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ABSTRACT

During planetary descent, rocket plumes fluidize and eject surface granular matter.

Consequently, ejected matter has been shown to obscure the landing site and even

collide with the lander, causing serious damage. Given the high risk and cost of

space exploration, the challenges associated with plume-surface interactions (PSI)

are capable of jeopardizing future missions. The erosion, fluidization, and ejecta of

granular matter during PSI occurs under transonic/supersonic, high Reynolds number

conditions. These flow conditions pose significant challenges in both experimental and

numerical analyses. To date, accurate and predictive physics-based models of PSI at

relevant landing conditions do not exist.

The objective of this project is to develop high-fidelity simulation capabilities

to model compressible gas-particle flows at conditions relevant to PSI. To start, a

rigorous derivation of the volume-filtered (locally averaged) compressible Navier–

Stokes equations is presented for the first time. This derivation reveals many un-

closed terms, for which models are either non-existent or not valid under the regimes

of interest. To this end, key terms including pseudo-turbulent kinetic energy and

pseudo-turbulent Reynolds stresses, are isolated and modeled via a transport equa-

tion in a new high-order finite difference Eulerian-Lagrangian framework. A new

immersed boundary method is introduced to generate highly resolved, multi-particle

simulations for model closure development. Using the proposed immersed boundary

method and the Eulerian–Lagrangian framework, high-fidelity PSI simulations are

performed. Single-phase jet impingement on flat surfaces is first shown for validation

of the flow conditions. The work is then extended to PSI over a granular bed. For this

xvii



case, it is shown that that ejected particles can exceed sonic speeds at high particle

Reynolds numbers while the majority of the granular bed experiences subsonic parti-

cle Mach numbers. In addition, granular temperature is found to be most prevalent

in region of high shear during crater formation.

The uniqueness of this work lies in the combination of first principles physics and

numerics to generate a modeling framework to improve predictions of plume-surface

interactions for future missions involving entry, descent, and landing on planetary

and satellite bodies.
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CHAPTER I

Introduction

1.1 Background and motivation

In the near future, there are several missions planned by the public and private

sectors that involve planetary exploration. One major challenge with these missions

is landing. During landing, rocket exhaust can interact with planetary surfaces com-

monly referred to as plume-surface interactions (PSI). PSI results in the motion of

loose granular matter which can be expelled towards the spacecraft. This can result

in serious damage by colliding with the craft, hindering load-baring capacity due to

the formation of large craters, and spoofing sensors from inhibited visibility [24, 166].

See Fig. 1.1 for an example of crater formation due to PSI during the Mars Curiosity

Rover landing. During the Apollo 12 mission to the Moon in 1969, the Surveyor 3

craft experienced damage akin to “sand-blasting and pitting” from granular matter

transported by the Apollo lander during descent [46, 155, 91]. In this same mission,

it was described that the granular matter “degraded optical equipment” and led to

technical difficulties with other machinery, such as the moon buggy [135]. For such

reasons, this led Apollo astronaut John Young to claim that,“Dust is the number one

concern in returning to the moon” [135].

Attempts have been made to mitigate the effects of PSI events during entry, de-

scent, and landing (EDL). For recent missions to Mars, EDL has been broken down
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Figure 1.1: Example of PSI and crater formation from Mars landing. Images adapted
from NASA Jet Propulsion Laboratory (JPL) and Caltech.

into four major parts; guided entry, parachute decent, powered descent, and the sky

crane [137, 192, 110]. During the sky crane procedure, the spacecraft hovers above

the planetary surface while its payload is slowly lowered with a series of cables. One

purpose of the sky crane is to keep the rocket exhaust far away from the Martian

surface which in turn should result in less severe PSI events. Regardless, it is still

possible to experience damage while landing. For example during the Mars Curiosity

Rover landing, the craft hovered approximately 7.5 m above the Martian surface dur-

ing the sky crane maneuver [192, 218]. Meanwhile, rocket plumes interacted with the

planetary surface ejecting granular matter resulting in a damaged wind sensor [5].

Further modifications to EDL maneuvers are required to account for larger pay-

loads and different landing environments for future missions. As the mass of a space-

craft increases, the efficiency of parachutes decrease for low altitude decent [42, 203].

To avoid this, alternative deceleration methods, such as inflatable aerodynamic de-

celerators and different aeroshell/parachute shapes, have been suggested [42, 122].

While such methods may slightly reduce the severity of PSI events due to improved

deceleration, many of these techniques require some finite atmosphere to be effective.

For rarefied environments, rocket powered descent is the most viable option. Unfor-

tunately, these descent procedures can lead to the severe PSI events as previously
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described for the Apollo 12 mission to the Moon [46, 155, 91] and the Mars Curiosity

rover landing [5]. Overall, rocket assisted decent and consequently PSI are largely

unavoidable during landing. Given the high risk and cost of space exploration, work

must be done to characterize, model, and mitigate damage from PSI events which are

capable of jeopardizing future missions.

1.2 Physics of PSI

PSI involves high-speed chemically reacting plumes interacting with a planetary

surface. For both atmospheric and rarefied environments the near-plume region be-

haves as a continuum [166], therefore the Navier–Stokes equations can be used to

simulate jet exhaust. This is justified by the Knudsen number, Kn = λ/L where λ is

the mean free path and L is some characteristic length scale, being sufficiently low,

Kn� 1 [114], in the vicinity of the plume. For example, simulations have shown that

plume impingement for lunar environmental conditions exhibit Knudsen numbers on

the order of O(10−4) in the vicinity of the jet exit which increases to 0.2 < Kn < 2.5

at about 10 nozzle radii away from the exit [239]. Under rarefied conditions, the con-

tinuum assumption is not valid farther away from the plume; therefore, kinetic-based

equations of motion are more applicable [239, 166]. For the purposes of this work, it

is assumed that not only the near-plume region but also the surrounding atmosphere

act as a continuum. With this assumption, studies can be performed for planets

and satellites including but not limited to Earth, Mars, and Titan. Conditions for

applicable landing environments are included in Table 1.1.

As rocket exhaust interacts with a planetary surface, the flow can be characterized

by the Reynolds number,

Re =
ρUL

µ
, (1.1)

where ρ is the density of the fluid, U is characteristic velocity, and µ is the dynamic
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Earth Mars Titan
Density, ρ (kg/m3) 1.2 1.66× 10−2 5.35
Pressure, p (kPa) 101.325 0.900 147
Ratio of Specific Heats , γ 1.4 1.29 -
Dynamic Viscosity, µ (Pa · s) 1.8× 10−5 1.5× 10−5 6.26× 10−6

Gravity, g (m/s2) 9.81 3.72 1.35
Speed of Sound, c (m/s) 343 244 ∼ 191 ± 1.5
Mean free path, λ (m) ∼ 6.6× 10−8 ∼ 5.8× 10−6 ∼ 7× 10−8

Table 1.1: Ambient atmospheric conditions [75] and environmental properties for
Earth, Mars [186], and Titan [185, 80, 74, 76, 16] at an altitude of 0
km for each planetary body/satellite, respectively.

viscosity; Mach number,

Ma =
U

c
, (1.2)

where c is the speed of sound; and particle volume fraction,

φp =
Vp
V
, (1.3)

where Vp is the volume of particles that occupies some finite volume, V . See Fig. 1.2

for a breakdown of the regimes of flow during PSI. Near the jet exit, Mach numbers

can approach and exceed supersonic flows at high Reynolds numbers. For example,

the Mars Phoenix lander and Curiosity rover experienced jet exit Mach numbers of

Mae = 4.67 and Mae = 5.08 with jet Reynolds numbers of Re = 3.4 × 105 and

Re = 5.0 × 105 respectively [148]. The high-speed nature of these flows leads to the

formation of compressible structures after interacting with an impinging surface. This

includes but is not limited to plate shocks, wall shocks, and stagnation bubbles [148].

This occurs in the vicinity of granular matter with volume fraction ranging between

φp = 0 in the region of the plume devoid of particles to close packing, φp = 0.63 for

spheres, at the surface.

In the stagnation bubble, recirculation occurs in the presence of deep beds of

granular matter. This leads to fluidization, whereby solid particles moves dynamically
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Figure 1.2: Regimes of flow during PSI. Conditions are compiled from studies for
different landing environments [148, 16]. This image is from a numeri-
cal simulation of jet impingement on a granular bed, details provided in
Chapter VI.

in a liquid-like manner [69]. For numerical simulations of PSI under Titan conditions,

subsonic flow regimes were observed in this region in the presence of dense particle

volume fractions ranging between φp = 0.45 and closed packing. Meanwhile, these

fluidized particles traveled at velocities between 0 m/s and 200 m/s [16]. Even with a

jet exit Mach number of Mae = 1.5 considered in the numerical simulations performed

by Balakrishnan and Bellan [16], the local Reynolds number in the vicinity of the

stagnation bubble is high due to the high speed flows within the viscous exhaust.

During the fluidization process, dilute concentrations of particles, αp < 0.05, are

periodically ejected. It was also reported that ejected particles can reach speeds up to

∼ 350 m/s [16], which is fast enough to causing damage seen in previous missions [46,

155, 91, 5].

After interacting with the planetary surface, exhaust propagates outward from

the landing zone forming a wall jet. As shown in Carling and Hunt [37] and high-

lighted by Mehta et al. [148], this phenomenon can result in transonic to supersonic
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flow regimes at high Reynolds numbers. Consequently, these structures lead to flow

induced surface stresses that can lift and propel additional granular matter during

landing [155, 148]. As the flow moves radially away from the crater, the Mach num-

ber decays towards subsonic flow conditions. Even then, granular shear phenomenon

can result in the transport of additional particle matter, similar to sediment based

erosion [105, 107].

A wide range of flow regimes and physics are experienced during PSI, leading to

mechanisms that cause granular erosion and crater formation during landing. As out-

lined in Metzger et al. [155], these mechanisms include viscous erosion [117, 90], bear-

ing capacity failure [4], and diffused gas eruption [206]. During viscous erosion, the

jet interacts with surface granular matter which is initially at rest. After overcoming

local frictional forces for large particles or cohesive forces for smaller particles [117],

the dynamic pressure of the flow acts to lift and propel granular matter away from

the landing zone [90, 155]. Under bearing capacity failure, there exists jet conditions

for which craters begin to form. After meeting some threshold, the static pressure of

the jet exceeds the load bearing capacity of the surrounding granular material leading

to rapid particle motion [4]. For diffused gas eruption, the jet flow is forced into the

interstitial sites of particle matter via dynamic pressure [206, 155]. Consequently this

can lift and propel large amounts of material during extended plume impingement

events.

Later, two additional mechanisms were discovered, diffusion-driven flow and dif-

fusive gas explosive erosion. Diffusion-driven flow occurs when flow induced forces

“...cause the soil to shear in the bulk.” [155]. This leads to more prominent granular

transport in the presence of deeper craters [155]. The final mechanism, diffusive gas

explosive erosion, was identified by Mehta et al. [147] and occurs in the presence of

pulsatile jets. During this phenomenon, “cyclic shock waves” form and propagate

through the impinging surface, violently expelling large amounts of granular material
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during landing [147].

1.3 Experimental studies of PSI

The physics and mechanisms described in Section 1.2 were partially discovered

through observational imaging during landing and experiments of PSI. These methods

have been the primary means to analyze crater formation with a goal of characterizing

PSI and developing models for future missions.

During space exploration, images and videos are regularly taken during and after

landing to study this phenomenon [206, 164, 89]. One example was the use of imaging

during the Viking missions to Mars. Upon landing, images of the Martian surface

were used classify granular matter composition and size during erosion [89]. While

beneficial, the utility of these methods is limited. The small number of exploratory

missions combined with technology limitations mean that the quantity and quality of

data is short of what is needed to study PSI. In contrast, laboratory based experiments

are repeatable and are capable of capturing high resolution images at rates required

to potentially model this phenomenon [113].

Around the Surveyor and Apollo era, laboratory experiments were performed to

characterize granular erosion and crater formation while landing on the Moon [197,

117, 4, 206]. An earlier study for jet impingement came from Roberts [196], leading

to a deterministic model of crater formation and erosion. This model is based on

the theory that crater formation is governed by the height of the impinging jet and

resulting flow field. Using this information it is possible to predict the flow induced

forces from viscous shear stresses on the granular surface from radial propagation

of the exhaust during impingement [196, 90]. While elegant, this model does not

always compare well against data for crater formation and erosion. When comparing

to Roberts theory, Hutton [90] stated that “... a factor of uncertainty of about 5

for erosion predictions is not excessive.” The observed errors led to the model’s
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improvement over the years to account for effects like a polydisperse particle phase [90,

154].

This was followed by vacuum based studies from Land and Clark [117] where a

Mae = 5 jet was fired at granular beds while varying the nozzle pressure ratio and

impingement height. It was revealed that after some critical height, the jet did not

result in the erosion of granular matter. Experimental studies were further extended

by using a descending rocket nozzle for standard Earth atmospheric conditions, as

seen in Alexander et al. [4]. For some reported cases, granular matter was violently

expelled 40 ft into the air while traveling in excess of 60 ft/s [4]. For both vacuum and

atmospheric conditions, it was observed that soil properties and flow conditions had a

significant effect on crater formation [117, 4]. The combination of these works set the

groundwork for recent PSI experiments which aimed to tackle uncertainties in tran-

sient crater formation and ejecta phenomena [155, 156], albeit with some simplifying

assumptions.

As highlighted in previous studies, it is difficult replicating planetary environmen-

tal conditions for standard laboratory experiments [4, 155]. Unfortunately, unless

conditions match those experienced during landing, the physics of particle fluidiza-

tion and ejection can be compromised. To remedy this, a recent experiment used a

drop-tower in combination with a pressurized vessel to study this phenomenon [113],

allowing test cases to mimic conditions for various landing environments. That be-

ing said, experiments could only be performed at relatively small scales. Apart from

replicating environmental conditions, real-time jet impingement measurements are

not straight forward. During PSI, fluidized granular matter prevents optical access

to the rocket plume and the crater that forms. Instead, studies sometimes rely on

post-experiment measurements [155, 23, 156] or introduce an intrusive optical win-

dow, such as a transparent wall, to measure crater formation [155]. Both methods

are problematic and can lead measurement errors [117] or worse, modifications to the
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impinging flow structure and the resulting physics of fluidization. To avoid this, other

approaches like non-intrusive x-ray imaging have been used with some success [117].

In summary, there is a lot that can be learned from experimental PSI; however, it

is difficult to execute accurate studies of plume impingement on granular beds. This

has led to the development of cratering models based on rough landing images and

measurements under non-applicable environmental conditions [196, 90, 154]. As a re-

sult, the subsequent models don’t always capture the physics of PSI [90, 154]. These

inaccuracies, among other factors, make numerical approaches an attractive alterna-

tive as they could potentially provide a high-resolution, non-intrusive framework for

data collection and model development.

1.4 Summary of numerical approaches

Various methods can be used to perform numerical simulations of particle-laden

compressible flows in PSI regimes, see Fig. 1.3. In the absence of modeling for a con-

tinuum flow regime, one can discretize and solve the Navier–Stokes equations directly

and apply appropriate boundary conditions to the surface of each and every particle.

This results in high-resolution data and is typically referred to as particle resolved

direct numerical simulation (PR–DNS). For subsonic flows, PR–DNS has been per-

formed for triply periodic systems of particles [79, 21, 233] leading to improved mean

drag estimations on collections of spheres that are volume fraction dependent. Con-

cerning high-speed compressible flows, there has been increasing interest in simulating

fully resolve shock particle interactions [236, 238, 151, 153, 152, 172, 173]. Because

sub-particle resolution is required, these simulations can be prohibitively expensive.

Even with state-of-the-art high-performance computing clusters, simulations are lim-

ited to a relatively small number of particles, approximately O(103) [234, 171, 152].

For a larger number of particles, one can formulate the equations of motion to solve

for scales greater than the particle diameter. Obtaining a mathematical description
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Figure 1.3: Methods for numerical simulation of particle-laden compressible flows.
Lander image (on the right) adapted from NASA Marshall Space Flight
Center and Jacobs/ESSCA.

that captures these two-phase flows typically involves ensemble averaging [258] or

volume filtering [6, 34, 43, 13]. Sometimes referred to as mesoscale methods, each

and every particle is tracked without needing to resolve stresses along individual

particle surfaces. Similar to single-phase flows, averaging and filtering procedures

inevitably result in unclosed terms that require modeling [189]. While some quantities

from experiments or PR–DNS have a clear physical interpretation (e.g., the drag

coefficient or heat transfer rate), their connection to these unclosed terms is not always

obvious. This is especially true for high-speed flows whereby filtering or averaging

the governing equations reveals quantities such as pseudo-turbulent Reynolds stresses

and pseudo-turbulent kinetic energy that contain additional physics [13, 152, 214].

While less expensive than PR–DNS, mesoscale approaches require information to

be stored for each and every particle, making these methods memory intensive as

concentrations increase. As a result, modern simulations are limited to approximately
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O(108) particles, at least for incompressible flows [36].

For larger scale two-phase flows with high particle concentrations, it is common

to assume that both the gas and particle phases act as continua. Commonly referred

to as macroscale two-fluid approaches, the equations of motion can be derived and

discretized in such a way that both the particle and fluid can be solved on an Eulerian

grid [127, 85, 59]. Regardless of the formulation, information regarding individual

particle motion is not tracked and consequently there is no computational limit to the

number of particles for a given simulation. These methods are well suited for particle-

laden flow problems where the computational domain is extremely large and there

are high particle concentrations. Because of these properties, NASA has been heavily

involved in developing and testing two-fluid models for PSI in recent years [149, 124,

13, 14, 66].

1.5 Numerical simulations of PSI

Recently, macroscale methods have employed using Reynolds Averaged Navier

Stokes (RANS) or Large Eddy Simulation (LES) formulations to study PSI. With

regards to RANS, it is possible to perform numerical simulations of a full landing

site including specific immersed geometries that closely resemble the actual lander or

rover of interest [208, 209, 148]. While these simulations provide substantial informa-

tion regarding averaged impinging surface values, the referenced works are typically

performed in the absence of particle. In comparison, recent two-fluid LES simula-

tions have been performed for unsteady, high-resolution jet impingement on granular

beds [13, 14, 15]. These studies involve supersonic jets for environmental condi-

tions on Earth [13] and Titan [14, 15, 17]. In addition to qualitative comparisons

to crater formation from landing images [13], the simulations provide information on

particle-fluid coupling, such as force contributions during crater formation [15] and

joint probability distribution functions showing that dense particle concentrations in
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the crater predominately experience subsonic flow conditions [17].

Under PSI conditions, simulations need to account for a wide range of length-scales

(i.e., small scale particle motion, large scale granular transport, etc.), time-scales (i.e.,

acoustic timescales, particle reaction time, etc.), and operating conditions. Due to

high Reynolds numbers, Mach numbers, and particle concentrations, compressible

two-fluid formulations heavily rely on modeling to account for unresolvable contribu-

tions in the flow. This can further complicate simulations when robust models are not

available or even accurate under the conditions being considered. To provide closure

to two-fluid methods for PSI, it is common to use models borrowed from incompress-

ible flows for both the fluid and particle phases [13, 14]. In addition these models rely

on a continuum assumption for the particle-phase. During particle ejection events,

this assumption breaks down and can lead to errors. As a result, the accuracy of

compressible two-fluid simulations can be compromised.

In summary, mesoscale methods are a promising approach to simulate large scale

crater formation and ejecta dynamics; however, these methods need to be improved

to make accurate predictions of PSI. As opposed to using existing single-phase in-

compressible closures, new physics-based models must be generated based on first

principles. Unfortunately, microscale and mesoscale methods are not tractable al-

ternatives to simulate a full landing site. Alternatively simple conical problems well

suited for higher-resolution methods, can be used to isolate key physics of PSI and

inform macroscale approaches. A range of studies involving compressible phenom-

ena, shock-particle interactions, and particle-laden turbulence [24, 166] can be used

for model development required for the PSI and particle-laden compressible flow com-

munities.
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1.6 Particle-laden compressible flows

PSI is characterized by two-phase gas-particle flows under a wide range of Reynolds

numbers, Mach numbers and volume fractions. Physics-based simulation tools for pre-

dicting PSI requires a sound mathematical and physical description of compressible

particle-laden flows. However, a consistent form of the averaged equations of motion

remains elusive for these flows. Many different approaches have been used to derive

an averaged set of equations that do not require resolving the microscale physics,

ranging from energy balances and thermodynamic principles [127, 85] to kinetic the-

ory [59]. The choice of formulation methodology may result in different unclosed

terms or even a mathematical ill-posed set of equations [128, 121, 236, 238]. There

are even debates on fundamentals, such as the proper form of particle-fluid coupling

terms [127, 85, 236]. A clear set of equations needs to be established in order to in-

form model develop for under-resolved methods. Similar challenges exist for modeling

particle motion in compressible flows.

Fluidized and ejected particles during PSI can experience a wide range of effects

from phenomena like shock-particle and particle-turbulence interactions that have

clear physical interpretations. This can be described by forces that arise in expressions

like the Basset-Boussinesq-Oseen (BBO) and Maxey-Riley equations [18, 30, 170, 143,

178, 179]. For example, the BBO equation was originally formulated for an isolated

spherical particle in the presence of a creeping flow in the limit of small Reynolds

numbers. This is given by,

mp
dvp
dt

= 3πµdp (u− vp)︸ ︷︷ ︸
Stokes drag

− Vp∇p︸ ︷︷ ︸
Buoyancy

+
ρpVp

2

d

dt

(
u− v(i)

p

)︸ ︷︷ ︸
Inviscid−unsteady

+
3

2
d2
p

√
πρµ

t∫
t0

1√
t− ξ

d

dξ
(u− vp) dξ

︸ ︷︷ ︸
Viscous−unsteady

+ F b︸︷︷︸
Body forces

.
(1.4)
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Here vp is the particle velocity, ρp is density of the particle, t is time, and dp is the

particle diameter. The terms on the right hand side account for Stokes drag, the re-

solved pressure gradient or buoyancy, added mass or inviscid-unsteady effects, Basset

or viscous-unsteady effects, and additional body forces such as gravity [99, 178]. The

equation was originally formulated for low Reynolds number, steady flows; however,

the forces are still relevant to general particle motion. For large particle to fluid den-

sity ratios in the presence of some finite slip velocity, particle motion is dominated

by drag. In the presence of a large pressure gradient, buoyancy forces are important.

Unsteady effects are proportional to acceleration difference between the phases and

fluid-to-particle density ratio. For incompressible gas-solid flows, these terms are often

negligible. For compressible gas-solid flows, strong local acceleration can be generated

by discontinuities like shock waves and thus they may be non-negligible [125, 126].

Considering compressible flow regimes, recent works have extended the BBO and

Maxey-Riley equations for finite Mach and Reynolds numbers [178, 179]. While such

relations exist, they are usually formulated for isolated particles. Particle suspen-

sions at finite volume fraction and Reynolds numbers do not exhibit realistic forcing

behavior.

Characterization of drag on spheres/particles for higher speed, compressible flows

has been a topic of interest for hundreds of years [10, 44]. Examples of work date back

to the 18th and 19th centuries where cannon-fire data was used to evaluate steady

drag under high-speed flows [157]. Other studies have been performed to cover a

wider range of Mach and Reynolds numbers as shown in Bailey and Hiatt [10] and

Clift et al. [44]. Experimental studies combined with numerical works have led to

improved drag correlations for a wide range of conditions such as those presented

in Henderson [78] and Loth [133]. That being said, it is rather challenging to create

correlations for drag on spheres for varying Mach number as opposed to traditional

definitions that rely on Reynolds number. As discussed in Nagata et al. [167, 168],
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flow behavior, such as shock strength and downstream recirculation, changes with

Mach number which greatly affects the forces experienced by a sphere. The largest

uncertainties exist for transonic regimes where other parameters relevant to heating

and viscous effects can contribute to larger force variations. Existing models fail to

capture these effects, prompting the need for detailed simulations under a wide range

of flow conditions [167, 168, 261]. It is important to note that all of this work is for

single particle motion. The physics associated with multi-particle interactions can

have profound effects on particle forcing.

Studies involving low speed [1, 87, 55] and high-speed flows [151, 171, 172] ex-

hibit a distribution of forces for multi-particle suspensions. As particles interact with

the wakes of other particles, fluctuations in the flow can lead to variations in sur-

face stresses and thus a distribution of force in the particle system. Simulations of

multi-particle systems have been performed for modeling purposes; however, forces

are typically averaged across the collection of simulated particles [79, 21, 233]. This

means that only the mean in particle force is captured, even when accounting for

particle concentrations through volume fraction corrections [69, 233, 126]. In ad-

dition, the wakes from particle-fluid and particle-particle interactions can lead to

sub-particle fluctuations that are not captured for mesoscale and macroscales model-

ing approaches [13, 152, 214]. This includes pseudo-turbulent kinetic energy (PTKE)

and pseudo-turbulent Reynolds stresses that can account for a large portion of the

kinetic energy in compressible flows [84, 207, 171, 152]. There are very few models

to capture these effects and those that do exist are limited by flow regime and or

problem configuration [146, 172, 214].

To improve models for multi-particle systems in compressible flow regimes, differ-

ent flow configurations have been considered. One example is shock-particle curtain

interactions which are commonly used to study collective particle motion experimen-

tally [126, 249, 250, 237, 52, 238, 53] and numerically [236, 238, 151, 153, 152, 172,
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173]. As an illustrative example, consider the particle-laden shock-tube depicted in

Fig. 1.4. A shock propagates through a fluid towards a collection of disperse particles

(Fig. 1.4(a)). Shortly after it passes through (Fig. 1.4(b)), transmitted and reflected

shocks form, wakes are generated (shown in grey), and the gas accelerates at the

downstream edge of the particles. This leads to choking events where the local Mach

number can exceed Ma = 1. Meanwhile, data for temporal pressure measurements

and particle spreading rates can be collected. This provides insight into large-scale

particle motion in compressible flows, which can otherwise be difficult to isolate.

Other configurations, like particle-laden jets, also provide useful information re-

lated to high-speed particle-laden flows [217, 175, 108]. During these studies, par-

ticles are injected into under-expanded jets which exhibit sonic to supersonic flow

regimes. With modern high-speed videography and predictive particle trajectory algo-

rithms [174], data for individual particle trajectories and particle velocity distributions

are captured for model development and numerical validation purposes [108, 256].

These techniques combined with Schlieren imaging, provide information on the mod-

ification of compressible flow structures in the presence of different particle loadings.

Overall, the data extracted from this work provides insight into particle motion under

flow regimes where improved models are required.

To summarize, there are many shortcomings associated with modeling particle-

laden compressible flows. A set of filtered/averaged governing equations and ap-

plicable models do not exist within the literature for coarse grained multi-particle

systems [121, 236, 238]. Thus, a systematic approach must be taken to improve

predictions and simulations of complex engineering problems like PSI.

