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ABSTRACT 

 

Androgens are steroid hormones that have sex-specific effects on regulation of metabolic and 

reproductive physiology. Androgens primarily act upon nuclear hormone receptors, including 

androgen receptors (AR), or estrogen receptors (ERs) after conversion to estradiol by aromatase. 

Adult males typically have higher levels of circulating androgens. However, imbalance of 

androgens outside the homeostatic range has both reproductive and metabolic deficits for both 

sexes. For example, hypoandrogenism in males and hyperandrogenism in females can result in 

infertility, obesity, and increased risk of diabetes. While many tissues express AR and are sensitive 

to the effects of androgens, the brain is a key androgen responsive organ. In adults, AR is expressed 

in many brain regions, including those that are involved in regulation of reproduction, metabolism, 

behavior, cognition, mood, and autonomic processes. Yet, characterization of AR expression has 

been lacking in the female and prepubertal brain. Here, we present a comprehensive 

neuroanatomical characterization of Ar mRNA expression in the mouse brain of both sexes, and 

compare adult and prepubertal expression. We found that expression of Ar undergoes dynamic 

change during a critical window of prepubertal development in male and female mice. 

Furthermore, we describe brain regions that may preferentially respond to androgens, rather than 

estrogens. For example, the ventral premammillary nucleus (PMv) shows dense expression of AR-

immunoreactivity in both sexes, yet it is relatively low in ERs and aromatase. To identify neuronal 

populations that are targets of androgen action, we compared areas of dense AR expression, 

including the PMv and arcuate nucleus (ARH), with known neuronal populations in these nuclei. 
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AR was found to be coexpressed in PMv and ARH leptin receptor (LepRb) neurons, which are 

crucial in regulation of energy homeostasis and exert permissive effects on fertility. We 

hypothesized that androgens acting via AR in LepRb cells contribute to the regulation of 

reproduction and metabolism at the hypothalamic level, and that loss of AR from LepRb cells 

would disrupt reproductive and metabolic homeostasis. We found that deletion of AR from LepRb 

cells (LepRbΔAR) results in sex-specific changes in the neuroendocrine reproductive axis, 

locomotor activity, and body composition. We observed that loss of negative feedback actions of 

sex steroids induces an exaggerated rise in luteinizing hormone in LepRbΔAR male mice and in 

follicle stimulating hormone in LepRbΔAR female mice. Furthermore, female LepRbΔAR mice show 

increased lean mass, while male LepRbΔAR mice display increased ambulatory activity. 

Subsequently, we tested if deletion of AR from LepRb neurons would protect female mice from 

hyperandrogenism-induced reproductive deficits. Female mice exposed to androgen excess during 

late prenatal development exhibit disrupted estrous cycles, infertility, and mild metabolic changes 

during adulthood. This phenotype replicates many features of polycystic ovary syndrome (PCOS), 

which is also partly characterized by androgen excess. We found that female mice with deletion 

of AR in LepRb neurons had improved estrous cycles with prenatal androgenization compared to 

their AR-intact littermates. Our findings highlight that LepRb neurons represent an important 

target of androgen action in the brain, and contribute to sex-specific differences in the 

neuroendocrine reproductive axis and some aspects of metabolic regulation. Furthermore, LepRb 

neurons may be involved in the pathogenesis of PCOS. These studies further elucidate the specific 

targets of androgens in the brain, and open the possibility of additional mechanistic study into the 

physiologic actions of androgens, especially in females.  
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CHAPTER 1 

 
Introduction 

 
 

Biology of androgens   

Androgens are a class of steroid hormones that are traditionally known for their role as male sex 

hormones which promote male traits, including development of male reproductive organs, 

secondary sex characteristics, and reproductive physiology. However, a contemporary 

understanding of androgens includes important roles in female physiology as well. Hormones 

classified as androgens include testosterone (T) and dihydrotestosterone (DHT), while 

dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEA-S), and 

androstenedione (A4) are considered as androgenic pro-hormones. The predominant circulating 

androgen in males is testosterone (T), which is primarily produced in Leydig cells. Testicular T 

production is responsible for relatively higher levels of circulating androgens in males compared 

to females.  

 

Androgens are also produced by the ovary and adrenal gland (1). Ovarian androgens are 

synthesized by theca cells, with A4 and T serving as precursors for estrogen synthesis in granulosa 

cells (17β-estradiol, or E2, and estrone, or E1)(2). In humans, the adrenal gland is responsible for 

production of androgenic precursors, including DHEA, DHEA-S, and A4, with minor production 

of T and 11-oxyandrogens (11-OH-testosterone and 11-OH-androstenedione)(3,4). Peripheral 
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tissues also contribute to androgen synthesis. For example, adipose tissue expresses steroidogenic 

enzymes capable of steroid conversion, androgen synthesis, and inactivation (5,6).  

 

Androgens in circulation 

Androgens in circulation are primarily bound to sex-hormone binding globulin (SHBG), which in 

humans, is primarily produced by the liver (7,8). A majority of T and DHT are transported while 

bound to SHBG (~45-80%), which binds testosterone with high affinity, albeit at low capacity. A 

smaller fraction of T is bound to lower affinity, but higher capacity, serum proteins, including 

albumin, corticosteroid-binding globulin, and orosomucoid (9-11). The rodent liver does not 

produce SHBG past the prenatal period, however, androgen binding protein (ABP), an SHBG 

homologue, is produced by the testes (12,13). Only approximately 1-2% of T in circulation remains 

unbound (9,10). It has been traditionally thought that when bound to carrier proteins in circulation, 

androgens are unable to exert biologic effects via hormone receptors, and were considered 

biologically inactive. This so called “free hormone hypothesis” predicted that once reaching target 

tissues, T would dissociate from binding proteins, and become bioavailable for binding to receptors 

or enzymes for conversion (14,15). However, this hypothesis is disputed. Multiple mechanisms of 

bound-T uptake and intracellular signaling have been described (11). SHBG-bound T can be 

internalized via endocytosis mediated by membrane proteins such as megalin. Upon 

internalization, vesicles containing SHBG-bound T fuse with lysosomes, and T dissociates from 

SHBG. Free T can then diffuse to the cytoplasm, and interact with androgen receptors (AR) 

(16,17). In addition to hormone binding sites, SHBG has a binding site that interacts with 

membrane SHBG-receptors. The ligand-bound SHBG and membrane receptor complex can then 

activate G-protein coupled intracellular signaling (18,19). Additionally, extracellular matrix 
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associated proteins, including fibulins, can interact with ligand-bound SHBG. Matrix proteins may 

provide scaffolding to facilitate interaction with other membrane receptors, or may sequester 

ligand-bound SHBG extracellularly (20). Each of these mechanisms provides additional 

complexity to regulate tissue access to androgens and their bioavailability to AR.  

 
Levels of circulating androgens are dependent on sex and age. Following testis differentiation and 

maturation in fetal humans, T peaks at 11-17 gestational weeks, then decreases until term (21). 

Following birth, males experience a surge in luteinizing hormone (LH) which triggers a peak in T 

lasting up to 12 hours in humans (22). The post-natal hypothalamic-pituitary-gonadal (HPG) axis 

is transiently reactivated during a short period of time called the “mini-puberty of infancy”, that 

occurs following the removal and inhibitory actions of placental and maternal hormones with birth. 

Increasing gonadotropin releasing hormone (GnRH) from the hypothalamus results in raised LH, 

leading to elevated T in male infants between 1 and 3 months of age (23,24). The HPG axis remains 

quiescent in both sexes through the rest of childhood, until the pubertal transition begins. In 

humans, circulating T typically reaches adult levels in males by Tanner stage IV or V (25,26), 

while in adult females, T will remain only a fraction of male levels (adult male range ~222-848 

ng/dL total T, adult female T range ~3-52 ng/dL total T) (27,28). Small but significant rises in T 

have been detected during the mid-follicular and luteal phases of the ovarian cycle (29,30). Male 

total and free T decline progressively with age (31,32), and lower levels of T are observed post-

menopause (30,33) 

 

Steroidogenesis of androgens  

Androgens, like other steroid hormones, consist of a four ring, carbon structure backbone derived 

from cholesterol. Cholesterol is intracellularly synthesized via acetate, stored in intracellular lipid 
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droplets, or is taken up by circulating lipoproteins (34). Free cholesterol is transported between the 

outer and inner mitochondrial membranes by steroid acute regulatory protein (StAR). Cholesterol 

side-chain cleavage enzyme (cytochrome P450 side-chain cleavage enzyme 11a, CYP11A) 

converts cholesterol to pregnenolone in the first and rate-limiting step of steroidogenesis (35). 

Pregnenolone is then released to the smooth endoplasmic reticulum to undergo 17α-hydroxylation 

via 17α-hydroxylase (cytochrome P450c17, CYP17, also performs 17,20 lyase activity) to form 

17α-hydroxypregnenolone. CYP17 then converts 17α-hydroxypregnenolone to DHEA, which is 

then converted to androstenediol (A5) via 17β-hydroxysteroid dehydrogenase (17βHSD), and 

finally from A5 to T via 3β-hydroxysteroid dehydrogenase (3βHSD) (36). T is primarily 

synthesized via the so called Δ5 pathway (Δ5 indicating the double bond at carbon 5 in 

pregnenolone, 17α-hydroxypregnenolone, DHEA, and A5). Alternatively, T may be synthesized 

via the Δ4 pathway, which proceeds from pregnenolone being converted to progesterone via 3β-

hydroxysteroid dehydrogenase (3βHSD). Progesterone is subsequently converted to 17α-

hydroxyprogesterone, then to androstenedione (A4) via 17α-hydroxylase/17,20-lyase. A4 is then 

converted to T via 17βHSD (Figure 1.1).  

 

Differences in expression of steroidogenic enzymes in endocrine tissues results in diverse 

production of hormones, including androgens. A good example is the adrenal gland, where in 

humans, only the zona reticularis is capable of producing androgenic precursors (DHEA and 

DHEA-S) (37). The zona glomerulosa does not express CYP17 (17α-hydroxylase/17,20-lyase), so 

steroidogenesis proceeds towards corticosteroid and aldosterone production. The zona fasciculata 

expresses CYP17, but has little 17,20-lyase activity, so progesterone and 17-hydroxyprogesterone 

are shuttled toward corticosteroid production rather than producing DHEA. The zona reticularis 

expresses CYP17 which performs both 17α-hydroxylase and 17,20-lyase activity, producing  
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Figure 1.1: Steroidogenesis of Androgens. Synthesis of androgens by key steroidogenic enzymes, 
beginning with cholesterol. 
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DHEA. Due to low 3βHSD expression, only small amounts of A4 and T are synthesized by the 

zona reticularis (35). 

 

Intermediate hormones in the synthesis of T, such as DHEA, have weak androgenic effects and 

binding to androgen receptors (AR). They are therefore better considered as pro-androgens or 

androgenic precursors rather than “weak androgens” (37). Notably, the adrenal gland of mice and 

rats does not express CYP17, and therefore is not capable of producing adrenal androgens (38). 

 

The gonads in mice and rats are the main organ responsible for production of bioactive androgens, 

such as T and A4. In the testis, 3βHSD and 17βHSD are highly expressed in Leydig cells, ensuring 

that available DHEA is converted to A4 and T (35). Ovarian androgen production occurs primarily 

in theca cells, which express all enzymes needed to complete steroidogenesis up to T (1,39). Theca 

steroidogenic enzymes are regulated via LH, which upon binding to its receptor, initiates a G-

protein coupled signal transduction cascade that stimulates CYP11A, CYP17, 3βHSD, and 

17βHSD expression (40-43). Theca cells produce A4 and T, which are used as estrogen precursors 

by granulosa cells (44). This reaction is catalyzed by the enzyme aromatase (cytochrome P450aro, 

CYP19A1), which eliminates the methyl group (carbon #19, thus forming 18-carbon estrogens) 

and aromatizes the A ring (45) (Figure 1.2). Aromatase in the granulosa cell is under regulation of 

follicle-stimulating hormone (FSH) (46,47), and converts T to E2 and A4 to E1. Other tissues also 

express aromatase, including the placenta, certain brain regions, adipose tissue, and bone (48).  

 

T can be further metabolized to the highly potent androgen DHT via 5α-reductase (5α-R) (Figure 

1.2). Three isozymes of 5α-R have been described, each transcribed by three separate genes, i.e., 
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type I 5α-reductase encoded by SRD5A1, type II 5α-reductase by SRD5A2, and type III by SRD5A3 

(49). Tissue expression of each isozyme differs. Type I 5α-R is mostly expressed in the liver, skin 

(scalp, torso, sebaceous glands), adrenal gland, and kidney, and type II 5α-R is expressed in 

reproductive tissues (prostate, seminal vesicles, epididymis, testes), skin (face, chest, external 

genitalia), liver and hair follicles (50). Type III 5α-R has a more ubiquitous expression pattern in 

a wider variety of tissues, but it rather participates in lipid metabolism, not steroidogenesis (51). 

DHT is primarily an intracellular metabolite and does not widely circulate in blood. Although, 

high production of DHT in tissues such as prostate can lead to spillover of DHT into circulation. 

A key feature of DHT is its inability to be aromatized to estradiol. However, DHT can be converted 

to estrogenic metabolites, including 3β-androstanediol (3β-diol) via 3βHSD and 3α-androstanediol 

(3α-diol) via 3αHSD (52,53). Notably, DHT is a potent androgen and binds with high affinity to 

androgen receptors. 

 
Figure 1.2: Amplification and Diversification of Testosterone. Conversion of testosterone to 
dihydrotestosterone via 5-alpha-reductase (5α-reductase) to amplify androgenic signaling via androgen 
receptors, and to estradiol via CYP19A1 (aromatase) to diversify androgen signaling via estrogen receptors. 
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Androgen Receptors 

Androgens exert biologic actions by binding to either androgen receptors (AR) or to estrogen 

receptors (ERs) after aromatization. AR belongs to a super family of steroid hormone nuclear 

receptors and is encoded by a single gene (Ar) located on the X chromosome. Ar is composed of 

8 exons which encode 3 functional domains (54,55) (Figure 1.3). The N-terminal domain (exon 1) 

has transactivation properties, and is required for AR-induced transcription of target genes (56,57). 

The DNA-binding domain (exons 2 and 3), along with the N-terminal domain, facilitates binding 

of the receptor to DNA androgen-response elements (ARE) (58), located within promoter or 

enhancer regions up or downstream of androgen target genes (59). AREs consist of a pair of 

inverted repeated palindromic sequences separated by three nucleotide spacer (60), which 

facilitates binding of an AR dimer. The DNA-binding domain is separated from the ligand-binding 

domain by a hinge region, encoded by part of exon 4. The C-terminal ligand-binding domain (part 

of exon 4, and exons 5-8) is responsible for ligand interaction and confers specificity of AR for 

androgens (61). Within the ligand-binding domain is the C-terminal activation function 2 (AF2) 

sequence, that provides transactivation function in a ligand-dependent manner.  

 
Figure 1.3: Androgen Receptor Gene and Protein Organization. The androgen receptor (Ar) gene 
consists of 8 exons (upper figure). Androgen receptor (AR) protein consists of N-terminal (NTD), DNA 
(DBD), and ligand-binding domains (LBD), with a hinge region in between the DBD and LBD. 

 
AR shares sequence conservation with progesterone (PR), glucocorticoid (GR), and 

mineralocorticoid receptors (MR) in the DNA-binding and C-terminal ligand binding domains, yet 
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relative binding assays demonstrate a high-affinity of AR to endogenous androgens (55). DHT 

binds much more strongly to AR than T, with a relative binding affinity of 94-180% of T (62,63). 

However greater concentrations of T can achieve greater AR binding (64). 

 

When in the ligand-unbound state, AR remains in the cytoplasm forming complexes with heat-

shock proteins (Hsp). Binding of androgens to the ligand-binding domain induces a conformational 

change in the receptor, causing dissociation of Hsp and allowing for AR to homodimerize. 

Homodimeric AR may be phosphorylated and translocated to the nucleus, a process enabled by 

the nuclear localization signal region spanning between the hinge and DNA-binding region (55). 

AR then binds to ARE and recruits additional transcriptional co-regulators, either co-activators or 

co-repressors of gene transcription. Included in the recruited transcriptional machinery are histone 

acetyltransferases (HAT) that remodel chromatin to an open, accessible state to facilitate 

transcription of target genes, steroid receptor co-activators (SRC-1), and RNA polymerase II (65). 

The AF2 region enables the formation of the transcriptional machinery complex at a promoter and 

enhancer region, allowing for the transcription of AR target genes. Androgens acting on AR may 

also repress gene expression via the recruitment of a transcriptional repressive complex, consisting 

of the nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid 

receptors (SMRT), and histone deacetylases (HDAC) which causes chromatin to become tightly 

packed and inaccessible for transcription (66).  

 

In addition to the canonical genomic, transcriptional activity of AR, non-genomic actions of AR 

signaling have been described. Rapid effects of androgens on cells that cannot be attested to the 

slower transcription of target genes and translation of proteins have been demonstrated. Ligand-
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bound AR can trigger intracellular signaling cascades, such as the PI3K/Akt pathway (67), or the 

MAPK pathway, by interacting with cellular-Src tyrosine kinase at the inner face of the plasma 

membrane (68). Membrane-associated AR can also activate G-protein coupled signaling to open 

membrane calcium channels which increase intracellular calcium, leading to activation of PKC, 

PKA, and/or MAPK/ERK pathways (69). It has also been suggested that DHT when converted to 

3α-diol can bind to γ-aminobutyric acid type A receptors (GABAAR), triggering influx of chloride 

into cells resulting in hyperpolarization (70,71). Additionally, DHEAS can allosterically 

antagonize GABAAR, resulting in reduction in GABAAR currents (72-74). Crosstalk between AR 

and other signaling pathways have also been described, including growth factor receptor (insulin-

like growth factor 1 and epidermal growth factor) signaling (75), MAPK signaling, and cytokine 

(TNFα , IL-6) signaling pathways (76). 

 

Androgens may also signal via non-AR membrane bound receptors that are unrelated to steroid 

hormone nuclear receptors. Several multi-functional membrane proteins have been proposed to act 

as membrane-AR, including transient receptor potential cation channel M8 (TRPM8), G-protein 

coupled receptors OXER1 and GPCR6A, and the zinc-transporter Zrt Irt-like protein ZIP9 (77,78). 

While novel membrane androgen receptors are an interesting development, the work in this 

dissertation focuses only on the classic nuclear AR, whose effects on gene expression have been 

better described. Additionally, the majority of characterized and validated experimental models of 

AR deletion involves loss of the classic AR nuclear receptor.  

  

Androgens auto-regulate AR, and depending on the tissue or cell type, may either up or down 

regulate Ar mRNA expression. Castration-induced androgen deprivation results in increased Ar 
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mRNA in the ventral prostate, seminal vesicles, epididymis, kidney (79-81), pre-optic area and 

pituitary (82) of adult male rats. In contrast, Ar mRNA decreases in the hippocampus (83), and 

shows no change in testis with castration (81). Studies focused on androgen regulated expression 

of AR protein have also shown increases in AR in prostate and seminal vesicles (79), and decreased 

AR in efferent ductules and brain (84) with gonadectomy (85,86). The cause for these differences 

is not yet clear but may reflect differences in tissue-specific regulation of AR expression.  

 

Experimental approaches to investigate actions of androgens on AR 

Androgens have a variety of physiologic effects via AR in both male and female tissues. Distinct 

roles of AR have been elucidated by examining mutation or deletion of androgen steroidogenic 

enzymes or AR in clinical cases and preclinical animal models. Loss of function mutations in AR 

lead to either complete or partial androgen insensitivity syndrome (AIS), depending on the location 

and type of mutation. Features of AIS are replicated in the testicular feminization (Tfm) mouse 

(87) and rat models (88,89), including feminization of external genitalia and intra-abdominal testes 

in XY males, and resistance to the effects of androgens. Global loss of AR function due to mutation 

is useful for examining the overall effect of AR on phenotype, but does not necessarily provide 

organ, tissue, or cell specificity of AR action. Additionally, AR dysfunction can be induced by a 

variety of different mutations with differing degrees of severity in phenotype. Experimental female 

offspring are also extremely difficult to produce, as ArTfm males are infertile, and only possess one 

copy of the mutated AR. Molecular genetic approaches have been utilized to generate global-, 

tissue-, or cell-specific deletion of AR, or AR “knockouts” (ARKO), to overcome the difficulties 

of working with Tfm rodent models.  
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The Cre/loxP technology is the most common method to generate genetically-modified animal 

models in a conditional fashion. It uses the P1 bacteriophage-derived enzyme cyclization 

recombination (Cre), which recognizes a pair of inverted 34 base pair loxP (locus of crossing over 

in P1) sites, resulting in recombination of the “floxed” sequence of DNA (90) (Figure 1.4). Several 

AR-flox mouse lines have been generated, with loxP sites flanking exon 1 (91-93), exon 2 (94,95), 

or exon 3 (96,97). Recombination of the floxed sequence in exons 1 or 2 results in premature stop 

codons in Ar mRNA, and lack of transcription of remaining exons, leading to loss of AR protein 

expression (98). The AR-flox model recombining exon 3, however, results in an in-frame mutation 

where AR protein is expressed, can bind to ligand, but does not express a portion of the DNA-

binding domain, and therefore is unable to induce gene transcription but can still elicit non-

genomic actions (96). Of note, excision of exon 2 does not eliminate AR signaling via novel 

membrane bound AR (77,78). Therefore, rapid membrane effects via androgens may still be 

possible.  

 
Figure 1.4: Cre-mediated Recombination of Exon 2 of the Mouse Androgen Receptor. Exon 2 of Arflox 
mouse is flanked by two loxP sites, which are recognized by the enzyme Cre recombinase. Presence of Cre 
results in recombination, and excision of the target gene plus one loxP site.   
 
To drive tissue- or cell-specific deletion of target floxed genes, Cre can be conditionally expressed 

by insertion of the Cre transgene under control of tissue or cell-specific promoters. Global, or 

body-wide ARKO are generated using strong, widely-expressed promoters to drive Cre 
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expression, including the human cytomegalovirus (CMV), beta-actin, or phosphoglycerate kinase 

1 (PGK) promoters. Tissue-specific Cre expression and subsequent ARKO have been generated 

for many tissues, including testes (Leydig and Sertoli cells), ovary (granulosa and theca cells), 

pituitary, brain, muscle, adipose, bone, liver, and skin. Effects of ARKO in various tissues will be 

discussed further below. 

 

Physiologic effects of androgens 

Development and Sexual differentiation:  

Sex differentiation of the reproductive tract is one of the earliest effects of androgens acting on 

AR. Prior to sex differentiation, embryos contain two undifferentiated duct systems, Wolffian and 

Müllerian, which give rise to either the male or female reproductive tract, respectively (99,100). 

After differentiation of testes from bipotential gonads, fetal Leydig cells begin secreting A4, which 

is converted to T by fetal Sertoli cells (101,102). T then diffuses to nearby AR-expressing Wolffian 

ducts, where it promotes differentiation into seminal vesicles, vas deferens, and epididymis 

(103,104). Anti-Müllerian hormone (AMH) produced by Sertoli cells promotes regression of 

Müllerian ducts so that only Wolffian ducts will be present in differentiated males (105-107). 

Conversion of T to DHT via 5αR is required for virilization of the external genitalia, including 

penis and scrotum development, urogenital sinus development into prostate, and male-typical 

urethra (108,109). The requirement of androgens for the development of the male-typical 

reproductive tract and external genitalia has been clearly demonstrated by studies using mutations 

in AR. For example, Tfm rodents and 46,XY patients with complete AIS display feminized 

external genitalia, with a short, blind-ended vagina, small phallus, absence of epididymis, vas 

deferens, seminal vesicles, and prostate. Global ARKO males display similar phenotype to Tfm 
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males, with overall feminized appearance of external genitalia and lack of secondary and accessory 

reproductive organs (94,96).  

 

Male Reproductive Function: 

The role of androgens and AR are crucial for male reproductive physiology, especially in the testes 

where androgenic actions are critical for proper spermatogenesis and androgen production. 

Overall, with mutation of AR (Tfm) or global ARKO, testes are small and remain intra-abdominal, 

leading to infertility (94,96). However, androgens acting via AR play different roles in cells of the 

testes, including Sertoli and Leydig cells. Sertoli cells are the nurse cells of the testis, whose 

primary role is to nourish and provide support for developing germ cells, maintaining the blood-

testis barrier, making up part of the seminiferous tubules along with peritubular myoid cells, and 

secreting AMH during sex differentiation. AR expression in Sertoli cells is stimulated by FSH and 

androgens produced in nearby Leydig cells (110). Transgenic AMH-Cre mice have been used to 

drive Sertoli cell-specific ARKO (SCARKO), as AMH is expressed early in testicular 

development and is exclusive to immature Sertoli cells. SCARKO mice display reduced testis mass 

and are infertile due to arrest of spermatogenesis during meiosis at the pachytene spermatocyte 

stage (94,111,112). The blood-testis barrier is also disrupted in SCARKO mice, due to decreased 

expression of tight junction related components (113,114). However, the ability for Sertoli cells to 

secrete AMH and trigger sexual differentiation of the reproductive tract is not impaired, and 

SCARKO mice develop a male typical reproductive tract, accessory organs, external genitalia, 

with the exception of the seminiferous tubules, which are smaller and do not develop a lumen.  
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Androgens are also important for Leydig cell function. Leydig cells are interspersed throughout 

the interstitial space surrounding the seminiferous tubules and are the primary cell responsible for 

producing T. LH stimulates T production by the Leydig cell, which feeds back to AR expressed in 

Leydig cells in an autocrine manner (115,116). AR is essential for promoting maturation and 

development of Leydig cells in adult males (117,118), but is dispensable for fetal Leydig cells, 

whose function is androgen independent. Leydig cell-specific ARKO (LCARKO) mice that have 

been generated using Cre-driven by the AMH-receptor 2 (Amhr2) promoter display infertility, 

decreased mass of testes and epididymis, arrested spermatogenesis at the spermatocyte stage, and 

reduced levels of T (119,120). However, Amhr2 is expressed in cells other than Leydig (121,122), 

limiting the conclusions that can be drawn from this line.  

 

Androgens acting via AR are required for the maintenance and homeostasis of adult male 

accessory glands, including the epididymis, vas deferens, seminal vesicles and prostate, which are 

highly androgen dependent (123). Loss of androgens via castration or pharmacologic blockade of 

AR results in decreased mass of seminal vesicles (124), and atrophy and deterioration of prostate 

gland structures via apoptosis (125,126).  

 

Sufficient levels of androgens are required to maintain male reproductive function and secondary 

sex characteristics. Hypoandrogenism in males, or androgen deficiency, is generally defined as 

total T levels below the lower end of the reference range in eugonadal males (below ~300-350 

ng/dL)(127,128). While male androgen levels naturally decline with age (129), primary 

hypogonadism (defect in testicular T production) or secondary hypogonadism (defect in 

hypothalamic GnRH or pituitary LH/FSH production) can result in clinical androgen deficiency. 
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Androgen deprivation therapy for the treatment of androgen-dependent cancers (i.e., prostate 

cancer) will also result in hypoandrogenism, and can be achieved via orchidectomy, GnRH 

agonists or antagonists, or AR antagonists (130). Hypoandrogenism in males can cause decreased 

sperm production and infertility, regression or lack of development of secondary sex 

characteristics, and reduced libido or sexual dysfunction, (127,131,132).  

