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ABSTRACT

This thesis presents the algorithms for solve multiple compositional tasks with high sample effi-
ciency and strong generalization ability. Central to this work is the subtask graph which models
the structure in compositional tasks into a graph form. We formulate the compositional tasks
as a multi-task and meta-RL problems using the subtask graph and discuss different approaches
to tackle the problem. Specifically, we present four contributions, where the common idea is to
exploit the inductive bias in the hierarchical task structure for efficien learning and strong general-
ization.

The first part of the thesis formally introduces the subtask graph execution problem: a modeling
of the compositional task as an multi-task RL problem where the agent is given a task description
input in a graph form as an additional input. We present the hierarchical architecture where high-
level policy determines the subtask to execute and low-level policy executes the given subtask. The
high-level policy learns the modular neural network that can be dynamically assmbled according to
the input task description to choose the optimal sequence of subtasks to maximize the reward. We
demonstrate that the proposed method can achieve a strong zero-shot task generalization ability,
and also improve the search efficiency of existing planning method when combined together.

The second part studies the more general setting where the task structure is not available to
agent such that the task should be inferred from the agent’s own experience; i.e., few-shot rein-
forcement learning setting. Specifically, we combine the meta-reinforcemenet learning with an
inductive logic programming (ILP) method to explicitly infer the latent task structure in terms of
subtask graph from agent’s trajectory. Our empirical study shows that the underlying task struc-
ture can be accurately inferred from a small amount of environment interaction without any explicit
supervision on complex 3D environments with high-dimensional state and actions space.

The third contribution extends the second contribution by transfer-learning the prior over the
task structure from training tasks to the unseen testing task to achieve a faster adaptation. Although
the meta-policy learned the general exploration strategy over the distribution of tasks, the task
structure was independently inferred from scratch for each task in the previous part. We overcome
such limitation by modeling the prior of the tasks from the subtask graph inferred via ILP, and
transfer-learning the learned prior when performing the inference of novel test tasks. To achieve

this, we propose a novel prior sampling and posterior update method to incorporate the knowledge
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learned from the seen task that is most relevant to the current task.

The fourth contribution extends the second contribution via learning a factored form of subtask
graph. Specifically, the main idea is to further decompose each subtask into “entities” where
we assume a certain similarity between subtasks with similar entities. We develop an algorithm
that can capture the factored structure, which enables more efficient knowledge sharing between
subtasks and also a stronger form of generalization to unseen subtasks with unseen entities.

The last part investigates more indirect form of inductive bias that is implemented as a constraint
on the trajectory rolled out by the policy in MDP. We present a theoretical result proving that the
proposed constraint preserves the optimality while reducing the policy search space. Empirically,
the proposed method improves the sample effciency of the policy gradient method on a wide range
of challenging sparse-reward tasks.

Overall, this work formulates the hierarchical structure in the compositional tasks and provides
the evidences that such structure exists in many important problems. In addition, we present diverse
principled approaches to exploit the inductive bias on the hierarchical structure in MDP in different
problem settings and assumptions, and demonstrate the usefulness of such inductive bias when

tackling compositional tasks.
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CHAPTER 1

Introduction

The reinforcement learning (RL) is an area of machine learning that regards the agent learning
to take actions in an environment [Sutton and Barto, 2018]. When the agent takes an action, the
environment returns the reward and the next state to the agent. The goal of agent is to learn the
policy — how to map situations (i.e., state) to actinos — so as to maximize the cumulative reward. RL
provides a general learning framework since the learner does not requires to be told which actions
to take but can learn only from the reward feedback. The generality of the RL framework made
it possible to formulate many challenging problems into RL problem which have achieved some
successes in variaty of domains [Tesauro, 1995, Diuk et al., 2008, Riedmiller et al., 2009]. However,
the main bottleneck of applying the reinforcement learning to the real-world applications was the
necessity for hand-engineered features which require domain-specific knowledge.

More recently, combining reinforcement learning and deep learning opened up many new
applications (e.g., healthcare, robotics, etc) and achieved remarkable successes on many challenging
tasks [Mnih et al., 2015, Silver et al., 2017, Vinyals et al., 2019] with high dimensional state-space
where the traditional RL approaches had a difficulty of designing the feature. Deep RL used a
function approximation for a policy to approximately model the mapping from state to the action
using neural network. With the neural network’s capacity to capture the hierarchical levels of
abstractions from data, the deep RL has made many significant breakthroughs.

However, prior work mostly have been focused on a single known task where the agent can
be trained for a long time. In numerous real-world scenarios, interacting with the environment
is expensive or limited, and the agent is often presented with a novel task that is not seen during
its training time. Thus, in this case, the agent should be able to solve multiple tasks with varying
sources of reward and supervision. Recent work in multi-task RL has attempted to address this;
however, they focused on the setting where the structure of task are explicitly described with
natural language instructions [Oh et al., 2017, Andreas et al., 2017, Yu et al., 2017, Chaplot et al.,
2018], programs [Denil et al., 2017], or graph structures [Sohn et al., 2018]. However, such task
descriptions may not readily be available. A more flexible solution is to have the agents infer

the task by interacting with the environment. Recent work in Meta RL [Hochreiter et al., 2001,
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Duan et al., 2016, Wang et al., 2016, Finn et al., 2017] (especially in few-shot learning settings)
has attempted to have the agents implicitly infer tasks and quickly adapt to them. However, they
have focused on relatively simple tasks with a single goal (e.g., multi-armed bandit, locomotion,
navigation, efc.).

We argue that real-world tasks often have a compositional task structure and multiple goals,
which require long horizon planning or reasoning ability [Erol, 1996, Xu et al., 2017, Ghazanfari
and Taylor, 2017, Sohn et al., 2018]. Take, for example, the task of making a breakfast. A meal
can be served with different dishes and drinks (e.g., boiled egg and coffee), where each could be
considered as a subtask. These can then be further decomposed into smaller substask until some
base subtask (e.g., pickup egg) is reached. Each subtask can provide the agent with reward; if only
few subtasks provide reward, this is considered a sparse reward problem. In addition, the subtasks
may have complex dependencies in terms of the precondition. For example, a bread should be
sliced before toasted, or an omelette and an egg sandwich cannot be made together if there is only
one egg left. Due to such complex dependencies as well as different rewards and costs, it is often
cumbersome for human users to manually provide the optimal sequence of subtasks (e.g., “fry an
egg and toast a bread”). Instead, the agent should learn to act in the environment by figuring out
the optimal sequence of subtasks that gives the maximum reward within a time budget just from
properties and dependencies of subtasks or even infer such dependencies by trying out the subtasks
in different order. Thus, in real-world scenarios, the agent is required to solve multiple, potentially
unseen, and compositional tasks.

The main goal of this thesis is to develop an intelligent agent that can perform many compositional
tasks with high sample efficiency and strong generalization ability. Specifically, we tackle the
compositional tasks by exploiting the inductive bias on the task structure.

The first part of the thesis discusses how to formulate such compositional tasks as an multi-task
RL problem where the agent is given a task description input in a graph form as an additional input.
Specifically, we present the subtask graph framework that is built upon the options framework Sutton
[1998], and learns the modular neural network that can be dynamically assmbled according to
the task description to choose the optimal subtask to execute that can maximize its reward. We
demonstrate that the proposed method can achieve a strong zero-shot task generalization ability. In
addition, we present how such neural network can be combined with existing planning method to
improve the search efficiency and further improve the performance.

The second part studies the compositional tasks in a more general setting where the task structure
is not available to agent; i.e., few-shot reinforcement learning setting. Specifically, we combine
the meta-reinforcemenet learning with an inductive logic programming (ILP) method to explicitly
infer the latent task structure in terms of subtask graph from agent’s trajectory. We demonstrate

that 1) the meta-policy learns to explore the subtask space such that the task can be accurately



inferred from the collected experience of agent and 2) the highly efficient abstraction captured by
ILP algorithm enables a faster adaptation of the proposed approach. We apply the proposed method
to more complex 3D environments with high-dimensional state and actions space, and show that the
underlying task structure can be accurately inferred from a small amount of environment interaction
without any explicit supervision.

In the third part of the thesis, we extend the previous meta-RL approaches by transfer-learning
the prior over the task structure from training tasks to the unseen testing task to achieve a faster
adaptation. Although the meta-policy learned the general exploration strategy over the distribution
of tasks, the task structure was independently inferred from scratch for each task in the previous part.
We overcome such limitation by modeling the prior of the tasks from the subtask graph inferred
via ILP, and transfer-learning the learned prior when performing the inference of novel test tasks.
To achieve this, we propose a novel prior sampling and posterior update method to incorporate the
knowledge learned from the seen task that is most relevant to the current task.

Lastly, we discuss how the inductive bias on the task structure can be indirectly implemented as
a constraint on the trajectory space rolled out by the policy in MDP without making any explicit
assumptions. The previous three parts were assuming an explicit compositional structure in MDP
in terms of subtasks and the precondition dependency between them. In this part, we relax the
assumption and consider a sparse-reward task where there exists a small set of rewarding states (i.e.,
multi-goal setting). Specifically, our intuition is to view the sparse-reward task as a graph-MDP
where each of the rewarding states corresponds to a node in the MDP graph and the edge between a
pair of node is the shortest-path path between the corresponding rewarding states. Then, we prove
that the optimal policy of the graph-MDP is also an optimal policy of the original MDP. From this
theoretical result, we present a novel constraint on MDP that improves the sample efficiency of any
model-free RL method via reducing the policy search space while preserving the optimality. We
demonstrate the effectiveness of the proposed method on a wide range of challenging sparse-reward

tasks and discuss how the proposed inductive bias affects the policy learning.



CHAPTER 2

Background

2.1 Markov Decision Process

A task is defined as an Markov decision process (MDP) tuple M = (S, A, P, R, p,7), where S is a
state set, A is an action set, P is a transition probability, R is a reward function, p is an initial state
distribution, and y € [0, 1) is a discount factor. For each state s, the value of a policy 7 is denoted
by V™ (s) = E*[>", v'r¢ | so = s|. Then, the goal of reinforcement learning is to find the optimal

policy 7* that maximizes the expected return:

T = arg maXEng[Zt Yiry | so = s (2.1)
=argmaxE,_, [V"(s)]. (2.2)

T

2.2 Factored Markov Decision Processes

Factored MDP (FMDP) [Boutilier et al., 1995, Schuurmans and Patrascu, 2002] is an MDP M =
(S, A, P, R), where the state space S can be decomposed into multiple factors Sy, - - - , S, such
that the transition dynamics P and reward function R can be factored. The transition dynamics
is factored as p(s'[s, a) = [, p(s}|s, a). The reward function is factored as R(s,a) = ) . R;(s, a),
where R;(s, a) is a local reward function. The main benefit of FMDP is that it allows us to model
many compositional tasks in a principled way with a compact representation such as dynamic
Bayesian network [Dean and Kanazawa, 1989, Boutilier et al., 1995]. In Section 3.3, we present
our formulation of the compositional tasks as an MDP paramterized by subtask graph, which is a
family of the factored MDP.



2.3 Multi-task Reinforcement Learning

In multi-task RL, we consider an agent presented with a task drawn from some distribution as in An-
dreas et al. [2017], Da Silva et al. [2012]. Each task is defined by an MDP Mg = (S, A, Pa, Ra)
parameterized by a task parameter G with a set of states S, a set of actions .4, task-specific tran-
sition dynamics P, and task-specific reward function R. We assume that the task parameter
G € G is available to agent and is drawn from a distribution P(G) where G is a set of all possible
task parameters. The goal of multi-task RL is to maximize the expected reward over the whole
distribution of MDPs:

dG, 2.3)

T

™ = arg maX/P(G)Esw(.;G),MG [Z Y Ra(st)
4 =0

where 7 is a discount factor, 7 : S X G — A is a multitask policy that we aim to learn, and R; is

the task-specific reward function. We consider a zero-shot generalization where only a subset of

tasks Gy..in C G is available to agent during training, and the agent is required to generalize over a

set of unseen tasks G;.s; C G for evaluation, where G;.s; N Gyrain = ¢. In Chapter 3, we tackle the

compositional tasks in multi-task RL setting.

2.4 Few-shot Reinforcement Learning

Different from the multi-task RL problem, the few-shot RL setting does not assume any task
parameter input; instead, the agent is given a short period of time to infer about the task via
interacting with the environment. Similar to multi-task RL, a fask is defined by an MDP M =
(S, A, Pg, R¢g) parameterized by a task parameter G with a shared state set S, shared action set
A, task-specific transition dynamics P, and task-specific reward function R. In the K-shot RL
formulation [Duan et al., 2016, Finn et al., 2017], each trial under a fixed task M consists of
an adaptation phase where the agent learns a task-specific behavior for K environment steps and
a test phase where the adapted behavior is evaluated in terms of the expected discounted return.
For example, RNN-based meta-learners [Duan et al., 2016, Wang et al., 2016] adapt to a task Mg
by updating its RNN states (or fast-parameters) ¢,;, where the initialization and update rule of ¢,
is parameterized by a slow-parameter 0: ¢y = go(so), Ore1 = fo(@r, as, ¢, S¢41). Gradient-based
meta-learners [Finn et al., 2017, Nichol et al., 2018] instead aim to learn a good initialization of the

model so that it can adapt to a new task with few gradient update steps. In the test phase, the agent’s



performance on the task M is measured in terms of the return:

Rt (More) = Enyye it | 10471 (2.4)
Po0 = go(s0), (2.5)
b1 = fo(Pr, e, e, Se41) (2.6)

where 74, 1s the policy after K update steps of adaptation, / is the horizon of test phase, and 7, is
the reward at time ¢ in the test phase. The goal is to find an optimal parameter ¢ that maximizes the
expected return E¢ Ry, (74, )] over a given distribution of tasks p(G). In Chapter 4 and Chapter 5,
we tackle the compositional tasks in few-shot reinforcement learning setting.



CHAPTER 3

Multi-task Reinforcement Learning for

Compositional Task with Given Task Description

This chapter introduces a new RL problem where the agent is required to generalize to a previously-
unseen environment characterized by a subtask graph which describes a set of subtasks and their
dependencies. Unlike existing hierarchical multitask RL approaches that explicitly describe what the
agent should do at a high level, our problem only describes properties of subtasks and relationships
among them, which requires the agent to perform complex reasoning to find the optimal subtask to
execute. To solve this problem, we propose a neural subtask graph solver (NSGS) which encodes
the subtask graph using a recursive neural network embedding. To overcome the difficulty of
training, we propose a novel non-parametric gradient-based policy, graph reward propagation, to
pre-train our NSGS agent and further finetune it through actor-critic method. The experimental
results on two 2D visual domains show that our agent can perform complex reasoning to find a
near-optimal way of executing the subtask graph and generalize well to the unseen subtask graphs.
In addition, we compare our agent with a Monte-Carlo tree search (MCTS) method showing that our
method is much more efficient than MCTS, and the performance of NSGS can be further improved
by combining it with MCTS.

3.1 Introduction

Developing the ability to execute many different tasks depending on given task descriptions and
generalize over unseen task descriptions is an important problem for building scalable reinforcement
learning (RL) agents. Recently, there have been a few attempts to define and solve different
forms of task descriptions such as natural language [Oh et al., 2017, Yu et al., 2017] or formal
language [Denil et al., 2017, Andreas et al., 2017]. However, most of the prior works have focused
on task descriptions which explicitly specify what the agent should do at a high level, which may

not be readily available in real-world applications.
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Figure 3.1: Example task and our agent’s trajectory. The agent is required to execute subtasks in the
optimal order to maximize the reward within a time limit. The subtask graph describes subtasks with
the corresponding rewards (e.g., subtask L gives 1.0 reward) and dependencies between subtasks
through AND and OR nodes. For instance, the agent should first get the firewood (D) OR coal (G) to
light a furnace (J). In this example, our agent learned to execute subtask F and its preconditions
(shown in red) as soon as possible, since it is a precondition of many subtasks even though it gives
a negative reward. After that, the agent mines minerals that require stone pickaxe and craft items
(shown in blue) to achieve a high reward.

To further motivate the problem, let’s consider a scenario in which an agent needs to generalize
to a complex novel task by performing a composition of subtasks where the task description and
dependencies among subtasks may change depending on the situation. For example, a human
user could ask a physical household robot to make a meal in an hour. A meal may be served with
different combinations of dishes, each of which takes a different amount of cost (e.g., time) and
gives a different amount of reward (e.g., user satisfaction) depending on the user preferences. In
addition, there can be complex dependencies between subtasks. For example, a bread should be
sliced before toasted, or an omelette and an egg sandwich cannot be made together if there is only
one egg left. Due to such complex dependencies as well as different rewards and costs, it is often
cumbersome for human users to manually provide the optimal sequence of subtasks (e.g., “fry an
egg and toast a bread”). Instead, the agent should learn to act in the environment by figuring out
the optimal sequence of subtasks that gives the maximum reward within a time budget just from
properties and dependencies of subtasks.

The goal of this chapter is to formulate and solve such a problem, which we call subtask graph
execution, where the agent should execute the given subtask graph in an optimal way as illustrated
in Figure 4.1. A subtask graph consists of subtasks, corresponding rewards, and dependencies
among subtasks in logical expression form where it subsumes many existing forms (e.g., sequential
instructions [Oh et al., 2017]). This allows us to define many complex tasks in a principled way
and train the agent to find the optimal way of executing such tasks. Moreover, we aim to solve the
problem without explicit search or simulations so that our method can be more easily applicable to

practical real-world scenarios, where real-time performance (i.e., fast decision-making) is required



and building the simulation model is extremely challenging.

To solve the problem, we propose a new deep RL architecture, called neural subtask graph
solver (NSGS), which encodes a subtask graph using a recursive-reverse-recursive neural network
(R3NN) [Parisotto et al., 2016] to consider the long-term effect of each subtask. Still, finding the
optimal sequence of subtasks by reflecting the long-term dependencies between subtasks and the
context of observation is computationally intractable. Therefore, we found that it is extremely
challenging to learn a good policy when it’s trained from scratch. To address the difficulty of
learning, we propose to pre-train the NSGS to approximate our novel non-parametric policy called
graph reward propagation policy. The key idea of the graph reward propagation policy is to
construct a differentiable representation of the subtask graph such that taking a gradient over the
reward results in propagating reward information between related subtasks, which is used to find
a reasonably good subtask to execute. After the pre-training, our NSGS architecture is finetuned
using the actor-critic method.

The experimental results on 2D visual domains with diverse subtask graphs show that our agent
implicitly performs complex reasoning by taking into account long-term subtask dependencies as
well as the cost of executing each subtask from the observation, and it can successfully generalize
to unseen and larger subtask graphs. Finally, we show that our method is computationally much
more efficient than Monte-Carlo tree search (MCTS) algorithm, and the performance of our NSGS
agent can be further improved by combining with MCTS, achieving a near-optimal performance.

Our contributions can be summarized as follows: (1) We propose a new challenging RL problem
and domain with a richer and more general form of graph-based task descriptions compared to the
recent works on multitask RL. (2) We propose a deep RL architecture that can execute arbitrary
unseen subtask graphs and observations. (3) We demonstrate that our method outperforms the
state-of-the-art search-based method (e.g., MCTS), which implies that our method can efficiently
approximate the solution of an intractable search problem without performing any search. (4) We
further show that our method can also be used to augment MCTS, which significantly improves the

performance of MCTS with a much less amount of simulations.

3.2 Related Work

Programmable Agent The idea of learning to execute a given program using RL was introduced
by programmable hierarchies of abstract machines (PHAMs) [Parr and Russell, 1997, Andre and
Russell, 2000, 2002]. PHAMs specify a partial policy using a set of hierarchical finite state machines,
and the agent learns to execute the partial program. A different way of specifying a partial policy
was explored in the deep RL framework [Andreas et al., 2017]. Other approaches used a program

as a form of task description rather than a partial policy in the context of multitask RL [Oh et al.,



2017, Denil et al., 2017]. Our work also aims to build a programmable agent in that we train the
agent to execute a given task. However, most of the prior work assumes that the program specifies
what to do, and the agent just needs to learn how to do it. In contrast, our work explores a new
form of program, called subtask graph (see Figure 4.1), which describes properties of subtasks and
dependencies between them, and the agent is required to figure out what to do as well as how to do
1t.

Hierarchical Reinforcement Learning Many hierarchical RL approaches have been proposed to
solve complex decision problems via multiple levels of temporal abstractions [Sutton et al., 1999b,
Dietterich, 2000, Precup, 2000, Ghavamzadeh and Mahadevan, 2003, Konidaris and Barto, 2007].
Our work builds upon the prior work in that a high-level controller focuses on finding the optimal
subtask, while a low-level controller focuses on executing the given subtask. In this work, we focus
on how to train the high-level controller for generalizing to novel complex dependencies between
subtasks.

Classical Search-Based Planning One of the most closely related problems is the planning
problem considered in hierarchical task network (HTN) approaches [Sacerdoti, 1975, Erol, 1996,
Erol et al., 1994, Nau et al., 1999, Castillo et al., 2005] in that HTNs also aim to find the optimal
way to execute tasks given subtask dependencies. However, they aim to execute a single goal task,
while the goal of our problem is to maximize the cumulative reward in RL context. Thus, the agent
in our problem not only needs to consider dependencies among subtasks but also needs to infer
the cost from the observation and deal with stochasticity of the environment. These additional

challenges make it difficult to apply such classical planning methods to solve our problem.

Motion Planning Another related problem to our subtask graph execution problem is motion
planning (MP) problem [Asano et al., 1985, Canny, 1985, 1987, Faverjon and Tournassoud, 1987,
Keil and Sack, 1985]. MP problem is often mapped to a graph, and reduced to a graph search
problem. However, different from our problem, the MP approaches aim to find an optimal path to

the goal in the graph while avoiding obstacles similar to HTN approaches.

3.3 Problem Definition

The subtask graph execution problem is a multitask RL problem with a specific form of task
parameter G called subtask graph. Figure 4.1 illustrates an example subtask graph and environment.
The task of our problem is to execute given N subtasks in an optimal order to maximize reward

within a time budget, where there are complex dependencies between subtasks defined by the
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subtask graph. We assume that the agent has learned a set of options (O) Precup [2000], Stolle and
Precup [2002], Sutton et al. [1999b] that performs subtasks by executing one or more primitive

actions.

Subtask Graph and Environment We define the terminologies as follows:

* Precondition: A precondition of subtask is defined as a logical expression of subtasks in sum-
of-products (SoP) form where multiple AND terms are combined with an OR term (e.g., the
precondition of subtask J in Figure 4.1 is OR(AND(D), AND(G)).

« Eligibility vector: e; = [e}, ..., )] where ¢! = 1 if subtask i is eligible (i.e., the precondition of
subtask is satisfied and it has never been executed by the agent) at time ¢, and 0 otherwise.

« Completion vector: x; = [z}, ...,z ] where z{ = 1 if subtask i has been executed by the agent

while it is eligible, and 0 otherwise.

* Subtask reward vector: r = [, ... "] specifies the reward for executing each subtask.

e Reward: r; = r' if the agent executes the subtask 7 while it is eligible, and 7, = 0 otherwise.

* Time budget: step; € R is the remaining time-steps until episode termination.

RHXWXC

* Observation: obs; € is a visual observation at time ¢ as illustrated in Figure 4.1.

To summarize, a subtask graph G defines N subtasks with corresponding rewards r and the
preconditions. The state input at time ¢ consists of s; = {obs;, x;, €, step, }. The goal is to find a

policy 7 : s;, G — o, which maps the given context of the environment to an option (o; € O).

Challenges Our problem is challenging due to the following aspects:

* Generalization: Only a subset of subtask graphs (G4, ) is available during training, but the

agent is required to execute previously unseen and larger subtask graphs (Gy.;).

* Complex reasoning: The agent needs to infer the long-term effect of executing individual
subtasks in terms of reward and cost (e.g., time) and find the optimal sequence of subtasks to
execute without any explicit supervision or simulation-based search. We note that it may not be
easy even for humans to find the solution without explicit search due to the exponentially large

solution space.

* Stochasticity: The outcome of subtask execution is stochastic in our setting (for example, some
objects are randomly moving). Therefore, the agent needs to consider the expected outcome when

deciding which subtask to execute.
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Figure 3.2: Neural subtask graph solver architecture. The task module encodes subtask graph
through a bottom-up and top-down process, and outputs the reward score pi*“®"¢. The observation

module encodes observation using CNN and outputs the cost score pi°**. The final policy is a

softmax policy over the sum of two scores.

3.4 Method

Our neural subtask graph solver (NSGS) is a neural network which consists of a rask module and
an observation module as shown in Figure 3.2. The task module encodes the precondition of each
subtask via bottom-up process and propagates the information about future subtasks and rewards to
preceding subtasks (i.e., pre-conditions) via the top-down process. The observation module learns
the correspondence between a subtask and its target object, and the relation between the locations
of objects in the observation and the time cost. However, due to the aforementioned challenge
(i.e., complex reasoning), learning to execute the subtask graph only from the reward is extremely
challenging. To facilitate the learning, we propose graph reward propagation policy (GRProp), a
non-parametric policy that propagates the reward information between related subtasks to model
their dependencies. Since our GRProp acts as a good initial policy, we train the NSGS to approximate
the GRProp policy through policy distillation [Rusu et al., 2015, Parisotto et al., 2015], and finetune
it through actor-critic method with generalized advantage estimation (GAE) [Schulman et al., 2016]
to maximize the reward. Section 3.4.1 describes the NSGS architecture, and Section 3.4.2 describes

how to construct the GRProp policy.

3.4.1 Neural Subtask Graph Solver

Task Module Given a subtask graph (G, the remaining time steps step; € R, an eligibility vector

e; and a completion vector x;, we compute a context embedding using recursive-reverse-recursive
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neural network (R3NN) Parisotto et al. [2016] as follows:

. P . . ik
Qﬁ,ot,o = bQO (xﬁ 6t7 Steptv Z ¢{)ot7a> ) qﬁiot,a = bga Z |:¢]lfot,07 wi— :| ) (31)

jeChild; keChild;
( — i i E J (2] J _ Jj § : k
¢top,o - t@o (qbbot,o’ T, |: top,as Wy }) ) qbtop,a - t9a bot,a’ ¢top,o ) (32)
j€Par; kePar;

where [] is a concatenation operator, by, ty are the bottom-up and top-down encoding function,
gzﬁzot’a, gbiop’a are the bottom-up and top-down embedding of i-th AND node respectively, and
Dhot.0r Prop,o are the bottom-up and top-down embedding of i-th OR node respectively (see Appendix
for the detail). The w}’, Child;, and Parent; specifies the connections in the subtask graph G.
Specifically, wij = 1 if j-th OR node and i-th AND node are connected without NOT operation,
—1 if there is NOT connection and 0 if not connected, and C'hild;, Parent; represent a set of i-th

node’s children and parents respectively. The embeddings are transformed to reward scores via:

reward _ & |
P - ¢top

embedding of OR node, and v € R¥ is a weight vector for reward scoring.

v, where @55 = [y 01 - - - » Prop.o] € RPN, E is the dimension of the top-down

Observation Module The observation module encodes the input observation s; using a convolu-

tional neural network (CNN) and outputs a cost score:
p" = CNN(sy, stepy). (3.3)

where step; is the number of remaining time steps. An ideal observation module would learn to
estimate high score for a subtask if the target object is close to the agent because it would require
less cost (i.e., time). Also, if the expected number of step required to execute a subtask is larger

than the remaining step, ideal agent would assign low score. The NSGS policy is a softmax policy:

reward

m(os[st, G, %y, €, step;) = Softmax(p; + i), (3.4)

which adds reward scores and cost scores.

3.4.2 Graph Reward Propagation Policy: Pre-training Neural Subtask
Graph Solver

Intuitively, the graph reward propagation policy is designed to put high probabilities over subtasks

that are likely to maximize the sum of modified and smoothed reward U, at time ¢, which will be

13



a+b+c a+b+c

Figure 3.3: Visualization of OR, OR, AND, and AND operations with three inputs (a,b,c). These
smoothed functions are defined to handle arbitrary number of operands (see Appendix).

defined in Eq. 3.11. Let x; be a completion vector and r be a subtask reward vector (see Section 3.3

for definitions). Then, the sum of reward until time-step ¢ is given as:
Uy =r'x;. (3.5)

We first modify the reward formulation such that it gives a half of subtask reward for satisfying the
preconditions and the rest for executing the subtask to encourage the agent to satisfy the precondition

of a subtask with a large reward:
Ut = I'T(Xt + et)/Q. (36)

Let 3, v, be the output of j-th AND node. The eligibility vector e, can be computed from the
subtask graph G and x; as follows:

i— OR J 3.7
€t jeChild; (yAN D ) ’ 7
i ik
vavo = AND (i), G¥
" = apwt 4 (1 - 2f) (1 — ), (3.9)

where w?* = 0 if there is a NOT connection between j-th node and k-th node, otherwise w’* = 1.
Intuitively, iik = 1 when k-th node does not violate the precondition of j-th node. Note that U, is
not differentiable with respect to x; because AND(-) and OR(-) are not differentiable. To derive
our graph reward propagation policy, we propose to substitute AND(-) and OR(-) functions with
“smoothed” functions AND and OR as follows:

si— OR (¥ S _ AND (a0
t = jeggldi yAND) ) Yanp = kécl‘\hlglj (% ) ) (3.10)
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where AND and OR were implemented as scaled sigmoid and tanh functions as illustrated by
Figure 3.3 (see Appendix for details). With the smoothed operations, the sum of smoothed and

modified reward is given as:
Uy =17 (x +&)/2. (3.11)
Finally, the graph reward propagation policy is a softmax policy,
7(0,|G, ;) = Softmax (vxﬁt) — Softmax (%rT + %rTthEt) , (3.12)

that is the softmax of the gradient of (Z with respect to x;.

