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PREFACE 
 

“I tend to live forever, or die trying” – Groucho Marx 

 

This quote holds a special place in my heart as an oddly prescient look into how I’d 

spend the next decade of my life. Back in 2008 I chose it cavalierly as my senior quote 

without realizing it would become my credo.  

 

After high school I was unsure of the future, so I stayed at home in Spokane while 

working towards my associates degree. I wanted to discover that something I could get 

up and be excited about every day. I knew I enjoyed writing, so I tentatively planned to 

pursue a degree in English. Like many women, I got the message from my family and 

community that I should go into a more “nurturing” field, but I just could not shake drive 

to explore and discover. Fortuitously, my local community college would not let me 

leave with an Associate’s degree until I took a smattering of science courses. I 

begrudgingly signed up for an introductory biology course, and was struck by how much 

I enjoyed it. The innovative nature of scientific discovery amazed me and left me with 

the realization that academic science could provide me with the life of problem solving 

and intrigue I had been searching for. When I transferred to the University of 

Washington (UW) I knew I would pursue a career in the biological sciences even though 

I am the first in my family to pursue a STEM career. At UW I earned a Bachelor of 

Science degree in Molecular, Cellular and Developmental Biology and the ability to 

tackle scientific mysteries in the lab. But more importantly, I found inspiration. I wanted 

to be like my professors. I wanted to feel that enthusiasm I saw in them every time they 

spoke about their research.   
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There are hundreds of independent investigators affiliated with UW. How could I choose 

the right one? Each lab I researched sounded more fascinating than the last. I planned 

to meet with my favorite professors and fellow students to solicit their opinions, but 

before I could, the answer appeared in front of me. A postdoctoral fellow from the 

Kaeberlein lab, Dr. Lara Shamieh, presented a guest lecture to my class on “the 

mechanism of aging.” I still remember her talk clearly. She performed a forward genetic 

screen using C. elegans to discover genes necessary for longevity induced by dietary 

restriction (DR). She then isolated homozygous mutants which were longer- and 

shorter-lived under DR conditions, and went on to characterize the most interesting 

mutants. I appreciated the simple experimental design to examine a complex, 

multifaceted subject like aging. I emailed her later that day eager to learn more about 

aging research and possible openings in the lab. And so begins the saga of my 

transformation into a proficient, academically trained scientist!



 

 

ix 

TABLE OF CONTENTS 
DEDICATION ......................................................................................................................................................... ii 

ACKNOWLEDGEMENTS ....................................................................................................................................... iii 

PREFACE ............................................................................................................................................................. vii 

LIST OF TABLES .................................................................................................................................................. xiii 

LIST OF FIGURES ................................................................................................................................................ xiv 

ABSTRACT ......................................................................................................................................................... xvi 

CHAPTER 1 ........................................................................................................................................................... 1 

Cell Non-Autonomous Regulation of Health and Longevity1 ................................................................................. 1 

Abstract .................................................................................................................................................................... 1 

Introduction ............................................................................................................................................................. 1 

Caenorhabditis elegans ............................................................................................................................................ 3 
Energy balance and insulin signaling ................................................................................................................... 3 
Proteostasis signaling pathways .......................................................................................................................... 8 
Perception of external stimuli ........................................................................................................................... 11 

Drosophila melanogaster ....................................................................................................................................... 16 
Energy balance and insulin signaling ................................................................................................................. 17 
Proteostasis signaling pathways ........................................................................................................................ 19 
Perception of external stimuli ........................................................................................................................... 22 

Mammals ............................................................................................................................................................... 25 

Emerging Concepts ................................................................................................................................................ 32 



 

 

x 

CHAPTER 2 ......................................................................................................................................................... 37 

Serotonin and Dopamine Modulate Aging in Response to Food Perception and Availability ............................... 37 

Foreword ................................................................................................................................................................ 37 

Abstract .................................................................................................................................................................. 37 

Introduction ........................................................................................................................................................... 38 

Results .................................................................................................................................................................... 39 
Attractant food perception represses fmo-2 to limit longevity. ....................................................................... 39 
Serotonin and dopamine antagonists induce fmo-2 to mimic DR longevity. .................................................... 44 
DR signaling acts through a pair of enteric neurons. ........................................................................................ 48 
Mianserin mimics DR by antagonizing the 5-HT1A receptor SER-4. .................................................................. 54 
Thioridazine induces fmo-2 and extends lifespan through Dopamine receptor DOP-3/DRD2. ........................ 55 
Mianserin induces FMOs and promotes stress resistance in mammalian cells. ............................................... 59 
Mianserin extends D. melanogaster lifespan similar to C. elegans. .................................................................. 61 

Discussion ............................................................................................................................................................... 64 

Materials and Methods .......................................................................................................................................... 66 
Strains and growth conditions ........................................................................................................................... 66 
fmo-2p::mCherry construct ............................................................................................................................... 66 
SER-4 rescue constructs .................................................................................................................................... 66 
Microinjection ................................................................................................................................................... 66 
Lifespan measurements .................................................................................................................................... 67 
RNAi knockdown ............................................................................................................................................... 67 
PFA treatment ................................................................................................................................................... 67 
Drug treatments ................................................................................................................................................ 68 
Dietary restriction (DR) lifespan treatments ..................................................................................................... 68 
Attractant, repellant, and neutral smell treatments ......................................................................................... 68 
Slide microscopy ................................................................................................................................................ 69 
Real-time PCR .................................................................................................................................................... 69 
Fly husbandry .................................................................................................................................................... 70 
Fly survival assays .............................................................................................................................................. 70 
Cell culture and stress resistance assay ............................................................................................................ 70 
Western blot analysis ........................................................................................................................................ 71 



 

 

xi 

Statistical analyses ............................................................................................................................................. 71 

CHAPTER 3 ......................................................................................................................................................... 75 

Genetic Interaction with Temperature Is an Important Determinant of Nematode Longevity2 ........................... 75 

Foreword ................................................................................................................................................................ 75 

Abstract .................................................................................................................................................................. 75 

Results .................................................................................................................................................................... 76 

Discussion ............................................................................................................................................................... 92 

Materials and Methods .......................................................................................................................................... 94 
Strains and Growth Conditions ......................................................................................................................... 94 
Lifespan measurements .................................................................................................................................... 94 
RNAi knockdown ............................................................................................................................................... 94 
Dietary restriction (DR) treatment .................................................................................................................... 94 
Hypoxia treatment ............................................................................................................................................ 94 
Caffeine treatment ............................................................................................................................................ 94 
Statistical analyses ............................................................................................................................................. 94 

CHAPTER 4 ....................................................................................................................................................... 109 

Using Bioinformatic Tools to Cultivate New Hypotheses .................................................................................. 109 

Foreword .............................................................................................................................................................. 109 

Hypoxic response regulators RHY-1 and EGL-9/PHD promote longevity through a VHL-1-independent 

transcriptional response ...................................................................................................................................... 110 
Abstract ........................................................................................................................................................... 110 
Introduction .................................................................................................................................................... 110 
RHY-1 and EGL-9 control a VHL-1-independent transcriptional response. ..................................................... 113 
Knockdown of EGL-9 target genes rescues lifespan of egl-9; vhl-1 mutants. .................................................. 117 
Discussion ........................................................................................................................................................ 121 

A role for SCP-like extracellular proteins in C. elegans aging ............................................................................... 125 
Abstract ........................................................................................................................................................... 125 
Introduction .................................................................................................................................................... 125 
RNA-seq analyses of two genetically distinct FMO-2 OE animals ................................................................... 127 



 

 

xii 

Knockdown of scl-3 and scl-5 increases stress resistance and longevity. ....................................................... 129 
Additional screening finds mixed results of scl knockdown effect on lifespan. .............................................. 131 
scl-3 and scl-5 act downstream of DR-mediated fmo-2 induction. ................................................................. 134 
Discussion ........................................................................................................................................................ 137 

Materials and Methods ........................................................................................................................................ 139 
Strains and growth conditions ......................................................................................................................... 139 
RNAi knockdown ............................................................................................................................................. 139 
Lifespan measurements .................................................................................................................................. 139 
Statistical analyses ........................................................................................................................................... 139 
RNA isolation, sequencing, and analysis ......................................................................................................... 139 

CHAPTER 5 ....................................................................................................................................................... 142 

Conclusions and Future Directions ................................................................................................................... 142 

Foreword .............................................................................................................................................................. 142 

Can we link or separate DR longevity to behavioral changes? ............................................................................ 143 

Can we identify additional signals downstream of serotonin release? ............................................................... 148 

Is there a retrograde signal released from the intestines during hypoxia or DR? ............................................... 150 

Are glial cells involved across stress-induced longevity pathways? ..................................................................... 152 

What transcription factors regulate intestinal FMO-2 expression? ..................................................................... 154 

Models, speculation, and implications ................................................................................................................. 156 

Materials and Methods ........................................................................................................................................ 158 
Strains and Growth Conditions ....................................................................................................................... 158 
Lifespan measurements .................................................................................................................................. 158 
RNAi knockdown ............................................................................................................................................. 158 
Drug treatments .............................................................................................................................................. 158 
Dietary restriction (DR) treatment .................................................................................................................. 158 
Aβ-toxicity paralysis ........................................................................................................................................ 158 
Behavioral measurements ............................................................................................................................... 158 
Statistical analyses ........................................................................................................................................... 158 

References ....................................................................................................................................................... 160 



 

 

xiii 

 

 
 

LIST OF TABLES 
Table 2.1. C. elegans strains used in this study. .......................................................................................................... 72 
Table 2.2. Lifespan information for this study. ........................................................................................................... 73 
Table 2.3. Odorant classification, identification, and concentrations. ....................................................................... 74 
Table 3.1. Descriptions of the 43 conditions included in this study. .......................................................................... 96 
Table 3.2. Lifespan information for this study. ........................................................................................................... 98 
Table 3.3. Hazard Ratio calculations for Figure 3.6C-D, Figure 3.8. .......................................................................... 107 
Table 4.1. Core hypoxic response genes. .................................................................................................................. 116 
Table 4.2. Lifespan summary statistics. .................................................................................................................... 133 
Table 4.3. Survival statistics for project 1. ................................................................................................................ 141 
Table 5.1. Hits from Neuropeptide RNAi screen. ...................................................................................................... 149 
Table 5.2. C. elegans strains used in this chapter. .................................................................................................... 159 
Table 5.3. Survival statistics for Figures 5.5-8. .......................................................................................................... 159 

 
 
 



 

 

xiv 

LIST OF FIGURES 
Figure 1.1. Summary of the role energy balance and insulin signaling on cell non-autonomous modulation of 

longevity in C. elegans. _________________________________________________________________________ 8 
Figure 1.2. Summary of the role of proteostasis in cell non-autonomous modulation of longevity in C. elegans. _ 11 
Figure 1.3. Summary of the role of perception on cell non-autonomous modulation of longevity in C. elegans. __ 16 
Figure 1.4. Summary of the role energy balance and insulin signaling on cell non-autonomous modulation of 

longevity in D. melanogaster. ___________________________________________________________________ 19 
Figure 1.5. Summary of the role of proteostasis in cell non-autonomous modulation of longevity in D. 

melanogaster. _______________________________________________________________________________ 22 
Figure 1.6. Summary of the role of perception on cell non-autonomous modulation of longevity in D. melanogaster.

 ___________________________________________________________________________________________ 25 
Figure 1.7. The intersection of cell non-autonomous signaling and aging in mammals. ______________________ 32 
Figure 1.8. Summary model. ____________________________________________________________________ 36 
Figure 2.1. Attractive food smell blocks dietary restriction-mediated fmo-2 induction and longevity. __________ 41 
Figure 2.2. Odorant effects on fmo-2 expression. ___________________________________________________ 42 
Figure 2.3. Titration experiments of odorants tested. ________________________________________________ 43 
Figure 2.4. Induction of fmo-2 by neuromodulators. _________________________________________________ 46 
Figure 2.5. Serotonin and dopamine antagonists induce fmo-2 and extend lifespan. _______________________ 47 
Figure 2.6. Neuronal gene necessity for fmo-2 induction under DR/food smell/biogenic amin antagonism. _____ 50 
Figure 2.7. Food signals emanate from the NSM neurons. ____________________________________________ 51 
Figure 2.8. Serotonin and serotonergic neuron-regulation of fmo-2 induction and longevity. ________________ 52 
Figure 2.9. ASICs channels modify responses to DR and food smell. _____________________________________ 53 
Figure 2.10. 5-HT1A receptor ser-4 and DRD2 receptor dop-3 act downstream of food perception. ___________ 56 
Figure 2.11. The role of serotonergic receptor signaling in fmo-2 induction by DR and DR mimetics. ___________ 57 
Figure 2.12. The role of dopaminergic receptor signaling in fmo-2 induction and lifespan extension by DR and DR 

mimetics. ___________________________________________________________________________________ 58 
Figure 2.13. Induction of Fmos by biogenic amine antagonists. ________________________________________ 60 
Figure 2.14. Serotonin antagonist mianserin induces FMO and improves health in Drosophila and mammalian cells.

 ___________________________________________________________________________________________ 62 



 

 

xv 

Figure 2.15. Effects of DR mimetic mianserin on Fmo expression, feeding, and lifespan. ____________________ 63 

Figure 3.1. Examples of different types of interactions between genotype, temperature, and lifespan. ________ 78 
Figure 3.2. Lifespans from L4 for strains with developmental delays. ____________________________________ 80 
Figure 3.3. Mutant and environmental condition lifespans at 15, 20, and 25°C. ___________________________ 81 
Figure 3.4. RNAi lifespans at 15, 20, and 25°C. ______________________________________________________ 84 
Figure 3.5. Complete graph of median lifespan vs temperature at 15, 20, and 25°C for all lifespan data normalized 

to wild-type/control. __________________________________________________________________________ 86 
Figure 3.6. Temperature vs. longevity across genotypes. _____________________________________________ 88 
Figure 3.7. Pathway specific lifespans across temperatures by mean lifespan. ____________________________ 89 
Figure 3.8. Cox regression-calculated hazard ratios between each condition and wild-type across temperatures (25-

15°C) for the pathways described in Figure S5. _____________________________________________________ 90 
Figure 3.9. Heat map of relative longevity. ________________________________________________________ 91 
Figure 4.1. A subset of genes are antagonistically regulated by egl-9 and vhl-1. __________________________ 115 
Figure 4.2. VHL-1/EGL-9 antagonistic HIF-1 targets rescue lifespan in egl-9;vhl-1 mutants. _________________ 119 
Figure 4.3. Effects of additional VHL-1/EGL-9 antagonistic HIF-1 targets on lifespan. ______________________ 120 
Figure 4.4. Epistatic model of lifespan regulation by VHL-1, RHY-1, and EGL-9. ___________________________ 124 
Figure 4.5. Several differentially expressed genes are present in both FMO-2 OE transgenic lines. ___________ 128 
Figure 4.6. Knockdown of scl-3 and scl-5 increases stress resistance and longevity. _______________________ 130 
Figure 4.7. Additional scl knockdown replicates. ___________________________________________________ 132 
Figure 4.8. Example effects of scl knockdown on lifespan. ___________________________________________ 133 
Figure 4.9. scl-3 and scl-5 act downstream of FMO-2 OE and DR-mediated longevity. _____________________ 135 
Figure 4.10. Additional effects of scl knockdown on DR lifespan. ______________________________________ 136 
Figure 5.1. Food smell enhances foraging but not pumping in a 5-HT-dependent manner. __________________ 144 
Figure 5.2. DR fleeing is enhanced by the addition of mianserin. ______________________________________ 145 
Figure 5.3. DR-mimetics modify foraging behavior and enhance resistance to Aβ-toxicity. __________________ 147 
Figure 5.4. RNAi screen uncovers several neuronal signaling components to investigate. ___________________ 149 
Figure 5.5. unc-31 enhances DR signaling from the intestine to the nervous system. ______________________ 151 
Figure 5.6. nlp-23 functions as a necessary intestinal signal while nlp-17 functions as a necessary neuronal signal to 

promote vhl-1 longevity. ______________________________________________________________________ 153 
Figure 5.7. TFs nhr-49 and mdl-1 are required for DR-mediated fmo-2 induction. _________________________ 155 
Figure 5.8. PPARα ortholog nhr-49 is required for DR-mediated longevity. ______________________________ 155 



 

 

xvi 

 

 

 ABSTRACT 
Rapid advances in aging research have identified several stressful stimuli (e.g. 

food/oxygen availability, temperature) that can enhance health and longevity across 

taxa. Many of these longevity pathways act through cell non-autonomous signaling 

mechanisms. These pathways utilize sensory cells, frequently neurons, to signal to 

peripheral tissues and promote survival during the presence of external stress. 

Importantly, this neuronal activation of stress response pathways is often sufficient to 

improve health and longevity in the absence of stress. 

 

Multiple studies, including our own, implicate serotonin (5-HT) as a signal within several 

longevity pathways. 5-HT is one of the best studied neuromodulators with numerous 

drugs targeting its actions, yet our understanding of the complex actions of 5-HT 

signaling is still incomplete. 5-HT is released upon food perception, therefore we posited 

that a decrease in 5-HT release during dietary restriction (DR) may also result in 

downstream signaling changes. This hypothesis is bolstered by data showing that the 

perception of food is sufficient to abrogate DR-mediated longevity. Using an intestinal 

reporter for a key gene induced by DR but suppressed by attractive smells, we identify 

three compounds that block food perception, thereby increasing longevity as DR 

mimetics. These compounds clearly implicate serotonin and dopamine in limiting 

lifespan in response to food perception.  

 

We further identify an enteric neuron in this pathway that signals through the serotonin 

receptor 5-HT1A/ser-4 and dopamine receptor DRD2/dop-3, and critically, aspects of 

this pathway are conserved in the vinegar fly D. melanogaster and in mammalian cells. 

These studies present compelling evidence that reward circuitry is tied to the perception 
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of food across taxa and may be a viable area of research to discover pro-longevity 

treatments 

 

Similar to our food availability experiments, we find temperature can modulate longevity 

interventions outside the laws of thermodynamics. Our data suggest that genetics play a 

major role in temperature-associated longevity and are consistent with the hypothesis 

that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) 

of death may also be modified, leading to different genes and pathways becoming more 

or less important at different temperatures. These data shed light on the complex 

interplay of stress response signaling and suggest some act in a temperature-

dependent manner.  

  

Collectively, the findings in this thesis enhance our understanding of conserved 

signaling pathways that modify aging while advancing the fields long-term goal to 

develop therapeutics that increase human health/lifespan. 
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CHAPTER 1 

Cell Non-Autonomous Regulation of Health and Longevity1 

Abstract 

As the demographics of the modern world skew older, understanding and mitigating the 

effects of aging is increasingly important within biomedical research. Recent studies in 

model organisms demonstrate that the aging process is frequently modified by an 

organism’s ability to perceive and respond to changes in its environment. Many well-

studied pathways that influence aging involve sensory cells, frequently neurons, that 

signal to peripheral tissues and promote survival during the presence of stress. 

Importantly, this activation of stress response pathways is often sufficient to improve 

health and longevity even in the absence of stress. Here we review the current 

landscape of research highlighting the importance of cell non-autonomous signaling in 

modulating aging from C. elegans to mammals. We also discuss emerging concepts 

including retrograde signaling, approaches to mapping these networks, and 

development of potential therapeutics.  

Introduction 

It is estimated that by 2050 the number of US citizens over the age of 65 will reach 

nearly 100 million, more than twice as many as today (1). If this increase occurs without 

significant fiscal and structural changes, the cost of this aged population could cripple 

economies across the world. Therefore, deciphering and mitigating the aging process to 

create a healthier older population has become an increasingly important  

1. Originally published in Elife (2020 Dec 10;9:e62659) with authors listed as Miller, H.A., 
Dean, E.S., Pletcher, S.D., and Leiser, S.F. 
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goal within biomedical research. The benefits of discovering therapeutics that target 

aging are many, including 1) decreasing the financial burden on our strained healthcare 

system, 2) increasing the amount of time older adults live free of chronic diseases (often 

denoted as healthspan), and 3) potentially increasing maximum human lifespan. 

Organismal lifespan was first presented as a genetically modifiable trait by 

groundbreaking publications from the Johnson, Kenyon and Ruvkun labs describing the 

effects of the FOXO transcription factor DAF-16 on longevity in C. elegans (1-3). These 

findings played a critical role in the field’s current interest in identifying signals that are 

crucial regulators of aging across the entire organism. Additional studies have shown 

that environmental factors, such as food perception or oxygen levels (4-6), can also 

modify longevity in model organisms. While modifying genes or substantially changing 

environments is not plausible in humans, it is feasible to find anti-aging therapeutics that 

mimic environmental cues or genetic signaling environments.  

Deciphering how cells relay information to one another remains one of the foundational 

discoveries in biology. It was first posited by John Langley that cells express receptor 

proteins on the extracellular side of the cell membrane and, when bound by a signaling 

molecule, initiate a downstream physiological response (7). This was validated by a 

series of discoveries, starting with Rita Levi-Montalcini’s finding of nerve growth factor in 

the 1950s and continuing with the discovery of other growth factors (8) before 

eventually finding the receptors themselves (9). These discoveries were pivotal in 

furthering our understanding of cellular patterning during development (10) as well as 

how organisms adapt to external stimuli. This concept, that cells can relay critical 

information to other cells in response to an initial signaling cue, allows for genes 

expressed in one cell or tissue to affect the physiology of other cells and tissues. This 

ability of genes to affect processes outside of the cells they are expressed in is often 

referred to as cell non-autonomous action or signaling. 

More recently, high profile publications from multiple labs have shown that many 

signaling pathways reported to improve longevity (e.g. mitochondrial stress, insulin-like 

signaling, heat shock, and the hypoxic response) act through cell non-autonomous 
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signaling mechanisms (11-16). These pathways originate in sensory cells, often 

neurons, that signal to peripheral tissues and promote survival during the presence of 

stress. Importantly, this activation of stress response pathways, either through genetic 

modification or exposure to environmental stress, is often sufficient to improve health 

and longevity. Additionally, genetic modification of these pathways can often target the 

aging process while sparing growth/development/reproduction effects that are often 

consequences of environmental stress. Understanding how cell non-autonomous 

signaling influences longevity is a relatively recent concept in aging research and 

presents a novel opportunity to discover pharmacological interventions that modulate 

signaling to increase healthspan and longevity. 

In this review, we summarize the recent wave of studies investigating the effects of cell 

non-autonomous signaling on a myriad of canonical aging pathways across taxa. 

Further, we discuss where the field has excelled and what we can learn from other 

areas of research that have successfully mapped the neuronal circuitry of behavioral 

phenotypes. 

Caenorhabditis elegans 

Utilization of the model organism C. elegans has played an integral role in bringing the 

biology of aging field into prominence. The discovery that mutations in the sole 

nematode insulin-like growth factor receptor (IGFR), daf-2, can double a multicellular 

organism’s lifespan, launched a new field (1-3). Their discrete, well-defined somatic cell 

fate makes them an ideal model system to study how cell non-autonomous signaling 

influences a complex phenotype like aging. We begin by discussing the extensive 

studies of different C. elegans pathways that protect against stress and modify aging 

through cell non-autonomous mechanisms. 

Energy balance and insulin signaling 

Soon after the initial discovery that diminished insulin signaling can extend lifespan, the 

aging field began exploring where decreased insulin signaling was required to promote 

longevity. By constructing animals with mosaic expression of daf-2, several cell lineages 
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were identified that require daf-2 mutations to reproduce the entirety of the daf-2 

lifespan benefit (17). This study was the first to clearly define a role for cell non-

autonomous activity in aging and validate the significance of inter-tissue signaling 

during the lifespan of an organism. From here they sought to understand the effects of 

insulin signaling across tissues and the emergent role of the nervous system in 

influencing longevity came to the forefront of the field (Figure 1.1). 

The identification of this role began through epistasis experiments. It was discovered 

that daf-2 mutants completely require the class O of forkhead box transcription factors 

(FOXO) ortholog daf-16 to extend lifespan (18), suggesting that daf-16 nuclear 

localization and transcriptional activity is responsible for the longevity benefits. While 

most of daf-16’s pro-longevity effects are thought to be tied to cell-autonomous 

transcription of target genes in the intestine (19), more recent studies show that a 

subset of target genes, dod-8, dod-11, and hsp12.6, influence muscle aging cell non-

autonomously (20). Intestinal expression of daf-16 leads to elevated induction of target 

genes in the nervous system and hypodermis. Conversely to daf-16, tissue-specific 

expression of daf-2 or age-1 in neurons is sufficient to partially block lifespan extension 

in mutant animals; whereas, daf-2 or age-1 rescue in muscle is sufficient to restore 

metabolic function (21). These studies provide evidence that metabolism and aging are 

separable, yet interrelated, and that bi-directional signaling from metabolically active 

tissues to the nervous system occurs. We will expand on this understudied 

phenomenon in the emerging concepts section. 

Nematodes have amphid neurons with ciliated projections that relay information about 

their current environment to the worm. Interestingly, when these projections are 

genetically knocked out or laser ablated, the animals live longer, often with the 

requirement of daf-16 activity (22, 23). These data are supported by a recent study 

analyzing RNA in isolated neurons of daf-16 and daf-16; daf-2 mutants that finds daf-16 

target genes exclusively expressed in mechanosensory neurons (24). This led to 

identification of a novel gene, fkh-9/FOXL1, that, when knocked out, entirely abrogates 

daf-2 lifespan. Another transcriptional microarray analysis identified a set of neuronally 

expressed genes upregulated in animals on daf-2 RNAi and downregulated in animals 
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on daf-16 RNAi (class I) or vice versa (class II) (25). The class II hit, ins-7, predicted to 

encode for an insulin-like peptide, is required for daf-2 RNAi-mediated lifespan 

extension. ins-7 may act as a signaling molecule in insulin-mediated cell non-

autonomous signaling from the nervous system to the intestine. These data are 

compelling as C. elegans are predicted to have 40 insulin-like peptides that both 

agonize and antagonize daf-2, some of which modify the lifespan of wild-type animals 

when neuronally overexpressed (26). 

Foundational work from the Kenyon lab established that signaling from germ cells 

regulates insulin signaling by decreasing daf-16 activity throughout the organism (27). 

This means that ablating the germline genetically or physically leads to daf-16 activation 

and increased longevity. The absence of germline signals activates a daf-12-dependent 

sterol signaling pathway in somatic reproductive tissues (28). This pathway induces the 

expression of lips-17/fard-1 and produces an unknown lipophilic signal to increase sod-

3/dod-8 in other somatic tissues (20). This signaling pathway is an illustration of 

cells/tissues signaling to other tissues that “times are good/bad.”  

Despite the groundbreaking discovery of microRNAs (miRNAs) in C. elegans (29), their 

size, abundance across the genome, and evolutionary conservation, little work has 

investigated their potential role in cell non-autonomous modulation of aging. An 

intriguing study begins this exploration, interrogating how mir-71 modulates lifespan 

(30). mir-71 is necessary for lifespan extension in glp-1 germline mutants, while mir-71 

overexpression in germline mutants extends lifespan beyond that of germline mutations 

alone. Rescuing mir-71 in neurons alone is sufficient to rescue the germline mutant 

longevity phenotype, and intestinal daf-16 expression is necessary for mir-71 

overexpression to extend lifespan in germline mutants. While this study presents an 

incomplete picture, it provides sound evidence for future studies to consider miRNAs as 

a target for inter-tissue signaling during the aging process.  

The absence of gonadal stem cell signaling leads to activation of intestinal transcription 

factors like skn-1/Nrf2 that help to globally remodel the organism’s metabolism (31). A 

lack of gonadal stem cells also increases circulating fatty acids (FAs) that are normally 
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deposited in this tissue. This increase in circulating lipids may induce skn-1/Nrf2 nuclear 

localization that, in turn, enhances lipid metabolism and increases lifespan. nhr-

49/HNF4α, a nuclear hormone receptor widely expressed throughout somatic tissues, 

also regulates both glp-1-mediated longevity and lipid metabolism (32). Furthermore, 

nhr-49 overexpression extends lifespan in a daf-16- and glp-1-dependent manner. 

While this work cannot be directly translated to human health, these data provide initial 

evidence for critical signaling events between stem cells and nearby somatic tissues 

that influence longevity.  

Multiple nutrient sensing pathways that interact with insulin signaling are conserved 

from worms to mammals including the target of rapamycin (TOR) and AMP-activated 

protein kinase (AMPK) pathways. The latter nematode ortholog, aak-2, has increased 

activity under low energy conditions and is sufficient to promote longevity when 

overexpressed (33). Follow-up studies show that aak-2 activity suppresses cAMP-

response element binding protein (CREB)/CREB-regulated transcription coactivator 1 

(CRTC-1) transcriptional regulation and this ultimately extends lifespan (34). crtc-1 

neuron-specific knockout extends lifespan without the undesirable pleiotropic effects 

that accompany AMPK activation, like decreased growth and fecundity (35). 

Interestingly, nhr-49/HNF4α is activated by AAK-2 (36), and its neuronal expression is 

required for the lifespan extension in AAK-2 overexpressing animals. Furthermore, 

neuronal CRTC-1 is sufficient to block AMPK-mediated longevity. Neuronal crtc-1 levels 

modify intestinal aak-2 activity through the neurotransmitter octopamine as a 

mechanism for the nervous system to convey “times are good”. Despite these results, 

many questions remain involving this signaling pathway. Octopamine is thought to be 

exclusively synthesized in the RIC head neurons (37) and the two known octopamine 

receptors, ser-3 and octr-1, are expressed throughout inner neurons but not in 

peripheral tissues (38, 39). This suggests that octopamine acts as an initiating signal 

instead of a direct signal from neurons to downstream tissues. Recent work highlights 

this point by showing GABAergic signaling and neuron excitability inversely changes 

throughout the life of short- and long-lived animals (40). 
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TOR and AMPK play antagonistic roles in modulating lifespan and metabolism. 

Downregulation of TORC1 complex proteins, like raga-1, increases lifespan (41) but 

requires neuronal aak-2 activity (13). Moreover, neuronal TORC1 expression is 

sufficient to shorten lifespan, consistent with a central “times are good” signal 

modulating longevity. RNA-seq comparisons of wild-type to raga-1 knockout and 

neuronal overexpression identified unc-64/syntaxin as epistatic to neuronal raga-1 

activity. This work supports neural signaling as responsible for metabolic 

rearrangements, like increased mitochondrial fragmentation, that occur in peripheral 

tissues.  