 

Since males typically have a high concentration of circulating androgens, symptoms of elevated 

androgens beyond the typical male range may not be readily apparent (133). Endogenous androgen 

excess in males is uncommon and may be attributed to androgen-secreting adrenal or testicular 

tumors, or congenital adrenal hyperplasia. It may manifest as precocious puberty, increased body 

and muscle mass, gynecomastia, or acne (134-136). Male androgen excess may also be attributed 

to abuse of anabolic steroids or misuse of T prescriptions. Supraphysiologic doses of T may be 

used for their desired anabolic effects in skeletal muscle, to stimulate erythropoiesis, and gain 

advantage in competitive sports. However, long-term exogenous androgen excess in males leads 

to suppression of the HPG axis due to constant negative feedback, causing decreased 

spermatogenesis and infertility (137).  

 

Female Reproductive Function: 

Androgens also play an important role in female reproduction, including ovarian folliculogenesis, 

particularly during early follicle growth (138). In ovaries, AR is expressed in granulosa, theca, 

stromal cells, and oocytes (139-142). Developing follicles begin expressing AR at the primary 

stage, with expression increasing during transition to secondary and pre-antral, reaching a peak in 

small antral follicles. Androgens acting via AR reduce atresia and enhance expression of FSH 
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receptors, which promotes growth of pre-antral follicles (143). Mouse models of ARKO have been 

useful in dissecting the populations of AR expressing cells required for these effects. Female Tfm 

and global ARKO mice display reduced fertility, which is attributed to decreased ovarian follicle 

counts and premature ovarian insufficiency (92,95,97,144). Ovaries from granulosa cell-specific 

ARKO (GCARKO) mice show an increase in preantral and unhealthy atretic follicles, leading to 

subfertility and premature ovarian insufficiency (145,146). The phenotype of GCARKO mice 

closely mimics that of the global ARKO, indicating that many of the negative effects on fertility 

are due to loss of AR in granulosa cells. Contrarily, loss of AR specific to theca cells (ThARKO) 

does not result in any changes to fertility, pubertal onset, or serum T or E2 (147). 

 

AR is expressed throughout the female reproductive tract, including the Fallopian tube epithelium 

(148,149), uterine endometrium and myometrium (150), vaginal stroma and epithelium (151,152). 

Cyclic changes in ovarian estradiol levels induce changes in AR expression in the female 

reproductive tract. For example, estradiol upregulates AR in the uterus and vagina (153,154). 

Experimental reduction in estradiol via ovariectomy results in decreased Ar mRNA in the mouse 

uterus and vagina, which is restored with administration of estradiol (151). In the uterus, androgens 

modulate proliferation of the myometrium and endometrium (155). Global loss of AR in mice 

results in altered uterine morphology, with elongated and smaller diameter uterine horns (156). 

Androgens also have physiologic effects on vaginal physiology, often in synergy with estrogens. 

They regulate epithelial function (157), mucin production (158,159), maintenance of innervation 

(160,161), and local blood flow (162,163). Additionally, vaginal tissues express steroidogenic 

enzymes needed to synthesize androgens, and can convert DHEA to T and/or DHT, indicating 

intracrine androgen actions (164). Vestibular glands (major or Bartholin’s glands, and minor or 
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Skene’s glands) of the female vulva, which are the equivalent of the male bulbourethral gland, also 

depend on androgens and AR for proper mucous production and vaginal lubrication (165). 

 

In contrast to the stimulatory role in some tissues of the reproductive tract, androgens negatively 

impact mammary gland development in an age-specific manner. During embryonic development, 

androgens acting via AR promote the regression of primordial mammary tissues in males (166), 

while development of mammary tissue continues in females that do not produce androgens during 

embryogenesis. Postnatally, AR is expressed in epithelial and stromal cells of the mammary glands 

(167). Androgens inhibit mammary gland maturation by suppressing E2-induced epithelial 

proliferation and breast development during puberty (168,169).  

 

While androgen levels in females are typically much lower than males, hypoandrogenism can have 

negative effects on female fertility and sexual health (170). Female androgen insufficiency can be 

caused by age (menopause), primary or secondary hypogonadism, adrenal insufficiency (leading 

to loss of androgenic precursors DHEA and DHEAS), oral contraceptive pills, premature ovarian 

insufficiency, or oophorectomy (171). However, since accurate female androgen levels are 

difficult to obtain without liquid chromatography and mass spectrometry (LC/MS)-based methods 

(172,173), there is no set of clinical guidelines to define female androgen deficiency. Nonetheless, 

supplementation of DHEA for those with low functional ovarian reserve undergoing in vitro 

fertilization treatments has proven beneficial for some patients (174). 

 

Elevated androgens, however, prove much more consequential for female reproductive health. 

Androgen excess in females can be a result of androgen-secreting adrenal or ovarian tumors, 
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Cushing’s syndrome, adrenal hyperplasia, pregnancy, or drug induced androgen excess, but most 

commonly, polycystic ovary syndrome (PCOS) (175,176). Consequences of hyperandrogenism in 

females include excessive male pattern body and facial hair growth (hirsutism), androgenic 

alopecia, increased acne, oligo or anovulation, subfertility or infertility, insulin resistance, 

abdominal obesity, increased risk of type 2 diabetes, dyslipidemia, increased risk of cardiovascular 

disease, and increased depression and anxiety. Levels of total T in female hyperandrogenism are 

elevated relative to the typical range of female values, but usually do not reach that of the typical 

adult male range, i.e., male total T = ~222 – 848 ng/dL, female total T = ~3 – 52 ng/dL, PCOS 

total T = ~23 – 138 ng/dL (28). In certain cases of severe biochemical hyperandrogenism caused 

by androgen producing tumors, female total T may overlap with the typical adult male range, i.e., 

androgen producing tumor average female total T range = ~185 – 410 ng/dL (177). Androgenic 

precursors such as DHEA/DHEA-S and A4 may also be elevated, depending on the origin of 

hyperandrogenism (ovarian vs adrenal), and pre vs post-menopausal status. For example, post-

menopausal patients with PCOS may show greater relative elevations in A4, rather than T (176). 

 

Figure 1.5: Adult serum testosterone levels. Range of typical total testosterone for adult males and 
females, and female polycystic ovary syndrome (PCOS) and androgen producing tumor (APT).  
 

Since AR is expressed in multiple reproductive and HPG axis tissues, increases in female 

androgens can have diverse physiologic outcomes. For example, despite being a heterogeneous 

syndrome, many patients with PCOS exhibits similar neuroendocrine and ovarian changes. GnRH 
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neurons display continuous increased pulse frequency (178-181), which preferentially drives 

pituitary LH over FSH production (182,183). Increased LH pulse frequency and amplitude drives 

increased ovarian androgen production by theca cells. Excessive androgen action on AR drives 

proliferation of preantral follicles and depletes the primordial follicle pool (184,185). Smaller, 

non-dominant follicles also inappropriately respond to LH and undergo premature luteinization 

(186). Without a rise in FSH during the follicular phase, no dominant follicle is selected, resulting 

in early antral follicle arrest. Without ovulation of a mature follicle, no corpus luteum is formed 

and progesterone remains low. Lack of a drop in progesterone during the late luteal phase needed 

to trigger shedding of the endometrium, along with chronic E2 stimulation, results in a buildup of 

endometrial tissue (187,188). Elevated androgens also reduce hypothalamic sensitivity to 

progesterone, decreasing progesterone-mediated negative feedback action on GnRH pulses (189). 

These effects together lead to a vicious cycle of increased GnRH, LH, and ovarian androgens. 

 

Effects in metabolic regulation 

Androgens have notable effects on the regulation of energy balance and body composition through 

sex-specific actions on a variety of metabolic tissues. Male ARKO mice develop obesity later in 

life due to decreased energy expenditure and reduced brown adipose tissue thermogenesis, insulin 

resistance, impaired glucose tolerance, and accumulation of triglycerides in skeletal muscle and 

liver (190-192). Male global ARKO mice replicate phenotypes seen in human males with 

hypoandrogenism, including increased adiposity, and decreased muscle mass and bone density 

(193).  

 
Interestingly, elevated androgens in females usually promote metabolic dysfunction similar to 

androgen deficiency in males. Female hyperandrogenism can decrease insulin sensitivity in 
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muscle, liver, and adipose tissue, diminish liver glycogen synthesis, promote visceral adipose 

accrual by increasing adipocyte size and inhibiting lipolysis, and cause beta cell dysfunction via 

increased basal hypersecretion of insulin, and inadequate or exaggerated glucose-induced insulin 

secretion (194-197). Overall, these impairments increase the risk of type 2 diabetes and metabolic 

syndrome.  

 

The metabolic changes seen in hypoandrogenic males and hyperandrogenic females highlights the 

impact of sex-specific changes in androgen levels in multiple organs (197,198). To dissect out the 

role of androgens acting via AR on different metabolic organs, several tissue-specific ARKO 

models have been generated. For example, liver-specific ARKO results in hepatic steatosis and 

insulin resistance in high-fat diet fed male mice (199), indicating that androgens prevent excess 

lipid accumulation under normal physiologic conditions. Lack of AR in white adipose tissue, 

results in decreased body weight and hyperinsulinemia early in life in male mice. Eventually, these 

mice develop deficiencies in insulin secretion and become hyperglycemic (200).  

 

Skeletal muscle is a major target of androgenic action, with general anabolic effects. Certain 

skeletal muscles display greater dependence on androgens than others. For example, muscles 

responsible for control of the penis (e.g., levator ani) that are innervated by the sexually-dimorphic 

spinal nucleus of the bulbocavernosus (SNB) are highly androgen dependent  (201-203). AR is 

expressed in myofibers, satellite cells (muscle stem cells), fibroblasts, and mesenchymal stem cells 

(204,205). Deletion of AR from satellite cells results in decreased grip strength, decreased mass 

of androgen-dependent muscles (levator ani), and fiber type switching in the soleus muscle in male 
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mice (206). Additionally, decreased muscle strength and maximal force production in the 

hindlimbs was also observed in male myofiber-specific ARKO mice (207).  

 

Androgens also contribute to pancreatic endocrine function. Beta cells, the endocrine component 

of the pancreas responsible for producing insulin, express AR, and DHT can enhance glucose-

stimulated insulin secretion (GSIS) in beta cell cultures (208). Loss of androgens or AR in male 

rodents can lead to impaired glucose homeostasis, as castration and/or ARKO in male rodents 

leads to a reduction in beta cell mass, impaired insulin secretion, and glucose intolerance 

(209,210). Furthermore, male mice with deletion of AR from beta cells display impaired glucose 

tolerance and reduced insulin secretion in response to glucose (208).  

 

Brain as a Link for Sex-Specific Androgen Actions in Reproduction and Metabolism 

While the effects of androgens acting on AR are important for homeostasis of peripheral tissues, 

androgens can impact reproduction and energy homeostasis via direct actions in the brain. The 

brain is a highly androgen-sensitive organ. AR is expressed throughout the hypothalamus, 

telencephalon, thalamus, and brainstem of both sexes (211-216). In males, T during a critical 

window of prenatal brain development is necessary for permanent organizational changes which 

masculinize and defeminize the brain, leading to male-typical behaviors and physiology later in 

life (217). However, in rodents, the majority of these effects is attributed to androgens acting via 

estrogen receptors (ERα, ERβ) after aromatization, as mice with deletion of both ERα and ERβ 

fail to display male-typical sexual behavior (mounting) during adulthood (218). Loss of aromatase 

expression also results in reduced male-typical behavior (219). While estrogens play a dominant 
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role in the organization of a male-typical brain, loss or mutation of AR also results in reduction or 

abolition of male-typical sexual behavior and aggression (220-223).  

 

While AR may not play a significant role in the organizational programming of the brain, it is 

required for executing male-typical behaviors in mature rodents. Interestingly, primates do not 

show the same dependence on estrogens for brain sexual differentiation as do rodents, and 

androgens acting via AR are the dominant mechanism driving male-typical differentiation in 

primates (224,225). In addition to deficits in behaviors, neuron-specific ARKO (NARKO) mice 

show disruption in growth, with decreased body mass and serum insulin-like growth factor 1 

(IGF1), and disrupted HPG axis (226). Female NARKO mice show altered ovarian follicle 

dynamics due to dysregulated kisspeptin and LH release (227).   

 

AR contributes to negative feedback regulation of the HPG axis. GnRH neurons located in the 

hypothalamus release GnRH at the median eminence, which is transported through the pituitary 

portal vessels to gonadotropes in the anterior pituitary gland. GnRH stimulates gonadotropes to 

release LH and FSH, which in turn stimulate Leydig and Sertoli cells, respectively. T produced by 

Leydig cells circulates back to the hypothalamus and pituitary gland and exerts negative feedback, 

which maintains levels of gonadotropins and T within homeostatic range.  

 

At the level of the hypothalamus, T decreases GnRH pulse frequency, which in turn results in 

decreased LH pulse frequency, amplitude, and mean serum LH (228,229). These effects are 

demonstrated through castration, which removes negative feedback from the gonads. Castration 

leads to increased GnRH neuron firing rate, increased GnRH release at the median eminence, and 
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increased LH pulse frequency, which can be reversed by treatment with T (230-233). Negative 

feedback actions of androgens are mediated via both androgenic and estrogenic pathways (AR and 

ER), as both DHT and estradiol reduce serum LH and increase LH interpulse-interval in castrated 

male sheep (234,235). However, only estradiol reduces GnRH neuron firing in castrated male mice 

(236). The contribution of both AR and ER in the hypothalamus and pituitary in HPG axis negative 

feedback likely represents redundant mechanisms to ensure proper control. However, GnRH 

neurons themselves do not express detectable levels of either AR or ERα (237-239), so the negative 

feedback effect of T is likely via neurons upstream of GnRH neurons. 

 

Kisspeptin is one of the most potent stimulators of GnRH release via signaling through the G-

protein coupled receptor GPR54 (aka, Kiss1R) (240). Kisspeptin neurons are located in the 

forebrain, including the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus of 

the hypothalamus (ARH), where kisspeptin is coexpressed with neurokinin and dynorphin (KNDy) 

(241). Notably, kisspeptin neurons are sensitive to sex steroids, and express ERα and/or AR 

(242,243). Androgens influence Kiss1 mRNA expression in both the AVPV and ARH. For 

example, castration of male mice leads to increased Kiss1 in the ARH (242). In addition to 

influencing gene expression, androgens can modulate kisspeptin neuronal activity. In male mice, 

DHT inhibits long-term episodic activity in ARH kisspeptin neurons (244). Although the role of 

estrogens in both negative and positive feedback actions is well described in females, the role of 

androgens acting upon AR is poorly understood. Nonetheless, female mice with neuron-specific 

ARKO display reduced Kiss1 mRNA in the AVPV, but increased Kiss1 in the ARH during 

proestrus (227), indicating that androgens acting via AR may regulate Kiss1 expression in females 
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as well. These studies reflect the importance of neuronal AR in regulating neuroendocrine output 

upstream of GnRH neurons.  

 

In addition to kisspeptin-expressing neurons, multiple other pathways converge upon GnRH 

and/or kisspeptin neurons in HPG axis regulation. One of such critical inputs is the melanocortin 

system. The hypothalamic melanocortin system consists mainly of two distinct groups of neurons 

in the ARH, i.e., neurons that coexpress pro-opiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript (CART), and those that coexpress neuropeptide Y (NPY) and 

agouti-related peptide (AgRP) (245-247). POMC/CART and NPY/AgRP neurons are the first 

order neurons that sense metabolic signals, including leptin, insulin, and ghrelin. Leptin increases 

activity of POMC/CART neurons, but inhibits NPY/AgRP neurons, resulting in an overall 

anorectic effect which decreases food intake and increases energy expenditure (248-250). In 

addition to regulating energy homeostasis, melanocortin neurons also modulate the reproductive 

axis via direct actions in kisspeptin neurons (251-255). Activation of NPY/AgRP neurons or fibers 

results in inhibition of kisspeptin neurons (256), and decreased LH pulse frequency (257). 

Conversely, kisspeptin stimulates POMC neurons, and indirectly inhibits NPY/AgRP neurons 

(258).  

 

While metabolic cues have well-described effects on the reproductive neuroendocrine axis, 

gonadal hormones can act to modulate overall hypothalamic sensitivity to metabolic hormones, 

including leptin and insulin. For example, gonadal hormones modulate patterns of food intake and 

energy expenditure in a sex-specific manner (259-261). These effects are mediated in part through 

direct actions on POMC and/or NPY/AgRP neurons, as a subset of each neuronal population 
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coexpress AR. Castration-induced loss of androgens results in decreased Pomc mRNA in the male 

rodent and primate ARH, which is restored by T treatment (262-264). Additionally, treatment of 

neonatal female mice with DHT results in decreased POMC immunoreactivity and reduced 

projections from the ARH, resulting in increased food intake (265). However, species differences 

are conspicuous. Whereas sheep display a high coexpression of AR in POMC and NPY/AgRP 

neurons (266), only a small subset of POMC neurons (~3%) coexpress AR in the rat (267). 

Exposure to prenatal androgen excess increases the proportion of NPY/AgRP-AR positive neurons 

in female mice, and the number and projections of NPY/AgRP neurons in ewes (266,268). This 

suggests that, at least in rodents, the effects of androgens on energy expenditure via melanocortin 

neurons is mediated by estrogens after aromatization, as POMC neurons express ERs (269,270). 

Moreover, androgens can influence POMC and/or NPY/AgRP neurons via upstream AR-

expressing neurons. For instance, leptin exerts sexually dimorphic trophic effects on NPY/AgRP 

fiber innervation during postnatal development (271). Yet, NPY/AgRP neurons express virtually 

no detectable AR or ERα (260,271), indicating that other AR-positive neurons mediate these 

effects.  

 

The ventral premammillary nucleus (PMv) is another key site for the metabolic control of 

reproduction. Interestingly, the PMv shows dense expression of AR in both sexes, but is relatively 

low in ERs (211,272). Furthermore, the PMv has virtually no aromatase expression (273), 

suggesting preferential regulation by androgens acting via AR. In addition to receiving signals 

conveying reproductive status, the PMv also integrates signals conveying energy balance, and 

environmental cues, such as pheromones (274), and photoperiod in seasonal breeders (275). PMv 

neurons express a variety of receptors, including receptors for leptin, insulin, ghrelin, sex steroids, 
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and melanocortins (272,276-279). Neurons of the PMv project directly to GnRH neuronal cell 

bodies and terminals in the median eminence (280-283), as well as to kisspeptin neurons (281,284-

286). The PMv facilitates leptin’s permissive actions on puberty and fertility, as re-expression of 

the leptin receptor (LepRb) in LepRb-null mice is sufficient for pubertal progression and fertility 

in females (283). AR is coexpressed in LepRb PMv neurons of male mice (287), but the role of 

androgen actions in PMv neurons has not been determined. 

 
Current Gap in Knowledge 

Despite the wealth of knowledge on the physiologic effects of androgens in various organs and 

tissues, the action of androgens via AR in the brain has remained largely unexplored. The brain is 

a highly heterogeneous tissue, therefore, the neuronal-specific AR knockout models cannot 

distinguish the effects of androgens on different brain nuclei, cell types, and function. Furthermore, 

many studies investigating the role of androgens in the brain have either neglected to include 

female subjects, examined only adult animals, or focused on the role of aromatized T acting on 

ERs.  

 

AR is highly expressed in the hypothalamus, particularly in the ARH and PMv (211). These 

hypothalamic nuclei contain key neuronal populations associated with the neuroendocrine 

reproductive axis and the metabolic control of reproduction, such as LepRb (277). LepRb neurons 

respond to leptin, which signals the amount of energy stored in the form of lipids (288,289). 

Therefore, leptin indicates that enough energy is available to conduct energetically-demanding 

processes, such as pregnancy and lactation, territoriality in males, and gametogenesis in both sexes 

(290,291). Lack of either leptin or LepRb results in obesity, diabetes, and infertility (292). This 

phenotype is reminiscent of global or neuronal ARKO mice, which develop increased adiposity 
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later in life, glucose intolerance, and insulin resistance (192,293). Whether AR/LepRb neurons 

mediate the sex-specific actions of androgens in reproduction and/or metabolism remains 

unknown. 

 

Hypothesis and Objectives 

I hypothesize that subpopulations of hypothalamic LepRb neurons coexpressing AR play a crucial 

role in androgenic actions in reproductive and metabolic regulation, and mediate the deficits 

caused by hyperandrogenism in female mice.  

 

The overall objective of this dissertation is to examine the role of androgens acting on AR in the 

brain, and to determine whether LepRb neurons relay the androgenic actions in reproductive and/or 

metabolic function. To accomplish this objective, we performed three independent studies 

described in separate chapters.  

 

In chapter 2, we present a systematic evaluation of AR distribution in the brain of prepubertal and 

adult mice of both sexes. We found high expression of Ar mRNA in multiple brain regions, 

including the hypothalamus. Of interest are areas which are also dense in LepRb, such as the ARH 

and PMv (Cara et al, J Neuroendocrinol, 2021, re-submitted following revision). 

 

In chapter 3, we assessed if the direct actions of androgens via AR in LepRb cells impact 

metabolism and/or reproduction. We generated a LepRb-specific ARKO mouse model, and 

performed a comprehensive analysis of the reproductive and metabolic phenotype of male and 

female mice (Cara et al, Endocrinology, 2020).  



29 
 

 

In chapter 4, we assessed if deletion of AR from LepRb cells protects female mice from the 

consequences of exposure to androgen excess during late embryonic development. We used a well-

characterized mouse model of prenatal androgen excess that replicates many features of PCOS 

(Cara et al, in preparation).  

 

Finally, in the fifth chapter, I discuss the findings in an integrative perspective, highlighting the 

strengths and weaknesses, and proposing future studies needed to further advance the 

understanding of the role of androgens in the central control of reproduction and metabolism.   
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CHAPTER 2 

 
Brain Sites Preferentially Responsive to Androgens During Pubertal Transition in Mice 

 
 
Abstract 

Androgens are steroid hormones that play a critical role in brain development and sexual 

maturation by acting upon both androgen receptors (AR), and estrogen receptors (ERα/β) after 

aromatization. The contribution of estrogens from aromatized androgens in brain development and 

the central regulation of metabolism, reproduction, and behavior is well defined, but the role of 

androgens acting on AR has been unappreciated. Here we map the sex specific expression of Ar 

in the adult and developing mouse brain. Postnatal days (PND) 12 and 21 were used to target a 

critical window of prepubertal development. Consistent with previous literature in adults, sex-

specific differences in Ar expression were most profound in the bed nucleus of the stria terminalis 

(BST), medial amygdala (MEA), and medial preoptic area (MPO). Ar expression was also high in 

these areas in PND 12 and 21 of both sexes. In addition, we describe extra-hypothalamic and extra-

limbic areas which show moderate, consistent, and similar Ar expression in both sexes at both 

prepubertal time points. Briefly, Ar expression was also observed in olfactory areas of the cerebral 

cortex, in the hippocampus, several thalamic nuclei, and cranial nerve nuclei involved in 

autonomic sensory and motor function. To characterize areas that are preferably responsive to 

androgens, we mapped the coexpression of AR-immunoreactivity (AR-ir) and aromatase-Cre or 

ERα-Cre dependent eGFP expression. We found that only BST, MEA, and part of the ventrolateral 

subdivision of the ventromedial hypothalamus (VMHvl) coexpress AR-ir and aromatase-
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Cre;eGFP. Coexpression of AR-ir and ERα-Cre;eGFP was more penetrant, but still restricted to 

hypothalamic and limbic sites. Our findings indicate that in various brain areas androgens, rather 

than neuroestrogens or circulating estrogens, play an important role in female neuronal 

development and physiology.  

 

Introduction 

Gonadal steroids, including androgens and estrogens, play a dominant role in the development of 

sex differences in the brain. During male embryonic development, expression of the Sry gene 

located on the Y chromosome leads to differentiation of bipotental gonads into testes, which begin 

secreting testosterone (1-4). Embryonic testosterone is locally converted to estradiol by the enzyme 

P450 aromatase (CYP19A1) (5-7), which acts to masculinize and defeminize specific brain nuclei 

via estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) (8-11). Both effects take place 

during the organizational window of development (12-14), when the bipotential brain is most 

sensitive to the organizational effect of gonadal steroids. Developing females, which lack Sry, do 

not develop testes or produce testosterone, and are protected from maternal estradiol by the 

presence of alpha-fetoprotein in utero, and therefore differentiate toward a feminized brain (15,16). 

As a result, several adult brain sites display gonadal steroid-dependent sexual dimorphism (17-

20). 

 

During puberty, increased activity of hypothalamic gonadotropin releasing hormone (GnRH) 

neurons drives pituitary synthesis and release of gonadotropins, which induce gonadal steroid 

secretion and production of mature gametes (21). Testosterone activates developmentally 

programmed brain circuits to generate male specific behaviors, while cyclical ovarian steroids 
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have a similar role in females (22). Circulating levels of androgens are higher in males during and 

after completion of puberty (23-25), while very low levels of androgens are detected during the 

prepubertal stage in both sexes. In the hypothalamus, however, androgen receptor 

immunoreactivity (AR-ir) is observed throughout postnatal development. AR-ir is higher in males 

at postnatal day 5, but comparable at 15 days of age, when increasing numbers of female neurons 

show AR-ir (26). This is highly relevant as the prepubertal window between postnatal days 12 and 

22 accounts for the greatest differences in temporal gene expression (27,28) indicating that active 

neurodevelopmental changes occur prior to puberty and the activation of the hypothalamic-

pituitary-gonadal (HPG) axis, when circulating gonadal steroids are low, particularly in females.  

 

The requirement of gonadal steroids and sexual dimorphism in specific brain nuclei for 

reproduction has been widely demonstrated (29,30), but the same cannot be said of 

nonreproductive sex-dependent or sex-associated brain responses and function. Among them, 

emotion, motivation, addiction, and energy balance are well-defined (31). Notably, sex is one of 

the most relevant risk factors for a variety of psychiatric and neurologic disorders, most of which 

show clinical onset in peripubertal stages (32). Whether this is a direct effect of developmental 

testosterone is not clear. In both sexes many adult brain areas outside reproductive centers are 

androgen sensitive and express AR (33), but the distribution of Ar expression in male and female 

brain during the prepubertal time window has been poorly defined. 

 

In this study, we performed a comprehensive analysis of Ar expression in the mouse brain, 

expanding upon previous descriptions (26,34-37) to include all main subdivisions (e.g., neocortex, 

thalamus, brainstem, circumventricular organs) in both sexes. In addition, we mapped the 
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distribution of Ar expression in the developing brain, specifically at postnatal days 12 and 21, 

which frame a critical window of pubertal development (27,28). Finally, we identify regions that 

are preferentially responsive to androgens in females, i.e., those that lack the enzyme aromatase 

and do not express ERα. Our data provides a greater in-depth anatomical map of reproductive and 

non-reproductive sites of androgen action in the male and female mouse brain, particularly during 

pubertal transition.  

 

Methods 

Animal Ethics 

All research animals were acquired, used, and maintained in accordance with the National 

Research Council Guide for the Care and Use of Laboratory Animals (38), the US Public Health 

Service’s Policy on Humane Care and Use of Laboratory Animals, and Guide for the Care and Use 

of Laboratory Animals, as well as federal, state, and local laws. Procedures and protocols were 

approved by the University of Michigan Committee on Use and Care of Animals (IACUC, Animal 

Protocol: PRO8712).  

