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ABSTRACT

This thesis focuses on advancing operations research and statistical learning methods
for medical decision making to improve the care of patients diagnosed with chronic con-
ditions. Because the National Center for Disease Prevention (2020) estimates chronic
conditions affect approximately 60% of the US adult population, improving the care of pa-
tients with chronic conditions will improve the lives of most Americans. Patients diagnosed
with chronic conditions face lifestyle changes, rising treatment costs, and frequently re-
ductions in quality of life. To improve the way in which clinicians treat patients with chronic
conditions, treatment decisions can be supplemented by evidenced-based, data driven
algorithmic decision-making methods.

This thesis provides data-driven methodologies of a general nature that are instanti-
ated for several medical decision-making problems. In chapter two we proactively identify
the time of a patient’s primary open angle glaucoma (POAG) progression under high
measurement error conditions using a soft voting ensemble classification model. When
medical tests have low residual variability (e.g., empirical difference between the patient’s
true and recorded value is small) they can effectively, without the use of sophisticated
methods, identify the patient’s current disease phase; however, when medical tests have
moderate to high residual variability this may not be the case. We present a solution to
the latter case. We find rapid progression disease phases can be proactively identified
with the combination of denoising and supervised classification methods.

In chapter three, we determine the optimal time to next follow-up appointment for pa-
tients with the chronic condition of ocular hypertension (OHTN). Patients with OHTN are at
increased risk of developing glaucoma and should be observed over their lifetime. Follow-
up appointment schedules that are chosen poorly can result in, at minimum, delay in the
detection of a patient’s progression to glaucoma, and at worse, yield poor patient out-
comes. To this end, we present a personalized decision support algorithm that uses the
fitted Q-iteration reinforcement learning algorithm to recommend personalized time-to-
next follow-up schedules that are based on a patient’s medical state. We find personal-
ized follow-up appointments schedules produced by reinforcement learning methods are
superior to both 1-year and 2-year fixed interval follow-up appointment schedules.

xiii



In chapters four and five, we examine and compare several criteria for determining pro-
gression from OHTN to POAG and evaluate the use of a collective POAG conversion rule
in predicting future occurrences of patients’ POAG conversion. We find age, race, and
sex are statistically significant determinants in progression for all compared criteria. How-
ever, there exists broad conversion discordance between the criteria, as demonstrated
by statistically different survival curves and the limited overlap in eyes that progressed by
multiple criteria. Ultimately, to permit machine learning models to predict conversion from
OHTN to POAG, it is essential to have quantitative reference standards for POAG conver-
sion for researchers to use. Additionally, using the collective POAG conversion rule, we
find machine learning models can successfully predict future OHTN conversion events to
POAG.

This research was conducted in collaboration with clinical disease/domain experts.
All the medical decision-making research herein addresses real world healthcare issues,
that, if solved, have the potential to improve vision care if implemented. While these
methodologies primarily focus on chronic conditions affecting the eyes (e.g., OHTN and
POAG), it is important to note that much of the work produced offers methods applicable
to other chronic diseases.
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CHAPTER 1

Introduction

1.1 Motivation

The National Center for Disease Prevention [11] estimates chronic conditions affect 60%
of the adult population. [16] estimates the direct costs of treating chronic conditions (e.g.,
cancers, hypertension, mental disorders, diabetes, heart disease, pulmonary conditions,
and stroke) exceeds 278 billion, and the indirect costs (e.g., lost workdays, caregiver,
etc.) exceeds 1 trillion. In 2019 [20] estimated that approximately 18% (or 3.6 trillion)
of the United States gross domestic product (GDP) is attributed to healthcare expendi-
tures. This is an alarming figure as the healthcare expenditures in 2008 was estimated
at approximately 16% (or 3 trillion) of GDP, indicating a percentage increase of 17% from
2008 to 2019. In addition to the economic burden imposed by chronic conditions, there
is also a quality-of-life burden; patients face treatment concerns, life-style changes, and
the possibility of physical constraints. Taken holistically, this information indicates chronic
conditions place a significant burden on society. It is thereby in society’s best interest,
from a personal and financial perspective, to identify more effective and efficient ways to
provide treatment for people affected by chronic conditions. This is our aim.

In this thesis we address open challenges faced by healthcare professionals in treat-
ing patients with chronic conditions, in particular ocular diseases, and provide potential
solutions to them. In this effort, we make use of multiple key glaucoma clinical trials
data sets and leverage the clinical expertise of a glaucoma expert in all research pre-
sented. Ocular diseases were selected as the application focus area because I am a
member of a research team that includes an ophthalmologist specializing in glaucoma;
a bio-statistician specializing in ocular diseases; and two engineering faculty with exper-
tise related to glaucoma as well as engineering methods. Additionally I had access to
3 of the most important landmark clinical trials in glaucoma, and access to some of the
leading researchers in glaucoma at other institutions. The sections to follow provide a
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chapter-by-chapter summary of each thesis chapter.

1.2 Chapter 2: Predicting Rapid Progression Phases in

Glaucoma Using a Soft Voting Ensemble Classifier

Exploiting Kalman Filtering

Our first problem addresses the problem of identifying patients who have glaucoma who
are most likely to be experience rapid worsening/progression of the disease. We de-
velop a supervised machine learning model tailored to the needs of this healthcare prob-
lem. Data from two randomized clinical trials (the Advanced Glaucoma Intervention Study
(AGIS) and the Collaborative Initial Glaucoma Treatment Study (CIGTS)) are used for this
purpose.

A patient, diagnosed with a chronic condition, may transition between phases of re-
mission, stability, intermediate progression, and rapid progression. In cases important to
primary open angle glaucoma (POAG), the application focus, the patient may fluctuate be-
tween phases of rapid progression (RP) and non-rapid progression (Non-RP). Predicting
the timing of rapid progression before it occurs has significant value as it can inform dis-
ease management decisions and subsequently prevent adverse outcomes. As such, the
main research contribution of this chapter is to develop a method for proactively
predicting future instances of rapid progression.

Existing methods fail to dynamically adapt to a constantly changing disease phases
and/or assume the patients’ medical tests (e.g., optical coherence tomography, standard
automated perimetry etc.) are accurate estimates of the patient’s condition. When this
is not the case, as in the case of POAG, it is often hard to accurately predict the future
classification of the patient’s disease phase.

When the measurement noise is small, even a single measurement can be reliable
for decision-making. On the other hand, when measurement noise is moderate to large,
a clinician may interpret noise as a sign of progression. For mild, moderate, and even
advanced glaucoma [30] shows the standard deviation of MD of patients of European or
African descent ranges between 1.2 – 2dB for patients with MD values in the range of -5
to -25 db. This implies that if a patient’s true MD is -8, using a 2 standard deviations confi-
dence interval, their observed value could range between -4, indicating slightly abnormal
eyesight, and -12, indicating moderately severe visual impairment. Implying competing
conclusions can be drawn by a clinician based on a MD reading. We focus on this setting

2



using the term “moderate to severe residual error” to describe applications in which noise
is a key challenge in predicting the current and future values of measurements of interest
as well as the patient’s current disease phase.

To solve this problem, we propose the joint use of statistical learning and stochastic
systems theory methods. More precisely, we seek to integrate a soft voting ensemble
classifier with an Interacting Multiple Model (IMM) filter. The purpose of the IMM Kalman
Filter is two-fold. First, it is used to adapt dynamically to the patient’s disease phase.
And second, to reduce the uncertainty associated with highly variable patient medical
tests; the second point is a critical step in the context of glaucoma, as various patient
test measurements (e.g., standard automated perimetry and functions thereof) are char-
acterized by moderate to severe residual variability [56]. In general terms, we outline our
framework as follows: (1) identify the important longitudinal data with moderate to severe
residual variability. The identification of such features is typically done so by a domain
expert (e.g., clinician, research staff, engineer, etc.). All other patient data that does not
fit this criterion is held out. (2) For the longitudinal data identified in step 1, process it
using a measurement error reduction method such as a Kalman filter. (3) Combine the
processed data with the data that is initially held out in step 1, and (4) using the combined
data build a supervised prediction model to identify future patient disease phases.

We applied our framework to predicting whether a patient, diagnosed with POAG, will
be in a phase of RP or Non-RP within the next two (or three) years from their current
visit. We found the two-year disease phase prediction performance (AUC) of our models
increased by approximately 7% (0.752 to 0.819) when the filtered results of the IMM Filter
were incorporated as additional covariates. These results suggest the combination of
filters and statistical learning methods in clinical health domains have significant benefits.

1.3 Chapter 3: Reinforcement Learning Methods for

Constructing Personalized Monitoring Schedules for

Patients with Chronic Conditions: Application to

Glaucoma

Our second problem addresses the concept of monitoring patient’s overtime; determining
monitoring intervals between patient appointments that are neither too long nor too short.
From the prior chapter, one’s concern for fast progressors requires a method that can
predict when and how much a patient may deteriorate over a given time interval to give a
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clinician an idea of when the patient should be seen for their next follow-up appointment.
The method presented in this chapter provides a solution to this issue.

Determining the time to next (TNT) follow-up schedule is a challenging task as it should
strike a balance between detecting the disease progression in a timely manner while
avoiding unnecessary treatment for heterogeneous patients. If the time to next schedule
is too short, the patient may receive unnecessary treatment; if the time to next schedule
is too long, the patient may be at risk of undetected disease progression. There are clear
tradeoffs between these two extremes. This supports the need for personalized patient
follow-up scheduling, which depends on the medical need and state of the patient. In this
chapter, we present a reinforcement learning (RL) methodology for determining person-
alized monitoring schedules for patients with ocular hypertension. The main research
contribution of this chapter is to develop a framework for constructing follow-up
scheduling policies using the available patient-specific data from electronic health
record and providing personalized schedules that are superior to fixed interval
scheduling policies (e.g., 1-year and 2-year fixed intervals). Our proposed schedul-
ing policies have three underlying goals: (i) maximizing time between follow-up
visits, (ii) maximizing the scheduling efficiency, which is the percentage of sched-
uled visits indicating disease progression may be near, and (iii) minimizing time to
detect disease progression.

We ultimately employ RL to build a TNT recommendation model that is personalized
for each patient, can dynamically adapt to a patient changing medical state, can be used
starting from the patient’s initial visit, and provides an integrated approach. To the best of
our knowledge, we are the first to tackle this problem in a manner that meets these four
conditions.

While the application focus of this work is on ocular hypertension (OHTN), our concep-
tual framework can be used to build TNT models for other chronic diseases as well. We
formalize our RL framework using a Markov Decision Process (MDP). Where the MDP is
formalized as follows:

• The state space S is a continuous state space such that at time t, the patient is in
state st ∈ S. The state st contains the variables (e.g., test measurements) essential
for TNT decision making.

• The action space A is a set that the clinician may only choose an action at ∈ A at
time t. For the general TNT problem, the action, at, indicates the length of time the
patient must wait until the next follow-up appointment.
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• The transition probability function defines the dynamics of the system. That is, func-
tion P : S ×A× S → [0, 1] gives the probability of the next states at time t+ 1, given
the action at and the patient’s state st.

• The reward function, r : S ×A→ R is a function of the current state, chosen action,
and next state outcome that evaluates the immediate effect of the chosen action.
The reward function r(st, at, st+1) is used to incentivize the best action at time t but
does not provide information on the long-term effects of the action. For instance,
a reward function can incentivize timing of a follow-up visit either shortly before or
when disease progression events are likely to occur.

To find an optimal policy, π we use fitted q-iteration (FQ) algorithm which is an off-
policy batch mode reinforcement learning. The goal of FQ is to provide an estimate
of the Q-function which can be directly used to find the optimal policy. Using the TNT
policy proposed we developed two polices, namely, RL policy 1 and RL policy 2. The
key difference between the two is how their visit delay reward was weighted. RL policy 2
puts less weight on the visit delay reward, thereby increasing the number of patient follow-
up visits. This significantly reduced the diagnostic delay and the average time between
follow-up visits compared to RL policy 1.

Comparisons between the 1- and 2-year fixed interval testing scheduling policies and
RL scheduling policies indicated the RL policies outperformed the fixed interval policies
on all but one evaluation criteria, average time between follow-up visits. The 2-year fixed
interval follow-up policy had the largest average time between follow-up visits (2 years),
followed by RL policy 1 (1.55 years). RL policy 1 had the highest scheduling efficiency
(34%) followed by RL policy 2 (32%). RL policy 2 had the smallest diagnostic delay (2.63
months) followed by RL policy 1 (3.89 months).

The experimental results suggest the TNT model provides better follow-up recommen-
dations than fixed interval scheduling. Comparing the TNT visit recommendations for
RL-1 and RL-2 with 1-, and 2-year fixed interval scheduling policies, showed the algo-
rithm can detect POAG progression more efficiently (RL policies’ scheduling efficiency at
least 33% larger than the best fixed interval policy’s scheduling efficiency) and sooner (RL
policies’ diagnostic delay at least 48% smaller than the best fixed interval policy’s diag-
nostic delay). For patients who do not progress, the algorithm schedules less follow-up
visits compared to those who did progress.
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1.4 Chapter 4: Comparison of Alternative Criteria for the

Identification of Conversion from Ocular Hyperten-

sion to Primary Open-Angle Glaucoma

Unlike the prior work in glaucoma, we turn now to patients with ocular hypertension
(OHTN). It is estimated approximately 10% of patients with OHTN will at some time
progress to glaucoma, a much more serious condition. Early identification and initiation of
treatment for patients with OHTN can reduce vision related morbidity and the possibility of
progression to glaucoma. However, determining progression from ocular hypertension to
POAG (Primary Open Angle Glacoma) can be challenging due to the inherent variability
of visual field tests and the need for multiple measurements over time. Machine learning
approaches to automate the detection of conversion from ocular hypertension to POAG
could be useful as decision-support systems as well as in several other settings, including
in tele-ophthalmology and resource-limited areas with limited access to ophthalmologists.

The development of such machine learning algorithms requires sizable numbers of
eyes which do and do not develop primary open angle glaucoma POAG. The Ocular
Hypertension Treatment Study (OHTS) represents the largest, longest-followed inception
cohort of patients with and without POAG. Yet even in the OHTS, only a fraction (3.9%, n
= 127) of patients developed POAG at ten years. Furthermore, among the patients which
did develop POAG by the OHTS endpoint criteria, only approximately one third of these
occurred based on abnormal visual fields.

Several alternative strategies to identify glaucomatous visual field progression have
been proposed since the start of the OHTS (e.g., [43, 3, 39, 49]. Some criteria may clas-
sify patients with greater confidence (greater quality) whereas others may provide a larger
pool of greater conversions (greater quantity). The optimal approach, however, remains
unclear. The main research contribution of this chapter is to compare four alter-
native criteria to identify conversion from ocular hypertension to POAG based on
visual fields changes, paying particular attention to those which identify conver-
sion more rapidly or identify a larger cohort of eyes with POAG, as these may be
useful for algorithm development.

A key motivating factor for this chapter is the absence of a reference standard (e.g., a
gold standard criterion for accurately assessing whether a patient converted to POAG).
This imposes a necessary limitation, as there is no way to assess relevant characteristics
including sensitivity and specificity of each approach. As such, several POAG progression
criteria were compared including two global, event-based approaches which assess dif-
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ferent visual field summary statistics (the OHTS endpoint criterion and the MD criterion),
a pointwise event-based approach which assesses change across visual field test points
(cluster deterioration), and a pointwise trend-based approach which identifies worsening
at individual test points (TD trend).

For each criteria time to conversion was compared. Cumulative incidence curves for
each POAG conversion criteria were drawn (with 95% confidence intervals) based on
Kaplan-Meier estimates and compared using pairwise Paired Prentice-Williams Tests.
The Bonferroni correction was applied to p-values. Additionally, a multivariate Cox model
was used to estimate the hazard ratios associated with age, race, and sex. Confidence in-
tervals were built using robust standard errors as each patient had two eyes in the dataset.
Whether the associations between time to conversion and age, race, and sex differed by
progression type were investigated with Cox Regression models, stratified by conversion
criteria and with frailty terms enabling correlations between times to conversion within the
same patient. Likelihood ratio tests of the interaction terms between type of conversion
and the other fixed effects were used to determine whether covariate effects differed by
conversion criteria.

Results indicated race, sex, and age were statistically significant determinants in pro-
gression for all four criteria. However, there was broad discordance between the four
criteria, as demonstrated by the statistically different survival curves and the limited over-
lap eyes that progressed by multiple criteria. This suggests that these criteria may be
tailored to the type of damage under investigation, particularly in the absence of a visual
fields-based reference standard. Notably, all criteria demonstrated the least concordance
with the OHTS endpoint criteria, which may, at least in part, reflect changes in the means
of evaluating visual fields since the commencement of the OHTS in the mid-1990s.

1.5 Chapter 5: Machine Learning Prediction of Conver-

sion from Ocular Hypertension to Open Angle Glau-

coma

As per chapter 4, one of the key strengths of machine learning approaches is their ability
to automate, the otherwise manual task of detecting a patient’s conversion from ocular
hypertension to POAG (Primary Open-Angle Glaucoma). At present, there exist sev-
eral alternative criteria to identify POAG conversion [43, 3, 39, 49], but notably no gold
standard. Trade-offs amongst criteria are often made to balance a criterion’s sensitivity
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(measures the proportion of converting patients that are correctly identified as convert-
ing) and specificity (measures the proportion of non-converting patients that are correctly
identified as non-converting). Since correctly identifying converting patients often takes
precedence over incorrectly labeling a non-converting patient as converting, a criterion
that has a high sensitivity is often preferred.

As such, we elucidate and study several conversion criteria, and develop an ML method
to proactively identify POAG converting patients. The conversion criteria were as follows:
(A) the OHTS Endpoint – Committee - this was the approach used in OHTS for progres-
sion to POAG by visual fields; (B) Decline in Mean Deviation - conversion from OHTN to
POAG defined as 2 consecutive MD values at least 3 DB below baseline. Baseline MD
was defined as the average of the patient’s two initial MD values prior to enrollment in
the clinical trial [49]; (C) Decline in Pointwise Total Deviation- this is a trend-based as-
sessment, first described by Kummet and colleagues [43], involving performing pointwise
linear regression on each of the 52 visual field test locations in the total deviation plot;
and (D) Deterioration of Points on Total Deviation Clusters – this is a clustered based
approach developed in [39].

The main research contribution of this chapter is to determine the predictive
performance of a collective conversion criterion (e.g., conversion criteria combin-
ing all 4 criterion). In particular, using predictive classification algorithms to determine
if a patient will progress to PAOG, as defined by one of the four criteria, anytime within
two years from their sixth visit, signaling POAG conversion. Conversions events were not
identified sooner (i.e., before the patient’s 6th visit) because the Kalman Filter, a key data
preprocessing step, required the first six patient visits for model training and calibration.

Several supervised learning classification models were assessed: Logistic Regression,
Random Forest, Gradient Boosted Decision Tree, and Neural Network. Results indicated
the random forest classifier performed best. The classification models that included the
Kalman filtered data had slightly better performance than the models that did not. For
the Random Forest that did not include KF data the group 5-fold cross validation ROC
AUC performance was mean ± SD of 0.81 ± 0.01. The testing performance across the
performance measures were balance accuracy of 0.79, sensitivity of 0.75, specificity of
0.82, accuracy of 0.81, positive predicted value of 0.36, negative predicted value 0.96,
and ROC AUC of 0.86. For the Random Forest that included the KF data the group 5-
fold cross validation ROC AUC performance was mean ± SD of 0.81 ± 0.01. The testing
performance across the performance measures were balance accuracy of 0.80, sensitivity
of 0.77, specificity of 0.83, accuracy of 0.82, positive predicted value of 0.38, negative
predicted value 0.96, and ROC AUC of 0.86.
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1.6 Chapter 6: Summary and Conclusions

In this chapter, we summarize the key contributions of the thesis and discuss several
notable areas of future research.

We note, the research presented in this thesis can be categorized into two groups: the
optimization of monitoring frequency by which patients are seen, and the optimization of
disease identification methods. We illustrate in Figure 1.1 how the thesis chapters fit into
this categorization.

Figure 1.1: Categorization of Thesis Chapters

The works presented in chapters 2-5 make contributions in several key areas relevant
to the care of patients with chronic conditions. They can be outlined as follows: (1) the
proactive identification of periods where a patients’ disease will progress at a rapid/fast
rate and the denoising of clinical visual field measurements with high measurement er-
ror; (2) the dynamic and personalized recommendation of patients’ follow-up appointment
schedules; (3) the evaluation of criteria for determining patient conversion from ocular hy-
pertension to primary open angle glaucoma; and (4) the development of a new criterion
for identifying POAG progression and the evaluation of its ability to predict future progres-
sion/conversion events. Each of the four contributions advance the care of for patients
diagnosed with ocular illnesses and more broadly chronic conditions.

9



CHAPTER 2

Predicting Rapid Progression Phases in
Glaucoma Using a Soft Voting Ensemble

Classifier Exploiting Kalman Filtering

2.1 Introduction

Chronic conditions affect 60% of the adult population [1]. Typically, they require monitoring
and treatment over time. A patient, diagnosed with a chronic condition, may transition
between phases of remission, stability, intermediate progression, and rapid progression.
In cases important to primary open angle glaucoma (POAG), the application focus of this
work, the patient may fluctuate between phases of rapid progression (RP) and non-rapid
progression (Non-RP). Predicting the timing of rapid progression before it occurs can
inform disease management decisions and subsequently prevent adverse outcomes.

Precision medicine encourages us to use all available population and patient infor-
mation to generate personalized classifications of patients’ disease phases and identify
how these disease phases may change over time. Hence, the development of statistical
models that can predict the future disease phase of the patient is key. There has been
limited research in this area in the context of POAG. Existing methods fail to dynamically
adapt to a constantly changing disease phases and/or assume the patients’ medical test
measures (e.g. optical coherence tomography, standard automated perimetry etc.) are
accurate estimates of the patient’s condition. When this is not the case, as in the case of
POAG, it is often hard to accurately predict the future classification of the patient’s disease
phase.

When the measurement noise is small, even a single measurement is fairly reliable
for decision-making. On the other hand, when measurement noise is moderate to large,
a clinician may interpret noise as a sign of progression. For mild, moderate, and even
advanced glaucoma, [30] shows the standard deviation of MD of patients of European or
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African descent ranges between 1.2 – 2dB for patients with MD values in the range of -5
to -25 db. This implies that if a patient’s true MD is -8, using a 2 standard deviations confi-
dence interval, their observed value could range between -4, indicating slightly abnormal
eyesight, and -12, indicating moderately severe visual impairment.