Although many of these studies identify the existence of neurosignaling pathways that 

drive metabolic changes in peripheral tissues, few have identified the signal(s) through 

which the nervous system transmits information to these tissues. Probing the precise 

mechanisms of nervous system to intestinal signaling will be an essential next step in 

furthering our understanding of how cell non-autonomous signaling influences aging. 
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.  
Figure 1.1. Summary of the role energy balance and insulin signaling on cell non-
autonomous modulation of longevity in C. elegans.  
Mammalian orthologs are listed in parentheses. If there are no parentheses, the name is shared 
across taxa 
 

Proteostasis signaling pathways 
A significant body of literature links increased stress resistance with longevity, leading to 

the hypothesis that acute moderate stress can trigger hormetic effects that extend 

lifespan (42). Eukaryotic cells have evolved several organelle-specific stress responses 

that, when induced, extend nematode lifespan. 

Knock down of complex IV of the electron transport chain (ETC) with cco-1 RNAi leads 

to delayed growth, slowed movement, reduced body length, and increased lifespan. 

Importantly, cco-1 knock down exclusively in neurons increases lifespan without 
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pleiotropic phenotypes by altering mitochondrial homeostasis in peripheral tissues (43). 

Interestingly, this lifespan extension requires the mitochondrial unfolded protein 

response (mt-UPR), but not daf-16/insulin signaling. A follow up study using the heat 

shock protein-6 (hsp-6)p::GFP transcriptional reporter identified vps-35 as lacking 

peripheral mt-UPR (44). VPS-35 is a highly conserved protein in the retromer complex, 

involved in recycling Wnt and the Wnt secretion factor MG-4 (45). In agreement with 

this, the Wnt receptor egl-20 is necessary and sufficient for cell non-autonomous mt-

UPR induction and longevity. Interestingly, neuronal serotonin production is necessary 

for cell non-autonomous mt-UPR even though the loss of each of the four known 

serotonin receptors (ser-1, ser-4, ser-7, and mod-1) has no effect. These results clearly 

define that mitochondrial stress, through reduction of ETC activity or separate activation 

of the mt-UPR, can be transmitted by neurons cell non-autonomously to modify aging. 

As with many of these neuronal based networks, however, the central signaling 

pathways remain largely uncharacterized. 

Multiple labs find that neuronal activation of the endoplasmic reticulum unfolded protein 

response (ER-UPR) is sufficient to enhance stress resistance and extend lifespan (46-

50). This crucial discovery stems from identifying that the constitutively active 

spliceoform of X-box binding protein 1 (xbp-1s), a transcription factor activated by the ER-

UPR, rescues older animal survival on paraquat (46). Expression of xbp-1s in the 

nervous system or intestine extends lifespan, and exclusive xbp-1s expression in the 

neurons is sufficient to increase paraquat stress resistance in young and older animals. 

It is likely that neuronal ER-UPR releases an activation signal conferring xbp-1s 

upregulation in the intestines that rescues motility in models of proteotoxicity like Aβ, 

polyglutamine aggregates (Q40), and dynamin (47).  

More recent work begins to parse out where xbp-1s is required in the nervous system to 

extend lifespan. Surprisingly, expression of xbp-1s in glia, helper and insulator cells for 

neurons, extends lifespan and activates the ER-UPR in peripheral tissues (48). This 

xbp-1s-mediated signal requires neuropeptide signaling but not neurotransmission for 

intestinal induction of hsp-4, suggesting a neuropeptide is the intermediate signal from 

the glia cells to the intestine (48). While it is useful to rule-out neurotransmitters as the 
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causative signaling molecules, there remain hundreds of potential coding regions 

annotated as “neuropeptides” in C. elegans (51, 52). 

Another open question surrounds whether other transcription factors that respond to the 

ER-UPR can recapitulate the effects of xbp-1 activation. Preliminary findings point to 

xbp-1 activity, not pek-1 or atf-6, two transcription factors also activated by the ER-UPR 

(48), as key to modifying lifespan. This implies that uncovering the pro-longevity targets 

of XBP-1 will be of high interest to understand and translate these results. Neuronal 

activation of xbp-1s results in changes in fat metabolism, a build-up in oleic acid (OA), 

and leaner animals (50). It is possible that the pro-longevity phenotypes associated with 

xbp-1s are due to increased expression of lysosomal genes, like asp-13 and vha-18, 

that enhance acidity and, therefore, protease activity. Furthermore, the lifespan 

phenotype and expansion of the ER in xbp-1s animals requires lipid depletion (49). 

Initial results show enhanced intestinal lipid depletion through ehbp-1 overexpression 

modestly extends lifespan and partially recapitulates the effects of xbp-1s. Taken 

together, these data emphasize the significant role metabolically active tissues, like the 

intestine, play in properly responding to cues from the nervous system (summarized in 

Figure 1.2). While the ER-UPR field is beginning to narrow in on specific neuronal cells 

and signaling molecules, much is left to delineate in the neuronal circuitry. 

Understanding how, when and where neuromodulators affect normal and pro-longevity 

conditions is paramount in translating these results to higher organisms and discovering 

therapeutic treatments to mimic these phenomena. 
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Figure 1.2. Summary of the role of proteostasis in cell non-autonomous modulation of 
longevity in C. elegans.  
Mammalian orthologs are listed in parentheses. If there are no parentheses, the name is shared 
across taxa. 
 

Perception of external stimuli  
An organism's ability to respond to changes in the environment, such as temperature, 

oxygen levels, and smells, is vital to their survival. In this section, we chronicle research 

findings linking perception and organismal aging (Figure 1.3). 

As poikilotherms, C. elegans are responsive to heat- and cold-shock. Generally, 

longevity varies inversely with temperature, where animals housed at lower 

temperatures (15℃) live longer than those at higher temperatures (25℃). Based on our 

understanding of thermodynamics this observation seems intuitive, but several papers 

have challenged this theory and shown changes in lifespan across temperature are 

genetically modulated. In fact, many pro-longevity genetic mutations have a distinct 

relationship with temperature, promoting longevity at either cold or warm temperatures 

but rarely both (53). These data are consistent with many genes playing an active role 

in the physiological response to changes in temperature. Whether by modifying the 
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perception or response to temperature, this interplay suggests that genes actively 

influence lifespan at various temperatures, refuting thermodynamics as the sole 

influence on temperature-mediated lifespan changes. 

A robust body of research surrounds activating the heat shock response (HSR) and 

longevity. In C. elegans, post-reproductive adulthood is accompanied by an abrupt 

decline in protein quality control (54-56). Thus, maintaining the ability to effectively 

respond to heat stress remains a hallmark of long-lived animals. It is important to note 

that heat shock, described in the literature as >30℃, likely uses partially-distinct genetic 

mechanisms from warmer conditions (22℃-25℃) that will be addressed separately. 

Early studies implicate the nervous system in regulating proteostasis through the HSR. 

Key signaling components of amphid neurons, gcy-3 and ttx-3, are necessary for proper 

induction of global HSR during heat shock (57). These early studies also implicate an 

unknown neurotransmitter in signaling from the nervous system to promote survival 

during heat shock. Optogenetic stimulation of the AFD thermosensory neurons triggers 

serotonin release from the ADF neurons that activates heat shock factor 1 (HSF-1) in 

the germline in the absence of heat shock (58). In the absence of ser-1, a 5-HT2B 

serotonin receptor ortholog, HSF-1 is not re-localized to the nucleus upon AFD 

optogenetic excitation or heat shock. This result suggests that ser-1 is necessary for 

proper signaling during HSR. It is worth noting there is no predicted synapse or gap 

junction between AFD and ADF neurons, meaning there is likely an intermediate 

signaling molecule(s) and/or cells yet to be discovered. 

While HSR proteins are necessary for animals to survive warmer temperatures (59), it is 

significant that overexpression of hsf-1 in neurons is sufficient to increase stress 

resistance and longevity (60). Linking back to earlier work, intact signaling from the 

AFD/AIY neurons is required for heat stress resistance in worms overexpressing hsf-1 

(57). This may be through pat-4/ integrin-linked kinase (ILK) activity in the AFD/AIY (61). 

Interestingly, intestinal daf-16 activity is required for the lifespan phenotype but 

unnecessary for heat stress resistance (60), suggesting these phenotypes have distinct 

signaling events despite their positive correlation. 
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Less is known about the mechanisms of cold- and warm-sensory signaling and 

metabolic remodeling that promotes longevity. As with the HSR, the AFD neurons are 

also thought to play a role in appropriately responding to warmer temperatures as laser 

ablation and genetic disruption exclusively shortens lifespan at 25℃ (59). Mutants 

lacking functional CNG calcium channels, a tax-2/tax-4 heterodimer, are also short-lived 

at 25℃ and thought to be necessary for AFD neuronal activity when exposed to warm 

temperatures. These results are corroborated in a recent study showing the ASJ 

sensory neurons also require functional tax-2/tax-4 channels to sense warm 

temperatures and activate intestinal daf-16 to extend lifespan (62, 63). Experimental 

evidence suggests once these thermosensory neurons are activated they deploy daf-9, 

a cytochrome P450 ortholog, which inhibits daf-12, a nuclear hormone receptor, 

allowing worms to live longer at 25℃ (59). An important distinction remains between 

AFD activation during warm- and heat-shock as many heat shock proteins, like hsp-60 

and hsp-70, are not upregulated at 25℃ (59). These data suggest that perception and 

response to temperature through thermosensory neurons are sufficient to modulate 

aging across temperatures. They also refute thermodynamics as the sole mechanism 

for how poikilotherms live shorter at higher temperatures. 

In agreement with neural modulation of aging in warmer temperatures, a transient 

receptor potential (TRP) channel, TRPA-1, detects cold temperatures in chemosensory 

neurons. TRPA-1 signals through a protein kinase C (PKC) ortholog, PKC-2, to increase 

intestinal DAF-16 activity and therefore lifespan (64). Loss of trpa-1 channels in the 

nervous system prevents the lifespan increase observed in Wild-Type worms at cooler 

temperatures (15-20°C), but does not change longevity at warmer temperatures (25°C). 

Interestingly, human transgenic TRPA-1 recapitulates many of these findings, 

suggesting a conservation in function. An unbiased screen of all sensory neurons 

showed trpa-1 expression in the head neuron IL1 is necessary and sufficient to rescue 

trpa-1 knockout. Further, genetically knocking out glutamate secretion and uptake 

prevents IL1 from modifying lifespan (62). MGL-1, the glutamate receptor implicated in 

this study, is only expressed in neurons, indicating there must be another neuron 

involved in this pathway. Knocking out serotonin signaling blocks the effects of IL1 on 
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lifespan, and transgenic serotonin expression in the NSM enteric neuron rescues the 

phenotype. The intestinal GPCR ser-7 is the likely downstream receptor responding to 

serotonin release. This study offers a more complete model than is often presented in 

the field, and suggests it is feasible for other cell non-autonomous signaling pathways to 

be more explicitly characterized in future studies. 

The nervous system in C. elegans plays a crucial role in determining nutrient quality and 

safety as they forage for food, and interestingly, the lack of any perceived signal (i.e. 

dietary restriction (DR)), can also act as a signal on its own. DR, first reported to 

increase lifespan in rats in 1935 (65), is an intervention that significantly limits food 

intake without malnutrition, and has been the most consistent intervention to increase 

longevity across species (66). However, since implementation of any dietary 

intervention for humans at a whole population level is challenging, mapping out the 

molecular and signaling mechanisms downstream of food perception, where they can 

be targeted directly, circumvents the challenges of adopting population level-DR 

protocols. 

The first report of DR acting through a sensory, cell non-autonomous signaling 

mechanism in worms was in 2007. They identify the antioxidant response transcription 

factor skinhead 1 (SKN-1) in ASI sensory neurons as leading to increased whole-body 

respiration and extended lifespan (67). This report remains foundational in establishing 

food perception, or lack thereof, as a major driver of the health benefits of DR. More 

recent studies corroborate the significance of sensory neurons when nematodes are 

subjected to long- and short-term starvation. A subset of sensory neurons, the ASI and 

ASJ, shorten lifespan through the expression of insulin-like peptide (ILP) ins-6 during 

food perception (63). More specifically, ins-6 is released upon feeding, and ins-6 

overexpression exclusively in the ASI or ASJ neurons blocks the longevity effects of tax-

2; tax-4 mutant worms when fasted. This suggests that an unknown inverse signal may 

suppress ins-6 expression during fasting. 

Sensory cues from food perceived by the nervous system trigger a host of behavioral 

and metabolic rearrangements that accompany changes in lifespan. Particularly, in the 
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absence of food, nematodes tend to increase their movement when foraging and stop 

pharyngeal pumping (68-70). Once an attractive odorant is perceived, serotonin is 

released triggering triglyceride fat catabolism by a predicted acyl-CoA oxidase, acox-1 

(71). Surprisingly, this fat catabolism is necessary and sufficient to modulate changes in 

behavior. acox-1 mutants do not respond with the canonical behavioral changes 

observed when animals are exposed to exogenous serotonin (72). Additionally, 

rescuing acox-1 expression in the intestine alone abrogates the fat accumulation and 

pumping response to serotonin exposure. egl-2, an ether-à-go-go (EAG) K+ channel 

expressed in the sensory neurons, likely functions as an intermediary neuron signaling 

back to serotonin neurons communicating satiety from peripheral tissues. Intriguingly, 

antagonizing serotonin signaling through an atypical antidepressant mianserin extends 

lifespan and is non-additive with DR (73). It is worth exploring whether the changes in 

metabolism and lifespan when serotonin signaling is antagonized are acting within the 

same pathway. These results corroborate the hypothesis that a feed-forward signal is 

released from the intestine back to the nervous system during food perception (section 
5). 

Recognition of low-oxygen conditions or genetic stabilization of the conserved hypoxia-

inducible factor-1 (HIF-1) extends nematode longevity (6, 74). A single protein, flavin-

containing monooxygenase-2 (FMO-2), is necessary and sufficient to provide many of 

the benefits of HIF-1 activation (12). Neuronal stabilization of HIF-1 is sufficient to 

induce intestinal fmo-2 and improve health and longevity. Serotonergic signaling is 

required for HIF-1-mediated longevity and fmo-2 induction, while FMO-2 overexpression 

in the intestines is sufficient to increase lifespan. Interestingly, other researchers have 

found FMO induction in multiple mammalian models with increased lifespan, including 

DR, consistent with FMOs playing a conserved role in promoting long-term health and 

increasing the likelihood these results will be translatable to human longevity (75, 76).  

Together, perception of many environmental signals influence lifespan in C. elegans. 

While the mode of sensory detection varies between these environmental signals, 

perception of temperature, oxygen, food availability, and mechanosensory cues all 

activate sensory neuron-initiated signaling pathways. This external perception interacts 
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with internal cues (e.g. germline signal, proteostasis, and metabolism) to appropriately 

respond and modify physiology. While we have begun to identify the cells and signals 

involved in these sensory-driven longevity pathways, many questions remain regarding 

how information is transmitted and interpreted both within and between tissues. 

 

      
 
Figure 1.3. Summary of the role of perception on cell non-autonomous modulation of 
longevity in C. elegans. 
Mammalian orthologs are listed in parentheses. If there are no parentheses, the name is shared 
across taxa. 
 

Drosophila melanogaster 

While C. elegans, with its simplicity and finite number of cells, is perhaps the most 

powerful system for identifying genetic mechanisms of aging, it does pose some 

limitations: its nervous system is rudimentary, precise manipulation of diet and other 

environmental factors is difficult, and its small behavioral repertoire is restrictive. 

Conversely, studies of cell non-autonomous modulation of aging in vertebrate animals 
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are impeded by multiple factors, including but not limited to: 1) the time required for 

measuring lifespan, 2) challenges in using large-scale genetic modification for pathway 

discovery, and 3) the difficulty of identifying small subsets of key cells within 

substantially larger and more complex tissues.  Given the remarkable advances in 

neuroscience, together with its long-standing success as a model for both behavioral 

neuroscience and aging biology, the vinegar fly, Drosophila melanogaster, provides 

unique strengths to investigate these questions. Conservation of mechanisms of aging, 

including insulin/FOXO-related signaling and sensory-derived control of longevity, in 

worms, flies, and mammals suggests that signaling mechanisms likely become more 

complex in higher organisms but produce similar pro-longevity outcomes. Although the 

phylogenetic relationship between nematodes, arthropods, and vertebrates is debated, 

18S rRNA and mitochondrial rDNA sequencing suggests a greater evolutionary 

distance between D. melanogaster and C. elegans than between D. melanogaster and 

M. musculus (77). Consequently, mechanisms of aging conserved between worms and 

flies are also likely to span the smaller evolutionary gap between flies and mammals. In 

the following sections we provide an overview of key cell non-autonomous modulators 

of fly health and aging (4, 78). 

Energy balance and insulin signaling 
Soon after the foundational discovery that reduced insulin signaling increases nematode 

lifespan, experiments in Drosophila revealed that such results were not worm-specific 

and that this pathway may be involved in modulating aging across taxa (79). Mutations 

disrupting molecules in this pathway such as the single insulin receptor, dInR, or the fly 

homolog of the insulin receptor substrate, chico, exert non-autonomous effects on 

aging, where reduced insulin/IGF-1 signaling (IIS) is associated with extended lifespan 

(80, 81). Genetic manipulations that mimic reduced IIS, such as overexpression of 

dFOXO in the abdominal or pericerebral fat body or overexpression of phosphatase, 

dPTEN, in the pericerebral fat body also extend fly lifespan (82, 83). These data 

indicate that insulin signaling acts cell non-autonomously to control aging and promotes 

bi-directional signaling between peripheral tissues and neurons like what is seen in C. 

elegans. 
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The Drosophila melanogaster genome encodes several insulin-like peptide genes 

(dilps), which are produced in a handful of neurosecretory cells in the pars 

intercerebralis region of the fly brain. These insulin producing cells, called IPCs, release 

the signaling molecules into the hemolymph to signal to the rest of the body through a 

single insulin-like receptor (InR) (84-86). Among their range of biological functions in 

development and physiology, dilps modulate aging, and in this context the most well 

studied are dilp2, dilp3, dilp5, and dilp6 (86-88) . Partial ablation of IPCs, the production 

site of DILPs 2, 3, and 5 reduces IIS and increases lifespan (89, 90). Knocking down 

GABA-B receptors in IPCs decreases DILP secretion in fed and fasted conditions and 

yields a small but significant decrease in stress resistance and lifespan under starvation 

(91). Mutation of dilp2, dilp3, and dilp5 together increases lifespan as does loss of 

dilp2 alone, although loss of other individual dilps does not (86). Induction of dilp6 in fat 

body tissue promotes longevity. It is unclear whether this is a direct effect of DILP6 or is 

due to a decrease in the secretion of DILP2 from the IPCs (87). Similarly, the extended 

lifespan observed following increased dFOXO expression in pericerebral fat body may 

also result from a decrease in dilp2 expression in the IPCs (92). More recent work has 

revealed a role for dilp1 in promoting lifespan (93), potentially through induction of 

adipokinetic hormone (AKH), which is a functional homolog of mammalian glucagon 

(94) and which increases fly lifespan, fat metabolism, and free fatty acid catabolism (95, 

96).  

The link between lifespan extension from manipulation of neuronal dilps and the insulin-

responsive transcription factor FOXO in peripheral tissues are less clear in Drosophila 

as in C. elegans, suggesting that IIS extends lifespan, at least partly, through FOXO-

independent pathways. Loss of dilp2 does not influence the expression of known FOXO 

target genes and interactions with dilp1 do not modify this result (93). Flies lacking IPCs 

or with loss of dilps 2, 3, and 5 exhibit an abnormal response to diet manipulation (86, 

88), although dFOXO mutation leaves the response largely intact (97). Furthermore, 

loss of dFOXO only partially rescues longevity benefits of chico mutants (98).  

Another nutrient-sensing pathway that acts cell non-autonomously in flies, like worms, is 

AMPK. Neuronal or intestinal activation of AMPK or Atg1 induces autophagy in both the 
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brain and gut to slow organismal aging and improves numerous healthspan measures 

(99). Dilps are implicated in mediating the inter-tissue response from the nervous 

system to the intestines and vice versa (99). It is interesting that AMPK activation from 

several tissues causes metabolic remodeling across the whole-body. These data point 

to a feed-forward mechanism where signaling events occur bi-directionally to modulate 

the fly response to successfully survive stressful stimuli. 
 

  
Figure 1.4. Summary of the role energy balance and insulin signaling on cell non-
autonomous modulation of longevity in D. melanogaster. 
Mammalian orthologs are listed in parentheses. If there are no parentheses, the name is shared 
across taxa.  
 

Proteostasis signaling pathways 
When it was first discovered that knocking-down mitochondrial electron transport chain 

components in nematodes extends lifespan, it seemed unlikely this phenomenon would 
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be conserved in higher systems. Surprisingly, research using flies and mice (later 

discussed in section 4) points to a significant role for mitochondrial function in 

organismal lifespan. Global knockdown of ETC components in complexes I, III, IV, and 

V extends fly lifespan, but does not inhibit ETC complex formation or ATP production 

(100). Furthermore, knockdown of complexes I and IV in neurons alone is sufficient to 

extend lifespan. This led researchers to ask how knockdown of the ETC extends 

lifespan. Follow up studies show that knockdown of ETC complex I using ND75 RNAi in 

muscle tissue increases reactive oxygen species (ROS) and activates the mito-UPR 

and ImpL2 (insulin/IGF binding protein) (101). Subsequently, upregulation of mito-UPR 

target genes preserve muscle function while ImpL2 signals to the brain and fat body to 

decrease global insulin signaling. It is likely both pathways contribute to the longevity 

phenotype of decreased respiration chain expression, and there are data suggesting 

that ImpL2 increases lysosomal biogenesis and that autophagy genes are necessary for 

ND75 knock down animals to live long. Another datapoint that suggests conservation of 

this pathway is that knock down of ETC ND75 in complex I results in smaller flies, and a 

similar phenotype is documented in the nematode ortholog isp-1 mutants (102). 

Modifying the mitochondrial proton gradient by expressing human uncoupling proteins 

(hUCPs) modulates fly lifespan. Interestingly, the context of when and where the hUCPs 

are expressed play a critical role in health and longevity outcomes. hUCP2 targeted to 

the neurons increases health and longevity while increasing the rate of glycolysis and 

decreasing ROS production and oxidative damage (103). Similarly, moderate pan-

neuronal overexpression of hUCP3 leads to a modest lifespan extension exclusively in 

male flies (104). However, use of a stronger driver that targets hUCP3 pan-neuronally 

or to the median neurosecretory cells (mNSC) significantly decreases their lifespan. 

These data suggest that lowering uncoupling mitochondria by high expression of 

hUCP3 alters mNSC function in a way that increases DILP levels in fly heads and leads 

to a concomitant decrease in lifespan. Much is left to be done to fully understand the 

relationship between modulating mitochondria ROS levels and lifespan. 

An important and robust area of research is focused on muscle maintenance with age. 

While slightly tangential to this review’s primary focus on longevity outcomes, the loss of 
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muscle mass often precedes other age-related phenotypes like risks of falling. 

Throughout life, a fly’s muscles accumulate protein aggregates that impair function. 

Maintenance of proteostasis is enhanced in long-lived animals through elevated activity 

of FOXO target genes like 4E-BP that increase lysosome/autophagy functions (105). 

Interestingly, FOXO signaling through 4E-BP activity in muscle decreases feeding 

behavior and the release of insulins that delay the age-related accumulation of protein 

aggregates in other tissues.  This result suggests bi-directional cell non-autonomous 

signaling across tissues with a yet to be discovered signal (105). 

Overexpression of the gene hedgehog (hh), the Hedgehog signaling pathway ligand in 

Drosophila, extends lifespan, while disrupting this pathway shortens lifespan and 

decreases the number of dopaminergic neurons (106). While overexpression of 

hedgehog signaling components in neurons has little effect on lifespan, overexpression 

in glia cells is sufficient to extend it. This work parallels nicely with work in C. elegans 

described above in which glial cells modulate aging through the UPR (48). 

Overexpressing hsp69 and hsp40 in glia is sufficient to rescue lifespan in hh signaling 

mutants. Overexpression of smoothened (smo) and hsp68 in glia partially rescues the 

lifespan shortening effects of expressing human Αβ42 plaques in Drosophila glia. Hh 

signaling may increase chaperone protein expression in adult glia, which act to maintain 

the integrity of dopaminergic neurons, leading to increased longevity (106). While such 

data are compelling, it remains unclear how these neurons contribute to the lifespan 

extension of enhanced hedgehog signaling. It is also interesting to consider the 

conserved role glia cells play in neurotransmission, cell non-autonomous signaling, and 

longevity. 
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Figure 1.5. Summary of the role of proteostasis in cell non-autonomous modulation of 
longevity in D. melanogaster. 
Mammalian orthologs are listed in parentheses. If there are no parentheses, the name is shared 
across taxa. 
 

Perception of external stimuli  

Research in Drosophila has shepherded a significant expansion in our understanding of 

the effects of sensory perception on aging. Sensory inputs that relate information about 

nutrition, conspecifics, and danger rapidly initiate changes in fly physiology and patterns 

of aging, often within a few days. It is known, for example, that a restricted set of 

olfactory and gustatory neurons influence aging by either promoting or limiting lifespan, 

fat deposition, or general vigor in old age. Sensory perception of specific sugars and 

amino acids, as well as social signals such as the health of conspecifics or availability of 

potential mates, is also important.  Conserved neuropeptides and functionally-defined 
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neuronal populations, some associated with psychological conditions such as reward 

and hunger, are involved in mediating these effects through new candidate cell-

nonautonomous aging mechanisms. 

Much of this work is centered around the effects of food perception. Exposure of flies to 

the odor of an important food source (live yeast) as well as knock-out of a critical co-

factor for normal olfactory function (Or83b/Orco) established food perception is 

sufficient to partially reverse DR-mediated longevity (Libert et al 2007). Loss of Orco 

function significantly increases fly lifespan. These effects are independent of food 

intake, activity, respiration, or early-life reproduction, suggesting a direct effect of 

sensory perception. Mutation of the water sensor, ppk28, extends Drosophila lifespan 

by up to 40%, and this effect requires AKH receptor (95). AKH protein levels are higher 

in ppk28 mutant animals, and activation of Akh-expressing neurons is sufficient to 

recapitulate the effects of loss of ppk28 on lifespan. Gustatory perception is necessary 

for normal stress resistance and lifespan in a low-glucose environment (107). Loss of 

sweet taste receptor Gr64 produces a sleep-impairment phenotype that is phenocopied 

by blocking dopamine neurotransmission, and taste-blind flies lived longer than control 

flies, despite eating more (108). Loss of the Drosophila trehalose receptor, Gr5a, 

significantly decreases lifespan without altering feeding (96), establishing that taste 

inputs can modulate lifespan in both directions. Similar to some methods of diet 

restriction in C. elegans, loss of labellar taste bristles requires insulin signaling to extend 

lifespan (108). 

In Drosophila, the effects of dietary restriction on aging are predominantly influenced by 

dietary composition (mainly protein content) rather than the overall caloric content of the 

food (109-112). Flies exposed to restriction of essential amino acids behaviorally switch 

from a diet comprised primarily of sugar to one primarily of protein (113). This 

behavioral switch in feeding preference requires both serotonin signaling through the 5-

HT2A receptor and plasticity of a dopaminergic circuit (16, 114). When the two primary 

macronutrients in the diet, sugar and protein, are presented separately to flies so that 

they behaviorally construct the composition of their own diet, they live shorter than when 

presented with a single, complete diet (16); an effect that also requires serotonin 
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signaling through the serotonin receptor 5-HT2A. This suggests that protein sensing 

may be mediating this effect. Finally, serotonin, 5-HT2A, and the solute carrier 7-family 

amino acid transporter, JHL-21, modulate diet-dependent aging by ascribing value to 

ingested protein. Interestingly, JhI-21 is expressed in the reproductive tissues, which 

are a primary consumer of dietary protein, suggesting an inter-tissue communication.  

Outside of a flies’ ability to assess food quality, several other sensory cues rely on 

neuronal signaling to modulate lifespan. Exposure to female sex pheromones in the 

absence of mating causes rapid and reversible declines in fat stores, stress resistance 

and longevity in male flies (115). Changes in metabolism and lifespan require taste 

perception through the gustatory receptor, ppk23, as well as neuronal signaling 

involving the conserved neuropeptide NPF/NPY and FOXO. These effects are partially 

reversed by copulation, suggesting that survival costs of reproduction in male flies are 

controlled by neural circuits through which reproductive expectation dictates costly 

precopulatory investment in reproductive success. Related circuits that perceive 

reproductive reward ameliorate the consequences of this investment if mating is 

achieved (116). Notably, mating decreases both worm and fly lifespan, it’s worthwhile to 

ponder why perception of imminent mating without achieving it causes greater 

physiological harm to a flies’ health. Perhaps upon completing a satisfying activity that is 

evolutionarily beneficial, like eating or mating, specific neural circuits and signaling 

peptides reinforce these behaviors, and without these signals only detrimental effects 

remain.  

Cues that putatively signal danger are also important. Drosophila can visually perceive 

dead conspecifics in their environment and this perceptive experience induces both 

short- and long-term effects on health and longevity. Exposure to dead flies decreases 

resistance to starvation, depletes lipid storage, and shortens lifespan (117). As with 

protein perception, serotonin signaling via receptor 5-HT2A is required for death 

perception to influence lifespan. With the advent of new technologies, it would be 

interesting to test whether the same or different neuron populations require 5-HT2A 

receptors to influence death and/or food perception. Gr63a encodes for one of two 

proteins which make up a CO2 receptor, and at low concentrations CO2 is a known 
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alarm cue (118). Flies with a loss of function mutation in Gr63a are long-lived and are 

additive with ab1C neuronal ablation suggesting DR and alarm sensing act through 

distinct pathways to influence lifespan (119).  

 

 
Figure 1.6. Summary of the role of perception on cell non-autonomous modulation of 
longevity in D. melanogaster. 
Mammalian orthologs are listed in parentheses. If there are no parentheses, the name is shared 
across taxa. 
  

Mammals 

Fewer studies have explored the effects of aging and cell non-autonomous signaling in 

mammals due to the extended amount of time and effort needed to perform these 

experiments. Despite these considerations, a growing body of literature suggests the 

types of signaling events seen in invertebrates are conserved from worms to mice. 

These initial findings portend an increase in the number of studies investigating the 

effects of the nervous system on aging. In this section we will discuss the individual 
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studies performed in mice and compelling evidence that suggests this phenomenon 

may be conserved in humans (Figure 1.7). 

