 
(1994). J. Food Engng, in press). In Water in Foods, Fito, P.;  Mulet, A.; McKenna, B., Eds. 
Pergamon: Amsterdam, 1994; pp 143-188. 
288. Kalika, D. S.;  Gibson, D. G.;  Quiram, D. J.; Register, R. A., Relationship between 
morphology and glass transition temperature in solvent-crystallized poly(aryl ether ketones). 
Journal of Polymer Science Part B: Polymer Physics 1998, 36 (1), 65-73. 
289. Drake, A. C.;  Lee, Y.;  Burgess, E. M.;  Karlsson, J. O. M.;  Eroglu, A.; Higgins, A. Z., 
Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and 
penetrating cryoprotectants in physiological buffer. PLoS One 2018, 13 (1), e0190713. 
290. Kumar, B. R.; Rao, T. S., AFM Studies on surface morphology, topography and texture of 
nanostructured zinc aluminum oxide thin films. Dig. J. Nanomater. Bios. 2012, 7 (4), 1881-1889. 



 122 

291. Potukuchi, S.; Wexler, A. S., Identifying solid-aqueous phase transitions in atmospheric 
aerosols—I. Neutral-acidity solutions. Atmospheric Environment 1995, 29 (14), 1663-1676. 
292. Atha, D. H.;  Gaigalas, A. K.; Reipa, V., Structural Analysis of Heparin by Raman 
Spectroscopy. Journal of Pharmaceutical Sciences 1996, 85 (1), 52-56. 
293. Ghosh, A.;  Raha, S.;  Dey, S.;  Chatterjee, K.;  Roy Chowdhury, A.; Barui, A., 
Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive exfoliative 
cytology for the screening of oral cancer. Analyst 2019, 144 (4), 1309-1325. 
294. Hodgman, C. D., Handbook of Chemistry and Physics: A Ready-Reference Book of 
Chemical and Physical Data. Chemical Rubber Company: Cleveland, Ohio, 1961. 
 


	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Equations
	List of Appendices
	Abstract
	Chapter 1. Introduction
	1.1 Characteristics of Atmospheric Aerosol
	1.2 Aerosol Physicochemical Properties
	1.2.1 Aerosol Acidity
	1.2.2 Aerosol Morphology
	1.2.3 Aerosol Viscosity and Phase State

	1.3 Physicochemical Characterization of Individual Aerosol Particles
	1.3.1 Raman Microspectroscopy
	1.3.2 Atomic Force Microscopy Photothermal Infrared Spectroscopy (AFM-PTIR)
	1.3.3 Optical Photothermal Infrared Spectroscopy (O-PTIR)

	1.4 Research Objectives and Scope of Dissertation

	Chapter 2. Aerosol Acidity Sensing via Polymer Degradation
	2.1 Introduction
	2.2 Methods
	2.2.1 PCL Thin Film Preparation
	2.2.2 Aerosol Generation and Impaction
	2.2.3 Microscopic and Spectroscopic Characterization

	2.3 Results and Discussion
	2.4 Conclusions
	2.5 Acknowledgements

	Chapter 3. Morphology and Viscosity Changes after Reactive Uptake of Isoprene Epoxydiols in Submicrometer Phase Separated Particles with Secondary Organic Aerosol Formed from Different Volatile Organic Compounds
	3.1 Introduction
	3.2 Methods
	3.2.1 Aerosol Particle Generation and Collection
	3.2.2 Microscopy and Spectroscopy Analysis

	3.3 Results and Discussion
	3.4 Conclusions
	3.5 Acknowledgements

	Chapter 4.  Initial pH Governs Secondary Organic Aerosol Viscosity and Morphology after Uptake of Isoprene Epoxydiols (IEPOX)
	4.1 Introduction
	4.2 Methods
	4.2.1 Chamber Experiments
	4.2.2 Microscopy Imaging and Spectroscopy
	4.2.3 Characterization of Organosulfate Formation

	4.3 Results and Discussion
	4.4 Conclusions
	4.5 Acknowledgements

	Chapter 5. Direct Measurement of Glass Transition Temperature for Individual Submicron Atmospheric Aerosol
	5.1 Introduction
	5.2 Method
	5.2.1 Aerosol Generation and Impaction
	5.2.2 Ambient Particles Sampling
	5.2.3 Differential Scanning Calorimetry Bulk Measurement
	5.2.4 Single Particle Nano Thermal Analysis Characterization
	5.2.5 Single Particle Chemical Characterization
	5.2.6 Glass Transition Temperature Prediction

	5.3 Results and Discussion
	5.4 Conclusion
	5.5 Acknowledgments

	Chapter 6. Conclusion and Future Directions
	6.1 Conclusion
	6.2 Future Directions

	Appendices
	References