In this chapter, we focus on this setting using the term “moderate to severe residual
error” to describe applications in which noise is a key challenge in predicting the current
and future values of measurements of interest as well as the patient’s current disease
phase. One potential solution to this problem is augmenting predictive methods with
filtering models that not only estimate the true values of the patients’ tests results under
moderate to severe residual variance/error conditions, but also adapt to changing chronic
disease conditions.

We propose the joint use of statistical learning and stochastic systems theory methods.
More precisely, we seek to integrate a soft voting ensemble classifier with an Interacting
Multiple Model (IMM) filter. The purpose of the IMM Kalman Filter is two-fold. First,
it is used to adapt dynamically to the patient’s disease phase. And second, to reduce
the uncertainty associated with highly variable patient medical tests; the second point is
a critical step in the context of glaucoma, as various patient test measurements (e.g.,
standard automated perimetry and functions thereof) are characterized by moderate to
severe residual variability [56].

We applied our framework to predicting whether a patient, diagnosed with POAG, will
be in a phase of RP or Non-RP within the next two (or three) years. We found the two-year
disease phase prediction performance (AUC) of our models increased by approximately
7% (0.752 to 0.819) when the filtered results of the IMM Filter were incorporated as addi-
tional covariates. These results suggest the combination of filters and statistical learning
methods in clinical health domains have significant benefits.

The organization of our chapter is as follows. Section 2.2 reviews related literature.
Section 2.3 describes the modeling framework. Section 2.4 presents the application of
this framework to POAG. Lastly, section 2.5 concludes the paper and discusses future
research.

2.2 Literature Review

Patient disease trajectories are uncertain. It is not uncommon for two patients with the
same disease prognosis and treatment protocol to transition into two different disease
phases, with one patient transitioning into a favorable phase (Non-RP in our application)
and the other transitioning into a non-favorable phase (RP in our application). For the
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Table 2.1: Definition of Phases (Corbin, 1991)

Phase Definition
Pre-trajectory Before the illness course begins, the preventive phase, no signs or

symptoms present
Trajectory Onset Signs and symptoms are present, includes diagnostic period
Crisis Life-threatening situation requiring emergency/ critical care
Acute Active illness or complications that require hospitalization for manage-

ment
Stable Illness course/symptoms controlled by regimen
Unstable Illness course/symptoms not controlled by regimen but not requiring

hospitalization
Dying Immediate weeks, days, hours preceding death

sake of generality of perspective, we discuss a more general framework. [13] defines
phases as the different changes in status that a chronic condition can undergo over the
course of the disease. The scope outlined in [13] is much broader than what we focus
on in our case study, but the methods we develop can be extended to a more elaborate
framework incorporating multiple disease phases. The author lists eight phases a pa-
tient’s diseases trajectory can take: pre-trajectory, trajectory onset, crisis, acute, stable,
unstable, downward, and dying. Table 1 provides an overview of the 8 phases.

A patient’s health seldom deteriorates or improves in a perfectly predictable manner.
The disease phases, excluding pre-trajectory, can be viewed as levels of disease pro-
gression. For the case study, discussed later in this chapter, we focus on two of these
diseases’ phases: RP (downward) and Non-RP (stable).

The work presented in this chapter can be described as classification, identification, or
detection of disease progression. Past research in progression identification [63] presents
a comparison study on the use of various machine learning models to predict the sever-
ity of chronic kidney disease progression. [42] examines the ability of a random forest
classification model to predict calciphylaxis risk successfully for patients with chronic kid-
ney disease. And [15] develops a convolution neural network to identify and determine
age-related macular degeneration disease severity.

In the domain of early identification of chronic diseases [2] develops a clinical decision
support tool to help with the automatic identification of chronic obstructive pulmonary dis-
ease diagnosis. More recently, [68] develops an adaptive k-means clustering algorithm to
predict patient health trends and [64] develops a risk prediction model, XGboost classifier,
of incident essential hypertension within the following year. The model developed in [64]
served two purposes – feature selection and risk prediction. We expect chronic disease
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detection and progression identification to continue to be a fundamental research aim in
these areas.

The research conducted in these two areas have similarities to this chapter; each
use patient demographics and disease indicators for prediction purposes. However, the
disease indicators outlined in their work (e.g., weight, medical laboratory tests) have low
residual variability, making their true values easier to infer. They do not address situations
when disease indicators contain high residual variability. This chapter relatively addresses
this research gap.

Additionally, while it does not attempt to perform classification, identification, or de-
tection of disease progression, there is existing work within the ophthalmology research
domain in the use of Kalman filtering for forecasting the future outcomes of patients, e.g.,
for normal tension glaucoma [23], and forecasting visual field and intraocular pressure
trajectory in patients with ocular hypertension [22]. While these works highlight the mea-
surement prediction error of filtering methods in disease modeling, they do not identify
periods where patients’ disease progresses at a rapid rate as we do here.

2.3 Modeling Framework

To assess the condition of patients with chronic diseases, the longitudinal series of infor-
mation obtained on successive patient visits must be modeled and analyzed. The focus
here being longitudinal information that possesses moderate to severe residual variability,
defined as the variability of the difference between a variable’s true value and measured
value. This variability can be attributed to a multitude of factors (e.g. variation in the mea-
surement instrument, variation in the patient using the instrument, test-retest variability,
etc.).

We outline our framework in general terms as follows: (1) identify the important longitu-
dinal data with moderate to severe residual variability. The identification of such features
is typically done so by a domain expert (e.g. clinician, research staff, engineer, etc.). All
other patient data that does not fit this criteria is held out. (2) For the longitudinal data
identified in step 1, process it using a measurement error reduction method such as a
Kalman filter. (3) Combine the processed data with the data that is initially held out in
step 1, and (4) using the combined data build a supervised prediction model to identify
future patient disease phases. In the following two sections we discuss steps (2) and (4)
in detail. The presentation will aim for generality where possible; however, as this chapter
is application focused,for ease in reading, we will discuss them in the context of denoising
longitudinal healthcare data and classifying patient diseases phases.
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2.3.1 IMM Filter Formulation

For clarity, we will begin with a motivating example. Consider a patient with a chronic
disease who, as evident in their past longitudinal test results, has experienced periods of
no or slow progression, and rapid progression (Non-RP and RP respectively). We have
reason to believe their test results contain measurement noise, as is well known to be the
case for POAG measurements, and seek to filter the readings. Kalman filters have been
shown to reduce measurement noise, but because the patient’s disease trajectory is non-
stationary (e.g. the patient moves in and out of several disease phases) a single Kalman
filter (KF) will have trouble modeling both modes. For example a zero-order KF (assumes
the patient’s disease is not progressing) will likely under-estimate the change when the pa-
tient’s disease is RP. A first-order filter (that assumes the patient’s disease is progressing
at a stable rate) or second-order filter (that assumes the patient’s disease is progress-
ing at a constantly increasing rate) will likely over-estimate changes when the patient’s
disease is Non-RP. We would intuitively prefer a meta-filter that dynamically chooses the
most appropriate filter(s) to use based on the current disease phase of the patient; if the
patient is not progressing we want the denoised estimate to be based mainly on the zero-
order filter and similarly if the patient is progressing we want the denoised estimate to be
based on the a first and/or second order filter. We employ the IMM Filter to accomplish
this task.

The IMM Filter is described in [7, 6, 44]. The idea behind the IMM filter, as briefly
discussed in the motivating example, is to have one Kalman filter for each mode of the
system. As the system changes from one mode to another, in discrete time, the IMM
filter dynamically adapts by primarily using the state estimates associated with the most
probable Kalman filters; the more likely filters modify the state estimates of the less likely
filters, and these collection of estimated states are blended to form a more accurate state
estimate [44].

To build an IMM filter, mode probabilities (µ) and mode transition probabilities (M )
need to be estimated. Mode probabilities describe the belief in each type of system
behavior, (e.g., probability the patient’s disease is stable or rapidly progressing). Mode
transition probabilities describe how the system will transition from one mode to the next
(e.g. the probability the patient, who is currently stable (Non-RP), transitions to RP).
For example, with a two disease phase model (Non-RP phase and an RP phase), the
mode transition probability matrix gives the probability of transitioning from a non-rapid
progressing phase to a rapidly progressing phase and vice-versa. Both µ and M can
either be estimated from data or obtained using domain knowledge.
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For generality, we present the mathematical framework for an IMM filter composed of
n KFs. However, in practice the number of KFs used is dictated by the number of unique
behaviors of the system. In the two disease phase example above and in the IMM filter
developed in our case study, we employ one KF to model the Non-RP phase disease
dynamics and another to model the the RP phase disease dynamics. We leave to the
reader the mathematical underpinnings of the KF (see [67] for a treatment).

The IMM filter performs a prediction and subsequent update in the usual manner of a
KF. However, because the IMM filter uses a bank of KFs, the underlying math is different.
Below we outline the initialization, update, and prediction steps used by the IMM filter.

Initialization: We denote the initial mode probabilities by the vector µ0 and the mode
transition probability matrix by M .

µ0 =
(
µ1 µ2 . . . µn

)
(2.1)

M =


µ11 . . . µ1n

... . . . ...
µn1 . . . µnn

 (2.2)

The IMM filter and each of the n KFs in the filter bank are initialized using their initial
state, xi, initial covariance, Pi, initial mode probability, µ, and mode transition probability
matrix, M . The index, i, refers to the ith KF in the IMM filter bank. Since we have n

filters, the dimensions of µ and M are n × 1 and n × n respectively. The dimensions of
xi and Pi depend on the number of state variables. In our POAG model presented in the
case study, the state is 3-dimensional; composed of the patient’s current measurement,
the rate of change of the patient’s current measurement (velocity), and the rate at which
the patient’s current measurement is changing (acceleration). In this 3-dimension case
the dimension of xi and Pi are 3×1 and 3×3 respectively. The initial state is taken as the
starting position (e.g. a patient’s measurement, measurement velocity, and measurement
acceleration at the start of treatment). The initial covariance matrix captures the joint
variability of the state variables. In our example, the initial covariance matrix captures the
variance of patient’s current measurement, the variance of the measurement’s velocity,
the variance of the measurement’s acceleration, and the covariance of the three state
variables.

The initial state, xi and covariance, Pi can be more precisely denoted as xi,0|0 and
Pi,0|0; where the index i, 0|0 denotes the state estimate at time 0 given information up to
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and including time 0 for the ith Kalman filter. The following initialization relationships are
defined as follows:

c̄0 = µ0M (2.3)

ω0,ij := µ(i,0) ×Mij ∀ i, j = 1, . . . , n (2.4)

ω0 = ‖ω0‖. (2.5)

The row vector c̄0 denotes the initial mode probabilities after accounting for the ini-
tial probabilities of system transitions. For example, in the two disease phase example,
c̄(1×2) = µ(1×2)M(2×2), is a 2-dimensional row vector capturing the probability a patient is
non-rapid progressing in the next time period given they could be non-rapid progressing or
rapid progressing in the current time period, and the probability a patient is rapid progress-
ing in the next time period given they could be non-rapid progressing or rapid progressing
in the current time period. ω0 denotes the initial unnormalized mixing probabilities, and
‖ω0‖ denotes the normalized (e.g. rows sum to one) initial mixing probabilities. The mix-
ing probabilities represent how filter estimated values (e.g. states and covariance matri-
ces) should be weighted so as to incorporate estimates from the probable and improbable
filters. The intention is for all filters to obtain improved state and covariance estimates by
appropriately mixing them [44]. Next, the prediction and update steps are performed in a
recursive manner. Each step is described below.

Predict: Each of the n filters’ states and covariance matrices are weighted using the
mixing probabilities to form the mixed state and mixed covariance as follows:

xmi,t−1|t−1 =
n∑
i=1

ωij,t−1 · xi,t−1|t−1 ∀ j = 1, . . . , n (2.6)

Pm
i,t−1|t−1 =

n∑
j=1

ωij,t−1 · [(xj,t−1|t−1 − xmi,t−1|t−1)

(xj,t−1|t−1 − xmi,t−1|t−1)T + Pi,t−1|t−1]

∀ j = 1, . . . , n.

(2.7)

Using the mixed states, xm
i,t−1|t−1, and mixed covariance matrices, Pm

i,t−1|t−1, a pre-
diction step is performed by each KF. This results in n predicted mixed states, xm

i,t|t−1,
and covariance matrices, Pm

i,t|t−1, where the index, t|t − 1, indicates the prior state and
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prior covariance estimates at time t given observations up to and including time t − 1.
The IMM predicted state and predicted covariance matrix at time t are calculated as the
expected value (using the mode probabilities) of the n KFs’ mixed predicted states and
mixed predicted covariances as follows:

xt|t−1 =
n∑
i=1

µi,t−1 · xmi,t|t−1 ∀ i = 1, . . . , n (2.8)

Pt|t−1 =
n∑
i=1

µi,t−1 · [(xt|t−1 − xmi,t|t−1)(xt|t−1 − xmi,t|t−1)T

+ Pm
t|t−1] ∀ i = 1, . . . , n.

(2.9)

In the case of the two disease phase example presented in the case study, the prediction
step consists of both the non-rapid progressing KF and rapid progressing KF performing
a prediction step. This results in two predicted states and two predicted covariances ma-
trices. Using the mixing probabilities the predicted states and predicted covariances ma-
trices are mixed with one another to form more probable state and covariance estimates.
Next, using the mode probabilities (the probabilities the patient disease is non–rapid pro-
gressing or rapid progressing), the expected value of two mixed states and covariances
are computed. This results in the IMM filter’s predicted estimate of the patient’s state (e.g.
patient’s predicted measurement, patient’s predicted measurement velocity, and patient’s
predicted measurement acceleration) at the next time index.

Update: Each of the n Kalman filters in the IMM filter bank computes the likelihood,
Li,t for i ∈ [1, . . . , n], for t ∈ [1, . . . , T ], of observing measurement z (e.g. a patient’s
observed measurement) at discrete time t, and subsequently performs an update step
using measurement z. The likelihood of measurement z is calculated as the probability
density of measurement z under a multivariate normal with mean z −Hx and covariance
HPHT + R. Where H is the measurement matrix of the Kalman filters and R is the
covariance matrix of measurement noise.

Using the vector of likelihoods, Lt, the mode probabilities, c̄, and the mixing probabili-
ties, ω, are updated as follows:
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µt = ‖Lt � c̄t−1‖ (2.10)

c̄t = µtM (2.11)

ωij,t := µi,t ×Mij ∀ i, j = 1, . . . , n (2.12)

ωt = ‖ωt‖, (2.13)

where µt = ‖Lt�c̄t‖, denotes a normalized element-wise product between the vectors
Lt and c̄t. The IMM updated state and updated covariance matrix at time t is calculated
as the expected value (using the updated mode probabilities) of the n KFs’ mixed updated
states and mixed updated covariances as follows:

xt|t =
n∑
i=1

µi,t · xmi,t|t ∀ i = 1, . . . , n (2.14)

Pt|t =
n∑
i=1

µi,t · [(xmi,t|t − xt|t)(xmi,t|t − xt|t)T

+ Pm
i,t|t] ∀ i = 1, . . . , n.

(2.15)

The index, t|t, indicates the posterior state and covariance estimates at time t given
all observations up to and including t have been used. Being recursive in nature, as time
progresses and measurements are taken, the IMM recursively predicts and updates.

At each time instant, the denoised state estimates resulting from the update steps are
used to approximate the true state of the system. In the case study, this implies the IMM
filter’s denoised measurements from the patient’s initial tests to their current tests will be
used to approximate the true course of their disease. Not their observed measurements
during this period.

2.3.2 Disease Phase Identification

Over time patients can transition from one disease phase to another; certain disease
phases are more favorable than others (e.g., a phase of stability or slow progression
versus a phase of rapid progression). It is the physician’s goal to maximize the patient’s
quality of life by controlling and/or maintaining a favorable disease phase. Therefore, the
ability to successfully predict a patient’s future disease phase has value, as it enables the
physician to take preventive actions before adverse events occur, the worst of which is
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blindness. For example, if the patient’s predicted future disease phase is a less favorable
phase, then it is prudent for the clinician to alter the patient’s treatment in a way that
minimizes the chance of the patient transitioning into the predicted disease phase. In
order to accomplish this, we propose the development of a disease phase prediction
model.

Formally, the model is a supervised learning prediction model. Define the set of dis-
ease phases a patient can be in as di ∈D for i = 1, . . . ,m wherem denotes the total num-
ber of patient disease phases. The purpose of the supervised learning prediction model
is to create a mapping function, f(x), from the n dimensional feature vector, x ∈ Rn, to
the probability mass function, pi,t+∆t ∈ P , where pi,t+∆t denotes the probability of being
in disease phase, di at time t + ∆t. The n dimensional feature vector, x, is composed
of the IMM filter state estimates, and relevant patient information (e.g. demographic in-
formation, patient test results with low residual variability, engineered features, etc.); the
feature vector should give a clear indication of the current status of the patient’s chronic
disease. The most likely disease phase, di, at time period t+ ∆t, is computed as,

arg max
pi,t∈P

{pi,t+∆t}. (2.16)

Time period t + ∆t, is taken as a future time period, where ∆t denotes the prediction
window length. The prediction window length, ∆t, should determined based on clinical
use case. For RP phase identification described in the case study we use a ∆t equal
to 2 and 3 years. Hence, the prediction di represents the disease phase the patient
is most likely to be in at time t + ∆t, not the disease phase the patient is currently in.
We leave the description of the classification model abstract, as any supervised learning
model that outputs class probabilities is sufficient. For the glaucoma RP identification
problem addressed in the case study, a soft-voting ensemble model is developed. The
soft-voting ensemble model is discussed in section 2.4.3.6. In the next section we apply
our methodology to the case of POAG rapid progression phase identification.

2.4 Open Angle Glaucoma Case Study

Glaucoma is a chronic disease characterized by gradual vision loss. This makes it dif-
ficult for clinicians to provide treatment for patients early on, as there may be a delay
between the initial onset of glaucoma progression and patients experiencing symptoms
of glaucoma progression. There are several types of glaucoma: open-angle glaucoma,
angle-closure glaucoma, normal-tension glaucoma, pigmentary glaucoma, and glaucoma
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in children. This proposed case study focuses on primary open-angle glaucoma (POAG),
the most common form of the disease, estimated to affect more than 3.3 million people in
the US in 2020 [31].

One of the main methods for detecting functional visual field loss (e.g., vision deterio-
ration) is standard automated perimetry (SAP). SAP is a subjective psycho-physiological
test for measuring retinal sensitivity at different locations in the visual field. The test in
conducted by presenting patients with localized light stimuli of varying intensities and in-
structing them to press a button when each stimulus is perceived [65]. The result of SAP
is a map of local retinal sensitives. The local retinal sensitives can be summarized into
a single number by computing their mean deviation (MD). MD is the average, age and
race adjusted, deviation of a patients retinal sensitivities from a patient with normal vision.
MD values typically range between 2 dB to -30 dB. Subjects, who are able to see dimmer
stimuli than others of similar age and race will have positive values for their MD, while
subjects who require brighter stimuli will have negative MD values. The lower a subject’s
MD value, the worse their vision.

Using a patient’s SAP measurements, their MD over time can be obtained. If their
MD over time has an ordinary least squares slope of ≤ −1 DB/year we characterize this
patient as progressing at rapid rate [35, 41]. This characterization is important because
although POAG is often a slow, progressive chronic condition, at any point in time a patient
with POAG may experience RP. If RP is not detected early and treated promptly, it can
lead to irreversible vision loss and blindness.

As such, the purpose of this case study is to develop a model to proactively identify
instances in time were patients will experience RP, before observing their actual MD mea-
surements. We examine predictions made 2 years in advance as our base case. Then we
revisit the problem for the case where the time window is the next 3 years from the current
visit. This enables the clinical care team to act before more aggressive (likely riskier and
costlier) treatment options are warranted.

This case study focuses on the use of what is termed in the ophthalmology community
as trend analysis. In trend analysis, a patient’s longitudinal measurements, MD in this
case, are evaluated with linear or other forms of regression analysis to estimate rates
of change and statistical significance [62]. While this approach is open for debate, as
a patient’s disease trajectory may not be linear, we use it because it is a well accepted
approach in both clinical and research communities. There have been numerous works
that either describe the behavior of MD measurements over time and/or predict future
values [41, 30, 59], however this proposed case study differs from these works in two
ways. First, we focus on proactively classifying patients with respect to their predicted
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behavior over a future interval of time. Second, our method allows us to predict if patients
will experience RP at each time a test is taken. That is to say, it is a dynamic, recursive
method that does not require rebuilding the model at each time instance. This is more
clinically relevant than identifying instances of disease progression after they have already
occurred [62]. Our focus is an important one, because patients that will exhibit RP need
intervention to avoid irreversible vision loss.

We underscore that SAP measurements or functions thereof (e.g., MD, pattern stan-
dard deviation, etc.) are only estimates of their true value [56, 57]. Clinicians consider
MD values to be one of the most important sources of information when managing glau-
coma care. We describe the MD tests as having high residual (true value - measured
value) variability because there is sufficient measurement noise that one must consider in
order to avoid misinterpreting the longitudinal test results of a patient. We emphasize that
the variability does not render the data useless; rather, mechanisms to estimate the true
values should be employed. Clinicians are used to making important decisions using this
data, which they know has uncertainty. Therefore, the focus of this section is to present a
mechanism to accomplish this.

2.4.1 Data

The data used in this work comes from two landmark randomized, longitudinal clinical
trials: 1) Advanced Glaucoma Intervention Study (AGIS), and 2) the Collaborative Initial
Glaucoma Treatment Study (CIGTS). AGIS has 591 patients with advanced glaucoma
followed for up to 11 years. CIGTS has 607 patients with mild to moderate glaucoma fol-
lowed for up to 10 years. Both provide demographic information (e.g. age, sex, and race)
and longitudinal test results with three key continuous-valued measurements: Intraocular
Pressure (IOP) - measures the pressure in the eye; MD - measures mean age and race
adjusted deviation of a patient’s retinal sensitivities; and pattern standard deviation (PSD)
- measures the uniformity of a patient’s retinal sensitivities. All values were recorded on 6
month intervals. A detailed description of the AGIS and CIGTS clinical trials can be found
in [41, 59].