 

Animals 

C57BL/6J (JAX® mice, stock #000664), aromatase-Cre (aroCre, JAX® mice, B6.129S(SJL)-

Cyp19a1tm2.1(cre)Shah/J, stock #027038, provided by Dr. Nirao Shah, Stanford University, (39)), 

ROSA26-loxSTOPlox-eGFP-L10a (JAX® mice, B6;129S4-Gt(ROSA)26Sortm9(EGFP/Rpl10aAmc/J, 

stock #024750, (40)), and ERαCre (JAX® mice, B6N.129S6(Cg)-Esr1tm1.1(cre)And/J,  stock #017911, 

(41)) mice were housed in an Association for Assessment and Accreditation of Laboratory Animal 

Care (AAALAC) accredited facility at the University of Michigan Medical School. Mice were 
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housed in a 12:12 light/dark cycle environment with controlled temperature (21-23°C) and 

humidity (30-70%). Mice were provided water ad libitum and were fed a phytoestrogen-reduced 

diet (16% protein, 4.0% fat, 48.5% carbohydrate, Teklad 2916 irradiated global rodent diet, 

Envigo) or a phytoestrogen-reduced, higher protein and fat diet (19% protein, 9% fat, 44.9% 

carbohydrate, Teklad 2919 irradiated global rodent diet, Envigo) for breeding and lactating 

females. Phytoestrogen-reduced diets were used to avoid any effects of exogenous dietary 

estrogens on AR or aromatase expression in experimental mice. Primers used for genotyping are 

listed in Table 2.1. Adult male mice were single housed at least one week prior to euthanasia to 

control for housing status, which may impact testosterone levels (42), and androgen-regulated AR 

expression (36,37). Adult female mice (group housed) were euthanized during diestrus, after 

completing at least two estrous cycles. Cycle stage was determined by vaginal lavage with 

predominately leukocytes (43) and confirmed by uterine weight below 100 mg (44).  

Table 2.1: Primers used for genotyping 
Mice Primer Sequence Size (bp) 

aroCre 
WT FOR 5’ AAA TGA GGA CAG GCA CCT TG 3’ 
MUT FOR 5’ GAA ACA GGG GCA ATG GTG 3’ 

COMM REV 5’ CGG ATA AGT AAT GCC CCA GA 3’ 

Wt: 109 
Mutant: 140 

R26-loxSTOPlox-
eGFP-L10a 

FOR 1 5’ GAG GGG AGT GTT GCA ATA CC 3’ 
FOR 2 5’ TCT ACA AAT GTG GTA GAT CCA GGC 3’ 

REV 5’ CAG ATG ACT ACC TAT CCT CCC 3’ 

Wt: 300 
Mutant: 200 

ERαCre 
COMM FOR 5’ AAC AAA GGC ATG GAG CAT CT 3’ 

WT REV 5’ CCA CAG TGT ACG CAG GAG AC 3’ 
MUT REV 5’ CGG ACA GAA GCA TTT TCC AG 3’ 

Wt: 331 
Mutant: 470 

 

The aromatase-Cre (aroCre) mouse line, which contains an IRES-Cre transgene knocked into the 

3’ UTR region of the Cyp19a1 locus (39) was crossed with reporter mice that express eGFP-L10a 

in a Cre-dependent manner to obtain aroCre;eGFP mice. AroCre mice were bred to homozygosity for 

the Cre allele, as two copies of Cre are required for efficient recombination of floxed genes.  
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The ERαCre mouse line, which contains an attP-flanked 2A oligopeptide and Cre recombinase 

knocked into the 3’ UTR region of the Esr1 gene (41), was crossed with reporter mice that express 

eGFP-L10a to obtain ERαCre;eGFP mice. ERαCre mice were heterozygous for the Cre allele. 

 

Sample size was 3-4 animals per sex and per age group (PND 12, PND 21, and adult) for C57BL/6J 

mice, and 3-4 adult females/group for aroCre;eGFP and ERαCre;eGFP mice.  

 

Tissue preparation  

Adult (postnatal day (PND) 56-70) and PND 21 mice were deeply anesthetized with isoflurane 

and transcardially perfused with diethyl pyrocarbonate (DEPC)-treated 0.1M PBS until liver and 

lungs cleared (about 1 minute), followed by 10% neutral buffered formalin (NBF) for 10 minutes. 

Brains were dissected and postfixed for 2 h, then transferred to 20% sucrose in DEPC-treated 0.1M 

PBS overnight for cryoprotection. PND 12 mice were anesthetized with isoflurane and euthanized 

by decapitation. Brains were dissected and fixed in 10% NBF for 4 h, then transferred to 20% 

sucrose in 10% NBF for 48-72 h at 4°C. PND 12 and PND 21 brains were embedded in optimal 

cutting temperature (OCT) compound, frozen on dry ice, and stored at -80°C. Brains from PND 

12 and 21 mice were sectioned at 30 µm thickness on the frontal plane into 4-5 series on a cryostat 

(Leica CM 3050S). Sections were directly collected onto SuperFrost Plus slides (Fisher Scientific) 

and stored at -20°C. Adult brains were sectioned at 30 µm thickness on the frontal plane into 5 

series on a freezing microtome (Leica SM 2010R). Sections were stored at -20°C in DEPC-treated 

cryoprotectant. 

 

Immunohistochemistry 
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AR immunoreactivity was visualized using a modified tyramide signal amplification (TSA) 

method previously described (45). Brain sections were rinsed with 0.1M PBS, incubated in 0.6% 

hydrogen peroxide for 30 min, rinsed with 0.1M PBS, then blocked with 3% normal donkey serum 

with 0.25% Triton-X-100 for 1 h at room temperature. Sections were incubated overnight with 

rabbit anti-AR antibody (1:200, AbCam [EPR1535(2)], Cat #ab133273, RRID: AB_11156085). 

Sections were rinsed with 0.1M PBS and then incubated for 1 h with biotinylated donkey anti-

rabbit IgG (1:500, Jackson ImmunoResearch Laboratories, Cat #711-065-152, RRID: 

AB_2340593), followed by incubation in avidin-biotin (AB) solution in 0.1M PBS (1:1000, Vector 

Laboratories) for 1 h. Next, sections were incubated in biotinylated tyramide (1:250, Perkin Elmer) 

with 0.009% hydrogen peroxide for 10 min, followed by incubation with streptavidin-conjugated 

AlexaFluor 594 (1:1000, Invitrogen, ThermoFisher) for 1 h. Sections were mounted onto gelatin-

coated slides and coverslipped with ProLong Gold Antifade mounting medium (Invitrogen, 

ThermoFisher).  

 

In situ hybridization  

Adult brain sections were mounted onto Superfrost Plus slides (Fisher Scientific) in DEPC-treated 

0.1M PBS, air dried overnight at room temperature, and stored at -20°C. For pretreatment, slides 

were thawed at room temperature for 15-20 min, then fixed with 10% NBF for 15 min. Slides were 

rinsed with DEPC-treated PBS, then dehydrated with increasing concentrations of ethanol and 

cleared with xylene. Slides were rehydrated, boiled in sodium citrate (0.01M sodium citrate, pH 

6.0 in DEPC-H2O) in a microwave for 10 min, dehydrated, and air dried for 30 min at room 

temperature.  
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To generate a 35S-labelled Ar cRNA riboprobe, a cDNA template was first generated by RT-PCR 

amplification using cDNA obtained from whole mouse hypothalamic RNA (TRIzol Reagent, 

Ambion, Life Technologies) and the primer pairs FOR 5’ CAACCAGATTCCTTTGCTGCC 3’ 

and REV 5’ GAGCTTGGTGAGCTGGTAGAA 3’ (NCBI accession number NM_013476.4, M. 

musculus androgen receptor (Ar), mRNA, target region 3042-3551, product length 510 bp). Linear 

template PCR products were gel purified according to the manufacturer’s protocol (QIAquick Gel 

Extraction Kit, 28706, Qiagen). To generate an antisense cRNA 35S-Ar riboprobe by in vitro 

transcription, the linear template was incubated with 35S-UTP (UTPαS, Perkin Elmer) and T7 RNA 

polymerase according to the manufacturer’s protocol (Promega). Riboprobes were diluted to 106 

cpm/mL in hybridization buffer (50% formamide, 10mM Tris-HCl, pH 8.0 (Invitrogen), 5mg 

tRNA, 10mM dithiothreitol (DTT), 10% dextran sulfate, 0.3M NaCl, 1mM EDTA, 1x Denhardt’s 

Solution, 0.1% SDS, 0.1% sodium thiosulfate). Hybridization solution was applied to slides, which 

were coverslipped and incubated overnight at 57°C. The following morning, slides were treated 

with RNAse A (Roche Applied Bioscience) for 30 min, then treated with a series of high stringency 

washes in sodium chloride-sodium citrate buffer (SSC). Slides were dehydrated, air dried, then 

placed into an X-ray film cassette with Biomax MR film (Carestream) for 1-2 days. Slides were 

dipped in NTB autoradiographic emulsion (Kodak, VWR), dried, and stored at 4°C in foil-wrapped 

slide boxes for 5 days per 1 day of film exposure. Slides were developed with GBX (Carestream 

Dental) developer and fixer, then dehydrated with graded ethanol, cleared with xylene, and 

coverslipped with DPX mounting media (Electron Microscopy Sciences).  

 

To generate neuroanatomical references, slides with adjacent sections of PND 12 and 21 male and 

female brains were dipped in 0.25% thionin for 45 s, quickly rinsed in water, dehydrated in 
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increasing concentration of ethanol, and cleared in xylene. Slides were coverslipped with DPX 

mounting media.  

 

Microscopy and Image Acquisition  

Digital images were acquired using an Axio Imager M2 (Carl Zeiss) with a digital camera 

(AxioCam, Zeiss) using Zen Pro 2 software (Zeiss). Photomicrographs of films were acquired 

using a SteREO Discovery.V8 stereomicroscope with a digital camera (AxioCam, Carl Zeiss), 

using the same magnification, illumination, and exposure time for each image. Dark field 

photomicrographs for silver grains (hybridization signal) were acquired using the same 

illumination and exposure time for each section, at 10× magnification.  

 

Illustration 

Adobe Photoshop software (Adobe Creative Cloud) was used to prepare digital images, including 

adjusting resolution to 300 dpi, adjustment of image size, addition of annotation and labels, 

conversion to greyscale, unsharp mask, and levels. Uniform adjustments were made to every 

image. Mouse brain coordinates were estimated from Paxinos and Franklin’s Mouse Brain in  

Stereotaxic Coordinates atlas (46). Abbreviations are based on the Allen Mouse Brain Atlas 

(postnatal day 56, coronal reference atlas, Allen Institute for Brain Science, Allen Mouse Brain 

Atlas, http://mouse.brain-map.org/static/atlas). 

 

Data Analysis 

Estimation of hybridization signal was obtained by analysis of integrated optical density (IOD) 

using ImageJ software (NIH, http://rsb.info.nih.gov/ij) as previously described (47,48). Briefly, 
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IOD values were calculated as the total IOD of a constant region of interest (ROI) after subtracting 

background intensity. Quantification of Ar silver grain IOD was performed in one 30-µm thick 

section, on one hemisphere of each animal (n = 3-4/group), at approximately the same rostrocaudal 

level.  

 

Statistics 

Data are reported as mean ± standard error of the mean (SEM). Analysis was performed using 

GraphPad Prism software (Version 8). Normal distribution of data was analyzed using Shapiro-

Wilk test (significance alpha 0.05). Unpaired t test with Welch’s correction and Mann-Whitney 

nonparametric test was used to analyze IOD. Exact P values are reported and statistical 

significance is defined as P < 0.05.  

 

Results 

Distribution of AR mRNA in adult mouse brain 

Ar mRNA expression was visualized using in situ hybridization histochemistry. Hybridization 

signal on autoradiographic film was evaluated in male and female brain sections (n = 3-4/sex, 

Figure 2.1A). Adult brains were systematically examined and compared with published data as an 

initial control (26,36,37). Analysis of AR immunoreactivity was also performed as a control for 

areas that had not been fully described in previous publications (n = 3-4/sex, Figure 2.2).  
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Table 2.2: Qualitative expression of Ar mRNA distribution by nuclei in postnatal and adult mouse 
brain. -, +/-, +, ++, +++, and ++++ represent not detected, very low, low, moderate, high, and very high 
expression of silver grain deposits corresponding to Ar mRNA. The Allen Mouse Brain Atlas was used as 
a reference for names, abbreviations, and location of nuclei. 

 Adult Prepubertal 
 PND 56-70 PND 12 PND 21 

Brain areas and nuclei Male Female Male Female Male Female 

Cerebral Cortex       

Motor (MO) +/- +/- +/- +/- +/- +/- 
Olfactory nucleus (Anterior) (AON) - - ++ ++ ++ ++ 

Taenia tecta (TT) + +/- + + + + 
Piriform (PIR) + + + + + + 

Cingulate (Anterior) (ACA) + + + + + + 
Endopiriform (EP) +/- +/- +/- +/- + +/- 

Hippocampal Formation       

Induseum griseum (IG) + + + + + + 
Field CA1 (CA1) +++ +++ +++ +++ +++ +++ 
 Field CA2 (CA2) +++ +++ +++ +++ +++ +++ 
Field CA3 (CA3) + + + + + + 

Dentate gyrus (DG) + + +/- +/- + + 
Entorhinal area (ENT) +/- +/- + + +/- +/- 

Presubiculum / Subiculum 
(PRE/SUB) + + + + + + 

Cortical subplate and cerebral 
nuclei       

Septohippocampal nucleus (SH) + + + + + + 
Lateral septal nucleus, caudodorsal 

(LSc) +++ + + + + + 

Lateral septal nucleus, rostroventral 
(LSr) +++ + + + + + 

Bed nucleus of stria terminalis, 
principal nucleus (BSTpr) ++++ +++ + + ++++ +++ 

Cortical amygdalar area (COA) +++ +++ + + +++ +++ 
Medial amygdalar nucleus, 

posterodorsal (MEApd) +++ + + + +++ +++ 

Posterior amygdala (PA) +++ + +++ + +++ + 
Thalamus and Subthalamus       

Ventral posterior complex of the 
thalamus (VP) + + + + + + 

Paraventricular nucleus of the 
thalamus (PVT) + + + + + + 

Nucleus of reuniens (RE) +/- +/- + + ++ + 
Subthalamic/ Parasubthalamic, caudal 

(STN/PSTN) ++ + + + ++ ++ 

Medial geniculate complex (MG) + + + + ++ + 
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Hypothalamus       
Medial preoptic area, anterior 

(MPOa) + + + + + + 

Medial preoptic area, posterior 
(MPOp) ++++ ++++ ++++ ++++ ++++ ++++ 

Suprachiasmatic nucleus (SCH) ++ + +/- +/- + +/- 
Paraventricular hypothalamic nucleus 

(PVH) +/- +/- - - - - 

Periventricular hypothalamic nucleus 
(PV) + +/- - - - - 

Subparaventricular zone (SBPV) + + ++ ++ + + 
Lateral hypothalamic area (LHA) +/- +/- - - - - 

Arcuate hypothalamic nucleus (ARH) ++ + +/- +/- + + 
Ventromedial hypothalamic nucleus, 

ventrolateral (VMHvl) + ++ + + ++ + 

Tuberal nucleus (TU) + + - - + + 
Dorsomedial nucleus of the 

hypothalamus (DMH) + - - - +/- - 

Dorsal premammillary nucleus (PMd) + + ++ ++ ++ ++ 
Ventral premammillary nucleus 

(PMv) ++++ ++++ +++ +++ +++ ++ 

Supramammillary nucleus (SUM) + +/- + + + +/- 
Midbrain       

Periaqueductal gray, ventrolateral 
(PAGvl) +/- +/- +/- +/- + + 

Ventral tegmental area (VTA) +/- - - - - - 
Red nucleus (RN) +/- - - - +/- - 

Dorsal nucleus raphe (DR) +/- +/- +/- +/- + + 
Pons and Medulla       

Pontine reticular nucleus (PRN) +/- +/- +/- +/- +/- +/- 
Superior olivary complex (SOC) - - + + + + 
Principal sensory nucleus of the 

trigeminal (PSV) - - + +/- + - 

Parabrachial nucleus (PB) +/- +/- - - - - 
Dorsal tegmental nucleus (DTN) + + + + + + 

Facial motor nucleus (VII) + +/- + + + + 
Cochlear nuclei (CN) +/- - + + + + 

Vestibular Nucleus (VNC) +/- - + + + + 
Nucleus ambiguus (AMB) +/- +/- ++ ++ ++ ++ 
Hypoglossal nucleus (XII) + + + + ++ ++ 

Nucleus of the solitary tract (NTS) +/- +/- +/- +/- +/- +/- 
Dorsal motor nucleus of vagus nerve 

(DMX) + + + + ++ ++ 

Circumventricular Organs       
Subfornical organ (SFO) +/- + + + +/- +/- 

Area postrema (AP) +/- +/- +/- +/- + + 
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Patterns of hybridization signal were similar between sexes in several subdivisions of the cerebral 

cortex, including the motor (MO), piriform (PIR), and anterior cingulate (ACA) (Table 2.2). In the 

hippocampal formation, highest expression was observed in Field CA1 and CA2 (Figure 1A, 

Bregma -1.34 through -3.52mm), and lowest expression in the entorhinal area (ENT). As 

previously described for AR-ir (35-37), several cortical subplate and cerebral nuclei displayed 

apparent sex differences. The lateral septal nucleus (caudodorsal and rostroventral subdivisions, 

LSc and LSr) (Figure 2.1A, Bregma +0.62, +0.14, -0.22mm), bed nucleus of the stria terminalis 

(principal, BSTpr) (Figure 1A, Bregma -0.22mm), posterodorsal medial amygdalar nucleus 

(MEApd, Figure 1A, Bregma -1.34mm), and posterior amygdala (PA, Figure 2.1A, Bregma -

2.46mm) showed higher Ar mRNA levels in males. The cortical amygdalar area (COA) displayed 

high Ar mRNA in both sexes (Table 2.2).  

 

The thalamus and subthalamus contained low to moderate Ar hybridization signal. Conspicuous 

expression was observed in the paraventricular (PVT), medial geniculate (MG), and subthalamic 

nuclei (STN) in both sexes (Figure 2.1A, Bregma -1.34 to -3.52, Table 2.2).  

 

Hypothalamic AR-ir expression is fairly well characterized in adult mice, and Ar hybridization 

signal was consistent with previous descriptions (26,34,35,37). In brief, highest expression was 

seen in the medial preoptic area (MPO, Figure 1A, Bregma +0.14mm), arcuate nucleus (ARH), 

ventrolateral subdivision of the ventromedial hypothalamic nucleus (VMHvl, Figure 2.1A, 

Bregma -1.34mm), and ventral premammillary nucleus (PMv, Figure 2.1A, Bregma -2.46mm). 

Sex differences were apparent in the suprachiasmatic nucleus (SCH) and ARH, with expression 

higher in male mice. Higher Ar hybridization signal was also apparent in the periventricular (PV) 
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and dorsomedial (DMH) nuclei of the hypothalamus in males. The tuberal nucleus (TU) displayed 

low Ar expression, and the paraventricular hypothalamic nucleus (PVH) displayed very low 

expression in both sexes (Table 2.2). The supramammillary nucleus (SUM) was observed to have 

an apparent sex difference, with females exhibiting very low expression, and males with higher 

but still low Ar mRNA (Table 2.2).  

 

In the midbrain, Ar mRNA was low in both sexes, and mainly observed in the periaqueductal gray 

(ventrolateral column, PAGvl) and dorsal raphe nucleus (DR, Figure 2.1A, Bregma -3.52 and -

5.02mm). Very low expression was also observed in the ventral tegmental area (VTA) and red 

nucleus (RN) (Table 2.2).  

 

In the pons and medulla, low Ar mRNA expression was observed in the dorsal tegmental (DTN), 

facial motor (VII), hypoglossal (XII), and dorsal motor nucleus of the vagus nerve (DMX) in both 

sexes (Figure 2.1A, Bregma -5.02mm). Very low hybridization signal was observed in the 

parabrachial nucleus (PB) and pontine reticular nucleus (PRN, Table 2.2). Ar mRNA was also 

detected in the nucleus ambiguus (AMB, Figure 2.1A, Bregma -7.08mm), and nucleus of the 

solitary tract (NTS, Figure 2.1A, Bregma -7.48mm) of both sexes, while the cochlear (CN) and 

vestibular nuclei (VNC) displayed very low signal in males, but not in females (Table 2.2).  

 

In circumventricular organs, we observed very low to low Ar hybridization signal in the 

subfornical organ (SFO) and area postrema (AP) of both sexes (Table 2.2). 
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AR-immunoreactivity in adult mouse brain 

In the adult brain, our findings thoroughly replicate previous reports by different groups 

(26,34,36,37). In brief, high AR-ir was observed in the BSTpr, MPO, VMHvl, PMv, and MEApd. 

In addition, and in agreement with Ar mRNA distribution, we found moderate to low AR-ir in the 

PIR, ACA (Figure 2.2A), CA1 and CA2 (Figure 2.2B), septohippocampal nucleus (SH), LSc 

(Figure 2.2C), PVT (Figure 2.2D), subparaventricular zone (SBPV, Figure 2.2E), PA, PAGvl 

(Figure 2.2F), DTN (laterodorsal), and many nuclei of the cranial nerves, including the principal 

sensory nucleus of the trigeminal nerve (PSV), VII, and medial vestibular nucleus (MV, Figure 

2.2G). Scattered AR-ir was also observed in the SFO (Figure 2.2H) and AP.  

 

Prepubertal distribution of Ar mRNA 

Ar mRNA expression was analyzed in two developmental prepubertal stages, PND 12 and 21 (n = 

3-4/sex/age, Figure 2.1B-C). In the cerebral cortex, both male and female mice at PND 12 and 

PND 21 showed consistent and similar expression between sexes (Table 2.2). The anterior 

olfactory nucleus (AON) displayed moderate Ar hybridization signal, while the taenia tecta (TT), 

PIR, and ACA displayed low Ar hybridization signal (Figure 2.3A-D). The endopiriform (EP) and 

MO showed very low Ar hybridization signal in PND 12 and PND 21 mice (Table 2.2).  

 

In the hippocampal formation, expression level of Ar mRNA in prepubertal mice was similar to 

that observed in adults. Briefly, expression of Ar mRNA in both male and female mice was 

detected in the induseum griseum (IG, Figure 2.3E-F), CA1, CA2 (Figure 2.3G-H), and 

presubiculum/subiculum (PRE/SUB). Higher expression was observed in CA1 and CA2, while 

lower expression was found in Field CA3 (CA3, Table 2.2). In the dentate gyrus (DG), lower 
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expression was observed in PND 12 of male and female mice. The ENT displayed moderate 

expression at PND 12 in male and females, but expression decreased by PND 21.  

 

Cortical subplate and cerebral nuclei also exhibited consistent Ar hybridization signal in 

prepubertal mice in the SH (Figure 2.3E-F) and PA. The LSc displayed moderate expression in 

PND 12 (Figure 2.4A-C), and PND 21 (Figure 2.4D-F). Ar hybridization signal was higher in PND 

12 males compared to females, (Figure 2.4C), and was not different between sexes at PND 21 

(Figure 2.4F). The BSTpr showed sex differences at PND 12 (Figure 2.4G-I) with higher Ar levels 

in males, and similar levels between sexes at PND 21 (Figure 2.4J-L), whereas the MEApd showed 

similar pattern of Ar expression in between sexes at PND 12 and PND 21 (Table 2.2). Ar mRNA 

in the COA was similar between sexes, with low expression at PND 12, increasing to high 

expression by PND 21 (Table 2.2).  

 

In thalamic nuclei, moderate to high levels of Ar hybridization signal was observed in the PVT 

(Figure 2.5A-B), the nucleus of reuniens (RE, Figure 2.5C-D), the ventral posterior complex nuclei 

(VP, Figure 2.5E-F), the STN (Figure 2.5G-H) and the MG (Table 2.2). No difference between 

sexes and prepubertal ages was apparent.  

 

In the hypothalamus, the MPO and anteroventral periventricular nucleus (AVPV) showed similar 

levels of Ar in both sexes at PND 12 and PND 21 (Table 2.2). The SCH had similar levels of Ar 

at PND 12 in both sexes (Figure 2.6A-C, E-G), however, expression increased in male mice at 

PND 21 (Figure 2.6G). The SBPV, although apparently higher in males, did not reach statistical 

significance when comparing sexes at both prepubertal ages (Figure 2.6D, H). The PMv showed 



71 
 

no difference between sexes at PND 12 and PND 21 (Figure 2.6I-K, M-O), however expression 

was higher in PND 12 (Figure 2.6K) compared to PND 21 mice (Figure 2.6O). In the dorsal 

premammillary nucleus (PMd), Ar mRNA levels were low to moderate, and no difference between 

sexes or ages was observed (Figure 2.6L, P). The SUM displayed low Ar mRNA expression in 

both sexes at PND 12, and low expression in males and very low expression in females at PND 21 

(Table 2.2). The TU exhibited no detectable Ar hybridization signal at PND 12, but low signal was 

detected at PND 21 (Table 2.2). The PVH had no detectable Ar hybridization signal at either PND 

12 or 21 (Table 2.2).  

 

In the midbrain, expression of Ar hybridization signal was low to very low. The PAG showed low 

expression which was consistent between sexes, particularly in the caudal ventrolateral column 

(PAGvl, Figure 2.7A-B, Table 2.2). The DR also showed a low to very low level of Ar mRNA 

expression in PND 12 and PND 21 mice (Table 2.2). 

 

In the pons and medulla, the DTN showed consistent, moderate expression in both sexes and in 

both prepubertal ages (Figure 2.7A-B, Table 2.2). Low Ar mRNA expression was detected in the 

superior olivary complex (SOC, Figure 2.7C-D), the VII (Figure 2.7E-F), the VNC, and the CN 

(Table 2.2) in both prepubertal stages of both sexes. Low to moderate Ar expression was observed 

in the AMB (Figure 2.7G-H), the DMX and the XII (Figure 2.7I-J) in males and females. Very 

low to low levels of Ar mRNA were detected in the PRN and the PSV (Table 2.2).  

 

In circumventricular organs, Ar mRNA expression was low to very low in the SFO and AP of both 

sexes at PND 12 and PND 21 (Table 2.2).  
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Brain sites selectively responsive to androgens 

Because this study is focused on brain sites that are selective targets of androgens, we further 

mapped the areas that express AR, but not the enzyme aromatase or ERα. We chose to examine 

areas expressing ERα due to the well described role of estrogens in masculinization of the male 

brain during development (49,50), as well as the major role that estrogens play in female pubertal 

development (51). We used mouse models of Cre-induced reporter gene expression (aroCre and 

ERαCre), previously validated (39,41), to allow well-defined labelling of the neuronal soma. Only 

adult female mice were assessed for colocalization between Cre-induced reporter expression and 

AR-ir (n = 3-4/group). 

 

Distribution of aroCre dependent eGFP-L10a reporter expression was consistent with previous 

literature (52-55). Briefly, eGFP was mostly restricted to forebrain sites, particularly cerebral 

nuclei and hypothalamus. Virtually no eGFP-positive neurons were detected in the neocortex, 

hippocampal formation, thalamus, midbrain, or hindbrain. Highest number of eGFP-positive 

neurons were observed in the BSTpr and the MEApd (Figure 2.8A-D), and a moderate number in 

the MPO and the VMHvl (Figure 2.8E-H). Colocalization between aroCre induced eGFP and AR-

ir was mostly observed in the BSTpr and the MEApd. The MPO showed virtually no coexpression 

of AR-ir and eGFP, whereas the VMHvl showed partial co-localization (Figure 2.8E-H). In the 

VMHvl, three distinct populations were apparent; those co-expressing AR-ir and aroCre;eGFP, 

those expressing only AR-ir, and those expressing only aroCre;eGFP.  Notably, in the LSc and 

PMv, two sites of high AR-ir, very few eGFP positive neurons and no colocalization between AR-

ir and aroCre-eGFP was observed (Table 2.3). 
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Table 2.3: Subjective analysis of colocalization of AR-ir and eGFP in aroCre and ERαCre mouse 
models. +, high colocalization; +/-, partial colocalization; -, virtually no or very few colocalization. Areas 
not represented had no colocalization. 

