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ABSTRACT

Like the design of many large and complex systems, modern ship design often

involves the automated creation of thousands of viable design alternatives developed

through computer driven design models and optimizations. The models used to de-

velop these designs are often multi-disciplinary and contain highly interconnected

engineering systems. Consequently, even the most experienced designer has a limited

ability to develop complete mental models for a large number of complex and varied

design alternatives. Furthermore, when design decisions are made and need to be

communicated to non-technical stakeholders, the complex relationships driving the

design model become even more difficult to effectively communicate.

Automated learning of Bayesian networks can offer designers an opportunity to

quickly analyze a large set of designs with the efficiency with which they are created.

As sets of nodes, edges and conditional probabilities, Bayesian networks can identify

and quantify the influential relationships between design parameters. Transforming

the learned Bayesian networks into simpler weighted edge networks further aids com-

munication of the driving factors of a complex design model to all stakeholders by

presenting the learned information visually and through simple to understand network

metrics.

This dissertation presents a framework for learning Bayesian networks, transform-

ing them into weighted edge networks and analyzing those networks with metrics

from network science. Additionally, an algorithm for identifying and chunking re-

dundant variables is presented. Two case studies, a simple multi-objective function

from Osyczka and Kundu and more complex ship design model from Sen and Yang,

xv



are presented and analyzed with the proposed framework. Each is sampled with a

Latin hypercube to develop ten design trials of 100,000 design alternatives each. The

variables of the more complex ship design model are analyzed for redundancy and

chunked using the proposed chunking algorithm. Bayesian networks are learned from

each design database and transformed into weighted edge networks using two scoring

methods, derived from log gamma K2 and match distance. Finally the weighted edge

networks are analyzed to identify communities and compute degree, betweenness,

closeness and Eigenvector centralities. These metrics identify disciplines and driving

factors of the design space at progressive stages of design.
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CHAPTER I

Introduction

Modern ship design practices often involve the creation and evaluation of thou-

sands of design alternatives through automated analysis. These automated designs

are developed through a connected set of multi-disciplinary models, which use the in-

dependent and dependent design variables of a problem to return objective function

values. As most ship design problems are multi-objective, there is often no single,

best solution but rather a set of Pareto-optimal solutions; designers must rely on their

own knowledge of best practices to differentiate between solutions. For simple, ex-

plicit design models the relationships between these variables and their effects on one

another are easily understood by designers. However, as models become larger, more

complex and more interconnected the relationships driving the overall design model

become clouded. With a blurred understanding of the design space relationships that

lead to the final design set, designers may have difficulty differentiating between a set

of Pareto-optimal designs and understanding exactly what has led to a diverse set of

similarly optimal designs.

Furthermore, the stakeholders in the design of ships and other physically large

and complex systems tend to include groups beyond just the technical designers.

Engineers must often relay the set of design, their differences and their optimalities

to nontechnical stakeholders in a clear fashion so that an informed decision can be

1



made. For a set of thousands of theoretical designs, this can easily become a daunting

task for designers.

In order to make an informed decision about which designs are truly optimal for a

large set of often conflicting objectives and to communicate the rationale for these de-

cisions to non-technical stakeholders, a clear definition of the inner relationships must

be obtained. Machine learning allows designers to analyze and assess the large design

spaces created through automated design to assist in this task. One such technique

is the use of Bayesian networks to organize large sets of design data and quantify

their relationships. From a concept developed following work using the Bayesian Op-

timization Algorithm for early stage marine structure design, this work seeks to use

machine learned Bayesian networks to identify influential design relationships and

use network analysis tools to clearly define and communicate the strength of those

relationships.

1.1 Computer Aided Design of Physically Large and Com-

plex Systems

Computer-aided design and machine learning have transformed design processes

for the design of ships and other physically large and complex systems. While initially

used for more efficient computation within traditional design methods, computer-

aided design also promotes novel approaches to the design process, like multi-disciplinary

optimizations and set-based design. Machine learning goes further, supporting tools

for engineering design like fuzzy logic, heuristic optimization algorithms and artificial

neural networks Saridakis and Dentsoras (2008). These tools enhance the engineering

design process and can lead to more robust design solutions.

In ship design, computer-aided design allows for geometric modeling of arrange-

ments and hull forms, analysis of wider design spaces, like in set-based design, and
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detailed structural analyses Nowacki (2010). But in addition to providing more ro-

bust analyses and faster computations, machine learning and computer-aided design

can aid human designers in understanding ever more complex and multidisciplinary

designs, rather than acting as standalone tools for design problem solving. When

used as standalone solutions to a design problem, computer-aided design methods

can turn into black boxes, accepting inputs of independent variables and constraints

and returning some solved objective function as an output without disclosing the

design factors that determine the solution. If designers can extract the information

about the design space and relationships learned by computer-aided design methods

on their way to the overall solutions, they can reap the advantages of computer-aided

design without losing intuition about what drives it. This research applies machine

learning through Bayesian networks to support designers in understanding the inner

workings of advanced design methods and the design problems they are used to solve.

1.1.1 Bayesian Networks in Design

Bayesian networks are probabilistic networks used to capture influential relation-

ships Kjærulff and Madsen (2008). While they are widely used for reliability analyses,

diagnostics and decision making under uncertainty, they have been applied as support

tools in design applications as well.

Shahan and Seepersad used Bayesian networks in the design of unmanned aerial

vehicles to map promising designs in to satisfactorya and unsatisfactory regions Sha-

han and Seepersad (2012). Nannapaneni et al. applied Bayesian networks to cover

areas of uncertainty in the multi-objective optimization of an airplane wing Nanna-

paneni et al. (2017). Within ship design, Bayesian networks have been applied to

identify failure points and system sensitivities for survivability in naval design Friebe

et al. (2019).

Pelikan pioneered a specialized use of Bayesian networks to support heuristic opti-
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mization. His optimization algorithm, the Bayesian Optimization Algorithm (BOA),

is similar to a genetic algorithm but uses Bayesian networks to probabilistically de-

termine new generations with the greatest likelihood of having higher fitness levels

Pelikan (2002). In his dissertation work, Devine applied the BOA to the design of

marine structures. This work noted the potential wealth of information about the

design space being held in the intermediate networks used by the BOA Devine (2016).

These uses of Bayesian networks for design fall in one of two categories: the net-

works are explicitly defined and used to better understand the design or they are

learned automatically but used to aid the computer’s design process not the de-

signer’s understanding. When explicitly defined, the Bayesian networks are useful

tools to organize the flow of causality and capture uncertainty but cannot bring new

understanding of relationships beyond those defined by the builder. Conversely, using

Bayesian networks to aid optimizers will help with-efficiency and covering uncertain

regions, but the wealth of information learned is only know to the computers, which

have not been used to output that learned information beyond their solutions. The

research presented in this dissertation uses network theory to capture and communi-

cate the abundance of knowledge that can be gleaned from Bayesian networks learned

from design data.

1.1.2 Network Analysis in Design

Network theory has been applied broadly for use in design methods. Networks can

hold a huge amount of information as a simple set of nodes and edges. Additionally,

network analysis can be applied to these design networks to develop knowledge about

the structure and relationships of the design problems they model .

Many uses of networks and their structure in design come from design structure

matrix (DSM) methods. While typically conveyed as matrices, this method tracks

the interactions of physical components, designers and design activities, connecting

4



all three, effectively, as a set of nodes and edges Steward (1981). This method has

been expanded several times: Eppinger and Browning added process architecture

and organization Steven D. Eppinger and Tyson R. Browning (2012), Bartolomei

integrated quantitative methods from social science Jason E. Bartolomei (2007), and

Maurer added business project management policies to the structure Maurer (2007).

Other, more dynamic approaches use networks to track flow of information and

design changes rather than represent physical interactions or connections. Pasqual

and de Weck analyzed change propagation in engineering design through multi-layer

networks representing product, change and social networks Pasqual and de Weck

(2012). Parraguez et al. tracked information flow through dynamic networks model-

ing designers and their activities Parraguez et al. (2015).

Network analysis has also been used extensively in naval architecture. MacCallum

first introduced the use of networks in the marine industry with his paper present-

ing the use of networks to track dependencies between design variables in the early

introduction of computerized design calculations. The work presented manually de-

veloped networks to keep track of which disciplines had overlapping variables; when

iterating through design changes, the engineer could track when updating a value

in one discipline’s calculation would affect the other disciplines and their variables’

values KJ MacCallum (1982). Parker similarly used network theory to understand

the structure of naval architecture design, tracking changes across more complex de-

sign tools Parker (2014). In his analysis Parker completed more complex network

analysis and introduced new metrics for design analysis, path influence and Winston

centrality Parker and Singer (2015). Work by Gillespie, Rigterink and Shields used

networks to analyze physical connections and configurations in ship design. Gillespie

used ideas similar to architecture’s facility layout planning, using networks in general

arrangement planning for early stage design. Edges in these networks were defined as

physical connections between compartments represented as nodes Gillespie (2012).
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Rigterink applied a similar process for distributed ship systems Rigterink (2014), and

Shields combined these methods to develop networks representing probabilistic ship

arrangements and distributed systems Shields and Singer (2017). These networks of

required physical connections on a ship allow for the analysis of probable arrange-

ments and distributed systems in early stage design before they can be fully laid out

and developed. This allows for an understanding of functionality of the ship much

earlier in the design process. Most recently Goodrum used a multi-layer network to

map how information sources are translated into knowledge in order to understand

the generation of design knowledge Goodrum (2020). Goodrum’s work follows the

idea that networks can be used to aid the understanding of design models and how

their results are developed.

These uses of networks to describe design and ship architecture are useful models

but are all defined manually, either with expert knowledge or after cumbersome study-

ing of the design problem. These frameworks can then become prohibitively difficult

in complex design problems, and many design problems are prohibitively complex.

Ship design models, for example, are often actually several sub-models developed

by engineers from vastly different disciplines, from structures and survivability to

hydrodynamics and response predictions. The network used in MacCallum’s work

used 13 simple variables to represent the ship in preliminary design KJ MacCallum

(1982). Modern design models, even those used in preliminary design, may share

much larger and more complex information, like complete hull geometries instead of

length, beam and block coefficient or extremely large hotel and surge electrical loads

and power requirements in addition to the traditional mechanical powering loads.

With this additional complexity comes additional opacity–engineers may be able to

build a complete mental model of the interactions and variable connections within

their discipline’s model, but the complete mental model needed to build a network of

dependencies manually, with understanding of all dependencies across all disciplines,
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becomes extremely difficult to capture even for experienced naval architects. Addi-

tionally, even when all dependencies are thought to be understood, a manually built

network will always represent the designer’s knowledge about the design problem

rather than how the design model has actually been built and is producing solutions.

As a solution, this dissertation offers a framework to learn Bayesian networks from

design data, without the need for intervention with expert knowledge. An algorithm

is proposed for the automated preparation of design data for Bayesian network learn-

ing by identifying and chunking redundant output variables from the design model.

From this prepared design data, networks are learned automatically. The resulting

network would represent the design space and design variable dependencies, as eval-

uated by a complex design model. Finally, network analysis methods are be used to

determine the driving factors of a design at progressive design stages.

1.2 Research Objectives

This research seeks to develop a framework to use use Bayesian networks and

network theory to understand and communicate complex design models, answering

three main questions:

1. Can Bayesian network learning methods produce networks that consistently and

accurately depict a design model’s structure from a database of its outputs?

2. Can the influence between nodes captured as conditional probability tables in

a Bayesian network be represented with single edge weights to allow the use of

traditional network science tools?

3. Are the yielded networks’ structures and network metrics informative about the

design space and can they be easily communicated to stakeholders?
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CHAPTER II

Bayesian Networks

Bayesian networks are probabilistic models used to represent a set of related vari-

ables and their conditional probabilities. Bayesian networks are defined by two parts:

a qualitative network structure and quantitative joint probability distribution. The

structure of a Bayesian network is an acyclic directed graph consisting of nodes and

directed edges. The nodes of a graph represent variable of the modeled problem, while

the directed edges depict the causal relationships between those variables. Discrete

variables, like those used in this work, have a finite set of states representing possible

values of the node. These states can be binary, numbered, intervalled or labelled

but must encompass an exhaustive set of mutually exclusive values the represented

variable could take Kjærulff and Madsen (2008). The nodes are connected by a set

of directed edges. The directed edges of a Bayesian network represent conditional de-

pendencies and point from a parent node to a child node, where the state of the parent

node has some influence on the state of the child node. For each child node, there

is a conditional probability distribution , the quantitative side of Bayesian networks.

These distributions, held in conditional probability tables, quantify the influence the

state of each parent node has on the state of the child node. For nodes without parent

nodes, likelihood is represented by simple probability distributions. Formally,

• A set of nodes V and a set of directed edges E ⊆ V × V between nodes
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• The nodes together with the directed edges form an acyclic, directed graph

(DAG) G = (V,E).

• Each node X ∈ V has a finite set of states, e.g. ||X|| = n.

• Attached to each nodeX with parents Y1, ..., Yn there is a conditional probability

table P (X|Y1, ..., Yn).

P (V ) =
∏
X∈V

P (X|pa(X))

Kjærulff and Madsen (2008)

Bayesian networks are governed by Bayes’ Rule, relating conditional and prior

probabilities.

P (X|Y ) = P (Y |X)P (X)/P (Y )

where P (X) and P (Y ) are the marginal, or prior, probabilities of two variables X and

Y and P (Y |X) and P (X|Y ) are the conditional probabilities. Through Bayes’ Rule

the marginal probability can be determined for any given node from its conditional

probability tables.

The example in Figure 2.1 shows Bayesian network defining some basic design

characteristics of recreational boats, including length (L), whether or not it is me-

chanically powered (powered), maximum passengers (passengers) and whether it can

be stored at home (home storage). In this example, L is the only parent node and

has a simple distribution defining its prior probability, representing the fraction of

recreational craft less than 25 feet long, between 25 and 50 feet long and greater than

50 feet. The probability of home storage is defined by conditional probability table

because it is dependent on the length of the craft; the longer a boat is, the less likely

it is to be able to be stored at the owner’s home. The prior probability of home

storage is then defined by Bayes rule, giving an overall likelihood that a recreational

boat could be stored at home of 68%.
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P(L) = (0.96, 0.03, 0.01)

P(powered) L < 25 25 ≤ L < 50 L ≥ 50
n 0.45 0.25 0.10
y 0.55 0.75 0.90

P(home storage) L < 25 25 ≤ L < 50 L ≥ 50
n 0.30 0.70 0.01
y 0.70 0.30 0.99

powered = n powered = y
P(passengers) L < 25 25 ≤ L < 50 L ≥ 50 L < 25 25 ≤ L < 50 L ≥ 50

1-2 0.70 0.10 0.00 0.10 0.05 0.00
3-4 0.20 0.05 0.00 0.75 0.10 0.00
5+ 0.10 0.85 1.00 0.15 0.85 1.00

L

P(L) = (0.96, 0.03, 0.01)

home storage

P(home storage)

= (0.32, 0.68)

powered

P(powered) =

(0.44, 0.56)

passengers

P(passengers) = (0.36, 0.49, 0.16)

Figure 2.1: Bayesian Network of Recreational Boat Characteristics

2.1 Observations and Updating

Bayes’ Theorem can also be used to update the prior probabilities of a Bayesian

network as new evidence or observations are introduced. For known state y of node

Y,

P (X|Y = y) = P (Y = y|X)P (X)/P (Y = y).

In the previous example, if an owner requires the boat must be stored at home, we can

provide that as an observation and update the remaining nodes’ marginal probabili-

ties. In Bayesian networks an observation is some known information about the state

of a node. In this example if home storage becomes an owner’s requirement, we know

the state of home storage will be true. As depicted in Figure 2.2, the probability

distribution of the boat’s length will change, as a requirement for home storage will

greatly decrease the likelihood of a boat over 50 feet in length. However, because the

probability distribution of length has changed, the marginal probability of whether

the craft is powered will be updated to reflect the change in length probabilities and
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L

P(L) = (0.99, 0.01, 0.00)

home storage

P(home storage)

= (0.00, 1.00)

powered

P(powered) =

(0.45, 0.55)

passengers

P(passengers) = (0.37, 0.50, 0.14)

E

Figure 2.2: Updated Bayesian Network of Recreational Boat Characteristics with
Information Propagation

the marginal probability of the maximum number of passengers will be updated to

reflect the changes in probabilities of both length and powering.