Both trials required participants to have a diagnosis of glaucoma in at least 1 eye, with
elevated IOP at trial entry. For this study, we included only patients who were random-
ized to receive medical therapy or argon laser trabeculoplasty. Patients who had been
randomized to trabeculectomy are excluded because incisional surgery can dramatically
affect IOP and disease progression dynamics, making it beyond our scope. Furthermore,
during follow-up, trial participants who later required incisional surgery are censored at
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the time they underwent trabeculectomy. Additionally, because our methods used the first
eight years of each patient’s data, a patient’s eye was excluded if it had fewer than eight
years of data (i.e., eligibility required atleast 16 IOP measurements and 16 visual field
tests using a Humphrey Field Analyzer). If both eyes of a participant met the eligibility cri-
teria, we randomly selected 1 of the 2 eyes for inclusion in our analyses. These resulted
in 295 patients meeting our eligibility requirements. Table 2.2 provides a summary of the
study population.

We place emphasis on the fact the physiological mechanisms driving glaucoma are
only partially understood. A foundational understanding of disease phases is not estab-
lished for glaucoma in the way we wish it were. The only longitudinal information on health
state comes through the MD, IOP, and PSD measurements.

Table 2.2: Summary of Study Population

Black White Asian Total
Total Number of Observations 1569 1347 97 3013
Rapid Progressed (RP) In-
stances

368 285 28 681

Patients w/ 1+ Instances of
RP

117 96 7 220

Mean (SD) number of RP in-
stances per patient for pa-
tients w/ 1+ Instances of RP

3.1 (1.9) 2.9 (2.1) 4 (3.0) 3.0 (2.0)

Number of Patients 149 137 9 295
Sex, n (%)

Male 5 7(40.4) 81(57.4) 3(4.2) 141 (47.7)
Female 92 (59.7) 56 (36.3) 6 (3.8) 154 (52.2)

Baseline statistics
Mean Deviation (MD), mean
± SD

-8.4 ± 5.4 -6.5 ± 5.3 -4.4 ± 5.7 -7.4 ± 5.5

Pattern Standard Deviation
(PSD), mean ± SD

6.9 ± 3.8 6.0 ± 3.8 3.4 ± 3.2 6.4 ± 3.9

Intraocular Pressure (IOP),
mean ± SD

17.3 ± 3.7 17.6 ± 3.4 20.4 ± 5.4 17.6 ± 3.7

2.4.2 Identifying Periods of Rapid Progression

Following a common convention, we previously defined RP as an ordinary least squares
MD slope of ≤ −1 DB/year. For the purpose of proactively identifying patients who will
exhibit RP in the future we define RP instances as 2 year windows (and later we repeat
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the analysis again for 3 years) over which a patient’s MD slope is less than or equal
to -1 DB/year. Clinicians have a good sense of what it means for a patient to be rapid
progressing or not over the next 2 years. It’s a summary of patient behavior over the entire
interval; therefore, an ordinary least squares summary measure of slope is consistent with
their sense of characterization of RP over a 2 year time interval.

We underscore that RP classification (or Non-RP) is not intended to signify that the
glaucoma’s phase is fixed over the 2-year time interval, it merely serves as a measure
of the patient’s rate of change over the 2 years. This summary measure partially ob-
scures the full picture of what may be happening over the 2-year period, because patients
are transitioning between phases of RP and Non-RP and are not fixed in either phase.
However, when making a prediction we focus on which phase best represents patient
behaviour over this period.

Figure 2.1 provides a visual depiction of how 2-year future RP is calculated for a patient
when assessed post-hoc from their actual readings. From time Tn to Tn+4 the target label
(MD slope) is calculated from the 5 MD values using Ordinary Least Squares Regression
(OLSR), where n represents the starting period of the 2-year prediction. A period consists
of a 6-month time interval. Hence, the 5 periods span a time interval of 2 years and one
day, nominally.

This implies each patient has multiple opportunities to exhibit 2 year rapid progression.
If the OLSR slope is ≤ −1 for periods Tn to Tn+4, the target for period Tn is 1, indicating
RP is present 2 years in the future from time n (0 elsewhere). To predict whether a patient
will experience RP from periods Tn to Tn+4, only the data from periods T0 to Tn is used.
Hence, no data from future periods is used to determine if the patient will experience
future 2-year rapid progression. This process continues for all periods n ∈ {3, . . . , N},
where N denotes the last period of available data. Similarly, for the 3-year case, the
OLSR slope from periods Tn to Tn+6 is used to determine the RP target (e.g. 0 or 1). A
minimum of 4 periods of data is needed for both 2 and 3 year predictions. This is because
some of the covariates used as input to the Soft Voting Ensemble Classifier require at
least 4 periods of data. Appendix A.1 provides a table of all model inputs.

2.4.3 Model

In the following subsections, 2.4.2.1 – 2.4.2.5, we discuss the IMM Filter and disease
phase prediction model for proactive rapid progression identification.
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Figure 2.1: Illustration of the calculation of MD slope over a window of 2 years. MD =
mean deviation.

2.4.3.1 IMM Filter

In section 2.3.1 we briefly discussed our motivation for using an IMM filter. This choice is
supported by the fact we find glaucoma frequently progresses in spurts. There is a con-
troversy in the field concerning whether the progressions are slowly changing or whether
it’s periods of inactivity followed by periods of rapid progression. However, due to the
flexibility of the IMM filter, either stance can be supported given the right IMM filter setup.
In the following subsections we discuss our developed IMM filter in detail. We start with
the composition of the IMM filter bank.

2.4.3.2 IMM Filter Bank

The IMM filter uses two second order (constant acceleration) KFs, each with a varying
degree of process noise. We denote the varying degrees of process noise as KF process
noise covariance matrices denoted as Q1 and Q2. We use two KFs with different process
noise matrices to model two assumed disease phase modes: non-rapid progression, and
rapid progression. The state of IMM filter is 3-dimensional. It is composed of the MD
value at time t; MD velocity, the rate of change of the MD at time t; and MD acceleration,
the rate of change of MD velocity at time t, where time t, refers to the time index of the
state variables outlined in Section 2.3.1.
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2.4.3.3 IMM Filter Measurements

The filter uses a three-dimensional measurement vector. It is composed of two measure-
ments of MD and one measurement of MD velocity. The first MD measurement, z1, is from
the patient’s clinical trial results (i.e. AGIS or CIGTS). The standard deviation, σ1, of this
measurement is estimated as the mean standard deviation of all MD residuals obtained
by the method outlined in [30].

The second MD measurement, z2, is a pseudo MD measurement computed using a
Random Forest regression (RF) model. The purpose of the RF is to estimate the MD at
the current time t, using the patient’s IOP, PSD, age, and race at time t. Since IOP, PSD,
age, sex, and race are not used directly as state variables in the IMM filter, the pseudo MD
measurement, a non-linear function of IOP, PSD, age, and race, leverages the information
present in these variables in the IMM filter’s update step. The standard deviation, σ2, of
this measurement is computed as the standard deviation of the RF MD prediction. The
prediction of the RF model, z2, and standard deviation of the prediction, σ2, are estimated
as follows:

z2 =
1

B

B∑
b=1

µb, (2.17)

where B is the number of estimators in the random forest ensemble, and µb is the mean
value of the training leaf nodes the data instance falls in. Similarly, the standard deviation
is estimated as,

σ2 =

√√√√(
1

B

B∑
b=1

σ2
b + µ2

b)− z2
2 , (2.18)

where σ2
b is the variance of leaf nodes that the data instance falls in. For a more detailed

treatment of this procedure see [37].
The third measurement, MD velocity, z3, is obtained from the slope coefficient of OLSR

over a moving window of four MD observations. The choice of four MD observations
was determined using a grid search procedure. Past work confirmed OLSR is a valu-
able means of providing less noisy velocity estimates, resulting in better filter behavior
[41]. The standard deviation of the MD velocity, σ3, is calculated as the standard error
of the slope coefficient from OLSR. We assumed the measurements z1,z2, and z3 were
uncorrelated.
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2.4.3.4 IMM Filter Parameter Initialization

The initial values for the mode probabilities (µ) and mode transition probability matrix (M )
were estimated from the data; the IMM filter is not sensitive to initial values of µ [44],
as it is updated at each prediction/update step using the equations previously outlined
(2.3-2.4) and (2.10-2.12). The state initialization for both KF models was taken to be the
patients’ baseline MD (e.g. their initial MD at enrollment in the clinical trial) and values
of zero for both MD velocity and MD acceleration. A complete overview of the IMM filter
parameter initializations are in Appendix B. All KFs parameters were determined using a
grid search procedure.

2.4.3.5 IMM Filter Evaluation

As an established method in the area of glaucoma [30], the performance of our filter is
evaluated by calculating the RMSE of the filtered MD values compared to the fitted values
from OLSR through all the patient’s MD values. The OLSR estimated MD values are
treated as the true MD state of the patient. Although OLSR estimates of patient’s state
have noise, the high level of noise in MD measurements compared to the level of noise in
OLSR estimates is a favorable compromise.

The IMM filtered MD estimates had a RMSE of 1.181. For comparison, a single KF had
a RMSE of 1.738. This indicates the IMM Filter performed better than using a single KF.
IMM filter performance could have potentially been improved by using additional KFs to
model an expanded set of disease phases however, we underscore point-wise prediction
of MD values was not the goal of this work. Instead, the goal was future Rapid Progression
identification. The outputs of the IMM filter (e.g. filtered MD, filtered MD velocity values,
and filtered MD acceleration) were used as additional features for the supervised learning
model discussed in Section 2.4.3.6. The addition of these three features increased the
performance of our supervised learning model by approximately 7%; providing us with
evidence the IMM model produces outputs that provide additional discriminatory informa-
tion relevant for the task of proactive rapid progression identification. An illustration of the
IMM filter outputs for a selected patient is shown in Appendix C.1. In the next section we
detail the supervised classification model we developed to proactively identify patients’
instances as rapidly progressing.
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2.4.3.6 Soft Voting Ensemble Classifier (SVE)

Ensemble methods are learning algorithms that construct a set of classifiers and then
classify new data points using a (weighted) vote of their predictions [17]. In particular,
a soft voting ensemble is a ensemble method that classifies new data points using a
(weighted) vote of predicted probabilities, instead of predicted classes.

The goal of the Soft Voting Ensemble Classifier (SVE) is to identify patient instances
as rapidly progressing (RP). This identification comes before observing the patients fu-
ture MD values. Hence, the purpose of the SVE is to provide the clinicians with ana-
lytical insights in order to help them make proactive patient treatment decisions. Our
SVE is an ensemble classifier composed of four supervised learning models. These
models are: Support Vector Machine - Gaussian Kernel (SVM), Random Forest (RF),
K-Nearest Neighbors (KNN), and Gradient Boosted Decision Trees (GBDT).All four su-
pervised learning models are appropriate for multi-class classification. Each can be used
to estimate the probability the patient instance will experience RP within the next two (or
three) years. Other methods including a neural network, linear discriminant analysis, and
quadratic discriminant analysis were explored, but they did not improve the performance
of the classification model. For the interested reader, a through overview of these four
models is found in [21].

The four models are individually trained, and their predicted probability of progression
is fed into a Logistic Regression meta-classifier for final output. This model is commonly
referred to as a soft voting ensemble classifier (SVE) [10, 24]. A diagram of the supervised
learning model is in Figure 2.2.

Each of the four models, given a training/testing instance, computes the probability
of the instance belonging to one of the two classes (1 for RP or 0 for Non-RP). The
four probabilities are subsequently fed into the Logistic Regression classifier to obtain
the probability the patient’s eye will exhibit rapid progression behavior within next two
(three) years. We confirmed feeding the probability of RP, instead of a binary indicator
indicating whether RP is present or not (e.g. 0/1), into the Logistic Regression meta
classifier resulted in the best performance.

2.4.3.7 Model Validation

Since the data contains a temporal component (observations are independent between
patients, but not independent within patients), traditional approaches such as k-fold cross
validation are prone to overestimating model generalizability [5]. We resolve this issue us-
ing walk-forward validation [61]: A general description of walk-forward validation is below
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Figure 2.2: Soft voting ensemble classifier diagram

and illustrated in Figure 2.3:

1. Starting at the beginning of the time series, the minimum number of samples (i.e.,
starting from year 2) are used to train a model.

2. The model makes a prediction for the next time step (i.e., 6 months)

3. The prediction is stored and evaluated against the known value/label, as obtained
from the method discussed.

4. The training window is expanded to include the next period of data and the process
is repeated for the next iteration (go to step 1.)

5. After all longitudinal iterations are complete, the model’s overall validation perfor-
mance is obtained by averaging the model’s performance across all held-out valida-
tion sets.

28



Figure 2.3: Walk forward validation illustration, not to scale

We use walk-forward validation not only to validate our model, but also to optimize the
models’ hyperparameters (i.e. the hyperparameters for all 5 supervised learning models).
This was accomplished using grid search. We choose the hyperparameters that maxi-
mized our performance metrics: balanced accuracy (e.g. average recall for both targets),
and receiver operating area under the curve (AUC). For a review of balanced accuracy
and AUC see [9] and [24] respectively.

The use of a soft voting ensemble, instead of one of the four supervised learning
models, is an important addition. Ensemble models have been shown to increase pre-
diction performance by reducing variance of each sub-model’s predictions at the expense
of a small increase in bias [17]. Accordingly, we found the soft voting ensemble had a
validation receiver operating area under curve (AUC), of more than 15% higher, in the
relative sense, than any of the aforementioned classifiers. AUC is computed as the mean
AUC across all walk-forward validation folds. For example, Table 2.3 and 2.4 provides an
overview of the individual AUC validation performance using testing procedure 1 (to be
discussed in section 2.4.4). As can be seen, the soft voting ensemble performance is
superior to all individual classifiers. AUC and walk-forward validation are each discussed
in the next section.

The log-odds coefficients of the logistic regression meta classifier for 2-year and 3-
year RP prediction for K-Nearest Neighbor, Support Vector Machine, Gradient Boosted
Decision Tree, and Random Forest classifiers under testing procedure 1 were respec-
tively 14.11, 3.04, 1.56, 0.88 for 2-year prediction; and 11.80, 3.90, 1.67, 1.03 for 3-year
prediction. Both models had intercept terms of approximately -9. The relatively large
log-odds coefficients for K-Nearest Neighbors suggests the K-Nearest Neighbors models
had a high true-positive rate (sensitivity). We recognize the classifiers are trained on the
same data and therefore their predictions are likely correlated. Hence, the log-odds co-
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efficients (classifier weights) are effected by multicollinearity. However, because our goal
is prediction accuracy and not interpretation of log-odds coefficients it does not affect our
modeling approach.

Table 2.3: 2 Year Testing Procedure 1 - Validation AUC Performance of Individual Models
Vs. Soft Voting Ensemble

KNN GBDT RF SVM SVE
AUC 0.68 ± 0.02 0.70 ± 0.02 0.69 ± 0.03 0.69 ± 0.03 0.748 ± 0.03

Table 2.4: 3 Year Testing Procedure 1 - Validation AUC Performance of Individual Models
Vs. Soft Voting Ensemble

KNN GBDT RF SVM SVE
AUC 0.70 ± 0.02 0.72 ± 0.03 0.69 ± 0.05 0.70 ± 0.04 0.825 ± 0.04

2.4.4 Results

The following two testing procedures are were used to evaluate our model performance:

Testing Procedure 1 (TP1): The model is trained and validated using all patient
data except the last period of data. The last period of available data is used as the
held-out (test) set. This is done in order to estimate how well our model predicts patients’
eyes at the next visit, given it has been trained on data from the previous visits. Hence,
TP1 estimates model performance for predicting future RP for patients whose past data
it has already been trained on.

Testing Procedure 2 (TP2): The model is trained and validated using a subset of
available patients (90%). The subset is obtained by stratifying on age, race, and sex, as
to keep the patients in the training and held-out (testing) sets as similar as possible. For
the remaining 10% of patients, the first available visit, year 2, is used as our held-out
(test) set. Hence, TP2 estimates the performance of the model at predicting RP eyes
for patients it has not been previously trained on, i.e., new patients. Tables 2.5 and 2.6
provide an overview of our results.

The TP1 results in Table 2.5 show a 2-year prediction BA and AUC of 0.717 and 0.819
respectively, and a 3-year prediction BA and AUC of 0.737 and 0.758 respectively. We
believe our 3-year predictions for BA to be slightly better due to the inherent noise in the
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Table 2.5: TP1 Balanced Accuracy (BA) and ROC AUC performance for 2- and 3-year
prediction models

Walk-Forward Validation Testing Procedure 1 (TP1)

2 Year Predictions
Metric Mean Standard Deviation -

BA 0.702 0.023 0.717
AUC 0.748 0.038 0.819

3 Year Predictions
Metric Mean Standard Deviation -

BA 0.759 0.012 0.737
AUC 0.825 0.045 0.758

Table 2.6: TP2 Balanced Accuracy (BA) and ROC AUC performance for 2- and 3-year
prediction models

Walk-Forward Validation Testing Procedure 2 (TP2)

2 Year Predictions
Metric Mean Standard Deviation -

BA 0.702 0.023 0.672
AUC 0.768 0.036 0.772

3 Year Predictions
Metric Mean Standard Deviation -

BA 0.759 0.024 0.703
AUC 0.817 0.050 0.758

Table 2.7: TP1 testing performance categorized by race. Note there were only 9 Asian
participants for this study.

Race BA AUC

2 Year Prediction
Black 0.762 0.859
White 0.678 0.784
Asian 0.654 0.739

3 Year Prediction
Black 0.741 0.747
White 0.676 0.754
Asian 1 1

MD readings. Given we define RP as an OLSR slope of ≤ −1 MD/year, as the window
of time increases (e.g., 2 to 3 years), the noise in the slope estimate is reduced, and as
a result the measured slope is more likely to be more representative of the true rate of
progression. Additionally we note the probability threshold used for determining whether a
patient’s eye will exhibit RP in the next two (or three) years was 0.50 (e.g. if the predicted
probability of RP was ≥ 0.50 classify the patient’s eye as RP, else classify as non-RP).

The results for TP2, which are shown in Table 2.6, follow the results seen in TP1. The
key difference between these two testing procedures is the results for TP2 are slightly
inferior. We believe this is due to the fact for TP2 we are testing our model on patients
that have no prior data in the training datasets. These patients, while stratified to be as
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similar as possible, are not the same patients. Hence, their disease trajectory is likely
different.

In addition, for TP1, we examined the testing BA and AUC categorized by race. We
choose not to do this for TP2 because after categorizing by race the the number of
patients in each category were too small to draw meaningful conclusions. The results are
located in Table 2.7. We note, from Table 2.2, there were only 9 patients of Asian descent
in our study population. Hence, while the results may suggest for Asian patients we
predict future TP1 3 year rapid progression perfectly, it needs investigated further using a
larger population of Asian patients. The results from Table 2.7 are largely inline with the
results from Table 2.5. There does appear to be slightly better TP1 performance for black
patients, however this could be attributed to black patients making up the majority of our
study population. It would be worthwhile in future works to expand our study population
and see if these results remain the same.

2.5 Conclusion

This chapter has provided models and a framework that can be adapted to a variety of
chronic diseases in which medical tests over time have moderate to severe residual vari-
ability. We utilize the notion of disease phase, which may change over time, and apply it to
the ocular condition glaucoma to identify whether a patient at time t is a rapid progressor
or not. We found that to achieve high accuracy for the difficult problem of glaucoma phase
classification, the method needed to adapt dynamically to changing disease phases. This
was accomplished by integrating the outputs of an interacting multiple model (IMM) KF
with supervised learning classification methods. Incorporating the IMM filter estimates in-
creased TP1’s 2-year AUC from 0.752 to 0.819. A similar effect holds for TP2 and 3-year
predictions as well.

The results indicate the viable use of our supervised learning algorithms to inform
clinicians on instances of RP between the current visit and the next 2 or 3 years for
AGIS/CIGTS. This is of significant consequence, as identifying patients who will expe-
rience RP provides the clinician with key information for proactive treatment. We have
shown our model is able to achieve acceptable levels of performance (e.g., TP1: 2-year
(3-year) AUC of .82 (.76) in the walk-forward cross-validation). When tested on a held-out
test set, we obtained a 2-year (3-year) AUC of .77 (.76). We conjecture, as the data used
to train these models is increased, their performance will continue to improve, increasing
their value to clinical practice. Future work is warranted to expand the study population
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from patients with moderate to advanced glaucoma, to patients with early onset/moderate
glaucoma.

More generally, these results suggest that the framework presented in this chapter
is successful in the proactive identification of disease phases. In cases where medical
tests have high residual variance, estimating the true reading with high accuracy is
likely to be very difficult. The combination of filtering and statistical learning serves as
a useful option when faced with this issue. The methodology presented in this chapter
has far reaching implications, as it enables the clinician to make more informed decisions
regarding the treatment of patients and increases the likelihood the clinician is able to
maintain a satisfactory quality of life for the patient. Future works may be able improve
our methodology by incorporating mechanisms for the dynamic control of the disease.
For example, examining how clinical treatments affect the disease transition from one
phase to another, and more insightfully, how this can be controlled so the patient time in
a “favorable” disease phase is maximized. Additionally we may consider predicting the
disease phase at smaller time intervals (e.g. 6 month periods). In this way, the clinician
will have greater detail of patients’ future disease trajectories, instead of a summary
measures over 2 (or 3-year) time windows.
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CHAPTER 3

Reinforcement Learning Methods for
Constructing Personalized Monitoring
Schedules for Patients with Chronic

Conditions: Application to Glaucoma

3.1 Introduction

Glaucoma is one of the leading causes of visual impairment in the United States [12,
31, 54]. It is estimated that over 3 million Americans have glaucoma [31], and up to 6
million have ocular hypertension (OHTN). Patients diagnosed with OHTN are at increased
risk of developing glaucoma [55], and it is vital for these patients to seek treatment in a
timely and recurrent manner. Nevertheless, there exists no consensus on the optimal
monitoring frequency by which patients with OHTN should be scheduled for follow-up
appointments [38]. Determining the time to next follow-up schedule is a challenging task,
as it should strike a balance between detecting glaucoma progression in a timely manner
while avoiding unnecessary treatment for heterogeneous patients. For example, if the
time to next schedule is too short, the patient may receive unnecessary treatment; if the
time to next schedule is too long, the patient may be at risk of undetected glaucoma
progression. There are clear tradeoffs between these two extremes. This supports the
need for personalized patient follow-up scheduling, which depends on the medical need
and state of the patient.