3.4.3 Policy Optimization

The NSGS is first trained through policy distillation by minimizing the KL divergence between
NSGS and teacher policy (GRProp) as follows:

Voli = Eoog,... [EMQG (VoD (x5 HWQG)H : (3.13)

where 0 is the parameter of NSGS, 7§’ is the simplified notation of NSGS policy with subtask graph
G, 7% is the simplified notation of teacher (GRProp) policy with subtask graph G, D is KL
divergence, and G;,.;, is the training set of subtask graphs. After policy distillation, we finetune
NSGS agent in an end-to-end manner using actor-critic method with GAE [Schulman et al., 2016]

as follows:

VHEQ = EGNgt'r-ain E

SNﬂ'eG

0o -1
~Vylogm§ (H (vA)‘f”) cm” : (3.14)
=0

n=0

6 =1y + YV (841, G) — Vi (s, G), (3.15)

where £, is the duration of option o, 7y is a discount factor, A € [0, 1] is a weight for balancing
between bias and variance of the advantage estimation, and V,; is the critic network parameterized
by ¢'. During training, we update the critic network to minimize E [(R; — V{ (sy, G))Q] , Where R;
is the discounted cumulative reward at time ¢. The complete procedure for training our NSGS agent
is summarized in Algorithm 6.1. We used 7,;=1e-4, n.=3e-6 for distillation and 7,.=1e-6, n.=3e-7

for fine-tuning in the experiment.
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1: for iteration n do

2 Sample G ~ Girqin

3 D = {(sy, 04,74, Ry, stepy), ...} ~ 7§ > do rollout
4: 0«0 +n.> 5 (VoVji(st,G)) (R — Vji(st, Q)) > update critic
5: if distillation then

6 0« 0+na>.p VoDry (75 ||7§) > update policy
7 else if fine-tuning then

8 Compute ¢, from Eq. 3.15 for all ¢

9 0 < 0+ nwe Y p Vologn§ S0, (H;_:lo (7)\)'“’1> Ottt > update policy
10: end if
11: end for

Program 3.1: Policy optimization

3.5 Experiment

In the experiment, we investigated the following research questions: 1) Does GRProp outperform
other heuristic baselines (e.g., greedy policy, etc.)? 2) Can NSGS deal with complex subtask
dependencies, delayed reward, and the stochasticity of the environment? 3) Can NSGS generalize
to unseen subtask graphs? 4) How does NSGS perform compared to MCTS? 5) Can NSGS be used
to improve MCTS?

3.5.1 Environment

We evaluated the performance of our agents on two domains: Mining and Playground that are
developed based on MazeBase [Sukhbaatar et al., 2015]'. We used a pre-trained subtask executer
for each domain. The episode length (time budget) was randomly set for each episode in a range
such that GRProp agent executes 60% — 80% of subtasks on average. The subtasks in the higher
layer in subtask graph are designed to give larger reward (see Appendix for details).

Mining domain is inspired by Minecraft (see Figures 4.1 and 3.5). The agent may pickup raw
materials in the world, and use it to craft different items on different craft stations. There are two
forms of preconditions: 1) an item may be an ingredient for building other items (e.g., stick and
stone are ingredients of stone pickaxe), and 2) some tools are required to pick up some objects
(e.g., agent need stone pickaxe to mine iron ore). The agent can use the item multiple times after
picking it once. The set of subtasks and preconditions are hand-coded based on the crafting recipes
in Minecraft, and used as a template to generate 640 random subtask graphs. We used 200 for
training and 440 for testing.

Playground is a more flexible and challenging domain (see Figure 3.6). The subtask graph

The code is available on https://github.com/srsohn/subtask-graph-execution
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in Playground was randomly generated, hence its precondition can be any logical expression and
the reward may be delayed. Some of the objects randomly move, which makes the environment
stochastic. The agent was trained on small subtask graphs, while evaluated on much larger subtask
graphs (See Table 3.1). The set of subtasks is O = A;,; x X, where A;,, is a set of primitive actions
to interact with objects, and X’ is a set of all types of interactive objects in the domain. We randomly
generated 500 graphs for training and 2,000 graphs for testing. Note that the task in playground
domain subsumes many other hierarchical RL domains such as Taxi [Bloch, 2009], Minecraft [Oh
etal., 2017] and XWORLD [Yu et al., 2017]. In addition, we added the following components into

subtask graphs to make the task more challenging:

* Distractor subtask: A subtask with only NOT connection to parent nodes in the subtask graph.

Executing this subtask may give an immediate reward, but it may make other subtasks ineligible.

* Delayed reward: Agent receives no reward from subtasks in the lower layers, but it should execute

some of them to make higher-level subtasks eligible (see Appendix for fully-delayed reward case).

3.5.2 Agents

We evaluated the following policies:

* Random policy executes any eligible subtask.

Greedy policy executes the eligible subtask with the largest reward.

Optimal policy is computed from exhaustive search on eligible subtasks.

GRProp (Ours) is graph reward propagation policy.

NSGS (Ours) is distilled from GRProp policy and finetuned with actor-critic.

Independent is an LSTM-based baseline trained on each subtask graph independently, similar to
Independent model in Andreas et al. [2017]. It takes the same set of input as NSGS except the
subtask graph.

To our best knowledge, existing work on hierarchical RL cannot directly address our problem with
a subtask graph input. Instead, we evaluated an instance of hierarchical RL method (Independent

agent) in adaptation setting, as discussed in Section 3.5.3.

3.5.3 Quantitative Result

Training Performance The learning curves of NSGS and performance of other agents are shown

in Figure 4.4. Our GRProp policy significantly outperforms the Greedy policy. This implies that the
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Subtask Graph Setting
Playground Mining
Task | D1 | D2 | D3 | D4 Eval
Depth | 4 4 5 6 4-10
Subtask | 13 15 16 16 10-26

Zero-Shot Performance
Playground Mining
Task | D1 | D2 | D3 | D4 Eval
NSGS (Ours) | .820 | .785 | .715 | .527 | 8.19
GRProp (Ours) | .721 | .682 | .623 | 424 | 6.16
Greedy | .164 | .144 | .178 | .228 | 3.39
Random 0 0 0 0 2.79
Adaptation Performance
Playground Mining
Task | D1 | D2 | D3 | D4 Eval
NSGS (Ours) | .828 | .797 | 733 | 552 | 8.58
Independent | .346 | .296 | .193 | .188 | 3.89

Table 3.1: Generalization performance on unseen and larger subtask graphs. (Playground) The
subtask graphs in D1 have the same graph structure as training set, but the graph was unseen. The
subtask graphs in D2, D3, and D4 have (unseen) larger graph structures. (Mining) The subtask
graphs in Eval are unseen during training. NSGS outperforms other compared agents on all the task
and domain.

proposed idea of back-propagating the reward gradient captures long-term dependencies among
subtasks to some extent. We also found that NSGS further improves the performance through
fine-tuning with actor-critic method. We hypothesize that NSGS learned to estimate the expected

costs of executing subtasks from the observations and consider them along with subtask graphs.

Generalization Performance We considered two different types of generalization: a zero-shot
setting where agent must immediately achieve good performance on unseen subtask graphs without
learning, and an adaptation setting where agent can learn about task through the interaction with
environment. Note that Independent agent was evaluated in adaptation setting only since it has no
ability to generalize as it does not take subtask graph as input. Particularly, we tested agents on larger
subtask graphs by varying the number of layers of the subtask graphs from four to six with a larger
number of subtasks on Playground domain. Table 3.1 summarizes the results in terms of normalized
reward R = (R— Roin)/(Rmaz — Rumin) Where Ry, and R,,,., correspond to the average reward of
the Random and the Optimal policy respectively. Due to large number of subtasks (>16) in Mining
domain, the Optimal policy was intractable to be evaluated. Instead, we reported the un-normalized

mean reward. Though the performance degrades as the subtask graph becomes larger as expected,
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Figure 3.4: Learning curves on Mining and Playground domain. NSGS is distilled from GRProp on
77K and 256K episodes, respectively, and finetuned after that.

NSGS generalizes well to larger subtask graphs and consistently outperforms all the other agents on
Playground and Mining domains in zero-shot setting. In adaptation setting, NSGS performs slightly
better than zero-shot setting by fine-tuning on the subtask graphs in evaluation set. Independent

agent learned a policy comparable to Greedy, but performs much worse than NSGS.

3.54 Qualitative Result

Figure 3.5 visualizes trajectories of agents on Mining domain. Greedy policy mostly focuses on
subtasks with immediate rewards (e.g., get string, make bow) that are sub-optimal in the long run.
In contrast, NSGS and GRProp agents focus on executing subtask H (make stone pickaxe) in order
to collect materials much faster in the long run. Compared to GRProp, NSGS learns to consider
observation also and avoids subtasks with high cost (e.g., get coal).

Figure 3.6 visualizes trajectories on Playground domain. In this graph, there are distractors (e.g., D,
E, and H) and the reward is delayed. In the beginning, Greedy chooses to execute distractors, since
they gives positive reward while subtasks A, B, and C do not. However, GRProp observes non-zero
gradient for subtasks A, B, and C that are propagated from the parent nodes. Thus, even though the
reward is delayed, GRProp can figure out which subtask to execute. NSGS learns to understand

long-term dependencies from GRProp, and finds shorter path by also considering the observation.

3.5.5 Combining NSGS with Monte-Carlo Tree Search

We further investigated how well our NSGS agent performs compared to conventional search-based

methods and how our NSGS agent can be combined with search-based methods to further improve
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Figure 3.5: Example trajectories of Greedy, GRProp, and NSGS agents given 75 steps on Mining
domain. We used different colors to indicate that agent has different types of pickaxes: red (no
pickaxe), blue (stone pickaxe), and green (iron pickaxe). Greedy agent prefers subtasks C, D, F, and
G to H and L since C, D, F, and G gives positive immediate reward, whereas NSGS and GRProp
agents find a short path to make stone pickaxe, focusing on subtasks with higher long-term reward.
Compared to GRProp, the NSGS agent can find a shorter path to make an iron pickaxe, and succeeds
to execute more number of subtasks.
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Figure 3.6: Example trajectories of Greedy, GRProp, and NSGS agents given 45 steps on Playground
domain. The subtask graph includes NOT operation and distractor (subtask D, E, and H). We
removed stochasticity in environment for the controlled experiment. Greedy agent executes the
distractors since they give positive immediate rewards, which makes it impossible to execute
the subtask K which gives the largest reward. GRProp and NSGS agents avoid distractors and
successfully execute subtask K by satisfying its preconditions. After executing subtask K, the NSGS

agent found a shorter path to execute remaining subtasks than the GRProp agent and gets larger
reward.
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Figure 3.7: Performance of MCTS+NSGS, MCTS+GRProp and MCTS per the number of simulated
steps on (Left) Eval of Mining domain and (Right) D2 of Playground domain (see Table 3.1).
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the performance. We implemented the following methods (see Appendix for the detail):

* MCTS: An MCTS algorithm with UCB [Auer et al., 2002] criterion for choosing actions.
* MCTS+NSGS: An MCTS algorithm combined with our NSGS agent. NSGS policy was used

as a rollout policy to explore reasonably good states during tree search, which is similar to
AlphaGo [Silver et al., 2016].

* MCTS+GRProp: An MCTS algorithm combined with our GRProp agent similar to MCTS+NSGS.

The results are shown in Figure 3.7. It turns out that our NSGS performs as well as MCTS method
with approximately 32K simulations on Playground and 11K simulations on Mining domain, while
GRProp performs as well as MCTS with approximately 11K simulations on Playground and 1K
simulations on Mining domain. This indicates that our NSGS agent implicitly performs long-term
reasoning that is not easily achievable by a sophisticated MCTS, even though NSGS does not
use any simulation and has never seen such subtask graphs during training. More interestingly,
MCTS+NSGS and MCTS+GRProp significantly outperforms MCTS, and MCTS+NSGS achieves
approximately 0.97 normalized reward with 33K simulations on Playground domain. We found
that the Optimal policy, which corresponds to normalized reward of 1.0, uses approximately 648M
simulations on Playground domain. Thus, MCTS+NSGS performs almost as well as the Optimal
policy with only 0.005% simulations compared to the Optimal policy. This result implies that NSGS
can also be used to improve simulation-based planning methods by effectively reducing the search

space.

3.6 Discussion

We introduced the subtask graph execution problem which is an effective and principled framework
of describing complex tasks. To address the difficulty of dealing with complex subtask dependencies,
we proposed a graph reward propagation policy derived from a differentiable form of subtask graph,
which plays an important role in pre-training our neural subtask graph solver architecture. The
empirical results showed that our agent can deal with long-term dependencies between subtasks
and generalize well to unseen subtask graphs. In addition, we showed that our agent can be used
to effectively reduce the search space of MCTS so that the agent can find a near-optimal solution
with a small number of simulations. In this paper, we assumed that the subtask graph (e.g., subtask
dependencies and rewards) is given to the agent. However, it will be very interesting future work to
investigate how to extend to more challenging scenarios where the subtask graph is unknown (or

partially known) and thus need to be estimated through experience.
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CHAPTER 4

Meta Reinforcement Learning for Compositional
Task via Task Inference

This chapter proposes and addresses a novel few-shot RL problem, where a task is characterized
by a subtask graph which describes a set of subtasks and their dependencies that are unknown to
the agent. The agent needs to quickly adapt to the task over few episodes during adaptation phase
to maximize the return in the test phase. Instead of directly learning a meta-policy, we develop
a Meta-learner with Subtask Graph Inference (MSGI), which infers the latent parameter of the
task by interacting with the environment and maximizes the return given the latent parameter. To
facilitate learning, we adopt an intrinsic reward inspired by upper confidence bound (UCB) that
encourages efficient exploration. Our experiment results on two grid-world domains and StarCraft
IT environments show that the proposed method is able to accurately infer the latent task parameter,

and to adapt more efficiently than existing meta RL and hierarchical RL methods '.

4.1 Introduction

Recently, reinforcement learning (RL) systems have achieved super-human performance on many
complex tasks [Mnih et al., 2015, Silver et al., 2016, Van Seijen et al., 2017]. However, these works
mostly have been focused on a single known task where the agent can be trained for a long time (e.g.,
Silver et al. [2016]). We argue that agent should be able to solve multiple tasks with varying sources
of reward. Recent work in multi-task RL has attempted to address this; however, they focused on
the setting where the structure of task are explicitly described with natural language instructions [Oh
et al., 2017, Andreas et al., 2017, Yu et al., 2017, Chaplot et al., 2018], programs [Denil et al., 2017],
or graph structures [Sohn et al., 2018]. However, such task descriptions may not readily be available.

A more flexible solution is to have the agents infer the task by interacting with the environment.

'The demo videos and the code are available at https://bit.ly/msgi-videos and
https://github.com/srsohn/msgi.
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Recent work in Meta RL [Hochreiter et al., 2001, Duan et al., 2016, Wang et al., 2016, Finn et al.,
2017] (especially in few-shot learning settings) has attempted to have the agents implicitly infer
tasks and quickly adapt to them. However, they have focused on relatively simple tasks with a single
goal (e.g., multi-armed bandit, locomotion, navigation, etc.).

We argue that real-world tasks often have a hierarchical structure and multiple goals, which
require long horizon planning or reasoning ability [Erol, 1996, Xu et al., 2017, Ghazanfari and
Taylor, 2017, Sohn et al., 2018]. Take, for example, the task of making a breakfast in Figure 4.1.
A meal can be served with different dishes and drinks (e.g., boiled egg and coffee), where each
could be considered as a subtask. These can then be further decomposed into smaller substask
until some base subtask (e.g., pickup egg) is reached. Each subtask can provide the agent with
reward; if only few subtasks provide reward, this is considered a sparse reward problem. When the
subtask dependencies are complex and reward is sparse, learning an optimal policy can require a
large number of interactions with the environment. This is the problem scope we focus on in this
chapter: learning to quickly infer and adapt to varying hierarchical tasks with multiple goals and
complex subtask dependencies.

To this end, we formulate and tackle a new few-shot RL problem called subtask graph inference
problem, where the task is defined as a factored MDP [Boutilier et al., 1995, Jonsson and Barto,
2006] with hierarchical structure represented by subtask graph [Sohn et al., 2018] where the task is
not known a priori. The task consists of multiple subtasks, where each subtask gives reward when
completed (see Figure 1). The complex dependencies between subtasks (i.e., preconditions) enforce
agent to execute all the required subtasks before it can execute a certain subtask. Intuitively, the
agent can efficiently solve the task by leveraging the inductive bias of underlying task structure
(Section 4.3).

Inspired by the recent works on multi-task and few-shot RL, we propose a meta reinforcement
learning approach that explicitly infers the latent structure of the task (e.g., subtask graph). The
agent learns its adaptation policy to collect as much information about the environment as possible
in order to rapidly and accurately infer the unknown task structure. After that, the agent’s test policy
is a contextual policy that takes the inferred subtask graph as an input and maximizes the expected
return (See Figure 4.1). We leverage inductive logic programming (ILP) technique to derive an
efficient task inference method based on the principle of maximum likelihood. To facilitate learning,
we adopt an intrinsic reward inspired by upper confidence bound (UCB) that encourages efficient
exploration. We evaluate our approach on various environments ranging from simple grid-world
[Sohn et al., 2018] to StarCraft II [ Vinyals et al., 2017]. In all cases, our method can accurately infer
the latent subtask graph structure, and adapt more efficiently to unseen tasks than the baselines.

The contribution of this work can be summarized as follows:

* We propose a new meta-RL problem with more general and richer form of tasks compared to the
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Figure 4.1: Overview of our method in the context of prepare breakfast task. This task can be
broken down into subtasks (e.g., pickup mug) that composes the underlying subtask graph G.
(Left) To learn about the unknown task, the agent collects trajectories over K episodes through a
parameterized adaptation policy Wadapt that learns to explore the environment. (Center) With each
new trajectory, the agent attempts to infer the task’s underlying ground-truth subtask graph G with
G. (Right) A separate test policy 7r“°'5‘ uses the inferred subtask graph G to produce a trajectory that
attempts to maximize the agent’s reward > 1, (e.g., the green trajectory that achieves the boil egg
subtask). The more precise G, the more reward the agent would receive, which implicitly improves
the adaptation policy ﬂadapt to better explore the environment and therefore better infer G in return.

recent meta-RL approaches.
* We propose an efficient task inference algorithm that leverages inductive logic programming,
which accurately infers the latent subtask graph from the agent’s experience data.
* We implement a deep meta-RL agent that efficiently infers the subtask graph for faster adaptation.
* We compare our method with other meta-RL agents on various domains, and show that our

method adapts more efficiently to unseen tasks with complex subtask dependencies.

4.2 Related Work

Meta Reinforcement Learning. There are roughly two broad categories of meta-RL approaches:
gradient-based meta-learners [Finn et al., 2017, Nichol et al., 2018, Gupta et al., 2018, Finn et al.,
2018, Kim et al., 2018] and RNN-based meta-learners [Duan et al., 2016, Wang et al., 2016].
Gradient-based meta RL algorithms, such as MAML [Finn et al., 2017] and Reptile [Nichol et al.,
2018], learn the agent’s policy by taking policy gradient steps during an adaptation phase, where
the meta-learner aims to learn a good initialization that enables rapid adaptation to an unseen task.
RNN-based meta-RL methods [Duan et al., 2016, Wang et al., 2016] updates the hidden states of
a RNN as a process of adaptation, where both of hidden state initialization and update rule are

meta-learned. Other variants of adaptation models instead of RNNs such as temporal convolutions
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(SNAIL) [Mishra et al., 2018] also have been explored. Our approach is closer to the second
category, but different from existing works as we directly and explicitly infer the task parameter.
Logic induction. Inductive logic programming systems [Muggleton, 1991] learn a set of rules
from examples. [Xu et al., 2017] These works differ from ours as they are open-loop LPI; the input
data to LPI module is generated by other policy that does not care about ILP process. However, our
agent learns a policy to collect data more efficiently (i.e., closed-loop ILP). There also have been
efforts to combine neural networks and logic rules to deal with noisy and erroneous data and seek
data efficiency, such as [Hu et al., 2016, Evans and Grefenstette, 2017, Dong et al., 2019].
Autonomous Construction of Task Structure. Task planning approaches represented the
task structure using Hierarchical Task Networks (HTNs) [Tate, 1977]. HTN identifies subtasks
for a given task and represent symbolic representations of their preconditions and effects, to
reduce the search space of planning [Hayes and Scassellati, 2016]. They aim to execute a single
goal task, often with assumptions of simpler subtask dependency structures (e.g., without NOT
dependency [Ghazanfari and Taylor, 2017, Liu et al., 2016]) such that the task structure can be
constructed from the successful trajectories. In contrast, we tackle a more general and challenging
setting, where each subtask gives a reward (i.e., multi-goal setting) and the goal is to maximize
the cumulative sum of reward within an episode. More recently, these task planning approaches
were successfully applied to the few-shot visual imitation learning tasks by constructing recursive
programs [Xu et al., 2017] or graph [Huang et al., 2018]. Contrary to them, we employ an active
policy that seeks for experience useful in discovering the task structure in unknown and stochastic

environments.

4.3 Problem Definition: Subtask Graph Inference Problem

We formulate the subtask graph inference problem, an instance of few-shot RL problem where a
task is parameterized by subtask graph [Sohn et al., 2018]. The details of how a subtask graph
parameterizes the MDP is described in Appendix A.1. Our problem extends the subtask graph
execution problem in [Sohn et al., 2018] by removing the assumption that a subtask graph is given
to the agent; thus, the agent must infer the subtask graph in order to perform the complex task.
Following few-shot RL settings, the agent’s goal is to quickly adapt to the given task (i.e., MDP) in
the adaptation phase to maximize the return in the test phase (see Figure 4.1). A task consists of N
subtasks and the subtask graph models a hierarchical dependency between subtasks.

Subtask: A subtask ®' can be defined by a tuple (completion set S, C S, precondition
G. : S — {0,1}, subtask reward function G%. : S — R). A subtask @' is complete if the
current state is contained in its completion set (i.e., s; € Sciomp), and the agent receives a reward

Tp ~ Gi upon the completion of subtask ®°. A subtask ®° is eligible (i.e., subtask can be executed)
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Require: p(G): distribution over subtask graph
1: while not done do
2: Sample batch of task parameters {G;}, ~ p(GQ)

3: for all (5; in the batch do

4: Rollout K episodes 7 = {s;, 04,74, ds }1L, ~ W;dapt in task M, > adaptation phase
5 Compute r“® as in Eq.(4.6)

6: G; = ILP(7) > subtask graph inference
7: Sample 77 ~ mg in task M, > test phase
8: end for Z

9. Update 6 < 0 +nVy > 1 RIGUCE (W;dapt> using REGTVE in Eq.(4.8)
10: end while Z

Program 4.1: Adaptation policy optimization during meta-training

if its precondition G, is satisfied (see Figure 4.1 for examples). A subtask graph is a tuple of
precondition and subtask reward of all the subtasks: G' = (G, Gy). Then, the task defined by the
subtask graph is a factored MDP [Boutilier et al., 1995, Schuurmans and Patrascu, 2002]; i.e., the
transition model is factored as p(s'|s, a) = [, pc: (si|s, a) and the reward function is factored as
R(s,a) =), Rg,i(s,a) (see Appendix for the detail). The main benefit of factored MDP is that it
allows us to model many hierarchical tasks in a principled way with a compact representation such
as dynamic Bayesian network [Dean and Kanazawa, 1989, Boutilier et al., 1995]. For each subtask
®, the agent can learn an option O [Sutton et al., 1999b] that executes the subtask?.
Environment: The state input to the agent at time step ¢ consists of s; =

{Xta €, Steptv epit? Obst}'

 Completion: x; € {0, 1}" indicates whether each subtask is complete.

Eligibility: e; € {0, 1}" indicates whether each subtask is eligible (i.e., precondition is satisfied).

Time budget: step, € R is the remaining time steps until episode termination.

Episode budget: epi, € R is the remaining number of episodes in adaptation phase.

Observation: obs, € R**W*C i5 a (visual) observation at time t.

At time step ¢, we denote the option taken by the agent as o, and the binary variable that indicates

whether episode is terminated as d;.
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Require: The current parameter ¢
Require: A task M parametrized by a task parameter G (unknown to the agent)

1: Roll out K train episodes 7 = {sy, 04,7, di } 2., ~ ﬂ;dapt in task Mg > adaptation phase
2: Infer a subtask graph: G = (G, Gy) = (ILP(74), Rl(7)) > task inference
3: Roll out a test episode 7/ = {s}, 0/, 7}, d,} | ~ T&° in task Mg > test phase
4: Measure the performance R = ), r; for this task

Program 4.2: Process of single trial for a task M; at meta-test time

4.4 Method

We propose a Meta-learner with Subtask Graph Inference (MSGI) which infers the latent subtask

graph G. Figure 4.1 overviews our approach. Our main idea is to employ two policies: adaptation
policy and test policy. During the adaptation phase, an adaptation policy w5 rolls out K episodes
of adaptation trajectories. From the collected adaptation trajectories, the agent infers the subtask
tgst
> G

the inferred subtask graph G, rolls out episodes and maximizes the return in the test phase. Note

graph G using inductive logic programming (ILP) technique. A test policy 75*, conditioned on
that the performance depends on the quality of the inferred subtask graph. The adaptation policy
indirectly contributes to the performance by improving the quality of inference. Intuitively, if the
adaptation policy completes more diverse subtasks during adaptation, the more “training data” is
given to the ILP module, which results in more accurate inferred subtask graph. Algorithm 6.1

summarizes our meta-training procedure. For meta-testing, see Algorithm 4.2.

4.4.1 Subtask Graph Inference

Let 75 = {s1,01,71,d1,...,sg} be an adaptation trajectory of the adaptation policy 5 ** for K
episodes (or H steps in total) in adaptation phase. The goal is to infer the subtask graph G for
this task, specified by preconditions G, and subtask rewards G,.. We find the maximum-likelihood
estimate (MLE) of G = (G., G;) that maximizes the likelihood of the adaptation trajectory 7y:

GMLE — argmaxg_ g, (T |Ge, Gr).

2As in Andreas et al. [2017], Oh et al. [2017], Sohn et al. [2018], such options are pre-learned with curriculum
learning; the policy is learned by maximizing the subtask reward, and the initiation set and termination condition are
givenas 7' = {s|GL(s) = 1} and B* = I(z' = 1)
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Figure 4.2: Our inductive logic programming module infers the precondition GG, from adaptation
trajectory. For example, the decision tree of subtask E (bottom row) estimates the latent precondition
function fge @ x e” by fitting its input-output data (i.e., agent’s trajectory {x;,e”}Z ). The
decision tree is constructed by choosing a variable (i.e., a component of x) at each node that best
splits the data. The learned decision trees of all the subtasks are represented as logic expressions,
and then transformed and merged to form a subtask graph.

The likelihood term can be expanded as

H
p(tr|Ge, Gr) = p(s1|Ge) H 7o (0| 7) P(St41(8t, 01, Ge)p(rilSt, 01, Gr)p(di sy, 01) (4.1)

t=1
H

o p(s1|Ge) Hp(st+1 [St, 01, Ge)p(rt[st, 01, Gi), (4.2)

t=1
where we dropped the terms that are independent of G. From the definitions in Section 4.3,
precondition GG defines the mapping x — e, and the subtask reward G, determines the reward as

r; ~ G, if subtask i is eligible (i.e., €. = 1) and option O" is executed at time ¢. Therefore, we have

H H

GMLE _ (GIXILE,G?/ILE) = [ argmax | | p(es|x, Ge), argGmaX p(reles, 0, Gyr) | - 4.3)
=1 L

c

We note that no supervision from the ground-truth subtask graph G is used. Below we explain how

to compute the estimate of preconditions GM'F and subtask rewards GME,

Precondition inference via logic induction Since the precondition function fg, : X — e (see

Section 4.3 for definition) is a deterministic mapping, the probability term p(e;|x;, G.) in Eq.(4.3)
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is 1if e, = fg_(x,) and 0 otherwise. Therefore, we can rewrite GM'E in Eq.(4.3) as:

H
GMLE — arg maxH]I(et = fa.(x4)), (4.4)

Ge 21

where I(+) is the indicator function. Since the eligibility e is factored, the precondition function fg_i
for each subtask is inferred independently. We formulate the problem of finding a boolean function
that satisfies all the indicator functions in Eq.(4.4) (i.e., Hfi (e, = fa.(x¢)) = 1) as an inductive
logic programming (ILP) problem [Muggleton, 1991]. Specifically, {x;}/, forms binary vector
inputs to programs, and {ei}Z, forms Boolean-valued outputs of the i-th program that denotes the
eligibility of the i-th subtask. We use the classification and regression tree (CART) to infer the
precondition function fg, for each subtask based on Gini impurity [Breiman, 1984]. Intuitively, the
constructed decision tree is the simplest boolean function approximation for the given input-output
pairs {x;, e; }. Then, we convert it to a logic expression (i.e., precondition) in sum-of-product (SOP)

form to build the subtask graph. Figure 4.2 summarizes the overall logic induction process.