Additional evidence could also be introduced that would update the prior proba-

bilities of the model. In this example that would be something like new information

on the number of powered craft owned by individuals. Incorporation of new evi-

dence may change the likelihood of nodes’ states, but not reflect a certainty like an

observation does.

This cascade of updated likelihoods is the information flow of the Bayesian net-

work. The flow of information travels differently based on the structure of the con-

nections in a Bayesian network. In serial connections, A → B → C, information

in any one node will update all other nodes. Similarly, in a diverging connection,

A← B → C, information about any one node will update the marginal probabilities

of both other nodes. The exception in both these cases is if information is known

about B and one other node, the third node will only be updated according to the

marginal probability of B. This is because known information about a node will

supersede any update to that nodes distribution by the of information.

However, information flows differently in a converging connection, where a child

node has two parents, A → B ← C. While information about child node B will

update the marginal probabilities of both parent nodes A and C, known information

11



about one parent will update the only the child node and not any additional parents.

This is because the updated belief about child node B is known to be the effect of

information about one parent node, for example A, so it cannot be counted an effect

of another parent node, for example C, as well Kjærulff and Madsen (2008). These

properties rely on the modeling of causality in a Bayesian network. Changing the

direction of an edge, effectively reversing its causality, could change a group of three

nodes from a series to a converging connection and interrupt the flow of information.

While causality and interruption of information flow is important for Bayesian

networks modeling causal events, it is less important when modeling design. Because

of the iterations through and variety of approaches to design, cause and effect rela-

tionships are less clear. In our example, length and powering are clearly correlated,

but one cannot be definitively determined to be the cause of the other. Length can be

said to require more power at longer lengths, but installing power can also allow us

to build longer boats. This flexibility in causality is taken advantage of in this work

when converting and analyzing the design Bayesian networks as traditional weighted

edge networks.

2.2 Learning BN

The structure and distribution of Bayesian networks can be constructed manually

using input from expert knowledge, semi-automatically using a database of represen-

tative cases, or by some combination of expert knowledge and data. When developed

manually, the structure of a Bayesian network is first constructed by identifying known

variables of the modeled problem and the flow of influence between them. A set of

rules is then constructed to define and quantify the influences of parent nodes on

their child nodes. This process requires deep knowledge of the complexities of the

problem and confidence that the assumed causalities are correct, so this method is

generally suitable for well studied problems or those governed by innate rules that de-
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fine the relationships of the variables. Learning a Bayesian network from a database

of known cases requires the same steps of defining the structure then populating con-

ditional probability tables to define the joint probability distribution. To rely on a

data-driven approach for defining a Bayesian network, you must assume the database

of cases consists of independent and randomly distributed cases and that the data

can adequately be represented by an underlying probability distribution Kjærulff

and Madsen (2008). In design, this means we need databases of design alternatives

adequately spread across the design space. The design alternatives should also be

developed independently of each other. If the design alternatives are created by spi-

ral design methods for example, the design set would likely only cover a local design

space; additionally, even if enough changes were made to cover the full possible design

space, the design alternatives would be developed from and, therefore, dependent on

each other. For this reason a set of design alternatives learned from methods like

set-based design would create a much stronger Bayesian network than one learned

through spiral design methods.

There are several methods for learning Bayesian networks, but this work relies

on the greedy search and score algorithm. This algorithm scores the goodness of a

candidate network via some defined scoring function. The greedy search and score

algorithm searches all possible networks by adding, reversing and removing edges

and evaluating the resulting change in the goodness score. These scores are generally

decomposable, so with every structure change the algorithm only needs to recalculate

the score for the affected edge A/S (2018). This property of decomposition will be

used later in this work. The scoring functions used to evaluate candidate networks

can be broken down into two categories: those based on log-likelihood and those

based on Bayesian posterior probability. The log-likelihood (LL) function is

LL(B|T ) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklog

(
Nijk

Nij

)
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where B is the network, T is the database, n is the number of variables, qi is the

number of parent states for the parent of variable i, ri is the number of states of the

variable i, Nijk is the number of data points in the database with parent state j and

child state k, and Nij is the number of data points in the database with parent state

j. This function has no penalty for complexity, so using it as the scoring function in

a search and score algorithm would result in a network that is over fit to the data

provided. Essentially, any possible node connection with a conditional relationship

between the nodes would result in an edge. This would create so many edges that

very little uncertainty would be considered. Any observation would produce the

exact probabilities of evidence datapoints already used to learn the network with

states matching that observation.

Instead, the Akaike Information Criterion (AIC) and Bayesian Information Crite-

rion (BIC) functions each add penalty functions to the log-likelihood reduce complex-

ity of the learned network. The AIC penalizes complexity of the number of the states

in candidate parent and child nodes Akaike (1974); the BIC, also known as minimum

description length (MDL), uses a similar penalty but also factors the number of cases

of the database so that the penalty is relatively smaller for large, more accurately

representative databases Schwarz (1978). AIC and BIC are defined, respectively, as

AIC = LL(B|T )− |B|

BIC = LL(B|T )− 1

2
log(N)|B|

where

|B| =
n∑

i=1

(ri − 1)qi

and N is the total number of instances in the data and n, ri and qi are the same as

above.

The other type of scoring functions are based on Bayesian statistics and look to
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maximize the posterior probability of the network. The foundation of these scoring

functions is the Bayesian Dirchlet (BD) score,

BD(B, T ) = log(P (B))+
n∑

i=1

qi∑
j=1

(
log

(
Γ(N ′ij)

Γ(Nij +N ′ij

)
+

ri∑
k=1

log

(
Γ(Nijk +N ′ijk)

Γ(N ′ijk)

))

where P (B) is the prior probability of network B and Nij, Nijk, n, qi and ri are the

same as above. N ′ijk = N ′×P (Xi = xik,ΠXi
= wij|G) where N ′ is an equivalent sam-

ple size for some graph G and scale with our belief in the prior distributionHeckerman

(1995). N ′ is extremely difficult to calculate in practice, so the simplest handling is

to set N ′ = 1, which produces the K2 score,

K2(B, T ) = log(P (B)) +
n∑

i=1

qi∑
j=1

(
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri∑
k=1

log (Nijk!)

)

where P (B), Nij, Nijk, n, qi and ri are the same as above Cooper and Herskovits

(1992).

2.3 Methods Used

This work uses the commercial software HUGIN to learn and analyze Bayesian

networks modeling design data A/S (2018). Within HUGIN, the networks structures

will be learned through a greedy search and score algorithm. HUGIN uses only the

AIC and BIC for its search and score algorithm, so the BIC score was chosen for its

ability to consider validity of the database size in scoring. For each design dataset,

the database is uploaded to HUGIN through the programs Learning Wizard, which

facilitates network structure and probability learning. The structure is learned with

HUGIN’s greedy search and score algorithm and conditional probability tables are

defined using the database of design points as evidence sorted into appropriate cells.
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CHAPTER III

Network Analysis

Networks as they appear for use in network theory are defined by their nodes

and edges, without additional data like Bayesian networks. Their edges may be di-

rected, showing some path of information flow, or undirected, simply linking two

nodes. These edges can also be weighted or unweighted: unweighted edges signify-

ing uniform or unquantified connections and weighted edges having some value of

strength or length attached to them. Weighted edges whose values represent strength

have higher values for more strongly connected nodes; however, if the weighted edge

is representative of length, a higher value will generally refer to a more distant con-

nection, opposite of the strength value. In this work, all edge weight values will

refer to strength of connection. When path distance is required for analysis, the cost

definition of path distance as an inverse of the weighted value is used Newman (2001).

3.1 Network Science Tools

Network graphs are often represented as adjacency matrices, A. In an adjacency

matrix each node of a network is represented by a row and a column. For unweighted

networks, each cell Aij is populated with 0 or 1, designating whether nodes i and j

share an edge, 1, or do not share an edge, 0. For weighted networks, like those used

in this work, the weight of an edge populates the cell Aij rather than a value of 1, as
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shown in Figure 3.1.

For directed networks, the network is represented by an asymetrical adjacency

matrix. An edge from node j to node i is populated in Aij of the adjacency matrix

but Aji remains equal to zero, unless there is a second edge connecting the nodes.

However, for undirected networks, like those used in this work, the adjacency matrices

are symmetrical, so an undirected edge between nodes i and j populates both Aij and

Aji of the network’s adjacency matrix.

Degree centrality is the simplest measure of centrality for networks. It measures

just the number of edges connected to a node. In this work degree centrality will be

normalized by the number of all possible edges to aid comparison,

CD(v) =
deg(v)

n− 1

Closeness centrality is the reciprocal of the average shortest path distance to all

other reachable nodes.

CC(v) =
n−1∑
u=1

n− 1

d(u, v)

where d(u, v) is the shortest path distance between nodes u and v for all n nodes u

that can reach v.

Betweenness centrality is the sum of the fraction of all shortest paths between two

nodes that pass through the node.

CB(v) =
∑
s,tinV

σ(s, t|v)

σ(s, t)

where V is the total set of nodes, σ(s, t) is the number of shortest paths between node

pairs, and σ(s, t|v) is the number of those shortest paths that pass through v.

Eigenvector centrality is a centrality measure which accounts for the centrality of
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a node’s neighbors in its measurement. Defined as Eigenvector x in

Ax = κ1x

where κ1 is the largest eigenvalue of adjacency matrix A.

In addition to centrality measurements, community detection can be used to find

groupings of similar nodes within a network. One of the simplest methods of com-

munity detection is modularity maximization. Modularity is a network property

measuring the extent to which like node are connected to like nodes, defined as

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

where m is the number of edges in a network, ki and kj are the degrees of nodes i and

j, respectively, ci and cj are the types nodes i and j, and δ(ci, cj) is 1 when ci are cj

are the same and 0 when they are different. The modularity of a network increases

when there are more edges between nodes of the same type than we would expect by

chance Newman (2018).

As noted above, while this work uses edge weight to represent strength of connec-

tion, some metrics like closeness and betweenness centrality use shortest path distance

rather than weight values. For each edge weight, path distance is

d(u, v) =
1

Au,v

where d(u, v) is the distance between nodes u and v connected by an edge with weight

Au,v Newman (2001). This includes the 0 values of an adjacency matrix, whose inverse

results in an infinite path length for nodes without a connection.

Shortest path lengths is also a useful measure of connectedness for networks in

this work because of the flow of information and updating in Bayesian networks.
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Figure 3.1: Weighted Network and Adjacency Matrix

Information about one node affects not only the node directly connected to it, but

also any nodes connected to those surrounding nodes and so on. This work uses the

Dijkstra algorithm to identify shortest path lengths between pairs Dijkstra (1959).

For example, in a weighted network representing the same design of recreational

boats used in the discussion of Bayesian networks, the four connecting edges each

carry a weight between 0 and 1. The path distance between length and home storage

would equal 0.62−1, or 1.61. While passengers and home storage are not directly

connected by an edge, their connection is represented by the shortest path distance,

passing through the length node, 0.62−1 + 0.30−1, or 4.94.

The Pearson coefficient of an adjacency matrix is a measure of similarity between

two vertices of a network; it is the actual number of common neighbors that have

minus the expected number that they would have if they chose neighbors at random,

normalized by the maximum possible value when the networks are exactly the same,

rij =
cov(Ai, Aj)

σi ∗ σj

where Ai and Aj are the ith and jth rows of matrix A, and σi and σj are the standard

deviations. The Pearson coefficient can be used to assess the structural similarity

between two nodes.

19



3.2 Comparison for Consistency

Much of network theory focuses on the comparison of networks with no known

node correspondence; these are networks like social networks or networks of portions

of the internet, where it is expected that the number of nodes occurring in both

networks is unknown and likely somewhat small. Because this work, on contrary, looks

to compare networks with the same nodes to look for consistency of structure, simple

distance- or rank-based methods can be used. The simplest measures of difference

between matrices are based on entry wise (or cell-wise) distances, A −B, and their

total magnitudes determined by the Euclidean, norm of that distance matrix. Because

we are comparing 10 matrices rather than just two we will use the cell-wise standard

deviation of the ten adjacency matrices to determine overall consistency.

A better measure of similarity is to compare the results of network analysis like

shortest path lengths and centralities. Because slight shifts in edge weights have

much less effect on centralities’ and shortest paths’ ranks, especially when they are

proportional across the network, rank-based correlations are most useful to compare

a group of networks for consistency.

Kendall Tau correlation and Spearman correlation are two correlation measures

that compare rank rather than absolute value. Kendall Tau correlation is defined as

τ =
nc − nd

1
2
n(n− 1)

where n is the number of observations and nc and nd are the numbers of concordant

and discordant pairs, respectively Kendall (1948). Spearman correlation is defined as

ρ = 1− 6
∑

(d2
i )

n3 − n

where di is the difference between ranks of corresponding variables i and n is the
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number of observations Kendall (1948). Kendall Tau correlation accounts only for

the binary, higher or lower rank, while Spearman correlation measures the distance

between ranks. Due to this difference, Spearman correlation generally returns larger

values but is more susceptible to large errors between observations.

Table 3.1 provides a small example of centrality ranks for three trials of a network

with nodes p, q, r, s and t. Table 3.2 delineates whether each pair of variables have

concordant (+1) or discordant (-1) ranks between trials I and II and between trials

I and III, and Table 3.3 delineates the difference in ranks for each variable between

the same networks.

Table 3.1: Example Vari-
able Centrality Ranks

I II III
p 1 2 1
q 2 3 2
r 3 4 4
s 4 1 3
t 5 5 5

Table 3.2: Sum of Con-
cordant and Discordant
Pairs for Kendall Tau
Correlation

I-II I-III
pq +1 +1
pr +1 +1
ps -1 +1
pt +1 +1
qr +1 +1
qs -1 +1
qt +1 +1
rs -1 -1
rt +1 +1
st +1 +1
nc − nd 4 8

Table 3.3: Sum of
Squared Rank Differ-
ences for Spearman
Correlation

I-II I-III
di d2

i di d2
i

p 1 1 0 0
q 1 1 0 0
r 1 1 1 1
s -3 9 -1 1
t 0 0 0 0∑

(d2
i ) 12 2

For these rankings, with n = 5 variables, networks I and II have a Kendall Tau

correlation of 0.4 and a Spearman correlation of 0.4. Networks I and III have a Kendall

Tau correlation of 0.8 and a Spearman correlation of 0.9. In network II variable s

jumps to the highest rank, and the rest move down one rank, while in network III

s jumps just one rank and only r’s rank is effected. For the small change between

networks I and III, the Spearman correlation is higher than Kendall Tau, but for the

larger jump of s between networks I and II Spearman penalizes the change as much
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as Kendall Tau does. Practically, this means small flips between nodes on a branch

will have a smaller effect on Spearman correlation than Kendall Tau correlation, but

large changes in centrality will have similar penalties to both correlations.
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CHAPTER IV

Developed Methodology

4.1 Converting Conditional Probabilities to Weighted Edges

The first challenge of this work is discerning a method for transforming Bayesian

networks into traditional networks for analysis. The method must be able to simplify

but maintain the knowledge of the conditional probability tables in addition to the

structure of the network. To succinctly capture the relationship in formation in these

tables, edge weights measuring the amount of information transferred between nodes

were captured using two scoring methods: K2 and match distance. Log gamma K2

is a scoring method derived from the Bayesian Dirchlet, introduced in Chapter III.

While it is generally used as a score to assess the goodness of an entire network, it

can be decomposed into individual components for each edge of a network. This work

uses the log gamma K2 of each edge as

loggammaK2 =

q∑
i=1

(
log

(
Γ(r)

Γ (Ni + r)

)
+

r∑
j=1

log(αijΓ(αij))

)

where q is the number of parent states, r is the number of child states, Ni is the number

of observed data points with parent state i and αij is the number of observed data

points with parent state i and child state j. This score produces negative values from

about O(−105) to O(−102) where values closer to zero indicate a stronger influence
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and transfer of more information. To normalize these scores we use the log gamma K2

score between two uniform distributions with no correlation. Since all of our nodes

have the same number of states, this normalization factor is constant across all nodes

of the same network but varies between networks trained with different sized data

sets or different numbers of node states. The normalization factor then equals

loggammaK2normfactor =

q∑
i=1

(
log

(
Γ(r)

Γ(N
q

+ r)

)
+

r∑
j=1

log

(
N

qr
Γ

(
N

qr

)))

where q and r are the same as above, and N is the total number of observed data

pointsDevine (2016). The edge weight for each nonzero network edge is

K2edge = 1−
∑q

i=1

(
log
(

Γ(r)
Γ(Ni+r)

)
+
∑r

j=1 log(αijΓ(αij))
)

∑q
i=1

(
log

(
Γ(r)

Γ(N
q

+r)

)
+
∑r

j=1 log
(

N
qr

Γ
(

N
qr

))) .

