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ABSTRACT

Autonomous vehicles are predicted to significantly improve transportation quality by reducing
traffic congestion, fuel expenditure and road accidents. However, until autonomous vehicles are
reliable in all scenarios, human drivers will be asked to supervise automation behavior and intervene
in automated driving when deemed necessary. Retaining the human driver in a strictly supervisory
role, however, may make the driver complacent and reduce driver’s situation awareness and driving
skills which ironically, can further compromise the driver’s ability to intervene in safety-critical
scenarios. Such issues can be alleviated by designing a human-automation interface that keeps
the driver in-the-loop through constant interaction with automation and continuous feedback of
automation’s actions. This dissertation evaluates the utility of haptic feedback at the steering
interface for enhancing driver awareness and enabling continuous human-automation interaction
and performance improvement in semi-autonomous vehicles.

In the first part of this dissertation, I investigate a driving scheme called Haptic Shared Control
(HSC) in which the human driver and automation system share the steering control by simultaneously
acting at the steering interface with finite mechanical impedances. I hypothesize that HSC can
mitigate the human factors issues associated with semi-autonomous driving by allowing the human
driver to continuously interact with automation and receive feedback about automation action. To
test this hypothesis, I present two driving simulator experiments that are focused on the evaluation
of HSC with respect to existing driving schemes during induced human and automation faults.

In the first experiment, I compare obstacle avoidance performance of HSC with two existing
control sharing schemes that support instantaneous transfers of control authority between human
and automation. The results indicate that HSC outperforms both schemes in terms of obstacle
avoidance, maneuvering efficiency, and driver engagement. In the second experiment, I consider
emergency scenarios where I compare two HSC designs that provide high and low control authority
to automation and an existing paradigm that decouples the driver input from the tires during collision
avoidance. Results show that decoupling the driver invokes out-of-the-loop issues and misleads
drivers to believe that they are in control. I also discover a ‘fault protection tradeoff’: as the control
authority provided to one agent increases, the protection against that agent’s faults provided by the
other agent reduces.

In the second part of this dissertation, I focus on the problem of estimating haptic feedback from
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the road, or the road feedback. Road feedback is critical to making the driver aware of the state
of the vehicle and road conditions, and its estimates are used in a variety of driver assist systems.
However, conventional estimators only estimate road feedback on flat roads. To overcome this issue,
I develop three estimators that enable road feedback estimation on uneven roads. I test and compare
the performance of the three estimators by performing driving experiments on uneven roads such as
road slopes and cleats.

In the final part of this dissertation, I shift focus from physical human-automation interaction
to human-human interaction. I present the evidence from the literature demonstrating that haptic
feedback improves the performance of two humans physically collaborating on a shared task. I
develop a control-theoretic model for haptic communication that can describe the mechanism by
which haptic interaction facilitates performance improvement. The model creates a promising
means to transfer the obtained insights to design robots or automation systems that can collaborate
more efficiently with humans.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Autonomous vehicles (AV) are predicted to have a significant impact on transportation. AVs are
expected to reduce accidents, traffic congestion, parking needs, and fuel expenditure [1]. They are
anticipated to bring significant national economic benefits and to make personal mobility accessible
to those unable to drive [2]. AVs promise these benefits by taking the human out of the control
loop and eliminating human faults from driving. Human faults in driving can arise from a number
of reasons, such as, distraction, fatigue, impatience, and lack of information [3]. The automation
system in an AV is capable of processing huge amounts of information more quickly, accurately,
and tirelessly than human drivers which can enable it to remove human errors from driving [4].

However, albeit in different respects than human drivers, automation systems are also subject
to faults and errors. Automation faults may arise from incorrect predictions, false activations and
sensor dropouts [5,6]. A number of recent studies show that automation faults have resulted in
more crashes per million miles driven than the crashes resulting from human faults [7–9]. This is
despite the fact that AVs are still in the testing phase and are being driven at relatively low speeds.
Based on public reaction to AV accidents, it is also likely that society would not tolerate automation
faults at the same rates it currently tolerates human faults [5,10]. Therefore, until automation is
fully reliable, human drivers will be required to intervene in automated driving.

Human intervention in automated driving results in so-called semi-automated or partially
automated driving. Semi-automated driving can be explained using the levels of automation defined
by the Society of Automotive Engineers (SAE) [11]. SAE describes six levels of automation
based on the extent to which automation can support and assist driving tasks. Level 0 represents
no automation and Level 5 represents full automation. Levels 1 through 3 are regarded as semi-
automation whereas Level 4 is regarded as high automation [8]. The key difference between Level 4
and Levels 1-3 is that in Level 4 automation is responsible for serving as a “backup” during failures.
On the other hand, Levels 1-3 place the fallback (or back-up) responsibility of the driving tasks on
the human driver. In short, standard semi-automated driving puts the driver in a supervisory role

1



and expects the driver to remain available for immediate control take-over.
Generally, the capabilities that the human driver brings to semi-automated driving are comple-

mentary to the capabilities of automation systems. The human driver offers superior perception
and judgment, is capable of making high-level and ethical decisions, brings rich prior experience,
and brings an ability to generalize from one type of experience to another [4,12]. To improve
safety in semi-automated driving, one might imagine a scheme that transfers driving authority to the
human in situations where automation has a tendency to make faults and to automation where the
human might be prone to errors. Ideally, human-automation team performance would exceed the
performance of either human or automation acting alone and cognitive workload would be reduced
for the human [13–15].

The problem of designing a scheme to support smooth authority transfers between human
and automation is not new. Human-automation collaboration is prevalent in domains other than
automotive engineering and the literature from these domains can help inform the design the
human-automation interface in driving. Perhaps nowhere is human-automation teaming as old and
as well-researched as it is in the aviation systems. Automation in aviation was first introduced in
mid-Fifties in the form of auto-pilot, auto-throttle and flight director functions to reduce accidents
due to human error [16]. Since then flight automation has significantly evolved to support various
aspects of flying and has resulted in a significant drop in the number of accidents (see [16]). Apart
from providing safety benefits, on-board automation has also resulted in dramatic reduction in pilot
workload, operational costs, training costs, maintenance costs, and has improved job satisfaction,
training flexibility, and operational capabilities for the pilots.

However, lessons from implementing automation in aviation systems also demonstrate that
human-automation teams are prone to failures during transfers of control authority [17]. In particular,
during control transitions, human operators are susceptible to misinterpreting and misappropriating
responsibilities, and to losing vigilance and situation awareness [18]. Further, when working
alongside highly automated systems, human operators are prone to human factors issues such as
skill degradation, complacency and overreliance on automation’s abilities [17,19]. Such issues lead
to the misuse (overtrust) and disuse (distrust) of automation which can have an adverse effect on
safety [20]. These unintended effects of adding automation are sometimes referred to as the “ironies
of automation” in that rather than reducing problems for the human operator, adding automation
can have a tendency to expand them [21].

Apart from aviation, human-automation collaboration issues have also been observed in maritime
systems. In maritime operations, automation is frequently used to perform task allocation and path
planning to reduce the workload for the human operator [22]. However, automation generated plans
have been often found at odds with the human operator’s expectations [23,24]. Even experienced
human operators have encountered difficulties understanding automation’s actions [22]. Moreover,
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ship operators working with autopilot are experimentally shown to be prone to human factors issues
such as skill degradation, automation complacency, and loss of situation awareness [22]. Some
researchers however note that the reaction time required to return to a safe state is significantly
larger in maritime systems resulting in a higher probability of saving accidents during automation
failures than in the automotive and aviation systems [23].

In the manufacturing domain, human-automation collaboration has been demonstrated to reduce
costs and increase both production quantity and quality [25,26]. In comparison to the other
domains, the human operator is considered significantly more important in manufacturing because
of their ability to interpret unplanned situations and handling complexity on the shop floor [27–29].
Automation is primarily regarded as a tool to extend human’s cognitive capabilities, reduce human’s
physical and mental workload, and even improve worker’s well-being [30–32]. But, like other
domains, adding automation in manufacturing also results in additional physical and cognitive
loads [33]. For example, a manufacturing robot collaborating with the human operator introduces
the possibility of a collision which can adversely influence operational safety and technology
acceptance [34]. Studies have shown that during production assembly, working alongside robots of
a certain size and speed can increase the worker’s stress and anxiety [35]. On the other hand, some
researchers have found that an automation system that is transparent and that provides additional
control to the operator can improve the worker’s well-being and job satisfaction [31,36].

Human-automation collaboration has also become an indispensable part of the healthcare
industry. In surgery, robots promise to enhance performance by automating tedious and difficult
tasks and by improving surgeon’s motor performance through stabilizing surgeon’s tremor and
enhancing the surgeon’s sense of touch [37–39]. However, robots also fundamentally change
the surgery task and impose new cognitive and physical demands on the surgeon and nurses
[40,41]. During robotic surgery, in addition to performing the surgery task, surgeons become
responsible for driving the robot which requires a higher degree of coordination and information
from various sources and locations [42]. In robotic minimally invasive surgery, many visual cues
for the surgeon are removed resulting in increased responsibilities for nurses who now have to
continuously provide any missing information to the surgeon [43]. This added communication
load opens up the possibilities for new failures or ‘medical errors’ which are directly or indirectly
attributed to automation [44–46]. Due to safety concerns, researchers suggest that medical robots
should most likely be never fully autonomous and that robots should only be designed to enhance
surgeon’s skills (and ideally extend their capabilities) but never take away the control completely
from the human operator [42].

Synthesizing the literature from various domains, over the past three decades, researchers have
proposed various guidelines for designing human-automation teaming schemes that can alleviate
human factors issues in automation design [47,48]. Abbink et al. in [13] combined and rephrased
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the guidelines appearing in the literature and put forth four design guidelines: “the human operator
should (1) always remains in control [...]; (2) receive continuous feedback about the automation
boundaries and functionality; (3) continuously interact with the automation; and (4) benefit from
increased performance and/or reduced workload.” These guidelines echo the ideas of human-
centered automation design [47,48] which state that the human must always be in control and
continuously interact with automation. The guidelines ensure that the human operator is aware of
the intentions and limitations of the automation system and can utilize this information to decide
whether to relinquish control to automation or to take over control from automation.

In vehicles, one way to provide continuous feedback of automation’s actions to the driver is
by combining the capabilities of human and automation at the steering wheel. Naturally, driving
involves control through the steering wheel. The steering wheel can therefore act as an interface
through which the human driver can both continuously exert control and receive feedback about
automation action. By working simultaneously at the common interface, the human driver and
automation system can then share the steering control and can together determine the final steering
angle and vehicle trajectory. This approach to human-automation teaming is called shared control
and has been investigated in a number of studies in the past two decades [49–53].

To enable constant interaction between human and automation during shared control, steering
can be shared through haptic feedback. This scheme of control sharing is called haptic shared
control (HSC), and it derives its inspiration from two humans cooperating on a manual task. In
haptic shared control, the driver, the automation, and the vehicle (tires) are all coupled to one another
through the steering wheel. The driver can simultaneously exert control and extract information
about the automation action and tire-road interaction through haptic feedback. Automation acts
on the steering system through a motor with a finite mechanical impedance roughly matching the
driver’s biomechanical impedance [13,54]. The human driver can override the automation command
by increasing their steering grip thereby increasing their biomechanical impedance [55] or can
acquiesce to the automation command by assuming a relaxed grip and reducing their impedance.
The final steering maneuver in HSC depends on the actions and relative impedance of both the
driver and automation system.

