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v



5.7 Example 9: (a) and (e) show the open- and closed-loop responses; (b) and (f)
show the control; (c) and (g) show the evolution of θc,k; (d) and (h) show the
poles of the controller at k = 1000 and the poles and zeros of Gf(q). Note that
in (h) there are no controller poles at the locations of zeros of Gf(q). . . . . . 56

6.1 Example 10: (a) EZ(Gd, Gc,509) and controller poles, where a NMP element of
EZ(Gd, Gc,509) is cancelled by a controller pole. (b),(d) closed-loop response;
(c),(e),(g) all components of uk diverge; (f) θc,k. . . . . . . . . . . . . . . . . 59

6.2 Example 11: (a) EZ(Gc,97, Gd) and controller poles, where a NMP element
of CZ(Gc,130, Gd) is cancelled by a controller pole. (b),(d),(f) closed-loop
response; (c),(e), all components of uk diverge; (g) θc,k. . . . . . . . . . . . . 60

7.1 The IEEE13NTF model. The model used for this chapter is provided by the
OPAL-RT RT-Lab ePHASORSIM package. . . . . . . . . . . . . . . . . . . . 63

7.2 Block diagram representation of the adaptive servo problem with the adaptive
controller Gc,k and IEEE 13-Node Test Feeder G. . . . . . . . . . . . . . . . . 64

7.3 Nominal Simulation Tuning: At node 675 the controller Gc,k can add or re-
move active and reactive power; at node 671 the controller Gc,k has access
to the voltage magnitude and angle measurements, where the voltage angles
are relative to the slack bus at node 650; at nodes 611 and 634, the active and
reactive power are varied, which represents an unmodeled load disturbance. . . 66

7.4 Nominal Simulation Tuning: The voltage magnitude and angle errors |zmag|
and |zang| at node 671 are shown on a logarithmic scale. Asymptotically, the
voltage-magnitude and voltage-angle errors are approximately less than 0.1 V
and 0.01◦, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5 Nominal Simulation Tuning: The RCAC controller Gc,k(q) adapts to follow
the setpoint commands. RCAC readapts at t = 5 s to account for the step load
disturbance, and again at t = 100 s to account for the additional harmonic
component of the load disturbance. . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 Nominal Simulation Tuning: The active and reactive power extracted from
each phase by the RCAC controller Gc,k at node 675 is shown. . . . . . . . . . 71

7.7 Perturbed Simulation Testing 12: At node 632 the controller Gc,k can add or
remove active and reactive power; at node 633 the controller Gc,k has access
to the voltage magnitude and angle measurements, where the voltage angles
are relative to the slack bus at node 650; at nodes 611 and 634, the active and
reactive power are varied, which represents an unmodeled load disturbance. . . 72

7.8 Perturbed Simulation Testing 12: The voltage magnitude and angle errors
|zmag| and |zang| node 633 are shown on a logarithmic scale. Asymptotically,
the voltage-magnitude and voltage-angle errors are approximately less than
0.1 V and 0.01◦, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.9 Perturbed Simulation Testing 12: RCAC controller Gc,k(q) adapts to follow
the setpoint commands. RCAC readapts at t = 5 s to account for the step load
disturbance, and again at t = 100 s to account for the additional harmonic
component of the load disturbance. . . . . . . . . . . . . . . . . . . . . . . . 73

vi



7.10 Perturbed Simulation Testing 12: The active and reactive power extracted from
each phase by the RCAC controller Gc,k at node 632 is shown. . . . . . . . . . 74

7.11 Perturbed Simulation Testing 13: At node 675, subcontroller Gc1,k can add or
remove active and reactive power; at node 671, subcontroller Gc1,k has access
to the voltage magnitude and angle measurements, where the voltage angles
are relative to the slack bus at node 650; at node 632, subcontroller Gc2,k can
add or remove active and reactive power; at node 633, subcontroller Gc2,k has
access to the voltage magnitude and angle measurements, where the voltage
angles are relative to the slack bus at node 650; at nodes 611 and 634, the
active and reactive power is varied to represent an unmodeled load disturbance. 74

7.12 Perturbed Simulation Testing 13: Voltage magnitude and angle errors |zmag|
and |zang| for node 671 are shown on a logarithmic scale. Asymptotically, the
voltage-magnitude and voltage-angle errors are approximately less than 0.1 V
and 0.01◦, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.13 Perturbed Simulation Testing 13: Voltage magnitude and angle errors |zmag|
and |zang| for node 633 are shown on a logarithmic scale. Asymptotically, the
voltage-magnitude and voltage-angle errors are approximately less than 0.1 V
and 0.01◦, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.14 Perturbed Simulation Testing 13: (a) θk for subcontroller Gc1,k(q) is zero for
t < 2 s, after which adaptation of subcontroller Gc1,k(q) begins in order to
follow the setpoint commands. Subcontroller Gc1,k(q) readapts at t = 10 in
order to account for the step disturbance, and again at t = 30 s in order to
account for subcontroller Gc2,k(q) starting adaptation; (b) θk for subcontroller
Gc2,k(q) is zero for t < 30 s, after which adaptation of subcontroller Gc2,k(q)
begins to follow the setpoint commands. . . . . . . . . . . . . . . . . . . . . 77

7.15 Perturbed Simulation Testing 13: The active and reactive power extracted by
subcontroller Gc1,k(q) from each phase at node 675 is shown. . . . . . . . . . 77

7.16 Perturbed Simulation Testing 13: The active and reactive power extracted by
subcontroller Gc2,k(q) from each phase at node 632 is shown. . . . . . . . . . 78

7.17 Perturbed Simulation Testing 14: At node 675 and node 632, subcontroller
Gc1,k(q) and subcontroller Gc2,k(q) can add or remove active and reactive
power, respectively; at node 671, subcontrollers Gc1,k(q) and Gc2,k(q) have
access to the voltage magnitude and angle measurements, where the voltage
angles are relative to the slack bus at node 650; at nodes 611 and 634, the
active and reactive power is varied to represent an unmodeled load disturbance. 78

7.18 Perturbed Simulation Testing 14: Voltage magnitude and angle errors |zmag|
and |zang| for node 671 are shown on a logarithmic scale. Asymptotically, the
voltage-magnitude and voltage-angle errors are approximately less than 1 V
and 0.1◦, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.19 Perturbed Simulation Testing 14: (a) at t = 2 s, subcontroller Gc1,k(q) begins
adapting. At t = 30 s, subcontroller Gc2,k(q) begins adapting. RCAC has no
knowledge of the saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.20 Perturbed Simulation Testing 14: The active and reactive power extracted by
subcontroller Gc1,k(q) from each phase at node 675 is shown. . . . . . . . . . 81

vii



7.21 Perturbed Simulation Testing 14: The active and reactive power extracted by
subcontroller Gc2,k(q) from each phase at node 632 is shown. . . . . . . . . . 81

7.22 Perturbed Simulation Testing 14: The requested (red) and applied (blue) power
of phases A,B,C at node 675 is shown in (a), (b), (c), respectively; The re-
quested (red) and applied (blue) power of phasesA,B,C at node 632 is shown
in (d), (e), (f), respectively. The black, dashed circles represent upper limit of
apparent power flow in the actuator Smax defined in (7.30),(7.31). . . . . . . . 82

7.23 Perturbed Simulation Testing 15: At node 675 and node 632, subcontroller
Gc1,k(q) and subcontroller Gc2,k(q) can add or remove active and reactive
power, respectively; at node 671, subcontrollers Gc1,k(q) and Gc2,k(q) have
access to the voltage magnitude and angle measurements, where the voltage
angles are relative to the slack bus at node 650; nodes 611, 634, 645, 646, 652,
and 692 emulate diurnal PV power generation and consumption to represent
unmodeled load disturbances. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.24 Perturbed Simulation Testing 15: Voltage magnitude and angle errors |zmag|
and |zang| for node 671 are shown on a logarithmic scale. Asymptotically, the
voltage-magnitude and voltage-angle errors are approximately less than 0.1 V
and 0.01◦, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.25 Perturbed Simulation Testing 15: (a) θk for subcontroller Gc1,k(q) is shown;
(b) θk for subcontroller Gc2,k(q) is shown. . . . . . . . . . . . . . . . . . . . 84

7.26 Perturbed Simulation Testing 15: The active and reactive power extracted by
subcontroller Gc1,k(q) from each phase at node 675 is shown. . . . . . . . . . 84

7.27 Perturbed Simulation Testing 15: The active and reactive power extracted by
subcontroller Gc2,k(q) from each phase at node 632 is shown. . . . . . . . . . 84

8.1 Online identification using RLSID. . . . . . . . . . . . . . . . . . . . . . . . 86
8.2 Example 16: Regularization in RLSID. Averaged (a) estimation errors for

G1, G2, (b) estimation error for G3, (c) dz,k. The accuracy of the identifica-
tion is poor when the regularization is large. . . . . . . . . . . . . . . . . . . 89

8.3 Example 17: Disturbance and sensor noise in RLSID. Averaged (a) estimation
errors for G1, G2, (b) estimation error for G3, (c) dz,k. Disturbance and sensor
noise degrade identification accuracy. . . . . . . . . . . . . . . . . . . . . . . 90

8.4 Example 18: Closed-loop RLSID. Averaged (a) estimation errors for G1 and
G2, (b) estimation error for G3, (c) dz,k. The closed-loop identification accu-
racy is poor compared to open-loop identification. . . . . . . . . . . . . . . . 90

9.1 Example 19: RLSID with LQG yields biased estimates of Gξ and the NMP
zero of Gd(q); for adaptive control, the biases in (k) and (m) are smaller. The
vertical dashed lines denote the settling times of θm,k and θc,k. . . . . . . . . . 99

9.2 Example 20: Columns 1–3 correspond to RCAC with the nominal target model,
RCAC with an off-nominal target model, and DDRCAC. The performance of
DDRCAC is similar to the performance RCAC in column 1. . . . . . . . . . 100

9.3 Example 20: (a) RLSID coefficients θm,k; (b) identified and true leading nu-
merator coefficients, Gξ,k, and Gξ, respectively; (c) forgetting factors λm,k and
λc,k for RLSID and RLSAC, respectively; (d) dz,k. . . . . . . . . . . . . . . . 101

viii



9.4 Example 21: Columns 1–3 correspond to vk with standard deviations 0.001,
0.01, and 0.1. The insets in (m), (n), (o) show the full range of the transient
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.5 Example 21: Columns 1–3 correspond to pc,0 = 10, pc,0 = 102, pc,0 = 103.
The inset in (o) shows the full range of the transient response. . . . . . . . . . 103

9.6 Example 22: Example 10 revisited using DDRCAC. Unlike Example 10, no
NMP cascade zeros are cancelled by the controller. . . . . . . . . . . . . . . . 103

9.7 Example 23: Example 11 revisited using DDRCAC. Unlike Example 11, no
NMP cascade zeros are cancelled by the controller. . . . . . . . . . . . . . . . 104

9.8 Example 24: Disturbance rejection for (9.26) and (9.27). The relative degree
changes from 1 to 3 at t = 10 s, and, during t ∈ [15, 20] s, the discretization
of (9.26) and (9.27) transitions from one real NMP zero to two complex NMP
zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.1 Example 25: Instantaneous (a) continuous- and (b) discrete-time poles and
zeros of the hypersonic aircraft during the transition from 80 s to 100 s. The
onset, duration, and time-dependence of the transition are assumed to be un-
known. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.2 Example 25: Response of the lateral dynamics of a hypersonic aircraft to har-
monic and step commands with an unknown transition from MP to NMP dy-
namics, which occurs within the shaded regions. . . . . . . . . . . . . . . . . 109

10.3 Example 26: Response of the flexible aircraft to a sequence of pitch-rate step
commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10.4 Example 27: BACT wing. Leading- and trailing-edge accelerometers measure
aLE and aTE. The wing can plunge and pitch. The actuator is a trailing-edge
control surface with deflection δTE. . . . . . . . . . . . . . . . . . . . . . . . 111

10.5 Example 27: Open- and closed-loop responses of aLE and aTE. The freestream
velocity U0 is varied in the shaded region. . . . . . . . . . . . . . . . . . . . 112

10.6 Example 27: CZ(Gc,500, Gd) and controller poles, where no NMP elements of
CZ(Gc,500, Gd) are cancelled by a controller pole. . . . . . . . . . . . . . . . 113

10.7 Example 28: (̂ı, k̂) and (̂ıB, k̂B) are Earth-fixed and body-fixed unit vectors, δ
is the fin deflection, α is the angle of attack, V is the missile velocity vector, γ
is the flight-path angle, and θ is the pitch angle. . . . . . . . . . . . . . . . . 115

10.8 Example 28: Normal-acceleration command-following response of the non-
linear planar missile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.1 Timing diagram for the optimal two-step predictor (OTSP), where “A” denotes
an assimilation update and “F” denotes a forecast update. The measurement
yk and the applied control uk are available at step k for computation. For all
k ≥ 1, OTSP produces an estimate of xk at step k without latency. . . . . . . . 123

11.2 Timing diagram for the optimal two-step filter (OTSF), where “A” denotes an
assimilation update and “F” denotes a forecast update. The measurement yk
and the applied control uk are available at step k for computation. For all
k ≥ 1, OTSF produces an estimate of xk with latency ε. . . . . . . . . . . . . 125

ix



11.3 Timing diagram for the optimal two-step filter with startup (OTSFSU), where
“A” denotes an assimilation update and “F” denotes a forecast update. The
measurement yk and the applied control uk are available at step k for compu-
tation. For all k ≥ 0, OTSFSU produces an estimate of xk with latency ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.4 Root-mean-square (RMS) position-estimation errors for the optimal two-step

predictor (OTSP) and the optimal two-step filter (OTSF) versus disturbance-
covariance scaling αd. a) shows the RMS position-estimation errors for OTSP
and OTSF, eP,RMS and eF,RMS, respectively. b) shows |eP,RMS− eF,RMS|. In all
cases where eP,RMS > eF,RMS, OTSF is more accurate than OTSP; these are
shown in red. In all cases where eP,RMS < eF,RMS,OTSP is more accurate than
OTSF; these are shown in blue. Note that OTSP is more accurate than OTSF
for αd < 10−4.5, whereas OTSF is more accurate than OTSP for αd > 10−4.5. . 131

11.5 Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter (OTSF) versus sensor-noise
covariance αsn. a) shows the RMS position-estimation errors for OTSP and
OTSF, eP,RMS and eF,RMS, respectively. b) shows that OTSP is more accurate
than OTSF for αsn < 10−2, whereas OTSF is more accurate than OTSP for
αsn > 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11.6 Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter (OTSF) versus initial-condition-
covariance scaling αic. a) shows RMS position-estimation errors for OTSP and
OTSF, eP,RMS, and eF,RMS, respectively. b) shows that OTSP uniformly more
accurate than OTSF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11.7 Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter with startup (OTSFSU) ver-
sus disturbance-covariance scaling αd. a) shows the RMS position-estimation
errors for OTSP and OTSFSU, eP,RMS, and eFSU,RMS, respectively. b) shows
that OTSFSU is uniformly more accurate than OTSP. . . . . . . . . . . . . . 134

11.8 Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter with startup (OTSFSU) versus
sensor-noise-covariance scaling αsn. a) shows the RMS position-estimation
errors for OTSP and OTSFSU, eP,RMS, and eFSU,RMS, respectively. b) shows
OTSP is more accurate than OTSFSU for 10−4.5 < αsn < 10−2 and αsn > 102. 135

11.9 Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter with startup (OTSFSU) versus
initial-condition-covariance scaling αic. a) shows the RMS position-estimation
errors for OTSP and OTSFSU, eP,RMS, and eFSU,RMS, respectively. b) shows
that OTSFSU is uniformly more accurate than OTSP. . . . . . . . . . . . . . 136

x



LIST OF TABLES

3.1 Special cases of Gu(s) given by (3.11). For each case, the values of a, b, c, nd

and the type of zeros are shown. . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.1 Tuning parameters that need to be selected for DDRCAC. . . . . . . . . . . . 97

10.1 Aerodynamic coefficients. α is the angle of attack in rad, V is the missile
speed in m/s, and as = as(h) is the local speed of sound given by the Internal
Standard Atmosphere model at the altitude h. . . . . . . . . . . . . . . . . . . 114

10.2 Parameter values for the nonlinear planar missile. . . . . . . . . . . . . . . . . 114

11.1 The initial estimate x̂0 and the real-time data y and u used by the estimators to
estimate xk. The time at which the estimate of xk becomes available is given
in terms of the step k, the sample time Ts, and the latency ε. OTSP, OTSF,
and OTSFSU are the optimal two-step predictor, filter, and filter with startup,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xi



ABSTRACT

This dissertation develops data-driven retrospective cost adaptive control (DDR-

CAC) and applies it to flight control. DDRCAC combines retrospective cost adap-

tive control (RCAC), a direct adaptive control technique for sampled-data systems,

with online system identification based on recursive least squares (RLS) with

variable-rate forgetting (VRF). DDRCAC uses elements of the identified model to

construct the target model, which defines the retrospective performance variable.

Using RLS-VRF, optimization of the retrospective performance variable updates

the controller coefficients. This dissertation investigates the ability of RLS-VRF to

provide the modeling information needed to construct the target model, especially

nonminimum-phase (NMP) zeros, which are needed to prevent NMP-zero cancel-

lation. A decomposition of the retrospective performance variable is derived and

used to assess target-model matching and closed-loop performance. These results

are illustrated by single-input, single-output (SISO) and multiple-input, multiple-

output (MIMO) examples with a priori unknown dynamics. Finally, DDRCAC

is applied to several simulated flight control problems, including an aircraft that

transitions from minimum-phase to NMP lateral dynamics, an aircraft with flexi-

ble modes, aeroelastic wing flutter, and a nonlinear planar missile.

xii



CHAPTER 1

Introduction

In direct adaptive control, the controller gains are updated in response to the actual

dynamics of the controlled system. Unlike fixed-gain robust control, which trades off

performance with prior modeling uncertainty, direct adaptive control uses partial model-

ing information for online self-tuning. Direct adaptive control is especially of interest for

time-varying systems [1, 2]. The theory of direct adaptive control has been extensively

developed [3–6], and numerous successful applications to aerospace systems have been re-

ported [7, 8]. The research challenge in direct adaptive control is to determine the minimal

modeling information needed to facilitate fast, accurate, and reliable control.

As an alternative to direct adaptive control, indirect adaptive control performs online

identification to update the required modeling information for use by a fixed-gain con-

troller [5, chapter 7], [4, pp.Chapter 397, 4671-4]. In particular, the combination of online

identification and fixed-gain control is justified by the certainty equivalence principle [9, p.

2738]. Indirect adaptive control is advantageous for applications where the required model-

ing information is either difficult or impossible to obtain before operation due, for example,

to unpredictable changes in the dynamics of the controlled system. By further reducing the

dependence on prior modeling, indirect adaptive control facilitates control under extremely

limited a priori modeling information. Indirect adaptive control can thus be viewed as a

further step in the evolution of control from strong model dependence to model-free con-

trol.

Model-free control is a longstanding goal in control theory, and the challenges are far
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from trivial. In fact, the interplay between identification and control is a longstanding

problem in control theory [10–12]. This interplay is addressed by dual control, where

the objective is to determine probing signals that enhance the speed and accuracy of the

concurrent identification [13–15].

The goal of this dissertation is to extend RCAC by incorporating online model iden-

tification; this method is called data-driven RCAC (DDRCAC). DDRCAC depends on

system identification performed concurrently with controller adaptation, where the mod-

eling details are extracted from the identified model in order to construct the target model.

Since RCAC is based on recursive least squares (RLS) to update the controller coefficients,

RLS is also used for system identification within DDRCAC. Unlike standard least squares,

which uses constant-rate forgetting [16], online identification in the present paper takes

advantage of RLS with variable-rate forgetting [17].

Note that DDRCAC updates controller coefficients using the minimization of the ret-

rospective cost, as in RCAC, which is a direct adaptive control technique. Furthermore,

DDRCAC uses a distinct online identification algorithm to learn features of the system un-

der control, like in indirect adaptive control. However, the controller coefficients are not

a function of the identified model parameters through the use of the certainty equivalence

principle is not. Consequently, DDRCAC is neither a direct adaptive control technique nor

an indirect adaptive control, and thus, can thus be viewed is a hybrid direct/indirect adap-

tive control method that uses online system identification to obtain approximate, limited

modeling information required by a direct adaptive control algorithm.

1.1 Retrospective Cost Adaptive Control

RCAC was originally developed within the context of feedback active noise control ex-

periments in an acoustic duct for both tonal and broadband disturbances [18]. Broadband

feedback disturbance rejection using RCAC is further considered in [19–22]. In [23, 24]
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connections between broadband feedback disturbance rejection using RCAC and linear-

quadratic-Gaussian (LQG) control, an H2 optimal method, are considered. The modeling

information required by RCAC resides in the target model, which serves as an essential

model of the closed-loop transfer function from the virtual external control perturbation

to the retrospective performance variable. As shown in [24], the essential modeling in-

formation for discretized single-input, single-output (SISO) systems includes the sign of

the leading numerator coefficient, the relative degree, and all nonminimum-phase (NMP)

zeros. Numerical examples show that, under sufficiently aggressive tuning, RCAC may

cancel unmodeled NMP zeros [25].

1.2 Retrospective Cost Variable Decomposition

In [22,24], Gf(q) is analyzed as a target model for a specific closed-loop transfer func-

tion G̃zũ,k+1(q), which is called the intercalated transfer function. To assist in analyzing the

effectiveness of RCAC, and thus DDRCAC, and to obtain deeper insight into the modeling

information required by the target model Gf(q), this dissertation shows that the retrospec-

tive performance variable can be decomposed into the sum of a performance term and a

model-matching term. The performance term consists of a closed-loop transfer function,

whereas the model-matching term involves the difference between a closed-loop transfer

function and the target model driven by the virtual external control perturbation. A cru-

cial insight arises from the observation that, at each step, RLS minimizes the magnitude

of the retrospective performance variable by forcing the performance term and the model-

matching term to have similar magnitudes but opposite signs. As the controller converges,

the virtual external control perturbation, and thus the model-matching term, converges to

zero, which, in turn, drives the performance term to zero. By preventing the performance

term from diverging when the controller converges, this mechanism prevents RLS from

converging to a controller that is destabilizing or has poor performance.
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1.3 Data-Driven Retrospective Cost Adaptive Control

The goal of this dissertation is to extend RCAC by incorporating online model identi-

fication, that is, to extend RCAC from a direct adaptive control technique to a hybrid di-

rect/indirect adaptive control method; this method is called data-driven RCAC (DDRCAC).

Like indirect adaptive control an attempt is made to identify the system. However, unlike

indirect adaptive control, the controller coefficients are not functions of the identified model

coefficients through the use of the certainty equivalence principle. Since RCAC is a direct

adaptive control method, it possesses robustness to the modeling information required for

the construction of the target model Gf(q), which is taken advantage of by DDRCAC to

partially compensate for the deficiencies of concurrent closed-loop identification.

As in all applications of system identification, persistency is needed to guarantee that

the identified model captures the true system dynamics [26–28]. Persistency may be pro-

vided by the commands and disturbances, or it may be self-generated by the controller.

Beyond persistency, since online identification and learning occur during closed-loop oper-

ation, the control input is correlated with the measurements due to disturbances and sensor

noise. When RLS is used for closed-loop identification, as in this dissertation, this cor-

relation may obstruct consistency, and thus lead to asymptotic bias in the parameter esti-

mates [29–31]. Alternative identification methods, such as instrumental variables, provide

consistency despite signal correlation, albeit at higher computational cost [32].

This dissertation describes the elements of DDRCAC and investigates the effectiveness

of this approach on numerical examples. These examples include synthetic examples that

emphasize specific challenges as well as illustrative flight-control problems. The synthetic

examples are focused on three key issues, namely, NMP zeros, consistency, and persistency.

Since, as noted above, RCAC may cancel unmodeled NMP zeros, the highest priority is to

extract information about the NMP zeros from the identified model; this information is

embedded in the numerator of the identified model, which, in the case of a multiple-input,

multiple-output (MIMO) system, is a matrix polynomial. These examples are motivated by
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the fact, as noted in [8], that the stability of finite transmission zeros is a standard assump-

tion in output-feedback adaptive control. Furthermore, since lack of consistency may occur

when RLS is used for closed-loop system identification, the effect of bias is examined. In

particular, the bias arising from sensor noise within closed-loop system identification under

DDRCAC is shown to be less severe than the bias arising from sensor noise within closed-

loop system identification under fixed-gain control. Finally, in cases where the commands

and disturbances provide limited persistency, these examples highlight self-generated per-

sistency, that is, persistency due to the controller.

1.4 Dissertation Outline

This dissertation is organized as follows.

Chapter 2 Summary

In Chapter 2, we present concepts that are used in several places throughout this disser-

tation. In particular, we present digital filtering and a novel extension of digital filtering to

filter sequences that are also functions. Next, we present some results on feedback control

of MIMO systems. Finally, we present a derivation of the recursive least squares (RLS)

algorithm.

Chapter 3 Summary

In Chapter 3, we present the framework for the sampled-data control of continuous-time

systems.

Chapter 4 Summary

In Chapter 4, we present the RCAC algorithm. In particular, we present a precise

definition for the retrospective performance variable.
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Chapter 5 Summary

In Chapter 5, we present the retrospective performance variable decomposition, which

decomposes an extension of the retrospective performance variable into a one-step pre-

dicted performance term and a target-model-matching term. This decomposition provides

vital insight into why RCAC converges to a controller that provides closed-loop command-

following and disturbance-rejection performance in the presence of sensor noise. Finally,

we explore the construction of the target model Gf(q) to facilitate the convergence of

RCAC, and present feasibility conditions that are subsequently confirmed through numeri-

cal studies.