This K2edge score produces an edge weight value between 0 and 1: zero signifies no

connection and 1 signifies a complete connection, where all parent nodes states match

child node states perfectly with no uncertainty.

In addition to K2, match distance was tested as a simpler measure for edge weight

scoring. Match distance is a measure of difference between two cumulative histograms

and was chosen for its simplicity and clarity. The match distance between two his-

tograms H,K is defined as

dM(H,K) =
∑
i

|ĥi − k̂i|

where ĥi =
∑

j≤i hi is the cumulative histogram of hi and k̂i is the same Rubner et al..

To determine an edge weight between two nodes this distance was computed between

the prior distribution of the child node and the distribution after each state of the
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parent node is selected and normalized,

MDedge =

∑q
i=1

(∑r
j=1 |P (X ≤ xj)− P (X ≤ xj|Y = yi)|

)
q

where q is the number of states yi in parent state Y , r is the number of states xj in

child state X, and P (X ≤ xj) is the cumulative probability of X in state xj. This

new edge weight score considers the average impact of the knowledge about the state

of one node on the knowledge about the state of the connected node. Match distance

has not been applied for use as a scoring function for Bayesian networks but was

chosen to evaluate whether the simple measurement could be effective in describing

influence between nodes with conditional probability.

Of the K2 and match distance scores evaluated in this work, K2 is the stronger

metric for measuring influence. For both the Osyczka and Kundu problem and Sen

and Yang’s bulk carrier design model, match distance produced scores that were gen-

erally low and had little variation between is maximum and minimum edge weights

within a network. Scoring edges with the K2 score produced wider ranges of edge

weights that accurately represented differences in the strengths of influence between

variables. Both the Osyczka and Kundu and bulk carrier design problems were ana-

lyzed with both K2 and match distance scores, but due to match distance’s weaker

performance most discussion and analysis in this work centers on the networks learned

with the K2 score.

4.2 Identifying and Chunking Redundant Nodes of the Bayesian

Network

A second challenge in developing networks automatically from design databases is

the preparation the databases for learning as a Bayesian network. As noted in Chapter

II, nodes should be chosen such that the states of nodes are mutually exclusive.
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When nodes’ states are not mutually exclusive, consistency of the learned networks

is affected. When considering all variables of a complex design model it is likely

there are variables that whose states are not mutually exclusive. These variables

arise from simple regressions or linear relationships between variables. For example,

if you were to design a car, the number of seat belts and number of overhead lights

may both relate directly to the number of passengers the car can hold; these direct

relationships would render the states of those variables to not be mutually exclusive,

even though they are distinct variables whose values are needed for its design. It is

likely that a complex design model contains an unknown number of variables with

similar relationships that render their states not mutually exclusive, as design models

are designed to output practical design information not perfect databases for Bayesian

networks.

The example of the networks in Figure 4.1 demonstrates the lack of consistency

that can arise when non-mutually exclusive nodes are included in a network. In

this example, nodes E and D represent two nodes which are non-mutually exclusive

because one is linearly defined by the other. This means the state of one directly

predicts the state of the other with very little to no complexity or uncertainty in

the relationship. Because the greedy search and score algorithm will favor network

structure with the most information delivered by the fewest edges, when there are

redundant pairs of nodes like E and D the example only node of the nodes will share

an edge with any other nodes, even if both are highly influenced. This results in

networks like the two shown in Figure 4.1; these networks are functionally the same

but could result from two similar databases with just slight variations in data points.

However, when measuring centrality these networks would have very different results

for nodes D and E in either network.

To avoid this phenomenon’s effect on the consistency with which the networks

can be learned and the accuracy of their analysis, the redundant nodes need to be
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Figure 4.1: Redundant Nodes Example

excluded so that all nodes provide unique information. The lack of mutual exclusivity

of these variables can result from variables that are simply too tightly related, when

one defines the other with no complexity or uncertainty, or from binning into intervals

that make the variables effectively not mutually exclusive because additional factors

don’t have a large enough effect to overcome bin size. While identifying redundant

nodes can be done through expert knowledge, in order to automate the process the

same scores used for edge weights can be used to determine whether the variables

are too tightly correlated. This automation also ensures nodes whose correlations

are unknown to the designers are also managed; while some models may have eas-

ily identifiable redundancies, others, like those resulting from assumptions or simple

regressions, may be unknown to the designer. Automation of the identification of re-

dundant variables also allows the Bayesian networks to continue to be learned without

the intervention of expert knowledge. When variables are too tightly correlated and

would result in redundant nodes, they can be chunked into one larger node for learning

the Bayesian networks and for network analysis.

An algorithm to automatically identify and chunk redundant nodes was developed.

To capture nodes that are functionally but not exactly mutually exclusive a process

was developed to identify variables that would have the same or very similar structures

in a learned networks. These similar structures are the result of similar levels of

influence on all other variables in the model. Because we have already used scoring

methods to represent the influence of variables on each other, we can assess those
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scores for the relationships between all variable pairs and assess the similarity of

nodes’ potential structures. The following process was developed to identify and

chunk redundant variable of a design database:

1. Score all possible pairs of variables with K2 or MD score and populate adjacency-

like matrix

2. Compute provisional centrality for each node by summing across row/column

of each variable

3. Compute Pearson correlation between matrix rows

4. In order of descending centrality combine variable with next most central node

with Pearson correlation of scores over threshold into a chunked node

5. Continue to add any variable with a correlation between all chunked variables

of the node over threshold

6. When all highly correlated variables have been chunked into the node, continue

with next most central variable and new chunked node

7. Use only the value of design data for most central variable of each node to learn

Bayesian network

This process can be used to identify redundant variables in any design model with a

large number of intermediate variables that may be too dependent on each other to

provide unique information in the structure of a Bayesian network.

The Pearson coefficient between rows is used to measure similarity of the rela-

tionships of the variables the rows represent. As the matrix of K2 scores are repre-

sentative of a hypothetical network, the Pearson coefficient becomes a measurement

of structural equivalence. Cosine similarity and jacquard coefficient are somewhat

more common measures of structural equivalence in network but are more appropri-

ate for unweighted networks. For weighted networks, they penalize the edge weight
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between the two considered nodes for any value below 1, even if the edge weights for

every other node connection are exactly equal. The Pearson coefficient, explained in

Chapter III, returns a similarity metric more aligned with the needs of the chunking

algorithm. With the Pearson coefficient, variables with similar influences on all other

nodes of the design model can be identified and chunked together to eliminate redun-

dant nodes of the network that cause inconsistency and inaccuracy. In this work, five

thresholds for Pearson coefficient were assessed to determine the proper threshold for

similarity: 0.975, 0.98, 0.985, 0.99 and 0.995. As a coefficient of 1 would designate

perfect structure similarity and exact mutual-inexclusivity of states, higher thresholds

require much stronger correlations of similarity to chunk nodes together while lower

thresholds allow less similar potential structures to be assessed as the same. As the

higher thresholds require much stronger correlation, there is less risk that they will

chunk too many variables that should be considered unique, but can miss redundan-

cies due to small but trivial differences in distributions due to the randomness of the

database sampling. Lower thresholds are less effected by differences in sampling but

can result in too many variables with similar but indeed unique structures chunking

into a single node. However, because the lower thresholds are less effected by small

differences, they may result in more consistent, though less accurate, networks. The

selection of a chunking threshold is, therefore, a trade-off between accuracy and con-

sistency. The accuracy and consistency of networks learned from databases chunked

with each of these thresholds is discussed further in Section 6.3.

4.3 Complete Framework for Analyzing Computer Aided De-

sign Model with Network Analysis

The complete methodology used in this framework combines established methods

for learning Bayesian networks and completing network analysis with the novel meth-
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ods described in this chapter. Figure 4.2 summarizes the overall methodology used to

complete the analysis in this work. This work uses two design models to demonstrate

the strength of the proposed analysis. Starting with design models the first step is to

develop a database of design alternatives from which to learn the Bayesian networks.

This work samples the design models using a Latin hypercube sampling to define

the independent variables of 100,000 design alternatives for ten design trials. This

work uses the pyDOE package in python to complete the sampling. In a real world

application, any database of design alternatives which are independent of each other,

describe the entire design space and are numerous enough to sufficiently populate

the conditional probability tables of the Bayesian networks to come. Subsets of each

design database are identified: the feasible subset with all design alternatives that

do not violate any constraints of the design model and the Pareto subset with any

feasible alternatives that are non-dominated with respect to the objective functions

of the design model.

Once the design data is developed any continuous numerical data describing the

state of variables are binned into a finite number of intervals based on the amount of

evidence available. The final preparation of the design data is chunking any variables

whose States are not mutually exclusive. This step is done using the process described

in the previous section.

Once the data has been prepared, Bayesian networks are learned from each database

using a greedy search and score algorithm with the BIC scoring method. The com-

mercial software HUGIN was used for this step.

Next, weighted edge networks are developed from the Bayesian networks by scoring

each parent-child node pain; this work scores all of the Bayesian networks with both

the K2 and match distance edge scores described in the first section of this chapter.

Finally, network analysis can be completed using the weighted edge networks.

First, shortest path -length between all pairs of nodes using Dijkstra’s method and the
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algorithm of this method in the python package networkx. This work uses networkx ’s

greedy modularity maximization algorithm to detect communities in the networks.

Additionally, degree centrality, betweenness centrality, closeness centrality and Eigen-

vector centrality are computed for all nodes of each network, again using networkx.

These metrics will highlight variable groups within the model and nodes that drive

feasible and optimal designs.

Sample Design Data

Chunk Variables

Learn Bayesian Networks

Extract Scores and Develop Weighted Edge Networks

Perform Network Analysis

Interpret Network Analysis to Understand Structure

Figure 4.2: Process of transforming complex design data into simple weighted edge
networks and defining network metrics
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CHAPTER V

Osyczka and Kundu Design Problem

To determine the accuracy of the networks built by the proposed framework, a

simple but explicit design model was analyzed first. A model like this can be manually

directed to determine the relationships between variables and objective functions to

assess the validity of the network structure and calculated edge weights. This simple

problem is also used to evaluate the consistency with which the Bayesian networks

learn the network structure with variables we know to have mutually exclusive states.

5.1 The Design Problem

In their paper applying multi-objective optimization techniques to genetic algo-

rithms, Osyczka and Kundu present a six variable, two objective design optimization

problem that this work used to refine and test the framework for network learning.

The design problem presents a simple but multi-objective, multi-variable problem

to test the proposed development and analysis of networks. The design problem is

defined in Table 5.1.
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Table 5.1: Osyczka and Kundu Benchmark Problem Definition Osyczka and Kundu
(1995)

minimize f1(x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4)2 + (x5 − 1)2)
f2(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

w.r.t. 0 ≤ x1, x2, x6 ≤ 10
1 ≤ x3, x5 ≤ 5
0 ≤ x4 ≤ 6

subject to x1 + x2 − 2 ≥ 0
6− x1 − x2 ≥ 0
2− x2 + x1 ≥ 0
2− x1 + 3x2 ≥ 0
4− (x3 − 3)2 − x4 ≥ 0
(x5 − 3)2 + x6 − 4 ≥ 0

5.2 Methodology

To replicate a database of design alternatives, the Osyczka and Kundu problem

was sampled using a Latin hypercube sampling to generate ten design trial databases

of 100,000 data points each. Ten design trials were developed to evaluate the con-

sistency of this method for learning Bayesian networks from design data, supporting

this work’s objective to consistently learn accurate networks. The design alternatives

which violate none of the constraints delineated by the problem definition are iden-

tified as the feasible subset for each design trial; these comprise of about 3% or 3000

data points in each design trial. Additionally the design alternatives which are feasi-

ble and Pareto optimal, non-dominated in terms of either objective, are identified as

the Pareto subset; these points generally comprise just less than 1% or 1000 points

in each design trial. The number of design alternatives in each set and subset of each

trial are delineated in Table 5.2.

The values of the variables for each design data point were intervaled into five

uniform bins each. Because the number of cells in a conditional probability table in

Bayesian networks scales the number of bins exponentially the number of parents of a
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Table 5.2: Number of Osyczka and Kundu design data points in each subset

Design Trial, Dt Total Points Feasible Points Pareto Points
D1 100,000 3271 81
D2 100,000 3236 75
D3 100,000 3285 84
D4 100,000 3300 92
D5 100,000 3332 83
D6 100,000 3282 103
D7 100,000 3245 126
D8 100,000 3253 39
D9 100,000 3233 90
D10 100,000 3354 96

node, r1+nparents , a node with five states and just two parents with five states creates

125 cells in its conditional probability table. Five bins allow the Osyczka and Kundu

problem to have sufficient accuracy when modeled while still being able to sufficiently

populate the conditional probability tables of each node.

A network for each full dataset, feasible subset and Pareto subset of the ten de-

sign trials was learned using a greedy search and score algorithm with BIC scoring

as described in Chapter II. The networks modeling the Osyczka and Kundu problem

were learned from the variable data directly from the problem definition; the six inde-

pendent variables are, by definition, not dependent on each other or any other shared

input, so they do not need to be chunked. Additionally, f1 and f2 have different

enough functions such that the state of one nodes doesn’t directly translate to the

state of the other; all variables have mutually exclusive states as defined in the prob-

lem. Each edge in the Bayesian networks was then scored with the K2 and MD scores

defined in Chapter IV and transformed into a weighted edge network and accompa-

nying adjacency matrix. Finally the shortest path distances, degree, betweenness,

closeness and Eigenvector centralities and consistency measures were calculated; ad-

ditionally, communities of nodes were identified using maximum modularity.
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5.3 Consistency of Results

The networks learned by all ten design trials were fairly consistent in identification

and weighting of edges.

The adjacency matrices and path lengths were evaluated for consistency by com-

paring each cell, representing the connection between each pair of variables using

Kendall Tau and Spearman correlation and averaging the correlations between all

pairs of design trials and; the centrality values for each node were also evaluated with

the same correlations and averaged in the same manner. Additionally, the cell-wise

standard deviation across all ten design trials was found and averaged across the

matrix, excluding the diagonal of self-connections. Match distance scores are not

more or less more consistent in rank correlations but do have much lower standard

deviations. This consistency is due to the lack in overall variation when learning edge

scores. Whereas K2 scores range from 0.003 to 0.990, all match distance scores are

between 0.1 and 0.3.

The adjacency matrices are most consistent in the full and feasible networks,

though all Kendall Tau and Spearman correlations average greater than 0.9 in the full,

feasible and Pareto networks. Spearman correlation is slightly higher than Kendall

Tau for the adjacency matrices signifying the differences between matrices are small

as Spearman correlation is highly effected by large errors in rank. Kendall Tau and

Spearman correlations are listed in Table 5.3 and Table 5.4, respectively.

Table 5.3: Average Kendall Tau Correlation of Adjacency Matrices of Osyczka and
Kundu Problem

Full Feasible Pareto
K2 0.956 0.948 0.900
MD 0.945 0.939 0.903

The average cell-wise standard deviation, listed in Table 5.5, seem small but are

difficult to consider without context. The average standard deviation is also much
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Table 5.4: Average Spearman Correlation of Adjacency Matrices of Osyczka and
Kundu Problem

Full Feasible Pareto
K2 0.974 0.977 0.916
MD 0.968 0.968 0.915

lower for sparse networks where the majority of the adjacency matrix is zero because

cells that are always zero will have zero standard deviation, while even consistently

learned edges with small variation will have standard deviations greater than zero.

Table 5.5: Average Cell-wise Standard Deviation of Adjacency Matrices of Osyczka
and Kundu Problem

Full Feasible Pareto
K2 0.033 0.040 0.021
MD 0.010 0.011 0.015

The shortest path lengths have slightly more variation than the adjacency ma-

trices, though still have very high Kendall Tau and Spearman correlations, listed in

Table 5.6 and Table 5.7. Interestingly, the Pareto networks seem to have the lowest

variation, but that is due to a similar reason as the low standard deviation for ad-

jacency matrices; when nodes consistently disconnect completely from the network,

their path lengths to other nodes are always the same: infinite. Unlike the adjacency

matrices this only occurs when the nodes are completely disconnected because an

edge to any other connected node will create a finite path length. The larger differ-

ence between higher Spearman correlation and lower Kendall Tau correlation signifies

that the slightly larger variation is still due to small differences not large outliers.