 Adult Female (PND 56-70) 

Brain areas and nuclei 
AR-ir 

aroCre;eGFP ERαCre;eGFP 
Cortical Subplate and Cerebral Nuclei  

Lateral septal nucleus, caudodorsal (LSc) - - 
Lateral septal nucleus, rostroventral (LSr) - +/- 

Bed nucleus of stria terminalis, principal nucleus 
(BSTpr) + + 

Medial amygdalar nucleus, posterodorsal (MEApd) + + 
Hypothalamus  

Medial preoptic area, anterior (MPOa) - +/- 
Medial preoptic area, posterior (MPOp) - + 
Periventricular nucleus, anterior (PVa) - +/- 
Arcuate hypothalamic nucleus (ARH) - +/- 

Ventromedial nucleus, dorsomedial (VMHdm) - - 
Ventromedial nucleus, ventrolateral (VMHvl) +/- + 

Tuberal medial nucleus (TU) - +/- 
Dorsomedial nucleus of the hypothalamus (DMH) - +/- 

Lateral hypothalamic area (LHA) - +/- 
Ventral premammillary nucleus (PMv) - +/- 
Dorsal premammillary nucleus (PMd) - - 

Brainstem  
Periaqueductal gray, ventrolateral (PAGvl) - +/- 

Area Postrema (AP) - +/- 
 

We next assessed if brain sites that are direct targets of androgens are also responsive to circulating 

estrogens via ERα. Here, we also used Cre-induced eGFP-L10a expression driven by the ERα 

promoter (41) to allow for better cellular definition and to potentially identify cells that express 

ERα in distinct phases of development. As described before (9,26,56,57), and as expected due to 

the role of ERα in the organization of sex differences in the brain, eGFP was widespread and 

densely expressed in multiple brain areas of male and female brains. This was particularly evident 

in forebrain nuclei, including both sexually dimorphic and non-dimorphic sites. The entire female 

brain was evaluated and only areas showing some degree of colocalization were documented.  
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In cerebral nuclei, we found that virtually all AR-ir neurons in the BSTpr and most of the MEApd 

coexpress ERαCre;eGFP (Figure 2.9A-D, Table 2.3). In the LS, we found that most dual labeled 

AR-ir and eGFP neurons were distributed in the rostroventral subdivision, whereas the caudodorsal 

subdivision showed segregated populations. In the hypothalamus, the posterior MPO has near 

complete colocalization, whereas about half of AR-ir neurons in the anterior MPO colocalized 

with eGFP. We also found clear differences in the VMH, where most of AR-ir neurons in the 

ventrolateral subdivision co-express eGFP, but not those in the dorsomedial subdivision, which 

are almost exclusively AR-ir (Figure 2.9E-F). There was also moderate co-expression of eGFP 

and AR-ir in the PMv, and distinct groups of AR-ir or eGFP positive neurons were observed 

(Figure 2.9G-H). 

 

In the brainstem, partial colocalization was observed in the PAGvl and in the AP. In cranial nerve 

nuclei, including VII, VNC, DMX (Figure 2.9I-J) and AMB (Figure 2.9K-L), there were two 

distinct populations; neurons that expressed AR-ir, or those that expressed ERαCre-eGFP. 

 

Discussion 

 In this study, we characterized the expression of Ar mRNA in the brain of adult and two 

prepubertal time points of male and female mice. We show that at PND 12 and 21, before the 

activation of the HPG axis, many brain nuclei express high levels of Ar in both sexes. Additionally, 

we highlight specific nuclei and subpopulations of neurons that are selectively responsive to 

androgens. Mouse models carrying Cre-induced reporter genes for aromatase and ERα were used 

to allow for better cellular (cytoplasmic boundaries) delimitation and to take advantage of the 
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possibility of identifying cells that express aromatase or ERα in different phases of development. 

We focused on ERα due to the well described role of estrogens in masculinization of the male 

brain during prenatal development (49,50), and in female pubertal development and fertility 

(51,58). Further studies will be necessary to evaluate if the identified brain sites are responsive to 

alternative estrogens receptors. 

 

Systematic characterization of AR expression during prepubertal development is essential for 

understanding how androgens can shape brain organization and activation of neural circuits. While 

circulating androgens are low in the prepubertal period, we show that AR is highly expressed in 

many areas of the brain in both sexes during this time window. The exact role of AR in brain 

development in general, and in specific neuronal subpopulations is not well described. It has been 

demonstrated that gonadal hormones during puberty can further organize and refine neural circuits 

(59,60). During adolescence, pruning and remodeling of synapses, morphology, density, and 

sexual dimorphism of dendritic spines occurs throughout the brain. In many brain sites, this fine 

remodeling is orchestrated by gonadal hormones, particularly androgens (61-65). Thus, increased 

AR expression during the prepubertal window in both sexes plays a key role in the continuous 

developmental process towards the adult brain. Sex differences in circulating steroids during 

pubertal transition would ultimately determine the circuitry, morphology, and neurochemical fate 

of the subpopulations of neurons.  

 

Sex differences in AR expression are most apparent in areas related to male sexual behavior and 

reproduction, including the well characterized BSTpr, MPO, MEApd, and LS (26,35,66,67).  

Differences were also observed during development, with similar Ar expression at PND 12 
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between males and females (e.g., BSTpr and LS), and higher Ar in males at PND 21, in agreement 

with previous reports showing greater hypothalamic AR-ir in prepubertal male mice (26). 

Nonetheless AR is still prevalent in the female brain and is expressed in a multitude of different 

brain nuclei.  

 

While the role that AR plays in the prepubertal and adult female brain is not fully understood, 

models of female androgen excess demonstrate that prenatal and prepubertal androgen exposure 

has the potential to heavily impact female physiology. For example, polycystic ovary syndrome 

(PCOS) is partly characterized by female androgen excess, and can significantly impact fertility, 

body weight and insulin sensitivity (68-70). PCOS-like features can be replicated in mice, with 

one prepubertal model inducing androgen excess beginning at PND 19 (71) and another at PND 

21 (72). This peripubertal androgenization model induces changes upon multiple tissues, including 

the brain, eliciting well described effects on reproduction and metabolism (73,74). The exact brain 

sites associated with the consequences of hyperandrogenism in females have not been fully 

determined. Defining selective and non-selective brain sites responsive to androgens is an 

important first step for a better mechanistic understanding of the pathological origins of diseases 

of androgen excess.  

 

Brain AR expression and distribution have been previously characterized in the rat (67,75), 

hamster (76), musk shrew (77), and monkey (78). These findings, however, are not directly 

translatable to the mouse due to species differences. For example, AR is abundant in the 

dorsomedial VMH (VMHdm) of adult male rats (20,67,75), but much less so in adult male mice. 

It is important to be aware of species differences, particularly in the mouse, which is a frequently 
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used model organism in studies using genetic and molecular tools. Furthermore, because the 

number of neurons necessary for a specific function may not be determined a priori, moderate and 

low AR expression in extra-hypothalamic and extra-limbic areas is not irrelevant or less important. 

Consistent with this concept, Ar expression in cranial nerve nuclei of both sexes during pre-

pubertal development is particularly interesting. Many nuclei along the olfactory and auditory 

pathways express AR, but studies exploring the role of androgenic signaling in cranial nerve nuclei 

have been limited (79,80). Androgens promote neuronal survival and axon regeneration in cranial 

nerve motor nuclei in male and female rats (81,82). In the spinal cord, however, androgens acting 

on AR protect against motor neuron death in the spinal nucleus of the bulbocavernosus (SNB) 

during postnatal development in males, resulting in a male-biased sex difference in cell number 

and morphology (83,84). It remains to be determined as to why circulating androgens induce 

sexual dimorphism in some areas of the brain, but not others, and why specific nuclei preferentially 

respond to androgens, rather than estrogens, to promote neuronal survival, and if these events occur 

before puberty when androgens are low but AR expression is present in many nuclei of both sexes. 

Answers to these questions may require a closer look into the regulation of AR signaling 

complexity, including the role of alternative ligands and ligand-independent signaling properties 

(85).  

 

While this study examines the distribution of AR in male and female prepubertal mice, we have 

not systemically mapped ERα or other estrogen receptors in the same experimental groups. 

Instead, we have examined AR immunoreactivity in neurons coexpressing an ERαCre reporter 

gene. The advantage of this model is that cells are labelled permanently from the time of promoter 

expression, allowing for the visualization of all neurons that have expressed Cre during 
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development. It is highly possible however, that subpopulations of cells only transiently express 

ERα, inflating the number of cells expressing the reporter gene in adult mice. Additional studies 

will be necessary to define specific time points of postnatal development in which subpopulations 

of neurons are engaged by selective gonadal steroids.  

 

Gonadal hormones are not the only factor that contribute to sex differences in the brain. Sex 

chromosome genes, autosome genes whose expression are mediated by sex-steroid receptors, 

epigenetics, environmental factors and exposures, factors which regulate the sensitivity of a brain 

region to sex steroids, and brain immune cells all contribute to brain sex differentiation (86). Yet, 

it is clear that androgens play a very important, arguably dominant role in sex differentiation in 

rodents, and their unknown role in female brain remains to be fully determined. In the attempt to 

decrease this gap, we focused our analysis on the female brain. Our findings indicate that in various 

brain areas androgens, rather than neuroestrogens or circulating estrogens, play an important role 

in female neuronal development and physiology. They also highlight the need for greater 

investigation into the variety of actions of androgens throughout the male and female brain, 

particularly during prepubertal development. Future studies targeting specific brain sites are 

warranted. 
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Figure 2.1: Ar mRNA hybridization signal expression in male and female postnatal and adult brain. 
Images from scanned autoradiographic film of adult (postnatal day/PND 56-70, A), and prepubertal (PND 
12, B, and PND 21, C) male and female mouse brain. Select coronal sections are shown in rostral to caudal 
order. Darker signal indicates higher expression of Ar mRNA. Approximate distance from bregma (left 
column) derived from adult mouse brain (Paxinos and Franklin atlas). Scale bar = 4000 µm. 

 

 

 

 

 



87 
 

 

Figure 2.2: AR immunoreactivity (AR-ir) in adult mouse brain. A-H, fluorescent images showing AR-
ir in the adult female mouse brain (postnatal day/PND 56-70). AR-ir was observed in virtually all areas 
where we observed Ar mRNA. Selected areas from (A) cerebral cortex (dorsal and ventral anterior cingulate 
area, ACAd, ACAv), (B) hippocampal formation (pyramidal layer or sp field CA1 and CA2), (C) cerebral 
nuclei (lateral septal nucleus, caudodorsal, LSc), (D) thalamus (paraventricular nucleus of the thalamus, 
PVT), (E) hypothalamus (subparaventricular zone, SBPV), (F) midbrain (periaqueductal gray, PAG), (G) 
pons/medulla (medial vestibular nucleus, MV), and (H) circumventricular organs (subfornical organ, SFO) 
are shown. Abbreviations: AHN, anterior hypothalamic nucleus, alv, alveus, AQ, cerebral aqueduct, IG, 
induseum griseum, MS, medial septal nucleus, PRP, nucleus prepositus, PT, parataenial nucleus, V3, third 
ventricle, V4, fourth ventricle. Scale bar = 100 µm. 
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Figure 2.3: Ar mRNA expression in cerebral cortex in prepubertal male and female mice.  Images 
showing thionin staining for neuroanatomical reference (left column), silver grains corresponding to Ar 
mRNA (right column). Low AR expression was observed in the piriform area (PIR, A-B), dorsal and ventral 
anterior cingulate area (ACAd and ACAv, C-D), induseum griseum, septohippocampal nucleus (IG and 
SH, E-F), and CA3, and high in field CA1 and CA2 (G-H). Abbreviations: ACB, nucleus accumbens, ccg, 
genu of corpus callosum, DG, dentate gyrus, lot, lateral olfactory tract, LS, lateral septal nucleus, MOs, 
secondary motor area, OT, olfactory tubercle. Scale bar = 200 µm.  
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Figure 2.4: Ar mRNA expression in cerebral nuclei of male and female prepubertal mice. Silver grain 
deposition corresponding to Ar mRNA hybridization signal in prepubertal (postnatal day (PND) 12 (A-B, 
G-H), and PND 21 (D-E, J-K) male (A, D, G, J) and female (B, E, H, K) mice. (A-F) Lateral septal nucleus, 
caudodorsal (LSc) and (G-L) bed nucleus of the stria terminalis, principal nucleus (BSTpr). Bar graphs 
showing mean ± SEM integrated optical density (IOD) of silver grains (C, F, I, L). IOD was analyzed by t-
test with Welch’s correction for LSc male vs female PND 12 (P = 0.04, n = 3-4/sex), PND 21 (P = 0.46, n 
= 3-4/sex), BST male vs female PND 12 (P = 0.03, n = 3/sex), and Mann-Whitney nonparametric test for 
BST male vs female PND 21 (P = 0.68, n = 4/sex). Abbreviations: cc, corpus callosum, LSr, lateral septal 
nucleus, rostral (rostroventral), MS, medial septal nucleus, PVT, paraventricular nucleus of the thalamus, 
RE, nucleus of reuniens, VL, lateral ventricle. Scale bar = 200 µm. 
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Figure 2.5: Ar mRNA expression in thalamic nuclei of male and female prepubertal mice. Images 
showing thionin staining for neuroanatomical reference (left column), silver grains corresponding to Ar 
mRNA (right column). (A-B) Low silver grain deposition in the paraventricular nucleus of the thalamus 
(PVT), (C-D) low to moderate in the nucleus of reuniens (RE), (E-F) ventral posterolateral and 
posteromedial nuclei of the thalamus (VPL and VPM), (G-H) subthalamic and parasubthalamic nuclei 
(STN and PSTN). Abbreviations: AD, anterodorsal nucleus of the thalamus, AV, anteroventral nucleus of 
the thalamus, cpd, cerebral peduncle, DG, dentate gyrus, em, external medullary lamina of the thalamus, 
fr, fasciculus retroflexus, ml, medial lemniscus, PF, parafascicular nucleus, RH, rhomboid nucleus, sm, 
stria medullaris, VM, ventral medial nucleus of the thalamus, ZI, zona incerta. Scale bar = 200 µm. 
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Figure 2.6: Ar mRNA expression in hypothalamic nuclei of male and female prepubertal mice. Silver 
grain deposition corresponding to Ar mRNA hybridization signal in prepubertal (postnatal day (PND) 12 
(A-B, I-J), and PND 21 (E-F, M-N) male (A, E, I, M) and female (B, F, J, N) mice. (A-H) Suprachiasmatic 
nucleus (SCH) and subparaventricular zone (SBPV), and (I-P) dorsal and ventral premammillary nuclei 
(PMd and PMv). Note higher expression of Ar in the SCH of males at PND 21 (E). Bar graphs showing 
mean ± SEM integrated optical density (IOD) of silver grains (C-D, G-H, K-L, O-P). IOD was analyzed by 
t-test with Welch’s correction for SCH male vs female PND 21 (P = 0.01, n = 3-4/sex), SBPV male vs 
female PND 12 (P = 0.18, n = 3/sex) and PND 21 (P = 0.23, n = 3-4/sex), PMv male vs female PND 12 (P 
= 0.47, n = 3-4/sex) and PND 21 (P = 0.30, n = 3-4/sex), PMd male vs female PND 12 (P = 0.81, n = 4/sex) 
and PND 21 (P = 0.37, n = 3-4/sex), and Mann-Whitney nonparametric test for SCH male vs female PND 
12 (P > 0.99, n = 3/sex). Abbreviations: fx, fornix, V3, third ventricle. Scale bar = 200 µm. 
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Figure 2.7: Ar mRNA expression in brainstem nuclei of prepubertal male and female mice. Images 
showing thionin staining for neuroanatomical reference (left column), silver grains corresponding to AR 
mRNA (right column). (A-B) Very low to low silver grain deposition in the periaqueductal gray (PAG), 
and low in the dorsal tegmental nucleus (DTN). (C-D) Low expression in the superior olivary complex 
(SOC), (E-F) facial motor nucleus (VII). (G-H) Moderate expression in the nucleus ambiguus (AMB). (I-
J) Low to moderate expression in the dorsal motor nucleus of the vagus nerve (DMX) and hypoglossal 
nucleus (XII). Abbreviations: VIIn, facial nerve, AP, area postrema, AQ, cerebral aqueduct, c, central canal 
of the spinal cord/medulla, DR, dorsal nucleus raphe, IRN, intermediate reticular nucleus, LRN, lateral 
reticular nucleus, MARN, magnocellular reticular nucleus, PRNc, pontine reticular nucleus, caudal part, 
PRNr, pontine reticular nucleus, py, pyramid, sctv, ventral spinocerebellar tract. Scale bar = 200 µm. 
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Figure 2.8: Brain areas expressing AR immunoreactivity (AR-ir) and aroCre;eGFP in adult female 
mice. A-L, fluorescent images showing aroCre;eGFP-L10a reporter mice (green) and AR-ir (purple). B, D, 
F, and H are higher magnification of highlighted area in A, C, E, and G. Areas with high aroCre;eGFP and 
AR-ir coexpression include the bed nucleus of the stria terminalis, principal nucleus (BSTpr ,A-B) and 
medial amygdalar nucleus, posterodorsal (MEApd, C-D). Areas with moderate aroCre;eGFP expression, but 
high AR expression include the medial preoptic area (MPO, E-F), and ventrolateral ventromedial 
hypothalamic nucleus (VMHvl, G-H). B, D, F, and H are higher magnification of highlighted areas. Solid 
white arrows indicate cells that express both AR-ir and aroCre;eGFP, hollow arrows indicate cells that 
express only AR-ir. Abbreviations: ARH, arcuate hypothalamic nucleus, AVPV, anteroventral 
periventricular nucleus, cpd, cerebral peduncle, fx, fornix, MPN, medial preoptic nucleus, opt, optic tract, 
PMv, ventral premammillary nucleus, sm, stria medularis, st, stria terminalis, VMHc, ventromedial 
hypothalamic nucleus, central part. Scale bar = 100 µm for A, C, E, and G, and 50 µm in B, D, F, and H. 
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Figure 2.9: Brain areas expressing AR immunoreactivity (AR-ir) and ERαCre;eGFP in adult female 
mice. A-L, fluorescent images showing AR-ir (purple) and ERαCre;eGFP-L10a expression (green). Areas 
with high ERαCre;eGFP and AR-ir colocalization include the bed nucleus of the stria terminalis, principal 
nucleus (BSTpr, A-B) and medial amygdalar nucleus, posterodorsal (MEApd, C-D). Areas with partial 
ERαCre;eGFP and AR-ir colocalization include the ventrolateral ventromedial hypothalamic nucleus 
(VMHvl, E-F) and ventral premammillary nucleus (PMv, G-H). The dorsal motor nucleus of the vagus 
nerve (DMX, I-J) and nucleus ambiguus (AMB, K-L) show distinct AR-ir and ERαCre;eGFP positive cells. 
B, D, F, H, J, L are higher magnification of highlighted areas. Solid white arrows indicate cells that express 
both AR-ir and ERαCre;eGFP, hollow arrows indicate cells that express only AR-ir. Abbreviations: AP, area 
postrema, ARH, arcuate nucleus, c, central canal of the spinal cord/medulla, fx, fornix, IG, induseum 
griseum, IRN, intermediate reticular nucleus, opt, optic tract, SCH, suprachiasmatic nucleus, sm, stria 
medularis, st, stria terminalis, V3, third ventricle, VMHdm, ventromedial hypothalamic nucleus, 
dorsomedial part. Scale bar = 100 µm for A, C, E, G, I, K, and 50 µm for B, D, F, H, J, L. 
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CHAPTER 3 

 
Lack of AR in LepRb Cells Disrupts Ambulatory Activity and Neuroendocrine Axes in a 

Sex-Specific Manner in Mice 
 
 

Abstract 

Disorders of androgen imbalance, such as hyperandrogenism in females or hypoandrogenism in 

males, increase risk of visceral adiposity, type 2 diabetes, and infertility. Androgens act upon 

androgen receptors (AR) which are expressed in many tissues. In the brain, AR are abundant in 

hypothalamic nuclei involved in regulation of reproduction and energy homeostasis, yet the role 

of androgens acting via AR in specific neuronal populations has not been fully elucidated. Leptin 

receptor (LepRb) expressing neurons co-express AR predominantly in hypothalamic arcuate and 

ventral pre-mammillary nuclei (ARH and PMv, respectively), with low colocalization in other 

LepRb neuronal populations, and very low colocalization in the pituitary gland and gonads. 

Deletion of AR from LepRb expressing cells (LepRbΔAR) has no effect on body weight, energy 

expenditure, and glucose homeostasis in male and female mice. However, LepRbΔAR female mice 

show increased body length later in life, whereas male LepRbΔAR mice show an increase in 

spontaneous ambulatory activity. LepRbΔAR mice display typical pubertal timing, estrous cycles, 

and fertility, but increased testosterone levels in males. Removal of sex steroid negative feedback 

action induced an exaggerated rise in LH in LepRbΔAR males and in FSH in LepRbΔAR females. 

Our findings show that AR can directly affect a subset of ARH and PMv neurons in a sex-specific 

manner and demonstrates specific androgenic actions in the neuroendocrine hypothalamus.    
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Introduction 

Androgens are steroid hormones that play a role in reproductive and metabolic physiology in males 

and females (1-4). Androgens primarily act upon nuclear hormone receptors to induce gene 

transcription, resulting in sex-specific differences in reproductive and metabolic physiology. 

Androgens can act on either estrogen receptors (ERα/β) after conversion to estradiol via the 

enzyme aromatase, or on androgen receptors (AR) as testosterone or dihydrotestosterone via 5α-

reductase (5,6). Many tissues express AR, including gonads, reproductive tract, skeletal muscle, 

adipose tissue, and the brain. The role of AR in reproductive physiology has been demonstrated 

using models which lack AR (3) or express a non-functional AR mutant (testicular feminization, 

Tfm) (7). Global deletion of AR (ARKO) in mice results in male infertility due to lack of proper 

testicular descent and impaired spermatogenesis (8). These models replicate dysfunctions 

observed in men with low levels of androgens who experience sexual and reproductive deficits 

(9). Additionally, female ARKO mice display a subfertile phenotype, with disrupted uterine 

morphology, fewer corpora lutea, abnormal estrous cycles, and defective folliculogenesis (10). 

ARKO and Tfm females also display accelerated reproductive senescence (11,12).  

 

In addition to the role that AR plays in the reproductive axis, AR signaling is also required for 

typical metabolism. Global ARKO male mice display increased body weight, increased adiposity, 

and glucose intolerance (13,14). Furthermore, liver-specific ARKO males on a high-fat diet show 

increased body weight and insulin resistance (15), while deletion of AR in beta cells or adipocytes 

disrupts glucose homeostasis. (16,17).  
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Androgens via AR exert many effects on peripheral tissues, yet the brain regulates many metabolic 

and reproductive processes, and abundantly expresses AR. Neuronal deletion of AR has produced 

controversial data, potentially due to distinct mouse models and different Cre lines used in each 

study with varying degrees and pattern of AR deletion (18-20). Neuronal ARKO male mice display 

reduced insulin sensitivity, increased body weight and adiposity later in life in one study (18), and 

no changes or decreased body weight and length in different studies (19,20). AR is widely 

expressed in many different areas of the brain, yet the role of AR in specific neuronal populations 

has not been clearly defined, and it is unclear which populations of neurons mediate androgenic 

effects.  

 

Several hypothalamic nuclei associated with the control of reproduction and metabolism express 

leptin receptors (LepRb). Leptin is primarily secreted by white adipocytes in proportion to adipose 

tissue mass, which signals peripheral energy stores via binding to LepRb (21,22). LepRb 

expressing neurons in the brain are crucial targets for converging metabolic and reproductive 

signals, and are required for the central control of metabolism and reproduction (23-28). States of 

low leptin or leptin resistance are associated with infertility, diabetes, and obesity (29-34). We and 

others have shown that LepRb cells in the ventral pre-mammillary nucleus (PMv) and in arcuate 

agouti-related peptide (AgRP) neurons, which co-express LepRb (35), integrate metabolic and 

reproductive signals required for timing of puberty and fertility (36-40). Therefore, we 

hypothesized that AR in LepRb cells contributes to the regulation of reproduction and metabolism 

at the hypothalamic level, and that loss of AR from LepRb cells would disrupt reproductive and 

metabolic homeostasis. We initially made a whole-body evaluation of LepRb and AR 
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colocalization and used a Cre-loxP approach to systematically assess the metabolic and 

reproductive phenotype generated by lack of AR signaling in LepRb cells in male and female mice.  

 

Materials and Methods 

Animal Ethics 

All research animals were acquired, used, and maintained in accordance with the National 

Research Council Guide for the Care and Use of Laboratory Animals (41), as well as federal, state, 

and local laws. Procedures and protocols were approved by the University of Michigan Committee 

on Use and Care of Animals (IACUC, Animal Protocol: PRO00008712).  

 

Animals 

LepRb-Cre (LepRbCre, JAX®  mice, B6.129-Leprtm3(cre)Mgmj/J, stock #032457 (42,43)), AR-flox 

(ARflox, 129-Artm1Verh/Sv, provided by Dr. S. Marc Breedlove, Michigan State University, with 

permission from Dr. Karel De Gendt, Catholic University of Leuven, Belgium, UFA ID: 16-

UFA03327 (8)), ROSA26-loxSTOPlox-eGFP-L10a (JAX® mice, B6;129S4-

Gt(ROSA)26Sortm9(EGFP/Rpl10aAmc/J, stock #024750, (44)), C57BL/6J (JAX® mice, stock # 000664), 

and FVB/NJ (JAX® mice, stock #001800) mice were housed in an Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC) accredited facility at the University of 

Michigan Medical School. Mice were housed in a 12:12 light/dark cycle environment with 

controlled temperature (21-23°C) and humidity (30-70%). Mice were provided water ad libitum 

and were fed a phytoestrogen-reduced diet (16% protein, 4.0% fat, 48.5% carbohydrate, Teklad 

2916 irradiated global rodent diet, Envigo) or a phytoestrogen-reduced, higher protein and fat diet 

(19% protein, 9.0% fat, 44.9% carbohydrate, Teklad 2919 irradiated global rodent diet, Envigo) 
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for breeding and lactating females. Phytoestrogen-reduced diets were used to avoid any effects of 

exogenous dietary estrogens on reproductive or metabolic physiology of experimental mice.  

 

LepRb-specific deletion of AR (LepRbΔAR) 

A Cre-loxP approach was used to generate mice with deletion of AR in LepRb expressing neurons. 

LeprCre mice, which contain an IRES element plus the coding sequences for Cre-recombinase 

knocked into the LepRb-specific exon of Lepr  (42) were crossed with mice expressing lox-P sites 

flanking exon 2 of the Ar gene, located on the X chromosome (ARflox mice) (8). Mice were bred 

to homozygosity or hemizygosity for Arflox (Arfl/fl females and Arfl/Y males), and homozygosity for 

LeprCre, as complete Cre-mediated excision of floxed alleles is only accomplished with two copies 

of Cre under the Lepr promoter (45-47). No metabolic or reproductive phenotypes are observed in 

mice homozygous for LeprCre (46). Experimental mice (LepRbΔAR mice = LeprCre/Cre; Arfl/fl females 

or Arfl/Y males) were compared to littermates homozygous for the wild-type allele of Lepr (ARflox 

mice = Leprwt/wt; Arfl/fl females or Arfl/Y males). For scientific rigor and reproducibility, we 

performed the same experiment in at least two independent cohorts. Experimental animals were 

derived from multiple breeding pairs (a minimum of 5, but up to 10 breeding pairs per data set). 