Similar to the effects observed in worms and flies, reduced insulin and growth hormone 

signaling also significantly increase mouse lifespan (120). Ames dwarf mice, and the 

similar Snell dwarf mice, each have a single-gene mutation, Prop1 and Pit1, 

respectively, that impairs anterior pituitary development leading to decreased growth 

hormone, thyroid stimulating hormone, and prolactin levels. These mice live 40% longer 

than controls and have decreased plasma IGF-1 (121). However, dwarf mice do 

become obese in old age, showing that pituitary modulation of aging is independent of 

body weight regulation. Interestingly, grafting a control pituitary gland in adulthood does 

not rescue control lifespan in Snell dwarf mice (122). The mechanism for longevity likely 

involves IGF-1, because similar results have been obtained using the knockout for 

growth-hormone receptor binding protein (GHR-KO) (123), a heterozygous null mutation 

of the IGF-I receptor (124), and the knockout of growth hormone releasing hormone 

(lit/lit mice, mutant for Ghrhr) (122). Similarly, partial loss of function of IGF-1R in 

neurons during development leads to reduced growth and lifespan extension (125). 

These mice gain slightly more weight with age than WT controls and have higher levels 

of subcutaneous adipose tissue, higher circulating leptin, and higher circulating lipids. 

These studies show decreased insulin signaling can alter global metabolism and extend 

lifespan in mammals. While they do not directly test the effects of other types of neural 

signaling, it does confirm that insulin signaling influences lifespan in mice. 

Related work in humans suggests insulin regulation, sensitivity, and neuronal excitability 

all positively correlate with longevity. A transcriptome analysis of cerebral cortex tissue 

compared >85 year old humans to the <80 year old group. One transcriptional 

repressor, REST, negatively regulates neural excitation and FOXO1 expression, and its 

expression positively correlates with longevity (126). In C. elegans REST orthologues 

spr-3 and spr-4 are required for daf-2/IGFR knockout lifespan extension. The signaling 

mechanisms between neuronal REST activity and FOXO1 expression in peripheral 

tissues are not known, but these data provide ample evidence of conserved cell non-

autonomous modulation of long-term health.  
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Similarly, genetic studies of centenarians have identified the locus encoding for tyrosine 

hydroxylase (TH), insulin (INS), and Insulin Growth Factor 2 (IGF2) as correlative with 

longevity (127). TH is the rate-limiting enzyme responsible for producing the 

neurotransmitter dopamine (128). This study looks more closely at the association of 

specific INS and IGF2 polymorphisms with longevity in humans. Polymorphisms in the 

subregion spanning TH and INS were significantly associated with lifespan in females, 

while polymorphisms in the region spanning TH and IGF2 were significant in males. 

These data support the role of insulin and dopamine signaling in human lifespan, and 

the gender difference observed may be explained by variations in metabolism between 

the sexes in old age. Supporting these findings, another research group genotyped a 

cohort of 90-109 year-olds and compared them to ancestry-matched younger people 

(ages 7-45). The 90+ cohort had a 66% higher incidence of a specific allele of the 

dopamine D4 receptor (DRD4 7R) which correlated with higher physical activity (129). 

Additionally, DRD4 knockout in mice leads to an ~8% decrease in lifespan. It’s unclear 

what changes in dopaminergic signaling occur in these two populations and whether the 

increased physical activity is directly linked with the DRD4 allele. 

Mice heterozygous at the insulin receptor substrate 2 (Irs2) locus do not differ from their 

control counterparts in food intake or body weight, but have significantly increased 

insulin sensitivity and live ~25% longer (130). Knocking out Irs2 in neurons (bIrs2) is 

sufficient to phenocopy the lifespan extension in the global knockout, and leads to 

decreased mRNA expression of superoxide dismutase 2 (Sod2) and Foxo1. These 

results support previous hypotheses that reduced insulin signaling in neurons 

modulates lifespan by enhanced protection from oxidative stress. It will be interesting to 

test whether enhanced Irs2 expression in the nervous system shortens mice lifespan. 

Recent studies address questions about initiation and duration of a longevity 

intervention. Most studies introduce dietary or therapeutic interventions while the mice 

are young adults (131). This method is not entirely translatable to humans as we would 

likely be middle-aged or elderly before adopting a pro-longevity treatment regimen. 

Many labs are beginning to address this concern by testing the effects of longevity 

treatments after reaching midlife (132, 133). Applying these principles, supplementing 
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middle-age and elderly mice with intranasally administered recombinant human Hsp70 

extends lifespan by ~10% and improves learning and memory during old age (134).  

Interestingly, Hsp70-treated mice had higher neuronal density in the temporal cortex 

and the hippocampus and immunostaining of the cerebral cortex for ribosomal proteins 

reveals more accumulation of proteasomal subunits in the Hsp70-treated mice. This 

suggests that Hsp70 promotes proteasomal activity and can extend lifespan in 

mammals, presumably through both cell autonomous and cell non-autonomous 

mechanisms.  

The hypothalamus is a key producer of neuropeptides and hormones. It is likely many 

signals from the hypothalamus are important to relay information from neurosignaling 

pathways to the rest of the body. Additionally, the hypothalamus is key to maintaining 

homeostasis in energy balance, blood pressure, oxygenation, body temp, circadian 

rhythm, etc (135). Therefore, any perturbations in environment/environmental stressors 

are likely transmitted from sensory neurons to the hypothalamus. Overexpressing 

uncoupling protein 2 (UCP2) in mouse hypocretin neurons (Hcrt) increases body 

temperature specifically in the hypothalamus and leads to a decrease of 0.3-0.5⁰C in 

core body temperature (136). These transgenic Hcrt-UCP2 mice have the same calorie 

intake relative to WT controls, but live 12-20% longer (136). These data suggest that 

neuronal regulation of core body temperature influences lifespan independently of DR 

and supports cell non-autonomous modulation of aging in mice. 

The significant role the hypothalamus plays in cell non-autonomous modulation of aging 

is further supported by experiments modulating neuronal NF-kB levels in middle-aged 

mice. NF-kB is a well-studied transcription factor involved with inflammation and the 

immune response (137). As aging is correlated with increased inflammation, this study 

asked whether changes in NF-kB expression with age lead to pro- or anti-aging 

phenotypes. Middle-aged mice with activated NF-kB in the hypothalamus have slightly 

shorter lifespan whereas NF-kB inhibition extends lifespan by ~15% (14). NF-kB 

inhibition improves maze-learning, muscle endurance, and bone mass while NF-kB 

knockout in hypothalamic microglia is sufficient to phenocopy the lifespan extension 

from neural inhibition of NF-kB.  Both neuronal and glial hypothalamic NF-kB 



 

 

29 

knockdown also leads to increased gonadotropin-releasing hormone (GnRH) mRNA 

expression in old mice. GnRH neurons are hypothalamic cells that regulate fertility 

through pulsatile GnRH release, and importantly, increases in GnRH expression or 

treatment of mice with GnRH injection correlates with improved neurogenesis and 

lifespan. The implication of this study is that increased inflammation from NF-kB 

expression during aging leads to loss of GnRH release and subsequent diminished 

health, and that restoring GnRH levels can reverse this effect. These data not only 

support a role for the hypothalamus in cell non-autonomous modulation of aging, but 

suggest a plausible signaling mechanism (GnRH release) for this role.  

Recent work further explores the role of the brain in influencing health and longevity in 

mice. Brain-specific Sirt1 OE (BRASTO) mice live 10-15% longer than controls and 

have decreased cancer incidence (138). Middle-aged (20 month) BRASTO mice also 

exhibit improved healthspan parameters when compared to their aged matched 

controls; they are more physically active, have higher core body temperature, consume 

more oxygen, and have more non-REM sleep. Similar traits are often correlated with 

increased quality of life in elderly humans (139-141). While the causative mechanisms 

behind the improved health and longevity of BRASTO mice are not fully characterized, 

they show an increase in skeletal muscle mitochondria and mitochondrial functional 

gene expression in addition to higher mRNA expression of markers of neuronal activity 

in hypothalamic neurons. Further studies will hopefully identify how SIRT1 expression in 

the brain changes downstream physiology to improve health and longevity. This will 

likely involve modulation of neuronal signaling, perhaps due to improved health of 

neurons in the brain. It will also be interesting to find whether and how these changes 

are distinct from and overlap with pathways such as insulin-like signaling, that also 

emanate from the brain. This study further supports the role of neurons, and 

hypothalamic neurons in particular, as key modulators of cell non-autonomous aging. 

Cellular senescence is a process characterized by permanent cessation of cellular 

proliferation. There is a large body of evidence supporting the hypothesis that the 

proliferation of senescent cells throughout an animal’s lifetime will accelerate their aging 

via pro-inflammatory secreted compounds. Plasminogen activator inhibitor-1 (PAI-1), a 
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neuronally expressed protein, regulates cellular senescence in mammals (142, 143). 

Klotho is an “aging-suppressor” gene and klotho knockout mice exhibit an accelerated 

aging phenotype and increased plasma PAI-1 levels when compared to age-matched 

controls (144). Knocking out PAI-1 in klotho mutant mice reduces senescence, 

normalizes telomere length, preserves organ function, and completely rescues their 

lifespan. These mice are likely short-lived due to accumulation of pro-inflammatory 

molecules from the “senescence messaging secretome” (SMS) that influences aging 

through cell non-autonomous signaling. In support of this hypothesis, there is mounting 

correlative data suggesting elevated PAI-1 levels in humans is strongly associated with 

aging disease states (145). While these data are intriguing, more experiments are 

needed to test whether neuronal SMS mechanistically accelerates aging.  

Cell non-autonomous signaling from senescent cells is another likely mechanism of 

influencing aging. Mammals accumulate senescent cells throughout life, and when 

chronically present, senescent cells exacerbate age-dependent tissue deterioration due 

to inflammatory signals dubbed the senescence-associated secretory phenotype 

(SASP) (146). However, when transiently present, senescent cells can promote healthy 

outcomes like optimal wound healing (147). While the local effects of these signals have 

been well-studied, their systemic effects remain unclear (148).  Much work is left to 

parse out the efficacious effects of senescent cells from SASP, but it is compelling that 

many anti-aging therapeutics shown to extend mouse lifespan seem to target and kill 

senescent cells (149). Whether the lack of these senescent cells is responsible for the 

pro-longevity effects from these drugs remains unclear. Senolytic compounds have 

recently entered clinical trials to test their efficacy in treating age-associated diseases 

(150) and represent a local and possibly systemic mechanism for cell non-autonomous 

modulation of aging.  

The process of identifying pro- and anti-aging signaling events such as SASP is 

accelerated by the use of heterochronic (differently aged) animals sharing a circulatory 

system either through parabiosis or serum transfer. Incredibly, circulating factors in the 

blood of young mice can restore cellular function in older mice. Specifically, old mice 

exposed to young serum show enhanced Notch signaling in satellite cells, increased 
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hepatocyte proliferation, enhanced neurogenesis, decreased incidence of cardiac 

hypertrophy, and a reduced SASP response (151-155). Follow-up studies show the 

TGF-b superfamily member protein GDF11 decreases with age and restoring its levels-

alone is sufficient to reverse age-related dysfunction in the skeletal system (156) as well 

as restoration of the neurogenic niche (153). Despite the observed benefits of young 

serum in older mice, an initial study found that young plasma is not able to extend 

lifespan in aged mice (157). Together, these results provide the basis for ongoing work 

identifying the mechanisms of these observations with the hope of showing that defined 

“youth factors” can improve human healthspan, lifespan, or both. These data highlight 

the significant role circulating proteins and secreted compounds likely play in 

modulating aging cell non-autonomously. 

Labs with a previous invertebrate focus have begun to explore whether cell non-

autonomous signaling pathways are conserved from invertebrates to mammals. To that 

end, globally knocking out the capsaicin receptor TRPV1 in mice causes no change in 

body weight or circulating growth hormone (GH)/IGF-1, but increases metabolic activity 

and energy expenditure and increases lifespan by 10-20% (15). In worms, knocking out 

the TRPV-1 orthologues, osm-9 and ocr-2, requires the transcription factor CRTC-1 to 

influence lifespan. In mouse dorsal root ganglion (DRG) primary neuron cultures, TRPV-

1 is also necessary for nuclear translocation of CRTC-1. CRTC-1 interacts with CREB in 

DRG neurons to regulate secretion of the neuropeptides CGRP and substance P at 

pancreatic beta cells. The model suggests TRPV-1 knockout mice have reduced CRTC-

1 activity which reduces calcitonin gene-related peptide (CGRP) expression and 

increases pancreatic insulin secretion leading to better glucose tolerance and longevity. 

It is likely this type of translational study will become more common in the future, 

establishing which cell non-autonomous pathways of aging are conserved from 

invertebrates to mammals.  

Together, mammalian aging studies show a clear role for cell non-autonomous signaling, but 

with less detail than in invertebrate organisms. Similar to invertebrates, insulin-like signaling 

represents the best studied pathway, but additional details are continuously emerging.  

Whether emanating from whole brain (SIRT1), regions of the brain (e.g. hypothalamic NF-kB 
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and UCP), or from individual tissues throughout the body (SASP, parabiosis), cell non-

autonomous modification of systemic aging plays a role in mammals. For many of these 

pathways, the field is very new and more exciting data will likely come in the future.  

 

 
Figure 1.7. The intersection of cell non-autonomous signaling and aging in mammals.  
 

Emerging Concepts 
The work reviewed here (summarized in Figure 1.8) represents a small sliver of the 

extensive discoveries the aging field has made in three decades. Despite cell non-

autonomous signaling being a relatively new concept to the field, the critical role the 

nervous system plays in promoting healthy aging is well established. Moreover, by 

understanding how key signaling tissues evaluate and appropriately integrate large 

amounts of internal (energy stores and the allocation of resources) and external 
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(availability of food/sexual partners and quality) stimuli, we can target the decision-

making processes to mimic pro-longevity stimuli.  

Despite the clear role that cell signaling plays in maintaining proteostasis, oxygen 

homeostasis, food regulation, and overall physiology, there is much we don’t know 

about these areas.  All fields, but invertebrate research in particular, could follow the 

lead of the behavior field, where there is convincing data establishing neural circuits and 

signaling molecules that regulate aspects of behavior.  The aging field has occasionally 

completed similar work, but much less is understood about how cells recognize and 

relay signals about different types of internal and external environmental stimuli.  This is 

to be expected, as behavioral outcomes are often measurable in seconds or minutes, 

whereas long-term health and lifespans require weeks or months (for invertebrates) or 

years (for mammals).  Due to time constraints, this is an area where invertebrate 

research will likely need to lead, but once established the translatability of the networks 

should be measured.  A subset of invertebrate studies do establish key aspects of these 

circuits, and if more effort was put into this endeavor, we may also find whether 

behavior and long-term health interact or are controlled by entirely distinct pathways. 

With the establishment of cell non-autonomous regulation of aging in multiple pathways 

and organisms, there is immense therapeutic potential for this area going forward.  Most 

therapeutics logically target the tissues where physiological change is important, while 

understanding signaling networks provides a unique opportunity to use the natural 

signaling network to “trick” key tissues into improving long-term health.  This will not 

necessarily be easy, as targeting neural circuits using broad drugs (e.g. SSRIs) often 

have pleiotropic effects, but the better we understand the signaling networks the more 

specifically we could, in theory, mimic the signal(s).  Using a signaling approach to anti-

aging therapeutics would allow for induction of hormetic effects without the need for an 

acute stress, and has great potential to mimic well established longevity interventions 

such as dietary restriction.  It will be of paramount importance, as the field continues to 

mature, that we test the conservation of these networks from simple worms to complex 

mammals.  It is probable, however, that like the first discovered cell non-autonomous 
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network to influence aging (insulin-like signaling), other pathways will be partially or 

largely conserved. 

To that end, drug screens in C. elegans for pro-longevity therapeutics have found 

neuromodulators that extend lifespan. More specifically, it is intriguing that serotonin 

antagonism can extend adult neuroplasticity and lifespan (73, 158). It is interesting that 

antagonizing serotonin signaling or other reward circuitry can lead to the same 

physiological changes that occur under hormetic stress. Using drug combinations to 

simultaneously target multiple aging pathways has also shown promise in C. elegans 

and D. melanogaster. For example, Admasu et. al identified two drug combinations that 

synergistically improve lifespan and healthspan. The synergistic effects of both drug 

combinations required TGF-B signaling and increased levels of monounsaturated fatty 

acids (159). Combining multiple anti-aging pharmaceuticals in flies has also proved 

efficacious. Simultaneous inhibition of mitogen-activated protein kinase kinase, mTOR 

complex 1, and glycogen synthase kinase-3 acted additively to increase Drosophila 

lifespan by 48% (160). These data suggest it may be possible to co-opt these pathways 

with small molecules to slow mammalian aging. This is crucial since it is likely humans 

will not change their environment (e.g. dietary restriction) in spite of potential benefits. 

By better understanding the molecular and signaling mechanisms of these pathways, 

these processes can be targeted directly, attaining benefits to human health while 

circumventing the challenges of implementing population-scale environmental 

perturbations. 

Much of the work reviewed here investigates how the nervous system communicates 

with peripheral tissues to influence aging. This can be thought of as canonical cell non-

autonomous signaling. However, recent data from invertebrates supports the idea of 

non-canonical cell non-autonomous mechanisms where the peripheral tissues use a 

retrograde signal back to the nervous system to maintain or further modify physiology 

(105, 161-163). This type of signaling is logical, as organisms require feedback from 

individual tissues to monitor homeostasis, but the role of retrograde signaling in 

regulation of aging is not well understood. This concept presents an interesting case for 

future studies to investigate the circuitry events that occur from the downstream 
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metabolic tissues back to the nervous system.  It also provides an opportunity to better 

understand how cells at the interface of forward and retrograde signaling (i.e. the 

hypothalamus) make decisions that affect both upstream and downstream physiology. 

Another area that will be crucial in future studies will be the identification of epigenetic 

regulation of these cell non-autonomous networks.  While sentinel-like cells such as 

neurons signal to peripheral tissues to modify stress resistance and longevity, how 

these pathways maintain their benefits over time is not well understood.  Studies show 

that just a day of hypoxia (6), for example, can extend lifespan in a worm, but whether 

that is just due to the persistent benefits of physiological changes made during that day 

or due to lasting epigenetic changes in peripheral tissues is an open question.  The 

answer will give clues as to whether we could develop therapeutics that are only taken 

intermittently or whether more continuous treatment is necessary to extend healthspan.  

Additionally, studies in this area could separate how organisms respond to acute and 

chronic stress, and whether a series of acute activations of stress responses bring 

about long-term benefits. 

Together, cell non-autonomous regulation of aging represents an exciting area of study 

that is well-established with lots of excited but open questions.  The future of this area 

has great potential to both improve our understanding of the aging process and lead to 

useful therapeutic advances to improve human health. 
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Figure 1.8. Summary model.  
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CHAPTER 2 

Serotonin and Dopamine Modulate Aging in Response to Food 
Perception and Availability 

Foreword 
This chapter is the culmination of my primary thesis research exploring the neuronal 

circuitry necessary for C. elegans to properly respond to dietary restriction. Much of this 

work builds off the post-doctoral research performed by my mentor Dr. Scott Leiser who 

identified a novel pro-longevity gene fmo-2 that acts downstream of hypoxic and DR 

signaling. Having shown the necessity of serotonin signaling during HIF-1 stabilization 

and the heat-shock response (HSR), I asked whether serotonin was involved in DR-

mediated longevity. With substantial help from my co-author, Dr. Shijiao Huang, and 

direction from Dr. Leiser, we have begun to unravel the neuronal circuitry and signals 

nematodes use in the presence or absence of food. While much is yet to be uncovered 

(see chapter 5 for the beginnings of follow-up studies), I believe this project does a good 

job laying out the significant role the nervous system plays in regulating lifespan.  

Note: this chapter is currently undergoing peer-review at Nature Communications. 

Abstract 
An organism’s ability to perceive and respond to changes in its environment is crucial 

for its health and survival. Here we reveal how the most well-studied longevity 

intervention, dietary restriction (DR), acts in-part through a cell non-autonomous 

signaling pathway that is inhibited by the perception of attractive smells. Using an 

intestinal reporter for a key gene induced by DR but suppressed by attractive smells, we 

identify three compounds that block food perception in C. elegans, thereby increasing 

longevity as DR mimetics. These compounds clearly implicate serotonin and dopamine 
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in limiting lifespan in response to food perception. We further identify an enteric neuron 

in this pathway that signals through the serotonin receptor 5-HT1A/ser-4 and dopamine 

receptor DRD2/dop-3. Aspects of this pathway are conserved in D. melanogaster and 

mammalian cells. Thus, blocking food perception through antagonism of serotonin or 

dopamine receptors is a plausible approach to mimic the benefits of dietary restriction. 

Introduction 
Rapid advances in aging research have identified several conserved signaling pathways 

that influence aging in organisms across taxa(164). Recent work shows that many of 

these “longevity pathways” act through cell non-autonomous signaling 

mechanisms(165, 166). These pathways utilize sensory cells—frequently neurons—to 

signal to peripheral tissues and promote survival during the presence of external stress. 

Importantly, this neuronal activation of stress response pathways, through either genetic 

modification or exposure to environmental stress, is often sufficient to improve health 

and longevity. Despite mounting evidence that neuronal signaling can influence multiple 

longevity pathways, less is known about which specific cells and molecules propagate 

these signals.  

 

Biogenic amines are among the most well-studied and conserved neuronal 

signaling molecules(167),(168). Specifically, serotonin and dopamine play well-defined 

roles in behavior and physiology. However, their role in aging is less well understood. 

Several recent studies implicate serotonin, but not dopamine, as an important signal in 

multiple C. elegans longevity pathways including the response to heat shock and 

hypoxia(12, 58). Dopaminergic signaling is associated with physical activity in humans 

and loss of this signaling decreases lifespan in mice(129) and blocks lifespan extension 

in nematodes(169). Serotonin and dopamine levels both decrease with age across 

species(170, 171), consistent with these signaling pathways promoting healthy aging. 

Despite rigorous study and clinical use of drugs that modify serotonin and dopamine 

signaling, our understanding of their complex actions and potential interaction is far from 

complete. 
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Dietary restriction (DR) is the most well-studied and consistent intervention 

known to improve health and longevity in organisms ranging from single-celled yeast to 

primates(172). DR leads to improved cell survival and stress resistance, complex 

intracellular signaling events, metabolic changes, and increased activity in multiple 

organisms. Nematode flavin-containing monooxygenase-2 (fmo-2) is necessary and 

sufficient to increase health and longevity downstream of DR. FMOs are highly 

conserved proteins that are also induced in multiple mammalian models with increased 

lifespan(75, 76). Having previously identified a role for fmo-2 in aging, we wondered 

whether DR cell non-autonomously regulates fmo-2 induction and whether perception of 

food through biogenic amines could be involved in the subsequent signaling pathway. 

Results 

Attractant food perception represses fmo-2 to limit longevity. 
We developed an integrated single-copy mCherry reporter driven by the fmo-2 promoter 

to measure fmo-2 induction. The reporter is primarily expressed in the intestine and 

responds to stimuli previously reported to induce fmo-2, including DR. As an intestinal 

protein(173), we expected that fmo-2 would likely be induced cell autonomously by the 

change in nutrient intake under DR. To test this hypothesis, we asked whether the 

perception of food smell by worms in the absence of eating can abrogate the induction 

of fmo-2. Using a “sandwich plate” assay as described in Figure 2.1A, we were 

surprised to find a significant reduction in fmo-2 induction when worms could smell but 

not eat food (Figure 2.1B-C). This reduction is consistent with a model in which 

increased fmo-2 mediates the increase in longevity from DR, as food smell completely 

abrogates this lifespan extension (Figure 2.1D, lifespan statistics in Table 2.2)(5). We 

also find that active bacterial metabolism is required to abrogate fmo-2 induction, as the 

“smell” of bacteria metabolically killed with 0.5% paraformaldehyde does not prevent DR 

from inducing fmo-2 expression (Figure 2.2A-B). Since intestinal cells are not known to 

perceive external environmental cues such as smell, these results suggest that fmo-2 

expression is suppressed when food is present through cell non-autonomous signaling. 
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We next wondered what types of odorant compounds worms sense in this pathway. 

Bacteria are known to secrete hundreds of volatile compounds that are classified in 

three categories based on how they promote chemotaxis: attractants, repellants, and 

neutral compounds(174-176). We tested whether exposure to any volatile compound 

secreted from bacteria is sufficient to block the lifespan-promoting effects of DR or 

whether compounds identified as attractants and repellants oppositely regulate fmo-2 

induction. Using compounds derived from studies of the E. coli strain HB101 in a range 

of concentrations (Table 2.3), we find that attractants are more likely to suppress DR-

mediated induction of fmo-2 (Figure 2.1E-F) whereas neutral and repellant compounds 

can induce fmo-2 under fed conditions (Figure 2.2C-H). We also find that many 

compounds suppress fmo-2 expression, consistent with the hypothesis that this 

pathway is not acting through a single receptor (Figure 2.1G, all results in Figure 2.3A-

Z). These results support a model in which perception of attractive smells secreted by 

E. coli abrogates the induction of the pro-longevity gene fmo-2. This is consistent with 

these smells preventing the lifespan-promoting effects of DR, possibly through a neural 

response to external stimuli that leads to physiological changes in peripheral tissues.  
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Figure 2.1. Attractive food smell blocks dietary restriction-mediated fmo-2 induction and 
longevity. 
Diagram of “smell plates” (A). Images (B) and quantification (C) of individual fmo-2p::mCherry 
worms on fed (pink), DR (blue) and DR + food smell (OP50) (purple). Survival curves (D) of N2 
(WT) animals fed (pink) or DR (blue) under normal conditions (solid lines) or subjected to the 
smell of bacteria (dotted lines). Images (E) and quantification (F) of individual fmo-2p::mCherry 
worms on DR plates exposed to food smell (HB101) (pink) or attractive (2-butanone in blue), 
neutral (ethyl acetate in purple), or repellant (1-nonanol in orange) odorants. (G) Summary of 
the effects of 26 odorants on fmo-2 induction during DR. *** denotes P<.001, **** denotes 
P<.0001 when compared to fed (Tukey’s HSD) ### denotes P < 0.001 when compared to 
neutrals (ANOVA). 
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Figure 2.2. Odorant effects on fmo-2 expression. 
Images (A) and quantification (B) of individual fmo-2p::mCherry worms on fed (pink), DR (blue), 
and smell with live OP50 (light purple) or PFA-killed OP50 (dark purple). Additional images (C) 
and quantification (D) of individual fmo-2p::mCherry worms on fed plates exposed to food smell 
(pink) or attractive (2-butanone in blue), neutral (ethyl acetate in purple), or repellant (1-nonanol 
in orange) odorants. Summary of controls HB101 (pink), OP50 (orange) and ethanol (blue) 
effects on fed and DR conditions across experiments (E). Summary of worms treated with 
attractant (pink), neutral (orange) or repellant (blue) compounds compared to DR (G). All 
odorants effects on DR (G) and fed (H) conditions. **** denotes P<.0001 when compared to fed 
(Tukey’s HSD). ### denotes P<.001 when compared to Neutrals or Repellants (Tukey’s HSD). 
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Figure 2.3. Titration experiments of odorants tested. 
Panels show representative images (A) and quantification of fmo-2p::mCherry under DR (B- Z). 
Dosing and preparation can be found in Table S2. 
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Serotonin and dopamine antagonists induce fmo-2 to mimic DR longevity. 
Biogenic amines can regulate pro-longevity pathways and are involved in behavioral 

changes in response to food(12, 16, 58, 107, 177). We next asked whether 

neurotransmitters are involved in the fmo-2-mediated food perception pathway. Using a 

targeted approach focusing on neurotransmitters and their antagonists, we tested for 

compounds sufficient to prevent the abrogation of fmo-2 induction in the presence of 

food smell (Figure 2.4A-D). The biogenic amine neurotransmitter antagonists mianserin 

(for serotonin) and thioridazine and trifluoperazine (for dopamine) consistently and 

significantly restore fmo-2 induction to DR levels in the presence of food smell (Figure 

2.4E-F, Figure 2.5A-C). Mianserin is a tetracycline serotonin antagonist that is thought 

to competitively bind to specific serotonergic G protein-coupled receptors (GPCRs)(178) 

while thioridazine and trifluoperazine’s mechanism of action involves blocking dopamine 

receptors(179). Importantly, while each compound induces fmo-2 to a different extent 

(Figure 2.4G and 2.4I, Figure 2.5D), when combined with DR, no antagonist further 

induced fmo-2, suggesting they act in the same pathway (Figure 2.4H-I).  

 

Diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase, acts as a positive 

control, and further induces fmo-2 when combined with DR (Figure 2.5E). Because 

thioridazine and trifluoperazine act through similar mechanisms and the effects of 

thioridazine were more consistent in our studies, we focused further experiments on 

dopamine antagonism through thioridazine. Together, these results support antagonism 

of serotonin or dopamine as partial mimetics of DR in their induction of fmo-2. 

 

To validate that the induction of fmo-2 through biogenic amine antagonism is beneficial 

for longevity, we next asked whether these compounds extend lifespan. We find that 

both mianserin and thioridazine extend  lifespan on agar plates in a dose-dependent 

manner (Figure 2.5F-G)(180). Since we identified mianserin and thioridazine through 

their induction of fmo-2, and previously found that fmo-2 is necessary for DR-mediated 

lifespan extension, we next asked whether fmo-2 was necessary for the beneficial 

longevity effects of mianserin or thioridazine. Our results show that the fmo-2 loss of 
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function completely blocks the lifespan effect of mianserin (Figure 2.5H) and 

thioridazine (Figure 2.5I). Importantly, we also see that mianserin treatment combined 

with DR does not further extend lifespan (Figure 2.4J). These results are consistent with 

these compounds mimicking some aspects of DR-signaling, recapitulating part of the 

DR lifespan extension effect. Collectively, this supports a model where DR induces fmo-

2 because of decreased biogenic amine signaling and establishes neuromodulators as 

a useful tool to decipher where in the signaling pathway a cell, signal, or receptor plays 

a role in DR-mediated longevity. 
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Figure 2.4. Induction of fmo-2 by neuromodulators. 
Images (A) and quantification (B) of fmo-2p::mCherry worms exposed to water (pink), dopamine 
(blue), serotonin (purple), mianserin (orange), octopamine (yellow), or deferoxamine (dark 
purple). Images (C) and quantification (D) of fmo-2p::mCherry exposed to water (pink), DR 
(blue), mianserin (purple) or both (orange) in combination with serotonin. Additional control 
images (E) and quantification (F) from Fig 2A-C. Images (G) quantified in Figure 2d. Images (H) 
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quantified in Figure 2E. qPCR results (I) for fmo-2 mRNA levels after 8 hours post DR (blue), 
mianserin (purple) or thioridazine (orange) treatment normalized to water control. Survival 
curves (J) of WT animals on fed conditions in pink and DR conditions in blue on water (solid 
lines) or 50µM mianserin (dotted lines).  * denotes P<.05, ** denotes P<.01, **** denotes 
P<.0001 when compared to fed (Tukey’s HSD). 
 