The cell-wise standard deviations for full and feasible K2 networks is noticeably

high, Table 5.8; as path lengths are the inverse of the edge weights, the very small

edge weights, on the order of 10−3, create very large path lengths with variations

disproportionately large, especially when compared to similar size differences to higher
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Table 5.6: Average Kendall Tau Correlation of Shortest Path Lengths of Osyczka and
Kundu Problem

Full Feasible Pareto
K2 0.874 0.897 0.950
MD 0.815 0.862 0.999

Table 5.7: Average Spearman Correlation of Shortest Path Lengths of Osyczka and
Kundu Problem

Full Feasible Pareto
K2 0.949 0.962 0.984
MD 0.909 0.947 1.000

Table 5.8: Average Cell-wise Standard Deviation of Shortest Path Lengths of Osyczka
and Kundu Problem

Full Feasible Pareto
K2 4.737 2.081 0.503
MD 0.604 0.945 0.634

edge weights.

Finally the centrality correlations are highest for the full dataset networks, but

lowest for the feasible networks. Kendall Tau correlations of all centrality ranks

are listed in Table 5.9 and Spearmen correlations are listed in 5.10. The betweenness

centrality rankings are notably least consistent for both K2 and match distance scores

feasible networks. For betweenness centrality in the feasible dataset networks, the

Kendall Tau correlations are 0.552 and 0.593 for K2 and match distance networks

while Spearman correlations are 0.562 and 0.602. Overall, the learned networks are

consistent, but cell-wise standard deviations are weak measures of correlation.
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Table 5.9: Average Kendall Tau Correlation of Centralities of Osyczka and Kundu
Problem

Full Feasible Pareto
Degree K2 0.921 0.859 0.866

MD 0.921 0.859 0.866

Betweenness K2 0.905 0.552 0.774
MD 1.000 0.593 0.774

Closeness K2 0.835 0.619 0.804
MD 0.735 0.611 0.841

Eigenvector K2 0.875 0.631 0.785
MD 0.719 0.689 0.841

Table 5.10: Average Spearman Correlation of Centralities of Osyczka and Kundu
Problem

Full Feasible Pareto
Degree K2 0.933 0.876 0.907

MD 0.933 0.876 0.907

Betweenness K2 0.913 0.562 0.785
MD 1.000 0.602 0.785

Closeness K2 0.917 0.747 0.877
MD 0.860 0.688 0.908

Eigenvector K2 0.953 0.746 0.871
MD 0.811 0.739 0.892

5.4 Accuracy of Results

The both the structure and edge weights of the learned networks are very repre-

sentative of the Osyczka and Kundu problem.

In the images above of the K2- and MD-scored networks of a full dataset, you

can see the edges reflect the functions of the problem. The second function of the

problem, f2 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 includes all independent variables equally
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Figure 5.2: Match Distance Scored
Weighted Edge Network Modeling the
Full Design Dataset of the Osyzcka and
Kundu Problem

weighted, so they are all connected to f2 by an edge. The boundaries of the problem

produce the varying edge weights, presented in Table B.1, for these full networks; in

the K2-scored network, x1, x2 and x6 have the largest range of possible values and

as such have the highest edge weights, x3, and x5 have the smallest range of possible

values, which translates to less influence on the overall value of f2 and the smallest

edge weights connected to it. In the MD-scored network, x4 has a smaller edge weight

connecting it to f2 than both x3 and x5, an early indication that K2 is a stronger

scoring method for capturing influence. The edges connecting f1 to other variables

are also representative of the problem functions. While all independent variables are

present in the function of f1, x1 is the only independent variable with a coefficient

greater than 1 (its coefficient is 25). This results in a strong influence and resulting

edge weight between x1 and f1. The second strongest influence on the value of f1

is x4, as it is the only independent variable not modified by a linear term. As the

other variables have both linear terms and a coefficient of only 1, they have little

individual influence on the value of f1; instead, f2 connects to f1 as a representative
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of all squared values of the independent variables.

The changes to the structure of the network from the full to feasible subset reflect

the constraints of the Osyczka and Kundu problem. The independent variables are

constrained in pairs with all constraints relating x1 and x2, x3 and x4 or x5 and x6.

Because of the simplicity of this problem, we can dissect the constraints manually

and show their effects on the design spaces of the independent variables graphically

in Figure 5.5, Figure 5.6 and Figure 5.7.

The constraints restrict the independent variables to much smaller fractions of

their full design space: 10% of previous spaces for x1 and x2, 44% for x3 and x4 and

76% for x5 and x6. These overall restrictions have an effect on the possible values of

f1 and f2 and the contributions of each variable to the objective functions’ values.

For example, x1 and x2 lose some influence on f1 because the value and variation in

value of their terms in f1 are particularly limited. Conversely, x3 gains some influence

on f2 because its range of possible values are not limited by x4. Variables x5 and

x6 lose the least design space to due to their constraint of each other; as such their
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Figure 5.5: Feasible Region and Optimal Points for x1 and x2

Figure 5.6: Feasible Region and Optimal Points for x3 and x4
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Figure 5.7: Feasible Region and Optimal Points for x5 and x6

terms’ values and variation of values make up a larger portion of f2 than in the full

design sets.

Finally, reducing the design dataset to only non-dominated data points simplifies

the network to connect only the variable which influence the values of the objective

functions at their minimum values, marked in blue and pink in Figures 5.5, 5.6 and

5.7. The Pareto optimal networks are displayed in Figure 5.8 and Figure 5.9. The

values of x3, x4 and x5 which contribute minimum term values for f1 and f2 are the

same, 1, 0 and 1 respectively; as such these values do not contribute to any non-

dominated objective function values and have no effect on the Pareto design points.

The Pareto networks of the Osyczka and Kundu problem reflect this, dropping all

edge connecting these three nodes to any other. Variable x6 is equal to 0 for the global

optimum of f2; however, because it is not a component of f1, any feasible value of x6

produces a value for f2 which is Pareto-optimal because it cannot be dominated by a

changing f1 value. The optimal values of x1 and x2 are different for f1 and f2, so those

variables have the most impact on the development of the Pareto front. Objective

function f1 is optimal when x1 = 2 and x2 = 2 (within the feasible design space),
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but f2 is optimal when x1 + x2 = 2; the values of x1 and x2 between these points

dictate whether a data point will have Pareto-optimality. As such, these variables

remain strongly connected to the objective functions’ nodes in the networks learned

from Pareto subsets. Finally, while comparatively similar between the full networks,

the K2 score of the x6-f2 edge is more accurate than the extremely low MD score

for the same edge. Overall, the network structures and edge weights, especially when

scored with the K2 score, accurately represent the design model and the effects of its

constraints and objectives.

Community detection using the greedy modularity maximization algorithm iden-

tified the separate objective functions and their largest contributing independent vari-

ables in the full dataset networks weighted with K2 scoring, shown in Figure 5.10.

Additionally, the feasible communities correctly identify the pairs of independent

variables constraining each other. These communities, while obvious for this simple

problem, signify that the algorithm can be successful in detecting groups of variables

in a design model from Bayesian networks learned solely from output data from the

43



model. The consistently low and less-varied match distance edge weights make iden-

tifying communities within the network more difficult, shown in Figure 5.13, Figure

5.14 and Figure 5.15. In fact, no communities are detected in the match distance

scored network of the full dataset because edge weights are so low and homogeneous,

Figure 5.13.

The average centrality values depicting trends in overall centrality are delineated

in Table 5.11. Degree Centrality is highest on average in the full dataset network

and decrease in progressive stages of design. Betweenness Centrality also has the

highest average value in the full dataset network. Closeness Centrality peaks in the

feasible networks, where node are most tied together by the constraints. The overall

values of closeness centrality are generally low due to the weak connections to x3 and

x5 in the full dataset networks and the disconnection of nodes and partial networks

in the feasible and Pareto subset networks. These extremely low edge weights have

disproportionately high path lengths and drive up the overall sums of path lengths.

Eigenvector Centrality is the most consistent centrality measurement, but does de-

crease in average value in later design stage networks.

Table 5.11: Average Centralities of Osyczka and Kundu Problem

Full Feasible Pareto
Degree K2 0.321 0.232 0.093

MD 0.321 0.232 0.093

Betweenness K2 0.113 0.029 0.023
MD 0.126 0.027 0.023

Closeness K2 0.013 0.075 0.043
MD 0.128 0.053 0.027

Eigenvector K2 0.29 0.217 0.247
MD 0.322 0.242 0.246

The values of each node’s centralities, ranked in descending order are listed in
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Table 5.12. Overall centralities measured for the Osyczka and Kundu problem are not

immensely insightful because the networks are small and relatively sparse. Objective

function f2 has the highest degree, betweenness, closeness and Eigenvector centralities

in the full and feasible networks simply because of the nodes position as the catchall

of equally weighted independent variables. However, f1 has the greatest centrality

across all measures in the Pareto networks because it remains dependent on x1 and f2,

while f2 is connected only to f1. The change in the most central node is interesting,

but because all four centrality measures have the same trends and there are only

eight total nodes the Osyczka and Kundu problem is not ideal for understanding the

specific differences between centrality measures.

Betweenness centrality provides little additional information about the network,

as it simply highlights the most connected node. Betweenness is a measure of the

fraction of shortest path pairs that pass through a node, so having edges to four nodes

with no other edges connecting them drives the centrality automatically for f2 in the

full network, shown in Figure 5.16. In the feasible, Figure 5.17, and Pareto, Figure

5.18, networks have pretty uniformly low betweenness centralities because of the loss

of connection to parts of the network. Match distance and K2 scores do not create

much difference in the calculation of betweenness centrality because its calculation

involves the sums of a binary rather than the edge weight values themselves.

Closeness centrality is uniformly low for all three design stages of networks scored

with K2 edge weights. The very low edge weights connecting x3 and x5 in the full

network have disproportionately high path lengths and drive the closeness centralities

of all nodes down, seen in Figure 5.19. The disconnection of parts of the network in the

feasible and Pareto networks has the same effect, seen in Figure 5.20 and Figure 5.21.

The networks scored with match distance have larger, but still generally closeness

centrality; the consistent, mid-range edge weights of the match distance networks do

not cause the same issues with path length, especially in the full network.
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Figure 5.17: Betweenness Centrality of K2 Scored Weighted Edge Network Modeling
the Feasible Design Dataset of the Osyzcka and Kundu Problem
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Figure 5.18: Betweenness Centrality of K2 Scored Weighted Edge Network Modeling
the Pareto Design Dataset of the Osyzcka and Kundu Problem

48



0.968

0.515

0.966

0.0
62

0.
10

1

0.752

0.142
x1

x2

x3

x4 x5

x6f1

f2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.19: Closeness Centrality of K2 Scored Weighted Edge Network Modeling the
Full Design Dataset of the Osyzcka and Kundu Problem
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Figure 5.20: Closeness Centrality of K2 Scored Weighted Edge Network Modeling the
Feasible Design Dataset of the Osyzcka and Kundu Problem
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Figure 5.21: Closeness Centrality of K2 Scored Weighted Edge Network Modeling the
Pareto Design Dataset of the Osyzcka and Kundu Problem
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Table 5.12: Average Ranked Centrality Measures of K2 Scored Osyczka and Kundu
Problem

Degree Betweenness Closeness Eigenvector
Centrality Centrality Centrality Centrality

Full f2 1.0 f2 0.867 f2 0.017 f2 0.613
f1 0.4 f1 0.038 f1 0.016 f1 0.465
x4 0.286 x6 0.0 x1 0.016 x1 0.406
x1 0.286 x5 0.0 x4 0.016 x4 0.351
x6 0.157 x4 0.0 x2 0.016 x2 0.241
x2 0.157 x3 0.0 x6 0.016 x6 0.24
x5 0.143 x2 0.0 x3 0.004 x3 0.001
x3 0.143 x1 0.0 x5 0.004 x5 0.001

Feasible f2 0.357 f2 0.095 f2 0.133 f2 0.587
x6 0.286 x3 0.071 x5 0.132 x5 0.583
x5 0.286 x1 0.048 x6 0.121 x6 0.551
x1 0.286 x5 0.014 x1 0.07 x3 0.014
x3 0.214 x6 0.0 f1 0.058 x4 0.001
x4 0.143 x4 0.0 x2 0.039 x1 0.0
x2 0.143 x2 0.0 x3 0.029 f1 0.0
f1 0.143 f1 0.0 x4 0.021 x2 0.0

Pareto f1 0.257 f1 0.09 f1 0.109 f1 0.625
x1 0.214 x1 0.067 x1 0.093 x1 0.48
f2 0.157 f2 0.029 f2 0.081 f2 0.478
x2 0.086 x6 0.0 x2 0.046 x2 0.195
x6 0.029 x5 0.0 x6 0.016 x6 0.09
x5 0.0 x4 0.0 x5 0.0 x5 0.035
x4 0.0 x3 0.0 x4 0.0 x4 0.035
x3 0.0 x2 0.0 x3 0.0 x3 0.035

Eigenvector centrality does highlight more than just the most connected node for

the Osyczka and Kundu problem. Eigenvector centrality considers the centrality of

a node’s closest connections in addition to its own closeness. This means, nodes like

x1 and x4 have high Eigenvector centrality in the full network because they are so

closely tied to the central objective function nodes, shown in Figure 5.22. Match

distance and K2 scored networks have very similar Eigenvector centrality values due

to the scaled nature of Eigenvectors. The average ranked centrality measures of the
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K2 scored networks can be found in Table 5.12 and those of the match distance scored

networks can be found in Table 5.13.

Table 5.13: Average Ranked Centrality Measures of MD Scored Osyczka and Kundu
Problem

Degree Closeness Betweenness Eigenvector
Centrality Centrality Centrality Centrality

Full f2 1.0 f2 0.867 f2 0.207 f2 0.676
f1 0.4 f1 0.143 x1 0.133 x1 0.358
x4 0.286 x6 0.0 x2 0.129 x2 0.307
x1 0.286 x5 0.0 x6 0.128 x6 0.305
x6 0.157 x4 0.0 f1 0.111 f1 0.287
x2 0.157 x3 0.0 x5 0.108 x4 0.241
x5 0.143 x2 0.0 x3 0.108 x5 0.202
x3 0.143 x1 0.0 x4 0.103 x3 0.201

Feasible f2 0.357 f2 0.095 f2 0.081 f2 0.616
x6 0.286 x3 0.071 x6 0.063 x6 0.529
x5 0.286 x1 0.048 x3 0.058 x5 0.47
x1 0.286 x6 0.0 x5 0.056 x3 0.204
x3 0.214 x5 0.0 x1 0.052 x4 0.114
x4 0.143 x4 0.0 x4 0.046 x1 0.0
x2 0.143 x2 0.0 x2 0.038 x2 0.0
f1 0.143 f1 0.0 f1 0.032 f1 0.0

Pareto f1 0.257 f1 0.09 f1 0.067 f1 0.624
x1 0.214 x1 0.067 x1 0.056 f2 0.559
f2 0.157 f2 0.029 f2 0.053 x1 0.389
x2 0.086 x6 0.0 x2 0.03 x2 0.183
x6 0.029 x5 0.0 x6 0.012 x6 0.106
x5 0.0 x4 0.0 x5 0.0 x5 0.035
x4 0.0 x3 0.0 x4 0.0 x4 0.035
x3 0.0 x2 0.0 x3 0.0 x3 0.035
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Figure 5.22: Eigenvector Centrality of K2 Scored Weighted Edge Network Modeling
the Full Design Dataset of the Osyzcka and Kundu Problem

0.968

0.515

0.966

0.0
62

0.
10

1

0.752

0.142
x1

x2

x3

x4 x5

x6f1

f2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.23: Eigenvector Centrality of K2 Scored Weighted Edge Network Modeling
the Feasible Design Dataset of the Osyzcka and Kundu Problem

0.366

0.348

x1

x2

x3

x4 x5

x6f1

f2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.24: Eigenvector Centrality of K2 Scored Weighted Edge Network Modeling
the Pareto Design Dataset of the Osyzcka and Kundu Problem
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5.5 Lessons Learned

This analysis of the Osyczka and Kundu design problem demonstrates the effec-

tiveness of the proposed framework. While the design problem is not complex enough

to require and demonstrate the algorithm for chunking superfluous nodes or clearly

differentiate between centrality measures, it does show how accurately the learned

Bayesian networks can identify the model’s relationships. These networks are learned

consistently across the ten design trials of different design alternatives sampled from

the problem definition.