Each graph shown includes animals derived from different pairs of breeders to account for 

differences in vivarium conditions. Genotyping was performed on DNA extracted from ear 

samples or tail tips obtained prior to weaning and at termination of experiments (RED Extract-N-

Amp Tissue PCR Kit, Cat #XNAT, MilliporeSigma).  Genotyping primers are listed in Table 3.1.   
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Table 3.1: Primers used for genotyping 

 

Immunohistochemistry  

To assess where AR and LepRb colocalize, we crossed LepRbCre mice with reporter mice that 

express eGFP-L10a in a Cre-dependent manner to obtain LepRbCre reporter mice (48). Adult male 

(n = 5/genotype) and female (n = 4/genotype) LepRbCre and LepRbΔAR reporter mice were deeply 

anesthetized with isoflurane and trans-cardially perfused with 10% neutral buffered formalin for 

10 min. Brains were dissected and post-fixed for 2 h, then transferred to 20% sucrose in 0.1M PBS 

overnight for cryoprotection. Brains were sectioned at 30 µm on a freezing microtome (Leica SM 

2010R) into 4-5 series and stored at -20°C in cryoprotectant. AR immunoreactivity was labelled 

using a modified tyramide signal amplification method previously described (49). Brain sections 

were rinsed with 0.1M PBS, incubated in 0.6% hydrogen peroxide for 30 mins, rinsed with 0.1M 

PBS, then blocked with 3% normal donkey serum with 0.25% Triton-X-100 for 1 h at room 

temperature. Sections were incubated overnight with rabbit anti-androgen receptor antibody 

(1:200, AbCam [EPR1535(2)], Cat # ab133273, RRID: AB_11156085). Sections were rinsed with 

0.1M PBS and then incubated for 1 h with biotinylated donkey anti-rabbit IgG (1:500, Jackson 

ImmunoResearch Laboratories, Cat # 711-065-152, RRID: AB_2340593), followed by incubation 

in avidin-biotin (AB) solution in PBS (1:1000, Vector Laboratories) for 1 h. Next, sections were 

Mice Primer Sequence Size (bp) 

LepRbCre  
Comm FOR 5’ TCC AAG AAG CCT CAA GGT TCC A 3’ 

Wt REV 5’ TCG TGT TGA AAT TTC TTC TTT CCA GA 3’ 
Cre REV 5’ ACG CAC ACC GGC CTT ATT CC 3’ 

Wt: 300 
Mutant: 200 

ARflox  mAR28 5’ AGC CTG TAT ACT CAG TTG GGG 3’ 
mAR29 5’ AAT GCA TCA CAT TAA GTT GAT ACC 3’ 

Wt: 860 
Flox: 930 

R26-
loxSTOPlox-
eGFP-L10a  

FOR 1 5’ GAG GGG AGT GTT GCA ATA CC 3’ 
FOR 2 5’ TCT ACA AAT GTG GTA GAT CCA GGC 3’ 

REV 5’ CAG ATG ACT ACC TAT CCT CCC 3’ 

Wt: 300 
Mutant: 200 
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incubated in biotinylated tyramide (1:250, Perkin Elmer) with 0.009% hydrogen peroxide for 10 

mins, followed by incubation with streptavidin-conjugated AlexaFluor 594 (1:1000, Invitrogen, 

ThermoFisher) for 1 h. Sections were mounted onto gelatin-coated slides and coverslipped with 

ProLong Gold Antifade mounting medium (Invitrogen, ThermoFisher). The eGFP-L10a reporter 

did not require additional immunostaining to amplify fluorescent signal.  

To assess potential deletion of AR in neuroendocrine tissues, testes, ovaries, and pituitary gland 

were examined for LepRbCre mediated eGFP-L10a and AR expression. Fixed frozen gonads and 

pituitary were cryoprotected and embedded in optimal cutting temperature (OCT) compound 

(Electron Microscopy Systems). They were sectioned at 30 µm for testes, 12 µm for ovaries, and 

14 µm for pituitary on a cryostat (Leica CM 3050S) into 3-5 series on SuperFrost Plus slides 

(Fisher Scientific) and stored at -20°C. AR staining was performed as described above.  

To assess potential compensation of sex steroid receptors in LepRbΔAR cells, brain sections from 

male LepRbCre and LepRbΔAR reporter mice (n = 4/genotype) were stained for ERα 

immunoreactivity. Brain sections were rinsed with 0.1M PBS, then blocked with 3% normal 

donkey serum with 0.25% Triton-X-100 for 1 h at room temperature. Sections were incubated 

overnight in rabbit anti-estrogen receptor α antibody (1:5000, Millipore, Cat # 06-935, RRID: 

AB_310305). Sections were rinsed with 0.1M PBS and then incubated for 1 h with donkey anti-

rabbit AlexaFluor 594 Plus (1:500, Invitrogen ThermoFisher, Cat # A32754, RRID: AB_2762827) 

for 1 h. Sections were mounted onto gelatin-coated slides and coverslipped with ProLong Gold 

Antifade mounting medium (Invitrogen, ThermoFisher). Antibodies used are listed in Table 3.2.  
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Table 3.2: Antibodies 

 

Metabolic phenotyping 

Body weight of experimental and control mice was measured weekly beginning at weaning (post-

natal day 21). Body composition (fat and lean mass) was quantified at 15-week old male (n = 10-

13 mice/genotype), and female (n = 8-9 mice/genotype) LepRbΔAR and ARflox mice using an NMR-

based device (Minispec LF 90II, Bruker Optics). Comprehensive Laboratory Monitoring System 

(CLAMS, Columbia Instruments) unit was used as an indirect calorimeter to measure O2 

consumption (VO2), CO2 production (VCO2), as well as food intake and spontaneous motor 

activity via photo beam sensors. Body composition and CLAMS analysis was performed at the 

Michigan Mouse Metabolic Phenotyping Center (MMPC). Male (15 weeks of age, n = 10-11 

mice/genotype) and female (19-21 weeks of age, n = 8-9 mice/genotype) LepRbΔAR and ARflox 

mice were transferred to the MMPC for CLAMS analysis. Mice were weighed before 

measurements and individually placed into the sealed chambers with free access to food and water. 

After 48 h of adaptation, measurements were carried out continuously for 72 h. VO2 and VCO2 

Peptide/Protein 
Target  

Antibody 
Name 

Cat# Species 
Raised in 

Dilution 
Used 

RRID 

Androgen receptor  Recombinant 
Anti-
Androgen 
Receptor 
antibody 
[EPR1535(2)] 

AbCam 
ab133273 

Rabbit, 
Monoclonal 

1:200 AB_11156085 

Estrogen Receptor α Anti-Estrogen 
Receptor α 
antibody 
(C1355) 

Millipore 
06-935 

Rabbit, 
Polyclonal 

1:5000 AB_310305 

Rabbit IgG Biotin-SP-
conjugated 
AffiniPure 
Donkey Anti-
Rabbit IgG 

Jackson 
ImmunoResearch 
711-065-152 
 

Donkey, 
Polyclonal 

1:500 AB_2340593 
 

Rabbit IgG Donkey anti-
Rabbit IgG 
AlexaFluor® 
Plus 594 

Invitrogen 
ThermoFisher, 
A32754 

Donkey,  
Polyclonal 

1:1000 AB_2762827 
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were sampled in 10 min intervals and the motor activity was recorded every second in X and Z 

dimensions. Total energy expenditure was calculated respectively based on the values of VO2 and 

VCO2. Indirect calorimetry data was normalized to lean body mass (LBM) recorded at the end of 

the CLAMS run using an NMR-based device (Minispec LF 90II, Bruker Optics). Total energy 

expenditure was calculated using the following formula: Energy Expenditure = 3.91 x [(VO2LBM) 

+ 1.1 x (VCO2LBM)]/1000.  

 

Glucose levels were measured in blood samples obtained from tail-tip bleeding in male (n = 5-8 

mice/genotype, 11-15 weeks of age) and female (n = 7 mice/genotype, 20-21 weeks of age, after 

estrous cycle analysis was completed) LepRbΔAR and ARflox mice after an overnight fast 

(approximately 16 h) using a glucometer (OneTouch Ultra, LifeScan Inc). Males were single 

housed up to 2 weeks prior to and during GTT. After fasting blood glucose was measured, mice 

received an intraperitoneal bolus of D-glucose in sterile saline (2 mg D-glucose/g body weight) at 

0 min, and tail tip blood was collected for glucose levels at 15 min intervals for the first hour, and 

30 min intervals for the second hour (2 h total).  

 

An additional group of male (n = 9-10/genotype) and female (n = 7-8/genotype) LepRbΔAR and 

ARflox mice were fed high-fat diet (HFD, Teklad TD.88137, 42% fat, 15.2% protein, 42.7% 

carbohydrate, Envigo) for 12 weeks beginning at weaning. Mice were weighed weekly, and GTT 

performed at 16 weeks of age. 
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Body length was measured as snout to anus distance in isoflurane (Fluriso, VetOne) anesthetized 

LepRbΔAR and ARflox male (n = 10-12 mice/genotype) and female (n = 14-15 mice/genotype) mice 

at 15 weeks of age, and at 20 weeks of age as a follow-up for females. 

 

Tissue collection and organ weight 

Adult LepRbΔAR and ARflox mice were deeply anesthetized with isoflurane and euthanized via 

decapitation. Females were euthanized during diestrus, as confirmed by the presence of 

predominantly leukocytes in vaginal smear and a uterine weight of less than 100 mg (50). Trunk 

blood was collected and allowed to clot for 45 min at room temperature, then centrifuged at 4°C 

for 20 min at 3,000 x g, followed by collection of serum which was stored at -20°C. Testes and 

seminal vesicles were dissected and weighed. Femurs were collected from LepRbΔAR and ARflox 

female mice at 20 weeks of age, fixed in 10% neural buffered formalin for 48 h, then transferred 

to 70% ethanol. Tissue was removed from bone, and femur length was measured using digital 

calipers. Pituitary gland and whole hypothalamus were quickly collected, frozen on dry ice, and 

stored at -80°C until RNA extraction. 

 

Reproductive Phenotyping 

Timing of pubertal onset was monitored daily beginning at weaning (post-natal day 21) in male (n 

= 14-17 mice/genotype) and female (n = 10-12 mice/genotype) LepRbΔAR and ARflox mice. Female 

mice were checked for day of vaginal opening (VO) and day of first estrus, defined by the presence 

of keratinized epithelial cells in vaginal lavage for two consecutive days following presence of 

predominantly leukocytes or one day preceded by proestrus (51-53). Male mice were checked 

daily for completion of balanopreputial separation (BPS) by applying gentle pressure to the 
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prepuce (54). Estrous cyclicity was analyzed in female mice beginning at 8-10 weeks of age. 

Vaginal lavage was performed daily for 35 consecutive days and estrous cycle stage determined 

based on the proportion of leukocytes, epithelial, and keratinized epithelial cells (55). Estrous cycle 

length was determined by counting the number of days between the first day of estrous in each 

cycle, and averaged for each female. Percentage of days in each estrous cycle stage was calculated 

as number of days in each cycle (diestrus, proestrus, or estrus) divided by 35 total days. Number 

of cycles over the total sampling period were counted as the number of complete estrous cycles in 

35 days.  

 

One female LepRbΔAR and one ARflox mouse (n = 6 mice/genotype) at 10 weeks of age were trio-

mated with a sexually-experienced male C57BL/6J (8-10 weeks of age) mouse. Male LepRbΔAR 

and ARflox mice (n = 7-8 mice/genotype) at 8 weeks of age were trio-bred with two FVB/NJ 

females (8-10 weeks of age). FVB/NJ female mice were chosen for their high fecundity and high 

percent of productive matings (56). Trios were allowed to breed until delivery of two consecutive 

litters per female. Time to first litter and inter-litter interval (latency to birth), and number of pups 

per litter for females were recorded.  

 

Sex steroid and gonadotropin assays  

To assess response of the HPG axis to negative feedback, male LepRbΔAR and ARflox mice (n = 7-

11 per group) were orchidectomized (ORX), and female LepRbΔAR and ARflox mice (n = 5-13) 

ovariectomized (OVX) under isoflurane anesthesia. One week after gonadectomy, mice were 

deeply anesthetized with isoflurane, and euthanized via decapitation. Intact female LepRbΔAR and 

ARflox mice were euthanized during diestrus. Trunk blood was collected as described above, and 
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serum samples were sent to the University of Virginia Ligand Core for the following assays: 

mouse/rat LH/FSH multiplex (LH reportable range = 0.24 – 30.0 ng/mL, FSH reportable range  = 

0.48 – 300.0 ng/mL, intra-assay %CV = 4.0-5.4, inter-assay %CV = 8.6 - 8.9), mouse/rat 

testosterone IBL ELISA (IBL, Cat# IB79174, RRID#: AB_2784504, reportable range = 10.0 - 

1600.0 ng/dL, assay sensitivity = 6.6 ng/dL, intra-assay %CV = 5.4 - 6.0, inter-assay %CV = 7.8 

- 9.4). ORX LepRbΔAR and ARflox males were compared to intact LepRbΔAR and ARflox males (n = 

11-15 per group). An additional group of LepRbΔAR and ARflox males (n = 8-9 per group) were 

single housed for at least 2 weeks prior to ORX to control for a group housed setting, which may 

alter testosterone levels in male mice (57).  

 

For female serum testosterone, Δ-4 steroids analysis via LC/MS/MS was performed at the 

Michigan Regional Comprehensive Metabolomics Resource Core at the University of Michigan. 

Mouse serum samples were processed using 30 µL of serum to 100 µL of internal standard and 

were reconstituted with 100 µL of 40% methanol in water for a sample dilution of 3.33x. This was 

done to keep processing consistent with sample volume being limited. Samples were extracted 

using SLE and injection volume was 20 µL. Serum samples with remaining volume were pooled 

and then processed in 3200 µL aliquots of serum with 100 µL of internal standard and were 

reconstituted with 100 µL of 40% methanol in water for a sample dilution of 0.5 (2x 

concentration). This was done because previous lower volume samples showed very few 

measurable signals. Samples were extracted using SLE and injection volume was 20 µL. Variation 

was fairly high as signal strength, while quantifiable, was still quite low. This was to be expected 

and for this reason multiple injections were made and averaged. 
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Serum IGF1 assay 

To assess serum insulin-like growth factor 1 (IGF1) levels in females at 20 weeks of age, trunk 

blood was collected and serum processed as described above. Serum IGF1 was quantified using a 

mouse/rat IGF1 Quantikine ELISA Kit (R&D Systems, Cat# MG100, RRID#: AB_884569, assay 

range = 31.2 - 2,000 pg/mL, assay sensitivity = 8.4 pg/mL, intra-assay %CV = 3.3 - 5.6, inter-

assay %CV 4.3 – 9.1) following manufacturer’s instructions. Samples were assayed in duplicate.  

 

Quantitative PCR (qPCR) 

Pituitary gland and whole hypothalamus from adult, gonad intact, group housed male ARflox (n = 

3-4) and LepRbΔAR (n = 4) mice were homogenized with Qiazol reagent (Qiagen), and total RNA 

was isolated using the RNeasy Plus Mini kit (Qiagen), including genomic DNA elimination, 

following manufacturer’s instructions. First-strand cDNA was synthesized using SuperScript® II 

reverse transcriptase and oligo(dT). Gene expression was quantified in triplicate samples using 

qPCR with a CFX-384 Bio-Rad Real-Time PCR detection system with SYBR Green® 

(ThermoFisher) reaction for Kiss1, Tac2, and Pdyn, and TaqMan Gene Expression MasterMix 

(Applied Biosystems) for Ar. Transcript levels were normalized to the housekeeping gene β-actin 

(Actb). mRNA expression of target genes in male ARflox and LepRbΔAR mice was determined by a 

comparative cycle threshold (Ct) and relative (to Actb) gene copy number was calculated as 2-ΔΔCt, 

and is presented as the percentage of relative mRNA expression of ARflox mice. Primers used are 

shown in Table 3.3. 
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Table 3.3: qPCR Primers 

 

Analysis of Data and Image Production 

Digital images were acquired using an Axio Imager M2 (Carl Zeiss) with a digital camera 

(AxioCam, Zeiss) using Zen Pro 2 software (Zeiss). Colocalization of neurons that express AR-ir 

and eGFP-L10a was quantified in one section on one side of each animal (n = 4-5 mice/sex) in 

specific hypothalamic nuclei (medial pre-optic area, MPO, rostral (rARH), mid (mARH), and 

caudal (cARH) arcuate, dorsomedial nucleus of the hypothalamus, DMH, PMv, nucleus of the 

solitary tract, NTS). Colocalization of neurons that express ERα-ir and eGFP-L10a was quantified 

in one section on one side of each animal (n = 4/genotype) in mARH and PMv. Cell counts were 

performed on images taken at 20× magnification using Photoshop software (Adobe Creative 

Cloud) Analysis Count Tool. Adobe Photoshop and Illustrator software were used to crop, scale, 

label, and assemble images into figures.  

 

Statistics 

Gene Primer Sequence Company Reference 

Ar 

FOR 5’ CTG CCT TGT TAT CTA GCC TCA 3’ 
REV 5’ ATA CTG AAT GAC CGC CAT CTG 3’ 

Probe:  /56-FAM/ACC ACA TGC /ZEN/ACA AGC TGC 
CTC T/3IABkFQ/ 

IDT Mm.PT.47.17416675 

Kiss1 FOR 5’ GCT GCT GCT TCT CCT CTG TG 3’ 
REV 5’ TCT GCA TAC CGC GAT TCC TT 3’ IDT Custom 

Tac2 FOR 5’ TCT GTG TGG GAT GTA AAG GAG GG 3’ 
 REV 5’ GAC AGC GCG AAA CAG CAT GG 3’ IDT Custom 

Pdyn FOR 5’ CGT TGC TGT CAA GAT CTG TTG 3’ 
 REV 5’ AGG CAG TCC GCC ATA ACA TT 3’ IDT Custom 

Actb 
FOR 5’ GAT TAC TGC TCT GGC TCC TAG 3’ 
 REV 5’ GAC TCA TCG TAC TCC TGC TTG 3’ 

Probe: 5’ CTG GCC TCA /ZEN/CTG TCC ACC TTC C 3’ 
IDT Mm.PT.39a.22214843

.g 

Actb FOR 5’ CAG CCT TCC TTC TTG GGT ATG G 3’ 
REV 5’ AGC TCA GTA ACA GTC CGC CT 3’ IDT Custom 
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Data are reported as mean ± standard error of the mean (SEM). Data analysis was performed using 

GraphPad Prism software (Version 8). Data was analyzed for normal distribution using Shapiro-

Wilk test (significance level alpha 0.05). Unpaired t-test with Welch’s correction was used for day 

of VO, latency to birth for males, number of pups per litter, percentage of days in diestrus and 

estrus, femur length, serum IGF1, female serum testosterone, single housed male serum 

testosterone, female fat mass, female body length, food intake, energy expenditure (male and 

female, dark, light and 24h), ambulatory activity (male, dark and light phase, female, dark, light, 

and 24h), fasting blood glucose, area under the curve for GTT, pituitary Ar and hypothalamic 

Kiss1, Tac2, and Pdyn relative gene expression. Non-normal data was analyzed using Mann-

Whitney non-parametric test (first estrus, female latency to birth, day of BPS, percentage of days 

in proestrus, cycle length, number of cycles, testes and seminal vesicle mass, male fat mass, male 

and female lean mass, male body length, and male 24 h activity). Male serum testosterone values 

were log transformed prior to analysis by Mann-Whitney non-parametric test for group housed 

males and unpaired t-test with Welch’s correction for single housed males. Analysis for potential 

outliers was performed using the ROUT method (Q = 1%). Two-way ANOVA with repeated 

measures and Holm-Sidak correction was used to analyze glucose tolerance test and body weight 

data. Serum LH and FSH values were analyzed by two-way ANOVA with multiple comparisons 

and Holm-Sidak correction. Exact P values are reported and statistical significance is defined as P 

< 0.05.  

 

 

Results 

High colocalization of AR and LepRb in the arcuate and PMv nuclei 
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Several populations of LepRb neurons have been described in brain sites that also contain AR. 

These include the medial pre-optic area (MPO), arcuate nucleus (ARH), dorsomedial nucleus of 

the hypothalamus (DMH), ventral premammillary nucleus (PMv), and nucleus of the solitary tract 

(NTS) (43,58,59). Expression of AR in LepRb neurons was observed primarily in the ARH and 

PMv of both males and females (Figure 3.1A-D), which is consistent with previous studies (60).  

Table 3.4: Colocalization quantification of LepRb neurons with AR 

 

In the mid-ARH, approximately 30% of LepRb cells express AR in both sexes (Figure 3.1K). Most 

colocalization of AR and LepRb was observed at the mid/tuberal region of the ARH, with fewer 

LepRb cells co-expressing AR in the caudal and rostral ARH (rARH, ~24%, cARH, ~10-12%, 

Table 3.4). The PMv has the highest degree of colocalization, with approximately 49% of male 

and 35% of female LepRb cells expressing AR. Other nuclei, including the MPO (Figure 3.1E-F), 

DMH (Figure 3.1G-H), and NTS (Figure 3.1I-J) contained less than 15% of LepRb cells co-

expressing AR in both sexes.  

 Control Mice 
 Male: LepRbCre Female: LepRbCre 

Nucleus #LepRb #LepRb+AR %LepRb+AR #LepRb #LepRb+AR %LepRb+AR 
rARH 138.4 ± 

6.80 
32.2 ± 5.78 23.44 ± 4.07 124 ± 8.90 30.5 ± 6.69 24.28 ± 4.34 

mARH 187.4 ± 
15.39 

54.6 ± 11.61 28.24 ± 4.09 164.0 ± 
17.57 

49.75 ± 7.75 30.30 ± 3.65  

cARH 135.4 ± 
8.41  

13.4 ± 6.32 10.05 ± 4.55 155.0 ± 
14.53 

19.0 ± 4.38 11.91 ± 1.76 

PMv 228.6 ± 
25.05 

114 ± 16.65 49.76 ± 3.44 233.0 ± 
24.27 

84.5 ± 22.05 35.78 ± 7.61 

MPO 54.4 ± 
7.45 

7.6 ± 2.42 13.98 ± 3.49 57.25 ± 6.14 3.5 ± 0.87 6.03 ± 1.02 

DMH 221.8 ± 
51.78 

24.4 ± 5.47 11.92 ± 2.64 253.25 ± 
5.92 

12.0 ± 0.91 4.76 ± 0.45 

NTS 27.0 ± 
6.35 

2.67 ± 0.88 9.30 ± 1.53  36.75 ± 6.45 2.0 ± 0.0 6.05 ± 1.17 
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In the pituitary gland, very few cells express LepRbCre;eGFPL10a (Figure 3.2A-C), and expression 

was sporadic and dispersed. qPCR was used to validate that Ar transcript levels were not affected 

in the pituitary gland. Ar gene expression levels relative to the housekeeper Actb were not 

significantly different in the pituitary gland of LepRbΔAR mice (ARflox relative expression = 100%, 

SEM = 28.59, LepRbΔAR relative expression = 162%, SEM = 19.86, t-test with Welch’s correction, 

P = 0.12).  In the testis, LepRbCre;eGFPL10a and AR co-expression was observed in few Leydig cells. 

Sertoli cells strongly express AR, but do not express LepRbCre;eGFPL10a (Figure 3.2D-F). 

LepRbCre;eGFPL10a cells were virtually absent in ovarian granulosa cells and theca cells, but were 

observed sporadically in ovarian parenchyma (Figure 3.2G-L). Liver, bone, and muscle were 

examined for LepRbCre;eGFPL10a, but reporter gene expression was very low or absent in these 

tissues. This pattern of co-localization between LepRb and AR indicate that the observed 

phenotype of LepRbΔAR mice are primarily due to deletion of AR in LepRb cells in the ARH and 

PMv. In LepRbΔAR mice, less than 4% (approximately 5-6 cells per mouse) of LepRb neurons 

express AR in the ARH and PMv of LepRbΔAR mice, indicating efficient deletion of AR in LepRb 

cells (Figure 3.3A-E and Table 3.5). 

Table 3.5: Colocalization quantification of LepRb neurons with AR in knockout mice (LepRbΔAR) 

 Knockout Mice 
 Male: LepRbΔAR Female: LepRbΔAR 

Nucleus #LepRb #LepRb+AR %LepRb+AR #LepRb #LepRb+AR %LepRb+AR 
rARH 120 ± 

13.85 
2.2 ± 0.58 1.75 ± 0.35 139.25 

± 20.17 
1.50 ± 0.65 0.99 ± 0.36 

mARH 162.8 ± 
21.85 

5.8 ± 1.36 3.60 ± 0.70 169.25 
± 14.01 

1.75 ± 0.85 1.03 ± 0.53 

cARH 140 ± 
8.44 

1.8 ± 0.49 1.34 ± 0.35 144.75 
± 17.38 

0.75 ± 0.25 0.58 ± 0.22 

PMv 238.4 ± 
30.29 

6.6 ± 1.72 2.95 ± 0.68 289.5 ± 
12.65 

3.0 ± 1.22 1.03 ± 0.44 
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No increase in ERα expression in the ARH and PMv of LepRbΔAR mice  

Fewer than 20% of LepRb cells in the ARH and PMv have been described to coexpress ERα in 

male and female mice (61). Neuronal deletion of AR in male mice results in increased ERα 

expression in the lateral septum and MPO (19). If LepRb cells in the ARH and PMv require 

androgenic signaling for proper function, we hypothesized that ERα expression would increase in 

order to compensate for loss of AR. Consistent with previous studies (61), approximately 17% of 

LepRb cells in the mARH and 5% of LepRb cells in the PMv co-express ERα in LepRbCre males 

(Figure 3.3F, H, J). With loss of AR, ERα expression in LepRb cells did not change (Table 3.6). 

In LepRbΔAR males, approximately 10% of LepRb cells coexpress ERα in the mARH and PMv 

(Figure 3.3G, I, J).   

Table 3.6: Colocalization quantification of ERα in LepRb neurons   

 Control Mice Knockout Mice 
 Male: LepRbCre Male: LepRbΔAR 

Nucleus #LepRb #LepRb+ERα %LepRb+ERα #LepRb #LepRb+ERα %LepRb+ERα 
mARH 104.5 ± 

4.87 
18.25 ± 3.52 17.48 ± 3.3 96 ± 

18.24 
10.25 ± 3.07 12.23 ± 4.60 

PMv 209.25 
± 26.41 

9.33 ± 2.12 5.40 ± 1.0 191.75 ± 
17.92 

10 ± 5.74 6.32 ± 4.29 

 

LepRbΔAR mice show typical sexual maturation and fertility 

To assess if lack of AR in LepRb cells disrupts sexual maturation, we evaluated external markers 

of puberty onset (VO) and puberty completion (first estrus) beginning at weaning. Female 

LepRbΔAR and control mice had similar day of VO (Figure 3.4A). No difference was seen in the 

day of first estrus between LepRbΔAR and control females (Figure 3.4B). LepRbΔAR and control 

females showed typical estrous cycles (Figure 3.4C), with a similar amount of time in each cycle 

stage (Figure 3.4D), estrous cycle length (Figure 3.4E), and number of cycles (Figure 3.4F).  
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LepRbΔAR and control females had a similar latency to birth (Figure 3.4G) and number of pups per 

litter (Figure 3.4H) for two consecutive pregnancies. Male LepRbΔAR and control mice had similar 

day of complete BPS (Figure 3.4I), and showed no difference in the latency to impregnate a female 

(time from start of mating to birth of pups) when mated with wild-type females (Figure 3.4J). 