Haptic shared control satisfies a majority of human-automation interaction design guidelines that
have appeared in the literature [13,47,48]. In particular, HSC can meet all four design guidelines
defined by Abbink et al. that we mentioned earlier [13,18]. In HSC, the driver always remains in
control of the vehicle. The driver continuously interacts with the automation system and receives
constant feedback about automation’s actions and intentions through haptic feedback. Additionally,
the driver can negotiate driving authority with automation simply through muscle action and can
do so smoothly and intuitively. A number of studies in the past have demonstrated the benefits of
employing HSC in the automotive domain. HSC has been shown to improve driving performance in
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terms of lane following [56], curve negotiation [51], lane changing [57], and reaction times [58].
Existing studies on HSC predominantly focus on evaluating its advantages in comparison to

either conventional driving (with no haptic feedback) [12,18,50,51] or to other HSC designs [59,60].
Only a few studies compare HSC with alternative control sharing schemes and even fewer evaluate
the response to faults of different control sharing schemes [61–63]. Evaluation of HSC with respect
to the available driver-automation control sharing schemes can help understand the long-term
benefits of HSC and can accelerate its adoption in commercial vehicles. Moreover, comparing
performance during driver and automation faults can help determine the sensitivities of different
control sharing methods to unanticipated scenarios on the road. The core of this dissertation is
focused on the design and evaluation of HSC with respect to control sharing schemes currently
available in commercial vehicles, especially in light of known human factors issues.

This dissertation evaluates the utility of haptic feedback at the steering interface for enhancing
driver awareness and enabling continuous human-automation interaction and performance improve-
ment in semi-autonomous vehicles. The dissertation focuses on four different research problems in
the area of haptic interaction. The following subsections describe the specific motivation behind
each problem.

1.1.1 Continuous versus Discrete Authority Transitions

In the first problem in this dissertation, I will compare the performance of HSC with control
sharing schemes that support instantaneous transfer of control authority between human and automa-
tion. The transitions of control authority in HSC are continuous and occur over a period of time,
which can make them intuitive to initiate. However, continuous transitions can be disadvantageous
in scenarios in which fast and instantaneous shifts of control transfer might be necessary to ensure
safety [61,62,64]. For example, during automation faults in semi-autonomous driving, drivers might
want the option to disengage the automation system with a simple button press or other trigger.
Such schemes of control sharing are available in commercial vehicles and are called discrete control
sharing schemes in this dissertation, in contrast to continuous control sharing schemes such as haptic
shared control where the authority transitions are continuous. In this dissertation, I will compare
the performance of continuous and discrete control sharing schemes in the context of human and
automation faults.

1.1.2 Coupled versus Decoupled Steering Interfaces

In a second related research problem, I will compare the performance of high and low automation
impedance HSC with a scheme that decouples the driver during emergency situations. In emergency
collision avoidance scenarios, drivers tend to reduce the efficiency of automation-initiated steering
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maneuvers due to their slow reaction times [65,66]. One way to reduce the influence of driver input
on automation-initiated maneuvers is by decoupling the driver and the steering wheel from the
tires using a steer-by-wire system [67,68]. Another way is to keep the driver coupled with HSC
but choose a large value of mechanical impedance (amount of control authority) in the automation
design to attenuate driver input instead of completely removing it. However, high automation
impedance may cause driver discomfort and even injury [62]. On the other hand, a low automation
impedance HSC might be more comfortable to operate but may not suppress driver input [61]. In
this dissertation, I will investigate the effects of automation impedance and driver decoupling on
driving performance in emergency scenarios.

1.1.3 Road Feedback Estimation on Uneven Roads

The third research problem is focused on estimating haptic feedback arising from tire-road
interaction. While this problem is not directly related to automation design, it is related to the design
of driver assist systems in semi-autonomous vehicles. The haptic feedback from the road, or road
feedback, plays a critical role in improving a driver’s awareness of the state of the vehicle, the road
conditions, and the environment [69–71]. As a result, a wide variety of driver assist systems use the
estimates of road feedback in their control design [69,71–75]. Road feedback arises from tire-road
interaction primarily in response to the steering angle applied by the driver and the variations in
road profile. It can usually be expressed as a fraction of ‘rack force’ which is defined as the force
transmitted from the tires to the steering rack of a vehicle, making the problems of estimating
road feedback and rack force equivalent. Conventional methods of estimating rack force are only
applicable for driving on flat roads [69,76–78]. In this dissertation, I will fill this research gap by
presenting models that can be used to estimate road feedback on uneven roads.

1.1.4 Modeling Human-Human Haptic Communication

The final research problem is focused on yet another separate problem which aims at investi-
gating how two humans physically interact with each other. The problem of designing an intuitive
automation system that can cooperate with humans can be interpreted in a broader sense by un-
derstanding how two humans perform joint action, that is, how they coordinate their actions to
produce a joint outcome. Whether it is dancing with a partner or moving a piece of furniture,
humans are well known to coordinate their actions smoothly and accurately with each other [79].
The perceptual, cognitive, and motor processes that enable two humans to coordinate their actions
with each other are complicated and have received increasing attention during the last decade in the
fields of cognitive psychology and neuroscience [80,81].

Taking inspiration from the joint action literature, several researchers in haptics have tried to
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investigate the role of haptic feedback in joint task performance. A number of studies have shown
that haptic feedback can improve shared task performance between two humans [82–85]. However,
this evidence remains strictly empirical without any investigation into the underlying mechanism
by which haptic interaction facilitates performance improvement [86,87]. Yet insights into the
mechanism enabling the performance improvements in human-human haptic interaction can be
helpful in designing robotic systems that can collaborate efficiently with the human user or, in
particular, in designing automation systems that can collaborate more efficiently with the human
driver. In this dissertation, I will present a control theoretic model for haptic communication to
describe the means by which haptic interaction between human and automation might improve
driving performance. Note that the fields of joint action and human-human interaction are broader
than the field of human-automation interaction. Therefore, the scope for this last research problem is
wider than haptic shared control or human-automation interaction, and the results can in general be
applicable to a wider variety of domains such as physical human-robot interaction, manual control,
and psychophysics.

1.2 Contributions

This dissertation has four contributions.
The first contribution is the experimental findings demonstrating that driving performance is

improved when the transitions of control authority between human and automation are continuous.
In collaboration with the researchers at the Automated Modeling Lab at U-M, I conducted a
driving simulator study with 11 participants in a within-subjects design to compare the obstacle
avoidance performance between continuous and discrete control sharing schemes during human and
automation faults. I implemented one continuous (HSC) and two discrete control sharing schemes
under which the human would share control with the automation. In the first discrete control sharing
scheme the transitions were initiated by the driver and in the second scheme the transitions were
initiated by the automation. The findings indicated that the continuous control sharing scheme
(HSC) supported the best overall team performance. Moreover, during automation faults, the team
performance suffered most under the discrete control sharing scheme with automation-initiated
transitions. On the other hand, during human faults, the performance was the lowest under the
discrete scheme with driver-initiated transitions.

The second contribution is the experimental findings demonstrating the existence of a ‘fault
protection tradeoff’: as the control authority provided to one agent increases, the protection against
one agent’s faults provided by the other agent reduces. In collaboration with the researchers at the
THInC Lab at U-M, I designed a driving simulator study with 64 participants in a between-subjects
design where I compared four steering interface design schemes in their ability to enable emergency
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obstacle evasion during induced driver and automation faults. The drivers were either provided 1) no
driving authority by decoupling their steering inputs from the tires, or a partial driving authority by
keeping them coupled using HSC with a 2) low or 3) high automation impedance, or 4) full driving
authority by removing the automation assistance. A model to describe physical driver-automation
interaction was also developed to derive further insights into the differences in driver behavior
across the four conditions. The results highlighted the fault protection tradeoff and showed that
decoupling the drivers invoked out-of-the-loop issues and misled the drivers to believe that they
were in control. Moreover, coupled drivers in the high impedance HSC group applied larger steering
effort than the drivers in other conditions.

The third contribution is the development and validation of road feedback (rack force) estimators
for driving on uneven roads. Using sensed steering angle and road profile inputs, the developed
estimators enable road feedback estimation while driving on road slopes, cleats, and potholes, and
produce independent estimates of the primary components of road feedback: road feedback due to
steering angle and road feedback due to road profile. In particular, I developed three vehicle and
tire dynamics based rack force estimators and, with help from the project collaborators at the Ford
Motor Company, compared their performance by performing driving experiments on uneven roads.
I also presented results from a simulation study to demonstrate that the developed estimators are
capable of estimating the components of rack force.

The fourth contribution is a simplest competent control-theoretic model for haptic communica-
tion that is aimed at describing the performance improvement observed in human-human interaction.
In collaboration with my colleagues at the HaptiX Lab at U-M, I performed a simulation study where
I modeled human-human haptic communication through an object using internal force. Taking
inspiration from [86], I adopted the McRuer Crossover model [88] to describe the tracking behavior
of each human within the interacting human-human team. The results uncovered a haptic communi-
cation pathway that supported a means to describe how two agents acting together could outperform
the two agents without haptic feedback or either agent acting alone, even when either agent acts
only on half the mass. The results also suggested a mechanistic explanation for how the individual
behavior could change due to haptic interaction. The fourth contribution is completely theoretical
in nature and the results are yet to be validated through actual human subject experiments.

1.3 Dissertation Overview

This dissertation focuses on the design and evaluation of steering interfaces for semi-automated
vehicles. The overarching aim is to evaluate the use of haptic feedback in the axis of steering
as a means to improve driver awareness and enable continuous human-automation interaction in
semi-autonomous vehicles. Each of Chapters 2 to 5 corresponds to one of the contributions listed in
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Section 1.2. The chapters have been adapted from previously published manuscripts but much of
the published content has been expanded and reorganized in order to improve the coherence and
structure of this dissertation.

In Chapter 2, I compare the performance of HSC with two discrete control sharing schemes. I
also evaluate all three control sharing schemes in situations involving human and automation faults.
In Chapter 3, I investigate the effects of automation impedance and driver decoupling on driving
performance in emergency scenarios. I also develop a model to describe physical driver-automation
interaction that contributes meaningful insights to the analysis of the results.

In Chapter 4, I develop models that can be used to estimate rack force, and hence road feedback,
for driving on a wide variety of road profiles, such as road slopes, cleats, and potholes. I also
present a method to estimate rack force due to the driver’s applied steering angle independent of
rack force arising from road profile variations. In Chapter 5, I develop a theoretical model for
haptic communication as a first step towards describing the performance improvement observed in
human-human haptic interaction. I present simulation results that are supported by experiments
conducted by researchers in past, and present future steps to experimentally validate the results.

Finally, in Chapter 6, I present concluding remarks and limitations of the dissertation and
suggest future work.
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CHAPTER 2

Continuous versus Discrete Authority Transitions during Obstacle Evasion

2.1 Introduction

Self-driving cars promise to eliminate accidents caused by human errors by removing human
drivers from the control loop. Undeniably, vehicle automation is capable of faster response times,
is able to handle greater amounts of information, and is able to process information more quickly
and in a more repeatable fashion than human drivers. However, automation is subject to faults and
misses as well, even if these rates have not been established given the short time self-driving cars
have been on the road. It is also likely that society will not tolerate automation faults at the same
high rates it currently tolerates human faults. Human drivers are therefore retained in a supervisory
role or asked to remain available for immediate control take-over, oftentimes without warning [11].
Indeed, until self-driving cars are reliable in all foreseeable and even unforeseeable situations on the
road, occasions will arise in which control must be transferred back to a human driver, perhaps on
short notice.

Humans bring capabilities for driving a vehicle that are in large part complementary to the
capabilities of automation systems. The human driver offers superior perception and judgment,
is capable of making high-level decisions, brings rich prior experience, and brings an ability to
generalize from one type of experience to another. To combine the capabilities of human and
automatic drivers, one might imagine a scheme in which control authority is given to whichever
agent outperforms the other in each traffic situation or time interval on the road. Ideally, safety
would be guaranteed and the addition of automation would free attention for the human driver.
However, a clean division and means of transitioning control authority is difficult to find.