The edge weights scored with the K2 edge score accurately represent the influences

the design variables have on each other and the objective functions at each stage of

the design process. While the effects of the constraints and objective optimization

could be manually identified for this simple problem, the accuracy with which these

effects were captured by the networks is promising for the methodology’s use on

more complex problems where manual dissection of the problem is not possible. The

differing results of K2 and match distance scores begin to indicate that K2 is a better

scoring method for calculating edge weights. This trend is continued and confirmed

in the next case study.
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CHAPTER VI

Sen and Yang Bulk Carrier Design Problem

After demonstrating capability in representing a simple mult-objective design

model, the framework tested in this work should be applied to a more complex model.

A larger, more complex model for a bulk carrier was analyzed to demonstrate capabil-

ity in consistently learning a representative structure and computing network metrics

that identify the variables driving solutions at each stage of design. This bulk car-

rier design model is ideal for demonstrating the strength of the framework because

it is explicit enough to understand the understand at the initial design stage but

complex enough to produce information in the networks modeling the feasible and

Pareto-optimal design spaces that would be difficult to understand through standard

analysis.

6.1 The Design Problem

In Sen and Yang’s book on decision making in design, the chapter on multiple

objective decision making provides a simple and useful ship design model for bulk car-

riers Sen and Yang (1998). As an example of multi-objective ship design the example

has three objective functions: minimization of transportation cost, minimization of

light ship mass and maximization of annual cargo capacity. These three objective

functions are explicitly computed from six independent variables and a series of 27
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intermediate variables. The model additionally defines 13 constraints on both the

independent and intermediate variables. The function’s variables, constraints and

objectives are delineated in Table 6.1. The complete bulk carrier model from Sen and

Yang can be found in Appendix B.

6.2 Initial Methodology

Like the Osyczka and Kundu problem, the Sen and Yang bulk carrier design model

was sampled to develop a design database to learn a Bayesian network from. Ten

design trials were again developed using a Latin hypercube sampling of 100,000 data

points each. To avoid too small feasible and Pareto subsets, constraints on the inde-

pendent variables of the problem were incorporated into the sampling. A normalized

100,000 point Latin hypercube sampling for 6 independent variables produced and

denormalized progressively to the acceptable ranges of the independent variables, as

defined by the model and simplified in Table 6.2. Independent variables CB and V

we denormalized first to a fixed range of values. Then L was fit using a minimum

value defined by the V at each data point and a fixed upper limit. This process was

continued for D, T and B, each with maximum or minimum limits dependent on

earlier-defined variables.

The resulting 100,000 data points do not represent a true Latin hypercube sam-

pling in the full input design space but greatly increase the number of feasible points

while still covering the design space.

The feasible subset is then defined by the points which did not violate any of the

remaining constraints; for each of the ten trials this includes about 12% of the full

dataset. The Pareto subset includes all points that are feasible and non-dominated

with respect to the three objective functions; most trials had Pareto subsets that

included just under 1%, or 1000, of the full data points. The exact number of design

alternatives in each dataset are delineated in Table 6.3.
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Table 6.1: Sen Bulk Carrier Design Model Summary

minimize transportation cost, TC
light ship mass, ∆LS

maximize annual cargo, ∆C,ann

w.r.t. length, L
draft, T
depth, D
block coefficient, CB

beam, B
speed, V
Froude number, Fn
displacement, ∆
steel mass, ∆S

outfit mass, ∆O

a(CB)
b(CB)
sea days,ts
BM
KG
KB
P (∆, V, a, b, L)
GM
ship cost, SC
machinery mass, ∆M

daily consumption, ∆DC

fuel cost, FC
capital charges, CC
fuel carried, ∆F

deadweight, ∆DW

running costs, RC
port costs, PC
stores, water and crew, ∆SWC

voyage cost, V C
cargo weight, ∆C

port days, tp
round trip per annum, RTPA
annual cost, AC

subject to L/B > 6
L/D < 15
L/T < 19
T < 0.45×∆0.31

DW

T < 0.7D + 0.7
∆DW > 3000
∆DW < 500, 000
CB > 0.63
CB < 0.75
V > 14
V < 18
Fn < 0.32
0.07B < GM
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Table 6.2: Upper and limits of six independent variables

Variable Lower Limit Upper Limit
CB 0.63 0.75
V 14 18
L ( V

0.32
)2/g 362

D L/15 30
T L/19 0.7D + 0.7
B 5 L/6

Table 6.3: Number of Sen Bulker design data points in each subset

Design Trial, Dt Total Points Feasible Points Pareto Points
D1 100,000 11,936 903
D2 100,000 11,950 863
D3 100,000 11,659 800
D4 100,000 11,627 886
D5 100,000 11,910 906
D6 100,000 11,776 1053
D7 100,000 11,846 908
D8 100,000 11,792 915
D9 100,000 11,773 835
D10 100,000 11,670 926

The values of each variable within datasets were binned into ten uniform intervals,

each bin as a node state. These datasets and subsets were then used originally to

learn 30 Bayesian networks using a greedy search and sore algorithm with BIC scoring

as before. The resulting networks were analyzed for consistency and accuracy using

community detection, centrality measurements and correlation measures. The results

of this process, which produced inconsistent networks due to redundant node pairs

in the bulk carrier design model, are discussed below; the methodology of chunking

variables into combined nodes designed to reduce this issue and its results are detailed

later in the Chapter.
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6.2.1 Initial Results

The consistency of these networks learned from the complete, unchunked model

data was much lower than those modeling the Osyczka and Kundu problem on all

measures of consistency. The Kendall Tau correlations of both the adjacency ma-

trices, Table 6.4, shortest path lengths,Table 6.7, and the centrality measurements,

Table 6.10, were all worse than those measured for the Osyczka and Kundu problem,

including some centrality values almost 50% lower for the full datasets, whose size

should make the networks most consistent. However, the Spearman correlations for

shortest path length, Table 6.8, and centralities, Table ??, are still higher than their

Kendall Tau counterparts. This indicates that at least part of the variation between

trials are small changes in the order of nodes on a branch rather than large substantial

changes to the structure.

Table 6.4: Average Kendall Tau Correlation of Adjacency Matrices of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.745 0.863 0.863
MD 0.745 0.857 0.857

Table 6.5: Average Spearman Correlation of Adjacency Matrices of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.764 0.869 0.869
MD 0.761 0.865 0.865

Table 6.6: Average Cell-wise Standard Deviation of Adjacency Matrices of Bulk Car-
rier Design Problem

Full Feasible Pareto
K2 0.059 0.021 0.018
MD 0.038 0.016 0.016
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Table 6.7: Average Kendall Tau Correlation of Shortest Path Lengths of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.492 0.633 0.63
MD 0.494 0.600 0.598

Table 6.8: Average Spearman Correlation of Shortest Path Lengths of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.656 0.793 0.793
MD 0.656 0.762 0.764

Table 6.9: Average Cell-wise Standard Deviation of Shortest Path Lengths of Bulk
Carrier Design Problem

Full Feasible Pareto
K2 0.825 1.234 1.277
MD 1.324 1.874 1.750

Table 6.10: Average Kendall Tau Correlation of Centralities of Bulk Carrier Design
Problem

Full Feasible Pareto
Degree K2 0.520 0.706 0.722

MD 0.520 0.706 0.722

Betweenness K2 0.356 0.594 0.704
MD 0.373 0.603 0.704

Closeness K2 0.465 0.653 0.712
MD 0.442 0.613 0.690

Eigenvector K2 0.425 0.622 0.680
MD 0.408 0.598 0.666

Figure 6.1 and Figure 6.2 show networks of the the full datasets of trials 0 and

1, respectively, grouped into communities detected using maximum modularity. It is

apparent from these networks that while generally nodes form similar groups of tight
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Table 6.11: Average Spearman Correlation of Centralities of Bulk Carrier Design
Problem

v

Full Feasible Pareto
Degree K2 0.609 0.744 0.752

MD 0.609 0.744 0.752

Betweenness K2 0.464 0.679 0.773
MD 0.493 0.691 0.773

Closeness K2 0.631 0.801 0.852
MD 0.594 0.765 0.834

Eigenvector K2 0.575 0.768 0.820
MD 0.548 0.749 0.810

connections, their structures are very different overall. Many nodes jump between

communities or move inward or outward along network branches, completely changing

their centralities.

As mentioned in Chapter IV, changing orders of nodes, while not hugely impactful

on the predictive results of the Bayesian network, create large differences in measure-

ments of centrality. For example, Figure 6.3 and Figure 6.4 show the betweenness

centralities for these networks from Trials 0 and 1. Variables CB, a and b are highly

connected, as a and b are both quadratic functions of CB. In Trial 0 node a connects

to the rest of the network and in Trial 1 CB does. This is the result of the greedy

search and score algorithm used to learn the networks and the overlap of influence of

these nodes. The three nodes are so highly connected to each other, their influences

on other variables are all effectively the same; for computational efficiency, the greedy

search and score algorithm will only keep one edge if multiple edge would all provide

the same information. This results in a single edge connecting this group to the rest

of the network, and that edge connecting to whichever of the group has the cleanest

data for that trial; the connection becomes reliant on small differences in binning

rather than one having a stronger influence than the other. Following this somewhat
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arbitrary assignment of edges, the centrality of those nodes becomes highly dependent

on the same chance differences. In Trial 0, Figure 6.3, a has much higher betweenness

centrality than CB and b because shares edges with other nodes, while CB is highest

in Trial 1, Figure 6.4, for the same reasons. If we can eliminate these changing orders

of nodes and arbitrary connections and misconnections, the networks will be learned

much more consistently and their network metrics will have much more meaning.

Table 6.12: Average Centralities of Bulk Carrier Design Problem

Full Feasible Pareto
Degree K2 0.089 0.058 0.052

MD 0.089 0.058 0.052

Betweenness K2 0.067 0.095 0.088
MD 0.067 0.095 0.088

Closeness K2 0.287 0.145 0.114
MD 0.179 0.102 0.091

Eigenvector K2 0.130 0.122 0.111
MD 0.127 0.120 0.106
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Figure 6.3: Betweenness Centrality of K2 Scored Weighted Edge Network Modeling
the Full Design Dataset of the Bulk Carrier Design Problem, Trial 0
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6.3 Chunking

6.3.1 Methodology

To avoid the inconsistencies redundant variables, those whose states are not mu-

tually exclusive, produce, the variables of the bulk carrier design problem must be

analyzed to identify which variables should be chunked into a single node. The process

described in Chapter IV for eliminating redundant nodes is applied to the intervaled

bulk carrier design data. That process requires chunking together any nodes whose

scores with all other nodes have a Pearson correlation coefficient over some threshold.

To determine which threshold would be most useful in this work, five were tested for

both the K2 and match distance scores: 0.975, 0.98, 0.985, 0.99 and 0.995. A total

of 300 additional networks were learned in HUGIN with varying numbers of nodes

and variables per node from the differing correlation thresholds. These 300 networks

were assigned edge weights from their K2 and match distance scores for conversion

to weighted edge networks. Finally the networks chunked by all ten thresholds were

analyzed for path length, centralities and detected communities. To compare the

consistency of these networks with possible different numbers of nodes form chunk-

ing, the adjacency matrices, path distances and centralities were expanded back and

assigned to all variables rather than just the nodes. In the expanded adjacency ma-

trix, all variables within a chunked node were assigned edge weight values of 1 and

the calculated edge weight for all variables in a connected node. A similar approach

was taken for the shortest path length, but all variables within a node were assigned

a path length of zero. The centrality measurements were calculated with the origi-

nal adjacency matrices and path distances rather than the expanded ones to avoid

an effectively higher weight on nodes with more chunked variables, as the number

of redundant nodes is an arbitrary result of the calculation methods and output of

the design problem rather than an indicator of importance. The resulting centrality
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measurements for each node were simply assigned to all variables within the node for

comparison.

6.3.2 Chunking Thresholds and Consistency

The chunked bulk carrier networks have overall greater consistency than their

unchunked counterparts. Generally, the highest consistencies were observed at a K2

correlation threshold of 0.99 for full dataset networks and 0.98 for feasible subset net-

works and 0.98 or 0.975 for Pareto subset networks. This trend is especially prevalent

in the Kendall Tau and Spearman correlations of the centrality measurements, shown

in Table 6.19 and Table 6.20. The match distance scored and chunked networks also

perform more consistently than their unchunked counterparts, but not better than

the K2 scored and chunked networks. Because of their similar performance here and

lower accuracy representing the Osyzcka and Kundu problem, this work will focus on

the results from the K2 scored networks for the remainder of the analysis.

The adjacency matrices have higher Kendall Tau and Spearman correlations for

the full and feasible networks with thresholds of 0.99, 0.90 and 0.975 than without any

chunking, evidenced in Table 6.13 and Table 6.14. The adjacency matrix correlations

for the Pareto networks, however, are lower when chunked than when not; the biggest

issue for chunking the Pareto networks is the large, most central nodes. Because edge

weights are smaller at the Pareto design stage, when a variable is not always chunked

into one of these nodes its edge weights shared with the variables within the node

vary from 1, when it is chunked, to values between 0.5 and 0.7 when it is not. In the

full and feasible networks the same change to a chunked variable would be from 1

when chunked to between 0.6 and 1.0 when not; similarly the nodes in the unchunked

networks change order but have somewhat consistent edge weight values. This means

the same changes to a network structure could result in a larger calculated deviation.

The average cell-wise standard deviations, delineated in Table 6.15, are worse for all
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chunking thresholds than the unchunked versions; like demonstrated in the Osyczka

and Kundu problem, the cell-wise standard deviations highly favor sparse nodes with

consistent zeros in their adjacency matrices.

Table 6.13: Average Kendall Tau Correlation of Adjacency Matrices of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.975 0.816 0.836 0.755

0.98 0.835 0.906 0.772
0.985 0.819 0.790 0.753
0.99 0.839 0.877 0.719
0.995 0.793 0.860 0.740
Unchunked 0.745 0.863 0.863

MD 0.975 0.821 0.847 0.655
0.98 0.824 0.863 0.626
0.985 0.814 0.869 0.628
0.99 0.829 0.784 0.786
0.995 0.822 0.840 0.866
Unchunked 0.745 0.857 0.857

Table 6.14: Average Spearman Correlation of Adjacency Matrices of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.975 0.898 0.863 0.786

0.98 0.913 0.921 0.800
0.985 0.863 0.810 0.781
0.99 0.883 0.891 0.745
0.995 0.833 0.871 0.758
Unchunked 0.764 0.869 0.869

MD 0.975 0.857 0.894 0.695
0.98 0.852 0.896 0.665
0.985 0.843 0.900 0.661
0.99 0.851 0.816 0.806
0.995 0.842 0.855 0.881
Unchunked 0.761 0.865 0.865

The consistency measurements for shortest path length and centrality ranks per-
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Table 6.15: Average Cell-wise Standard Deviation of Adjacency Matrices of Bulk
Carrier Design Problem

Full Feasible Pareto
K2 0.975 0.096 0.068 0.080

0.98 0.088 0.038 0.071
0.985 0.094 0.067 0.073
0.99 0.082 0.035 0.071
0.995 0.088 0.035 0.051
Unchunked 0.059 0.021 0.018

MD 0.975 0.063 0.06 0.119
0.98 0.058 0.048 0.123
0.985 0.059 0.046 0.100
0.99 0.047 0.057 0.045
0.995 0.045 0.029 0.025
Unchunked 0.038 0.016 0.016

form better across all chunking thresholds than those for the unchunked networks,

with one exception. Kendall Tau correlation in Table 6.16, Spearman correlation in

Table 6.17 and the cell-wise standard deviation in Table 6.18 for path lengths all

perform consistently better than the unchunked networks; additionally, like before,

the Spearman correlations are higher than the Kendall Tan correlations, signifying

that the variations are small and not due to major differences in path length. While

the standard deviations of the shortest path lengths are also smaller for chunked net-

works, it is still not a great metric for consistency without a lot of context. Due to

chunking the networks have fewer nodes and, therefore, fewer edges between the nodes

resulting in shorter path lengths overall. From the results of this analysis and those

of the Osyczka and Kundu problem, it is evident that standard deviation has too

many factors other than structure consistency and is the weakest measure of network

learning consistency used in this work.