Chapter 6 Summary

In Chapter 6, we present simulations for MIMO adaptive control using RCAC. These

simulations demonstrate that in the MIMO case RCAC may create cascade zeros, which

are transmission zeros created by the cascade of two non-square systems, and subsequently

cancel them with controller poles, which results in the divergence of the control signal uk.

This demonstrates the additional challenges for MIMO control using RCAC.

Chapter 7 Summary

In Chapter 7, we present an application of RCAC to the control of a model of an elec-

trical grid. This control problem is MIMO, decentralized, and nonlinear. Furthermore, in

an effort to simplify the final controller, a fixed-structure controller structure is used to pick

the order and structure of SISO entries of the MIMO controller. Additionally, Gf(q) is

constructed by a systematic process of elimination that produces a target model Gf(q) that

is defined by two scalars. This study also demonstrates the concepts of nominal simulation

tuning (NST) and perturbed simulation testing (PST). NST is the process of arriving at tun-

ing parameters and a suitable target model using a single scenario. These choices are then
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applied to several simulations that are perturbed from the nominal simulation in meaningful

ways; this is PST. NST and PST provide a road map for the application of adaptive control

to real-world systems.

Chapter 8 Summary

In Chapter 8, we present online identification using RLS. In particular, we investigate

the efficacy of RLS for closed- and open-loop online identification. This forms the the basis

for data-driven RCAC (DDRCAC).

Chapter 9 Summary

In Chapter 9, we present the DDRCAC algorithm, which consists of RLS-based identi-

fication (RLSID) and RLS-based adaptive control (RLSAC), both of which use RLS with

data-dependent variable rate forgetting. Next, several numerical examples explore the ap-

plicability of DDRCAC on NMP systems. In particular, DDRCAC’s robustness to tuning

parameters and sensor noise is investigated. Finally, MIMO examples that failed with

RCAC are revisted using DDRCAC, which demonstrate that DDRCAC does not have the

tendency to create and cancel NMP cascade zeros.

Chapter 10 Summary

In Chapter 10, we apply DDRCAC to several challenging flight-control problems. First,

DDRCAC is applied to roll-angle command following for a hypersonic aircraft that under-

goes an unknown transition from minimum phase (MP) to NMP dynamics. This example

demonstrates DDRCAC’s ability to readapt to changes in the nature of the command, as

well as to the unknown change from MP to NMP dynamics. Second, DDRCAC is applied

for pitch-rate command following of a flexible aircraft, which has 12 lightly damped modes,

which demonstrates DDRCAC’s ability to converge to a controller for a high-order, lightly
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damped system, with no prior knowledge of the dynamics. Third, DDRCAC is applied

for flutter suppression of the benchmark active control technology (BACT) wing, which

demonstrates DDRCAC’s ability to stabilize a NMP, unstable system that undergoes an

unknown change in dynamics. Finally, DDRCAC is applied to normal-acceleration com-

mand following for a nonlinear planar missile, which shows that DDRCAC has potential as

a simulation-based offline tuning technique for assessing achievable performance without

requiring explicit knowledge of the underlying equations of motion.

Chapter 11 Summary

In Chapter 11, we present the optimal predictor and filter for discrete-time real-time

applications. A derivation for the one-step predictor is presented, which forms the basis for

the two-step predictor, which in turn forms the basis for the two-step filter. The optimal

two-step filter is more commonly known as the Kalman filter. Special emphasis is placed

on the real-time implementation of these filters. Finally, we compare the accuracy of the

filter and predictor numerically.

In Chapter 12, we summarize the conclusions and contributions of this dissertation, and

discuss future work.
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CHAPTER 2

Preliminaries

In this chapter we introduce notation and terminology for discrete-time filtering in terms

of the forward-shift operator q. In particular, we define a notion of filtering a sequence that

is also a function. This notion of filtering is required for derivation and analysis of the

retrospective cost variable decomposition later in this dissertation. Furthermore, we con-

sider pole-zero cancellation in products of MIMO transfer functions that are present during

control of MIMO systems. These pole-zero cancellations play an important role in the

adaptive control of MIMO systems. Additionally, we present a derivation of the recur-

sive least squares (RLS) algorithm that is fundamental to this dissertation. The material in

Chapters 2.1–2.3 and 2.4 is adapted from [33] and [16], respectively.

2.1 Data Filtering

Define the proper discrete-time filter

G(q)
4
= D(q)−1N(q), (2.1)

where q is the forward-shift operator, N(q) = N0q
n + · · · + Nn ∈ R[q]p×m and D(q) =

Ipq
n +D1q

n−1 + · · ·+Dn ∈ R[q]p×p are polynomial matrices and detD(q) 6= 0.

Definition 2.1. The output (yk)
∞
k=−n ⊂ Rp of (2.1) with input (uk)

∞
k=−n ⊂ Rm is given by
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the data filter

yk +D1yk−1 + · · ·+Dnyk−n = N0uk + · · ·+Nnuk−n. (2.2)

For convenience, (2.2) is written as either

D(q)yk = N(q)uk (2.3)

or

yk = G(q)uk. (2.4)

Example 1. Data filtering. Let N(q) = 2q + 3 and D(q) = q2 + 4q + 5, which

yields the input-output difference equation

yk = −4yk−1 − 5yk−2 + 2uk−1 + 3uk−2. (2.5)

With the data (uk)
0
k=−2 = (6, 7, 8) and (yk)

−1
k=−2 = (10, 11), (2.5) yields

y0 = −4y−1 − 5y−2 + 2u−1 + 3u−2 = −62, (2.6)

y1 = −4y0 − 5y−1 + 2u0 + 3u−1 = 230. (2.7)

�

2.2 Frozen-input-argument (FIA) Filtering

Definition 2.1 is now extended to the case where the input uk is a function of an inde-

pendent variable xk.
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Definition 2.2. Let D1, . . . Dn ∈ Rp×p, let N0, . . . Nn ∈ Rp×m, let yk−n, . . . , y−1 ∈ Rp be

initial output data, let (xk)
∞
k=−n ⊂ Rr, and, for all k ≥ −n, let uk : Rr → Rm. Then, the

FIA sequence (yk(xk))
∞
k=0 is given by the fixed-input-argument (FIA) filter

yk(xk) +D1yk−1(xk−1) + · · ·+Dnyk−n(xk−n) = N0uk(xk) + · · ·+Nnuk−n(xk), (2.8)

where, for all k ∈ [−n,−1], yk(xk)
4
= yk.

Note that, at each step k, the arguments of uk−n, . . . , uk in (2.8) are fixed at the current

input value xk over the interval [k−n, k]. In contrast, the left-hand side defines the current

output yk(xk), which depends on the past output values yk−n(xk−n), . . . , yk−1(xk−1). For

convenience, (2.8) is written as either

D(q)yk(xk) = N(q)uk(xk) (2.9)

or

yk(xk) = G(q)uk(xk). (2.10)

As a special case, note that

uk+r(xk) = qruk(xk). (2.11)

Example 2. FIA filtering. Let N(q) = 2q + 3 and D(q) = q2 + 4q + 5, and for all

k ≥ −n, define

uk(x)
4
= zkx+ 1. (2.12)

11



The corresponding FIA filter is thus given by

yk(xk) = −4yk−1(xk−1)− 5yk−2(xk−2) + 2(zk−1xk + 1) + 3(zk−2xk + 1). (2.13)

With the data (zk)
0
k=−2 = (14, 15, 16), (xk)

1
k=0 = (19, 20), and (yk)

−1
k=−2 = (10, 11), (2.13)

yields

y0(x0) = −4y−1 − 5y−2 + 2(z−1x0 + 1) + 3(z−2x0 + 1) = 1279, (2.14)

y1(x1) = −4y0(x0)− 5y−1 + 2(z0x1 + 1) + 3(z−1x1 + 1) = −3626. (2.15)

�

2.3 Products of MIMO Transfer Functions

Definition 2.3. Let P ∈ R[z]l1×l2 . Then the normal rank of P is defined by

rankP
4
= max

z∈C
rankP (z). (2.16)

Definition 2.4. Let (A,B,C,D) be a realization of G ∈ R(z)l1×l2prop , where A ∈ Rn×n.

Then the Rosenbrock system matrix R(A,B,C,D) ∈ R[z](n+l1)×(n+l2) of (A,B,C,D) is the

polynomial matrix

R(A,B,C,D)(z)
4
=

[
zI − A B

C −D

]
, (2.17)

and z0 ∈ C is an invariant zero of (A,B,C,D) if

rankR(A,B,C,D)(z0) < rankR(A,B,C,D). (2.18)

If, in addition, (A,B,C,D) is minimal, then R(A,B,C,D) is denoted by RG, and z0 ∈ C is a

12



transmission zero of G if

rankRG(z0) < rankRG. (2.19)

Definition 2.5. Let (A,B,C,D) be a realization of G ∈ R(z)l1×l2prop . Then IZ(A,B,C,D)

is the multiset of invariant zeros of (A,B,C,D), and TZ(G) is the multiset of transmission

zeros of G.

Definition 2.6. Let G1 ∈ R(z)l1×l2prop and G2 ∈ R(z)l2×l3prop with minimal realizations

(A1, B1, C1, D1) and (A2, B2, C2, D2), respectively. Define G12
4
= G1G2, and consider its

realization

A12
4
=

[
A1 B1C2

0 A2

]
, B12

4
=

[
B1D2

B2

]
, C12

4
=
[
C1 D1C2

]
, D12

4
= D1D2.

(2.20)

Then z0 ∈ C is a cascade zero of G1G2, if, counting repetitions, it is an invariant zero

of (2.20) but not a transmission zero of either G1 or G2. The multiset of cascade zeros of

G1G2 is denoted by

CZ(G1, G2)
4
= IZ(A12, B12, C12, D12)\[TZ(G1) ∪ TZ(G2)]. (2.21)

Related results are found in [34, 35]. Squaring is discussed in [36–38] and used in [39]

to eliminate NMP zeros. It has been shown numerically that CZ(G1, G2) is independent of

the basis used by the minimal realizations (A1, B1, C1, D1) and (A2, B2, C2, D2), and thus,

CZ(G1, G2) is well defined. A proof of this is future work.

The following result shows that cascade zeros of square transfer functions G1G2 exist

only in the case l1 ≤ l2. Part of the credit for the proof of this result goes to Muneeza

Azmat.

Proposition 2.1. Let G1 ∈ R(z)l1×l2prop and G2 ∈ R(z)l2×l1prop with minimal realizations
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(A1, B1, C1, D1) and (A2, B2, C2, D2), respectively, whereA1 ∈ Rn1×n1 andA2 ∈ Rn2×n2 ,

and assume that G1 and G2 have full normal rank. Define G12
4
= G1G2 and consider its

realization (2.20). If CZ(G1, G2) is not empty, then l1 < l2.

Proof. Suppose that l1 ≥ l2, and let z ∈ CZ(G1, G2). Since z is not a transmission

zero of either G1 or G2, G1 has full column rank, and G2 has full row rank, it follows

from [40, Proposition 16.10.3] that

rank

[
zIn1 − A1 B1

C1 −D1

]
= n1 + l2, (2.22)

rank

[
zIn2 − A2 B2

C2 −D2

]
= n2 + l2. (2.23)

Next, note that

R(A12,B12,C12,D12)(z) =


zIn1 − A1 −B1C2 B1D2

0 zIn2 − A2 B2

C1 D1C2 −D1D2

 = N1(z)N2(z), (2.24)

where

N1(z)
4
=


zIn1 − A1 0 −B1

0 In2 0

C1 0 D1

 ∈ R[z](n1+n2+l1)×(n1+n2+l2), (2.25)

N2(z)
4
=


In1 0 0

0 zIn2 − A2 B2

0 C2 −D2

 ∈ R[z](n1+n2+l2)×(n1+n2+l1). (2.26)

It follows from (2.22) and (2.23) that

rankN1(z) = rankN2(z) = n1 + n2 + l2. (2.27)
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Next, Sylvester’s inequality [40, p. 292, 294] implies

rankN1(z) + rankN2(z)− n1 − n2 − l2 ≤ rankN1(z)N2(z)

≤ min{rankN1(z), rankN2(z)}. (2.28)

It follows from (2.24)–(2.28) that

rankR(A12,B12,C12,D12)(z) = n1 + n2 + l2, (2.29)

which shows that there are no values of z such that

rankR(A12,B12,C12,D12)(z) < rankR(A12,B12,C12,D12),

and thus, z /∈ CZ(G1, G2), which is a contradiction. �

Definition 2.7. Let G1 ∈ R(z)l1×l2prop and G2 ∈ R(z)l2×l3prop . Then the product G1G2 ∈

R(z)l1×l1prop is down squared if l1 < l2 and up squared if l1 > l2.

Definition 2.8. Let G1 ∈ R(z)l1×l2prop and G2 ∈ R(z)l2×l3prop with minimal realizations

(A1, B1, C1, D1) and (A2, B2, C2, D2), respectively. Define G12
4
= G1G2, and consider its

realization (2.20). Then z0 ∈ C is an evanescent zero of G1G2, if, counting repetitions, it

is a cascade zero of (2.20) but not a transmission zero of G12. The multiset of evanescent

zeros of (2.20) is denoted by

EZ(G1, G2)
4
= CZ(G1, G2)\TZ(G12). (2.30)

Example 3. Cascade and evanescent zeros. Consider the transfer functions

G1(z) =
1

z(z− 3)

[
z −1

]
, G2(z) =

1

z(z− 4)

[
z− 1

4z− 6

]
, (2.31)
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which have minimal realizations (A1, B1, C1, D1) and (A2, B2, C2, D2), respectively,

where

A1
4
=

[
0 0

1 3

]
, B1

4
=

[
0 −1

1 0

]
, C1

4
=
[

0 1
]
, D1

4
=
[

0 0
]
, (2.32)

A2
4
=

[
4 0

1 0

]
, B2

4
=

[
2

0

]
, C2

4
=

[
0.5 −0.5

2 −3

]
, D2

4
=

[
0

0

]
. (2.33)

The Rosenbrock system matrices for (A1, B1, C1, D1) and (A2, B2, C2, D2) are

RG1(z)
4
=


z 0 0 −1

−1 z− 3 1 0

0 1 0 0

 , RG1(z)
4
=


z− 4 0 2

−1 z 0

0.5 −0.5 0

2 −3 0

 , (2.34)

which show that rankRG1(z) = rankRG1 and rankRG2(z) = rankRG2 , and thus TZ(G1)

and TZ(G2) are empty. Next, consider the productG12
4
= G1G2 with the realization (2.20),

which has the Rosenbrock system matrix

R(A12,B12,C12,D12)(z)
4
=



z 0 2 −3 0

−1 z− 3 −0.5 0.5 0

0 0 z− 4 0 2

0 0 −1 z 0

0 1 0 0 0


. (2.35)

It can be shown that rankR(A12,B12,C12,D12)(2) < rankR(A12,B12,C12,D12) and

rankR(A12,B12,C12,D12)(3) < rankR(A12,B12,C12,D12). Since TZ(G1) and TZ(G2) are empty,

it follows that z = 2 and z = 3 are elements of CZ(G1, G2). Next, consider the product of

the transfer functions in (2.31)

G12(z)
4
= G1(z)G2(z) =

(z− 2)(z− 3)

z2(z− 3)(z− 4)
=

z− 2

z2(z− 4)
, (2.36)
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where the cascade zero at 3 is cancelled by a pole of G1, and thus z = 3 is not an element

off TZ(G12). Therefore, z = 3 is an element of EZ(G1, G2). �

2.4 Recursive Least Squares

Many estimation and control problems involve a process of the form

yk = φkθ, (2.37)

where k = 0, 1, 2, . . . is the discrete-time step corresponding to the continuous-time step

size Ts, the scalar or vector yk ∈ Rp is the measurement at step k, the matrix φk ∈ Rp×n

is the regressor at step k whose entries consist of current and past data, and θ ∈ Rn is a

column vector of n unknown parameters. The objective is to use yk and φk to estimate the

components of θ. In applications, yk and φk are corrupted by noise, and thus (2.37) does

not hold exactly. This motivates the need for the least squares estimates of θ given below.

The measurements yk and the data in φk are typically obtained from a continuous-time

process and as such are available at the sample times kTs, where Ts is the sample interval.

The batch approach to this problem is to collect a large amount of data and then apply

least squares optimization to the collected data to compute an estimate of θ. In particular,

collecting data over the time window i = 0, . . . , k, it follows from (2.37) that

Y = Φθ, (2.38)

where

Y
4
=


y0

...

yk

 , Φ
4
=


φ0

...

φk

 . (2.39)
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Note that (2.38) has the form Ax = b, A denotes Φ, x denotes θ, and b denotes Y.

In the presence of noise corrupting the data Y and Φ, (2.38) may not have a solution. In

this case, it is useful to replace (2.38) by a least-squares optimization problem of the form

Jk(θ̂)
4
=

k∑
i=0

(yi − φiθ̂)T(yi − φiθ̂) + (θ̂ − θ0)TR(θ̂ − θ0)

= (Y − Φθ̂)T(Y − Φθ̂) + (θ̂ − θ0)TR(θ̂ − θ0), (2.40)

where R is a positive-semidefinite (and thus, by definition, symmetric) matrix and θ0 is an

initial estimate of θ. Assuming that R is chosen such that the inverse in (2.41) below exists,

the regularization term (θ̂ − θ0)TR(θ̂ − θ0) weights the initial estimate and ensures that Jk

has a unique global minimizer. In particular, the batch least-squares (BLS) minimizer of

(2.40) is given by

θopt,R = (ΦTΦ +R)−1(ΦTY +Rθ0). (2.41)

Note that the inverse required to compute (2.41) is of size n×n, and thus the computational

requirement of the inverse is of order n3. In addition to the inverse, three matrix multiplica-

tions are needed. Note also that the memory needed to store Φ grows with k. Furthermore,

if Φ has full column rank, then R can be set to zero, and thus (2.41) becomes

θopt,0 = (ΦTΦ)−1ΦTY. (2.42)

In the case where (2.38) has a solution and Φ has full column rank, (2.42) is the unique

solution of (2.38).

In many applications, computational speed and memory are limited. One way to alle-

viate these requirements is to recursively update an estimate of θopt,R using each additional

measurement yk. A recursive algorithm of this type is especially convenient for real-time

applications. Recursive least squares (RLS) is an iterative implementation of BLS that
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significantly reduces the computational and storage requirements of BLS.

Variations of RLS have been studied for more than half a century. An early exposition is

given in [41], which emphasizes the real-time utility of RLS relative to BLS. Applications

of RLS to adaptive control are discussed in [42, pp. 41, 103]. Numerous extensions of

RLS have been developed to address initialization, forgetting, and numerical stability, for

example, [43–46]. The development of RLS that is closest to this dissertation is given

in [47, pp. 26–28].

This subsection provides a statement and proof of the RLS algorithm. This result in-

volves a recursive algorithm for optimizing Jk at each step k. The optimization of Jk

updates the estimate θk of θ as measurements and data become available. As an extension

of (2.40), the cost function (2.47) below includes a forgetting factor λ, which provides

higher weighting to more recent measurements and data.

The following result is the matrix inversion lemma [40, p. 304].

Lemma 2.1. Let A ∈ Rn×n, U ∈ Rn×p, C ∈ Rp×p, and V ∈ Rp×n, and assume that A, C,

and A+ UCV are nonsingular. Then

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1. (2.43)

The following result is the quadratic minimization lemma.

Lemma 2.2. Let A ∈ Rn×n, assume that A is positive definite, let b ∈ Rn and c ∈ R, and

define f : Rn −→ R by

f(x)
4
= xTAx+ 2bTx+ c. (2.44)

Then the unique minimizer of f is

xopt = −A−1b, (2.45)
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and the minimum value of f is

f(xopt) = c− bTA−1b. (2.46)

Theorem 2.1. For all k ≥ 0, let φk ∈ Rp×n and yk ∈ Rp. Furthermore, let θ0 ∈ Rn, let

P0 ∈ Rn×n be positive definite, and let λ ∈ (0, 1]. Furthermore, for all k ≥ 0, denote the

minimizer of the function

Jk(θ̂)
4
=

k∑
i=0

λk−i(yi − φiθ̂)T(yi − φiθ̂) + λk+1(θ̂ − θ0)TP−1
0 (θ̂ − θ0) (2.47)

by

θk+1
4
= argmin

θ̂∈Rn
Jk(θ̂). (2.48)

Then, for all k ≥ 0, θk+1 is given by

Pk+1 =
1

λ
Pk −

1

λ
Pkφ

T
k (λI + φkPkφ

T
k )−1φkPk, (2.49)

θk+1 = θk + Pk+1φ
T
k (yk − φkθk). (2.50)

Proof. Note that J0(θ̂) can be written as

J0(θ̂) = θ̂TA0θ̂ + 2bT
0 θ̂ + c0,

where

A0
4
= φT

0 φ0 + λP−1
0 ,

b0
4
= −φT

0 y0 − λP−1
0 θ0,

c0
4
= yT

0 y0 + λθ0P
−1
0 θ0.
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Defining

P1
4
= A−1

0 ,

it follows from Lemma 2.1 with A = P−1
0 , C = 1

λ
I, U = φT

0 , and V = φ0 that

P1 =
1

λ
(P−1

0 +
1

λ
φT

0 φ0)−1

=
1

λ
P0 −

1

λ
P0φ

T
0 (λI + φ0P0φ

T
0 )−1φ0P0.

Hence, (2.49) is satisfied for k = 0. In addition, since A0 is positive definite, it follows

from Lemma 2.2 that the unique minimizer θ1 of J0 is given by

θ1 = −A−1
0 b0

= P1φ
T
0 y0 + λP1P

−1
0 θ0

= P1φ
T
0 y0 + P1(P−1

1 − φT
0 φ0)θ0

= P1φ
T
0 y0 + (I − P1φ

T
0 φ0)θ0

= θ0 + P1φ
T
0 (y0 − φ0θ0).

Hence, (2.50) is satisfied for k = 0.

Now, let k ≥ 1. Then Jk(θ̂) can be written as

Jk(θ̂) = θ̂TAkθ̂ + 2bT
k θ̂ + ck,

21



where

Ak
4
=

k∑
i=0

λk−iφT
i φi + λk+1P−1

0 ,

bk
4
= −

k∑
i=0

λk−iφT
i yi − λk+1P−1

0 θ0,

ck
4
=

k∑
i=0

λk−iyT
i yi + λk+1θ0P

−1
0 θ0.

Furthermore, Ak and bk can be written recursively as

Ak = λAk−1 + φT
k φk,

bk = λbk−1 − φT
k yk.

Defining

Pk+1
4
= A−1

k ,

it follows from Lemma 2.1 with A = P−1
k , C = 1

λ
I, U = φT

k , and V = φk that

Pk+1 = [λ(Ak−1 +
1

λ
φT
k φk)]

−1

=
1

λ
(P−1

k +
1

λ
φT
k φk)

−1

=
1

λ
Pk −

1

λ
Pkφ

T
k (λI + φkPkφ

T
k )−1φkPk.

Hence, (2.49) is satisfied. Furthermore, the minimizer θk+1 of Jk is given by

θk+1 = −A−1
k bk.
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Since Ak is positive definite, it follows from Lemma 2.2 that

θk+1 = −A−1
k bk

= A−1
k (φT

k yk − λbk−1)

= A−1
k (φT

k yk + λAk−1θk)

= A−1
k [φT

k yk + (Ak − φT
k φk)θk]

= A−1
k φT

k yk + (I − A−1
k φT

k φk)θk

= θk + Pk+1φ
T
k (yk − φkθk).

Hence, (2.50) is satisfied. �

Note that, if λ = 1, R is positive definite, and P0
4
= R−1, then the RLS minimizer θk+1

given by (2.48) is equal to the BLS minimizer θopt,R given by (2.41).

The notation θk+1 for the minimizer of Jk emphasizes the fact that θk+1, which is based

on data available up to step k, is not available until the update given by (2.49), (2.50) is

completed, which occurs at step k + 1. Real-time implementation of the RLS update is

discussed below.

The derivation of RLS given by the proof of Theorem 2.1 is an extension of the RLS

derivation given in [47]. In particular, the derivation given in [47, pp. 26–28] is based on

the cost function (2.47) but without the regularization term involving P0. As can be seen in

the proof of Theorem 2.1, this term guarantees that A0 is nonsingular in the first step and

that Ak is nonsingular in the inductive step. In the case of BLS, the role of P0 is played by

the matrix R.

The computational requirements of RLS are primarily determined by n. In particular,

Pk is n × n, and thus the computational requirement for updating Pk given by (2.49) is

of order n2. Furthermore, the inverse in (2.49) is of size p × p, which, since typically

p << n, is much less demanding than the inverse required by BLS. In addition, the stor-

age requirements of RLS are of order n2, which does not grow with k. Consequently, the
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computational and memory requirements of RLS are signficantly less than those of BLS.

2.4.1 Alternative θk Update with Inverse

Considering the following Lemma that is required for reformulating the updates of Pk

and θk.

Lemma 2.3. Let A ∈ Rn×n be positive semidefinite, let B ∈ Rn×m, and let C ∈ Rn×n be

positive definite. Then,

[I − ABT(C +BABT)−1B]ABT = ABT(C +BABT)−1C. (2.51)

Proof. Note that

ABT(C +BABT)−1C = ABT(C +BABT)−1(C +BABT −BABT)

= ABT[I − (C +BABT)−1BABT]

= ABT − ABT(C +BABT)−1BABT

= [I − ABT(C +BABT)−1B]ABT. �

The following result is a variation of Theorem 2.1. In this formulation, the updates of

Pk and θk are reversed.