Subtask reward inference To infer the subtask reward function GM'E in Eq.(4.3), we model each
component of subtask reward as a Gaussian distribution G*. ~ N'(i*, 6"). Then, fii; ; becomes the
empirical mean of the rewards received after taking the eligible option O in the trajectory 7:

_ SLiml(o =0 ef =1)

GMLE — i =T [r]o, = O el = 1] = S . (4.5)
MLE [ t ] Zil ]I(Ot _ Ol,ei _ 1)

4.4.2 Test phase: Subtask Graph Execution Policy

Once a subtask graph G has been inferred, we can derive a subtask graph execution (SGE) policy
2{6
the problem setting used in Sohn et al. [2018]. Therefore, we employ a graph reward propagation

7%¢(0|x) that aims to maximize the cumulative reward in the test phase. Note that this is precisely
(GRProp) policy [Sohn et al., 2018] as our SGE policy. Intuitively, the GRProp policy approximates
a subtask graph to a differentiable form such that we can compute the gradient of modified return
with respect to the completion vector to measure how much each subtask is likely to increase the

modified return.

4.4.3 Learning: Optimization of the Adaptation Policy

We now describe how to learn the adaptation policy Wzdapt, or its parameters . We can directly

optimize the objective R, (7) using policy gradient methods [Williams, 1992, Sutton et al.,

1999a], such as actor-critic method with generalized advantage estimation (GAE) [Schulman et al.,
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2016]. However, we find it challenging to train our model for two reasons: 1) delayed and sparse
reward (i.e., the return in the test phase is treated as if it were given as a one-time reward at the
last step of adaptation phase), and 2) large task variance due to highly expressive power of subtask
graph. To facilitate learning, we propose to give an intrinsic reward r’® to agent in addition to
the extrinsic environment reward, where 7B is the upper confidence bound (UCB) [Auer et al.,
2002]-inspired exploration bonus term as follows:

n'(0) + n'(1))

1
P = wycep - I(x; is novel), wycs = Z o8 7(711'(61') ’
i=1 t

(4.6)

where N is the number of subtasks, ¢! is the eligibility of subtask 7 at time ¢, and n’(e) is the
visitation count of e’ (i.e., the eligibility of subtask i) during the adaptation phase until time ¢. The
weight wycp 1s designed to encourage the agent to make eligible and execute those subtasks that
have infrequently been eligible, since such rare data points in general largely improve the inference
by balancing the dataset that CART (i.e., our logic induction module) learns from. The conditioning
term I(x; is novel) encourages the adaptation policy to visit novel states with a previously unseen
completion vector x; (i.e., different combination of completed subtasks), since the data points with
same x; input will be ignored in the ILP module as a duplication. We implement I(x; is novel)

using a hash table for computational efficiency. Then, the intrinsic objective is given as follows:

RUCB( adapt) = E, am |:Zt X UCB]7 4.7)

where H is the horizon of adaptation phase. Finally, we train the adaptation policy 7r“d“pt using an

actor-critic method with GAE [Schulman et al., 2016] to maximize the following objective:

RPG+UCB <ﬂ_gdapt) _ RMG (WSRPrOp) + ﬁ CBRUCB < ;dapt) ’ (48)

where R 4, (+) is the meta-learning objective in Eq.(2.4), Sycp is the mixing hyper-parameter, and
G is the inferred subtask graph that depends on the adaptation policy W;dapt. The complete procedure

for training our MSGI agent with UCB reward is summarized in Algorithm 6.1.

4.5 Experiments

In the experiment, we investigate the following research questions:

1. Does MSGI correctly infer task parameters G?

adapt .

2. Does adaptation policy 7w, = improve the efficiency of few-shot RL?
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3. Does the use of UCB bonus facilitate training? (§ 4.5.3)

4. How well does MSGI perform compared with other meta-RL algorithms?

5. Can MSGI generalize to longer adaptation horizon, and unseen and more complex tasks?
We evaluate our approach in comparison with the following baselines:

* Random is a policy that executes a random eligible subtask that has not been completed.

* RL? is the meta-RL agent in Duan et al. [2016], trained to maximize the return over K episodes.

* HRL is the hierarchical RL agent in Sohn et al. [2018] trained with the same actor-critic method
as our approach during adaptation phase. The network parameter is reset when the task changes.

* GRProp+Oracle is the GRProp policy [Sohn et al., 2018] provided with the ground-truth subtask
graph as input. This is roughly an upper bound of the performance of MSGl-based approaches.

* MSGI-Rand (Ours) uses a random policy as an adaptation policy, with the task inference module.

* MSGI-Meta (Ours) uses a meta-learned policy (i.e., W;dapt) as an adaptation policy, with the task

inference module.

For RL? and HRL, we use the same network architecture as our MSGI adaptation policy. The
domains on which we evaluate these approaches include two simple grid-world environments
(Mining and Playground) [Sohn et al., 2018] and a more challenging domain SC2LE [Vinyals
et al., 2017] (StarCraft II).

4.5.1 Experiments on Mining and Playground Domains

Mining [Sohn et al., 2018] is inspired by Minecraft (see Figure 4.3) where the agent receives reward
by picking up raw materials in the world or crafting items with raw materials. Playground [Sohn
et al., 2018] is a more flexible and challenging domain, where the environment is stochastic and
subtask graphs are randomly generated (i.e., precondition is an arbitrary logic expression). We follow
the setting in Sohn et al. [2018] for choosing train/evaluation sets. We measure the performance in
terms of normalized reward 2 = (R — Rumin)/(Rmax — Rmin) averaged over 4 random seeds, where
Ruin and R« correspond to the average reward of the Random and the GRProp+Oracle agent,

respectively.

4.5.1.1 Training Performance

Figure 4.4 shows the learning curves of MSGI-Meta and RL2, trained on the D1-Train set of
Playground domain. We set the adaptation budget in each trial to X' = 10 episodes. For MSGl-

Rand and HRL (which are not meta-learners), we show the average performance after 10 episodes
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Figure 4.3: Left: A visual illustration of Playground domain and an example of underlying subtask
graph. The goal is to execute subtasks in the optimal order to maximize the reward within time
budget. The subtask graph describes subtasks with the corresponding rewards (e.g., transforming
a chest gives 0.1 reward) and dependencies between subtasks through AND and OR nodes. For
instance, the agent must first transform chest AND transform diamond before executing pick up
duck. Right: A warfare scenario in SC2LE domain [Vinyals et al., 2017]. The agent must prepare
for the upcoming warfare by training appropriate units, through an appropriate order of subtasks
(see Appendix for more details).
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Figure 4.4: Learning curves on the Playground domain. We measure the normalized reward (y-axis)
in a test phase, after a certain number of training trials (x-axis).

of adaptation. As training goes on, the performance of MSGI-Meta significantly improves over
MSGI-Rand with a large margin. It demonstrates that our meta adaptation policy learns to explore
the environment more efficiently, inferring subtask graphs more accurately. We also observe that
the performance of RL? agent improves over time, eventually outperforming the HRL agent. This
indicates that RL? learns 1) a good initial policy parameter that captures the common knowledge
generally applied to all the tasks and 2) an efficient adaptation scheme such that it can adapt to the
given task more quickly than standard policy gradient update in HRL.

4.5.1.2 Adaptation and Generalization Performance

Adaptation efficiency. In Figure 4.5, we measure the test performance (in terms of the normalized

reward R) by varying episode budget K (i.e., how many episodes are used in adaptation phase), after
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Figure 4.5: Generalization performance on unseen tasks (D1-Eval, D2, D3, D4, and Mining-Eval)
with varying adaptation horizon. We trained agent with the fixed adaptation budget (/X = 10 for
Playground and K = 25 for Mining) denoted by the vertical dashed line, and tested with varying
unseen adaptation budgets. We report the average normalized return during test phase, where
GRProp+Oracle is the upper bound (i.e., R= 1) and Random is the lower bound (i.e., R= 0). The
shaded area in the plot indicates the range between R+ o and R — o where o is the standard error
of normalized return.

8000 trials of meta-training (Figure 4.4). Intuitively, it shows how quickly the agent can adapt to the
given task. Our full algorithm MSGI-Meta consistently outperforms MSGI-Rand across all the tasks,
showing that our meta adaptation policy can efficiently explore informative states that are likely to
result in more accurate subtask graph inference. Also, both of our MSGl-based models perform
better than HRL and RL? baselines in all the tasks, showing that explicitly inferring underlying task
structure and executing the predicted subtask graph is more effective than learning slow-parameters
and fast-parameters (e.g., RNN states) on those tasks involving complex subtask dependencies.
Generalization performance. We test whether the agents can generalize over unseen task
and longer adaptation horizon, as shown in Figure 4.5. For Playground, we follow the setup
of [Sohn et al., 2018]: we train the agent on D1-Train with the adaptation budget of 10 episodes,
and test on unseen graph distributions D1-Eval and larger graphs D2-D4 (See Appendix A.2 for
more details about the tasks in Playground and Mining). We report the agent’s performance as the
normalized reward with up to 20 episodes of adaptation budget. For Mining, the agent is trained
on randomly generated graphs with 25 episodes budget and tested on 440 hand-designed graphs
used in [Sohn et al., 2018], with up to 50 episodes of adaptation budget. Both of our MSGl-based
models generalize well to unseen tasks and over different adaptation horizon lengths, continuingly
improving the agent’s performance. It demonstrates that the efficient exploration scheme that our
meta adaptation policy can generalize to unseen tasks and longer adaptation horizon, and that our

task execution policy, GRProp, generalizes well to unseen tasks as already shown in [Sohn et al.,
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Figure 4.6: Adaptation performance with different adaptation horizon on SC2LE domain.

2018]. However, RL? fails to generalize to unseen task and longer adaptation horizon: on D2-D4
with adaptation horizons longer than the length the meta-learner was trained for, the performance
of the RL? agent is almost stationary or even decreases for very long-horizon case (D2, D3, and
Mining), eventually being surpassed by the HRL agent. This indicates (1) the adaptation scheme that
RL? learned does not generalize well to longer adaptation horizons, and (2) a common knowledge

learned from the training tasks does not generalize well to unseen test tasks.

4.5.2 Experiments on StarCraft II Domain

SC2LE [Vinyals et al., 2017] is a challenging RL domain built upon the real-time strategy game
StarCraft II. We focus on two particular types of scenarios: Defeat Enemy and Build Unit. Each
type of the scenarios models the different aspect of challenges in the full game. The goal of
Defeat Enemy is to eliminate various enemy armies invading within 2,400 steps. We consider
three different combinations of units with varying difficulty: Defeat Zerglings, Defeat Hydralisks,
Defeat Hydralisks & Ultralisks (see Figure B.1 in Appendix B.1 and demo videos at https:
//bit.ly/msgi-videos). The goal of Build Unit scenario is to build a specific unit within
2,400 steps. To showcase the advantage of MSGI infering the underlying subtask graph, we set the
target unit as Battlecruiser, which is at the highest rank in the technology tree of Terran race. In
both scenarios, the agent needs to train the workers, collect resources, and construct buildings and
produce units in correct sequential order to win the game. Each building or unit has a precondition
as per the technology tree of the player’s race (see Appendix B.1 for more details).

Agents. Note that the precondition of each subtask is determined by the domain and remains
fixed across the tasks. If we train the meta agents (MSGI-Meta and RL?), the agents memorize the
subtask dependencies (i.e., over-fitting) and does not learn any useful policy for efficient adaptation.
Thus, we only evaluate Random and HRL as our baseline agents. Instead of MSGI-Meta, we used
MSGI-GRProp. MSGI-GRProp uses the GRProp policy as an adaptation policy since GRProp is
a good approximation algorithm that works well without meta-training as shown in [Sohn et al.,

2018]. Since the environment does not provide any subtask-specific reward, we set the subtask
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reward using the UCB bonus term in Eq. (4.6) to encourage efficient exploration.

Subtask graph inference. We quantitatively evaluate the inferred subtask graph in terms of the
precision and recall of the inferred precondition function f; : x — €. Specifically, we compare the
inference output € with the GT label e generated by the GT precondition function f. : x + e for all
possible binary assignments of input (i.e., completion vector x). For all the tasks, our MSGI-GRProp
agent almost perfectly infers the preconditions with more than 94% precision and 96% recall of all
possible binary assignments, when averaged over all 163 preconditions in the game, with only 20
episodes of adaptation budget. We provide the detailed quantitative and qualitative results on the
inferred subtask graph in supplemental material.

Adaptation efficiency. Figure 4.6 shows the adaptation efficiency of MSGI-GRProp, HRL agents,
and Random policy on the four scenarios. We report the average victory or success rate over 8
episodes. MSGI-GRProp consistently outperforms HRL agents with a high victory rate, by (1)
quickly figuring out the useful units and their prerequisite buildings and (2) focusing on executing
these subtasks in a correct order. For example, our MSGI-GRProp learns from the inferred subtask
graph that some buildings such as sensor tower or engineering bay are unnecessary for training

units and avoids constructing them.
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Figure 4.7: Comparison of meta-training MSGI-Meta agent that was trained with UCB bonus
and extrinsic reward, and MSGI-Meta without UCB agent that was trained with extrinsic reward
only in the Playground and Mining domain. In both domains, adding UCB bonus improves the
meta-training performance of our MSGI-Meta agent.

4.5.3 Ablation study on the intrinsic reward

We conducted an ablation study comparing our MSGI-Meta with and without UCB bonus. We
will refer our method with UCB bonus as MSGI-Meta, and our method without UCB bonus as
MSGI-Meta without UCB. Figure 4.7 shows that UCB bonus facilitates the meta-training of our
MSGI-Meta agents in both Playground and Mining domains.
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4.6 Discussion

We introduced and addressed a few-shot RL problem with a complex subtask dependencies. We
proposed to learn the adaptation policy that efficiently collects experiences in the environment, infer
the underlying hierarchical task structure, and maximize the expected reward using the execution
policy given the inferred subtask graph. The empirical results confirm that our agent can efficiently
explore the environment during the adaptation phase that leads to better task inference and leverage
the inferred task structure during the test phase. In this work, we assumed that the option is pre-
learned and the environment provides the status of each subtask. In the future work, our approach
may be extended to more challenging settings where the relevant subtask structure is fully learned

from pure observations, and options to execute these subtasks are also automatically discovered.
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CHAPTER 5

Fast Inference and Transfer of Compositional Task

Structures for Few-shot Task Generalization

This chapter proposes a novel method that can learn a prior model of task structure from the
training tasks and transfer it to the unseen tasks for fast adaptation. We formulate this as a few-shot
reinforcement learning problem where a task is characterized by a subtask graph which describes a
set of subtasks and their dependencies that are unknown to the agent. Instead of directly inferring an
unstructured task embedding, our multi-task subtask graph inferencer (MTSGI) infers the common
task structure in terms of the subtask graph from the training tasks, and use it as a prior to improve
the task inference in testing. To this end, we propose to model the prior sampling and posterior
update for the subtask graph inference. Our experiment results on 2D grid-world and complex web
navigation domains show that the proposed method can learn and leverage the common underlying
structure of the tasks for faster adaptation to the unseen tasks than various existing algorithms such

as meta reinforcement learning, hierarchical reinforcement learning, and other heuristic agents.

5.1 Introduction

Recently, deep reinforcement learning (RL) has shown an outstanding performance on various
domains such as video games [Mnih et al., 2015, Vinyals et al., 2019] and board games [Silver
et al., 2017]. However, most of the successes of deep RL were focused on a single-task setting
where the agent is allowed to interact with the environment for hundreds of millions of time steps.
In numerous real-world scenarios, interacting with the environment is expensive or limited, and
the agent is often presented with a novel task that is not seen during its training time. In order
to overcome this limitation, many recent works focused on scaling the RL algorithm beyond the
single task setting. Recent works on multi-task RL aim to build a single, contextual policy that can
solve multiple related tasks and generalize to unseen tasks. However, they require a certain form

of task embedding as an extra input that often fully characterizes the given task [Oh et al., 2017,
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Andreas et al., 2017, Yu et al., 2017, Chaplot et al., 2018], or requires a human demonstration Huang
et al. [2018], which are not readily available in practice. Meta RL [Finn et al., 2017, Duan et al.,
2016] focuses on a more general setting where the agent should learn about the unseen task purely
via interacting with environment without any additional information. However, such meta-RL
algorithms either require a large amount of experience on the sufficiently diverse set of tasks or are
limited to a relatively smaller set of simple tasks with similar task structures.

On the contrary, real-world problems require the agent to solve much more complex and
compositional tasks without human supervision. Consider a web-navigating RL agent given the task
of checking out the products from an online store. The agent can complete the task by filling out the
correct information to the corresponding web elements such as shipping or payment information,
navigating between the web pages, and finally, placing the order by clicking the appropriate button.
Note that the task consists of multiple subtasks and the subtasks have complex dependencies in the
form of precondition; For instance, the agent may proceed to the payment web page after all the
required shipping information has been correctly filled in, or the credit_card_number field
will show up after selecting the credit_card as a payment method. Learning to perform such
task can be quite challenging when the reward is given only after yielding meaningful outcomes (i.e.,
sparse reward task). This is the problem scope we focus on in this work: solving compositional tasks
with complex subtask dependencies and generalizing to unseen tasks without human supervision.

Recent works [Sohn et al., 2019, Xu et al., 2017, Huang et al., 2018, Liu et al., 2016, Ghazanfari
and Taylor, 2017] tackled the compositional tasks by explicitly inferring the underlying task structure
in a graph form. Specifically, the subtask graph inference (SGI) framework [Sohn et al., 2019] uses
inductive logic programming (ILP) on the agent’s own experience to infer the task structure in terms
of subtask graph and learns a contextual policy to execute the inferred task in few-shot RL setting.
However, it only meta-learned the adaptation policy that relates to the efficient exploration, while the
task inference and execution policy learning were limited to a single task (i.e., both task inference
and policy learning were done from scratch for each task), limiting its capability of handling large
variance in the task structure. We claim that the inefficient task inference may hinder applying the
SGI framework to a more complex domain such as web navigation [Shi et al., 2017, Liu et al., 2018]
where a task may have a large number of subtasks and complex dependencies between them. We
note that human can navigate an unseen website by transferring the high-level process learned from
previously seen websites.

Inspired by this, we extend the SGI framework to a multi-task subtask graph inferencer (MTSGI)
that can generalize the previously learned high-level task structure to the unseen task for faster
adaptation and stronger generalization. MTSGI estimates the prior model of the subtask graphs
inferred from the training tasks. When an unseen task is presented, MTSGI samples the prior

that best matches with the current task, and incorporate the sampled prior model to improve the

39



inference of posterior over the latent subtask graph, which in turn improves the policy learning. We
demonstrate results in the 2D grid-world domain and the web navigation domain that simulates the
interaction with ten actual websites. We compare our method with MSGI [Sohn et al., 2019] that
learns the task hierarchy from scratch for each task, and two other baselines including hierarchical
RL and a heuristic algorithm. We find that our agent significantly outperforms all other baselines,
and the result demonstrates that the prior model learned by MTSGI enables more efficient task

inference compared to MSGI.

5.2 Related Work

Meta-reinforcement learning. Our work aims to tackle the few-shot reinforcement learning (RL)
problem via multi-task task inference. Researchers have previously studied meta-reinforcement
learning in order to solve the few-shot reinforcement learning problem, where there exist two
broad categories of meta-RL approaches: RNN and gradient-based methods. The RNN-based
meta-RL methods [Duan et al., 2016, Wang et al., 2016, Hochreiter et al., 2001] encode the common
knowledges of the task into the hidden states and the parameters of the RNN. The gradient-based
meta-RL methods [Finn et al., 2017, Nichol et al., 2018, Gupta et al., 2018, Finn et al., 2018, Kim
et al., 2018] encode the task embedding in terms of the initial policy parameter for fast adaptation
through meta gradient. Existing meta-RL approaches, however, often require a large amount of
environment interaction due to the long-horizon nature of the few-shot RL tasks. Our work instead
explicitly infers the underlying task parameter in terms of subtask graph, which can be efficiently
inferred using inductive logic programming (ILP) method and be transferred across different, unseen
tasks.

Multi-task reinforcement learning. Multi-task reinforcement learning aims to learn an in-
ductive bias that can be shared and used across a variety of related RL tasks to improve the task
generalization. Early works mostly focused on the transfer learning oriented approaches [Lazaric,
2012, Taylor and Stone, 2009] such as instance transfer [Lazaric et al., 2008] or representation
transfer [Konidaris and Barto, 2006]. However, these algorithms rely heavily on the prior knowledge
about the allowed task differences. Hausman et al. [2018], Pinto and Gupta [2017], Wilson et al.
[2007] proposed to train a multi-task policy with multiple objectives from different tasks. However,
the gradients from different tasks may conflict and hurt the training of other tasks. To avoid gradient
conflict, Zhang and Yeung [2014], Chen et al. [2018], Lin et al. [2019] proposed to explicitly model
the task similarity. However, dynamically modulating the loss or the gradient of RL update often
results in the instability in optimization. Our multi-task learning algorithm also takes the transfer
learning oriented viewpoint; MTSGI captures and transfers the task knowledge in terms of the

subtask graph. However, our work does not make a strong assumption on the task distribution.
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We only assume that the task is parameterized by unknown subtask graph, which subsumes many
existing compositional tasks (e.g., Oh et al. [2017], Andreas et al. [2017], Huang et al. [2018], etc).

Web navigating RL agent. Previous work introduced MiniWoB [Shi et al., 2017] and Mini-
WoB++ [Liu et al., 2018] benchmarks that are manually curated sets of simulated toy environments
for the web navigation problem. They formulated the problem as acting on a page represented as
a Document Object Model (DOM), a hierarchy of objects in the page. The agent is trained with
human demonstrations and online episodes in an RL loop. Jia et al. [2019] proposed a graph neural
network based DOM encoder and a multi-task formulation of the problem similar to this work. Gur
et al. [2018] introduced a manually-designed curriculum learning method and an LSTM based DOM
encoder. DOM level representations of web pages pose a significant sim-to-real gap as simulated
websites are considerably smaller (100s of nodes) compared to noisy real websites (1000s of nodes).
As a result, these models are trained and evaluated on the same simulated environments which is
difficult to deploy on real websites. Our work formulates the problem as abstract web navigation on
real websites where the objective is to learn a latent subtask dependency graph similar to sitemap
of websites. We propose a multi-task training objective that generalizes from a fixed set of real
websites to unseen websites without any demonstration, illustrating an agent capable of navigating

real websites for the first time.

5.3 Subtask Graph Inference Problem

The subtask graph inference problem [Sohn et al., 2019] is a few-shot RL problem where a task is
parameterized by a set of subtasks and their dependencies. Formally, a task consists of N subtasks
{®!,...,®"}, and each subtask P’ is parameterized by a tuple (Scomp’, G%, G). The goal state
Scompi and precondition Gf: defines the condition that a subtask is completed: the current state
should be contained in its goal states (i.e., s; € Sciomp) and the precondition should be satisfied (i.e.,
fe(st) = 1). If the precondition is not satisfied, the subtask cannot be completed and agent receives
no reward even if the goal state is achieved. The subtask reward function G'. defines the amount
of reward given to the agent when it completes the subtask i: r; ~ G".. We note that the subtasks
{®!, ... &N} are unknown to the agent. Thus, the agent should learns to infer the underlying task
structure and complete the subtasks in an optimal order while satisfying the required preconditions.

State. In subtask graph inference problem, it is assumed that the state input provides high-
level status of the subtasks at each time step. Intuitively, this enables the agent to infer the latent
subtask structure only from the interaction with environment. Specifically, the state consists of the
followings: s; = (0bs, Xy, €1, StePey; 1, StePppyse ¢)- The obs, € {0, 1}V is a visual observation
of the environment. The completion vector x; € {0, 1}" indicates whether each subtask is complete.

The eligibility vector e; € {0, 1}*¥ indicates whether each subtask is eligible (i.e., precondition is
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Require: 79t adaptation policy, 7P prior set
1: Tprior — @
2: for each task M, € M"" and its subtask set ' do
3: Rollout adaptation phase for K steps:

4: 7 = {sy,04, 74, di } X | ~ 78 in task M.

5 Infer subtask graph GM'F = arg max, p(7|G)

6: 7 = GRProp(GM-F)

7: Rollout test phase: 7' ~ 7€ in task M;

8:  Update prior TP «— TPriory (GME @F R(7'e))
9: end for

Program 5.1: Meta-training: learning the prior

satisfied). Following the few-shot RL setting, the agent observes two scalar-valued time features:
the remaining time steps until the episode termination step,,, ; € R and the remaining time steps
until the phase termination step,,,.. , € R.

Options. For each subtask ®°, the agent can learn an option O° [Sutton et al., 1999b] that reaches
the goal state of the subtask. Following Sohn et al. [2019], such options are pre-learned individually
by maximizing the goal-reaching reward: r, = I(s; € Séomp). At time step ¢, we denote the option

taken by the agent as o, and the binary variable that indicates whether episode is terminated as d;.

5.4 Method

We propose a novel multi-task learning extension of subtask graph inference framework (MTSGI)
that can perform an efficient posterior inference of latent task embedding (i.e., subtask graph).
Specifically, MTSGI infers the subtask graph of the training tasks M and estimates the prior
model from the inferred subtask graphs during meta-training. During meta-evaluation, MTSGI first
samples the subtask graph from the prior model, and incorporates the agent’s adaptation trajectory

to update the posterior estimate of the latent subtask graph of the evaluation tasks M,

5.4.1 Meta-training: learning the prior

Let 7 be an adaptation trajectory of the agent for K steps. The goal is to infer the latent subtask
graph G for the given training task Mg € MU, specified by preconditions G and subtask
rewards G,. We find the maximum-likelihood estimate (MLE) of G' = (G, G;) that maximizes the
likelihood of the adaptation trajectory 7:

GME — arg max p(7|Ge, Gy). (5.1)

Ge,Gr
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Following Sohn et al. [2019], we infer the precondition GG and the subtask reward G as follows:

K

GMLE — arg maxH]I(et = fo.(x¢)), (5.2)
Ge 31

G = (firaie: Oraie)» (5.3)

ﬂMLE =E [Tt|0t = Oi»ei = 1} ) (5.4)

szlz\/ILE =E [(Tt - ﬂ%\/ILE)Q‘Ot = (’)i,ei = 1} ) (5.5)

where e; is the eligibility vector, x; is the completion vector, o, is the option taken by the agent, r,
is the reward at time step ¢, and O is the option corresponding to the i-th subtask. See Section 4.4.1

for the detailed derivation.

Precondition inference. The problem in Equation (5.2) is known as the inductive logic pro-
gramming (ILP) problem that finds a boolean function that satisfies all the indicator functions.
Specifically, {x;}L, forms binary vector inputs to programs, and {e!}Z, forms Boolean-valued
outputs of the i-th program that denotes the eligibility of the i-th subtask. We use the classification
and regression tree (CART) to infer the precondition function f, for each subtask based on Gini
impurity [Breiman, 1984]. Intuitively, the constructed decision tree is the simplest boolean function
approximation for the given input-output pairs {x;, e; }. The decision tree is converted to a logic

expression (i.e., precondition) in sum-of-product (SOP) form to build the subtask graph.

Subtask reward inference. In Equation (5.3), the MLE of the subtask reward GM“F is given as
the empirical mean and variance of the option reward of each subtask. Thus, we accumulate the
reward over the option execution and store them during the adaptation. In test phase, we compute the
empirical mean and variance from the recorded rewards and use them as the Gaussian parameters of
subtask reward distribution.

For all the training tasks, we store the inferred subtask graph GMLE (j ¢., the precondition and
the subtask reward) after the adaptation. The stored subtask graphs are used as a prior model
(See Section 5.4.3) in meta-evaluation. The overall process of meta-training is summarized in
Algorithm 5.1.

5.4.2 Adaptation policy

The goal of adaptation policy is to maximally explore and gather the information about the task to
accurately infer the latent subtask graph. Intuitively, adaptation policy should try to make diverse

subtasks eligible and complete since the precondition G, is inferred from the completion and
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Require: 7°°: test policy (GRProp), 74#t: adaptation policy, 7P prior set
1: for each task M; € M and its subtask set ' do
2: Sample prior: (GPor, @Prior | (Prior)) ~, p(Tprior)
GPTT = Map gyrior_, 1 (GP17) > subtask mapping
Rollout adaptation phase for K steps:
7 = {8y, 04, 14, di }I£ | ~ 79t in task M,
Infer subtask graph GM'E = arg max,, p(7|G)
7% & GRProp(GMLE) . GRProp(GPrior)(1-a)
Rollout test phase: 7 ~ 7€ in task M;
end for

D A AN

Program 5.2: Meta-evaluation: multi-task SGI

eligibility pair and the subtask reward G, can be inferred from the option reward of the completed
subtasks. Inspired by Sohn et al. [2019]', we used the soft-version of upper confidence bound

(UCB) [Auer et al., 2002] exploration policy as adaptation policy as follows:

log (Z] nj)

Jon, : (5.6)

Tadapt (0 = O'|s) oxexp [ 7+

where 7; is the the empirical mean of the reward received after executing subtask 7 and n; is the
number of times subtask 7 has been executed within current task. During meta-training, we reset the
parameters {r;, n; }Y, to zero in the beginning of each task, and after the adaptation is over (i.e.,
t = K) the final parameters {7;,n;} | were stored together with the inferred subtask graph as prior
data. During meta-evaluation, we initialized the current parameters {r;, n;}~ , with those of the
sampled prior task to incorporate the information gathered in the sampled prior task. Intuitively, the
agent is encouraged to execute the subtask that was either not present in the prior task (i.e., n; = 0)
or have been executed less often (i.e., n; < ) ; 1) than others such that the agent has relatively

less information about the subtask.