The Kendall Tau and Spearman correlations of the centrality measurements were

better for the networks chunked with thresholds of 0.99, 0.98 and 0.975, with the

exception of betweenness centrality of the 0.99-chunked Pareto networks, shown in
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Table 6.16: Average Kendall Tau Correlation of Shortest Path Lengths of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.975 0.680 0.746 0.748

0.98 0.707 0.815 0.734
0.985 0.731 0.672 0.695
0.99 0.744 0.701 0.657
0.995 0.663 0.706 0.623
Unchunked 0.492 0.633 0.630

MD 0.975 0.678 0.730 0.515
0.98 0.719 0.747 0.524
0.985 0.663 0.756 0.460
0.99 0.678 0.670 0.570
0.995 0.589 0.722 0.665
Unchunked 0.494 0.600 0.598

Table 6.17: Average Spearman Correlation of Shortest Path Lengths of Bulk Carrier
Design Problem

Full Feasible Pareto
K2 0.975 0.836 0.859 0.885

0.98 0.855 0.905 0.884
0.985 0.865 0.814 0.847
0.99 0.876 0.817 0.828
0.995 0.809 0.837 0.794
Unchunked 0.656 0.793 0.793

MD 0.975 0.817 0.871 0.650
0.98 0.854 0.879 0.665
0.985 0.807 0.884 0.614
0.99 0.813 0.819 0.721
0.995 0.742 0.875 0.815
Unchunked 0.656 0.762 0.764

Table 6.19 and Table 6.20. Betweenness centrality has the same issue with incon-

sistency of the largest chunked nodes that was prevalent in the adjacency matrices.

The large, least consistently chunked modes of the Pareto networks have much higher

betweenness centrality than the other nodes in the work; as a result, variables that
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Table 6.18: Average Cell-wise Standard Deviation of Shortest Path Lengths of Bulk
Carrier Design Problem

Full Feasible Pareto
K2 0.975 0.543 0.474 0.529

0.98 0.517 0.337 0.626
0.985 0.422 0.567 0.761
0.99 0.349 0.537 0.853
0.995 0.466 0.623 1.002
Unchunked 0.825 1.234 1.277

MD 0.975 0.69 0.631 0.897
0.98 0.664 0.661 0.940
0.985 0.712 0.664 1.183
0.99 0.716 0.889 1.244
0.995 0.918 1.281 1.129
Unchunked 1.324 1.874 1.750

are sometimes but not always chunked into the central nodes have large variation in

their betweenness centralities and ranks. For the remainder of the centrality mea-

surements, both Kendall Tan and Spearman correlations are greater for the chunked

networks than those for the unchunked networks. Additionally, Spearman correlation

is higher than Kendall Tau correlation across all the centrality measurements. To

determine the best correlation threshold for chunking, the accuracy of the chunking

must be analyzed in addition to the consistency measures.
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Table 6.19: Average Kendall Tau Correlation of Centralities of Bulk Carrier Design
Problem

Full Feasible Pareto
Degree K2 0.975 0.799 0.868 0.934

0.98 0.811 0.936 0.848
0.985 0.828 0.800 0.796
0.99 0.889 0.804 0.750
0.995 0.829 0.809 0.732
Unchunked 0.520 0.706 0.722

MD 0.975 0.789 0.829 0.722
0.98 0.788 0.889 0.704
0.985 0.752 0.889 0.769
0.99 0.811 0.783 0.817
0.995 0.751 0.821 0.701
Unchunked 0.520 0.706 0.722

Betweenness K2 0.975 0.524 0.853 0.918
0.98 0.533 0.928 0.788
0.985 0.660 0.742 0.699
0.99 0.809 0.795 0.668
0.995 0.725 0.773 0.642
Unchunked 0.356 0.594 0.704

MD 0.975 0.677 0.781 0.534
0.98 0.523 0.836 0.540
0.985 0.584 0.839 0.682
0.99 0.668 0.727 0.822
0.995 0.617 0.754 0.712
Unchunked 0.373 0.603 0.704

Closeness K2 0.975 0.628 0.773 0.878
0.98 0.637 0.817 0.821
0.985 0.684 0.669 0.745
0.99 0.749 0.705 0.714
0.995 0.669 0.692 0.682
Unchunked 0.465 0.653 0.712

MD 0.975 0.558 0.792 0.553
0.98 0.616 0.769 0.627
0.985 0.548 0.775 0.546
0.99 0.594 0.651 0.658
0.995 0.545 0.651 0.735
Unchunked 0.442 0.613 0.690

Eigenvector K2 0.975 0.585 0.741 0.865
0.98 0.595 0.796 0.825
0.985 0.703 0.660 0.761
0.99 0.711 0.685 0.724
0.995 0.62 0.711 0.686
Unchunked 0.425 0.622 0.680

MD 0.975 0.595 0.664 0.516
0.98 0.495 0.654 0.584
0.985 0.460 0.660 0.514
0.99 0.566 0.595 0.643
0.995 0.457 0.588 0.740
Unchunked 0.408 0.598 0.666
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Table 6.20: Average Spearman Correlation of Centralities of Bulk Carrier Design
Problem

Full Feasible Pareto
Degree K2 0.975 0.857 0.910 0.960

0.98 0.868 0.968 0.891
0.985 0.868 0.856 0.836
0.99 0.925 0.858 0.798
0.995 0.883 0.863 0.778
Unchunked 0.609 0.744 0.752

MD 0.975 0.827 0.878 0.760
0.98 0.828 0.932 0.746
0.985 0.798 0.935 0.816
0.99 0.867 0.849 0.860
0.995 0.838 0.870 0.743
Unchunked 0.609 0.744 0.752

Betweenness K2 0.975 0.631 0.899 0.951
0.98 0.639 0.973 0.839
0.985 0.746 0.813 0.738
0.99 0.886 0.853 0.716
0.995 0.812 0.834 0.689
Unchunked 0.464 0.679 0.773

MD 0.975 0.736 0.847 0.565
0.98 0.619 0.924 0.579
0.985 0.679 0.926 0.732
0.99 0.777 0.821 0.861
0.995 0.743 0.814 0.752
Unchunked 0.493 0.691 0.773

Closeness K2 0.975 0.746 0.864 0.955
0.98 0.752 0.901 0.930
0.985 0.806 0.794 0.868
0.99 0.856 0.793 0.851
0.995 0.805 0.800 0.827
Unchunked 0.631 0.801 0.852

MD 0.975 0.670 0.887 0.676
0.98 0.715 0.890 0.753
0.985 0.672 0.895 0.673
0.99 0.722 0.791 0.798
0.995 0.705 0.776 0.879
Unchunked 0.594 0.765 0.834

Eigenvector K2 0.975 0.716 0.839 0.947
0.98 0.720 0.884 0.925
0.985 0.812 0.796 0.878
0.99 0.833 0.790 0.864
0.995 0.764 0.829 0.830
Unchunked 0.575 0.768 0.820

MD 0.975 0.700 0.784 0.631
0.98 0.612 0.782 0.713
0.985 0.585 0.790 0.641
0.99 0.688 0.731 0.784
0.995 0.581 0.710 0.877
Unchunked 0.548 0.749 0.810
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6.3.3 Chunking Thresholds and Accuracy

As the 0.99, 0.98 and 0.975 correlation thresholds had the most consistent networks

at progressive stages of design, their structures should be analyzed to determine which

produces the most accurate chunked nodes. For the full dataset a threshold of 0.98

produces the most consistent networks. Figure 6.5, Figure 6.6 and Figure 6.7 show

the full dataset networks chunked with correlation thresholds of 0.99, 0.98 and 0.975,

respectively. The some nodes of the 0.98 and 0.975 networks contain more variables,

as they have chunked nodes that are connected but are not so redundant that they

should be a single node. For example, in the 0.99 threshold network there is a chunked

node containing variables related to deadweight and cargo weight: ∆, ∆DW , ∆C and

tp. This is an acceptable chunk; ∆C and tp are linearly related, and the simplicity

of weight estimations in the model make ∆, ∆DW and ∆C all scale together, with

only small additional inputs. However, when chunked with thresholds 0.98 and 0.975,

this node also included RTPA, round trips per annum. Because RTPA is a function

highly dependent on both tp and ts, it should not be combined with that node because

RTPA and tp do have truly mutually exclusive states.

The networks modeling the feasible and Pareto subsets follow a similar pattern.

While the feasible networks are most consistent when chunked with a threshold of 0.98,

their nodes also chunk too many mutually exclusive variables at the lower thresholds.

Figure 6.8, Figure 6.9 and Figure 6.10 show examples of feasible subset networks

chunked with correlation thresholds of 0.99, 0.98 and 0.975, respectively. In the 0.98

and 0.975 threshold networks, one single node has eight chunked variables. While

some of these variables like ∆O and ∆SWC have similar regressions leading to their

results and are likely not mutually exclusive, variables like L should definitely be

excluded. This shows that while the networks chunked with a threshold of 0.98 are

most consistent, they are consistent because they consistently chunk too many nodes

together and don’t allow for different edge weights or structures.
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Figure 6.5: Weighted Edge Network Mod-
eling the Full Design Dataset of the Bulk
Carrier Design Problem Chunked with a
Correlation Threshold of 0.99, Trial 1
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Figure 6.6: Weighted Edge Network Mod-
eling the Full Design Dataset of the Bulk
Carrier Design Problem Chunked with a
Correlation Threshold of 0.98, Trial 1
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Figure 6.7: Weighted Edge Network Mod-
eling the Full Design Dataset of the Bulk
Carrier Design Problem Chunked with a
Correlation Threshold of 0.975, Trial 1

The Pareto networks have the same issues as the feasible issues, and due to the

small database size for learning the Bayesian networks even begin to see more illogical

chunks in the 0.99 threshold networks. Figure 6.11, Figure 6.12 and Figure 6.13 show
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examples of Pareto subset networks chunked with correlation thresholds of 0.99, 0.98

and 0.975, respectively. In the 0.99 chunked network for design trial 1, you can
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see L and RC are chunked into a singular node, though its not likely running cost

is completely dependent on ship length, even at a Pareto optimal stage. Overall,
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ked with a Correlation Threshold of 0.99,
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because thresholds of 0.98 and 0.975 create too large of chunks including variables

that have mutually exclusive states, a correlation threshold of 0.99 will be used for

analysis of the model as it is the most accurate. While 0.99 is the most accurate

of those tested, it should be understood that it is less consistent at the feasible and

Pareto subsets and can still chunk some variables too liberally.

6.4 Final Accuracy

The chunked networks modeling Sen and Yang’s bulk carrier problem successfully

represent the model; community detection, centralities and the chunked variables all

describe the relationships of the model’s variables within the design space. The result

of chunking variables into nodes itself reveals information about the design model:

both where efficiencies in computation could come and where the model could be

improved with the fewer assumptions or higher fidelity. For example, variables like

a and b are dependent only on CB and are used in only one intermediate function,

so could be streamlined and don’t need to be output. The same could be done for

capital charges which is a very simple 20% of ship charges and could be eliminated as

a standalone variable. Chunked variables can also highlight functions with low fidelity

or large assumptions. Figure 6.14, which depicts the full dataset network of Trial 1,

has several examples of this. For example, one node includes PC, RC, ∆SWC , ∆C,ann,

∆O and AC. Even when chunked with the most conservative threshold of 0.995, four

of these variables are still chunked within the same node. This indicates that the

regressions and functions defining these nodes are likely too simple and similar:

∆O = 1.0× L0.8 ×B0.6 ×D0.3 × C0.1
B

RC = 40, 000×∆0.3
DW

PCs = 6.3×∆0.8
DW
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∆SWC = 2.0×∆0.5
DW

∆C,ann = ∆C ×RTPA

AC = CC +RC + (V C ×RTPA)

From these variable definitions its clear that while none of these variables different

influences on the network, only RC and AC are directly dependent on each other. The

node containing ∆M , ∆F and FC is an example of a node whose assumptions within

the design model are adequate, but would require updating for wider applications;

while fuel mass is likely to relate directly to machinery mass with traditional powering,

new powering alternatives could require more complexity that break that assumption.

Conversely, the node of BM and GM highlights a weakness of this methodology.

GM is a function of KB, BM , and KG but due to the interval sizing for the Bayesian

networks, the states of GM and BM are not mutually exclusive because the impact

of KB and KG cannot overcome the size of the bins. To accurately represent the

impact of KB and KG the nodes in the Bayesian network would need more states

to allow for narrower intervals; this would require more states for every node or prior

knowledge an intervention to identify the variables that require higher fidelity in how

they are binned.

The degree centralities represent the number of direct relationships impacting

nodes. Generally the independent variables have high degree centrality in the full

dataset networks but decrease as the datasets are pared down for later design stages.

Interestingly, independent variable CB has a degree centrality of zero (is fully dis-

connected from the rest of the network) in the feasible and Pareto networks, seen

in Figure 6.15 and Figure 6.16. This signifies that its influence is so constrained by

at least one of the design constraints that it no longer effects the state of any other

nodes. Another independent variable V has zero degree centrality in the Pareto sub-

set network, Figure 6.16. Like the nodes that lost all edges in the Pareto subset of
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Figure 6.14: Weighted Edge Network Modeling the Full Design Dataset of the Bulk
Carrier Design Problem Chunked with a Correlation Threshold of 0.99, Trial 1
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Figure 6.16: Weighted Edge Network Modeling the Pareto Design Dataset of the Bulk
Carrier Design Problem Chunked with a Correlation Threshold of 0.99, Trial 1

Osyczka and Kundu problem, V is highly constrained within the optimal subset; in

the Pareto subset, its marginal probability highly favors high speeds rather than its

uniform distribution of the full and feasible subsets. Interestingly, Fn and RTPA

which are highly dependent on V do remain influential in the Pareto network, show-

ing the optimal design alternatives are effected by relative speed much more than

absolute speed. The average degree centralities ranked by subset are delineated in

Table 6.21. The average adjacency matrices and pair path lengths for the chunked

bulk carrier problem networks can be found in Appendix D.

It’s important to note that the network model produced by the Bayesian network

and edge weight calculation is a reflection of the design model, not the underlying

physics that the model is trying to capture. Therefore, while ship speed may actually

be significant in a Pareto-optimal set of bulk carrier designs, the model as written

finds other variables to be more influential on the design solution. This quality

of the learned networks is beneficial because it provides an opportunity to reassess
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Table 6.21: Average Ranked Degree Centrality of K2 Scored Bulk Carrier Design
Problem Chunked with a Correlation Threshold of 0.99

Full Dataset Feasible Subset Pareto Subset
AC 0.525 PC 0.3 RC 0.342

∆SWC 0.525 RC 0.3 ∆C,ann 0.341
RC 0.525 ∆SWC 0.3 ∆SWC 0.336
PC 0.525 V C 0.194 AC 0.225
∆O 0.525 ∆C,ann 0.194 ∆O 0.225

∆C,ann 0.525 KB 0.188 L 0.191
L 0.344 T 0.188 KB 0.126

KB 0.312 tS 0.182 T 0.126
T 0.312 V 0.182 CC 0.125
tS 0.256 ∆S 0.147 SC 0.125
V 0.256 AC 0.147 B 0.125
B 0.25 ∆O 0.147 PC 0.123

CC 0.231 ∆LS 0.147 RTPA 0.119
SC 0.231 ∆M 0.129 ∆F 0.114
∆F 0.2 Fn 0.118 FC 0.114
FC 0.2 L 0.118 V C 0.113
∆M 0.2 RTPA 0.118 ∆M 0.097

RTPA 0.162 B 0.118 ∆DC 0.088
∆ 0.156 FC 0.118 P 0.088
tP 0.156 ∆F 0.118 D 0.065

∆C 0.156 ∆DC 0.106 KG 0.065
∆DW 0.156 P 0.106 BM 0.06
V C 0.144 KG 0.059 Fn 0.06
∆LS 0.131 BM 0.059 GM 0.06
∆S 0.131 D 0.059 ∆S 0.06
b 0.125 SC 0.059 ∆LS 0.06
a 0.125 GM 0.059 tP 0.06

∆DC 0.125 tP 0.059 TC 0.06
P 0.125 TC 0.059 ∆C 0.06

KG 0.125 ∆ 0.059 ∆DW 0.06
GM 0.125 ∆DW 0.059 ∆ 0.06
Fn 0.125 ∆C 0.059 tS 0
D 0.125 CC 0.059 a 0
CB 0.125 b 0 b 0
BM 0.125 a 0 CB 0
TC 0.062 CB 0 V 0

our understanding either of the design model or the design itself. If the learned

network structure differs from our previous understanding of the design, either on
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understanding of the design, the assumptions in our mental model, are incorrect, or

the assumptions in the design model are incorrect. This could be a benefit of using

the framework presented over the manual development of a network model, because a

network developed from a designers understanding of a design model can only reflect

what is already understood; a network learned from design data can highlight what

may be incorrect about either the model or a designer’s knowledge.