Theorem 2.2. For all k ≥ 0, let φk ∈ Rp×n and yk ∈ Rp. Furthermore, let θ0 ∈ Rn, let

P0 ∈ Rn×n be positive definite, and let λ ∈ (0, 1]. Furthermore, for all k ≥ 0, denote the

minimizer of the function (2.47) by (2.48). Then, for all k ≥ 0, θk+1 is given by

θk+1 = θk + Pkφ
T
k (λI + φkPkφ

T
k )−1(yk − φkθk), (2.52)

Pk+1 =
1

λ
Pk −

1

λ
Pkφ

T
k (λI + φkPkφ

T
k )−1φkPk. (2.53)
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Proof. Using (2.49) to substitute Pk+1 into (2.50) yields

θk+1 = θk + [
1

λ
Pk −

1

λ
Pkφ

T
k (λI + φkPkφ

T
k )−1φkPk]φ

T
k (yk − φkθk)

= θk +
1

λ
[I − PkφT

k (λI + φkPkφ
T
k )−1φk]Pkφ

T
k (yk − φkθk)

= θk + Pkφ
T
k (λI + φkPkφ

T
k

)−1
(yk − φkθk),

where the last equality follows from Lemma 2.3. Hence, (2.52) holds. Finally, (2.53) is

identical to (2.49). �

2.4.2 Real-Time Implementation of RLS

In many applications, it is desirable to implement RLS so that the estimate θk is avail-

able in real time without latency. Note that the estimate θk+1 given by (2.50) depends on

measurements available up to and including step k, namely, yk and φk. Since time is needed

to compute θk+1, the updated estimate θk+1 is not available at time k; rather, it is available

at the next step, namely, k+1. Consequently, the minimizer of Jk is denoted by θk+1, where

the subscript k+1 conveys the fact that the minimizer of Jk is not available until step k+1.

In contrast, the notation used in [47, p. 27] is θk. Figure 2.1 shows how the measurements

and data that are available at step k are used during the time interval [kTs, (k + 1)Ts] to

compute the next estimate θk+1.
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(2, … , 𝑘 − 1)

𝑡
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𝜃𝑘

𝑦𝑘
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𝜃𝑘+1
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𝑃𝑘+1, 𝜃𝑘+1 to 

minimize Jk

𝑦0
𝜙0

𝜃0

𝜃1

Data

Compute
𝑃1, 𝜃1 to 

minimize J0

Figure 2.1: Real-Time Implementation of RLS. Data at step k, which corresponds to time
t = kTs, are used to compute the minimizer θk+1 of the cost Jk. Due to the time needed for
the computation, the estimate θk+1 of the unknown parameter θ is not available until step
k + 1.
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CHAPTER 3

Sampled-Data Adaptive-Control Architecture

This chapter describes the adaptive control architecture considered in this dissertation.

All of the examples in this dissertation consider continuous-time systems under sampled-

data control using discrete-time adaptive controllers. In particular, consider the adaptive

control architecture shown in Figure 3.1, where a realization of G(s)
4
= [Gu(s) Gw(s)] is

given by

ẋ(t) = Ax(t) +Bu(t) +Bww(t), (3.1)

y(t) = Cx(t) +Duu(t) + v(t), (3.2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control, w(t) ∈ Rl is the disturbance,

y(t) ∈ Rp is the noisy measurement of the system output, v(t) ∈ Rp is the sensor noise,

and A ∈ Rn×n, B ∈ Rn×m, Bw ∈ Rn×l, C ∈ Rp×n, and Du ∈ Rp×m.

Gc,kGc,k ZOH
[Gu(s) Gw(s)]

w(t)

Ts
uk u(t)

v(t)

E

yz,k

y0(t) y(t) yk
−
rk

zk

Figure 3.1: Command following and disturbance rejection under sampled-data adaptive
control. The objective is to follow commands rk to the performance variable yz,k = Eyk.
All sample-and-hold operations are synchronous.

27



Define

Gu(s)
4
= C(sIn − A)−1B +Du, (3.3)

Gw(s)
4
= C(sIn − A)−1Bw +Du, (3.4)

where Gu ∈ R(s)p×mprop and Gw ∈ R(s)p×lprop are proper p ×m and p × l transfer functions,

respectively. The disturbance w(t) is matched if there exists U ∈ Rm×m such that Bw =

BU ; otherwise, the disturbance is unmatched. The system output y0(t) ∈ Rp is corrupted

by sensor noise v(t) and sampled to produce yk ∈ Rp. The sampling operation can be

realized as yk
4
= y0(kTs) + vk, where vk

4
= v(kTs) ∈ Rp is the sampled sensor noise and

Ts ∈ R is the sample time. In this dissertation the statistics of the sampled sensor noise vk

are specified. The performance variable is yz,k
4
= Eyk ∈ Rq, where the matrix E ∈ Rq×p

selects components of yk or a linear combination of the components of yk that are required

to follow the command rk ∈ Rq. The command-following error is thus zk
4
= rk−yz,k ∈ Rq.

The inputs to the adaptive feedback controller Gc,k(q) are the measurement yk and the

command-following error zk. The adaptive feedback controller produces the discrete-time

control uk ∈ Rm at each step k. The continuous-time control u(t) is produced by applying

a zero-order-hold operator to uk. Note that zk serves as the adaptation variable, as denoted

by the diagonal line in Figure 3.1 passing through Gc,k(q). The objective is to minimize

the magnitude of the command-following error zk in the presence of the disturbance w(t)

and sensor noise v(t).

Gc,kGc,k Gd(q)

G
w(t) yw,k

uk yu,k

vk

E

yz,k

y0,k yk
−
rk zk

Figure 3.2: Equivalent representation of Figure 3.1. The exact discretization Gd(q) of
Gu(s) operates on uk to generate yu,k.
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Figure 3.2 shows an equivalent representation of Figure 3.1, where w(t) and yw,k are

related by the operator

yw,k
4
= G[w(t)] = C

∫ kTs

(k−1)Ts

eA(kTs−τ)Bww(τ)dτ. (3.5)

Note that Figure 3.2 shows two transfer functions in feedback, namely,Gd(q) andEGd(q),

which are, respectively, the transfer functions from uk to yk and uk to yz,k. Furthermore,

Gd ∈ R(q)p×mprop , where q is the forward-shift operator, is the exact discretization of Gu(s)

using zero-order-hold and sampling operations. For details, see [48, pp. 11]. Consequently,

yk = G[w(t)] +Gd(q)uk + vk, (3.6)

zk = rk − Eyk. (3.7)

Note that the argument q of Gd in (3.6) reflects the fact that (3.6) is a time-domain

equation whose solution depends on the initial conditions of the input-output system. Using

the Z-transform variable z in place of the forward-shift operator q would account for the

forced response of (3.6) but would implicitly assume zero initial conditions and thus would

omit the free response. The distinction between z and q in accounting for initial conditions

and the resulting free response is discussed in [49, 50]. Since Gd(z) and Gd(q) have the

same form, the argument has no effect on the algebraic properties of Gd such as poles and

zeros.

In order to compute the intersample response of (3.5), the disturbance w(t) is assumed

to be piecewise constant within each subinterval of the interval kTs to (k + 1)Ts, where

each subinterval has length Ts/10. In particular, letting wk,i denote the approximate value
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of w(t) for t ∈ [(k + i
10

)Ts, (k + i+1
10

)Ts], for i = 0, . . . , 9, it follows that

yw,k+1 = C

∫ (k+1)Ts

kTs

eA[(k+1)Ts−τ ]Bww(τ)dτ (3.8)

≈ C

[∫ kTs+
1
10
Ts

kTs

eA[(k+1)Ts−τ ]dτBwwk,0 + . . .+

∫ (k+1)Ts

kTs+
9
10
Ts

eA[(k+1)Ts−τ ]dτBwwk,9

]
(3.9)

= C

[∫ Ts

9
10
Ts

eAτdτBwwk,0 + . . .+

∫ 1
10
Ts

0

eAτdτBwwk,9

]
. (3.10)

Within each subinterval, the MATLAB function ODE45 is used to integrate the dynamics

of G(s). For all examples in this dissertation, the ODE45 relative and absolute tolerances

are set to 2.22045×10−14 and 10−14, respectively, which determine the variable step lengths

during each subinterval. In the case where w(t) is stochastic, the standard deviation of wk,i

is specified.

Figure 3.3 shows the intersample response of Gw(s) = s−1
s2−3s+2

, where wk,i is zero-

mean, Gaussian white noise with standard deviation 1 simulated with Ts = 0.01 s/step. In

all subsequent numerical examples, the intersample response is computed but not shown.

0 0.02 0.04 0.06 0.08 0.1

-12

-10

-8

-6

-4

-2

0

2
10

-3

Figure 3.3: Numerical integration of Gw(s) using ODE45 within each subinterval of size
Ts/10, where Ts = 0.01 s/step. The intersample response is plotted in orange, and the blue
dash-dots show the sampled response.

Chapters 4, 8, and 9 consider SISO continuous-time transfer functions with Gu(s) =
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Gw(s) of the form

Gu(s) = 10e−ndTss
(s− a)(s− b)(s− c)

∏3
i=1(s2 + 2ζ̄iω̄is+ ω̄2

i )∏5
i=1(s2 + 2ζiωis+ ω2

i )
, (3.11)

where nd is a nonnegative integer, the parameters a, b, c, nd are given in Table 3.1, and

ζ̄1 = 0.96, ζ̄2 = 0.22, ζ̄3 = 0.8, ω̄1 = 54, ω̄2 = 38, ω̄3 = 8, ζ1 = 0.4, ζ2 = 0.15, ζ3 = 0.05,

ζ4 = 0.06, ζ5 = 0.05, ω1 = 4, ω2 = 25, ω3 = 35, ω4 = 65, and ω5 = 96. The transfer

function (3.11) with the parameters in Table 3.1 are used to investigate the performance of

RCAC, RLSID, and DDRCAC in later sections.

Table 3.1: Special cases of Gu(s) given by (3.11). For each case, the values of a, b, c, nd

and the type of zeros are shown.

Case a b c nd Zeros

1 10 −30 −20 2 1 real NMP

2 10 −30 −20 0 1 real NMP

3 10 + 10 10− 10 −20 2 2 complex NMP

The time delay of ndTs, where nd is a nonnegative integer, is included in Gu(s) as

e−ndTs . Choosing the time delay to be a multiple of Ts facilitates investigation of the effect

of uncertain discrete-time relative degree on the performance of the closed-loop discrete-

time system. Note that (3.11) can be exactly discretized by separately considering the

rational and exponential factors. In particular, the rational part of (3.11) is exactly dis-

cretized with a zero-order-hold (ZOH) discretization computed using MATLAB command

c2d, whereas the exponential part of (3.11) is exactly discretized by the factor q−nd in

Gd(q). Note that the exact discretization of (3.11) has relative degree nd + 1.

For all examples in this dissertation, (3.11) is simulated by using a minimal realization

whose initial state is zero. Hence, E = 1, p = q = m = l = 1, and B = Bw in (3.1), (3.2).
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CHAPTER 4

Retrospective Cost Adaptive Control

In this chapter, we present the RCAC algorithm, which forms the basis of DDRCAC

[33].

4.1 Controller Structure

Consider the strictly proper, discrete-time dynamic compensator

uk =
nc∑
i=1

Pi,kuk−i +
nc∑
i=1

Qi,kỹk−i, (4.1)

where k ≥ 0, uk ∈ Rm is the requested control, nc is the controller window length, ỹk ∈

Rly , and Q1,k, . . . , Qnc,k ∈ Rm×ly and P1,k, . . . , Pnc,k ∈ Rm×m are the numerator and

denominator controller coefficient matrices, respectively. For convenience, a “cold” startup

is assumed, where Q1,0, . . . , Qnc,0, P1,0, . . . , Pnc,0, u−nc , . . . , u−1, and ỹ−nc , . . . , ỹ−1 are

defined to be zero, and thus u0 = 0. The controller (4.1) can be written as

uk = φc,kθc,k, (4.2)
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where

φc,k
4
=



uk−1
...

uk−nc

ỹk−1
...

ỹk−nc



T

⊗ Im ∈ Rm×lθc , (4.3)

is the controller regressor, lθc
4
= ncm(m + ly), and the controller coefficient vector is

defined by

θc,k
4
= vec

[
P1,k · · · Pnc,k Q1,k · · · Qnc,k

]
∈ Rlθc . (4.4)

In terms of q, the controller (4.1) can be expressed as

uk = Gc,k(q)ỹk, (4.5)

where

Nc,k(q)
4
= Q1,kq

nc−1 + · · ·+Qnc,k, (4.6)

Dc,k(q)
4
= Imq

nc − P1,kq
nc−1 − · · · − Pnc,k, (4.7)

Gc,k(q)
4
= D−1

c,k(q)Nc,k(q). (4.8)

The signal ỹk is constructed from zk, yk, and rk. In the simplest case, ỹk = zk, whereas,

when additional measurements are available, ỹk = [ zT
k y

T
k ]T. Alternatively, feedforward

action can be included by setting ỹk = [ zT
k r

T
k ]T.More generally, the components of ỹk can

be arbitrary, fixed linear combinations of the components of zk, yk, and rk. Fixed, nonlinear

functions of zk, yk, and rk can also be included in ỹk; however, this is outside the scope of

this dissertation.
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4.2 Retrospective Performance Variable

Next, define the filtered signals

uf,k
4
= Gf(q)uk, (4.9)

φf,k
4
= Gf(q)φc,k, (4.10)

where, for startup, uf,k and φf,k are initialized at zero and thus are computed as the forced

responses of (9.9) and (9.10), respectively. Unless specified otherwise, the same filter

initialization is for all filters in the subsequent development. The q×m filter Gf(q) has the

form

Gf(q)
4
= Df(q)−1Nf(q), (4.11)

where

Nf(q)
4
= Nf,0q

nf +Nf,1q
nf−1 + · · ·+Nf,nf

, (4.12)

Df(q)
4
= Iqq

nf +Df,1q
nf−1 + · · ·+Df,nf

, (4.13)

nf is the filter window length, and Nf,0, . . . , Nf,nf
∈ Rq×m and Df,1, . . . , Df,nf

∈ Rq×q are

the numerator and denominator coefficients of Gf(q), respectively.

Equivalently, (4.9) and (4.10) can be written as

uf,k = −DUf,k +NUk, (4.14)

φf,k = −DΦf,k +NΦc,k, (4.15)
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where

Uf,k
4
=

 uf,k−1
...

uf,k−nf

 ∈ Rnfq, Uk
4
=

 uk
...

uk−nf

 ∈ R(nf+1)m, (4.16)

Φf,k
4
=

 φf,k−1
...

φf,k−nf

 ∈ Rnfq×lθc , Φc,k
4
=

 φc,k
...

φc,k−nf

 ∈ R(nf+1)m×lθc , (4.17)

N
4
=
[
Nf,0 · · · Nf,nf

]
∈ Rq×m(nf+1), D

4
=
[
Df,1 · · · Df,nf

]
∈ Rq×qnf . (4.18)

Next, in order to update the controller coefficient vector (4.4), define the retrospective

performance variable

ẑk(θc)
4
= zk − (uf,k − φf,kθc), (4.19)

where zk is given by (3.7) and θc is a generic variable for optimization. Note that uf,k

depends on uk and thus on the current controller coefficient vector θc,k. The retrospective

performance variable ẑk(θc) is used to determine the updated controller coefficient vector

θc,k+1 by minimizing a function of ẑk(θc). The optimized value of ẑk is thus given by

ẑk(θc,k+1) = zk − (uf,k − φf,kθc,k+1), (4.20)

which shows that the updated controller coefficient vector θc,k+1 is “applied” retrospec-

tively with the filtered controller regressor φf,k. Furthermore, note that the filter Gf(q) is

used to obtain φf,k from φk by means of (4.10) but ignores past changes in the controller

coefficient vector, as can be seen by the product φf,kθc,k+1 in (4.20). Consequently, the

filtering used to construct (4.20) ignores changes in the controller coefficient vector over

the window [k−nf , k]. The effect of the actual time-dependence of θc,k is analyzed in later

sections.
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Using (4.14) and (4.15), (4.19) can be expressed as

ẑk(θc) = zk +D(Uf,k − Φf,kθc)−N(Uk − Φc,kθc). (4.21)

In the case where Gf(q) is a finite-impulse-response (FIR) transfer function, and thus D =

0, it follows from (4.21) that

ẑk(θc) = zk −NUk +NΦc,kθc. (4.22)

4.3 Online Optimization Using RLS

In order to account for the control effort, define

zc,k(θc)
4
=

[
Ez ẑk(θc)

Euφc,kθc

]
∈ Rq+r1 , (4.23)

where the performance weighting Ez ∈ Rq×q is nonsingular, and Eu ∈ Rr1×m is the

control weighting. If Eu = 0, then all expressions involving Eu in (4.23), as well as in all

subsequent expressions, are omitted, and r1 = 0. Using (4.19), it follows that (4.23) can be

expressed as

zc,k(θc) = yc,k − φfc,kθc, (4.24)

where

yc,k
4
=

[
Ezzk − Ezuf,k

0r×1

]
∈ Rq+r1 , φfc,k

4
=

[
−Ezφf,k

−Euφc,k

]
∈ R(q+r1)×lθc . (4.25)
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Using (4.23), define the retrospective cost

Jk(θc)
4
=

k∑
i=0

zc,i(θc)
Tzc,i(θc) + (θc − θc,0)TP−1

c,0 (θc − θc,0), (4.26)

and note that

zc,k(θc)
Tzc,k(θc) = ẑk(θc)

TRz ẑk(θc) + θT
c φ

T
c,kRuφc,kθc, (4.27)

where Rz
4
= ET

z Ez ∈ Rq×q is positive definite and Ru
4
= ET

uEu ∈ Rm×m is positive

semidefinite. For all k ≥ 0, the minimizer θc,k+1 of (4.26) is given by the recursive least

squares (RLS) solution [16]

Pc,k+1 = Pc,k − Pc,kφ
T
fc,k(Iq+r1 + φfc,kPc,kφ

T
fc,k)

−1φfc,kPc,k, (4.28)

θc,k+1 = θc,k + Pc,k+1φ
T
fc,k(yc,k − φfc,kθc,k). (4.29)

Using the updated controller coefficient vector given by (4.29), the requested control at step

k + 1 is given by

uk+1 = φc,k+1θc,k+1. (4.30)

Although θc,0 can be chosen arbitrarily, θc,0 = 0 is chosen in all examples in order to

reflect the absence of additional modeling information. Finally, Pc,0 = pc,0Ilθc , where

pc,0 ∈ (0,∞) is a tuning parameter.
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CHAPTER 5

Retrospective PerformanceVariable

Decomposition

This chapter shows that the retrospective performance variable can be decomposed into

the sum of a performance term and a model-matching term. A more restrictive version of

the results in this section is given in [51] and a more detailed treatment is presented in [33].

For simplicity, this section focuses on the case where ỹk
4
= zk.

Since the optimized controller coefficient vector is time-dependent, the retrospective

performance variable defined by (4.19) must be modified to ignore the time-dependence

of θc,k+1. To do this, the terms uf,k − φf,kθc in (4.19) are replaced by a filtered version of

uk − φc,kθc in which the controller coefficient vector is constrained to be θc,k+1 over the

filtering window. By defining

ũk(θc)
4
= uk − φc,kθc, (5.1)

the filtered signal ũf,k(θc,k+1) is given by a fixed-input-argument (FIA) filter with input

ũk(θc,k+1) as defined by Definition 2.2 in Chapter 2. In particular, ũf,k(θc,k+1) is defined to

be the output of the FIA filter

ũf,k(θc,k+1)
4
= Gf(q)ũk(θc,k+1), (5.2)
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which ignores the change in the argument θc,k+1 of ũk over the interval [k − nf , k] in ac-

cordance with retrospective optimization. Note that, by the definition of FIA filtering, the

filtered signal ũf,k(θc,k+1) is a function of the time-dependent controller coefficient vector

θc,k+1. Equivalently, (5.2) can be written as

ũf,k(θc,k+1) = −DŨf,k +NŨk(θc,k+1), (5.3)

where

Ũf,k
4
=

 ũf,k−1(θc,k)
...

ũf,k−nf
(θc,k−nf+1)

 ∈ Rnfq, Ũk(θc)
4
=

 ũk(θc)
...

ũk−nf
(θc)

 ∈ R(nf+1)m. (5.4)

Using (5.2), the definition (4.19) of ẑk(θc) is replaced by

ẑext,k(θc,k+1)
4
= zk − ũf,k(θc,k+1). (5.5)

Using (5.1), (5.3), and (5.4), it follows that (5.5) can be written as

ẑext,k(θc,k+1) = zk +DŨf,k −N(Uk − Φc,kθc,k+1). (5.6)

Note that the difference between ẑk(θc,k+1) given by (4.21) and ẑext,k(θc,k+1) given by (5.6)

is due to the fact that Uf,k−Φf,kθc in (4.21) is replaced by Ũf,k in (5.6). Hence, ẑext,k(θc,k+1)

is not generally ẑk(θc,k+1). However, if, for all k, θc,k+1 = θc, then ũf,k(θc,k+1) = uf,k −

φc,kθc, and thus ẑext,k(θc,k+1) = ẑk(θc).

The following result presents the retrospective performance-variable decomposition,

which shows that the retrospective performance variable is a combination of the closed-

loop performance and the extent to which the updated closed-loop transfer function from

ũk(θc,k+1) to zk matches the filterGf(q).Henceforth, Gf(q) is called the target model since

it serves as the target for the closed-loop transfer function from ũk(θc,k+1) to zk.
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Proposition 5.1. Assume that, for all k ≥ 0, ỹk
4
= zk, and Gd(q) and Gf(q) are strictly

proper. Then, for all k ≥ 0,

ẑext,k(θc,k+1) = zopp,k(θc,k+1) + ztmp,k(θc,k+1), (5.7)

where the one-step predicted performance zopp,k(θc,k+1) and the target-model matching

performance ztmp,k(θc,k+1) are defined by

zopp,k(θc,k+1)
4
= G̃zw,k+1(q)(rk − Evk − EG[w(t)]), (5.8)

ztmp,k(θc,k+1)
4
= [G̃zũ,k+1(q)−Gf(q)]ũk(θc,k+1), (5.9)

and

G̃zw,k+1(q)
4
= [Iq + EGd(q)Gc,k+1(q)]−1, (5.10)

G̃zũ,k+1(q)
4
= −qnc [Iq + EGd(q)Gc,k+1(q)]−1EGd(q)D−1

c,k+1(q). (5.11)

Proof. It follows from (5.8) and (5.10) that

zopp,k(θc,k+1) = rk − Evk − EG[w(t)]− EGd(q)Gc,k+1(q)zopp,k(θc,k+1). (5.12)

Furthermore, defining the FIA filter output (see Definition 2.2 in Appendix B)

z̃tmp,k(θc,k+1)
4
= G̃zũ,k+1(q)ũk(θc,k+1), (5.13)

it follows from (5.11) and (5.13) that

z̃tmp,k(θc,k+1) = −EGd(q)D−1
c,k+1(q)qncũk(θc,k+1)− EGd(q)Gc,k+1(q)z̃tmp,k(θc,k+1).

(5.14)
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Now, replacing qncũk(θc,k+1) with ũk+nc(θc,k+1) in (5.14) yields

z̃tmp,k(θc,k+1) = −EGd(q)D−1
c,k+1(q)ũk+nc(θc,k+1)− EGd(q)Gc,k+1(q)z̃tmp,k(θc,k+1).

(5.15)

Combining (5.12) and (5.13) yields

zopp,k(θc,k+1) + z̃tmp,k(θc,k+1) = rk − Evk − EG[w(t)]− EGd(q)D−1
c,k+1(q)ũk+nc(θc,k+1)

− EGd(q)Gc,k+1(q)[zopp,k(θc,k+1) + z̃tmp,k(θc,k+1)].

(5.16)

Next, replacing k with k + nc in (5.1) and setting θc = θc,k+1 yields

ũk+nc(θc,k+1) = uk+nc − φc,k+ncθc,k+1. (5.17)

Hence, using

φc,k+ncθc,k+1 =
nc∑
i=1

Pi,k+1uk+nc−i +
nc∑
i=1

Qi,k+1zk+nc−i,

it follows from (5.17) that

ũk+nc(θc,k+1) = uk+nc −
nc∑
i=1

Pi,k+1uk+nc−i −
nc∑
i=1

Qi,k+1zk+nc−i. (5.18)

Using (4.6) and (4.7), note that (5.18) can be written as

ũk+nc(θc,k+1) = Dc,k+1(q)uk −Nc,k+1(q)zk,
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which can be combined with (5.16) to obtain

zopp,k(θc,k+1) + z̃tmp,k(θc,k+1) = rk − Evk − EG[w(t)]− EGd(q)uk

+ EGd(q)Gc,k+1(q)zk − EGd(q)Gc,k+1(q)[zopp,k(θc,k+1) + z̃tmp,k(θc,k+1)]. (5.19)

Using (3.6) and (3.7), it follows from (5.19) that

(Iq + EGd(q)Gc,k+1(q))[zopp,k(θc,k+1) + z̃tmp,k(θc,k+1)] = (Iq + EGd(q)Gc,k+1(q))zk,

(5.20)

which implies that

zk = zopp,k(θc,k+1) + z̃tmp,k(θc,k+1). (5.21)

Next, substituting (5.21) into (5.5) yields

ẑext,k(θc,k+1) = zopp,k(θc,k+1) + z̃tmp,k(θc,k+1)− ũf,k(θc,k+1). (5.22)

Hence, substituting (5.2) and (5.13) into (5.22) and using (5.9) yields

ẑext,k(θc,k+1) = zopp,k(θc,k+1) + G̃zũ,k+1(q)ũk(θc,k+1)−Gf(q)ũk(θc,k+1)

= zopp,k(θc,k+1) + [G̃zũ,k+1(q)−Gf(q)]ũk(θc,k+1)

= zopp,k(θc,k+1) + ztmp,k(θc,k+1). �

In the case where ỹk = zk, yk, and uk are scalar, that is, ly = q = p = m = 1, (5.10)
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and (5.11) have the form

G̃zw,k+1(q) =
Dd(q)Dc,k+1(q)

Dd(q)Dc,k+1(q) + ENd(q)Nc,k+1(q)
, (5.23)

G̃zũ,k+1(q) =
−qncENd(q)

Dd(q)Dc,k+1(q) + ENd(q)Nc,k+1(q)
, (5.24)

where

Gd(q)
4
=
Nd(q)

Dd(q)
. (5.25)

5.1 Analysis of the Retrospective Performance-Variable

Decomposition

Assuming Ez = I, Eu = 0, and using (4.23) and (5.7), it follows from (4.26) that

Jk(θc,k+1) =
k∑
i=0

ẑT
i (θc,i+1)ẑ,i(θc,i+1) + (θc,i+1 − θc,0)TP−1

c,0 (θc,i+1 − θc,0). (5.26)

In the case where pc,0 is large, using RLS to minimize (5.26) yields

ẑk(θc,k+1) ≈ 0. (5.27)

Furthermore, it is observed numerically and shown in Figure 5.2 that using RLS to mini-

mize (5.26) yields

ẑext,k(θc,k+1) ≈ ẑk(θc,k+1), (5.28)

which, using (5.7), implies that

zopp,k(θc,k+1) + ztmp,k(θc,k+1) ≈ 0, (5.29)

43



that is,

zopp,k(θc,k+1) ≈ −ztmp,k(θc,k+1). (5.30)

The following example illustrates this property.