1.7 Objectives and Goals

The goal of this research is to formulate a numerical framework grounded in first

principles for simulating compressible gas-particle flows to study plume-induced soil
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(a) t = 0

(b) t > 0

Figure 1.4: Schematic of a shock-particle interaction at an initial state (a) and some
later time (b).

erosion. In this work, a volume-filtered Eulerian–Lagrangian approach is developed

where particles are treated in a deterministic manner and coupled with a gas phase

which is resolved at a scale larger than the particles. The primary objectives of this

project include:

1. Derive a set of equations from first principles that act as a basis for model

development.

2. Extract micro-physics from unclosed contributions in said formulation.

3. Develop reduced order closure models for key unclosed terms.

4. Perform simulations of plume-induced fluidization with the newly developed

modeling framework and characterize cratering and ejecta dynamics.

These objectives will lead to a robust method for capturing relevant multiphase

physics associated with particle-laden compressible flows. The numerical models and
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methods developed here, in addition to new insight on the two-phase flow dynamics,

will provide useful guidance for efforts in simulating full-scale landing sites.

1.8 Organization of the Dissertation

This dissertation consists of work completed in the form of manuscripts from jour-

nals and conference presentations that are in print, under review, or in preparation

for future submission. The remainder of this document is organized as follows. In

Chapter 2, the governing equations of motion are presented along with the numeri-

cal framework. Following, a rigorous derivation of the volume-filtered compressible

Navier–Stokes equations is presented with a description of unclosed terms [33, 214].

In Chapter 3, the formulation is evaluated for standard Eulerian–Lagrangian studies

for canonical shock-particle interactions [211]. For the purpose of creating high reso-

lution data, an improved compressible flow immersed boundary method is introduced

in Chapter 4 [213]. Using the high resolution data, unclosed terms from Chapter

2 are evaluation using an a posteriori filtering procedure in Chapter 5. With the

information garnered from this analysis, a transport equation for pseudo-turbulent

kinetic energy (PTKE) is proposed. Initial work regarding single and multiphase PSI

studies is shown in Chapter 6 [212]. Finally, conclusions are drawn from this work

and an outlook on the future of numerical simulations of particle-laden compressible

flows and PSI is presented.
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CHAPTER II

Volume Filtered Formulation

2.1 Introduction

Many methods have been employed to derive the governing equations motion for

compressible multiphase flows. As described in Section 1.6 the combination of these

approaches have led to issues regarding the presence of unclosed terms [127, 85, 59],

the mathematical consistency of formulations [128, 121, 236], and proper treatment

of particle fluid coupling [127, 85, 236]. Given the inconsistencies in literature, it can

be argued that a correct form of the filtered or averaged equations of motion for com-

pressible multiphase flows is an open problem. In this chapter, the described equations

are re-derived using the volume filtering approach originally proposed by Anderson

and Jackson [6]. This reveals a series of unclosed fluid and particle phase terms that

may require modeling.

2.2 Microscale (model-free) equations

The governing equations describing a viscous compressible flow were originally

introduced in Chapter I but are included here for reference. They are given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)
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∂ρu

∂t
+∇ · (ρu⊗ u+ pI− τ ) = 0, (2.2)

and

∂ρE

∂t
+∇ · ({ρE + p}u+ q − u · τ ) = 0, (2.3)

where each variable denotes a microscale quantity (i.e., a scalar or vector field at a

scale smaller than an individual particle). Here, I is the identity matrix, ρ is the

density, u is the velocity, p is the pressure, and E is the total energy. In this work,

all variables are non-dimensionalized with the ambient density ρ?∞, a characteristic

length scale L?, dynamic viscosity µ∞, heat capacity at constant pressure C?
p , and

speed of sound c?∞ =
√
γp?∞/ρ

?
∞ with constant γ = 1.4 the specific heat ratio and

p?∞ the ambient pressure. All dimensional quantities are denoted by a superscript

?, and the subscript ∞ indicates a reference quantity (taken to be air at ambient

conditions).

The non-dimensional viscous stress tensor can be expressed as

τ =
µ

Rec

(
∇u+∇uT

)
+

λ

Rec
∇ · uI, (2.4)

and the non-dimensional heat flux is

q = − µ

RecPr
∇T, (2.5)

where Pr ≡ C?
pµ

?/k? is the Prandtl number with µ? and k? the dynamic viscosity

and thermal conductivity, respectively. The Reynolds number based on the refer-

ence sound speed is defined as Rec = Re/Mac, where Re = ρ?∞U?L?/µ?∞ is the flow

Reynolds number with U? a characteristic velocity, and Mac = U?/c?∞ is the reference

Mach number. In this work, the non-dimensional viscosity is modeled as a power law

µ = [(γ−1)T ]n, with n = 0.666 as a model for air. The second coefficient of viscosity

is given by λ = µB − 2
3
µ where the bulk viscosity µB = 0.6µ is chosen as a model
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for bulk viscosity of air. The thermodynamic pressure, p, and temperature, T , are

obtained via the equation of state for an ideal gas, given in non-dimensional form as

T =
γp

(γ − 1)ρ
and p = (γ − 1)

(
ρE − 1

2
ρu · u

)
. (2.6)

2.3 Filtered equations of motion

Here the filtered equations of motion for particle-laden flows are presented. Addi-

tional details can be found in Shallcross et al. [214]. This section follows the volume-

filtering procedure originally proposed Anderson and Jackson [6], extending it to the

compressible form of the Navier–Stokes equations. Note that filtering and averaging

procedures have been attempted for multi-phase compressible flows [92, 13]; however,

a through derivation including all unclosed contributions and a description of the

process has not been shown.

2.3.1 Volume-filter operators

In order to account for the effect of particles without requiring to resolve the

fluid-phase equations on the scale of the particle surface, the Navier–Stokes equa-

tions are split into microscale (sub particle-scale) processes, and mesoscale processes,

i.e., processes that take place on a scale larger than the particle diameter. Following

Anderson and Jackson [6], we begin by defining a filtering kernel G with a charac-

teristic length δf , such that G(r) > 0 decreases monotonically with increasing r, and

is normalized such that its integral over the entire physical space is unity. The local

voidage at a point x and time t is defined as

α (x, t) =

∫
V

I(y)G(|x− y|) dy =

∫
Vf

G(|x− y|) dy, (2.7)
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where V indicates that the integral is taken over all points y occupied by the fluid-

particle system and I is an indicator function defined as

I(y) =


1 if fluid

0 otherwise.

(2.8)

To abbreviate the notation throughout the remainder of this section, the integral

will be taken over Vf , all points y occupied by the fluid. Taking δf � dp, with dp

the particle diameter, and assuming G varies little over the surface of a particle, the

particle volume fraction can be expressed as

αp (x, t) = 1− α ≈
Np∑
i=1

G
(
|x− x(i)

p |
)
V(i)
p , (2.9)

where Np is the total number of particles in the system, and x
(i)
p and V(i)

p are the

position and volume of the i-th particle, respectively.

Any flow quantity a(x, t) can be decomposed into filtered and sub-filtered com-

ponents such that a(x, t) = a(x, t) + a′(x, t), where the volume filtered quantity is

given by

αa(x, t) =

∫
Vf

a(y, t) G(|x− y|) dy. (2.10)

For convenience in the following formulation, we introduce a Favre filtered quantity

ã = ρa/ρ. With this, any fluid property a can be split into its associated Favre

averaged and residual components as a = ã + a′′. Unlike ensemble averaging, the

filtering operation invokes local spacial averaging and consequently volume filtered

quantities are stochastic in nature such that a′ 6= 0 and ã′′ 6= 0.

22



2.3.2 Filtered mass conservation

Volume filtering the microscale density equation (2.1) yields

∂αρ

∂t
+∇ · (αρũ) = 0, (2.11)

and requires no closure.

2.3.3 Filtered momentum

While the derivation of the volume-filtered momentum equation can be found

elsewhere [6, 34, 43], special care needs to be taken when considering high-speed

flows. For example, volume filtering the pressure gradient term in (2.2) yields

∫
Vf

∇pG(|x− y|) dy = ∇ (αp)−
Np∑
i=1

∫
Si

npG(|x− y|) dy, (2.12)

where n is the unit normal vector outward from the surface of the particle and np

represents the interfacial pressure at Si, the surface of particle ‘i’. Decomposing the

local pressure p = p+ p′, assuming the characteristic size of the filter kernel δf � dp

and applying the divergence theorem, the volume filtered pressure gradient can be

expressed as

∫
Vf

∇pG(|x− y|) dy = ∇ (αp)− p∇α−
Np∑
i=1

∫
Si

np′G(|x− y|) dy, (2.13)

where the last term on the right-hand side of (2.13) is typically modeled as a contri-

bution to drag. In the context of compressible flows, p∇α represents a nozzling term

that accelerates the gas due to particles restricting the area where fluid can flow [85].

In low-Mach number flows, it is common to simplify the momentum equation by em-

ploying the product rule, i.e., ∇(αp) = p∇α + α∇p, such that the non-conservative
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nozzeling term p∇α cancels out. As pointed out by Houim and Oran [85], the prod-

uct rule is not valid when dealing with compressible flows in general. However, as

discussed by Houim and Oran [85], assuming volume fraction is strictly determined

from the position of the particle phase (i.e., fluid quantities are independent of particle

density), the product rule will hold.

Applying the same procedure to the viscous stress tensor, the volume filtered

momentum equation can be expressed as

∂αρũ

∂t
+∇ · (α {ρũ⊗ ũ+Ru}) = α∇ · (τ − pI) +F . (2.14)

In the above expression, the volume filtered stress tensor is

τ =
µ̃

Rec

(
∇ũ+∇ũT

)
+

λ̃

Rec

∇ · ũI +Rµ, (2.15)

where the sub-filtered fluxRµ is sometimes modeled as an effective viscosity (e.g., [258,

180, 68]).

In addition, F is the sub-filtered momentum exchange term expressed as

F =

Np∑
i=1

∫
Si

n · (p′I− τ ′)G(|x− y|) dy. (2.16)

Finally, Ru is an unresolved stress that arises from filtering the non-linear convective

term. This term is usually referred to as a pseudo-turbulent Reynolds stress [146]

and is defined as

Ru = ρ
(
ũ⊗ u− ũ⊗ ũ

)
. (2.17)

While this term is typically neglected in incompressible flow models, recent work

has shown that these unresolved velocity fluctuations can contribute to a significant

portion of the total kinetic energy during particle-shock interactions [84, 207, 152].
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2.3.4 Filtered energy

Turning our attention now to the gas-phase energy equation (2.3), volume filtering

the microscale heat flux yields

∫
Vf

∇ · qG(|x− y|) dy = ∇ · (αq)−
Np∑
i=1

∫
Si

n · qG(|x− y|) dy. (2.18)

Decomposing the microscale heat flux into q = q + q′ and rearranging yields

∫
Vf

∇ · qG(|x− y|) dy = α∇ · q −Q, (2.19)

where Q accounts for sub-filtered heat transfer at the particle surface typically mod-

eled using a Nusselt number correlation (e.g., [72, 221]), defined as

Q =

Np∑
i=1

∫
Si

n · q′G(|x− y|) dy. (2.20)

and the volume filtered heat flux is

q =
µ̃

RecPr
∇T̃ +Rq. (2.21)

Similar to the sub-filtered viscous stress tensor appearing in (2.15), in low-Mach

number formulations Rq is sometimes modeled as an effective thermal conductivity

to account for enhanced heat dissipation at the particle scale [224, 43, 73].

Volume filtering the work due to pressure in (2.3) yields

∫
Vf

∇ · (pu)G(|x− y|) dy = ∇ · (αpu)−
Np∑
i=1

∫
Si

n · (pu)G(|x− y|) dy. (2.22)

In this expression, pu contains the product between sub-filtered pressure and velocity

25



fluctuations, which will be combined with additional sub-filtered terms to form RTu

later. Similarly, volume filtering the work due to viscous stresses in (2.3) yields

−
∫
Vf

∇ · (u · τ )G(|x− y|) dy = −∇ · (αũ · τ )−∇ · (αRτu)

+

Np∑
i=1

∫
Si

n · (u · τ )G(|x− y|) dy,

(2.23)

whereRτu = u · τ−ũ·τ , which is unclosed and represents work due to the sub-filtered

viscous stress.

We emphasize here that the surface contributions on the right-hand side of Eqs. (2.22)

and (2.23) must be treated with care. Unlike in the momentum equation, the presence

of the gas-phase velocity in the sub-filtered stresses results in additional cross-terms

when decomposing the variables. These cross-terms can be treated in a variety of

ways, and the choice will have a direct consequence on how the unclosed terms should

be interpreted. Focusing on the pressure work term
∑

i

∫
Sin · (pu)G(|x− y|) dy, we

highlight two approaches that can be taken:

1. Enforcing a no-slip condition at the particle surface, the fluid-phase velocity

can be decomposed into u
∣∣
Si

= v
(i)
p + ṙ

(i)
p n, where v

(i)
p is the velocity of particle

‘i’ and ṙ
(i)
p is the rate of change of its radius. Decomposing pressure into its

filtered and sub-filtered contributions, and assuming the particles are rigid and

incompressible (i.e., ṙp = 0), the last term on the right-hand side of (2.22)

becomes

−
Np∑
i=1

∫
Si

n · (pu)G(|x− y|) dy = −p
Np∑
i=1

∫
Si

n · v(i)
p G(|x− y|) dy

−
Np∑
i=1

∫
Si

n ·
(
p′v(i)

p

)
G(|x− y|) dy.

(2.24)
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Applying Leibniz rule on the first term on the right-hand side of Eq. (2.24) and

recognizing that vp is uniform across the volume of each particle, Eq. (2.24) can

be rewritten as

−
Np∑
i=1

∫
Si

n · (pu)G(|x− y|) dy = p∇ · (αpup)

−
Np∑
i=1

v(i)
p ·
∫
Si

p′nG(|x− y|) dy,

(2.25)

where up is a filtered (Eulerian) representation of the particle-phase velocity

that can be obtained via

αpup =

Np∑
i=1

v(i)
p G
(
|x− x(i)

p |
)
V(i)
p . (2.26)

As discussed by Houim and Oran [85], assuming constant particle density the

disperse phase continuity equation can be employed to yield

p∇ · (αpup) = −p∂αp
∂t

= p
∂α

∂t
, (2.27)

where p∂α/∂t represents a pDV work term due to particles entering or leaving

a control volume. While the first term on the right-hand side of Eq. (2.25)

and the expression above are equivalent, expressing this in terms of volume

fraction gradients, as is done in Eq. (2.25), may be more convenient numerically.

It is interesting to note that Houim and Oran [85] arrived at this term via

a control volume analysis, in which an ‘interfacial pressure’ was used at the

particle surface and for closure assumed this to be equal to the local gas-phase

pressure. Meanwhile, the pDV work term naturally appears through volume

filtering, and we show that the pressure used is indeed the local gas-phase

pressure.
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A similar approach can be applied to the viscous work term, which yields

∫
V

∇ · (u · τ )G(|x− y|) dy = ∇ · (αũ · τ ) +∇ · (αRτu) + τ : ∇ (αpup)

−
Np∑
i=1

∫
Si

n ·
(
v(i)
p · τ ′

)
G(|x− y|) dy,

(2.28)

It is important to note that the last term in Eqs. (2.25) and (2.28) represents

the same unclosed term that appeared in Sec. 2.3.3 typically modeled as drag,

except multiplied by the particle velocity, which can be rewritten as up ·F .

2. Alternatively, if the fluid-phase velocity is not replaced by the particle velocity

in the last term on the right-hand side of (2.22), pressure and velocity can

respectively be split into filtered and sub-filtered components as

−
Np∑
i=1

∫
Si

n · (pu)G(|x− y|) dy =

−
Np∑
i=1

∫
Si

n · (p ũ+ pu′′ + p′ũ+ p′u′′)G(|x− y|) dy.

(2.29)

Once again, a similar approach can be applied to the viscous work term. It can

immediately be seen that this approach results in different closure terms, none

of which resemble F that appears in Eq. (2.14).

In summary, different choices can be made when volume filtering the pressure

and viscous work terms in the energy equation. While both are correct, they require

different closure. Here we employ Approach 1 as it leads to fewer unclosed terms.
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Applying Approach 1 and filtering the remaining terms yields

∂αρẼ

∂t
+∇ ·

(
αρẼũ

)
+∇ · (α(pũ− ũ · τ )) + α∇ · q

= − (pI− τ ) : ∇ (αpup) + up ·F +Q−∇ ·
(
α{RTu +

1

2
Ruu −Rτu}

)
,

(2.30)

which leads to a number of unclosed terms that are often neglected, such as the

pseudo-turbulent diffusion Ruu = ρ
(
u · u⊗ u: − ũ · u⊗ ũ

)
, pseudo-turbulent heat

flux RTu = ρ
(
T̃ u− T̃ ũ

)
, and work due to sub-filtered viscous stresses, Rτu. The

work due to momentum exchange is defined as

up ·F =

Np∑
i=1

v(i)
p ·
∫
Si

n · (p′I− τ ′)G(|x− y|) dy. (2.31)

It should be noted that ũ·F is sometimes employed as the work due to drag [126, 254],

which was obtained by keeping the fluid velocity at the particle surface instead of

decomposing it into u
∣∣
Si

= v
(i)
p + ṙ

(i)
p n. As shown in Approach 2, this procedure

introduces additional terms that contain products of filtered and sub-filtered stresses

with the fluid velocity, which are not properly accounted for by F . An alternative

argument for the proper form of the work due to interphase exchange is presented in

Ling et al. [127] where it is shown that up ·F must be used due to energy arguments.

2.3.4.1 Filtered equation of state

The filtered equation of state is given by

T̃ =
γp

(γ − 1)ρ
, (2.32)

which does not result in any residual contributions if the Favre-filtered temperature

is used in the filtered heat flux (2.21). Filtering the thermodynamic relation between
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pressure and energy results in

p = (γ − 1)

(
ρẼ − 1

2
ρũ · ũ− ρk

)
. (2.33)

In this expression, ρk = tr (Ru) /2 where k is the pseudo-turbulent kinetic energy

(PTKE). It can immediately be seen that k systematically acts to reduce the local

pressure. As a consequence, neglecting this term could lead to underpredictions of

the local Mach number. The role of PTKE on local Mach number will be analyzed

in Sec. 5.2.5.

2.3.4.2 Transport of PTKE

To help guide model development in later sections, a transport equation is derived

for the PTKE. Differentiating αρk = αρ (ũ · u− ũ · ũ) /2 in time, applying the same

filtering procedure from prior sections and rearranging terms yields

∂αρk

∂t
+∇ · (αρũk) +

1

2
∇ · (αRuu)− ũ · ∇ · (αRu) =

− (pI− τ ) : ∇ (αũ+ αpup) + (up − ũ) ·F

−∇ · α (Rpu −Rτu)− αp∇ · u+ ατ : ∇u.

(2.34)

In the expression above, the first line represents transport of PTKE. Except for the

term containingF , the second line contains terms that are closed, i.e. they are entirely

expressed in terms of volume-filtered quantities. The last line contains unclosed (sub-

filtered) contributions, such as Rpu that involves fluctuations of sub-filtered velocity

and pressure, that contributes to pressure diffusion. (up − ũ)·F is a source term that

acts to produce PTKE. Note that if k is omitted from the pressure relation (2.33)

(as is typically done), the interphase source terms that contribute to PTKE would

appear in the transport equation for the gas-phase pressure (see Buchta et al. [33] for

details). A model to close the transported PTKE will be proposed in later sections.
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2.4 Filtered particle equations of motion

The equations of motion of a single particle are given by

dx

dt
= vp (2.35)

and

mp
dvp
dt

=

∫
S

(−pI + τ ) · ndS. (2.36)

To be consistent with the volume filtering procedure, one can decompose the stress

in Eq. (2.36) into filtered and and sub-filtered components. By apply the divergence

theorem and assuming that the stress varies very little across volume of a particle we

have the following

mp
dvp
dt
≈ Vp∇ · (−pI + τ ) +

∫
Sp

(−p′I + τ ′) · ndy. (2.37)

Here, the filtered pressure and viscous stresses contribute to resolved forces on

the particle while the fluctuating portions contribute to all other forces and require

modeling. It is typically assumed sub-filtered contributions will include both steady

and unsteady contributions including drag, added mass, Basset effects, etc. While

the names of these contributions are synonymously used for incompressible and com-

pressible flows, the physics and contributions of steady and unsteady forces is still a

topic open for debate.

2.5 A summary of unclosed terms

The volume filtered conservation equations lead to a number of sub-filtered terms

and the so-called “closure problem”. In summary, the unclosed terms can be grouped

into residual stresses Ru in Eqs. (2.14) and (2.33), Rµ in Eq. (2.15), RTu, Ruu, Rτu,
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and Rq in Eq. (2.30), and Rpu in Eq. (2.34). In addition, a number of sub-filtered

surface contributions appear in the form of interphase exchange terms, including

the interphase exchange of momentum, F , in Eq. (2.14), as well as work due to

momentum exchange, up · F , and heat exchange, Q, in Eq. (2.30). Closure models

have been proposed for some of these terms, such as drag (e.g., [69, 232, 177] to

name a few) and heat exchange [72, 234], but for most part are only valid in the

incompressible limit and therefore are likely not applicable to the current study. It

is important to note that the unclosed stresses are analogous to those that appear

in single-phase large-eddy simulations (LES), but physically represent substantially

different effects.

In general the filtering operation commutes as long as the filtering kernel is homo-

geneous and independent of the coordinate system. In the presence of solid surfaces,

the filtering operation does not commute and therefore unresolved contributions arise

that must be modeled directly. This can be seen from the form of terms like Ru

in (2.17) which implies that the influence of small scale structures is essentially unre-

coverable from knowledge of larger scale motion. In both the present volume-filtered

formulation and in LES, large scale structures are resolved while small scale structures

require models. That being said, the classification “LES” should not be used lightly

as it traditionally applies to cases where there exists an energy cascade. Moreover,

these terms can be non-negligible even in laminar flows (e.g., via steady wakes), and

thus the use of single-phase closure for the terms summarized above should be done

with utmost care. The relative contribution of these unclosed terms will be evaluated

in later sections using DNS.
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CHAPTER III

Assessment of the Compressible

Eulerian–Lagrangian Method

3.1 Introduction

Here the equations of motion for particle-laden compressible flows are evaluated

in the absence of unclosed fluid phase terms. As previously mentioned, models for

the unclosed terms highlighted in conservation of momentum, conservation of energy

and the equation of state, see Section 2.5, do not exist for high speed, compressible

flows. To evaluate the equations, an Eulerian–Lagrangian method is used where the

fluid phase is solved on an Eulerian grid while particles are individually tracked in a

Lagrangian manner. Such an approach has been shown to accurately capture two-

way coupled fluid-particle flows up to O(108) particles with regards to incompressible

flows [36]. The method for individual particle tracking and two-way coupling, de-

scribed in Capecelatro and Desjardins [34] for incompressible flows, is extended for

compressible flows. A suite of test cases for method assessment and validation are

performed.
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3.1.1 Fluid-phase description

For testing purposes, all unclosed fluid phase terms highlighted in Section 2.5 are

dropped and filtered term notation is removed for clarity. This leads to the following

equations of motion

∂αρ

∂t
+∇ · (αρu) = 0, (3.1)

∂αρu

∂t
+∇ · (αρu⊗ u) = α∇ · (τ − pI) +F , (3.2)

∂αρE

∂t
+∇·(αu {ρE + p} − αu · τ ) = −α∇·q−(pI− τ ) : ∇ (αpup)+up·F+Q (3.3)

and equation of state,

T =
γp

(γ − 1)ρ
and p = (γ − 1)

(
ρE − 1

2
ρu · u

)
. (3.4)

3.1.2 Particle-phase description

The displacement of an individual particle ‘i’ is given by

dx
(i)
p

dt
= v(i)

p , (3.5)

where x
(i)
p is the position and v

(i)
p is the velocity of the i-th particle. The evolution

of particle velocity of the can be expressed as

mp
dv

(i)
p

dt
= Vp∇ · (−pI + τ ) + f

(i)
drag + f

(i)
col, (3.6)

where mp = πρpd
3
p/6 is the particle mass and the unresolved portion, f

(i)
drag, is typically

modeled using a drag correlation. Other unresolved gas-particle interactions (e.g.,

Basset, lift, etc.) would appear here. In this work, f
(i)
drag is given by

f
(i)
drag

mp

=
3

4

ρ

ρp
CD

α|u− v(i)
p |

dp

(
u− v(i)

p

)
(3.7)
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where CD the coefficient of drag. The term, f
(i)
col, accounts for collisions between

particles and is captured using the soft sphere model originally proposed by Cundall

and Strack [47] which was modified to account for high-speed collisions in a robust

manner in Capecelatro and Desjardins [34]. Here, the particle equations are non-

dimensionalized using the same reference quantities used in Eqs. (2.1)–(6.4).

The evolution of particle temperature is given by

mpCp,p
dT

(i)
p

dt
= Vp∇ · q + q

(i)
inter, (3.8)

where T
(i)
p is the temperature of the i-th particle and Cp,p is the ratio of particle-to-

fluid heat capacity. The sub-filtered heat flux, q
(i)
inter, is given by

q
(i)
inter

mp

=
Nu

3τpPr
(T − T (i)

p ), (3.9)

where Nu is the Nusselt number modeled using the correlation of Gunn [72].

3.2 Discretization

Spatial derivatives are approximated using narrow-stencil finite difference opera-

tors Di that satisfy the summation-by-parts (SBP) property [220]

PD + (PD)T = diag [−1, 0, . . . , 0, 1]T , (3.10)

where P is a symmetric positive-definite matrix and D ∈ RN×N . In three dimensions,

the finite-difference operator can be represented using the Kronecker product

D1 = D ⊗ IN ⊗ IN

D2 = IN ⊗D ⊗ IN

D3 = IN ⊗ IN ⊗D,

(3.11)
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where IN is the N ×N identity matrix. In this work, we consider a diagonal norm P

in order to preserve the SBP property under a coordinate transformation for arbitrary

order of accuracy [225]. This leads to 2s-order centered-difference stencils at interior

points and s-order accurate biased stencils near boundaries, with s+1 global accuracy.

The majority of cases presented herein use the sixth-order interior formulation (s = 3)

unless otherwise specified. To evaluate second and mixed derivatives, first derivative

operators are applied consecutively, necessitating the use of artificial dissipation to

damp the highest wavenumber components supported by the grid. High-order accu-

rate SBP dissipation operators are used that provide artificial viscosity based on a

2s-order derivative [140, 247].