The aim of this chapter is to develop a framework for constructing follow-up schedul-
ing policies using the available patient-specific data from electronic health records. We
present a reinforcement learning (RL) methodology for determining personalized monitor-
ing schedules for patients with ocular hypertension. We chose to employ an RL framework
because it is easily implementable, does not require warm-up periods (e.g., can be used
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starting from the patient’s first appointment), is model-free, and can dynamically adapt to
patients’ changing medical state. To the best of our knowledge, we are the first to apply
RL to address this research problem.

Our proposed scheduling policies have three underlying goals: (i) maximizing time
between follow-up visits, (ii) maximizing the scheduling efficiency, which is the percentage
of scheduled visits indicating glaucoma progression may be near, and (iii) minimizing time
to detect glaucoma progression. The organization of our chapter is as follows: Section 3.2
reviews background and literature. Section 3.3 outlines the proposed methods. Section
3.4 presents and discusses the numerical results of the OHTN case study. Finally, Section
3.5 concludes the chapter and discusses the future work.

3.2 Background and Literature

There are two primary areas of research relevant to our approach: (1) RL applications
within healthcare; and (2) personalized patient time-to-next test (TNT) models (i.e., data-
driven models for determining personalized patient follow-up visit schedules).

Reinforcement Learning Applications in Healthcare. In healthcare, there has
been numerous data-driven approaches to advance the way patients are scheduled and
treated. RL has been employed successfully in a variety of these settings. According to
[66], the relevant RL studies can be classified into three categories: dynamic treatment
regimes, automated medical diagnosis, and general domain areas.

In dynamic treatment regimens, [52] used RL to identify a treatment protocol for wean-
ing patients off mechanical ventilation. Their model focused on improving three aspects of
patient ventilation weaning: (1) time into ventilation, (2) physiological stability (i.e., whether
vitals are steady and within expected ranges), and (3) failed reintubation or breathing tri-
als. They showed that their model outperformed, on average, the currently used ventila-
tion weaning policy by clinicians in regulating patients’ vitals reintubations. [19] developed
an RL algorithm to optimize anemia treatment amongst hemodialysis patients by deter-
mining the most appropriate erythropoiesis-simulating agent (ESA) dosages for patients.
Although perspective validation was required, the authors demonstrated their algorithm
performed superior to a currently used ESA dosage policy. And more recently, [14] de-
veloped an RL system that dynamically assists with communications to patients. In the
case of patients with physical disabilities or cognitive disabilities, the system automatically
searches for the most effective way to communicate and remind the daily treatment plan
to the patient.
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In automated medical diagnosis, [50] provided an illustration of RL for effectively clas-
sifying lung nodules as benign or malignant. The methods employed are based directly
on applying RL to lung lesions CT images thereby automating the analysis and detection
of the disease. Similarly, but more recently, [66] employed RL for lung cancer detection
by combining deep RL methods with medical big data generated by IoT. [47] used Trust
Region Policy Optimization (TRPO), a type of reinforcement learning, for automated joint
surgical gesture segmentation and classification. The motivation of their work is to provide
an effective means of surgical skill assessment and efficient surgery training for surgeons.

Last, in general domain areas, [25] used RL for primary care appointment slot schedul-
ing. In their work they develop an RL algorithm to schedule appointments slots in a set
of increasingly challenging primary care environments. [60] used approximate dynamic
programming, a type of RL, to solve capacity allocation problems. Last, in the drug dis-
covery and development research domain [51] used RL to fine tune a recurrent neural net-
work to generate molecules with certain desirable properties through augmented episodic
likelihood. In all cases examined, RL was successfully employed as a methodology for
improving healthcare decisions.

Personalized Time-to-Next Test Patient Models. There has been limited works in
this area. Prior works commonly model a low-dimensional (often discretized) state space
(e.g., [45, 48] or generally focus on performing screenings to detect the first incidence of
a disease [4, 34, 46], rather than monitoring an ongoing one. Recently, with the advances
of computing, there has been advances in personalized monitoring through the applica-
tion of medical wearable devices. For example, [32] surveys numerous wearable devices,
providing an overview of their clinical application, and discusses opening challenges in
this area. However, the use of wearable devices commonly tackles the disease moni-
toring problem from a disease surveillance perspective; focusing on the large volume of
real-time clinical data the devices produce, instead of how this information can be used
to inform patient monitoring schedules for clinical interventions or situations with costly
measurements.

The studies of [59] and [36] are the closest works to ours. In these works, they not
only consider the frequency of monitoring decisions but also incorporate the dynamic up-
dating of information enabling the personalized scheduling of patients. They developed a
Kalman filtered based TNT algorithm parameterized using a clinical trial dataset from the
Advanced Glaucoma Intervention Study (AGIS) and the Collaborative Initial Glaucoma
Treatment Study (CIGTS). Their aim, analogous to ours, was to develop personalized
patient TNT monitoring schedules. Our approach differs from these works in several
ways. First, we propose an integrated model that directly provides a control policy (follow-
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up scheduling policies) which is close to the optimal policy. This provides an easy-to-
implement method that can be used in real-world practice. Unlike the RL method we
devise, they address the TNT problem in a multi-step manner which includes, estimating
the next state using a Kalman Filter model, estimating the probability of disease progres-
sion using a regression model, and implementing an optimization step to determine TNT
using a confidence interval constructed based on the estimated next states with respect
to different time intervals. Second, as it is important in practice we do not require warm up
periods (i.e., periods for parameterizing the model for each patient) before our algorithm
can recommend time until the next follow-up appointment. Our method can generate
TNT recommendations starting from a patient’s first appointment. The TNT algorithms
developed in [59] and [36] required 4 periods (spanning 18 months) to generate TNT
recommendations. This marks a notable difference, as delays to recommend a patient
an appropriate TNT can lead to over-monitoring if it is shown the patient did not require
a follow-up visit; or may lead to under-monitoring, if it is shown the patient should have
been scheduled a follow-up visit sooner.

Third, we employ a model-free algorithm, which assumes no knowledge of the dynam-
ics of the system being modeled. This obviates the need to directly model how a patient’s
state transitions between appointments. Their methods required the disease dynamics to
be effectively modeled using linear Gaussian systems and are not well suited for discrete
patient covariates (e.g., sex or race of patient). In particular, their Kalman Filter required
model components (e.g., state transition matrix, observation model, process noise matrix,
etc.) to accurately reflect the dynamics of the system (e.g., the patients’ disease), which
has both benefits (e.g., interpretability) and weaknesses (e.g., possibility of poor model
specification). Lastly, our RL-based methodology is flexible in a sense that different crite-
ria can be considered to find a near-optimal scheduling policy rather than a conservative
estimate of the patient’s probability of progression used in prior studies. We ultimately
employ the use of RL to build a TNT recommendation model that is personalized for each
patient, can dynamically adapt to a patient changing medical state, can be used start-
ing from the patient’s initial visit, and provides an integrated approach. To the best of
our knowledge, we are the first to tackle this problem in a manner that meets these four
conditions.
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3.3 Methods

3.3.1 Conceptual Framework

While the application focus of this work is on OHTN, our conceptual framework can be
used to build TNT models for other chronic conditions as well. We formalize our RL
framework using a Markov Decision Process (MDP). An MDP is a modeling framework
for optimally solving the sequential decision-making problems. An MDP is defined by
a state space, action space, transition probability function, and reward function. These
components are formally defined as follows:

• The state space S is a continuous state space such that at time t, the patient is in
state st ∈ S. The state st contains the variables (e.g., test measurements) essential
for TNT decision making.

• The action space A is a set that the clinician may only choose an action at ∈ A at
time t. For the general TNT problem, the action, at, indicates the length of time the
patient must wait until the next follow-up appointment.

• The transition probability function defines the dynamics of the system. That is, the
function P : S × A × S → [0, 1] gives the probability of the next states at time t + 1,
given the action at and the patient’s state st ∈ S.

• The reward function, r : S ×A→ R is a function of the current state, chosen action,
and next state outcome that evaluates the immediate effect of the chosen action.
The reward function r(st, at, st+1) is used to incentivize the best action at time t, but
it does not provide information on the long-term effects of the action. For instance,
a reward function can incentivize timing of a follow-up visit either shortly before or
when disease progression events are likely to occur.

The goal of the MDP is to learn a scheduling policy that maximizes the cumulative
reward over time, called an optimal policy. Let π : S → A denote an optimal policy which is
a function that maps every state st ∈ S at time t to a decision choice a = π(s). The current
action chosen by following the policy, π, maximizes the total expected sum of rewards,
Rπ(s0) given an initial state s0. That is, we aim to maximize the time-discounted total
reward over a planning horizon of infinite length rather than just the immediate reward.
This is defined as:

Rπ(s0) = lim
T→∞

Est+1|st,π(st)(
∞∑
t=0

γtr(st, at, st+1)), (3.1)
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where γ ∈ [0, 1) is the discount factor to balance the effect of the immediate reward and
future rewards. We leave to the reader the mathematical underpinnings of the MDP, see
[53] for a detailed overview. The presentation of the TNT model will aim for generality
where possible; however, for ease in reading and to explain the application, we will dis-
cuss the MDP formulation in the context of building a TNT model specifically for patients
diagnosed with OHTN.

3.3.2 Data

We use the Ocular Hypertension Treatment Study (OHTS), a randomized clinical trial in-
volving 1636 patients with OHTN recruited from 22 centers throughout the US between
February 1994 and March 2009 [29, 28, 26]. Participants were randomized to either
treatment with IOP-lowering medications or followed without treatment. Both groups were
followed for up to 15 years using standardized measurements of tonometry and perime-
try starting at baseline and every 6 months thereafter. To be eligible for participation in
OHTS, individuals had baseline intraocular pressures (IOPs) of 21 to 32 mm Hg in both
eyes, reliable and normal visual fields (Carl Zeiss Meditec, Dublin, CA), and no detectable
structural evidence of glaucoma based on optic nerve evaluation. In our analyses, trial
participants were censored when they experienced non-glaucomatous visual field loss or
underwent any incisional intraocular surgery other than uncomplicated cataract surgery.
Patients’ eyes were excluded if they had fewer than 2 sets of tonometry or perimetry mea-
surements. If either one or both eyes were eligible from a patient, we included them in our
study. In total 1619 patients entered our study.

OHTS provides demographic information (e.g., age, sex, and race) and longitudinal
medical information of three key continuous valued measurements: intraocular pressure
(IOP) - measures the pressure in the eye, mean deviation (MD) - measures mean age
and race adjusted deviation of a patient’s retinal sensitivities, and pattern standard devi-
ation (PSD) - measures the uniformity of a patient’s retinal sensitivities. All values were
recorded on approximately 6-month intervals. A summary of the data is given in Table
3.1.

Table 3.1: Description of OHTS Study Sample

Characteristic Mean/Count SD/Percent
No. of Patients 1619 -
No. of Eyes 3231 -
No. Eye Progressions 423 -
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Table 3.1 continued from previous page
Characteristic Mean/Count SD/Percent

Sex, No (%)
Male 697 43%

Female 922 57%
Race/ethnicity, No (%)

White 1133 70%
Black 399 25%
Other 87 5%

Age at baseline, years 57 10
No. of visual field tests per eye 22 9
Follow-ups visit length, years 10.5 4
Baseline Reading

MD, dB 0.17 1.15
PSD, dB 1.95 0.29
IOP, mm Hg 25.01 2.98

A participant’s eye was labelled as progressing from OHTN to primary open-angle
glaucoma (POAG) if it exhibited a drop in MD of 3 or more decibels (dB) from their baseline
MD (e.g., initial MD measurement) on 2 consecutive MD tests [49]. If the progression
criterion was met, the date of progression was taken to be the date of the second MD
test. We use two consecutive MD tests, instead of one, to limit misclassifying fluctuating
MD performance as progression.

All quantitative data elements (e.g., MD, IOP, PSD, etc.) were recorded in OHTS at
intervals of approximately every 6 months. While most patients strictly adhered to the
visit schedule for the trial, infrequently patients may have missed visits. In these cases,
linear interpolation was employed. B-splines interpolation of various orders was tested;
however, it was inferior to linear interpolation. To avoid creating progression artifacts (e.g.,
patient eyes that did not progress according to the original MD measurements, but pro-
gressed after linear interpolation was introduced), glaucoma progression was determined
using the original MD measurements in the clinical trial dataset, and not their interpolated
values.
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3.3.3 TNT MDP Formulation for Patients with Ocular Hypertension

The MDP TNT formulation for patients with ocular hypertension is described below. Nota-
tion for the chapter is provided in Appendix D.1. The state, st, is a 13-dimensional vector
composed of a patient’s left or right eye features recorded at time t, where t is defined on
intervals of 6-months (e.g., t = 3 → 18 months). The features are as follows: patient’s
age, race, and sex; intraocular eye pressure (IOP), mean deviation (MD), and pattern
standard deviation (PSD); baseline (or initial follow-up appointment) MD, IOP, and PSD;
the change from baseline for MD, IOP, and PSD eye measurements; and the number of
months from the patient’s baseline visit to the current visit. Besides age, race, and sex,
all features are recorded at the eye level.

The action space, A, represents the integer number of 6-month periods between a
patient’s current visit and their next visit. The maximum number of months between two
consecutive follow-up visits is 24 months or 2 years; this ensures a patient has at least one
follow-up visit every 2 years. Hence, the action space comprises 4 actions, A ∈ 1, 2, 3, 4.
For example, given t = 0, an action a0 = 2, indicates the patient’s first follow-up visit will
be scheduled 12 months (or two 6-month periods) after their initial (e.g., baseline) follow-
up appointment. The choice of 6-month periods was used to match the same follow-up
appointment resolution (patient appointments approximately every 6-months) used in the
OHTS dataset.

The transition probability function is inferred from the OHTS patient data. This is be-
cause our RL model employs the fitted Q-iteration algorithm [18]. The fitted Q-iteration
algorithm is model-free, indicating it does not assume any knowledge of the dynamics
(e.g., state transitions) of the system being modeled. Hence, while it is common to ex-
plicitly define the transition function when describing an MDP, it is not required for this
work.

The reward captures how the clinician should respond (i.e., what action should he/she
take) given the patient’s updated current state during a visit. Rewards are associated
with each state-transition pair using the tuple rt+at(st, at, st+at). The subscript t+ at refers
to the time of next follow up appointment (e.g., number of 6-month periods from their
current follow-up visit) after choosing action at. All normalized rewards and sub-rewards
are bounded between 0 and 1. The reward at time, t, is composed of a linear combination
of four sub-rewards, and four weights that are normalized to sum to one. We considered
the following sub-rewards:

I. Visit delay (r
(V D)
t+at ): To prevent unnecessary visits, we incentivize longer duration

between visits by giving a linearly increasing reward to actions suggesting a longer
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duration between two visits that ranges from 1
4

to 1:

(r
(V D)
t+at ) = (

1

4
) · at, at ∈ A (3.2)

II. MD drop (r
(MD)
t+at ): To promote higher scheduling efficiency, we reward suggesting a

time to next visit for which the MD shows suspected progression or near suspected
progression (e.g., single occurrence of MD drop from baseline ¡= -3):

(r
(MD)
t+at ) =

1

1 + exp−3(−(MDt−MDBaseline)−2.5)
(3.3)

We incentivize recommending visits at periods most likely to have a drop in MD of
about -2 dB below baseline. This allows our scheduling policy to potentially detect a
patient’s progression early, enabling a clinician to take proactive action.

III. Progression identification (r
(PI)
t+at): The reward is a value of 1 if the action at the

current state is to schedule the next appointment in 6 months, and if both the current
state’s (e.g., current follow-up visit) and the MD and transitioning state (e.g., follow-
up visit 6 months after current visit) indicates a drop of MD of 3 or more decibels
(dB) from the state’s baseline MD value; otherwise, it is 0. This incentivizes having
a visit at the first period that satisfies the definition of progression.

(r
(PI)
t+at) =

1, (at = 1) ∧ (MDt −MDBaseline ≤ −3) ∧ (MDt+at −MDBaseline ≤ −3)

0, Otherwise
(3.4)

IV. MD stability (r
(MS)
t+at ): Because clinicians and patients are uncomfortable with large

changes between visits, we penalize follow-up visits with a drop in MD of 0.05dB or
more:

(r
(MS)
t+at ) =

1, MDt+at −MDt ≥ −0.05

0, Otherwise
(3.5)

Finally, the reward is formulated as follows:

rt+at = λ(V D)r
(V D)
t+at + λ(MD)r

(MD)
t+at + λ(PI)r

(PI)
t+at + λ(MS)r

(MS)
t+at , (3.6)

where the scalars λ(V D), λ(MD), λ(PI), and λ(MS) , are weights applied to each sub-reward
to determine their contribution to the total reward (see section 3.3.5 for their values).
For example, if, in the extreme case, all but the visit delay reward is given a non-zero
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positive weight, the visit recommendations would always recommend visits every 2-years
to maximize the time between visits. In a clinical application, weights should be chosen
under the supervision of a clinician. Taken holistically, the rewards encourage the MDP
to recommend follow-up visits to maintain patients’ MD measurements appropriate to the
condition of the patient. When the patient is suspected of progressing to OAG; or when
the patient is progressing to POAG, the TNT should be short. When neither of these
adverse events are expected, the TNT should be as far out into the future as the model is
confident in recommending. Plots of the sub-rewards are shown in Figure 3.1.

A conceptual illustration of the RL framework for TNT is presented in Figure 3.2. Fig-
ure 3.2 can be summarized as follows: (1) a RL scheduling model receives, as input,
a patient’s state, st, and estimated reward, rt. (2) The model determines which action
(e.g., 6, 12, 18, or 24 months until the patient’s next follow-up appointment) maximizes
the summation of current and future rewards. (3) The maximizing action, at, is selected,
and the patient next follow-up appointment is scheduled. This 3-step process transitions
the patient from their current state st to their transitioning state st+1 through the selection
of action at. Steps 1-3 proceed in a recursive manner.

3.3.4 Fitted Q-iteration

To find an approximately optimal policy, π, we use fitted q-iteration (FQ) algorithm, which
is an off-policy batch mode RL algorithm. The goal of FQ is to provide an estimate of the
Q-function, which can be directly used to find the optimal policy. The Q-function, defined
as Qπ(s, a) : S × A → R, computes the expected reward starting at state, s, choosing
action a, and thereafter following policy, π(s). Given a set of one-step transitions of the
form F = ((snt , a

n
t , s

n
t+1), rnt+1), n = 1, . . . , |F |, the TNT policy is estimated as follows:

Step 1 (Initialization): In the first step, we initialize Q-function Q̂0, where Q̂0(s, a) = 0 for
all - s ∈ S and a ∈ A.

Step 2 (Approximate Q-function): In the second step, we approximate the Q-
function over K iterations. In the kth iteration, we have two sub-steps:

Forming the training set: We calculate Q̂k(s
n
t , a

n
t ) for all (snt , a

n
t ) ∈ F according to

the Bellman equation:

Q̂k(st, a)← rt+1 + γmax
a∈A

Q̂k−1(st+1, a), (3.7)
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(a) Visit Delay Reward (b) MD stability reward

(c) MD Drop Reward

Figure 3.1: Illustrations of the reward and cost structures for visit delay reward, MD stabil-
ity cost, and MD drop reward functions. Visit delay and MD drop rewards range between
0 and 1, while the MD stability ranges between 0 and -1. The progression identification
reward is not present because it is based on a set progression conditions being met. MD
= mean deviation.
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Figure 3.2: Conceptual Illustration of the RL framework for TNT. RL = reinforcement learn-
ing; TNT = time to next test.

where Q̂k−1(.) is the function approximated in the prior iteration using a supervised learn-
ing regressor. Accordingly, we form the kth training set, Tk = {((snt , ant ), Q̂k(s

n
t , a

n
t )), n =

1, . . . , |F |}.

Improving the estimated Q-function: We approximate the function Q̂k−1(.) using the
training set Tk and a supervised learning regressor. The supervised regressor can be
viewed as predicting the maximum expected reward after transitioning to state,st+1 ∈ S,
and choosing action, a ∈ A. The supervised learning regressor takes state-action pairs,
(st, at) ∈ Tk as the input variables and Q̂k(st, at) as the response variables. We use the
Extremely Randomized Decision Trees (ERDT) proposed by [52, 18] as a supervised
regressor, which is a tree-based supervised classification algorithm. The algorithm
has three parameters that need to be specified: (1) the number of features to consider
when computing a decision true node split, (2) the number of trees to include in the tree
ensemble, and (3) the minimum number of samples in each leaf node. For the models
presented, the number of features considered were: all 13 state variables, 50 trees
included in the tree ensemble, and a minimum number of samples of 200 in each leaf
node. The parameter values were chosen using the direction in [18].

Step 3 (Approximate Optimal Policy): In the last step, the policy, π, is computed
as:

π̂(st) = arg max
a∈A

Q̂K(st, a)., (3.8)
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where Q̂K(.) is the Q-function approximated in the prior step over K iterations.
It is worth noting that the convergence of FQ is guaranteed for commonly used super-

vised regressors if the structure of the regressor does not change from one iteration to
the next [18]. The convergence of FQ can be measured as the average distance between
subsequent FQ iterations. Since, FQ starts with an arbitrary approximation of the Q-
function, (e.g., Q0(st, at) = 0), that generally improves after each iteration, when there is
no longer an improvement in the average distance between subsequent Q-functions, FQ,
is said to have converged to an optimal Q-function. The distance between subsequent
Q-iterations can be calculated as,

∆(Q̂k, Q̂k−1) =

∑
(s,a)∈S×A(Q̂k(s, a)− Q̂k−1(s, a))2

|S × A|
(3.9)

where |S × A|, is the cardinality of the cartesian product of the state and action space.
For the model developed, we stopped after a fixed K = 100 iterations (i.e., our analysis of
the Q-function over time indicated 100 iterations was sufficient for an accurate solution).
However, we confirmed convergence using ∆(Q̂k, Q̂k−1). In cases where early stopping
is preferred, ∆(Q̂k, Q̂k−1) ≤ ε, can be used. Where, ε, is treated as a threshold signaling
convergence.