Example 4. Minimization of ẑext,k(θc,k+1) and its decomposition for a SISO System.

Let

Gu(s) =
100(s− 10)(s+ 8)

(s+ 11)(s2 − 0.6s+ 900)
, (5.31)

and, for Ts = 0.01 s/step, let Gd(q) denote the ZOH discretization of Gu(s). Assume

that the w is matched, that is, Gu(s) = Gw(s), and let wk,i be zero-mean, Gaussian white

noise with standard deviation 1. For disturbance rejection with nonnoisy measurements,

that is, with rk = 0 and vk = 0, adaptive control is applied with Ez = 1, Eu = 0,

E = 1, Gf(q) = −0.9988 (q−1.1628)
q2 , nc = 16, and pc,0 = 10. Figures 5.1(f) and (h)

shows that, for all 0.04 ≤ t ≤ 0.7, zopp,k(θc,k+1) and ztmp,k(θc,k+1) have large magnitudes

and approximately sum to zero. In particular, Figure 5.1(h) shows |zopp,k+ztmp,k|
|zopp,k|+|ztmp,k|

, which

is small when zopp,k(θc,k+1) and ztmp,k(θc,k+1) have large magnitudes with opposite signs,

and close to 1 when zopp,k(θc,k+1) and ztmp,k(θc,k+1) have small magnitudes. Figure 5.1(g)

shows that G̃zũ,400(q) and Gf(q) have similar frequency responses, and thus the controller

update promotes matching between the closed-loop transfer function G̃zũ,k+1(q) and the

target model Gf(q).

Next, in order to compare ẑk(θc,k+1) and ẑext,k(θc,k+1) for the case where Gf(q) is IIR,

the simulation is repeated with Gf(q) = −0.9988 (q−1.1628)
q2+0.1q+0.01

. Figure 5.2 shows that the

error between ẑk(θc,k+1) and ẑext,k(θc,k+1) is less than 10−1 for all t. �

Proposition 5.2. Assume that θc
4
= lim

k→∞
θc,k+1 exists and φc,k+1 is bounded. Then

lim
k→∞

ũk(θc,k+1) = 0.

44



10
-2

10
-1

10
0

10
1

10
-16

10
-14

10
-12

10
-10

-4

-2

0

2

-50

0

50

0 1 2 3 4

10
-4

10
-2

10
0

10
-3

10
-2

10
-1

10
0

0 /4 /2 3 /4

-15

-10

-5

0

5

0 1 2 3 4

10
-4

10
-2

10
0

Figure 5.1: Example 4: (a) open- and closed-loop responses; (b) that |ẑk − zopp,k −
ztmp,k| < 3.01×10−9 for all t, which confirms (5.7); (c) the evolution of θc,k; (d) zopp,k and
ztmp,k; (e) |uk| and |ũk|; (f) |ẑext,k|; (g) the frequency response of Gf(q) and G̃zũ,400(q); (h)
|zopp,k+ztmp,k|
|zopp,k|+|ztmp,k|
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Figure 5.2: Example 4: For an IIR Gf(q), (a) shows the absolute value of the retrospective
cost variable and its extension, and (b) shows the absolute error between the retrospective
cost variable and its extension.

Proof. Equations (4.3) and (5.1) imply that

ũk(θc,k+1) = φc,k(θc,k − θc,k+1).
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Defining α = supk≥0 σmax(φc,k), it follows that

‖ũk(θc,k+1)‖ ≤ σmax(φc,k)‖θc,k − θc,k+1‖

≤ α‖θc,k − θc,k+1‖,

where σmax denotes the maximum singular value. Hence,

lim
k→∞
‖ũk(θc,k+1)‖ ≤ α lim

k→∞
‖θc,k − θc,k+1‖ = 0. �

Proposition 5.2 and (5.9) suggest that the convergence of θc,k implies that ztmp,k(θc,k+1)

converges to zero, as illustrated in Figure 5.1(g). Therefore, (5.30) implies that |zopp,k(θc)|

≈ 0, and thus, if θc,k converges, then the one-step predicted performance |zopp,k(θc)| is

small. This mechanism underlies the convergence of RCAC in Figure 5.1 to a stabilizing

controller that rejects the unknown disturbance. Note, however, that the convergence of

θc,k and the consequent convergence of ũk(θc,k+1) to zero do not imply that ztmp,k(θc,k+1)

converges to zero. In fact, Example 8 demonstrates that a poor choice of Gf(q) may cause

ztmp,k(θc,k+1) to diverge while θc,k converges.

5.2 Feasibility of Gf(q)

The following definition concerns the case where there exists a controller parameter

vector that exactly matches the transfer function G̃zũ,k+1(q) to Gf(q).

Definition 5.1. Assume that, for all k ≥ 0, ỹk = zk ∈ Rq. Then, Gf(q) ∈ R(q)q×mprop is

feasible if there exists θc = vec
[
P1 · · · Pnc Q1 · · · Qnc

]
∈ Rlθc such that

G̃zũ(q) = Gf(q), (5.32)
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where

G̃zũ(q)
4
= −qnc [Iq + EGd(q)Gc(q)]−1EGd(q)Dc(q)−1, (5.33)

with

Dc(q)
4
= Imq

nc − P1q
nc−1 − · · · − Pnc , (5.34)

Nc(q)
4
= Q1q

nc−1 + · · ·+Qnc , (5.35)

Gc(q)
4
= D−1

c (q)Nc(q). (5.36)

Definition 5.2. Let θc,k be given by (4.29), and G̃zũ,k(q) be given by (5.24). Then the

asymptotic feasibility distance is

f∞
4
= lim sup

k→∞
‖G̃zũ,k(q)−Gf(q)‖∞. (5.37)

For the SISO case, the following result identifies several features of G̃zũ(q) that are

determined by Gd(q).

Proposition 5.3. For all k ≥ 0, assume that ỹk = zk, yk, and uk are scalar. Furthermore,

let θc ∈ Rlθc and Gf(q) ∈ R(q)prop. Then the following statements hold:

i) The leading numerator coefficient of G̃zũ(q) is equal to the leading numerator coef-

ficient of −EGd(q).

ii) The relative degree of G̃zũ(q) is equal to the relative degree of Gd(q).

iii) The zeros of G̃zũ(q) consist of the zeros of Gd(q) as well as nc zeros at zero.

Proof. Since ỹk = zk and uk are scalar, it follows that E is scalar and the closed-loop
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transfer function (5.33) specializes to

G̃zũ(q) =
−qncENd(q)

Dd(q)Dc(q) + ENd(q)Nc(q)
, (5.38)

which implies i). To prove ii), let dd denote the degree of Dd(q), and let ξ ≥ 0 denote

the relative degree of Gd(q), so that the degree of Nd(q) is dd − ξ. Since the degree of

qncENd(q) is nc + dd − ξ and the degree of Dd(q)Dc(q) + ENd(q)Nc(q) is nc + dd, it

follows that the relative degree of G̃zũ(q) is ξ. Finally, iii) follows from the fact that the

numerator of (5.38) is the numerator of EGd(q) multiplied by qnc . �

The following result, which is an immediate consequence of Proposition 5.3, provides

necessary conditions for feasibility in the SISO case.

Proposition 5.4. For all k ≥ 0, assume that ỹk = zk, yk, and uk are scalar. Furthermore,

let θc ∈ Rlθc , let Gf(q) ∈ R(q)prop, and assume that Gf(q) is feasible. Then the following

statements hold:

i) The leading numerator coefficient of Gf(q) is equal to the leading numerator coeffi-

cient of −EGd(q).

ii) The relative degree of Gf(q) is equal to the relative degree of Gd(q).

iii) The zeros of Gf(q) consist of the zeros of Gd(q), as well as nc zeros at zero.

5.3 RCAC with Feasible and Infeasible Gf(q) for SISO

Systems

This subsection investigates the effect of feasible and infeasible target models on the

convergence of θc,k given by (4.29). For all of the examples in this and the following

subsection, let Gu(s) be given by (5.31), and, for Ts = 0.01 s/step, let Gd(q) denote the
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ZOH discretization of Gu(s). In particular,

Gd(q) =
0.9988(q− 1.1628)(q− 0.7393)

(q− 0.9048)(q2 − 1.905q + 0.994)
. (5.39)

Assume that w is matched, that is, Gu(s) = Gw(s), and let wk,i and vk be zero-mean,

Gaussian white noise with standard deviations 1 and 0.01, respectively. For various choices

of the target modelGf(q), the following examples consider disturbance rejection with noisy

measurements with rk = 0, Ez = 1, Eu = 0, and E = 1.

Example 5. Feasible Gf(q). A linear-quadratic-Gaussian (LQG) controller GLQG(q)

is designed for Gd(q) given by (5.39) using the MATLAB command lqg with Qxu = I4

and Qwv = I4. The LQG controller

GLQG(q)
4
=
NLQG(q)

DLQG(q)
, (5.40)

is used to construct

Gf,LQG(q) =
−qnNd(q)

Dd(q)DLQG(q) +Nd(q)NLQG(q)
. (5.41)

The corresponding closed-loop target model is given by

Gf,LQG(q) =
−0.9988q3(q− 1.1628)(q− 0.7393)

(q− 0.888)(q− 0.212)(q2 − 1.199q + 0.3738)(q2 − 0.0926q + 0.1148)
,

(5.42)

Note that (5.42) is feasible by construction. Since Gf,LQG(q) is feasible, Proposition 5.4

implies that its leading numerator coefficient −0.9988 and relative degree 1 are the same

as those of −EGd(q) and that its zeros 0, 0.7393 and 1.1628 are the zeros of Gd(q) as

well as n = 3 zeros at zero. Next, adaptive control is applied with Gf(q) = Gf,LQG(q),

pc,0 = 107, and nc = n = 3. Figure 5.3(d) shows that G̃zũ,1000(q) and Gf(q) have similar
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frequency responses, which is consistent with the fact thatGf,LQG(q) is feasible. Moreover,

Figure 5.3(c) shows that Gc,1000(q) and GLQG(q) have similar frequency responses, which

suggests that the adaptive controller approximately converges to the LQG controller. �
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Figure 5.3: Example 5: (a) open- and closed-loop responses; (b) frequency response of
GLQG(q) and Gc,1000(q); (c) |zopp,k| and |ztmp,k|; (d) frequency response of Gf(q) and
G̃zũ,1000(q).

Example 6. Robustness to infeasible Gf(q). To investigate the robustness of the fea-

sible target model (5.42), the target model is chosen to be various infeasible perturbations

of the feasible target model given by

Gf(q) = αLNCGf,LQG(q), (5.43)

Gf(q) =
1

qαRD
Gf,LQG(q), (5.44)

Gf(q) =
−0.9988q3(q− 1.1628)(q− αMP)

(q− 0.8878)(q− 0.2118)(q2 − 1.199q + 0.3738)(q2 − 0.0926q + 0.1148)
,

(5.45)

Gf(q) =
−0.9988q3(q− αNMP)(q− 0.7393)

(q− 0.8878)(q− 0.2118)(q2 − 1.199q + 0.3738)(q2 − 0.0926q + 0.1148)
,

(5.46)

which reflect uncertainty in αLNC, αRD, αMP, and αNMP, respectively. Note that (5.43),

(5.44), (5.45), and (5.46) are equal to (5.42) for the nominal values αLNC = 1, αRD = 0,

αMP = 0.7393, and αNMP = 1.1628, respectively.

The suppression metric gs is defined as the ratio of the root-mean-square of the last 1000
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subinterval steps of the open-loop response and the closed-loop response in dB. The case

gs > 0 corresponds to disturbance suppression relative to the response of the open-loop

system. Simulations where either gs ≤ 0 or the output of the closed-loop system diverges

are indicated as failures.

To investigate the closed-loop performance with an off-nominal target model, αLNC,

αRD, αMP, and αNMP are varied from their nominal values, and RCAC is applied with

nc = n = 3, pc,0 = 1000, for 0 ≤ t ≤ 20 s. Figure 5.4 shows that the adaptive con-

troller can be applied with the target models (5.43)–(5.46), where αLNC, αMP, and αNMP

are off-nominal. In particular, Figure 5.4 shows the suppression metric gs and asymptotic

feasibility distance f∞ for target models with various sources of infeasibility. Figures 5.4(a)

and 5.4(e) show gs and f∞, respectively, for (5.43), where αLNC ∈ [−0.5, 6], which shows

that infeasibility due to the sign of the leading numerator coefficient of the target model

causes failure. However, the adaptive controller is robust to infeasibility due to the mag-

nitude of the leading numerator coefficient of the target model. Figures 5.4(b) and 5.4(f)

show gs and f∞, respectively, for (5.44), where αRD ∈ {0, 1, 2, 3}, which shows that infea-

sibility due to the relative degree of target model causes failure. Figures 5.4(c) and 5.4(g)

show gs and f∞, respectively, for (5.45), where αMP ∈ [−1.2, 1.2], which shows that the

adaptive controller is robust to infeasibility due to an incorrectly modeled MP zero in the

target model. However, note that the adaptive controller fails when a MP zero of Gd(q) is

replaced with a positive NMP zero in the target model. Figures 5.4(d) and 5.4(h) show gs

and f∞, respectively, for (5.46), where αNMP ∈ [0.9, 1.5], which shows that the adaptive

controller is robust to infeasibility due to an incorrectly modeled NMP zero in the target

model. Note that the adaptive controller fails when αNMP < 1 in the target model (5.46),

that is, when the NMP zero in the feasible target model (5.42) is replaced with a MP zero.

�
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Figure 5.4: Example 6: For Gf(q) given by (5.43)–(5.46), (a)–(d) show gs, and (e)–(h)
show f∞. The dashed lines indicate nominal values of αLNC, αRD, αMP, and αNMP; the
shaded regions indicate values for which gs ≤ 0.

5.4 Construction of Gf(q) for SISO Systems

Example 6 shows that RCAC can reject disturbances with an infeasible Gf(q) as long

asGf(q) shares certain properties with−EGd(q), as described by the following definition.

Definition 5.3. Assume that EGd(q) is SISO, and let Gf(q) be a proper SISO transfer

function. Then Gf(q) is quasi-feasible if the following statements hold:

i) The leading numerator coefficients of Gf(q) and −EGd(q) have the same sign.

ii) Gf(q) and −EGd(q) have the same relative degree.

iii) Gf(q) and −EGd(q) have the same NMP zeros.

Note that a quasi-feasible target model may be feasible; however, most quasi-feasible

target model are infeasible

Definition 5.4. The nominal target model is the minimal-order, quasi-feasible FIR target

model whose leading numerator coefficient is equal to the leading numerator coefficient of

−EGd(q).

Note that the nominal target model is uniquely defined. Furthermore, the nominal target

model may be feasible; however, in most cases, the nominal target model is infeasible The

rationale for choosing the nominal target model to be FIR is the fact that the target location
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for each closed-loop pole is the center of the open unit disk. For details, see [24]. Note that

the nominal target model for −EGd(q), with Gd(q) given by (5.39), is

Gf,n(q) = −0.9988
q− 1.1628

q2
. (5.47)

The following example investigates the efficacy of the nominal target model when the re-

quired modeling information is uncertain.

Example 7. Robustness to perturbations from the nominal target model. To in-

vestigate the robustness of the nominal target model, first consider the case where Gf(q)

given by (5.47). Figure 5.5 shows the suppression metric gs and the asymptotic feasibility

distance f∞ for this choice of target model, marked with the vertical red dashed lines.

Next, the target model is chosen to be a perturbation of the nominal target model given

by the off-nominal target models

Gf(q) = αLNCGf,n(q), (5.48)

Gf(q) = −0.9988
q− 1.1628

q2+αRD
, (5.49)

Gf(q) = −0.9988
q− αNMP

q2
. (5.50)

which reflect uncertainty in αLNC, αRD, and αNMP, respectively. Note that (5.48), (5.49),

and (5.50) are equal to Gf,n(q) for the nominal values αLNC = 1, αRD = 0, and αNMP =

1.1628, respectively. To investigate the closed-loop performance with an off-nominal target

model, αLNC, αRD, and αNMP are varied from their nominal values, and adaptive control is

applied with nc = 10, pc,0 = 1000, for 0 ≤ t ≤ 20 s. Figure 5.5 shows that the adaptive

controller can be applied with the target models Gf,LNC(q) and Gf,NMP(q), where αLNC

and αNMP are off-nominal. �
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Figure 5.5: Example 7: ForGf(q) given by (5.48)–(5.50), (a)–(c) show gs, and (d)–(f) show
f∞. The dashed lines indicate nominal values of αLNC, αRD, and αNMP; the shaded regions
indicate values for which gs ≤ 0.

Example 7 suggests that Gf(q) can be constructed as

Gf(q) = −Gξ

∏Nz

i=1(q− αz,i)

qNz+ξ
, (5.51)

whereGξ, αz,i, Nz, ξ, are the leading numerator coefficient, all NMP zeros, number of NMP

zeros, and relative degree of EGd(q), respectively. Note that the minus sign in (5.51) is

due to the minus sign in (3.7).

Example 8. Unmodeled NMP zeros and the retrospective performance-variable de-

composition. Let Gf(q) = −0.9988
q

, which has the same leading numerator coefficient and

relative degree as −EGd(q), however, it does not have the NMP zero of Gd(q). Adaptive

control is applied with Ez = 1, Eu = 0, E = 1, nc = 16, and pc,0 = 1000.

As shown by Examples 4 and 5, the minimization of the retrospective performance

variable ẑk(θc,k+1) leads to matching between G̃zũ,k+1(θc,k+1) and Gf(q). Figure 5.6(h)

shows that this is what happens for this example as well. Since (5.24) has a NMP zero

at 1.1628 rad/step and Gf(q) does not, the optimization attempts to cancel this NMP zero

using the denominator of (5.24). This results in a controller pole at the NMP zero as

shown in Figure 5.6(g), which results in a hidden instability, demonstrated by the lack of

divergence of |zk| and the exponential divergence of |uk|, as shown in Figures 5.6(e) and

(a), respectively.
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Additionally, as shown in Figure 5.6(b), the spectral radius of

Du(q)Dc(q) +Nu(q)Nc(q),

which is the denominator polynomial of all closed-loop transfer functions, converges to a

value greater than 1, which shows that all the closed-loop transfer functions are unstable.

However, since Gf(q) is asymptotically stable, and |zk| and ũk(θc,k+1) remain small, it

follows from (5.5) that ẑext,k(θc,k+1) remains small, as shown in Figure 5.6(d). This in turn

implies that zopp,k(θc,k+1) ≈ −ztmp,k(θc,k+1), which can be seen in Figure 5.6(f). �
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Figure 5.6: Example 8: (a) the open- and closed-loop responses; (b) the spectral radius of
DuDc + NuNc; (c) the evolution of θc,k; (d) |ẑext,k|; (e) |uk| and |ũk|; (f) zopp,k and ztmp,k;
(g) the poles and zeros of Gd(q) and the poles of Gc(q); (h) ‖G̃zũ,k+1(q)−Gf(q)‖∞ coded
by color for the stability of G̃zũ,k+1(q).

The next example demonstrates a feature of SISO Gf(q) involving its zeros. In particu-

lar, it is numerically observed that controller poles do not converge to the locations of zeros

of Gf(q).

Example 9. Repulsion of controller poles by zeros of Gf(q). Let the ZOH discretiza-
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tion of Gu(s) for Ts = 1 s/step, be given by

Gd(q) =
0.9988(q− 0.1628)(q− 0.7393)

(q− 0.9048)(q2 − 1.6q + 0.9)
. (5.52)

Assume that w is matched, that is, Gu(s) = Gw(s), and let wk,i and vk be zero-mean,

Gaussian white noise with standard deviations 0.01 and 0.001, respectively. Consider dis-

turbance rejection with noisy measurements with rk = 0, Ez = 1, Eu = 0, and E = 1.

First, adaptive control is applied with Gf(q) = −0.9988
q

, as shown in Figures 5.7(a)–(d).

Next, adaptive control is applied with Gf(q) = −0.9988(q−0.5994+0.2593)(q−0.5994−0.2593)
q3 ,

as shown in Figures 5.7(e)–(h). Note that the zeros of Gf(q) are at the locations of two

poles of the asymptotic controller from the first simulation. As shown in Figure 5.7(h), no

controller poles converge to the location of the zeros of Gf(q). �

Figure 5.7: Example 9: (a) and (e) show the open- and closed-loop responses; (b) and (f)
show the control; (c) and (g) show the evolution of θc,k; (d) and (h) show the poles of the
controller at k = 1000 and the poles and zeros of Gf(q). Note that in (h) there are no
controller poles at the locations of zeros of Gf(q).
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CHAPTER 6

RCAC for MIMO Control

To investigate the role of the target model Gf(q) in MIMO case, note that the closed-

loop transfer function from rk to yk is given by

G̃yr(q) = [Ip +Gd(q)Gc(q)]−1Gd(q)Gc(q) (6.1)

= Gd(q)[Im +Gc(q)Gd(q)]−1Gc(q) (6.2)

= Gd(q)Gc(q)[Ip +Gd(q)Gc(q)]−1, (6.3)

asssume that Gd(q) and Gc(q) have full normal rank, and consider the definitions and

propositions in Appendix A. Note that, ifGd(q) is square, then Proposition 2.1 implies that

CZ(Gd, Gc) and CZ(Gc, Gd) are both empty. Alternatively, consider the case where p 6= m,

and thus Gd(q) in Figure 3.2 is rectangular. Note that both products GdGc ∈ R(q)p×pprop

and GcGd ∈ R(q)m×mprop appear in (6.1)–(6.3). In particular, in the case where m > p,

Gc(q)Gd(q) is up-squared, and thus CZ(Gc, Gd) is empty, whereas Gd(q)Gc(q) is down-

squared, and thus CZ(Gd, Gc) may be nonempty. On the other hand, in the case m < p,

Gd(q)Gc(q) is up-squared, and thus CZ(Gd, Gc) is empty, whereas Gc(q)Gd(q) is down-

squared, and thus CZ(Gc, Gd) may be nonempty. As shown in the next example, cascade

zeros of the down-squared loop transfer function may be cancelled by RCAC.

Example 10. Cancellation of a NMP cascade zero for a wide system. Consider Gu(s)
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and Gw(s) given by (3.3) and (3.4) with

A =


−80 0 0 0

0 −20 0 0

−80 0 −10 −40

−80 0 40 −10

 , B =


−1.8 1.35 −0.85

1.02 −0.22 −1.12

0.13 −0.59 2.53

0.71 −0.29 1.66

 , Bw =


0

1

0

0

 , (6.4)

C =

[
1.31 −0.87 0.79 −8.33

−1.26 −2.18 −1.33 −6.45

]
, D = 02×3, (6.5)

and Ts = 0.01 s/step. Note that A is asymptotically stable. Let (Ad, Bd, Cd, Dd) be a

minimal realization of Gd(q). The objective is to reject the effect of a white, zero-mean,

Gaussian disturbance on both components of yk = [y1,k y2,k]
T, and thus E = I2. For (6.4),

(6.5), EGd(q) has no transmission zeros and no NMP channel zeros. Let wk,i and vk be

zero-mean, Gaussian white noise with standard deviations 1 and 0.001, respectively. Using

the Markov parameters H1 = CdBd and H2 = CdAdBd of Gd(q), let

Gf(q) = −H1

q
− H2

q2
. (6.6)

This choice of Gf(q) ensures that uk is not restricted to a subspace of Rm, where m = 3,

as shown in [52]. With Gf(q) given by (6.6) and pc,0 = 103, Ez = I2, Eu = 0, nc = 20,

Figure 6.1 shows that a controller pole cancels a NMP cascade zero of (Gd, Gc,509) at 1.168

rad/step, which causes the control uk to diverge. Note that Gd(q)Gc,509(q) does not have a

transmission zero at 1.168 rad/step due to pole-zero cancellation, and thus the zero at 1.168

rad/step is an evanescent NMP zero of (Gd, Gc,509). �

Example 11. Cancellation of a NMP cascade zero for a tall system. Consider Gu(s)
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Figure 6.1: Example 10: (a) EZ(Gd, Gc,509) and controller poles, where a NMP element of
EZ(Gd, Gc,509) is cancelled by a controller pole. (b),(d) closed-loop response; (c),(e),(g)
all components of uk diverge; (f) θc,k.

and Gw(s) given by (3.3) and (3.4) with

A =


−120 0 0 0

0 −30 0 0

−80 0 −15 −60

−80 0 40 −15

 , B =


0.231 −0.126

−0.087 −0.318

0.079 −0.133

−1.233 −0.645

 , Bw =


0

1

0

0

 , (6.7)

C =


−1.8 1.02 0.13 0.71

1.35 −0.22 0.59 −1.29

−0.85 1.12 −4.53 3.6

 , D = 03×2, (6.8)

and Ts = 0.01 s/step. Note that A is asymptotically stable. Let (Ad, Bd, Cd, Dd) be a

minimal realization of Gd(q). The objective is to reject the effect of a white, zero-mean,

Gaussian disturbance on both components of yk = [y1,k y2,k y3,k]
T, and thus E = I3. For

(6.7), (6.8), EGd(q) has no transmission zeros and no NMP channel zeros. Let wk,i and

vk be zero-mean, Gaussian white noise with standard deviations 1 and 0.001, respectively.