 

LepRbΔAR male mice show exaggerated response to negative feedback actions of sex steroids 

Male LepRbΔAR mice display increased serum testosterone (T) compared to control males (ARflox 

mean T = 90.05 ng/dL, LepRbΔAR mean T = 297.5 ng/dL, Mann-Whitney non-parametric test, P = 

0.02, Figure 3.5A). Despite increased serum T, male LepRbΔAR mice had similar gonadal mass 

(mass of both testes, ARflox mean = 0.42 g, SEM = 0.04, LepRbΔAR mean = 0.47 g, SEM = 0.03, 

Mann-Whitney non-parametric test, P = 0.45) and seminal vesicle mass (ARflox mean = 0.38 g, 

SEM = 0.05, LepRbΔAR mean = 0.42 g, SEM = 0.04, Mann-Whitney non-parametric test, P = 0.56) 

compared to control males. Serum LH and FSH were no different between intact LepRbΔAR and 

ARflox male mice (Figure 3.5B-C).  Additionally, hypothalamic gene expression of Kiss1, Tac2, 

and Pdyn relative to the housekeeper Actb were not different in gonad intact LepRbΔAR  and ARflox 

male mice (Kiss1 relative expression: ARflox = 100%, SEM = 8.17, LepRbΔAR = 81.69%, SEM = 

22.09, t-test with Welch’s correction, P = 0.48, Tac2 relative expression: ARflox = 100%, SEM = 

8.24, LepRbΔAR = 101.7%, SEM = 9.30, t-test with Welch’s correction, P = 0.89, Pdyn relative 

expression: ARflox = 100%, SEM = 6.42, LepRbΔAR = 85.78%, SEM = 19.78, t-test with Welch’s 

correction, P = 0.53).   

 

LepRbΔAR and control mice were orchidectomized (ORX) to remove the predominant source of 

androgens (testes), resulting in loss of negative feedback to the hypothalamus and pituitary gland. 
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One week after ORX, ARflox control males showed an expected rise in serum LH, whereas 

LepRbΔAR males showed an exaggerated rise in serum LH (ORX ARflox mean LH = 1.242 ng/mL 

vs ORX LepRbΔAR = 3.265 ng/mL, two-way ANOVA, P = 0.04, Figure 3.5B). No difference in 

FSH levels were detected in ORX between ARflox and LepRbΔAR males (Figure 3.5C).  

 

Male mouse social hierarchy may result in differing levels of T among group housed cage mates 

(57,62). A separate cohort of LepRbΔAR and control males were single housed for up to 2 weeks 

to control for group housed status prior to ORX. Single housed LepRbΔAR and control males 

showed similar intact T levels (ARflox mean T = 303.8 ng/dL, SEM = 107.9, LepRbΔAR mean T = 

283.5 ng/dL, SEM = 65.66, t-test with Welch’s correction, P = 0.77, Figure 3.5D). Levels of T in 

LepRbΔAR males were similar between group and single housed mice, whereas T in single housed 

ARflox males increased to levels comparable to LepRbΔAR males. Single housed LepRbΔAR and 

ARflox ORX mice showed elevated gonadotropins, but there was no effect of genotype on LH or 

FSH. Single housed ARflox males show an increase in LH comparable to LepRbΔAR males (ORX 

ARflox mean LH = 4.26 ng/mL, SEM = 0.83, ORX LepRbΔAR mean LH = 4.91 ng/mL, SEM = 

1.07, two-way ANOVA with multiple comparisons and Holm-Sidak correction, P = 0.75, Figure 

3.5E). FSH was no different between ORX males, and FSH levels were comparable to group 

housed males (ORX ARflox mean FSH = 243.4 ng/mL, SEM = 17.99, ORX LepRbΔAR mean FSH 

= 261.6 ng/mL, SEM = 14.47, two-way ANOVA with multiple comparisons and Holm-Sidak 

correction, P = 0.67, Figure 3.5F).  

 

Serum T did not differ between ARflox and LepRbΔAR females (ARflox mean T = 1.95 ng/dL, 

LepRbΔAR mean T = 1.65 ng/dL, t-test with Welch’s correction, P = 0.49, Figure 3.5G). Levels of 
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LH in females were mostly below the detectable limit of the LH assay, as samples were collected 

during diestrus. No differences were detected between intact ARflox and LepRbΔAR female FSH. 

One week after ovariectomy (OVX), serum LH did not differ between OVX ARflox and OVX 

LepRbΔAR females (Figure 3.5H). However, OVX LepRbΔAR females display increased FSH 

compared with OVX ARflox females (OVX ARflox mean FSH =187.75 ng/mL, OVX LepRbΔAR 

mean FSH = 243.59 ng/mL, two-way ANOVA, P = 0.02, Figure 3.5I).  

 

LepRbΔAR mice show changes in ambulatory activity, lean mass, and body length in a 

sexually dimorphic manner 

To determine whether loss of AR from LepRb cells impacts regulation of energy homeostasis, 

mice underwent a comprehensive metabolic assessment. Male and female LepRbΔAR mice did not 

display a significant difference in body weight compared to control mice through 14 weeks of age 

(Figure 3.6A). No difference was observed in fat mass or lean mass in LepRbΔAR males compared 

to control males at 15 weeks of age (Figure 3.6B). LepRbΔAR females showed increased lean mass 

(about 2.5 g), but no change in percentage of lean or fat mass (Figure 3.6C), indicating that 

LepRbΔAR females are larger in size compared to control females. Body length was not different 

between LepRbΔAR males and females compared to controls at 15 weeks of age (males at 15 weeks 

of age, Figure 3.6D), but showed a trend in females at 15 weeks of age (P = 0.07, data not shown). 

A follow-up assessment showed increase in body length in LepRbΔAR females at 20 weeks of age 

(Figure 3.6D). Despite increased body length, femur length (mean femur length ARflox = 15.90 

mm, SEM = 0.11, LepRbΔAR = 15.68 mm, SEM = 0.21, t-test with Welch’s correction, P = 0.39) 

and serum IGF1 (mean serum IGF1 ARflox = 334.7 ng/mL, SEM = 33.32, LepRbΔAR = 258.1 
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ng/mL, SEM = 50.37, t-test with Welch’s correction, P = 0.23) were not different between ARflox 

and LepRbΔAR females at 20 weeks of age.  

 

Male and female LepRbΔAR mice show similar food intake (Figure 3.6E) and fasting blood glucose 

(mean male fasting blood glucose ARflox = 110 mg/dL, SEM = 7.30, LepRbΔAR = 106 mg/dL, SEM 

= 5.67, t-test with Welch’s correction, P = 0.70, mean female fasting blood glucose ARflox = 106 

mg/dL, SEM = 7.54, LepRbΔAR = 96.8 mg/dL, SEM = 10.3, t-test with Welch’s correction, P = 

0.47). GTT of both LepRbΔAR males and females on normal chow diet were similar compared with 

controls (Figure 3.6F). Area under the curve was used to compare GTT, and was not different 

between genotypes on same diet (AUC male ARflox = 3.2 x 104 mg/dL*min, SEM = 3.2 x 103, 

LepRbΔAR = 3.0 x 104 mg/dL*min, SEM = 1.9 x 103 , t-test with Welch’s correction, P = 0.62, 

AUC female ARflox = 2.8 x 104 mg/dL*min, SEM = 1.8 x 103, LepRbΔAR = 2.7 x 104 mg/dl*min, 

SEM = 3.1 x 103, t-test with Welch’s correction, P = 0.89).  

 

To determine if latent differences in body weight regulation would be uncovered with nutrient 

excess, we challenged LepRbΔAR and control mice with HFD. Previous studies have demonstrated 

that ARKO mice on HFD show increase in fat mass (17,63). After 12 weeks of HFD, LepRbΔAR 

and control male and female mice gained a similar amount of weight (Figure 3.6G) and displayed 

similar levels of fasting blood glucose (mean male HFD fasting blood glucose ARflox =  156 mg/dL, 

SEM = 13.74, LepRbΔAR = 126 mg/dL, SEM = 11.53, t-test with Welch’s correction, P = 0.10, 

mean female HFD fasting blood glucose ARflox = 126 mg/dL, SEM = 7.66, LepRbΔAR = 113.4 

mg/dL, SEM = 5.24, t-test with Welch’s correction, P = 0.18).  LepRbΔAR males and females 

displayed similar glucose tolerance after 12 weeks HFD compared with control mice (Figure 

3.6H). Area under the curve was used to compare GTT, and was not different between genotypes 
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on same diet (AUC HFD male ARflox = 4.6 x 104 mg/dL*min, SEM = 4.3 x 103, LepRbΔAR = 4.3 

x 104 mg/dL*min, SEM = 3.1 x 103, t-test with Welch’s correction, P = 0.56, AUC HFD female 

ARflox = 3.3 x 104 mg/dL*min, SEM = 2.5 x 103, LepRbΔAR = 3.2 x 104 mg/dL*min, SEM = 3.4 x 

103, t-test with Welch’s correction, P = 0.79). The GTT data of mice on different diets are not 

directly comparable because the experiments were done in different cohorts. Males on HFD, 

however, showed impairment of glucose intolerance compared to normal chow diet, validating the 

procedure. Due to lack of any difference between genotypes on HFD in both sexes, potential 

changes in energy homeostasis were not assessed further. Ambulatory activity in male, not female, 

LepRbΔAR mice was increased, specifically during the light phase (Figure 3.7A-D). Despite 

increased activity, energy expenditure in 24 h, and during light and dark phases was not different 

in male or female mice (Figure 3.7E-H). 

 

Discussion 

In this study we assessed the impact of lack of androgen signaling via AR on LepRb cells, which 

are a critical population of neurons relevant for both metabolism and reproduction. Consistent with 

previous studies of AR and LepRb expression (60), we show here that approximately 40-50% of 

LepRb neurons in the PMv co-express AR, the highest level of co-localization seen in the brain, 

followed by ~30% colocalization in the mARH. Furthermore, LepRb and AR cells in the pituitary 

gland and gonads show little to no co-expression, highlighting that androgenic input to LepRb 

cells occurs primarily in the mARH and PMv. We found that LepRbΔAR male mice show increased 

ambulatory activity, increased serum testosterone, and an exaggerated rise in serum LH in the 

absence of negative feedback. Female LepRbΔAR mice show instead an increased in linear growth, 

and a greater rise in FSH with OVX. Additionally, lack of AR does not result in upregulation of 
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ERα in LepRb mARH and PMv neurons, indicating that these populations of neurons are 

preferentially responsive to androgens rather than estrogens.  

LepRb and AR are expressed in many tissues of the HPG axis, including the pituitary gland and 

gonads (64-69). However, the degree of co-expression of LepRb and AR in the same cells is low, 

and few cells express LepRbCre in pituitary and gonads (70). While LepRbCre and AR coexpression 

is seen in some Leydig cells, deletion of AR via LepRbCre in Leydig cells is not likely responsible 

for increased serum testosterone observed in LepRbΔAR male mice. LepRbΔAR males show 

increased serum testosterone when group housed, unchanged testes mass, and are fertile, which 

does not phenocopy the low testosterone, testicular atrophy, elevated LH and FSH, and infertility 

seen in Leydig-cell specific ARKO (71). Likewise, female LepRbΔAR mice do not mimic ovary-

cell specific ARKO mice (72,73), as LepRbΔAR females do not show any difference in puberty 

onset, estrous cyclicity, or fertility. Additionally, pituitary deletion of AR results in reduced FSH 

with OVX in females (65), which is contrary to the elevation in FSH in OVX female LepRbΔAR 

mice. Therefore, it is unlikely that LepRb specific deletion of AR in the pituitary or gonads would 

result in the increased LH seen in ORX males or FSH in OVX females. The change in serum 

testosterone and gonadotropins with gonadectomy may reveal a change in hypothalamic sensitivity 

to androgens with deletion of AR in LepRb cells, or a different set point for androgenic negative 

feedback.  

 

Androgens exert negative feedback to the hypothalamus and pituitary gland via AR and ERα (74-

76). AR plays a greater role in male negative feedback to the hypothalamus, as males typically 

have higher levels of circulating androgens compared to females (77). Kisspeptin neurons in the 

ARH and anteroventral periventricular nucleus stimulate release of gonadotropin releasing 
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hormone (GnRH) and express sex steroid receptors, including ERα and AR (78,79). Androgenic 

actions on ARH kisspeptin/neurokinin/dynorphin (KNDy) expressing neurons are important for 

mediating negative feedback to the HPG axis, and may be indirectly impacted with LepRb-specific 

deletion of AR. A small population of Kiss1 neurons co-express LepRb or leptin-inducted pSTAT3 

in female mice (36,80,81), and up to 42% of Kiss1 neurons co-express Lepr mRNA in castrated 

male mice (82). However, LepRb in Kiss1 neurons is not required for leptin’s action in puberty or 

reproduction in mice (36), and LepRb signaling in Kiss1 neurons only arises in adult life, post-

sexual maturation (83). Taken together, this small sub-population of LepRb expressing Kiss1 

neurons in the hypothalamus may be indirectly responsible for the changes in LH with ORX and 

testosterone seen in LepRbΔAR males. We observed no changes in Kiss1, Tac2, or Pdyn 

hypothalamic gene expression in group housed, gonad intact males, further indicating that actions 

of androgens on LepRb are independent from KNDy neurons.   

 

Alternatively, neurons of the melanocortin system (NPY/AgRP and POMC/CART) have been 

shown to influence both reproduction and metabolism (39,40,84-87). Leptin promotes an 

anorexigenic state by stimulating ARH POMC neurons and inhibiting NPY/AgRP neurons (88-

90). Androgens have been shown to influence neurons of the melanocortin system, including 

masculinization of POMC mRNA expression and projections (91,92). However, while most 

POMC and AgRP/NPY neurons express LepRb (35,88,89,93,94), few POMC neurons express AR 

in rats (95), and AgRP/NPY neurons are not observed to coexpress AR in post-natal day 10 mice 

(96). The mechanism by which androgens impact POMC and AgRP/NPY neurons may be indirect 

and mediated via other populations of AR expressing LepRb neurons. With deletion of AR in 

LepRb cells, overall food intake and energy expenditure were not changed. Therefore, androgens 
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may act on additional populations of cells at the level of the hypothalamus to influence the 

regulation of metabolism and reproduction. 

 

LepRb are expressed in many metabolically relevant tissues, including liver and adipose (97). The 

degree of co-localization between LepRb and AR, however, is low in these peripheral tissues and 

the metabolic phenotype of LepRbΔAR does not phenocopy metabolic tissue-specific ARKO 

models, including liver (15) or adipocyte-specific ARKO (17). Both male and female LepRbΔAR 

mice showed no differences in global body fat mass, and glucose homeostasis was not altered on 

either normal chow or HFD, so it is unlikely that deletion of AR via LepRbCre in off-target tissues 

impacted our observed phenotype. Interestingly, female LepRbΔAR mice display increased lean 

mass, while male LepRbΔAR mice do not. Neuronal AR have been shown to positively regulate 

lean muscle mass, as male mice with loss of neuronal AR display decreased hindlimb muscle mass 

despite increased serum testosterone (98). LepRbΔAR females display increased body length, but 

not increased limb length, indicating an overall increase in axial rather than appendicular skeleton 

growth.  

 

LepRbΔAR male mice show increased ambulatory activity, mainly due to increased activity during 

the light phase when rodents are typically less active. Male mice with global deletion of AR DNA-

binding domain (mimics exon 2 deletion) show decreased activity (99) that is consistent with 

decreased running wheel activity seen in castrated wild-type males (100,101). However, neuronal-

specific AR knockout models provide contrasting results. CaMKIIα-iCre driven ARKO results in 

decreased activity (98), whereas nestin-Cre driven ARKO males show increased activity, which is 

correlated with an increase in E2 (19). The differences in activity seen in ARKO mouse models 
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highlights how the extent, timing, and sites of AR deletion can impact phenotype. In the absence 

of AR in certain populations of cells, such as LepRb expressing cells, estrogenic signaling is 

unopposed by androgens, and estrogens are known to increase ambulatory activity (102,103). 

Leptin increases locomotor activity via hypothalamic targets (104,105), and it is possible that sex 

steroids may modulate leptin’s effect on activity. LepRbΔAR males show elevated serum 

testosterone, which when aromatized to estradiol, can act to increase activity (106). However, this 

effect is not likely via ARH or PMv LepRb cells, as aromatase expression in these nuclei is low 

(107) and few LepRb cells express ERα in the ARH and PMv. Activity was increased in LepRbΔAR 

males particularly during the light-phase, which highlights the circadian component of activity 

which is influenced by gonadal hormones.  

 

Elevated testosterone in LepRbΔAR males was only observed in group housed males. This effect 

was not related to gonadal mass, as testes size was similar compared to control males. The impact 

of group housing highlights the role of male social hierarchy in rodents. A population of dopamine 

transporter (DAT)-expressing neurons in the PMv has been implicated in male-male aggression 

and establishment of male social hierarchy in mice (108). It is possible that AR expression in the 

PMv could play a role in the establishment of male social hierarchy. Pheromones are known to 

play a key role in social interaction and behavior in rodents, and exposure to both conspecific and 

opposite-sex odors result in Fos expression in the PMv of male and female rodents (109,110). PMv 

LepRb neurons are activated by opposite-sex odors and directly project to GnRH neurons in the 

pre-optic area (111). A sub-population of PMv LepRb neurons that co-expresses AR is therefore 

well situated to integrate gonadal signals, pheromone cues, and energy status to regulate the timing 

and behavior of reproduction.  
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In summary, our findings demonstrate that deletion of AR from LepRb cells results in sex-specific 

differences in ambulatory activity, linear growth, testosterone, and gonadotropin levels. Deletion 

of AR in PMv and ARH neurons may explain this phenotype, revealing a key sexually dimorphic 

role of metabolically relevant neuronal populations in androgen actions in the brain.  
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Figure 3.1: Androgen receptor (AR) and leptin receptor (LepRb) are highly colocalized in the mid-
arcuate (mARH) and ventral premammillary (PMv) nuclei in male and female brain. A-J, fluorescent 
images showing colocalization of LepRbCre (eGFP-L10a, green) and AR immunoreactivity (AR-ir, purple) 
in the mARH (A-B), PMv (C-D), medial pre-optic area (MPO, E-F), dorsomedial nucleus of the 
hypothalamus (DMH, G-H), and nucleus of the solitary tract (NTS, I-J). Insets are higher magnification of 
A-J. K, Scatter plot graph showing percentage of LepRbCre neurons co-expressing AR (mean ± SEM, n = 5 
males and n = 4 females). Three levels of ARH were quantified (rostal, mid/tuberal, and caudal), and images 
for mARH are presented (A-B). Solid white arrows indicate LepRb cells which co-express AR. Arrows 
with black center indicate LepRb cells which do not co-express AR. Abbreviations: 3v, third ventricle, AP, 
area postrema, cARH, caudal arcuate, c, central canal of the medulla, DMX, dorsal motor nucleus of the 
vagus nerve, fx, fornix, OV, vascular organ of the lamina terminalis, rARH, rostral arcuate, VMH, 
ventromedial hypothalamus. Abbreviations based on reference brain of the Allen Brain Atlas. Scale bar = 
100µm. 
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Figure 3.2: Co-expression of androgen receptor (AR) and leptin receptor (LepRb) in the pituitary 
gland and gonads is very low. A-I, fluorescent images showing LepRbCre (eGFP-L10a, green, A, D, G) 
and AR immunoreactivity (AR-ir, purple, B, E, H) expression in the pituitary gland (A-C), testis (D-F), and 
ovary (G-I). C, F, I, merged images. LepRbCre expression was low in the pituitary gland (A-C). Female 
pituitary gland is shown in A-C. LepRbCre expression in the testes (D-F) was limited to few Leydig cells 
and virtually absent from Sertoli cells. Ovarian (G-I) LepRbCre expression was sporadic in ovarian 
parenchyma, and absent in granulosa and theca cells. Solid white arrows indicate LepRb cells which co-
express AR. Arrows with black center indicate LepRb cells which do not co-express AR. Abbreviations: 
CL, corpus luteum, GC, granulosa cell, LC, Leydig cell, oo, oocyte, SC, Sertoli cell, TC, theca cell. Scale 
bar = 50µm (F), and 100 µm (C,I). 
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Figure 3.3: Deletion of androgen receptor (AR) in LepRbΔAR mice induces no change in estrogen 
receptor alpha (ERα) expression in leptin receptor (LepRb) expressing cells. A-D, fluorescent images 
showing AR immunoreactivity (AR-ir, purple) and LepRbΔAR (eGFP-L10a, green) expression in mid-
arcuate nucleus (mARH, A-B) and ventral pre-mammillary nucleus (PMv, C-D) of a LepRbΔAR male (A, 
C) and female (B, D) hypothalamus. Inset is higher magnification of A-D. E, scatter plot graphs of 
percentage of LepRbΔAR neurons co-expressing AR (mean ± SEM, n = 5 males and n = 4 females, E). Three 
levels of ARH were quantified (rostal, mid/tuberal, and caudal), and images for mARH shown (A-B). Less 
than 4% of LepRbΔAR express AR in the mARH and PMv in both sexes. Arrows with black center indicate 
LepRb cells which do not co-express AR. F-I, fluorescent images showing colocalization of LepRbCre (F, 
H) and LepRbΔAR (G, I) (eGFP-L10a, green) and ERα immunoreactivity (ERα-ir, purple) in mARH (F-G), 
and PMv (H-I). J, scatter plot graph showing percentage of LepRbCre neurons co-expressing ERα (mean ± 
SEM, n = 5 males). Insets are higher magnification of F-I. Solid white arrows indicate LepRb cells which 
co-express ERα. Arrows with black center indicate LepRb cells which do not co-express ERα. 
Abbreviations: 3v, third ventricle, fx, fornix, VMH, ventromedial hypothalamus. Abbreviations based on 
reference brain of the Allen Brain Atlas. Scale bar = 100µm. 



136 
 

 
Figure 3.4: Deletion of androgen receptor (AR) in leptin receptor (LepRb) cells does not impact 
puberty timing and fertility in males and females. A-B, scatter plot graphs of age at vaginal opening 
(VO), and age at first estrus (B), between ARflox female (n = 11-12) and LepRbΔAR (n = 7-10) mice. C, 
representative cycles shown for ARflox (left panel) and LepRbΔAR (right panel). Abbreviations: E, estrus, P, 
proestrus, M, metestrus, D, diestrus. ARflox and LepRbΔAR females show similar percentage of time in each 
cycle stage (D), typical estrous cycle length (E), and number of cycles per 35 days (F).  G-H, LepRbΔAR 
females show typical latency to birth and number of pups per litter when mated with wild-type males (ARflox 
n = 6, LepRbΔAR n = 6). I, day of complete balanopreputial separation (BPS) was not different between 
ARflox males (n = 17) and LepRbΔAR (n = 14). J, latency to birth did not differ in wild-type females mated 
with ARflox or LepRbΔAR males (ARflox n = 8, LepRbΔAR n = 7). Mean ± SEM plotted.   
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Figure 3.5: LepRbΔAR mice display higher testosterone and altered gonadotropin levels in a sexually 
dimorphic manner. A, scatter plot graph showing serum testosterone (T) in group housed intact ARflox and 
LepRbΔAR males. Serum T levels for males are plotted on a log scale to better illustrate distribution of 
individual data points. B, serum luteinizing hormone (LH) was significantly different for treatment (intact 
vs ORX) and genotype (ARflox intact n = 11, ORX n = 7, LepRbΔAR intact n = 15, ORX n = 11-12), with 
LepRbΔAR showing higher LH with ORX vs ARflox males. C, serum follicle stimulating hormone (FSH) was 
not different between genotype or treatment. D-F, scatter plot graphs showing T, LH, and FSH in singled 
housed intact and ORX males (ARflox intact n = 9, ORX n = 8, LepRbΔAR intact n = 8, ORX n = 8). Single-
housed male mice did not show significantly different levels of T, LH, or FSH, either intact or ORX. G, 
serum T was not different between ARflox and LepRbΔAR and females. H, serum LH was not different with 
treatment or genotype in female LepRbΔAR compared to ARflox females. I, serum FSH was significantly 
different for treatment (intact vs OVX), with LepRbΔAR females showing elevated FSH with OVX compared 
to OVX ARflox females. Intact (squares, male) and orchidectomized (ORX, circles, male) male ARflox 
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(white) and LepRbΔAR (blue). ARflox females (white circles intact, grey circles OVX), LepRbΔAR (pink 
circles intact, red circles OVX). Mean ± SEM plotted. Dotted lines indicate detectable limit of the assay.  
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Figure 3.6: Deletion of androgen receptor (AR) in leptin receptor (LepRb) cells results in increased 
body length in females. A, Scatter plot graphs showing body weight of male ARflox (n =13) and LepRbΔAR 
(n = 11), female ARflox (n = 13) and LepRbΔAR (n = 12) mice. B-C, scatter plot graphs showing body 
composition of male and female ARflox and LepRbΔAR mice in total grams of lean and fat mass and percent 
lean and fat mass. Female LepRbΔAR show increased total lean mass but no difference in percentage of lean 
mass compared to ARflox females. D, scatter plot graph of body length of ARflox and LepRbΔAR male and 
female mice. Female LepRbΔAR display greater body length than ARflox females. E, scatter plot graph of 
average food intake, which was not different in male or female ARflox and LepRbΔAR mice. Glucose tolerance 
test (GTT) for male and female ARflox and LepRbΔAR in normal chow (F) and high-fat diet (HFD, H). Body 
weight of male ARflox (n = 10), LepRbΔAR (n = 9), and female ARflox (n = 8), LepRbΔAR (n = 7) mice on 
HFD (G). Male ARflox = white squares, male LepRbΔAR = blue squares, female ARflox = white circles, female 
LepRΔAR = pink circles. Mean ± SEM plotted. 
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Figure 3.7: Male LepRbΔAR mice show increased ambulatory activity in the light phase. A,C, 
ambulatory activity measured in hourly mean ± SEM over 72 h (males, A, females, C). LepRbΔAR males 
show increased ambulatory activity compared to controls (light phase, mean ± SEM, B). Female ambulatory 
activity was not different (D). E, G, energy expenditure hourly mean ± SEM over 72 h (males, E, females, 
G). Energy expenditure was not significantly different in male or female LepRbΔAR mice compared to 
controls (F, H). Male ARflox n = 11, LepRbΔAR n = 9, ARflox n = 8, female LepRbΔAR n = 9. Mean ± SEM 
plotted.
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CHAPTER 4 
 

Deletion of AR in LepRb Cells Improves Estrous Cyclicity in Prenatally Androgenized 
Female Mice 

 
 
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in people with ovaries 

who are of reproductive age, and is characterized by hyperandrogenism, oligo/anovulation, and/or 

polycystic ovaries. Many patients with PCOS also show adverse metabolic phenotypes, including 

central adiposity, insulin resistance, and glucose intolerance, which can exacerbate reproductive 

dysfunction. The elevated androgens in PCOS can act upon androgen receptors (AR), which are 

expressed in many reproductive and metabolic tissues, including the neuroendocrine hypothalamic 

sites that regulate the hypothalamic-pituitary-gonadal (HPG) axis and energy homeostasis. Yet it 

is not known which specific populations of neurons are impacted by female androgen excess. We 

and others have previously shown that AR is highly expressed in LepRb neurons, particularly in 

the arcuate (ARH) and ventral premammillary nuclei (PMv) of female mice. We hypothesize that 

leptin-receptor (LepRb) neurons participate in the pathogenesis of PCOS, as LepRb neurons are 

critical in the central regulation of energy homeostasis, and exert permissive actions on puberty 

and fertility. We have pre-natally androgenized (PNA) a mouse model of AR deletion specifically 

in LepRb cells (LepRbΔAR) and have conducted reproductive and metabolic phenotyping. As 

previously demonstrated, control PNA females show long periods of acyclicity, whereas 

LepRbΔAR PNA female mice show improved estrous cyclicity. Our findings indicate that a 

subpopulation of AR/LepRb cells mediate the effects of prenatal androgen excess on female 

estrous cycles in a mouse model of PCOS-like phenotype. 
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Introduction  

Androgens at physiologic levels are crucial for the adequate functioning of female reproductive 

and metabolic physiology. Females typically have lower levels of androgens than males, but 

disorders of androgen excess can lead to reproductive and metabolic dysfunction. Polycystic ovary 

syndrome (PCOS) is one example of a disorder caused by pathogenic androgen excess. PCOS the 

most prevalent endocrine disorder among reproductive aged people with ovaries, with a prevalence 

ranging from 5-20% (1,2). PCOS is a heterogeneous disorder, with diagnostic criteria including 

oligo/anovulation, polycystic ovarian morphology, and/or hyperandrogenism (3,4). Elevated 

androgens are key in driving the reproductive, metabolic, and neuroendocrine abnormalities in 

PCOS patients, that include infertility, increased gonadotropin releasing hormone secretion, 

abdominal obesity, and insulin resistance (5,6).  