5.4.3 Meta-evaluation: prior sampling

After constructing the prior model, our MTSGI chooses the subtask from the prior model that is
most similar to the given evaluation task. Specifically, we define the pair-wise similarity between a

prior task M and the current evaluation task M as follows:

sim (Mg, ME™ ) = Fy (9, 07) + kR (77 (5.7)

'Sohn et al. [2019] used the hard-version of UCB policy as a teacher policy for pretraining the adaptation policy.
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where Fj is the F-score with weight parameter 3, @ is the subtask set of M, P is the subtask
set of M%, and R (7Pror) is the agent’s empirical performance on the prior task MET . Fy
measures how many subtasks overlap between current and prior tasks in terms of precision and

recall as follows:

precision - recall

Fg=(1+75%)- 5.8
s=(1+5) (8% - precision ) + recall ’ (5:8)
Precision = |® N ®Po" | /|@Prier |, (5.9)
Recall = |® N ®P" |/|®|. (5.10)

We used § = 10 to assign higher weight to current task (i.e., recall) than the prior task (i.e.,
precision). The pseudo-code of the prior sampling process is summarized in Algorithm 5.2.

5.4.4 Meta-evaluation: multi-task subtask graph inference

Let 7 be the adaptation trajectory of the current task M, and 7P = {77, ..., 7~} be the adaptation
trajectories of the IV (seen) training tasks. Assuming that p(G) follows the uniform distribution, our

multi-task policy is parametrized by the subtask graph G as follows:

m(orlse, 7, TP) = > w(orlsi, G)p(Gr, T7) (5.11)
x Zw oisi, G y (7|G, T?)p(G|TP) (5.12)
x Z (0c] se, G)p(7|G, TP)p(TP|G)p(G) (5.13)
x Z (or]s¢, G)p(7|G, TP)p(T?|G) (5.14)
—Z (0tls1, G)*p(7]G, TP)m(orlsi, G) = p(TP|G) (5.15)
~ {th\st,e)p(ﬂaﬂ)}

¢ (1-a)

{Zw olse, G 7'P\G)} (5.16)
~ 7(04| 81, Gr) (04| 5, GPIOT) (1= (5.17)

where G, = argmax p(7|G, TP) is the the maximum likelihood estimate (MLE) of the current
subtask graph G given the entire experience and GP'" = arg max, p(7P?|G) is the MLE of the

subtask graph G given the prior experience 7P. For efficient computation, we first compute and store
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the MLE of all the training tasks GP"" during meta-training. In meta-evaluation, we sample GP""
together with the prior, and merge with the current policy as in Equation (5.17). The pseudo-code

of multi-task subtask graph inference process is summarized in Algorithm 5.2.

Subtask Graph Setting

Task | #Subtasks | #Distractors | Episode length
Amazon 31 4 27
Apple 43 5 40
BestBuy 37 6 37
Converse 42 6 43
Dick’s 39 6 37
eBay 39 5 37
Ikea 39 5 37
Samsung 42 6 41
Target 39 6 47
Walmart 46 5 43

Table 5.1: The task configuration of the tasks in SymWoB domain. Each task is parameterized by
different subtask graphs, and the episode length is manually set according to the challengeness of
the tasks.
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Figure 5.1: The success rate of the compared methods in the test phase in terms of the environment
step during adaptation phase on SymWoB domain.
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5.5 Experiment

5.5.1 Domain

We evaluate our method on 2D grid-world domain and realistic symbolic web navigation domain.

5.5.1.1 Mining

Mining [Sohn et al., 2018] is inspired by Minecraft game where the agent receives reward by
picking up raw materials in the world or crafting items with raw materials. The subtask dependency
in Mining domain comes from the crafting recipe implemented in the game. Following Sohn et al.
[2018], we used the four set of pre-generated training/testing task splits generated with four different
random seeds. Each split set consists of 3200 training tasks and 440 testing tasks for meta-training

and meta-evaluation, respectively. The performance was averaged over the four task split sets.

5.5.1.2 SymWoB

We implement a symbolic version of the checkout process on the 10 real-world websites: Amazon,
Apple, BestBuy, Converse, Dick’s, eBay, Ikea, Samsung, Target, and Walmart. The details of
the tasks are summarized in Table 5.1.

Subtasks. Each actionable web element (e.g., text field, button, radio button, drop-down list,
and hyperlink) is considered as a subtask, and the agent can execute the subtask by selecting an
option corresponding to the subtask.

Reward function and episode termination. The agent may receive a non-zero reward only at
the end of episode (i.e., sparse-reward task). When the episode terminates due to the time budget,
the agent may not receive any reward. Otherwise, the following two types of subtasks terminate the

episode and give a non-zero reward upon completion:

* Goal subtask is considered as a success and the agent receives +5 reward, and the episode is
terminated. In our checkout tasks, the C1ick_Place_Order subtask is the goal subtask.

* Distractor subtask does not contribute to solving the given task but terminates the episode
with -1 reward. It models the web elements that lead to external web pages such as clicking

Help or Leave _Feedback buttons.

Transition dynamics. The transition dynamics follows the dynamics of the actual website. Each
website consists of multiple web pages. The agent may only execute the subtasks that are currently
visible (i.e., on the current web page) and can navigate to the next web page only after filling out all

the required field and clicking the continue button. The C1ick _Place_Order button is present
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in the last web page. Therefore, the agent must learn to navigate through the web pages in order to
finish the current task.

Completion and eligibility. For each subtask, the completion and eligibility is computed based
on the status of the corresponding web element. For example, the subtask corresponding to a text
field is completed if the text field is filled with the correct profile information, and it is eligible if the
text field is visible on the website and has not yet been completed.

For more details about each task, please refer to Appendix C.1.

5.5.2 Agents

We compared the following algorithms in the experiment.

MTSGI (Ours): our multi-task SGI agent
MSGI [Sohn et al., 2019]: SGI agent without multi-task learning

HRL: an Option [Sutton et al., 1999b]-based proximal policy optimization (PPO) [Schulman
et al., 2017] agent with the gated rectifier unit (GRU)

Random: a heuristic policy that uniform randomly executes an eligible subtask

Training. We used the ten websites for meta-evaluation. For each website, we randomly sampled
a single website among the remaining nine websites and used it for meta-training. For example, we
meta-trained our MTSGI on Amazon and tested on Samsung. The RL agents (e.g., HRL) were
individually trained on each testing website; the policy was initialized when a new task is sampled
and trained during the adaptation phase. All the experiments were repeated with four random seeds,

where different training tasks were sampled for different random seed.

5.5.3 Result: few-shot generalization performance

Figure 5.1 and Figure 5.2 show the few-shot generalization performance of the compared methods
on SymWoB and Mining. MTSGI achieves close to 100% zero-shot success rate (i.e., success rate
at x-axis=0) on five out of ten websites, which is significantly higher than the zero-shot performance
of MSGI. This indicates that the prior learned from randomly chosen website significantly improves
the subtask graph inference and in turn improves the multi-task test policy. Moreover, our MTSGI
can learn a near-optimal policy on the remaining five websites after only 1,000 steps of environment
interactions, demonstrating that the proposed multi-task learning scheme enables the fast adaptation.
Even though the MSGI agent is learning each task from scratch, it still outperforms the HRL and
Random agents, showing that explicitly inferring the underlying task structure and executing the
predicted subtask graph is significantly more effective than learning the policy from the reward

signal (i.e., HRL) on those tasks involving complex subtask dependencies. Given the pre-learned
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Figure 5.2: The cumulative reward of the compared methods in the test phase in terms of the
environment step during adaptation phase on Mining domain.
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Figure 5.3: (Top) The ground-truth subtask graph of Walmart domain (not available to the agent)
and (Bottom) The subtask graph inferred by our MTSGI after 1,000 steps of environment interaction
on Walmart domain.

options, HRL agent improves the success rate during the adaptation by updating the high-level
policy. However, training the policy requires a large amount of interactions especially for the tasks

with many distractors (e.g., eBay, Samsung, and BestBuy, etc).
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Figure 5.4: Comparison of different exploration strategies for MTSGI used in adaptation phase for
SymWoB and Mining domains. The performance was averaged over the ten websites for SymWoB.
We report the mean (solid curve) and standard error (shadowed area) of the performance over four
random seeds.

5.5.4 Analysis on the inferred subtask graph

We evaluate the accuracy of the subtask graph inference process of the MTSGI by comparing the
inferred subtask graph against the ground-truth subtask graph. Note that the ground-truth subtask
graph is not available to the agent in both meta-train and meta-evaluation stage; Instead, it is inferred
purely from the agent’s trajectory.

Figure 5.3 shows the ground-truth subtask graph and the subtask graph inferred by MTSGI
in Walmart domain after 1,000 steps of adaptation. We can see that MTSGI can infer the sub-
task graph quite accurately; the inferred subtask graph is missing only four preconditions of
Click_Continue_Payment subtasks, and for all other subtasks, their preconditions are cor-
rectly inferred. We note that such small error in the subtask graph has negligible effect as shown
in Figure 5.1:i.e., MTSGI achieves near-optimal performance on Walmart after 1,000 steps of

adaptation.

5.5.5 Ablation study: effect of exploration strategy in adaptation phase

In this section, we investigate the effect of various exploration strategies on the performance of
MTSGI. We compared the following three adaptation policies:

* MTSGI+Random: Random policy that uniformly randomly execute any eligible subtask is

used as an adaptation policy for both meta-training and meta-testing.

* MTSGI+UCB: The UCB policy (See §5.4.2) that aims to execute the novel subtask is used
as an adaptation policy for both meta-training and meta-testing. The counts of subtasks

execution is initialized when a new task is sampled.
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Figure 5.5: Comparison of different number of priors and its effect on the performance on both
SymWoB and Mining domains.

* MTSGI+MTUCB: We use UCB policy for meta-training and store the subtask execution
counts as a part of prior. When the prior is sampled in meta-testing, we transfer the prior

knowledge by initializing the subtask execution counts with those of the sampled prior.

Figure 5.4 summarizes the result on SymWoB and Mining domain, respectively. Using the
more sophisticated exploration policy such as MTSGI+UCB or MTSGI+MTUCB improved the
performance of MTSGI compared to MTSGI+Random, which was also observed in Sohn et al.
[2019]. This is because the better exploration helps the adaptation policy collect more data for
logic induction by executing more diverse subtasks. In turn, this results in more accurate subtask
graph inference and better performance. Also, MTSGI+MTUCB outperforms MTSGI+UCB on
both domains. This indicates that transferring the exploration counts makes the agent’s exploration
more efficient in evaluation tasks. Intuitively, the transferred exploration counts inform the agent
which subtasks were under-explored during meta-training, such that the agent can focus more on

gathering the information that are missing in the prior during meta-evaluation.

5.5.6 Ablation study: effect of the training task set size

MTSGI learns the prior from the training tasks. We investigated how many training tasks are
required for MTSGI to learn a good prior for transfer learning. We compared the performance of
MTSGI with the varying number of training tasks: 1, 3, 5, 9 tasks for SymWoB and 10, 100, 500,
3200 tasks for Mining in Figure 5.5. The training tasks are randomly subsampled from the largest
training set. The result shows that training on larger number of tasks consistently improved the
performance, but saturates at some point (e.g., | M"™"| = 9 for SymWoB and |M"™"| = 500 for
Mining). Mining generally requires more number of training tasks than SymWoB because the

agent is required to perform 440 tasks in Mining while SymWoB was evaluated on only 10 tasks;
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agent is required to capture a wider range of task distribution in Mining than SymWoB. Also, we
note that MTSGI can still adapt much more efficiently than all other baseline methods even when
only a small number of training tasks are available (e.g., one task for SymWoB and ten tasks for
Mining).

5.6 Discussion

We introduce multi-task RL extension of the subtask graph inference framework that can quickly
adapt to the unseen tasks by modeling the prior of subtask graph from the training tasks and
transferring it to the test tasks. Specifically, our multi-task subtask graph inferencer (MTSGI)
samples a prior by measuring the similarity between the current task and the prior task and merges the
two policies constructed from the subtask graph inferred from prior and current tasks, respectively.
The empirical results demonstrate that our MTSGI achieves strong zero- and few-shot generalization
performance on 2D grid-world and complex web navigation domains by transferring the common
knowledges learned in the training tasks to the unseen ones in terms of subtask graph.

In this work, we have assumed that the subtasks and the corresponding options are pre-learned
and that the environment provides a high-level status of each subtask (e.g., whether the web element
is filled in with the correct information). In the future work, our approach may be extended to a
more general setting where the relevant subtask structure is fully learned from pure observations,

and the corresponding options are also automatically discovered as well.
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CHAPTER 6

Shortest-Path Constrained Reinforcement Learning

for Sparse Reward Tasks

This work proposes the k-Shortest-Path (k-SP) constraint: a novel constraint on the agent’s trajectory
that improves the sample-efficiency in sparse-reward MDPs. We show that any optimal policy
necessarily satisfies the k-SP constraint. Notably, the k-SP constraint prevents the policy from
exploring state-action pairs along the non-%-SP trajectories (e.g., going back and forth). However,
in practice, excluding state-action pairs may hinder convergence of RL algorithms. To overcome
this, we propose a novel cost function that penalizes the policy violating SP constraint, instead of
completely excluding it. Our numerical experiment in a tabular RL setting demonstrate that the
SP constraint can significantly reduce the trajectory space of policy. As a result, our constraint
enables more sample efficient learning by suppressing redundant exploration and exploitation. Our
experiments on MiniGrid, DeepMind Lab and Atari show that the proposed method significantly
improves proximal policy optimization (PPO) and outperforms existing novelty-seeking exploration
methods including count-based exploration, indicating that it improves the sample efficiency by

preventing the agent from taking redundant actions.

6.1 Introduction

Recently, deep reinforcement learning (RL) has achieved a large number of breakthroughs in many
domains including video games [Mnih et al., 2015, Vinyals et al., 2019], and board games [Silver
et al.,, 2017]. Nonetheless, a central challenge in reinforcement learning (RL) is the sample
efficiency [Kakade et al., 2003]; it has been shown that the RL algorithm requires a large number of
samples for successful learning in MDP with large state and action space. Moreover, the success
of RL algorithm heavily hinges on the quality of collected samples; the RL algorithm tends to
fail if the collected trajectory does not contain enough evaluative feedback (e.g., sparse or delayed

reward).
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Figure 6.1: The k-SP constraint improves sample efficiency of RL methods in sparse-reward tasks
by pruning out suboptimal trajectories from the trajectory space. Intuitively, the k-SP constraint
means that when a policy rolls out into trajectories, all of sub-paths of length £ is a shortest path
(under a distance metric defined in terms of policy, discount factor and transition probability; see
Section 6.3.2 for the formal definition). (Left) MDP and a rollout tree are given. (Middle) The
paths that satisfy the k-SP constraint. The number of admissible trajectories is drastically reduced.
(Right) A path rolled out by a policy satisfies the £-SP constraint if all sub-paths of length k are
shortest paths and have not received non-zero reward. We use a reachability network to test if a
given (sub-)path is a shortest path (See Section 6.4 for details).

To circumvent this challenge, planning-based methods utilize the environment’s model to
improve or create a policy instead of interacting with environment. Recently, combining the planning
method with an efficient path search algorithm, such as Monte-Carlo tree search (MCTS) [Norvig,
2002, Coulom, 2006], has demonstrated successful results [Guo et al., 2016, Vodopivec et al., 2017,
Silver et al., 2017]. However, such tree search methods would require an accurate model of MDP
and the complexity of planning may grow intractably large for complex domain. Model-based
RL methods attempt to learn a model instead of assuming that model is given, but learning an
accurate model also requires a large number of samples, which is often even harder to achieve than
solving the given task. Model-free RL methods can be learned solely from the environment reward,
without the need of a (learned) model. However, both value-based and policy-based methods suffer
from poor sample efficiency especially in sparse-reward tasks. To tackle sparse reward problems,
researchers have proposed to learn an intrinsic bonus function that measures the novelty of the state
that agent visits [Schmidhuber, 1991, Oudeyer and Kaplan, 2009, Pathak et al., 2017, Savinov et al.,
2018b, Choi et al., 2018, Burda et al., 2018]. However, when such intrinsic bonus is added to the
reward, it often requires a careful balancing between environment reward and bonus and scheduling
of the bonus scale in order to guarantee the convergence to optimal solution.

To tackle aforementioned challenge of sample efficiency in sparse reward tasks, we introduce a

constrained-RL framework that improves the sample efficiency of any model-free RL algorithm
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in sparse-reward tasks, under the mild assumptions on MDP (see Appendix D.3). Of note, though
our framework will be formulated for policy-based methods, our final form of cost function
(Equation (6.9) in Section 6.4) is applicable to both policy-based and value-based methods. We
propose a novel k-shortest-path (k-SP) constraint (Definition 8) that improves sample efficiency
of policy learning (See Figure 6.1). The k-SP constraint is applied to a trajectory rolled out by a
policy; all of its sub-path of length £ is required to be a shortest-path under the 7-distance metric
which we define in Section 6.3.1. We prove that applying our constraint preserves the optimality
for any MDP (Theorem 10), except the stochastic and multi-goal MDP which requires additional
assumptions. We relax the hard constraint into a soft cost formulation [Tessler et al., 2019], and
use a reachability network [Savinov et al., 2018b] (RNet) to efficiently learn the cost function in an
off-policy manner.

We summarize our contributions as the following: (1) We propose a novel constraint that can
improve the sample efficiency of any model-free RL method in sparse reward tasks. (2) We present
several theoretical results including the proof that our proposed constraint preserves the optimal
policy of given MDP. (3) We present a numerical result in tabular RL setting to precisely evaluate the
effectiveness of the proposed method. (4) We propose a practical way to implement our proposed
constraint, and demonstrate that it provides a significant improvement on three complex deep RL
domains. (5) We demonstrate that our method significantly improves the sample-efficiency of PPO,
and outperforms existing novelty-seeking methods on three complex domains in sparse reward

setting.

6.2 Related Work

Shortest-path Problem and Planning. Many early works [Bellman, 1958, Ford Jr, 1956, Bert-
sekas and Tsitsiklis, 1991, 1995] have discussed (stochastic) shortest path problems in the context
of MDP. They viewed the shortest-path problem as planning problem and proposed a dynamic
programming-based algorithm similar to the value iteration [Sutton and Barto, 2018] to solve it.
Our main idea is inspired by (but not based on) this viewpoint. Specifically, our method does not
directly solve the shortest path problem via planning; hence, our method does not require model.
Our method only exploits the optimality guarantee of the shortest-path under the 7-distance to prune

out sub-optimal policies (i.e., non-shortest paths).

Distance Metric in Goal-conditioned RL. In goal-conditioned RL, there has been a recent surge
of interest on learning a distance metric in state (or goal) space for to construct a high-level MDP
graph and perform planning to find a shortest-path to the goal state. Huang et al. [2019], Laskin
et al. [2020] used the universal value function (UVF) [Schaul et al., 2015] with a constant step
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penalty as a distance function. Zhang et al. [2018], Laskin et al. [2020] used the success rate of
transition between nodes as distance and searched for the longest path to find the plan with highest
success rate. SPTM [Savinov et al., 2018a] defined a binary distance based on reachability network
(RNet) to connect near by nodes in the graph. However, the proposed distance metrics and methods
can be used only for the goal-conditioned task and lacks the theoretical guarantee in general MDP,

while our theory and framework are applicable to general MDP (see Section 6.3.1).

Reachability Network. The reachability network (RNet) was first proposed by Savinov et al.
[2018b] as a way to measure the novelty of a state for exploration. Intuitively, if current state is not
reachable from previous states in episodic memory, it is considered to be novel. SPTM [Savinov
et al., 2018a] used RNet to predict the local connectivity (i.e., binary distance) between observations
in memory for graph-based planning in navigation task. On the other hand, we use RNet for
constraining the policy (i.e., removing the sub-optimal policies from policy space). Thus, in ours

and in other two compared works, RNet is being employed for fundamentally different purposes.

Approximate state abstraction. The approximate state abstraction approaches investigate parti-
tioning an MDP’s state space into clusters of similar states while preserving the optimal solution.
Researchers have proposed several state similarity metrics for MDPs. Dean et al. [2013] proposed to
use the bisimulation metrics [Givan et al., 2003, Ferns et al., 2004], which measures the difference
in transition and reward function. Bertsekas et al. [1988] used the magnitude of Bellman residual as
a metric. Abel et al. [2016, 2018], Li et al. [2006] used the different types of distance in optimal
Q-value to measure the similarity between states to bound the sub-optimality in optimal value
after the abstraction. Recently, Castro [2019] extended the bisimulation metrics to the approximate
version for deep-RL setting where tabular representation of state is not available. Our shortest-path
constraint can be seen as a form of state abstraction, in that ours also aim to reduce the size of MDP
(i.e., state and action space) while preserving the “solution quality”. However, our method does so

by removing sub-optimal policies, not by aggregating similar states (or policies).

6.3 Formulation: k-shortest-path Constraint

We define the k-shortest-path (k-SP) constraint to remove redundant transitions (e.g., unnecessarily
going back and forth), leading to faster policy learning. We show two important properties of our
constraint: (1) the optimal policy is preserved, and (2) the policy search space is reduced.

In this work, we limit our focus to MDPs satisfying R(s) + vV *(s) > 0 for all initial states
s € p and all rewarding states that optimal policy visits with non-zero probability s € {s|r(s) #

0,7*(s) > 0}. We exploit this mild assumption to prove that our constraint preserves optimality.
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Intuitively, we exclude the case when the optimal strategy for the agent is at best choosing a “lesser
of evils” (i.e., largest but negative value) which often still means a failure. We note that this is often
caused by unnatural reward function design; in principle, we can avoid this by simply offsetting
reward function by a constant —|mine s+ (s)>03 V*(s)| for every transition, assuming the policy is
proper'. Goal-conditioned RL [Nachum et al., 2018] and most of the well-known domains such as
Atari [Bellemare et al., 2013], DeepMind Lab [Beattie et al., 2016], MiniGrid [Chevalier-Boisvert
et al., 2018], etc., satisfy this assumption. Also, for general settings with stochastic MDP and
multi-goals, we require additional assumptions to prove the optimality guarantee (See Appendix D.3
for details).

6.3.1 Shortest-path Policy and Shortest-path Constraint

Let 7 be a path defined by a sequence of states: 7 = {s, ..., Sy}, where {(7) is the length of a
path 7 (i.e., (T7) = || — 1). We denote the set of all paths from s to s’ by 7 . A path 7* from s to
s’ is called a shortest path from s to s'if £(7*) is minimum, i.e., /(7*) = min,c7, , £(7).

Now we will define similar concepts (length, shortest path, etc.) with respect to a policy.
Intuitively, a policy that rolls out shortest paths (up to some stochasticity) to a goal state or between
any state pairs should be a counterpart. We consider a set of all admissible paths from s to s’ under

a policy 7:

Definition 1 (Path set). 7", = {7 | so = s, 5¢s) = 5',p(7) > 0, 5; # s’ for Vt < {(7)}. That is,
7. is a set of all paths that policy m may roll out from s and terminate once visiting s'.

If the MDP is a single-goal task, i.e., there exists a unique (rewarding) goal state s, € S such
that s, is a terminal state, and R(s) > 0 if and only if s = s,, any shortest path from an initial
state to the goal state is the optimal path with the highest return R(7), and a policy that rolls out
a shortest path is therefore optimal (see Lemma 11).> This is because all states except for s, are
non-rewarding states, but in general MDPs this is not necessarily true. However, this motivates us
to limit the domain of shortest path to among non-rewarding states. We define non-rewarding paths

from s to s’ as follows:

Definition 2 (Non-rewarding path set). 7, .= {7 |7 €T~

/ !
s,s’,nr ERCi

re =0 for Vt < £(7)}.

In words, T, is a set of all non-rewarding paths from s to s’ rolled out by policy 7 (i.e.,

s,s’ nr

T € T],,) without any associated reward except the last step (i.e., 7; = 0 for Vt < {(7)). Now we

are ready to define a notion of length with respect to a policy and shortest path policy:

'Tt is an instance of potential-based reward shaping which has optimality guarantee [Ng et al., 1999].
2We refer the readers to Appendix D.2 for more detailed discussion and proofs for single-goal MDPs.
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Definition 3 (7-distance from s to §'). D7.(s,s') =log, (Erer rerr, [v*7])

/

Definition 4 (Shortest path distance from s to s). D, (s,s’) = min, DI (s, s).

We define 7-distance to be the log-mean-exponential of the length ¢(7) of non-rewarding paths
Te T When there exists no admissible path from s to s’ under policy 7, the path length

12 .
s,s’,nr

is defined to be oo: D, (s,s') = oo if 7, . = (). We note that when both MDP and policy are
deterministic, D™ (s, s") recovers the natural definition of path length, D7 (s, s") = £(7).
We call a policy a shortest-path policy from s to s’ if it roll outs a path with the smallest

m-distance:

Definition 5 (Shortest path policy from s to s'). m € IIY, , = {m € I1 | D (s,5') = Dy (s,5)}.

s—s’

Finally, we will define the shortest-path (SP) constraint. Let S = {s |
R(s) > Oorp(s) > 0} be the union of all initial and rewarding states, and
O™ = {(s,5) | 5,5 € S, p(s) >0, 7], . # 0} be the subset of S™ such that agent may roll
out. Then, the SP constraint is applied to the non-rewarding sub-paths between states in ™:

bor = U(&S,) cor Tos - We note that these definitions are used in the proofs (Appendix D.3).

Now, we define the shortest-path constraint as follows:

Definition 6 (Shortest-path constraint). A policy 7 satisfies the shortest-path (SP) constraint if
7 € II%, where I = {7 | For all 5,s" € Tg,,itholds = € II3"

nr’ s—)s’}‘

Intuitively, the SP constraint forces a policy to transition between initial and rewarding states via
shortest paths. The SP constraint would be particularly effective in sparse-reward settings, where
the distance between rewarding states is large.

Given these definitions, we can show that an optimal policy indeed satisfies the SP constraint in

a general MDP setting. In other words, the shortest path constraint should not change optimality:

Theorem 7. For any MDP, an optimal policy 7* satisfies the shortest-path constraint: 7 € 117,

Proof. See Appendix D.3 for the proof. [

6.3.2 Relaxation: k-shortest-path Constraint

Implementing the shortest-path constraint is, however, intractable since it requires a distance
predictor D, (s, s’). Note that the distance predictor addresses the optimization problem, which
might be as difficult as solving the given task. To circumvent this challenge, we consider its more

tractable version, namely a k-shortest path constraint, which reduces the shortest-path problem
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D (s, s") to a binary decision problem — is the state s’ reachable from s within k steps? — also

known as k-reachability [Savinov et al., 2018b]. The k-shortest path constraint is defined as follows:

Definition 8 (%k-shortest-path constraint). A policy 7 satisfies the k-shortest-path constraint if
7 € ILY, where

1Y = {m |[Forall s, s' € T¢ ..., DI (s,s") <k,
it holds € 13", , }. (6.1)

s—rs’

Note that the SP constraint (Definition 6) is relaxed by adding a condition D] (s,s’) < k. In
other words, the k-SP constraint is imposed only for s, s’-path whose length is not greater than k.

From Equation (6.1), we can prove an important property and then Theorem 10 (optimality):

Lemma 9. For an MDP M, Hfrf - Hip ifk <m.
Proof. Ttis true since {(s,s") | DI.(s,s") <k} C {(s,s) | DL.(s,s") < m} for k < m. O
Theorem 10. For an MDP M and any k € R, an optimal policy 7 is a k-shortest-path policy.

Proof. Theorem 7 tells 7* € 1P, Equation (6.1) tells TI" = T3 and Lemma 9 tells T13° C TT3F.
Collectively, we have 7 € IT5F = TI3F C II3P. O

In conclusion, Theorem 10 states that the £-SP constraint does not change the optimality of
policy, and Lemma O states a larger & results in a larger reduction in policy search space. Thus, it
motivates us to apply the k-SP constraint in policy search to more efficiently find an optimal policy.
For the numerical experiment on measuring the reduction in the policy roll-outs space, please refer
to Section 6.5.5.