The SBP scheme is combined with the simultaneous approximation treatment

(SAT) at the domain boundaries to facilitate an energy estimate [38, 169]. This is

achieved by enforcing the desired boundary conditions weakly by adding a penalty

term to the right-hand-side of the governing equations. Non-reflecting characteristic

boundary conditions and no-penetration free-slip walls are considered in the problems

presented in this work via [227, 226]

∂Q

∂t
= R(Q) + σIP−1E1A

+ (Q−Qb) , (3.12)

where Q = [ρ, ρu, ρE]T is the vector of conserved variables, R(Q) is the right-hand

side of the compressible flow equations, and σI is an inviscid penalty parameter. Set-

ting E1 = [1, 0, . . . , 0]T ensures the penalty is only applied at the domain boundary,

and A+ is the Roe matrix that selects the incoming characteristics. Setting σI ≤ −2

ensures numerical stability [227, 226, 27]. The boundary data are supplied through

a stationary target solution in the vector Qb(x). The specific form used to enforce

far-field non-reflecting characteristic boundary conditions and no-penetration free-

slip walls are given in Vishnampet Ganapathi Subramanian [247]. In addition, an
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absorbing sponge region [60] is applied at the domain boundary to prevent unphysi-

cal acoustic reflections by adding a damping term of the form Ψ(x) [Q(x, t)−Qb(x)]

to the right-hand side of the conservation equations.

The equations are advanced in time using a standard fourth-order Runge–Kutta

scheme, resulting in the usual Courant–Friedrichs–Lewy (CFL) restrictions on the

simulation time step ∆t. The acoustic CFL is given by

CFLa =
max (|u|+ c) ∆t

min(∆x)
(3.13)

and the viscous CFL is calculate as

CFLv =
2Ndµ∆t

min(ρ∆x)2
, (3.14)

where ∆x is the local grid spacing, c =
√
γp/ρ is the local sound speed, and Nd is the

number of dimensions. The simulation time step is restricted based on the maximum

of these two quantities. Because the underlying discretization is purely explicit, the

maximum CFL should not exceed unity. The immersed boundary method introduced

in the following section is specifically designed to avoid adding any further restrictions

on ∆t. Unless otherwise specified, all cases are run with a constant CFL=0.5.

3.2.1 Consistent interphase exchange

In order to compute the interphase exchange terms appearing in the gas-phase

equations (α, up, F , and Q) consistent with the volume filtered formulation, the

particle data is projected to the mesh using a filter kernel, G, of size δf . The interphase

exchange terms are given by

α = 1−
Np∑
i=1

G
(
|x− x(i)

p |
)
Vp, (3.15)
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F = −
Np∑
i=1

G
(
|x− x(i)

p |
)
f

(i)
drag, (3.16)

up ·F = −
Np∑
i=1

G
(
|x− x(i)

p |
)
v(i)
p · f

(i)
drag, (3.17)

and

Q = −
Np∑
i=1

G
(
|x− x(i)

p |
)
q

(i)
inter. (3.18)

The numerical implementation of Eqs. (3.15)–(3.18) requires special care. Maxey

et al. [144] proposed to distribute the interphase coupling terms within a narrow en-

velope centered on the particle position to provide a local spatial average (or filtering)

of the particle data on the mesh. However, a direct solution to this interphase cou-

pling strategy is in general computationally intensive as it requires each particle to

loop through a large number of neighboring grid points. More recently, Pepiot and

Desjardins [182] proposed to project the particle data to the mesh using a high-order

quintic spline kernel with compact support. To avoid excessive cost, the support of

the kernel was set to the local grid spacing. However, such an approach will fail to

converge under mesh refinement since the kernel support is proportional to the grid

spacing. To address these shortcomings, Capecelatro and Desjardins [34] proposed a

two step filtering approach that decouples the mesh size from particle diameter ratio

in an efficient manner. First, particle data is sent to neighboring grid points via tri-

linear extrapolation. The solution is then diffused such that the projection resembles

a Gaussian with characteristic size of δf . To avoid restrictive time step constraints in

the diffusion process, the latter step is solved implicitly via approximate factorization

with a second order alternating direction implicit (ADI) scheme.

3.2.2 Assessment of the numerical method

To assess the proposed Eulerian–Lagrangian method, the results of a multiphase

shock tube are compared to the output of a Riemann solver. This study was set
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up to reproduce the two dimensional particle gas mixture case specified introduced

by Saito et al. [202]. In these cases, an impinging discontinuity comes into contact

with a section of the domain consisting of a gas/particle mixture. For each case, the

volume fraction was low enough such that collisions could be neglected. The domain

size in the x (streamwise) and y (spanwise) directions are Lx = 15 and Ly = 1 with

600 × 40 grid points, respectively. These values were found to closely match the

single phase shock tube pressure plots without domain dependence. Particles are

initially randomly distributed throughout the right half of the domain with mean

particle-phase volume fraction αp = 5.172× 10−4. The particle to fluid density ratio

is ρp/ρf = 2500, and particle diameter is 10 µm, resulting in 52518 particles for all

cases. Although the physics of such dust-gas shock-tube problems are well known,

no exact solutions exist that can be used for verification. Instead, the computed

results are compared against the reference solution from Saito et al. [202] to assess

the numerical methods employed. Figure 3.1(a) shows the pressure profile across the

domain and Fig. 3.1(b) shows the density variation for the fluid and particle phases.

Overall excellent agreement is observed, which indicates the SAT-SBP discretization

is capable of capturing shock dynamics in the dilute regime with weak interphase

coupling and no inter-particle collisions.

While overall good agreement is seen against the reference solution, it remains to

be seen how such a method can handle particle-shock interactions in the presence of

larger particles (i.e., with ∆x ≈ dp). To this end, influence of the interphase filter size

δf on the flow solution is assessed. To avoid excessively expensive domain sizes, the

particle diameter was increased to 644.5 µ m for a domain of size Lx = 15 and Ly = 2,

with 3000×400 grid points for baseline cases, A1 and B1, described in Table 3.1. The

particle to fluid density ratio is ρp/ρf = 2500, and particles are randomly distributed

throughout the right half of the domain. Four different grid spacings are considered

with and without filtering, with an effective particle volume fraction set to be αp =
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(a) (b)

Figure 3.1: (a) Pressure and (b) density profiles of each phase (lines) compared
against the reference case from Saito et al. [202] (symbols).

Case Ly α Np ∆xi δf
A1 2 5.172× 10−4 1264 4dp 10dp
A2 2 5.172× 10−4 1264 2dp 10dp
A3 2 5.172× 10−4 1264 1dp 10dp
A4 2 5.172× 10−4 1264 0.5dp 10dp
B1 2 5.172× 10−4 1264 4dp 0
B2 2 5.172× 10−4 1264 2dp 0
B3 2 5.172× 10−4 1264 1dp 0
B4 2 5.172× 10−4 1264 0.5dp 0

Table 3.1: Parameters used in the Riemann problem. A1-A4 is a filtered grid refine-
ment study and B1-B4 is an unfiltered grid refinement study.

5.172×10−4. A complete summary of the parameters used in the multiphase Riemann

problem can be found in Table 3.1.

From Fig. 3.2, it can be seen that the filtering operation is necessary when the

mesh spacing approaches the particle size. It was found that without the filtering

step (i.e., δf = 0 and thus interphase exchange is handled via tri-linear extrapolation

only), cases B3 and B4 from Table 3.1 lead to unbounded volume fractions causing

the solution to diverge. From Figs. 3.2 (a)–(b), the fluctuations in the unfiltered fluid

phase appear to grow larger as the mesh is refined, which is not observed when the
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(a) (b)

(c) (d)

Figure 3.2: (a) Pressure profiles and (b) density profiles of the fluid and particle
phases with δf = 0 (a)–(b) and δf = 10dp (c)–(d).

particle filter is used, as seen in Figs. 3.2 (c)–(d).

3.2.3 Two-dimensional shock particle curtain analysis

To assess the validity of the compressible Eulerian-Lagrangian method, a suite

of particle-laden shock-tube studies was conducted and compare with experiments

described in Ling et al. [126], Wagner et al. [249]. The initial conditions for pre-shock

and post-shock values were non-dimensionalized to match a shock mach number of

Ms = 1.66 while also satisfying the Rankine Hugoniot conditions. For this study, two

dimensional simulations were conducted with a domain of Lx = 100.05 (streamwise)
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and Ly = 8.28 with 1742× 144 grid points, respectively. The particle-to-fluid density

ratio was taken to be that of soda lime glass to air, i.e., ρp/ρf = 2520 with a particle

diameter of 100 µm. The number of particles in each case is determined by the

effective particle volume fraction, taken to be αp = 0.21 within a particle curtain of

non-dimensional thickness of δc = 1. For all simulations, monodisperse particles were

randomly distributed within the curtain.

Simulations were compared to experimental data for particle spreading rates as

well as normalized pressure profiles. Upstream and downstream spreading rates were

calculated using the the first percent and 99th percent particle position for the up-

stream and downstream edges, respectively. The normalized pressure profiles were

calculated for the upstream position xup = 15.7, denoted by p1, and downstream

position xdown = 82.1, denoted by p2, to match the measured data specified by Ling

et al. [126]. The effect of domain size, grid spacing (∆x = ∆y), interphase filter size

(δf ), coefficient of restitution (e), and collisions are evaluated. A summary of the

cases for the numerical shock tube parametric study can be found in Table 3.3.

Starting with the domain size study (D1-D4), there is virtually no variation in the

pressure profiles and only minor changes in the particle curtain spreading rate from

case to case as shown in Figs. 3.3(a) and 3.3(b) respectively. Similarly with the grid

refinement study (E1-E4), there was no significant change in the particle spreading

rates and normalized pressure profiles with a finer grid spacing. Due to invariant data

observed from case to case, all subsequent studies were conducted with Ly = 8.28δc

and ∆xi = dp.

Following, the effect of the interphase filter size is analyzed. For case F1, no filter

was used for the particle phase. Because the mesh spacing was equal to the particle

diameter, local quantities began to diverge in the simulation as seen in the previous

study for the multiphase Riemann problem. Alternatively, implementing the filter for

all other cases allowed the simulations to rub robustly. Compared to case F2, shown
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Case Ly α Np ∆xi δf e Collisions
D1 4.14 δc 0.21 335 dp 4dp 0.85 On
D2 8.28 δc 0.21 669 dp 4dp 0.85 On
D3 16.56 δc 0.21 1338 dp 4dp 0.85 On
D4 33.12 δc 0.21 2676 dp 4dp 0.85 On
E1 8.28 δc 0.21 669 dp 4dp 0.85 On
E2 8.28 δc 0.21 669 2dp 4dp 0.85 On
E3 8.28 δc 0.21 669 4dp 4dp 0.85 On
F1 8.28 δc 0.21 669 dp N/A 0.85 On
F2 8.28 δc 0.21 669 dp 4dp 0.85 On
F3 8.28 δc 0.21 669 dp 6dp 0.85 On
F4 8.28 δc 0.21 669 dp 8dp 0.85 On
G1 8.28 δc 0.21 669 dp 4dp 0.85 Off
G2 8.28 δc 0.21 669 2dp 4dp 0.85 Off
H1 8.28 δc 0.21 669 dp 4dp 0.95 On
H2 8.28 δc 0.21 669 dp 4dp 0.75 On
H3 8.28 δc 0.21 669 dp 4dp 0.55 On
H4 8.28 δc 0.21 669 dp 4dp 0.35 On

Table 3.2: Two-dimensional shock tube cases. Where D1-D4 is a domain study for
varying Ly, E1-E4 is a grid refinement study, F1-F5 is a an interphase filter
study, and G1-G2 is a collisional study.

Case Ly = Lz α ∆xi δf e Collisions Drag Law
I1 4.14 δc 0.21 dp 4dp 0.85 On Ling [126]
I2 4.14 δc 0.21 dp 4dp 0.85 On Loth [133]
I3 4.14 δc 0.21 dp 4dp 0.85 On Theo [238]
I4 4.14 δc 0.21 dp 4dp 0.85 On Gidaspow [69]
J1 4.14 δc 0.21 dp 4dp 0.85 On Gidaspow [69]
J2 4.14 δc 0.21 dp 4dp 0.85 Off Gidaspow [69]

Table 3.3: Three-dimensional shock tube cases. Where I1-I4 is a drag law analysis
and J1-J2 is a collisional study. All described include Np = 36159 particles
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in Fig. 3.5(b), with an interphase filter of δf = 4dp, there was better agreement with

the leading edge particle curtain trajectory for later times. Increasing the interphase

particle filter to δf = 8dp resulted in worse agreement in both the leading edge and

trailing edge particle curtain spreading rates for later times. This suggests there is

likely a critical filter size that is capable of realistic particle curtain spreading rates

in such regimes. In addition, almost no difference in the normalized pressure profiles

are observed between cases F2 through F4, as shown in Fig. 3.5(a).

The coefficient of restitution (e) was also varied to assess the influence of particle

contact dynamics. For all cases (H1-H4), the normalized pressure profiles remained

consistent, as given by Fig. 3.6(a). Increasing the coefficient of restitution to e = 0.95,

as shown in Fig. 3.6(b), resulted in a worse match of both leading edge and trailing

edge particle trajectories. Decreasing the value to e = 0.55, as shown in Fig. 3.6(b),

led to a close match with the experimental data. However, lowering the coefficient

of restitution even further to e = 0.35, as shown in Fig. 3.6(b), resulted in an over

prediction in the leading edge particle trajectory and an under prediction in the

trailing edge particle trajectory.

To determine the effect of collisions, case G1 shown by Figs. 3.7(a) and 3.7(b)

without collisions is compare to case F2 for the same conditions with collisions. As

can be seen, a better match in the leading edge and trailing edge spreading is seen

when collisions are not used. while the normalized pressure profiles were unaffected by

the presence of collisions. This observation likely points to cancellation errors in the

simulated data. The drag law considered in this study was derived for incompressible

flows, and thus Mach number dependencies are not considered. To further assess this,

additional drag laws need to be analyzed for such cases.
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3.2.4 Three-dimensional shock particle curtain analysis

Conditions for the three-dimensional shock particle curtain analysis resemble those

described in the two-dimensional studies. To reiterate, a domain of Lx = 100.05

(streamwise) and Ly × Lz = 4.14 × 4.14 with a grid spacing equal to the particle

diameter. The particle-to-fluid density ratio was taken to be that of soda lime glass

to air, i.e., ρp/ρf = 2520 with a particle diameter of 100 µm. The number of particles

in each case is determined by the effective particle volume fraction, taken to be

αp = 0.21 within a particle curtain of non-dimensional thickness of δc = 1, resulting

in Np = 36159 particles for each simulation considered. Monodisperse particles were

randomly distributed within the curtain.

For analysis of drag law on particle curtain spreading, cases (I1-I4), it was found

that the implemented drag law heavily influenced particle trajectories. From Fig 3.8(b),

the models described in [133] and [238] resulted in large under predictions in the

spreading rate of the trailing edge of the particle curtain. In comparison, the models

proposed in [126] and [69] resulted in slightly better trailing spreading rates compared

to experimental data. This discrepancy is likely due to the volume fraction effects

that are included for the Gidaspow and Ling drag models; however, are not present

for the Theo and Loth drag models. This also leads to discrepancies in the measured

pressure upstream and downstream of the particle curtain, see Fig. 3.8(a). In par-

ticular, the absence of a volume fraction dependent drag law leads to delays in the

upstream pressure profiles.

During the collisional study (J1-J2), the presence of collisions lead to larger errors

when comparing particle curtain spreading behavior, as shown in Fig. 3.9(b). This

is consistent with what is observed for two-dimensional shock particle interactions.

As mentioned before, this is likely due to cancelation errors associated with particle

forcing and unclosed term contributions found in the equations of motion.
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(a) (b)

Figure 3.3: Two-dimensional (a) pressure profiles and (b) particle spreading rates for
cases D1-D4.

(a) (b)

Figure 3.4: Two-dimensional (a) pressure profiles and (b) particle spreading rates for
cases E1-E3.
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(a) (b)

Figure 3.5: Two-dimensional (a) pressure profiles and (b) particle spreading rates for
cases F1-F4.

(a) (b)

Figure 3.6: Two-dimensional (a) pressure profiles and (b) particle spreading rates for
cases H1-H4.
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(a) (b)

Figure 3.7: Two-dimensional (a) pressure profiles and (b) particle spreading rates for
cases G1-G4.

(a) (b)

Figure 3.8: Three-dimensional (a) pressure profiles and (b) particle spreading rates
for different drag laws for cases I1-I4.
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(a) (b)

Figure 3.9: Three-dimensional (a) pressure profiles and (b) particle spreading rates
for collisional for cases J1-J2.

3.3 Conclusions

Simulations were conducted using a compressible Eulerian-Lagrangian formulation

for particle-laden flows. Comparing results of the proposed discretization to literature

for a multiphase Riemann problem showed excellent agreement. A grid refinement

study for the multiphase Riemann problem revealed the importance of the interphase

filtering operation on the stability of the method as the mesh spacing was refined.

The study was then extended to compare against experimental data of particle-laden

shock tubes. For two-dimensional shock-particle interactions, it was found that the

interphase filter size δf and coefficient of restitution e had significant effects on parti-

cle phase spreading rates. Results generally agreed with experimental data; however,

this was likely due to the cancellation errors and dimensional effects. For three-

dimensional shock-particle interactions, it was observed that the implemented drag

correlation and presence of particle collisions have a large effect on collected data.

Further analysis is necessary to determine the validity of existing drag laws to deter-

mine if they bring proper closure to the governing equations presented in this work.

While the study demonstrates the capability to capture shock particle interactions
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with reasonable accuracy, improved models are clearly required to capture large scale

collective motion.
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CHAPTER IV

New Immersed Boundary Method for

Compressible Flows

4.1 Introduction

In recent years, there has been increased focus towards simulating complex ge-

ometries in compressible flows. Body-fitted and unstructured meshes (e.g., [141, 62,

61, 142]) allow for accurate representations of geometric surfaces; however, in practice

can be computationally expensive. Non-conforming grid methods, broadly classified

herein as immersed boundary methods, are emerging as an attractive alternative. A

number of approaches currently exist, such as continuous- and direct-forcing using

Lagrangian markers [183, 198, 244, 29], ghost-point and ghost-cell methods [163, 67,

162, 29], and Brinkman/volume penalization methods [7, 106, 245, 131, 31, 84], each

with its own benefits and limitations. While immersed boundary methods are well es-

tablished for incompressible flows (see, e.g., Mittal and Iaccarino [161] and references

therein), their extensions to compressible flows are less mature. The purpose of this

study is to present a robust immersed boundary method for compressible flow compu-

tations that avoids introducing increased stiffness and requires minimal modification

to the underlying discretization.

Originally developed for incompressible biological flow applications [183, 198, 184,
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161], continuous-forcing involves the addition of a source term which acts to penalize

the velocity at an immersed interface. The velocity on the mesh is interpolated to a

set of Lagrangian markers distributed along the object’s surface and used to create

a source term that penalizes the velocity to a desired target value. This source term

is then extrapolated to the mesh using a weighted delta function to impose a desired

boundary condition on velocity. Since its original development by Peskin [183], nu-

merous modifications and refinements have been proposed, almost entirely focused on

incompressible flows. For example, the direct-forcing approach introduced by Mohd-

Yusof [163] provides a sharper representation of the interface and alleviates the strict

stability limit on the simulation time step by taking into account the underlying dis-

cretization. A popular formulation was introduced by Uhlmann [244], which involves

the use of a series of discrete delta functions to simulate flow past incompressible,

non-deformable objects. The interested reader is referred to Zhou and Balachandar

[261] for a recent analysis of the spatio-temporal resolution of direct-forcing immersed

boundary methods.

The aforementioned approaches are typically used for imposing conditions on the

fluid velocity, and its extension to handling Neumann conditions on scalars must be

done with care. Application of Neumann conditions are more straight forward in

ghost-point and ghost-cell approaches, which involve communication of information

between the interior and exterior of an immersed object on the computational grid

without the use of Lagrangian markers [163, 240, 161]. This is accomplished by loop-

ing through grid points on the interior of an immersed object, locating corresponding

image points normal to its surface and mirroring quantities from the image points to

a set of ghost points at the interior to enforce a desired boundary condition. Further

details can be found in [67, 162, 29]. Additional modifications need to be taken for

objects with thin walls or sharp corners, often involving formulating and implicitly

solving a linear system of equations [49, 25]. Recently, direct-forcing was combined
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with the ghost-point method as a means to smoothly enforce velocity boundary con-

ditions for compressible flows [29].

Brinkman penalization, first proposed by Arquis and Caltagirone [8], treats the

solid as a porous medium with low permeability. Unlike in continuous/direct-forcing

approaches and ghost point/cell methods, in this approach the transport equations are

penalized within the entire volume of the solid object using pre-defined penalization

parameters. Angot et al. [7] showed that the penalized incompressible Navier–Stokes

equations converges towards an exact solution as the penalization parameter ap-

proaches zero. This method was later extended to viscous compressible flows through

the use of non-reflecting boundary conditions [132]. Recently, Brinkman penalization

was further modified to account for Neumann and Robin-type boundary conditions

in viscous compressible flows through the addition of hyperbolic penalization terms,

referred to as characteristic-based volume penalization (CBVP) [31, 84]. Brinkman

penalization has also been implemented for inviscid flows [9] and recently extended

to CBVP for solution to the Euler equations [32, 119, 120].

Piquet et al. [187] recently performed a detailed comparison of Brinkman pe-

nalization (without characteristic treatment for Neumann conditions) and ghost cell

methods for viscous transonic and supersonic flows. At sufficient mesh resolution,

it was found that both approaches yield qualitatively similar results. For moving

objects, the implementation of the ghost cell method is more complex compared to

volume penalization and is more computationally expensive as communication be-

tween ghost and image points, and corresponding interpolation weights, need to be

calculated at every time step. Despite its simplicity, the Brinkman approach was

found to suffer from a lack of regularity in the near-wall pressure fluctuations due

to the lack of conditions imposed on pressure at the solid interface. However, it was

noted in that work that CBVP addresses this issue.

Volume penalization techniques typically rely on a sharp cutoff function, or mask-
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ing function, to distinguish between the interior and exterior of an object [32, 187,

119, 120]. This results in a “stair-stepped” interface that can give rise to grid-to-grid

oscillations. It is also well established that introducing source terms to penalize the

flow to a desired boundary condition in explicit formulations results in a stiff set of

equations [241, 70, 201, 131, 187]. To this end, combinations of parameter tuning,

sub-iterating at each timestep, and modifications to the computational stencil are

common [131, 31, 187, 120].

The aim of this study is to introduce an approach that is simple, i.e., requires

minimal modification to the underlying numerical framework, is efficient in the sense

it does not introduce additional stiffness beyond the stability limits of the underlying

discretization (and thus does not rely on iterative solution procedures) and is robust to

sharp discontinuities such as shocks. In the following sections, a parameter-free CBVP

method is presented for viscous and inviscid flows within a high-order finite difference

framework. The approach is purely explicit where free parameters are chosen based on

the limitations of the underlying discretization. A series of verification and validation

cases are performed for one-, two-, and three-dimensional steady and unsteady flows,

followed by recommendations for general use of the method.

4.2 Purely explicit, characteristic-based volume penalization

With the formulation presented in 2.3 and motivation to study plume-surface

interactions, a framework must be established to simulate fluid-solid interactions in-

volving complex geometries. In this section, we briefly review how boundary condi-

tions are enforced using volume penalization for the Navier–Stokes equations and its

extension to the Euler equations. The notation from Brown-Dymkoski et al. [31] is

adopted for consistency in Secs. 4.4.1–4.4.3. Modifications to the traditional CBVP

approach are then proposed to improve efficiency and robustness.
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4.3 Signed-distance levelset

A signed-distance levelset function, φ(x, t), is employed to distinguish the im-

mersed solid from the surrounding fluid. Values outside of the immersed surface are

positive while values on the interior are negative. A masking function X is introduced

into the conservation equations to apply appropriate forcing in regions occupied by

the immersed object, which can be represented by a Heaviside function according to

X (φ) =


1, φ < 0

1
2
, φ = 0

0, φ > 0

. (4.1)

In addition to locating the immersed object, the signed distance field provides a

simple evaluation of the unit normal direction (outward from the object) n = ∇φ

and curvature κ = ∇ · n. Throughout this work, φ is determined analytically. For

arbitrary shapes, one can use the Lagrangian marker placement strategy obtained

from stereolithography (STL) files as described in Boukharfane et al. [29].

4.4 Traditional characteristic-based volume penalization

4.4.1 Dirichlet condition

A Dirichlet condition on velocity is enforced according to

∂u

∂t
= (1−X ) RHSu −X

(u− uo)
ηb

, (4.2)

where uo is the target velocity and ηb is a penalization parameter that controls the

rate at which the Dirichlet condition is enforced. This time scale will be discussed in

detail in Sec. 4.5. RHS refers all terms excluding the unsteady term in the equation
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corresponding to the variable in the subscript. For a no-slip, no-penetration boundary

condition the velocity penalty is uo = 0.

4.4.2 Neumann condition

As described in [31], given a transport equation for a general scalar ϕ,

∂ϕ

∂t
= −∇ · (ϕu)︸ ︷︷ ︸

RHSϕ

, (4.3)

a Neumann boundary condition is enforced by propagating information along the

interior normal to the surface. Information propagates at a constant characteristic

speed proportional to η−1
c , such that

∂ϕ

∂t
= (1−X ) RHSϕ + X

(
n · ∇ϕ
ηc

+ qt

)
, (4.4)

where qt is the target value for the gradient normal to the surface. The characteristic

speed η−1
c represents an additional penalization parameter that must be chosen with

care, which will be described in detail in Sec. 4.5.

4.4.3 Free-slip condition

To enforce a free-slip condition, a Robin-type boundary condition is applied to

velocity. This requires the application of a Dirichlet condition to penalize the normal

component of velocity to zero. The target velocity in Eq. (4.2) is set to the tangential

velocity uo = ut = u− (u · n)n.

For a traditional free-slip boundary condition, the tangential force due to viscous

stress is zero, i.e., τ · n = 0. Here, a Neumann condition is ensured through the

gradient of velocity by enforcing the normal kinetic energy to zero. Following the
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procedures described in Secs. 4.4.2 and 4.4.1, the velocity treatment is given as

∂u

∂t
= (1−X ) RHSu + X

(
n · ∇u
ηc

+ qt −
(u− uo)

ηb

)
, (4.5)

where qt = 0 to remove the normal component of velocity. For inviscid flows, addi-

tional modifications are required in the presence of curved surfaces to ensure constant

total enthalpy and entropy at the boundary. These modifications will be presented

in Sec. 4.8. It should be noted that this approach can easily be applied to other type

of Robin boundary conditions, e.g., conjugate heat transfer in which a combination

of Dirichlet and Neumann boundary conditions are enforced on temperature.