 

Androgens can act on steroid hormone receptors in many tissues via androgen receptors (AR), or 

estrogen receptors (ERα/β) after conversion to estradiol via aromatase. Androgens acting via AR, 

however, are critical in driving the pathophysiologic changes seen with female hyperandrogenism. 

Experimentally, treatment of female animal models with the non-aromatizable androgen 

dihydrotestosterone (DHT) either prenatally during late embryonic development (7-10), or 

prepubertally (11-14) leads to a phenotype in adults which mimics that of PCOS. While androgens 

acting via AR can impact different tissues to cause pathologic change, neuronal AR are key in 

driving reproductive dysfunction of hyperandrogenic females (15). Mice with neuronal deletion of 

AR exposed to androgen excess are protected from development of anovulation, polycystic 

ovaries, and metabolic abnormalities (16). However, it is not clear which population of AR-deleted 

neurons confers this protection.  
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We hypothesize that leptin-receptor (LepRb)-expressing neurons participate in the pathogenesis 

of female hyperandrogenism-induced reproductive dysfunction. Leptin is a hormone produced by 

white adipose tissue in proportion to the amount of adipose mass, and signals centrally via LepRb. 

Leptin confers status of peripheral energy stores to hypothalamic sites, permitting energetically 

demanding processes such as pregnancy and lactation to occur (17). Lack of either leptin or its 

receptor leads to obesity, diabetes, and infertility. We have previously shown that a subset of 

LepRb neurons coexpress AR in hypothalamic areas involved in the control of reproduction, and 

that loss of AR from LepRb neurons has minimal effects in typical female fertility (18). In this 

study, we examined whether LepRb-specific deletion of AR protects from the development of 

reproductive dysfunction in a prenatal model of female androgen excess.  

 

Methods 

Animal Ethics 

All research animals were acquired, used, and maintained in accordance with the National 

Research Council Guide for the Care and Use of Laboratory Animals (19), the US Public Health 

Service’s Policy on Humane Care and Use of Laboratory Animals, and Guide for the Care and Use 

of Laboratory Animals, as well as federal, state, and local laws. Procedures and protocols were 

approved by the University of Michigan Committee on Use and Care of Animals (IACUC, Animal 

Protocol: PRO8712).  

 

Animals 
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LepRb-Cre (LepRbCre, JAX®  mice, B6.129-Leprtm3(cre)Mgmj/J, stock #032457 (20,21)), AR-flox 

(ARflox, 129-Artm1Verh/Sv, provided by Dr. S. Marc Breedlove, Michigan State University, with 

permission from Dr. Karel De Gendt, Catholic University of Leuven, Belgium, UFA ID: 16-

UFA03327 (22)), ROSA26-loxSTOPlox-eGFP-L10a (JAX® mice, B6;129S4-

Gt(ROSA)26Sortm9(EGFP/Rpl10aAmc/J, stock #024750 (23)), ROSA26-loxSTOPlox-ChR2-EYFP 

(JAX® mice, B6.Cg-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, stock #024109 (24) ), and CD-1® 

IGS (Charles River Laboratories, Crl;CD1(ICR), stock #022) mice were housed in an Association 

for Assessment and Accreditation of Laboratory Animal Care (AAALAC) accredited facility at 

the University of Michigan Medical School. Mice were housed in a 12:12 light/dark cycle 

environment with controlled temperature (21-23°C) and humidity (30-70%). Mice were provided 

water ad libitum and were fed a phytoestrogen-reduced diet (16% protein, 4.0% fat, 48.5% 

carbohydrate, Teklad 2916 irradiated global rodent diet, Envigo) or a phytoestrogen-reduced, 

higher protein and fat diet (19% protein, 9% fat, 44.9% carbohydrate, Teklad 2919 irradiated 

global rodent diet, Envigo) for breeding and lactating females. Phytoestrogen-reduced diets were 

used to avoid effects of exogenous dietary estrogens on reproductive or metabolic physiology of 

experimental mice. Genotyping was performed on DNA extracted from ear samples or tail tips 

obtained prior to weaning and at termination of experiments (RED Extract-N-Amp Tissue PCR 

Kit, Cat #XNAT, MilliporeSigma). Primers used for genotyping are listed in Table 4.1.  

 

 

 

 

 



145 
 

Table 4.1: Primers used for genotyping 

Mice Primer Sequence Size (bp) 

LepRbCre 
Comm FOR 5’ TCC AAG AAG CCT CAA GGT TCC A 3’ 

Wt REV 5’ TCG TGT TGA AAT TTC TTC TTT CCA GA 3’ 
Cre REV 5’ ACG CAC ACC GGC CTT ATT CC 3’ 

Wt: 300 
Mutant: 200 

ARflox mAR28 5’ AGC CTG TAT ACT CAG TTG GGG 3’ 
mAR29 5’ AAT GCA TCA CAT TAA GTT GAT ACC 3’ 

Wt: 860 
Flox: 930 

R26-loxSTOPlox-eGFP-
L10a  

FOR 1 5’ GAG GGG AGT GTT GCA ATA CC 3’ 
FOR 2 5’ TCT ACA AAT GTG GTA GAT CCA GGC 3’ 

REV 5’ CAG ATG ACT ACC TAT CCT CCC 3’ 

Wt: 300 
Mutant: 200 

R26-loxSTOP-lox-
ChR2(H134R)-EYFP 

Wt FOR 5’AAG GGA GCT GCA GTG GAG TA 3’ 
Wt REV 5’CCG AAA ATC TGT GGG AAG TC 3’ 
Mut FOR 5’ ACA TGG TCC TGC TGG AGT TC 3’ 
Mut REV 5’ GGC ATT AAA GCA GCG TAT CC 3’ 

Wt: 297 
Mutant: 253  

 

LepRb-specific deletion of AR (LepRbΔAR) 

As previously described (18), mice with deletion of Ar specific to LepRb expressing neurons were 

generated by crossing LeprCre mice with ARflox mice (Arfl/fl females and Arfl/Y males). LepRbCre and 

LepRbΔAR mice were bred with Cre-dependent reporter mice (eGFP-L10a or ChR2-EYFP) to 

visualize LepRbCre expressing cells. For scientific rigor and reproducibility, and to generate 

adequate number of experimental and control mice from the same litter, we performed the same 

experiment in at least four independent cohorts of animals. Experimental animals were derived 

from multiple breeding pairs (a minimum of 5, but up to 15 breeding pairs per data set). Each 

graph shown includes animals derived from different pairs of breeders to account for differences 

in vivarium conditions. 

 

Prenatal androgenization 

To generate PNA female offspring, a LepRb(Cre/Wt);AR(fl/fl) female and a CD1 female were paired 

with a LepRb(Cre/Wt);AR(fl/Y) male. Mice that were heterozygous for Cre were mated to generate 

offspring homozygous for Cre, or wild-type for the Lepr gene in order to generate littermate 
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controls in experimental mice (Figure 4.1A). Timed pregnancy was established by monitoring of 

vaginal plugs the morning after introduction, and presence of a plug was considered gestational 

day 1. Males were removed from breeding cages by gestational day 15. On gestational days 16 

through 18, pregnant LepRb(Cre/Wt);AR(fl/fl) dams were injected subcutaneously with 225 µg of 

dihydrotestosterone (DHT, 5α-androstan-17β-ol-3-one) in 50 µL of sesame oil. Control dams were 

injected with sesame oil (vehicle, VEH). All breeding cages included a CD1 dam throughout 

pregnancy and lactation to provide maternal and nutritional support, in order to increase survival 

of PNA offspring. Combined litter size was adjusted to 8-10 pups per cage by postnatal day (PND) 

10, by culling CD1 offspring or male pups. Androgenization of PNA female offspring was 

assessed by measurement of anogenital distance (distance from base of the clitoris to midpoint of 

the anus) with digital calipers at PND 60 (Figure 4.1B). PNA treatment resulted in a significant 

increase in AGD in both genotypes (two-way ANOVA with Holm-Sidak correction, effect of 

treatment, P = 0.001, F = 11.57, DFn = 1, DFd = 59).  

 

Reproductive Phenotyping 

Pubertal onset was monitored daily beginning at PND 14, as advancement in vaginal opening (VO) 

has been reported with PNA treatment (9,25). Day of VO for PNA females was considered as a 

reddening of the narrowed and constricted vaginal opening at the base of the clitoris. Body weight 

was recorded at the time of VO. After VO, females were monitored daily for first estrus via vaginal 

lavage. First estrus was defined as the presence of predominantly keratinized epithelial cells for 

two consecutive days following the presence of predominantly leukocytes, or one day preceded by 

proestrus (26-28). Day of first estrus was monitored up until PND 60.  
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Adult estrous cyclicity was evaluated for 35 consecutive days beginning at 10 weeks of age by 

performing daily vaginal lavage. Estrous cycle stage was based on the proportion of leukocytes, 

epithelial, and keratinized epithelial cells (29). Evaluation of daily vaginal cytology was performed 

blinded. Estrous cycle length was determined by counting the number of days between the first 

day of estrous in each cycle, averaged per mouse. Number of cycles completed was considered as 

the number of complete estrous cycles completed in 35 days. Percentage of time spent in each 

cycle stage was calculated as the number of days in each stage (diestrus/metestrus, proestrus, or 

estrus), divided by 35 days.  

 

Metabolic Phenotyping  

Body weight of experimental and control mice was measured weekly beginning at weaning 

(postnatal day 21). Glucose levels were measured in blood samples obtained from tail-tip bleeding 

in female (n = 7-15 mice/group, 16-17 weeks of age) PNA and VEH LepRbΔAR and ARflox mice 

after an overnight fast (approximately 16 h) using a glucometer (OneTouch Ultra, LifeScan Inc). 

After fasting blood glucose was measured, mice received an intraperitoneal bolus of D-glucose in 

sterile saline (2 mg D-glucose/g body weight) at 0 min, and tail tip blood was collected for glucose 

levels at 15 min intervals for the first hour, and 30 min intervals for the second hour (2 h total). 

Body composition (fat and lean mass) was quantified in 19-week old female (n = 8-15 mice/group) 

PNA and VEH LepRbΔAR and ARflox mice using an NMR-based device (Minispec LF 90II, Bruker 

Optics). Body composition measurements were performed at the Michigan Mouse Metabolic 

Phenotyping Center (MMPC). 

 

Tissue collection 
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Adult female mice were euthanized during diestrus (morning, 0900-1130 h), as determined by a 

vaginal lavage with predominately leukocytes (29) and confirmed by uterine weight below 100 

mg (30). Mice were deeply anesthetized with isoflurane and euthanized via decapitation. Trunk 

blood was collected and allowed to clot for 45 mins at room temperature, then centrifuged at 4°C 

for 20 mins at 3,000 x g, followed by collection of serum which was stored at -20°C. Pituitary 

glands were quickly collected, frozen on dry ice, and stored at -80°C until RNA extraction. 

 

A separate cohort of mice were deeply anesthetized with isoflurane and transcardially perfused 

with 0.1M PBS until liver and lungs cleared (about 1 minute), followed by 10% neutral buffered 

formalin (NBF) for 10 minutes. Perfused ovaries (n = 6-8/group) were transferred to 10% NBF 

and stored at 4°C until paraffin embedding at the University of Michigan Unit for Laboratory 

Animal Medicine In-Vivo Animal Core. Ovaries were sectioned at 4 µm in three series, 

deparaffinized and dehydrated, then stained with hematoxylin and eosin (H&E). 

 

Serum hormone assays 

Serum samples (n = 5-6/group) were sent to the University of Virginia Ligand Core for the 

following assays: ultra-sensitive mouse LH ELISA and mouse anti-Mullerian hormone (AMH) 

ELISA. LH was measured using an in-house method as previously described(31). The capture 

monoclonal antibody (anti-bovine LH beta subunit, 518B7, RRID: AB_2665514) was provided 

by Janet Roser, University of California, and the detection polyclonal antibody (rabbit LH 

antiserum, AFP240580Rb, RRID: AB_2665533) was provided by A.F. Parlow, National Hormone 

Peptide Program (NHPP). The HRP-conjugated goat anti-rabbit polyclonal antibody was 

purchased from DakoCytomation (Glostrup, Denmark; D048701-2). The assay standard was 
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mouse LH reference prep AFP5306A (NHPP). The limit of quantification (LoQ, lowest 

concentration that demonstrates accuracy within 20% of expected values) or functional sensitivity 

= 0.016 ng/mL, intra-assay %CV = 2.2%, inter-assay %CV 7.3% (low QC, 0.13 ng/ml), 5.0% 

(medium QC, 0.8 ng/ml) and 6.5% (high QC, 2.3 ng/ml). Antibodies used for assays are listed in 

Table 4.2.  

Table 4.2: Antibodies 

Peptide/Protein 
Target 

Antibody Name Cat # Species Raised In RRID 

LH beta subunit Anti-bovine LH beta 
subunit antibody 

Janet Roser, 
University of 
California, 518B7 

Mouse, 
monoclonal 

AB_2756886 

LH Rabbit Anti-LH 
antiserum 

A.F. Parlow, National 
Hormone and Peptide 
Program, 
AFP240580Rb 

Rabbit, polyclonal AB_2665533 

Rabbit 
immunoglobulins 

Goat Anti-Rabbit 
Immunoglobulins/HRP 
Antibody 

Aglient, P0448 Goat, polyclonal AB_2617138 

 

Quantitative PCR 

Pituitary from adult ARflox and LepRbΔAR (n = 3/group) mice were homogenized with Qiazol 

reagent (Qiagen), then total RNA was isolated using the RNeasy Plus Mini Kit (Qiagen), including 

genomic DNA elimination, according to manufacturer’s protocol. First-strand cDNA was 

synthesized using SuperScript II reverse transcriptase (Invitrogen), oligo(dT), and 1000 ng of 

RNA. Gene expression was quantified in triplicate samples using quantitative real-time PCR 

(qPCR) with a CFX-384 Bio-Rad Real-Time PCR detection system. TaqMan Gene Expression 

MasterMix (Applied Biosystems) was used with primer/probes listed in Table 4.3. Transcript 

levels were normalized to the housekeeping gene Actb. and mRNA expression levels of target 

genes were determined by comparative cycle threshold (Ct) values, and relative to Actb gene copy 

number was calculated as 2-ΔΔCt. No differences were observed in relative expression of Actb 

between experimental groups.  
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Table 4.3: Primer/Probes used for qPCR 

Target 
Transcript 

NCBI 
Accession # 

qPCR 
Assay FOR REV Taqman Probe 

Actb NM_007393 Mm.PT.39a.
22214843.g 

5’ 
GATTACTGCTCTG
GCTCCTAG 3’ 

5’ 
GACTCATCGTACT
CCTGCTTG 3’ 

5’ 
CTGGCCTCAC
TGTCCACCTT
CC 3’ 

Cga NM_009889 Mm.PT.58.3
1855537 

5’ 
CCTCAGATCGAC
AATCACCTG 3’ 

5’ 
AGCATGACCAGAA
TGACAGC 3’ 

5’ 
CCCTCAAAAA
GTCCAGAGCT
TGCAGA 3’ 

Lhb NM_008497 Mm.PT.45.5
612498 

5’ 
CCAGTCTGCATCA
CCTTCAC 3’ 

5’ 
GAGGCACAGGAG
GCAAAG 3’ 

5’ 
AGTACTCGGA
CCATGCTAGG
ACAGT 3’ 

Fshb NM_008045 Mm.PT.45.1
7694677 

5’ 
TTCAGCTTTCCCC
AGAAGAG 3’ 

5’ 
TCCAGCACCAGAA
TAAGATGC 3’ 

5’ 
AGCTACGTCC
TGTGCAGTCA
GC 3’ 

Pgr NM_008829 Mm.PT.47.1
0254276 

5’ 
CGCCATACCTTAA
CTACCTGAG 3’ 

5’ 
CCATAGTGACAGC
CAGATGC 3’ 

5’ 
AGATTCAGAA
GCCAGCCAG
AGCC 3’ 

Esr1 NM_007956 Mm.PT.47.1
6003033 

5’ 
CCTGTTTGCTCCT
AACTTGCT 3’ 

5’ 
GAACCGACTTGAC
GTAGCC 3’ 

5’ 
TGCCTTCCAC
ACATTTACCT
TGATTCCT 3’ 

Ar NM_013476 Mm.PT.47.1
7416675 

5’ 
CTGCCTTGTTATC
TAGCCTCA 3’ 

5’ 
ATACTGAATGACC
GCCATCTG 3’ 

5’ 
ACCACATGCA
CAAGCTGCCT
CT 3’ 

 

Microscopy and Image Acquisition  

Digital images were acquired using an Axio Imager M2 (Carl Zeiss) with a digital camera 

(AxioCam, Zeiss) using Zen Pro 2 software (Zeiss), using the same magnification, illumination, 

and exposure time for each image of the same experiment.  

 

Illustration 

Adobe Photoshop and Illustrator software (Adobe Creative Cloud) were used to prepare digital 

images, including adjusting resolution to 300 dpi, adjustment of image size, addition of annotation 

and labels. Uniform adjustments were made to every image. Abbreviations are based on the Allen 
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Mouse Brain Atlas (postnatal day 56, coronal reference atlas, Allen Institute for Brain Science, 

Allen Mouse Brain Atlas, http://mouse.brain-map.org/static/atlas). 

 

Data Analysis 

Ovary sections from one series of H&E-stained slides were imaged at 5× magnification, and every 

fifth section was imaged for quantification of corpora lutea. All imaging, quantification, and 

analysis was performed blinded to genotype and treatment.  

 

Statistics 

Data are reported as mean ± standard error of the mean (SEM). Analysis was performed using 

GraphPad Prism software (Version 9). Data is presented as individual values with mean ± standard 

error of the mean (SEM). Data was analyzed for normal distribution using a Shapiro-Wilk test 

(significance level alpha 0.05). Non-normal data was log transformed prior to analysis. Two-way 

ANOVA with multiple comparisons and Holm-Sidak correction was used to analyze data, except 

for body weight and glucose tolerance test data which two-way ANOVA with repeated measures 

and Holm-Sidak correction was used. Exact post-hoc P values are reported and statistical 

significance is defined as P < 0.05. 

 

Results 

LepRbΔAR female mice show mild changes in body weight and glucose tolerance 

PNA treatment results in mild metabolic changes in female mice (8). We observed that all 

experimental groups had similar body weight at weaning (Figure 4.2A), and gained similar 

amounts of weight until 7 weeks of age (Figure 4.2B). At 7 weeks of age, there was a significant 
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difference in body weight between PNA groups, with LepRbΔAR PNA females weighing less than 

ARflox PNA mice (mean body weight ARflox PNA = 19.71 g, LepRbΔAR PNA = 17.82 g, P = 0.01, 

mean difference 1.90 g, SEM 0.53 g, t = 3.51, DF = 16.57, two-way ANOVA, repeated measures, 

with Holm-Sidak correction). Additionally, at 8 and 9 weeks of age, LepRbΔAR PNA females 

weighed significantly less than ARflox VEH mice (8 weeks, mean body weight ARflox PNA = 20.73 

g, LepRbΔAR PNA = 18.40 g, P = 0.04, mean difference 2.3 g, SEM 0.68 g, t =3.42, DF = 9.42, 9 

weeks, mean body weight ARflox PNA = 21.21 g, LepRbΔAR PNA = 19.01 g, P = 0.02, mean 

difference 2.2 g, SEM 0.62 g, t =3.53, DF = 11.44, two-way ANOVA, repeated measures, with 

Holm-Sidak correction). Body weight was not significantly different between groups before or 

after 7-9 weeks of age. Body composition, including fat and lean mass, was no different between 

groups at 19 weeks of age (Figure 4.3C). LepRbΔAR PNA mice displayed increased blood glucose 

at15 minutes post-injection during glucose tolerance testing compared to ARflox PNA mice (mean 

blood glucose ARflox PNA = 295 mg/dL, LepRbΔAR PNA = 410 mg/dL, P = 0.01, mean difference 

= 114 mg/dL, SEM 30 mg/dL, t = 3.75, DF = 16.37, Figure 4.3D). However, area under the curve 

of GTT was no different between groups (Figure 4.3E).  

 

Knockout of AR from LepRb neurons does not improve delay in sexual maturation with prenatal 

androgen excess 

Previous reports have described an advance in the day of VO in PNA mice. We did not observe a 

significant difference in day of VO in either PNA or VEH ARflox or LepRbΔAR females (Figure 

4.3A). Day of VO was similar in all groups (Figure 4.3B). While we did not observe differences 

in VO, day of first estrus was delayed in both ARflox or LepRbΔAR PNA groups compared to ARflox 

VEH controls (Figure 4.3C). Day of first estrus was also delayed by 8 days in LepRbΔAR VEH 
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females (Figure 4.3D), including the day at which half of LepRbΔAR VEH females reached first 

estrus (delayed by approximately 7 days). Despite this delay, almost all (94%) of LepRbΔAR VEH 

females reached first estrus by PND60. Only 45-50% of females in the PNA groups reached first 

estrus by PND60, indicating that deletion of AR from LepRb cells was not sufficient in preventing 

PNA-induced delays in sexual maturity.  

 

Estrous cycles are improved in PNA females with knockout of AR in LepRb neurons 

Consistent with our previous findings, VEH LepRbΔAR female mice display typical estrous cycles 

compared to ARflox controls, including similar cycle length, number of cycles, and percentage of 

time spent in each cycle stage (Figure 4.4A-D). PNA treatment induced acyclicity in ARflox mice, 

characterized by long periods of anestrus. Compared to VEH, ARflox PNA mice displayed 

increased cycle length, fewer number of cycles, a greater percentage of days in diestrus, and fewer 

percentage in estrus. In PNA LepRbΔAR mice, cycle length was similar to VEH treated mice, and 

was significantly different compared to ARflox PNA mice (average cycle length PNA ARflox 9.3 

days, PNA LepRbΔAR 6.2 days, P = 0.01, t = 3.2, DF = 37, Figure 4.4B). PNA LepRbΔAR mice also 

had a similar number of cycles as VEH treated mice, and displayed a significant improvement in 

number of cycles compared to PNA ARflox (mean number of cycles/35 days PNA ARflox = 3.5, 

PNA LepRbΔAR = 6, P = 0.005, t = 3.43, DF = 37, Figure 4.4C). Percentage of days spent in diestrus 

was significantly improved in PNA LepRbΔAR (percentage of days diestrus PNA ARflox = 84.7%, 

LepRbΔAR 69.7%, P = 0.03, t = 3.2, DF = 111). Likewise, PNA LepRbΔAR mice displayed 

improvements in percentage of days spent in estrus compared to PNA ARflox mice (percentage of 

days estrus PNA ARflox = 13.3%, LepRbΔAR = 24.2%, P = 0.03, t = 2.3, DF = 111). No differences 

were observed in percentage of days of proestrus in any group (Figure 4.4D). 



154 
 

 

Pituitary gene expression of gonadotropin subunits and sex steroid receptors  

To determine whether changes in pituitary gland gene expression could in part explain the 

improvement in PNA LepRbΔAR estrous cycles, we examined expression of selected genes 

associated with reproductive neuroendocrine control. No significant differences were observed in 

gonadotropin subunits Lhb, Fshb, or Cga among experimental groups relative to VEH ARflox mice 

(Figure 4.5A-C). Relative expression of Ar was increased in PNA LepRbΔAR compared to both 

ARflox VEH and PNA mice (mean difference relative expression PNA LepRbΔAR vs PNA ARflox = 

138%, SEM = 40%, P = 0.04, mean difference relative expression PNA LepRbΔAR vs VEH ARflox 

= 152%, SEM = 40%, P = 0.03, two-way ANOVA with Holm-Sidak correction, Figure 4.5D). 

Additionally, sex steroid receptors Esr1, and Pgr were unchanged (Figure 4.5E-F).  

 

Ovary histology 

Ovarian histology was examined for number of corpora lutea (Figure 4.6A-D), an endocrine 

structure that forms from follicular cells post-ovulation. Ovaries from all experimental groups 

displayed similar number of corpora lutea per ovary (Figure 4.6E).  

 

Serum LH concentrations 

Blood collected at time of sacrifice during the morning of diestrus was analyzed for concentration 

of serum LH (Figure 4.7). No differences in serum LH were observed between experimental 

groups.  
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Discussion 

Disorders of androgen imbalance are common, particularly PCOS which is characterized by 

female androgen excess. Androgens acting via AR can exert significant effects on the central 

regulation of the neuroendocrine reproductive axis, and have been implicated in the pathogenesis 

of DHT-induced reproductive and metabolic changes in animal models. However, the specific 

neuronal populations impacted by androgen excess have not been fully examined. In this study, 

we have assessed the effect of deletion of AR in LepRb cells in the context of prenatal androgen 

excess. LepRb expressing neurons represent a metabolically and reproductively relevant 

hypothalamic population which are also sensitive to androgens, especially those in the ARH and 

PMv. We have shown that PNA LepRbΔAR female mice have improved estrous cycles compared 

to littermate controls.  

 

LepRbΔAR female mice also show mild metabolic changes, including decreased body weight 

between 7-9 weeks of age. The cause of this temporary difference in body weight is not known, 

but this is also the period where we observed differences in reproductive maturation. Yet, body 

weight gain did not differ outside of this period, which is consistent with previous descriptions of 

PNA female mice that show no difference in adult body weight (8,12). PNA treatment also has 

been shown to result in glucose intolerance and impairments in pancreatic islet function. While we 

did not observe glucose intolerance with PNA treatment in our studies, PNA LepRbΔAR mice did 

show increased blood glucose 15 min post-injection during glucose tolerance testing. These 

differences may represent changes in acute insulin response, and warrant future studies examining 

pancreatic islet function in PNA LepRbΔAR mice.  
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The PNA mouse model is useful in representing lean PCOS patients, who may develop mild 

metabolic impairments. However, many people with PCOS are obese (32), and obesity can 

exacerbate reproductive dysfunction. Therefore, it will be important to study the effects of 

androgen excess on LepRb neurons in a PCOS-like mouse model that develops a stronger 

metabolic phenotype. Prepubertal androgen excess (PPA) leads to increased body weight, 

adiposity, dyslipidemia, and glucose intolerance, in addition to the reproductive PCOS-like 

features observed in PNA treated mice (12,13). Additional studies involving LepRbΔAR and PPA 

treatment will further elucidate the role of LepRb cells in disorders of female hyperandrogenism.  

 

Previous reports found that PNA female mice have advanced age of VO (9). In our studies, 

however, we observed uniformly advanced day of VO in all experimental groups. This 

advancement was likely due to body weight at day of VO, as body weight is a known factor in the 

initiation of puberty (33). Since our experimental design involved rearing litters with dual dams, 

offspring were provided with greater nutrition which could explain the advancement of VO. While 

day of VO was no different, PNA treated mice show a clear delay in day of first estrus, which was 

not improved in LepRbΔAR mice. This suggests that AR in LepRb cells does not play a role in the 

pubertal deficits with prenatal exposure androgen excess, but may be relevant for adult fertility.  