3.3.5 Evaluation

Using fitted Q-iteration proposed in section 3.3.4, we developed two polices, namely, RL
policy 1 and RL policy 2. The key difference between the two is how their visit delay reward
was weighted. RL policy 2 puts less weight on the visit delay reward, thereby increasing
the number of patient follow-up visits. This significantly reduced the diagnostic delay and
the average time between follow-up visits compared to RL policy 1. The un-normalized
reward weights for RL policy 1 and RL policy 2 were respectively, λ(V D) = 0.05 and 0.01.
For λ(MD), λ(PI) and λ(MS) both polices used λ(MD) = 1, λ(PI) = 1, and λ(MS) = 1.

To assess how well the 2 RL policies performed relative to fixed interval testing the
following three metrics, suggested in [59], were used to assess the performance across
the held-out test set:

I. Average time-to-next test: The average time, in years, between subsequent patient’s
eye follow-up visits (the higher the better).

II. The efficiency in scheduling follow-up visits: The percentage of scheduled visits that
show a patient’s eye MD loss of 3 decibels from baseline (i.e., suspected POAG
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progression); It is computed at the patient eye level (the higher the better).

III. The diagnostic delay: The average number of months that a patient’s eye glaucoma
progression went undetected before the next scheduled visit); it is 0 if a visit occurs
on the date of the confirmation visit (the lower the better).

To validate and test our proposed methodology, the OHTS data was divided into a
training set (80%; a total 2587 OHTS patients’ eyes) and a testing set (20%; 644 OHTS
patients’ eyes). There were 340 (13%) progressed eyes in the training set and 79 (12%)
progressed eyes in the testing set. An 80/20 split across patients was used to ensure
the model had enough training and testing instances to learn a scheduling policy and
appropriately test it. Trial participants were randomly assigned to training or testing set.
For the 1612 patients who contributed both eyes, their two eyes were assigned to either
the training set or testing set. For the 7 patients who contributed one eye, their eye was
either assigned to the training or testing set. The training set was used to create the time-
to-next test scheduling policies (i.e., train the ERDT supervised machine learning model)
using fitted Q-iteration proposed in section 3.3.4. The testing set was used to evaluate
the scheduling policy’s performance using the evaluation metrics.

3.4 Results and discussion

3.4.1 Policy Evaluation

We evaluate the performance of the proposed scheduling policies using the OHTS ran-
domized clinical trial data. A common scheduling policy for TNT used by clinicians is fixed
interval scheduling. Fixed interval scheduling refers to scheduling a patient’s follow-up
every x years, where x typically ranges between 0.5-years and 2-years. The larger the
interval, x, the less aggressive the clinician is in monitoring the patient. For the application
presented in this chapter, we use x equal to 1-year and 2-years. We use the fixed interval
scheduling policies as our benchmarks.

Our proposed scheduling policy for TNT reflects the real-world practice in which a pa-
tient’s TNT is dictated by their medical risk of deterioration. In cases where their medical
status suggests their illness is under control, they can be seen at longer durations be-
tween follow-up appointments; conversely, if their illness is not under control, the patient’
follow-up visit is scheduled with a shorter TNT. This approach can be seen as balancing
the patient’s quality of life (i.e., less inconvenience and possible discomfort) with their risk
of poor health outcomes (e.g., glacoma progression).
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The TNT RL policies were evaluated on the testing set. The evaluation consisted of
patients’ eyes, beginning at baseline, being recursively recommended their next follow-up
visits by the TNT RL policies until reaching the end of their follow-up history. Average
TNT was recorded for all testing eyes. Efficiency and diagnostic delay were recorded for
each of the 79 progressed eyes in the testing set. The results, sorted by average TNT,
are shown in Table 3.2.

Table 3.2: Two RL and Two Fixed-interval Policies Performance (bold indicates the max
and min values achieved). RL = reinforcement learning.

Scheduling
Policies Average TNT (years) Scheduling

Efficiency (Max)
Diagnostic
Delay in Months (Min)Overall Non-Progressed Progressed

Two-year 2 2 2 22% 12.46
RL Policy 1 1.55 1.61 1.08 34% 3.89
One-year 1 1 1 24% 7.45
RL Policy 2 0.94 0.96 0.80 32% 2.63

Comparisons between the 1- and 2-year fixed interval testing scheduling policies and
RL scheduling policies indicated the RL policies outperformed the fixed interval policies.
The 2-year fixed interval follow-up policy, by design, had the largest average time between
follow-up visits (2 years), followed by RL policy 1 (1.55 years). RL policy 1 had the highest
scheduling efficiency (34%) followed by RL policy 2 (32%). RL policy 2 had the smallest
diagnostic delay (2.63 months) followed by RL policy 1 (3.89 months). This suggests the
RL policies can achieve higher scheduling efficiency and lower diagnostic delay than fixed
one-year policy while requiring less visits from the patient.

To gain more insights, we investigated the 4 follow-up scheduling policies with respect
to the diagnosis delay criterion in more detail. Figure 3.3 presents a boxplot comparison
of the diagnostic delay of the 4 follow-up scheduling policies across the testing eyes. The
figure visually confirms both RL policy 1 and 2 perform better than both fixed interval
policies in minimizing diagnostic delay. Not only do the RL policies perform better on
average, but also, have less variability in their performance than the fixed interval policies.
The box-and-whisker plot illustrates the distribution of diagnostic delay between different
scheduling policies. The diagnostic delay indicates the number of months a patient’s
true glaucoma progression went undetected before the next scheduled visit (the lower
the better). The vertical line in each box plot represents the 50% percentile diagnostic
delay. The cross, “+”, represents the mean diagnostic delay. The four policies had mean
diagnostic delays of 3.89 for RL policy 1, 2.63 for RL policy 2, 7.45 for 1-year fixed policy
and 12.46 for 2-year fixed policy. The red “×” represents the mean after removing the
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outliers (5 for RL policy 1 and 3 for RL policy 2) for each respective RL policy. After the
removal, the means are 2.99 (a decrease from 3.89 for RL policy 1) and 2.11 (a decrease
from 2.63 for RL policy 2). We note the removal of outliers is done only to illustrate the
sizable impact a few patients’ eyes have on the mean diagnostic delay. In evaluating the
performance of our policies in the sections to follow, no patients’ eyes were excluded.

ANOVA results confirmed the TNT policies had statistically significant differences in
mean diagnostic delay (p < 0.001). We also conducted pairwise comparisons using
paired t-tests. Family wise error rate (FWER) amongst the 5 pairwise comparisons at
the α = 0.05 confidence level was controlled using the Holm-Bonferroni method (see [33]
for detail). Paired T-tests confirmed the average diagnostic delay for RL policy 2 is statisti-
cally smallest amongst the four policies. Paired t-test p-values comparisons amongst the
policies were respectively p(RL policy 2<RL policy 1) = 0.016, p(RL policy 1<1−year fixed) ≤ 0.001,
and p(RL policy 1<2−year fixed) ≤ 0.001. Additionally, diagnostic delay of RL policy 1 is statis-
tically smaller compared to both fixed interval policies (p ≤ 0.001).

Figure 3.3: Diagnostic delay comparison amongst RL and fixed interval scheduling poli-
cies (the lower the better; only considers progressed patients). The boxes represent the
twenty-fifth to seventy-fifth percentiles and the whiskers extend to the most extreme points
within 1.5 the interquartile range. RL = reinforcement learning.

We also investigated the 4 follow-up scheduling policies with respect to the scheduling
efficiently criterion in more detail. Figure 3.4 presents a boxplot comparison of the 4
follow-up scheduling policies’ scheduling efficiency across the testing eyes. The figure
visually confirms both RL policy 1 and 2 perform better than both fixed interval policies in

49



maximizing scheduling efficiency. The box-and-whisker plot illustrates the distribution of
efficiency between different scheduling policies. The efficiency indicates the percentage
of scheduled visits that show a MD loss of 3 decibels from baseline (i.e., suspected POAG
progression); (the higher the better). The vertical line in each box plot represents the 5%
percentile scheduling efficiency. For the four policies mean scheduling efficiency was 34%
for RL policy 1, 32% for RL policy 2, 24% for 1-year fixed policy, and 22% for 2-year fixed
policy.

ANOVA results confirmed the TNT policies had statistically significant differences in av-
erage scheduling efficiencies (p ≤ 0.001). Paired t-test confirmed the average scheduling
efficiency for RL policy 1 was statistically larger than policy 2 (i.e., p(RL policy 1>RL policy 2) ≤
0.040). P-value comparisons for RL policy 2 and the 2 fixed interval policies were
respectively p(RL policy 2>1−year fixed) ≤ 0.001, and p(RL policy 2>2−year fixed) ≤ 0.001. RL
policy 1 scheduling efficiency was statistically larger than both fixed interval policies
(p ≤ 0.001). The two fixed interval policies had statistically the same scheduling efficiency,
p(1−year fixed>2−year fixed) ≤ 0.102.

Figure 3.4: Scheduling efficiency comparison amongst RL policies and fixed interval
scheduling (the higher the better; only considers progressed patients). The boxes rep-
resent the twenty-fifth to seventy-fifth percentiles and the whiskers extend to the most
extreme points within 1.5 the interquartile range. RL = reinforcement learning.
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3.4.2 State Feature Importance Scores

We investigated the mean feature importance scores for the Extra Trees regression mod-
els trained for RL policies 1 and 2. The importance scores are shown in Figure 3.5. The
higher the feature importance score, the more important the feature was in predicting
the expected reward from a chosen action (e.g., 6, 12, 18, or 24-month follow-up visit).
Surprisingly while both RL policies share the same state features, they differ in how they
value them. As it can be seen, Age and MD baseline differ the most. The differences
are due to changes in the relative weight on the visit delay reward. It is worth noting
that, while the policies differ in the way they value each of the state variables, they give
the most weight to the same 7 state variables (age, MD baseline difference, MD, months
form baseline, PSD, baseline MD, and PSD baseline difference). This implies these top
features are the most important state variables in predicting the expected future reward
from a chosen action (e.g., 6, 12, 18, or 24-month follow-up visit).

Figure 3.5: State feature importance scores for RL Policy 1 and RL Policy 2. RL = rein-
forcement learning.
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3.4.3 RL Policies Action Evaluation

Table 3.3 summarizes the follow-up appointment recommendations, partitioned by follow-
up type (e.g., action type in the MDP formulation), for RL policy 1 and RL policy 2. Accord-
ing to Table 3.3, progressed eyes are more likely to have at least one 6, 12, or 18-month
interval than non-progressed eyes irrespective of the follow-up type. The table confirms
RL policy 2 recommended a significantly greater number of follow-up visits than RL policy
1; for RL policy 1 the number of eyes that had at least one 6-month follow-up appoint-
ment recommendation was 194 (30%) compared to 545 (85%) for RL policy 2 (a 180%
increase).

Table 3.3: Number of Eyes with at Least One Follow-up Appointment of Each Type

Follow-up policy Follow-Up type Non-Progressed (n=565) Progressed (n=79) Overall (n=644)
RL Policy 1 6-month 21% (n=118) 96% (n=76) 30% (n=194)

12-month 5% (30) 20% (16) 7% (46)
18-month 11% (61) 18% (14) 12% (75)
24-month 100% (565) 100% (79) 100% (644)

RL Policy 2 6-month 82% (n=466) 100% (n=79) 85% (n=545)
12-month 27% (150) 28% (22) 27% (172)
18-month 17% (98) 20% (16) 18% (114)
24-month 100% (565) 100% (79) 100% (644)

Additionally, to gain further insight into the inter-visit intervals prior to the date at which
patient eye progression occurred, we looked at the distribution of follow-up appointment
types scheduled by RL policy 1 and RL policy 2 at 6, 12, 18, and 24 months prior to the
date of eye progression. The distribution of follow-up appointment types corresponding to
RL policy 1 and RL policy 2 are shown in Figure 3.6. A policy recommending a follow-up
appointment in 24 months, when a patient’s eye is 24 months from its date of progres-
sion, implies that the next follow-up appointment will occur at the time of progression;
however, we assume that shorter follow-up appointment recommendations (e.g., 6, 12,
or 18-month) do not imply the patient’s eye missed its progression date. For RL policy
1, the total number of follow-up appointment recommendations were 37, 38, 28, and 36
respectively for 6, 12, 18, and 24 months prior to the data of eye progression. For RL
policy 2, the total number of follow-up appointments recommendations were 49, 51, 47,
and 42 respectively for 6, 12, 18, 24 months prior to date of eye progression.

As it can be seen in Figure 3.6, when progressed eyes approach their progression date,
for both policies, the number of 6-month follow-up appointments monotonically increases.
For RL policy 1, the percentage of progressed patients assigned 6-month follow-up ap-
pointments increases from 39% at 24 months prior to progression to 95% at 6 months
prior to progression. Similarly, for RL policy 2, the percentage of progressed patients with
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Figure 3.6: Follow-up appointment distribution for appointments made 6-24 months prior
to POAG progression for follow-up types: 6,12,18, and 24-month (only progressed pa-
tients are plotted in this Figure).

6-month follow-up appointments increases from 74% at 24 months to 98% at 6-month
follow-up appointments prior to progression. This implies that, as patients’ eyes are near
their progression date, both policies correctly schedule more 6-month follow-up visits. The
likely cause of this behavior is that, as a patient’s eye approach the progression date, the
medical state (i.e., MD, PSD, IOP, age, etc.) is more likely to deviate from baseline, sug-
gesting to the policy that the patient progression is near; therefore, a follow-up visit should
be scheduled as soon as possible.

The policies do have a small tendency (21% for RL policy 1 and 8% for RL policy 2)
to recommend 24-month follow-up visits within 12-months from progression. This is likely
due to the inherent noise in ocular test measurements [30]; even as a patient nears pro-
gression, their observed test measurements can appear normal, signaling to the policies
that there is no cause for concern. Hence, scheduling a follow-up appointment 24 months
from their current visit is reasonable, when in hindsight a 6-month or 12-month follow-up
would have been preferred.
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3.5 Conclusion

As patients with chronic illnesses such as ocular hypertension require varied levels of
care, personalized follow-up schedules are required. For convenience, physicians may
choose to use fixed interval policies, which are clearly simpler. However, we cannot ignore
the fact that fixed intervals of time are suboptimal and will often come at the cost of
increased testing and hence cost; and a decrease in the patient’s quality of life. It is
thus in the best interest of the patient to only perform follow-up appointment visits when
they are necessary. Motivated by this fact, we presented a new decision-aid tool using
an offline reinforcement learning approach to schedule personalized follow-up visits for
patients with chronic conditions.

We evaluated the performance of the proposed scheduling policies to schedule time
to next visit (TNT) for patients with Ocular Hypertension using the Ocular Hypertension
Treatment Study (OHTS) randomized clinical trial data. The experimental results indicated
the two proposed policies provide better follow-up recommendations than fixed interval
scheduling policies commonly used in practice. Comparing the TNT visit recommenda-
tions for our proposed RL policies with 1-, and 2-year fixed interval scheduling policies, we
showed that our RL policies can detect POAG progression more efficiently (RL policies’
scheduling efficiency was at least 33% larger than the best fixed interval policy’s schedul-
ing efficiency) and sooner (RL policies’ diagnostic delay was at least 48% smaller than the
best fixed interval policy’s diagnostic delay). For patients who do not progress, our poli-
cies schedule less follow-up visits compared to those who did progress. This was as one
would expect; for example, for RL policy 1, progressed patients were scheduled follow-
up visits approximately every 1.0 years, while non-progressed patients were scheduled
approximately every 1.6 years, consistent with the need for more intensity of monitoring
for patients likely to progress. This contrasts with fixed interval policies where a constant
intensity of monitoring is undertaken, regardless of whether there is a medical need to
do so. Ideally, patients should only be seen by a clinician when a medical follow-up visit
is warranted; however, we have required a maximum interval of 24 months as a clinically
justified safeguard.

We note that our method works at the eye level, instead of the patient level. This
was done intentionally. While POAG (and OHTN) generally affects both eyes, it does
not always occur at the same time. Hence, patients’ follow-up appointment decisions are
commonly based on the visual impairment/deterioration of one eye. This does not hinder
our model’s ability to work with a patient that has two affected eyes. In the case of two
affected eyes, the model can recommend appointment follow-ups for both eyes, and the
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minimum follow-up recommendation can be used. In future work, targeting the implemen-
tation of this work, RL TNT follow-up schedules could be further personalized by altering
the reward weights in the RL reward function through a user interface. Depending on the
type of care a patient requires, a clinician can, in principle, modify weights to produce
follow-up schedules that best adhere to their patients’ needs. For instance, increasing
the visit delay reward to encourage less visits, or increasing the 3 MD-drop reward to in-
crease the likelihood of visits when suspected progression (e.g., first occurrence of 3MD
drop from baseline) has occurred. In addition, it is valuable to investigate whether our
results generalize to other chronic conditions and to expand our model’s state by incor-
porating not only the current state of the patient, but also the state of the patient at prior
visits. We believe this will further improve our model’s performance, as historical patient
information provides the model with additional patient insights.

55



CHAPTER 4

A Comparison of Different Approaches for
Detecting Conversion from Ocular

Hypertension to Primary Open-Angle Glaucoma
Using Standard Automated Perimetry

4.1 Introduction

It is estimated approximately 10% of patients with OHTN will at some time progress to
glaucoma, a much more serious condition. Early identification and initiation of treatment
for patients with OHTN can reduce vision related morbidity and the possibility of progres-
sion to glaucoma. However, determining progression from ocular hypertension to POAG
(Primary Open Angle Glacoma) can be challenging due to the inherent variability of vi-
sual field tests and the need for multiple measurements over time. Machine learning
approaches to automate the detection of conversion from ocular hypertension to POAG
could be useful as decision-support systems as well as in several other settings, includ-
ing in tele-ophthalmology and resource-limited areas with limited access to ophthalmolo-
gists. A machine learning algorithm which predicts progression from ocular hypertension
(OHTN) to primary open-angle glaucoma would have significant clinical utility. The devel-
opment of such a model requires quantitative reference standards. Standard automated
perimetry is integral to the diagnosis and management of POAG. However, there is cur-
rently no consensus reference standard for conversion from OHTN to POAG by perimetry.

Various approaches to define conversion have been used. Broadly, they are either
trend based (using all information to generate a rate of change over time, which may
then be classified as fast or slow) or event based (determining when a defined parameter
surpasses a particular threshold). These approaches may use a global measure which
summarizes the entire visual field (e.g., mean deviation) or regional measures which fo-
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cus on subsets of the visual field (e.g., total deviation). Trend-based approaches cap-
ture longitudinal information but may be slow to identify conversion, whereas event-based
approaches focus on a limited amount of available data but may identify change more
rapidly. Global measures are more robust, but may miss regional change, whereas local
approaches are more likely to capture true glaucomatous nerve fiber bundle defects but
are also noisier. There are clear trade-offs one most consider when selecting a POAG
conversion criterion to use.

Several alternative strategies to identify glaucomatous visual field progression have
been proposed since the start of the OHTS (e.g., [43, 3, 39, 49]. Some criteria may
classify patients with greater confidence (greater quality) whereas others may provide a
larger pool of greater conversions (greater quantity). The optimal approach, however,
remains unclear. The purpose of this chapter is to compare four alternative criteria to
identify conversion from ocular hypertension to POAG based on visual fields changes,
paying particular attention to those which identify conversion more rapidly or identify a
larger cohort of eyes with POAG, as these may be useful for algorithm development.
To facilitate the prediction of conversion from OHTN to POAG using machine learning
methods it is essential to have qualitative reference standards. A desirable reference
standard would be quick, accurate, sensitive, specific, and reproducible.

The organization of this chapter is as follows: Section 4.2 outlines the proposed meth-
ods. Section 4.3-4.4 presents and discusses discusses the numerical results. Finally,
Section 4.5 concludes the chapter and discusses the future work.

4.2 Methods

This study used data from the Ocular Hypertension Treatment Study (OHTS) [2], which
included 3,265 eyes from 1,636 patients with OHTN from 22 US centers who were fol-
lowed between February 1994 and March 2009. In OHTS phase 1 (February 1994 to
June 2002), patients were randomized to treatment with ocular hypotensive medication or
observation and were followed for a mean of 7.5 years. In OHTS phase 2 (June 2002 to
March 2009), all patients were treated with ocular hypotensive medication and followed
for a mean of 5.5 additional years. Beginning with the patients initial baseline visit SITA
Standard (SAP) Humphrey 30-2 visual fields (Carl Zeiss Meditec; Dublin, CA) were ob-
tained twice per year. At baseline all patients had normal peripheral vision on SAP. Nine
patients were excluded from this analysis because complete data for both eyes were not
unavailable. All study participants provided informed consent. This study was approved
by the Washington University and University of Michigan institutional review boards and
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faithfully adhered to the tenets of the Declaration of Helsinki.

4.2.1 Conversion Criteria Studied

We compared four criteria researchers have used previously to identify conversion of an
eye from OHTN to POAG based on perimetry: (A) the OHTS Endpoint Committee, (B)
3-MD drop from baseline, (C) TD trend analysis, and (D) Deterioration of Points on Total
Deviation Clusters (cluster deterioration). The definitions are as follows:

1. Endpoint : The approach used in OHTS for progression to POAG by visual fields. If
three consecutive sets of visual fields demonstrated change (corrected pattern stan-
dard deviation decline at the p<0.05 level or glaucoma hemifield test outside normal
limits) these fields were evaluated by the Visual Field Reading Center (VFRC). If an
abnormality was found to be consistent in character and location, all information in-
cluding medical history, visual fields, and optic disc photographs for both eyes were
reviewed by the OHTS Endpoint Committee. The OHTS Endpoint committee was
composed of 3 glaucoma specialists. The committee was tasked with reviewing the
report from the VFRC along with other relevant clinical information to determine if
the abnormality was attributable to POAG. Attribution to POAG was made by deter-
mining if a consistent depression in pattern deviation compatible with a nerve fiber
bundle defect, paracentral scotoma, or nasal step was found and consistent with the
patient’s other clinical information.

2. 3-MD Drop from Baseline: Conversion from OHTN to POAG defined as 2 consecu-
tive MD test measurements at least 3 DB below baseline. Baseline MD was defined
as the average of the patient’s two initial MD values prior to enrollment in the clinical
trial [49]. If progression was confirmed on 2 consecutive MD test measurements,
the timing of conversion was noted as the time of the second MD measurement.
Note: This was the POAG conversion definition used in chapter 3.