4.5 Discussion on the penalization parameters

Special care needs to be taken when selecting values for the penalization param-

eters appearing in Eqs. (4.2)–(4.5). Brown-Dymkoski et al. [31] showed that the

leading error terms associated with CBVP are proportional to O(ηc,
√
ηb). To keep

the velocity penalty dominant over the propagation of scalars, it is suggested that

ηb/ηc � 1. This constraint avoids excessive phase lag in reflected pulses as scalars

are advected past the interface. According to Brown-Dymkoski et al. [31], restric-

tions on the characteristic time and velocity scales can be determined from a linear

asymptotic analysis, revealing that ηb < ηc and both ηb and ηc must be smaller

than unity. Specific values are often chosen based on fine-tuning to specific cases.

In Brown-Dymkoski et al. [31], the non-dimensional penalization parameters were

given as ηb = O(10−5) with 10 ≤ 1/ηc ≤ 100. Upwinding near immersed boundaries

was employed in addition to implicit solvers for improved stability due to increased

stiffness that results from these choices in parameters. Similar values for ηb and ηc

were used in Hosseinzadeh-Nik et al. [84]. Lavoie et al. [120] found ηb/ηc = 10−6 was

adequate to obtain accurate results for subsonic flow around a NACA0012 airfoil and
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flow around a high curvature ice horn. Due to increased stiffness associated with the

penalization parameters, the system of equations were solved using the biconjugate

gradient stabilized (BICGSTAB) algorithm [199] in combination with upwinding near

immersed boundaries.

In the present work, we propose to choose these parameters according to the

limitations of the underlying discretization. Due to the explicit nature of the dis-

cretization presented in Sec. 3.2, the characteristic speed 1/ηc should not exceed the

local sound speed c. To ensure the parameter remains constant, the non-dimensional

reference sound speed c∞ =
√
γp∞/ρ∞ is used. Based on the non-dimensionalization

employed in the current work, 1/ηc = c∞ = 1. Similarly, the characteristic timescale

used to penalize the velocity, ηb, is set to the fastest time permitted by the simu-

lation, i.e., the simulation time step ∆t. Considering the CFL restrictions given by

Eqs. (3.13) and (3.14), the criterion on the time step is

∆t < min

[
min(∆x)

max(|u|+ c)
,

min(ρ∆x2)

max(2µ, λ)

]
. (4.6)

Generally when satisfying the above relation, ∆t � 1, and thus the requirement

ηb � ηc is satisfied. With this, the resulting scheme can be solved explicitly without

necessitating sufficiently small time steps. Consequently, the error from the penalized

boundary conditions is expected to converge as O(1,
√

∆t). Of course, the efficacy

of such an explicit formulation remains to be tested. A detailed assessment of the

method is reserved for Sec. 4.9.

In addition to the penalization parameters, artificial diffusion is typically added

within the immersed object to help obtain continuity of scalars and avoid the creation

of discontinuities across the interface. The diffusion coefficient is typically chosen as

νn ∝ ∆x2/ηb [31, 32, 84, 120]. Since this nonphysical diffusion contributes to errors

in the boundary conditions, the diffusion length scale should be as small as possible
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while being sufficiently resolved. Using the fastest timescales supported by the dis-

cretization, νn ≤ min(∆x)2/(2Nd∆t) according to the criterion given by Eq. (3.14).

In other formulations [31, 84, 32], diffusion is only added to equations that contain the

velocity penalty. We found in the present work that adding diffusion to all conserved

variables improves stability for geometries with sharp corners. However, the specific

choice of νn was found to have little effect on the results reported herein. Experience

shows that the diffusion coefficient can be as small as νn = min(∆x)2/(20Nd∆t).

Unlike previous works that have proposed the use of upwinding schemes and im-

plicit methods for additional stability [31, 120], here no modifications are made to

the stencil operators.

4.6 Regularization

In traditional velocity penalization methods, a sharp cutoff, or masking function,

X , is used to distinguish between the interior and exterior of the object [7, 106, 57,

187]. Consequently, the solution can be contaminated by grid-to-grid oscillations

especially if high-order discretizations are employed. As will be shown in later sec-

tions, this can result in high dilatation near the interface that degrades robustness,

especially in the presence of strong discontinuities like shock waves.

Motivated by the interface treatment employed in direct-forcing immersed bound-

ary methods [244, 161], we propose a similar regularization that converges to a sharp

cutoff in the limit of infinitely small grid spacing. With traditional immersed bound-

ary methods, forcing is applied at the surface of the solid object using a series of

mollified (or smoothed) Dirac delta functions. In a similar fashion, we propose to

regularize the Heaviside function used for volume penalization such that the forcing

smoothly decays from the object interior to the fluid domain over a small number

of grid points. A benefit of such an approach over traditional immersed boundary

methods is that this can be accomplished entirely on the grid using the levelset func-
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tion φ instead of relying on Lagrangian marker particles distributed over the object’s

surface. Thus, the increased cost associated with Lagrangian marker particles, in

addition to errors that are introduced due to the choice in the weight and placement

of marker particles [56, 244, 259, 102, 261] are avoided.

Adopting a form typically employed in two-fluid formulations [223, 40, 210, 104],

the regularized masking function is given by

X̃ =


1, φ ≤ −ε

1
2
− φ

2ε
− 1

2π
sin
(
φπ
ε

)
, |φ| < ε

0, φ > ε

(4.7)

where the regularization parameter ε defines its steepness, which is typically chosen

between 1 ≤ ε/∆ ≤ 3 [223, 40, 104], where ∆ = |∆x · n| is the grid spacing normal

to the surface. In the limit that ε = 0, this simplifies to the original masking function

given by Eq. (4.1). We briefly note that similar regularization of the masking function

has been applied to Brinkman penalization for incompressible flows [194]. In order

to avoid contamination of the boundary treatment by the fluid equations, we propose

to apply X̃ only to the volume penalization terms and not to the right-hand side of

the original conservation equations (see Fig. 4.1).

4.7 Application to the Navier–Stokes equations

Applying the regularized CBVP approach described heretofore with free parame-

ters chosen based on the limitations of the discretization, the resulting conservation

equations for a viscous compressible flow with impenetrable adiabatic boundary con-

ditions can be expressed as

∂ρ

∂t
= (1−X ) RHSρ + X̃

(
c∞n · ∇ρ+ νn∇2ρ

)
, (4.8)
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Figure 4.1: Masking function X typically employed in CBVP ( ) and the proposed

regularized function X̃ with ε = 1.5∆ ( ). Region where the fluid
equations are solved is highlighted in blue and the region in which the
penalized terms are applied is highlighted in red.

∂ρu

∂t
= (1−X ) RHSρu + X̃

(
c∞u (n · ∇ρ)− ρ (u− uo)

∆t
+ νn∇2 (ρu)

)
, (4.9)

and

∂ρE

∂t
=(1−X )RHSρE

+ X̃
(
c∞
γ
n · ∇ (ρT ) +

c∞
2

(u · u)n · ∇ρ− ρu · (u− uo)
∆t

+ νn∇2 (ρE)

)
,

(4.10)

where c∞ = 1 as a result of the non-dimensionalization. It should be noted that

in addition to penalization parameters being replaced by the reference sound speed

c∞ and simulation time step ∆t, the equations differ slightly from previous formu-

lations [31, 32, 120]. First, due to the hyperbolic nature of the penalized equations,

artificial diffusion is added to each of the conserved variables. This is to avoid the

need to modify the stencil operators (e.g., use of upwinding [120]). In addition, the

energy equation is written in terms of the penalized temperature instead of the total

energy and velocity. While both formulations are mathematically consistent, the form

employed here requires less memory storage.
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4.8 Application to the Euler equations

The absence of viscosity results in the elimination of the viscous boundary layer

and thus a free-slip condition on velocity. While it is straight forward to apply a slip

velocity condition for flat boundaries (see Sec. 4.4.3), special attention is required for

curved surfaces as it is well acknowledged that errors may arise without additional

corrections [48, 19, 111, 103, 230, 260, 129].

As discussed in Dadone and Grossman [48], an inviscid flow over a curved bound-

ary must satisfy the normal momentum equation at the wall, i.e., ∂p/∂n = −ρ‖u‖2κ.

In the context of volume penalization, this would involve applying a forcing term

throughout the immersed solid by rearranging the energy equation in terms of the

normal pressure gradient. To ensure constant entropy at the boundary this also in-

volves corrections to both density and the tangential velocity [48, 103, 260, 129].

Curvature corrections are most often implemented based on high order reconstruc-

tion of the surface geometry followed by the computation of numerical fluxes into the

surface via a Riemann problem at every point along the boundary [19, 111]. While

concepts of left and right states for entropy-based corrections are contextually rel-

evant for ghost-point/cell immersed boundary methods, the application to volume

penalization methods is less straight forward.

Following Lavoie et al. [120], additional terms are employed to enforce the normal

pressure relation, an adiabatic wall condition, constant normal entropy, constant total

enthalpy, and a no-penetration wall condition. To determine the curvature correction

on density, the normal pressure relation can be recast via the equation of state and

enforcing constant entropy, s, [32, 120] which yields

n · ∇s = 0→ n · ∇ρ = −ρ
2‖u‖2

γp
κ. (4.11)

The penalty on temperature can be found by substituting the equation of state into
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Eq. (4.11), giving

ρ

γp
n · ∇p = n · ∇ρ→ n · ∇T = −‖u‖2κ. (4.12)

Finally, the penalty on velocity is obtained by Eq. (4.11) as well as ensuring constant

total enthalpy, H = (ρE + p)/ρ,

n · ∇H = 0→ n · (u · ∇u) = ‖u‖2κ. (4.13)

As noted in [120], this relation provides a condition on kinetic energy rather than

on the velocity. The condition needs be chosen such that Dirichlet and Neumann

conditions on velocity are orthogonal. Therefore, the simplest choice is

n · ∇u = uκ. (4.14)

The penalized equations can be derived by applying the product rule to the un-

steady contributions in conservation of mass, momentum, and total energy and apply-

ing Eqs. (4.11)–(4.14) on the interior of immersed objects. With this, the regularized

volume penalization for the Euler equations are given by

∂ρ

∂t
= (1−X ) RHSρ + X̃

(
c∞n · ∇ρ+ c∞

κρ2‖u‖2

γp
+ νn∇2ρ

)
, (4.15)

∂ρu

∂t
= (1−X ) RHSρu

+ X̃
(
c∞u (n · ∇ρ) + c∞ρn · ∇u−

ρ (u · n)n

∆t

−c∞κρu
(

1− ρ‖u‖2

γp

)
+ νn∇2 (ρu)

)
,

(4.16)
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and

∂ρE

∂t
=(1−X )RHSρE

+ X̃
(
c∞
γ
n · ∇ (ρT ) +

c∞
2

(u · u)n · ∇ρ+ c∞ρu · (n · ∇u)− ρu · (u · n)n

∆t

−
(

1− 1

γ − 1

)
c∞κρ‖u‖2 + c∞

κρ2‖u‖4

2γp
+ νn∇2 (ρE)

)
.

(4.17)

In the proposed formulation, curvature corrections are only applied near the surface

of immersed object to avoid singularities due to infinite curvature at locations of

converging normal vectors. These corrections are applied 8∆x into the solid, though

the specific choice was found to have insignificant effect on the results reported herein.

This ensures that curvature corrections are applied in regions within the maximum

stencil size for the employed discretization. For geometries with sharp corners, infinite

curvature can extend to the surfaces, leading to numerical issues. To this end, κ is

taken as the minimum between the local curvature and the maximum resolvable

curvature on the grid, i.e., κ = min(∇ · n, 1/(2∆x)).

4.9 Results and discussion

4.9.1 Inviscid flows

In this section, the explicit characteristic-based volume penalized introduced in

the previous section is assessed for a series of cases of varying complexity. Here we

focus on the inviscid formulation summarized in Sec. 4.8, with specific attention paid

on the role of resolution, curvature corrections, and the regularization parameter, ε.

4.9.1.1 One-dimensional acoustic reflection

In this example, a one dimensional acoustic wave interacts with a wall immersed

in an inviscid fluid. The original description of the case can be found in [31]; however,
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it has been adapted for this work. Density, momentum, and pressure are initialized

to be uniform fields with ρ∞ = 1, u∞ = 0, and p∞ = 1/γ. The wave is added as a

fluctuation in density, momentum, and pressure according to

ρ′ = ρu′ = p′ = 10−3

(
(x− 0.4)

0.2
− 1

)4(
(x− 0.4)

0.2
+ 1

)4

, 0.2 < x < 0.6. (4.18)

A domain length of Lx = 1.3 is considered. The wave propagates downstream and

interacts with a wall at x = 0.65. A no-penetration Dirichlet condition is applied on

velocity. Both the sharp interface treatment (ε = 0) and regularized interface (ε > 0)

are evaluated. Convergence studies are performed for an immersed wall aligned with

the grid and a wall offset from the grid. An L2 error norm of the density is evaluated

inside the fluid (φ > 0) at a non-dimensional time of t = 0.6 after the wall reflection

has occurred. The reference solution is taken to be an advected wave in the absence

of the wall using the finest resolution applied to each case. To avoid errors associated

with the time integration scheme and isolate errors in the spatial discretization and

volume penalization treatment, ∆t is held constant for each case such that CFL ≤ 0.1.

The L2-norm of the acoustic wall interaction is shown in Fig. 4.2. With ε = 0, the

convergence rate is first order regardless of whether the wall is aligned or offset from

the grid. This should be expected with sharp interface volume penalization methods

(refer to Sec. 4.5). Better convergence is observed with the regularized surface with

ε = 1.5∆. The error magnitude is also reduced with ε = 1.5∆ when the grid is offset

from the wall. It can be seen that the nature of the error depends on the choice of

ε. It was found here that values of 1.5 ≤ ε ≤ 2 provided minimum error. Further

examination of ε will be performed in the following sections.
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(a) Immersed wall aligned with the grid

(b) Immersed wall offset with the grid

Figure 4.2: L2 error norm of an acoustic wave interacting with a vertical wall (a)
aligned with the grid and (b) offset from the grid for ε = 0 ( ) and
ε = 1.5∆ ( ). Lines of convergence are shown for O(∆x) (· · · ) and
O(∆x2) ( ).
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4.9.1.2 Inviscid flow past a stationary cylinder

In this test case we aim to assess the efficacy of the proposed volume penaliza-

tion approach in predicting potential flow around a circular cylinder. This case is

particularly useful in identifying the conditions that give rise to unphysical boundary

layer separation when viscosity is absent. The fluid is assumed to be incompressible,

inviscid, and irrotational such that potential flow theory can be used as a reference

case. Under these conditions, the analytic solution for the pressure coefficient at the

surface of a circular cylinder is given by [114]

Cp(θ) = 2(p(θ)− p∞)/(ρ∞u
2
∞) = 2 cos(2θ)− 1, (4.19)

where θ is the angular coordinate with the stagnation points located at θ = 0 and π.

The inviscid formulation given by Eqs. (4.15)–(4.17) is employed here. The flow

is initialized with a uniform density ρ∞, pressure p∞, and velocity u∞ corresponding

to Ma∞ = 0.1 around a stationary cylinder with diameter D located at the center of

the domain. A domain of size Lx ×Ly = 20D× 20D is considered with uniform grid

spacing. Farfield boundary conditions and sponge zones are applied at each domain

boundary. Four cases are considered: (i) a no-slip velocity condition with ε = 0; (ii) a

free-slip velocity condition without curvature correction terms (described in Sec. 4.8)

and ε = 0; (iii) a free-slip velocity with curvature correction terms and ε = 0; and

(iv) a free-slip velocity with curvature correction terms and ε = 1.5∆. For each case,

the grid spacing is varied between 20 ≤ D/∆x ≤ 160.

Contours of the steady state Mach number are shown in Fig. 4.3(b). It can imme-

diately be seen that without proper boundary treatment a wake forms downstream,

breaking the expected symmetry of the potential flow solution. This is observed for

both the no-slip and free-slip treatment without the curvature corrections described

in Sec. 4.8. Symmetry is preserved when curvature corrections are applied for both
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(a) No-slip, no curvature correction (ε = 0) (b) Free-slip, no curvature correction (ε = 0)

(c) Free-slip, curvature correction (ε = 0) (d) Free-slip, curvature correction (ε = 1.5∆)

Figure 4.3: Mach number contours for an inviscid flow past a stationary cylinder
(shown in red) with ∆x = D/40. Contour lines are evenly spaced on a
scale ranging from 0 to 0.2.
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(a) No-slip, no curvature correction (ε = 0) (b) Free-slip, no curvature correction (ε =
0)

(c) Free-slip, curvature correction (ε = 0) (d) Free-slip, curvature correction (ε =
1.5∆)

Figure 4.4: Surface pressure coefficient for potential flow around a cylinder with ∆x =
D/20 ( ), ∆x = D/40 ( ), ∆x = D/80 ( ), ∆x = D/160 ( ), and
the analytic solution (4.19) ( ).

the sharp (ε = 0) and regularized (with ε = 1.5∆) treatment. Inspection of the Mach

number contours reveals qualitatively similar flow features for these two cases.

Results for the corresponding pressure coefficient and comparison to theory given

by Eq. (4.19) can be found in Fig. 4.4. The pressure coefficient is calculated using

Eq. (4.19) where the pressure, p(θ), corresponds to the pressure interpolated to La-

grangian markers distributed along the surface of the cylinder. Further details on

the evaluation of surface stresses can be found in Appendix A.1. As was observed in

Fig. 4.3, the cases without curvature corrections give rise to a wake, resulting in an

under prediction in pressure coefficient at the downstream stagnation point (θ = π).

Although the slip condition exhibits improvement over the no-slip treatment, both
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cases fail to remain symmetric even at the finest resolution under consideration. In-

clusion of the curvature correction terms greatly improves symmetry in the pressure

coefficient. With ε = 0, the flow remains symmetric at all resolutions. The regular-

ized Heaviside treatment with ε = 1.5∆, shown in Fig. 4.4(d), exhibits larger errors

in the coefficient of pressure at the stagnation points, despite no wake observed in

the Mach number contours in Fig. 4.3(d). This is a consequence of gradients in the

masking function when ε > 0, and thus the target solution does not correctly repre-

sent a slip velocity condition. Therefore, without sufficiently fine mesh resolutions,

the regularized penalization (ε > 0) should not be used for steady inviscid flows with

curvature under its current form. This will be further examined in subsequent cases.

Mass conservation is assessed by calculating the the mass flow rate through planes

located 5D upstream and 5D downstream from the center of the immersed cylinder.

The results were found to be invariant to the choice in the location of the sampling

plane. The error in mass conservation is given by |1 − ṁ1/ṁ2|, with ṁ1 and ṁ2

the average mass flow rate located upstream and downstream from the cylinder,

respectively. The error was found to vary between 3.2 × 10−4 and 3.4 × 10−4 for

the cases with the curvature corrections applied. Thus, error in mass conservation

remains relatively low and is found to be insensitive to the grid resolution and choice

in regularization parameter.

4.9.1.3 Oscillating cylinder in an inviscid fluid

The configuration described in the previous section is modified to assess the

methodology in an unsteady flow by considering a sinusoidally oscillating cylinder.

The cylinder is placed in a quiescent flow (u∞ = 0) with uniform pressure and density.

The center position of the cylinder is prescribed according to

xc(t) = a sin
(

2πft− π

2

)
, (4.20)
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where the motion amplitude is set to a = 0.1 and f is the forcing oscillation frequency.

To ensure the Mach number remains small enough such that compressibility is not

important, the maximum velocity of the cylinder is set to max(uc) = 0.1, where

uc(t) = dxc(t)/dt. This is enforced by defining f = 0.1. In order to account for

the motion of the cylinder in the volume penalization, the normal velocity used in

Eq. (4.5) is modified according to (u − uc) · n, with uc = [uc, 0, 0]T. It should be

noted that the curvature correction terms take into account the non-homogeneous

Neumann condition needed on pressure when the object is moving. Finally, in order

to avoid contaminating the exterior flow with the artificial scalar fields created inside

the solid body, an additional advection term uc ·∇ρ is added to the penalized density

equation and uc · ∇(ρT )/γ to energy [100].

In the limit of incompressible flow, the drag coefficient can be determined analyt-

ically [22], given by

CD(t) = 2aπ3 sin
(

2πft− π

2

)
. (4.21)

As pointed out by Belov et al. [22], Liu et al. [130], this case is particularly useful

in assessing the performance of a numerical method since an analytic solution is

available and no physical dissipation is present, and thus provides a strict test for

artificial dissipation introduced by the method and accuracy of the discretization.

Furthermore, this case is useful in assessing the role of the regularization parameter in

the proposed approach, which was shown to negatively impact the pressure coefficient

in the steady flow configuration presented in the previous section.

Figure 4.5 shows the evolution of the drag coefficient with ∆x = D/40 and ε = 0,

1.5∆, and 3∆. The pressure drag on the surface of the immersed cylinder is deter-

mined according to CD = −
∮
pnds/(0.5ρ∞max (uc)

2D). Details on the evaluation of

pressure at the surface of the immersed boundary are provided in Appendix. A.1. The

solution quickly converges to the exact solution after just a few time steps. The time

evolution of drag coefficient closely match the analytic solution given by Eq. (4.21)
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Figure 4.5: Evolution of drag coefficient for an oscillating cylinder in an inviscid fluid
with ∆x = D/40 and ε = 0 ( ), ε = 1.5∆ ( ), ε = 3∆ ( ). Analytic
solution given by Eq. (4.21) ( ).

for each value of ε. This demonstrates that unlike with the stationary cylinder that

reaches a steady state, the pressure drag is much less sensitive to the regularization

parameter when the flow is unsteady. This will be further demonstrated in later

sections.

4.9.1.4 Inviscid flow past a wedge

In this case the proposed approach is tested on an inviscid supersonic flow past

a wedge. As discussed in [29, 41], oblique shock theory gives rise to the relationship

between Mach number Ma∞, shock wave angle β, and deflection angle θ, given by

tan(θ) = 2cot(β)

[
Ma2
∞sin2(β)− 1

Ma2
∞ (γ + cos(2β)) + 2

]
. (4.22)

The flow is initialized in a domain of size Lx × Ly = 18× 12 with Ma∞ = 2. A two-

dimensional wedge with θ = 15◦ and width of wt = 2 is placed 1.75wt downstream

from the inlet based on its center position. Uniform grid spacing is chosen such that

100 grid points are distributed across wt. Farfield boundary conditions and sponge

zones are applied at the inflow and outflow and free-slip conditions are employed at

the top and bottom of the domain.
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(a) No-slip (b) Slip

Figure 4.6: Instantaneous temperature field for a Ma∞ = 2 flow past a two-
dimensional wedge with ε = 0. Theoretical shock wave angle ( ).

The sharp corners of the wedge can lead to stability issues with the classic CVBP

approach due to the advection of information towards intersecting normal vectors.

This is addressed here by the application of the regularized Heaviside function and

adding localized artificial dissipation in the presence of large discontinuities [45, 136,

26]. Details on the artificial dissipation implementation can be found in [256]. It was

found in the present work that using a sharp interface (ε = 0) requires a smaller time

step due to the generation of large velocity fluctuations. Here, CFL = 0.05 is used

for ε = 0 while CFL = 0.3 is used for ε = 1.5∆.

The shock wave angle β is measured by inspection of the resulting temperature

field (see Fig. 4.6). According to Eq. (4.22), the shock wave angle for Ma∞ = 2

and θ = 15◦ is βtheory = 45.34◦. Both no-slip and slip conditions (with curvature

corrections) are considered. Using a free-slip velocity condition with ε = 0, the shock

wave angle is found to be βslip ≈ 45.58◦. The predicted angle is larger when a no-

slip condition is employed, yielding βno−slip ≈ 48.20◦ (see Fig. 4.6 for a qualitative

comparison). Unlike in the steady flow past the stationary cylinder, the regularization

does not contaminate the results here due to lack of curvature associated with the

wedge surface. With ε = 1.5∆, the shock wave angle was found to be βslip,ε ≈ 45.01◦,

which closely matches the theoretical prediction.
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4.9.1.5 Inviscid shock past a circular cylinder

In this case, an incident shock wave interacts with a stationary cylinder of diam-

eter D. Post-shock conditions, labeled with a subscript 2, are chosen to satisfy the

Rankine-Hugoniot conditions for a shock Mach number Mas = us/c∞ = 1.3, where

us is the shock speed. Pre-shock conditions, labeled with a subscript 1, are given by

(ρ1, u1, P1 | 1.0, 0.0, 0.714). A domain of size Lx × Ly = 20D × 20D is considered

with the cylinder placed at the center. Farfield conditions with sponge zones are em-

ployed at the inflow and outflow boundaries while slip boundary conditions are used

at the top and bottom of the domain. Results are compared to data obtained from

high-resolution numerical simulations that employ adaptive grid refinement [54, 134]

and experimental data from [229]. Note, the experimental data presented in Luo et al.

[134] is used herein due to difficulty in obtaining data from [229]. Simulations are

assumed to be inviscid and therefore free-slip velocity conditions with curvature cor-

rections are applied to the cylinder. For all cases, a constant time step of ∆t = 1×10−3

is used to ensure CFL ≤ 0.5.

Results are reported for two resolutions, ∆x = D/40 and ∆x = D/80 with ε = 0

and ε = 1.5∆. The evolution of the coefficient of drag is shown in Fig. 4.7. Conver-

gence in the unsteady drag coefficient towards adaptive grid data reported in [54] is

observed for both ε = 0 and ε = 1.5∆. As reported in previous work [228], results are

expected to converge towards numerical data instead of the experiment due to uncer-

tainty in experimental measurements associated with the three-dimensional cylinder.

Unlike with the potential flow solution in Sec. 4.9.1.3, the regularized Heaviside treat-

ment with ε = 1.5∆ yields similar results in drag as the sharp interface (ε = 0). This

is consistent with what was observed with the oscillating cylinder in Sec. 4.9.1.3. This

further indicates that the curvature correction terms are not important during the

transient period even in the presence of strong discontinuities. Therefore, the added

benefits associated with regularization can be exploited for inviscid flows past objects
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Figure 4.7: Temporal evolution of the coefficient of drag during a shock-cylinder in-
teraction with Mas = 1.3. ∆x = D/40 and ε = 0 ( ), ∆x = D/80
and ε = 0 ( ), ∆x = D/40 and ε = 1.5∆ ( ), and ∆x = D/80 and
ε = 1.5∆ ( ). Experimental data (#) [229, 134] and numerical data
using adaptive grid refinement ( ) [54, 134]. Here, to corresponds to
the instant the shock interacts with the cylinder.

with curved surfaces prior to steady state being reached. This will be further justified

in the three-dimensional cases reported in later sections.