 
 
 

 
Figure 2.5. Serotonin and dopamine antagonists induce fmo-2 and extend lifespan. 
Images (A) and quantification of fmo-2p::mCherry exposed 100µM of mianserin (B) or 
thioridazine (C) (blue) in combination with DR (orange) and food smell (pink) compared to DR 
alone (purple). Quantification (D) of fmo-2p::mCherry exposed to water (pink), DR (blue), 100µM 
mianserin (purple), thioridazine (orange), or trifluoperazine (yellow). Quantification (E) of fmo-
2p::mCherry exposed to water (pink) or DR (blue) in combination with 500µM DPI (purple), 
100µM mianserin (orange), 100µM thioridazine (yellow), or 100µM trifluoperazine (dark purple). 
Survival curves (F) of N2 (WT) animals treated with 0μM (water; pink), 10µM (blue), 25µM 
(purple), 50µM (orange), or 100µM (yellow) mianserin. Survival curves (G) of WT animals 
treated with 0μM (water; pink), 10µM (blue), 25µM (purple), 50µM (orange), or 100µM (yellow) 
thioridazine. Survival curves (H) of WT animals (pink) and fmo-2 KO animals (blue) on water 
(solid lines) or 50µM mianserin (dotted lines). Survival curves (I) of WT animals (pink) and fmo-2 
KO animals (blue) on water (solid lines) or 25µM thioridazine (dotted lines). *** denotes P<.001, 
**** denotes P<.0001 when compared to fed (Tukey’s HSD). #### denotes P<.0001 when 
compared to DR (Tukey’s HSD). 
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DR signaling acts through a pair of enteric neurons. 
Our initial results establish that antagonizing serotonin and dopamine signaling leads to 

induction of the longevity promoting fmo-2 gene and rescue of the negative effects of 

food smell. Based on this, we hypothesized that the relative lack of food smell during 

DR leads to increased longevity through induction of intestinal fmo-2. Using this 

framework, we next sought to better understand how the sensing of bacteria (or lack 

thereof) is communicated to intestinal cells during DR. Our results, knocking down the 

synaptic vesicle exocytosis gene unc-13, support short-range neurotransmitters as 

necessary for fmo-2 induction (Figure 2.6A-B). 

 

In C. elegans, perception of the external environment is largely regulated by a 

specialized organ known as the amphid. Since a previous report using a solid-liquid DR 

approach suggested a pathway originating in the ASI amphid neurons, we first asked 

whether these cells are required to modulate fmo-2 activity during DR (67). We find that 

not only are the ASI neurons (as measured by daf-3 and daf-7 RNAi) dispensable for 

food perception-mediated reduction in fmo-2 expression (Figure 2.6C-D), but proper 

formation of the amphid (daf-6) is also not required (Figure 2.6E-F). This result is 

consistent with a non-canonical sensory neuron playing a role in food perception-

mediated fmo-2 suppression. 

 

To better map this pathway, we next asked whether the biogenic amine serotonin is 

involved in the DR-mediated longevity pathway, and if so, where. We tested whether 

knocking out serotonin signaling would mimic the effects of DR. We subjected animals 

lacking tph-1, the rate-limiting enzyme necessary to produce serotonin, to DR and 

mianserin. tph-1 animals are long-lived compared to wild-type(181) and not further 

extended by our DR protocol (Figure 2.7A) or mianserin treatment (Figure 2.8A). These 

data are supported by the abatement of fmo-2 induction on DR (Figure 2.7B-C) and 

mianserin (Figure 2.8B-C) when animals are subjected to tph-1(RNAi). As post-mitotic 

animals, C. elegans have a finite number of neurons with discrete connectivity and 

functions. Three neuronal pairs normally express tph-1(182). The hermaphrodite 
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specific motor neurons (HSN) are located along the ventral tail and regulate egg-

laying(183) whereas two head neuron pairs, the amphid neurons with dual sensory 

endings (ADF) and the neurosecretory motor (NSM) neurons, are involved in modifying 

behavioral states(177, 184, 185). To investigate the potential role of these neuron pairs, 

we utilized tph-1 cell-specific knockout and rescue strains and found that tph-1 

expression in NSM, but not the ADF, neurons (Figure 2.8D-E) is necessary (Figure 

2.8F) and sufficient (Figure 2.7D) to promote DR-mediated longevity. These results 

implicate the NSM neurons as two of the primary neurons involved in reversing the 

effects of DR under food smell. 

 

Recent research posits that NSM neurons function similar to enteric neurons with neural 

projections that directly communicate with the pharynx through a pair of acid-sensing 

ion channels (ASICs), DEL-3 and DEL-7. Signaling through these channels informs the 

worm to slow locomotion upon contact with food(184). These data led us to wonder 

whether the longevity effects of DR also require the ASICs channels to extend lifespan. 

We find that del-7 mutants look phenotypically wild type in their induction of fmo-2 and 

lifespan extension, in either DR or DR + food smell (Figure 2.9A-C). Interestingly, del-3 

mutant worms show abrogated induction of fmo-2 under DR, and did not diminish fmo-2 

induction in response to the smell of food (Figure 3.7E-F). These del-3 mutant animals 

still exhibit lifespan extension under DR, despite the decreased induction of fmo-2, 

which is not abrogated by the smell of food (Figure 3.7G). Together, these data support 

a model whereby the enteric NSM neurons release serotonin in response to food 

perception and the lack of this release extends longevity. In addition, the ASIC DEL-3 

plays a role in the NSM to both behaviorally(184) and physiologically respond to food 

perception signals.  
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Figure 2.6. Neuronal gene necessity for fmo-2 induction under DR/food smell/biogenic 
amin antagonism. 
Images (A) and quantification (B) of individual fmo-2p::mCherry worms on fed (pink, blue) and 
DR (purple, orange) fed vector or unc-13  RNAi, respectively. Images (C) and quantification (D) 
of individual fmo-2p::mCherry worms on vector, daf-3, and daf-7 RNAi on fed (pink) or DR 
(blue). Images (E) and quantification (F) of fmo-2p::mCherry in a daf-7 KO background on fed, 
DR or exposed to mianserin (pink) and food smell (blue). * denotes P<.05, ** denotes P<.01, *** 
denotes P<.001, **** denotes P<.0001 when compared to DR (Tukey’s HSD). 
  



 51 

 
Figure 2.7. Food signals emanate from the NSM neurons. 
Survival curves (A) of WT animals (black) and tph-1 KO animals on fed (pink) and DR (purple) 
conditions exposed to food smell (dotted lines). Images (B) and quantification (C) of fmo-
2p::mCherry exposed to tph-1 RNAi on fed (blue) or DR (pink). Survival curves (D) comparing 
control (black), tph-1 KO (pink), and tph-1 NSM-specific rescue (purple) animals on fed (solid 
line) and DR (dotted lines). Images (E) and quantification (F) of fmo-2p::mCherry in a WT 
(control) and del-3 background on fed (blue) and DR (pink) exposed to food smell (purple and 
orange, respectively). Survival curves of conditions comparing WT (black) to del-3 (G) on fed 
(pink) and DR (purple) conditions in combination with food smell (dotted lines). **** denotes 
P<.0001 when compared to vector RNAi fed (Tukey’s HSD).  
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Figure 2.8. Serotonin and serotonergic neuron-regulation of fmo-2 induction and 
longevity. 
Survival curves (A) of WT animals in pink and tph-1 KO animals in purple on water (solid lines) 
or 50µM mianserin (dotted lines). Images (B) and quantification (C) of individual fmo-
2p::mCherry worms on tph-1 RNAi exposed to water (pink) or 50µM mianserin (blue) conditions. 
Survival curves comparing control (pink) and tph-1 NSM-specific (D) or ADF-specific KO (E) 
(purple) animals on fed (solid line) and DR (dotted lines). Survival curves (F) comparing control 
(black), tph-1 KO (pink), and tph-1 ADF-specific rescue (purple) animals on fed (solid line) and 
DR (dotted lines). **** denotes P<.0001 compared to fed (Tukey’s HSD). 
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Figure 2.9. ASICs channels modify responses to DR and food smell. 
Survival curves of conditions comparing WT (black) to del-7 (A) on fed (pink) and DR (purple) 
conditions in combination with food smell (dotted lines). Images (B) and quantification (C) of 
fmo-2p::mCherry in a WT (control) and del-7 background on fed (blue) and DR (pink) exposed 
to food smell (purple and orange, respectively). Images (D) and quantification (E) of fmo-
2p::mCherry in a WT (control) and del-3 background on fed (blue) and DR (pink) exposed to 
food smell (purple and orange, respectively). Survival curves of conditions comparing WT 
(black) to del-3 (F) on fed (pink) and DR (purple) conditions in combination with food smell 
(dotted lines). **** denotes P<.0001 compared to DR (Tukey’s HSD). 
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Mianserin mimics DR by antagonizing the 5-HT1A receptor SER-4. 
Prior reports suggest that serotonin receptor orthologs ser-1 and ser-4 are necessary 

for the lifespan benefits of mianserin in C. elegans(73), and we hypothesized that a 

subset of the serotonin receptor orthologs will also be necessary for mianserin and DR-

mediated fmo-2 induction. After two generations of RNAi treatment, ser-1 and ser-4 

were the only two receptors that proved necessary for fmo-2 induction on mianserin 

(Figure 2.10A, Figure 2.11A-C) whereas ser-4 knockdown most robustly abrogated DR-

mediated fmo-2 induction (Figure 2.11D-E).  Further, we see that ser-4(RNAi) slightly 

but significantly increases lifespan and prevents DR from extending lifespan (Figure 
2.10B), supporting the hypothesis that mianserin acts as a DR mimetic by antagonizing 

serotonin signaling that occurs during feeding. Finally, to investigate whether this effect 

is mediated by neuronal signaling or intestinal SER-4 expression, we rescued ser-4 

knockout animals with tissue-specific promoters and found that only neuronal unc-

119p::ser-4 is sufficient to rescue full induction of fmo-2 under DR (Figure 2.10C-D). 

This is consistent with serotonergic signaling within the nervous system, and not directly 

to the intestine, regulating the response to food and food smell.  
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Thioridazine induces fmo-2 and extends lifespan through Dopamine receptor 
DOP-3/DRD2. 
Thioridazine is a compound that antagonizes dopamine receptor D2 (DRD2) in 

mammals(186), and induces fmo-2 and mimics DR to increase longevity in nematodes 

(Figure 2.4). Based on its role in mammals, we tested whether nematode DRD2 is 

involved in DR and mianserin-related fmo-2 induction and longevity. When the DRD2 

ortholog dop-3 is knocked down by RNAi, fmo-2 induction is not affected in fed 

conditions but its induction by DR is diminished, while its induction by thioridazine is 

completely abrogated (Figure 2.10E, Figure 2.13A). This result is consistent with dop-3 

being required for dopaminergic induction of fmo-2. To demonstrate the epistasis of 

DOP-3 and SER-4 in the signaling pathway, we combined ser-4 RNAi with mianserin 

and thioridazine treatment. The results show that ser-4 depletion blocks fmo-2 induction 

by thioridazine as well as suppresses fmo-2 induction by mianserin, as expected 

(Figure 2.10A). Similarly, depletion of dop-3 blocks both mianserin and thioridazine 

from inducing fmo-2 (Figure 2.10E). These results support a model where both 

serotonin and dopamine signaling are epistatic to each other and are each required for 

full induction of fmo-2 under DR. Interestingly, when ser-4 or dop-3 receptors are 

completely absent, via null mutation, the mutant animals show dysregulation of fmo-2 

induction, suggesting that the lack of biogenic amine signaling increases variability in 

responding to environmental changes (Figure 2.11F-G, 2.12B-D). To test whether DOP-

3/DRD2 is necessary for lifespan extension by DR and mianserin, we depleted dop-3 

with RNAi under DR and found that dop-3 depletion increases lifespan but is not further 

extended by DR (Figure 2.10F). Together, these results suggest that dopamine and 

serotonin signaling interactively induce fmo-2 and extend lifespan under DR.  
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Figure 2.10. 5-HT1A receptor ser-4 and DRD2 receptor dop-3 act downstream of food 
perception. 
Quantification (A) of individual fmo-2p::mCherry worms on fed (pink), and DR (blue) treated with 
100µM mianserin (purple), 100 µM thioridazine (orange), or combined (orange) worms fed 
vector or ser-4 RNAi. Survival curves (B) of WT animals on vector RNAi in pink and ser-4 RNAi 
in purple on fed (solid lines) or DR (dotted lines) conditions. Images (C) and quantification (D) of 
fmo-2p::mCherry or ser-4 with tissue-specific rescues added back on fed (pink) and DR (blue). 
Quantification (E) of individual fmo-2p::mCherry worms on fed (pink), and DR (blue) treated with 
100µM mianserin (purple), 100 µM thioridazine (orange), or combined (orange) worms fed 
vector or dop-3 RNAi. Survival curves (F) of WT animals on vector RNAi in pink and dop-3 RNAi 
in purple on fed (solid lines) or DR (dotted lines) conditions.  **** denotes P<.0001 when 
compared to vector RNAi fed (Tukey’s HSD). # denotes P<.05, #### denotes P<.0001 when 
compared to ser-4/dop-3 RNAi fed (Tukey’s HSD). 
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Figure 2.11. The role of serotonergic receptor signaling in fmo-2 induction by DR and DR 
mimetics. 
Images (A) and quantification (B) of fmo-2p::mCherry grown on serotonin receptor RNAi 
exposed to water (pink) or 50µM mianserin (blue). Images (C) quantified in Figure 3E. Images 
(D) and quantification (E) of fmo-2p::mCherry grown on serotonin receptor RNAi exposed to fed 
(pink) or DR (blue). Images (F) and quantification (G) of WT fmo-2p::mCherry or ser-4 KO on 
fed (pink), and DR (blue) treated with 100µM mianserin (purple), 100 µM thioridazine (orange), 
or combined (orange). Images (H) and quantification (I) of fmo-2p::mCherry or ser-4 with cell-
specific rescues added back on fed (pink) and DR (blue). * denotes P<.05, ** denotes P<.01, 
**** denotes P<.001 when compared to fed (Tukey’s HSD). ### denotes P<.001, #### denotes 
P< .0001 when compared to DR (Tukey’s HSD).  
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Figure 2.12. The role of dopaminergic receptor signaling in fmo-2 induction and lifespan 
extension by DR and DR mimetics. 
Images (A) quantified in Figure 3g. Summary (B) of fed and DR conditions of WT and ser-4 KO 
animals across multiple experiments. Images (C) and quantification (D) of WT fmo-2p::mCherry 
or dop-3 KO on fed (pink), and DR (blue) treated with 100µM mianserin (purple), 100 µM 
thioridazine (orange), or combined (orange).  Survival curves (E) of WT animals on vector RNAi 
in pink and dop-3 RNAi in purple on fed (solid lines) or DR (dotted lines) conditions.  * denotes 
P<.05, ** denotes P<.01, *** denotes P<.001 when compared to fed (Tukey’s HSD). ### 
denotes P<.001 when compared to DR (Tukey’s HSD). 
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Mianserin induces FMOs and promotes stress resistance in mammalian cells.  
Having identified serotonin and dopamine antagonism upstream of fmo-2 induction 

under DR, we were curious whether these relationships might be conserved. In 

mammals, previous studies show interventions that increase longevity often both 

induced Fmo genes and increased stress resistance(76, 187). Thus we tested whether 

mianserin and thioridazine are sufficient to induce mammalian Fmo genes and whether 

this induction could confer stress resistance, as a surrogate for longevity(188). Our 

results, using human liver (HepG2) cells, show that while thioridazine did not lead to any 

changes (Figure 2.13A), perhaps due to lack of DRD2 receptor expression, mianserin 

treatment at 2μM increased protein levels of mammalian FMO2 (Figure 2.14A-B) and 

FMO1 (Figure 2.13B-C), while 0.1μM mianserin increased protein levels of FMO4 

(Figure 2.13B and 2.13D). FMO3 and FMO5 protein levels are not changed upon 

mianserin treatment (Figure 2.13B and 2.13E-F). Since stress resistance is often 

correlated with increased lifespan both within and between species, and fmo-2 

increases stress resistance in C. elegans, we next examined whether mianserin also 

promotes stress resistance(188). We treated cells with paraquat, an inducer of 

mitochondrial oxidative stress through increased production of the reactive oxygen 

species (ROS) superoxide, and find that 2 µM mianserin, the dose that showed maximal 

induction of FMOs, slightly but significantly improves the survival of HepG2 cells under 

an increasing dose of paraquat (Figure S2.14G). These data support serotonin 

antagonism as a conserved mechanism to induce Fmo expression and improve stress 

resistance.  
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Figure 2.13. Induction of Fmos by biogenic amine antagonists. 
Representative western blot image (A) of FMO3 and FMO5 in whole cell lysates from HepG2 
cells treated with 10 µM thioridazine or trifluoperazine. Representative western blot image (B) 
and quantification of FMO2 (C), FMO4 (D), FMO3 (E), and FMO5 (F) in whole cell lysates from 
HepG2 cells treated with 0.1 µM, 0.5 µM, 1 µM, 2 µM, or 5 µM mianserin. Cell survival 
percentages of HepG2 cells treated with 2 µM mianserin (light blue) or untreated (dark blue) 
under 15 mM or 20 mM paraquat (G). * denotes P<.05, ** denotes P<.01 when compared to 
control (Tukey’s HSD). 
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Mianserin extends D. melanogaster lifespan similar to C. elegans. 
Since mianserin induces mammalian Fmos and promotes survival under paraquat 

stress, we tested whether it also affects lifespan in evolutionarily distant species. Similar 

to data in worms, recent data in the vinegar fly D. melanogaster show that altered 

serotonin signaling can change their ability to assess caloric quality and modulate 

lifespan(16). As we found a narrow range of effective doses in worms (Figure 2.14F), 

we tested a slightly higher dose of mianserin in vinegar flies (2 mM) for its effect on 

Fmo2 induction. The resulting data show that both mianserin and fasting (DR) increase 

expression of fly fmo-2 expression (Figure 2.14C), but not fmo-1 (Figure S2.15A). We 

then asked whether mianserin could also extend lifespan in flies. Using several 

concentrations, we find a positive correlation between mianserin dosage and increased 

lifespan until reaching a detrimental level of serotonin antagonism (Figure 2.14D, 

Figure S2.15B-D). We also find a comparable dose response among male and female 

flies. We note that mianserin treatment does not significantly alter food consumption 

(Figure S2.15E-F), as measured by the Fly Liquid-Food Interaction Counter (FLIC) 

assay(189).  Together, these results are consistent with conserved induction of fmos by 

mianserin and DR, in addition to conserved lifespan extension.   
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Figure 2.14. Serotonin antagonist mianserin induces FMO and improves health in 
Drosophila and mammalian cells. 
Western blot image (A) and quantification (B) of FMO1 in whole cell lysates from HepG2 cells 
treated with 0.1 µM, 0.5 µM, 1 µM, 2 µM, or 5 µM mianserin. Fmo-2 mRNA levels (C) after eight 
hours of 2mM mianserin (blue) or starvation (orange) compared to water controls (pink and 
purple, respectively). Survival curves of male flies treated with water (solid line) or 50µM (dotted 
line) mianserin (D). Panels E and F depict the “on/off” state worm’s toggle between when 
perceiving food. * denotes P<.05, ** denotes P<.01 when compared to control or fed (student’s 
t-test). 
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Figure 2.15. Effects of DR mimetic mianserin on Fmo expression, feeding, and lifespan. 
Fmo-1 mRNA levels (A) after 8 hours of 100µM mianserin (blue) or starvation (orange) 
compared to water controls (pink and purple, respectively) (red) or starvation (blue) compared to 
water control (black). Survival curves of female (B) flies dosed with water (solid line) or 50µM 
(dotted line) of mianserin. Combined survival curves of male (C) and female (D) flies dosed with 
water (pink), 20µM (blue), 30µM (purple), 40µM (orange), 50µM (yellow), or 80µM (purple) 
mianserin. 24 hours of FLIC assay data monitoring food intake in control (black) and mianserin 
(red) treatment (E). Extracted FLIC data (F) at 6 and 24 hours. Summary of the effects of food 
perception on DR and DR-mimetics longevity (G). 
  



 64 

Discussion 
Our experimental data in C. elegans support a model where the lack of an attractive 

(food) smell leads to a loss of serotonin release from the enteric NSM neurons and lack 

of serotonin binding to the SER-4/5-HT1A receptor. This in turn or in combination with 

other cues leads to a reduction in dopamine signaling to downstream DOP-3/DRD2 

receptors. It is notable that both SER-4 and DOP-3 receptors are known to dampen 

adenylyl cyclase activity when bound, thus the lack of signal will increase the probability 

of excitement of the cell expressing these receptors.  We hypothesize worms toggle 

their serotonin and dopamine neural activity “on” or “off” depending on the presence or 

absence of food, respectively (Figure 2.5E-F). Based on our ability to rescue DR 

benefits when food is perceived, we hypothesize that the perception of food during DR 

prevents the benefits of DR, rather than shortening lifespan through an independent 

pathway (Figure S2.15G). Critically, these data highlight that understanding how the 

nervous system evaluates and appropriately integrates large amounts of external 

stimuli, like the availability of food, allows us to target the decision-making processes to 

mimic pro-longevity pathways. 

 

It is intriguing that dopamine and serotonin signaling interactively induce fmo-2 and 

extend lifespan in a common pathway induced by dietary restriction. In nematodes, 

slowing locomotion in the presence of food is thought to be distinctly regulated by 

pharyngeal mechanosensation leading to dopamine release while dwelling behavior is 

potentiated by serotonin(190). Significant scientific effort has identified much of the 

specific circuitry these neurotransmitters use to promote changes in chemotaxis and 

egg-laying(177, 184, 191-193). The results suggest worms can interpret and implement 

a diverse set of responses to their changing environment. In mammals, SER-4/5-HT1A 

receptor activation increases dopamine release throughout the brain(194, 195). 

Similarly, recent work shows release of serotonin and dopamine in the human brain 

influence non-reward-based aspects of cognition and behavior like decision 

making(196). These findings support a conserved link between these two 

neurotransmitters in regulating complex phenotypes like aging. 
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It is also intriguing that one of these drugs, mianserin, successfully induces Fmo genes 

in both mammals and flies, and leads to increased stress resistance and lifespan, 

respectively. Since mianserin treatment extends fly lifespan we suspect it acts through a 

similar mechanism, serotonin antagonism, to mimic DR. This hypothesis is bolstered by 

fmo-2 induction under acute mianserin exposure and fasting, analogous to what we see 

in C. elegans. It is not known whether FMOs or 5-HT1A receptors are necessary for 

mianserin or DR-mediated longevity in flies, but 5-HT2A receptors are necessary for 

proper food valuation(16) suggesting that altering serotonin signaling may prove fruitful 

in future studies. In cells, the induction of Fmos by mianserin must be direct, suggesting 

that either serotonergic signaling is more direct in mammalian systems, or more likely, 

there are other nuances in this signaling in mammals we do not yet understand. 

Mammals and C. elegans share a single common ancestral Fmo(173) and mammalian 

Fmos share similar homology to C. elegans fmo-2, with Fmo5 having the highest % 

identity. It is notable that 5-HT1A expression is detected in hepatocytes (The Human 

Protein Atlas), supporting a similar mechanism in these cells and suggesting that FMOs 

can be induced by serotonin antagonism both directly and indirectly. It will be interesting 

to investigate whether mianserin is beneficial for health and longevity in mammals. To 

achieve this goal, it is imperative that we understand the causative changes of pro-

longevity drugs, such as atypical serotonin antagonists that are known to have 

pleiotropic effects in humans. In addition to providing the potential for long-term health 

benefits, this knowledge will benefit our understanding of serotonin and dopamine 

signaling networks that affect numerous human processes and diseases outside of 

aging.  
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Materials and Methods 

Strains and growth conditions 
Standard procedures for C. elegans strain maintenance(197) were used where 

experiments were performed on animals fed Escherichia coli (OP50) from egg and 

maintained on solid nematode growth medium (NGM). Additionally, worms were 

exposed to the smell of OP50 or HB101. Table 2.1 includes a list of the strains and 

RNAi conditions used in this study. All genotypes were confirmed using PCR. 

fmo-2p::mCherry construct 
We PCR amplified mCherry from pHG8 and the fmo-2 promoter from the worm gDNA 

under the fmo-2 promoter and cloned them into pdonr221 and P4-P1r, respectively. 

From here, they were combined using Gateway LR cloning (Invitrogen) to create fmo-

2p::mCherry::unc-54 3’UTR on PCFJ150 (pHAM001). 

SER-4 rescue constructs 
We purchased donor plasmid pPD117.01 from Addgene and used Gibson cloning 

(NEB) to swap out promoters driving cDNA of ser-4::SL2::GFP (on backbone) 

expression. We used the unc-119 promoter (pHAM002) to target all neurons and the 

vha-6 promoter (pHAM003) to target the intestine. All plasmids were verified via 

restriction digest and sanger sequencing. ApE files available upon request.  

Microinjection 
Single-copy integration of pHAM001 using the ttTi5605 (EG6699) Mos allele was 

performed as previously described(198). Overexpression transgenic animals were 

generated by injecting PureLink (Invitrogen) miniprepped DNA clones (~50ng/µL) with 

fluorescent co-injection marker myo-2p::mNeonGreen (15 ng/µL) and junk DNA (up to 

100 ng/µL) into gonads of day 1 gravid adult hermaphrodites. Standard protocols were 

followed to isolate and obtain stable over-expression mutants(199). Because transgene 

expression can vary substantially, we typically characterized 2-4 independent 

transgenic lines per experiment. 
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Lifespan measurements 
Lifespans were carried out as previously described with minor modifications (200). 

Briefly, 20 - 30 gravid adult animals were placed on NGM plates for a timed egg-lay. 

After 12-16 hours, these animals were removed. Once their progeny reached late 

L4/early adult stage, animals were transferred to plates with 33 µL of 150 mM 

fluorodeoxyuridine (FUdR) and 100 µL of 50 mg/mL Ampicillin per 100 mL NGM to 

prevent the development of progeny and growth of bacteria. Roughly 75 worms were 

placed on each NGM + FUdR plate seeded with concentrated bacteria (10×). A 

minimum of two plates per strain per condition were used per replicate. Lifespan plates 

were transferred periodically during early adulthood to prevent starvation and avoid 

contamination. Animals were scored as dead and removed from the experiment when 

they did not move in response to prodding under a dissection microscope. 

RNAi knockdown 
The RNAi feeding bacteria were obtained from the Vidal RNAi library. All RNAi plasmids 

were sequenced to verify the correct target sequence. Animals were exposed to RNAi 

plates from egg on plates consisting of NGM supplemented with 1 mM β-D-

isothiogalactopyranoside (IPTG) and 25 μg/ml carbenicillin. At late L4 stage of 

development the animals were transferred to plates containing freshly seeded RNAi 

bacteria plus FUdR. 

PFA treatment 
In order to metabolically kill OP50 in food smell assays, bacteria cultures were treated 

with 0.5% PFA. After 16 hours of shaking, 50 mL of the bacteria were aliquoted into 250 

mL Erlenmeyer flasks. 32% PFA was added to the flasks to get the desired final PFA 

concentration (e.g., 390 µL of PFA was added to get the final concentration of 0.25% 

PFA). PFA-treated bacteria were shaken at 37oC for 1 hour and then transferred to 50 

mL conical tubes, centrifuged and washed with LB five times to remove residual PFA 

before seeding. 
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Drug treatments 
Recent reports show improved health outcomes and longevity in nematodes treated 

with mianserin(73), but only in liquid culture (201). As our studies are on agar plates, we 

modified previous protocols by adding mianserin, thioridazine or trifluoperazine before 

pouring NGM agar plates. Without proper dosing, these neurotransmitter antagonists 

can cause off-target effects like fleeing, especially when combined with DR. All 

subsequent C. elegans experiments were performed at 50 µM of mianserin and 25 µM 

of thioridazine unless otherwise noted. All drugs were purchased from Sigma-Aldrich 

and were initially dissolved in milliQ water at 2 mM (mianserin) or 100mM concentration 

(DRD2 antagonists), aliquoted, and stored at −20 °C. 

Dietary restriction (DR) lifespan treatments 
Lifespan DR assays were performed like other lifespans until day two of adulthood, 

when the worms were transferred to plates with 10^9 seeded lawns and transferred 

every other day four times. This form of DR is termed solid DR (sDR) (Greer et al 2009). 

For short-term DR assays, worms were starved for eight (real-time PCR) or 20 hours 

(slide microscopy). We added 100uL of 10mM palmitic acid (Sigma-Aldrich) dissolved in 

100% EtOH to the outer rim of the plate to prevent fleeing.   

Attractant, repellant, and neutral smell treatments 
Fed and DR plates were prepared using NGM plates with palmitic acid. Odorants were 

chosen from previously published work isolating secreted compounds from the E. coli 

strain HB101(174, 175). All concentrations of attractant, repellant, and neutral 

chemicals were dissolved in 100% ethanol (more details in Table 2.3). A small pad of 

NGM agar (2 mL) was poured on the lid of each plate and allowed to solidify before 

100uL of each smell concentration was added to the agar pads. Plates were prepared 

the day prior to use to allow the ethanol solutions to dry. Young adult fmo-2p::mCherry 

worms were placed on fed and DR plates and exposed to each smell for 20 h before 

fluorescent microscopy images were taken. 



 69 

Slide microscopy 
All images in this study were acquired using LASx software and Leica scope with >15 

worms/treatment at 6.3x magnification. Worms were paralyzed in 0.5M sodium azide 

(NaN3). Fluorescence mean comparisons were quantified in ImageJ using the polygon 

tool and saved as macros.  