3. TD Trend Analysis: This is a trend-based assessment, first described by Kummet
and colleagues [43], involving performing pointwise linear regression on each of
the 52 visual field test locations in the total deviation plot. For each time point, t,
starting at the third measurement and ending at the penultimate measurement, a
linear regression model of Total Deviation versus time was fit. If the slope was less
than -1.2 dB/year and the p-value comparing this slope to the null hypothesis of a
slope of 0 was <0.04, this procedure was repeated by fitting the linear regression
model using the previous data in addition to data from the following time point (e.g.,
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the first four observations) as well as data from the following two time points (in this
case, the first five observations) for confirmation. If progression was confirmed, the
timing of first evidence of progression was determined to be the initial time point
in the series of time, t, t + 1, and t + 2. Otherwise, this procedure was continued
until the last time point was reached. Total Deviation was assessed rather than
Pattern Deviation because it has been shown to provide slightly better performance
in determining progression for patients with ocular hypertension [3].

4. Clusters of points that deteriorate based (Cluster Deterioration): The total deviation
(TD) probabilities were extracted for each visual field location. An eye was flagged
as “abnormal” at the 5% level on the first date at which at least five locations had TD
probability < 5% (i.e., any of “< 5%”, “< 1%”, or “< 0.5%”). An eye was flagged as
“confirmed abnormal” on the first date at which there were at least five locations with
total deviation probability < 5%, and those same five locations had probability < 5%
on the next test date. An eye was flagged as “persistent abnormal” on the first date
at which at least five locations had TD probability < 5% on three consecutive test
dates (the same five locations at each date). The exercise was repeated to find the
first dates at which abnormality, confirmed abnormality, and persistent abnormality,
occurred using the 1% and 0.5% confidence limits [39]. TD was assessed rather
than Pattern deviation because it has been shown to provide slightly better perfor-
mance in determining progression for patients with ocular hypertension [3]. An eye
was labeled as converted if it was flagged as “persistent abnormality” at the 0.005
(0.5%) level. The timing of conversion was noted as the date at which the persistent
abnormality was observed.

4.2.2 Analysis

Participant characteristics were summarized for the entire sample using means and SDs
for continuous variables and frequencies and percentages for categorical variables. Ordi-
nary least square regression (OLSR) slope p-values were calculated using the student’s
t-statistic and a null hypothesis of β = 0. For each eye and each conversion criterion, we
recorded whether conversion occurred and either the first date of conversion (event) or
the date of the last perimetric test (right censored). Time was measured as days since en-
rollment in OHTS. An patient’s eye could convert according to 0 to 4 of the criteria during
its’ follow-up history.
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4.2.2.1 Survival Analysis

Univariable, and multivariable survival analysis was conducted. For the univariable case,
cumulative incidence curves for each POAG conversion definition were drawn (with 95%
confidence intervals to model the uncertainty in the point estimates of the univariable
survival functions [58]) based on Kaplan-Meier estimates and compared using pairwise
Paired Prentice-Williams Tests. The Bonferroni correction was applied to p-values. The
univariable survival curves can be seen in Figure 4.2.

For the multivariate case, for each progression criterion, a multivariate Cox propor-
tional hazard model [8] was used to estimate the survival functions (or more importantly
the log-hazard functions) associated with age, race, and sex. Confidence intervals were
built using robust standard errors as each patient had two eyes in the dataset (i.e. we
control for the correlations introduced by having both eyes from same patient in our data
set). Whether the associations between time to conversion and age, race, and sex dif-
fered by progression type were investigated using multivariate Cox models, stratified by
conversion criteria and with frailty terms allowing correlations between times to conver-
sion within the same patient. Likelihood ratio tests of the interaction terms between type
of conversion and the other fixed effects were used to determine whether covariate effects
differed by conversion criteria. The multivariable survival coefficients for each of the four
POAG conversion criteria models is in Table 4.3.

All statistical analyses were conducted using Python, version 3.6, and R version 3.6.2.
Survival analysis models (univariable and multivariable) were developed using the python
lifelines library and R survival package.

4.2.2.2 Ties for Earliest Conversion

The various test modalities were not all taken on the same day and visit in every case, so
two or more different criteria could signal conversion at times that were close yet different.
Multiple earliest conversions according to different criteria were considered to occur at
the same time if a patient met multiple conversion criteria within 30 days of their earliest
conversion. For example, if a patient’s earliest conversion was 3-MD drop from baseline
at time t, and within t + 30 days also met the criterion for TD Trend analysis, the patient
was listed as meeting two conversion criteria for earliest conversion. A 30-day resolution
was deemed an acceptable level of aggregation, because the tests were taken on roughly
6-month intervals. Table 4.1 outlines the mean time until earliest conversion, including
ties, for eyes that were observed to had converted. Table 4.2 outlines the mean time until
conversion analyzing each conversion criteria separately. We note because the mean
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time until conversion is not adjusted for the eyes that were not observed to had POAG
converted the times listed may be underestimated.

Table 4.1: Mean time until conversion to POAG under the criterion the earliest triggered
conversion (only considers eyes that progressed)

Overall – 3256 eyes 1 N eyes that earliest con-
verted this way

Mean/SD time until first conversion
(days)

3 MD drop 265 2469 (1387)
TD Trend Analysis 600 1518 (544)
Cluster Deterioration 117 2567 (1485)
Endpoint (Visual Field) 79 2187 (1382)

Table 4.2: Mean time until conversion to POAG, analyzing each definition separately (only
considers eyes that progressed)

Overall – 3256 eyes N eyes converted this way Mean/SD time until conversion (days)
3 MD drop 423 2692 (1333)
TD Trend Analysis 731 1664 (757)
Cluster Deterioration 341 2816 (1321)
Endpoint (Visual Field) 127 2557 (1393)

4.3 Results

The mean ± SD age at baseline was 57 ± 10 years. 701 patients (43%) were male, and
927 (57%) were female. 1134 (70%) were white, 403 (24.5%) black, and 91 (5.5%) were
another race. Patients underwent a mean ± SD of visual 22 ± 9 visual fields over 10.5 ±
4.1 years of follow-up. Their 3256 eyes had mean ± SD baseline MD of 0.17 ± 1.15 dB.

The number of eyes with evidence of progression by at least 1, 2, 3, and all 4 criteria
were 1002 (30.8%), 421 (12.9%), 187 (5.7%), and 12 (0.3%), respectively. Of the 1002
eyes which progressed by at least one criterion, 731 (73%), 423 (42%), 341 (34%), and
127 (13%) converted by TD trend, 3 MD drop, cluster deterioration, and endpoint criteria,
respectively. Of the 421 eyes which progressed by at least two criteria, 353 (84%), 283
(67%), 303 (72%), and 102 (24%) converted by TD trend, 3 MD drop, cluster deterioration,
and endpoint criteria, respectively. And, of the 187 eyes which progressed by at least
three criteria, 182 (97%), 143 (76%), 182 (97%), and 66 (35%) converted by TD trend,

1There was a total of 59 ties for earliest conversion (i.e. earliest conversion occurred within 30 days of
another conversion): 3 MD drop (25), TD trend analysis (25), Endpoint (5), and Cluster Deterioration (4).
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3 MD drop, cluster deterioration, and endpoint criteria, respectively. A total of 293 (18%)
patients had both eyes exhibit conversion by 1 or more criteria.

Figure 4.1: Agreement Among the Four Conversion Criteria. MD = mean deviation; TD
= total deviation. Venn diagram comparison of the four criteria. The numbers represent
the number of eyes that conversion due to each conversion criteria. The criteria are
defined as (1) 3MD Drop – OAG conversion due to two successive MD measurements
were found to be at least 3 dB less than baseline. (2) Endpoint – OAG conversion as
noted by endpoint committee. (3) Cluster Deterioration - Conversion to OAG by identifying
five TD locations where total deviation probability <5% on three consecutive test dates
(the same five locations at each date). (4) TD Trend - Conversion from OHTN to POAG
determined by total TD Ordinary Least Squares Regression point slopes of ≤ −1.2dB per
year and p-value ≤ 0.04 for 3 consecutive periods (i.e., β(t) ≤ −1.2, β(t + 1) ≤ −1.2, and
β(t+ 2) ≤ −1.2) at two or more of the 52 TD point locations.

4.3.1 Criteria Conversion Comparisons to Endpoint Criterion

We choose to only discuss the conversion agreement (and disagreement) of TD trend,
3 MD drop, and cluster of points had with the Endpoint criterion because the Endpoint
criterion was the most involved criteria amongst the four; for the endpoint criterion before
an eye could be labeled as POAG converting an endpoint committee, composed of a
panel of medical experts, had to come a majority consensus. Hence, the Endpoint criteria
can be seen as the most conservative criterion, and potentially the closest, amongst
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the four criteria, towards conversion reference standard for identifying true POAG patient
conversions.

The TD trend criterion had the greatest agreement with the Endpoint conversion cri-
terion amongst the three criteria (e.g., TD trend, 3 MD drop, and cluster of points) with
identifying a total of 85, out of a possible 127, endpoint conversions. This indicates 76%
of all visual field endpoint conversions could have been identified using the TD trend con-
version criterion. This is important because the TD trend criterion has advantages over
the endpoint criterion in that it is a simpler approach to use and can identify conversion
sooner. Endpoint, while possibly being the criterion with the highest specificity (i.e. high
true positive rate) in identifying true POAG conversions, is in large part impractical to use
in a clinical setting because of its reliance on a panel of experts to make a clinical deci-
sion of whether progression occurred. However, it should be noted that while TD trend
has the highest agreement with endpoint, it also indicated the highest number of POAG
conversions (731) out of all criteria. Hypothetically, this could mean that while TD trend
may have a high sensitivity , it may suffer from low specificity. There is no data or research
to confirm this, but if true, it would suggest that a mixed approach may be warrented.

Cluster of points had the second highest agreement with endpoint criteria with a total
of 71 out of possible 127 endpoint conversions, or 56% conversion agreement. A key
difference between the cluster of points criteria and the TD trend criterion is that the former
indicated 47% less conversions. Hypothetically, this could mean that while the conversion
agreement between cluster of points and endpoint is lower than the agreement between
TD trend, cluster of points may not suffer from low specificity as much as TD trend.

3-MD drop had the lowest agreement with endpoint with a total of 24 out of 121 end-
point conversions, roughly a 20% agreement. For a detailed breakdown of conversion
agreement amongst the criteria see Figure 4.1.

4.3.2 Survival Analysis

All four criteria’s time to conversion were statistically different from one another in pairwise
comparisons of the unadjusted survival curves (Bonferroni-corrected paired Prentice-
Williams tests p-value < 0.001; Figure 4.2). TD trend exhibited the highest estimated
proportion of conversion events over 160 months (731). In contrast, the OHTS Endpoint
Committee criterion had the lowest (127).

The proportion of eyes converting within 10 years (120 months) of OHTS enrollment
compared to total number of conversion for endpoint, 3-MD drop, TD trend, and cluster
deterioration were respectively 74% (n=94), 71% (299), 96% (702), and 69% (234).
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Figure 4.2: Kaplan-Meier Survival Plot for Time to First Conversion for Each Criterion. MD
= mean deviation; TD = total deviation. Survival curves of the four criteria. The shaded
regions represent confidence regions of the univariable survival models. The criteria are
defined as (1) 3MD Drop – OAG conversion due to two successive MD measurements
were found to be at least 3 dB less than baseline. (2) Endpoint – OAG conversion as
noted by endpoint committee. (3) Cluster Deterioration - Conversion to OAG by identifying
five TD locations where total deviation probability < 5% on three consecutive test dates
(the same five locations at each date). (4) TD Trend - Conversion from OHTN to OAG
determined by total TD Ordinary Least Squares Regression point slopes of ≤ −1.2 dB
per year and p-value ≤ 0.04 for 3 consecutive periods (i.e., β(t) ≤ −1.2, β(t + 1) ≤ −1.2,
and β(t+ 2) ≤ −1.2) at two or more of the 52 TD point locations.

In multivariable Cox regression the effects of race, sex, and age on each conversion
type depended statistical significantly on the conversion criterion (likelihood ratio tests
p-value < 0.05 each covariate). For example, while all conversion types show black pa-
tients have a higher relative risk of conversion compared to white patients, for endpoint
conversion the hazard ratio greatest. This indicates race is a stronger indicator of time-
to-conversion under the endpoint committee criterion compared to the other conversion
criteria. Effects, therefore, are reported separately for each conversion criterion (Table
4.3).

For all four criteria, older (vs younger) age was associated statistical significantly with
considerably higher hazard of converting. The magnitude of this association was much
greater for 3 MD and Cluster deterioration compared to the other two criteria. Blacks
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had 22%, 39%, 124%, and 87% statistical significant higher hazard of conversion com-
pared with whites for the TD trend, 3-MD drop, Endpoint, and cluster deterioration criteria,
respectively. Other race had 18%, 37%, 17%, and 70% higher hazard of conversion com-
pared with whites for the TD trend, 3-MD drop, Endpoint, and cluster deterioration criteria,
respectively. Only the results for TD trend and cluster deterioration were statistically sig-
nificant. The hazard of conversion for females relative to males was either higher (MD
Decline), lower (endpoint, cluster deterioration), or about the same (TD trend).

4.4 Discussion

This chapter compares several criteria for determining progression from OHTN to POAG
on perimetry. Identification of conversion to POAG by changes on perimetry is an attrac-
tive approach as perimetry is integral to the management of POAG. Large volumes of
these data are available in clinical trial data and data repositories and are amenable to
automated analysis. Early detection of progression to POAG can enrich research sam-
ples, which may be useful for the development of automated algorithms. Alternatively,
more conservative criteria may result in more reliable classification.

Several POAG conversion criteria were compared. The criteria were two global, event-
based approaches which assess different visual field summary statistics (the OHTS end-
point criterion and the 3-MD drop criterion), a pointwise event-based approach which
assesses change across visual field test points (cluster deterioration), and a pointwise
trend-based approach which identifies worsening at individual test points (TD trend).

Race, sex, and age were statistically significant determinants of progression for all
four criteria. However, there was broad discordance between the four criteria, as demon-
strated by the statistically different survival curves and the limited overlap demonstrated
in Figure 4.1. This suggests that these criteria may be tailored to the particular type of
damage, which is under investigation, particularly in the absence of a visual fields-based
reference standard. In addition, the multivariable survival analysis (multivariable box cox
regression) indicated: (i) for all criteria blacks have the highest risk of progressing from
OHTN to POAG; (ii) the older the patient, the higher the risk of glaucoma progression; (iii)
the risk of conversion to POAG is statistically the same for both males and females for
all criteria except endpoint; and (iv) the hazard coefficients for race, sex, and age differ
significantly from one another depending on the conversion criterion used (likelihood ratio
tests p-value less than or equal to 0.05 for each covariate). The last point is particularly
interesting because it implies the rate at which a patient will be successfully identified as
POAG converting is in part, related to their demographics. Suggesting the type of POAG
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Table 4.3: The Association of Demographic Factors with the Hazard of Progression from
Ocular Hypertension to Glaucoma Using Each Progression Criterion. MD = mean de-
viation; TD = total deviation; UCI = Upper 95% confidence interval; LCI = lower 95%
confidence interval. The reference categories were race is white, sex is male, and age
is between 40 and 50. The criteria are defined as (1) 3MD Drop – OAG conversion due
to two successive MD measurements were found to be at least 3 dB less than base-
line. (2) Endpoint – OAG conversion as noted by OHTS Endpoint Committee. (3) Cluster
Deterioration - Conversion to OAG by identifying five TD locations where total deviation
probability < 5% on three consecutive test dates (the same five locations at each date).
(4) TD Trend - Conversion from OHTN to OAG determined by total TD Ordinary Least
Squares Regression point slopes of ≤ −1.2 dB per year and p-value ≤ 0.04 for 3 consec-
utive periods (i.e. β(t) ≤ −1.2, β(t + 1) ≤ −1.2, and β(t + 2) ≤ −1.2 ) at two or more of
the 52 TD point locations.
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conversion criterion used by a clinician should hypothetically differ based on the patients’
demographics.

Notably, all criteria demonstrated a degree of dis-concordance with the OHTS endpoint
criteria, which may, at least in part, reflect changes in the means of evaluating visual fields
since the commencement of the OHTS in the mid-1990s. The OHTS endpoint criterion
was the most conservative approach, identifying only 3% of eyes as POAG converting. It
should be noted though, evidence of progression by the OHTS endpoint criterion should
always be treated as a true POAG conversion, however as discussed previously the end-
point criterion only detects a very small number of POAG conversion, requires lengthy
time to identify progression, and requires skilled graders. Other approaches detect a
greater percentage of POAG conversions and detect conversion a lot sooner, though
some of these conversions may not be clinically meaningful (i.e. false positive POAG con-
versions). Researchers should consider these trade-offs when deciding which criteria to
employ into POAG conversion machine learning prediction algorithms.

4.4.1 Limitations

A key motivating factor for this analysis, the absence of a reference standard, also im-
poses a necessary limitation, as there is no way to assess relevant characteristics includ-
ing sensitivity and specificity of each approach. The OHTS endpoint criterion is unique
among the four criteria in that additional information including optic disc photographs and
clinical information were used by the Endpoint Committee in their determination of pro-
gression to POAG. In fact, approximately half of the eyes with suspicious visual fields
were not confirmed to have developed POAG [27], which may explain at least part of the
discordance between this criterion and the remaining criteria.

Additionally for this work we focused primarily on functional measurements of visual
field acuity (e.g. MD, TD, etc.); we only consider functional damage on perimetry for
identifying POAG conversion. We do not consider measurements that measure structural
damage (optical coherence tomograpy (OCT) measurements, retinal nerve fiber layer
(RNFL) measurements, etc.). We acknowledge this research gap.

4.5 Conclusion

Different criteria capture different characteristics of progression to POAG. Machine learn-
ing models may benefit from using multiple definitions of conversion, as there was clear
discordance among the compared criteria. The choice of criteria may be tailored based
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on the desired outcome measure. More liberal criteria (e.g., TD trend) may be used to
determine conversion from ocular hypertension to POAG earlier or in a greater number of
eyes, whereas more conservative criteria (e.g., endpoint) may be used to develop models
which can identify conversion with greater confidence. One question our results, which
cannot be answered at this time, of whether the Endpoint, which the study team intended
to be quite conservative, is closer or further from the truth relative to any of the other
criteria. Given there is currently no reference gold standard (e.g., a conversion crite-
rion that has been shown to accurately identify all converting patients) a hybrid approach
combing multiple conversion criteria may be the next best option. Nonetheless, to per-
mit machine learning models to predict conversion from ocular hypertension (OHTN) to
primary open-angle glaucoma (POAG) it is essential to have quantitative reference stan-
dards for conversion for researchers to use. More research is needed to further examine
the multitude of conversion criteria used in clinical settings for determining conversion to
POAG.

In future work, we plan to use the outlined criteria to determine if they can be used
to proactively identify whether a patient will convert to POAG at some point in the future.
Correctly identifying converting patients is important as it signals to the clinician treatment
may be needed. However, being able to proactively predict converting patients enables
the clinician to take preventative measurements before the patient converts to POAG, at
which point unreversible vision loss may have already occurred. One question, which
could not be answered, of whether the Endpoint criterion, which the study team intended
to be quite conservative, is closer or further from the truth relative to any of the other
criteria.
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CHAPTER 5

Machine Learning Prediction of Conversion
from Ocular Hypertension to Primary Open

Angle Glaucoma

5.1 Introduction

One of the key strengths of machine learning approaches is their ability to automate, the
otherwise manual task of detecting a patient’s conversion from ocular hypertension to
POAG (Primary Open-Angle Glaucoma). At present, there exist several alternative cri-
teria to identify POAG conversion (e.g., [43, 3, 39, 49]), but notably no gold standard.
Tradeoffs amongst criteria are often made to balance a criterion’s sensitivity (measures
the proportion of converting patients that are correctly identified as converting) and speci-
ficity (measures the proportion of non-converting patients that are correctly identified as
non-converting). Since correctly identifying converting patients often takes precedence
over incorrectly labeling a non-converting patient as converting, a criterion that has a high
sensitivity is often preferred.

As such, we elucidate and study several conversion criteria, and we also develop a ma-
chine learning (ML) method to maximize the number of patients identified as converting.
The criteria are as follows: (A) the OHTS Endpoint – Committee - this was the approach
used in OHTS for progression to POAG by visual fields; (B) Decline in Mean Deviation -
conversion from OHTN to POAG defined as 2 consecutive MD values at least 3 DB below
baseline. Baseline MD was defined as the average of the patient’s two initial MD values
prior to enrollment in the clinical trial [49]; (C) Decline in Pointwise Total Deviation- this
is a trend-based assessment, first described by Kummet and colleagues [43], involving
performing pointwise linear regression on each of the 52 visual field test locations in the
total deviation plot; and (D) Deterioration of Points on Total Deviation Clusters – this is a
clustered based approach developed by [39].
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The main purpose of this chapter is to determine the predictive performance of a col-
lective conversion criterion (i.e., conversion criteria combining all 4 criteria). We use pre-
dictive classification algorithms to determine if a patient will convert to POAG, as defined
by at least one of the four criteria indicating POAG conversion anytime within two years
from their sixth visit. Several supervised learning classification models were assessed:
Logistic Regression, Random Forest, Gradient Boosted Decision Tree, and Neural Net-
work. Results indicated the random forest classifier performed best. The classification
models that included the Kalman filtered data had slightly better performance than the
models that did not (about 1% improvement across all testing metrics). For the Ran-
dom Forest that included the Kalman filtered covariates the group 5-fold cross validation
ROC AUC performance was mean ± SD of 0.81 ± 0.01. The testing performance across
all evaluation metrics was a balanced accuracy of 0.80, sensitivity of 0.77, specificity of
0.83, accuracy of 0.82, positive predicted value of 0.38, negative predicted value 0.96,
and ROC AUC of 0.86. To the best of our knowledge, we are the first to combine the four
conversion criteria and assess their collective prediction performance.

The organization of this chapter is as follows: Section 5.2 outlines the proposed meth-
ods. Section 5.3-5.4 presents and discusses the numerical results. Section 5.5 provides
a discussion of results, and last section 5 concludes chapter.