4.9.1.6 Inviscid shock past a sphere

In this case, an incident shock with Mach number based on the shock speed

Mas = us/c∞ = 1.22 interacts with a stationary sphere with diameter D in a domain

of size Lx × Ly × Lz = 15D × 15D × 15D. The domain is discretized with uniform

grid spacing ∆x = D/40. Farfield conditions with sponge zones are applied at the

inflow and outflow boundaries of the domain and free-slip conditions are enforced at

all other boundaries. The simulations are taken to be inviscid. Results are compared

to experimental data with Re = 4.9× 105 [222].

The temporal evolution of the unsteady drag coefficient is shown in Fig. 4.8 for

ε = 0 and 1.5∆. Results from both cases match the experimental data exceptionally

well during the initial transient (t− to < 2D/us), with to the time at which the shock

first interacts with the sphere. At later times, the simulation performed using ε = 0
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Figure 4.8: Unsteady drag coefficient for a Mas = 1.22 shock interacting with a sphere
with ∆x = D/40. ε = 0 ( ), ε = 1.5∆ ( ), experimental data [222]
( ), and a reference line indicating CD = 0 ( ). Here, (t − to) = 0
corresponds to the instant the shock begins to interact with the sphere.

correctly predicts a steady drag coefficient that approaches zero. With ε = 1.5∆,

the regularized interface results in negative drag at steady state. This is consistent

with what was observed in previous two-dimensional steady inviscid calculations, in

which it was found that the curvature correction terms are not properly enforced

when ε > 0. Consequently, for inviscid flows past objects with curved surfaces, it is

recommended that the regularization only be applied for unsteady calculations.

4.9.2 Viscous flows

In this section, the proposed methodology is tested against a suite of cases for two-

and three-dimensional viscous flows. The formulation summarized in Sec. 4.7 is used

with specific attention paid on the role of resolution and regularization parameter in

predicting frictional drag.

4.9.2.1 Viscous subsonic flow past a cylinder

In this case, a background flow is initialized with a subsonic Mach number of

Ma∞ = 0.1 and Reynolds number Re = 300. The flow interacts with a stationary
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(a) ε = 0 (b) ε > 0

Figure 4.9: Coefficient of pressure for a steady flow interacting with circular cylinder
at Ma∞ = 0.1 and Re = 300. (a) ∆x = D/40 with ε = 0 ( ) and
∆x = D/80 with ε = 0 ( ). (b) ∆x = D/40 with ε = ∆ ( ), ε = 1.5∆
( ), and ε = 3∆ ( ). Numerical body-fitted data [193] (4).

cylinder of diameter D. A domain of size Lx×Ly = 30D×10D is initialized with the

cylinder placed at the centerline at x = 10. Farfield conditions with sponge zones are

applied at the inflow and outflow boundaries and free-slip conditions are employed

at the top and bottom of the domain. Results are compared to body-fitted data

presented in Rajani et al. [193], Boukharfane et al. [29].

Simulations are performed using resolutions of ∆x = D/40 and ∆x = D/80. The

coefficient of pressure is averaged in time after periodic vortex shedding occurs (see

Fig. 4.9). For ε = 0, spurious oscillations are observed in the pressure coefficient

between 5π/18 ≤ θ ≤ 5π/9. These errors are still present even when increasing the

resolution to ∆x = D/80. Increasing the regularization parameter results in smoother

Cp profiles and smaller error. Instantaneous snapshots of the velocity dilatation cor-

responding to these cases are shown in Fig. 4.10. For ε = 0, spurious oscillations

can be observed near the surface of the object. These oscillations are removed when

increasing the regularization with ε = 1.5∆.

Results for mean drag coefficient, CD, root-mean-square (RMS) coefficient of lift,

CL,RMS, and Strouhal number, Sr, are provided in Table 4.1. With ε = 0, over-
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(a) ε = 0 (b) ε = 1.5∆

Figure 4.10: Velocity dilation (∇·u)D/u∞ for a viscous subsonic flow past a cylinder
with ∆x = D/40 at (t u∞)/D = 460. Dilatation varies between -2.6
(black) and 2.6 (white).

ε = 0
ε = 0

(∆x = D/80) ε = ∆ ε = 1.5∆ ε = 3∆ Rajani et al. [193]
CD 1.477 1.435 1.419 1.397 1.367 1.367

CL,RMS 0.709 0.701 0.705 0.710 0.719 0.602
Sr 0.217 0.217 0.211 0.209 0.200 0.215

Table 4.1: Results for drag coefficient (CD), RMS coefficient of lift (CL,RMS), and
Strouhal number (Sr) for subsonic flow past a cylinder with ∆x = D/40,
unless otherwise specified, and different values of ε.

predictions in the drag coefficient by 8% for ∆x = D/40 and 5% for ∆x = D/80

are observed. Smaller errors are observed when using employing the regularized

masking function, with errors remaining below 2% for ∆ ≤ ε ≤ 3∆. Regardless of

the formulation employed, there are still noticeable over predictions in CL,RMS, while

good agreement in the Strouhal number compared to body-fitted data is observed.

4.9.2.2 Viscous supersonic flow past a cylinder

The case presented in the previous section is modified such that the background

flow is initialized with a uniform Mach number of Ma∞ = 2 while the Reynolds

number is kept at Re = 300. A domain of size Lx × Ly = 60D × 30D is considered
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with the cylinder placed at the centerline at x = 20. As before, the grid resolution

is varied between ∆x = D/40 and D/∆x = 80, and the regularization parameter is

varied from 0 ≤ ε ≤ 3∆. It should be noted that the simulations performed with

ε ≤ ∆ required the CFL = 0.3 due to spurious oscillations at the surface of the

cylinder (as was depicted in Fig. 4.10). All other cases are run with CFL = 0.5.

Overall good agreement is observed in the surface pressure coefficient with nu-

merical body fitted data from Takahashi et al. [228] (see Fig. 10). However, there are

noticeable oscillations in the pressure coefficient at lower resolution that are reduced

by increasing ε. The resulting drag coefficient CD, pressure drag CD,p, and frictional

drag CD,f are reported in Table 4.2. Overall, good agreement is observed in pres-

sure drag for ε = 0 and remains relatively unchanged with increasing ε. However,

noticeable under-predictions in the frictional drag coefficient can be observed. With

ε = 0, the error in frictional drag decreases with increasing resolution. Meanwhile,

the regularization treatment is seen to yield large errors in frictional drag, with CD,f

decreasing as ε increases. This is not unexpected as the smooth interface treatment

reduces velocity gradients at the surface and thus reduces frictional drag. Therefore,

while ε > 0 helps with stability, it negatively impacts the prediction in frictional drag.

A mass conservation analysis is repeated here for viscous supersonic flow, see

Sec. 4.9.1.3 for further details. The mass flow rate upstream of the cylinder is ṁ1 =

2.00000 while the downstream value varies between 1.99896 ≤ ṁ2 ≤ 2.00093. This

yields an error in mass flow rate |1− ṁ1/ṁ2| = 4.7× 10−4 and 5.2× 10−4. Even for

viscous high speed flows, the proposed method exhibits excellent mass conservation

properties.

4.9.2.3 Viscous supersonic flow past a sphere

In this final case, a flow is initialized with Ma∞ = 2 and Re = 300 in a domain of

size Lx×Ly×Lz = 80D×40D×40D with a sphere of diameter D placed at the center.
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(a) ε = 0 (b) ε > 0

Figure 4.11: Coefficient of pressure for a steady flow past a circular cylinder at Ma∞ =
2 and Re = 300. (a) ∆x = D/40 ( ) and ∆x = D/80 ( ) with ε = 0.
(b) ∆x = D/40 for ε = ∆ ( ), ε = 1.5∆ ( ), and ε = 3∆ ( ).
Numerical body-fitted data [228] (�).

ε = 0
ε = 0

(∆x = D/80) ε = ∆ ε = 1.5∆ ε = 3.0∆
Body-fitted
[228]

CD 1.501 1.524 1.487 1.425 1.386 1.548
CD,p 1.398 1.394 1.392 1.382 1.375 1.404
CD,f 0.103 0.130 0.095 0.044 0.011 0.144

Table 4.2: Results for drag coefficient (CD), pressure drag coefficient (CD,p), and
frictional drag coefficient (CD,f ) for supersonic flow past a cylinder with
∆x = D/40 unless otherwise labeled and different regularization parame-
ters (ε).
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ε = 0
(∆x = D/40)

ε = 1.5∆
(∆x = D/40) Borker et al. [28] Nagata et al. [167]

CD 1.270 1.207 - 1.386
CD,p 1.080 1.054 - 1.054
CD,f 0.190 0.153 - 0.332

Lshock/D 0.213 0.237 0.203 0.201

Table 4.3: Drag coefficient (CD), pressure drag coefficient (CD,p), frictional drag coef-
ficient (CD,f ), and shock standoff distance (Lshock) for a viscous supersonic
flow past a sphere.

Farfield conditions with sponge zones are applied at the inflow and outflow and free-

slip conditions are enforced at all other sides of the domain. Uniform grid spacing

of ∆x = D/40 is applied within a 10D × 10D × 10D box around the sphere. The

grid is stretched to a coarser resolution of ∆x = D/2 at the domain boundary. After

reaching steady state, results for the shock stand-off distance and drag coefficient

are compared to data obtained from numerical simulations performed with adaptive

mesh refinement by Borker et al. [28] and body-fitted data from Nagata et al. [167].

It should be noted that the numerical data being compared to were performed using

grid resolution near the surface of the sphere of D/154, approximately 4 times finer

than what is used here.

As seen in Table 4.3, the stand-off distance of the resulting bow shock is predicted

within 6% with ε = 0 compared to Borker et al. [28], Nagata et al. [167]. The regular-

ized treatment increases the standoff distance, resulting in an error of approximately

17%. Between 8% and 12% error is observed in the total drag coefficient, with the

majority of the discrepancy arising from the prediction in frictional drag. As was

shown in previous sections, the frictional drag is under-predicted when using ε > 0,

though these errors are expected to decrease with increasing resolution. Previous

work has observed similar under-predictions in frictional drag [228]. In summary, the

parameter-free (explicit) formulation of CBVP yields reasonably good predictions in

the pressure drag and shock standoff distance. Regularization of the masking func-

tions removes spurious oscillations near the surface, albeit at a cost of under predicting
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the frictional drag component.

4.10 Conclusions

In this work, we propose an explicit form of the characteristic-based volume pe-

nalization method applied to both the Navier–Stokes and Euler equations. Penaliza-

tion parameters are chosen based on the limitations of the underlying discretization,

namely the simulation time step and sound speed. As a consequence, the resulting

method does not rely on tuning parameters and avoids adding strict stability con-

straints. In addition, the masking function used to distinguish grid points between

the interior and exterior of the solid object was replaced with a regularized Heaviside

function to provide a smooth transition of the volume penalization terms.

A series of verification and validation cases were performed under both subsonic

and supersonic conditions. The regularized masking function systematically reduces

spurious oscillations near the immersed interface and allows for larger simulation

time steps. However, the regularization was found to generate asymmetric pressure

drag under inviscid steady flow conditions that results in unphysical drag at steady

state. For unsteady flows or objects with flat surfaces, the regularization treatment

yields similar results compared to the sharp interface treatment while reducing grid-

to-grid oscillations. When applied to viscous flows, good agreement with numerical

body-fitted data is observed without requiring excessively small grid spacing. How-

ever, regularization of the masking function systematically reduces the frictional drag

contribution.

In summary, the resulting scheme is deemed simple as it only requires modifying

the right-hand side of the transport equations and not the stencil operators; efficient

as it does not add further restrictions to the simulation time step for explicit dis-

cretizations; and provides accurate predictions in steady and unsteady subsonic and

supersonic flows. In addition, the scheme was shown to exhibit excellent mass conser-
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vation properties. While the focus here was on stationary objects, modifications to

account for moving objects were discussed. Further work is needed to improve fric-

tional drag predictions when a regularized masking function is employed, in addition

to curvature corrections for inviscid flows compatible with the regularized interface.
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CHAPTER V

Quantification of Unclosed Terms during

Shock-Particle Interactions

5.1 Introduction

Over the past several decades, significant progress has been made towards im-

proving the numerical prediction of disperse multiphase flows (e.g., [11, 58, 232],

and references therein). Yet, the majority of these efforts have focused on low-speed

(incompressible) regimes. Two-phase flows that exhibit strong compressibility play

dominant roles in nature, such as during supernovas and volcanic eruptions, in indus-

try (coal dust explosions, shock wave lithotripsy, combustion/detonation, etc.) and

space exploration (e.g., fluidization of terrestrial regolith during rocket plume-surface

interactions [148, 65, 13]). Compared to their low-speed counterparts, particle-laden

compressible flows like the examples listed here typically introduce new length- and

time-scales and additional physics that further complicate modeling efforts.

In recent years, significant attention has been made on modeling two-way coupling

of finite size particles [34, 81, 93, 12], yet accurate models capable of predicting the

scenario illustrated in Fig. 1.4 remain elusive. Some of the challenges are attributed

to the large slip velocities between the phases (which can be on the order of the

sound speed), unsteadiness of the shockwave dynamics and associated wakes, and
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back-coupling from the solid phase to the gas.

In the context of shock-particle interactions for moderately dilute and dense sus-

pensions, small-scale velocity fluctuations are produced in particle interstitial sites

and advected downstream with the mean flow [84, 207, 152] (see Fig. 1.4(b)). This

results in subgrid-scale (or sub-filtered) velocity fluctuations that contribute to an

unclosed term akin to the Reynolds stress that appears in single-phase flow, but here

represents unresolved fluctuations due to the presence of particles. Because such

fluctuations exist even in laminar flow (e.g., steady wakes), it is often referred to as

pseudo-turbulent kinetic energy (PTKE). While this term is typically neglected in

incompressible flows without significant consequence, recent DNS have shown that

PTKE can contribute between 30% and 100% of the resolved kinetic energy in com-

pressible flows [84, 207, 171, 152]. Its strength has been shown to increase as the

particle volume fraction and the incident shock Mach number increase [152]. An al-

gebraic model for the PTKE was recently proposed for incompressible homogeneous

gas-solid flows [146] and compressible flows [171]. However, such models have only

been tested under limited conditions and fail to predict PTKE in regions void of par-

ticles. Other models have been proposed based on cloud-in-cell approaches, where the

unclosed subgrid-scale stresses are accounted for in the particle momentum balance

using the so-called Subgrid Particle-Averaged Reynolds Stress-Equivalent (SPARSE)

method [50, 231]. With the increase in available compressible DNS data in recent

years [236, 238, 152], new models valid in higher-speed regimes can be developed and

tested. The aim of this study is to present a framework for developing and integrating

such models.

5.2 A posteriori analysis

In this section, we evaluate the relative contributions of the unclosed terms ap-

pearing in Sec. 2.3 by spatially filtering a direct solution to the microscale equations.
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Numerical simulations of the shock-particle configuration illustrated in Fig. 1.4 are

first presented, followed by an a posteriori analysis consistent with the filtering op-

erators introduced in Sec. 2.3.1. Details on filtering methodology are provided in B.1.

We briefly note that while the present analysis considers collections of monodisperse

particles, the same filtering approach can be extended to polydisperse suspensions. In

practice, the filter size applied to flows with polydisperse particles is typically chosen

to be larger than the maximum particle size (e.g., [35, 20].)

5.2.1 Simulation configuration

The simulations are designed to emulate the multiphase shock tube experiment of

Wagner et al. [249] and numerous computational studies since then [126, 195, 238, 84].

A shock wave passes through a suspension of rigid spherical particles distributed over

a thickness L? = 2 mm (as shown in Fig. 5.1). The domain size is Lx = 7.5 in the

streamwise direction, and Ly = 1 in the spanwise direction. All length scales are

non-dimensionalized by L?. The shock is initialized at x = 2.4 with a shock Mach

number of Mas = 1.66. The post-shock (denoted with a subscript ‘1’) and pre-shock

(denoted with a subscript ‘2’) conditions are given by (ρ1, p1, u1 | ρ2, p2, u2) =

(2.131, 2.177, 0.881 | 1, 0.714, 0). The Reynolds number based on L? and the sound

speed c?∞ = 343 m/s is Rec = 45394.

Particles have density ρp = 2520 (non-dimensionalized by the gas-phase density)

and diameter dp = 0.0575, corresponding to 115 µm soda lime particles in air. A

uniform grid of size 5250 × 700 is employed such that there are approximately 40

grid points across the diameter of each particle. Particles are initially distributed

within a length of L = 1 starting at x0 = 2.5 with a mean volume fraction within the

span of ϕp = 0.04, 0.21, and 0.44, corresponding to Np = 16, 81, and 169 particles,

respectively. For the distribution, particles are initially placed uniformly and then

every other column is shifted vertically by a distance equal to one half the mean
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inter-particle spacing λp/2. This creates a staggered arrangement of particles. Each

particle is then randomly perturbed within a radius less than (λp − dp)/2 to mimic a

random distribution while avoiding overlap with neighbors.

In this section, we consider two-dimensional simulations of stationary particles.

With the parameters listed above, the ratio of the non-dimensional particle timescale,

τp = ρpd
2
p/ (18µ) ≈ 21000, to the particle acoustic time scale, τd = dp/c∞ = 0.0575,

is large, indicating the particle motion is negligible over the simulation duration con-

sidered (t < 3). In addition, a recent experimental study suggests that the particle

phase does not begin to spread until times corresponding to our non-dimensional time

of t & 10 [53]. Here, t = 0 corresponds to the instant the shock interacts with the

leading edge of the particle phase. Thus, the assumption of stationary particles is

valid over the time durations considered in this a posteriori analysis. We briefly note

that the dynamics of a shock interacting with a spherical particle in three dimensions

and a cylindrical particle in two dimensions are fundamentally different due to the

timescales associated with the shock propagation. In addition, the wake structures

confined in two dimensions result in larger values of PTKE compared to three dimen-

sional configurations [152]. Despite this, two-dimensional simulations are performed

in the present study to avoid the high computational cost associated with a direct so-

lution to the three-dimensional viscous compressible flow equations. Thus, we seek to

identify qualitative trends in the sub-filtered terms with mean particle concentration

and filter size.

5.2.2 Discretization of the microscale equations

The microscale equations (2.1)–(2.3) are discretized using narrow-stencil high-

order finite difference operators that satisfy the summation-by-parts (SBP) property

on a structured curvilinear grid [220, 225]. All simulations presented in this study

use the sixth-order formulation in the domain interior, and third-order, one-sided
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(a) t = 0.334

(b) t = 0.834

(c) t = 1.334

(d) t = 1.834

(e) t = 2.334
Figure 5.1: Mach number fields (color) for ϕp = 0.21. Contours of Ma = 1 ( ).
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operators at the boundary, resulting in overall fourth-order accuracy for the fluid-

phase equations. To evaluate second and mixed derivatives, first derivative operators

are applied consecutively, necessitating the use of artificial dissipation to damp the

highest wavenumber components supported by the grid. To this end, high-order

accurate SBP dissipation operators are used that provide artificial viscosity based on

a sixth-order derivative with a diffusion coefficient that is a function of the local grid

resolution [140, 247].

The SBP scheme is combined with the simultaneous approximation term (SAT)

boundary treatment [38, 227] to ensure energy stability. This is achieved by enforcing

non-reflecting characteristic boundary conditions weakly at the far field [227]. In ad-

dition, an absorbing sponge region [60] is applied at the domain boundary to prevent

unphysical acoustic reflections by adding a damping term to the right-hand side of the

fluid-phase equations. Finally, the equations are advanced in time using a standard

fourth-order Runge–Kutta method.

Boundary conditions are enforced at the surface of each particle via a direct-forcing

immersed boundary method. In this approach, Lagrangian markers are distributed

over the surface of each particle and the gas-phase velocity is interpolated to the

location of each to generate a forcing term added to the momentum equation (2.2).

The associated work done by the immersed boundary is added to the microscale

energy equation (2.3). A signed distance function is used to penalize the flow at

grid points located within the solid phase to avoid spurious reflections as shocks pass

through the particles. Additional details on this method can be found in Uhlmann

[244], Boukharfane et al. [29].

5.2.3 Role of filtering on the Mach number

Instantaneous snapshots of the local Mach number for the ϕp = 0.21 case are

shown in Fig. 5.1. Shortly after the shock interacts with the particles, a reflected
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(a) δf = 0 dp

(b) δf = 1 dp

(c) δf = 2 dp

(d) δf = 4 dp

Figure 5.2: Mach number (left) and particle volume fraction (right) as a function of
filter size for ϕp = 0.21 when t = 2.334. Contours of Ma = 1 ( ).
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shock propagates upstream while a transmitted shock travels through the particle

suspension. The particles act to restrict the area of the transmitted shock, causing the

gas phase to choke near the downstream edge due to the immediate change in volume

fraction, followed by supersonic expansion. This rapid increase in gas-phase velocity

at the downstream edge was found to significantly increase the particle acceleration in

three-dimensional simulations of freely-evolving shock-particle interactions [238]. As

discussed in Theofanous et al. [238], modeling approaches based on spatially averaged

fields (e.g., Eulerian–Eulerian and Eulerian–Lagrangian methods) fail to predict this

choking behavior, and are thus unable to accurately predict particle dispersion.

To explore this concept further, the local Mach number is shown in Fig. 5.2(a)

computed using filtered quantities according to Ma = |ũ|/
√

(γ − 1)T̃ shortly after

the shock has passed through the particle suspension. The flow field obtained from

particle-resolved DNS is spatially filtered using the operators defined in Sec. 2.3.1 for

filter sizes ranging between 0 ≤ δf ≤ 4dp. The local volume fraction is also plotted

by filtering the indicator function defined in Eq. (2.8). Details on the implementation

of the filtering procedure can be found in B.1. Filtering (or locally averaging) the

flow field systematically acts to reduce the extent to which the gas phase accelerates

at the downstream edge of the particles. In addition, the filter acts to ‘smear’ the

volume fraction, and consequently the nozzle-like flow contraction would be less sig-

nificant when solving the volume-filtered equations. Here, we argue that with proper

treatment of the sub-filtered terms, the correct level of particle acceleration can be

recovered.

5.2.4 Role of filtering on the velocity fluctuations

As shown in Sec. 2.3, one consequence of volume filtering is the appearance of sub-

filtered velocity fluctuations in the Reynolds stress-like term Ru, pseudo-turbulent

diffusion Ruu, and PTKE k. From Fig. 5.2, it can be seen that the majority of the
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Figure 5.3: Relative contributions of the fluctuating kinetic energy averaged across
the entire domain. Filtered fluctuations, 〈ũ ·ũ〉xy−〈ũ〉xy ·〈ũ〉xy ( ), and
sub-filtered fluctuations, 〈u · u〉xy − 〈ũ · ũ〉xy ( ), as a function of filter
size for ϕp = 0.21 when t = 2.334, normalized by the total fluctuating
energy.

velocity fluctuations contained in the filtered field are suppressed when δf ' 4dp.

To quantify the relative contributions of the filtered and sub-filtered fluctuations,

the velocity field is decomposed into u = ũ + u′′, and then averaged across the x-

(streamwise) and y- (spanwise) directions. In this work, angled brackets denote Favre

averaging, and the subscript denotes the direction in which averaging is performed.

For example, averaging across y is given by 〈A〉y =
∫ Ly

0
(αρA) dy/

∫ Ly

0
(αρ) dy, for

an arbitrary quantity A. With this, the domain-average filtered velocity is defined

as 〈ũ〉xy, which can be used to construct the total fluctuating kinetic energy as 〈u ·

u〉xy − 〈ũ〉xy · 〈ũ〉xy. The portion of this energy containing only filtered terms is

〈ũ · ũ〉xy − 〈ũ〉xy · 〈ũ〉xy, and the residual contributions contain only sub-filtered

terms, i.e. 〈u · u〉xy − 〈ũ · ũ〉xy. In the limit δf → ∞, ũ → 〈ũ〉xy, and all of the

fluctuations reside at the sub-filter scale.

As seen in Fig. 5.3, the filtered and sub-filtered components of the fluctuating

energy have equal contributions when δf ≈ dp, and the majority of energy resides at
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(a) ϕp = 0.04 (b) ϕp = 0.21

(c) ϕp = 0.44

Figure 5.4: Comparison of PTKE obtained from ensemble averaging ( ) and volume
filtering with δf = dp ( ), δf = 2dp ( ), δf = 4dp ( ), and δf = 8dp
( ) at t = 2.334. The shaded region ( ) indicates particle location.

the sub-filter scale when δf ' 4dp. In practice, the gas phase is typically discretized

on a mesh with grid spacing larger than the particle diameter. If δf is interpreted

as the grid spacing, this would suggest the subgrid-scale velocity fluctuations always

contribute significantly to the total fluctuating kinetic energy. In addition, any model

for the subgrid-scale velocity fluctuations under these conditions should be aware of

the portion of energy being resolved when δf is not significantly larger than the

particle diameter.

Figure 5.4 shows streamwise profiles of the averaged PTKE as a function of fil-

ter size and mean particle volume fraction. The PTKE obtained using sub-filtered

velocity fluctuations is compared to the result obtained from ensemble averaging

the microscale velocity in the y-direction. Ensemble averaging is typically employed

when extracting statistics from particle-resolved simulations of similar configura-

tions [195, 84, 152, 171]. Except for the most dilute case (ϕp = 0.04), PTKE ob-
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tained from ensemble averaging exhibits qualitatively similar trends. For the most

dilute case, the magnitude of PTKE increases as the filter size increases, approaching

the solution obtained from ensemble averaging when δf ' 4dp. For each case, PTKE

based on ensemble averaging is significantly more noisy than its filtered counterpart

due to the lack of averaging in the x-direction.

In general, PTKE is seen to depend on both δf and ϕp. A key trend observed in

Fig. 5.4 is that the PTKE dependence on δf only occurs when the volume fraction is

sufficiently small. The simulation results reveal that the PTKE dependence can be

collapsed to a Knudsen number based on the mean inter-particle spacing, λp, given

by

Knδ =
λp
δf
. (5.1)

When Knδ < 1, the majority of the velocity fluctuations generated in particle inter-

stitial sites reside within the support of the filter kernel. As seen in Fig. 5.5, the

cases with ϕp = 0.21 and 0.44 correspond to Knδ < 1, and thus PTKE is not seen

to vary with δf in Figs. 5.4(b)–5.4(c). When δf = dp, Knδ > 1 across all possible

volume fractions (dilute to close-packing). In summary, models attempting to predict

PTKE need not take into consideration both the local volume fraction and filter size,

but instead this dependency can be captured via Knδ. For freely-evolving particle

suspensions, Knδ will vary in space and time.