Real-time PCR 
500 N2 worms per biological replicate were transferred at young adulthood, 2.5 days 

post-hatch, to FuDR plates either seeded with food, DR’ed, or poured with the addition 

of 50µM mianserin or thioridazine. Worms were harvested in 50uL of M9 and flash 

frozen in liquid N2 after eight hours of exposure. Samples were freeze-thawed three 

times in Trizol reagent (Invitrogen) and RNA was extracted following standard phenol-

chloroform protocols from the manufacturer. Superscript reverse transcriptase II 

(Invitrogen) was used to synthesize cDNA. 600ngs of cDNA/sample were used with 

PowerUp SYBR Green Master Mix (Applied Biosystems) was used in the quantitation 

with primers:  

fmo-2 FWD ACGAAACGAATGAGTCGTCAGT; REV AGAGCAGACAAGAACGCCAT 

 

Canton-S flies were mated and reared on standard food for 2 weeks before separating 

the flies by sex onto SY10 food with 20 flies/vial. Flies were acclimated to the vials for 

24 hours before being transferred to SY10 vials coated with 2mM mianserin or water 

(control) or vials containing 2% agar to mimic dietary restriction. After 8 hours on these 

treatments, flies were frozen at -80°C overnight. Fly heads and bodies were then 

separated by vortexing and dissection by forceps (all samples and materials were kept 

on dry ice throughout). Each treatment contained 3 biological replicates composed of 10 

bodies each. Trizol Reagent (Invitrogen) was used in the RNA extraction, the 

MultiScribe Reverse Transcriptase kit (Applied Biosystems) was used to synthesize the 

cDNA, and the real-time PCR analysis used PowerUp SYBR Green Master Mix (Applied 

Biosystems) and a StepOne Plus Real-time PCR system (Applied Biosystems) primers: 

fmo-1 FWD GCGATAGGATGGGCAAACTG; REV CCCGGAAGTGGAGCAAATTC 

fmo-2 FWD CGCAACCAGAAGAAAGCACA; REV TGCTCCTGTACGTGTCCAAT 
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Fly husbandry 
The laboratory stock Canton-S was used in the lifespan and molecular experiments. 

Flies were maintained on standard food and housed at 25°C and 60% relative humidity 

in a 12:12 hour light-dark cycle. 

Fly survival assays 
For lifespan measurements, flies were reared under controlled larval density and 

collected onto standard food within 24 hours of eclosion. Flies were mated for 2-3 days 

then sorted by sex under light CO2 onto vials containing standard food used in lifespan 

experiments (10% sucrose/10% yeast, or SY10), according to well-establish lifespan 

protocols (202). Flies were transferred to fresh food every 2-3 days. At the beginning of 

the lifespan, mianserin was dissolved in water at a 1mM stock concentration and stored 

at -20°C. Weekly aliquots were prepared and diluted with water to yield the final 

concentrations of 20-80µM. 100µL of the drug solution (or water for the control) was 

added to the top of each vial and kept at room temperature to dry for approximately 2 

hours before transferring the flies.  

Cell culture and stress resistance assay 
HepG2 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO) 

supplemented with 10% fetal bovine serum,100 U/ml penicillin, and 100 μg/ml 

streptomycin. For stress resistance assay, cells were seeded to 96-well microplates with 

40,000 cells per well for HepG2 cells. After 16 to 18 h overnight incubation in complete 

medium, the cells were incubated for 18 to 24 h in serum-free DMEM supplemented 

with 2% bovine serum albumin (BSA) as described previously(187). For stress 

treatments, cells were exposed to cadmium for 6 h in 2% BSA supplemented DMEM, 

and then incubated in fresh 2% BSA supplemented DMEM without stressor for 18 h, 

followed by measurements of cell survival by Cell Proliferation Reagent WST-1 (Sigma 

5015944001). 
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Western blot analysis  
10 μg cell lysis samples were separated using SDS–PAGE and transferred to 

nitrocellulose filters, then blocked with 3% milk in TTBS (20mM Tris–HCl [pH 7.4], 

500mM NaCl and 0.1% Tween 20) for 1 h, and incubated with primary antibody 

overnight at 4°C. After washing three times with TTBS buffer, membrane was incubated 

with horseradish peroxidase-conjugated secondary antibody (Cell Signaling 

Technology, diluted 1: 5,000 in 3% milk) for 1 h at room temperature and then washed 

with TTBS. The filter was developed for visualization by enhanced chemiluminescence 

(Thermo Scientific Pierce). 

Statistical analyses 
All box plots show individual data points while the box represents SEM (centered on the 

mean), and whiskers represent 10%/90%.  Comparisons between more than two 

groups were done using ANOVA. For multiple comparisons, Tukey’s multiple 

comparison test was used, and p values are *p < 0.05, **p < 0.01, ***p < 0.001, and 

****p < 0.0001. For lifespan assays groupwise and pairwise comparisons among 

survivorship curves were performed the statistical software R. P values were obtained 

using the log-rank analysis (select pairwise comparisons and group comparisons or 

interaction studies) as noted. Interaction P values were calculated using Cox regression 

when the survival data satisfied the assumption of proportional hazards. All statistics 

were run in R. Summary lifespan statistics are included in Table 2.2. 
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Table 2.1. C. elegans strains used in this study. 
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Table 2.2. Lifespan information for this study. 
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Table 2.3. Odorant classification, identification, and concentrations. 
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CHAPTER 3 

Genetic Interaction with Temperature Is an Important Determinant of 
Nematode Longevity2 

Foreword 
Before making significant in-roads on my primary thesis project, Dr. Leiser and I wanted 

to collate a substantial amount of lifespan data we performed in collaboration with 

members of the Kaeberlein lab. Our goal was to put together a short, discrete story. 

While a significant portion of the data was collected by my co-authors, the analysis, 

figure presentation and writing of the manuscript was left to me and Dr. Leiser. I found 

this methodology to be incredibly helpful going forward in my PhD. It taught me early on 

how to construct a story and navigate the peer-review process.  

2. Originally published in Aging Cell (2017 Dec 16;6 1425-1429) with authors listed as 

Miller, H.A., Fletcher, M., Primitivo, M., Leonard, A., Sutphin, G. L., Rintala, N., 

Kaeberlein, M., and Leiser, S.F. 

Abstract 
As in other poikilotherms, longevity in C. elegans varies inversely with temperature; 

worms are longer-lived at lower temperatures. While this observation may seem intuitive 

based on thermodynamics, the molecular and genetic basis for this phenomenon is not 

well understood. Several recent reports have argued that lifespan changes across 

temperatures are genetically controlled by temperature-specific gene regulation. Here, 

we provide data that both corroborate those studies and suggest that temperature-

specific longevity is more the rule than the exception. By measuring the lifespans of
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worms with single modifications reported to be important for longevity at 15, 20, or 

25°C, we find that the effect of each modification on lifespan is highly dependent on 

temperature. Our results suggest that genetics play a major role in temperature-

associated longevity and are consistent with the hypothesis that while aging in C. 

elegans is slowed by decreasing temperature, the major cause(s) of death may also be 

modified, leading to different genes and pathways becoming more or less important at 

different temperatures. These differential mechanisms of age-related death are not 

unlike what is observed in humans, where environmental conditions lead to 

development of different diseases of aging. 

Results 
The aging process has been described as stochastic – a probabilistic degeneration of 

cellular function that may be explained in sufficient detail by thermodynamic principles 

(203). Thermodynamics and the kinetics of chemical reactions provide the most 

rudimentary understanding of how physiological processes change as temperature 

changes. Described most simply, the rates of various chemical reactions increase as 

temperature increases, resulting in an increased rate of biochemical processes and, 

possibly, a corresponding increase in the rate of aging. Consistent with this model, 

lowering the ambient temperature of poikilotherms such as C. elegans, D. melanogaster 

and C. bellottii, and decreasing a mouse’s body temperature can increase lifespan (136, 

204-206). 

 

In C. elegans, animals that develop and age at 15°C (“low temperature”) are long-lived 

compared to wild-type animals grown at 20°C (~ room temperature), whereas wild-type 

worms that develop and age at 25°C (“high temperature”) are short-lived compared to 

wild-type worms grown at 15°C or 20°C (Figure 3.1). This “temperature law” has been 

described as widely accepted, but not tested beyond limited number of strains (207). 
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While the “temperature law” is observed among wild-type organisms, the interplay 

between genetics and temperature is not well understood. Multiple recent reports 

suggest that the effects of temperature on longevity are genetically controlled, and that 

both heat and cold modify transcriptional pathways that effect lifespan (59, 64, 207-

211). To better understand the interplay between temperature and longevity, we 

measured the lifespans of worms with genetic manipulations known to affect longevity 

at 15°C, 20°C, or 25°C.  Figure 3.1 illustrates six examples of how longevity can be 

impacted across temperatures, representing conditions that: 

• robustly increase lifespan at all temperatures (daf-2 RNAi) 

• robustly decrease lifespan at all temperatures (rhy-1(ok1402))  

• decrease lifespan at high but not low temperature (daf-16(mu86)) 

• increase lifespan at high temperature but decrease lifespan at low 

temperature (rsks-1(ok1255)) 

• increase lifespan at low temperature but not high temperature (cep-1(gk138)) 

• do not alter lifespan at any temperature (cah-4 RNAi)  
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Figure 3.1. Examples of different types of interactions between genotype, temperature, 
and lifespan. 
Panels A-F show survival curves and combined graphs plotting median lifespan vs temperature 
at 15°, 20°, and 25° for daf-2 (RNAi), rhy-1(ok1402), daf-16(mu86), rsks-1(ok1255), cep-
1(gk138), and cah-4 (RNAi) compared to wild-type (N2). Note that because they are 
developmentally delayed, rhy-1 lifespans are shown from L4. 
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Legend on previous page. 
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Figure 3.2. Lifespans from L4 for strains with developmental delays. 
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Figure 3.3. Mutant and environmental condition lifespans at 15, 20, and 25°C. 
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Legend on previous page.   
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Legend on previous page.   
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Figure 3.4. RNAi lifespans at 15, 20, and 25°C. 
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Legend on previous page.   
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Figure 3.5. Complete graph of median lifespan vs temperature at 15, 20, and 25°C for all 
lifespan data normalized to wild-type/control.  
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Having established that relative longevity can vary across temperatures, we next asked 

whether this variability is common among conditions known to modify longevity. We 

tested nearly fifty genotypes and interventions previously reported to affect lifespan 

(Figure 3.2-5 and Table 3.1-2) and found that relative longevity was consistently 

inconsistent across temperatures.  However, there are consistent trends within longevity 

pathways, where strains/conditions known to have opposing effects are also affected by 

temperature oppositely (Figure 3.6A-B, Figure 3.7A-D). We used Cox regression 

analysis to assess the interaction between each longevity intervention and temperature. 

The hazard ratios, which represent the cumulative risk of death throughout a worm’s 

lifespan, confirm the interaction between condition (genotype, RNAi, etc.) and 

temperature and clearly separate the conditions into three categories: approximately 

one third (15/43) of the interventions show an increased hazard ratio (significantly 

“better” at higher temperature), one third (14/43) show a decreased hazard ratio 

(significantly “better” at lower temperature), and one third (14/43) show no interaction 

between genetic manipulation and temperature (Figure 3.6C,D).  The changes in 

hazard ratio are frequently ~two-fold and are clearly not random, as evidenced by 

reciprocal results for genes that are known to have opposite effects within the same 

pathway (e.g. daf-2(e1370) vs. daf-16(mu86), vhl-1(ok161) vs. hif-1(ia4)) (Figure 3.8).  

Heat-map analysis with hierarchical clustering segregate the tested conditions (Figure 

3.9) into the groups described in Figure 3.1.  
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Figure 3.6. Temperature vs. longevity across genotypes. 
Panels A-B plot median lifespan vs temperature at 15, 20, and 25°C for opposing genetic 
conditions in the longevity pathways of hypoxic signaling and antioxidant signaling normalized to 
wild-type (N2). Panels C-D show the Cox regression-calculated hazard ratios between each 
condition, separated into UV-killed and RNAi conditions, across temperatures. Panel E depicts a 
basic model.  Significant (p<0.01) increased (*) and decreased (**) hazard ratios at 15°C 
compared to 25°C are denoted. 
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Figure 3.7. Pathway specific lifespans across temperatures by mean lifespan. 
Panels A-D plot median lifespan vs temperature at 15, 20, and 25°C for opposing genetic 
conditions in the longevity pathways of, hypoxic signaling (A), antioxidant signaling (B), insulin 
signaling (C), and dietary restriction/mTOR (D) normalized to wild-type (N2). 
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Figure 3.8. Cox regression-calculated hazard ratios between each condition and wild-
type across temperatures (25-15°C) for the pathways described in Figure S5. 
                                  



 91 

 
Figure 3.9. Heat map of relative longevity. 
A clustered heatmap where red shading depicts longer average lifespan than wild-type and blue 
shading depicts a shorter average lifespan than wild-type.    
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Discussion 
In summary, we find significant interaction between longevity interventions and 

environmental temperature in two-thirds (29/43) of the cases examined, indicating that a 

temperature-independent effect on longevity is more the exception than the rule (Figure 
3.6C-D). This variation confirms that genetics play a substantive role in temperature-

dependent longevity that cannot be explained solely by the rules of thermodynamics 

and chemical kinetics.   

 

The observed variation in relative longevity with temperature is consistent with the 

hypothesis that distinct mechanisms determine nematode longevity at different 

temperatures (Figure 3.6E). As shown in the model, there are three distinct types of 

strains/conditions: those with similar slopes and hazard ratios to N2 (FMO-2 OE, rhy-

1(ok1402), etc.), “temperature dependent” strains/conditions that live comparatively 

longer at higher temperatures (e.g. DR, rsks-1 (ok1255), daf-2(e1370) or RNAi), and 

“temperature dependent” strains/conditions that live comparatively longer at colder 

temperatures (vhl-1(ok161), cep-1(gk138), SKN-1 OE).  These three categories are 

further complicated by how they compare to wild-type overall, leading some strains to 

be consistently long-lived (e.g. daf-2(e1370) or RNAi) or short-lived (e.g. rhy-1 

(ok1402)), whereas other strains vary in relative longevity depending on temperature 

(e.g. cep-1(gk138)).  Together, these results suggest that testing strains/conditions at 

multiple temperature will not only define the robustness of an effect, but may provide 

clues as to the mechanism. 

 

It has been suggested that protein quality control and the heat stress response are of 

primary importance for determining nematode longevity at 25°C (212). Our data support 

this model; we find interventions that limit heat stress response (e.g., daf-16(mu86)) are 

detrimental at high, but not low, temperature, while interventions that improve protein 

homeostasis, such as dietary restriction or reduced expression of translation machinery 

(e.g. rsks-1(ok1255), rpl-6 RNAi) show lifespan extension at high temperature. The 

relevant mechanisms affecting longevity at low temperature are less clear, particularly 

because relatively few aging studies are conducted at 15°C compared to 20°C or 25°C. 
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It is possible a combination of a strain’s ability to avoid age-associated vulval integrity 

defects (AVID), a healthspan phenotype primarily observed at colder temperatures 

(213), and to better adapt to temperature-dependent changes to their bacterial food 

source (growth rate, metabolism, pathogenicity), leads to better outcomes in colder 

temperatures. We note that a subset of our data (trpa-1(ok999), daf-16(mu86) at 15°C) 

differ from other published works on whether strains are relatively short or long-lived at 

a given temperature (64, 209).  While we did not directly test why these differences are 

observed, we expect that they are due to our lifespans using UV-killed bacteria for a 

food source and others using live bacteria.  It is known that daf-16 plays an important 

role in immunity (214) in worms and both Xiao et al and Chen et al.’s reports describe a 

requirement for daf-16 in their pathway.  Our results agree with these reports on the 

slopes of the lifespans of these strains, and the differences we observe are consistent 

with immunity being more important at lower temperature. The difference between 

studies are similar to differences between live and UV-killed food experiments (which 

live longer) (215), and are worth exploring in future studies as they may explain cold-

dependent longevity mechanisms of insulin and trpa-1(ok999) signaling. 

 

Our results demonstrate that the impact of temperature on relative lifespan is of greater 

importance than generally appreciated by the C. elegans aging field.  The vast majority 

of published studies report the impact of different interventions on lifespan at a single 

temperature, usually either 20°C or 25°C.  We suggest that studies reporting effects on 

lifespan should typically be performed at more than one temperature in order to 

understand the robustness of the effect and the interaction with temperature.  As further 

mechanistic studies on the factors that control differences in the relative lifespan vs. 

temperature axis are completed, we expect that plausible links will be made between 

temperature-specific longevity in nematodes and specific diseases of aging in 

mammals.  
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Materials and Methods 

Strains and Growth Conditions 
See chapter 2. Additional information in Table 3.1 includes a list of the strains and RNAi 

conditions used in this study. 

Lifespan measurements  
See chapter 2. Additional information in Table 3.2 includes statistics. 

RNAi knockdown  
See chapter 2. 

Dietary restriction (DR) treatment 
See chapter 2. 

Hypoxia treatment 
We followed a protocol as previously described (216) to design hypoxia flow chambers 

to continuously house animals throughout their life at .5% oxygen after development 

and placement on FUdR.  

Caffeine treatment 
Solid anhydrous caffeine was added directly to the NGM solution prior to autoclaving 

and pouring as previously described (217). Neither autoclaving nor UV treatment during 

plate preparation influenced life span in the presence of caffeine. 

Statistical analyses 
Lifespan data and statistics are included in Table 3.3 provides the results of Cox 

proportional hazards regression models, which were run in Stata 14.  The model 

includes a categorical variable for temperature, using 25 degrees as the base category, 

and including two dummy variables for 15 and 20 degrees.  It also includes a dummy 

variable for experimental versus control.  The main variables of interest for this paper 

are the interactions between the experimental dummy and the temperature dummies, 

which capture the differential effect of temperature on experimental versus control 
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worms.  Hierarchical clustering of the differences between conditions and control 

median lifespan across temperatures was performed using the heatmap.2 function in 

the R package “Gplots”. These values were calculated by subtracting the control 

animal’s median age at death from the condition’s median age at death then dividing by 

the control animal’s mean age at death. All error bars shown in figures represent the 

standard error of the mean. 
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Table 3.1. Descriptions of the 43 conditions included in this study. 
Condition Strain/Dose Description 

aak-1 AGD397 AMPK, downstream of insulin signaling (DAF-16 activation) and energy sensing 

aak-2 RB754 AMPK, downstream of insulin signaling (DAF-16 activation) and energy sensing 

atm-1 VC381 ATM, DNA damage response 

atp-3 RNAi ATP synthase, regulates mitochondrial ATP production  

dietary 
restriction 

bacteria 
deprivation 

 

Robust intervention to enhance longevity 

caffeine 10mM Commonly used compound, previously reported to be long-lived 

cah-4 RNAi Carbonic anhydrase, downstream of hypoxic response (HIF-1 activation) 

cco-1 RNAi Cytochrome c oxidase, regulates mitochondrial respiration 

cep-1 MN1 p53 ortholog, downstream multiple longevity pathways 

clk-1 RNAi COQ7/CAT5 ortholog, regulates mitochondrial respiration 

cyc-1 RNAi Cytochrome c reductase, regulates mitochondrial respiration 

daf-2 CB1370 Insulin-like receptor, negative regulator of DAF-16 

daf-2 RNAi Insulin-like receptor, negative regulator of DAF-16 

daf-16 CF1038 FOXO homologue, transcription factor downstream of insulin signaling 

egl-9 MT1201 Proline hydroxylase, negative regulator of HIF-1 

egl-9 JT307 Proline hydroxylase, negative regulator of HIF-1 

egl-9 RNAi Proline hydroxylase, negative regulator of HIF-1 

F28B4.5 RNAi Unknown function, downstream of hypoxic response (HIF-1 activation) 

fmo-2 VC1668 Detoxification enzyme, downstream of hypoxic response (HIF-1 activation) 

fmo-2 RNAi Detoxification enzyme, downstream of hypoxic response (HIF-1 activation) 

gpa-9 NL793 GTPase, involved in innate immunity 

hif-1 ZG31 Hypoxia inducible factor, transcription factor activated by low oxygen (< 1%) 

hif-1 ZG596 Hypoxia inducible factor, transcription factor activated by low oxygen (< 1%) 

hif-1 RNAi Hypoxia inducible factor, transcription factor activated by low oxygen (< 1%) 

hypoxia .5% Intervention to activate HIF-1 

inx-2 CX13325 Innexin/gap junction protein, downstream of hypoxic response (HIF-1 activation) 

lys-8 RB2528 Lysozyme, involved in innate immunity 

nuo-2 RNAi NDUFS3 ortholog, regulates mitochondrial respiration 

phy-2 RNAi Downstream of the hypoxic response (HIF-1 activation) 

rhy-1 RB1297 Negative regulator of HIF-1 

rol-6 CB187 Collagen protein, common selection marker for transgenic animals 

rpl-6 RNAi Ribosomal subunit L6, inhibits mRNA translation (improves proteostasis) 
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rpl-9 RNAi Ribosomal subunit L9, inhibits mRNA translation (improves proteostasis) 

rpl-22 RNAi Ribosomal subunit L22, inhibits mRNA translation (improves proteostasis) 

rsks-1 RB1206 Ribosomal S6 kinase, inhibits mRNA translation (improves proteostasis) 

sir-2.1 VC199 NAD-deacetylase, reported to be important for longevity 

SKN-1 OE LD1 Nrf ortholog, antioxidant response, transcription factor activated by ROS 

skn-1 EU1  Nrf ortholog, antioxidant response, transcription factor activated by ROS 

skn-1 EU31 Nrf ortholog, antioxidant response, transcription factor activated by ROS 

trpa-1 RB1052 TRP channel, detects changes in temperature  

tyr-2 RB1272 Tyrosinase ortholog, downstream of hypoxic response (HIF-1 activation) 

vhl-1 CB5602 E3 ubiquitin ligase, negative regulator of HIF-1 
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Table 3.2. Lifespan information for this study. 
  15oC              

Genotype/ 
Treatment 

Averaged 
Mean 

Exp. 
Error 

Rep n Total 
Mean 

Total 
Error 

Total 
Median 

p-value (N2 
comparison) 

aak-1 (tm1944) 31.1164 1.4499 3 277 31.805 0.4826 32.00 0.000575 

N2 (control) 32.3977 2.7532  350 32.817 0.3840 32.00  

aak-2 (ok524) 23.7323 0.7995 2 166 23.385 0.2544 22.00 3.1E-35 

N2 (control) 29.7591 1.3617  227 30.185 0.3346 30.00  

atm-1 (gk186) 26.4768 1.9071 2 283 26.254 0.3479 25.00 4.45E-12 

N2 (control) 29.7591 1.3617  227 30.185 0.3346 30.00  

atp-3 (RNAi) 23.8828 1.3261 3 322 24.555 0.3482 24.55 1.9E-16 

 21.9532 2.3897  427 21.686 0.2526 21.69  

Dietary 
Restriction (DR) 

38.6467 2.9079 4 608 39.355 0.5305 39.35 1.19E-16 

Fed (control) 37.1172 1.1827  432 36.641 0.3858 36.64  

10mM caffeine 39.5129 2.2892 11 670 41.286 0.4421 41.28 1.95E-14 

Water (control) 33.8995 1.4479  754 33.836 0.3582 33.84  

cah-4 (RNAi) 22.0451 0.3965 3 325 22.181 0.2704 22.18 0.465556 

vector (control) 21.8685 0.2140  484 21.793 0.2223 21.79  

cco-1 (RNAi) 22.9238 2.0090 3 390 22.833 0.2960 22.83 0.000166 

 
vector (control) 21.9532 2.3897  427 21.686 0.2526 21.69 

 

cep-1 (gk138) 40.9166 4.6852 2 237 40.303 0.5739 39.00 8.56E-19 

N2 (control) 33.1881 3.9937  243 32.449 0.5669 30.00  

clk-1 (RNAi) 22.7224 2.3020 3 329 22.431 0.3314 22.43 1.46E-05 

vector (control) 21.9532 2.3897  427 21.686 0.2526 21.69  

cyc-1 (RNAi) 23.6866 0.7375 3 325 23.600 0.3425 23.60 0.001109 

vector (control) 21.9532 2.3897  427 21.686 0.2526 21.69  

daf-2 (e1370) 43.3146 1.3712 3 354 43.641 0.5002 42.00 8.91E-36 

N2 (control) 32.0260 2.3993  336 32.253 0.3546 32.00  
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daf-2 (RNAi) 44.3884 4.6223 4 383 43.396 0.7026 43.39 2.51E-35 

vector (control) 27.9567 1.6142  474 27.553 0.2579 27.55  

daf-16 (mu86) 32.3871 0.9495 7 899 32.450 0.2057 31.00 5.89E-07 

N2 (control) 32.8469 1.4034  775 33.089 0.2692 32.00  

egl-9 (n571) 35.0808 1.9758 4 544 34.373 0.3185 35.00 6.21E-11 

N2 (control) 28.7036 0.8776  550 28.573 0.2511 28.00  

egl-9 (RNAi) 30.4919 0.0361 2 236 30.483 0.6498 30.48 1.28E-20 

vector (control) 21.6729 0.1503  380 21.666 0.2537 21.67  

egl-9 (sa307) 31.7281 2.2265 5 602 30.895 0.2924 31.00 0.000296 

N2 (control) 28.3366 1.6297  586 27.894 0.2320 28.00  

F28B4.5 (RNAi) 22.0068 0.3252 3 371 21.991 0.2058 21.99 0.93052 

vector (control) 21.8685 0.2140  484 21.793 0.2223 21.79  

fmo-2 (RNAi) 21.9147 1.3001 4 456 21.535 0.1972 21.53 0.000694 

vector (control) 22.3478 1.2185  655 22.119 0.1916 22.12  

fmo-2 (ok2147) 35.6377 0.4584 2 197 35.421 0.5869 34.00 0.442727 

N2 (control) 34.4879 1.4879  247 34.494 0.4974 34.00  

gpa-9 (pk438) 35.0242 0.8438 2 277 35.057 0.4069 34.00 0.003043 

N2 (control) 35.8475 1.8273  271 35.679 0.3971 34.00  

hif-1 (ia07) 32.5907 0.8500 3 383 32.258 0.3409 32.25 0.001283 

N2 (control) 29.5709 0.8084  371 29.801 0.2660 29.80  

hif-1 (ia04) 31.2084 0.6691 19 2446 31.036 0.1437 31.03 1.5E-11 

N2 (control) 32.5583 1.1201  2282 31.784 0.1717 31.78  

hif-1 (RNAi) 23.9526 1.6006 10 1097 23.096 0.2000 23.09 2.14E-20 

vector (control) 25.2758 1.4691  1070 24.782 0.1852 24.78  

hypoxia (.5%) 35.1186 0.1878 2 329 35.158 0.2089 34.00 1.57E-13 

normoxia (21%) 30.9734 1.2266  368 30.647 0.1788 32.00  

inx-2 (ok376) 39.3706 0.8091 3 406 39.384 0.4461 37.50 6.21E-09 

N2 (control) 34.8984 1.4191  394 34.843 0.3282 34.00  

lys-8 (ok3504) 38.7615 0.4712 2 197 38.639 0.6904 37.00 5.95E-07 

N2 (control) 35.8475 1.8273  271 35.679 0.3971 34.00  

nuo-2 (RNAi) 18.8712 0.7131 5 292 18.534 0.2619 18.53 4.25E-11 

vector (control) 19.7298 1.5168  327 20.245 0.2601 20.24  

phy-2 (RNAi) 25.1231 0.4956 2 385 25.093 0.2488 25.09 1.11E-11 
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vector (control) 21.6729 0.1503  380 21.666 0.2537 21.67  

rhy-1 (ok1402) 29.9563 1.1755 5 742 29.702 0.2090 29.70 0.003236 

N2 (control) 31.7757 1.8517  704 31.563 0.2401 31.56  

rol-6 (e187) 33.2982 1.3944 5 657 33.838 0.2750 34.00 6.76E-14 

N2 (control) 31.2781 1.4965  619 31.368 0.2826 31.00  

rpl-6 (RNAi) 26.3284 1.1704 9 1166 26.327 0.1576 26.32 0.00139 

vector (control) 28.1362 1.2280  740 27.781 0.2097 27.78  

rpl-9 (RNAi) 19.4252 1.0632 3 284 19.350 0.2558 19.35 0.640106 

vector (control) 22.8971 3.4709  428 22.474 0.2933 22.47  

rpl-22 (RNAi) 21.7975 2.0328 3 460 21.093 0.2274 21.09 0.000359 

vector (control) 23.3280 1.6574  453 23.012 0.2403 23.01  

rsks-1 (ok1255) 27.2270 0.0015 2 238 27.226 0.3593 27.22 0.130964 

N2 (control) 29.7591 1.3617  227 30.185 0.3346 30.19  

sir-2.1 (ok434) 37.3703 1.6797 5 355 36.585 0.5622 36.00 4.45E-05 

N2 (control) 35.5198 1.3377  414 35.338 0.4272 34.00  

Skn-1 OE (ldIs7) 36.1183 2.4820 5 509 37.242 0.4166 37.24 6.73E-08 

rol-6 (control) 33.2982 1.3944  657 33.839 0.2751 33.84  

Skn-1 OE (ldIs7) 37.3517 2.3724 6 591 38.081 0.3874 38.08 4.6E-34 

N2 (control) 31.8135 1.3341  672 31.615 0.2680 31.61  

skn-1 (zu67);  
eu-1 

26.7325 0.8826 3 520 26.738 0.2188 26.00 8.84E-06 

N2 (control) 29.5709 0.8084  371 29.801 0.2660 30.00  

skn-1 (zu135);  
eu-31 

29.9347 4.0856 2 155 28.432 0.6360 28.43 3.82E-07 

N2 (control) 30.1576 0.9632  293 30.174 0.3188 30.17  

trpa-1 (ok999) 38.1123 1.4406 2 265 38.101 0.5576 34.00 0.000907 

N2 (control) 35.8475 1.8273  271 35.679 0.3971 34.00  

tyr-2 (ok1363) 33.6118 0.0855 3 471 33.612 0.2395 34.00 1.31E-12 

N2 (control) 33.6298 2.4558  415 33.429 0.3358 32.00  

vhl-1 (ok161) 43.0419 1.0964 21 1931 43.803 0.2106 43.80 6.5E-152 

N2 (control) 30.2526 0.8404  2638 29.649 0.1456 29.65  

  20oC              
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Genotype/ 
Treatment 