Various schemes for combining the capabilities of human and automatic drivers have been
proposed, differing primarily according to the manner in which control authority is transitioned
between the two agents. Most commonly, transitions involve complete transfers of control authority
that take place at discrete instants of time. That is, control authority is transferred as a lumped
whole from human to automation system or back to human. These schemes are discrete control
sharing schemes in this chapter. In such schemes, transfers may be initiated by the human driver, by
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the automation system, or by a separate arbitration algorithm [89–91].
In one common discrete control sharing scheme, which I call Autopilot in this chapter, the human

driver initiates the transitions, engaging and disengaging automatic control with a button-press
or other trigger. For example, cruise control is conventionally engaged with a button press and
disengaged with another button press or tap on the brake. Flight automation systems are likewise
engaged by the pilot at discrete instants of time. In a second discrete control sharing scheme, which
I call Active Safety, it is the automation system that initiates a transition of control authority. For
example, automated emergency braking can be initiated when the automation system detects an
impending collision for which human reaction time is too short [92]. Active safety systems have also
been proposed that decouple the steering rack from the steering wheel during avoidance maneuvers
[93,94].

However, smooth transfer of control authority between an automation system and human is
notoriously difficult. From experience in deploying automation in aviation systems, we know that
human/automation teams are particularly prone to errors during transfers of control authority [17].
Issues surrounding control transfer include a protracted time interval required for full transfer,
mis-interpretation or mis-appropriation of responsibility (called mode errors), and incomplete
understanding of vehicle or environment state (loss of situation awareness) [20,95,96]. Transitions
involving such issues are often called “bumpy”, and are implicated in compromises to safety [97,98].

To support smooth transfers of authority and harness the complementary features of human
and automatic control, researchers have proposed various schemes under which control may be
continuously shared between human and automation. Rather than complete transfers of control
authority that occur at discrete instants of time, these schemes attempt to form a cooperative team
that involves the human and automation system working together simultaneously. Such schemes
are called continuous control sharing schemes in this chapter. With a continuous control sharing
scheme it is ideally expected that the team performance would exceed the performance of either
agent acting alone and cognitive workload would be reduced for the human [13–15,47,48,99].

The continuous control sharing scheme called Haptic Shared Control takes its inspiration from
two humans cooperating on a manual task, for example moving a piece of furniture [49,56]. In
continuous shared control of steering, the automation system acts through an instrumented and
motorized steering wheel, but by design acts with a mechanical impedance that is roughly matched
to the impedance of the human driver. The human driver can increase the impedance by increasing
the steering grip and co-contracting the muscles to override the automation system, and can reduce
the impedance by decreasing the steering grip and relaxing the muscles (while keeping hands on
the wheel) to yield control to the automation system. Whether active or relaxed, the human driver
can monitor the actions of the automation system through haptic feedback [13,59,100,101]. At all
times, the final steering maneuver in Haptic Shared Control depends on the actions and the relative
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impedance of both the human driver and the automation system. The automation is generally
designed to have a constant finite impedance but it can also be equipped with the ability to vary its
impedance and to adjust its relative driving authority [49,100].

While the underlying processes and degrees may differ, it is clear that both human drivers and
automation systems are subject to misses, faults, or errors. A given scheme for combining human
and automatic control must be robust to unanticipated conditions, misses, faults, and errors. As
Bainbridge [21] noted, adding automation may expand rather than reduce problems for the human
operator, especially when faults occur.

Operators left with the task of monitoring the driving situation and automation behavior are
challenged precisely where their skills are poor—in maintaining vigilance [102]. Taking over
control from an automation system in unexpected conditions usually requires additional cognitive
rather than manual skills, and skills that may be difficult to develop and maintain [21]. Few studies
have compared the response to faults of different control sharing schemes. Yet studies comparing
performance across schemes are critical to determine gross sensitivities to unexpected conditions.
Because faults are often sudden occurrences, schemes that support rapid transitions such as button
presses may hold advantages. On the other hand, schemes that use the steering wheel as the interface
for changing the balance of control authority rather than a button press might support smoother or
earlier transitions.

For example, according to Itoh et al. [103], control sharing methods like Haptic Shared

Control are effective at supporting smooth shifts of authority during automation-induced faults.
The hypothesized mechanism is that the haptic feedback present in Haptic Shared Control enables
the human driver to quickly understand and fix automation errors or faults by modulating their
impedance [103]. In a 2016 survey conducted by Wolf on 1000 respondents [10], it was found that a
majority of human drivers would not wish to completely relinquish control to an automation system.
Haptic Shared Control also fulfills this requirement by giving neither the human nor the automation
system full authority at any point of time while driving.

A majority of Haptic Shared Control designs are only concerned with human automation
cooperation at the “operational level” (or the “control level”) [104,105]. In automotive systems,
cooperation at the “operational level” involves collaboratively generating a trajectory or a path using
both the automation and driver inputs to determine the final steering wheel angle [104]. Although
such embodiments of Haptic Shared Control still provide a smooth shift of authority during driving,
they can suffer from conflicts between the driver and the automation that arise when there is a
difference between the actions and intentions of the human driver and the automation system.
Conflicts are undesirable as they can cause annoyance, can deteriorate driving performance and, in
worst-case scenarios, can result in accidents [103,104].

Even though the conflicts can be dangerous, Itoh et al. [103] maintain that neither human nor
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machine should be given the full authority during driving and that control should still be shared. One
way to manage conflicts while also sharing control is to perform cooperation at a higher “tactical”
level as suggested in [104,105]. For example, in [101], Mars et al. integrated the design of Haptic

Shared Control system with a driver model that led to fewer conflicts and more agreements between
the driver and the automation [106].

The surveys in [89] and [90] review the literature on control sharing schemes such as Autopilot

and Active Safety that have appeared in commercialized vehicles. but do not include an assessment
of schemes like Haptic Shared Control in which control authority is graded on a continuum between
human and automation. Rather than comparing performance across schemes, studies on control
transitions appearing to date have investigated the dependence of performance under one scheme to
variation in certain parameters. For example, Ericksson and Stanton [107] found less erratic driver
steering input in the first 20 seconds after taking over from automation in self-paced conditions
than in automation-paced conditions. Desmond et al. [108] found similar degraded performance in
the first 20 seconds after resuming control from automated driving following an automation failure
compared to compensating for a wind gust in manual driving.

In this chapter I pit the schemes Autopilot, Active Safety and Haptic Shared Control against
one another in a simulated driving scenario in which faults occur at fixed rates but at unpredictable
times. Faults are induced simply by making obstacles invisible to either the human driver or the
automation system. Similar to the implementation in [94,104] the automation system is based on
Model Predictive Control (MPC) and takes the current steering angle as an input to plan a path
that conforms to the intention of the human driver to reduce conflicts. In Section 2.2 I present
the details of the MPC-based automation system and the driving simulator and elaborate on the
implementation of Autopilot, Active Safety and Haptic Shared Control. I describe an experiment in
which I asked 11 participants to drive with the assist of the automation system under these three
control sharing schemes. To establish baseline performance, I also asked the same participants to
drive the course independently (Manual Control). The automation system also drove the course
independently (Automatic Control). In Section 2.3 I present experimental results followed by a
discussion of the results and conclusion in Sections 2.4 and 2.5 respectively.

2.2 Methods

2.2.1 Participants

Eleven test participants (10 male and 1 female) between the ages of 23 and 40 years were
recruited for the study. Participants did not receive compensation. All participants had normal or
corrected-to-normal vision and signed informed consent in accordance with University of Michigan
human participant protection policies.
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Each participant was instructed on the four conditions Manual Control, Active Safety, Autopilot,
and Haptic Shared Control and given a chance to familiarize themselves with these conditions in a
training session up to 15 minutes long. The name of each condition was displayed on the corner of
the screen during each run. Each participant was asked to complete the four experimental conditions
with three repetitions each. The order of conditions including repetitions was randomized. The
vehicle speed was set constant at 10 m/s, and each test run was about 90 s long.

Participants were informed about the existence of obstacles that would be invisible to them or
not detected by the automation system. They were instructed that the automation system might be
able to help them avoid obstacles that were invisible to them and that they might be able to avoid
obstacles that were not detected by the automation system.

2.2.2 Apparatus

A low-fidelity fixed-base driving simulator was developed featuring a motorized steering wheel
(see Fig. 2.1). A DC motor (AmpFlow A28-150, Belmont, CA) was coupled to the steering
wheel (Speedway 38 cm solid aluminum wheel, Lincoln, NE) through a timing belt with a 72:15
mechanical advantage, making up to 66 Nm torque available to be imposed on the human driver. A
10,000 count per revolution optical encoder (US Digital HB6M, Vancouver, WA) was attached to
the steering shaft and the motor was equipped with a 2048 count per revolution optical encoder (US
Digital HB6M). In addition, the steering wheel was equipped with a red button within easy reach of
a participant’s thumb on the steering wheel. The virtual driving environment was displayed on a
50 cm LCD Widescreen monitor positioned about 140 cm from the participant.

The computational hardware supporting the driving simulator included two computers: a PC
(Intel Core i7-3770) to support the automation system and a second PC (Intel Core i5) to support the
vehicle model, virtual driving environment, and control of the motorized steering wheel. Additional
Arduino micro-controllers (Arduino Mega 2560) supported encoder reading and production of pulse-
width-modulated (PWM) signals for the motor amplifier (Robot Power OSMC, Olympia, WA). The
Arduino code was cycled at 350 Hz. The two PCs communicated every 10 ms through a dedicated
User Datagram Protocol (UDP) link. The automation computer received vehicle states including
steering angle and obstacle positions and responded with a steering angle setpoint. Data including
vehicle position and heading, steering wheel angle, obstacle positions, and motor commands were
logged at 100 Hz. The graphical display was rendered at 20 Hz.

The virtual environment was adapted from [109]. It was created using the Matlab-Simulink
Virtual Reality Toolbox, and appeared as shown in Fig. 2.2. It contained a notional High Mobility
Multipurpose Wheeled Vehicle (HMMWV) and a road with various landmarks that provided motion
cues during driving. The vehicle traveled at a constant speed of 10 m/s, and neither the participant
nor the automation system had any control over speed. The road (in gray) was 8 m wide with a
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Figure 2.1: Fixed base driving simulator: experimental setup.

white dashed centerline. Shoulders of 6 m width (in dark green) were located on either side of
the road. The entire track was 850 m long, with 5 left turns and 4 right turns. An overview of the
track is shown in Fig. 2.2 (A). Ten cylindrical obstacles with a 2 m diameter and 0.5 m height were
distributed along the track’s centerline at intervals that were set randomly between 40 and 50 m. A
red notch was visible on the vehicle’s hood as a center reference.

Figure 2.2: (a) Vehicle, track, landmarks, and obstacles in the virtual environment; (b) An overview
of the track; (c) Scene visible to participants.
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2.2.3 Automation System Design

Model Predictive Control (MPC) was used to develop an automation system capable of steering
the vehicle along the track centerline while avoiding obstacles. The nonlinear MPC formulation
described in [110,111] was adopted and was designed by my collaborators Huckleberry Febbo and
Yingshi Zheng. Inputs to the controller included the vehicle’s state, the position and size of the
obstacles, and data describing the track. To capture the dynamics of the vehicle, the 3 degrees of
freedom dynamic model developed in [112] was used. This vehicle model has seven states and
uses a pure-slip Pacejka tire model [113] to calculate the lateral forces on the tires. The states
include the vehicle’s global position (x, y), lateral speed V (t), yaw rate ωz(t), heading angle Ψ(t),
steering angle δ(t), and longitudinal speed U(t); the control input is the steering rate δ̇(t). To
prevent rollover, the vertical loads on the tires were constrained to be greater than 1000 N. Load
transfer effects were accounted for in the vertical tire force computations.

The cost function included two terms: a first term to minimize the steering rate control effort
δ̇(t) and a second term to minimize the distance between position coordinates of the vehicle (x, y)

and the coordinates of a closest target point on the track centerline (xt, yt). The cost function is
expressed as follows:

J =wδ̇

∫ t0+tp

t0

δ̇(t)dt

+ wpath

∫ t0+tp

t0

(x(t)− xt(t))2 + (y(t)− yt(t))2dt, (2.1)

where wδ̇ and wpath were constant weighing terms set to 0.05 and 10.0, respectively, t0 indicated the
time at which each MPC computation began, and tp encoded a time horizon of 6 s.