5.2.5 Assessment of the unclosed terms

The magnitude of the unclosed stresses appearing in the volume-filtered energy

equation (2.30) are provided in Fig. 5.6 for δf = dp and 4dp and compared against

the resolved (filtered) pressure work term pũ. The larger filter size acts to smooth

out the profiles, without noticeable change to their magnitude. Owing to the effect of

Knδ as previously discussed, the dependence of the sub-filtered stresses on δf is only

seen for the most dilute case. Perhaps not unexpectedly, the sub-filtered correlation
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Figure 5.5: Filter size dependent Knudsen number as a function of ϕp with δf = dp,
( ), δf = 2dp ( ), δf = 4dp ( ), and δf = 8dp ( ). Reference lines
are also shown for Knδ = 1 (· · · ) and the three volume fractions under
consideration ( ).

between the viscous stress and velocity, Rτu, is negligible owing to the large Reynolds

numbers under consideration. The pseudo-turbulent heat flux, RTu, is also relatively

small. While this has not been tested, RTu may be important for reacting flows

or cases involving large temperature gradients and should be evaluated in future

work. The pseudo-turbulent diffusion, Ruu, is seen to be the dominating sub-filtered

stress. This term contains triple products of sub-filtered velocity fluctuations, which

could be challenging to develop models for. This term is sometimes expressed as a

product of the filtered velocity and Reynolds stress. It can be seen in Fig. 5.6 that

Ruu ≈ 2Ru ·ũ yields overall good agreement for small and large filter sizes as well as a

range of mean particle volume fractions. In summary, Ruu is the only non-negligible

sub-filtered stress appearing in Eq. (2.30), which can be closed provided a model for

Ru.

In Sec. 2.3.4.1, we showed that filtering the equation of state results in an addi-

tional contribution by the PTKE when computing pressure. From Eq. (2.33), it can

be seen that the PTKE systematically acts to reduce the local pressure, which could
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(a) δf = dp (b) δf = 4dp

(c) δf = dp (d) δf = 4dp

(e) δf = dp (f) δf = 4dp

Figure 5.6: Magnitude of the Favre averaged sub-filtered stresses appearing in
Eq. (2.30) as a function of filter size for (a) − (b) ϕp = 0.04, (c) − (d)
ϕp = 0.21, and (e)−(f) ϕp = 0.44 when t = 2.334. 〈|pũ|〉y ( ), 〈|RTu|〉y
( ), 〈|Rτu|〉y ( ), 1/2〈|Ruu|〉y ( ), and 〈|Ru · ũ|〉y ( ) normalized
by ρ1u

3
1. The shaded region ( ) indicates particle location.
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(a) δf = dp

(b) δf = 4dp

Figure 5.7: Error in the pressure field as a consequence of excluding PTKE in Eq. 2.33
for ϕp = 0.21 when t = 2.334. Averaged error ( ) and local error (color).
The shaded region ( ) indicates particle location.

result in underpredictions of the local Mach number if not accounted for properly.

This could be especially important in regions of large volume fraction gradients that

were demonstrated to choke the flow and lead to supersonic expansion. To quantify

this error, we compare the pressure obtained using only filtered quantities (i.e., ne-

glecting PTKE), as is typically done in coarse-grained simulations of gas-solid flows,

with the true filtered pressure that contains this contribution. From Fig. 5.7, it can

be seen that errors in the pressure field are maximum near the downstream edge

of the particle suspension where the gas phase accelerates to supersonic speeds. As

much as 25% discrepancy is observed in the pressure field when neglecting PTKE

with δf = dp. The maximum local error is not as significant for δf = 4dp, but still

results in approximately 15% relative error. Because Ma ∝
√
p, the errors in Mach

number are even more significant.
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5.3 Coarse-grained modeling

In this section, we present a volume-filtered Eulerian–Lagrangian (VF-EL) ap-

proach for simulating particle-laden compressible flows. First, a model is proposed

for transporting PTKE and reconstructing the pseudo-turbulent Reynolds stress ten-

sor. Details on the numerical discretization of the volume-filtered equations are then

presented, followed by verification and validation against existing data. For clarity of

presentation, the (·) and (̃·) notation will be dropped in the remainder of this chapter.

5.3.1 Modeling PTKE and the pseudo-turbulent Reynolds stresses

The a posteriori analysis performed in Sec. 5.2 demonstrated the PKTE, k, in

compressible gas-solid flows. While algebraic models for this term have been proposed

in the past [146, 171], a key feature of pseudo-turbulence in the flows considered

here is that it gets advected with the mean flow downstream from the particles (see

Fig. 5.4). Therefore, models for k based on the local volume fraction will fail to

accurately predict important wake structures in regions void of particles. To this

end, a transport equation for the PTKE was derived in Sec. 2.3.4.2 using a consistent

set of volume filtering operators.

Starting from Eq. (2.34), replacing Ruu = 2u ·Ru (as justified in Sec. 5.2.5), and

rearranging and consolidating terms yields

∂αρk

∂t
+∇ · (αρuk) + αRu : ∇u = (up − u) ·F − αρεPT , (5.2)

where the viscous and sub-filtered contributions have been absorbed into εPT , which

represents dissipation of PTKE. Note that the terms involving resolved pressure and

viscous stresses appearing on the second line of Eq. (2.34) contribute to the generation

of internal energy and thus are not included in Eq. (5.2).

Following what is typically done in turbulence modeling [246], the dissipation rate
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is modeled as εPT ∝ k/τε, where τε is a dissipation time scale that requires modeling.

A common approach is to assume the sub-filtered velocity fluctuations are dissipated

on a time scale τ1 = L/
√
k, with L an integral length scale that is anticipated to be on

the order of dp. Another candidate time scale for multiphase flows is τ2 = L/|uf−up|.

In the present study, it was found that both definitions predict similar distributions

of PTKE but τ2 yields better magnitudes. However, the slip velocity is ill-defined

in regions void of particles. To this end, we propose to blend the two time scales

according to

εPT = (1− fα)
Cfk

τ1

+ fα
Cfk

τ2

, (5.3)

where Cf is a constant that requires closure and fα is a blending function. The

function fα takes the following form to ensure the time scale based on the slip velocity

is only used in the presence of particles

fα = tanh

(
50

max(αp)
αp

)
. (5.4)

Based on the work of Mehrabadi et al. [146], the pseudo-turbulent Reynolds stress

tensor is reconstructed from the PTKE according to

R′u = 2ρk

(
b+

1

3
I
)
, (5.5)

where R′u is the Reynolds stress aligned with the local slip velocity and b is the

anisotropic stress tensor defined as

b = fα


b|| 0 0

0 b⊥ 0

0 0 b⊥

 . (5.6)

99



The component parallel to the slip velocity is given by

b|| =
a

1 + b exp(−cRep)
exp

(
d αp

1 + e exp(−fRep)

)
, (5.7)

and b⊥ = −b||/2 is the perpendicular component such that tr(b) = 0. The pseudo-

turbulent Reynolds stress tensor must be rotated to align with the Cartesian coor-

dinate system. Details on the implementation of the rotation matrix can be found

in [181]. For homogeneous, statistically stationary, incompressible gas-solid flows,

the model constants are [146] a = 0.523, b = 0.305, c = 0.114, d = 3.511, e =

1.801, and f = 0.005. In Eq. (5.7), Rep is the particle Reynolds number, which is

first computed at the location of each particle then projected to the Eulerian grid.

The Reynolds number at the i-th particle is defined as Re(i)
p = αρ|u − v(i)

p |dp/µ.

Details on the projection method are provided in Sec. 3.2.1.

It is important to note that the model for the anisotropic stress tensor was origi-

nally developed for Eulerian–Eulerian methods. A correction needs to be applied to

handle anisotropy in regions void of particles where Rep is undefined. One choice is

to set Rep = 0 away from particles. However, by inspection of Eq. (5.7), in the limit

of zero Reynolds number, the parallel component of the aligned tensor approaches

b|| → a/ (1 + b). In this work, the anisotropic stress tensor is multiplied by fα such

that it smoothly approaches zero away from particles. Thus when αp → 0, b = 0 and

the pseudo-turbulent Reynolds stress becomes isotropic.

In summary, a transport equation is introduced for the PTKE, and an algebraic

model is employed to reconstruct Ru. As a consequence, anisotropy is only predicted

in the vicinity of particles, though finite PTKE can exist away from particles. Drag

acts to produce PTKE in regions of finite slip velocity according to (up − u) ·F , and

εPT dictates its magnitude. A key aspect of the proposed PTKE modeling approach

is that it is agnostic to the drag model employed. A natural choice is to use the drag
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Conservation of mass

∂αρ

∂t
+∇ · (αρu) = 0

Conservation of momentum

∂αρu

∂t
+∇ · (α {ρu⊗ u+Ru}) = α∇ · (τ − pI) +F

Conservation of energy

∂αρE

∂t
+∇ · (αu {ρE + p}+ αu · {Ru − τ})

= −α∇ · q − (pI− τ ) : ∇ (αpup) + up ·F +Q

Pseudo-turbulent kinetic energy

∂αρk

∂t
+∇ · (αρuk) + αRu : ∇u = (up − u) ·F − αρεPT

Table 5.1: A summary of gas-phase volume filtered equations of motion.

correlation proposed by Tenneti et al. [233] to close F , since it is based on the the

same DNS data used to develop the anisotropic stress model in [146]. However, the

drag model of Tenneti et al. [233] is only valid when Rep / 300. For the shock particle

interactions considered here, Rep is found to exceed 1000. In our previous work [211],

we showed that the drag correlation of Gidaspow [69] yields the best results during

shock-particle interactions of moderately dense systems due to the volume fraction

and high Reynolds number corrections. While new Mach number-dependent drag

laws valid in high volume fraction regimes are needed, the drag model proposed by

Gidaspow [69] is adopted in the present study. Details on the drag implementation

will be provided in Sec. 3.1.2.
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5.3.2 Discretization of the volume-filtered equations

5.3.2.1 Gas-phase description

The volume-filtered equations of motion summarized in Table 5.1 are discretized

using the same high-order, energy-stable methods presented in Sec. 5.2.2. To avoid

spurious oscillations near particles that may arise even when the flow field is at rest,

the volume fraction must be removed from the conserved variables prior to adding

dissipation, i.e., the SBP dissipation is based on high-order derivatives of ~Q/α. Here,

~Q = [αρ, αρu, αρE]T is the vector of conserved gas-phase variables.

5.3.3 Verification – a converging-diverging nozzle

Verification of the VF-EL framework is conducted in the context of a one-dimensional

converging-diverging nozzle. In this example, the area change is a consequence of the

local change in volume fraction. Particles are placed within a length L with varying

spacing such that the area change due to the corresponding volume fraction distri-

bution is approximately Gaussian. The volume fraction distribution is centered in

a domain of size Lx = 5.12L. The gas-phase density, velocity, and pressure are ini-

tialized with post-shock conditions for a shock Mach number of Mas = 1.66, given

by (ρ, u, p) = (2.131, 0.881, 2.177). An analytic solution for the resulting pressure

profile can be found in Liepmann and Roshko [123].

Two methods are employed to define the volume fraction field. First, the volume

fraction is prescribed analytically as a smoothly varying Gaussian function with a

standard deviation of L/4 and maximum value of 0.08. (see Fig. 5.8(a)). These

parameters were chosen such that the minimum nozzle area is below the critical area

for a choked flow. In the second approach, Lagrangian particles are used to generate

the volume fraction field according to Eq. (3.15) to test the convergence of the two-

way coupling scheme. In this approach, particles with diameters dp = 1.0×10−3L are
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spaced such that the volume fraction distribution resembles the Gaussian distribution

employed in the first approach. Two interphase filter sizes are considered for this

example, δf = 0.1L and δf = 0.2L.

A grid refinement study is performed by varying the grid spacing 0.3 ≤ ∆x/dp ≤

40 and the simulations are run until they reach steady state. As shown in Fig. 5.8(b),

convergence of the steady-state pressure field towards the analytic solution is achieved

in both approaches. When the volume fraction is prescribed, the L2 error norm con-

verges with 5-th order accuracy, consistent with the SBP-SAT discretization described

in Sec. 5.2.2. Although lower convergence is observed when the volume fraction is

generated from the two-way coupling scheme, the two-step filter ensures the solution

converges to the analytic result even when ∆x < dp. The reduction in convergence

when Lagrangian particles are considered is a consequence of the ADI scheme used

in the implicit filtering operation. The convergence rate also depends on the smooth-

ness of the volume fraction field, as seen when the value of δf is varied. Employing

higher-order filters or mollification kernels can be used to improve the convergence

rate, albeit at a higher cost.

5.3.4 Modeling PTKE in a two-dimensional shock-particle configuration

In this section, VF-EL simulations are compared against the two-dimensional

particle-resolved simulations reported in Sec. 5.2. A shock with a Mach number

Mas = 1.66 interacts with stationary particles using the same particle distribution

employed in the DNS. The ratio of particle-to-fluid heat capacity is Cp,p = 0.8375,

corresponding to soda-lime particles in air. The integral length scale appearing in the

dissipation model (5.3) is taken to be L = dp. A domain is discretized using a uniform

grid of size 263 × 36–approximately 20 times smaller in each direction compared

to the DNS–such that there are approximately two points across the diameter of

each Lagrangian particle. The filter size is taken to be δf = 4dp, however, the
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(a) Numerical solution of the gas-phase pressure at
steady state normalized by the ambient pressure p∞
(#) with a prescribed volume fraction (�). Analytic
solutions (—).

(b) L2 error of the pressure profile at steady state
during grid refinement using a filter size of δf = 0.1L
(N), δf = 0.2L (�), and a prescribed volume fraction
field (•).

Figure 5.8: Verification of a converging-diverging nozzle.
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Figure 5.9: Power-law fit of the coefficient appearing in the dissipation model (5.3)
to the two-dimensional simulations. Values extracted from DNS (•) and
Cf = 52ϕ1.5

p ( ).

results reported here remain relatively unchanged for 2 ≤ δf/dp ≤ 8. Finally, we

note that the coefficients used in the anisotropy model (5.5)–(5.7) were derived for

three-dimensional flows. Using this model in two dimensions yields negative normal

components of the Reynolds stress tensor. Thus, in this section, Ru is taken to

be isotropic. The efficacy of the anisotropic model will be assessed in the following

section.

A key parameter appearing in the coupled set of volume filtered equations (sum-

marized in Table 5.1) is Cf from the PTKE dissipation model (5.3). It was found

that Cf = 0.25, 5.0, and 15.0 yields the best agreement in PTKE for ϕp = 0.04, 0.21,

and 0.44, respectively. This dependence on volume fraction is expected, since wakes

interact more strongly with each other and the particles as ϕp increases. Based on

these results, a power-law fit was obtained for Cf (see Fig. 5.9) according to

Cf ≈ 52ϕ1.5
p . (5.8)

This dependency will change in three dimensions, and also depend on the shock
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Mach number and drag model employed (see Sec. 5.3.5). We note that coarser grid

resolutions and larger filter sizes were found to have negligible effects on the values

of Cf .

Overall good agreement can be observed in the prediction of PTKE between the

model and DNS (see Fig. 5.10). For a fixed value of Cf , VF-EL captures the mag-

nitude and distribution of PTKE over the time horizon considered. It should be

noted that the bi-modal behavior observed in the DNS at early times is a result of

the transmitted and reflected shocks. Because this sub-filtered contribution is purely

hydrodynamics, i.e., it would appear even in the absence of particles, it should not be

expected to be captured by the PTKE model. It is notable that the model is capable

of predicting PTKE within the particle curtain as well as downstream in regions void

of particles.

A comparison between the spatial distribution of PTKE is shown in Fig. 5.11

corresponding to the conditions reported in Fig. 5.10(e). Despite a factor of approx-

imately 400 reduction in grid resolution, VF-EL captures the main features of the

spatial distribution exceptionally well. Any discrepancy seen between DNS data and

VF-EL can be attributed to the unresolved contributions of sub-filtered terms, which

were lumped into εPT , and by neglecting anisotropy.

As mentioned in Sec 5.2.5, neglecting the effect of PTKE will systematically act to

over-predict the local pressure and as a consequence may result in errors in the local

Mach number. As shown in Fig. 5.12, the instantaneous fields reveal under-predictions

in Mach number when VF-EL is performed without the PTKE model. The maximum

local Mach number is located near the downstream edge of the particles with a value

of approximately Ma = 0.63 when PTKE is accounted for and Ma = 0.61 when

PTKE is neglected. While the magnitudes are relatively close, the distribution of

Mach number differs, namely at the downstream edge of the particles where choking

followed by supersonic expansion was observed in the DNS.
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(a) ϕp = 0.04, t = 0.334 (b) ϕp = 0.04, t = 1.334 (c) ϕp = 0.04, t = 2.334

(d) ϕp = 0.21, t = 0.334 (e) ϕp = 0.21, t = 1.334 (f) ϕp = 0.21, t = 2.334

(g) ϕp = 0.44, t = 0.334 (h) ϕp = 0.44, t = 1.334 (i) ϕp = 0.44, t = 2.334

Figure 5.10: Comparison of PTKE from filtered DNS ( ) and VF-EL ( ) with
δf = 4dp. Coefficients of Cf = 0.25, 5.0, and 15.0 were used for
ϕp = 0.04, 0.21, and 0.44, respectively. The shaded region ( ) indi-
cates particle location.

(a) Filtered DNS (b) VF-EL

Figure 5.11: Instantaneous snapshot of PTKE from the two-dimensional VF-EL with
ϕp = 0.21 at t = 1.334.
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(a) VF-EL without PTKE (b) VF-EL with PTKE

Figure 5.12: Instantaneous snapshot of local Mach number from the two-dimensional
VF-EL with ϕp = 0.21 at t = 1.334.

Mas Shock Mach number 1.22 1.66 3.00
ρ1 Post-shock density 1.376 2.131 3.857
p1 Post-shock pressure 1.121 2.177 7.381
u1 Post-shock velocity 0.334 0.881 2.222

ϕp Mean volume fraction 0.10 0.19
Np Number of particles 200 400

DNS [152] VF-EL
Grid Resolution ∼ 16− 18× 106 131× 10× 10

tetrahedral cells

Table 5.2: Parameters used in the three-dimensional shock-particle simulations. All
simulations are performed with pre-shock conditions of ρ2 = 1, p2 = 0.714,
and u2 = 0. VF-EL is performed with δf = 4dp and ∆x = dp. Further
details on the DNS can be found in Mehta et al. [150, 151, 153, 152].

5.3.5 Modeling PTKE in a three-dimensional shock-particle configura-

tion

In this section, the results obtained from VF-EL are compared against the three-

dimensional particle-resolved simulations of Mehta et al. [152]. Simulations are per-

formed for three shock Mach numbers: Mas = 1.22, 1.66, and 3.00, and two mean

particle volume fractions: ϕp = 0.10 and 0.19. Particles of size d?p = 100 µm are ran-

domly distributed over a length of L∗ = 1.7 mm in a shock tube with a cross section

of L?y × L?z = 0.8 mm × 0.8 mm. Particles are taken to be stationary with the same
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(a) ϕp = 0.10, Mas = 1.22 (b) ϕp = 0.10, Mas = 1.66 (c) ϕp = 0.10, Mas = 3.00

(d) ϕp = 0.19, Mas = 1.22 (e) ϕp = 0.19, Mas = 1.66 (f) ϕp = 0.19, Mas = 3.00

Figure 5.13: Averaged ρk = tr(Ru)/2 obtained from DNS [152] ( ) and VF-EL
( ) as a function of Mach number and volume fraction. Mas = 1.22
evaluated at t = 0.818, Mas = 1.66 at t = 0.620, and Mas = 3.00 at
t = 0.237. The shaded region ( ) indicates particle location.

material properties described in the previous section. A uniform grid is employed in

VF-EL such that ∆x = dp with δf = 4dp. The integral length scale appearing in the

dissipation model (5.3) is taken to be L = dp. A summary of the simulation param-

eters can be found in Table 5.2. It should be noted that the plots are normalized

by post-shock conditions, which vary for different shock Mach numbers. Due to the

availability of DNS data, comparisons are only performed at early times prior the

transmitted shock passing through the particle suspension.

In order to accurately predict the distribution of pseudo-turbulent Reynolds stresses,

appropriate values of Cf must be chosen. The values of Cf are determined by finding

the best fit for ρk = tr(Ru)/2 (see Fig. 5.13). Even with O(103) reduction in resolu-

tion compared to the DNS, the PTKE predicted by VF-EL exhibits overall excellent

agreement with the DNS for the range of shock Mach numbers and volume fractions
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(a) ϕp = 0.10, Mas = 1.22 (b) ϕp = 0.10, Mas = 1.66 (c) ϕp = 0.10, Mas = 3.00

(d) ϕp = 0.19, Mas = 1.22 (e) ϕp = 0.19, Mas = 1.66 (f) ϕp = 0.19, Mas = 3.00

Figure 5.14: Components of the pseudo-turbulent Reynolds stress obtained from
DNS [152] (symbols) and VF-EL (lines) as a function of Mach number
and volume fraction. Mas = 1.22 evaluated at t = 0.818, Mas = 1.66
at t = 0.620, and Mas = 3.00 at t = 0.237. DNS Ru(1, 1) ( ),
DNS (Ru(2, 2) + Ru(3, 3))/2 ( ), VF-EL Ru(1, 1) ( ), and VF-EL
(Ru(2, 2) + Ru(3, 3))/2 ( ). The shaded region ( ) indicates particle
location.
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Figure 5.15: Coefficient appearing in the dissipation model (5.3) for three-dimensional
simulations. Values extracted from ϕp = 0.10 (�) and ϕp = 0.20 ( ).
Power-law fits for ϕp = 0.10 ( ) and ϕp = 0.19 ( ) given by Cf =
150Ma−10

s + 83ϕp − 2.

under consideration. Perhaps surprisingly, the largest discrepancies are observed in

the lowest Mach number case. In addition, the algebraic model used to reconstruct

the separate components of the pseudo-turbulent Reynolds stress is able to predict

the level of anisotropy reasonably well, despite it being developed for incompressible

flows (see Fig. 5.14). In general, the Reynolds stresses increase with increasing volume

fraction and shock Mach number.

As was seen in the two-dimensional simulations, Cf increases with increasing vol-

ume fraction. The magnitude of the Reynolds stresses were found to be smaller in

three dimensions, consistent with previous work [152], and consequently the magni-

tude of Cf is larger. Here, it was found that Cf increases with decreasing shock Mach

number according to Cf = 150Ma−10
s + 83ϕp− 2. (see Fig. 5.15). This could indicate

that contributions that are lumped into the dissipation model are more significant at

lower shock Mach numbers relative to the drag production term.

As noted earlier, the drag correlation of Gidaspow [69] was used due to its ap-

plicability at high Reynolds numbers and volume fractions. The effect of different
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drag correlations on the pseudo-Reynolds stresses are reported in B.3. It is found

that the modeling coefficient, Cf , changes with drag law; however, the distribution of

Reynolds stresses remain unchanged. Further analysis is required to model Cf over

a wider range of conditions. For example, based on the work of Osnes et al. [171],

Cf will also likely depend on dp. In conclusion, given an adequate model for Cf , the

transport equation proposed here is capable of accurately predicting the distribution

of PTKE (irrespective of the drag law employed). In the present work, Cf was fit

to particle-resolved simulations of stationary particles, and is thus limited to appli-

cations of fixed particles under the volume fractions and Mach numbers considered

here. Future work is needed to extend this approach to include a physics-based model

for dissipation.

5.4 Conclusions

In this work, we extend the volume-filtered formulation of Anderson and Jackson

[6] to compressible two-phase flows. It was demonstrated that the energy equation

requires special consideration. In particular, it is shown that alternative approaches

can be taken during the derivation, resulting in different closure problems. A key

outcome of the volume-filtered formulation is the appearance of the pseudo-turbulent

kinetic energy (PTKE) in the state equation for pressure. It was shown that PTKE

acts to systematically reduce the gas-phase pressure, and consequently increase the

local Mach number.

Particle-resolved simulations of shock-particle interactions were performed to quan-

tify the relative importance of unclosed terms via an a posteriori filtering approach

consistent with the volume-filtered formulation. The relative importance of the un-

closed terms appearing in the equations were shown to depend on the discretization

employed, quantified by varying the filter size, δf . For sufficiently large filter sizes,

(δf > 4dp), the majority of velocity fluctuations reside at the sub-filter scale. In
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general, PTKE was seen to depends on both δf and volume fraction. It was demon-

strated that the PTKE dependence can be collapsed to a Knudsen number based on

the mean inter-particle spacing.

A transport equation for the PTKE was then derived, which contains a production

term proportional to the local drag force and slip velocity magnitude, and a dissipation

rate that requires closure. Dissipation was modeled using an integral length scale

proportional to the particle diameter in addition to a velocity scale that depends on

the local slip velocity when particles are present and the square of PTKE in regions

void of particles. An algebraic model was employed to reconstruct the components

of the pseudo-turbulent Reynolds stress.

The volume-filtered equations of motion were implemented within a high-order

Eulerian–Lagrangian framework that admits convergence under grid refinement. A

constant appearing in the dissipation rate was fit over a range of volume fractions

and Mach numbers in both two-dimensional and three-dimensional shock-particle

configurations. The Eulerian–Lagrangian approach was shown to be capable of pre-

dicting the distribution of pseudo-turbulent Reynolds stresses with the correct level

of anisotropy.

In summary, the present study provides a framework to develop new models, be-

yond traditional ensemble averaging. While the present work focused on stationary

particles, new models are needed to incorporate the effect of PTKE on particle dis-

persion. With the increasing availability of particle-resolved simulation data coming

online (e.g., [238, 152, 171]), further improvements to the model can be made.
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CHAPTER VI

Eulerian–Lagrangian Simulations of Plume-Surface

Interactions

6.1 Introduction

The ejection of granular matter by rocket plumes during planetary landing poses

serious challenges to future space missions. During landing, rocket exhaust can inter-

act with a planetary surface, otherwise known as plume-surface interactions (PSI).

These events lead to flow induced stresses which lift and eject loose granular mat-

ter [148]. Subsequent particle ejections can result in serious damage by colliding with

the spacecraft, inhibit visibility, and spoof sensors during landing [24, 166]. To char-

acterize and model this phenomenon, experimental and numerical studies have been

performed on granular beds. See Chapter I for details and findings related to PSI.

Over the years, a myriad of studies have been performed for single-phase com-

pressible jet impingement [216, 37, 101, 116, 112, 77, 253, 139]. These works typically

involve sonic and supersonic jets impinging on a flat surfaces; however, other geome-

tries for the impinging wall are also considered. This includes but is not limited

to concave and convex surfaces [216, 139], inclined planes [216, 116], wedges [115],

and conical shapes [96]. These studies are performed to determine the effect of sur-

face geometry during impingement such as variations flow structures and changes in
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surface pressure distributions. Generally, it is found that coherent near nozzle struc-

tures can be described by inviscid flow behavior [96]; however, near wall variations

are influenced by boundary layer development [115] and the presence of geometric

obstacles [216].