Using the Markov parameters H1 = CdBd and H2 = CdAdBd of Gd(q), let

Gf(q) = −H1

q
− H2

q2
. (6.9)

This choice of Gf(q) ensures that uk is not restricted to a subspace of Rm, where m = 2,

as shown in [52]. With Gf(q) given by (6.9) and pc,0 = 105, Ez = I3, Eu = 0, nc = 20,
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Figure 6.2 shows that controller poles cancel NMP cascade zeros of (Gc,97, Gd) at 1.035

rad/step, which causes the control uk to diverge. Note that Gc,c,97(q)Gd(q) does not have

transmission zeros at the locations of the NMP cascade zeros of (Gc,97, Gd) due to pole-

zero cancellation, and thus these zeros are evanescent NMP zero of (Gc,97, Gd). �
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Figure 6.2: Example 11: (a) EZ(Gc,97, Gd) and controller poles, where a NMP element of
CZ(Gc,130, Gd) is cancelled by a controller pole. (b),(d),(f) closed-loop response; (c),(e),
all components of uk diverge; (g) θc,k.

Note that, the pole-zero cancellation in Example 8 is between an adaptive controller

Gc,k(q) and a fixed system Gd(q), whose zero locations are fixed. On the other hand, the

pole-zero cancellations in Examples 10 and 11 are between an adaptive controller Gc,k(q)

and cascade zeroes of (Gd, Gc,k) or (Gc,k, Gd), respectively. Note that, the locations of

cascade zeros of (Gd, Gc,k) and (Gc,k, Gd) depend on Gc,k, and thus, are not fixed. This

allows for the possibility of “transient” cancellations of cascade zeros where the cancelled

NMP cascade zeros transition to MP cascade zeros, or the controller poles move away from

the locations of the NMP cascade zeros.
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CHAPTER 7

Phasor-Based Adaptive Control of a Test-Feeder

Distribution Network

This chapter presents work adapted from [53] on the adaptive MIMO control of a model

of the electrical grid. An electrical grid consists of multiple interconnected components that

provide and use energy. A key concern for these systems is the ability to maintain desired

voltage magnitudes and angles throughout the grid in the presence of time-dependent dis-

turbances in the form of renewable energy sources. This is a decentralized feedback control

problem, where modeling information is limited by the changing topology and parameters

of the grid. The authors consider command following and disturbance rejection problems

for a standard grid model called the IEEE 13-node test feeder model. The model is quasi-

static due to the assumption of fast transient response. Retrospective cost adaptive control

(RCAC) is applied in both centralized and decentralized control architectures, where each

MIMO controller has six inputs and six outputs due to the need to regulate the magni-

tude and phase of three-phase power at each power node. The performance of RCAC is

evaluated under conditions of extremely limited model information.
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7.1 IEEE13NTF Model

We consider the nonlinear, time-varying discrete-time plant

xk+1 = f(xk, uk, dk, k), (7.1)

y0,k = g(xk, uk, dk, k), (7.2)

yn,k = y0,k + vk, (7.3)

zk
4
= rk − yn,k, (7.4)

where k ≥ 0 is the step, xk ∈ Rn is the state, uk ∈ Rm is the control input, f : Rn →

Rn and g : Rn → Rn are nonlinear functions that represent the 13-Node Test Feeder

(IEEE13NTF) model, dk ∈ Rl is the disturbance, y0,k ∈ Rp is plant output, yn,k ∈ Rp

is the measurement, rk ∈ Rp is the command, vk ∈ Rp is the sensor noise, and zk ∈ Rp is

the measured error, which is also the performance variable. m, l, and p are the dimensions

of the control, disturbance, and measurement vectors, respectively. The model (7.1)–(7.4)

can be viewed as a synchronously sampled, sampled-data version of IEEE13NTF shown in

Figure 7.1, where the sensing, actuation, and load/generation disturbances are on physically

separated nodes. IEEE13NTF is a quasi-static model that requires the iterative solution of

a set of nonlinear algebraic equations. Therefore, the algebraic solution of (7.1)–(7.4) thus

determine the state update and the effective impulse response.

7.2 Adaptive Control Algorithm

Despite the fact that (7.1)–(7.4) is a nonlinear, time-varying plant, RCAC uses ex-

tremely limited modeling information to update the controller coefficients. Furthermore,

no explicit information about the nonlinearity or time variation is used to select the adap-

tive tuning weights. The goal of this study is thus to determine the extent to which RCAC

can accommodate the unmodeled features of (7.1)–(7.4). For SISO linear plants RCAC
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Figure 7.1: The IEEE13NTF model. The model used for this chapter is provided by the
OPAL-RT RT-Lab ePHASORSIM package.

requires limited modeling data, namely, the sign of the leading numerator coefficient, the

relative degree, and the locations of nonminimum-phase (NMP) zeros, if any. This mod-

eling information is used to construct the filter Gf(q), which is used to compute the retro-

spective performance variable. For application to IEEE13NTF, the RCAC tuning weights

are chosen based on a combination of nominal simulation tuning and perturbed simulation

testing.

The input of Gc,k(q) is the three voltage magnitude errors and three voltage angle er-

rors at the performance node, and its output is the three active powers and three reactive

powers extracted at the actuation node. The controller order nc(q) and structure are chosen

by the user, as are the adaptation weight pc,0, control weight Eu, and cost weight Ez. The

coefficients of Gc,k(q) are entries of the controller coefficient vector θk. The initial value

θ0 is set to zero for all simulations; this assumption reflects the absence of additional mod-

eling information. In practice, θ0 can be chosen to be nonzero based on modeling or prior

adaptation.
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7.3 Problem Setup

We consider IEEE13NTF from Figure 7.1, which is simulated using OpalRT

RT-LABv2017.0.4.59, and use fixed-structure RCAC described in [54] with a sparse target

model Gf . RCAC is updated at 100 Hz, which is sufficiently fast for the time-varying load

and PV generation dynamics considered in this study. In this chapter, real customer PV

generation data is obtained from Pecan Street [55] and is integrated into IEEE13NTF. In

what follows, continuous time t and the sampled time step k are related by t = k
100
.

Gc,k(q) Guk

dk

rk zk
y0,k

vk
yn,k

−

Figure 7.2: Block diagram representation of the adaptive servo problem with the adaptive
controller Gc,k and IEEE 13-Node Test Feeder G.

In this chapter we consider only three-phase performance nodes for command-

following. In particular, for each performance node we define

y0,k
4
=

[
y0,mag,k

y0,ang,k

]
, zk

4
=

[
zmag,k

zang,k

]
, (7.5)

where

y0,mag,k
4
=


Vmag,A,k

Vmag,B,k

Vmag,C,k

, y0,ang,k
4
=


Vang,A,k

Vang,B,k

Vang,C,k

, (7.6)

zmag,k
4
=


zmag,A,k

zmag,B,k

zmag,C,k

, zang,k
4
=


zang,A,k

zang,B,k

zang,C,k

. (7.7)

We set up phasor-based control as a servo problem as shown in Figure 7.2 with the objective
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being phase balancing. Consequently, rk has the same dimensions as y0,k, and we define

rk
4
=



rmag

rmag

rmag

rang

rang − 120◦

rang + 120◦


, (7.8)

which allows us to specify the command for each node as a pair of 2 scalars rmag, rang

instead of 6 scalars. This reference is designed to balance the three phases.

We model actuators as idealized three-phase, four-quadrant operation, DC/AC invert-

ers, connected to infinitely large battery packs, at the actuation nodes. To avoid the case

where an actuation node goes offline, we assume that each battery pack has infinite capac-

ity. Each RCAC controller commands a single inverter, which can add or extract active and

reactive power at each of the 3 phases. The output uk of the controller Gc,k(q) at step k

is defined to be uk scaled by a fixed scaling. An effective scaling is determined from the

simulated closed-loop response. In particular, the power extracted at an actuation node is

given by

Pact,k
4
=



Pact,A,k

Qact,A,k

Pact,B,k

Qact,B,k

Pact,C,k

Qact,C,k


= 200uk. (7.9)

Since we consider only three-phase performance and actuation nodes, it follows that m =

p = 6 for all simulations. Additionally, we define

vk
4
=

[
vmag,k

vang,k

]
, (7.10)
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vmag,k
4
=


vmag,A,k

vmag,B,k

vmag,C,k

 , vang,k
4
=


vang,A,k

vang,B,k

vang,C,k

 , (7.11)

where each component of vmag,k is Gaussian white noise with standard deviation 0.05 V,

and each component of vang,k is Gaussian white noise with standard deviation 0.0005◦.

7.4 Nominal Simulation Tuning

In this section we determine the controller structure, weightings, and target model by

running multiple simulations of a single scenario. The scenario selected for nominal sim-

ulation tuning is command following at node 671 with load disturbances at nodes 611 and

634 and with actuation at node 675.

650

646 645 632 633 634

611 684 671 692 675

652 680

𝐺c,𝑘

Disturbance 2

Disturbance 1 Performance Actuation

Figure 7.3: Nominal Simulation Tuning: At node 675 the controllerGc,k can add or remove
active and reactive power; at node 671 the controller Gc,k has access to the voltage magni-
tude and angle measurements, where the voltage angles are relative to the slack bus at node
650; at nodes 611 and 634, the active and reactive power are varied, which represents an
unmodeled load disturbance.
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We define the active and reactive power extracted at node 634 as



P634,A,k

Q634,A,k

P634,B,k

Q634,B,k

P634,C,k

Q634,C,k


=
(

1 + dk

)


160 kW

110 kvar

120 kW

90 kvar

120 kW

90 kvar


, (7.12)

the active and reactive power extracted at node 611 as

[
P611,k

Q611,k

]
=
(

1 + dk

)[ 170 kW

80 kvar

]
, (7.13)

the time-varying load disturbance dk as

dk =


0, k < 500,

1, 500 ≤ k < 10000,

1 + sin 0.00025k
4

, k ≥ 10000,

(7.14)

and set

rmag = 2267 V, (7.15)

rang = −5.3◦. (7.16)

To simplify the MIMO controller, each SISO entry is chosen to be either PI or 2nd-

order IIR. Based on simulation, the 6× 6 controller structure with the least complexity that
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follows phase-balancing commands is given by



PI IIR PI PI PI PI

PI PI PI IIR PI PI

PI PI PI PI PI IIR

IIR PI PI PI PI PI

PI PI IIR PI PI PI

PI PI PI PI IIR PI


. (7.17)

Fixed-structure RCAC described in [54] is used to adapt the controller coefficients. For

(7.17), RCAC adapts 84 coefficients; if each entry of (7.17) were chosen to be 2nd-order

IIR, then RCAC would need to adapt 144 coefficients.

Additionally, we set pc,0 = 109, Eu = 0, Ez = diag(1, 1, 1, 100, 100, 100), and use

Gf(q) = 1
q
Ĥ1, where Ĥ1 is constructed by the following procedure:

i) First, we obtain H1 by impulsing each input at the actuation node in IEEE13NTF at

the initial conditions, and recording the first value of each measurement at the perfor-

mance node. We separately replace each entry of H1 with 0, and record the entries

whose replacement by 0 does not cause RCAC to fail; these entries are highlighted

in green:



92.54 67.93 6.71 −8.39 −48.21 −3.84

−89.25 −3.81 9.81 20.64 14.38 −28.56

24.75 −26.95 −9.35 −0.12 58.68 83.23

4.03 −0.50 −0.18 −0.15 0.07 0.87

0.12 0.77 0.48 −0.20 −0.97 −0.47

−1.74 −0.52 −0.07 0.15 2.60 −0.66


.

ii) Next, we separately replace each entry of H1 with its additive inverse, and record the

entries whose replacement by the additive inverse does not cause RCAC to fail; these
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entries are highlighted in green:



92.54 67.93 6.71 −8.39 −48.21 −3.84

−89.25 −3.81 9.81 20.64 14.38 −28.56

24.75 −26.95 −9.35 −0.12 58.68 83.23

4.03 −0.50 −0.18 −0.15 0.07 0.87

0.12 0.77 0.48 −0.20 −0.97 −0.47

−1.74 −0.52 −0.07 0.15 2.60 −0.66


.

iii) We now replace all 29 of the green entries in steps 1 and 2 with 0, which yields



0 67.93 0 0 0 0

0 0 0 20.64 0 0

0 0 0 0 0 83.23

4.03 0 0 0 0 0

0 0 0.48 0 0 0

0 0 0 0 2.60 −0.66


.

iv) Next, we separately replace each nonzero entry in Ĥ1 constructed in the previous step

with 0 in order to determine the modified matrix Ĥ1 that has the smallest number of

nonzero entries for which RCAC does not fail, which is given by



0 67.93 0 0 0 0

0 0 0 20.64 0 0

0 0 0 0 0 83.23

4.03 0 0 0 0 0

0 0 0.48 0 0 0

0 0 0 0 2.60 0


. (7.18)

v) Finally, the numerical values in (7.18) suggest that it may be possible to parameterize

(7.18) using only two numbers. Numerical testing suggests 200 V for magnitude and
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5◦ for angle, which yields

Ĥ1 =



0 200 0 0 0 0

0 0 0 200 0 0

0 0 0 0 0 200

5 0 0 0 0 0

0 0 5 0 0 0

0 0 0 0 5 0


. (7.19)

Note that the rows of (7.19) can be rearranged to construct a 6 × 6 diagonal matrix.

This rearrangement yields a specific pairing of the input and output variables in (7.5)–

(7.7). Figures 7.4–7.6 illustrate RCAC using (7.19), the controller structure (7.17), and the

chosen weightings, with voltage magnitude and angle commands at node 671, actuation

at node 675, and the time-varying load disturbance (7.14) at nodes 611 and 634 in the

presence of the sensor noise (7.34). This completes the nominal simulation tuning.
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Figure 7.4: Nominal Simulation Tuning: The voltage magnitude and angle errors |zmag| and
|zang| at node 671 are shown on a logarithmic scale. Asymptotically, the voltage-magnitude
and voltage-angle errors are approximately less than 0.1 V and 0.01◦, respectively.
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Figure 7.5: Nominal Simulation Tuning: The RCAC controller Gc,k(q) adapts to follow
the setpoint commands. RCAC readapts at t = 5 s to account for the step load disturbance,
and again at t = 100 s to account for the additional harmonic component of the load
disturbance.
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Figure 7.6: Nominal Simulation Tuning: The active and reactive power extracted from each
phase by the RCAC controller Gc,k at node 675 is shown.

7.5 Perturbed Simulation Testing

In this section we apply the controller structure, weightings, and target model obtained

by nominal simulation tuning in the previous section to multiple scenarios involving per-

turbed simulations. Each simulation represents a perturbation of the nominal simulation in

terms of the disturbance signals, actuator saturation levels, and choice of disturbance, ac-

tuation, and performance nodes. For all simulations, we use the controller structure given

by (7.17) with the weightings pc,0 = 109, Eu = 0, Ez = diag(1, 1, 1, 100, 100, 100), and

target model Gf(q) = 1
q
Ĥ1, where Ĥ1 is given by (7.19). Each case is simulated once, and

no attempt is made to re-tune RCAC based on the response of the closed-loop system.

Example 12. Command following at node 633 with load disturbance at nodes 611

and 634, actuation at node 632.
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650

646 645 632 633 634

611 684 671 692 675

652 680

Disturbance 2

Disturbance 1

Performance

Actuation

𝐺c,𝑘

Figure 7.7: Perturbed Simulation Testing 12: At node 632 the controller Gc,k can add or
remove active and reactive power; at node 633 the controller Gc,k has access to the voltage
magnitude and angle measurements, where the voltage angles are relative to the slack bus at
node 650; at nodes 611 and 634, the active and reactive power are varied, which represents
an unmodeled load disturbance.

We define the active and reactive power at nodes 634 and 611 using (7.12) and (7.13),

respectively, and set the load disturbance dk using (7.14). For node 633 we set the command

rmag = 2312 V, (7.20)

rang = −2.56◦. (7.21)

For the controller Gc,k, we use the tuning weights described at the beginning of this

section. Feedback control with adaptation begins at t = 2 s. Figures 7.8–7.10 illustrate

RCAC with voltage magnitude and angle commands at node 633, actuation at node 632,

and the time-varying load disturbance (7.14) at nodes 611 and 634 in the presence of the

sensor noise (7.34). �

Example 13. Command following at nodes 671 and 633 with load disturbances at

nodes 611 and 634, and actuation at nodes 675 and 632, using decentralized control.

We define the active and reactive power at nodes 634 and 611 using (7.12) and (7.13),
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Figure 7.8: Perturbed Simulation Testing 12: The voltage magnitude and angle errors
|zmag| and |zang| node 633 are shown on a logarithmic scale. Asymptotically, the voltage-
magnitude and voltage-angle errors are approximately less than 0.1 V and 0.01◦, respec-
tively.

Figure 7.9: Perturbed Simulation Testing 12: RCAC controller Gc,k(q) adapts to follow
the setpoint commands. RCAC readapts at t = 5 s to account for the step load disturbance,
and again at t = 100 s to account for the additional harmonic component of the load
disturbance.

respectively, and set the load disturbance dk

dk =


0, k < 1000,

1, otherwise.

(7.22)
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Figure 7.10: Perturbed Simulation Testing 12: The active and reactive power extracted
from each phase by the RCAC controller Gc,k at node 632 is shown.
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646 645 632 633 634

611 684 671 692 675

652 680

Disturbance 2

Disturbance 1

Performance 2

Actuation 2

𝐺c2,𝑘

𝐺c1,𝑘

Performance 1 Actuation 1

Figure 7.11: Perturbed Simulation Testing 13: At node 675, subcontroller Gc1,k can add or
remove active and reactive power; at node 671, subcontrollerGc1,k has access to the voltage
magnitude and angle measurements, where the voltage angles are relative to the slack bus at
node 650; at node 632, subcontroller Gc2,k can add or remove active and reactive power; at
node 633, subcontrollerGc2,k has access to the voltage magnitude and angle measurements,
where the voltage angles are relative to the slack bus at node 650; at nodes 611 and 634,
the active and reactive power is varied to represent an unmodeled load disturbance.

For node 671 we set the command

r671,mag = 2300 V, (7.23)

r671,ang = 1.23◦, (7.24)
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and for node 633 we set the command

r633,mag = 2290 V, (7.25)

r633,ang = −0.34◦. (7.26)

For each subcontroller Gc1,k(q) and Gc2,k(q) we use the tuning weights described at the

beginning of this section. Feedback control with adaptation using subcontroller Gc1,k(q)

and subcontroller Gc2,k(q) begins at t = 2 s, and t = 30 s, respectively. Figures 7.12–7.16

illustrate a pair of decentralized RCAC subcontrollers with voltage magnitude and angle

commands at nodes 671 and 633, actuation at nodes 675 and 632, and the time-varying

load disturbance (7.22) at nodes 611 and 634 in the presence of the sensor noise (7.34).

There is no direct communication between subcontrollers Gc1,k(q) and Gc2,k(q). �

Figure 7.12: Perturbed Simulation Testing 13: Voltage magnitude and angle errors |zmag|
and |zang| for node 671 are shown on a logarithmic scale. Asymptotically, the voltage-
magnitude and voltage-angle errors are approximately less than 0.1 V and 0.01◦, respec-
tively.

Example 14. Command following at node 671 with load disturbances at nodes
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Figure 7.13: Perturbed Simulation Testing 13: Voltage magnitude and angle errors |zmag|
and |zang| for node 633 are shown on a logarithmic scale. Asymptotically, the voltage-
magnitude and voltage-angle errors are approximately less than 0.1 V and 0.01◦, respec-
tively.

611 and 634, and actuation at nodes 675 and 632 with unknown multivariable actuator

saturation, using decentralized control.

We define the active and reactive power at nodes 634 and 611 using (7.12) and (7.13),

respectively, and set the load disturbance dk as

dk =


0, k < 1000,

1, otherwise.

(7.27)

For node 671 we set the command

r671,mag = 2267 V, (7.28)

r671,ang = −5.3◦. (7.29)

To simulate an unknown, multivariable actuator saturation at nodes 632 and 675, on
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Figure 7.14: Perturbed Simulation Testing 13: (a) θk for subcontroller Gc1,k(q) is zero
for t < 2 s, after which adaptation of subcontroller Gc1,k(q) begins in order to follow the
setpoint commands. Subcontroller Gc1,k(q) readapts at t = 10 in order to account for
the step disturbance, and again at t = 30 s in order to account for subcontroller Gc2,k(q)
starting adaptation; (b) θk for subcontroller Gc2,k(q) is zero for t < 30 s, after which
adaptation of subcontroller Gc2,k(q) begins to follow the setpoint commands.

Figure 7.15: Perturbed Simulation Testing 13: The active and reactive power extracted by
subcontroller Gc1,k(q) from each phase at node 675 is shown.

each phase i ∈ {A,B,C}, we set

Pact,i =


Pact,i,req, P 2

act,i,req +Q2
act,i,req ≤ S2

max

Smax cosα, otherwise,

(7.30)
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Figure 7.16: Perturbed Simulation Testing 13: The active and reactive power extracted by
subcontroller Gc2,k(q) from each phase at node 632 is shown.
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646 645 632 633 634

611 684 671 692 675

652 680

Disturbance 2

Disturbance 1

Actuation 2

𝐺c2,𝑘

𝐺c1,𝑘

Common 

Performance

Actuation 1

Figure 7.17: Perturbed Simulation Testing 14: At node 675 and node 632, subcontroller
Gc1,k(q) and subcontroller Gc2,k(q) can add or remove active and reactive power, respec-
tively; at node 671, subcontrollers Gc1,k(q) and Gc2,k(q) have access to the voltage mag-
nitude and angle measurements, where the voltage angles are relative to the slack bus at
node 650; at nodes 611 and 634, the active and reactive power is varied to represent an
unmodeled load disturbance.

Qact,i =


Qact,i,req, P 2

act,i,req +Q2
act,i,req ≤ S2

max

Smax sinα, otherwise,

(7.31)

where

α
4
= atan2(Qact,i,req, Pact,i,req), (7.32)

Pact,i, Qact,i are the active and reactive power extracted at phase i in kW and kvar respec-

tively, Pact,i,req, Qact,i,req are the requested active and reactive power extraction at phase i
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in kW and kvar respectively, Smax = 350 kVA is the maximum apparent power rating for

each phase of the inverter, arguments of k are omitted for clarity. This saturation represents

an upper limit on the apparent power extracted or injected at each phase: Smax.

For each subcontrollerGc1,k(q) andGc2,k(q) we use the tuning weights described at the

beginning of this section. Feedback control with adaptation using subcontroller Gc1,k(q)

and subcontroller Gc2,k(q) begins at t = 2 s, and at t = 30 s, respectively. Figures 7.18–

7.21 illustrate a pair of decentralized RCAC subcontrollers with voltage magnitude and

angle commands at node 671, actuation at nodes 675 and 632, and the time-varying load

disturbance (7.27) at nodes 611 and 634 in the presence of the sensor noise (7.34). There

is no direct communication between subcontrollers Gc1,k(q) and Gc2,k(q).

In Figure 7.22, the requested and extracted reactive power is plotted versus the re-

quested and extracted active power for 0 ≤ k ≤ 60000, for each phase A,B,C, at each

actuation node. This shows that the unknown, multivariable actuator saturation affects five

of the six phases of the two actuation nodes. RCAC has no knowledge of either the satura-

tion form or level. �

Example 15. Command following at node 671 with PV generation at nodes 611, 634,

645, 646, 652, and 692, and actuation at nodes 675 and 632, using decentralized control.

We include PV penetration in IEEE13NTF by the following procedure. From the Pecan

Street online repository [55], we obtain generation and consumption data spanning 24-h

(midnight to midnight) of 200 customers with PV generation capability. Since this data

is per minute, we use linear interpolation to obtain sub-minute data for simulation. Next,

for nodes 611, 634, 645, 646, 652, and 692, we aggregate this data using combinations

of the 200 customers. Then we replace the static loads in IEEE13NTF at each of these

nodes with the aggregated data. The aggregated data represents a collection of loads with

a significant proportion of PV generation. The time-varying load is a disturbance to be
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Figure 7.18: Perturbed Simulation Testing 14: Voltage magnitude and angle errors |zmag|
and |zang| for node 671 are shown on a logarithmic scale. Asymptotically, the voltage-
magnitude and voltage-angle errors are approximately less than 1 V and 0.1◦, respectively.

Figure 7.19: Perturbed Simulation Testing 14: (a) at t = 2 s, subcontroller Gc1,k(q) begins
adapting. At t = 30 s, subcontroller Gc2,k(q) begins adapting. RCAC has no knowledge of
the saturation.
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Figure 7.20: Perturbed Simulation Testing 14: The active and reactive power extracted by
subcontroller Gc1,k(q) from each phase at node 675 is shown.