Elliptical hard constraints ensured that the vehicle avoided collisions with perceived obstacles
[111]. These obstacle avoidance constraints were expressed as

(x(t)− xobs[i])
2 + (y(t)− yobs[i])

2 > (robs + sm)2,

i = 1, 2, . . . Q, (2.2)

where robs is the obstacle radius, sm is a safety margin that accounts for the vehicle’s size and Q
is the total number of obstacles. The vectors xobs and yobs contain the position and radii of the
obstacles that are shown to the automation system.

At the beginning t = t0 of computations, the states of the vehicle, steering angle θ, and
coordinates of obstacles visible to automation were sent from the driving simulator computer to
the automation computer over the network connection. At t = t0 + ts, where ts = 0.3 s, the
computed cost-minimizing steering trajectory θA was passed back to the driving simulator and
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used as a setpoint trajectory for the steering wheel. While this setpoint trajectory was used for
a period of another ts = 0.3 s, the vehicle state and steering angle were sampled again and the
prediction horizon was shifted forward in time. Using the new values, the next cost-minimizing
steering trajectory was delivered with the next iteration of the MPC algorithm.

A simple proportional-integral (PI) control law was used to generate the motor command torque
τA as a function of the setpoint trajectory θA generated by the automation system and the current
steering angle θ:

τA(t) = kp(θA(t)− θ(t)) + ki

∫ t

teq

[θA(T )− θ(T )]dT, (2.3)

where kp and ki are the proportional and integral gains. teq is defined as the time instant at which
the steering angle θ(t) was found to be equal to the set-point trajectory θA(t) for at least five
consecutive sampling instances. At teq, the integral term in the control law was reset to zero to
prevent unnecessary accumulation of past errors in the commanded torque. Finally, the steering
controller command τA was passed to the Arduino micro-controller where a PWM signal was
generated and applied to the motor amplifier that produced the command torque at the motor.

2.2.4 Experimental Conditions

The experiment involved three conditions in which control was shared between a human and
automation, called Active Safety, Haptic Shared Control, and Autopilot. In addition, I included two
conditions in which control was given in whole (without transitions) to either the human, called
Manual Control, or the automation, called Automatic Control.

Under each condition, participants were asked to follow the road, keeping as close as possible
to the centerline, but to avoid obstacles. Obstacles were invisible until the vehicle was within 40
meters range. Therefore, with a constant speed of 10 m/s, the participant had about 4 s to recognize
and avoid an obstacle.

Ten obstacles were encountered on each run, though 2 obstacles chosen at random were made
invisible to the driver (by not showing them on the monitor). These events were termed “Human
Faults”. Another 2 obstacles on each run were not detected by the automation system (their
coordinates were not passed to the automation computer). These events were termed “Automation
Faults”. That is, of the 10 obstacles encountered in each run, only 6 were “No Fault” obstacles while
2 were “Human Fault” and another 2 were “Automation Fault” obstacles. The particular obstacles
falling into each of these three bins were randomized in each run. The driver was informed that 2 of
the 10 obstacles would not be visible on the screen but would be detected by the automation system
and of the remaining 8 visible obstacles, 2 would not be detected by the automation.
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Table 2.1: Steering Control Parameters for the Control Conditions

Control Condition kp (V/rad) ki (V/rad/s)
Manual Control – –
Active Safety 55 100
Haptic Shared Control 40 80
Autopilot 40 80
Automatic Control 40 80

2.2.4.1 Manual Control

In the Manual Control condition the driver was solely responsible for steering the vehicle;
the automation system was not involved. The only torque feedback that the driver received from
the motorized steering wheel was a self-aligning torque associated with the simulated tire-road
interaction.

2.2.4.2 Automatic Control

To characterize the performance of the automation system alone, the MPC-based automation
system described above in Section 2.2.3 drove the course without any human intervention. The
automation system acted on the physical steering wheel through the motor, producing a steering
trajectory that included the influence of the simulator hardware dynamics and PI control. The
control gains listed in Table 2.1 were used.

2.2.4.3 Active Safety

In the Active Safety condition, the automation system took over complete control in the presence
of obstacles that it detected and deemed likely to be hit without intervention. The automation
system utilized the MPC algorithm described in Section 2.2.3. The gains in Table 2.1 rendered the
automation desired steering angle with a high impedance and ensured that the automation system
could wrest control from the driver whose hands remained on the steering wheel. The automation
system in the active safety condition was not designed to bring the vehicle back to the path after
passing the obstacle. In fact, once the vehicle successfully avoided a given obstacle, the automation
system turned off and the driver became responsible for steering the vehicle back to the centerline.

2.2.4.4 Autopilot

The Autopilot system utilized the same automation system as the Automatic Control system,
except in this case the human was charged with monitoring system performance and intervening if
they thought the automation system did not recognize an obstacle. The human could intervene by
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grasping the steering wheel and pressing the red button to disengage the automation system. That is,
when the red button was pressed, the control task was given completely to the human. After driving
around the obstacle in question the human driver could re-engage Automatic Control by pressing
the red button again. A symbol on the screen indicated whether the automation system was engaged
or disengaged. When the automation system was engaged, the motor acted on the steering wheel
with the PI gains shown in Table 2.1. During such periods, the participant could either relax and let
the motor action determine the steering trajectory or could let go of the steering wheel.

2.2.4.5 Haptic Shared Control

In the Haptic Shared Control condition, the participant kept both hands on the steering wheel
and was free to act at any time. Likewise, the automation system was free to apply torque throughout
a run. When the driver decided to take over control, they could increase their impedance and impose
higher torques on the steering wheel. Conversely, the driver could yield control to the automation
system by decreasing their impedance (relaxing) and applying a lower torque on the steering wheel.
As in the other conditions, the automation system used the vehicle states as inputs to its MPC
algorithm to generate control action using the motor coupled to the steering wheel. The steering
controller gains were selected so that the participant could easily override, or “edit” the automation
system’s command (see Table 2.1).

2.2.5 Performance Metrics

Three metrics were defined to quantify driving performance and enable comparison across
conditions and participants. The first metric, Obstacle Hits, was simply the number of obstacle
collisions that occurred within a given run. Another two metrics, called Approach Distance and
RMS Lateral Deviation, were defined to characterize driving performance around the obstacles
that were successfully avoided as shown in Fig. 2.3. Both Approach Distance and RMS Lateral
Deviation were defined with reference to points A and B, A being the point at which the vehicle
trajectory first deviates by more than 1 m from the centerline, and B the point at which the vehicle
trajectory arrives again within 1 m of the centerline (see Fig. 2.3). The Approach Distance is defined
as the distance along the centerline from point A to the center of the obstacle O. For each point
sampled at 10 ms along the vehicle trajectory, the closest point on the centerline was interpolated.
Lateral deviation was then defined as the closest distance to the centerline, for each evenly sampled
point on the vehicle trajectory. The RMS Lateral Deviation was the root mean square of the lateral
deviation between points A and B. Note that Approach Distance and RMS Lateral Deviation were
computed only for obstacles that were not hit.
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Figure 2.3: A typical obstacle avoidance trajectory taken by a participant is used to define the
performance metrics Approach Distance and RMS Lateral Deviation. (a) The track centerline and
vehicle path are used to define the location of points A and B that lie on the vehicle path at a lateral
distance of 1 m from centerline when the vehicle approaches and departs the obstacle. The distance
between point A and obstacle center O along the centerline is defined as the Approach Distance.
(b) Starting at point A on the vehicle path, the lateral deviation is denoted by e1, then e2 and so on
until the lateral deviation at point B is denoted by en. RMS Lateral Deviation is then the root mean
square of the values of lateral deviation between points A and B.

2.2.6 Data Analysis

The present study employed a 3×3 factorial design, with the two factors being: Control Sharing
Condition (Active Safety, Haptic Shared Control, and Autopilot) and Fault Type (No Fault, Human
Fault, and Automation Fault). The Control Sharing condition was varied between trials and the
Fault condition was varied within trials. The dependent measures were: (1) the percentage of
Obstacle Hits, (2) the RMS Lateral Deviation, and (3) the Approach Distance. Data analysis was
performed using Generalized Linear Mixed Modeling method in IBM SPSS Statistics version 25.
The Obstacle Hit metric was analyzed using the binary logistic regression procedure whereas the
RMS Lateral Deviation and Approach Distance were analyzed using the linear modeling procedure.
The Control Sharing condition and Fault Type were chosen as independent factors. A p-value of
0.05 was set to determine significance. Post-hoc, sequential Bonferroni method was applied to
determine significant differences.
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2.3 Results

2.3.1 Obstacle Hits

Each of the eleven participants and the automation system, when driving by themselves, were
able to drive the course keeping close to the centerline and without hitting obstacles. And as
expected, without seeing or detecting obstacles, the eleven participants and the automation system
drove right through the obstacles located on the centerline. Thus the best case scenario for forming
a human-automation team under conditions in which at least one agent saw every obstacle could be
expected to produce perfect performance. However, this was not the case.

Table 2.2: Obstacle Hits for each Control Sharing Condition separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits

Active Safety 3/198 1.5% 19/66 28.8% 0/66 0% 22/330 6.7%

Haptic Shared Control 1/198 0.5% 3/66 4.5% 2/66 3% 6/330 1.8%

Autopilot 5/198 2.5% 4/66 6.1% 1/66 1.5% 10/330 3%

All Control Conditions 9/594 1.5% 26/198 13.1% 3/198 1.5% 38/990 3.8%

Table 2.3: Obstacles Hits for Baseline Conditions separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits

Manual 0/264 0% 66/66 100% – – 66/330 20%

Automatic 0/24 0% – – 6/6 100% 6/30 20%

As shown in Table 2.2 and Table 2.3, a lower percentage of obstacles were hit in the three
Control Sharing conditions in comparison to the 20% obstacles that were hit in both the Manual

Control and the Automatic Control conditions. Considering only Fault Conditions, in the Manual

Control condition, 100% of the obstacles that simulated Human Faults were hit whereas only 4.5%

were hit in the Haptic Shared Control, 6.1% were hit in the Autopilot, and 28.8% were hit in the
Active Safety condition. Likewise, in the Automatic Control condition 100% of the obstacles that
simulated Automation Fault were hit whereas only 3% were hit in the Haptic Shared Control, 1.5%

were hit in the Autopilot, and no obstacles were hit in the Active Safety condition. Between control
sharing conditions, the Active Safety condition resulted in the highest percentage of obstacle hits
(6.7%) whereas the Haptic Shared Control condition resulted in the lowest percentage of hits (1.8%).
On the other hand, between Fault Conditions, Human Fault resulted in the highest percentage
(13.1%) whereas both Automation Fault and No Fault resulted in an equal percentage of hits (1.5%).
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Figure 2.4: (a) Percent obstacle hits by Control Condition, (b) Percent obstacle hits by Fault
Condition. The asterisks on the lines linking two bars indicate a significant difference between two
conditions.

Analysis on the Obstacle Hit data indicated that the Control Sharing condition was not a
significant predictor of an obstacle hit (F (2, 981) = 0.923, p = 0.398). Fault Condition, on
the other hand, had a significant main effect on the likelihood of a hit (F (2, 981) = 6.555, p =

0.001). Post-hoc comparisons indicated that the possibility of an obstacle hit for the Human Fault
condition was significantly higher than for both the Automation Fault (p = 0.023) and for the
No Fault (p = 0.018) conditions (also indicated in Fig. 2.4 (b)). However, since the interaction
effect between Fault Condition and Control Sharing condition was also found to be significant
(F (4, 981) = 2.579, p = 0.036), it was difficult to generalize the effect of Fault Condition on all
control conditions. To further understand this, I looked at the simple main effect of Control Sharing
condition on obstacle hits for each of the three Fault Conditions and of Fault Condition on obstacle
hits for each of the three Control Sharing conditions.