6.4 SPRL: Shortest-Path Reinforcement Learning

k-Shortest-Path Cost. The objective of RL with the k-SP constraint IT;¥ can be written as:
7* = argmax, E™ [R(7)], st 7 e IRP (6.2)

where I}" = {7 | V(s,s" € Tg,,.), Dp.(s, ') < k,itholds w € II3F, , } (Definition 8). We want to

S5—S

formulate the constraint ™ € Hip in the form of constrained MDP (Section 2.1), i.e., as C'(7) < a.
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We begin by re-writing the k£-SP constraint into a cost-based form:

O = {n | G (1) =0, where CF°(m) = 3" I[Duls,s) < D(s.)]. (63)

(8,8 €TE o) DTy (5,8") <k

Note that I [D,,(s,s") < DI.(s,s')] = 0 <> Dp(s,s') = DI (s,s") since Dy, (s,s’) < DI(s,s)
from Definition 4. Similar to Tessler et al. [2019], we apply the constraint to the on-policy trajectory
T = (S0, $1, . . .) with discounting by replacing (s, s") with (s;, s;1;) where [¢,t 4 [] represents each

segment of 7 with length :

Cy () = Err [Z(t,l);tzo,lgk V' T [Due(8t, 8041) < Di(st, 8141)] - [{7“3 = OH

[ (t,0):t>0,1<k v -1 [Dnr(5t75t+l) < log, <ETET” [ IT'D] [{T]}Hl = O]]

StsS¢4- DT

[ wosog<k Vo L Due(se, 1) < k- I[{r 2" = 0]] 2 O (7). (6.4)

Note that it is sufficient to consider only the cases | = k (because for [ < k, given Dy, (¢, si11) < k,
we have D(sy, s¢41) < [ < k). Then, we simplify C’,EP(W) as

@zfp(ﬁ) = Eror [2, 7' [Due(50, 5048) < k] - L[{r;}otE1 = 0]] 6.5)
o [0 VIt > K] T [Da(se-r, s) < K] -T[{r; Y2, = 0]]. (6.6)

Finally, the per-time step cost ¢; is given as:

= 1[t > k] - T[Dye(81—k, 5¢) < k] - T[{r;}2i_, = 0], (6.7)

where C$P () = E,r [32, 7'c1]. Note that CSP(7) is an upper bound of CF (), which will be min-
imized by the bound to make as little violation of the shortest-path constraint as possible. Intuitively
speaking, c; penalizes the agent from taking a non-k-shortest path at each step, so minimizing such
penalties will make the policy satisfy the k-shortest-path constraint. In Equation (6.7), ¢; depends
on the previous £ steps; hence, the resulting CMDP becomes a (k + 1)-th order MDP. In practice,
however, we empirically found that feeding only the current time-step observation to the policy
performs better than stacking the previous k-steps of observations. Thus, we did not stack the
observation in all the experiments. We use the Lagrange multiplier method to convert the objective

(6.2) into an equivalent unconstrained problem as follows:

min max L(\, #) = min max Ermg | Do (1 — Acr) | (6.8)

A>0 6 A>0
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Require: Hyperparameters: £ € N, A > 0
1: forn =1,..., Nyicy do
2: Rollout transitions 7 = {s;, at, rt}t |~

3: Compute the cost term {c;}/”; as Equation (6.12).
4: Update policy 7 to maximize the objective as Equation (6.9) (e.g., run PPO train steps).
5: Update Rnet training-buffer B = B U {7}.
6: if n%TRnet = 0 then > Periodically train Rnet for Ny, times
7: form =1,..., Nrye do
8: Sample triplet (Sanc, S+, 5-) ~ B.
0: Update Rnet to minimize Lg, as Equation (6.13).
10: end for
11: end if
12: end for

Program 6.1: Reinforcement Learning with k-SP constraint (SPRL)

where L is the Lagrangian, 6 is the parameter of policy 7, and A > 0 is the Lagrangian multiplier.
Since Theorem 10 shows that the shortest-path constraint preserves the optimality, we are free to
set any A > 0. Thus, we simply consider A as a tunable positive hyperparameter, and simplify the

min-max problem (6.8) to an RL objective with costs c; being added:

mHaX]ETNWe St (re— )\ct)]. (6.9)

Practical implementation of the cost function. We implement the binary distance discriminator
I(Dye(S¢—k, s¢) < k) in Equation (6.7) using k-reachability network [Savinov et al., 2018b]. The k-
reachability network Rnety (s, ) is trained to output 1 if the state s is reachable from the state s with
less than or equal to k£ consecutive actions, and 0 otherwise. Formally, we take the functional form:
Rnety (s, s") ~ I (D (s,s") < k+ 1). We then estimate the cost term ¢; using (k — 1)-reachability

network as follows:

¢t = I [Dune(s—p, s¢) < k] -T[{r};Z, = 0] - L[t > k] (6.10)
= Rnety_1(Se—k, s¢) - L [{r}iZ, = 0] - L[t > K]. (6.11)

Intuitively speaking, if the agent takes a k-shortest path, then the distance between s;_j and s; is k,
hence ¢; = 0. If it is not a k-shortest path, ¢; > 0 since the distance between s;_j, and s; will be less

than k. In practice, due to the error in the reachability network, we add a small tolerance At € N to
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ignore outliers. It leads to an empirical version of the cost as follows:
¢y ~ Rnety_1(S;_g_nat, S¢) - L [{rl}f;tl_k_m = 0} I(t > k+ At). (6.12)

In our experiment, we found that a small tolerance At ~ k/5 works well in general. Similar
to Savinov et al. [2018b], we used the following contrastive loss for training the reachability

network:
Lrnet = — log (Rnety, 1 (Sanc, 1)) — log (1 — Rnety_1(Sanc, 5—)) , (6.13)

where s,n¢, 54, s_ are the anchor, positive, and negative samples, respectively.

6.5 Experiments

1.00 FourRooms-7x7 1.00 FourRooms-11x11
0.75 0.75]
£ £
20.50 2 0.50;
g g
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0.00; 0.2 0.4 0.005 1 2
steps (Millions) steps (Millions)
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Figure 6.2: Progress of average episode reward on MiniGrid tasks. We report the mean (solid curve)
and standard error (shadowed area) of the performance over six random seeds.

6.5.1 Settings

Environments. We evaluate our SPRL on three challenging domains: MiniGrid [Chevalier-
Boisvert et al., 2018], DeepMind Lab [Beattie et al., 2016] and Atari [Bellemare et al., 2013].
MiniGrid is a 2D grid world environment with challenging features such as pictorial observation,

random initialization of the agent and the goal, complex state and action space where coordinates,
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Figure 6.3: Progress of average episode reward on DeepMind Lab tasks. We report the mean (solid
curve) and standard error (shadowed area) of the performance over four random seeds.
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Figure 6.4: Progress of average episode reward on Atari tasks. We report the mean (solid curve)
and standard error (shadowed area) of the performance over four random seeds.

directions, and other object statuses (e.g., key-door) are considered. We conducted experiments on
four standard tasks: FourRooms-7x7, FourRooms-11x11, KeyDoors-7x7, and KeyDoors-11x11.
DeepMind Lab is a 3D environment with first person view. Along with the nature of partially-
observed MDP, at each episode, the agent’s initial and the goal location are reset randomly with
a change of texture, maze structure, and colors. We conducted experiments on three standard
tasks: GoalSmall, GoalLarge3 , and ObjectMany. For Atari, among 52 games we chose two
sparse-reward tasks (Montezuma’s Revenge, Freeway), one dense-reward task (Ms.Pacman), and
three non-navigational tasks (Gravitar, Seaquest, HERO) where the agent receives reward by hitting
the enemy by firing a bullet or removing the obstacle by installing a bomb. See Appendix D.4,
Appendix D.5, Appendix D.6 for more details of MiniGrid, DeepMind Lab, and Atari respectively.

3GoalLarge task corresponds to the Sparse task in Savinov et al. [2018b], and our Figure 6.3 reproduces the result
reported.
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Baselines. We compared our methods with four baselines: PPO [Schulman et al., 2017], episodic
curiosity (ECO) [Savinov et al., 2018b], intrinsic curiosity module (ICM) [Pathak et al., 2017],
and GT-Grid [Savinov et al., 2018b]. The PPO is used as a baseline RL algorithm for all other
agents. The ECO agent is rewarded when it visits a state that is not reachable from the states in
episodic memory within a certain number of actions; thus the novelty is only measured within
an episode. Following Savinov et al. [2018b], we trained RNet in an off-policy manner from the
agent’s experience and used it for our SPRL and ECO on MiniGrid (Section 6.5.2), DeepMind
Lab (Section 6.5.3) and Atari (Section 6.5.4). The GT-Grid agent has access to the agent’s (z,
y) coordinates. It uniformly divides the world in 2D grid cells, and the agent is rewarded for
visiting a novel grid cell. The ICM agent learns a forward and inverse dynamics model and uses
the prediction error of the forward model to measure the novelty. We used the publicly available
codebase [Savinov et al., 2018b] to obtain the baseline results. We used the same hyperparameter
for all the tasks for a given domain — the details are described in the Appendix. We used the

standard domain and tasks for reproducibility.

6.5.2 Results on MiniGrid

Figure 6.2 shows the performance of all the methods on MiniGrid domain. SPRL consistently
outperforms all the baseline methods over all tasks. We observe that exploration-based methods (i.e.,
ECO, ICM, and GT-Grid) perform similarly to the PPO in the tasks with small state space (e.g.,
FourRooms-7x7 and KeyDoors-7x7). However, SPRL demonstrates a significant performance gain

since it improves the exploitation by avoiding sub-optimality caused by taking a non-shortest-path.

6.5.3 Results on DeepMind Lab

Figure 6.3 shows the performance of all the methods on DeepMind Lab tasks. Overall, SPRL
achieves superior results compared to other methods. By the task design, the difficulty of exploration
increases in the order of GoalSmall, ObjectMany, and GoalLarge tasks, and we observe a coherent
trend in the result. For harder exploration tasks, the exploration-based methods (GT-Grid, ICM
and ECO) achieve a larger improvement over PPO: e.g., 20%, 50%, and 100% improvement in
GoalSmall, ObjectMany, and GoalLarge, respectively. As shown in Lemma 9, SPRL is expected
to have larger improvement for larger trajectory space and sparser reward settings. We can verify
this from the result: SPRL has the largest improvement in GoalLarge task, where both the map
is largest and the reward is most sparse. Interestingly, SPRL even outperforms GT-Grid which
simulates the upper-bound performance of novelty-seeking exploration method. This is possible
since SPRL improves the exploration by suppressing unnecessary explorations, which is different

from novelty-seeking methods, and also improves the exploitation by reducing the policy search
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Figure 6.5: (Left) 7x7 Tabular four-rooms domain with initial agent location (red) and the goal
location (green). (Right) The trajectory space reduction ratio (%) before and after constraining the
trajectory space for various k£ and At with k-SP constraint. Even a small &k can greatly reduce the
trajectory space with a reasonable tolerance At.

(a) Random (b) GT-UCB (c) SPRL (d) SPRL+Reward

Figure 6.6: Transition count maps for baselines and SPRL: (a), (b), and (c) are in reward-free while
(d) is in reward-aware setting. In reward-free settings (a-c), we show rewarding states in light green
only for visualization purpose, but the agent does not receive rewards from the environment. The
location of agent’s initial state (orange) and rewarding states (dark green) are fixed. The episode
length is limited to 500 steps.

6.5.4 Results on Atari

One of the main challenges in Atari is the distribution shift in the state space within a task. Unlike
MiniGrid and DeepMind Lab, many Atari tasks involve the transition between different rooms in
each of which the agent observes significantly different set of states. This induces an instability
in the RNet training; RNet often overfits to the initial room and performs poorly when the agent
navigates to the different rooms. To mitigate this problem, we added the weight decay for the RNet

training. For other technical details, please refer to Appendix D.6.3.

65



Figure 6.4 summarizes the performance of all the methods on Atari tasks. SPRL outperforms
all the baseline methods on five out of six tasks except for Ms.Pacman, which is a dense reward
task. We note that other exploration methods, ICM and ECO, also perform poor on this task.
For the sparse reward task, especially in Montezuma’s Revenge, SPRL achieves the performance
comparable to the SOTA exploration methods such as RND [Burda et al., 2018] (1000 score at S0M
steps with 32 parallel environments. SPRL used 12 parallel environments.) and SOTA exploitation
methods such as SIL [Oh et al., 2018] (2500 score at 50M steps). Lastly, SPRL achieves the largest
improvement to the PPO in non-navigational tasks (Gravitar, Seaquest, HERO). This verifies that
our k-SP constraint is not limited to just the geometric path but can be applied to any general

trajectory, or a sequence of state transitions, in MDP.

6.5.5 Quantitative Analysis on k-SSP Constraint

In this section, we numerically evaluate the effect of our k-shortest path constraint in tabular-RL
setting. Specifically, we study the following questions: (1) Does the £-SP constraint with larger k
results in more reduction in trajectory space? (i.e., validation of Lemma 9) (2) How much reduction
in trajectory space does k-SP constraint provide with different k& and tolerance At?

We implemented a simple tabular 7x7 four-rooms domain where each state maps to a unique
(x,y) location of the agent. The agent can take up, down, left, right primitive actions to move to
the neighboring state, and the episode horizon is set to 14 steps. The goal of the agent is reaching
to the goal state, which gives +1 reward and terminates the episode. We computed the ground-
truth distance between a pair of states to implement the k-shortest path constraint. We used the
ground-truth distance function instead of the learned RNet to implement the exact SPRL agent.

Figure 6.5 summarizes the reduction in the trajectory space size. We searched over all possible
trajectories of length 14 using breadth-first-search (BFS). Then we counted the number of trajectories
satisfying our k-SP constraint with varying parameters k and tolerance At and divided by total
number of trajectories (i.e., 4'* = 268M). The result shows that our k-SP constraint drastically
reduces the trajectory space even in a simple 2D grid domain; with very small £ = 3 and no
tolerance At = 2, we get only 24 /268M size of the original search space. As we increase k, we can
see more reduction in the trajectory space, which is consistent with Lemma 9. Also, increasing the

tolerance At slightly hurts the performance, but still achieves a large reduction

6.5.6 Qualitative Analysis on MiniGrid

We qualitatively studied what type of policy is learned with the k-SP constraint with the ground-truth
RNet in NineRooms domain of MiniGrid. Figure 6.6 (a-c) shows the converged behavior of SPRL
(k = 15), the ground-truth count-based exploration [Lai and Robbins, 1985] agent (GT-UCB) and
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uniformly random policy (Random) in a reward-free setting. We counted all the state transitions
(sy — sy11) of each agent’s roll-out and averaged over 4 random seeds. Random cannot explore
further than the initial few rooms. GT-UCB seeks for a novel states, and visits all the states
uniformly. SPRL learns to take a longest possible shortest path, which results in a “straight” path
across the rooms. Note that this only represents a partial behavior of SPRL, since our cost also
considers the existence of non-zero reward (see Equation (6.7)). Thus, in (d), we tested SPRL while
providing only the existence of non-zero reward (but not the reward magnitude). SPRL learns to
take a shortest path between rewarding and initial states that is consistent with the shortest-path

definition in Definition 8.

6.6 Discussion

We presented the k-shortest-path constraint, which can improve the sample-efficiency of any model-
free RL method by preventing the agent from taking sub-optimal transitions. We empirically
showed that SPRL outperforms vanilla RL and strong novelty-seeking exploration baselines on
three challenging domains. We believe that our framework develops a unique direction for improving
the sample efficiency in reinforcement learning; hence, combining our work with other techniques
for better sample efficiency will be an interesting future work that could benefit many practical
tasks.
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CHAPTER 7

Learning Factored Task Structure
for Generalization to Unseen Entities

Real world tasks are hierarchical and compositional. Solving these tasks efficiently requires long
horizon planning and reasoning. We propose to tackle this problem in a few-shot RL setting — in an
adaptation phase, an agent must first explore the environment to infer the latent hierarchical and
compositional structure. Then in a test phase, the agent uses this latent information to maximize
reward in the test environment. We formulate predicate subtask graph inference (PSGI), a method
for inferring the latent predicate subtask graph of the environment, which models preconditions and
dependencies of subtasks in a first order logic manner. We infer subtasks with predicate (symbolic)
form (e.g pickup X) as nodes in a graph structure. To facilitate this, we learn parameter attributes
in a zero-shot manner, which are used to differentiate the structure of predicate subtasks (e.g.
fpickame(X )). We show this approach accurately learns the latent structure on hierarchical and
compositional tasks more efficiently than prior work, and show PSGI can generalize by modelling

structure on subtasks unseen during adaptation.

7.1 Introduction

Real world tasks are hierarchical. Hierarchical tasks are composed of multiple sub-goals that must
be completed in certain order. For example, the cooking task shown in Figure 7.1 requires an agent
to boil some food object (e.g. Cooked egg). An agent must place the food object = in a cookware
object y, place the cookware object on the stove, before boiling this food object x. Parts of this
task can be decomposed into sub-goals, or subtasks (e.g. Pickup egg, Put egg on pot).
Solving these tasks requires long horizon planning and reasoning ability Erol [1996], Xu et al.
[2017], Ghazanfari and Taylor [2017], Sohn et al. [2018]. This problem is made more difficult of
rewards are sparse, if only few of the subtasks in the environment provide reward to the agent.
Real world tasks are also compositional Carvalho et al. [2020], Loula et al. [2018], Andreas et al.
[2017], Oh et al. [2017]. Compositional tasks are often made of different “components” that can
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recombined to form new tasks. These components can be numerous, leading to a combinatorial
number of subtasks. For example, the cooking task shown in Figure 7.1 contains subtasks that
follow a verb-objects structure. The verb Pickup admits many subtasks, where any object z
composes into a new subtask (e.g. Pickup egg, Pickup pot). Solving compositional tasks
also requires reasoning Andreas et al. [2017], Oh et al. [2017]. Without reasoning on the relations
between components between tasks, exploring the space of a combinatorial number of subtasks is
extremely inefficient.

In this work, we propose to tackle the problem of hierarchical and compositional tasks. Prior
work has tackled learning hierarchical task structures by modelling dependencies between subtasks
in a graph structure Sohn et al. [2018, 2020], Xu et al. [2017], Huang et al. [2018]. In these settings,
during training, the agent tries to efficiently adapt to a task by inferring the latent graph structure,
then uses the inferred graph to maximize reward during test. However, this approach does not scale
for compositional tasks. Prior work tries to infer the structure of subtasks individiually — they do
not consider the relations between compositional tasks.

We propose the factored subtask graph inference (FSGI) approach for tackling hierarchical and
compositional tasks. We present an overview of our approach in Figure 7.1. This approach extends
the problem introduced by Sohn et al. [2020]. Similar to Sohn et al. [2020], tasks are defined as
factored MDPs Jonsson and Barto [2006], Boutilier et al. [1995], and we assume options Sutton et al.
[1999b] (low level policies) for completing subtasks have been trained or are given as subroutines
for the agent. These options are imperfect, and require certain conditions on the state to be meet
before they can be successfully executed. We model the problem as a transfer RL problem. During
training, an exploration policy gathers trajectories. These trajectories are then used to infer the
latent factored subtask graph, G. G models the hierarchies between compositional tasks and options
in symbolic graph structure (shown in 7.1). In FSGI, we infer the preconditions of options, subtasks
that must be completed before an option can be successfully executed, and the effects of options,
subtasks that are completed after they are executed. The factored subtask graph is then used to
maximize reward in the test environment by using GRProp, a method introduced by Sohn et al.
[2018] which propagates a gradient through G to learn the test policy.

In FSGI, we model using factored options and subtasks. This allows FSGI to infer the latent
hierarchical and compositional structure in a first order logic manner. For example, in the cooking
task environment in Figure 7.1 we represent all P i ckup-object options using a factored option,
Pickup z. Representing options and subtasks in factored form serves two roles: 1. The resulting
graph is more compact. There is less redundancy when representing compositional tasks that share
common structure. Hence a factored subtask graph requires less samples to infer (e.g. relations for
Pickup apple,Pickup pan, etc. are inferred at once with a factored option Pickup z). and

2. The resulting graph can generalize to unseen subtasks, where unseen subtasks may share similar
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Inferred predicate subtask graph I?G
Inferred parameter attributes Aatt = fpickupable: fislocation ---

Figure 7.1: We present an overview of factored subtask graph inference (FSGI) in a toy cooking
environment. In various tasks, the agent must cook various foods to receive reward. Left: The
adaptation policy wadapt initially explores the cooking source task (training), generatmg a trajectories
Ti,...,Tx. Middle: Using 71, ..., 7k, the agent infers a factored subtask graph g of the environ-
ment, which describes the preconditions and effects between factored options and subtasks using
(z and y) over entities (objects in the environment). The agent learns a set of parameter attributes
(Aatt fpickapable - - - ) 1N @ zero-shot manner and uses these attributes to construct G. Right: The
agent initializes a separate test policy Wtes‘ that maximizes reward by following the inferred factored

subtask graph G. In this target env1ronment (test) there exist unseen parameters (cabbage and meat).
Preconditions and effects for these parameters are accurately inferred by substituting for entities (z
and y).
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structure but are not encountered during adaptation (e.g. Pickup cabbage in Figure 7.1).

To enable factored representation, we also learn the attributes of the components in the composi-
tional tasks. These attributes are used to indicate differences in the structures of factored options
and subtasks. For example, in the cooking task in Figure 7.1, not every object can be picked up
with Pickup, so the inferred attribute fpickupable(x) is a precondition to Pickup(x). Similarly, in
a more complex cooking task, some object x may need to be sliced, before it can be boiled (e.g.
cabbage), but some do not (e.g. egg). We model these structures using parameter attributes, Ay (in
the cooking task case objects are parameters). We present a simple scheme to infer attributes in a
zero-shot manner, where we infer attributes that are useful to infer relations between parameters
without supervision. These attributes are then used to generalize to other parameters (or entities),
that may be unseen during adaptation.

We summarize our work as follows:

* We propose the approach of factored subtask graph inference (FSGI) to efficiently infer the

subtask structure of hierarchical and compositional tasks in a first order logic manner.

* We propose a simple zero-shot learning scheme to infer entity attributes, which are used to

relate the structures of compositional subtasks.

* We demonstrate FSGI on a symbolic cooking environment that has complex hierarchical
and compositional task structure. We show FSGI can accurately infer this structure more

efficiently than prior work and generalize this structure to unseen tasks.

7.2 Problem Definition

7.2.1 Background: Transfer Reinforcement Learning

A task is characterized by an MDP My = (A, S, T¢, R¢), which is parameterized by a task-
specific G, with an action space 4, state space S, transition dynamics 7, and reward function
R¢. In the transfer RL formulation Duan et al. [2016], Finn et al. [2017], an agent is given a fixed
distribution of training tasks M"4" and must learn to efficiently solve a distribution of unseen test
tasks M. Although these distributions are disjoint, we assume there is some similarity between
tasks such that some learned behavior in training tasks may be useful for learning test tasks. In each
task, the agent is given k timesteps to interact with the environment (the adaptation phase), in order
to adapt to the given task. After, the agent is evaluated on its adaptation (the test phase). The agent’s

performance is measured in terms of the expected return:

H
RMG = Eﬂ‘k,./\/lg Z Tt (71)
t=1
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where 7 is the policy after k timesteps of the adaptation phase, H is the horizon in the test phase,

and r; is the reward at time ¢ of the test phase.

7.2.2 Background: The Subtask Graph Problem

The subtask graph inference problem is a transfer RL problem where tasks are parameterized by
hierarchies of subtasks Sohn et al. [2020], . A task is composed of IV subtasks, { ol ... BN }C o,
where each subtask ® € ® is parameterized by the tuple (Scomp, Gr), a completion set Seomp C S,
and a subtask reward G, : S — R. The completion set S¢omp denotes whether the subtask & is
complete, and the subtask reward G, is the reward given to the agent when it completes the subtask.

Following Sohn et al. [2020], we assume the agent learns a set of options O = {O!, 0% ...}
that execute different subtasks Sutton et al. [1999b]. These options can be learned by conditioning
on subtask goal reaching reward: 7, = I(s; € Sf,,,)- Each option O € O is parameterized by the
tuple (7, Gprec, Gefrect) . There is a trained policy 7 corresponding to each O. These options may be
eligible at different precondition states Gp.c C S, where the agent must be in certain states when
executing the option, or the policy 7 fails to execute (also the initial set of O following Sutton et al.
[1999b]). However, unlike Sohn et al. [2020], these options may complete an unknown number of
subtasks (and even uncomplete subtasks). This is parameterized by Gegecy C S (also the termination
set of O following Sutton et al. [1999b]).

Environment: We assume that the subtask completion and option eligibility is known to the agent.
(But the precondition, effect, and reward is hidden and must be inferred). In each timestep ¢ the

agent is the state s; = {7y, €, Step;, S€P ypye ¢, ODSt J-

 Completion: z; € {0,1}" denotes which subtasks are complete.

Eligibility: ¢; € {0, 1}* denotes which options are eligible.

Time Budget: step, € Z- is the number steps remaining in the episode.

Adaptation Budget: step,;,,..; € Z~o is the number steps remaining in the adaptation phase.

Observation: obs; € R? is a low level observation of the environment at time t.

7.2.3 The Factored Subtask Graph Problem

Subtasks and Option Entities In the real world, compositional subtasks can be described in terms
of a set of entities, £. (e.g. pickup, apple, pear, --- € £) that can be recombined to form new

subtasks (e.g. (pickup, apple), and (pickup, pear)). We assume that these entities are given
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to the agent. Similarly, the learned options that execute these subtasks can also be parameterized by
the same entities (e.g. [pickup, apple], and [pickup, pear])).

In real world tasks, we expect learned options with entities that share “attributes” to have similar
policy, precondition, and effect, as they are used to execute subtasks with similar entities. For
example, options [pickup, apple], and [pickup, pear] may share the same policy, where the
policy’s motor control is the same but has a different target entity (apple or pear). apple and pear
share the same attribute pickupable; they are both entities that can be picked up. In another example,
options [cook, egg, pot] and [cook, cabbage, pot] share similar preconditions (the target
ingredient must be placed in the pot), but also different (cabbage must be sliced, but the egg does
not). In this example, egg and cabbage are both boilable entities, but egg is not sliceable.

To model these similarities, we assume in each task, there exist boolean latent attribute functions
which indicate shared attributes in entities. E.g. fpickapable : € — {0, 1}, where fyickapabie(@PpP1le) =
1. We will later try to infer the values of these latent entities, so we additionally assume there
exist some weak supervision, where a low-level embedding of entities is provided to the agent,
fentityembed 1 € — RP.

The Factored Subtask Graph Our goal is to infer the underlying task structure between subtasks
and options so that the agent may complete subtasks in an optimal order. As defined in the previous
sections, this task structure can be completely determined by the option preconditions, option effects,
and subtask rewards. As such we define the factored subtask graph to be the tuple of the factored

preconditions, effects, and rewards for all subtasks and options:

G = (Gpcond, Gefr, Gr) (7.2)
where
Gpeona + E x P(®) — {0,1} (7.3)
Getr : EN x P(®) — P(®) (7.4)
G, : EN xP(®) — R (7.5)

The factored precondition, Gyeond, 1S @ function from an option with N entities and a subtask
completion set to {0, 1}, which specifies whether the option is eligible under a completion set. E.g.
If Gpeona ([ X1, Xo], {®!, ®?}) = 1, then option [ X, X,] is eligible if ' and $? are complete. The
factored effect, G, is a function from an option with N entities and subtask completion set to a
different completion set. E.g. If G ([ X1, X, {®!, @%}) = {®!, ®3}, then executing an option with
parameters [ X, X, on a state with subtask completion {®!, ®?} completes > and uncompletes
d2, Finally, the factored reward, G,, is a function from a subtask with N entities to the reward given
to the agent from executing that subtask.

Our previous assumption that options with similar entities and attributes share preconditions
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and effects manifests in Gycong and Gy where these functions tend to be smooth. Similar inputs
to the function (similar option entities) tend to yield similar output (similar eligibility and effect
values). This smoothness gives two benefits. 1. We can share experience between similar options
for inferring preconditions and effect. 2. This enables generalization to preconditions and effects
of unseen entities. Note that this smoothness does not apply to the reward G,. We assume reward
given for subtask completion is independent across tasks.

In our experiments, we assume the first entity of every subtask and option serves as a “verb”
entity (e.g. pickup, cook, etc.). We assume there is there is no shared structure across subtasks

and options with different verbs.

7.3 Method

We propose the Factored Subtask Graph Inference (FSGI) method to efficiently infer the latent
factored subtask graph G = (Gycond, Gerr, Gr). Figure 7.2 gives an overview of our approach. At
a high level, we use the adaptation phase to gather adaptation trajectories from the environment

using an adaptation policy W;dapt. Then, we use the adaptation trajectories to infer the latent subtask
test
g

maximizes the reward. As the performance of the test policy is dependent on the inferred subtask

graph G. In the test phase, a test policy 5% is conditioned on the inferred subtask graph G and
graph G, itis important to accurately infer this graph. Note that the test task may contain subtasks
that are unseen in the training task. We learn a predicate subtask graph G that can generalize to

these unseen subtasks and options.

7.3.1 Zero-shot Learning Entity Attributes

Recall from Section 7.2.3 that we assume there exist latent attributes that indicate shared structure
between options and subtasks with the same attributes. E.g. One attribute may be fpickapabie :
& — {0,1}, where fyickapabie(@apple) = 1, etc. Our goal is to infer a set of candidate attribute
functions, flan = { fl, fQ, ... }, such that options with the same attributes indicates the same
preconditions. As there is no supervision involved, we formulate this inference as a zero shot
learning problem Palatucci et al. [2009]. Note the inferred attributes that are preconditions for
options should not only construct an accurate predicate subtask graph for options seen in the
adaptation phase, but also unseen options.