5.2 Methods

5.2.1 Data

The data used for this work comes from the Ocular Hypertension Treatment Study
(OHTS), conducted between February 1994 and March 2009 ([29, 28]. In OHTS, 1636
patients with ocular hypertension (OHTN) from 22 US centers were randomized to either
treatment with IOP-lowering medications or followed without treatment. Patients were
followed for up to 15 years based on the judgement of the endpoint committee using
standardized measurements of tonometry and perimetry starting at baseline and every 6
months thereafter. The study was approved by the University of Michigan and Washington
University Institutional Review Boards and patients provided written informed consent.

5.2.2 Sample Selection

To be eligible, OHTS participants had baseline IOPs of 21 to 32 mm Hg in both eyes,
reliable and normal 30-2 Humphrey visual fields (Carl Zeiss Meditec), and no detectable
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evidence of glaucoma based on optic nerve evaluation. In our study, patients were cen-
sored when they experienced non glaucomatous visual field loss or underwent any inci-
sional intraocular surgery other than uncomplicated cataract surgery. Patients required at
least 6 follow-up visits from baseline. The 6 follow-up measurements ensured the Kalman
Filters, developed according to the procedure in [22], could forecast using at least 3 warm-
up measurements and validate at least 12 months into the future. Patients with only one
eligible eye under the above inclusions were excluded.

5.2.3 Definition of POAG Conversion Types

Patients were labeled as OAG progressed if they experienced one of the following pro-
gression criteria two years from their sixth visit:

1. Endpoint : The approach used in OHTS for progression to POAG by visual fields. If
three consecutive sets of visual fields demonstrated change (corrected pattern stan-
dard deviation decline at the p<0.05 level or glaucoma hemifield test outside normal
limits) these fields were evaluated by the Visual Field Reading Center (VFRC). If an
abnormality was found to be consistent in character and location, all information in-
cluding medical history, visual fields, and optic disc photographs for both eyes were
reviewed by the OHTS Endpoint Committee. The OHTS Endpoint committee was
composed of 3 glaucoma specialists. The committee was tasked with reviewing the
report from the VFRC along with other relevant clinical information to determine if
the abnormality was attributable to POAG. Attribution to POAG was made by deter-
mining if a consistent depression in pattern deviation compatible with a nerve fiber
bundle defect, paracentral scotoma, or nasal step was found and consistent with the
patient’s other clinical information.

2. 3-MD Drop from Baseline: Conversion from OHTN to POAG defined as 2 consecu-
tive MD test measurements at least 3 DB below baseline. Baseline MD was defined
as the average of the patient’s two initial MD values prior to enrollment in the clinical
trial [49]. If progression was confirmed on 2 consecutive MD test measurements,
the timing of conversion was noted as the time of the second MD measurement.
Note: This was the POAG conversion definition used in chapter 3.

3. TD Trend Analysis: This is a trend-based assessment, first described by Kummet
and colleagues [43], involving performing pointwise linear regression on each of
the 52 visual field test locations in the total deviation plot. For each time point, t,
starting at the third measurement and ending at the penultimate measurement, a
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linear regression model of Total Deviation versus time was fit. If the slope was less
than -1.2 dB/year and the p-value comparing this slope to the null hypothesis of a
slope of 0 was <0.04, this procedure was repeated by fitting the linear regression
model using the previous data in addition to data from the following time point (e.g.,
the first four observations) as well as data from the following two time points (in this
case, the first five observations) for confirmation. If progression was confirmed, the
timing of first evidence of progression was determined to be the initial time point
in the series of time, t, t + 1, and t + 2. Otherwise, this procedure was continued
until the last time point was reached. Total Deviation was assessed rather than
Pattern Deviation because it has been shown to provide slightly better performance
in determining progression for patients with ocular hypertension [3].

4. Clusters of points that deteriorate based (Cluster Deterioration): The total deviation
(TD) probabilities were extracted for each visual field location. An eye was flagged
as “abnormal” at the 5% level on the first date at which at least five locations had TD
probability < 5% (i.e., any of “< 5%”, “< 1%”, or “< 0.5%”). An eye was flagged as
“confirmed abnormal” on the first date at which there were at least five locations with
total deviation probability < 5%, and those same five locations had probability < 5%
on the next test date. An eye was flagged as “persistent abnormal” on the first date
at which at least five locations had TD probability < 5% on three consecutive test
dates (the same five locations at each date). The exercise was repeated to find the
first dates at which abnormality, confirmed abnormality, and persistent abnormality,
occurred using the 1% and 0.5% confidence limits [39]. TD was assessed rather
than Pattern deviation because it has been shown to provide slightly better perfor-
mance in determining progression for patients with ocular hypertension [3]. An eye
was labeled as converted if it was flagged as “persistent abnormality” at the 0.005
(0.5%) level. The timing of conversion was noted as the date at which the persistent
abnormality was observed.

A comparison study between the conversion criteria listed can be found in chapter 4.

5.2.4 Variables of Interest

5.2.4.1 OHTS Variables

OHTS variables used in the classification models were a combination of visual field vari-
ables (e.g., mean deviation (MD), pattern standard deviation (PSD), total deviation point-
wise plots (TD), intraocular eye pressure (IOP), demographic information (e.g., age, sex,
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ace), medication information (e.g., ocular, and non-ocular medications), family medical
history (i.e., does the patient have a parent or sibling with glaucoma), and feature engi-
neered variables. In total 107 variables.

5.2.4.2 Kalman Filtered Variables

A Kalman filter (KF) is a statistical model that primarily functions as a measurement de-
noiser and measurement forecaster. The KF accomplishes these tasks by leveraging pop-
ulation level and patient-level disease dynamics. Unlike traditional forecasting techniques,
KF uses past prediction errors to correct future estimates, dynamically updating forecasts
as new measurements become available [44]. KFs were used to denoise and forecast
mean deviation (MD), pattern standard deviation (PSD), and intraocular eye pressure
(IOP) measurements. For the sake of brevity, we denote the KF denoised measurements
as filtered MD, filtered PSD, and filtered IOP. The KFs were developed according to the
procedure outlined in [22]. The filtered measurements (filtered MD, filtered PSD, filtered
IOP, and functions thereof) were used as additional variables for the prediction model. A
complete list of all variables, including the OHTS variables, can be found in Appendix E.1.

Additionally, because the KF required equally spaced measurements (e.g., measure-
ments equally spaced 6-months apart), MD, IOP, and PSD were numerically interpolated
on 6-month intervals using linear interpolation. The implication of this is every patient’s
6th visit occurs at the same time relative to their OHTS clinical trial start date.

5.2.5 Predicting conversion to Primary Open Angle Glaucoma
(POAG)

Supervised classification models were developed to use data from both eyes over the first
6 follow-up visits to predict whether patients will convert from OHTN to POAG within 2
years from their 6th follow-up visit. Figure 5.1 gives a visual illustration of this. As previ-
ously mentioned, conversions events were not identified sooner (i.e., before the patient’s
6th visit) because the KFs require the first six patient visits for model calibration. This pro-
cess is succinctly described in [22] as ensuring the KFs could forecast using 3 warm-up
measurements and validate at least 12-months into the future. While the objective of [22]
was to assess how well a KF can predict MD, IOP, and PSD values 5 years into the future
for patients with OHTN, we extend their work by predicting patients’ probability of conver-
sion from OHTN to POAG. A 2-year prediction widow was used because it is commonly
used in Glaucoma literature as a useful early warning [40].
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5.2.5.1 Prediction Models

Supervised classification models are a class of statistical models whereby the training
data labels (e.g., a binary indicator variable indicating if POAG conversion occurred (1) or
did not occur (0)) are known in advance. The goal of supervised learning classification
is to create a classification model using training data with known data labels, to apply it
to data with unknown data labels. We evaluate the use of four supervised classification
models: Logistic Regression, Random Forest, Gradient Boosted Decision Tree, and Neu-
ral Network. All four classification models are appropriate for binary-class classification.
Binary-class classification refers to a two-class classification problem. In the case of this
study, the two classes are either 1 (POAG conversion will occur within 2 years from the
patient’s 6th visit), or 0 (POAG conversion will not occur within 2 years from the patient’s
6th visit). Each classification model can be used to estimate the probability the patient
will experience one of the two classes. If the probability is greater than a user-defined
threshold the patient is labeled as POAG converting; otherwise, the patient is labeled as
non-POAG converting. For the interested reader, a through overview of each of the four
models can be found in [21].

Figure 5.1: Illustration of the POAG conversion prediction timeline. An example of a
patient’s POAG conversion event. The conversion events occur at their 9th follow-up visit.
The binary class target for this patient will be (1), indicating the patient converts to POAG
within 2-years following their 6th visit. To predict this conversion event, the classification
models will use only information known at the conclusion of the patient’s 6th visit.
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5.2.6 Performance Measures

To evaluate the performance of the models developed the following performance mea-
sures were evaluated. (1) the sensitivity - proportion of eye conversions that were cor-
rectly classified as converting; (2) the specificity - proportion of non-converting eyes that
were correctly classified as non-converting; (3) the positive predicted value (PPV) - the
ratio of correctly classified eye conversions to all classified conversions; (4) the negative
predicted value (NPV) - the ratio of correctly classified non-eye conversions to all classi-
fied non-conversions; (5) the accuracy - proportion of correctly classified patient eyes to
all patient eyes; (6) the balanced accuracy - the average sensitivity and specificity; and
(7) the receiver operating characteristic area under the curve. All performance measures
were computed for each of the four classification models.

5.2.6.1 Training and Validation Procedure

Prior to training and validation all numeric inputs where centered and scaled to have zero
mean and unit variance. Models were trained using 70% (1,838 eyes) of the patients
and tested on the remaining 30% (786 eyes) of patients. Training and testing datasets
were divided so both the patients’ left and right eyes were in the same training or testing
dataset. The total number of patients converting in the training set were 252. Of the 252
conversion, 45 (18%) were attributed to 3MD-Drop, 18 (7%) to cluster deterioration, 216
(85%) to TD trend analysis, and 12 (5%) to endpoint. The total does not add up to 252 be-
cause a patient’s POAG conversion event can be attributed to multiple conversion criteria
(e.g., a patient’s eye converting by both TD trend and endpoint criteria) within the 2-year
period following their 6th visit. For the test set, there were a total of 96 conversions. Of
the 96 conversions, 19 (20%) were attributed to 3MD-Drop, 9 (9%) to cluster deteriora-
tion, 84 (88%) to TD trend analysis, and 4 (4%) to endpoint. Group 5-fold cross validation
was used to train and optimize all models’ hyperparameters. The purpose of group 5-fold
cross validation was to ensure both the patient’s left and right eyes were contained in the
same cross validation fold.

All statistical analysis was conducted between January 2020 and June 2020 using
Python, version 3.8. Patient characteristics were summarized for the entire sample using
means and SDs for continuous variables and frequencies and percentages for categorical
variables. ANOVA tests were used to determine if validation performance was statistically
different across classification models. All Kalman Filters, classification models, statistical
tests, and associated code were developed using the R, MATLAB, and Python program-
ming languages.
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5.3 Results

5.3.1 Study Sample

The study sample consisted of 1312 patients (1 patient was removed for having an un-
known sex and race). The mean ± SD age at baseline was 56 ± 10 years. Among these
patients 1312 patients, 543 (41%) were male, and 769 (59%) were female; the racial
breakdown (by self-reporting) included 924 (70%) white participants, 318 (24%) black
participants, and 70 (6%) classified as other. There was a total of 3481 POAG patients’
conversions within 2-years from their 6th visit (e.g., between patients’ 6th and 10th follow-
up visits); 64 (18%) were due to 3MD-Drop; 27 (8%) to cluster deterioration; 300 (86%)
to TD trend; and 16 (5%) to endpoint. Patients underwent a mean ± SD of visual 26 ± 7
visual fields over 11.5 ± 3 years of follow-up. The mean ± SD baseline MD was 0.21 ±
1.16 dB. For additional study sample statistics see Table 5.1.

Table 5.1: Description of study sample. MD = mean deviation; PSD = pattern standard
deviation; IOP = intraocular eye pressure. Description of the OHTS study sample.

Characteristics Mean/Count SD/Percent
No. of Patients 1312 -
No. of Eyes 2624 -
No. of OATS Eye Conversions 348 -

3MD-Drop 64 -
Cluster Deterioration 27 -
TD Trend Analysis 16 -
Endpoint 300 -

Sex, No (%)
Male 543 41 %
Female 924 59 %

Race/ethnicity, No (%)
White 924 70 %
Black 318 24 %
Other 70 6 %

Age at baseline, years 56 10
No. of visual field tests per eye 26 7

1The number of eye conversions does not add up to 348 because a patient’s eye could have converted
due to multiple conversion criteria within the 2-years following their 6th follow-up visit.
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Follow-ups visit length, years 11.5 3.0
Baseline Readings

MD, dB 0.21 1.16
PSD, dB 1.95 0.28
IOP, mm Hg 25.12 2.95

Change 2

MD, dB -1.32 2.33
PSD, dB 0.40 0.94
IOP, mm Hg -3.90 4.64

5.3.2 Predicting performance of conversion from OHTN to POAG

5.3.2.1 Classification Performance

The probability threshold used to classify whether a patient will POAG convert or not was
calculated as the value that resulted in the largest average geometric-mean (G-mean)
statistic from group 5-fold cross validation on the training dataset. The G-mean statistic
was used to determine the optimal probability threshold, because it captures a balance
between sensitivity and specificity (i.e., G-mean =

√
(Sensitivity × Specificity); maxi-

mizing the G-mean is equivalent to choosing the point on receiver operating curve that
maximizes the difference between true positive rate and false positive rate.

The classification models that included the Kalman filtered covariates had slightly bet-
ter performance than the models that did not. The Random Forest classification model
had the best performance with or without the KF covariates. For the Random Forest that
did not include KF covariates the group 5-fold cross validation ROC AUC performance was
mean ± SD of 0.81 ± 0.01. Its testing performance, across the performance measures,
was a balance accuracy of 0.79, a sensitivity of 0.75, a specificity of 0.82, an accuracy of
0.81, a positive predicted value of 0.36, a negative predicted value 0.96, and a ROC AUC
of 0.86. For the Random Forest that included the KF covariates the group 5-fold cross
validation ROC AUC performance was mean ± SD of 0.81 ±0.01. Its’ testing performance,
across the performance measures, was a balance accuracy of 0.80, a sensitivity of 0.77,
a specificity of 0.83, an accuracy of 0.82, a positive predicted value of 0.38, a negative
predicted value 0.96, and a ROC AUC of 0.86. Table 5.2 provides the classification per-

2Change was computed, for eyes that converted to POAG, as the reading at a patient’s 6th visit sub-
tracted from their baseline reading.
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formance of all the classification models partitioned by whether they were trained using
data that included KF features or not.

Table 5.2: Classification Performance Overview. ROC AUC = Receiver operating charac-
teristic area under the curve. Validation and testing performance of the four classification
models. To test whether the validation AUC performance was statistically different be-
tween the four models an ANOVA test was computed. The ANOVA test indicated the four
models did not (p-value ≤ 0.05) share, statistically, the same validation performance.

Data
Set

Performance Evaluation
Criteria

Logistic
Regres-

sion

Random
Forest

Neural
Network

Gradient
Boosted
Decision

Tree

P
Value

With-
out

Kalman
Filtered

Data

Validation ROC
AUC –
Mean
(Std)

0.83
(0.01)

0.86
(0.01)

0.82
(0.03)

0.84
(0.01)

0.01

Testing

Balanced
Accuracy

0.77 0.79 0.76 0.77 -

Sensitivity 0.74 0.75 0.74 0.71 -
Specificity 0.80 0.82 0.76 0.83 -
Accuracy 0.80 0.81 0.75 0.82 -
Positive

Pre-
dicted
Value

0.35 0.36 0.30 0.36 -

Negative
pre-

dicted
Value

0.95 0.96 0.95 0.95 -

ROC
AUC

0.84 0.86 0.82 0.84 -

With
Kalman
Filtered

Data

Validation ROC
AUC -
Mean
(Std)

0.83
(0.01)

0.86
(0.01)

0.82
(0.02)

0.85(0.01) <0.01
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Table 5.2 continued from previous page

Testing

Balanced
Accuracy

0.77 0.80 0.75 0.79 -

Sensitivity 0.74 0.77 0.72 0.77 -
Specificity 0.80 0.83 0.77 0.80 -
Accuracy 0.80 0.82 0.76 0.80 -
Positive

Pre-
dicted
Value

0.35 0.38 0.30 0.35 -

Negative
pre-

dicted
Value

0.95 0.96 0.95 0.96 -

ROC
AUC

0.83 0.86 0.82 0.86 -

5.3.3 Comparison and Analysis of Model Performance

The Random Forest classification model with the inclusion of the Kalman filtered features
performed best. The following two subsections go into detail of this model’s testing per-
formance.

5.3.3.1 Top 25 Most Important Model Features

Figure 5.2 illustrates the top 25 most important features for determining progression to
POAG for the random forest classification model that included the Kalman filtered data.
Most of the top covariates are either associated with TD trend analysis (e.g., Points TD
Criteria 1, Beta 1, etc.) or provide summary information of the patient’s visual field and
how it is changed overtime (e.g., MD, MD filtered, MD velocity, etc.). This is likely be-
cause the TD trend analysis conversion criterion made up a significant proportion of all
conversion events (86% of all POAG conversion were attributed to the TD trend conver-
sion criterion). Additionally, several filtered covariates are included in the top 25 (e.g.,
filtered PSD, filtered MD T-4, etc.), implying the Kalman filtered features helped in identi-
fying future occurrences of POAG conversions.
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Figure 5.2: Top 25 covariates from Random Forest model with Kalman filtered data. MD
= mean deviation; PSD = pattern standard deviation; IOP = intraocular eye pressure. The
figure illustrates the mean feature importance scores for the Random Forest regression
models. The higher the feature importance score, the greater the feature’s importance in
determining whether the patient will convert to OAG 2 years from there 6th visit by one of
the four conversion criteria.

5.3.3.2 Breakdown of Correctly Classified Conversions

Figure 5.3 displays the confusion matrix of the RF model, with Kalman filtered covariates,
for a classification probability threshold of 0.44 (the probability threshold that had the
largest average G-mean statistic from group 5-fold cross validation on the training data
set). Of the 76 correctly predicted POAG conversions, the conversion criteria breakdown
was: 3MD Drop (12), Endpoint (2), Cluster Deterioration (6), and Trend Analysis (68).
The total does not add up to 76 because patient conversion events were not mutually
exclusive. For the 22 conversions that were misclassified 7 were 3MD Drop, 2 were
endpoint, 3 were cluster deterioration, and 16 were trend analysis. Again, the total does
not add up to 22 because patient conversion events were not mutually exclusive.

Of the 96 eyes that converted from OHTN to POAG, for those that converted due to
one of the four criteria (80 eyes) the RF model predicted 64 (80%) of them correctly. For
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the eyes that converted due to two criteria (12) the RF model predicted them 6 (50%)
correctly, and for eyes that progressed due to three criteria (4) the RF model predicted
100% of them correctly. No eyes in the test set progressed by all four criteria.

Figure 5.3: Random Forest Testing Confusion Matrix. A testing classification confusion
matrix of the Random Forest model that included the KF features. The results were
obtained using a classification probability threshold of 0.44; if the probability of POAG
conversion was greater than 0.44 the patient’s eye was labeled as POAG converting within
2-years from their 6th follow-up visit. If it was less than 0.44 the patient’s eye was labeled
as non-POAG converting within 2-years from their 6th follow-up visit.

5.4 Discussion

Predicting whether a patient will convert 2 years (4 visits) from their 6th visit has been
shown to be feasible with reasonable accuracy. While the random forest classification
model performed best, all machine learning models demonstrated success in predicting
future POAG conversion (e.g., balanced accuracy of all models greater than or equal to
0.75). In clinical practice, depending on whether a clinician values sensitivity (e.g., recall)
or specificity (e.g., true negative rate) more the classification threshold (the probability
threshold used to determine at which a prediction probability signifies the target class)
can be adjusted to meet their respective goal. It is this flexibility that enables supervised
classification models to be uniquely qualified for classifying future instances of POAG con-
version. In the absence of a POAG conversion reference standard, supervised learning
models, or more broadly machine learning models, provide a means to quantify POAG
conversion uncertainty into the form of a probability of POAG conversion, in turn, aiding
clinicians in making more informed clinical decisions for their patients.

The implication of the results suggest clinicians can use supervised machine learning
methods to inform proactive treatment decisions for patients. While the discussed su-
pervised learning models have low positive predicted values (true positive rate) ranging
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between 0.30 to 0.40, they also have high negative predicted values (true negative rate)
ranging between 0.95 to 0.97. This implies the models can predict, with a high level of
certainty the patients that will not progress, but struggles predicting the patients that will
progress. While this is not ideal, given the progressive loss of vision POAG causes and
its’ adverse impact on patients’ quality of life, it is better to proactively treat patients at risk
of developing POAG, even if in the end they do not, than it is wait for progressive vision
loss to have occurred before treating the patient. While not all POAG treatments are ap-
propriate for patients not diagnosed with POAG, at the very least, the patients the model
predicts will develop POAG can be monitored by a clinician at a higher follow-up frequency
than if they had not; striking a balance between overtreatment and undertreatment.

Additionally, as discussed, we use a collective conversion criterion (conversion criteria
composed of 4 seperate definitions of POAG conversion). This was done for several rea-
sons. First, the endpoint and cluster deteriorations POAG conversion criteria are highly
conservative, indicating only a small portion of possible POAG conversions (e.g., high
sensitivity, but low recall). By only using endpoint or cluster deteriorations criterion a large
portion of patients who progressed, would fail to be identified. Second, as the endpoint
and cluster deteriorations criteria likely have high precision, but low recall, and the TD
trend and 3-MD drop criteria have high recall, but low precision, combining all four criteria
into a single criterion leverages the strengths of each criterion. Third, by combining the
four criteria into a single criterion combines the strengths and weaknesses of trend-based
conversion analysis (evaluating a series of visual field measurements using linear or other
form of regression analysis to estimate rates of change and potentially statistical signif-
icance) and event-based conversion analysis (visual field measurements are compared
with a baseline value and considered significant if the difference between the visual field
measurement and baseline value exceed a predetermined threshold) into a single crite-
rion. The strength of trend-based analysis is it can not only identify if a patient converts,
but also the rate of conversion, however it requires multiple measurements to do so; the
strength of event-based analysis is it can identify conversion using a single measurement
but lacks information on the rate of conversion. Our hope is the developed criterion is
closer to a POAG conversion reference standard than existing methods. Thereby, en-
abling clinicians to more effectively identify POAG converting patients.