The analysis showed that only for the Human Fault condition, Control Sharing condition had a
significant effect on the likelihood of a hit (F (2, 981) = 7.265, p = 0.0007). Post-hoc sequential
Bonferroni test revealed that for the Human Fault condition, Active Safety had a higher likelihood of
an obstacle hit than Autopilot (p = 0.001) and Haptic Shared Control (p = 0.0007) conditions. For
any other Fault Type, the Control Sharing Condition had no effect. Likewise, only for the Active

Safety condition, the Fault Condition had a significant effect on obstacle hits (F (2, 981) = 10.032

, p < 0.0005). Post-hoc test revealed that for Active Safety, the Human Fault condition was found to
result in a higher number of hits than Automation Fault (p < 0.0005) and No Fault (p < 0.0005)
conditions. The results of post-hoc tests for the simple main effects analysis are summarized in
Figure 2.5. Hence the main effect of Fault Type was only due to the large number of hits in the
Active Safety condition for Human Fault and therefore this effect could not be generalized to the
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Figure 2.5: Percent Obstacle Hits (a) for each Fault Condition grouped by Control Condition and
(b) for each Control Condition grouped by Fault Condition. The asterisks on the lines linking two
bars indicate a significant difference between two conditions.

Haptic Shared Control and Autopilot conditions.

2.3.2 RMS Lateral Deviation

The RMS Lateral Deviation was used to gauge which control sharing condition resulted in
the most “efficient” maneuver around the obstacles. The means of RMS Lateral Deviation are
presented in Table 2.4 for all the Control Sharing conditions including Manual and Automatic

conditions. As mentioned earlier, the RMS Lateral Deviation was only computed for obstacles
that were successfully avoided. Therefore a lower value of RMS Lateral Deviation for a condition
indicates that the participant found it relatively easier to use that control scheme to make an efficient
maneuver around the obstacle. This becomes more apparent when we look at the trajectories
presented in Fig. 2.6 and compare them with the numbers in Table 2.4. A lower mean value of RMS
Lateral Deviation for a condition in Table 2.4 corresponds to a lower spread (indicated in grey) of
trajectories for that condition in Fig. 2.6, and to an average trajectory (indicated by black solid line)
that deviates less from the centerline.

Since the case of Automation Fault was not possible in the Manual Control condition (because
automation was absent), and the case of Human Fault - which resulted in hits - was removed while
computing the metric, only the case of No Fault was pertinent for the Manual Control condition.
Likewise, only the case of No Fault was pertinent for the Automatic Control condition. Looking at
the means presented in Table 2.4, in the No Fault case, RMS Lateral Deviation values with Haptic

Shared Control and Autopilot were lower than Manual Control condition and was similar to the
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Figure 2.6: Plots depicting driving trajectories around the obstacles computed across all 11 partici-
pants for each control condition and fault condition. The black solid line indicates the 50th percentile
of lateral deviation. Two traces enveloping the black solid line shade the 5th to 95th percentile
intervals for the lateral deviation. Obstacles are shown to scale by red half ellipses.

Table 2.4: Means and Standard Errors (S.E.) of RMS Lateral Deviation for all Control Conditions
separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

Active Safety 2.71 0.07 2.83 0.12 2.69 0.10 2.74 0.07

Haptic Shared Control 2.41 0.07 2.17 0.10 2.87 0.10 2.48 0.07

Autopilot 2.40 0.07 2.33 0.10 3.15 0.10 2.63 0.07

All Control Conditions 2.51 0.05 2.44 0.08 2.90 0.08 2.62 0.06

No Fault

Mean S.E.

Manual 2.63 0.025

Automatic 2.41 0.063

Automatic Control condition whereas RMS Lateral Deviation with Active Safety was higher than all
other control conditions. These observations indicate that sharing control using schemes such as
Haptic Shared Control and Autopilot can indeed maintain or reduce RMS Lateral Deviation when
compared with Automatic and Manual driving.

Unlike Obstacle Hits, the Control Sharing Condition significantly affected the RMS Lateral
Deviation (F (2, 915) = 7.709, p < 0.0005). As shown in Fig. 2.7 (a), between the three Control
Sharing conditions, Haptic Shared Control had significantly lower RMS Lateral Deviation and
consequently better maneuvering efficiency than Active Safety (p < 0.0005) and Autopilot (p =

0.049). Fault Condition also had a main effect on RMS Lateral Deviation (F (2, 915) = 26.04, p <

0.0005) and, as shown in Fig. 2.7 (b), the RMS Lateral Deviation for the Automation Fault condition
was significantly higher compared to the Human Fault (p < 0.0005) and No Fault (p < 0.0005)
conditions. The effect of interactions on the RMS Lateral Deviation was also found to be significant
(F (4, 915) = 9.83, p < 0.0005). Simple main effects analysis showed that the Control Sharing
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Figure 2.7: Mean RMS Lateral Deviation. The RMS Lateral Deviation is defined in Fig. 2.3. (a)
Mean RMS Lateral Deviation for the three control conditions, (b) Mean RMS Lateral Deviation for
the three Fault Conditions. Error bars are ± 1 standard error of the mean. The asterisks on the lines
linking two bars indicate a significant difference between two conditions along with the respective
p values.
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Figure 2.8: Mean RMS Lateral Deviation (a) for each Fault Condition grouped by Control Condition
and (b) for each Control Condition grouped by Fault Condition. Error bars are ± 1 standard error of
the mean. The asterisks on the lines linking two bars indicate a significant difference between two
conditions.

Condition had a significant effect on RMS Lateral Deviation for each Fault Condition: Human
Fault (F (2, 915) = 11.681, p < 0.0005), Automation Fault (F (4, 915) = 6.727, p = 0.001), and
No Fault (F (4, 915) = 12.125, p < 0.0005). Moreover, Fault Condition had a significant effect on
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RMS Lateral Deviation for Autopilot (F (2, 915) = 29.284, p < 0.0005) and Haptic Shared Control

(F (4, 915) = 6.727, p = 0.001) conditions.
Post-hoc analysis indicated that Active Safety had significantly better maneuvering efficiency

than Autopilot (p = 0.0009) around the obstacles that simulated Automation Faults whereas
Autopilot had significantly better maneuvering efficiency than Active Safety around the obstacles
that simulated Human Faults (p = 0.0008) and in the cases of No Fault (p < 0.0005) (Fig. 2.8
(b)). However, overall differences (averaged over three fault conditions) between Active Safety and
Autopilot were found to be insignificant (p = 0.087) (Fig. 2.7 (a)). Other significant differences
resulting from the post-hoc tests for the simple main effects analysis are summarized in Fig. 2.8.

2.3.3 Approach Distance

The Approach Distance was used to gauge the human driver’s preparedness to give up or take
over the driving authority during obstacle avoidance. The value of approach distance indicated how
early the human-automation team deviated from the track to avoid the obstacle. For instance, a
lower approach distance implied that during obstacle avoidance, the human-automation team took
more time to deviate from the track. However, since the behavior of automation near the obstacles
was fixed, a lower Approach Distance indicated that the human driver was primarily responsible for
the additional delay in deviating from the track. In particular, the driver was either unprepared to
take over the driving authority or was unprepared to give away the driving authority to automation
which resulted in late deviation from the track. The means of Approach Distance for all conditions
are summarized in Table 2.5. Note that the mean Approach Distance for a condition corresponds to
the Approach Distance value of the mean driver trajectory for that condition in Fig. 2.6.

Table 2.5: Means and Standard Errors (S.E.) of Approach Distance for all Control Conditions
separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

Active Safety 11.52 0.47 8.98 0.70 11.00 0.62 10.50 0.47

Haptic Shared Control 12.12 0.47 11.92 0.62 9.73 0.62 11.25 0.45

Autopilot 11.62 0.47 11.24 0.62 8.30 0.63 10.39 0.46

All Control Conditions 11.75 0.31 10.72 0.48 9.68 0.47 10.72 0.41

No Fault

Mean S.E.

Manual 11.38 0.26

Automatic 10.32 1.12

Looking at the means of Approach Distance presented in Table 2.5, we see that out of all Control
Conditions, the Haptic Shared Control condition had the highest Approach Distance whereas the
Automatic Control had the lowest Approach Distance value. Note that the Approach Distance
was low in Automatic Control condition not because automation was “unprepared” but because it
was designed to minimize the lane keeping error. Therefore, the Approach Distance metric only
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indicates the behavior of automation near the obstacles but does not tell much about the performance
of automation in the Automatic Control condition. The second highest mean Approach Distance
after the Haptic Shared Control condition was seen in the Autopilot condition which was followed
by the Active Safety and the Manual condition. These observations indicate that sharing control
using any scheme increases the Approach Distance when compared with Automatic and Manual

driving.
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Figure 2.9: Mean Approach Distance. The Approach Distance is defined in Fig. 2.3. (a) Mean
Approach Distance for the three Control Sharing Conditions (b) Mean Approach Distance for the
three visibility conditions. Error bars are ± 1 standard error of the mean. The asterisks on the lines
linking two bars indicate a significant difference between two conditions along with the respective
p values.

The results for the analysis of Approach Distance are summarized in Fig. 2.9 and Fig. 2.10.
The effect of control condition on Approach Distance was found to be statistically significant
(F (2, 915) = 3.43, p = 0.033). Through the post-hoc tests it was found that the mean Approach
Distance for the Haptic Shared Control condition was significantly higher than the Autopilot

condition (p = 0.047). The Fault condition also had a significant effect on Approach Distance
(F (2, 915) = 21.07, p < 0.0005). The post-hoc tests revealed that all three Fault conditions
were significantly different from each other. The Automation Fault condition was found to have
a significantly lower Approach Distance than the Human Fault (p = 0.013) and the No Fault
(p < 0.0005) conditions. Furthermore, Approach Distance for the Human Fault condition was
significantly lower than the No Fault condition (p = 0.006). Finally, the effect of interaction of
the independent factors was also found to be significant (F (2, 915) = 6.67, p < 0.0005). Through
simple main effect analysis, it was found that Control Sharing Condition had a significant effect
on Approach Distance both for Human Fault condition (F (2, 915) = 7.618, p = 0.0006) and for
Automation Fault condition (F (2, 915) = 7.34, p = 0.0008). Post-hoc tests for Control Condition
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Figure 2.10: Mean Approach Distance (a) for each Fault Condition grouped by Control Condition
and (b) for each Control Condition grouped by Fault Condition. Error bars are ± 1 standard error of
the mean. The asterisks on the lines linking two bars indicate a significant difference between two
conditions.

further revealed that in the case of Automation Faults, the Autopilot condition had significantly
lower Approach Distance than the Active Safety (p < 0.0005) condition. In the case of Human
Faults however, the Active Safety condition had significantly lower Approach Distance than both
the Autopilot (p = 0.007) and the Haptic Shared Control (p < 0.0005) conditions. These results are
summarized in Fig. 2.10 (b). Fault Condition also had a significant effect on the Approach Distance
for all the Control Sharing Conditions. The post-hoc results for Fault Conditions are summarized in
Fig. 2.10 (a).

2.4 Discussion

In this chapter my goal was to compare the obstacle avoidance performance of human/automation
teams under three Control Sharing Conditions in the presence of simulated faults. Faults were
simulated by partitioning the visibility of obstacles among the human driver and the automation
system. That is, certain obstacles were visible to the automation but invisible to the human (Human
Fault), certain obstacles were visible to the human but invisible to the automation (Automation
Fault) while the rest were visible to both human and automation (No Fault). Performance under
the three Control Sharing Conditions and under the three Fault Conditions were then analyzed in a
3×3 study. To further understand the role of each agent in the Control Sharing Conditions, they
were compared against two baseline driving conditions that did not involve any control sharing:
Manual Control and Automatic Control. All analyses were undertaken on three performance metrics
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that focused on distinct aspects of the obstacle avoidance task. The Obstacle Hits metric was
used to compare driving safety; higher obstacle hits corresponded to lower safety. Approach
Distance was used to gauge the human driver’s preparedness to give up or take over driving authority
during obstacle avoidance; a lower approach distance indicated that around the obstacle the human
driver was either unprepared to take over the driving authority or was unprepared to give away
the driving authority to automation. Finally, RMS Lateral Deviation was used to compare the
driver’s maneuvering efficiency around the obstacle; lower RMS lateral deviation indicated that the
maneuver was performed more efficiently without excessive lateral deviation from the centerline.