Averaged 
Mean 

Exp. 
Error 

Rep n Total 
Mean 

Total 
Error 

Total 
Median 

p-value (N2 
comparison) 

aak-1 (tm1944) 23.8208 1.5291 2 88 23.681 0.5066 24.00 9.24E-18 

N2 (control) 31.3283 0.4323  196 31.209 0.4138 32.00  

aak-2 (ok524) 23.7868 1.8727 5 475 24.823 0.2584 25.00 0.030651 

N2 (control) 24.9216 1.8616  663 25.881 0.2542 25.00  

atm-1 (gk186) 21.9566 1.3013 4 414 21.978 0.2784 22.00 4.78E-27 

N2 (control) 29.9752 0.8210  446 29.661 0.2629 30.00  

atp-3 (RNAi) 18.0085 0.9263 2 373 18.150 0.2015 18.15 8.22E-16 

vector (control) 16.0026 0.3081  321 16.034 0.1773 16.03  

Dietary 
Restriction (DR) 

31.6880 1.1763 8 933 32.380 0.2400 32.38 5.97E-42 

Fed (control) 26.3229 1.1004  973 26.581 0.1968 26.58  

10mM caffeine 27.8220 2.2451 5 490 27.218 0.3143 27.21 6.33E-07 

Water (control) 26.7970 1.8349  468 26.776 0.3187 26.78  

cah-4 (RNAi) 17.9257 0.8577 4 508 17.537 0.1678 17.53 0.000153 

vector (control) 17.8276 0.5640  514 17.916 0.1463 17.92  

cco-1 (RNAi) 20.6523 2.2853 3 455 19.617 0.2395 19.61 0.036394 

vector (control) 18.3823 2.3863  434 17.885 0.2291 17.88  

cep-1 (gk138) 26.1478 1.2837 11 1771 26.431 0.1582 27.00 3.05E-13 

N2 (control) 26.2089 1.1179  1637 26.276 0.1544 25.00  

clk-1 (RNAi) 19.0329 1.6065 3 449 18.832 0.2187 18.83 1.97E-10 

vector (control) 18.3823 2.3863  434 17.885 0.2291 17.88  

cyc-1 (RNAi) 21.7346 3.5095 3 477 20.454 0.3198 20.45 0.02149 

vector (control) 18.3823 2.3863  434 17.885 0.2291 17.88  

daf-2 (e1370) 42.6589 2.5906 5 855 43.568 0.4243 46.00 1.27E-44 

N2 (control) 27.9941 1.4160  688 27.410 0.2108 28.00  

daf-2 (RNAi) 33.7672 2.3172 3 187 34.550 0.7295 34.55 6.8E-27 

vector (control) 20.7044 1.6324  168 20.815 0.3883 20.82  

daf-16 (mu86) 20.4089 0.8397 8 693 20.537 0.1806 20.00 1.04E-13 

N2 (control) 23.4754 0.9090  708 23.838 0.2016 24.00  

egl-9 (n571) 28.1178 0.6664 6 1025 27.983 0.1648 28.00 0.000335 

N2 (control) 26.9466 0.6803  829 26.423 0.1667 28.00  
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egl-9 (RNAi) 23.7746 0.9940 3 133 23.924 0.3203 23.92 4.62E-10 

vector (control) 20.5868 0.9697  117 20.513 0.3979 20.51  

egl-9 (sa307) 28.0807 0.7077 7 947 28.405 0.1715 29.00 2.14E-13 

N2 (control) 26.4816 0.7395  897 26.216 0.1617 26.00  

F28B4.5 (RNAi) 19.8677 0.9179 6 506 18.974 0.1683 18.97 0.078974 

vector (control) 19.0853 0.9075  558 18.398 0.1531 18.40  

fmo-2 (RNAi) 21.0431 1.3273 3 567 20.915 0.1818 20.91 0.629862 

vector (control) 21.3129 1.6868  510 21.614 0.1936 21.61  

fmo-2 (ok2147) 26.9898 1.2637 2 211 27.379 0.4512 28.00 0.012644 

N2 (control) 26.4896 0.0046  254 26.488 0.3453 26.00  

gpa-9 (pk438) 25.4859 0.3256 2 269 25.494 0.3052 26.00 0.360287 

N2 (control) 26.4896 0.0046  254 26.488 0.3453 26.00  

hif-1 (ia07) 28.5878 2.2847 4 866 29.132 0.2437 29.13 6.33E-07 

N2 (control) 28.4840 2.4624  580 28.003 0.2806 28.00  

hif-1 (ia04) 23.6807 0.5972 18 3197 24.827 0.1279 24.82 5.25E-12 

N2 (control) 23.8882 0.5073  3058 24.494 0.1043 24.49  

hif-1 (RNAi) 20.6582 0.8761 23 2583 20.494 0.1189 20.49 5.88E-46 

vector (control) 19.9860 0.6417  2584 19.674 0.0967 19.67  

hypoxia (.5%) 26.6371 1.3099 9 1104 28.028 0.1962 28.00 0.0007 

normoxia (21%) 23.8261 1.1441  1255 25.360 0.1551 25.00  

inx-2 (ok376) 29.8138 0.6271 2 277 29.761 0.2853 30.00 2.99E-06 

N2 (control) 26.4896 0.0046  254 26.488 0.3453 26.00  

lys-8 (ok3504) 26.0446 0.6066 2 273 26.113 0.3250 26.00 0.782727 

N2 (control) 26.4896 0.0046  254 26.488 0.3453 26.00  

nuo-2 (RNAi) 17.7009 1.9262 4 557 17.007 0.1969 17.00 4.36E-13 

vector (control) 17.9691 1.7372  556 17.631 0.1879 17.63  

phy-2 (RNAi) 20.8526 1.9487 3 132 21.030 0.3997 21.03 0.01154 

vector (control) 20.5868 0.9697  117 20.513 0.3979 20.51  

rhy-1 (ok1402) 23.0575 0.9883 6 915 22.893 0.1824 22.89 2.53E-09 

N2 (control) 27.8723 1.1852  825 27.202 0.2115 27.20  

rol-6 (e187) 25.7377 1.5856 3 427 25.339 0.3120 26.00 1.06E-05 

N2 (control) 27.0531 0.5635  415 27.145 0.2646 28.00  

rpl-6 (RNAi) 21.0707 0.7266 8 756 21.247 0.1516 21.24 0.315851 



 103 

vector (control) 22.3337 1.0605  521 21.904 0.2026 21.90  

rpl-9 (RNAi) 20.2547 0.3132 4 551 20.157 0.1832 20.15 0.3104 

vector (control) 21.3416 0.9052  480 20.856 0.2016 20.86  

rpl-22 (RNAi) 21.0665 0.4999 5 583 20.842 0.1714 20.84 0.014073 

vector (control) 20.2764 0.4532  589 20.545 0.1737 20.54  

rsks-1 (ok1255) 26.2212 2.1121 2 206 26.077 0.3738 26.07 2.98E-11 

N2 (control) 25.7932 2.3869  257 26.397 0.3421 26.40  

sir-2.1 (ok434) 24.9069 0.9283 8 923 25.109 0.1583 26.00 5.4E-36 

N2 (control) 26.8938 1.2386  1098 27.287 0.1961 28.00  

Skn-1 OE (ldIs7) 26.9298 0.0560 3 430 26.925 0.2554 26.92 2.74E-06 

rol-6 (control) 25.7377 1.5857  427 25.340 0.3120 25.34  

Skn-1 OE (ldIs7) 25.6626 0.8889 11 1837 25.978 0.1422 25.97 2.42E-05 

N2 (control) 26.5888 1.0349  1448 27.054 0.1635 27.05  

skn-1 (zu67);  
eu-1 

24.8495 1.5813 7 963 24.689 0.2004 23.00 7.86E-05 

N2 (control) 25.0290 1.5262  993 24.863 0.1873 24.00  

skn-1 (zu135);  
eu-31 

21.4625 1.6786 6 767 22.166 0.2009 22.16 3.81E-27 

N2 (control) 24.5876 1.4989  953 25.163 0.1939 25.16  

trpa-1 (ok999) 26.9034 0.1034 2 278 26.906 0.3624 28.00 0.535441 

N2 (control) 26.4896 0.0046  254 26.488 0.3453 26.00  

tyr-2 (ok1363) 22.4808 1.1152 3 379 22.153 0.2141 23.00 4.81E-07 

N2 (control) 24.8820 1.6077  440 24.450 0.2421 23.00  

vhl-1 (ok161) 30.8891 0.7414 28 2931 29.946 0.1198 29.94 9.48E-24 

N2 (control) 23.8943 0.5298  2837 24.015 0.1082 24.01  

  25oC              

Genotype/ 
Treatment 

Averaged 
Mean 

Exp. 
Error 

Rep n Total 
Mean 

Total 
Error 

Total 
Median 

p-value (N2 
comparison) 

aak-1 (tm1944) 14.4258 0.5179 2 330 14.466 0.1801 14.00 2.51E-06 

N2 (control) 15.8656 0.6957  308 15.870 0.1852 16.00  

aak-2 (ok524) 14.6095 0.7878 2 280 14.671 0.1394 14.00 0.000138 

N2 (control) 15.8656 0.6957  308 15.870 0.1852 16.00  

atm-1 (gk186) 16.7794 0.9669 2 212 16.451 0.2943 16.00 0.147462 
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N2 (control) 15.8656 0.6957  308 15.870 0.1852 16.00  

atp-3 (RNAi) 15.3811 0.9662 4 644 15.184 0.1381 15.18 0.019101 

vector (control) 14.2439 1.0018  721 14.311 0.1041 14.31  

Dietary 
Restriction (DR) 

22.0954 1.4969 2 294 22.197 0.3600 22.19 1.31E-29 

Fed (control) 15.8656 0.6957  308 15.870 0.1852 15.87  

10mM caffeine 17.3554 3.7614 2 178 16.848 0.3876 16.84 1.07E-08 

Water (control) 19.3120 2.9787  170 19.347 0.3769 19.35  

cah-4 (RNAi) 14.4023 0.0750 2 320 14.400 0.1173 14.40 0.000748 

vector (control) 15.1763 0.0375  289 15.176 0.1516 15.18  

cco-1 (RNAi) 15.4544 0.7142 4 566 15.286 0.1641 15.28 0.001286 

vector (control) 13.4137 0.8896  638 13.806 0.1073 13.81  

cep-1 (gk138) 17.1625 1.5704 3 453 16.966 0.1859 17.00 0.746163 

N2 (control) 16.4714 0.7269  450 16.442 0.1499 17.00  

clk-1 (RNAi) 13.5173 1.2627 5 702 13.377 0.1334 13.37 0.057545 

vector (control) 13.9054 0.8466  779 14.180 0.0989 14.18  

cyc-1 (RNAi) 14.8101 0.8309 4 563 14.879 0.1586 14.87 0.108162 

vector (control) 13.4137 0.8896  638 13.806 0.1073 13.81  

daf-2 (e1370) 35.3257 1.8097 2 312 35.314 0.4163 35.00 2.2E-50 

N2 (control) 21.9517 0.9225  296 22.020 0.1843 22.00  

daf-2 (RNAi) 26.6356 0.8765 3 240 25.895 0.4534 25.89 3.31E-42 

vector (control) 14.8038 0.3731  306 15.114 0.1487 15.11  

daf-16 (mu86) 15.3958 0.5247 4 315 15.200 0.1275 15.00 5.79E-16 

N2 (control) 18.5590 0.5685  277 18.553 0.2077 18.00  

egl-9 (n571) 17.6966 1.1717 4 408 17.223 0.1876 17.00 0.755425 

N2 (control) 18.1461 1.2199  576 17.866 0.1620 17.00  

egl-9 (RNAi) 16.5142 0.5918 4 276 16.174 0.1305 16.17 0.00043 

vector (control) 16.0013 0.7256  380 15.632 0.1344 15.63  

egl-9 (sa307) 19.4073 0.5058 4 572 19.141 0.1780 19.00 3.12E-08 

N2 (control) 18.1461 1.2199  756 17.866 0.1620 17.00  

F28B4.5 (RNAi) 15.0611 0.1732 3 337 14.997 0.1408 14.99 0.144644 

vector (control) 15.2795 0.1054  324 15.210 0.1414 15.21  

fmo-2 (RNAi) 15.6366 0.0942 6 784 15.623 0.0920 15.62 0.213267 
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vector (control) 15.9761 0.2896  804 15.978 0.1066 15.98  

fmo-2 (ok2147) 21.3042 0.1282 2 162 21.234 0.2319 21.00 0.007665 

N2 (control) 20.6394 0.4763  288 20.649 0.1887 21.00  

gpa-9 (pk438) 21.0839 1.0306 2 307 21.107 0.2855 21.00 8.59E-07 

N2 (control) 18.4969 0.4908  326 18.497 0.2263 17.00  

hif-1 (ia07) 18.0929 0.2007 2 327 18.088 0.2209 18.08 3.18E-12 

N2 (control) 15.8656 0.6957  308 15.870 0.1852 15.87  

hif-1 (ia04) 20.6809 0.2961 11 2306 21.087 0.0835 21.08 9.31E-15 

N2 (control) 17.8533 0.3608  2123 18.646 0.0754 18.65  

hif-1 (RNAi) 16.4999 1.1129 8 1072 16.039 0.1280 16.03 0.874266 

vector (control) 15.7604 0.6042  1073 15.286 0.1095 15.29  

hypoxia (.5%) 20.8026 0.3776 3 622 20.871 0.1308 21.00 3.69E-06 

normoxia (21%) 18.8602 0.5945  545 18.989 0.1239 18.00  

inx-2 (ok376) 21.2884 0.7115 2 171 21.350 0.2746 22.00 0.036735 

N2 (control) 20.6394 0.4763  288 20.649 0.1887 21.00  

lys-8 (ok3504) 21.2879 1.7977 2 233 20.618 0.3191 21.00 4.11E-05 

N2 (control) 18.4969 0.4908  326 18.497 0.2263 17.00  

nuo-2 (RNAi) 15.4186 1.6212 2 700 15.865 0.1728 15.86 4.57E-09 

vector (control) 13.9054 0.8466  779 14.180 0.0989 14.18  

phy-2 (RNAi) 16.8561 1.6532 2 121 16.639 0.2463 16.63 0.57281 

vector (control) 16.8262 1.3405  89 17.112 0.2285 17.11  

rhy-1 (ok1402) 14.6166 0.8027 5 980 14.070 0.1037 14.07 1.02E-56 

N2 (control) 17.0406 0.6622  839 17.039 0.1242 17.04  

rol-6 (e187) 33.2982 1.3944 5 679 33.838 0.2750 34.00 0.004824 

N2 (control) 17.5917 0.7663  771 17.578 0.1393 17.00  

rpl-6 (RNAi) 18.2221 0.2895 4 461 18.199 0.1658 18.19 0.003761 

vector (control) 15.6325 0.5989  405 16.054 0.1924 16.05  

rpl-9 (RNAi) 16.6971 0.6527 3 391 16.304 0.1345 16.30 0.003597 

vector (control) 14.8038 0.3731  306 15.114 0.1487 15.11  

rpl-22 (RNAi) 15.5370 0.4171 3 281 15.561 0.1428 15.56 0.07451 

vector (control) 15.6867 0.5108  521 15.731 0.1637 15.73  

rsks-1 (ok1255) 21.8313 1.4795 4 574 20.588 0.1868 20.58 2.03E-12 

N2 (control) 17.6969 0.5400  646 17.704 0.1442 17.70  
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sir-2.1 (ok434) 16.8612 0.8868 4 647 16.589 0.1439 16.00 5.63E-11 

N2 (control) 16.3812 0.4554  628 16.393 0.1259 16.00  

Skn-1 OE (ldIs7) 14.7445 0.9253 3 402 14.380 0.1186 14.38 0.139615 

rol-6 (control) 15.3006 1.1411  383 15.504 0.1581 15.50  

Skn-1 OE (ldIs7) 14.7445 0.9253 3 402 14.380 0.1186 14.38 6.98E-08 

N2 (control) 16.9883 1.1923  445 16.906 0.1687 16.91  

skn-1 (zu67);  
eu-1 

16.2139 0.8022 3 502 16.069 0.1439 16.00 0.806487 

N2 (control) 16.9883 1.1923  445 16.906 0.1687 17.00  

skn-1 (zu135);  
eu-31 

18.2702 0.5827 2 316 18.439 0.1784 18.43 6.25E-05 

N2 (control) 18.3412 0.8924  264 18.375 0.1940 18.38  

trpa-1 (ok999) 21.4479 0.3597 2 172 21.523 0.3710 21.00 2.12E-05 

N2 (control) 18.4969 0.4908  326 18.497 0.2263 17.00  

tyr-2 (ok1363) 18.7894 1.4156 2 138 18.173 0.3258 17.00 0.084695 

N2 (control) 18.4969 0.4908  326 18.497 0.2263 17.00  

vhl-1 (ok161) 23.5363 0.5355 22 1737 23.667 0.1172 23.66 1.11E-23 

N2 (control) 18.3044 0.4195  1901 18.567 0.0930 18.57  
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Table 3.3. Hazard Ratio calculations for Figure 3.6C-D, Figure 3.8. 
Condition Hazard 

ratio 
Standard Error p-value 95% confidence interval 

aak-2 1.883359 0.254816 4.68 <0.001 1.444663 2.455272 

atm-1 2.423418 0.310277 6.91 <0.001 1.885587 3.114656 

Dietary 

Restriction 
(DR) 

4.271351 0.479679 12.93 <0.001 3.427473 5.323001 

daf-2 2.628244 0.313828 8.09 <0.001 2.079826 3.32127 

gpa-9 2.013283 0.23811 5.92 <0.001 1.596738 2.538494 

rsks-1 2.961879 0.327957 9.81 <0.001 2.384061 3.679742 

hif-1 ia4 2.005512 0.084294 16.56 <0.001 1.84692 2.177721 

hif-1 ia7 1.405371 0.154761 3.09 0.002 1.132545 1.74392 

trpa-1 1.439773 0.188655 2.78 0.005 1.113679 1.86135 

cep-1 0.685007 0.07829 -3.31 0.001 0.547533 0.856998 

daf-16 0.39232 0.039225 -9.36 <0.001 0.322505 0.477249 

egl-

9(n571) 

0.416451 0.037096 -9.83 <0.001 0.349737 0.495891 

Caffeine 0.359499 0.043363 -8.48 <0.001 0.283808 0.455375 

vhl-1 0.726289 0.034123 -6.81 <0.001 0.662396 0.796345 

rol-6 0.463335 0.036049 -9.89 <0.001 0.397804 0.539661 

SKN-1 OX 0.185997 0.017197 -

18.19 

<0.001 0.155168 0.222951 

SKN-1 Oxb 0.394067 0.037374 -9.82 <0.001 0.327221 0.474568 

inx-2 0.678473 0.082781 -3.18 0.001 0.534168 0.861763 

rhy-1 0.571705 0.04146 -7.71 <0.001 0.495955 0.659023 

fmo-2 1.011335 0.139118 0.08 0.935 0.772334 1.324296 

egl-
9(sa307) 

0.863113 0.07188 -1.77 0.077 0.733127 1.016145 

aak-1 0.868319 0.099977 -1.23 0.22 0.692904 1.088141 

Hypoxia 
(0.5% O2) 

0.904899 0.088328 -1.02 0.306 0.747333 1.095687 
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FMO-2 OX 0.933723 0.087696 -0.73 0.465 0.776735 1.122441 

tyr-2 0.978058 0.119694 -0.18 0.856 0.769476 1.243181 

skn-1 

zu135 

1.1333 0.148722 0.95 0.34 0.87628 1.465706 

skn-1 zu67 1.109203 0.104894 1.1 0.273 0.921543 1.335079 

sir2.1 1.01132 0.093278 0.12 0.903 0.84407 1.211709 

lys-8 1.147747 0.151666 1.04 0.297 0.885863 1.487053 

RNAi Hazard 

ratio 

Standard Error p-value 95% confidence interval 

daf-2 2.464961 0.342478 6.49 <0.001 1.877351 3.236492 

cco-1 1.469224 0.135519 4.17 <0.001 1.226237 1.760361 

rpl-9 2.84442 0.314401 9.46 <0.001 2.290383 3.532477 

rpl-6 1.851258 0.15362 7.42 <0.001 1.573379 2.178215 

nuo-2 2.318233 0.226252 8.62 <0.001 1.91462 2.80693 

hif-1 1.517506 0.092637 6.83 <0.001 1.346382 1.710381 

cah-4 0.639755 0.069733 -4.1 <0.001 0.516695 0.792125 

clk-1 0.770578 0.069769 -2.88 0.004 0.645279 0.920206 

egl-9 0.35076 0.041811 -8.79 <0.001 0.27768 0.443073 

phy-2 0.549394 0.086731 -3.79 <0.001 0.403189 0.748617 

atp-3 0.928429 0.086832 -0.79 0.427 0.772929 1.115213 

cyc-1 1.167516 0.110711 1.63 0.102 0.969498 1.40598 

F28B5.4 0.949464 0.099172 -0.5 0.62 0.773695 1.165163 

fmo-2 0.954942 0.075838 -0.58 0.562 0.817292 1.115775 
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CHAPTER 4 

Using Bioinformatic Tools to Cultivate New Hypotheses 

Foreword 
The data for this chapter encompasses two independent projects that rely on “omics” 

exploratory analyses. Since the advent of microarray studies in the 1990s (218), 

bioinformatic analyses of large datasets have played an integral role in advancing our 

understanding of the complex relationship between genotypes and phenotypes. By 

employing computer programming and statistical principles to a pleiotropic phenomenon 

like aging, we can assess similarities and differences amongst pro-longevity conditions 

in order to uncover the causative changes promoting healthy aging. Using whole-animal 

transcriptomic profiling (RNA-seq) we developed testable hypotheses to enhance our 

understanding of fmo-2 activation (project 1) and activity (project 2).   

 

My role on project 1, as the second author, was to analyze the RNA-seq data, prepare 

the plots, and provide my interpretation. The data and written portion included here is an 

excerpt from a published manuscript3. Project 2 is an unpublished story exploring the 

potential role of an understudied family of proteases that are down-regulated during DR 

and FMO-2 OE. Drs. Scott Lesier and Jason Pitt prepared the RNA-seq samples at the 

University of Washington I analyzed in both projects. Abrielle Fretz, a master’s student 

turned research technician in the Leiser lab, played an important role in project 2 

performing lifespans and imaging experiments throughout the course of this project. 

3. Information included here was originally published in Geroscience (2020 May 42; 1621–

1633) with authors listed as Kruempel, J.K., Miller, H.A., Schaller, M.L., Fretz, A., 

Howington, M., Sarker, M., Huang, S., and Leiser, S.F.  
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Hypoxic response regulators RHY-1 and EGL-9/PHD promote 
longevity through a VHL-1-independent transcriptional response 

Abstract 
HIF-1-mediated adaptation to changes in oxygen availability is a critical aspect of 

healthy physiology.  HIF is regulated by a conserved mechanism whereby EGLN/PHD 

family members hydroxylate HIF in an oxygen-dependent manner, targeting it for 

ubiquitination by Von-Hippel-Lindau (VHL) family members, leading to its proteasomal 

degradation.  The activity of the only C. elegans PHD family member, EGL-9, is also 

regulated by a hydrogen sulfide sensing cysteine-synthetase-like protein, CYSL-1, 

which is, in turn, regulated by RHY-1/acyltransferase. Over the last decade multiple 

seminal studies have established a role for the hypoxic response in regulating longevity, 

with mutations in vhl-1 substantially extending C. elegans lifespan through a HIF-1-

dependent mechanism. However, studies on other components of the hypoxic signaling 

pathway that similarly stabilize HIF-1 have shown more mixed results, suggesting that 

mutations in egl-9 and rhy-1 frequently fail to extend lifespan.  Here, we show that egl-9 

and rhy-1 mutants suppress the long-lived phenotype of vhl-1 mutants.  We also show 

that RNAi of rhy-1 extends lifespan of wild-type worms while decreasing lifespan of vhl-

1 mutant worms.  We further identify VHL-1-independent gene expression changes 

mediated by EGL-9 and RHY-1 and find that a subset of these genes contributes to 

longevity regulation.  The resulting data suggest that changes in HIF-1 activity derived 

by interactions with EGL-9 likely contribute greatly to its role in regulation of longevity. 

Introduction 
Adaptation to changes in oxygen availability is a central requirement for aerobic life.  In 

response to hypoxia, reduced oxygen-dependent hydroxylation of Hypoxia Inducible 

Factor α (HIFα) transcription factors by members of the EGLN/Proline-Hydroxylase 

(PHD) family triggers stabilization of HIFα proteins and activation of a transcriptional 

stress response that promotes survival (219). This hypoxic response plays critical roles 

in a variety of pathological conditions including inflammation and cancer (220-222).  

Constitutive stabilization of the sole C. elegans HIFα family member, HIF-1, by deletion 
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of the Von-Hippel-Lindau ubiquitin ligase, VHL-1, which ubiquitinates HIF-1 and targets 

it for degradation, results in HIF-1-dependent increases in stress response and 

longevity (223-229).    

 

Genetic studies in C. elegans have identified additional players in the hypoxic signaling 

pathway. Activity of EGL-9, the only known C. elegans PHD family member, is inhibited 

by direct interaction with the H2S sensing cysteine-synthetase family member CYSL-1 

(230).   CYSL-1 protein levels are in turn reduced through an unknown mechanism by 

Regulator of Hypoxia-inducible factor-1 (RHY-1), an ER transmembrane protein with 

predicted acyltransferase activity (230, 231).  Predicted loss-of-function mutations in 

rhy-1 stabilize HIF-1 and produce expression patterns of HIF-1 target genes that are 

consistent with reduced EGL-9 activity (231).   

 

Interestingly, while vhl-1 mutation extends C. elegans lifespan across culture conditions, 

the role of EGL-9/PHD is more context dependent.  While egl-9(RNAi) extends lifespan 

at 20°C, the lifespan phenotypes of partial loss-of-function mutations in egl-9 are 

temperature-dependent, extending lifespan in a HIF-1- dependent manner at low 

temperatures (15°C) but not at higher temperatures (20°C and 25°C) (225, 226, 232, 

233).  The loss-of-function mutant egl-9(sa307) also reduces the lifespan of dietary 

restricted animals and long-lived rsks-1 mutants when animals are cultured at 25°C, 

suggesting that EGL-9 activity may promote lifespan in multiple contexts (234).  

Furthermore, recent work from our lab showed that rhy-1 putative knockout mutants 

were not long-lived at any temperature, despite their reported robust activation of 

hypoxic response genes (231, 233).   

 

Previous studies on the roles of EGL-9, RHY-1, and VHL-1 show that 1) HIF-1 

stabilization when vhl-1 is mutated leads to robust induction of egl-9 and rhy-1, 2) EGL-

9 and RHY-1 have VHL-1-independent effects on transcription of some hypoxic 

response genes, and 3) EGL-9 and RHY-1 play a VHL-1-independent role in pathogen 

and hydrogen sulfide resistance (231, 235-239).  However, the possibility that EGL-9 

and RHY-1 modulate longevity through a downstream, VHL-1-independent 
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transcriptional response has not been addressed.  Here we present a genetic study 

demonstrating that EGL-9 and RHY-1 are necessary for lifespan extension when HIF-1 

is stabilized by vhl-1 mutation.  We show that, like EGL-9, RHY-1 has both longevity 

promoting and inhibiting activities.  We further identify genes that are oppositely 

regulated in vhl-1 and egl-9 or rhy-1 mutants, suggesting that RHY-1 and EGL-9 

promote a VHL-1-independent transcriptional response when HIF-1 is stabilized by vhl-

1 mutation.  Lastly, we find that RNAi knockdown of four genes downregulated in vhl-

1(ok161) mutants and upregulated in egl-9(sa307) mutants, with likely functions in 

innate immunity, each partially rescues lifespan extension in egl-9(sa307);vhl-1(ok161) 

mutants.  Together, our results suggest that EGL-9 modulates lifespan by regulating a 

VHL-1-independent transcriptional program.   
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RHY-1 and EGL-9 control a VHL-1-independent transcriptional response.   
Previous studies reported that egl-9 causes vhl-1-independent changes in expression of 

some transcripts (231, 235, 236).  We hypothesized that the dominance of the egl-

9(sa307) and rhy-1(ok1402) lifespan phenotypes over the vhl-1(ok161) lifespan 

phenotype might be caused by genes whose transcription is regulated by EGL-9 or 

RHY-1.  Concurrently with our work, Angeles et al. published an analysis of 

transcriptome profiles from rhy-1(ok1402), egl-9(sa307), hif-1(ia4), egl-9;hif-1, and egl-

9;vhl-1 mutants.  They identified a class of genes whose transcription is regulated by 

EGL-9 in a way that is distinct from, and dominant over, their regulation by VHL-1. We 

will refer to this class as EGL-9/VHL-1 antagonistic genes. 

 

To identify genes that might modulate lifespan downstream of the hypoxic response, we 

had previously profiled the transcriptomes of egl-9(sa307), vhl-1(ok161), rhy-1(ok402), 

and hif-1(ia4) mutants.  We reanalyzed our data using the methodology that Angeles et 

al. reported and an up-to-date bioinformatic pipeline (240-242). Our datasets identified a 

subset of genes that were differentially expressed in the HIF-1 negative regulator 

mutants relative to wild-type, further confirming that these changes are implicated in the 

hypoxic response, (Figure 4.1A).  Conversely, we observed low overlap between the 

datasets for genes differentially expressed in the hif-1(ia4) background, suggesting that 

differences between hif-1(ia4) and wild-type in individual datasets may largely reflect 

strain-specific effects rather than HIF-1-dependent transcription under normoxia (Figure 
4.1B). 
 