During the adaptation phase, the agent will encounter a set of seen entities £ C £. We construct
candidate attributes from £ using our smoothness assumption, where similar entities result in
similar preconditions. We generate candidate attributes based on similarity using the given entity

embedding, fenityembed : € — RP.
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Agent Augmented Decision tree of Dy Precondition of Dy

traiectory _ predicate trajectory 0> 0
. Xaug e D
C T AuA,BoB, | CoCiDoDyE,  Option ABf(0g0) | Dy CART T F Logic X ___
0| 0000 11100 —> 5000 1 ——>[Dx=0][Ax>0] = f(X)Ax
1| 1000 11100 Dy 1000 , train = T expression 4+ f(X)Axg(X)
2| 1010 11101 =
: : ; 1010 0 [90)>0] [Dx=1]
H| 1111 11111 5 : F_— 1T
1110 1 |DX=0| |DX=1|

(a) Factored Precondition Inference via inductive logic programming. We run precondition inference for every
option and show Dx as an example. 1. The first table is built from the agent’s trajectory (z is the subtask
completion, e the option eligibility). 2. We build the second table, the “augmented” trajectory by substituting
X into all possible subtask completions, Ax, Bx, and inferred attributes f, g. 3. We train a decision tree
over the table, to infer the relation z,,, — D,.. 4. We translate the decision tree into an equivalent predicate
boolean expression, which is one part of the inferred factored subtask graph G.

Agent Augmented cect of D
trajectory predicate trajectory Effect of Dy
) x x Subtask
t L (el Ot |Xtaug |Xt+1.aug i
FT T AABoB [ 40diBob; Option Lt Completion
0[C; | 0000 | 0010 = D1 a8 | oi Dy Alr  x
1|Dy | 1000 | 1000 Dy Dy | 11| 11 —=> x= 4 Teang e+1aug)
2| Cy 1010 1011 Dy 10 11 - Px
H|c, | 1111 1111 D'X 1 1

(b) Factored Effect Inference. We run effect inference for every option and Dx as an example. 1. The
first table is built from the agent’s trajectory (x¢, o; is the subtask completion and option executed at time
t). 2. We build the second table, the “augmented” trajectory by substituting X into all possible subtask
completions, Ax, Bx, and restricting the table to only row where o, = Dx. 3. We infer option dynamics,
(z¢,0¢) — m41, by calculating the simple aggregated difference between subtask completion before and
after Dx, A(Z¢ augs Tt+1,aug)-

Figure 7.2: An overview of our approach for estimating the factored subtask graph Gina simple
environment with subtasks A, B and options C, D, E. Each subtask and option has a parameter
0 or 1. Note by inferring the factored precondition and effects, we can infer the behavior unseen
subtasks and options such as Ds.
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Let C' = {C1, (5, ... } be an exhaustive set of clusters generated from £ using fenityembed. Then,

we define a candidate attribute function from each cluster.
(X)) =1[X € ¢} (7.6)

To infer the attribute of an unseen entity X ¢ F, we use a 1-Nearest Neighbor classifier that

uses the attributes of the nearest seen entity Fix [1985].
fi(X) =1[X* € C] (7.7)

where X* = arg min y, . ; distance( fenttyembed (X ), fentityembed (X))-

7.3.2 Factored Subtask Graph Inference

p!

Let 7y = {s1,01,71,d1, ..., sy} be the adaptation trajectory of the adaptation policy F;da " after

H time steps. Our goal is to infer the maximum likelihood factored subtask graph G given this
trajectory 7.
GMLE

= arginax p(TH‘ngOHd7 geff; gr) (78)
gpcond 7geff 5 Gr

We can expand the likelihood term as:

p(TH|ng0nd7 geffa gr) (79)
H

= p(3|gpcond7 geff) H 7T6(0t|7t)29(3t+1|8t, Ot, gpconda geff)p(rt|3ta Ot, gr)p(dt|3t7 Ot) (7.10)
t=1
H

X p(3|gpcond7 gef‘f) Hp(st—i-l |St, Ot, gpconda geff)p(rt‘sh O¢, geff’ gr) (71 1)
t=1

where we dropped terms independent of G. From section 7.2.2 and 7.2.3, the predicate precondition
Gpeond determines the mapping from completion x to option eligibility e, z —> e, the predicate effect
Gefr determines the mapping from completion and option to completion, (x¢, 0) — x1, and finally,

the predicate reward G, determines the reward given when a subtask is completed at time ¢. Then,

we can define the MLE as:
PG — (ot ME, G (7.12)
H H
= ( arg max Hp(et|xt, Gpcond ), AT Max H p(xii1|Te, 01, Getr), (7.13)
Gpeond  3—1 Gett 34
H
arggmax Hp(rt|0t7 Ot41, gr)) (7.14)
T =1

Next, we explain how to compute Gpcond, Qeff, and Gr.
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Factored Precondition Inference via Predicate Logic Induction We give an overview of how
we infer the option preconditions Qpcond in Figure 7.2a. Note from the definition from 7.2.3, we can
view the precondition Gycona as a deterministic function, fg ., : (E,z) — {0, 1}, where E is the
option entities, and x is the completion set vector. Hence, the probability term in Eq.(7.13) can
be written as p(e;| ¢, Gpeona) = [ |1y ]I[egi) = fg,ma (B, ;)] where I is the indicator function, and

E© is the entity set of the ith option in the given task. Thus, we have

H N
e = argmax [ [ [ Tlet” = fopums (ED, 2)] (7.15)

gpcond t=1 =1

Following Sohn et al. [2020], this quantity can maximized by finding a boolean function fgpwn .
over only subtask completions x; that satisfies all the indicator functions in Eq.(7.15). However this
yields multiple possible solutions — particularly the preconditions of unseen option entities in the
trajectory 7. If we infer a boolean function separately over all seen options (without considering
the option parameters), this solution is identical to the solution proposed by Sohn et al. [2020]. We
want to additionally generalize our solution over multiple unseen subtasks and options using the
entities, F.

We leverage our smoothness assumption — that fgpcon . 18 smooth with respect to the input entities
and attributes. E.g. If the inferred precondition for the option [pickup, X] is the candidate attribute
f (X), any entity X where f (X) = 1 has the same precondition. I.e. For some unseen entity set £*

we want the following property to hold:
fi(B) = fi(E") forsome i = fg . (E,2)) = fo..(E* %) (7.16)

To do this, we infer a boolean function fg;mnd over both subtask completions z; and entity
variables X € F. We use (previously inferred) candidate attributes over entities, fZ(X WX € Ein
the boolean function to serve as quantifiers. Inferring in this manner insures that the precondition
function fgpcon . 1s smooth with respect to the input entities and attributes. Note that some but not
all attributes may be shared in entities. E.g. [cook, cabbage] has similar but not the same
preconditions as [cook, egg]. So, we cannot directly reuse the same preconditions for similar
entities. We want to generalize between different combinations of attributes.

We translate this problem as an inductive logic programming (ILP) problem Muggleton and
De Raedt [1994]. We infer the eligibility (boolean output) of some option O with some entities(s)
E = {X1, X,,...}, from boolean input formed by all possible completion values {z}, and
all attribute values { f;(X)}icl;. We use the classification and regression tree (CART) with Gini

impurity to infer the the precondition functions fgp for each parameter £/ Breiman [1984]. Finally,

cond

the inferred decision tree is converted into an equivalent symbolic logic expression and used to
build the factored subtask graph.
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Factored Effect Inference We give an overview of how we infer the option effects Gerr in
Figure 7.2b. From the definitions from section 7.2.3, we can write the predicate option effect G as
a deterministic function fg, : (E, z;) — x441, Where if there is subtask completion z;, executing
option O (with entities F) successfully results in subtask completion x;,;. Similar to precondition
inference, we have
H N
GMLE _ arggiiaxg HH[IHI = fo (B, x,)] (7.17)

As this is deterministic, we can calculate the element-wise difference between x; (before option)

and ;4 (after option) to infer fg_,.
f&eff(E(i)’ 2) =2+ By g[ti1 — 2o, = O] (7.18)

Similar to precondition inference, we also want to infer the effect of options with unseen

parameters. We leverage the same smoothness assumption:
fi(E) = fi{(E") for some i = fo.(E,x,) = fo.(E*,x) (7.19)

Unlike preconditions, we expect the effect function to be relatively constant across attributes, i.e.,
the effect of executing option [cook, X] is always completing the subtask (cooked, X'), no matter
the attributes of X. So we directly set the effect of unseen entities, féeff(E*, xt), by similarity

according to Equation 7.19.

Reward Inference We model the subtask reward as a Gaussian distribution G,.(F) ~ N (fig, 6.
The MLE estimate of the subtask reward becomes the empirical mean of the rewards received
during the adaptation phase when subtask with parameter 7 becomes complete. For the ith subtask
in the task with entities E",

Go(EY) = figi = By _y[ri]at,, — 2t = 1] (7.20)

Note we do not use the smoothness assumption for QAT(E), as we assume reward is independently

distributed across tasks. We automatically set QT(E *) = 0 for unseen subtasks with entities £*.

7.3.3 Task Transfer and Adaptation

In the test phase, we instantiate a fest policy 75" using the inferred factored subtask graph Qprior,

inferred from samples gathered from the trainigrplr:;r task. The goal of the test policy is to maximize
reward in the test environment using C;prior. As we assume the reward is independent across tasks,
we re-estimate the reward of the test task according to Equation 7.20, without task transfer. With the
reward inferred, this yields the same problem setting given in Sohn et al. [2018]. Sohn et al. [2018]
tackle this problem using GRProp, which models the subtask graph as differentiable function over

reward, so that the test policy has a dense signal on which options to execute are likely to maximally
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increase the reward.
However, the inferred factored subtask graph may be imperfect, the inferred precondition and
effects may not transfer to the test task. To adapt to possibly new preconditions and effects, we

use samples gathered in the adaptation phase of the test task to infer a new factored subtask graph
tgst
~ gtes
to eventually be more accurate than G, as more timesteps are gathered in the test environment.

Qtest, which we use to similarly instantiate another test policy 75* using GRProp. We expect Qtest
t

Though, early on, Gprior may be more accurate.

test

To maximize performance on test, we thus choose to instantiate a posterior test policy . ior

which is an ensemble policy over mz" and ms" . We heuristically set the weights of ., tO
prior test
test

favor m 5 early in the test phase, and wtg?“ later in the test phase.

prior test

7.4 Related Work

Subtask Graph Inference. The subtask graph inference (SGI) framework Sohn et al. [2018,
2020] assumes that a task consists of multiple base subtasks, such that the entire task can be solved
by completing a set of subtasks in the right order. Then, it has been shown that SGI can efficiently
solve the complex task by explicitly inferring the precondition relationship between subtasks in the
form of a graph using an inductive logic programming (ILP) method. The inferred subtask graph is
in turn fed to an execution policy that can predict the optimal sequence of subtasks to be completed
to solve the given task.

However, the proposed SGI framework is limited to a single task; the knowledge learned in one
task cannot be transferred to another. This limits the SGI framework such that does not scale well
to compositional tasks, and cannot generalize to unseen tasks. We extend the SGI framework by
modeling factored subtasks and options, which encode relations between tasks to allow efficient and
general learning. In addition, we generalize the SGI framework by learning an effect model — In the
SGI framework it was assumed that for each subtask there is a corresponding option, that completes
that subtask (and does not effect any other subtask). This assumption is unrealistic when there
options must also be parameterized in the combinatorial task structure, and there exist subtasks that

cannot be completed without un-completing another (e.g. Pickup and Place in Figure 7.1).

Compositional Task Generalization. Prior work has also tackled compositional generalization
in a symbolic manner Loula et al. [2018], Andreas et al. [2017], Oh et al. [2017]. Loula et al.
[2018] test compositional generalization of natural language sentences in recurrent neural networks.
Andreas et al. [2017], Oh et al. [2017] tackle compositional task generalization in an instruction
following context, where an agent is given a natural language instruction describing the task the

agent must complete (e.g. “pickup apple”). These works use analogy making to learn policies that
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can execute instructions by analogy (e.g. “pickup X ). However, these works construct policies on
the option level — they construct policies that can execute “pickup X on different X values. They
also do not consider hierarchical structure for the order which options should be executed (as they
are given the option order through instruction). Our work aims to learn these analogy-like relations
at a between-options level, where certain subtasks and options must be completed before another

option can be executed.

Classical Planning. At a high level, a factored subtask graph G is equivalent to a STRIPS
planning domain Fikes and Nilsson [1971] with an attribute model add-on Frank and Jonsson
[2003]. Operators in STRIPS correspond to options in G. The symbolic state space in STRIPS
corresponds to subtask completion in G. Arguments to operators and states are similar to parameters
in G. Most work in classical planning focuses on how to use a domain specification to instantiate a
solution plan, equivalent to our reward maximization phase. A viable option FSGI is to replace our
test policy with a classical planner using our inferred factored subtask graph.

Prior work in classical planning has proposed to learn STRIPS domain specifications (action
schemas) through given trajectories (action traces) Sudrez-Herndndez et al. [2020], Mehta et al.
[2011], Walsh and Littman [2008], Zhuo et al. [2010]. Our work differs from these in 3 major
ways: 1. FSGI learns an attribute model, which is crucial to generalizing compositional tasks with
components of different behaviors. 2. We evaluate FSGI on more hierarchical domains, where
prior work has evaluated on pickup-place/travelling classical planning problems, which admit flat
structure. 3. We evaluate FSGI on generalization, where there may exist subtasks and options that

are not seen during adaptation.

7.5 Experiments

We aim to answer the following questions:

1. Can PSGI generalize to unseen evaluation tasks in zero-shot manner by transferring the

inferred the latent task structure?

2. Does PSGI efficiently infers the latent task structure compared to prior work (MSGI Sohn
et al. [2020])?

3. Can PSGI generalize to unseen subtasks with unseen entities using the inferred attributes?
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Figure 7.3: (Top) the inferred factored subtask graph PG by PSGI and (bottom) the inferred
subtask graph G by MSGIT after 2000 timesteps in the Cooking environment. For MSGI™, 262
options with no inferred precondition and effect were not visualized for readability. Options are
represented in rectangular nodes. Subtask completions and attributes are are in oval nodes. A solid
line represents a positive precondition / effect, dashed for negative.
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7.5.1 Environment

We evaluate PSGI in a novel symbolic environment, Cooking and Mining. An example of the
simplified Cooking task is shown in Figure 7.1. For each environment, we manually define the
factored subtask graph in terms factored subtasks, options, and attributes in first-order logic form.
Then, the subtask graph can be built by replacing each predicate with a set of task-specific entities.
Each task is randomized by randomly sampling the entities from the entity pool. The entity pool for
training and evaluation tasks are different such that the agent should be able to generalize to unseen
entities to solve the evaluation tasks in zero-shot setting.

Tasks. Cooking environment has a pool of 22 entities and 10 entities are chosen at random for
each task. Then, the subtasks and options are populated by replacing the parameters in factored
subtasks and options by the sampled entities; e.g., we replace X and Y in the factored subtask
(pickup, X, Y) by{apple, cabbage, table} topopulate nine subtasks. This results
in around 320 options and 100 subtasks. The ground-truth attributes are also predefined in the
templates, but is not available to the agent. Similarly for Mining, we randomly sample 12 entities
from a pool of 18 entities and populate around 180 subtasks and 180 options for each task. The
reward is assigned at random to one of the subtasks that have the largest critical path length, where
the critical path length is the minimum number of options to be executed to complete each subtask.

Observations. At each time step, the agent observes the completion and eligibility vectors
(see Section 7.2.2 for definitions) and the embeddings of corresponding subtasks and options. The
subtask and option embeddings are the concatenated vector of the embeddings of its entities; e.g.,
for pickup, apple, table the embedding is [f(pickup), f(apple), f(table)] where
f(+) can be an image or language embeddings. For Mining and Cooking environment, we choose
to use 50 dimensional GloVE word embeddings from Pennington et al. [2014] as the embedding
function f(-).

7.5.2 Baselines

* MSGI" is the MSGI Sohn et al. [2020] agent modified to be capable of solving our Cooking
and Mining tasks. We augmented MSGI with an effect model, separate subtasks and options

in the ILP algorithm, and replace the GProp with our cyclic GRProp.

e RL? Duan et al. [2016] trains a recurrent model over the training tasks to quickly adapt to

given task as it is rolled out.

» HRL Andreas et al. [2017]" is the option-based hierarchical reinforcement learning agent. It

is an actor-critic model over the pre-learned options.

'In Andreas et al. [2017] this agent was referred as Independent model.
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* Random agent uniformly randomly executes any eligible option.

We meta-train RL? and FSGI on training tasks and meta-eval on evaluation tasks to test its
adaptation efficiency and generalization ability. We train HRL on evaluation tasks to test its
adaptation (i.e., learning) efficiency. We evaluate Random baseline on evaluation tasks to get a
reference performance. We use the same recurrent neural network with self-attention-mechanism so
that the agent can handle varying number of (unseen) parameterized subtasks and options depending

on the tasks.

7.5.3 Zero-/Few-shot Transfer Learning Performance

Zero-shot learning performance. Figure 7.4 shows the zero-shot and few-shot transfer learning
performance of the compared methods on Mining and Cooking domains. First, FSGI achieves
over 50 and 30% success rate on Cooking and Mining domain without observing any samples
(i.e., x-axis value = 0) in unseen evaluation tasks. This indicates that the factored subtask graph
effectively captures the shared task structure, and the inferred attributes generalizes well to unseen
entities in zero-shot manner. Note that MSGI', HRL, and Random baselines have no ability to
transfer its policy from training tasks to unseen evaluation tasks. We note that MSGI™ has no
mechanism for generalizing to the tasks with unseen entities.

Few-shot learning performance. In Figure 7.4, FSGI achieves over 90 and 80% success rate on
Cooking and Mining domains respectively after only 1000 steps of adaptation, while other baselines
do not learn any meaningful policy except MSGI™ in cooking environment. This demonstrates
that the factored subtask graph enables FSGI to share the experience of similar subtasks and
options (e.g., pickup X on Y for all possible pairs of X and Y) such that the sample efficiency is

increased by roughly the factor of number of entities compared to using subtask graph in MSGI*.

7.5.4 Comparison on Task Structure Inference

We ran FSGI and MSGI™ in the Cooking and Mining environment, inferring the latent subtask
graphs every 50 timesteps, for 2000 timesteps. The inferred graphs at 2000 timesteps are shown
in Figure 7.3. FSGI infers the factored graph using first-order logic, and thus it is more compact (XX
nodes and XX edges). On the other hand, MSGI™ infers the subtask graph without factoring out the
shared structure, resulting in non-compact graph with hundreds of subtasks and options. Moreover,
graph inferred by FSGI has 0% error in precondition and effect model inference. The graph inferred
by MSGI" has 38% error in the preconditions (the six options that MSGI™ completely failed

to infer any precondition are not shown in the figure for readability). The result shows that the
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Figure 7.4: The adaptation curve on Cooking and Mining domains in terms of success rate and
return.

factored graph can infer the task structure much more efficiently than the subtask graph by sharing

the experiences of different options using the factored options and subtasks.

7.5.5 Generalization of Attributes to the Unseen Entities

As described in section 7.3.1, (when attributes are not provided), we infer attributes from an
exhaustive powerset of all possible features on seen parameters. The attributes that are used for the
graph are then likely to be semantically meaningful, as the decision tree selects the most efficient
features. Hence, to test whether PSGI is generalizable, we can evaluate whether attributes are
accurately inferred for unseen parameters when only given the ground truth attributes on seen
parameters (given that PSGI will infer the ground truth for the seen parameters).

We measure the generalization error of PSGI if some “weak’ signal is provided through pa-
rameters. We suppose the word labels for options and subtasks are provided in Cooking. I.e.
the words for parameters “pickup”, “apple”, etc. are known. Then, we can infer low level (but

semantically meaningful) features from these words by using word embeddings to encode the
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Ground Truth Attribute | Accuracy (on unseen test entities)
isfood 95%
needslice 90%
iscookware 70%
isplace 75%
isboard 95%

Table 7.1: We evaluate the generalization accuracy of PSGI on unseen test entities in the Cooking
environment. For each ground truth attribute, we evaluate whether PSGI accurately labels the
unseen test entity correctly. There are 10 seen entities (training set), and 20 unseen entities (test set)
in the Cooking environment.

parameters Pennington et al. [2014]. We choose to use 50 dimensional GloVE word embeddings
from Pennington et al. [2014]. We then evaluate by measuring the accuracy of attributes for 20
additional unseen test parameters, all words related to kitchens and cooking. We show the results in
Table 7.1. From these results, we can extrapolate that at least 70% of edges (on unseen entities) in

the predicate subtask graph using these attributes are accurate.

7.6 Discussion

In this work we presented factored subtask graph inference (FSGI), a method for efficiently
inferring the latent structure of hierarchical and compositional tasks. FSGI also facilitates inference
of unseen subtasks during adaptation, by inferring relations using predicates. FSGI additionally
learns parameter attributes in a zero-shot manner, which differentiate the structures of different
predicate subtasks. Our experimental results showed that FSGI is more efficient and more general
than prior work. In future work, we aim to to tackle noisy settings, where options and subtasks

exhibit possible failures, and settings where the option policies must also be learned.
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CHAPTER 8

Discussion and Future Work

In this thesis, I have proposed a framework that incorporates the inductive logic model into a deep
reinforcement learning algorithm which enables sample-efficient learning and strong generalization.
I first formulated the subtask graph framework which formally defines the compositional structure
in the task in terms of the subtasks and their dependency, which is the precondition. Specifically,
we modeled the completion, eligibility, and reward of each subtask and defined the subtask graph
that characterizes all the subtasks in the task. Then, I developed a deep neural network-based
reinforcement learning model (i.e., NSGS) that can understand and solve any given (unseen) task
which can be represented as a subtask graph. Next, I extended this work to a few-shot reinforcement
learning setting where the agent is not given the subtask graph input. I proposed to incorporate the
inductive logic programming method for inferring the latent task structure from the agent’s trajectory,
which achieved a strong few-shot reinforcement learning performance in many challenging domains
such as StarCraft II. Subsequently, this work has been extended in two directions to further improve
the efficiency via modeling the prior and factored structure. For modeling the prior, I proposed the
policy mixing strategy for both adaptation and test policies which has been shown to be a simple
yet effective method to model the prior of multiple similar subtask graphs. Its effectiveness is
demonstrated on the web navigations tasks where the agent should execute a similar task (e.g.,
placing a shipping order) on different websites. For modeling the factored structure, I proposed to
model each subtask in terms of the entities and looked for the factored form of the subtask graph
where each factor can be replaced with a certain set of entities. I showed that such factored form
compactly captures the task structure and enables the knowledge sharing among similar subtasks
and achieves a stronger form of generalization toward unseen subtasks with unseen entities.

The proposed methods have strong benefits over the existing multi-task/meta-reinforcement
learning algorithms in terms of sample efficiency. This is due to the deterministic learning nature
of the logic induction module, which can in principle build a perfect prediction model for the data
after observing it only once. However, the subtask graph framework is limited in applicability due

to several assumptions it makes on the task structure and the environment. Though my efforts
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to develop more general subtask graph frameworks in my thesis, there are still many remaining
limitations that call for future work:

Noise in the observation:

The inductive logic algorithm assumes that the input data has no error. Since our task inference
module adopts the logic induction method, it is also limited to the environment in which states or
observation has no noise. In a real-world application, however, the observation inevitably involves
the sensor noise. Thus, it is crucial to develop an inductive logic algorithm robust to the input data
noise. In principle, the algorithm presented in Chapter 5 can handle the noisy state input. However,
it is designed mainly for handling the different subtask set between two arbitrary tasks, which may
not necessarily be the best model for handling noisy state input. To this end, the first research
problem to be tackled is to formally model the “noise” in the state space in the subtask graph
framework. From the formulated noise model, it would be an interesting direction to extend the
current decision tree-based logic induction method to a graph neural network-based model which
learns to correct the input data error from statistics.

Completion and eligibility of the subtask:

In all the works presented in this thesis, it is assumed that the completion (i.e., whether a subtask
is complete) and the eligibility (i.e., whether the precondition of a subtask is satisfied) of each
subtask are known to the agent. However, in a real-world scenario, such high-level information
may not be readily available. Thus, it would be an important and interesting direction to study
whether the agent can “discover” the subtasks and their completion and eligibility predictor from a
raw observation. In fact, from the connection between the subtask graph framework and the options
framework (See Chapter 3 and Chapter 4 for more detail), discovering the subtasks from the agent’s
trajectory can be seen as the hierarchical imitation learning problem [Le et al., 2018, Shiarlis et al.,
2018, Kipf et al., 2019, Gupta et al., 2019, Mandlekar et al., 2020]. The main difference between
the subtask graph framework and the options framework is the assumption that the precondition
can be defined in terms of the completion of other subtasks, which should be incorporated into the
existing hierarchical imitation learning algorithms. Considering the recent advances [Kipf et al.,
2019, Mandlekar et al., 2020] in hierarchical imitation learning methods, I foresee that the subtask
can be discovered from the agent’s observation in a self-supervised manner from the temporal and

visual saliency information.
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APPENDIX A

Multi-task Reinforcement Learning for

Compositional Task with Given Task Description

A.1 Details of the Task Parameterized by Subtask Graph

We define each task as an MDP tuple M¢ = (S, A, Pa, Ra, pa,y) where S is a set of states, A is a
set of actions, P : S x A x S — [0, 1] is a task-specific state transition function, R¢ : S X A —
R is a task-specific reward function and p; : S — [0, 1] is a task-specific initial distribution over

states. We describe the subtask graph GG and each component of MDP in the following paragraphs.

Subtask and Subtask Graph The subtask graph consists of /N subtasks that is a subset of O, the
subtask reward r € R, and the precondition of each subtask. The set of subtasks is O = A;,; x X,
where A;,; is a set of primitive actions to interact with objects, and X is a set of all types of
interactive objects in the domain. To execute a subtask (a;,, 0bj) € Ay X X, the agent should

move on to the target object obj and take the primitive action ;.

State The state s; consists of the observation obs; € {0, 1}"W>*#*C the completion vector
x; € {0, 1}, the time budget step; and the eligibility vector e; € {0, 1}". An observation obs; is
represented as H x W x (' tensor, where H and W are the height and width of map respectively,
and C' is the number of object types in the domain. The (h, w, ¢)-th element of observation tensor is
1 if there is an object ¢ in (h,w) on the map, and 0 otherwise. The time budget indicates the number
of remaining time-steps until the episode termination. The completion vector and eligibility vector
provides additional information about /V subtasks. The details of completion vector and eligibility

vector will be explained in the following paragraph.

State Distribution and Transition Function Given the current state (obs;, x;, €;), the next step

state (obs;;1, X411, €:4+1) is computed from the subtask graph G. In the beginning of episode, the
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initial time budget step; is sampled from a pre-specified range N, for each subtask graph (See
section A.3 for detail), the completion vector x; is initialized to a zero vector in the beginning of
the episode x, = [0, ..., 0] and the observation obs is sampled from the task-specific initial state
distribution pg. Specifically, the observation is generated by randomly placing the agent and the N
objects corresponding to the /V subtasks defined in the subtask graph G. When the agent executes
subtask i, the i-th element of completion vector is updated by the following update rule:
; 1 if el =1

e = { z! otherwise ' (A
The observation is updated such that agent moves on to the target object, and perform corresnponding
primitive action (See Appendix A.2 for the full list of subtasks and corresponding primitive actions
on Mining and Playground domain). The eligibility vector e;,; is computed from the completion

vector X;,1 and subtask graph G as follows:

€= OR (vinn) (A2)
Yanp = AND (231), (A3)
&ply = 2wt + (1= ag,)(1 - w'), (A4)

where w®’ = 0 if there is a NOT connection between i-th node and j-th node, otherwise w’/ = 1.
Intuitively, :i:,ﬁ] = 1 when j-th node does not violate the precondition of :-th node. Executing each
subtask costs different amount of time depending on the map configuration. Specifically, the time
cost is given as the Manhattan distance between agent location and target object location in the

grid-world plus one more step for performing a primitive action.

Task-specific Reward Function The reward function is defined in terms of the subtask reward
vector r and the eligibility vector e;, where the subtask reward vector r is the component of subtask
graph G the and eligibility vector is computed from the completion vector x; and subtask graph GG
as Eq. A.4. Specifically, when agent executes subtask ¢, the reward given to agent at time step ¢ is

given as follows:

7t if el =1
Ty = ] ) (A.5)
0 otherwise

A.2 Details of Playground and Mining Domains

A.2.1 Mining

There are 15 types of objects: Mountain, Water, Work space, Furnace, Tree, Stone, Grass, Pig, Coal,
Iron, Silver, Gold, Diamond, Jeweler’s shop, and Lumber shop. The agent can take 10 primitive
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actions: up, down, left, right, pickup, usel, use2, use3, use4, use5 and agent cannot moves on to the

Mountain and Water cell. Pickup removes the object under the agent, and use’s do not change the

observation. There are 26 subtasks in the Mining domain:

The
WWW

WwWw

Get wood/stone/string/pork/coal/iron/silver/gold/diamond: The agent should go to
TreelStonelGrass/Pig/Coalllron/Silver/ Gold/Diamond respectively, and take pickup action.