  

Our ARflox control mice replicate the reported anestrus phenotype seen with PNA treatment, 

including long periods of diestrus, and fewer completed cycles. PNA LepRbΔAR mice displayed 

improved estrous cycles, although not fully restored to typical cycles observed in VEH treated 

mice. Since evaluation of estrous cycles via examination of vaginal cytology only indicates relative 

exposure of vaginal epithelium to fluctuating levels of estradiol, we examined additional markers 
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of reproductive axis function. Number of corpora lutea, a marker of post-ovulatory ovarian 

follicles, are either decreased (12,34,35), or unchanged in PNA rodents (9). We did not observe a 

difference in the number of corpora lutea with PNA treatment. However, other aspect of ovarian 

health may be affected. For example, increased follicular atresia and greater amount of unhealthy 

antral follicles are found in PNA ovaries. Prenatal androgen excess has also been shown to deplete 

the pool of primordial follicles in sheep (36). Therefore, further examination of follicle numbers 

and markers of morphological health are warranted.  

 

In addition to altered ovarian morphology, PCOS patients and PCOS-like animal models show 

abnormal neuroendocrine function. Prenatal or peripubertal exposure to androgen excess results 

in persistently elevated GnRH pulse frequency and impaired hypothalamic sensitivity to the 

negative feedback effects of progesterone (7,25,37,38). Increased GnRH neuron activity is driven 

by increased excitatory GABAergic inputs (10,39), particularly by ARH GABAergic neurons 

which also show reduced progesterone receptor expression (40). Furthermore, the increase in 

GABAergic inputs to GnRH neurons is AR dependent, and is prevented by treatment with the AR-

antagonist flutamide (35). It is possible that AR-expressing LepRb neurons are part of the ARH 

GABAergic population innervating GnRH neurons. However, a greater portion of LepRb neurons 

express AR in the female PMv. As opposed to the ARH, the PMv is highly glutamatergic, and 

PMv LepRb neurons directly innervate GnRH neurons (41). However, glutamatergic inputs to 

GnRH neurons are not changed with PNA treatment (40). Further studies will be needed to 

evaluate the impact of PNA on LepRb neuron projections, and whether GABAergic and/or 

glutamatergic projections are differently affected. Additionally, it will be important to determine 

if direct projections to GnRH neurons, or indirect projections to upstream reproductively-relevant 
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neurons (i.e., kisspeptin/neurokinin/dynorphin, and/or agouti-related peptide/neuropeptide Y) are 

changed in PNA LepRb female mice. 

 

As a consequence of increased GnRH pulse frequency, PCOS patients display altered patterns of 

gonadotropin release (42,43). LH hypersecretion is present in a majority of people with PCOS 

(44), and is elevated relative to FSH. However, LH levels in PNA mice show conflicting results. 

An increase in mean LH at time of sacrifice and increased LH pulses (10,40), or no changes in LH 

have been described in PNA mice (12,45). In our studies, we did not observe a difference in mean 

LH at time of sacrifice in gonadally intact diestrus mice. Additionally, we did not observe changes 

in pituitary gland Lhb or Fshb transcript levels. It will be interesting to assess pattern of LH pulses 

and/or LH surge profiles in PNA LepRbΔAR mice to determine whether deletion of AR in LepRb 

cells prevents elevated LH pulse frequency with PNA.  

 

In summary, these studies demonstrate that androgen action via AR in LepRb cells is important 

for the development of some of the reproductive features of female hyperandrogenism, including 

anestrus. Future studies will be needed to determine the mechanism of AR action in LepRb 

neurons, and whether our findings in a rodent model of androgen excess translates to human 

pathophysiology. 
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Figure 4.1: Experimental design and validation of prenatal androgenization. A, illustration of 
experimental setup. A sire and a dam heterozygous for LeprCre and hemizygous or homozygous for Arflox 
were mated to generate littermate controls with two copies of LeprCre (LepRb-specific AR deletion, 
LepRbΔAR) and two LeprWt alleles (ARflox). Dams were treated with dihydrotestosterone (DHT) or oil 
(vehicle, VEH) on embryonic day (E)16, 17, and 18, and prenatally androgenized (PNA) and control VEH 
female offspring were used for experiments. B, scatter plot graph showing anogenital distance (AGD) of 
adult postnatal day 60 mice (mean ± SEM, ARflox VEH n = 11, ARflox PNA n = 11, LepRbΔAR VEH n = 24, 
LepRbΔAR PNA n = 17). Effect of treatment was statistically significant (two-way ANOVA with Holm-
Sidak correction, effect of treatment, ** = P = 0.001, F = 11.57, DFn = 1, DFd = 59).  
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Figure 4.2: Mild changes in body weight and glucose tolerance were observed in LepRΔAR PNA mice. 
A, scatter plot graph of body weight of experimental mice at weaning day/postnatal day 21 (mean ± SEM, 
ARflox VEH n = 10, ARflox PNA n = 12, LepRbΔAR VEH n = 18, LepRbΔAR PNA n = 13). B, line graph of 
weekly body weight from 3 to 15 weeks of age (mean ± SEM, ARflox VEH n = 7, ARflox PNA n = 9, 
LepRbΔAR VEH n = 15, LepRbΔAR PNA n = 10). LepRΔAR PNA mice weighed significantly less than ARflox 

PNA mice at 7 weeks (mean difference 1.9 g, SEM = 0.53 g, P = 0.01), and less than ARflox VEH mice at 
8 weeks (mean difference 2.3 g, SEM = 0.68 g, P = 0.04), and 9 weeks (mean difference 2.2 g, SEM = 0.62 
g, P = 0.02). Body weight gain analyzed by two-way ANOVA with repeated measures and Holm-Sidak 
correction. C, scatter plot graph of fat and lean mass of 19 week old mice (mean ± SEM, ARflox VEH n = 
8, ARflox PNA n = 8, LepRbΔAR VEH n = 15, LepRbΔAR PNA n = 10). D, line graph showing levels of blood 
glucose during glucose tolerance testing of 16-17 week old mice (mean ± SEM, ARflox VEH n = 7, ARflox 
PNA n = 9, LepRbΔAR VEH n = 15, LepRbΔAR PNA n = 10). LepRbΔAR PNA mice show greater blood 
glucose compared to ARflox PNA mice 15 mins after i.p. injection of glucose (mean difference 114 mg/dL, 
SEM = 30 mg/dL, P = 0.01, two-way ANOVA with repeated measures and Holm-Sidak correction). D, 
scatter plot graph of area under the curve of glucose tolerance test. 
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Figure 4.3: LepRb-specific deletion of AR does not impact pubertal timing and does not rescue 
delayed sexual maturity of PNA mice. A-B, scatter plot graphs of day of vaginal opening (VO) and body 
weight at day of VO (mean ± SEM, ARflox VEH n = 7, ARflox PNA n = 11, LepRbΔAR VEH n = 19, LepRbΔAR 
PNA n = 12). C, scatter plot graph of day of first estrus (mean ± SEM, ARflox VEH n = 7, ARflox PNA n = 
5, LepRbΔAR VEH n = 18, LepRbΔAR PNA n = 6). First estrus was monitored up until postnatal day 60 
(dotted line). Day of first estrus was delayed in VEH LepRbΔAR vs ARflox mice (mean difference = 8 days, 
SEM = 1.7 days, P = 0.04, two-way ANOVA with Holm-Sidak correction). First estrus was also delayed 
in ARflox PNA compared to ARflox VEH (mean difference = 15.5 days, SEM = 4.5 days, P = 0.007, two-
way ANOVA with Holm-Sidak correction), and in LepRbΔAR PNA compared to LepRbΔAR (mean difference 
= 11.4 days, SEM = 3.6 days, P = 0.01, two-way ANOVA with Holm-Sidak correction). D, percentage of 
females who had first estrus plotted by postnatal day. Dotted line indicates when 50% of each group had 
first estrus. 50% of LepRbΔAR VEH mice reached first estrus 7 days later than ARflox VEH mice (ARflox 
VEH 50% reached first estrus = 32.5 days, LepRbΔAR VEH 50% reached first estrus = 39.5 days). Note that 
50% of mice in both PNA groups showed first estrus around postnatal day 60.  
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Figure 4.4: Deletion of AR from LepRb cells improves estrous cycles of PNA mice. A, representative 
cycles shown for experimental and control groups. Littermate controls are shown side by side. M/D = 
metestrus/diestrus, P = proestrus, E = estrus. B, scatter plot graph of average cycle length (mean ± SEM, 
ARflox VEH n = 7, ARflox PNA n = 9, LepRbΔAR VEH n = 15, LepRbΔAR PNA n = 10). ARflox PNA mice had 
longer cycle length compared to ARflox VEH (mean difference = 4.1 days, SEM = 1.0 days, P = 0.002, two-
way ANOVA with Holm-Sidak correction). LepRbΔAR PNA mice showed improved cycle length compared 
to ARflox PNA (mean difference = 3.1 days, SEM = 0.9 days, P = 0.01, two-way ANOVA with Holm-Sidak 
correction). C, scatter plot graph of average number of cycles completed in 35 days. ARflox PNA mice 
completed fewer cycles than ARflox VEH (mean difference = 3.1 cycles, SEM = 0.77 cycles, P = 0.001, 
two-way ANOVA with Holm-Sidak correction). LepRbΔAR PNA mice showed improved number of cycles 
compared to ARflox PNA (mean difference = 2.4 cycles, SEM = 0.71 cycles, P = 0.005, two-way ANOVA 
with Holm-Sidak correction). D, scatter plot graph of percentage of days spent in each cycle stage (mean ± 
SEM of %metestrus/diestrus, %proestrus, and %estrus). ARflox PNA mice spent greater percentage of days 
in diestrus and fewer percentage of days in estrus compared to ARflox VEH (%diestrus mean difference = 
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32%, SEM = 5.0%, P < 0.0001, %estrus mean difference = 27%, SEM = 5.0%, two-way ANOVA with 
Holm-Sidak correction). LepRbΔAR PNA mice showed improvements in percentage of days in diestrus and 
estrus compared to ARflox PNA (%diestrus mean difference = 15%, SEM = 4.6%, P = 0.03, %estrus mean 
difference = 10%, SEM = 4.6%, P = 0.04, two-way ANOVA with Holm-Sidak correction). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



168 
 

 

Figure 4.5: Expression of pituitary gland genes in control and experimental mice. A-F, scatter plot 
graphs of gene expression normalized to housekeeping gene beta-actin (Actb), and relative to ARflox VEH. 
Select genes shown include A, luteinizing hormone, beta subunit (Lhb), B, follicle stimulating hormone, 
beta subunit (Fshb), C, glycoprotein hormones alpha chain (Cga), D, androgen receptor (Ar), E, estrogen 
receptor α (Esr1), and F, progesterone receptor (Pgr). Data presented as mean ± SEM and analyzed by two-
way ANOVA with Holm-Sidak correction.  
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Figure 4.6: Ovarian histology and corpora lutea quantification. A-D, images of histologic hematoxylin 
and eosin-stained sections of ovaries from VEH ARflox (A), VEH LepRbΔAR (B), PNA ARflox (C), and PNA 
LepRbΔAR (D) mice. CL, corpus luteum. Scale bar = 500 µm. E, scatter plot graph of number of corpora 
lutea per ovary. Data presented as mean ± SEM and analyzed by two-way ANOVA with Holm-Sidak 
correction. No difference in number of CL was observed between groups.  
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Figure 4.7: Serum LH concentrations. Scatter plot graph of serum levels of luteinizing hormone (LH) at 
time of sacrifice during the morning of diestrus. Data presented as mean ± SEM and analyzed by two-way 
ANOVA with Holm-Sidak correction. No difference in serum LH was found between groups.  
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CHAPTER 5 
 

Conclusions 
 
 

Overview 

Androgens are essential hormones in both male and female physiology, with effects on multiple 

systems. Imbalance of androgens outside the homeostatic range has both reproductive and 

metabolic consequences for both sexes. In the second chapter, we show that the brain is a highly 

androgen-responsive organ, and expresses the androgen receptor (AR) during a critical window of 

prepubertal development in male and female mice. We further describe brain regions that may 

preferentially respond to androgens, rather than estrogens. For example, the ventral 

premammillary nucleus (PMv) shows dense expression of AR in both sexes, yet it is relatively low 

in ERs, and the enzyme aromatase. Since AR was heavily expressed in areas with known 

contribution to the regulation of metabolism and reproduction, particularly nuclei that densely 

express the leptin receptor (LepRb), we conducted a thorough characterization of the expression 

of AR in LepRb cells in mice. Major coexpression of LepRb and AR was observed in the arcuate 

(ARH) and PMv of both sexes. Deletion of AR from LepRb cells, causes sex-specific changes in 

the neuroendocrine reproductive axis, locomotor activity, and body composition. We further 

evaluated if deletion of AR from LepRb neurons protects female mice from hyperandrogenism-

induced reproductive deficits in a model of prenatal androgen excess. We found that deletion of 

AR from metabolic and reproductively relevant LepRb neurons improved estrous cycles in 

prenatally androgenized female mice. Our findings highlight that LepRb neurons represent an 
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important target of androgen action in the brain, particularly with regards to regulation of the 

hypothalamic-pituitary-gonadal axis and some aspects of metabolic regulation. In previous 

chapters, I discussed the relevance of all the specific findings of my studies and the contribution 

to the field. In this chapter, I will focus on the limitations of our studies, propose alternatives and 

future directions 

 

Limitations of Animal Models and Proposed Alternative Approaches 

The Cre/loxP mouse model used in these studies was effective in reducing AR expression in 

LepRb-Cre cells. However, since LepRb is expressed during embryonic development (1,2), Cre-

induced deletion of AR occurred during active periods of neurogenesis and organization of the 

nervous system. We did not observe a difference in the number of LepRb neurons in LepRbΔAR 

mice, although it is possible other receptors could compensate for the loss of AR (i.e., ERα/β, 

GPER). Therefore, it is possible that deletion of AR in LepRb neurons in adulthood may induce a 

stronger phenotype as observed in other hypothalamic systems. For example, mice with embryonic 

deletion of AgRP only show minor differences in feeding behavior, yet mice with adult deletion 

of AgRP show drastically reduced food intake, leading to starvation (3). Furthermore, deletion of 

AR during embryonic development does not allow for the examination of the effects of androgens 

during different periods of development and maturation. This deficiency became clear when we 

compared results from distinct experiments. In chapter 3, we observed that LepRbΔAR female mice 

only developed changes in lean mass later in adult life, whereas in chapter 4, LepRbΔAR female 

mice exposed to androgen excess during embryonic development showed improvements in estrous 

cycles during adulthood. It will be important to determine if AR is deleted from LepRb neurons 

during DHT treatment, from E16-E18. 
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Additionally, with deletion of AR from all LepRb-expressing cells, it is difficult to determine the 

specific nucleus and/or neurons that are responsible for the observed phenotype of LepRbΔAR mice. 

To overcome the limitations of a conditional Cre model, CRISPR (clustered regularly interspaced 

short palindromic repeats)-Cas9 technology can be used to temporally and spatially refine the 

deletion of AR. The endonuclease CRISPR-associated protein 9 (Cas9) in the presence of a guide 

RNA, recognizes the corresponding sequence of target DNA, inducing double-stranded breaks 

which, when repaired by nonhomologous end-joining, results in genomic insertions or deletions, 

frame-shift mutations, and knockout of a target sequence (4). Stereotactic delivery of an AAV 

vector containing guide RNA targeting AR injected into specific hypothalamic nuclei (i.e., ARH 

or PMv) of LepRbCre;lox-STOP-lox-Cas9 mice (5) will result in excision of AR from only Cas9-

expressing LepRb neurons. This approach will restrict deletion of AR to LepRb neurons of specific 

nuclei in prepubertal or adult mice, allowing for a more precise interpretation of the role of AR in 

distinct hypothalamic nuclei and their individual contribution to the regulation of metabolism and 

reproduction. This approach will not allow, however, evaluation of the effects of AR deletion in 

developing mice.  

 

In our studies, we have used a mouse model with deletion of exon 2 of Ar, resulting in a premature 

stop codon and severely truncated protein. Theoretically, expression of only exon 1 and the N-

terminal it encodes, could result in a fragment of AR capable of interacting with other signaling 

pathways. Ligand-independent activation of AR through the N-terminal domain is possible via 

MAPK and JAK/STAT3 (6). However, it is unlikely that the AR N-terminal remains in LepRbΔAR 

mice, because the anti-AR antibody used to validate deletion of AR in LepRb-Cre cells targets the 
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N-terminal of AR (7). We observed a very low percentage of cells expressing Cre-induced reporter 

gene and AR-ir in LepRΔAR mice. While well-defined AR genomic and membrane signaling via 

alternative pathways is reduced in exon 2 knockouts, novel non-AR receptors that are activated by 

androgens (i.e., TRPM8, OXER1, GPRC6A, and/or ZIP9) may still allow for androgenic effects. 

Further work is needed to characterize the multiple pathways by which androgens can modulate 

intracellular signal transduction, and the specific consequences of each pathway.  

 

Impacts of Androgen Excess in Females 

The PNA mouse model replicates many of the reproductive characteristics experienced by patients 

with polycystic ovary syndrome (PCOS), including acyclicity and altered neuroendocrine output 

from the HPG axis. Reduced fertility has also been reported in PNA female mice (8,9). However, 

PNA mice display a narrowed vaginal opening due to timing of androgen excess on development 

of the external genitalia. The narrowed vaginal opening in PNA females may impact copulation 

and hinders parturition, preventing analysis of fertility in our model.  

 

A significant portion of PCOS patients also exhibit metabolic abnormalities, including obesity, 

insulin resistance, and type 2 diabetes. However, these metabolic changes are not replicated with 

exposure to androgen excess during late fetal development in rodents. Treatment of female mice 

at PND21 with the non-aromatizable androgen DHT also induces a PCOS-like phenotype in mice 

(10). These pre-pubertal androgenized (PPA) female mice exhibit acyclicity, anovulation, a 

polycystic ovary phenotype, and show changes in metabolic physiology, including body mass, 

adiposity impaired glucose tolerance and dyslipidemia (10-14). The PPA mouse model is useful 

for studies focused on a subpopulation of PCOS patients with metabolic dysfunction, and may be 
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more relevant in studies focused on LepRb neurons that are critical in regulation of body mass and 

adiposity. Determining if LepRbΔAR female mice exposed to androgen excess peripubertally show 

a similar protection in estrous cycles as PNA LepRbΔAR mice would be informative and warrants 

further investigation. Additionally, it would be important to evaluate if deletion of AR from LepRb 

neurons protects from the increases in body mass and adiposity seen in PPA mice. The PPA mouse 

model would also allow for evaluation of fertility.  

 

The effects of androgen excess during critical fetal and pubertal windows of development on 

female reproductive physiology have been well described. However, there are few animal models 

used to investigate the effects of androgen excess in adult females. Treatment of adult female mice 

with DHT will allow for the further distinction between the roles of androgens acting during 

critical windows of permanent developmental organization and pubertal activation compared to 

actions on adult reproductive and metabolic physiology. This strategy will more closely mimic 

those who experience androgen excess during adult life, and can distinguish which changes are 

permanent or reversible.  

 

Potential Mechanisms of AR Action in LepRb-Expressing Cells 

While we have shown that deletion of AR from LepRb cells impacts typical physiology, the 

intracellular mechanism underlying the AR and LepRb interaction has yet to be determined. The 

LepRb contains an intracellular signaling domain, capable of activating different signaling 

pathways, including JAK/STAT3 or STAT5, PI3K/AKT, MAPK, and AMPK (15). It has been 

indicated that T can interact with tyrosine residue 985 of LepRb, which facilitates inhibitory 

actions through SHP2 and SOCS3 (16). Additionally, AR has the ability to enhance LepRb-
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induced STAT3 signaling in vitro (17). Further studies are needed to evaluate if the regulatory 

mechanisms that exist between AR and LepRb are also observed in vivo. 

 

Final Conclusions 

I have shown here that LepRb neurons are an important target of androgen action in the 

hypothalamic control of the reproductive neuroendocrine axis and some aspects of metabolic 

regulation, and that AR in LepRb neurons may play a role in the pathogenesis of PCOS. Additional 

work will be needed to characterize the different neurochemical phenotypes of AR-expressing 

neurons, and to delineate their role in reproductive and metabolic physiology. A complete 

understanding of the cell-, tissue-, and organ-specific effects of androgens is fundamental for 

developing better treatments for those experiencing hypo or hyperandrogenism, as well as for 

gender-affirming hormone therapy designed for transmen taking T, or transwomen taking AR 

antagonists. Further defining the targets of androgen action via AR in the brain will contribute to 

a better understanding of the neuroendocrine control of reproduction and metabolism, and will 

open opportunities for development of therapeutic interventions to overcome disorders of 

androgen excess or deficiency.  
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APPENDIX A 

 
 

LIST OF ABBREVIATIONS 
 
Name Abbreviation 
Androgen receptor AR 
Androgen receptor knockout ARKO 
Balanopreputial separation BPS 
Corpus luteum/corpora lutea CL 
Dopamine transporter DAT 
Estrus E 
Enhanced green fluorescent protein eGFP 
Estrogen receptor, alpha ERα 
Estrogen receptor, beta ERβ 
Granulosa cell GC 
Hypothalamic-pituitary-gonadal  HPG 
Leydig cell LC 
Leptin receptor, b isoform LepRb 
Metestrus/Diestrus M/D 
Oocyte oo 
Proestrus P 
Polycystic ovary syndrome PCOS 
Prenatal androgenization PNA 
Postnatal day PND 
Sertoli cell SC 
Theca cell TC 
Testicular feminization Tfm 
Vehicle treated VEH 
Vaginal opening VO 
    
Brain Regions Abbreviation 
Anterior cingulate cortex, dorsal ACAd 
Anterior cingulate cortex, ventral ACAv 
Nucleus accumbens ACB 
Anterodorsal nucleus of the thalamus AD 
Anterior hypothalamic nucleus AHN 
Alveus alv 
Nucleus ambiguus  AMB 
Olfactory nucleus, anterior AON 



180 
 

Area postrema AP 
Cerebral aqueduct AQ 
Arcuate hypothalamic nucleus  ARH 
Anteroventral nucleus of the thalamus AV 
Anteroventral periventricular nucleus AVPV 
Bed nucleus of stria terminalis, principal nucleus  BSTpr 
Central canal of the medulla c 
Field CA1 CA1 
Field CA2  CA2 
Field CA3  CA3 
Arcuate hypothalamic nucleus, caudal cARH 
Corpus callosum cc  
Genu of corpus callosum ccg 
Cochlear nuclei  CN 
Cortical amygdalar area  COA 
Cerebral peduncle cpd 
Dentate gyrus DG 
Dorsomedial nucleus of the hypothalamus  DMH 
Dorsal motor nucleus of vagus nerve  DMX 
Dorsal nucleus raphe  DR 
Dorsal tegmental nucleus  DTN 
External medullary lamina of the thalamus em 
Entorhinal area  ENT 
Endopiriform  EP 
Fasiculus retroflexus fr 
Fornix fx 
Induseum griseum  IG 
Intermediate reticular nucleus IRN 
Lateral hypothalamic area  LHA 
Lateral olfactory tract lot 
Lateral reticular nucleus LRN 
Lateral septal nucleus, caudodorsal  LSc 
Lateral septal nucleus, rostroventral  LSr 
Arcuate hypothalamic nucleus, mid/tuberal mARH 
Magnocellular reticular nucleus MARN 
Medial amygdalar nucleus, posterodorsal MEApd 
Medial geniculate complex MG 
Medial lemniscus ml 
Motor cortex MO 
Secondary motor area MOs  
Medial preoptic nucleus MPN 
Medial preoptic area, anterior  MPOa 
Medial preoptic area, posterior  MPOp 
Medial septal nucleus MS 
Medial vestibular nucleus MV 
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Nucleus of the solitary tract  NTS 
Optic tract opt 
Olfactory tubercle OT 
Vascular organ of the lamina terminalis OVLT 
Posterior amygdala  PA 
Periaqueductal gray, ventrolateral  PAGvl 
Parabrachial nucleus  PB 
Parafasicular nucleus PF 
Piriform  PIR 
Dorsal premammillary nucleus  PMd 
Ventral premammillary nucleus  PMv 
Presubiculum / Subiculum  PRE/SUB 
Pontine reticular nucleus  PRN 
Nucleus prepositus PRP 
Principal sensory nucleus of the trigeminal  PSV 
Parataenial nucleus PT 
Periventricular hypothalamic nucleus  PV  
Paraventricular hypothalamic nucleus  PVH 
Paraventricular nucleus of the thalamus  PVT 
Pyramid pyr 
Arcuate hypothalamic nucleus, rostral rARH 
Nucleus of reuniens  RE 
Rhomboid nucleus RH 
Red nucleus  RN 
Subparaventricular zone  SBPV 
Suprachiasmatic nucleus  SCH 
Ventral spinocerebellar tract sctv 
Subfornical organ  SFO 
Septohippocampal nucleus  SH 
Stria medullaris sm 
Spinal nucleus of the bulbocavernosus SNB 
Superior olivary complex  SOC 
Stria terminalis st  
Subthalamic/ Parasubthalamic, caudal  STN/PSTN 
Supramammillary nucleus  SUM 
Taenia tecta  TT 
Tuberal nucleus  TU 
Third ventricle V3 
Fourth ventricle  V4 
Facial motor nucleus  VII 
Facial nerve VIIn 
Lateral ventricle VL 
Ventromedial hypothalamic nucleus, central VMHc  
Ventromedial hypothalamic nucleus, dorsomedial VMHdm 
Ventromedial hypothalamic nucleus, ventrolateral  VMHvl 
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Ventral medial nucleus of the thalamus VMHvl 
Vestibular Nucleus  VNC 
Ventral posterior complex of the thalamus VP 
Ventral tegmental area  VTA 
Hypoglossal nucleus  XII 
Zona incerta ZI 
    
Hormones/Peptides  Abbreviation 
Agouti-related peptide AgRP 
Anti-Mullerian Hormone AMH 
Cocaine- and amphetamine-regulated transcript CART 
Dihydrotestosterone DHT 
Follicle stimulating hormone FSH 
Gonadotropin releasing hormone GnRH 
Insulin-like growth factor 1 IGF1 
Kisspeptin/neurokinin/dynorphin KNDy 
Luteinizing hormone LH 
Neuropeptide Y NPY 
Pro-opiomelanocortin POMC 
Testosterone T 
    
Methods Related Abbreviation 
Association for Assessment and Accreditation of Laboratory Animal Care  AAALAC 
Avidin-biotin AB 
Analysis of variance ANOVA 
Area under the curve AUC 
Comprehensive Laboratory Monitoring System  CLAMS 
Diethyl pyrocarbonate DEPC 
Dithiothreitol DTT 
Energy expenditure EE 
Enzyme-linked immunosorbent assay ELISA 
Gonadectomy GDX 
Glucose tolerance test GTT 
Haematoxylin and eosin stain H&E 
High fat diet HFD 
Institutional Animal Care and Use Committee  IACUC 
Integrated optical density IOD 
Immunoreactivity ir 
Lean body mass LBM 
Liquid chromatography–mass spectrometry  LC/MS 
Neutral buffered formalin NBF 
Optimal cutting temperature compound OCT 
Orchidectomy ORX 
Ovariectomy OVX 
Phosphate-buffered saline PBC 



183 
 

Quantitative polymerase chain reaction qPCR 
Region of interest ROI 
Real-time polymerase chain reaction RT-PCR 
Standard error of the mean SEM 
Sodium chloride-sodium citrate buffer SSC 
Tyramide signal amplification TSA 
Volume carbon dioxide produced VCO2 
Volume oxygen consumed VO2 

 
 

 
 
 
 
 