We next plotted β coefficients of differentially expressed genes shared between vhl-

1(ok161) and egl-9(sa307) in Leiser and Sternberg datasets (Figure 4.1C).  Both 

datasets produce a similar pattern, with egl-9(sa307), and vhl-1(ok161) causing highly 

correlated changes in expression for most shared differentially expressed genes. Both 

datasets also contained EGL-9/VHL-1 antagonistic genes, which were either 

upregulated in vhl-1(ok161) and downregulated in egl-9(sa307) (Figure 4.1C, quadrant 

II), or upregulated in egl-9(sa307) or rhy-1(ok1402) and downregulated in vhl-1(ok161) 

(Figure 4.1C, quadrant IV).  The genes in quadrants II and IV, that we hypothesized 
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could play a role in different outcomes between vhl-1(ok161) and egl-9(sa307) or rhy-

1(ok1402) strains, are listed in Table 4.1.  Together, our and the Sternberg lab’s results 

show that HIF-1 stabilization through loss of its negative regulators has both many 

common effects and a smaller number of opposing effects depending on which negative 

regulator is mutated.  
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Figure 4.1. A subset of genes are antagonistically regulated by egl-9 and vhl-1. 
A) Overlap between genes that are differentially expressed in both Leiser and Sternberg 
datasets for vhl-1(ok161) and egl-9(sa307) along with differentially expressed genes 
from Sternberg rhy-1(ok1402). B) Overlap between differentially expressed genes in hif-
1(ia4) in Leiser and Sternberg datasets.  C) Correlation of expression levels of 
differentially expressed genes in egl-9(sa307) and vhl-1(ok161) in Leiser and Sternberg 
datasets.  
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Table 4.1. Core hypoxic response genes. 
List of 38 genes that were differentially regulated in rhy-1(ok1402) (Sternberg only), egl-
9(sa307) and vhl-1(ok161) mutants in both Leiser and Sternberg RNA-seq datasets.    
  

ORF Gene Description 
K08C7.5 fmo-2 FMO5 (flavin containing dimethylaniline monoxygenase 5) ortholog 
T05B4.2 nhr-57 nuclear hormone receptor family transcription factor 
C14C6.5 C14C6.5 predicted role in innate immune response 
F22D6.10 col-60 collagen structural protein in cuticle 
F26H9.5 F26H9.5 PSAT1 (phosphoserine aminotransferase 1) ortholog 
C08E8.3 C08E8.3 unknown function 
K06A4.7 K06A4.7 unknown function 
F15B9.1 far-3 fatty acid binding protein  
F38B2.4 F38B2.4 AK1 (adenylate kinase 1) ortholog 
Y37A1B.5 Y37A1B.5 SELENBP1 (selenium binding protein 1) ortholog 
F38A3.2 ram-2 structural protein in cuticle 
F28F8.2 acs-2 ACSF2 (acyl-CoA synthetase family member 2) ortholog 
F08G5.4 col-130 collagen structural protein in cuticle 
T10D4.13 ins-19 predicted insulin protein 
C31C9.2 C31C9.2 PHGDH (phosphoglycerate dehydrogenase) ortholog 
F22B5.4 F22B5.4 unknown function 
F10D2.9 fat-7 SCD5 (stearoyl-CoA desaturase 5) ortholog 
R08E5.3 R08E5.3 methyltransferase orthologs 
Y22F5A.4 lys-1 lysozyme activity, predicted role in innate immune response 
C05E7.1 C05E7.1 unknown function 
Y58A7A.1 Y58A7A.1 SLC31A1 (solute carrier family 31 member 1) ortholog 
M05D6.6 taap-1 FAM162A/B (family with sequence similarity 162 member A/B) ortholog 
W07A12.7 rhy-1 Negative regulator of HIF-1 
M199.4 clec-190 C-type lectin predicted to have carbohydrate binding activity 
B0222.6 col-144 collagen structural protein in cuticle 

M05D6.5 M05D6.5 
HIGD2A/B (HIG1 hypoxia inducible domain family member 2A/B) 
ortholog 

F09A5.9 ttr-34 predicted transthyretin-like protein 
W07A12.6 oac-54 predicted amino-acyl transferase protein 
F02H6.5 sqrd-1 SQOR (sulfide quinone oxidoreductase) ortholog 
ZK637.13 glb-1 predicted role in heme/oxygen binding and carrying 
F54C9.4 col-38 collagen structural protein 
Y22F5A.5 lys-2 lysozyme activity, predicted role in innate immune response 
F37B1.8 gst-19 HPGDS (hematopoietic prostaglandin D synthase) ortholog 

T03F1.11 T03F1.11 
predicted for CIBs (calcium and integrin binding family member) 
ortholog 

VF13D12L.3 VF13D12L.3 predicted oxidoreductase protein 
C04G6.2 C04G6.2 unknown function 
K10B3.7 gpd-3 GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ortholog 
R02E4.3 R02E4.3 unknown function 
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Knockdown of EGL-9 target genes rescues lifespan of egl-9; vhl-1 mutants.   
We next tested the hypothesis that EGL-9/VHL-1 antagonistic genes regulate longevity.  

Previous results suggest that individual longevity-pathway-target-genes often have 

small effects on lifespan, and  longevity increases are more likely than longevity 

decreases to reflect modulation of the aging process as a whole (243).  Thus, we 

identified candidate EGL-9/VHL-1 antagonistic genes whose downregulation in vhl-

1(ok161) mutants was reversed in egl-9(sa307);vhl-1(ok161) mutants and determined 

whether RNAi targeting them could extend life lifespan of egl-9;vhl-1(ok161) mutants 

(Figure 4.2 A,C,E,G).    
 

EGL-9 and VHL-1 have distinct roles in pathogen resistance, with egl-9(sa307) mutants 

exhibiting HIF-1- dependent resistance to fast killing by Pseudomonas aeruginosa while 

vhl-1(ok161) mutants do not (237, 238).  We noticed that our list of EGL-9/VHL-1 

antagonistic genes contained several genes with reported or predicted roles in 

pathogen response, including nlp-31, which encodes five neuropeptide-like proteins with 

functions in defense against fungal pathogens and gram-negative pathogenic bacteria, 

lys-7, which encodes a lysozyme with a reported role in defense against gram-negative 

bacteria, lys-10, which encodes another lysozyme, and lips-10, which encodes an 

enzyme that, like lysozymes, has hydrolase activity  (244-247).  We found that 

treatment with lys-10(RNAi), lips-10(RNAi), lys-7(RNAi), and nlp-31(RNAi) each 

extended longevity of egl-9;vhl-1 mutants (Figure 4.2 B,D,F,H).  
 

We also tested treatment with RNAi targeting the ferritin genes, ftn-1 and ftn-2, 

predicted oxidative and heavy metal response genes that have been identified as EGL-

9/VHL-1 antagonistic genes in multiple studies (248, 249).  We found slight but 

significant increases in lifespan in egl-9(sa307);vhl-1(ok161) animals treated with ftn-

1(RNAi) and ftn-2(RNAi), however the magnitude of these changes was small and they 

were not consistent across individual replicates (significant in 2 of 4 trials) (Figure 4.3 

and Table 4.3).  These data are consistent with ferritins playing a minor role in 

modulation of lifespan by the hypoxic response.  
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Taken together, these results are consistent with a model in which EGL-9 activity 

promotes longevity during HIF-1 stabilization through VHL-1-independent inhibition of 

target genes, including multiple genes with predicted functions in defense against 

pathogens.   
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Figure 4.2. VHL-1/EGL-9 antagonistic HIF-1 targets rescue lifespan in egl-9;vhl-1 mutants. 
A, C, E, G) expression levels of selected transcripts from RNA-seq analyses.  B-D-F-H) 
Treatment with nlp-31(RNAi), lys-7(RNAi), lys-10(RNAi) and lips-10(RNAi) increases lifespan of 
egl-9(sa307);vhl-1(ok161) mutants (p<.05 by log-rank). Lifespan data are aggregated from at 
least three experiments, and are significant (p<.05 by log-rank with Bonferroni correction) in at 
least 3 of 5 individual trials (Table 4.S1). 
  



 120 

 

 
Figure 4.3. Effects of additional VHL-1/EGL-9 antagonistic HIF-1 targets on lifespan. 
A, C) expression levels of selected transcripts from RNA-seq analyses.  B-D) Treatment with 
ftn-1(RNAi), and ftn-2(RNAi) increases lifespan of egl-9(sa307);vhl-1(ok161) mutants (p<.05 by 
log-rank). Lifespan data are aggregated from at least three experiments, and are significant 
(p<.05 by log-rank with Bonferroni correction) in 2 out of 4 individual trials (Table 4.3). 
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Discussion 
Collectively, our results show that, while reduction in RHY-1 and EGL-9 activity can 

increase lifespan via the hypoxic response, RHY-1 and EGL-9 activity also promote 

longevity downstream of HIF-1 stabilization by vhl-1 mutation. We further demonstrate 

that RHY-1 and EGL-9 activity are required to control the direction of differential 

expression of numerous transcripts in vhl-1 mutants and that EGL-9-dependent 

suppression of nlp-31, lys-7, lys-10, and lips-10 promotes longevity in vhl-1 mutants.   

   

Genetic interactions of vhl-1, egl-9, and rhy-1. 

While HIF has emerged as a key regulator of longevity, it was previously unknown how 

hypoxic signaling pathway components interact to influence longevity.  HIF-1 

hydroxylation is required for its interaction with VHL-1, so in theory we might expect egl-

9 mutant phenotypes to be epistatic to vhl-1 mutant phenotypes. However, reports that 

1) EGL-9 and RHY-1 have VHL-1-independent roles in the expression and tissue 

distribution of hypoxic response genes, 2) EGL-9 interacts with other proteins through 

proline-hydroxylase-activity-dependent and -independent mechanisms to influence 

phenotype, and 3) EGL-9 and RHY-1 are transcriptionally upregulated when HIF-1 is 

stabilized, make these phenotypic interactions difficult to predict (231, 235-238).  

 

We found that rhy-1(ok1402) blocked lifespan extension by vhl-1(RNAi) and vhl-

1(ok161), while egl-9(sa307) blocked lifespan extension by vhl-1(RNAi) and partially 

blocked lifespan extension by vhl-1(ok161).  While these results are broadly consistent 

with a model where RHY-1 regulates lifespan through its known EGL-9 modulating 

activity, it is interesting that rhy-1 mutation has a stronger effect on the longevity of vhl-

1(ok161) mutants than the egl-9(sa307) mutation.  This could be explained by the 

reportedly more robust HIF-1 stabilization and upregulation of pro-longevity HIF-1 target 

genes in egl-9(sa307) relative to rhy-1(ok1402), or by an additional, HIF-1-independent 

role for RHY-1 in longevity determination (231).  

 

We confirmed the surprising, previously reported, result that the rhy-1(ok1402) mutation 

does not extend lifespan, despite stabilizing HIF-1.  However, interestingly, rhy-1(RNAi) 
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extends lifespan through a mechanism that is partially dependent on its established 

interactions with CYSL-1 and HIF-1.  While off-target effects of RNAi are a concern 

when mutant and RNAi phenotypes differ, the observation that the rhy-1(RNAi)-

mediated lifespan increase is fully abrogated in a rhy-1(ok1402) mutant background 

strongly suggests that modulation of RHY-1 is the primary factor influencing lifespan in 

this context. It is worth noting that, while cysl-1(ok762) and hif-1(ia4) mutations reduce 

the longevity promoting effect of rhy-1(RNAi), neither completely abrogates it.  This 

suggests that RHY-1 may have secondary, HIF-1-independent roles that influence 

longevity.  Published reports showing that rhy-1;hif-1 compound mutants have a 

synthetic deleterious effect on fertility and that RHY-1 modulates hydrogen sulfide 

resistance in a HIF-1-independent manner also suggest interesting HIF-1-independent 

roles for RHY-1 (231, 239).     

 

A published mechanism explaining the interaction between RHY-1 and HIF-1 suggests 

that rhy-1 mutants should largely phenocopy egl-9 mutants (230).  While interpretation 

of egl-9 phenotypes is complicated by the lack of a viable egl-9 null mutant, published 

results do suggest that egl-9(n571), a point mutant that is predicted to affect splicing, 

and egl-9(RNAi) have more robust longevity promoting phenotypes than the strong loss-

of-function mutant, egl-9(sa307), a deletion in the EGL-9 catalytic domain (233, 236, 

250, 251). These results are consistent with EGL-9 also having longevity promoting and 

limiting functions, with the mutant phenotype depending on the severity of the loss in 

activity.  These data are consistent with a model in which EGL-9 and RHY-1 act in the 

same pathway to both limit wild-type longevity by destabilizing HIF-1 and increase 

longevity when HIF-1 is stabilized. 

 

VHL-1-independent EGL-9 targets modulate lifespan.   
Along with other groups, we identified a substantial subset of targets that are 

transcriptionally regulated in opposite directions by EGL-9 and VHL-1 (240, 248). This 

suggests that upregulation of EGL-9 and RHY-1 when HIF-1 is stabilized has 

substantial effects on the hypoxic transcriptome in addition to possible feedback 

regulation of HIF-1. Previous publications have established that EGL-9 has VHL-1-



 123 

independent activities that can increase or reduce resistance to various pathogens (237, 

238).  Here, we find that several RNAi clones targeting genes with reported or likely 

functions in innate immunity, nlp-31(RNAi), lys-7(RNAi), lys-10(RNAi), and lips-

10(RNAi), extend lifespan in egl-9(sa307);vhl-1(ok161) mutants, suggesting that EGL-9-

dependent downregulation of these genes promotes longevity in vhl-1(ok161) mutants. 

 

The mechanisms underlying VHL-1-independent transcriptional regulation by EGL-9 

have not been fully established. Previous studies report that egl-9(sa307) and hif-1(ia4) 

loss of function mutants cause transcriptional upregulation of the direct HIF-1 

transcriptional target ftn-1, while vhl-1 loss of function mutants and overexpression of 

non-hydroxylatable HIF-1 (P621A) suppress ftn-1 expression (248, 249). These results 

are consistent with a model in which binding of hydroxylated and non-hydroxylated HIF-

1 may have opposite effects on the ftn-1 promoter region, with vhl-1(ok161) mutation 

causing increases in hydroxylated HIF-1 while hif-1(ia4) and egl-9(sa307) mutation both 

eliminate hydroxylated HIF-1 (248, 249). A recent analysis from the Sternberg group 

showed expression patterns consistent with a role for hydroxylated HIF-1 in expression 

of a larger set of transcripts that are oppositely affected by VHL-1 and EGL-9 (240).  

 

Other reports suggest that EGL-9 may trigger VHL-1-independent transcriptional 

responses through more complex mechanisms. Multiple labs report that EGL-9 affects 

gene expression through mechanisms that are independent of its hydroxylation activity 

(236, 237).  One study suggests that EGL-9 represses HIF-1 activity through a 

mechanism that requires physical interaction between EGL-9/PHD and the WD repeat 

containing protein SWAN-1 (238).  EGL-9 might also affect gene expression via 

hydroxylation of substrates other than HIF-1, with one study indicating that LIN-10 is a 

target of EGL-9 hydroxylation (252).  Mechanistic biochemical studies to 1) identify 

EGL-9 hydroxylation targets and protein-protein interaction partners, and 2) establish 

whether hydroxylated and non-hydroxylated HIF-1 interact with distinct transcriptional 

complexes, will be needed to fully understand the complex biological function of EGL-

9/PHD.   
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Constitutive sterile activation of the innate immune response increases during 

mammalian aging and is a key driver of many age-related pathologies (253).  A trade-off 

between constitutive immune activation and longevity has also been established in 

Drosophila (254).   In C. elegans, immune-related signaling genes contribute to the 

longevity phenotypes of long-lived insulin signaling mutants; however, to our 

knowledge, this is the first evidence of antagonism between immune activation and non-

pathogen exposed survival in C. elegans (243).  Further mechanistic studies of the 

connection between pathogen resistance genes and accelerated aging-related 

phenotypes in tractable model systems may yield insights and interventions that can be 

translated to mammalian inflammatory aging pathologies.      

   

 
Figure 4.4. Epistatic model of lifespan regulation by VHL-1, RHY-1, and EGL-9. 
RHY-1 and EGL-9 act in the same pathway to inhibit HIF-1 activity through both VHL-1-
dependent and VHL-1-independent mechanisms. When HIF-1 is stabilized through loss of VHL-
1, expression of RHY-1 and EGL-9 is increased, driving reductions in expression of longevity 
reducing target genes including, NLP-31, LYS-7, LYS-10 and LIPS-10 through a HIF-dependent 
and VHL-1-independent mechanism.  Inhibition of EGL-9 activity causes upregulation of genes 
including NLP-31, LYS-7, LYS-10 and LIPS-10, inhibiting longevity.   
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A role for SCP-like extracellular proteins in C. elegans aging 

Abstract 
Metabolic adaptation to changes in food availability is a critical aspect of healthy 

physiology. Indeed, one consequence of dietary restriction (DR) in the laboratory is 

increased lifespan. In C. elegans, the physiological changes associated with increased 

lifespan rely on the induction of a xenobiotic enzyme, flavin-containing monooxygenase-

2 (fmo-2). Manipulating fmo-2 expression leads to systemic changes in metabolism, 

stress resistance and longevity, but how it does so remains unknown. Here, we use 

RNA-seq analyses on animals with elevated fmo-2 to find key downstream changes 

associated with fmo-2 induction and improved health and longevity. Our resulting data 

show that fmo-2 expression leads to down-regulation of three members of the SCP-like 

extracellular (scl) protein family. The function and expression patterns of these secreted 

proteins is largely unknown. However, studies show elevated expression during aging. 

Here we show knockdowns of subset of scl proteases, scl-3 and scl-5, significantly 

extend lifespan. Additionally, we find they are non-additive with FMO-2 OE and DR-

mediated longevity.  Upon further evaluation of the gene family, we find that scl genes 

frequently modify longevity and may represent an understudied gene family with an 

impact on the aging process. Similarly, the mammalian SCL homologs, CRISPs, are 

thought to play an integral role in embryogenesis but their function in adult animals is 

uncertain. Together, our results demonstrate the value of unbiased exploratory analyses 

to derive novel hypotheses and identify new regulators of the aging process. 

 

Introduction 
Flavin-containing monooxygenases (FMOs) are enzymes that play an important role in 

xenobiotic metabolism in the mammalian liver and nematode intestine. FMOs were first 

discovered by Ziegler’s group in 1972 in a sample of purified porcine liver microsomes 

as distinct but related activity from cytochrome p450s (CYPs) (255).  Ziegler and others 

showed that FMOs carry out the oxygenation of nucleophilic metabolites, commonly 

amines and sulfur groups, by utilizing electrons from NADPH and molecular oxygen and 

producing water as a byproduct (256).  
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Importantly, unlike CYPs, FMOs are self-priming and consequently can be extremely 

enzymatically active in the presence of a substrate, oxygen, and NADPH. Recent 

studies have implicated a novel role for FMOs in several endogenous processes outside 

xenobiotic metabolism. Trimethylamine N-oxide (TMAO), a byproduct of mammalian 

FMO3 activity, is linked to cardiovascular disease and atherosclerosis in both mice and 

humans, suggesting that FMO activity may be modified in response to disease states 

(257). Several publications also present compelling evidence that modifying FMO 

expression can cause dramatic changes in systemic metabolism (changes in resting 

energy expenditure) and stress (changes in liver stress levels) in mice, supporting a 

major role for FMOs in still unknown, endogenous processes (258-260). Compelling 

evidence also links FMOs to longevity. mFMO3 is upregulated in the liver of seven 

distinct long-lived mouse models (76). In C elegans, fmo-2 overexpression (OE) is 

sufficient to extend lifespan downstream of multiple longevity-promoting pathways (12). 

From these data it can be concluded manipulating FMOs expression leads to systemic 

changes in metabolism, stress resistance and longevity, but how FMOs induce these 

changes remains unknown.  

 

Our data presented in this study support a model where FMO-2 activity or dietary 

restriction (DR) downregulate two SCP-like extracellular (scl) proteases, scl-3 and scl-5, 

to causatively impact worm lifespan. We also find compelling information that these scls 

are secreted into the pharynx and intestinal lumen. Collectively, these data suggest 

complex metabolic rearrangement occurs, potentially by shunting amino acid 

availability, during times and conditions when FMO-2 activity is elevated. 
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RNA-seq analyses of two genetically distinct FMO-2 OE animals  
To address how FMOs improve healthy aging, we first analyzed the worm transcriptome 

by RNA-seq to investigate what changes occur when FMO-2 levels are elevated. By 

focusing first on transcriptional changes, we hoped to understand how the increased 

expression, and presumably activity, of a single enzyme, would result in feedback 

through downstream changes in gene expression. We also hypothesized that one or 

more of these transcriptional changes may be important for fmo-2-mediated longevity 

benefits. As previous studies show that fmo-2 is downstream of multiple longevity 

pathways (12, 261), each of which affects metabolism, we hypothesized that metabolic-

related genes may be affected by fmo-2 expression. 

 

Our resulting transcriptomic data show consistent and overlapping expression changes 

between multiple lines of fmo-2 overexpressing animals with some variability in 

overexpression (Figure 4.5A).  Using a stringent selection criteria (see materials and 

methods), we identified 143 genes differentially regulated by increased expression of 

fmo-2, including 25 genes that were identified in both strains, which we defined as 

consistent fmo-2 effected genes. Since fmo-2 is not a transcription factor, we expect 

that this concise list of genes represents genes whose expression is modified in 

response to the effects of FMO-2 enzymatic activity.  Focusing on the 25 genes 

common to both FMO-2 OE strains, we immediately noticed that 3 of the 25 genes 

(12%) modified by FMO-2 OE belong to the same family of genes, SCP-like 

extracellular proteins (SCLs). We also noticed that all three of these scl genes were 

similarly significantly down-regulated in fmo-2 over-expressor samples (Figure 4.5A-B). 

These cysteine-rich secretory protein (CRISP) homologs are a large family of proteins 

highly conserved from invertebrates to mammals. 26 genes have been classified as scls 

in nematodes (262) (Figure 4.5C), while mice possess 33 homologs and humans 30 

(263). Most mammalian CRISPs are highly expressed in reproductive organs (264), but 

CRISP3 and peptidase inhibitor 16 (PI16) transcripts are found in the prostate, 

pancreas, colon, and thymus (265-267) and have been found in over-abundant 

quantities in some age-related diseases. Serum collected from those suffering from 

chronic pancreatitis show elevated levels of CRISP3 and PI16 (268, 269). In a mouse 
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model of heart failure, PI16 is highly up-regulated, and a similar increase was observed 

in damaged human heart tissue (270). Similarly, CRISP3 has been found to be the most 

highly up-regulated protein, with a 21-fold over-expression, in cancerous prostate tissue 

compared with matched control tissue (271). Taken together, these data are supportive 

of SCL/CRISP proteins playing a larger, still unknown, role in organismal health outside 

of embryogenesis.  

 

 

Figure 4.5. Several differentially expressed genes are present in both FMO-2 OE 
transgenic lines. 
(A) Overlap between genes that are differentially expressed in two independent FMO-2 OE 
lines. (B) Summary table of shared DE genes and averaged fold-change (Gene IDs in green are 
up-regulated, red are down-regulated). (C) Cladogram of scl protein family made using 
phylogeny.fr (272). 
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Knockdown of scl-3 and scl-5 increases stress resistance and longevity. 
Data from tissue culture experiments and model organisms show longevity interventions 

share a positive correlation with increased stress resistance to a myriad of stressors 

(76, 187, 273, 274) . We therefore hypothesized that knockdown (KD) of scl-3, scl-5 

and/or scl-6 would lead to enhanced stress resistance and longevity if their knockdown 

was at least partially responsible for the FMO-2 OE longevity. Interestingly, our results 

do not perfectly follow these predicted trends. KD of all three scls increases survivability 

to high levels of the ROS producer paraquat (Figure 4.6A), whereas only scl-3 KD 

confers resistance to the heavy metal cadmium chloride (Figure 4.6B) and scl-5 and 

scl-6 KD to heat stress (Figure 4.6C). These data suggest the type of stress resistance 

may be separable depending on the function of these three predicted proteases. 

Similarly, we find that scl-3 and scl-5 KD each significantly increases lifespan (Figure 
4.6D-E) while scl-6 KD recapitulates wild-type lifespan on the vector control (Figure 
4.6F). Together, these findings suggest down-regulating scl activity can improve health 

and longevity outcomes.  

 

Using the MosSCI system, we created a stably expressed scl-5 transcriptional reporter 

(scl-5p::GFP) to confirm SCL expression patterns. Colocalization assays will reveal 

SCLs are expressed throughout the animal, but primarily in the pharynx and intestine 

(Figure 4.6G). SCL-3, SCL-5 and SCL-6 share the most sequence identity (>60%) 

between the 26 nematode SCL proteins, therefore it is plausible that they will also 

overlap in biological function and localization, but translational reporters will confirm or 

disprove this hypothesis. 
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Figure 4.6. Knockdown of scl-3 and scl-5 increases stress resistance and longevity. 
Short-term stress resistance assays comparing wild-type (N2) animals on vector (black), scl-3 
(green), scl-5 (red), and scl-6 (purple) RNAi exposed to 150mM paraquat (A), 150µM cadmium 
chloride (B) and 35°C heat stress (C). Survival curves of wild-type animals on vector (black), 
scl-3 (D), scl-5 (E), and scl-6 (F) RNAi. (G) scl-5p::GFP expression pattern points to release 
in the pharynx. Lifespan statistics can be found in Table 4.4. 
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Additional screening finds mixed results of scl knockdown effect on lifespan. 
We next wondered whether down-regulating other scls would results in increased 

lifespan. As previously stated, genomic annotation algorithms recognize 26 coding 

regions as members of the scl protein family. Due to the high level of conserved 

sequence identity and clustering on chromosome IV and V (Figure 4.5C), it is likely 

these genes arose from duplication events (275) bolstering the likelihood that this family 

of proteins could produce similar effects as we see with scl-3 and scl-5.  

 

To better understand the interplay between scl KD and longevity, we measured the 

lifespans of worms on 15 of the 26 scl ORFS that are present in the Vidal RNAi library 

(Table 5.2, Figure 4.7). Figure 4.8 illustrates four examples of how longevity can be 

impacted representing conditions that: 

• robustly increase median and maximum lifespan (scl-9 RNAi) 

• robust increase maximum lifespan (scl-14 RNAi) 

• robustly decrease median and maximum lifespan (scl-19 RNAi)  

• do not alter lifespan at any temperature (scl-17 RNAi)  
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Figure 4.7. Additional scl knockdown replicates. 
Survival curves of wild-type animals on vector (black), scl-8 (A), scl-10 (B), scl-11 (C), scl-13 
(D), scl-16 (E), scl-20 (F), scl-21 (G), and scl-25 (H) RNAi. Lifespan statistics can be found in 
Table 4.4.  
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Figure 4.8. Example effects of scl knockdown on lifespan. 
Survival curves of wild-type animals on vector (black), scl-9 (A), scl-14 (B), scl-17 (C), and scl-
19 (D) RNAi. Lifespan statistics can be found in Table 4.4. 
 

 
RNAi % change 

Increased  
median LS 

scl-3 
scl-5 
scl-8 
scl-9 
scl-20 

+ 25% 
+ 20% 
+ 10% 
+ 20% 
+ 10% 

Increased  
maximum LS 

scl-10 
scl-14 

+ 20% 
+ 50% 

Decreased  
median LS 

scl-11 
scl-19 
scl-25 

- 10% 
- 10% 
-   5% 

Comparable LS scl-13 
scl-16 
scl-17 
scl-21 

N.S. 
N.S. 
N.S. 
N.S. 

Untested scl-1 
scl-2 
scl-7 
scl-12 
scl-15 
scl-18 
scl-23 
scl-27 

- 
- 
- 
- 
- 
- 
- 
- 

Table 4.2. Lifespan summary statistics.  
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scl-3 and scl-5 act downstream of DR-mediated fmo-2 induction. 
Finding only a handful of scls that extend lifespan when knocked down, we next asked 

which, if any, act downstream of DR- and FMO-2-mediated longevity. To test these two 

questions, we subjected WT and FMO-2 OE animals to RNAi of the pro-longevity scls in 

both fed conditions and in combination with DR. Strikingly, we find only scl-3 and scl-5 

KD extend lifespan in a DR-dependent manner (Figure 4.9A-B) while scl-9 and scl-20 

KD extend lifespan in a DR-independent manner (Figure 4.9C-D). Knockdown of scl-6 

recapitulates the effects of WT animals on DR (Figure 4.10A) and scl-8 KD 

synergistically enhances DR-mediated longevity (Figure 4.10B). These findings suggest 

the differential expression analyses from our RNA-seq studies correctly identified a 

relationship between the pro-longevity effects of scl-3 and scl-5 KD. 

 

Since scl-3 and scl-5 KD acts downstream of DR-mediated longevity, we hypothesized 

their knockdown will not further extend FMO-2 OE. Congruent with this hypothesis, we 

find scl-3 and scl-5 KD confers no additional benefit for FMO-2 OE longevity (Figure 
4.9E-F) while scl-9 and scl-11 KD abrogate its longevity phenotype (Figure 4.9G-H).  

While it is critical to validate these results, they suggest that scl-9 and scl-11 activity are 

required for the fmo-2 longevity phenotype.  

 

Together, these data support a model where DR conditions up-regulate FMO-2 

expression which, in turn, down-regulates proteasomal degradation via SCL-3 and SCL-

5 during the metabolic rewiring that occurs and subsequently promotes longevity. 
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Figure 4.9. scl-3 and scl-5 act downstream of FMO-2 OE and DR-mediated longevity. 
Survival curves comparing vector, scl-3 (A), scl-5 (B), scl-9 (C), or scl-20 (D) RNAi on fed (solid 
line) and DR (dotted lines). Survival curves comparing vector, scl-3 (E), scl-5 (F), scl-9 (G), and 
scl-11 (H) RNAi in FMO-2 OE animals. Lifespan statistics can be found in Table 4.4. 
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Figure 4.10. Additional effects of scl knockdown on DR lifespan. 
Survival curves comparing vector (black), scl-6 (A) and scl-8 (B) RNAi on fed (solid line) and DR 
(dotted lines). Lifespan statistics can be found in Table 4.4. 
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Discussion 
In this study we employed a transcriptional strategy to prioritize genes downstream of 

FMO-2 OE for functional analysis. The results led us to explore a family of under-

characterized proteins homologous to mammalian CRISPs. Our data suggest that 

down-regulating scl-3 and scl-5 can extend nematode lifespan, and these genes 

acquired a specific pro-longevity function, as they were the only genes shown to act 

downstream of DR signaling and FMO-2 OE.  We also find that two additional scls 

extend lifespan when knocked down, suggesting a conserved role of multiple members 

of the gene family in limiting longevity. To test whether scl-3 and scl-5 down-regulation 

plays a necessary role downstream of the metabolic rewiring that occurs during DR and 

FMO-2, we can overexpress SCL-3 and SCL-5 and see if their activity is sufficient to 

abrogate FMO-2 OE and DR-mediated longevity.  