0 200 400 600

-200

0

200

A

B

C

0 200 400 600

-200

-100

0

100

200
A

B

C

Figure 7.21: Perturbed Simulation Testing 14: The active and reactive power extracted by
subcontroller Gc2,k(q) from each phase at node 632 is shown.

rejected by RCAC. For node 671 we set the command

r671,mag = 2267 V, (7.33)

r671,ang = −5.3◦. (7.34)

For each subcontrollerGc1,k(q) andGc2,k(q), we use the tuning weights described at the

beginning of this section. There is no communication between subcontrollers Gc1,k(q) and

Gc2,k(q). Feedback control with adaptation using subcontroller Gc1,k(q) and subcontroller

Gc2,k(q) begins at t = 2 s and t = 30 s, respectively. Figures 7.24–7.27 illustrate a pair of

decentralized RCAC subcontrollers with voltage magnitude and angle commands at node

671, actuation at nodes 675 and 632, and PV generation at nodes 611, 634, 645, 646, 652,
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Figure 7.22: Perturbed Simulation Testing 14: The requested (red) and applied (blue)
power of phases A,B,C at node 675 is shown in (a), (b), (c), respectively; The requested
(red) and applied (blue) power of phases A,B,C at node 632 is shown in (d), (e), (f), re-
spectively. The black, dashed circles represent upper limit of apparent power flow in the
actuator Smax defined in (7.30),(7.31).
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Figure 7.23: Perturbed Simulation Testing 15: At node 675 and node 632, subcontroller
Gc1,k(q) and subcontroller Gc2,k(q) can add or remove active and reactive power, respec-
tively; at node 671, subcontrollers Gc1,k(q) and Gc2,k(q) have access to the voltage mag-
nitude and angle measurements, where the voltage angles are relative to the slack bus at
node 650; nodes 611, 634, 645, 646, 652, and 692 emulate diurnal PV power generation
and consumption to represent unmodeled load disturbances.

692 in the presence of the sensor noise (7.34). We define

PV penetration
4
=

max
t
G(t)

max
t
L(t)

× 100%, (7.35)
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where G(t) is the total PV generation across all nodes, and L(t) is the total load across all

nodes. For this simulation PV penetration = 70.61%. �
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Figure 7.24: Perturbed Simulation Testing 15: Voltage magnitude and angle errors |zmag|
and |zang| for node 671 are shown on a logarithmic scale. Asymptotically, the voltage-
magnitude and voltage-angle errors are approximately less than 0.1 V and 0.01◦, respec-
tively.
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Figure 7.25: Perturbed Simulation Testing 15: (a) θk for subcontroller Gc1,k(q) is shown;
(b) θk for subcontroller Gc2,k(q) is shown.
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Figure 7.26: Perturbed Simulation Testing 15: The active and reactive power extracted by
subcontroller Gc1,k(q) from each phase at node 675 is shown.
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Figure 7.27: Perturbed Simulation Testing 15: The active and reactive power extracted by
subcontroller Gc2,k(q) from each phase at node 632 is shown.
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CHAPTER 8

Online Identification Using Recursive Least

Squares

This section investigates the performance of RLS for online, closed-loop identification

(RLSID). The goal is to estimate key features of the open-loop transfer function −EGd(q)

from uk to zk needed to construct Gf(q), which, as shown in Section 4, serves as the target

model for G̃zũ,k(q). Since closed-loop identification may lead to biased estimates, open-

loop identification is also considered in order to provide a baseline comparison.

8.1 RLSID

In this subsection, RLSID is used to identify EGd(q). The transfer function EGd(q)

from uk to yz,k is given by

EGd(q) = (Iqq
n + F1q

n−1 + · · ·+ Fn)−1(G0q
n +G1q

n−1 + · · ·+Gn), (8.1)

where G0, . . . , Gn ∈ Rq×m, and F1, . . . , Fn ∈ Rq×q are the numerator and denominator

coefficients of the transfer function, respectively.

Consider the sampled-data identification architecture shown in Figure 8.1, which is

based on Figure 3.2. Since E is known, yz,k = Eyk can be computed internally by RLSID.

Furthermore, at each step k, the requested control input uk and the measurement yk are
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Figure 8.1: Online identification using RLSID.

assumed to be available. In order to identify EGd(q), a model of the form

yz,k = −
η∑
i=1

Fi,kyz,k−i +

η∑
i=0

Gi,kuk−i, (8.2)

is fit to data where η is the RLSID window length, and G0,k, . . . , Gη,k ∈ Rq×m, and

F1,k, . . . , Fη,k ∈ Rq×q are numerator and denominator coefficient matrices that are to be

estimated.

Next, note that (8.2) can be written as

yz,k = φm,kθm,k, (8.3)

where

φm,k
4
=



−yz,k−1
...

−yz,k−η
uk
...

uk−η



T

⊗ Iq ∈ Rq×lθm , (8.4)

θm,k
4
= vec [ F1,k · · · Fη,k G0,k · · · Gη,k ] ∈ Rlθm , (8.5)

is the model coefficient vector, and lθm = ηq2 + (η + 1)qm. The model-output error is

defined by
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zm,k(θm)
4
= yz,k − φm,kθm, (8.6)

where θm is an argument for optimization of the form

θm
4
= vec [ F1 · · · Fη G0 · · · Gη ] ∈ Rlθm . (8.7)

Next, to apply RLSID, note that the minimizer θm,k+1 of the quadratic cost function

Jk(θm)
4
=

k∑
i=0

zm,i(θm)Tzm,i(θm) + (θm − θm,0)TP−1
m,0(θm − θm,0) (8.8)

is given recursively by

Pm,k+1 = Pm,k − Pm,kφ
T
m,k(Iq + φm,kPm,kφ

T
m,k)

−1φm,kPm,k, (8.9)

θm,k+1 = θm,k + Pm,k+1φ
T
m,k(yz,k − φm,kθm,k). (8.10)

Note that θm,0 = 0 is chosen to reflect the absence of additional modeling information, and

Pm,0 = pm,0Ilθm , where pm,0 ∈ (0,∞) is a tuning parameter. As shown by Example 16,

the regularization term (θm− θm,0)TP−1
m,0(θm− θm,0) in (8.8), which is a required feature of

RLS [56–59], causes the estimates to be biased. Although the regularization-induced bias

can be minimized by choosing pm,0 to be large, it cannot be entirely avoided. The RLSID

model at step k is given by

EGd,k(q)
4
= (Iqq

η + F1,kq
η−1 + · · ·+ Fη,k)

−1(G0,kq
η + · · ·+Gη,k). (8.11)

Unless stated otherwise, for all of the examples in this dissertation RLSID is applied with

a strictly proper model, which is enforced by removing uk and G0,k from the definitions

(8.4) and (8.5), respectively, and redefining lθm = ηq(q +m).
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8.2 Relative Degree and Leading Numerator Coefficient

of SISO Systems

In the case where uk and yz,k are scalar, the transfer function EGd(q) from uk to yz,k

can be expressed as

EGd(q) =
ENd(q)

Dd(q)
=

G0q
n + · · ·+Gn

qn + F1qn−1 + · · ·+ Fn
, (8.12)

where n is the order of EGd(q), and G0, . . . , Gn ∈ R and F1, . . . , Fn ∈ R are numerator

and denominator coefficients, respectively. The leading numerator coefficient of (8.12)

is the leftmost nonzero coefficient of ENd(q), and the relative degree of (8.12) is ξ 4=

deg Dd(q)− deg ENd(q). Note that Gξ is leading numerator coefficient of EGd(q), and,

in the case where ξ ≥ 1, G0 = · · · = Gξ−1 = 0.

8.3 Numerical Examples

For all of the examples in this section, let Gu(s) be given by Case 1 in Table 3.1,

and let Gd(q) denote the ZOH discretization of G(s) with Ts = 0.03 s/step, EGd(q) is

a SISO 12th-order transfer function with a NMP zero at 1.4901 rad/step. Furthermore,

G0 = G1 = G2 = 0 and G3 = 0.2972, and thus the relative degree of EGd(q) is 3

and G3 is its leading numerator coefficient. To assess the ability of RLSID to estimate the

relative degree and leading numerator coefficient of EGd(q), Gi,k and Gi are compared

for i = 1, 2, 3. Furthermore, to assess the accuracy of the estimate of the NMP zero of

Gd(q), the smallest distance dz,k between the zeros of the RLSID model and the NMP zero

of EGd(q) is computed at each step. In order to assess the accuracy of open- and closed-

loop identification, let η = 12, which is the order of EGd(q). Each example in this section
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involves 100 trials for 0 ≤ t ≤ 1000 s.

Example 16. Open-loop RLSID with no disturbance, no sensor noise, showing

regularization-induced bias. Let the input uk of Gd(q) be zero-mean, Gaussian white

noise with standard deviation 1, and let wk,i = 0 and vk = 0. To demonstrate the effect of

regularization, RLSID is applied to the input-output data with two choices of pm,0, namely,

pm,0 = 10−3 and pm,0 = 104. The averaged results from 100 trials are shown in Figure 8.2.

As shown in Figure 8.2, the errors in the estimates of the first three numerator coefficients

and the NMP zero are larger for trials with a larger regularization. �
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Figure 8.2: Example 16: Regularization in RLSID. Averaged (a) estimation errors for
G1, G2, (b) estimation error for G3, (c) dz,k. The accuracy of the identification is poor
when the regularization is large.

Example 17. Open-loop RLSID with disturbance and sensor noise. Let the input uk of

Gd(q) be zero-mean, Gaussian white noise with standard deviation 1, let and pm,0 = 104.

To demonstrate the effect of disturbance and sensor noise, RLSID is applied to the input-

output data with wk = 0, vk = 0, and with wk,i, vk being zero-mean, Gaussian white noise

with standard deviations 10, 1, respectively. The averaged results from 100 trials are shown

in Figure 8.3. As shown in Figure 8.3, the errors in the estimates of the first three numerator

coefficients and the NMP zero are larger for the trials with disturbance and sensor noise

present. �

Example 18. Closed-loop RLSID with LQG Control. To demonstrate the effect

of closed-loop control, RLSID is applied to the input-output data for open- and closed-

loop scenarios. In particular, for open-loop simulations, uk is zero-mean, Gaussian white
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Figure 8.3: Example 17: Disturbance and sensor noise in RLSID. Averaged (a) estimation
errors forG1, G2, (b) estimation error forG3, (c) dz,k. Disturbance and sensor noise degrade
identification accuracy.

noise with standard deviation 1, and for closed-loop simulations uk is given by an LQG

feedback controller designed using the MATLAB command lqg with Qxu = Qwv = I13.

Let wk,i and vk be zero-mean, Gaussian white noise with standard deviations 0.05 and

0.005, respectively. For RLSID set pm,0 = 104. The averaged results from 100 trials

are shown in Figure 8.4. As shown in Figure 8.4, the errors in the estimates of the first

three numerator coefficients and the NMP zero are larger for closed-loop input-output data

relative to open-loop input-output data. �
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Figure 8.4: Example 18: Closed-loop RLSID. Averaged (a) estimation errors for G1 and
G2, (b) estimation error for G3, (c) dz,k. The closed-loop identification accuracy is poor
compared to open-loop identification.
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CHAPTER 9

Data-Driven Retrospective Cost Adaptive

Control

This section describes DDRCAC [33], which combines RLSID with RLS-based adap-

tive control (RLSAC). The online identification uses RLS to fit an infinite-impulse-response

(IIR) model based on data yz,k and uk collected during closed-loop operation. At each step,

the identified IIR model is used to construct a time-dependent target model Gf,k(q). In

particular, Gf,k(q) is constructed as an FIR filter whose numerator is chosen to be the nu-

merator of the latest identified IIR model. Note that this online technique for constructing

Gf,k(q) is a variation of the offline technique described in Section 4, where Gf(q) was

constructed using only the NMP zeros of EGd(q). This approach avoids the need to com-

pute NMP zeros during online operation and can be used in the MIMO case, where the

numerator of the RLSID model is a q × m polynomial matrix. This target model is then

used by RLSAC to update the coefficients of an IIR controller. For DDRCAC, both RLS

implementations use variable-rate forgetting (VRF), as given by the following result [17].

Proposition 9.1. For all k ≥ 0, let ȳk ∈ Rlȳ , φk ∈ Rlȳ×lθ̄ , λk ∈ (0, 1], and define

ρk
4
=
∏k

j=0 λj. Let θ̄0 ∈ Rlθ̄ , and let P̄0 ∈ Rlθ̄×lθ̄ be positive definite. Furthermore, for

all k ≥ 0, denote the minimizer of

Jk(θ̄)
4
=

k∑
i=0

ρk
ρi

(ȳi − φiθ̄)T(ȳi − φiθ̄) + ρk(θ̄ − θ̄0)TP̄−1
0 (θ̄ − θ̄0). (9.1)
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where θ̄ ∈ Rlθ̄ , by θ̄k+1
4
= argmin

θ̄ ∈ Rlθ̄
Jk(θ̄). Then, for all k ≥ 0, θ̄k+1 is given by

P̄k+1 = 1
λk
P̄k − 1

λk
P̄kφ

T
k (λkIlȳ + φkP̄kφ

T
k )−1φkP̄k, (9.2)

θ̄k+1 = θ̄k + P̄k+1φ
T
k (ȳk − φkθ̄k). (9.3)

For RLSID and RLSAC, a technique for specifying λk is given later in this section.

9.1 RLSID

In order to identify EGd(q), an IIR model of the form (8.2) is fit to data. Since E is

known, yz,k = Eyk can be computed internally by RLSID. Using Proposition 9.1, for all

k ≥ 0 the model coefficient vector θm,k is updated recursively using

Pm,k+1 = 1
λm,k

Pm,k − 1
λm,k

Pm,kφ
T
m,k(λm,kIq + φm,kPm,kφ

T
m,k)

−1φm,kPm,k, (9.4)

θm,k+1 = θm,k + Pm,k+1φ
T
m,k(yz,k − φm,kθm,k), (9.5)

where φm,k and θm,k are given by (8.4) and (8.5), respectively, and Pm,0 ∈ Rlθm×lθm is

positive definite. The RLSID model at step k is given by

EGd,k(q) = (Iqq
η + F1,kq

η−1 + · · ·+ Fη,k)
−1(G0,kq

η + · · ·+Gη,k). (9.6)

9.2 RLSAC

Define the strictly proper dynamic compensator

uk
4
= satū(φc,kθc,k), (9.7)
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where φc,k and θc,k are given by (4.3) and (4.4), respectively. The definition (9.7) repre-

sents an IIR controller whose output is saturated component-wise by the scalar saturation

function satū defined by

satūi(xi)
4
=

xi, |xi| < ūi,

sign(xi)ūi, |xi| ≥ ūi.
(9.8)

Next, define the filtered signals

uf,k
4
= Gf,k(q)uk, (9.9)

φf,k
4
= Gf,k(q)φc,k, (9.10)

where, for startup, uf,k and φf,k are initialized at zero and thus are computed as the forced

responses of (9.9) and (9.10), respectively, and where Gf,k(q) is the time-dependent tar-

get model constructed using the updated numerator coefficients G0,k+1, . . . , Gη,k+1 of the

model (8.2). In particular,

Gf,k(q)
4
= −

η∑
i=0

Gi,k+1
1

qi
, (9.11)

which has the same form as (5.51) except that (9.11) is time varying, generalizes to MIMO

systems, and includes all of the zeros of EGd,k(q). In the case where q = m = 1, it

follows from G0,k = · · · = Gξ−1,k = 0 and Gξ,k = Gξ that (9.11) and −EGd(q) have

the same leading numerator coefficient and relative degree. Note that, at each step k, the

numerator of (9.11) is chosen to be the numerator of (9.6). If there exists k ≥ 0 such that

G0,k = · · · = Gη,k = 0q×m, then Gf,k(q) is chosen to be

Gf,k(q)
4
= −1q×m. (9.12)
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The retrospective performance variable is defined to be

ẑk(θc)
4
= zk − uf,k + φf,kθc. (9.13)

Using (9.11) and (9.12), (9.13) can be expressed as

ẑk(θc)
4
= zk −Nkūk +Nkφ̄c,kθc. (9.14)

where

Nk
4
=

[−1q×m 0 · · · 0 ] , G0,k+1 = · · · = Gη,k = 0,

[−G0,k+1 · · · −Gη,k+1 ] , otherwise,
(9.15)

Nk ∈ Rq×(η+1)m, ūk and φ̄c,k are given by (4.16) and (4.17) with nf = η, respectively,

and G0,k+1, . . . , Gη,k+1 ∈ Rq×m are the numerator coefficients of the RLSID model. Note

that, by performing the RLSID update at step k before the RLSAC update, it follows thus

the estimated numerator coefficients G0,k+1, . . . , Gη,k+1 are available for constructing Nk

at step k.

Next, define the controller cost variable

zc,k(θc)
4
=


Ez ẑk(θc)

Euφc,kθc

E∆u(φc,kθc − uk)

 ∈ Rq+r1+r2 , (9.16)

where the performance weighting Ez ∈ Rq×q is nonsingular and Eu ∈ Rr1×m, E∆u ∈

Rr2×m are the control weighting and control-move weighting, respectively. If Eu = 0 and

E∆u = 0, then r1 = 0 and r2 = 0, respectively, and all expressions involving Eu and E∆u
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are omitted from (9.16), as well as from all subsequent expressions. Note that

zc,k(θc)
Tzc,k(θc) = ẑk(θc)

TRz ẑk(θc) + θT
c φ

T
c,kRuφc,kθc

+ (φc,kθc − uk)TφT
c,kR∆uφc,k(φc,kθc − uk), (9.17)

where Rz
4
= ET

z Ez ∈ Rq×q is positive definite, and Ru
4
= ET

uEu ∈ Rm×m, R∆u
4
=

ET
∆uE∆u ∈ Rm×m are positive semidefinite.

Using Proposition 9.1, for all k ≥ 0 the controller coefficient vector θc,k is updated

recursively using

Pc,k+1 = 1
λc,k

Pc,k − 1
λc,k

Pc,kφ
T
fc,k(λc,kIq+r1+r2 + φfc,kPc,kφ

T
fc,k)

−1φfc,kPc,k, (9.18)

θc,k+1 = θc,k + Pc,k+1φ
T
fc,k(yc,k − φfc,kθc,k), (9.19)

where

yc,k
4
=


Ezzk − EzNkūk

0

−E∆uuk

 ∈ Rq+r1+r2 , φfc,k
4
=


−EzNkφ̄c,k

−Euφc,k

−E∆uφc,k

 ∈ R(q+r1+r2)×lθc .

(9.20)

and Pc,0 ∈ Rlθc×lθc is positive definite.

For all of the examples in this dissertation, θm,k and θc,k are initialized as 0, and thus

(9.12) is invoked at startup. This assumption reflects the absence of additional prior model-

ing information; however, θm,k and θc,k can be initialized based on any available modeling

information. To initialize RLSAC and RLSID, Pc,0 = pc,0Ilθc and Pm,0 = pc,0Ilθm are

chosen, where, for convenience, pc,0 > 0 is a common tuning parameter.
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9.3 Data-Dependent Variable Rate Forgetting

For data-dependent variable-rate forgetting, set

λm,k =
1

1 + εe(zm,k−τd , . . . , zm,k)1[e(zm,k−τd , . . . , zm,k)]
, (9.21)

λc,k =
1

1 + εe(zk−τd , . . . , zk)1[e(zk−τd , . . . , zk)]
, (9.22)

where

e(xk−τd , . . . , xk)
4
=

√
1
τn

∑k
i=k−τn x

T
i xi√

1
τd

∑k
i=k−τd x

T
i xi

− 1.2, (9.23)

“1” is the step function that is 0 for negative arguments and 1 for nonnegative arguments,

and e(0, . . . , 0)
4
= 0. In (9.21)–(9.23), ε ≥ 0, 0 < τn < τd are numerator and denom-

inator window lengths, respectively. If the sequence xk−τd , . . . , xk is zero-mean noise,

then the numerator and denominator of (9.23) approximate the average standard devia-

tion of the noise over the intervals [k − τn, k] and [k − τd, k], respectively. In particular,

by choosing τd >> τn, it follows that the denominator of (9.23) approximates the long-

term-average standard deviation of xk, whereas the numerator of (9.23) approximates the

short-term-average standard deviation of xk. Consequently, the case e(xk−τd , . . . , xk) > 0

implies that the short-term-average standard deviation of xk is greater than the long-term-

average standard deviation of xk plus a threshold of 0.2. The function e(xk−τd , . . . , xk)

used in VRF suspends forgetting when the short-term-average standard deviation of xk

drops below 1.2 times the long-term-average standard deviation of xk. This technique thus

prevents forgetting in RLSID and RCAC due to zero-mean sensor noise with constant stan-

dard deviation rather than due to the magnitude of the noise-free identification error and

command-following error.

A list of parameters to be selected for DDRCAC is presented in Table 9.1.
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Table 9.1: Tuning parameters that need to be selected for DDRCAC.
Parameter Description Selection
η Model window length Integer ≥ 1 (1–10)
nc Controller window length Integer ≥ 1 (2–40)
Eu Control weighting scaled m×m identity
E∆u Control move weighting scaled m×m identity
ū Control saturation-limit vector 95% actuator saturation limit

pc,0
Initial RLS covariance scaling for
RLSAC and RLSID pc,0 > 0

ε Forgetting parameter 0 ≤ ε < 1 (0.001 – 0.2)
τn, τd Forgetting window lengths Integers τd > τn (τn ∈ [1–400], τd ∼ 3τn)

9.4 Numerical Examples

This subsection demonstrates DDRCAC, which uses no prior knowledge of EGd(q)

and thus, in particular, no prior knowledge of the leading numerator coefficient, NMP zeros,

or relative degree ofEGd(q).Unless stated otherwise, all of the examples in this subsection

use the same tuning parameters, namely, pc,0 = 103, η = 4, nc = 20, E = 1, Ez = 1,

Eu = 0.1, E∆u = 0, ε = 0.001, τn = 200, τd = 600, and ū = 1. Furthermore, for all of the

examples in this section ỹk
4
= zk. As in Section 8.3, the ability of RLSID to estimate the

leading numerator coefficient and relative degree of EGd(q) is investigated by comparing

the first ξ numerator coefficients of the RLSID model and EGd(q). For all of the examples

in this subsection RLSID and RLSAC are applied with a strictly proper RLSID model and

target model, respectively, which is enforced by removing uk and G0,k from the definitions

(8.4) and (8.5), respectively, redefining lθm = ηq(q +m) and

Nk
4
=

[−1q×m 0 · · · 0 ] , G0,k+1 = · · · = Gη,k = 0,

[−G1,k+1 · · · −Gη,k+1 ] , otherwise,
(9.24)

where Nk ∈ Rq×ηm.

Example 19. Interaction between RLSID and RLSAC. Let

Gu(s) =
100(s− 10)(s+ 30)

(s+ 10)(s2 − 10s+ 1000)
, (9.25)
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which is unstable and NMP, and, for Ts = 0.01 s/step, letGd(q) denote the ZOH discretiza-

tion of Gu(s). Then the NMP zero, leading numerator coefficient, and relative degree of

Gd(q) are 1.1056 rad/step, Gξ = G1 = 1.079, and ξ = 1, respectively. Let wk,i = 0, and

let vk be zero-mean, Gaussian white noise with standard deviation 0.001.

For command following with rk = sin 0.23Tsk, control is applied using an LQG con-

troller designed for (Ad, Bd, Cd, Dd) augmented with a model of the harmonic command,

using the MATLAB command lqg, with weights Qxu = Qwv = I6. Figures 9.1(a) and

9.1(c) show the response and control uk for the LQG controller, respectively. RLSID with

VRF given by (9.4), (9.5) is used for closed-loop identification with the time-invariant

LQG controller, as shown in Figures 9.1(e) and 9.1(h). In this case the leading numerator

coefficient and NMP zero of Gd(q) are estimated poorly, as shown by Figures 9.1(j),(l).

Next, adaptive control is applied with η = 10, where Figures 9.1(k),(m) show that, at

t ≈ 0.1 s, the leading numerator coefficient is correctly estimated but the estimate of the

NMP zero of Gd(q) is erroneous. The initially poor RLSID model at t ≈ 0.1 s results

in a poor, infeasible target model, which induces a large transient response in yz,k and uk

for 0 ≤ t ≤ 1 s. The additional persistency of this transient response, however, facilitates

subsequent identification of the NMP zero of Gd(q) at t ≈ 0.85 s, as shown in Figure

9.1(k). Note that θm,k is converged for t > 0.41 s, and thus the time-dependent target

model is also converged. With the converged time-dependent target model, Figure 9.1(g)

shows that RLS with VRF facilitates further adaptation of θc,k for t > 0.41 s, and θc,k is

converged for t > 1 s. This example thus illustrates mutually beneficial interaction between

RLSID and RLSAC. �

Example 20. RCAC, DDRCAC, and ẑk(θc,k+1) decomposition. Let Gu(s) be given by

Case 2 in Table 3.1 with Ts = 0.01 s/step. In order to avoid numerical issues arising from

the need for multiple discretized systems, the disturbance wk is assumed to be constant

within each sampling interval [kTs, (k + 1)Ts). Because Gu(s) is lightly damped, high-

precision arithmetic is used to compare the left- and right-hand sides of (5.7).
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Figure 9.1: Example 19: RLSID with LQG yields biased estimates ofGξ and the NMP zero
of Gd(q); for adaptive control, the biases in (k) and (m) are smaller. The vertical dashed
lines denote the settling times of θm,k and θc,k.

For disturbance rejection, let rk = 0, and let wk and vk be zero-mean, Gaussian white

noise with standard deviations 0.1 and 0.001, respectively. Three scenarios are consid-

ered, namely, (1) RCAC with the nominal target model Gf(q) = −0.153 (q−1.1078)
q2 , which

assumes knowledge of the true leading numerator coefficient, NMP zeros, and relative de-

gree ofEGd(q) (2) RCAC with the off-nominal target modelGf(q) = −0.35 (q−1.2)
q2 ,where

the leading numerator coefficient is erroneous by a factor of 2.29 and the NMP zero is er-

roneous by a factor of 1.08, and (3) DDRCAC. RCAC is applied with nc = 20, Eu = 0.1,

Ez = 1, and pc,0 = 103, which are identical to the tuning parameters for DDRCAC speci-

fied above.

The first, second, and third columns of Figure 9.2 correspond to scenarios (1), (2), and

(3), respectively. Note that the closed-loop performance degrades significantly due to the
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use of the off-nominal target model. However, with no prior knowledge of the system

dynamics, DDRCAC achieves closed-loop performance similar to RCAC with the nominal

target model.