Visualization, methods like shadowgraph and Schlieren imaging are typically used

to provide information on the presence of compressible flow structures. For detailed

flow analysis, particle image velocimetry (PIV) [112, 77] has been used to capture

velocity fluctuations for different impingement heights. When combined with acoustic

measurements, it is found that coherent tone production is dependent on impingement

height and nozzle conditions. Other methods like planar laser-induced florescence

(PLIF) [253] are used to capture compressible flow structures in vacuum conditions.

This technique provides clarity regarding variations in surface pressure measurements

during impingement where distribution variations, or lack thereof, depend on jet

conditions and impingement height. While out of the scope of this work, high quality

reviews also exist for incompressible gas phase [138, 95, 248] and fluid phase [252]

impingement for the interested reader.

In this chapter, simulations are performed for jet impingement on flat surfaces

and a granular bed. To start, the numerical methods are introduced. This includes

references to the immersed boundary method as well as guidance to set up initial

conditions for the nozzle geometry. Following, numerical simulations of single-phase

jet impingement are performed. Comparisons are made against experimental se-

tups with different impingement heights and nozzle pressure ratios (NPR), defined as

the ratio between stagnation pressure and ambient pressure. First, comparisons are

made against the digital particle image velocimetry (DPIV) data presented in [77].

This includes information on centerline velocity as well as mean velocity magnitudes

of the impinging jet. Second, surface pressure values are compared to the results

from Snedeker et al. [216]. After performing validation, preliminary work for jet
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impingement on granular beds is shown using the Eulerian–Lagrangian framework

presented in Chapter III.

6.2 Governing equations

6.2.1 Fluid-phase equations

The fluid phase equations of motion for conservation of mass, momentum, and

energy are as follows,

∂αρ

∂t
+∇ · (αρu) = 0, (6.1)

∂αρu

∂t
+∇ · (αρu⊗ u) = α∇ · (τ − pI) +F − ρδg

Frc
, (6.2)

∂αρE

∂t
+∇ · (αu {ρE + p} − αu · τ ) =− α∇ · q − (pI− τ ) : ∇ (αpup)

+ up ·F +Q− ρδg · u
Frc

(6.3)

where the equation of state is given by,

T =
γp

(γ − 1)ρ
and p = (γ − 1)

(
ρE − 1

2
ρu · u

)
. (6.4)

Due to non-dimensionalization, the effects of gravitational acceleration is implemented

in terms of Froude number based off of the reference speed of sound, given by Frc =

c? 2
∞ /(g

?L?), where g? is the dimensional acceleration due to gravity. The direction

of gravity is defined by δg which acts in the positive x-direction, or δg = [1 0 0]ᵀ.

Gravitational effects are neglected for single-phase jet impingement cases.

6.2.2 Particle-phase description

The complete description and implementation of the particle phase transport

equations can be found in Section 3.1.2. For the described particle simulation, the im-

plementation has been extended to account for additional particle forces and rotation.
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The particle equations of motion are given by

dx
(i)
p

dt
= v(i)

p , (6.5)

mp
dv

(i)
p

dt
= Vp∇ · (−pI + τ ) + f

(i)
drag + f

(i)
col + f (i)

g + f
(i)
lift, (6.6)

and

Ip
dω

(i)
p

dt
=
∑
j

dp
2
nij × f col

t,j→i, (6.7)

where x
(i)
p , v

(i)
p , and ω

(i)
p are the i-th particle position, velocity, and angular velocity

respectively. Other quantities include the particle mass mp, the moment of inertia

for a sphere given by Ip = mpd
2
p/10, and nij the outward normal vector from particle

i to particle j.

In Eq. (6.6), force contributions include resolved stresses, drag f
(i)
drag given by

Eq. (3.7), collisions f
(i)
col, the force of gravity, f (i)

g , and lift, f
(i)
lift. The force due to

gravitational effects is given by f (i)
g = m

(i)
p ρδg/Frc. Lift contributions are modeled

using an extension to the traditional Saffman lift [200], proposed by McLaughlin et al.

[145]. This is given by

f
(i)
lift =

9.69
√
ρµ

πρpdp

(u− v(i)
p )× ω√
|ω|

, (6.8)

where ω = ∇× u is the vorticity. As was previously mentioned in Section 3.1.2, the

particle equations are non-dimensionalized using the same reference quantities for in

Eqs. (2.1)–(6.4). Note that the additional lift force leads to a modification to the

projection of interphase momentum exchange, F , from Eq. (6.9) and work due to

interphase momentum exchange, up ·F , from Eq. (6.10). These modified expressions

are given by,

F = −
Np∑
i=1

G
(
|x− x(i)

p |
) (
f

(i)
drag + f

(i)
lift

)
(6.9)
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and

up ·F = −
Np∑
i=1

G
(
|x− x(i)

p |
)
v(i)
p ·
(
f

(i)
drag + f

(i)
lift

)
. (6.10)

Normal and tangential collisions are treated using the soft-sphere model proposed

by Cundall and Strack [47] and expanded for high speed collisions in Capecelatro and

Desjardins [34]. For notation, see Fig. 6.1. As two particles come in contact a force

is created given by,

f col
n,j→i =

 −kδijnij − ζvij,n if s < 0,

0 else,
(6.11)

where s is the distance between the particle surfaces, δij is the overlap between the

particles, nij is the unit normal vector from particle i to particle j and vij,n is the

normal relative velocity between particles i and j. The spring stiffness and damping

parameter are given by k and ζ, respectively. A model for the damping parameter [47]

uses a coefficient of restitution 0 < e < 1 such that

ζ = −2 ln e

√
kmp/2√

π2 + (ln e)2
. (6.12)

The spring stiffness is related to the collision time, τcol, according to

k = mp/2τ
2
col

(
π2 + (ln e)2) . (6.13)

For the purposes of this work a coefficient of restitution of e=0.85 is used. To resolve

the collisions, τcol is set to be 30 times the simulation time step ∆t for the presented

simulation.

The rotation of each and every particle is tracked using Eq. (6.7) and is a con-

sequence of tangential collisional forces, f col
t,j→i. To account for friction between par-

ticles, a static frictional model for the tangential component of the collision force is
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Figure 6.1: Diagram of inter-particle collisions. Image was adapted from Capecelatro
and Desjardins [34] and modified for the presented notation.

employed,

f col
t,j→i = −µf

∣∣f col
n,j→i

∣∣ tij, (6.14)

where µf = 0.1 is the coefficient of friction and tij is the tangential unit vector.

Once each individual collision force is computed, the full collision force that particle

i experiences can be expressed as

f
(i)
col =

∑
j 6=i

(
f col
n,j→i + f col

t,j→i
)
. (6.15)

For additional details on the equations and implementation for inter-particle colli-

sions, refer to Capecelatro and Desjardins [34].

6.3 System description

See Fig. 6.2 for an example of the simulation setup. For all cases, domain size is

varied by the impingement height whereby Lx×Ly ×Lz = (hx +h)× 40DN × 40DN ,
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where h and hx are the total nozzle length and impingement height respectively.

Grid stretching is used such that a uniform resolution of DN/∆x = 40 is present in

a region of x × y × z = (hx + h) × 10DN × 10DN surrounding the nozzle. Past this

region, the grid resolution in the y- and z-directions slowly transitions to DN/∆x = 4.

Simulations are performed in air, whereby the ratio of specific heats is γ = 1.4.

The impinging surface for single-phase studies is simulated using an immersed

boundary with no-slip, no-penetration boundary conditions on velocity and Neu-

mann conditions on scalars. Farfield conditions with sponge zones are applied at the

remaining the boundaries.

For jet impingement on a granular bed, a slip-boundary condition is used for

the impinging surface while farfield conditions with sponge zones are applied to re-

maining boundaries. For the disperse phase, dp = 0.015748 monodisperse particles,

corresponding to a dimensional diameter of 400µm, are used. These particles have a

density ratio of ρp/ρ = 2520 with a filter size of δf = 4 dp. Interphase heat transfer is

used, whereby Cp,p = 0.8375. Drag is modeled using the Gidaspow correlation with

the corresponding volume fraction correction [69].

To generate the granular bed, particles are uniformly distributed in a domain with

a mean volume fraction of φp = 0.40. After settling under gravity, with Frc = 472448,

which corresponds to the gravitation on Earth, the particles reach closed packing

with a volume fraction of φp = 0.63 and a bed height of hb/DN ≈ 1. At this point,

the ∼ 27.6 million particle bed is used in the simulation.

6.4 Numerics

To simulate the single-phase impinging jet and multi-phase PSI, a fourth order

centered finite difference scheme is used in combination with SAT boundary condi-

tions. A description of the implementation is included in Section 3.2 and further

comments on the scheme can be found in Vishnampet Ganapathi Subramanian [247].

120



Figure 6.2: Nozzle configuration for jet impingement.

For added nonlinear stability under low Mach number regimes and local kinetic en-

ergy preservation, a skew-symmetric-type splitting scheme is applied to the inviscid

flux. Details can be found in Pirozzoli [188]. Here, this splitting method is extended

to particle-laden flows through the addition of volume fraction, given by

∇ · (αρuϕ) =
1

2
∇ · (αρuϕ) +

1

2
ϕs∇ · (αρu) +

1

2
αρu · ∇ϕ, (6.16)

where ϕ is a general scalar which is equal to unity for the continuity equation, u for

the momentum equation, and H = E + p/ρ for the energy equation. To account for

large discontinuities, i.e. in the presence of shocks, localized artificial dissipation is

added [45, 136, 26]. Details on the artificial dissipation implementation can be found

in Yao et al. [256].

6.4.1 Nozzle geometry and initial conditions

To simulate the nozzle geometry, the CBVP approach proposed in Chapter IV is

used. See Eqs. (4.8) - (4.10) for the equations of motion for the described method.

These equations allow for the application of no-slip and no-penetration conditions on

velocity and Neumann conditions on scalars. Here all contributions apart from the
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unsteady term in Eqs. (6.1) - (6.3), account for the RHS terms. For this study a

sharp immersed boundary interface, with ε = 0, is used.

Figure 6.3 shows a schematic of the converging nozzle considered in the present

work. The nozzle shape is analytically defined using a levelset function. This provides

information of the nozzle’s surface, the local unit normal vector field, and surface

curvature required for the described immersed boundary method. Additional details

can be found in Section 4.3. Initial conditions for the interior of the nozzle are

calculated based on the area relations for Mach number and pressure ratio given by,

(
Ain
A∗

)2

=
1

Main
2

[
2

γ + 1

(
1 +

γ − 1

2
Main

2

)](γ+1)/(γ−1)

, (6.17)

and

A∗

Ain
=

[
1−

(
pin
po

)(γ−1)/γ
]1/2 (

pin
po

)1/γ

(
γ−1

2

)1/2
(

2
γ+1

)(1/2)(γ+1)/(γ−1)
. (6.18)

Here, the subscripts ‘o’ and ‘in’ indicate stagnation and inlet conditions respectively

while the superscript ‘∗’ indicates exit conditions for a critical choked area. Using

the described nozzle geometry, where the the inlet (Ain = πD2
in/4) and exit (A∗ =

πD2
N/4) cross sectional areas are known, one can solve for the corresponding inlet

Mach number, Main, and pressure ratio, pin/po. The associated temperature, pressure,

and density for the inlet are found using isentropic relations. The inlet velocity is

then calculated via Mach number given by,

uin =

√
γpin
ρin

Main. (6.19)

The flow quantities for the inlet are initialized on the interior bore of the nozzle from

x = 0 to x = hs, where hs is the straight length of the nozzle, and radially from r = 0

to r = ±Din/2. Upon starting a simulation, these conditions are allowed to develop
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Figure 6.3: Nozzle geometry used for analytical levelset information.

in the nozzle leading to a sonic exit condition.

6.5 Single-phase jet impingement validation

In this section numerical simulations of under-expanded jet impingement are per-

formed on flat plates for different NPR and impingement heights. Simulation results

are compared to data in literature for validation purposes. This includes comparisons

against mean velocity magnitude and centerline velocity data from Henderson et al.

[77] and impingement surface pressure measurements from Snedeker et al. [216]. A

constant CFL = 0.5 is used to govern the timestep size for the following cases.

6.5.1 Mean velocity magnitude and centerline velocity comparison

In Henderson et al. [77], digital particle imaging velocimetry (DPIV) and shadow-

graph imaging are used to study jet impingement. For all cases, a nozzle with a 30◦

converging section and a dimensional exit diameter of D∗N = 25.4 mm is used. This
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exit diameter is taken as the reference length scale, resulting in non-dimensional exit

diameter equal to unity. For simulations, the following nozzle geometry parameters

are used; Din = 2.2547, DN = 1.0, h = 1.5, hs = 0.5, and Tw = 0.5. See Fig. 6.3

for a reference nozzle geometry. Three impingement heights are considered in this

exercise; hx/DN = 2.08, hx/DN = 3.65, and hx/DN = 4.16. Using the equations

described in Section 6.4.1, the non-dimensional exit pressure, temperature, and ve-

locity for a NPR = 4.03 sonic nozzle are given by p∗ = 1.5207, T ∗ = 2.0833, and

u∗ = 0.9129 respectively. Under the described conditions, the reference Reynolds

number is Rec = 577003. Simulations are run until steady state, approximately 20

flow through times. Following, data is averaged to compare against experimental

results.

For an impingement height of hx/DN = 2.08, contours of mean velocity magni-

tudes are shown in Fig. 6.4(a). Results match well when compared to experimental

data with minor differences emerging at Mach disk and near-wall region. For the cor-

responding centerline velocity plots, shown in Fig. 6.4, results agree from x/DN = 0

to x/DN = 1. Following the formation of the Mach disk at x/DN = 1, there are no-

ticeable over- and under-predictions in velocity which persist for long time averages.

This leads to the lack of the recirculation behavior that is described in Henderson

et al. [77]. A similar trend exists for larger impingement heights. The velocity magni-

tude plots, shown in Figs. 6.4(b) and 6.4(c), match experimental data for near nozzle

behavior; however, differences in contours emerge near the impinging surface. The

same holds for the mean centerline velocity plots for the larger impingement heights,

shown in Figs. 6.5(b) and 6.5(c).

Compared to hx/DN = 2.08, numerical simulations with hx/DN = 3.65 and

hx/DN = 4.16 are extremely oscillatory. This behavior leads to errors associated with

velocity measurements and the absence of recirculation for all simulations. That being

said, all cases apart from hx/DN = 4.16 were described to be “unsteady” in Henderson
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(a) hx/DN = 2.08 (b) hx/DN = 3.65 (c) hx/DN = 4.16

Figure 6.4: Mean velocity magnitude contours for (a) hx/DN = 2.08, (b) hx/DN =
3.65, and (c) hx/DN = 4.16 with NPR = 4.03, D/∆x = 40, and a
lip thickness of 0.5D. Results on the left of each image are the time-
averaged numerical results while results on the right are images courtesy
of Henderson et al. [77].

et al. [77]. Because there is a large emphasis on acoustic analysis in Henderson et al.

[77], this distinction is believed to be linked to the radiated pressure waves and not

necessarily the oscillatory nature of the flow itself. As a result, additional cases are

required to evaluate the behavior of the jet for future work.

6.5.2 Surface pressure comparison

In Snedeker et al. [216], Schlieren imaging and impingement surface pressure mea-

surements are analyzed for a wide range of NPR and impingement heights. For this

case, a converging nozzle with a dimensional exit diameter of D∗N = 0.511 in is used.

As previously described, this dimensional exit diameter is used as the reference length

scale resulting in a reference non-dimensional exit diameter equal to unity. The nozzle

is simulated using the following nozzle geometry parameters; DN = 1.0, Din = 3.333,
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(a) hx/DN = 2.08 (b) hx/DN = 3.65

(c) hx/DN = 4.16

Figure 6.5: Mean centerline velocity plots for (a) hx/DN = 2.08, (b) hx/DN = 3.65,
and (c) hx/DN = 4.16 with NPR = 4.03. Numerical data is indicated by
( ) while experimental data from Henderson et al. [77] is indicated by
( ).
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h = 1.5, hs = 0.5, and Tw = 0.5. See Fig. 6.3 for a reference nozzle geometry.

For this work, normalized surface pressure measurements are compared to exper-

imental data for NPR = 2.69 and impingement height of hx/DN = 1.96. For a

pressure ratio of NPR = 2.69, the non-dimensional exit pressure, temperature, and

velocity conditions for a sonic nozzle are given by p∗ = 1.0144, T ∗ = 2.0833, and

u∗ = 0.9129 respectively. Given the described parameters, the reference Reynolds

number is Rec = 294849. Simulations are run until steady state, approximately 20

flow through times. Following, average radial statistics compare against experimental

data.

Mean radial pressure statistics are included in Fig. 6.6. The normalized pressure

profiles for r/rN < 2 match well with results presented in Snedeker et al. [216].

For larger radii, predictions agree with experimental measurements; however, slight

oscillations are observed between r/rN = 2 and r/rN = 4. This is believed to be

due to radiated pressure waves during the time averaging procedure. Compared to

the study from Section 6.5.1, the flow is not observed to be as oscillatory. Overall,

these simulation results are promising and reveal that near-wall pressure behavior is

captured for lower pressure ratios.

6.6 Multi-phase PSI

In this section, a numerical simulation of multiphase PSI is performed to demon-

strate the capabilities of the described framework. See Fig. 6.7 for an example visual-

ization of the case being considered. A domain of Lx×Ly ×Lz = 4.65DN × 40DN ×

40DN is used with an impingement height of (hx − hb)/DN = 3.65 and a pressure

ratio of NPR = 4.03. The ambient gas is assumed to be air where the ratio of specific

heats is γ = 1.4. The simulation setup and flow conditions are consistent with those

described Section 6.5.1. To ensure particle collisions are properly resolved, a constant

timestep size of ∆t = 0.003 is used which leads to a CFL condition of CFL ≈ 0.5.
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Figure 6.6: Mean noramlized surface pressure plot for hx/DN = 1.96 and NPR = 2.69
for normalized radius, where rN is the nozzle radius. Numerical data is
indicated by ( ) while experimental data from Snedeker et al. [216] is
indicated by ( ).

Figure 6.7: Sonic jet impingement on a granular bed with NPR = 4.03, (hx −
hb)/DN = 3.65, and hb = 1 at time, tDN/u

∗ = 55.32. The flow is
colored by local Mach number while an iso-surface of volume fraction is
included for α = 0.6 to show the presence of the granular bed.
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6.6.1 Joint probability density functions of particle volume fraction ver-

sus Mach and Reynolds number

Regimes of particle motion can be defined by particle Mach number, particle

Reynolds number, and particle volume fraction. The particle Mach and Reynolds

number based on the virtual slip velocity are given by, Map = α(i)|v(i)
p − u(i)|/c, and

Reynolds number, Rep = ρ(i)α(i)|v(i)
p − u(i)|dp/µ where α(i), ρ(i), and u(i) are the

fluid volume fraction, density, and velocity interpolated to the i-th particle. By using

a joint probability density function (jPDF), it is possible to show the regimes that

dominate PSI events [16]. Here the procedure described by Balakrishnan and Bellan

[16] to calculate jPDF’s is extended to individual particle motion. In this study the

quantities of interest, including particle Mach number, Reynolds number, and volume

fraction are stored at the Lagrangian particle position for a single time instant and

are used to in the jPDF algorithm. For plotting purposes the log of the jPDF field

is taken, given by log(jPDF + εm) where εm is machine epsilon. Data is plotted at a

non-dimensional time of tDN/u
∗ = 55.32. Regions of red show high probability while

regions of blue show low probability.

The jPDF of particle Mach number versus particle volume fraction is shown in

Fig. 6.8(a). The regions of high probability exist for large particle volume fractions,

around αp = 0.6 with Map < 0.1, and αp < 0.5 around Map = 0.2. This shows that

particles that are in denser concentrations or closed packing experience lower Mach

numbers or remain stationary in the bed. Alternatively there are rare occurrences

when particles are in the presence of lower volume fractions at higher Mach numbers,

which are likely ejection events. For these instances, particles can be traveling in

excess of Map = 1. A similar trend exists for both the jPDF’s of particle Reynolds

number versus volume fraction, see Figs. 6.8(b). There are a wide range of Reynolds

numbers experienced at lower particle volume fractions; however, higher probabilities

occur around the closed packing region of αp ≈ 0.6, where Rep ≤ 1000. The presented
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(a) (b)

Figure 6.8: (a) Maximum particle Mach number and (b) maximum particle Reynolds
number versus non-dimensional time during PSI at time tDN/u

∗ = 55.32.

results are consistent with those described in Balakrishnan and Bellan [16]; whereby,

the majority of particles during crater formation experience subsonic flow regimes.

The jPDF’s indicate regions where modeling efforts should be focused. Here, the

majority of the bed is at rest while high speed ejecta events occur at low particle

volume fractions, see Fig. 6.8. Models are relatively accurate for these cases. The

intermediate region, where 0.1 < φp < 0.4 and 0.2 < Map < 0.8 requires further

attention. Simulations of canonical flows, like shock-particle interactions from Chap-

ter V, can be used to target modeling efforts for particle motion and sub-filtered

fluid quantities under these regimes. It is important to note that these jPDF’s were

extracted from one simulation at an instant in time. Studies for different NPR and

impingement heights are required to characterize the range of operating conditions

and their temporal evolution for future modeling efforts.

6.6.2 Granular temperature

Granular temperature, Θp, represents the random uncorrelated motion of the par-

ticle phase and is an important quantity that describes fluctuation in motion. This has

applications to macroscale formulations and can be used in model fluctuations in ve-
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locity for particle forcing or as part of a closure for constitutive relations [59, 16]. Here,

the granular temperature is extracted for instances of the Eulerian–Lagrangian sim-

ulation of PSI for demonstration purposes. Since this quantity is normally discussed

and defined in terms of two-fluid formulations, care must be taken when extracting

Θp from Eulerian-Lagrangian data. First, the particle velocity data is projected to

the mesh using the same procedure described in Section 3.2.1,

αup =

Np∑
i=1

G
(
|x− x(i)

p |
)
V(i)
p v

(i)
p , (6.20)

Here, up is the Eulerian particle velocity, Np is the number of particles, G is a filtering

kernel, and Vp is the volume of the i-th particle. The local fluctuation in particle

velocity, v
′(i)
p , can then be defined in terms of the phase average given by,

v
′(i)
p = v(i)

p −
αup
α
. (6.21)

Using this quantity, the Lagrangian representation of granular temperature is given

by,

Θ(i)
p =

1

3
v

′(i)
p · v

′(i)
p . (6.22)

The same filtering procedure can be applied, providing and Eulerian representation

of granular temperature,

αΘp(x, t) =

Np∑
i=1

G
(
|x− x(i)

p |
)
V(i)
p Θ(i)

p . (6.23)

Granular temperature is calculated and its evolution is visualized for the plume

impinging on a granular surface, see Fig. 6.9 for reference. In this visualization the

granular temperature for early and late stage impingement occurs at the surface of

the granular bed. Here, particles begin to fluidize and are radially expelled from

the crater. During this process, particles in regions of high shear, where φp < 0.6,
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regularly collide with one another causing fluctuations in velocity. These particle

fluctuations lead to induced kinetic energy and thus granular temperature as described

above. Meanwhile, particles that are in submerged in the bed are stationary and

experience little to no effect from the impinging jet and therefore granular temperature

is smaller.

To comment on the contribution of granular temperature, the average speed of

particles conditioned by particle volume fraction is plotted for tDN/u
∗ = 55.32 in

Fig. 6.10. The magnitude of granular temperature, compared to the square of par-

ticle speed, is significant for particles at smaller volume fractions where the velocity

magnitude is O(10−2) for the time shown. In comparison, granular temperature is

relatively small compared to ejected particles that can reach sonic speeds, as seen

in 6.8(a). Overall, additional studies must be performed to look at the relative con-

tribution of this quantity for different flow configurations, pressure ratios, and par-

ticle densities. When significant, such data can directly inform two-fluid modeling

approaches for PSI studies and other simulations involving highly collisional flows.

In summary, local granular temperature was extracted from the PSI simulations

using the same filtering operations employed for two-way coupling. This represents

the first glimpse into the local granular temperature during cratering of granular

media, and provides useful insight for Eulerian-based two-fluid models that require

models for this quantity.

6.6.3 Vertical particle motion in the granular bed

As the jet interacts with the granular bed, particle matter is displaced during

crater formation. This can be represented by the vertical motion of the particle phase

as the crater grows larger. The described particle motion is shown through a plot of

the average vertical particle velocity versus radial position for vertical cross sections

of the domain, see Fig. 6.11. This is calculated by binning vertical and radial particle
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(a) tDN/u
∗ = 22.46 (b) tDN/u

∗ = 33.41

(c) tDN/u
∗ = 44.36 (d) tDN/u

∗ = 55.32

Figure 6.9: Granular temperature (Θp) visualized in log scale for different times. The
nozzle outline is shown in white and corresponds to the levelset φ = 0. A
volume fraction contour for α = 0.6 (teal) is also shown.

Figure 6.10: Average Lagrangian particle velocity magnitude, conditioned by volume
fraction, at tDN/u

∗ = 55.32.
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Figure 6.11: Average particle velocity in the x direction versus normalized radius in
the particle bed at tDN/u

∗ = 55.32. The particle velocity is averaged
across cross sections in the x-direction for x/DN = 3.66 (•), x/DN =
4.90 (•), and x/DN = 6.13 (•).

positions for sampling purposes. Following, the average vertical particle velocity is

calculated for respective bins. Plots are shown for vertical positions of x/DN = 3.66,

x/DN = 4.90, and x/DN = 6.13 at an instant in time, tDN/u
∗ = 55.32. The position

x/DN = 6.13 is located at the bottom of the bed where particles are stationary and

therefore have not interacted with the impinging jet. As a result, vertical velocity is

close to zero for all particles in this region. By decreasing x/DN the magnitude of

the vertical particle velocity increases. This trend shows that particles at the surface

of the bed are traveling at higher speeds which can lead to fluidization and potential

ejection events as the jet burrows into the granular matter. The described data can

be used to characterize the flux of particles during jet impingement. Experimentally,

this directly related to the qualitative data for particle mixing and motion during

jet impingement in Metzger et al. [155]; however, the present numerical technique

provides instantaneous information on particle motion in the crater as opposed to

using post-PSI measurements.
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6.7 Conclusions

In this work, validation was shown for single-phase jet impingement on flat sur-

faces for different NPR and impingement heights. Reasonable agreement was ob-

served for averaged velocity profiles and surface pressure measurements. While er-

rors were observed in near-wall velocity estimations, it was deemed reasonable to

perform a proof-of-concept simulation of plume impingement on a granular surface.