 

It is interesting that scl genes have been superficially implicated in modulating 

nematode aging. Proteomic analyses of young (day 4) and old (day 10) nematodes 

found SCL-12 to be one of the few proteins upregulated in elderly animals (276). An 

RNAi screen showed scl-4 knock-down (KD) leads to long-lived animals (277). Counter 

to these data, knocking out scl-1 completely blocks the long-lived daf-2(e1370) mutant 

animal’s lifespan extension (278). With these seemingly conflicting pieces of data and 

little known about this family of proteins endogenous function, this study aims to 

characterize their potential role downstream of FMO-2-mediated nematode health and 

longevity. Our resulting data support a model where FMO-2 upregulation recapitulates a 

DR-like state that, in-turn, down-regulates predicted proteases scl-3 and scl-5 

potentially by driving the worms to rely on fat-metabolism. 

 

We expected animals with depleted scl-3, scl-5 and scl-6 would survive stressful 

conditions better than control animals.  Surprisingly, we find stress resistance is not 

always a direct correlation with longevity. While scl-6 KD promoted robust survivability 

to paraquat and heat stress, this did not translate to longevity. These results suggest 

stress resistance and longevity are separable phenotypes that cannot always be used 

as a proxy for the other, in agreement with other studies (279, 280).  
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The substantial shared sequence homology between scl-3, scl-5 and scl-6 (>60%) is 

both beneficial and detrimental when interpreting our findings. From a mechanistic 

standpoint, it adds relevance to our RNA-seq data and suggests they are likely to be 

performing similar biological functions. Moreover, the online bioinformatics tool SignalP 

(281) shows that the SCL-3 and SCL-5 amino acid sequence contains the same 

secretion signal (Q18), unlike SCL-6 (E19). However, this potential for functional 

redundancy also means we may not see a lifespan extension when we knockout a 

single SCL protein since RNAi treatment on similar sequences can knock down multiple 

gene family members simultaneously. RNAi is prone to off-target effects that could lead 

to false positives (i.e. RNAi alters lifespan but mutation does not). Furthermore, RNAi 

may result in incomplete knockdown of mRNA and protein levels, especially in neurons 

and pharynx that are refractory to RNAi, resulting in false negatives (i.e. mutation alters 

lifespan but RNAi does not). Thus, critical longevity genes may be missed by using only 

RNAi or mutants. It is worth exploring in future studies whether genetic knockouts 

recapitulate the data presented here. 

 

Epistasis experiments show FMO-2 OE animals received no additional benefits to their 

lifespan when we KD scl-3 and scl-5.  These data are consistent with scls being 

detrimental to nematode health and longevity in an FMO-2-dependent manner. 

Similarly, we find scl-3 and scl-5 KD are non-additive with DR longevity. There are 

several potential mechanisms worth exploring in future studies. Long-term stressors, 

like DR, are known to decrease protein translation in order to conserve nutrients (282). 

Additionally, SILAC proteomics experiments find long-lived daf-2 mutants have 

decreased protein turnover as they age (283). Since some scls are hypothesized 

proteases and we find scl-5 is likely released into the pharyngeal lumen, it is logical to 

hypothesize these long-lived environmental and genetic conditions down-regulate 

proteases to shunt their energy from protein decomposition potentially towards fat 

metabolism. It will be interesting to perform fat staining and measure protein translation 

levels across scl-3 and scl-5 KD and OE animals. We’d expect scl KD to result in leaner 

worms with decreased protein translation while OE results in the opposite phenotype. 
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Materials and Methods  

Strains and growth conditions 

See chapter 2.  

RNAi knockdown 
See chapter 2.  

Lifespan measurements 

See chapter 2. Additional information in Tables 4.3-4 includes statistics. 

Statistical analyses 
See chapter 2. 

 

Stress resistance assays 
Paraquat (Methyl viologen dichloride hydrate from Sigma-Aldrich) was used to induce 

oxidative stress. Worms were synchronized from eggs on RNAi plates seeded with E. 

coli HT115 strain expressing RNAi for a particular gene and at L4 stage 40 worms were 

transferred on RNAi-FUDR plates containing 50 mM paraquat. Similar conditions were 

prepared with the heavy metal stressor, 150µM cadmium chloride (Sigma-Aldrich). A 

minimum of two plates per strain per condition were used per replicate experiment. 

Worms were scored every hour for the first eight hours and considered dead when they 

did not move in response to prodding under a dissection microscope. Worms that 

crawled off the plate were not considered, but ruptured worms were noted but 

considered as previously described (213). 

RNA isolation, sequencing, and analysis 

Worm strains were synchronized by treating gravid adult worms with sodium hypochlorite and 

collecting ~1000 offspring per genetic condition. Once the offspring reached young adulthood, 

they were collected in M9 buffer and immediately flash-frozen in liquid nitrogen. RNA was 

extracted following Invitrogen’s TRIZOL RNA extraction protocol. Before library preparation the 

samples were analyzed on an Agilent 2100 BioAnalyzer. Only samples with an RNA integrity 

numbers (RIN) equal to or greater than 9.0 were used in downstream analyses. Single-strand 
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reverse transcription, library preparation, and sequencing were performed on an Illumina 

machine. Read alignments were mapped using Kallisto and differential expression analyses 

was performed using Sleuth. We used a q-value cutoff of <.05 for downstream comparisons 

across conditions as it’s adjusted for multiple hypothesis testing (241, 242). Additionally, in 

project 2, we required shared directionality (enrichment or depletion) between FMO-2 OE 

strains to be classified as a hit. 
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Table 4.3. Survival statistics for project 1. 
 
 
 

Experiment number genotype deaths 
median 
survival 
(days)

Comparison
P value(log rank) * 

Bonferonni corrected for 
multiple comparions 

1 (Figure 5.2B,D,F,H S5.1) N2 57 14
1 (not shown) egl-9(sa307) 74 17 N2 <0.0001
1 (not shown) vhl-1(ok161) 106 21 N2 <0.0001
1 (Figure 5.2B,D,F,H S5.1) egl-9;vhl-1 131 18 egl-9(sa307) 0.0002
1 (Figure 5.2B) egl-9;vhl-1;nlp-31(RNAi) 135 18 egl-9;vhl-1 0.06*
1 (Figure 5.2D) egl-9;vhl-1;lys-7(RNAi) 150 18 egl-9;vhl-1 <0.0001*
1 (Figure 5.2F) egl-9;vhl-1; lys-10(RNAi) 120 18 egl-9;vhl-1 0.01*
1 (Figure 5.2H) egl-9;vhl-1; lips-10(RNAi) 113 21 egl-9;vhl-1 0.0014*
1 (Figure S5.1B) egl-9;vhl-1;ftn-1(RNAi) 162 18 egl-9;vhl-1 1*
2 (Figure 5.2B,D,F,H S5.1) N2 98 15
2 (not shown) egl-9(sa307) 64 16 N2 <0.0001
2 (not shown) vhl-1(ok161) 98 22 N2 <0.0001
2 (Figure 5.2B,D,F,H S5.1) egl-9;vhl-1 93 18 egl-9(sa307) <0.0001
2 (Figure 5.2B) egl-9;vhl-1;nlp-31(RNAi) 55 23 egl-9;vhl-1 <0.0001*
2 (Figure 5.2D) egl-9;vhl-1;lys-7(RNAi) 72 23 egl-9;vhl-1 <0.0001*
2 (Figure 5.2F) egl-9;vhl-1; lys-10(RNAi) 58 23 egl-9;vhl-1 <0.0001*
2 (Figure 5.2H) egl-9;vhl-1; lips-10(RNAi) 96 23 egl-9;vhl-1 <0.0001*
2 (Figure S5.1B) egl-9;vhl-1;ftn-1(RNAi) 55 21 egl-9;vhl-1 0.0005*
2 (Figure S5.1D) egl-9;vhl-1;ftn-2(RNAi) 83 20 egl-9;vhl-1 0.037*
3 (Figure 5.2B,D,F,H S5.1) N2 87 16
3 (not shown) egl-9(sa307) 38 16 N2 0.97
3 (not shown) vhl-1(ok161) 56 16 N2 0.0003
3 (Figure 5.2B,D,F,H S5.1) egl-9;vhl-1 40 16 egl-9(sa307) 0.53
3 (Figure 5.2B) egl-9;vhl-1;nlp-31(RNAi) 42 18 egl-9;vhl-1 0.0001*
3 (Figure 5.2D) egl-9;vhl-1;lys-7(RNAi) 47 16 egl-9;vhl-1 0.86*
3 (Figure 5.2F) egl-9;vhl-1; lys-10(RNAi) 51 16 egl-9;vhl-1 0.56*
3 (Figure 5.2H) egl-9;vhl-1; lips-10(RNAi) 54 18 egl-9;vhl-1 0.0005*
3 (Figure S5.1D) egl-9;vhl-1;ftn-2(RNAi) 33 16 egl-9;vhl-1 0.17*
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CHAPTER 5 

Conclusions and Future Directions 

Foreword 
The overarching goal of this dissertation was to understand how stressful stimuli, like 

dietary restriction, can rewire a worm’s metabolism to extend lifespan. Much work has 

been done in the past thirty years exploring this question. While there is extensive 

research implicating the nervous system plays a critical role in this metabolic rewiring, 

little progress has been made to map the individual cells or signals involved in these 

processes. Chapter 2 detailed how serotonin and dopamine signaling work in concert to 

signal “times are good” when food is present and vice versa during DR. Additionally, we 

identify a subset of essential neurons and receptors through selective genetic knockout 

and rescue experiments. Despite these discoveries, there remains some strange and 

ambiguous results left to disentangle. Luckily, one particularly enjoyable facet of 

research is that it has a compounding effect. Meaning some results are only 

interpretable in hindsight with the development of new assays, more information, etc. 

 

To that end, this chapter encompasses the 1) loose ends that arose from the data 

generated in the previous chapters and 2) data that could not be incorporated 

seamlessly into previous stories. By chasing down concrete answers to the open 

questions presented in this chapter, we can further shape our understanding of the 

complex signaling events that occur during stressful stimuli. While none of this work is 

currently undergoing peer-review, the hope is future scientists will find value in these 

data when interpreting their own.  
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Can we link or separate DR longevity to behavioral changes? 
In chapter 2, we began to map the neuronal circuitry of DR-mediated longevity. An 

interesting phenomenon we qualitatively noticed during our studies was worms on fed, 

DR, and DR-mimetics (like mianserin) all interacted quite differently with their 

environment. Bolstering these observations, it’s been shown food deprived worms 

undergo periods of enhanced foraging and increased dwelling once they encounter food 

(184, 284). Because of this we asked whether changes in foraging could be detected 

with the addition of food smell.  

 

To answer this question, we extracted x-y coordinate data for individual worms using 

the wrMTrck program (285) and plotted their movement over the course of a two-minute 

video after 3 hours on fed or DR +/- food smell. As expected, DR worms move farther 

from their origin when compared to fed (Figure 5.1A to 1C, summary in Figure 5.1I), 
but remarkably the addition of food smell significantly enhances the distance travelled 

by DR (Figure 5.1A to 1B) but not fed worms (Figure 5.1C to 1D). This is consistent 

with the data presented in Chapter 2 suggesting that worms are seeking out a 

compound secreted by the bacteria. It remains unknown whether this enhanced 

foraging plays a causative role in the lifespan suppression we see when DR worms are 

exposed to food smell. 

 

Since serotonin-null mutants (tph-1) are epistatic to DR, but required for food smell to 

blunt DR longevity, we hypothesized tph-1 mutants foraging behavior would not be 

changed by DR or food smell. Indeed, we see no significant change in foraging across 

all four conditions (Figure 5.1E-H, summary in Figure 5.1J) while there does seem to 

be a trend towards hyperactivity when comparing basal WT to tph-1 movement, 

consistent with what has been purported in the literature (177). Interestingly, we find 

that food smell alone does not increase pumping on DR conditions in either N2 or tph-1 

worms (Figure 5.1K).   
 
Note: The raw data was collected by Elizabeth Dean (Figure 5.1A-H) and Dr. Safa Beydoun 
(Figure 5.1K), but we designed and analyzed the experiments together.  
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Figure 5.1. Food smell enhances foraging but not pumping in a 5-HT-dependent manner. 
Wild-type worm positions tracked from 2’ videos taken after 3 hours on DR (A), DR + food smell 
(B), fed (C), and fed + food smell (D). tph-1 worm positions tracked from 2’ videos taken after 3 
hours on DR (E), DR + food smell (F), fed (G), and fed + food smell (H). (I) Quantification of A-
D. (J) Quantification of E-H. (K) Pumping rates of n=8-15 worms/condition. 
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These data along with findings in Figure 2.1 led us to wonder if mianserin treatment 

could rescue the reduction in DR-mediated longevity caused by the perception of food.  

Unfortunately, this experiment proved more challenging than we anticipated since the 

combination of DR and mianserin leads to excessive fleeing (Figure 5.2) making long-

term tracking assays like survival currently impossible. Future iterations on the palmitic 

acid barrier will need to be made before this assay is feasible.  

 

Taken together, these data support a model where the initial perception of food leads to 

behavioral changes that, in turn, can function as indicators of accelerated aging. 

Whether this is true warrants further investigation. 

 

 

 

 
 
 

 
Figure 5.2. DR fleeing is enhanced by the addition of mianserin. 
Quantified fleeing rates (n=50/condition) along a 24-hour time-course where fed control (black), 
DR (red) or BD (blue) animals are combined with water (solid lines) or mianserin (dashed lines). 



 146 

Another open question surrounds neuronal function during aging. Would a DR-mimetic 
like mianserin enhance neuronal excitability and protect against proteotoxic 
aggregation? Since exogenous treatment with DR-mimetic N-acetyl-l-cysteine (NAC) is 
shown to be protective against neuronal protein aggregation and paralysis (286) ,and 
mianserin treatment increases neurotransmission in aged C. elegans (158, 287) we 
wondered whether it may be protective against paralysis from Aβ-aggregation. To test 
this question, we utilized an Aβ strain GMC101 that causes paralysis when shifted from 
the permissive temperature of 20⁰C to 25⁰C (288). After 24 hours of exposure to 
mianserin, DR, or mianserin and DR, we placed the animals at 25⁰C. To measure 
movement and paralysis, videos were taken at 36-, 50-, and 72-hours post-temperature 
shift (Figure 5.3A) and analyzed using Wormlab software. 
 

Interestingly, mianserin and DR modify worm behavior at both temperatures. C. elegans 

when deprived of food alter their foraging behavior by increasing the distance and 

speed traveled when compared to their fed counterparts (Figure 5.3B) and mianserin 

and DR can effectively rescue GMC101 worms from paralysis and aggregation at 25⁰C 

(Figure 5.3C). Our data also suggest this behavior is seen for a transient period of time 

(<72 hours) (Figure 5.3D), and mianserin follows a similar trend as DR. These results 

support the hypothesis that mianserin acts downstream of DR signaling and partially 

recapitulates DR-mediated phenotypes.  
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Figure 5.3. DR-mimetics modify foraging behavior and enhance resistance to Aβ-toxicity. 
Representative still images from 1’ videos taken after 36, 50 and 72 hours left at 20⁰C 
(permissive) or transferred to 25⁰C (aggregate) temperature. Wormlab quantification of 
movement speed on fed (black), + 50µM mianserin (hatched), or DR (blue) after 36 hours at the 
permissive 20⁰C (B) or aggregate 25⁰C (C) temperature. Line graphs summarizing the change 
in movement when subjected to fed (black), 50µM mianserin (red), and DR (blue) at the 
permissive 20⁰C (B) and aggregate 25⁰C temperature (H).** denotes P<.01, *** denotes P<.001. 
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Can we identify additional signals downstream of serotonin release? 
An effective method often used in worm labs to discover novel genetic mechanisms is 

an RNAi screen. For screening purposes, we chose fmo-2 induction in a vhl-1 mutant 

background (genetic mimetic for hypoxia) and under DR as our read-out. From here, we 

knocked down 263 neuropeptide and receptor clones from the Ahringer RNAi library. 

Our screening criteria was three consecutive experiments where fmo-2 induction was 

blunted by >50% in vhl-1 mutants (Figure 5.4A) or DR (Figure 5.4B). Interestingly, we 

find five shared signaling components that may act downstream of both hypoxic and DR 

signaling (Table 5.1). It is worth exploring whether these five signaling components are 

consequential in a pro-longevity context. We have considered two hypotheses; (i) one 

or more may be acting as the most downstream signaling event before fmo-2 is induced 

in the intestine or, (ii) less interestingly, they could be necessary for normal 

physiological function.  

 

Our screen also identified several signaling components that are necessary for hypoxia- 

or DR-mediated induction of fmo-2. Our hypothesis is the location of these signals and 

receptors acts as an intermediary between serotonin release and one of the shared 

signaling events in Table 5.1. 

 

If we find inconclusive data on the necessity of these signaling components identified in 

Table 5.1, we can pursue the causative mutations from an unbiased EMS forward-

genetic screen we performed. Using a 50% threshold for loss of fluorescence induction, 

we identified and validated nine independent strains where fmo-2 induction is 

significantly blunted during DR. Subjecting these hits to mianserin allowed us to place 

the causative mutation(s) either up- or downstream of serotonin signaling. If the 

mutagenized strain induced fmo-2 on mianserin, the causative mutation(s) is upstream 

(class I – 3 mutants) whereas the causative mutation(s) acts downstream (class II – 6 

mutants) for those that block mianserin and DR induction of fmo-2. Returning to these 

mutants would provide multiple benefits including (1) increased coverage of the genome 

since ~100 neuropeptides/receptors are not present in the RNAi libraries and (2) 

validation of components already implicated in food perception.   
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Figure 5.4. RNAi screen uncovers several neuronal signaling components to investigate. 
Results from validation screen of neuropeptides and receptors that blunt fmo-2 induction under 
HIF-1 stabilization (A) and DR (B) when knocked down via RNAi. Green bars represent “hits” 
classified as >50% reduction in fmo-2p::mCherry expression. 
 
 
 
HIF-1 pathway shared DR pathway 
tkr-3 acy-3 B0034.5 
npr-29 F11A5.7 npr-25 
ZK1307.7 flp-5 irld-52 
nlp-23 hpa-1 lgc-31 
ser-2 nlp-17 pdfr-1 
lgc-49 npr-3 npr-9 
npr-1  kin-2 
nmur-4  nlp-22 
Y45E2A.1  ser-7 
npr-28  ser-3 
ser-1  lgc-37 
ggr-1  nlp-14 
F38A5.11   

 Table 5.1. Hits from Neuropeptide RNAi screen. 
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Is there a retrograde signal released from the intestines during 
hypoxia or DR? 
As mentioned in Chapter 1, most aging studies ask how the nervous system 

communicates with peripheral tissues, but recent data from invertebrates supports the 

idea that peripheral tissues use a retrograde signal back to the nervous system to 

maintain or further modify physiology (105, 161-163). This type of signaling seems 

logical, as organisms require feedback from individual tissues to monitor homeostasis, 

but the role of retrograde signaling in regulation of aging is not well understood.  

 

When testing fmo-2 induction in a neuronally sensitized strain TU3311 (see Table 5.2 

for more information) and neuronal-specific RNAi strain MAH677, we discovered 

MAH677 does not recapitulate the effects of TU3311. Knockdown (KD) of neuropeptide-

containing dense core vesicles (DCVs) formation via unc-31 and synaptic vesicle 

release via unc-13 showed inconsistent results. Our data suggest sid-1 expression is 

required for unc-13/unc-31 KD to suppress DR fmo-2 induction (Figure 5.5A-F). These 

surprising results led us to wonder whether unc-13/31 KD in the MAH677 background 

would have similar effects on fmo-2-mediated longevity. To test this hypothesis, we 

chose to expose long-lived vhl-1, MAH677, and vhl-1; MAH677 (dKO) animals to unc-31 

RNAi and measured their lifespan. Since serotonin signaling is necessary for vhl-1-

mediated longevity (12), we’d expect unc-31 KD would abrogate its enhanced longevity. 

This is what we observed in the vhl-1 background (Figure 5.5G). More surprisingly, we 

find neuron-only KD of unc-31 does not abrogate vhl-1-mediated longevity (Figure 
5.5H) suggesting that there are necessary long-range signals that are released from 

both neurons and distal tissues.  

 

These data present an interesting case for future studies to investigate the signaling 

events that occur from the downstream metabolic tissues back to the nervous system.  

It also provides an opportunity to better understand how cells at the interface of forward 

and retrograde signaling (i.e. the hypothalamus) make decisions that affect both 

upstream and downstream physiology.  
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Figure 5.5. unc-31 enhances DR signaling from the intestine to the nervous system. 
Images of fmo-2p::mCherry animals in the wild-type (A), MAH677 (B), and TU3311 (C) 
background on unc-13 and unc-31 RNAi exposed to DR. Quantification of wild-type (D), 
MAH677 (E), and TU3311 (F) images. Survival curves of MAH677 (black), vhl-1 (blue, G), and 
dKO (red, H) on vector (solid lines) or unc-31 RNAi (dotted lines). **** denotes P<.0001 when 
compared to fed (Tukey’s HSD) ### #denotes P < 0.001 when compared to DR (Tukey’s HSD). 
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We next exposed our three mutant animals to several RNAis from the shared and HIF-1 

pathway hit lists (Table 5.1). Importantly, we find that none of the RNAis tested affect 

our control MAH677 lifespan (representative data in Figure 5.6) and of the RNAi 

screened, two neuropeptides produce convincing, if not slightly confusing results. 

Concurrent with our hypothesis, we find neuropeptides nlp-17 and nlp-23 necessary for 

vhl-1-mediated longevity (Figure 5.6A-B). Incongruous with our hypothesis, we see that 

nlp-17, but not nlp-23, is necessary for vhl-1; MAH677 longevity (Figure 5.6C-D).   

 

If these results are not a strange artifact of our genetic crosses, what could this mean? 

It could be that neurons expressing and releasing nlp-17 are not refractory to RNAi 

which would explain why vhl-1, with its endogenous sid-1 locus, and vhl-1; MAH677 

show similar results. This information could help us subset the neurons releasing nlp-17 

in our pathway by targeting the neurons that respond more aptly to RNAi. Similarly, if 

the inverse is true for nlp-23, there are two plausible hypotheses: 1) only a small subset 

of neurons are shown not to express unc-119 (289), the promoter used to drive sid-1 

expression in MAH677, are responsible for nlp-23 release or 2) some other non-

neuronal tissue produces and releases nlp-23 downstream of HIF-1 stabilization. Since 

the intestine expresses neuropeptides and nlp-23 is proposed to be expressed in the 

hypodermis and tail (246), we favor the latter as the simplest explanation. To test this, 

we can cross tissue-specific RNAi strain into the vhl-1 background and measure the 

effects of nlp-13 and nlp-23 KD on lifespan.  

Are glial cells involved across stress-induced longevity pathways? 
A population of cells that has gone mostly ignored by biogerontologists are glial cells. 

Unlike in mammalian brains, neurons outnumber glial cells 4:1 in nematodes (290). 

Only recently have scientists begun to explore glial cells potential role in longevity. The 

Dillon lab provides compelling data that glial cells play a critical modulating the effects of 

UPR activation on longevity (48). Could these cells be necessary for DR-mediated 

longevity? Could their absence in the neuron-specific RNAi strain explain the 

differences we see in our two sid-1 mutants? Retesting these experiments using a glia-

specific RNAi strain would help answer this question. 
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Figure 5.6. nlp-23 functions as a necessary intestinal signal while nlp-17 functions as a 
necessary neuronal signal to promote vhl-1 longevity. 
Survival curves of MAH677 (black) and vhl-1 (blue) mutants on vector (solid lines), nlp-17 (A) or 
nlp-23 (B) RNAi (dotted lines). Survival curves of MAH677 (black) and dKO (red) mutants on 
vector (solid lines), nlp-17 (C) or nlp-23 (D) RNAi (dotted lines).   
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What transcription factors regulate intestinal FMO-2 expression? 
Another important question worth exploring is how fmo-2 is induced once the nervous 

system alerts the intestines about an on-going stressor. Utilizing publicly available 

modENCODE ChIP-seq data (291), we find 26 transcription factors (TFs) peaks in the 

5’ region upstream of fmo-2’s ORF (MDL-1 and PHA-4 examples shown in Figure 
5.7A). For our initial screen, we measured fmo-2 induction under DR when we knocked 

down 17 clones present in the Ahringer library. We found several blunt fmo-2 induction 

while two TFs, nhr-49 and mdl-1, robustly block fmo-2 induction (Figure 5.7B-C). 

Moreover, we find nhr-49 is necessary for DR-mediated longevity (Figure 5.8). It’s 

predicted NHR-49 is a functional PPARα ortholog (292, 293)  while MDL-1 is a MAD-

Like MXD3 ortholog (294). Both TFs have been implicated in modifying longevity (32, 

35, 36, 295-297). However, mdl-1’s role in longevity is thought to function, at least 

partially, through inhibition of oocyte formation (296) while nhr-49 has been shown to 

drive metabolic rearrangement in distal tissues downstream of neuronal perception of 

stressors (35). While it is worth testing whether mdl-1 is necessary for DR-mediated 

longevity, we would hypothesize any potential abolishment of longevity is a global trend 

of germline dysregulation not specific to DR signaling or food perception. 

 

An important caveat to consider when interpreting these data is that the Waterson lab 

collects modENCODE samples during larval development not during adulthood or under 

stressful stimuli. Validating these results would require exposing NHR-49::GFP worms 

to DR and hypoxia and performing additional ChIP-seq experiments. That said, 

compounding evidence from the literature and our preliminary data suggest NHR-49 

drives fmo-2 transcription and it is worth exploring further whether these effects are 

specific to hypoxia and DR. 
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Figure 5.7. TFs nhr-49 and mdl-1 are required for DR-mediated fmo-2 induction. 
Example ChIP-seq peaks called in fmo-2 5’UTR (A). Representative images (B) and 
quantification (C) of fmo-2p::MC; egl-9 animals screened TF RNAi on fed (blue) and DR (red) 
 
 
 

 
Figure 5.8. PPARα ortholog nhr-49 is required for DR-mediated longevity. 
Survival curves of WT animals on vector (black) and nhr-49 (blue) RNAi on fed (solid lines) or 
DR (dotted lines).  
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Models, speculation, and implications 
The guiding principle of this thesis was to stand on the shoulders of the many great 

scientists before me to discover new insights into the highly orchestrated, multi-organ 

response to stressful stimuli since many of these ancient and complex signaling events 

are found to modulate aging.  

 

In chapter 2, we present compelling evidence that reward circuitry, namely NTs 

serotonin and dopamine release, are tied to the perception of food smell and that these 

signals suppress pro-longevity genes like fmo-2. As similar results have been shown in 

flies, it’s worth considering the potential conservation of these signaling events in 

mammals. With greater resolution into the specific cells involved in invertebrates, will we 

be able to modify NTs release within a subpopulation of neurons in higher organisms? 

Will these results recapitulate what we see in worms and flies? We hypothesize reward 

circuitry plays a similar role in mammalian aging but testing this hypothesis in mice 

remains quite challenging. Fortunately, with the advent of CRISPR and cerebral 

organoids, future scientists can alter, test, and measure neuronal function in an 

expedited fashion before moving their studies into whole organisms. 

 

Moreover, it may be possible to mimic these signaling pathways with small molecules to 

abate mammalian aging through the DR pathway, without restricting the diet. This is 

crucial since it is likely humans will not willingly choose a DR diet despite its potential 

benefits. By better understanding the molecular and signaling mechanisms downstream 

of DR, these processes can be targeted directly, attaining benefits to human health 

while circumventing the challenges of implementing population-scale DR.  Additional 

studies need to be performed across taxa to parse out the pro-longevity effects from the 

side effects. This is particularly important since it seems antidepressants have a small 

range of efficacy and can lead to numerous side effects in a sub-population of patients 

at different doses. Ideally, we would find the lowest dose of serotonin or dopamine 

modulators that can consistently increase lifespan in heterogenous drosophila 

backgrounds and HET3 mice to recapitulate the variability we see in the human 

population. In addition to providing the potential for long-term health benefits, this 
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knowledge will benefit our understanding of serotonin and dopamine signaling networks 

that affect numerous human processes and diseases outside of aging. 

 

Research in chapter 3 explores temperatures’ interaction with longevity interventions 

and genotypes. These data shed light on the complex interplay of stress responses and 

suggest some act in a temperature dependent or independent manner. As additional 

mechanistic studies on the factors that control differences in the comparative lifespan 

vs. temperature axis are completed, we expect that probable links will be made between 

temperature-specific longevity in nematodes and specific diseases of aging in 

mammals. Nevertheless, we must remain cautious of over-interpreting these data as the 

connection between cellular stress resistance and increased longevity remains 

correlative rather than causative in mammals. While it seems plausible that increased 

cellular stress resistance could prevent the damage that leads to the onset of age-

related diseases in the elderly, mechanistic studies are required to conclusively connect 

stress resistance and longevity. 

 

Finally, we utilized my bioinformatics training to analyze two RNA-seq datasets 

generated by the Leiser lab in chapter 4. Both projects have led to initial discoveries in 

HIF-1 regulation and FMO-2 mechanisms of action. However, we should remain 

cautious and agnostic about the functions of these downstream genes until more 

conclusive analyses are carried out. By testing the sufficiency of flp-10 and scl-5 OE to 

abrogate the lifespan effects of HIF-1 and FMO-2 activation, respectively, we will know 

whether these genes play an active role in accelerating aging in C. elegans. 

Additionally, it is critical we discover whether these genes have homologs that also 

modulate mammalian aging.  
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Materials and Methods 

Strains and Growth Conditions 
See chapter 2. Additional information in Table 5.2 includes a list of the strains and RNAi 

conditions used in this study. 

Lifespan measurements  
See chapter 2. Additional information in Table 5.3 includes statistics. 

RNAi knockdown  
See chapter 2. 

Drug treatments 
See chapter 2. 

Dietary restriction (DR) treatment 
See chapter 2. 

Aβ-toxicity paralysis  
Worm synchronization and induction of paralysis was performed as previously 

described (288). Instead of manually scoring paralysis, videos were taken in the GFP 

channel to measure aggregation and paralysis using Wormlab software.  

Behavioral measurements 
Videos were taken with the LASx software and Leica scope and >30 worms/treatment at 

1x magnification. We analyzed the videos using wrMTrck ImageJ plugin (285). We used 

this tutorial (http://www.phage.dk/plugins/download/wrMTrck.pdf) to learn the software. 

Statistical analyses 
See chapter 2. 
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Table 5.2. C. elegans strains used in this chapter. 
 
 

 
Table 5.3. Survival statistics for Figures 5.5-8.
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