Figure 9.3 shows the RLSID coefficients θm,k, the true and estimated leading numerator

coefficients Gξ and Gξ,k, respectively, the variable-rate forgetting factors λm,k, λc,k, and

the closest distance dz,k between the zeros of the RLSID model and the NMP zero of

EGd(q). Note that RLSID approximates the leading numerator coefficient, NMP zero, and

relative degree of EGd(q), and thus the time-dependent target model (9.11) approximates

the nominal target model. �

Figure 9.2: Example 20: Columns 1–3 correspond to RCAC with the nominal target model,
RCAC with an off-nominal target model, and DDRCAC. The performance of DDRCAC is
similar to the performance RCAC in column 1.

Example 21. Effect of sensor noise and pc,0. Let Gu(s) be given by Case 3 in Table

3.1 with Ts = 0.01 s/step. Then the NMP zeros, leading numerator coefficient, and relative

degree of Gd(q) are {1.106 ± 0.106} rad/step, Gξ = 0.128, and ξ = 3, respectively.

Hence, G1 = 0, G2 = 0, and Gξ,k = G3 = 0.128. The time-dependent target model (9.11)

has the same leading numerator coefficient and relative degree as −EGd(q), and is thus

equal to the nominal target model, if G0,k = · · · = Gξ−1,k = 0 and Gξ,k = Gξ.
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Figure 9.3: Example 20: (a) RLSID coefficients θm,k; (b) identified and true leading numer-
ator coefficients, Gξ,k, and Gξ, respectively; (c) forgetting factors λm,k and λc,k for RLSID
and RLSAC, respectively; (d) dz,k.

Let rk = 0, let wk,i be Gaussian white noise with standard deviation 0.1 and mean 0.5,

and consider three scenarios, where vk is zero-mean, Gaussian white noise with standard

deviations 0.001, 0.01, and 0.1; these scenarios correspond to the first, second, and third

columns of Figure 9.4, respectively. The measurement signal-to-noise ratio (SNR) is de-

fined to be the ratio of the root-mean-square of the last 1000 subinterval steps of yk to the

root-mean-square of the last 1000 subinterval steps of vk. Note that the suppression metric

gs decreases as SNR increases.

Next, to investigate the effect of pc,0, three disturbance rejection scenarios with rk =

0 are considered, where pc,0 is 10, 102, and 103; these scenarios correspond to the first,

second, and third columns of Figure 9.5, respectively. Note that, although the transient

response of identified numerator coefficients increases with pc,0, the level of asymptotic

disturbance suppression is largely insensitive to the choice of pc,0. �

Example 22. Example 10 revisited using DDRCAC. As shown in Example 10,

the control of non-square MIMO systems using RCAC can cause the creation of NMP

cascade zeros of (Gd, Gc,k) that are cancelled by poles of Gc,k, leading to the divergence

of uk. DDRCAC is applied with Eu = 0, and thus the tuning parameters are identical to

the RCAC tuning parameters in Example 10. As in Example 10, Figure 9.6 shows that the

controller gives rise to NMP cascade zeros. However, unlike Example 10, these NMP zeros

are not cancelled by the controller, and thus uk does not diverge. �
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Figure 9.4: Example 21: Columns 1–3 correspond to vk with standard deviations 0.001,
0.01, and 0.1. The insets in (m), (n), (o) show the full range of the transient response.

Example 23. Example 11 revisited using DDRCAC. As shown in Example 11, the

control of non-square MIMO systems using RCAC can cause the creation of NMP cascade

zeros of (Gc,k, Gd) that are cancelled by poles of Gc,k, leading to the divergence of uk.

DDRCAC is applied with Ez = I3, pc,0 = 105, Eu = 0, and thus the tuning parameters

are identical to the RCAC tuning parameters in Example 11. As in Example 11, Figure 9.7

shows that the controller gives rise to NMP cascade zeros. However, unlike Example 11,

these NMP zeros are not cancelled by the controller, and thus uk does not diverge. �

Example 24. Time-varying relative degree and NMP zeros with abrupt and smooth

transitions. Let wk,i and vk be zero-mean, Gaussian white noise with standard deviations

0.1 and 0.01, respectively, and rk = 0. Let G1(s), G2(s), and G3(s) be given by Case 1,

Case 2, and Case 3 in Table 3.1, respectively, with minimal realizations (A1, B1, C1, D1),

(A2, B2, C2, D2), and (A3, B3, C3, D3), respectively. Furthermore, at each intersample time
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Figure 9.5: Example 21: Columns 1–3 correspond to pc,0 = 10, pc,0 = 102, pc,0 = 103.
The inset in (o) shows the full range of the transient response.

Figure 9.6: Example 22: Example 10 revisited using DDRCAC. Unlike Example 10, no
NMP cascade zeros are cancelled by the controller.

step t = k
10
Ts, let Gu(s) be given by (3.1) and (3.2) with

A(t)
4
= f(A2, A1, A3, t), Bw(t) = B(t)

4
= f(B2, B1, B3, t), (9.26)

C(t)
4
= f(C2, C1, C3, t), D(t)

4
= f(D2, D1, D3, t), (9.27)
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Figure 9.7: Example 23: Example 11 revisited using DDRCAC. Unlike Example 11, no
NMP cascade zeros are cancelled by the controller.

f(M1,M2,M3, t)
4
=


M1, t ≤ 10 s,

M2, 10 < t ≤ 15 s

M2 + (M2 −M1) t−10
5
, 15 < t ≤ 20 s

M3, t > 20 s.

(9.28)

Note that, at t = 10 s the relative degree of the discretization of (9.26) and (9.27) changes

from 1 to 3, and during 15 ≤ t < 20 s, the dynamics of of the discretization of (9.26)

and (9.27) smoothly transition from a single real NMP zero at 1.1078 rad/step to a pair of

complex NMP zeros at {1.106± 0.106} rad/step.

Figure 9.8 shows that the adaptive controller rejects the disturbance despite the un-

known, abrupt and smooth transitions in the dynamics (9.26) and (9.27). Note that Figure

9.8(f), Gξ,k is equal to G1,k for t ≤ 10 s and equal to G3,k for t > 10 s. Furthermore, note

that Gξ−1,k, Gξ−2,k are undefined for t ≤ 10 s, and are thus plotted for t > 10 s in Figure

9.8(f). �
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Figure 9.8: Example 24: Disturbance rejection for (9.26) and (9.27). The relative degree
changes from 1 to 3 at t = 10 s, and, during t ∈ [15, 20] s, the discretization of (9.26) and
(9.27) transitions from one real NMP zero to two complex NMP zeros.
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CHAPTER 10

Adaptive Flight Control

In this chapter, DDRCAC is applied to several flight-control problems, namely, (1) roll

control of a hypersonic aircraft with an unknown transition from MP to NMP dynamics, (2)

pitch-rate control of a flexible aircraft, (3) flutter suppression, and (4) normal-acceleration

control a nonlinear planar missile. For consistency in applying DDRCAC, an exactly proper

model structure used for RLSID for all of the examples in this section. Furthermore, the

signal-to-noise ratio (SNR) between yk and vk is computed for all of the subinterval steps

of each example. Note that the first three examples are linear, whereas the last example is

nonlinear.

Example 25. Roll control of a hypersonic aircraft with an unknown transition from

MP to NMP dynamics. Consider the linearized lateral dynamics of a hypersonic aircraft
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[60–62], given by (3.1), (3.2) with

A(t)
4
=


−0.0771 0.269 −0.9631 0.0397

`(t,−25.6,−108.8) 0.0218 0.0995 0

`(t, 0.6160, 0.4107) 0.0376 −0.2687 0

0 1 −0.4202 0.0058

 , (10.1)

B(t) = Bw(t)
4
=


−0.0002

2.519

`(t,−0.0222,−0.0665)

0

 , (10.2)

C
4
=
[

0 0 0 1
]
, D = 0, `(t, a, b)

4
=


a, t < 80 s,

a+ t−80
20

(b− a), 80 ≤ t ≤ 100 s,

b, t > 100 s,

(10.3)

where the components of x(t)
4
= [ β(t) p̄(t) r̄(t) φ(t) ]T are sideslip angle in rad, body

x-axis angular velocity in rad/s, body z-axis angular velocity in rad/s, and roll angle in rad,

and the dynamics transition from MP to NMP. Note that, in the case of full-state feedback,

that is, C = I4, (10.1)–(10.3) possess no zeros and thus no NMP zeros. For this example,

however, output feedback is assumed, and thus (10.1)–(10.3) may have NMP zeros. In

addition, the measurements of the roll angle φ(t) are assumed to be noisy. The roll-angle

command is given by

rk =



10 sin 0.28Tsk deg, t < 250 s,

12 sin 0.21Tsk deg, 250 ≤ t < 400 s,

−10 deg, 400 ≤ t < 450 s,

10 deg, 450 ≤ t < 500 s,

−10 deg, t > 550 s,

(10.4)

which is a harmonic signal that abruptly changes frequency, followed by a sequence of

step commands. The instantaneous poles and zeros of EGu(s) and EGd(q) as functions

of t are shown in Figures 10.1(a) and 10.1(b), respectively. The dynamics (10.1)–(10.3)
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and their discretization transition from MP to NMP. The signal u(t) = δa(t) represents the

Figure 10.1: Example 25: Instantaneous (a) continuous- and (b) discrete-time poles and
zeros of the hypersonic aircraft during the transition from 80 s to 100 s. The onset, duration,
and time-dependence of the transition are assumed to be unknown.

asymmetric deflection of the split flaps in rad. The actuator rate-saturation and magnitude-

saturation limits are 300 deg/s and 30 deg, respectively. Let wk,i be Gaussian white noise

with standard deviation 0.01 and mean 0.02, and let vk be zero-mean, Gaussian white noise

with standard deviation 0.001. The onset, duration, and time-dependence of the transition

from MP to NMP dynamics, which occurs during [80, 100] s, are assumed to be unknown

to the control algorithm.

Adaptive control is applied with E = 1, Ts = 0.25 s/step, ỹk
4
= zk, pc,0 = 10, η = 12,

nc = 12, Ez = 1, Eu = 0, E∆u = 0.1, ε = 0.01, τn = 60, τd = 300, and ū = 30 deg. The

response to the command (10.4) in the presence of disturbance is shown in Figure 10.2. By

adapting to the unknown, changing dynamics in 80 ≤ t < 100 s, RLSID and RLSAC are

able to follow commands. �

Example 26. Pitch-rate control of a flexible aircraft. Consider the pitch dynamics of
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Figure 10.2: Example 25: Response of the lateral dynamics of a hypersonic aircraft to
harmonic and step commands with an unknown transition from MP to NMP dynamics,
which occurs within the shaded regions.

a flexible aircraft [63] given by

Gu(s) = −0.417
s(s− 0.0143)(s− 0.4)

∏4
i=1(s2 + 2ζ̄iω̄is+ ω̄2

i )∏6
i=1(s2 + 2ζiωis+ ω2

i )
, (10.5)

where ζ̄1 = 0.0423, ζ̄2 = 0.147, ζ̄3 = 0.0136, ζ̄4 = 0.0125, ω̄1 = 4.883, ω̄2 = 17.79,

ω̄3 = 22.04, ω̄4 = 23.59, ζ1 = 0.0951, ζ2 = 0.0358, ζ3 = 0.0374, ζ4 = 0.149, ζ5 = 0.021,

ζ6 = 0.0136, ω1 = 0.0551, ω2 = 1.830, ω3 = 12.40, ω4 = 18.03, ω5 = 21.25, and ω6 =

22.04. This system represents a flexible aircraft cruising at Mach 0.6 at 5000 ft, and includes

aeroelastic effects. The transfer function (10.5) is lightly damped, asymptotically stable,

and MP. This transfer function relates the elevator deflection δe in deg to the pitch rate

q̄ measured at the cockpit in rad/s. The actuator rate-saturation and magnitude-saturation

limits are 300 deg/s and 30 deg, respectively.

Assume that Gu(s) = Gw(s) and let wk,i and vk be zero-mean, Gaussian white noise
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with standard deviations 0.1 and 0.001, respectively. The pitch-rate command is

rk =



4 deg/s, t < 30 s,

0 deg/s, 30 ≤ t < 60 s,

−4 deg/s, 60 ≤ t < 90 s,

0 deg/s, 90 ≤ t < 120 s,

4 deg/s, 120 ≤ t < 150 s

0 deg/s, t ≥ 150s.

(10.6)

For this example, the adaptive controller is configured for command feedforward by defin-

ing

ỹk
4
=

[
zk

rk

]
. (10.7)

Adaptive control is applied with Ts = 0.1 s/step, E = 1, pc,0 = 104, η = 8, nc = 30,

Ez = 1, Eu = 0, E∆u = 0.01, ε = 0.02, τn = 60, τd = 240, and ū = 30 deg. The

response to a sequence of step commands in the presence of zero-mean, Gaussian white-

noise disturbance is shown in Figure 10.3. �

Figure 10.3: Example 26: Response of the flexible aircraft to a sequence of pitch-rate step
commands.

Example 27. Flutter suppression. Consider the Benchmark Active Control Tech-
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nology (BACT) for Active Control Design Applications [64, 65], which represents a wind-

tunnel mounted wing that can translate vertically and pitch, and has a trailing edge flap

as a control surface, as shown in Figure 10.4. The BACT model incorporates a verti-

cal spring and damper to model vertical aerodynamic forces, as well as rotational spring

and damper to model aerodynamic torques. Accelerometers mounted on the leading and

Figure 10.4: Example 27: BACT wing. Leading- and trailing-edge accelerometers mea-
sure aLE and aTE. The wing can plunge and pitch. The actuator is a trailing-edge control
surface with deflection δTE.

trailing edges of the wing measure the leading-edge normal acceleration aLE and trailing-

edge normal acceleration aTE, respectively. The flutter-suppression objective is to drive

aLE and aTE to 0 using the control surface deflection δTE, in the presence of turbulence.

Second-order actuator dynamics and a second-order Dryden wind turbulence model are

included in BACT. The disturbance wk,i represents the input to the second-order Dryden

wind-turbulence model. BACT is an 8th-order, two-output-one-input, continuous-time, un-

stable, linear time-varying system with nonzero matrix D, whose state-space matrices are

functions of the freestream velocity U0. For this example the freestream velocity is varied

as

U0 =


300 ft/s, t < 2 s,

300 + 25(t− 2) ft/s, 2 ≤ t < 6 s,

400 ft/s, t ≥ 6s.

(10.8)

The onset, duration, and time-dependence of the change of freestream velocity, which oc-
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curs during [2, 6] s, are assumed to be unknown to the control algorithm. The details of

BACT are found in [65].

Let wk,i and vk be zero-mean, Gaussian white noise with standard deviations 1 and

0.05, respectively. Adaptive control is applied with Ts = 0.02 s/step, E = I2, ỹk
4
= zk,

rk = [ 0 0 ]T, pc,0 = 100, η = 2, nc = 12, Ez = I2, Eu = 1, E∆u = 0, ε = 0.01,

τn = 40, τd = 200, and ū = 12 deg. The open- and closed-loop responses to a zero-

mean, Gaussian white-noise disturbance are shown in Figure 10.5. Note that the signal-

to-noise ratio between the the sampled noisy acceleration measurements aLE and aTE, and

the sensor noise vk is approximately 13 dB. That is, the sensor noise root-mean-squared

value is approximately 23% as large as the root-mean-squared value of the acceleration

measurements.

Furthermore, let Gd(q) represent an exact discretization of the BACT model at t = 10

s. Note that the BACT model is a non-square 2 × 1 system, and therefore, CZ(Gc,k, Gd)

may be nonempty. Figure 10.6 plots the elements of CZ(Gc,500, Gd) and controller poles.

No NMP elements of CZ(Gc,500, Gd) are cancelled by controller poles. �
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Figure 10.5: Example 27: Open- and closed-loop responses of aLE and aTE. The
freestream velocity U0 is varied in the shaded region.

Example 28. Normal-acceleration control of a nonlinear planar missile. Consider

a tail-controlled interceptor missile, which is equipped with a strapdown accelerometer

placed da meters forward of the center of mass of the missile, where the distance da is
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Figure 10.6: Example 27: CZ(Gc,500, Gd) and controller poles, where no NMP elements
of CZ(Gc,500, Gd) are cancelled by a controller pole.

unknown. The missile [66–68] considered in this dissertation represents a missile in planar

flight whose dynamics are given by

V̇ =
1

m̄
[fd(CXα cosα + CZα sinα) + T cosα− m̄g sin γ] +

1

m̄
fd sin(α)CZδδ, (10.9)

α̇ =
1

m̄V
[fd(CZα cosα− CXα sinα)− T sinα + m̄V q̄ + m̄g cos γ]

+
1

m̄V
fd cos(α)CZδδ + w, (10.10)

˙̄q =
d

Iyy
fd(CMα + CMq q̄) +

d

Iyy
fdCMδδ, (10.11)

γ̇ =
1

m̄V
[fd(CXα sinα− CZα cosα) + T sinα− m̄g cos γ]− 1

m̄V
fd cos(α)CZδδ,

(10.12)

ḣ = V sin γ, (10.13)

where arguments of t are omitted for brevity, V (t) is the missile speed in m/s, T is the

thrust in N, g is the acceleration due to gravity in m/s2, α(t) is the angle of attack in rad,

q̄(t) is the y-axis angular velocity in rad/s, γ(t) is the flight-path angle in rad, h(t) is the

altitude in m, δ(t) is the applied fin angle in rad, fd
4
= 1

2
ρV (t)2S is the dynamic force in

N, ρ(t) = ρ(h(t)) is the air density in kg/m3 at an altitude h(t) m given by the Internal

Standard Atmosphere model, S is the reference surface area in m2, d is the reference length
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in m, m̄ is the mass of the missile in kg, and Iyy is the moment of inertia of the missile rel-

ative to its center of mass and around a transverse axis in kg-m2. The angles α, γ, θ, and δf

are shown in Figure 10.7. The values of the aerodynamic coefficients and parameter values

are given in Tables 10.1 and 10.2, respectively. Note that the aerodynamic coefficients

Table 10.1: Aerodynamic coefficients. α is the angle of attack in rad, V is the missile
speed in m/s, and as = as(h) is the local speed of sound given by the Internal Standard
Atmosphere model at the altitude h.

Aerodynamic Coefficient Value Units
CXα −0.3005 -
CZα 9.717( V

3as
− 2)α− 31.023α|α|+ 19.373α3 -

CMα 2.922( 8V
3as
− 7)α− 64.015α|α|+ 40.440α3 -

CZδ −1.948 -
CMδ −11.803 -
CMq −1.719 s

Table 10.2: Parameter values for the nonlinear planar missile.
Parameter Value Units

m̄ 204.0227 kg
Iyy 247.4366 kg-m2

g 9.81 m/s2

S 0.0409 m2

d 0.2286 m
T 1000 N
da 0.5 m

are nonlinear functions of the missile speed V (t), angle of attack α(t), and the local speed

of sound as, which depends on the altitude h(t). The applied fin angle δ(t) is related to

the requested fin angle uk = δr(kTs) by means of second-order actuator dynamics with

natural frequency 150 rad/s, damping ratio 0.7, and magnitude and rate limits 30 deg and

500 deg/sec, respectively. The gravity-corrected normal acceleration measured by an ac-

celerometer placed at a distance da forward of the center of mass of the missile is given

by

nz = fd(µCZα − µyCMα − µyCMq q̄) + fd(µCZδ − µyCMδ)δ, (10.14)

where µ = 1
m̄
, and µy = dda

Iyy
. A noisy measurement yk = nz(kTs) + vk, of the normal

114



V

Figure 10.7: Example 28: (̂ı, k̂) and (̂ıB, k̂B) are Earth-fixed and body-fixed unit vectors,
δ is the fin deflection, α is the angle of attack, V is the missile velocity vector, γ is the
flight-path angle, and θ is the pitch angle.

acceleration nz(t), is used by the controller. The output equation (10.14) shows that there is

a direct feedthrough of the applied fin δ(t) to the normal acceleration used by the controller.

For this example, the adaptive controller is configured for command feedforward by

defining

ỹk
4
=

[
zk

rk

]
, (10.15)

where the normal-acceleration command is rk = 100 sin 0.025k1.2 m/s2. Let wk,i and vk

be zero-mean, Gaussian white noise with standard deviations 0.01 and 0.1, respectively.

Furthermore, let V (0) = 985.7 m/s, α(0) = 0 rad, q̄(0) = 0 rad/s, γ(0) = π
4

rad, and

h(0) = 3000 m. Adaptive control is applied with Ts = 0.05 s/step, E = 1, pc,0 = 103,

η = 4, nc = 4, Ez = 1, Eu = 0, E∆u = 0.005, ε = 0.5, τn = 20, τd = 60, and ū = 30 deg.

The command-following response of the nonlinear planar missile is shown in Figure 10.8.

After an initial transient, the command-following error is less than 5 g. Note that, starting

with no prior knowledge of the nonlinear dynamics (10.9)–(10.13), the adaptive controller

converges to a controller that facilitates command following. �
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Figure 10.8: Example 28: Normal-acceleration command-following response of the non-
linear planar missile.
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CHAPTER 11

Real-Time Implementation of the Optimal

Predictor and Optimal Filter:

Accuracy versus Latency

This chapter explores the digital optimal two-step predictor and the optimal two-step

filter [69], more commonly known as a Kalman filter. Although the Kalman filter is often

presented within a continuous-time context [70–73], the original derivation was carried out

in discrete time [74]. In practice, controllers and observers are invariably implemented

digitally, and thus discrete-time algorithms deserve special attention. This chapter focuses

on the real-time implementation of the discrete-time Kalman filter and its relation to the

discrete-time Kalman predictor. These algorithms are almost identical but differ in subtle

ways, as highlighted in this chapter. Equations for the discrete-time Kalman filter and

predictor are given in [75]; unfortunately, the covariance matrix becomes indefinite after a

few steps, which shows that these equations are erroneous. This chapter thus corrects and

extends the results of [75].

This derivation is based on necessary conditions and thus does not prove that OOSP

is the globally optimal predictor; however, this derivation is succinct and uses minimal

mathematics, making it efficient for classroom presentation. In fact, as shown in [71, p.

46], in the absence of Gaussian processes, this derivation yields the optimal linear predictor.

Next, we recast OOSP as an optimal two-step predictor (OTSP). We then reverse the steps
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of OTSP to obtain the optimal two-step filter (OTSF). Finally, we combine the steps of

OTSF to obtain the optimal one-step filter (OOSF).

The optimal two-step predictor and the optimal two-step filter both consist of assim-

ilation and forecast updates. In particular, OTSP begins with an assimilation update fol-

lowed by a forecast update, whereas OTSF begins with a forecast update followed by an

assimilation update. An additional distinction between these two algorithms concerns their

real-time implementation. In particular, within the context of constraints on data collection

and computation, OTSP and OTSF use different data to produce state estimates that are

available at different times. In a nutshell, the OTSF uses more recent data but produces

state estimates at a later time; we thus expect the OTSF estimates to be more accurate than

the OTSP estimates with latency the price paid for the enhanced accuracy of the filter.

To investigate the validity of the expected accuracy/latency tradeoff, we compare the

accuracy of OTSP and OTSF by means of a numerical example. Somewhat surprisingly, the

numerical results show that the filter estimates are not uniformly better than the predictor

estimates. This discrepancy is traced to the use of the initial data. This suggests a third

algorithm, namely, a two-step filter that invokes an assimilation update at startup (OTSFSU)

in order to utilize the initial data. Aside from the initial startup step, OTSFSU is identical to

OTSF. We then revisit the accuracy/latency tradeoff by numerically comparing the accuracy

of OTSP and OTSFSU to determine whether OTSFSU is uniformly more accurate than

OTSP.

11.1 The Optimal One-Step Predictor

Consider the system

xk+1 = Akxk +Bkuk + wk, (11.1)

yk = Ckxk +Dkuk + vk, (11.2)
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where, for all k ≥ 0, xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, wk ∈ Rn, and vk ∈ Rp, and

the real matrices Ak, Bk, Ck, Dk are of corresponding size. All stochastic processes are

assumed to have finite second moments; the details of the densities are not relevant to

the derivation below. In particular, wk ∈ Rn is a zero-mean white noise disturbance signal

with covarianceQk
4
= E[wkw

T
k ] ∈ Rn×n, and vk ∈ Rp is zero-mean white sensor noise with

covariance Rk
4
= E[vkv

T
k ] ∈ Rp×p. The cross-covariance between vk and wk is denoted by

Sk
4
= E[wkv

T
k ] ∈ Rn×p. The input uk is assumed to be known; in practice, uk is typically a

control input. We consider the optimal one-step predictor (OOSP)

x̂k+1 = Akx̂k +Bkuk +Kk(yk − ŷk), (11.3)

ŷk = Ckx̂k +Dkuk, (11.4)

where x̂k ∈ Rn is an estimate of the state xk and the optimal gain Kk ∈ Rn×p is

determined below.