It was demonstrated that the volume-filtered formulation, compressible Eulerian–

Lagrangian method, and CBVP immersed boundary method can be used in con-

junction to simulate plume impingement on a granular bed with individual particle

tracking for the first time. Results of this study show the presence of crater formation

and ejecta phenomena during sonic jet impingement on a collection of monodisperse

particles. The jPDF’s of the Lagrangian particle information revealed that the major-

ity of particles experience subsonic speeds in the granular bed, while ejected particles

can exceed sonic speeds at high Reynolds numbers. Granular temperature was quan-

tified for crater formation for the first time. This was found to be most active, and

relatively significant, in the vicinity of the crater in regions of high shear where par-

ticles are highly collisional. Finally, particle velocity distributions were calculated.

It was observed that vertical velocity of the particle phase tends to increase with

decreasing x/DN , indicating the presence of particle fluidization and ejection at the

surface of the crater. While intuitive, temporally varying distributions can provide

information on particle fluxes which indicate the amount of granular material being

ejected during crater formation,.

This work can be extended to higher Mach flows and deeper granular beds where

violent granular erosion phenomena have been observed, see Section 1.2. In addition,

the effect of NPR on crater morphology remains an open question. Before these future

studies, modifications are required for the equations of motion and the implemented

numerical scheme.
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In summary this is an under-resolved problem. Numerically, it is not feasible to

resolve all scales associated with such high Reynolds numbers which leads to very

turbulent behavior. This combined with the highly compressible nature of the flow

leads to the formation of large discontinuities and oscillations in space. With the

described high-order centered finite difference scheme, these oscillations can grow in

time leading to the errors observed in Section 6.5.1. To make matters worse, local-

ized shock capturing schemes, like the one used for these studies, are not capable

of mitigating this behavior. Fixing this would require a reformulation of the energy

equation in combination with other schemes and/or corrections to account for higher

order conservation properties for quantities like entropy [98]. Further discussions and

corrections have been proposed for such issues [94, 215, 257]. That being said, imple-

mentation and testing of additional formulations, numerical schemes, and corrections

is considered to be future work.
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CHAPTER VII

Conclusions

7.1 Summary of achievements

The significant contribution of this work is the extension of Eulerian–Lagrangian

method to compressible flows. Particles are common in a variety of compressible

flow applications and it is intractable to resolve small scale flow structures in the

presence of dense particle concentrations. This volume filtering procedure provides a

framework grounded in first principles that extends to scales significantly larger than

the size of an individual particle. By treating particles in a deterministic manner

(i.e., each particle represents a physical particle), the compressible volume-filtered

Eulerian–Lagrangian framework can be used capture collective particle motion for

complex problems like PSI.

This work began with the derivation of the compressible form of the volume-

filtered equations of motion from first principles which revealed unclosed term contri-

bution yet to be modeled in literature. To supplement the new formulation, a frame-

work is provided to develop improved models. This includes an improved explicit

CBVP method to develop high resolution data for compressible flows past complex

geometries as well as an a posteriori filtering procedure allowing for the generation

of data consistent with the volume-filtered formulation. Using this framework, it was

demonstrated that unclosed quantities from the volume filtered formulation, includ-
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ing pseudo-turbulent kinetic energy and the pseudo-turbulent Reynolds stresses, have

non-negligible contributions in high-speed particle-laden compressible flows. Follow-

ing, a new transport equation and model for pseudo-turbulent kinetic energy is pro-

posed and demonstrated for shock-particle interactions. To conclude this work, the

CBVP immersed boundary method was combined with the compressible Eulerian–

Lagrangian method to simulate jet impingement on flat surfaces and a granular bed.

Additional details on specific achievements are provided below.

1. In Chapter I, a summary of PSI is presented along with applicable experimental

and numerical studies.

1.1. The physics of PSI is introduced along with conditions relevant for different

landing environments.

1.2. Experimental studies are discussed along with difficulties regarding mea-

surements.

1.3. Numerical methods for a various simulation methodologies, including mi-

croscale, mesoscale, and macroscale approaches, are presented in the con-

text of simulating PSI and regimes applicable to landing conditions.

2. In Chapter II, a thorough derivation of volume-filtered equations of motions is

presented for particle-laden compressible flows.

2.1. The volume-filtered equations reveal a series of unclosed terms that have

yet to be modeled in literature.

2.2. This set of equations provides a framework to develop models for future

works.

3. In Chapter III, the derived volume-filtered equations of motion are evaluated

in an Eulerian-Lagrangian method for compressible flows.

138



3.1. A parametric study is shown for two-dimensional shock particle inter-

actions, revealing reasonable agreement when compared to experimental

data.

3.2. Expanding this study to three-dimensions reveals that results heavily de-

pend on the implemented drag correlation. In addition, particle collisions

are shown to be prominent when predicting the motion of dense particle

concentrations in compressible flows.

3.3. The results reveal that improved models are required for accurate predic-

tions of particle motion in compressible flows.

4. In Chapter IV, an explicit form of the CBVP immersed boundary method is

proposed for both the Navier–Stokes and Euler equations.

4.1. As opposed to previous forms of CBVP which requires tuning parameters,

this form applies limitations to key parameters based on the underlying

discretization, such as the sound speed and time step size.

4.2. A series of verification and validation cases are performed for one-, two-,

and tree-dimensional subsonic and supersonic flows pasted immersed ob-

jects.

4.3. The resulting scheme is simple to implement in that it only requires modi-

fications to the right-hand side of the governing equations, efficient in that

it does not restrict the time step size for explicit discretizations, and is

accurate as shown through testing under steady and unsteady subsonic

and supersonic flows.

5. In Chapter V, highly-resolved data of shock-particle cloud interactions is used

to evaluate contributions of unclosed terms in the compressible volume-filtered

equations of motion.
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5.1. An a posteriori filtering approach is presented to quantify terms consis-

tent with the volume-filtered formulation.

5.2. The importance of the unclosed terms were shown to be dependent on the

underlying discretization employed, quantified by varying the filter size,

δf .

5.3. A constant appearing in the dissipation rate was fit over a range of vol-

ume fractions and Mach numbers in both two-dimensional and three-

dimensional shock-particle configurations.

5.4. The Eulerian–Lagrangian approach was shown to be capable of predicting

the distribution of pseudo-turbulent Reynolds stresses with the correct

level of anisotropy.

6. In Chapter VI, initial work for single- and multi-phase PSI simulations is shown.

6.1. Validation is performed for two different single-phase jet impingement con-

figurations. This includes (1) An NPR = 4.03 jet with impingement

heights of hx/DN = 2.08, hx/DN = 3.65, and hx/DN = 4.16 to centerline

velocity and cross sectional velocity magnitudes and (2) a NPR = 2.69 jet

with an impingement height of hx/DN = 1.96 to measure mean surface

pressure profiles.

6.2. A proof of concept case for a NPR = 4.03 jet impinging on a granular bed

of discrete particles is shown for the first time.

6.3. Data is extracted from jet impingement including jPDF’s of particle Mach

and Reynolds number versus particle volume fraction, revealing that the

majority of the particle bed experiences subsonic flow conditions at low

Reynolds numbers while ejected particles can exceed sonic Mach numbers.

6.4. Additional quantities, including granular temperature and vertical particle
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motion, are extracted from the simulation of jet impingement on a granular

bed which have direct applications to modeling for future PSI studies.

7.2 Prospectives on Future work

7.2.1 Modeling particle forces in compressible flows

In this work, significant attention was spent on formulating equations of motion

in Chapter II and modeling sub-filtered quantities in Chapter V. That being said,

particle force modeling was largely neglected due to the already vast scope of the

presented work. For accurate predictions of multi-particle motion, improved particle

force models are required for improved simulations of plume surface interactions (PSI)

described in Chapter VI.

While models for particle force, such as those presented in the BBO equation [18,

30, 170] have been used for decades, their form can introduce errors. For example,

drag laws are commonly developed using the concept of an undisturbed velocity

field. This is a remnant from the derivation of Stokes drag whereby the slip velocity

is defined in terms of the oncoming “undisturbed” velocity and the velocity of the

spherical particle. From a Lagrangian standpoint, the undisturbed velocity is not

normally known for two-way coupled simulations. This is a limitation of most drag

laws. It is common to interpolate the fluid velocity at the particle positions and

acknowledge the error associated with using disturbed fluid velocity. Methods do

exist to reconstruct the undisturbed fluid velocity from a point-particle perspective

[63, 64, 71, 82, 83, 93, 12]. While useful, these methods can be limited to certain flow

regimes whereby extensions to compressible flows (e.g. standing bow shocks upstream

of particles) do not yet exist.

When considering force contributions on collections of particles, modeling becomes

more challenging. For these cases, particles not only feel the influence of the oncoming
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flow but also experience fluctuations in the flow due to interactions with wakes of other

particles. For subsonic flows, PR-DNS has been performed for triply periodic systems

of particles [79, 21, 233] leading to improved mean drag estimations on collections

of spheres that are volume fraction dependent. These works are limited to subsonic

flows at low to moderate Reynolds numbers. From a compressible-flow perspective

modeling homogenous, triply periodic systems of particles is not necessarily straight

forward. Alternatively, there has been increasing interest in simulating fully resolve

shock particle interactions [236, 238, 151, 153, 152, 172, 173] that in some cases have

been used to look at mean and fluctuation forces on particles. That being said, these

studies have not resulted in improved force models for collections of particles.

Overall, improvements need to be made when modeling forces for multi-particle

systems in compressible flows. Many existing models are not consistent with the

formulation used during simulations (i.e. using the disturbed versus undisturbed

velocity for force estimations on particles). Considering the formulation presented

in Chapter II, improved models can be created by applying the a posteriori filtering

procedure on highly resolved compressible flows past collections of particles, presented

in Chapter V. This not only provides local particle volume fraction information but

also the filtered local velocity, pressure, and viscous stress information. Using this

information, models can be created based on local filtered information as opposed

to mean quantities across the domain allowing for extraction of not only mean but

variance of forces on collections of particles. While this would be expensive and would

require multiple realizations, to account for random particle arrangements, it would

lead to robust particle force models.

7.2.1.1 Stochastic extensions to particle motion

As mentioned in Chapter I, systems of particles experience a variance of force as

they interact with surrounding particles. These effects are largely neglected when
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modeling particle forces; however, are vital to capture the motion of collections of

particles.

There are a couple of prominent approaches that can be taken to account for the

variance of drag in a particle-laden flow. One such approach is the pairwise interaction

extended point-particle (PIEP) method proposed and expanded by Akiki et al. [2,

3], Moore et al. [165]. For this approach, the forces due to neighboring particles

in Eulerian-Lagrangian methods are accounted for by the superimposition of the

influence from surrounding particles. As a result, particles not only feel an influence

from some standard mean drag, typically derived from averaged DNS data, but also

some variance due to disturbances caused by surrounding particles. Extensions of this

method are also being proposed for compressible flows [86]. While promising, this

method can be rather expensive due to the computational cost associated with nearest

neighbor search algorithms. In addition the described implementations appear to be

limited to stationary particles [2, 3, 165].

Another option is to use stochastic methods, which are the most promising ap-

proach from a personal perspective. Here, a stochastic differential equation can be

used to govern particle motion by introducing an appropriate random component,

typically through position or velocity, to account for some unresolved contribution.

From small particle motion, this was originally used to account for Brownian mo-

tion [243], typically referred to as a Langevin equation. Extensions have also been

proposed for applications in single phase compressible turbulence [190, 51]. Recently,

these methods have also been used to modify particle motion of incompressible two-

phase flows [158, 159, 191, 160]. Some of these models are limited to certain flow

configurations (e.g. homogeneous isotropic turbulence) and heavily rely on scaling

laws from Kolmogorov’s hypotheses [109]. That being said, improvements have been

made to these methods, such as account for higher order forcing contributions, that

show extreme promise for future estimations in unresolved drag contributions while
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using Eulerian-Lagrangian modeling approaches [235, 118].

These stochastic models, and their potential expansions to compressible flows,

are likely the future of modeling particle-laden flows. They do not require searching

for surrounding particle locations or make assumptions about the superposition of

flow structures. With that being said, modeling will be challenging considering the

fluctuations in flow generated by multi-particle systems and the uncertainties in drag

when considering variations in Mach number, as observed for single particle force

estimations Nagata et al. [167, 168].

7.2.2 Modeling unresolved contributions in particle-laden compressible

flows

By performing the volume filtering procedure on the compressible Navier–Stokes

equations, many unclosed contributions arise in conservation of momentum, con-

servation of energy, and the equation of state. See Chapter II for the full forms

of these equations. While these contributions are normally neglected for particle-

laden compressible flow simulations, it was shown in Chapter V and by Mehta et al.

[152], Osnes et al. [171], using filtering and averaging procedures respectively, that

PTKE and pseudo-turbulent Reynolds stresses possess some finite contribution for

under-resolved simulations. To make matters worse, there are very few models in

literature to capture these contributions, and those that exist are typically algebraic

in nature and limited to certain flow regimes [146, 171, 214].

The formulation in Chapter II and framework presented in Chapter V provides a

means to quantify contributions and generate models for future simulations. While a

model for PTKE and the pseudo-turbulent Reynolds stresses is proposed in Sec-

tion 5.3.1, it is based off of an empirical algebraic closure for dissipation. For

broader application, a dissipation transport equation, similar to PTKE transport

equation, must be derived. Dissipation transport equations exist for single-phase tur-
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bulence [189]; however, additional source and work terms may arise in the presence

of particles and interphase coupling.

While it was shown that the PTKE and pseudo-turbulent Reynolds stress terms

were dominant for shock-particle interactions, this does not justify that other unclosed

terms should be neglected. Other canonical flows should be studied to determine the

relative contributions of the remaining terms. This could include studies involving

heat transfer or reactions, where temperature gradients could increase the relative

contribution of the pseudo-turbulent heat flux. Creating improved models would be

expensive; however, it is necessary to capture physics while simulating larger scale

particle-laden compressible flows like PSI.

7.2.3 Multiphase PSI studies

To reiterate, PSI events can lead to damage during landing maneuvers due to

the fluidization and ejection of granular matter. As highlighted in Chapter I, this

phenomenon will continue to be a challenge for future exploratory missions to plane-

tary and satellite bodies. This has led to a multitude of experimental and numerical

studies to analyze the effects of PSI under various landing conditions. One common

theme in these studies is the emphasis on the unknown physics of PSI. This includes

but is not limited to uncertainties in particle forcing and trajectories under landing

conditions [156] and behavior of fluidization and its relation to jet configurations and

exhaust [148].

While additional experiments and simulations are required to characterize PSI,

care must be taken when planning future work. This was a major point highlighted

by Metzger et al. [156] when performing PSI experiments for lunar landing. From

an experimental perspective, studies under modified environmental and gravitation

conditions, like those performed in Kuhns et al. [113], will provide insight into gen-

eral crater formation without relying on observational methods during landing events.
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These accurate studies can be bolstered by investing into high-resolution imaging and

non-intrusive measurement techniques to improve characterization of crater forma-

tion. That being said, there are limitations to the data that can be collected for

these studies. Simplified flow configurations, such as those highlighted in Section 1.6,

can help characterize the fundamental physics of PSI, such as particle forcing and

flow dynamics of jet impingement during landing. These experimental studies can be

used in conjunction numerical methods to validate and create improved models that

capture the physics of PSI.

From a numerical perspective, improved models and methods are required be-

fore extensively performing simulations of PSI and other applicable flow configura-

tions. Models for particle motion in compressible flows, as discussed in Sections 7.2.1

and 7.2.1.1, and unresolved flow contributions, highlighted in Chapter II, are short of

what is needed to guarantee accurate simulations of these phenomena. Using mod-

els that were not designed for the flows of interest can be potentially hazardous for

any engineering application. One of the major purpose of this work was to create a

framework under which improved models for particle-laden compressible flows can be

created. In practice, highly resolved data from microscale and mesoscale simulations

can inform models for macroscale approaches in a manner that is consistent with the

governing equations of motion. As a result, it will be possible to create accurate

simulations of large scale PSI, albeit with significant investments in time and effort.

Throughout this work and other applicable studies, it is typically assumed that

simulations involve inert flows. Given that rocket propulsion involves a series of

chemical reactions and exhausted products, this is a very strong assumption that has

implications for future missions. In recent years, plans have been proposed for Mars

Sample Return, whereby “Martian rocks, soils, and atmosphere” will be collected

and sent back to Earth for analysis [97]. During landing, there are concerns that jet

exhaust is capable of altering biological matter on a planetary surface or introduce new
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contaminants to collected samples [88, 39]. Numerically, this can include additional

transport equations for species of jet exhaust and other physics, like charged particle

deposition [255], onto impinging surfaces. Experimentally, this can involve highly

sensitive measurements of biological matter and contaminants in arbitrary samples,

unlike those collected during missions [88, 39]. Overall, this is a significantly difficult

topic and requires attention for success in future planetary exploration.
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APPENDIX A

Additional Information on CBVP Method

A.1 Details on evaluating surface quantities

Special care needs to be taken when evaluating fluid stresses acting on the surface

of an immersed object. The force can be calculated by integrating the divergence of

the stress throughout the volume of the object, i.e.,

F = −
∫

Ωib

∇ · (pI− τ ) dV ≈
∑
k∈Ωib

∇ · (pI− τ )k ∆Vk, (A.1)

where dV is an infinitesimal volume element within the region occupied by the im-

mersed object, Ωib, which is approximated as a summation over grid points k ∈ Ωib

with volume ∆Vk. While this provides an accurate estimate of the force without

adding excessive computational cost [84], it does not provide access to the distribu-

tion of stress along the surface, which is needed when evaluating the pressure coeffi-

cient Cp(θ) in Sec. 4.9. Using the divergence theorem, the force can be evaluated by
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Figure A.1: Illustration of the interpolation procedure used in this work. Masking
function used in the volume penalization X ( ) and modified Roma
kernel ( ). The red shading indicates the area of integration at a marker
located at the surface of the immersed boundary ( ).

integrating the stress along its surface, given by

F = −
∫

Γib

(pI− τ ) · n dS ≈
Nm∑
k=1

(p̂kI− τ̂ k) · nk ∆Sk, (A.2)

where n is the outward unit normal vector and dS is an infinitesimal surface element

along the surface of the immersed boundary, Γib. This can be approximated discretely

by summing over the fluid stress interpolated to a set of Nm Lagrangian markers.

Here, p̂k and τ̂ k are the pressure and viscous stress interpolated to the k-th marker,

respectively, ∆Sk is the surface area element associated with the marker and nk is its

outward normal vector. In two dimensions, markers are evenly distributed over the

surface of the object analytically, therefore the surface element is defined as ∆Sk =

S/Nm, where S is the perimeter associated with the object. In three dimensions,

markers are distributed over the surface of the object by placing them at the centroid

of triangular planes obtained by a stereolithography (STL) representation. In this

case, the surface element is defined as the area of the corresponding triangle.

Interpolation techniques typically employed in immersed boundary methods, such

as the inverse distance function [41], may introduce perceived boundary oscillations on
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coarse grids. Alternatively, regularized Dirac delta functions are commonly employed

(e.g., [198, 244]). Interpolation of a quantity a(x), which may be a scalar-, vector-,

or tensor-value within the computational domain, Ω, to a marker located at y ∈

Γib, is performed via convolution with a compact, regularized Dirac delta function

δL(x,y,∆x), according to

â(y) =
∑
x∈Ω

a(x)δL(x,y,∆x). (A.3)

The delta function proposed by Roma et al. [198] has been widely adopted for im-

mersed boundary methods, given by

ψ(r) =



1
3

(
1 +

√
−3|r|2 + 1

)
, |r| < 0.5

1
6

(
5− 3|r| −

√
−3(1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5

0, |r| > 1.5

, (A.4)

where r is the normalized Euclidean distance from a grid point to a marker. Here, we

make several modifications to the original interpolation scheme proposed by Roma

et al. [198]. First, the radius of extent of the scalar function ψ is increased. This is

done by applying a scaling factor, β, to the Euclidian distance. Second, only quantities

exterior to the object are used during interpolation. This is done by applying a

masking function, α, to the scalar function ψ. For our purposes, α = 1 on the

exterior of the object (φ > 0), and α = 0 on the interior of the object (φ ≤ 0).

Finally, to ensure the kernel integrates to unity, a normalization step is performed.

For an Nd-dimensional problem, the regularized delta function is given by

δL(x,y,∆x) =
α
∏Nd

i=1ψ (β|xi − yi|/∆xi) ∆x−1
i∑

x∈Ω α
∏Nd

i=1ψ (β|xi − yi|/∆xi) ∆x−1
i

. (A.5)

In the present formulation, we employ a scalar factor of β = 0.6, which yields a
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maximum radius of extent of Rm = 2.5∆x. Figure A.1 shows a one-dimensional

illustration of these modifications. It should be noted that choosing α = β = 1

resorts back to the original definition of the delta function by Roma et al. [198],

which has a radius of extent Rm = 1.5∆x.

To demonstrate the error associated with sampling quantities at the surface of im-

mersed boundaries, the steady supersonic flow past a cylinder introduced in Sec. 4.9.2.2

is further evaluated here. The drag coefficient is evaluated using a sharp interface

(ε = 0) with ∆x = D/80 and compared to numerical body fitted data of Takahashi

et al. [228]. Table A.1 shows the corresponding total drag and contributions from

pressure and frictional stresses computed using surface integration given by Eq. (A.2)

with the original interpolation scheme of Roma et al. [198] and the modified interpola-

tion scheme, and using volume integration given by Eq. (A.1). Because the traditional

interpolation scheme uses quantities located on the interior and exterior of the ob-

ject, the velocity gradient is systematically under-predicted, resulting in low values of

frictional drag. Pressure drag is less affected due to the Neumann condition imposed

on pressure. Drag evaluated using surface integration with the modified interpolation

scheme yields similar results as volume integration and the data by Takahashi et al.

[228]. For consistency, surface integration with the modified interpolation scheme is

used when evaluating drag and pressure coefficients throughout this work.
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APPENDIX B

Additional Information on Volume-filter

Formulation Analysis

B.1 Methodology for a posteriori filtering

The method presented here is used for a posteriori filtering of DNS data in

Sec. 5.2. An arbitrary quantity A computed using DNS on a mesh with resolution

∆x � dp is separated into spatially filtered and residual contributions A = A + A′

according to

αA = (IA) ? G, (B.1)

where I is an indicator function that is 0 inside a particle and 1 in the fluid and G is

a filter kernel. A direct solution to (B.1) is computationally expensive, and in general

not tractable when working on large-scale DNS data. Consequently, the convolution

integral is recast in Fourier space as

α̂A = ÎwA · Ĝ, (B.2)
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where (̂·) indicates a quantity subject to a Fourier transform. Because the simulations

performed in this study are not periodic in the x-direction, a windowing function,

w, is applied to the quantity of interest prior to filtering. In this work, a Tukey

window [242] is employed, defined as

w(i) =



1
2

[
1 + cos

(
2πi

r(Nx−1)
− π

)]
0 ≤ i < r(Nx−1)

2

1 r(Nx−1)
2
≤ i < (Nx − 1)

(
1− r

2

)
1
2

[
1 + cos

(
2πi

r(Nx−1)
− 2π

r
+ π
)]

(Nx − 1)
(
1− r

2

)
< i ≤ (Nx − 1)

, (B.3)

where r = 0.05 is the cosine tapering parameter, i is the grid point it is being applied

to, and Nx is the total number of grid points in the x-direction. The cosine taper-

ing parameter is selected such that that the windowing function does not interfere

with the flow field, such as the transmitted and reflected shocks as well as the wake

downstream of the particles.

B.2 Term reconstruction through approximate deconvolu-

tion

In this appendix we assess the accuracy of reconstructing the sub-filtered terms

via a deconvolution procedure. While direct deconvolution is not possible due to the

sparse nature of the filtering kernel, a common alternative is to use the approximate

deconvolution method (ADM) [219, 251, 176, 204, 205]. This can be accomplished by

convolving the approximate inverse of the filtering kernel

Ĝ−1 ≈
N∑
ν=0

(1− Ĝ)ν (B.4)

with filtered quantities in Fourier space and then performing an inverse Fourier trans-

form to get an approximation of the flow fields prior to filtering. Here, N is the desired
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Figure B.1: Ensemble averaged PTKE obtained from DNS ( ) and recovered from
deconvolution with δf = dp ( ), δf = 2dp ( ), δf = 4dp ( ), and
δf = 8dp ( ). Quantities are calculated for ϕp = 0.21 when t = 2.334.
The shaded region ( ) indicates particle location.

truncation of the series expansion, set to N = 100 for this work, and (̂·) denotes that

the quantity is in Fourier space.

Reconstruction of ensemble averaged PTKE through deconvolution is shown in

Fig. B.1. For a filter size of δf = dp, the deconvolution provides a good approxima-

tion of PTKE compared to ensemble averaging the DNS data. As the filter size in-

creases, the PTKE calculated from deconvolution continues to decrease. As shown in

Fig. 5.4, the unresolved PTKE should either increase or asymptote to some maximum

unresolved quantity. While using ADM to approximate the unresolved quantities, it

becomes more difficult to recover fluctuations for larger filter sizes and therefore unre-

solved stresses will be under predicted around the particle phase. While this method

is limited to recovering stresses for smaller filter widths, it still has its utility. Other

possible uses include the approximation of the unfiltered velocity to improve drag

estimations and partial recovery of microscale flow fields during post-processing.
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B.3 Drag dependence on PTKE

The PTKE model proposed in Sec. 5.3.1 is expressed for an arbitrary drag law.

In this section, we extend the three-dimensional shock-particle analysis presented in

Sec. 5.3.5 to evaluate the effect of drag laws on PTKE. Three additional drag laws

are considered, each of which are valid under different flow conditions. We consider

the Schiller-Naumann drag correlation [44] that depends on Reynolds number, the

correlations proposed by Loth [133] and Henderson [78] that take into account Mach

number effects, in addition to the drag correlation of Gidaspow [69] used through-

out the present study that accounts for volume fraction effects and high Reynolds

numbers.

As shown in Fig. B.2, the parameter Cf appearing in the dissipation rate are

smaller for Schiller-Naumann, Loth, and Henderson compared to Gidaspow. This

indicates that the relative drag production is lower under the same conditions. In

this case, the lower drag will result in noticeably faster transmitted shocks and slower

reflected shocks compared to the DNS. Regardless of the different behaviors in drag,

the distributions of pseudo-turbulent Reynolds stresses are remarkably similar. The

results suggest that similar trends in PTKE can be achieved for any of the drag laws

used here, provided a reasonable value of Cf .

157



(a) Gidaspow [69], Cf = 7 (b) Schiller-Naumann [44], Cf = 3

(c) Loth [133], Cf = 5 (d) Henderson [78], Cf = 5

Figure B.2: Effect of drag law on the components of the pseudo-turbulent Reynolds
stress for ϕp = 0.1 and Mas = 1.66 at t = 0.62. Same line types as in
Fig. 5.14.
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