In terms of Obstacle Hits, two agents driving together were found to be better than either agent
driving alone. With only one agent driving (as in the Manual and Automatic baseline conditions), a
fault led unconditionally (100%) to an obstacle hit. With two agents sharing control, between 0%
and 28.8% of faults led to an obstacle hit, depending on the Fault Condition and the Control Sharing
Condition (see Table 2.2). In one sense this was encouraging, but in another quite disappointing.
If each obstacle was seen by at least one agent in the Control Sharing Conditions, and each agent
acting alone was capable of avoiding No Fault obstacles, as established in the baseline conditions,
one might have expected zero obstacles to be hit in the Control Sharing conditions. It appears that
transitions of control and an associated need for time to acquire situation awareness, communication,
or negotiation between the two agents led to difficulties in handling Human Fault or Automation
Fault obstacles.

But note further, adding a second agent had an alarming effect on the perfect single-agent record
for No Fault obstacles, as between 0.5% and 2.5% of No Fault obstacles were hit in the Control
Sharing Conditions. Like a back-seat driver may be blamed for distracting and inducing errors
rather than helping, adding automation can be blamed for inducing errors. For that matter, adding a
human to automatic driving might also be blamed for inducing automation errors.

In contrast, adding a second agent seemed to enhance the Approach Distance. This is supported
by Table 2.5 where it can be observed that, for the No Fault Condition, all Control Sharing
conditions had higher values of Approach Distance than the baseline conditions. Moreover, the
Manual condition had a larger Approach Distance than the Automatic condition. This indicates that
when faced with an obstacle, human drivers preferred to deviate earlier from the center-line than the
automation system. Recall that the automation was designed to have a lower approach distance to
minimize the deviation from the center-line. For the Control Sharing conditions, this might mean
that while sharing control, the participants most likely reacted before the automation to avoid an
obstacle. Likewise, as shown in Table 2.4, adding a second agent with the Haptic Shared Control

and the Autopilot conditions also reduced or maintained the RMS Lateral Deviation, and therefore
improved or maintained the maneuvering efficiency over the baseline conditions. In addition, since
the Automatic Control condition had lower RMS Lateral Deviation than the Manual condition it is
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likely that the participants let the automation be more active in Haptic Shared Control and Autopilot

while maneuvering around the obstacle. On the other hand, since RMS Lateral Deviation for the
Active Safety condition was higher than the baseline conditions it might indicate that the human
was still more involved during the obstacle avoidance maneuver than the automation system, which
resulted in reduced maneuvering efficiency. Note, however, that the baseline conditions could not
be statistically compared with the control sharing conditions because they had different levels of
Fault Conditions. Therefore these results merit further exploration in future studies.

Looking at Obstacle Hits across Control Sharing and Fault conditions, it was found that sig-
nificantly more Human Fault obstacles were hit in the Active Safety condition than in the Haptic

Shared Control or Autopilot conditions. It was observed that during the Human Fault condition in
Active Safety, when the automation intervened to avoid the obstacle, the participants were oftentimes
unwilling to let go of the steering wheel and give away the driving authority to automation. As
a result, they either inadvertently crashed into an obstacle that they could not see or reacted very
late and barely avoided the obstacle with an inefficient and potentially unsafe maneuver around the
obstacle (see Fig. 2.6). Consequently, in the condition of Human Faults, Active Safety produced
significantly more obstacle hits, lower Approach distance and larger RMS Lateral Deviation than
the other two control sharing conditions. On the other hand, during the Human Fault condition in
Autopilot, since the automation was already performing the driving task, the participants did not
intervene and simply let the automation avoid the obstacle.

In contrast, in the case of Automation Faults, the Autopilot condition resulted in significantly
larger RMS Lateral Deviation than the Active Safety condition and the Haptic Shared Control condi-
tion, and significantly lower Approach Distance than the Active Safety condition. For Automation
Faults in Autopilot, the participants were found unprepared to take over the driving authority; they
took additional time to acknowledge that the automation had failed and to press the button to take
over the driving authority. This delay also resulted in more inefficient and uncontrolled obstacle
avoidance maneuvers as shown in Fig. 2.6. Such a delay was absent in Active Safety where the
participants were already performing the driving task and were not required to take over control
from automation to avoid the obstacle (similar to Manual driving).

Contemporary research on transitions in control indicate that externally-paced (automation
initiated) transitions lead to reduced performance relative to human-paced transitions in human
takeovers from automation. Reduced performance is associated with lower “levels of control”,
in particular so-called “scrambled control”, characterized by urgent selection of control actions
seemingly at random [107,114]. Note that in this study I investigated urgent human-paced takeovers
from automation (Autopilot) and urgent externally-paced takeovers from human drivers (Active

Safety). These takeovers were all necessary because of fault conditions induced artificially at
constant high rates but at random times. Faults were not accompanied by alarms or announcements.
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Extensions to the current study could be undertaken to determine the effects of factors such as the
time required to press a button or the potential delays associated with committing to transition when
that transition takes the form of a lumped or total transfer of control authority.

Between Active Safety and Autopilot, we therefore see a reduction in overall driving performance
(higher hits, higher RMS Lateral Deviation, lower Approach Distance) when the primary agent
responsible for lane keeping cannot see the obstacle: Active Safety does not perform well when the
primary driver, human, cannot see the obstacle and Autopilot does not perform well when the primary
driver, automation, cannot see the obstacle. In other words, it can be said that Active Safety behaves
similar to the Manual condition whereas Autopilot behaves similar to the Automatic condition.
This observation is further reinforced by Table 2.4 where the mean RMS Lateral Deviation for
Active Safety is closer to Manual condition and for Autopilot is closer to Automatic condition. This
indicates that even though Active Safety and Autopilot conditions are designed to support control
sharing between human and automation, they apparently still perform similar to single agent driving
schemes.

Theoretically, therefore, driving performance could still be enhanced by increasing the in-
volvement of the secondary agent in the primary driving task. This was facilitated in the Haptic

Shared Control condition by having the driver actively hold the steering wheel while the automation
performed the lane keeping task. The results showed that overall, averaging over all fault conditions,
Haptic Shared Control had significantly lower RMS Lateral Deviation than both Active Safety and
Autopilot conditions and had significantly higher Approach Distance than the Autopilot condition
and higher (if not “significantly” higher) Approach Distance than the Active Safety condition. More-
over, for each individual Fault Condition, with respect to the three metrics, the driving performance
with Haptic Shared Control was never significantly lower than the Active Safety and the Autopilot

conditions. This indicated that regardless of the Fault Condition one could expect Haptic Shared

Control to perform at least as well as the other control sharing conditions.
The improvement in driving performance with Haptic Shared Control can be attributed to the

more gradual nature of collaboration in Haptic Shared Control as compared to the other Control
Conditions. In the Haptic Shared Control condition, the automation continuously communicated its
control efforts to the driver through torque feedback on the steering wheel. The driver used this
feedback to adopt a driving responsibility or assign a driving responsibility to the automation by
activating or relaxing his/her muscles [13,18,56,115]. For example, as seen in Table 2.4 and Table
2.5, since the Approach Distance of Haptic Shared Control was closer to the Manual condition
than the Automatic condition, it can be said that when faced with an obstacle, the human activated
his/her muscles and overpowered the automation to deviate earlier from the centerline. Whereas,
since the RMS Lateral Deviation of Haptic Shared Control was closer to the Automatic condition
than the Manual condition, it can be said that while maneuvering around the obstacle, the human
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relaxed and let the automation take control to perform the maneuever efficiently.
Based on the analysis, these results indicate that sharing control under Haptic Shared Control

promotes safer driving, enhances driver preparedness to take over or give away the driving authority,
and promotes more efficient driving maneuvers around obstacles than sharing control between
two agents with fixed and predefined primary and secondary driving roles. These results support
the benefits of control sharing with haptic shared control that have been previously published in
the literature [13,56,59,100,116–118]. Complementing previous research, this study demonstrates
how shared driving with continuous transitions involving haptic feedback can help improve driving
performance in the event of human errors or automation dropouts over control sharing techniques
with discrete transitions that are currently available in production vehicles.

Finally, looking at the differences between the Fault Conditions based on the Control Conditions,
I found that for Autopilot and Haptic Shared Control, the Automation Fault condition produced
significantly larger RMS lateral deviation and lower Approach Distance than both the Human
Fault and No Fault conditions. In other words, when only the driver could see the obstacle, in
Autopilot and Haptic Shared Control, the automation’s inaction was more detrimental to the driver’s
maneuvering efficiency and the driver’s preparedness to take over or give up the driving authority
than the automation’s action when the driver could not see the obstacle or when both agents could
see the obstacle. Since in both Autopilot and Haptic Shared Control, the automation was active
most/all of the time, we can infer that the reduction in driving performance was probably because
the participants mistook the Automation Fault obstacle for a No Fault obstacle and relied excessively
on the automation system to avoid it. Such an over-reliance on automation or misuse of automation
system has been referred to as automation-induced “complacency” in the shared control literature in
the past [20,47,119].

Lower driving performance during Automation Fault, especially for the Haptic Shared Control

condition, might also be a function of the high value of control gains that was used to implement
the automation’s authority (impedance) in the Haptic Shared Control design. As mentioned in the
literature previously, high automation impedance is detrimental to the shared task performance in the
case of Automation Faults [13]. In future studies it would be interesting to examine if these results
hold true for other levels of automation impedance (for instance a lower automation impedance)
or for an Adaptive Haptic Shared Control design [13] where impedance values vary based on the
driver’s neuromuscular involvement.

2.5 Conclusion

This study investigated the ability of human-automation teams to avoid obstacles missed by an
automation system (Automation Faults) and obstacles missed by human drivers (Human Faults)
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under three control sharing schemes. I hypothesized that Haptic Shared Control, designed to
support graded and gradual transitions of control authority and enable the human driver to monitor
automation actions through torque feedback on the steering wheel, would outperform the Autopilot

and Active Safety schemes that feature lumped and instantaneous transitions of control authority.
I found the lowest team performance under Autopilot for automation faults and under Active

Safety for human faults. Haptic Shared Control supported the best overall team performance.
Relative to individual human or automatic driver performance, I found that control sharing improved
obstacle hit rates, maneuvering efficiency, and driver’s preparedness to take over or give up the
driving authority during obstacle encounters. While both human drivers and the automation system
were able to avoid most (but still not all) of the obstacles missed by the other when teamed together,
forming a team with control transitions also introduced errors in conditions without faults. Obstacle
collisions under No-Fault conditions were not observed when human drivers or the automation
system drove alone.

While the timing of faults was unpredictable in the current study, the fault rates were constant
and rather high. Handling of a seldom occurring fault likely differs significantly from a fault that
occurs at an expected high rate of 20%. Also, in the present study, there was barely time to recover
from the previous obstacle or fault before another obstacle or fault appeared. Future research could
investigate the compounding effects of deteriorating vigilance when faults cannot be anticipated.
Future research could also investigate whether announcing a fault through visual, audio, or haptic
feedback could improve performance.

Certainly the results in the present study depend on the particular implementation of each control
sharing scheme. Additional research will be required to determine the dependence of performance
to parameters within a particular scheme. For example, the limited ability of Active Safety to wrest
control from the human driver while his or her hands remained on the steering wheel would be
very different in a steer-by-wire implementation, where automation actions can be executed without
backdriving the human. On the other hand, handing back control to the driver after executing such
automation actions could require increased time.
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CHAPTER 3

Coupled versus Decoupled Steering during Emergency Obstacle Evasion

3.1 Introduction

Control sharing between driver and automation is aimed at improving driving safety by combin-
ing the complementary skills of human drivers and vehicle automation [6]. For example, sharing
control can combine the speed and tirelessness of automation with the experience and adaptability
of a human driver [4]. However, in emergency situations requiring fast and precise responses,
control sharing may actually have a negative effect on joint system performance. Automation
systems can perform evasive steering maneuvers in emergency scenarios, including scenarios in
which braking alone is insufficient to avoid collisions [64,120]. Meanwhile, human drivers may
react to emergencies by executing inadequate steering maneuvers. If steering control is shared, the
inadequate steering command by the human driver may reduce the efficiency of steering maneuvers
undertaken by the automation [61]. Consequently, the driver may be considered a disturbance
to automation during emergency scenarios and control sharing can be considered detrimental to
driving safety [62,65,66].