Defining the state error

ek
4
= xk − x̂k, (11.5)

it follows that

ek+1 = xk+1 − x̂k+1

= Ãkek + w̃k, (11.6)

where

Ãk
4
= Ak −KkCk, (11.7)

w̃k
4
= wk −Kkvk. (11.8)
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Next, we define the cost

Jk(Kk)
4
= E[eT

k+1ek+1]

= trE[eT
k+1ek+1]

= E[tr(eT
k+1ek+1)]

= E[tr(ek+1e
T
k+1)]

= trE[ek+1e
T
k+1]

= trPk+1, (11.9)

where the error covariance is defined by

Pk+1
4
= E[ek+1e

T
k+1] ∈ Rn×n. (11.10)

It thus follows that

ek+1e
T
k+1 = (Ãkek + w̃k)(Ãkek + w̃k)

T

= Ãkeke
T
k Ã

T
k + Ãkekw̃

T
k + w̃ke

T
k Ã

T
k + w̃kw̃

T
k . (11.11)

Next, since wk and vk are white noise sequences that affect ek+1 but not ek, it follows that

ek and w̃k are uncorrelated. Furthermore, since wk and vk have zero mean, it follows that

w̃k also has zero mean. Therefore, E[ekw̃
T
k ] = E[ek]E[w̃T

k ] = 0, Now, taking the expected

120



value of (11.11) yields

Pk+1 = E[ek+1e
T
k+1]

= E[Ãkeke
T
k Ã

T
k + Ãkekw̃

T
k + w̃ke

T
k Ã

T
k + w̃kw̃

T
k ]

= ÃkE[eke
T
k ]ÃT

k + ÃkE[ekw̃
T
k ] + E[w̃ke

T
k ]ÃT

k + E[w̃kw̃
T
k ]

= ÃkPkÃ
T
k + E[w̃kw̃

T
k ]

= ÃkPkÃ
T
k + E[(wk −Kkvk)(wk −Kkvk)

T]

= ÃkPkÃ
T
k + E[wkw

T
k − wkvT

kK
T
k −Kkvkw

T
k +Kkvkv

T
kK

T
k ]

= ÃkPkÃ
T
k + E[wkw

T
k ]− E[wkv

T
k ]KT

k −KkE[vkw
T
k ] +KkE[vkv

T
k ]KT

k

= ÃkPkÃ
T
k +Qk +KkRkK

T
k − E[wkv

T
k ]KT

k −Kk[E[wkv
T
k ]]T. (11.12)

The cost (11.9) is thus given by

Jk(Kk) = trPk+1

= tr[(Ak −KkCk)Pk(Ak −KkCk)
T +Qk +KkRkK

T
k − SkKT

k −KkS
T
k ]

= tr[AkPkA
T
k −KkCkPkA

T
k − AkPkCT

k K
T
k +KkCkPkC

T
k K

T
k +Qk +KkRkK

T
k

− SkKT
k −KkS

T
k ]

= tr[Kk(CkPkC
T
k +Rk)K

T
k −KkCkPkA

T
k − AkPkCT

k K
T
k + AkPkA

T
k +Qk

− SkKT
k −KkS

T
k ]

= tr[Kk(CkPkC
T
k +Rk)K

T
k ]− 2 trKk(CkPkA

T
k + ST

k ) + tr(AkPkA
T
k +Qk).

(11.13)

To minimize Jk(Kk), note that

dJk(Kk)

dKk

= 2(CkPkC
T
k +Rk)K

T
k − 2CkPkA

T
k − 2ST

k . (11.14)
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Setting the derivative to zero yields the optimal one-step predictor gain

Kk = (AkPkC
T
k + Sk)(CkPkC

T
k +Rk)

−1. (11.15)

By substituting (11.7) and (11.15) in (11.12) the one-step predictor is thus given by

x̂k+1 = Akx̂k +Bkuk + (AkPkC
T
k + Sk)(CkPkC

T
k +Rk)

−1(yk − Ckx̂k), (11.16)

Pk+1 = AkPkA
T
k − (AkPkC

T
k + Sk)(CkPkC

T
k +Rk)

−1(CkPkA
T
k + ST

k ) +Qk. (11.17)

Note that the error-covariance propagation equation is independent of data. Furthermore,

(11.16) and (11.17) can be written in terms of Kk as

x̂k+1 = Akx̂k +Bkuk +Kk(yk − Ckx̂k), (11.18)

Pk+1 = AkPkA
T
k −Kk(CkPkA

T
k + ST

k ) +Qk. (11.19)

11.2 The Optimal Two-Step Predictor

As an alternative but equivalent implementation of the optimal predictor, (11.16) and

(11.17) can be implemented as the optimal two-step predictor (OTSP). For simplicity in

this and subsequent sections, we consider the case where Sk = 0; the case where Sk is

nonzero is discussed in the section “OTSP and OTSF with Correlated Disturbance and

Sensor Noise.” The assimilation update is given by

xa
k = xf

k + P f
kC

T
k (CkP

f
kC

T
k +Rk)

−1(yk − Ckxf
k), (11.20)

P a
k = P f

k − P f
kC

T
k (CkP

f
kC

T
k +Rk)

−1CkP
f
k, (11.21)
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and the forecast update is given by

xf
k+1 = Akx

a
k +Bkuk, (11.22)

P f
k+1 = AkP

a
kA

T
k +Qk. (11.23)

Figure 11.1 shows a timing diagram for the real-time implementation of OTSP. By sub-
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Figure 11.1: Timing diagram for the optimal two-step predictor (OTSP), where “A” de-
notes an assimilation update and “F” denotes a forecast update. The measurement yk and
the applied control uk are available at step k for computation. For all k ≥ 1,OTSP produces
an estimate of xk at step k without latency.

stituting (11.20) into (11.22) and (11.21) into (11.23), it can be seen that xf
k = x̂k and

P f
k = Pk. Defining the OTSP gain

K f
k

4
= P f

kC
T
k (CkP

f
kC

T
k +Rk)

−1, (11.24)

(11.20) and (11.21) can be written as

xa
k = xf

k +Kk(yk − Ckxf
k), (11.25)

P a
k = (I −KkCk)P

f
k. (11.26)

It is interesting to note that the computational requirements of OTSP are more burden-

some than OOSP, and yet OTSP and OOSP produce identical state estimates. Therefore,
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there is no implementation advantage of OTSP over OOSP. However, the value of OTSP is

in providing a framework for the optimal two-step filter, as discussed next.

11.3 The Optimal Two-Step Filter

In contrast to the two-step optimal predictor (11.20)–(11.23), the optimal two-step filter

(OTSF) is given by the forecast update

xf
k+1 = Akx

a
k +Bkuk, (11.27)

P f
k+1 = AkP

a
kA

T
k +Qk, (11.28)

and the assimilation update

xa
k+1 = xf

k+1 + P f
k+1C

T
k+1(Ck+1P

f
k+1C

T
k+1 +Rk+1)−1(yk+1 − Ck+1x

f
k+1), (11.29)

P a
k+1 = P f

k+1 − P f
k+1C

T
k+1(Ck+1P

f
k+1C

T
k+1 +Rk+1)−1Ck+1P

f
k+1. (11.30)

Note that (11.20), (11.21) are slightly different from (11.29), (11.30); specifically, (11.20),

(11.21) use the measurement yk,whereas (11.29), (11.30) use the measurement yk+1.More-

over, the forecast and assimilation updates of OTSF appear in reverse order compared to

the forecast and assimilation updates of OTSP; this reversal explains the index k in (11.20),

(11.21) and the index k + 1 in (11.29), (11.30).

Next, note that, since xa
k+1 depends on yk+1 and since the required computation cannot

be performed instantaneously, the estimate xa
k+1 of xk+1 is not available at step k + 1 but

rather at some time after step k + 1, where the latency depends on the computer speed and

architecture. Therefore, if the latency of xa
k as an estimate of xk is critical in a real-time

application, then OTSP may be a better choice than OTSF. Figure 11.2 shows a timing

diagram for the real-time implementation of OTSF.
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Figure 11.2: Timing diagram for the optimal two-step filter (OTSF), where “A” denotes
an assimilation update and “F” denotes a forecast update. The measurement yk and the
applied control uk are available at step k for computation. For all k ≥ 1, OTSF produces
an estimate of xk with latency ε.

In terms of the OTSF gain

K f
k+1

4
= P f

k+1C
T
k+1(Ck+1P

f
k+1C

T
k+1 +Rk+1)−1, (11.31)

(11.29) and (11.30) can be written as

xa
k+1 = xf

k+1 +Kk+1(yk+1 − Ck+1x
f
k+1), (11.32)

P a
k+1 = (I −Kk+1Ck+1)P f

k+1. (11.33)

Note that, aside from a shift in the index, the OTSF gain is identical to the OTSP gain.
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11.4 The Optimal One-Step Filter

The optimal one-step filter (OOSF) can be obtained by substituting (11.27) and (11.28)

into (11.29) and (11.30). In particular, OOSF is given by

xa
k+1 = Akx

a
k +Bkuk

+ (AkP
a
kA

T
k +Qk)C

T
k+1[Ck+1(AkP

a
kA

T
k +Qk)C

T
k+1 +Rk+1]−1

· [yk+1 − Ck+1(Akx
a
k +Bkuk)], (11.34)

P a
k+1 = AkP

a
kA

T
k +Qk

− (AkP
a
kA

T
k +Qk)C

T
k+1

· [Ck+1(AkP
a
kA

T
k +Qk)C

T
k+1 +Rk+1]−1Ck+1(AkP

a
kA

T
k +Qk). (11.35)

OTSF and the Traditional Kalman Filter

We now restate OTSF in standard notation in order to show that it is precisely the

Kalman filter. Defining

x̂k|k−1
4
= xf

k, Pk|k−1
4
= P f

k, (11.36)

x̂k|k
4
= xa

k, Pk|k
4
= P a

k , (11.37)

(11.27)–(11.30) can be written as

x̂k+1|k = Akx̂k|k +Bkuk, (11.38)

Pk+1|k = AkPk|kA
T
k +Qk, (11.39)

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 +Rk+1)−1(yk+1 − Ck+1x̂k+1|k),

(11.40)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 +Rk+1)−1Ck+1Pk+1|k, (11.41)

126



which is the standard notation for the Kalman filter [71]. Furthermore, the OTSF gain

(11.31) can be written as

K f
k+1 = P f

k+1|kC
T
k+1(Ck+1P

f
k+1|kC

T
k+1 +Rk+1)−1, (11.42)

and thus (11.40) and (11.41) can be written as

x̂k+1|k+1 = x̂k+1|k +K f
k+1(yk+1 − Ck+1x̂k+1|k), (11.43)

Pk+1|k+1 = (I −K f
k+1Ck+1)Pk+1|k. (11.44)

An alternative notation [70, 72, 73] is given by

x̂+
k

4
= xf

k, P+
k

4
= P f

k, (11.45)

x̂−k
4
= xa

k, P−k
4
= P a

k . (11.46)

11.5 OTSP versus OTSF: Which Estimator Is More Ac-

curate?

In this section we investigate whether or not the OTSF estimates are more accurate

than the OTSP estimates. As an example, we consider an undamped oscillator with mass

4 kg and stiffness 2 N/m, sampled at 4 Hz using a zero-order hold input. The velocity is

measured, and the position is to be estimated. The sampled-data system representing this
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system has the dynamics

 xk+1

ẋk+1

 =

 0.9844 0.2487

−0.1243 0.9844


 xk

ẋk

+

 0.0078

0.0622

uk + wk, (11.47)

yk =

[
0 1

] xk

ẋk

+ vk, (11.48)

where xk ∈ R is the position in m, yk = ẋk ∈ R is the velocity in m/s, uk is the applied

force in N, wk ∈ R2 is the disturbance, and vk ∈ R is the sensor noise.

To investigate the effect of the disturbance wk, sensor noise vk, and initial condition x0

on the estimates of the position produced by OTSP and OTSF, let

uk ∼ N (0, 1) , wk ∼ N (0, αdI) , vk ∼ N (0, αsn) , x0 ∼ N (0, αicI) , (11.49)

where αd, αsn, αic are varied one at a time with the remaining variables fixed. In particular,

we first vary αd ∈ [10−5, 105] with αsn = αic = 10−5 fixed. Next, we vary αsn ∈ [10−5, 105]

with αd = αic = 10−5 fixed. Finally, we vary αic ∈ [10−5, 10] with αd = αsn = 10−5 fixed.

In all cases, the initial states of OTSP and OTSF are set to zero and P f
0 = I2, P

a
0 = I2.

In each case and for each choice of αd, αsn, αic, 10,000 simulations are run with ran-

domly generated values of uk, wk, vk, and the initial condition x0. For each simulation the

root-mean-square (RMS) position-estimation errors for OTSP and OTSF are computed for

0 ≤ k ≤ 80. The RMS position-estimation errors for OTSP and OTSF are then averaged

over the 10,000 simulations. We define the RMS position-estimation errors for OTSP and

OTSF to be eP,RMS(αd, αsn, αic) and eF,RMS(αd, αsn, αic), respectively. In particular, we
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compute

eP,RMS =
1

10000

10000∑
j=1

√√√√ 1

80

80∑
i=1

(xf
i,j − xi,j)2, (11.50)

eF,RMS =
1

10000

10000∑
j=1

√√√√ 1

80

80∑
i=1

(xa
i,j − xi,j)2, (11.51)

where xf
i,j is the position estimate produced by OTSP at the ith step for the jth simulation,

xa
i,j is the position estimate produced by OTSF at the ith step for the jth simulation, and

xi,j is the true position at the ith step for the jth simulation. Furthermore, |eP,RMS−eF,RMS|

is plotted to show the accuracy of the OTSF position estimate relative to the OTSP position

estimate in m. In particular, eP,RMS − eF,RMS is positive in the case where the OTSF RMS

position-estimation error is smaller than the OTSP RMS position-estimation error, and vice

versa.

For the three cases considered above, Figures 11.4-11.6(a) show eP,RMS, eF,RMS versus

αd, αsn, αic, respectively. Figures 11.4–11.6(b) show |eP,RMS− eF,RMS| versus αd, αsn, αic,

respectively, where the values of |eP,RMS − eF,RMS| are color coded based on the sign of

eP,RMS − eF,RMS. Figure 11.6 shows that the OTSP position estimate is more accurate than

the OTSF position estimate for all choices of αic. This situation is surprising since we

expect the latency of the OTSF estimates to be offset by greater accuracy. We thus seek a

variation of OTSF that produces the expected improved accuracy in return for latency, as

discussed in the next section.

Optimal Two-Step Filter with Startup

As shown in Figure 11.6, OTSP may be more accurate than OTSF. This is surprising

in view of the fact that the latency of the estimates produced by OTSF and its use of more

recent data are expected to produce more accurate state estimates. This phenomenon can
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be traced to the fact that OTSF does not use the measurement y0. In fact, at step k = 0,

(11.20) uses y0, whereas, at step k = 0, (11.29) does not use y0. This situation suggests the

possibility of a variant of OTSF that employs an additional assimilation update before the

initial forecast update; otherwise, all subsequent updates of OTSF with startup (OTSFSU)

are identical to OTSF. Figure 11.3 shows a timing diagram for the real-time implementation

of OTSFSU. The next section investigates the accuracy of OTSFSU compared to OTSP in

0 (2,… , 𝑘 − 1)

𝑡

𝑇s1 𝑘 𝑘 + 1

Data

A

𝑥𝑘
a

F

𝑦𝑘+1

𝑥𝑘+1
a

𝑢𝑘𝑢0

Data Data

𝑥1
a

F

𝑦𝑘

A

𝑢𝑘+1

Data

𝑦1

𝑢1

AA

𝑦0
𝑥0
f

𝑥0
a

𝜀 𝜀 𝜀 𝜀

Figure 11.3: Timing diagram for the optimal two-step filter with startup (OTSFSU), where
“A” denotes an assimilation update and “F” denotes a forecast update. The measurement yk
and the applied control uk are available at step k for computation. For all k ≥ 0, OTSFSU
produces an estimate of xk with latency ε.

order to determine whether or not OTSFSU is more accurate than OTSP as compensation

for its inherent latency.

Real-Time Implementation of OTSP, OTSF, and OTSFSU

To clarify the timing of the computation required for OTSP, OTSF, and OTSFSU, note

that for OTSP the state estimate is xf
k, whereas, for OTSF and OTSFSU, the state estimate

is xa
k. Figures 11.1–11.3 show timing diagrams for the real-time implementation of OTSP,

OTSF, and OTSFSU. Note that OTSP is the only estimator that produces an estimate of xk

at step k. In contrast, OTSF and OTSFSU produce estimates of xk at time kTs + ε, where

Ts is the sample time of the digital implementation and ε ∈ (0, Ts] is the latency, which is
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platform-dependent. As shown in Figure 11.2, the first state estimate produced by OTSF is

an estimate of x1; this estimate is not available until t = Ts +ε. In addition, this estimate of

x1 does not use the data y0, as can be seen by the absence of y0 in Figure 11.2. On the other

hand, as shown in Figure 11.3, OTSFSU uses y0 to produce an estimate of x0 at t = ε.

Table 11.1 lists the data used by each algorithm and the associated latency.

Table 11.1: The initial estimate x̂0 and the real-time data y and u used by the estimators to
estimate xk. The time at which the estimate of xk becomes available is given in terms of the
step k, the sample time Ts, and the latency ε. OTSP, OTSF, and OTSFSU are the optimal
two-step predictor, filter, and filter with startup, respectively.

Estimator x̂0 y data u data x̂k When available?

OTSP xf
0 yk−1 uk−1 xf

k kTs

OTSF xa
0 yk uk−1 xa

k kTs + ε

OTSFSU xf
0 yk uk−1 xa

k kTs + ε
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Figure 11.5: Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter (OTSF) versus sensor-noise covariance
αsn. a) shows the RMS position-estimation errors for OTSP and OTSF, eP,RMS and eF,RMS,
respectively. b) shows that OTSP is more accurate than OTSF for αsn < 10−2, whereas
OTSF is more accurate than OTSP for αsn > 10−2.

11.6 OTSP versus OTSFSU: Which Estimator Is More

Accurate?

We now compare OTSP and OTSFSU using the same procedure used to compare OTSP

and OTSF. For OTSFSU we define eFSU,RMS(αd, αsn, αic), and plot |eP,RMS−eFSU,RMS|. In

particular, we compute

eFSU,RMS =
1

10000

10000∑
j=1

√√√√ 1

80

80∑
i=1

(xa
i,j − xi,j)2, (11.52)

where xa
i,j is the position estimate produced by OTSFSU at the ith step for the jth simu-

lation and xi,j is the true position at the ith step for the jth simulation. Figures 11.7–11.9

show that the OTSFSU position estimate is more accurate than the OTSP position estimate

for all choices of αd and αic. Furthermore, as shown in Figure 11.8, OTSP shows no distinct

advantage over OTSFSU for variations of αsn.
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Figure 11.6: Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter (OTSF) versus initial-condition-covariance
scaling αic. a) shows RMS position-estimation errors for OTSP and OTSF, eP,RMS, and
eF,RMS, respectively. b) shows that OTSP uniformly more accurate than OTSF.

11.7 OTSP and OTSF with Correlated Disturbance and

Sensor Noise

This section gives the update equations for the optimal two-step predictor (OTSP) and

the optimal two-step filter (OTSF) in the case where Sk 6= 0. In particular, for OTSP the

assimilation update is given by

xa
k = xf

k + P f
kC

T
k (CkP

f
kC

T
k +Rk)

−1(yk − Ckxf
k), (11.53)

P a
k = P f

k − P f
kC

T
k (CkP

f
kC

T
k +Rk)

−1CkP
f
k, (11.54)

which are identical to (11.20), (11.21). The forecast update is given by

xf
k+1 = Akx

a
k +Bkuk + Sk(CkP

f
kC

T
k +Rk)

−1(yk − Ckxf
k), (11.55)

P f
k+1 = AkP

a
kA

T
k − Sk(CkP f

kC
T
k +Rk)

−1CkP
f
kA

T
k

− AkP f
kC

T
k (CkP

f
kC

T
k +Rk)

−1ST
k

− Sk(CkP f
kC

T
k +Rk)

−1ST
k +Qk, (11.56)
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Figure 11.7: Root-mean-square (RMS) position-estimation errors for the optimal two-
step predictor (OTSP) and the optimal two-step filter with startup (OTSFSU) versus
disturbance-covariance scaling αd. a) shows the RMS position-estimation errors for OTSP
and OTSFSU, eP,RMS, and eFSU,RMS, respectively. b) shows that OTSFSU is uniformly
more accurate than OTSP.

which are (11.22), (11.23) with additional terms involving Sk. Defining the OTSP gain

K f
k

4
= P f

kC
T
k (CkP

f
kC

T
k +Rk)

−1, (11.57)

(11.53) and (11.54) can be written as

xa
k = xf

k +Kk(yk − Ckxf
k), (11.58)

P a
k = (I −KkCk)P

f
k, (11.59)

which are identical to (11.25), (11.26).

For OTSF the forecast update is given by

xf
k+1 = Akx

a
k +Bkuk + Sk(CkP

f
kC

T
k +Rk)

−1(yk − Ckxf
k), (11.60)

P f
k+1 = AkP

a
kA

T
k − Sk(CkP f

kC
T
k +Rk)

−1CkP
f
kA

T
k

− AkP f
kC

T
k (CkP

f
kC

T
k +Rk)

−1ST
k

− Sk(CkP f
kC

T
k +Rk)

−1ST
k +Qk, (11.61)
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Figure 11.8: Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter with startup (OTSFSU) versus sensor-
noise-covariance scaling αsn. a) shows the RMS position-estimation errors for OTSP and
OTSFSU, eP,RMS, and eFSU,RMS, respectively. b) shows OTSP is more accurate than OTS-
FSU for 10−4.5 < αsn < 10−2 and αsn > 102.

which are (11.27), (11.28) with additional terms involving Sk. The assimilation update is

given by

xa
k+1 = xf

k+1 + P f
k+1C

T
k+1(Ck+1P

f
k+1C

T
k+1 +Rk+1)−1(yk+1 − Ck+1x

f
k+1), (11.62)

P a
k+1 = P f

k+1 − P f
k+1C

T
k+1(Ck+1P

f
k+1C

T
k+1 +Rk+1)−1Ck+1P

f
k+1, (11.63)

which are identical to (11.29), (11.30). In terms of the OTSF gain

K f
k+1

4
= P f

k+1C
T
k+1(Ck+1P

f
k+1C

T
k+1 +Rk+1)−1, (11.64)

(11.62) and (11.63) can be written as

xa
k+1 = xf

k+1 +Kk+1(yk+1 − Ck+1x
f
k+1), (11.65)

P a
k+1 = (I −Kk+1Ck+1)P f

k+1, (11.66)

which are identical to (11.32), (11.33).
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Figure 11.9: Root-mean-square (RMS) position-estimation errors for the optimal two-step
predictor (OTSP) and the optimal two-step filter with startup (OTSFSU) versus initial-
condition-covariance scaling αic. a) shows the RMS position-estimation errors for OTSP
and OTSFSU, eP,RMS, and eFSU,RMS, respectively. b) shows that OTSFSU is uniformly
more accurate than OTSP.

OTSF in the traditional notation is given by

x̂k+1|k = Akx̂k|k +Bkuk + Sk(CkPk|k−1C
T
k +Rk)

−1(yk − Ckx̂k|k−1), (11.67)

Pk+1|k = AkPk|kA
T
k − Sk(CkPk|k−1C

T
k +Rk)

−1CkPk|k−1A
T
k

− AkPk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1ST
k

− Sk(CkPk|k−1C
T
k +Rk)

−1ST
k +Qk, (11.68)

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 +Rk+1)−1(yk+1 − Ck+1x̂k+1|k),

(11.69)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 +Rk+1)−1Ck+1Pk+1|k, (11.70)

where (11.67), (11.68) are (11.38), (11.39) with additional terms involving Sk, and (11.69),

(11.70) are identical to (11.40), (11.41). The OTSF gain (11.64) can be written as

K f
k+1 = P f

k+1|kC
T
k+1(Ck+1P

f
k+1|kC

T
k+1 +Rk+1)−1, (11.71)
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and thus (11.69) and (11.70) can be written as

x̂k+1|k+1 = x̂k+1|k +K f
k+1(yk+1 − Ck+1x̂k+1|k), (11.72)

Pk+1|k+1 = (I −K f
k+1Ck+1)Pk+1|k, (11.73)

which are identical to (11.43), (11.44).
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CHAPTER 12

Conclusions and Future Work

12.1 Conclusions

This dissertation presented a decomposition of the retrospective performance variable,

which was used to gain insights into why RCAC and DDRCAC converge to controllers that

provide command-following, disturbance and sensor-noise rejection performance. Further-

more, this decomposition provides the basis of rules-of-thumb for the construction of the

target model Gf(q) in the SISO case.

Additionally, this dissertation developed and demonstrated DDRCAC as an extension

of RCAC from direct adaptive control to a hybrid direct/indirect adaptive control, where

RLS with variable-rate forgetting is used for online system identification. For SISO and

MIMO systems, the identified model is used to construct the target model, which provides

an essential model of the closed-loop dynamics, including NMP zeros. In the presence of

sensor noise and actuator magnitude and rate limits, DDRCAC was shown to be effective

for plants with a priori unknown NMP zeros.

Using RLS with variable-rate forgetting, DDRCAC was found to provide self-generated

persistency, thus facilitating system identification. Furthermore, although closed-loop iden-

tification can entail parameter-estimate bias, it was found that, in DDRCAC, identification

and control interact so as reduce the effect of bias.

In the MIMO case, RCAC was shown to create and cancel NMP cascade zeros, which
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lead to the control diverging. DDRCAC was shown to avoid cancellation of NMP cascade

zeros, which are created due to the cascade of a nonsquare system and a controller.

Finally, DDRCAC was demonstrated in various flight-control applications, namely, an

aircraft with unknown, time-dependent transition from MP to NMP dynamics, a flexible

aircraft, wing flutter, and nonlinear planar missile dynamics. Finally, flight-control exam-

ples showed that DDRCAC is effective for both linear and nonlinear applications as either

a standalone embedded controller or as a simulation-based offline tuning technique for

assessing achievable performance without requiring explicit knowledge of the underlying

equations of motion.

12.2 Future Work

Adaptive control of nonsquare systems using DDRCAC revealed that DDRCAC has the

ability to avoid the creation and cancellation of NMP cascade zeros. This result has impor-

tant practical implications and thus the underlying mechanisms for this property warrant

deeper investigation, analysis, and proof.

The retrospective performance variable decomposition was derived for MIMO systems,

but the numerical examples were confined to SISO systems. Future work is required for

numerical verification of this result in the MIMO case. Numerical investigations using

MIMO retrospective performance variable decomposition may lead to new insights into

MIMO control using RCAC and DDRCAC.

Finally, it was demonstrated through numerical examples that online identification and

adaptive control interact synergistically to reduce parameter-estimate bias without the need

for probing signals as in dual control. This phenomenon has significant practical implica-

tions and thus warrants further exploration.
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