5.5 Conclusion

This chapter investigated the use of supervised classification methods for predicting
whether a patient will convert 2 years from their 6th visit using only information known
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at the conclusion of their 6th visit. The conversion criterion used was based on a joint
conversion definition composed of 4 separate conversion criteria: (A) the OHTS End-
point Committee, (B) Decline in Mean Deviation, (C) Decline in Pointwise Total Deviation,
and (D) Deterioration of Points on Total Deviation Clusters; if any one of the four criteria
indicated POAG conversion the patients was labeled as POAG converting. The results
indicated, supervised classification methods, in particular the random forest classifier, are
capable of proactively identifying future conversions events and the Kalman filtered pre-
processed data, all be it a small improvement, improved classification performance. In
particular, the Random Forest model that included the Kalman filtered data the group
5-fold cross validation ROC AUC performance was mean ± SD of 0.81 ± 0.01. The test-
ing performance across the evaluated performance measures were balance accuracy of
0.80, sensitivity of 0.77, specificity of 0.83, accuracy of 0.82, positive predicted value of
0.38, negative predicted value 0.96, and ROC AUC of 0.86.

More work is needed to understand the individual prediction performance of the con-
version criteria and to investigate how well the model generalizes to other patient popu-
lations outside of the OHTS clinical trial candidates. In future work we plan to investigate
these issues, in addition to expanding our conversion criteria to incorporate additional
POAG conversion criteria. Given, there is currently no gold standard for identifying POAG
conversion (e.g., a conversion criterion that has been shown to accurately identify all con-
verting patients), more research is needed to determine which, if any, conversion criteria
are best suited for identifying and classification POAG conversion. If a suitable model
is identified patients POAG conversion can be identified sooner, thereby reducing the
chance the patient experiences progressive or irreversible vision loss.
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CHAPTER 6

Summary and Conclusions

As mentioned, chronic conditions affect more than half the United States’ adult population
[11]. The direct and indirect cost of treating patients with chronic conditions exceeds 1.2
trillion [16]. Given the complexities involved with treating patients with chronic conditions;
the medical resources required (e.g., clinical personnel, medications, physical infrastruc-
ture, etc.); the quality-of-life impact on patients; and the costs, it is essential for more
effective methods for treating patients with chronic conditions to be developed. Currently
there has been a rise in the use of healthcare data to inform clinical decisions. We see
this as an opportunity to advance the state of medical decision-making research.

This thesis focuses on advancing operations research and statistical learning methods
for improving the care of patients diagnosed with ocular chronic conditions. We focused
on four research problems: (i) proactive identification of patients’ disease progression
under high measurement error conditions; (ii) identification of the optimal time to next
follow-up appointment for patients with OHTN; (iii) examining and comparing several cri-
teria for determining progression from OHTN to primary open angle glaucoma (POAG);
and (iv) the evaluation of the use of a joint POAG conversion criterion in predicting future
occurrence of POAG conversion.

This research was conducted in collaboration with clinical disease/domain experts.
All the medical decision-making research herein addresses real world healthcare issues,
that if solved, have the potential to improve peoples’ lives. While these methodologies
primarily focus on chronic conditions affecting the eyes (e.g., OHTN and POAG), it is
important to note that much of the work produced offers methods applicable to other
chronic diseases.
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6.1 Chapter Summaries

In chapter two we addressed the problem of identifying whether a patient, who has been
diagnosed with glaucoma, will experience rapid worsening/progression of their disease.
We developed a supervised meta classification model tailored to solving this problem.
Data from two randomized clinical trials (the Advanced Glaucoma Intervention Study
(AGIS) and the Collaborative Initial Glaucoma Treatment Study (CIGTS)) were used for
this purpose. As patients diagnosed with a chronic condition may transition between
different phases of progression, we found it important to predict the timing of rapid pro-
gression before it occurs to better inform disease management decisions.

The chapter provided a framework that can be adapted to a variety of chronic dis-
eases settings in which medical tests have moderate to severe residual variability. When
medical tests have low residual variability (e.g., empirical difference between the patient’s
true and recorded value is small) they can effectively, without the use of sophisticated
methods, identify the patient’s current disease phase; however, when medical tests have
moderate to high residual variability this may not be the case. The framework presented
solves the latter case. The framework accomplished this by using the filtered outputs of
an interacting multiple model Kalman filter as additional inputs for a supervised learning
meta classifier. The purpose of this integration was to estimate the true values of pa-
tients’ disease metrics by directly modeling for rapid and non-rapid disease phases, and
dynamically adapting to changes in these values over time. We applied our framework to
classifying whether a patient with POAG will experience rapid progression over the next
two or three years from the time of their current visit. The performance (AUC) of our model
increased by approximately 7% (increased from 0.752 to 0.819) when the Kalman filtering
results were incorporated as additional features in the supervised learning model. These
results suggest the combination of filters and statistical learning methods in clinical health
has significant benefits.

We showed that the presented model is able to achieve acceptable levels of perfor-
mance (e.g., TP1: 2-year (3-year) AUC of .82 (.76) for the walk-forward cross-validation
performance). We conjecture that, as the data used to train these models is increased,
their performance will continue to improve, increasing their value to clinical practice. Fu-
ture work is warranted to expand the study population from patients with moderate to
advanced glaucoma, to patients with early onset, mild, and moderate glaucoma. The
methodology presented has far reaching implications, as it enables the clinician to make
more informed decisions regarding the treatment of patients with glaucoma and increases
the likelihood the clinician is able to maintain a satisfactory quality of life for these patients.
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Although this chapter applied its’ methodology to POAG, the methodology developed is
applicable to other chronic conditions.

Future works may be able improve the presented methodology by incorporating mech-
anisms for the dynamic control of the disease. For example, examining how clinical treat-
ments affect the disease transition from one phase to another, and more insightfully, how
this can be controlled so patients’ time in a “favorable” disease phase is maximized. Ad-
ditionally, we may consider predicting disease phases at smaller time intervals (e.g., 6-
month periods). In this way, the clinician will have greater detail of patients’ future disease
trajectories, instead of a summary measures over 2 or 3-year time windows.

In chapter three we used reinforcement learning to develop scheduling policies for
patients with ocular hypertension (OHTN). Patients with OHTN are at increased risk of
developing glaucoma and should be observed over their lifetime. Follow-up appointment
schedules that are chosen poorly can result in, at minimum, delay in the detection of
a patient’s progression to glaucoma, and at worst, poor patient outcomes. To this end,
we presented a personalized decision support tool that uses an off-policy reinforcement
learning algorithm to recommend personalized patient time-to-next follow-up schedules.

We proposed two scheduling policies, each of which considered three underlying cri-
teria: (i) average time between follow-up visits, (ii) scheduling efficiency (measured by
the percentage of eyes with scheduled visits at the earliest indication of the glaucoma
progression), and (iii) delay to detect the glaucoma progression. We evaluated the per-
formance of the proposed scheduling policies using the Ocular Hypertension Treatment
Study (OHTS) randomized clinical trial data. The numerical results indicated that our pro-
posed scheduling policies are superior to both 1-year and 2-year fixed interval scheduling
policies with respect to scheduling efficiency (at least 33% higher than the best fixed in-
terval policy) and time to detect glaucoma progression (at least 48% lower than the best
fixed interval policy), and comparable in average time between scheduled follow-up visits.
For patients who do not progress, the policies schedule less follow-up visits compared
to those who did progress. This was as one would expect; for example, for RL policy 1,
progressed patients were scheduled follow-up visits approximately every 1.0 years, while
non-progressed patients were scheduled approximately every 1.6 years, consistent with
the need for more intensity of monitoring for patients likely to progress. This contrasts with
fixed interval policies where a constant intensity of monitoring is undertaken, regardless
of whether there is a medical need to do so. Ideally, patients should only be seen by a
clinician when a medical follow-up visit is warranted; however, we have required a maxi-
mum interval of 24 months as a clinically justified safeguard. While our primary focus in
this chapter was determining time to next test for patients with OHTN, the methodology
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developed can be applied to other chronic conditions.
In future work, targeting the implementation of this work, RL TNT follow-up schedules

could be further personalized by altering the reward weights in the RL reward function
through a user interface. Depending on the type of care a patient requires, a clinician
can, in principle, modify weights to produce follow-up schedules that best adhere to their
patients’ needs. For instance, increasing the visit delay reward to encourage less visits,
or increasing the 3 MD-drop reward to increase the likelihood of visits when suspected
progression (e.g., first occurrence of 3MD drop from baseline) has occurred. In addition,
it is valuable to investigate whether our results generalize to other chronic conditions and
to expand our model’s state by incorporating not only the current state of the patient, but
also the state of the patient at prior visits. We believe this will further improve our model’s
performance, as historical patient information provides the model with additional patient
insights.

In chapter four we examined and compared several criteria for determining progres-
sion from ocular hypertension to primary open angle glaucoma (POAG). We did this for
several reasons: to increase the number of detected POAG conversions (e.g., an increase
in POAG recall), to identify conversions earlier, to establish conversions with more confi-
dence, or to understand how patients’ demographics affect the time to POAG conversion.

The compared criteria were: (A) Endpoint, (B) Decline in Mean Deviation, (C) Decline
in Point-wise Total Deviation (e.g., TD trend), and (D) Deterioration of Points on Total
Deviation Clusters (e.g., cluster of points). We indicated the criteria can be divided into
either trend-based or event-based conversion definitions. The categorization is as fol-
lows: decline in point-wise total deviation is trend-based; decline in mean deviation and
deterioration of points on total deviation clusters is event based; and the OHTS Endpoint
Committee is likely a mixture of trend-based methods, event-based methods, and glau-
coma domain expertise. Trend based methods look at changes over a period of time by
estimating the slope of the time series. Event-based methods compare each new mea-
surement and test if the change from the baseline method exceeds a threshold or trigger
level.

We found there were a total of 1,002 POAG patient eye conversions between all com-
pared criteria. Endpoint had 127, cluster of points had 341, TD trend had 731, and decline
in MD had 423. The total did not add up to 1,002 because a patient’s eye could progress
due to multiple criteria over the observed timeframe. Using univariable survival analysis
we confirmed the rates of conversion for all investigated criteria were statistically different
from one another. We noted TD trend had the highest rate of conversion with roughly
30% of all patient eyes being identified as POAG converted by the end of the observed
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time frame. In addition, an analysis of the multivariable survival analysis’ (i.e., multivari-
able cox regression) coefficients indicated: (i) under each of the four criteria blacks have
the highest risk of progressing from OHTN to POAG (i.e., blacks had the highest risk of
conversion across all criteria and p-value ≤ 0.05); (ii) the older the patient, the higher the
risk of glaucoma progression; (iii) the risk of conversion to POAG is statistically the same,
for all all criteria, excluding endpoint, for both males and females; and (iv) the hazard
coefficients for race, sex, and age differ significantly from one another depending on the
conversion criterion used (likelihood ratio tests p-value less than or equal to 0.05 for each
covariate). The last point is of interest because it implies the rate at which a patient will be
successfully identified as POAG converting is in part, related to their demographics. Hy-
pothetically suggesting the type of POAG conversion criterion used by a clinician should
differ based on patients’ race.

In future work, we plan to investigate whether the described criteria can be used to
proactively identify whether a patient will convert to POAG. Correctly identifying convert-
ing patients is important as it signals to the clinician treatment is required. Likewise, being
able to proactively predict converting patients enables the clinician to take preventative ac-
tion before the patient converts to POAG, at which point unreversible vision loss may have
already occurred. One question, which could not be answered, of whether the Endpoint
criterion, which the OHTS study team intended to be quite conservative, is closer or fur-
ther from the truth relative to any of the other criteria. We hope to answer this additionally
answer this question in future work.

In chapter five we evaluated the use of a collective POAG conversion criterion in pre-
dicting future occurrence of a patient converting from ocular hypertension to POAG. The
collective criterion labeled a patient’s eye as progressing if they progressed according to
any one of the following criteria two years from their sixth visit: (A) the OHTS Endpoint
Committee, (B) Decline in Mean Deviation, (C) Decline in Point-wise Total Deviation (e.g.,
TD trend), and (D) Deterioration of Points on Total Deviation Clusters (e.g., cluster of
points). A secondary focus of this chapter was to also evaluate the inclusion of Kalman
filtered covariates in improving prediction performance.

We found the random forest classification model that included the Kalman filtered data
performed best. The group 5-fold cross validation ROC AUC performance was mean ± SD
of 0.81 ± 0.01. The testing performance of the model across the evaluated performance
measures were balance accuracy of 0.80, sensitivity of 0.77, specificity of 0.83, accuracy
of 0.82, positive predicted value of 0.38, negative predicted value 0.96, and ROC AUC of
0.86.

In future work we plan to study the individual prediction performance of each POAG
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conversion criterion the collective conversion criterion consists of (e.g., endpoint, decline
in MD, TD trend, and cluster deterioration) and investigate how well the presented model
generalizes to other patient populations outside of patients with ocular hypertension. Ad-
ditionally, we plan to expand our conversion criteria to incorporate other POAG conversion
criteria. While we primarily focused on event-based conversion criteria in the inclusion of
the collective conversion criterion we plan to include additional trend-based conversion
criteria. Given, there is currently no gold standard for identifying POAG conversion (e.g.,
a conversion criterion that has been shown to most accurately identify converting pa-
tients), more research is needed to determine which, if any, conversion criteria are best
suited for identifying and classifying POAG conversion. If a suitable criterion is identified,
a patient’s POAG conversion can be identified sooner, thereby reducing the chance the
patient’s vision experiences irreversible vision loss.
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APPENDIX A

Detailed Description of Case Study Model
Inputs

Table A.1: Overview of data variables used in the rapid progression classification model

Featured Mea-
sured

Feature Engineer-
ing Function

Description Data Used

Progression
Expanding window

Using an expanding
window measure
progression from
periods 3 to T, en-
gineer the features
OLSR slope, OLSR
slope p-value, and
a binary indicator
indicating if the
slope is statistically
significant at the
level of 0.05

MD, KF MD
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Table A.1 continued from previous page
Feature Mea-
sured

Feature Engineer-
ing Function

Description Data Used

Calculate summary
statistics of mean,
standard deviation,
quantiles at various
levels, min, and
max for each co-
variate described in
the above row.

Moving window Calculate a moving
window of 3 most
recent periods from
periods 3 to T for
OLSR slope, and
OLSR p-value.

Patient Test Results
Expanding window Using an expanding

window calculate
summary statistics
mean, standard
deviation, various
quantiles, min, and
max from periods 0
to T.

MD, PSD, IOP,
KF MD
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Table A.1 continued from previous page
Feature Mea-
sured

Feature Engineer-
ing Function

Description Data Used

Moving window Using a moving
window of 3 & 4
periods, calculate
summary statis-
tics (e.g., mean,
standard deviation,
quantiles, min, and
max).

Shifted/ Time-lag
features

Time lag features in
addition to time T: T-
3, T-2, T-1.

Demographics N/A Unchanging covari-
ates based on pa-
tient’s demographic
information.

Age, Sex, Race

Patient Ap-
pointment
Information

N/A Follow-up period. Visit Period (6-
month interval)
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APPENDIX B

IMM Initial Filter Model Parameters

The bank of Kalman Filters was iteratively tuned using a grid search procedure. The
objective of this procedure was to determine the best parameters for the Kalman filter
models. The initial estimates for M and µ0 were obtained using the data. M was esti-
mated using the number of transitions between RP and RP; RP and Non-RP; Non-RP
and RP; and Non-RP and Non-RP. µ0 was estimated using the normalized frequency of
RP instances and Non-RP instances. The estimated values for M and µ0 are found in
Tables B.1 and B.2 respectively.

Table B.1: IMM initial transition probability matrix, M

Stable Phase Rapid Phase
Stable Phase 0.89 0.11
Rapid Phase 0.12 0.88

Table B.2: IMM Initial mode probability matrix, µ

Stable Phase Rapid Phase
0.78 0.22

The elements of the F matrix are shown in Table B.3. The F matrix captures the sys-
tem transition of Kalman Filter. The F matrix was built using the linear vector difference
equation model for the following physics equations:

MDpredicted = MD + (MDvelocity ·∆t) + (MDacceleration ·
∆t2

2
)

MDpredictedvelocity = MDvelocity +MDacceleration ·∆t

MDpredictedacceleration = MDacceleration,

where ∆t = 6 months, and state variables x = 〈MD MDvelocity MDacceleration〉.
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Table B.3: Transition Matrix, F

MD MD Velocity MD Acceleration
MD 1 6 18
MD Velocity 0 1 6
MD Acceleration 0 0 1

The Q (process) noise covariance matrices are shown in Table B.4 and B.5. The Q

matrix captures the noise introduced into our system due to external factors we do not
directly model for. The Q matrix captures this noise using a random process centered at
0. In our model we assumed the Q matrices have a piecewise white noise model, where
the noise follows a discrete time Wiener process. This noise model assumes the noise for
the highest order term (e.g. acceleration) is constant for the duration of each time period,
but differs for each time period, and each of these is uncorrelated between time periods
[44].

Table B.4: Non-RP Process Noise Covariance Matrix, Q1

MD MD Velocity MD Acceleration
MD 0.20 0.06 0.01
MD Velocity 0.06 0.02 0.00
MD Acceleration 0.01 0.00 0.00

Table B.5: RP Process Noise Covariance Matrix, Q2

MD MD Velocity MD Acceleration
MD 3.24 1.08 0.18
MD Velocity 1.08 0.36 0.06
MD Acceleration 0.18 0.06 0.01

The initial estimates for the MD, MD velocity, and MD acceleration variances are high,
so as to model the uncertainty associated with these three measurements when you see
a new patient.

Table B.6: Initial Covariance Matrix, P

MD MD Velocity MD Acceleration
MD 1 0 0
MD Velocity 0 0.5 0
MD Acceleration 0 0 0.25

As a clinician with a new patient there is no current information to suggest an appropri-
ate MD rate of change. There is only a single MD baseline value. As such the initial state
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estimate for each patient is

x =

MDbaseline

0

0


Last, the measurement function, H, and measurement noise, R are defined respectively
as,

H =

1 0 0

1 0 0

0 1 0



R =

σ1 0 0

0 σ2 0

0 0 σ3

 .

95



APPENDIX C

Illustration of the IMM Kalman filtered MD
Results

Figure C.1: IMM Kalman filtered MD results compared to a patient’s observed MD results,
and the MD “true state” estimated by ordinary least squares regression (OLSR)
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APPENDIX D

Chapter 4 Table of Notation

Symbol Description
t Time in periods of 6-months.
at Action taken at time t
st The state of the patient at period t. The state describes the

patient’s demographics and test measurements at period t.
rt+at(st, at, st+at) Reward received from transitioning from state st to state st+at

after taking action at.
rt+at Shorthand for rt+at(st, at, st+at).
π(s) Learned policy from Q-iteration. Determines the action to take

given state s.
Qπ(s, a) Q-function. Computes the expected sum of rewards received

from starting in state s taking action a, and thereafter following
policy π(s).

F One-step transitions. A set comprised of all possible patient eye
state/action transitions.

K The integer number of iterations used to approximate the Q-
functions.

Q̂k(s, a) Approximation of the Q-function at iteration k ∈ [1, K].
Tk The training set at iteration k. The training set is composed of

state action pairs and associated estimates of the Q-function
value that results from taking action a in state s.

Q̂k Q-function estimated at iteration k of fitted Q-iteration.
∆(Q̂k, Q̂k−1) Distance between subsequent Q-iterations.
λ Reward weights
p P-value
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Table D.1 continued from previous page
Symbol Description
α Type-1 (false-positive) error rate.
Rπ(s0) Total expected sum of rewards starting from state s0.
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APPENDIX E

Detailed Description of Case Study Model
Inputs for POAG Conversion Prediction

Table E.1: Overview of data variables at the 6th visit of the patient, denoted as time T.

Feature Measured Feature Engineer-
ing Function

Description Data Used

Patient Test Re-
sults

Shifted/ Time-lag of
patient medical test

Time lag features
in addition to time
T: T, T-1, T-2, T-3,
T-4, T-5

Observed MD, PSD,
IOP, MD velocity, PSD
velocity, IOP velocity,
MD acceleration, PSD
acceleration, and IOP
acceleration

Shifted/ Time-lag of
patient medical test
rates of change
Shifted/ Time-lag of
patient medical test
acceleration
Kalman filtered
medical tests

KF filtered mea-
surements at
times T, T-1, T-2,
T-3, T-4, T-5

Kalman filtered MD,
PSD, IOP, MD veloc-
ity, PSD velocity, IOP
velocity, MD acceler-
ation, PSD accelera-
tion, and IOP acceler-
ation

Forecasted KF
measurements at
times T+1, T+2,
T+3, T+4
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Table E.1 continued from previous page
Feature Measured Feature Engineer-

ing Function
Description Data Used

Cup-to-disc ratio Average, mean,
minimum

Descriptive statis-
tics of a patient’s
cup-to-disc ratio
since time T

Cup-to-disc ratio

Demographics
History

N.A. Unchanging co-
variates based
on patient’s
demographic
information

Age, race, and sex,
family history of glau-
coma

Medication Use N.A. Binary indicator in-
dicating a patient’s
medical use

Ocular and non-ocular
meds

Total Deviation
(TD) Trend Analy-
sis

Points TD Criteria
Ever: How many
TD locations ever
met TD trend crite-
ria

TD plot engi-
neered features

TD plots of a patient’s
visual field

Points TD Crite-
ria 1: How many
points met TD
criteria at 5th visit
Points TD Crite-
ria 2: How many
points met TD
criteria at 5th and
6th visit
Beta 1 (Beta 2):
Minimum TD OLSR
slope of the points
that met criteria at
5th visit (and 6th
visit) respectively
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Table E.1 continued from previous page
Feature Measured Feature Engineer-

ing Function
Description Data Used

P-value 1 (P-value
2): Minimum TD
slope p-value of the
points that met cri-
teria at 5th visit
(and 6th visit) re-
spectively
Missing 1: Indicator
variable if the pa-
tient does not have
at least one TD
reading before their
last 2nd to last visit
Missing 2: Indica-
tor variable if the
patient does not
have at least two
TD readings before
their last visit

101



BIBLIOGRAPHY

[1] National center for chronic disease prevention and health promotion, May 2020.

[2] Jorge LM Amaral, Agnaldo J Lopes, José M Jansen, Alvaro CD Faria, and Pedro L
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