6.4.1 Community Detection

Identified by the greedy maximum modularity algorithm, communities of highly

connected nodes reflect the separation of disciplines within the bulk carrier design

model. Figure 6.17 shows the four communities identified in the full dataset network

of Design Trial 1. The community colored orange in the left side of the graphic collects

the overall size components; the blue in the lower right side of the graphic collects

stability factors; the pink in the upper right collect required power variables; finally,

the remaining green nodes collect factors driving cargo amounts and cost. While

these groups could be identified manually with expert knowledge or examination of

the design model, the algorithmic detection of the communities is promising for use

in more complex or opaque design models. It also sorts some nodes into groups that

may not be the immediate designation even for those with a good understanding of

the model but indicate the actual structure of the computerized model. For example,

D is grouped with size rather than stability and Fn and V are split between size and

the cargo/cost communities.

Figure 6.18 shows the communities identified in the feasible networks. In this

network there is a further separation of costs based on cargo and costs based on

build size. Of course, CB loses its position in the required power community as it

disconnects from the core network.

The Pareto network, shown in Figure 6.19, breaks down into an additional com-
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Figure 6.17: Maximum Modularity Communites of Weighted Edge Network Mod-
eling the Full Design Dataset of the Bulk Carrier Design Problem Chunked with a
Correlation Threshold of 0.99, Trial 1

munity within its connected nodes. This occurs as the branches of the network break

apart into single branches that do not interconnect except through the center nodes.

In Trial 1, the stability branches are separated from overall displacement and cargo

size, base costs from size remain grouped separately from cargo costs and relative

speed is fully separated from required power. These separations reflect the inter-

rupted paths of influence resulting from restricting to optimal objective functions.
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Figure 6.18: Maximum Modularity Communites of Weighted Edge Network Modeling
the Feasible Design Dataset of the Bulk Carrier Design Problem Chunked with a
Correlation Threshold of 0.99, Trial 1
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Figure 6.19: Maximum Modularity Communites of Weighted Edge Network Model-
ing the Pareto Design Dataset of the Bulk Carrier Design Problem Chunked with a
Correlation Threshold of 0.99, Trial 1
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6.4.2 Betweenness Centrality

Betweenness centrality, the measure of the fraction of shortest length between

node pairs a node falls on, tends to highlight the nodes that connect their communi-

ties to the rest of the network. Node with high betweenness centrality lie on the paths

of greatest influence. The independent variables generally have high betweenness cen-

tralities in the full networks, an example for which is shown in Figure 6.20. In the

full networks these variables have a high impact on the intermediate variables while

there is large variation in their possible states. Before constraints or optimalities are

integrated, the independent variables are the foundations of the first intermediate

variables calculated in each discipline. For example, in the full network, B is part of

the community of stability nodes but is also connected to L and build size, CB and

required power and cargo and cost nodes. However, the betweenness centralities of

the independent variables vary more in the feasible and Pareto networks as their dis-

tributions become more polarized due to constraints and optimization. Independent

variable B, which has high betweenness centrality in the full network, as much less

central in the feasible and Pareto networks because it has lost its direct connections

to other disciplines’ communities in the network.

In the feasible networks, betweenness centrality continues to highlight the nodes

that connect their communities, depicted in Figure 6.18, to others in the network. In

Figure 6.21, ∆S, ∆LS, ∆O and AC connect build size and costs to overall size and

costs, ∆F and FC connect required power to speed and V C connects required power

to other cost measures. The most central node containing PC, RC and ∆SWC bridges

multiple disciplines’ communities: build size and cost, stability, cargo and required

power.

The highest betweenness centralities in the Pareto networks, darkest orange in

Figure 6.22, are the center points between disciplines. The node containing ∆O,

∆SWC , AC and ∆C,ann connects relative speed, required power and size and cargo

84



0.96

0.95

0.8850.828

0.8
36

0.982

0.629

0.915

0.89

0.898

0.911

0.957

0.986

0.997 0.922

0.996
0.957

0.
89

5

0.657
0.461

0.952

0.
95

3

0.768

0.819

0.754

0.
75

8

0.998

TC

SC CC

VC

V tS
RTPA

S LS

T KB

RC PC SWC
 C, ann O AC

 DW
 C tP

L

P DC

Fn

CB a b

BM GM

D KG

B

M FC F

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.20: Betweenness Centrality of Weighted Edge Network Modeling the Full
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1

while the node containing L and RC connects stability and build-size based costs.

The betweenness centralities ranked in each subset are delineated in Table 6.22.
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Figure 6.21: Betweenness Centrality of Weighted Edge Network Modeling the Feasible
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1
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Figure 6.22: Betweenness Centrality of Weighted Edge Network Modeling the Pareto
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1
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Table 6.22: Average Ranked Betweenness Centrality of K2 Scored Bulk Carrier Design
Problem Chunked with a Correlation Threshold of 0.99

Full Dataset Feasible Subset Pareto Subset
AC 0.513 ∆SWC 0.574 ∆C,ann 0.593

∆SWC 0.513 RC 0.574 RC 0.581
RC 0.513 PC 0.574 ∆SWC 0.565
PC 0.513 V C 0.29 AC 0.336
∆O 0.513 ∆C,ann 0.29 ∆O 0.336

∆C,ann 0.513 KB 0.235 L 0.253
B 0.212 T 0.235 V C 0.201

KB 0.176 AC 0.19 PC 0.19
T 0.176 ∆S 0.19 CC 0.132
L 0.15 ∆O 0.19 SC 0.132
tS 0.142 ∆LS 0.19 KB 0.114
V 0.142 ∆M 0.121 T 0.114

V C 0.07 FC 0.112 B 0.113
CC 0.042 ∆F 0.112 RTPA 0.104
SC 0.042 B 0.11 ∆F 0.102
FC 0.033 V 0.085 FC 0.102
∆M 0.033 tS 0.085 ∆M 0.065
∆F 0.033 L 0.084 ∆DC 0.049

∆DC 0.022 ∆DC 0.082 P 0.049
P 0.022 P 0.082 D 0.01
Fn 0.022 RTPA 0.051 KG 0.01

∆DW 0.017 Fn 0.051 CB 0
∆ 0.017 KG 0 GM 0
tP 0.017 BM 0 ∆S 0

∆C 0.017 CB 0 BM 0
a 0.014 D 0 Fn 0
b 0.014 GM 0 tP 0

CB 0.014 SC 0 V 0
∆LS 0.001 ∆DW 0 tS 0
∆S 0.001 a 0 b 0

RTPA 0 tP 0 TC 0
KG 0 ∆ 0 ∆C 0
GM 0 b 0 ∆DW 0
D 0 TC 0 ∆ 0

BM 0 ∆C 0 ∆LS 0
TC 0 CC 0 a 0
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6.4.3 Closeness Centrality

Closeness centrality measures how strongly a node is connected to the rest of the

network as a whole. Variables with high closeness centrality are most effected by the

states of other variables, and their states have the greatest effect on other variables.

The distribution of closeness centralities for all nodes is much more uniform across a

network than it is for betweenness centrality, especially for the full dataset networks.

In the full networks, like that in Figure 6.23, variables that are inputs to many

functions of the design model have the highest centralities. These are generally cost

variables, which remain highly central at later design stages. Independent variables

like T , L, V and B also have high closeness centrality in the full network due to their

broad impact across the design.
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Figure 6.23: Closeness Centrality of Weighted Edge Network Modeling the Full Design
Dataset of the Bulk Carrier Design Problem Chunked with a Correlation Threshold
of 0.99, Trial 1

In the feasible subset networks the most impactful variables, like the independent

variables are slightly less central, but variables that are impacted by the most variables
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maintain high closeness centrality. Costs and annual cargo are the most central, most

influenced nodes, as seen in Figure 6.24.
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Figure 6.24: Closeness Centrality of Weighted Edge Network Modeling the Feasible
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1

The Pareto subset networks, an example of which is in Figure 6.25, follow the

same trend: ∆C,ann is the most varied based on the influences of other nodes and

is most central. Meanwhile, the other two objective functions, TC and ∆LS have

relatively low closeness centrality and are much more stable in the optimal stage of

design. This indicates that ∆C,ann likely drives the differences in design alternatives

along the Pareto-front. Average closeness centralities ranked by subset are delineated

in Table 6.23.
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Figure 6.25: Closeness Centrality of Weighted Edge Network Modeling the Pareto
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1
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Table 6.23: Average Ranked Closeness Centrality of K2 Scored Bulk Carrier Design
Problem Chunked with a Correlation Threshold of 0.99

Full Dataset Feasible Subset Pareto Subset
AC 0.566 RC 0.351 ∆C,ann 0.313

∆SWC 0.566 ∆SWC 0.351 RC 0.31
RC 0.566 PC 0.351 ∆SWC 0.308
PC 0.566 V C 0.312 AC 0.267
∆O 0.566 ∆C,ann 0.312 ∆O 0.267

∆C,ann 0.566 T 0.274 L 0.249
KB 0.454 KB 0.274 PC 0.241
T 0.454 ∆LS 0.269 V C 0.236
L 0.445 AC 0.269 CC 0.228

CC 0.44 ∆S 0.269 SC 0.228
SC 0.44 ∆O 0.269 B 0.214
∆S 0.421 tS 0.268 RTPA 0.208

∆LS 0.421 V 0.268 KB 0.207
tS 0.42 RTPA 0.267 T 0.207
V 0.42 ∆ 0.246 TC 0.194
B 0.408 ∆DW 0.246 ∆LS 0.193

RTPA 0.405 ∆C 0.246 ∆S 0.193
∆C 0.39 tP 0.246 tP 0.188
tP 0.39 L 0.246 ∆C 0.188

∆DW 0.39 Fn 0.241 ∆DW 0.188
∆ 0.39 FC 0.241 ∆ 0.188
Fn 0.382 ∆F 0.241 FC 0.171
V C 0.38 B 0.233 ∆F 0.171
KG 0.364 ∆M 0.229 KG 0.161
D 0.364 TC 0.225 D 0.161
a 0.355 P 0.224 ∆M 0.161
b 0.355 ∆DC 0.224 GM 0.153

CB 0.355 SC 0.198 BM 0.153
BM 0.346 CC 0.198 Fn 0.149
GM 0.346 GM 0.169 ∆DC 0.148
TC 0.315 BM 0.169 P 0.148
∆F 0.314 KG 0.162 V 0
FC 0.314 D 0.162 b 0
∆M 0.314 a 0 tS 0

∆DC 0.307 b 0 CB 0
P 0.307 CB 0 a 0
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6.4.4 Eigenvector Centrality

Eigenvector centrality is somewhat similar to closeness centrality but favors nodes

that are highly connected to other highly connected nodes. Outside of the most

central and connected node, independent variables L, T and B have very high close-

ness centralities in the full networks; an example of a full network with Eigenvector

centrality is shown in Figure 6.26. These variables have the widest impact on over-

all results as inputs. Independent variable B is an example of a node with a higher

ranked Eigenvector centrality than closeness centrality; while it doesn’t have the high-

est edge weights, its edges connect to nodes outside its community in addition to just

like nodes and the most central node.
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Figure 6.26: Eigenvector Centrality of Weighted Edge Network Modeling the Full
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1

In the feasible networks, like shown in Figure 6.27, FC and V both have higher

ranked Eigenvector centrality than closeness centrality as well. These nodes connect

both inwards to the most central node and to outer nodes that are well connected.
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These nodes are the factors driving the distributions of the most central variables.
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Figure 6.27: Eigenvector Centrality of Weighted Edge Network Modeling the Feasible
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1

In the Pareto networks, like Figure 6.28, Eigenvector centrality identifies the vari-

ables that drive the variation in Pareto-optimal design alternatives. Variables with

high closeness centrality are the varying attributes of the alternatives, and variables

with high Eigenvector centrality drive the variation. Average Eigenvector centralities

ranked by subset are delineated in Table 6.24.

Of the centralities evaluated, most have the same most central node but distinct

differences in which nodes beyond the absolute center have high centrality values.

Betweenness identifies the nodes with the most impact beyond their discipline is

communities. Closeness highlights the nodes most impacted by the other nodes of

the network; these contain the variables with variation among design alternatives of

the feasible and Pareto subsets. As the centrality measure that considers the influence

of a node’s neighbors, Eigenvector centrality is high for nodes that drive the variation
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Figure 6.28: Eigenvector Centrality of Weighted Edge Network Modeling the Pareto
Design Dataset of the Bulk Carrier Design Problem Chunked with a Correlation
Threshold of 0.99, Trial 1

in variables with high closeness centrality.
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Table 6.24: Average Ranked Eigenvector Centrality of K2 Scored Bulk Carrier Design
Problem Chunked with a Correlation Threshold of 0.99

Full Dataset Feasible Subset Pareto Subset
AC 0.488 V C 0.431 ∆C,ann 0.581

∆SWC 0.488 ∆C,ann 0.431 RC 0.571
RC 0.488 tS 0.424 ∆SWC 0.566
PC 0.488 V 0.424 ∆O 0.419
∆O 0.488 RTPA 0.341 AC 0.419

∆C,ann 0.488 ∆SWC 0.329 L 0.36
L 0.323 PC 0.329 PC 0.318

CC 0.319 RC 0.329 CC 0.306
SC 0.319 ∆F 0.245 SC 0.306
KB 0.313 FC 0.245 V C 0.264
T 0.313 Fn 0.237 B 0.227
B 0.27 P 0.21 KB 0.208
tP 0.236 ∆DC 0.21 T 0.208
∆ 0.236 ∆M 0.187 RTPA 0.206

∆DW 0.236 ∆LS 0.166 ∆S 0.181
∆C 0.236 ∆O 0.166 ∆LS 0.181
∆S 0.233 AC 0.166 TC 0.177

∆LS 0.233 ∆S 0.166 ∆ 0.171
RTPA 0.231 L 0.153 ∆DW 0.171

V 0.223 KB 0.15 ∆C 0.171
tS 0.223 T 0.15 tP 0.171
D 0.173 ∆ 0.119 FC 0.102

KG 0.173 ∆C 0.119 ∆F 0.102
V C 0.161 tP 0.119 D 0.09
GM 0.151 ∆DW 0.119 KG 0.09
BM 0.151 TC 0.118 ∆M 0.085
Fn 0.145 B 0.094 GM 0.072
a 0.115 SC 0.056 BM 0.072
b 0.115 CC 0.056 Fn 0.065

CB 0.115 KG 0.027 P 0.063
∆F 0.092 D 0.027 ∆DC 0.063
∆M 0.092 GM 0.026 a 0.0
FC 0.092 BM 0.026 tS 0.0
TC 0.086 a 0.0 b 0.0
P 0.067 b 0.0 CB 0.0

∆DC 0.067 CB 0.0 V 0.0

6.5 Lessons Learned

This analysis of Sen and Yang’s bulk carrier design model robustly demonstrated

the effectiveness of the framework proposed by this work. With the inclusion of the
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chunking algorithm, Bayesian networks representing the design model were consis-

tently and accurately developed. This case study did show that the consistency and

accuracy of the chunking algorithm is dependent on the threshold of correlation used

to identify the groups of chunked nodes. The best threshold for this work was a 0.99

correlation of K2 scores, but the differing consistencies between the full , feasible and

Pareto subsets indicate that this threshold may not be the absolute best for use in de-

sign databases of differing size and resolution. Community detection using maximum

modularity identified the disciplines of design within the model with access only to

the structures learned from databases of design alternatives. Degree centrality of the

full dataset networks identifies the-direct relationships between variables as defined

by the design model. In the networks modeling the later feasible and Pareto stages

of design, degree centrality highlights the variables whose influence is so restricted by

the constraints or optimality of objectives that they disconnect from the network all

together. Betweenness Centrality also highlights the structure of the design problem,

identifying nodes which connect their discipline communities to other communities in

the network. Finally, closeness centrality and Eigenvector centrality work in tandem

to identify the variables that drive variation among the feasible and Pareto-optimal

design alternatives. Variables with the highest closeness centrality have distributions

that are most effected by and have the most effect on the status of the rest of the

model’s variables. These are the variables that define the differences between design

alternatives. Eigenvector centrality identifies variables which are closely connected to

the variables with high closeness centrality. These variables drive the variation in the

states of the most central nodes. These communities and centrality measures show

the capacity for this methodology to build accurate and consistent networks from

design data and provide insight into the model’s design space.
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CHAPTER VII

Conclusions and Future Work

7.1 Meeting the Research Objectives

Through the analysis of two case studies, this work shows the strength of using

Bayesian networks and network science to understand complex design models. For

both the six-variable, too-objective Osyczka and Kundu problem and the larger 33-

variable, three-objective function bulk carrier design problem Bayesian networks were

able to consistently learn representative network structures from databases of design

alternatives. While the simple Osyczka and Kundu problem could be learned directly

with no preprocessing the bulk carrier problem had redundant variables that needed

to be consolidated before networks could be learned consistently. A key contribution

of this work is the algorithm for chunking redundant nodes without the intervention

of a design with expert knowledge of the problem. Using edge scoring and a mea-

surement of network structure similarity, variables that would compete for all of the

same edges in a greedy search-and-score algorithm are combined into a single node.