To remove the influence of driver disturbance on automation-initiated steering maneuvers, the
driver and steering wheel can be decoupled from the tires with the use of a steer-by-wire system
[53,61,67,68]. In decoupled driving, the driver typically has no control over the vehicle during
obstacle evasion, and automation is solely responsible for avoiding the collisions [121]. While the
driver can still turn the steering wheel, only the automation command is transmitted to the tires.
The driver is usually also provided torque feedback corresponding to the automation action on the
steering wheel, in addition to torque from tire-road interaction [61,122]. Thus decoupled driving
gives full reign to the automation system to use evasive steering to avoid collisions.

However, automation systems are not perfect. Despite technological advances, automation is
still subject to false activation and dropouts [6,123]. Decoupling the driver during a false activation
invokes safety and liability issues as it deprives the driver of the control authority required to
prevent an accident [61,124]. Due to these considerations, the present legal system and code of
industrial practice dictate that a driver should always maintain some degree of control over the
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vehicle [125–127].
Decoupling the driver also invokes issues that are commonly associated with performance

breakdowns in human-machine systems. Decoupling the driver while providing torque feedback
may mislead the driver to believe that they are in control of the vehicle. Moreover, highly automated
driving systems such as decoupled driving may reduce driver vigilance and situation awareness due
to a reduced involvement of the driver in the driving task [19,21,128,129]. In particular, drivers who
become aware that they have little or no control over the vehicle may fail to intervene if automation
fails to activate [18,127]. On the other hand, drivers unaware of their level of control authority might
be surprised or confused by an automation-initiated maneuver (or lack thereof) and left wondering
why automation behaved in a certain way [17,130].

One paradigm for control sharing that may circumvent issues associated with decoupling the
driver is haptic shared control [12,13,56,131]. In haptic shared control, the driver, the automation,
and the tires are all three coupled to one another through the steering wheel. The driver has access
to both the tire-road interaction and the automation action through haptic feedback. Automation acts
on the steering system through a motor with a finite mechanical impedance roughly matching the
driver’s biomechanical impedance [13,54]. The driver can modulate their impedance through muscle
action and can attempt to overpower automation’s action whenever they desire. A coupled steering
wheel therefore allows the driver to both exert control over the vehicle and extract information about
the automation’s actions [12,56].

Coupled driving can also be designed to suppress driver disturbance in emergency scenarios
[60,131]. Choosing the mechanical impedance of automation to be larger than the impedance of a
typical driver will attenuate driver disturbance while still providing the driver some control over the
vehicle. However, high impedance automation may cause driver discomfort, and even a reduction in
driving performance, because a large driver torque might be required to overpower the automation
system [62]. For example, in [131], Mars et al. showed that high impedance automation systems
result in reduced lane-keeping performance and reduced driver acceptance. Likewise, Zwaan et
al. in [132] found that high impedance automation can result in lower safety margins and larger
conflict torques than low impedance automation. However, unlike high impedance automation, low
impedance automation might be too easy to overpower and hence might not be able to suppress the
driver disturbance to avoid collisions in emergency scenarios [61,133].

A trade-off appears to exist between the control authority provided to an agent (driver or
automation) and the fault protection provided by the other agent (as depicted in Fig. 3.1). For
high impedance automation, the protection against automation faults provided by the human driver
may be low because the automation system has a high relative control authority. At the same time,
the protection against driver faults (or misses or inadequate responses) would be high. On the
other hand, for low impedance automation, the automation has a lower relative authority and so
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Figure 3.1: Hypothesized fault protection tradeoff. As the control authority provided to one agent
(driver or automation) increases, the fault protection provided by the other agent reduces.

protection against automation faults provided by the human driver would be high but protection
against driver faults provided by the automation would be low. In decoupled and manual driving,
only one agent—automation or driver, respectively—has the full driving authority. These cases
represent the extreme ends of the spectrum on protection against faults, as shown in Fig. 3.1.

To understand the influence of authority allocation on driving safety, it is important to compare
driving performance between coupled and decoupled steering wheel designs, and likewise to
compare the performance of driver/automation teams with low and high impedance automation
systems during emergency scenarios. In [61], Heesen et al. presented a comparison of team driving
performance between a decoupled and a coupled steering system in emergency situations. However,
in this study a very low value of automation impedance was chosen, resulting in a collision with
almost every obstacle encountered during the coupled steering case. Other studies testing the
performance of emergency obstacle evasion systems have primarily focused on the influence of
haptic and auditory warnings in a decoupled driving paradigm (see, for example, studies by Sieber
et al. [64] and Hesse et al. [68]).

In this chapter, I compared four evasion schemes—Decoupled, Coupled High Impedance, Cou-
pled Low Impedance, and Manual Driving—in simulated emergency collision avoidance scenarios.
By comparing the four evasion schemes in a single study, I attempt to confirm the hypothesized fault
protection/performance trade-off during driver and automation faults and investigate the effects of
both automation impedance and driver decoupling on driving performance. I induce driver faults by
simply simulating scenarios with time-to-collision lower than driver’s typical reaction time. Further,
I induce automation faults once at the end of each experiment by either making the automation
system inactive near an obstacle or by making the automation system activate unjustifiably. I
examine driving performance across four evasion schemes by analyzing the excursions around the
obstacles and the obstacles hit in each scheme. I also build a driver-automation interaction model to
estimate additional performance metrics based on the steering and torque trajectories, such as driver
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setpoint, driver torque, and response time, to further obtain insights into the differences in driver
behavior across the four evasion schemes.

3.2 Methods

3.2.1 Participants

Sixty-four participants (36 male, 28 female) participated in this study. The participants were
between 20 and 30 years old (mean 23.5 years, SD = 3.6 years), had more than two years of driving
experience (mean 5.9 years, SD = 3.2 years), and self-reported as having normal or corrected-
to-normal vision and normal hearing. All participants provided written informed consent in
accordance with a protocol approved by the University of Michigan Institutional Review Board (ID:
HUM00164233). Each participant spent about two hours to complete the experiment including
testing, training, and survey. Participants were provided a financial compensation of $30 for
completing the experiment.

3.2.2 Apparatus

The experimental apparatus was a custom fixed-base driving simulator featuring a motorized
steering wheel (Fig. 3.2a). Details pertinent to the steering wheel design, automation motor,
encoders, and their assembly can be found in Chapter 2. The simulated driving environment
was displayed on three 24-inch LCD widescreen monitors positioned at about 140 cm from the
participant. The vehicle dynamics and control and the virtual environment were implemented in
CarSim (Mechanical Simulation Corporation, Ann Arbor, MI) and Simulink (Mathworks, Natick
MA) and were computed in real-time on a Dell Precision 5820 Tower Workstation computer using
an Intel Xeon W-2125 Quad-Core processor. CarSim models and Simulink code were computed at
1000 Hz and the graphical display was rendered at 50 Hz.

The virtual environment was created in CarSim VS Visualizer, and appeared as shown in Fig.
3.2b. It featured a D-Class Sedan vehicle and a two-way road with various landmarks and vehicles
that provided motion cues during driving. The vehicle traveled at a constant speed of 60 km/h using
‘Constant Target Speed’ control in CarSim. The participants were not provided any control over
vehicle speed. The two-way road was 8 m wide with 4 m wide lanes and a dashed line separated
traffic in two directions. The track width of the vehicle was about 2.1 m. The entire road was 6 km
long and the obstacle locations and starting stations on the road were randomized as shown in Fig.
3.2c. Visual notifications and warnings were provided to the participants through a virtual dashboard
on the central monitor as shown in Fig. 3.2d. Audio alerts were provided to the participants through
a speaker located on the right side of the steering wheel. The visual and audio alerts are further
described in section 3.2.6.
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(a)

Pedestrian

(b)

(c)

(d)

Figure 3.2: Experimental setup. (a) A subject performing the test on the fixed-base driving simulator.
(b) CarSim virtual environment depicting the scenario in which a pedestrian unexpectedly enters
the road. (c) Top view of the driving track (navigated clockwise) indicating the obstacle locations
and starting positions. (d) Virtual dashboard that displayed warnings and notifications at the bottom
of the middle screen.
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3.2.3 Automation System Design

The automation system used a pure pursuit controller to perform lane keeping and obstacle
evasion. A pure pursuit controller is a proportional controller that generates a steering angle to
reduce the path tracking error of a vehicle at a point located a certain ‘look-ahead distance’ on
the reference path [134]. First, a pilot experiment involving ten human subjects was performed
to generate the reference path for the pure pursuit controller. In the pilot study, each subject was
instructed to manually drive the simulated vehicle for two minutes and avoid ten obstacles that
entered the road at a one second time-to-collision. The successful paths taken by the subjects
around the obstacles were then averaged to obtain the reference path. For the controller design, the
look-ahead distance was selected by trial and error with the objective to improve the path tracking
performance. A look-ahead distance of 3 m was selected as it demonstrated the best tracking
performance. Along with the generated reference path, the controller used the longitudinal and
lateral coordinates of the vehicle and the heading angle generated by the CarSim vehicle model in
real-time to generate the desired automation setpoint that would achieve path tracking. A controller
commanded a torque signal to the motor proportional to the difference between the steering wheel
angle and automation setpoint. Different proportional gains were used for low and high impedance
automation systems as further described in section 3.2.4. A self-aligning (or self-centering) torque
was further added to the automation torque feedback. The self-aligning torque arises from the
tire-road interaction and is transmitted to the driver through the steering system elements connecting
the tires to the steering wheel [135]. The self-aligning torque was designed to be proportional to the
steering angle. The proportional gain used in the design was 1.98 N-m/rad.

3.2.4 Evasion Schemes

I compared four human/automation steering interface designs, for their support of successful
obstacle evasion by the human/automation team during emergencies. I called these four interface
designs evasion schemes. The steering wheel was either (1) decoupled from the tires and automation
was given full control (Decoupled with Feedback), or (2) was coupled to the tires and to an
automation system designed with a high impedance (Coupled High) or (3) a low impedance
(Coupled Low), or (4) was coupled to the tires and automation was given no control (Manual

Driving). (The four schemes in the order of increasing driver authority are shown on the x-axis
of Fig. 3.1.) The Coupled Low, Coupled High, and Decoupled with Feedback conditions were
further sub-categorized as shared evasion schemes, since in these schemes steering control was
shared between the driver and automation. All schemes included self-centering torque feedback
whereas the shared evasion schemes also included haptic feedback from the automation system
during obstacle evasion.
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In the Manual Driving scheme, there was no automation and participants had full control over
the vehicle at all times. On the other hand, in the Decoupled with Feedback scheme, participants
had no control over the vehicle trajectory during obstacle evasion. Participants could, however, feel
the automation torque feedback on the steering wheel. Drivers could also move the steering wheel
in the Decoupled with Feedback scheme; however, the driver’s steering input was ignored and only
the steering angle produced by the automation system was passed to the CarSim model to maneuver
the vehicle.

In the Coupled Low and Coupled High schemes, drivers could influence the vehicle trajectory
by changing the steering angle. Participants could take over control by increasing their grip (and
consequently increasing arm impedance) and imposing a torque on the steering wheel. Conversely,
drivers could yield control to the automation system by relaxing their grip (reducing arm impedance)
on the steering wheel. In the Coupled Low case, the proportional gain used to determine the
automation torque feedback was about three times lower and hence the haptic feedback was weaker
than in the Coupled High case. As a result, it was also easier to take over control and fight the
automation system in the Coupled Low case than it was in the Coupled High case. Also note that
since the proportional gain used in the Coupled Low and Decoupled with Feedback schemes was
the same, the torque feedback experienced in the two schemes was similar.