Make firewood/stick/arrow/bow: The agent should go to Lumber shop and take

uselluse2/use3/use4 action respectively.
Light furnace: The agent should go to Furnace and take usel action.

Smelt iron/silver/gold: The agent should go to Furnace and take use2/use3/use4 action

respectively.

Make stone-pickaxe/iron-pickaxe/silverware/goldware/bracelet: The agent should go to Work

space and take usel/use2/use3luse4/use5 action respectively.

Make earrings/ring/necklace: The agent should go to Jeweler’s shop and take usel/use2/use3

action respectively.

icons used in Mining domain were downloaded from www.icons8.com and
.flaticon.com. The Diamond and Furnace icons were made by Freepik from

.flaticon.com.

A.2.2 Playground

There are 10 types of objects: Cow, Milk, Duck, Egg, Diamond, Heart, Box, Meat, Block, and

Ice. The Cow and Duck move by 1 pixel in random direction with the probability of 0.1 and 0.2,

respectively. The agent can take 6 primitive actions: up, down, left, right, pickup, transform and

agent cannot moves on to the block cell. Pickup removes the object under the agent, and transform

changes the object under the agent to Ice. The subtask graph was randomly generated without any

hand

-coded template (see Section A.3 for details).

A.3 Details of Subtask Graph Generation on Playground and

Mining Domains
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Figure A.1: The entire graph of Mining domain. Based on this graph, we generated 640 subtask
graphs by removing the subtask node that has no parent node.

A.3.1 Mining Domain

The precondition of each subtask in Mining domain was defined as Figure A.1. Based on this
graph, we generated all possible sub-graphs of it by removing the subtask node that has no parent
node, while always keeping subtasks A, B, D, E, F, G, H, I, K, L. The reward of each subtask was
randomly scaled by a factor of 0.8 ~ 1.2.

A.3.2 Playground Domain

N7p | number of tasks in each layer
Nodes | Np | number of distractors in each layer
N, | number of AND node in each layer
r reward of subtasks in each layer
N | number of children of AND node in each layer
N,. | number of children of AND node with NOT connection in each layer
Edges | Ny, | number of parents with NOT connection of distractors in each layer
N,e | number of children of OR node in each layer

Episode | Ny, | number of step given for each episode

Table A.1: Parameters for generating task including subtask graph parameter and episode length.

For training and test sample generation, the subtask graph structure was defined in terms of
the parameters in table A.1. To cover wide range of subtask graphs, we randomly sampled the
parameters N4, No, N, N._ Ny, and N, from the range specified in the table A.2 and A.3, while
Np and Np was manually set. We prevented the graph from including the duplicated AND nodes
with the same children node(s). We carefully set the range of each parameter such that at least

500 different subtask graphs can be generated with the given parameter ranges. The table A.2
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summarizes parameters used to generate training and evaluation subtask graphs for the Playground

domain.

Nr | {6,4,2,1}
Np |{2,1,0,0}
Ny | {3,3,2}-{5.42}

Train | N} | {1,1,1}-{3,3,3}

(=D1) | N, |{0,0,0}-{2,2,1}
Ny, | {0,0,0}-{3,3,0}
Noe | {1,1,1}-{2,2,2}
r {0.1,0.3,0.7,1.8}-{0.2,0.4,0.9,2.0}
Ngtep | 48-72
Nr | {7.,5,2,1}
Np |4{2,2,0,0}
Ny | {4,3,2}-{542}

D2 | N | {1,1,1}-{3,3,3}
N, | {0,0,0}-{2,2,1}
Ny, | {0,0,0,0}-{3,3,0,0}
Noe | {1,1,1}-{2,2,2}
r {0.1,0.3,0.7,1.8}-{0.2,0.4,0.9,2.0}
Ngtep | 52-78
Nr | {54421}
Np | {1,1,1,0,0}
Ny | {3,3,3,2}-{5,44,2}

D3| N | {1,1,1,1}-{3,3,3,3}
N.. | {0,0,0,0}-{2,2,1,1}
Ny, | {0,0,0,0,0}-{3,3,3,0,0}
Noe | {1,1,1,1}-{2,2,2,2}
r {0.1,0.3,0.6,1.0,2.0}-{0.2,0.4,0.7,1.2,2.2}
Ngtep | 56-84
Nr | {4,3,3,3,2,1}
Np | {0,0,0,0,0,0}
Na | {3,3,3,3,2}-{5,4,4,4,2}

D4 | N | {1,1,1,1,1}-{3,3,3,3,3}
N, | {0,0,0,0,0}-{2,2,1,1,0}
Ny, | {0,0,0,0,0,0}-{0,0,0,0,0,0}
Noe | {1,1,1,1,1}-{2,2,2,2,2}
r {0.1,0.3,0.6,1.0,1.4,2.4}-{0.2,0.4,0.7,1.2,1.6,2.6}
Nytep | 56-84

Table A.2: Subtask graph parameters for training set and tasks D1~D4.

92



Nr | {4321}
Np | {0,0,0,0}
Ni | {3,3.21-{433)
Base | Nt | {1,1,2}-{3,2,2}
N;. | {0,0,0}-{0,0,0}
Ny | {0,0,0,0}-{0,0,0,0}
N, | {1,1,1}-{2,2,2}
Nutep | 40-60
OR | N,. | {LLI}{1,1.1}
+Distractor | Np | {2,1,0,0}
+NOT | N& | {0,0,0}-{3.2.2}
+NegDistractor | Np | {2,1,0,0}
Ny | {0,0,0,0}-{3,3,0,0}
+Delayed r {0,0,0,1.6}-{0,0,0,1.8}

Table A.3: Subtask graph parameters for analysis of subtask graph components.
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APPENDIX B

Meta Reinforcement Learning for Compositional

Task via Task Inference

B.1 Details of the SC2LE Domain

The SC2LE domain [Vinyals et al., 2017] provides suite of mini-games focusing on specific aspects
of the entire StarCraft II game. In this paper, we custom design two types of new, simple mini-games
called Build Unit and Defeat Zerg troops. Specifically, we built Defeat Zerglings, Defeat Hydralisks,
Defeat Hydralisks & Ultralisks and Build Battlecruiser mini-games that compactly capture the most
fundamental goal of the full game. The Build Unit mini-game requires the agent to figure-out the
target unit and its precondition correctly, such that it can train the target unit within the given short
time budget. The Defeat Zerg troops mini-game mimics the full game more closely; the agent is
required to train enough units to win a war against the opponent players. To make the task more
challenging and interesting, we designed the reward to be given only at the end of episode depending
on the success of the whole task. Similar to the standard Melee game in StarCraft II, each episode is
initialized with 50 mineral, O gas, 7 and 4 SCV's that start gathering mineral and gas, respectively,
1 idle SCV;, 1 refinery, and 1 Command Center (See Figure B.1). The episode is terminated after
2,400 environment steps (equivalent to 20 minutes in game time). In the game, the agent is initially
given 50 mineral, 0 gas, 7 and 4 SCV's that start gathering mineral and gas, respectively, 1 idle SCV,
1 refinery, and 1 Command Center (See Figure B.1) and is allowed to prepare for the upcoming
battle only for 2,400 environment steps (equivalent to 20 minutes in game time). Therefore, the
agent must learn to collect resources and efficiently use them to build structures for training units.
All the four custom mini-games share the same initial setup as specified in Figure B.1.

Defeat Zerg troops scenario: At the end of the war preparation, different combinations of
enemy unit appears: Defeat Zerglings and Defeat Hydralisks has 20 zerglings and 15 hydralisks,
respectively, and Defeat Hydralisks & Ultralisks contains a combination of total 5 hydralisks and 3
ultralisks. When the war finally breaks out, the units trained by the agent will encounter the army

of Zerg units in the map and combat until the time over (240 environment steps or 2 minutes in
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the game) or either side is defeated. Specifically, the agent may not take any action, and the units

Figure B.1: (Top) The agent starts the game initially with limited resources of 50 minerals, O gases,
3 foods, 11 SCVs collecting resources, 1 idle SCV and pre-built Refinery. (Middle) From the
initial state, the agent needs to strategically collect resources and build structures in order to be well
prepared for the upcoming battle. (Bottom) After 2,400 environment steps, the war breaks; all the
buildings in the map are removed, and the enemy units appear. The agent’s units should eliminate
the enemy units within 240 environment steps during the war.
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trained by the agent perform an auto attack against the enemy units. Unlike the original full game
that has ternary reward structure of +1 (win) / 0 (draw) / —1 (loss), we use binary reward structure
of +1 (win) and —1 (loss or draw). Notice that depending on the type of units the agent trained,
a draw can happen. For instance, if the units trained by the agent are air units that cannot attack
the ground units and the enemy units are the ground units that cannot attack the air units, then no
combat will take place, so we consider this case as a loss. Build unit scenario: The agent receives
the reward of +1 if the target unit is successfully trained within the time limit, and the episode
terminates. When the episode terminates due to time limit, the agent receives the reward of —1. We
gave 2,400 step budget for the Build Battlecruiser scenario such that only highly efficient policy
can finish the task within the time limit.

The transition dynamics (i.e., build tech-tree) in SC2LE domain has a hierarchical characteristic
which can be inferred by our MSGI agent (see Figure B.1). We conducted the experiment on Terran
race only, but our method can be applied to other races as well.

Subtask. There are 85 subtasks: 15 subtasks of constructing each type of building (Supply
depot, Barracks, Engineeringbay, Refinery, Factory, Missile turret, Sensor tower, Bunker, Ghost
academy, Armory, Starport, Fusioncore, Barrack-techlab, Factory-techlab, Starport-techlab), 17
subtasks of training each type of unit (SCV, Marine, Reaper, Marauder, Ghost, Widowmine, Hellion,
Hellbat, Cyclone, Siegetank, Thor, Banshee, Liberator, Medivac, Viking, Raven, Battlecruiser),
one subtask of idle worker, 32 subtasks of selecting each type of building and unit, gathering
mineral, gathering gas, and no-op. For gathering mineral, we set the subtask as (mineral> wval)
where val € {50, 75,100,125, 150, 300,400}. Similarly for gathering gas, we set the subtask as
(gas> wval) where val € {25,50, 75,100, 125, 150,200, 300}. For no-op subtask, the agent takes
the no-op action for 8 times.

Eligibility. The eligibility of the 15 building construction subtasks and 17 training unit subtasks
is given by the environment as an available action input. For the selection subtasks, we extracted
the number of corresponding units using the provided API of the environment. Gathering mineral,
gas, and no-op subtasks are always eligible.

Completion. The completion of the 15 construction subtasks and 17 training subtasks is 1 if the
corresponding building or unit is present on the map. For the selection subtasks, the completion is
1 if the target building or unit is selected. For gathering mineral and gas subtasks, the subtask is
completed if the condition is satisfied (i.e., gas> 50). The no-op subtask is never completed.

Subtask reward. In SC2LE domain, the agent does not receive any reward when completing a
subtask. The only reward given to agent is the binary reward ry,; = {+1, —1} at the end of episode
(i.e., t = Hcy). Therefore, the subtask reward inference method described in Eq.(4.3) may not be
applied. In the adaptation phase, we used the same UCB-inspired exploration bonus, introduced in

Section 4.4.3 with GRProp policy. In test phase, we simply used +1.0 subtask reward for all the
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unit production subtasks, and run our MSGI-GRProp agent in test phase.
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APPENDIX C

Fast Inference and Transfer of Compositional Task

Structures for Few-shot Task Generalization

C.1 Details on SymWoB domain

In this paper, we introduce the SymWoB domain, which is a challenging symbolic environment that
aims to reflect the hierarchical and compositional aspects of the checkout processes in the real-world
websites. There are total 10 different SymWoB websites that are symbolic implementations of the
actual websites: Amazon, Apple, Dick’s, Walmart, Converse, Target, eBay, Ikea, BestBuy, and
Samsung. The main goal of each website is to navigate through the web pages within the website
by clicking and filling in the web elements with proper information which leads to the final web
page that allows the agent to click on the P1ace_Order button, which indicates that the agent has
successfully finished the task of checking out.

C.1.1 Implementation detail

In this section, we describe the detailed process of implementing an existing website into a symbolic
version. We first fill out the shopping cart with random products, and we proceed until placing the
order on the actual website. During the process, we extract all the interactable web elements on
the webpage. We repeat this for all the websites and form a shared subtask pool where similar web
elements in different websites that have same functionality are mapped to the same subtask in the
shared subtask pool. Then, we extract the precondition relationship between subtasks from the
website and form the edges in the subtask graph accordingly. Finally, we implement the termination

condition and the subtask reward to the failure distractor (See Appendix C.1.3) and the goal subtasks.
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C.1.2 Comparison of the websites

The agent’s goal on every website is the same (i.e.placing a checkout order), but the underlying
subtask graphs, or task structure, of the websites are extremely diverse, making the task much
more challenging for the agent. One of the major sources of diversity in subtask graphs is in the
various ordering of the web pages. In a typical website’s checkout process, some of the most
common web pages include the shipping, billing, and payment web pages, each of which has
a collection of corresponding subtasks. In Figure C.1, for example, the shipping web page is
represented by the collection of the subtasks on the left side from Fill ZiptoFill Last and
Click_ContinueShipping, and these come before the payment web page that is represented
by the subtasks on the right side from Click_Credit to Click_ContinuePayment. On the
other hand, in Figure C.7 and Figure C.6, the similar web pages are either connected in a different
ordering, from payment to shipping web page, or placed on the same line side by side. Since the
web pages can vary on how they are ordered, it allows the subtask graphs to have a variety of shapes
such as deep and narrow as in Figure C.9 or wide and shallow as in Figure C.6. Different shape of
the subtask graphs means different precondition between the tasks, making it non-trivial for the
agent to transfer its knowledge about one to the other.

Another major source of diversity is the number of web elements in each web page. Let’s
compare the web elements of the shipping web page in Figure C.3 and Figure C.4. These are the
subtasks that are connected to Click_ContinueShipping and as well as itself. We can see
that the two websites do not have the same number of the web elements for the shipping web pages:
the Converse website requires more shipping information to be filled out than the Dick’s website.
Such variety in the number of web elements, or subtasks, allows the subtask graphs of the websites

to have diverse preconditions as well.

C.1.3 Distractor subtasks

In addition to the different task structures among the websites, there are also distractor subtasks in
the websites that introduces challenging components of navigating the real-world websites. There
are two different types of distractor subtasks: the one that terminates the current episode with a
negative reward and the another one that has no effect. The former, which we also call it the failure
distractor subtask, represents the web elements that lead the agent to some external web pages like
Help or Terms_of_Use button. The latter is just called the distractor subtask, where executing
the subtask does not contribute to progressing toward the goal (e.g., Click EditShipping
subtask in Converse). Each website has varying number of distractor subtasks and along with the
shallowness of the task structure, the number of distractor subtasks significantly affects the difficulty
of the task.
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C.1.4 Environment generation

All of the websites in the SymWoB domain are generated by analyzing the corresponding real

websites and reflecting their key aspects of checkout process.
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APPENDIX D

Shortest-Path Constrained Reinforcement Learning

for Sparse Reward Tasks

D.1 Option framework-based formulation

D.1.1 Preliminary: option framework

Options framework [Sutton, 1998] defines options as a generalization of actions to include tempo-
rally extended series of action. Formally, options consist of three components: a policy 7 : S x A4 —
0, 1], a termination condition 3 : ST — [0, 1], and an initiation set Z C S. An option (Z, 7, /3) is
available in state s if and only if s € Z. If the option is taken, then actions are selected accord-
ing to 7 until the option terminates stochastically according to 3. Then, the option-reward and

option-transition models are defined as

r, =E {Tt+1 F e+ o+ e | E(o, s, t)} (D.1)
P, => p(s k)7 (D.2)
k=1

where ¢ + k is the random time at which option o terminates, (o, s, t) is the event that option o is
initiated in state s at time ¢, and p(s’, k) is the probability that the option terminates in s’ after k

steps. Using the option models, we can re-write Bellman equation as follows:

VT(s) =E [ren + -+ g 9V (s04) ] (D.3)

=> Pr(E(o,9)] |1 +ZPO V(s

ocO
where ¢ + k is the random time at which option o terminates and F(o, s) is the event that option o is

(D.4)

initiated in state s.
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D.1.2 Option-based view-point of shortest-path constraint

In this section, we present an option framework-based viewpoint of our shortest-path (SP) constraint.
We will first show that a (sparse-reward) MDP can be represented as a weighted directed graph
where nodes are rewarding states, and edges are options. Then, we show that a policy satisfying SP
constraint also maximizes the option-transition probability P¢,.

For a given MDP M = (S, A, R, P, p,S), let S® = {s|R(s) # 0} C S be the set of all
rewarding states, where R(s) is the reward function upon arrival to state s. In sparse-reward tasks, it

is assumed that |S®| << |S|. Then, we can form a weighted directed graph G™ = (V, £) of policy

7 and given MDP. The vertex set is defined as V = S® U py, U S where ST is rewarding states, p
is the initial states, and S is the terminal states. Similar to the path set in Definition 2, let T, .

denotes a set of paths transitioning from one vertex s € ) to another vertex s’ € V:

Tomss = {7[50 = 8, 50r) = 5, {8t }o<tct(ry NV = 0} (D.5)
Then, the edge from a vertex s € V to another vertex s’ € V is defined by an (implicit) option tuple:
o(s,s") = (Z,m,B)(s,s), Where T = {s}, B(s) =1I(s = s'), and

, La(r) fort e Tolw
7 (1) = 77(7) o (D.6)

0 otherwise
where Z is the partition function to ensure [ 7<) (7)dr = 1. Following Equation (D.1), the

option-reward is given as
p- (58 — s,8"
7T, =E [mH+7mH+~-+%1n%\E@“%aﬂ , (D.7)
(58" - s,s’
=B [P | B0, 5,1)] (D.8)

where t + k is the random time at which option o(s, s’) terminates, and E/(o, s, t) is the event that
option o(s, ) is initiated in state s at time ¢. Note that in the last equality, ;1 = -+ = 1441 =0
holds since {s;11,...,51x—1} NV = 0 from the definition of option policy 7(**). Following

Equation (D.2), the option transition is given as

o0

Ply=> pls' k) (D.9)
k=1

=E" [7k|30 =58 =S¢, {Tt}t<k = 0} (D.10)

= ’)/D:{r(sﬂsl)‘ (D,ll)

where p(s’, k) is the probability that the option terminates in s after k steps, and DT (s, s’) is the

m-distance in Definition 3. Then, we can re-write the shortest-path constraint in terms of P, as
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follows:

§,8' ,nr

I = {7|V(s,s' € T . st (3,8) € ™), DT (s,5') = min DT (s, s')} (D.12)

= {7|V(s,s" € Ty st. (3,8") € @), P, = max P} (D.13)

8,8’ nr
Thus, we can see that the policy satisfying SP constraint also maximizes the option-transition

probability. We will use this result in Appendix D.2.

D.2 Shortest-Path Constraint: A Single-goal Case

In this section, we provide more discussion on a special case of the shortest-path constraint (Sec-
tion 6.3.1), when the (stochastic) MDP defines a single-goal task: i.e., there exists a unique initial
state sipx € S and a unique goal state s, € S such that s, is a terminal state, and R(s) > 0 if and
only if s = s,,.

We first note that the non-rewarding path set is identical to the path set in such a setting, because
the condition r, = 0(t < (7)) from Definition 2 is always satisfied as R(s) > 0 < s = s, and
So(r) = Sg-

Towm = Toy ={7 | 50 =5, 507) = 8, px(7) > 0, {8t }t<e(r) # 5} (D.14)

Again, ’7;’;, is a set of all path starting from s (i.e., and ending at s’ (i.e., sy-) = s') where the
agent visits s’ only at the end (i.e., {s;},<4(r) # ), that can be rolled out by policy with a non-zero
probability (i.e., p.(7) > 0).

We now claim that an optimal policy satisfies the shortest-path constraint. The idea is that,
since s, is the only rewarding and terminal state, maximizing R(7) = 7" R(s,) where sy = s,
corresponds to minimizing the number of time steps 7" to reach s,. In this setting, a shortest-path

policy is indeed optimal.

Lemma 11. For a single-goal MDP, any optimal policy satisfies the shortest-path constraint.

Proof. Let s;yi be the initial state and s, be the goal state. We will prove that any optimal policy

is a shortest-path policy from the initial state to the goal state. We use the fact that s, is the only
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rewarding state, i.e., R(s) > 0 entails s = s,,.

SOZS:|

S =85 init:|

= arg max EZY [Zt Ay

= arg max E™7 {Zt ~vir

= arg max E™™7 ['yTR 5q) | S0 = Sinit, Se(r) = ]
- arg max K7 [’yT | 80 = Sinity Se(r) = Sg}
= argminlog, (E™" [" | so = s, S¢(r) = 5] )

. T
= arg min Dy (Sinit, S¢),

™

where Equation (D.18) holds since R(s,) > 0 from our assumption that R(s) + V*(s)
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(D.15)

(D.16)
(D.17)
(D.18)
(D.19)

(D.20)

]



D.3 Proof of Theorem 7

We make the following assumptions on the Markov Decision Process (MDP) M: namely mild
stochasticity (Definitions 12 and 13).

Definition 12 (Mild stochasticity (1)). In MDP M, there exists an optimal policy 7* and the
corresponding shortest-path policy 7 € II5F such that for all s, s’ € ®, it holds p,«(5 = §'|sg =

S) = prer(5 = §|s9 = ).

Definition 13 (Mild stochasticity (2)). In MDP M, the optimal policy 7* does not visit the
same state more than once: For all s € S such that p,«(s) > 0, it holds p«(s) = 1, where

A T . .. .
Pr(5) = Eggmpo(S),amm(Als),s'~(S|s,a) | 2_t—1 1 (St = s)| is the state-visitation count.

In other words, we assume that the optimal policy does not have a cycle. One common property
of MDP that meets this condition is that the reward disappearing after being acquired by the agent.
We note that this assumption holds for many practical environments. In fact, in many cases as well
as Atari, DeepMind Lab, etc.

Theorem 7. For any MDP with the mild stochasticity condition, an optimal policy T* satisfies the

shortest-path constraint: 7 € II5F.

Proof. For simplicity, we prove this based on the option-based view point (see Appendix D.1). By
plugging Equation (D.8) and Equation (D.10) into Equation (D.4), we can re-write the Bellman

equation of the value function V™ (s) as follows:

V™(s) =Y _PrlE(o,s)] [0+ PLV™(s) (D.21)
ocO s/
= Z pr(5 =59 =s) [R(s’)ETN”(”yK(THSO =s5,5=5)+ ’yPs’fs,V’T(s’)} (D.22)
S/ESIR‘
= 3" pa(s = 5|so = 5) [R(s) Py + 7PV (5], (D.23)
S’ESIR
= > pa(5= 2550 =s)PL, [R(s) + 7V(5)], (D.24)
S/GSIR

where § is the first rewarding state that agent encounters. Intuitively, p.(5 = s'|sp = s) means
the probability that the s’ is the first rewarding state that policy 7 encounters when it starts from s.

From Equation (D.13), our goal is to show:
e I = {7 | V(s,s) € Tgn, Ply = Piy}, (D.25)

where P*

s,s’

= max, PT,.
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We will prove Equation (D.25) by contradiction. Suppose 7* is an optimal policy such that
7 ¢ 115, Then,

38,8 € Tg) sit. PLy # Pl (D.26)
Recall the definition: PS’fS, = max, P;fs,. Then, for any 7, the following statement is true.
Ply# Py < Pl, <Pl (D.27)
Thus, we have
Py < Py (D.28)

Let 7y, € IT°" be a shortest path policy that preserves stochastic dynamics from Definition 12. Then,

we have

PI, < Py =P, (D.29)

5,8

Then, let’s compose a new policy 7:

mplals) 3T eTF st.serT

#(als) = . (D.30)

7m*(als)  otherwise
Now consider a path 7;_, 4 that agent visits § at time ¢ = ¢ and transitions to §’ attime ¢ = j > i while
not visiting any rewarding state from ¢ = i to ¢ = j with non-zero probability (i.e., p,(7) > 0).

We can define a set of such paths as follows:
Tose = {736 < j)ysi = 8,85 = &, {st}icte; NS® =0, pr, (1) > 0} (D.31)

To reiterate the definitions from Definition 6: S™ = {s | R(s) > 0 or p(s) > 0} is the union of
all initial and rewarding states, and ™ = {(s, s') | s, 5" € S™, p(s) > 0,7, ., 7 0} is the subset
of S™® such that agent may roll out.

From Definition 13 and Equation (D.30), the likelihood of a path 7 under policy 7 is given as

follows:

F*Te’fg & 7T57-7-67? 3 forTE’f'g 3
pelr) = { 1T & T Jong 717 € To) o (D.32)
Prs (T) otherwise
where p: (7) is the likelihood of trajectory T under policy 7, ps(7 € Tie) = [cs  pa(T)dr
ensures the likelihood 7(7) to be a valid probability density function (i.e., [ pz(7)dr = 1). From

the path 7;_,+ and ¢, j, we will choose two states s;;, s/, ~ 7;_,z, Where
Sir = mtax(st|st c St <i), sl = mtin(st|st e S™ j<t). (D.33)

Note that such s;; and s/, always exist in 75_,& since the initial state and the terminal state satisfy the
condition to be s;; and ;.

Then, we can show that the path between s;; and s/, is not a shortest-path. Recall the definition
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of DT (s, s’) (Definition 3):

Df{:(sir, s = log,, (ETW*: et [fyé(ﬂ]> (D.34)
= log, | B Wm I e Tﬂ] (D.35)
&

where we will use & := ") | 7 € TS:S, . for ashorthand notation. Then, we have
’YD:; (SiraSilr) = ETNTF* [*:I (D36)
= DPr= (7_ € 7\2—)§/)]ETN7T* |:* | TE 7Aj§—>§’:|

9 (7 ¢ Tioi) B |81 7 & Tos |

(D.37)
(From Definition 5) < p,+(7 € tﬁgf)ETwsp [& | 7€ ﬁﬁgf]
+ Pre (T & Torrsr ) B [& |7 ¢ Tﬁ} (D.38)
(From Equation (D.32)) = p:(7 € 7§_>§/)IETNﬁ [J. | 7 € 7?_)5/]
+pa(7 ¢ Tosa)Err [& |7 ¢ 72@%/} (D.39)
= E,s [#] = yPRlensi) (D.40)
< DI (sir, 8i) > Dye(ir, 8ty (D.41)

where Ineq. (D.41) is given by the fact that v < 1. Then, PT, < P

e
SirsSip
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From Equation (D.24), we have

VT (si) = Z pi(5=4¢"|s0 = sir)P;rnS, [R(S’) + 'yVﬁ(s')] (D.42)
SleSIR
= ps(5 = s}, | s0 = sir) Py, [R(s},) +7V7(s},)]
- Z pa(5=15"|50=su)PL , [R(s") + V()] (D.43)
s'eSTR\ sl
= Dr~ (‘§ = S;r | So = Sir)P;Tr,si’r [R(S:r) + ’va*(silr)]
+ Z Pr+ (§ =5 | S0 = Sir)P;r:S/ [R(Sl) + ’YVW* (Sl)] (D44)
s'€STR\ sl
> P (5= 57, | 50 = si) Po g [R(si) V7™ (s5)]
+ Y pe(5=5|s0=s0)PT, [R(s) + V™ ()] (D.45)
s'eSR\s!.
= > pels =515 =PIy [R) + 9V () (D46)
sleis
= V*(sy), (D.47)

where Eq. (D.44) holds from the mild-stochasticity (1) and mild-stochasticity (2) assumption, and
Ineq. (D.45) holds because P;rnsg > Ps7r
value assumption (See Section 5 .3). Finally, this is a contradiction since the optimal value function
V*(s) should be the maximum. O

, and R(s') +~+V™ (s') > 0 from the non-negative optimal

S

D.4 Experiment details of MiniGrid domain

D.4.1 Environment

MiniGrid is a 2D grid-world environment with diverse predefined tasks [Chevalier-Boisvert et al.,
2018]. It has several challenging features such as pictorial observation, random initialization of the
agent and the goal, complex action space and transition dynamics involving agent’s orientation of

movement and changing object status via interaction (e.g., key-door).

State Space. An observation s; is represented as H x W x C' tensor, where H and W are the
height and width of map respectively, and C' is features of the objects in the grid. The (h, w)-th
element of observation tensor is (type, color, status) of the object and for the coordinate of agent,
the (h, w)-th element is (type, 0, direction). The map size (i.e., H x W) varies depending on the
task; e.g., for FourRooms-7x7 task, the map size is 7 X 7.

111



Action Space and transition dynamics The episode terminates in 100 steps, and the episode
may terminate earlier if the agent reaches the goal before 100 steps. The action space consists of

seven discrete actions with the following transitions.

* Turn-Counter—-Clockwise: change the direction counter-clockwise by 90 degree.
* Turn—-Clockwise: change the direction clockwise by 90 degree.

* Move-Forward: move toward direction by 1 step unless blocked by other objects.

* Pick-up-key: pickup the key if the key is in front of the agent.