The chunked nodes increase consistency and accuracy of network learning as well as

highlight assumptions within the model. By calling attention to variables that have

the same influences in the network, designers are made more aware of possible redun-

dancies within the model that may or may not be congruent with the intended design

problem. In our example, speed, V , and days at sea, ts, are reasonable redundant
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pairs, but chunks including both annual cargo, ∆C,ann, and outfit mass, ∆O, should

likely have more complexity and have indistinguishable influences in the model. The

chunking algorithm allows Bayesian networks to learn network structures from the

output from large complex design models without requiring intervention from a de-

signer’s perceived understanding of the design model.

Once learned from design datasets, the Bayesian networks were transformed into

weighted edge networks preserving the information held in its conditional probability

tables. Both a derivative of the log gamma K2 score and a modified match distance

score were used to try to capture the strength of relationships held in each condi-

tional probability table. While match distance produced weak representations of the

tables, K2 scores presented robust characterizations of variable relationships. In the

Osyczka and Kundu problem the edge weights scaled well with observations about

the variable relationships and the design space made through manual analysis of the

design problem, constraints and optimizations’ effect on the design space. K2 scores

of the bulk carrier networks reflected the relationships as detailed in the model for

the full design data; for the feasible and Pareto networks, the K2 scores and network

structure revealed the effects of the constraints and objectives that are more difficult

to understand from the original presentation of the model.

Finally analysis of the weighted edge networks with traditional network theory

tools showed the meaning of network metrics in terms of design and the design space.

Degree centrality and the structure of the network reflected the complexities of in-

fluence within the models. The highly connected networks of the full design space

are made mere spouse through the incorporation of constraints and optimization of

the objective functions. The loss of edges at progressive stages of design minor the

loss of influence those nodes have on the design space, whether heavily constrained

or overpowered by mere controlling variables. Community detection using a greedy

maximum modularity algorithm divides the network into communities reflecting the
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two objective functions in the Osyczka and Kundu problem and the disciplines of

ship design in the bulk carrier problem. Betweenness centrality measures the number

of shortest paths a node is on in a network; in the design networks it highlights the

nodes that connect to nodes outside their community, tying together the different

disciplines within the design model. Closeness centrality, measuring strength of con-

nection to all other nodes in a network, identified nodes which were most influenced

or most influence able in the design model. These nodes contain the variables with

variation between design alternatives in the design space. Especially in the Pareto-set

these nodes are those that haven’t been so constricted and change with the design

along the Pareto front. Lastly, Eigenvector centrality accounts for the closeness of

connections of a node’s neighbors. This metric highlights the variables of the de-

sign problem which drive the changes to and variations of the variables with highest

closeness centrality. Together the metrics and the structure of the networks reveal

information about the design space and an understanding of the driving factors of a

design at each design stage.

While this work tested the framework against two explicit and relatively simple

design problems, the value of this work in application is for the analysis of complex,

black box design models. The resulting networks structures can help a designer

or stakeholder form a better mental model of an opaque, complex design model;

centrality measurements highlight the variables which define the design spaces and the

changing influence of variables as the design progresses through increasing constrained

design stages. Better mental models support understanding of the model, from its

complexities to its assumptions. This understanding aids informed decision making

and the ability to build models that accurately reflect the problem to be solved.
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7.2 Contributions

Each supporting the achievement of a research objective, three major novel con-

tributions arise from this work:

1. The development of an algorithm to identify and combine redundant variables

from large sets of data used to learn Bayesian networks

2. The development of use of scoring methods for use as edge weight scores and

identifying a modified and normalized log gamma K2 score as an effective rep-

resentation of the strength of relationships defined by conditional probability

tables

3. Identifying the significance of network metrics as applied to weighted edge net-

works modeling the design space of complex design models

7.3 Future Work

This work presents several courses of future work, pertaining to both development

of the framework and suitable future applications.

7.3.1 Observations as Constraints

One of the most interesting avenues for testing the power of this work would be

to test the ability of the Bayesian networks to predict the networks or future design

stages. One of the strongest features of Bayesian networks is their ability to update

with observations; these observations remove the uncertainty from one or more nodes

based on a known state of the node. An interesting question arises of whether a design

constraint applied to a node’s states in the same way and re-converted to a weighted

edge network with the the observation in place, stopping some flow of information,
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would produce networks similar to the feasible networks built from databases of the

constraint applied before learning.

7.3.2 Integration of Chunking into Bayesian Network Learning

One area for increased efficiency in this process would be the integration of chunk-

ing into the Bayesian network learning algorithm. As the K2 edge weight score is a

derivation of the K2 score used to score the goodness of networks, there could be a

lot of efficiency gained by combining their calculation into a single step. In such a

learning algorithm, the matrices for evaluating similarity could be populated as new

edges are tested; then when two candidate edges provide very similar information,

the nodes could be evaluated for chunking, rather than testing every pair of possible

nodes, no matter how unrelated they are.

7.3.3 Exploration of Different Edge Weight Scoring

Finally, evaluating the use of additional edge weight scoring mechanisms could

further increase the accuracy of the learned networks and network metrics. While

K2 and match distance were explored in this work, many other established and novel

scoring methods are available for learning Bayesian networks or measuring the dif-

ference between distributions. Scores developed from log-likelihood, like used in the

BIC and AIC scoring functions, or Kullback-Leibler divergence could make interesting

candidates for edge weights and may highlight other complexities of the conditional

probability tables not captured by the K2 score.
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APPENDIX A

Bulk Carrier Design Model by Sen and Yang

Table A.1: Independent Design Variables

Variable Units
length, L m
draft, T m
depth, D m
block coefficient, CB -
beam, B m
speed, V knots

Table A.2: Model Parameters

Parameter Value
η1 4977.06
η2 -8105.61
η3 4456.51

ζ1 -10847.2
ζ2 12817.0
ζ3 -6960.32

Fn =
V√
gL

(A.1)

displacement, ∆ = 1.025× L×B × T × CB (A.2)
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Table A.3: Model Constants

Constant Value Units
round trip miles 5000 nm
fuel price 100 £/ton
cargo handling rate 8000 tons/day
g 9.8065 m/s2

steel mass, ∆S = 0.034× L1.7 ×B0.7 ×D0.4 × C0.5
B (A.3)

outfit mass, ∆O = 1.0× L0.8 ×B0.6 ×D0.3 × C0.1
B (A.4)

a(CB) = η1C
2
B + η2CB + η3 (A.5)

b(CB) = ζ1C
2
B + ζ2CB + ζ3 (A.6)

sea days, ts =
round trip miles

24V
(A.7)

BM =
(0.85CB − 0.002)B2

T × CB

(A.8)

KG = 1.0 + 0.52D (A.9)

KB = 0.53T (A.10)

P =
∆2/3 × V 3

b(CB)× Fn+ a(CB)
(A.11)

GM = KB +BM −KG (A.12)

ship cost, SC = 1.3(2000×∆0.85
S + 3500×∆O + 2400× P 0.8) (A.13)

machinery mass, ∆M = 0.17P 0.9 (A.14)

daily consumption ∆DC = P × 0.19× 24

1000
+ 0.2 (A.15)

fuel cost = 1.05×∆DC × ts × fuel price (A.16)

light ship mass, ∆LS = ∆S + ∆M + ∆O (A.17)
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capital charges, CC = 0.2.× SC (A.18)

fuel carried, ∆F = ∆DC × (ts + 5) (A.19)

deadweight, ∆DW = ∆−∆LS (A.20)

running costs, RC = 40, 000×∆0.3
DW (A.21)

port costs, PC = 6.3×∆0.8
DW (A.22)

stores, water and crew, ∆SWC = 2.0×∆0.5
DW (A.23)

voyage cost, V C = FC + PC (A.24)

cargo weight, ∆C = ∆DW −∆F −∆SWC (A.25)

port days, tp = 2

(
∆C

cargo handling rate
+ 0.5

)
(A.26)

RTPA =
350

ts + tp
(A.27)

annual cargo, ∆C,ann = ∆C ×RTPA (A.28)

annual cost, AC = CC +RC + (voyage costs×RTPA) (A.29)

transportation cost, TC =
AC

∆C,ann

(A.30)
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APPENDIX B

Oysczka and Kundu Adjacency Matrices and

Shortest Path Lengths

Table B.1: Average K2 Score Adjacency Matrix of Full Dataset Network of Osyczka
and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 0.0 0.0 0.0 0.0 0.0 0.987 0.973

x2 0.0 0.0 0.0 0.086 0.0 0.0 0.0 0.973

x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005

x4 0.0 0.086 0.0 0.0 0.0 0.08 0.678 0.86

x5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005

x6 0.0 0.0 0.0 0.08 0.0 0.0 0.0 0.973

f1 0.987 0.0 0.0 0.678 0.0 0.0 0.0 0.922

f2 0.973 0.973 0.005 0.86 0.005 0.973 0.922 0.0
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Table B.2: Average K2 Score Adjacency Matrix of Feasible Dataset Network of Osy-
czka and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 0.156 0.0 0.0 0.0 0.0 0.615 0.0

x2 0.156 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x3 0.0 0.0 0.0 0.102 0.0 0.0 0.0 0.039

x4 0.0 0.0 0.102 0.0 0.0 0.0 0.0 0.0

x5 0.0 0.0 0.0 0.0 0.0 0.689 0.0 0.85

x6 0.0 0.0 0.0 0.0 0.689 0.0 0.0 0.657

f1 0.615 0.0 0.0 0.0 0.0 0.0 0.0 0.0

f2 0.0 0.0 0.039 0.0 0.85 0.657 0.0 0.0

Table B.3: Average K2 Score Adjacency Matrix of Pareto Dataset Network of Osyczka
and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 0.191 0.0 0.0 0.0 0.0 0.338 0.0

x2 0.191 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.066

f1 0.338 0.0 0.0 0.0 0.0 0.0 0.0 0.39

f2 0.0 0.0 0.0 0.0 0.0 0.066 0.39 0.0
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Table B.4: Average MD Score Adjacency Matrix of Full Dataset Network of Osyczka
and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 0.0 0.0 0.0 0.0 0.0 0.136 0.286

x2 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.286

x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.194

x4 0.0 0.02 0.0 0.0 0.0 0.018 0.13 0.151

x5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.194

x6 0.0 0.0 0.0 0.018 0.0 0.0 0.0 0.286

f1 0.136 0.0 0.0 0.13 0.0 0.0 0.0 0.161

f2 0.286 0.286 0.194 0.151 0.194 0.286 0.161 0.0

Table B.5: Average MD Score Adjacency Matrix of Feasible Dataset Network of
Osyczka and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2
x1 0.0 0.242 0.0 0.0 0.0 0.0 0.15 0.0

x2 0.242 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x3 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.105

x4 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0

x5 0.0 0.0 0.0 0.0 0.0 0.155 0.0 0.191

x6 0.0 0.0 0.0 0.0 0.155 0.0 0.0 0.25

f1 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0

f2 0.0 0.0 0.105 0.0 0.191 0.25 0.0 0.0
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Table B.6: Average MD Score Adjacency Matrix of Pareto Dataset Network of Osy-
czka and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 0.149 0.0 0.0 0.0 0.0 0.165 0.0

x2 0.149 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.052

f1 0.165 0.0 0.0 0.0 0.0 0.0 0.0 0.301

f2 0.0 0.0 0.0 0.0 0.0 0.052 0.301 0.0

Table B.7: Average K2 Score Shortest Path Lengths of Full K2 Scores of Osyczka
and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 2.056 209.073 2.192 209.844 2.056 1.013 1.028

x2 2.056 0.0 209.073 2.089 209.844 2.056 2.112 1.028

x3 209.073 209.073 0.0 209.209 416.861 209.073 209.129 208.045

x4 2.192 2.089 209.209 0.0 209.979 2.089 1.4 1.164

x5 209.844 209.844 416.861 209.979 0.0 209.844 209.9 208.816

x6 2.056 2.056 209.073 2.089 209.844 0.0 2.112 1.028

f1 1.013 2.112 209.129 1.4 209.9 2.112 0.0 1.084

f2 1.028 1.028 208.045 1.164 208.816 1.028 1.084 0.0
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Table B.8: Average K2 Score Shortest Path Lengths of Feasible K2 Scores of Osyczka
and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 6.424 0.0 0.0 0.0 0.0 1.774 0.0

x2 6.424 0.0 0.0 0.0 0.0 0.0 8.198 0.0

x3 0.0 0.0 0.0 9.82 15.806 16.548 0.0 14.73

x4 0.0 0.0 9.82 0.0 25.581 26.323 0.0 24.505

x5 0.0 0.0 15.806 25.581 0.0 1.429 0.0 1.219

x6 0.0 0.0 16.548 26.323 1.429 0.0 0.0 1.653

f1 1.774 8.198 0.0 0.0 0.0 0.0 0.0 0.0

f2 0.0 0.0 14.73 24.505 1.219 1.653 0.0 0.0

Table B.9: Average K2 Score Shortest Path Lengths of Pareto K2 Scores of Osyczka
and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 3.219 0.0 0.0 0.0 7.979 2.699 5.068

x2 3.219 0.0 0.0 0.0 0.0 11.46 5.858 8.3

x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x6 7.979 11.46 0.0 0.0 0.0 0.0 5.348 3.151

f1 2.699 5.858 0.0 0.0 0.0 5.348 0.0 2.369

f2 5.068 8.3 0.0 0.0 0.0 3.151 2.369 0.0
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Table B.10: Average MD Score Shortest Path Lengths of Full MD Scores of Osyczka
and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 6.994 8.659 10.224 8.646 6.996 7.573 3.497

x2 6.994 0.0 8.658 9.846 8.645 6.995 9.854 3.496

x3 8.659 8.658 0.0 11.889 10.31 8.66 11.519 5.162

x4 10.224 9.846 11.889 0.0 11.876 9.878 7.525 6.727

x5 8.646 8.645 10.31 11.876 0.0 8.647 11.506 5.149

x6 6.996 6.995 8.66 9.878 8.647 0.0 9.856 3.498

f1 7.573 9.854 11.519 7.525 11.506 9.856 0.0 6.357

f2 3.497 3.496 5.162 6.727 5.149 3.498 6.357 0.0

Table B.11: Average MD Score Shortest Path Lengths of Feasible MD Scores of
Osyczka and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2
x1 0.0 4.136 0.0 0.0 0.0 0.0 7.194 0.0

x2 4.136 0.0 0.0 0.0 0.0 0.0 11.331 0.0

x3 0.0 0.0 0.0 4.065 10.357 8.558 0.0 4.762

x4 0.0 0.0 4.065 0.0 14.197 12.398 0.0 8.602

x5 0.0 0.0 10.357 14.197 0.0 6.534 0.0 5.349

x6 0.0 0.0 8.558 12.398 6.534 0.0 0.0 4.193

f1 7.194 11.331 0.0 0.0 0.0 0.0 0.0 0.0

f2 0.0 0.0 4.762 8.602 5.349 4.193 0.0 0.0
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Table B.12: Average MD Score Shortest Path Lengths of Pareto MD Scores of Osy-
czka and Kundu Problem

x
1

x
2

x
3

x
4

x
5

x
6

f 1 f 2

x1 0.0 4.086 0.0 0.0 0.0 12.538 5.494 8.498

x2 4.086 0.0 0.0 0.0 0.0 16.242 9.621 12.635

x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x6 12.538 16.242 0.0 0.0 0.0 0.0 6.753 3.833

f1 5.494 9.621 0.0 0.0 0.0 6.753 0.0 3.004

f2 8.498 12.635 0.0 0.0 0.0 3.833 3.004 0.0
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APPENDIX C

Unchunked Bulk Carrier Design Model Adjacency

Matrices and Shortest Path Lengths
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Bulk Carrier Design Model Chunked with

Threshold of 0.99 Adjacency Matrices and

Shortest Path Lengths
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