* Drop-the-key: drop the key in front of the agent.

* Open/Close-doors: open/close the door if the door is in front of the agent.

* Optional-action: not used

Reward function. The reward is given only if the agent reaches the goal location, and the reward
magnitude is 1 — 0.9(length of episode /maximum step for episode). Thus, the agent can maximize

the reward by reaching to the goal location in shortest time.

D.4.2 Tasks

In FourRooms-7x7 and FourRooms-11x 11, the map structure has four large rooms, and the agent
needs to reach to the goal. In KeyDoors-7x7 and KeyDoors-11x 11, the agent needs to pick up the

key, go to the door, and open the door before reaching to the goal location.

D.4.3 Architecture and hyper-parameters

We used a simple CNN architecture similar to [Mnih et al., 2015] for policy network. The
network consists of Convl (16x2x2-1/SAME)-CReLU-Conv2 (8x2x2-1/SAME) -CReLU-
Conv3 (8x2x2-1/SAME)-CReLU-FC (512)-FC (action-dimension), where SAME
padding ensures the input and output have the same size (i.e., width and height) and CReLLU [Shang
et al., 2016] is a non-linear activation function applied after each layer. We used Adam [Kingma
and Ba, 2014] optimizer to optimize the policy network.

For hyper-parameter search, we swept over a set of hyper-parameters specified in Table D.1,
and chose the best one in terms of the mean AUC over all the tasks, which is also summarized
in Table D.1.
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D.5 Experiment details of DeepMind Lab domain

D.5.1 Environment

DeepMind Lab is a 3D-game environment with first-person view. Along with random initialization
of the agent and the goal, complex action space including directional change, random change of

texture, color and maze structure are features that make tasks in DeepMind Lab hard to be learned.

State Space. A state s; has the dimension of 84 x 84 x 3. The state is given as a first-person view
of the map structure. We resized the RG'B image into 84 x 84 x 3 RG'B image, and normalized by
dividing the pixel value by 255.

Action Space and transition dynamics The episode terminates after the fixed number of steps
regardless of goal being achieved. The original action space consists of seven discrete actions:
Move-Forward, Move—-Backward, Strafe Left, Strafe Right, Look Left, Look
Right, Look Left and Move-Forward, Look Right and Move-Forward. In our
experiment, we used eight discrete actions with the additional action Fire as in [Higgins et al.,
2017, Vezhnevets et al., 2017, Savinov et al., 2018b, Espeholt et al., 2018, Khetarpal and Precup,
2018].

D.5.2 Tasks

We tested our agent and compared methods on three standard tasks in DeepMind Lab: GoalS-
mall, GoalLarge, and ObjectMany which correspond to explore_goal_locations_small,
explore_goal_locations_large, and explore object_rewards_many, respectively.
GoalSmall and GoalLarge has a single goal in the maze, but the size of the maze is larger in
GoalLarge than GoalSmall. The agent and goal locations are randomly set in the beginning of the
episode and the episode length is fixed to 1,350 steps for GoalSmall and 1,800 steps for GoalLarge.
When the agent reaches the goal, it positively rewards the agent and the agent is re-spawned in a
random location without terminating the episode, such that the agent can reach to the goal multiple
times within a single episode. Thus, the agent’s goal is to reach to the goal location as many times
as possible within the episode length. ObjectMany has multiple objects in the maze, where reaching
to the object positively rewards the agent and the object disappears. The episode length is fixed to
1,800 steps. The agent’s goal is to gather as many object as possible within the episode length.
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Require: Hyperparameters: k € N, Positive bias AT € N, Negative bias A~ € N
1: Initialize t,,. < 0.

2: Initialize Sy = 0, Sy =0, S_ = (.
3: while t,,. <7 do

4: Sanc = Sanc U {Stam}-

5: ty = Uniform(tye + 1, tane + k).
6: t_ = Uniform(te + k + A™,T).
7 S+:S+U{St+}.

8: S_.=5_U {St,}-

9: tane = Uniform(¢, + 1,¢, + A™).
10: end while

—
—_

: Return Sy, 54,5

Program D.1: Sampling the triplet data from an episode for RNet training

D.5.3 Reachability network Training

Similar to Savinov et al. [2018b], we used the following contrastive loss for training the reachability

network:
Linet = — log (Rnety_1(Sanc, 5+)) — log (1 — Rnety_1(Sanc, 5-)) , (D.48)

where s,,, sy, s_ are the anchor, positive, and negative samples, respectively. The anchor, positive
and negative samples are sampled from the same episode, and their time steps are sampled according
to Algorithm D.1. The RNet is trained in an off-policy manner from the replay buffer with the size
of 60K environment steps collecting agent’s online experience. We found that adaptive scheduling
of RNet is helpful for faster convergence of RNet. Out of 20M total environment steps, for the first
IM, 1M, and 18M environment steps, we updated RNet every 6K, 12K, and 36 K environment
steps, respectively. For all three environments of DeepMind Lab, RNet accuracy was ~ 0.9 after
IM steps.

Multiple tolerance. In order to improve the stability of Reachability prediction, we used the
statistics over multiple samples rather than using a single-sample estimate as suggested in Equa-
tion (6.12). As a choice of sampling method, we simply used multiples of tolerance. In other words,
given s;_(x1¢) and s; as inputs for reachability network, we instead used s;_ (¢ and s; where
1 <n < Nag, n € Nand Ny, is the number of tolerance samples. We used 90-percentile of N,
outputs of reachability network, Rnetk,l(st,(kmm), s¢), as in [Savinov et al., 2018b] to get the

representative of the samples.
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D.5.4 Architecture and hyper-parameters

Following [Savinov et al., 2018b], we used the same CNN architecture used in [Mnih et al., 2015].
For SPRL, we used a smaller reachability network (RNet) architecture compared to ECO to
reduce the training time. The RNet is based on siamese architecture with two branches. Follow-
ing [Savinov et al., 2018b], ECO used Resnet-18 [He et al., 2016] architecture with 2-2-2-2 residual
blocks and 512-dimensional output fully-connected layer to implement each branch. For SPRL,
we used Resnet-12 with 2-2-1 residual blocks and 512-dimensional output fully-connected layer
to implement each branch. The RNet takes two states as inputs, and each state is fed into each
branch. The outputs of the two branches are concatenated and forwarded to three' 512-dimensional
fully-connected layers to produce one-dimensional sigmoid output, which predicts the reachability
between two state inputs. We also resized the observation to the same dimension as policy (i.e.,
84 x 84 x 3, which is smaller than the original 120 x 160 x 3 used in [Savinov et al., 2018b]).
For all the baselines (i.e., PPO, ECO, ICM, and GT-Grid), we used the best hyperparameter
used in [Savinov et al., 2018b]. For SPRL, we searched over a set of hyperparameters specified
in Table D.2, and chose the best one in terms of the mean AUC over all the tasks, which is also

summarized in Table D.2.

D.6 Experiment details of Afari domain

D.6.1 Environment

Atari is an important and prominent benchmark in deep reinforcement learning with a high-
dimensional visual input. One of the main benefit of using Azari as a testbed is that it covers not
only navigational tasks but various tasks such as avoiding and destroying enemies by firing a bullet
or changing the map structure using bombs as explained in [Bellemare et al., 2013]. Because of the
diversity of the task Arari is covering, solving Atari shows that the algorithm has a certain degree of

generality.

There exists a variety of preprocessing details for Arari. We mostly followed the imple-
mentation of OpenAl Baselines [Dhariwal et al., 2017]. For detailed information, see Table D.3.

State Space. A state s; is represented as 84 x 84 x 4. We stacked 4 consecutive frames achieved
by taking the same action 4 times in a row and resized RG B image into 84 x 84 x 1 gray image,

and normalized by dividing the pixel value by 255.

ISavinov et al. [2018b] used four 512-dimensional fully-connected layers.
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Action Space and transition dynamics The episode terminates when the agent loses all of the

lives given. The action space consists of eighteen discrete actions as in [Bellemare et al., 2013].

D.6.2 Various Tasks of Afari: Navigational and Non-navigational

We tested our agent and compared methods on navigational and non-navigational tasks in Atari:
Montezuma’s Revenge, Freeway, Ms.Pacman, Gravitar, Seaquest, HERO. Montezuma’s Revenge is
a famous game as a hard exploration game in Atari. An agent should pick up the items such as key
to open the door or knife to destroy the enemy. In Freeway, an agent should cross the road while
avoiding the car. Ms.Pacman is a game where an agent should eat the items and avoid enemy. Three
games mentioned until now have a navigational feature meaning that the agent can move toward a
certain coordinate to get the score. However, three games to be mentioned have a non-navigational
feature meaning that agent should not only get to a certain coordinate but also use specific action
to get the score. In Gravitar and Seaquest, an agent should shoot a bullet. In HERO, an agent can
install a bomb to break the wall and move forward. By adding Gravitar, Seaquest, and HERO in
our testbed, we evaluated how SPRL performs in non-navigational tasks.

D.6.3 Reachability network Training

We followed the details of reachability network training for DeepMind Lab except for 1) replay
buffer size and 2) reachability network training frequency. We changed the size of the replay
buffer for reachability network from 60/ environment steps to 30/ environment steps. To avoid
overfitting of the reachability network, we enlarged reachability network training frequency from

6K environment steps to 150K environment steps after the initial 1M environment steps.

Stabilizing Reachability Network. In some of the games of Atari, within a task exists a distribu-
tional shift in the state space that hinders stable reachability network training. Therefore we had
to use some techniques to mitigate instability problem of reachability network: Weight decay and

Label smoothing. We used weight decay with the factor of 0.03 and label smoothing of 0.1.

D.6.4 Architecture and hyper-parameters

For the policy architecture, we used the same CNN architecture used in Mnih et al. [2015]. For
reachability network, we used the same architecture used for DeepMind Lab except for the input
layer. For the input layer, we used (s;,s; — s;_x) instead of (s;,s; ). This change helped the
reachability network to avoid suffering from overfitting when the distribution shift in the state space

OocCcurs.

116



For hyper-parameter search, we swept over a set of hyper-parameters specified in Table D.4,
and chose the best one in terms of the mean AUC over all the tasks, which is also summarized
in Table D.4.
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PPO

Hyperparameters ‘ Sweep range ‘ Final value

Learning rate 0.001, 0.002, 0.003 0.003

Entropy 0.003, 0.005, 0.01, 0.02, 0.05 0.01
ICM

Hyperparameters ‘ Sweep range ‘ Final value

Learning rate 0.001, 0.002, 0.003 0.003

Entropy - 0.01

Forward/Inverse model loss weight ratio 0.2,0.5,0.8,1.0 0.8

Curiosity module loss weight 0.03,0.1,0.3, 1.0 0.3

ICM bonus weight 0.1,0.3, 1.0, 3.0 0.1

GT-Grid

Hyperparameters Sweep range Final value

Learning rate 0.001, 0.002, 0.003 0.003

Entropy - 0.01

GT-Grid bonus weight 0.003, 0.01, 0.03,0.1,0.3 0.01
ECO

Hyperparameters Sweep range Final value

Learning rate - 0.003

Entropy - 0.01

k 3,5, 7 3

ECO bonus weight 0.001, 0.002, 0.005, 0.01 0.001
SPRL

Hyperparameters Sweep range Final value

Learning rate
Entropy

k

Tolerance (At)
Negative bias (A7)
Positive bias (A™)
Cost scale (\)

Nag

0.003, 0.01 0.01
- 0.01
2,5 2
- 1
10, 20 20
- 5
0.001, 0.002, 0.005 0.002
30, 60 60

Table D.1: The range of hyperparameters sweeped over and the final hyperparameters used in

MiniGrid domain.
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Hyperparameters for SPRL | Sweep range | Final value

Learning rate - 0.0003
Entropy - 0.004
k 3,10, 30 10
Tolerance (At) 1,3,5 1
Negative bias (A7) 5, 10, 20 20
Positive bias (A™) - 5
Cost scale () 0.02, 0.06, 0.2 0.06
Optimizer - Adam
Nay - 200

Table D.2: The range of hyperparameters sweeped over and the final hyperparameters used for our
SPRL method in DeepMind Lab domain.

Parameter Value
Image Width 84
Image Height 84
Grayscaling Yes
Number of Actions 18
Action Repetitions 4
Frame Stacking 4
End of episode when life lost | No
Reward Clipping [-1,1]
Discount(~y) 0.99
Max Episode Length 10000
Number of parallel workers 12

Table D.3: Preprocessing details for Atari
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PPO

Hyperparameters ‘ Sweep range ‘ Final value

Learning rate 0.0001, 0.0002, 0.0003, 0.0005 0.0005

Entropy 0.001, 0.003, 0.005, 0.01, 0.03 0.01
ICM

Hyperparameters ‘ Sweep range ‘ Final value

Learning rate 0.0005 0.0005
Entropy - 0.01
Forward/Inverse model loss weight ratio 1.0 1.0
Curiosity module loss weight 1.0 1.0
ICM bonus weight 0.0001, 0.0003, 0.001, 0.003, 0.01 0.01
ECO
Hyperparameters Sweep range Final value
Learning rate 0.0001, 0.0003, 0.0005 0.0005
Entropy - 0.01
ECO bonus weight 0.001, 0.003, 0.01, 0.03, 0.1 0.001
SPRL
Hyperparameters Sweep range Final value
Learning rate 0.0003, 0.0005 0.0005
Entropy - 0.01
SPRL cost scale (\) 0.01, 0.03, 0.05, 0.1 0.05
Reachability network (for ECO and SPRL)
k 5,8,12, 15 12
Tolerance (At) - 1
Negative bias (A7) 80, 100, 120 80
Positive bias (A™) - 5
Na¢ 30, 50, 100, 200, 400 200

Table D.4: The range of hyperparameters sweeped over and the final hyperparameters used in Atari

domain.

120



BIBLIOGRAPHY

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate
state abstraction. In International Conference on Machine Learning, pages 2915-2923, 2016.

David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for lifelong
reinforcement learning. In International Conference on Machine Learning, pages 10—19, 2018.

David Andre and Stuart J. Russell. Programmable reinforcement learning agents. In NIPS, 2000.

David Andre and Stuart J. Russell. State abstraction for programmable reinforcement learning
agents. In AAAI/IAAL, 2002.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In ICML, 2017.

Takao Asano, Tetsuo Asano, Leonidas Guibas, John Hershberger, and Hiroshi Imai. Visibility-
polygon search and euclidean shortest paths. In Foundations of Computer Science, 1985., 26th
Annual Symposium on, pages 155-164. IEEE, 1985.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235-256, 2002.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Kiittler,
Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87-90, 1958.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3):580-595, 1991.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Proceed-
ings of 1995 34th IEEE Conference on Decision and Control, volume 1, pages 560-564. IEEE,
1995.

Dimitri P Bertsekas, David A Castanon, et al. Adaptive aggregation methods for infinite horizon
dynamic programming. 1988.

121



M.K. Bloch. Hierarchical reinforcement learning in the taxicab domain. (Report No. CCA-TR-2009-
02). Ann Arbor, M1: Center for Cognitive Architecture, University of Michigan, 2009.

Craig Boutilier, Richard Dearden, Moises Goldszmidt, et al. Exploiting structure in policy construc-
tion. In IJCAI, volume 14, pages 1104-1113, 1995.

Leo Breiman. Classification and regression trees. Routledge, 1984.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

John Canny. A voronoi method for the piano-movers problem. In Robotics and Automation.
Proceedings. 1985 IEEE International Conference on, volume 2, pages 530-535. IEEE, 1985.

John Canny. A new algebraic method for robot motion planning and real geometry. In Foundations
of Computer Science, 1987., 28th Annual Symposium on, pages 39—48. IEEE, 1987.

Wilka Carvalho, Anthony Liang, Kimin Lee, Sungryull Sohn, Honglak Lee, Richard L Lewis, and
Satinder Singh. Reinforcement learning for sparse-reward object-interaction tasks in first-person
simulated 3d environments. arXiv preprint arXiv:2010.15195, 2020.

Luis Castillo, Juan Fdez-Olivares, Oscar Garcia-Pérez, and Francisco Palao. Temporal enhancements
of an htn planner. In Conference of the Spanish Association for Artificial Intelligence, pages
429-438. Springer, 2005.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. arXiv preprint arXiv:1911.09291, 2019.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In AAAI 2018.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, pages 794-803. PMLR, 2018.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi,
and Honglak Lee. Contingency-aware exploration in reinforcement learning. arXiv preprint
arXiv:1811.01483, 2018.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pages 72—83. Springer, 2006.

Bruno Da Silva, George Konidaris, and Andrew Barto. Learning parameterized skills.
arXiv:1206.6398, 2012.

122


https://github.com/maximecb/gym-minigrid

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation.
Computational intelligence, 5(2):142-150, 1989.

Thomas L Dean, Robert Givan, and Sonia Leach. Model reduction techniques for computing
approximately optimal solutions for markov decision processes. arXiv preprint arXiv:1302.1533,
2013.

Misha Denil, Sergio Gomez Colmenarejo, Serkan Cabi, David Saxton, and Nando de Freitas.
Programmable agents. arXiv preprint arXiv:1706.06383, 2017.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decompo-
sition. J. Artif. Intell. Res.(JAIR), 13:227-303, 2000.

Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation for efficient
reinforcement learning. In Proceedings of the 25th international conference on Machine learning,

pages 240-247, 2008.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In ICLR, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Kutluhan Erol. Hierarchical task network planning: formalization, analysis, and implementation.
PhD thesis, 1996.

Kutluhan Erol, James A Hendler, and Dana S Nau. Umcp: A sound and complete procedure for
hierarchical task-network planning. In AIPS, volume 94, pages 249-254, 1994.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, lain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Richard Evans and Edward Grefenstette. Learning Explanatory Rules from Noisy Data. arXiv
preprint arXiv:1711.04574, 2017.

Bernard Faverjon and Pierre Tournassoud. A local based approach for path planning of manipulators
with a high number of degrees of freedom. In Robotics and Automation. Proceedings. 1987 IEEE
International Conference on, volume 4, pages 1152—-1159. IEEE, 1987.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI volume 4, pages 162—-169, 2004.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189-208, 1971.

123


https://github.com/openai/baselines
https://github.com/openai/baselines

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1126—1135. JIMLR. org, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
NeurlPS, pages 9516-9527, 2018.

Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consistency properties, vol-
ume 1. USAF school of Aviation Medicine, 1985.

Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica Ca, 1956.

Jeremy Frank and Ari Jonsson. Constraint-based attribute and interval planning. Constraints, 8(4):
339-364, 2003.

Mohammad Ghavamzadeh and Sridhar Mahadevan. Hierarchical policy gradient algorithms. In
ICML, pages 226233, 2003.

Behzad Ghazanfari and Matthew E Taylor. Autonomous extracting a hierarchical structure of tasks in
reinforcement learning and multi-task reinforcement learning. arXiv preprint arXiv:1709.04579,
2017.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 147(1-2):163-223, 2003.

Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward design
to improve monte carlo tree search in atari games. arXiv preprint arXiv:1604.07095, 2016.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. arXiv preprint arXiv:1802.07245,
2018.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the
web. arXiv preprint arXiv:1812.09195, 2018.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

Bradley Hayes and Brian Scassellati. Autonomously constructing hierarchical task networks for
planning and human-robot collaboration. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 5469-5476. IEEE, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

124



Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot
transfer in reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1480-1490. JMLR. org, 2017.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pages 87-94. Springer, 2001.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. arXiv preprint arXiv:1603.06318, 2016.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video
demonstration. arXiv preprint arXiv:1807.03480, 2018.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. In Advances in Neural Information Processing Systems, pages 1940-1950, 2019.

Sheng Jia, Jamie Ryan Kiros, and Jimmy Ba. DOM-q-NET: Grounded RL on structured language. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=HJgdlnAgFX.

Anders Jonsson and Andrew Barto. Causal graph based decomposition of factored mdps. Journal
of Machine Learning Research, 71(Nov):2259-2301, 2006.

Sham Machandranath Kakade et al. On the sample complexity of reinforcement learning. PhD
thesis, University of London London, England, 2003.

J Mark Keil and Jorg-R Sack. Minimum decompositions of polygonal objects. In Machine
Intelligence and Pattern Recognition, volume 2, pages 197-216. Elsevier, 1985.

Khimya Khetarpal and Doina Precup. Attend before you act: Leveraging human visual attention for
continual learning. arXiv preprint arXiv:1807.09664, 2018.

Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. arXiv preprint arXiv:1806.03836, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pages 3418-3428. PMLR, 2019.

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages

489-496, 2006.

George Konidaris and Andrew G. Barto. Building portable options: Skill transfer in reinforcement
learning. In IJCAI, 2007.

125


https://openreview.net/forum?id=HJgd1nAqFX
https://openreview.net/forum?id=HJgd1nAqFX

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4-22, 1985.

Michael Laskin, Scott Emmons, Ajay Jain, Thanard Kurutach, Pieter Abbeel, and Deepak Pathak.
Sparse graphical memory for robust planning. arXiv preprint arXiv:2003.06417, 2020.

Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement
Learning, pages 143—173. Springer, 2012.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch reinforce-
ment learning. In Proceedings of the 25th international conference on Machine learning, pages

544-551, 2008.

Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and Hal Daumé. Hierarchical
imitation and reinforcement learning. In International conference on machine learning, pages
2917-2926. PMLR, 2018.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for mdps. In ISAIM, 2006.

Xingyu Lin, Harjatin Singh Baweja, George Kantor, and David Held. Adaptive auxiliary task
weighting for reinforcement learning. Advances in neural information processing systems, 32,

2019.

Changsong Liu, Shaohua Yang, Sari laba-Sadiya, Nishant Shukla, Yunzhong He, Song-chun Zhu,
and Joyce Chai. Jointly learning grounded task structures from language instruction and visual
demonstration. In EMNLP, 2016.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Joao Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar: Testing compositional
generalization in recurrent networks. arXiv preprint arXiv:1807.07545, 2018.

Ajay Mandlekar, Danfei Xu, Roberto Martin-Martin, Silvio Savarese, and Li Fei-Fei. Learn-
ing to generalize across long-horizon tasks from human demonstrations. arXiv preprint
arXiv:2003.06085, 2020.

Neville Mehta, Prasad Tadepalli, and Alan Fern. Autonomous learning of action models for planning.
Advances in Neural Information Processing Systems, 24:2465-2473, 2011.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In /CLR, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

126



Stephen Muggleton. Inductive logic programming. New Gen. Comput., 8(4):295-318, February
1991. ISSN 0288-3635. doi: 10.1007/BF03037089. URL http://dx.doi.org/10.1007/
BF03037089.

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629-679, 1994.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in Neural Information Processing Systems, pages 3303-3313,
2018.

Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop: Simple hierarchical ordered
planner. In Proceedings of the 16th international joint conference on Artificial intelligence-Volume
2, pages 968-973. Morgan Kaufmann Publishers Inc., 1999.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In /ICML, volume 99, pages 278-287, 1999.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

P Russel Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In /ICML, 2017.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, pages 3878-3887. PMLR, 2018.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Mark Palatucci, D. Pomerleau, Geoffrey E. Hinton, and Tom Michael Mitchell. Zero-shot learning
with semantic output codes. In NIPS, 2009.

Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and transfer
reinforcement learning. CoRR, abs/1511.06342, 2015.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

Ronald Parr and Stuart J. Russell. Reinforcement learning with hierarchies of machines. In NIPS,
1997.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2778-2787. IMLR. org, 2017.

127


http://dx.doi.org/10.1007/BF03037089
http://dx.doi.org/10.1007/BF03037089

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532-1543, 2014.

Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple tasks for effective
learning. In 2017 IEEE international conference on robotics and automation (ICRA), pages
2161-2168. IEEE, 2017.

Doina Precup. Temporal abstraction in reinforcement learning. 2000.

Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange. Reinforcement learning for
robot soccer. Autonomous Robots, 27(1):55-73, 2009.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Earl D Sacerdoti. The nonlinear nature of plans. Technical report, Stanford Research Institute,
Menlo Park, CA, 1975.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory
for navigation. arXiv preprint arXiv:1803.00653, 2018a.

Nikolay Savinov, Anton Raichuk, Raphaél Marinier, Damien Vincent, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. /CLR, 2018b.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pages 1312—-1320, 2015.

Jiirgen Schmidhuber. Adaptive confidence and adaptive curiosity. In Institut fur Informatik,
Technische Universitat Munchen, Arcisstr. 21, 800 Munchen 2. Citeseer, 1991.

J Schulman, F Wolski, P Dhariwal, A Radford, and O Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In /CLR, 2016.

Dale Schuurmans and Relu Patrascu. Direct value-approximation for factored MDPs. In NIPS,
pages 1579-1586, 2002.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving
convolutional neural networks via concatenated rectified linear units. In international conference
on machine learning, pages 2217-2225, 2016.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pages 3135-3144, 2017.

128



Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. Taco:
Learning task decomposition via temporal alignment for control. In International Conference on
Machine Learning, pages 4654-4663. PMLR, 2018.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354-359, 2017.

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Hierarchical reinforcement learning for zero-shot
generalization with subtask dependencies. In NeurIPS, pages 7156-7166, 2018.

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, and Honglak Lee. Meta reinforcement learning
with autonomous inference of subtask dependencies. In International Conference on Learning
Representations, 2019.

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, and Honglak Lee. Meta reinforcement learning
with autonomous inference of subtask dependencies. arXiv preprint arXiv:2001.00248, 2020.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on Abstraction, Reformulation, and Approximation, pages 212-223. Springer, 2002.

Alejandro Suarez-Hernandez, Javier Segovia-Aguas, Carme Torras, and Guillem Alenya. Strips
action discovery. arXiv preprint arXiv:2001.11457, 2020.

Sainbayar Sukhbaatar, Arthur Szlam, Gabriel Synnaeve, Soumith Chintala, and Rob Fergus. Maze-
base: A sandbox for learning from games. arXiv preprint arXiv:1511.07401, 2015.

Richard S Sutton. Between mdps and semi-mdps: Learning, planning, and representing knowledge
at multiple temporal scales. 1998.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In NIPS, 1999a.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211,
1999b.

Austin Tate. Generating project networks. In Proceedings of the 5th international joint conference
on Artificial intelligence-Volume 2, pages 888—893. Morgan Kaufmann Publishers Inc., 1977.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(7), 2009.

129



Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):
58-68, 1995.

Chen Tessler, Daniel ] Mankowitz, and Shie Mannor. Reward constrained policy optimization.
ICLR, 2019.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforcement learning. In NIPS, pages 5392-5402, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 3540—
3549. JMLR. org, 2017.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Kiittler, John Agapiou, Julian Schrittwieser, et al.
Starcraft II: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Tom Vodopivec, Spyridon Samothrakis, and Branko Ster. On monte carlo tree search and reinforce-
ment learning. Journal of Artificial Intelligence Research, 60:881-936, 2017.

Thomas J Walsh and Michael L Littman. Efficient learning of action schemas and web-service
descriptions. In AAAI, volume 8, pages 714-719, 2008.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pages 1015-1022, 2007.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese.
Neural task programming: Learning to generalize across hierarchical tasks. arXiv preprint
arXiv:1710.01813, 2017.

Haonan Yu, Haichao Zhang, and Wei Xu. A deep compositional framework for human-like language
acquisition in virtual environment. arXiv preprint arXiv:1703.09831, 2017.

Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, and Arthur Szlam. Composable
planning with attributes. /CML, 2018.

130



Yu Zhang and Dit-Yan Yeung. A regularization approach to learning task relationships in multitask
learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 8(3):1-31, 2014.

Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning complex action models
with quantifiers and logical implications. Artificial Intelligence, 174(18):1540-1569, 2010.

131



	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Programs
	List of Appendices
	Abstract
	Introduction
	Background
	Markov Decision Process
	Factored Markov Decision Processes
	Multi-task Reinforcement Learning
	Few-shot Reinforcement Learning

	Multi-task Reinforcement Learning for Compositional Task with Given Task Description
	Introduction
	Related Work
	Problem Definition
	Method
	Experiment
	Discussion

	Meta Reinforcement Learning for Compositional Task via Task Inference
	Introduction
	Related Work
	Problem Definition: Subtask Graph Inference Problem
	Method
	Experiments
	Discussion

	Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
	Introduction
	Related Work
	Subtask Graph Inference Problem
	Method
	Experiment
	Discussion

	Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks
	Introduction
	Related Work
	Formulation: k-shortest-path Constraint
	SPRL: Shortest-Path Reinforcement Learning
	Experiments
	Discussion

	 Learning Factored Task Structure for Generalization to Unseen Entities 
	Introduction
	Problem Definition
	Method
	Related Work
	Experiments
	Discussion

	Discussion and Future Work
	Appendices
	Multi-task Reinforcement Learning for Compositional Task with Given Task Description
	Details of the Task Parameterized by Subtask Graph
	Details of Playground and Mining Domains
	Details of Subtask Graph Generation on Playground and Mining Domains

	Meta Reinforcement Learning for Compositional Task via Task Inference
	Details of the SC2LE Domain

	Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
	Details on SymWoB domain

	Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks
	Option framework-based formulation
	Shortest-Path Constraint: A Single-goal Case
	Proof of thm:sp-optimal
	Experiment details of MiniGrid domain
	Experiment details of DeepMind Lab domain
	Experiment details of Atari domain

	Bibliography