3.2.5 Modeling Physical Driver-Automation Interaction

Characterizing the steering intent of automation is relatively easy, since the automation setpoint
is available in the data stream. The steering intent of the driver, on the other hand, must be inferred
or estimated. I built a simple model of physical driver-automation interaction to serve as a means
to conduct model-based estimation of the steering intent of the drivers. The interaction model
developed is shown in Fig. 3.3. Note that although the rotational motion of the steering wheel is of
main concern, for convenience an equivalent translational spring-mass-cart system is substituted to
represent the driver, steering wheel, and automation system.

The automation setpoint θA is transmitted to the steering wheel (of inertia J and self-centering
stiffness KC) through a finite automation impedance KA which can be represented by a virtual
spring (or a combination of a virtual spring and virtual damper) [136]. Therefore, by design, the
automation motor does not act as a perfect motion source on the steering wheel. Likewise, the
human driver’s arms and hands, instead of behaving like a perfect motion source, act with a variable
mechanical impedance corresponding to the arm biomechanics. The behavior of arm biomechanics
is often characterized by the behavior of a linear mass-spring-damper model whose inertia JH ,
stiffness KH , and damping BH approximately describe the impedance properties of the arm muscles
[76,136]. The driver’s arm impedance is further supplemented by a motion source (representing the
driver’s central nervous system) to describe the driver’s volitional action [137,138]. The motion
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source generates the human driver’s steering intent θH , which I call driver setpoint. Note that in the
model formulation the mass J captures the combined inertia JS of the steering wheel and JH of the
driver arms and hands referenced to the steering wheel’s axis of rotation (that is, J = JS + JH).
The inertia of automation motor shaft and the transmission mechanism referenced to the steering
wheel’s axis of rotation were assumed to be negligible.

Figure 3.3: Model of physical driver-automation interaction. The human driver on the left imposes a
setpoint θH with a variable arm impedance (stiffnessKH and dampingBH) on the steering wheel (of
mass J). Likewise, automation on the right imposes setpoint θA with a fixed automation impedance
(proportional gain KA). A spring (of stiffness KC) representing the self-centering stiffness of the
steering wheel further connects the steering wheel to the ground. The steering wheel moves with an
angle θS .

Let the automation torque be denoted by τA, human driver torque by τH , and self centering
torque by τC , then from Fig. 3.3, we have

τA = KA(θA − θS), (3.1)

τH = KH(θH − θS) +BH(θ̇H − θ̇S), (3.2)

τC = −KCθS. (3.3)

The net steering torque τS is a sum of the automation torque, human driver torque, and self
centering torque, that is,

τS = Jθ̈S = τA + τH + τC . (3.4)

Substituting equations (1), (2), and (3) in (3.4), and rearranging, we get

KHθH +BH θ̇H = (KA +KH +KC)θS +BH θ̇S+

Jθ̈S −KAθA. (3.5)

The LTI system model represented by the differential equation (3.5) was solved numerically
using the Forward Euler method to estimate the driver’s setpoint θH . The automation setpoint
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trajectory θA, impedance KA, and self-centering stiffness KC were available from the design of
the controller. Steering angle θS was available from the encoder reading, and the derivatives θ̇s
and θ̈s were obtained by digitally differentiating and filtering the resulting signals at 5 Hz using a
first-order low-pass butterworth filter.
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Figure 3.4: Estimation of driver arm stiffness KH and damping BH for the Coupled Low scheme
using the linear models identified in [76]. The maximum value of the automation torque (3.3 Nm)
averaged over all subjects was used as the load torque to estimate KH as 14 Nm/rad and BH as
0.725 Nms/rad. The values were assumed fixed for the duration of obstacle evasion.

For the values of driver arm stiffness KH and damping BH I referred to the results of a system
identification experiment performed by Pick and Cole in [76]. In [76], authors identified linear
models to describe relationships between the arm stiffness/damping and the load applied on steering
wheel when subjects steered against a torque offset. For the 16 participants in each evasion scheme
in the experiment, I computed the average of the maximum load (motor torque) that was applied on
the steering wheel during obstacle evasion. The applied load was then used to estimate the values of
BH and KH for each evasion scheme using the models identified in [76]. An example is shown in
Fig. 3.4 where BH and KH are estimated for the Coupled Low evasion scheme. The steering setup
in [76] was similar to the fixed base driving simulator setup used in this experiment. Moreover, the
torque offset commanded by the motor in [76] was applied similar to the motor torque commanded
at the onset of obstacle evasion in this experiment. Though the torque applied in this experiment
varied after the initial onset, I have assumed that the impedance parameters stay relatively constant
for the duration of obstacle evasion. I have therefore used the maximum value of load torque applied
at the onset to estimate the impedance parameters.

For the manual driving scheme, BH and KH were obtained by setting the applied load to zero.
The driver arm inertia JH for the four schemes was also obtained from Ref. [76], Table 3, by
averaging the measurements reported over all subjects (0.094 kg/m2). The arm inertia was then
added to the inertia of the steering wheel JS used in the setup (0.048 kg/m2) to obtain the total
inertia J of the steering wheel. The final values of all the parameters are given in Table 3.1. As
already mentioned, the value of self-centering stiffness KC was selected to be 1.98 N-m/rad and
was applied to all evasion schemes.
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Evasion Scheme
CH CL DF MD

KH (N m/rad) 22 14 14 3.8

Pa
ra

m
et

er

BH (N m s/rad) 1 0.725 0.725 0.56
JH (kg/m2) 0.094 0.094 0.094 0.094
KA (N m/rad) 18.46 5.96 5.96 0

Table 3.1: Values of the impedance parameters used in the analysis. The automation impedance
KA was known from the automation design whereas the arm stiffness KH and damping BH were
estimated using the commanded load torque as shown in Fig. 3.4. Value for arm inertia JH was
drawn from the literature. KA was designed to be approximately three times for the Coupled High
(CH) scheme than for the Decoupled with Feedback (DF), and Coupled Low (CL) schemes, and
was set to zero for the Manual Driving (MD) scheme.

3.2.6 Experiment Procedure

The study employed a between-subject design with one factor (evasion scheme) at four levels.
The sixty-four participants recruited to the study were randomly divided into four groups (Coupled

Low (CL), Coupled High (CH), Decoupled with Feedback (DF)), and Manual Driving (MD)) of 16
participants each (9 males, 7 females). Participants were assigned to the four groups based on their
age and driving experience to ensure that the average age and driving experience of participants in
the four groups were comparable.

The driving task included keeping the vehicle centered in the right lane of the two-way road
and avoiding any obstacles that appeared in the lane. To help the driver with lane centering, a lane
departure warning appeared on the virtual dashboard (Fig. 3.2d) when the deviation of the vehicle
from the center of the right lane exceeded 0.6 m (the lane was 4 m wide). Obstacles in the form of
pedestrians, deer, or other vehicles unexpectedly entered the road from the right side of the driving
lane (Fig. 3.2b) and stopped at the center of the lane. As soon as the obstacle stopped, the automation
system performed an evasive steering maneuver towards the left to help the driver avoid the obstacle.
During the obstacle evasion, the lane departure warning disappeared and an ‘AUTOMATION IS
ON’ notification appeared on the virtual dashboard to indicate that the automation system was
active. After avoiding the obstacle, the automation system returned the vehicle back to the center
of the right lane at which point a take-over-request (TOR) notification ‘TAKE OVER CONTROL’
appeared on the virtual dashboard. Four seconds after the first appearance of the TOR, monotone
auditory alerts (beeps) were sent every two seconds from a speaker to remind the driver to take over.
As soon as the driver pressed the red button, automation gave full control of the vehicle back to the
driver and turned off the notifications and auditory alerts.

Before the experiment, each participant was given instructions on the screen explaining the
virtual environment and dashboard, the lane-keeping task, and the obstacle evasion task. Participants
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(a) Intended Automation

(b) Idle Automation

(c) Adversarial Automation

Figure 3.5: Three types of automation behaviors designed and tested in the experiment.

were asked to drive as close as possible to the center of the right lane and mind the lane departure
warning. This instruction was given to ensure that all the participants were at the center of their
lanes when an obstacle appeared in their lane. Participants were also advised to keep their hands on
the steering wheel when the automation performed an obstacle evasion maneuver. In the shared
evasion schemes, the participants were told that the obstacles would appear suddenly and that the
automation would always turn on and help them avoid the obstacle. In the Manual driving scheme,
participants were told that they were responsible for avoiding the obstacles themselves.

Next, participants completed two 6-minute training trials with one obstacle in each trial and nine
formal trials with eight obstacles in total. There was a minute-long break between trials. The nine
formal trials were randomized. Out of these nine trials, three trials had no obstacles, four trials had
one obstacle each, and two trials had two obstacles each. Moreover, trials were designed to have
different surroundings (weather and time of day varied between trials) and random start positions
and obstacle locations. These measures were taken to prevent any learning and adaptation effects.

For the first eight obstacles in the shared evasion schemes, the automation worked as intended;
automation attempted to avoid the obstacles without human intervention (see Fig. 3.5a). This
resulted in a total of 128 obstacle evasion maneuvers for each of the three shared evasion schemes.
Likewise, a total of 128 obstacle evasion maneuvers were also performed in Manual Driving,
but the maneuvers were performed by the human drivers alone (without automation assistance).
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The obstacles were not visible to the drivers until one second time-to-collision. Since drivers
typically need at least one second to react to suddenly appearing obstacles [61,62,64], the one
second time-to-collision effectively induced a “driver fault”.

In the shared evasion schemes, the nine trials were followed by one additional trial. The tenth
trial always involved an unexpected “automation fault”, either idle automation (automation failed to
activate in the presence of an obstacle) or adversarial automation (automation initiated a maneuver
into oncoming traffic in the absence of an obstacle), as shown in Fig. 3.5b and Fig. 3.5c. The
time available to avoid the obstacles during automation faults was 1.5 seconds; larger than the
one second available during driver faults. Half the participants in each scheme experienced idle
automation while the other half experienced adversarial automation. This resulted in a total of
eight idle automation obstacles and eight adversarial automation obstacles in each shared evasion
scheme. The tenth trial with the automation failure was skipped for the participants in the Manual

driving scheme because there was no automation. For the shared evasion schemes, at the end of
each experiment, participants were also asked to fill out a survey that was used to gather participant
feedback.

3.2.7 Performance Metrics

The dependent measures used to characterize the behavior and performance of the driver-
automation teams were based on the following three categories: (1) the vehicle trajectory around
the obstacles, (2) the steering and torque trajectories, and (3) the surveys conducted at the end of
the experiments.

Four performance metrics were based on the vehicle trajectory around the obstacles (see Fig.
3.6): (1) Obstacle Hits, simply defined as the total number of collisions with the obstacles in each
evasion scheme; (2) Peak Excursion Epk, calculated as the absolute maximum lateral deviation of
the vehicle away from the center of the driving lane; (3) Excursion Time Te, defined as the time
between the instant the automation turned on and the instant the TOR was received by the driver; (4)
Take-over Time Tt, defined as the time taken by the driver to press the button (and turn automation
off) after the TOR was received by the driver. To determine obstacle hits, an elliptical boundary
was constructed around the obstacle whose intersection with the trajectory denoted a collision. The
actual obstacle boundary circumscribed the obstacle, whereas the expanded obstacle boundary (used
to determine collisions) was constructed to account for the dimension of the ego vehicle (as shown
in Fig. 3.6). Note that Te and Tt could only be computed for the three shared evasion schemes
because there was no automation in the Manual Driving scheme. Moreover, only the Obstacle Hits
were analyzed for the idle automation and adversarial automation cases. The other three metrics
were only analyzed for the intended automation case.

The following four performance metrics were based on steering and torque trajectories (see Fig.
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Figure 3.6: Performance metrics based on the vehicle trajectory around obstacles. A sample vehicle
trajectory taken by a participant is superimposed on a cartoon of the road. In the trajectory shown,
the automation was engaged at point a as the obstacle entered the road, the participant received a
take-over-request at point b as the vehicle returned to the lane center, and the automation turned off
at point c when the participant pressed the button. The time taken by the vehicle to travel from a
to b was defined as the Excursion Time Te, and the time taken to travel from b to c was defined
as the Take-over Time Tt. The maximum deviation from the lane center was defined as the Peak
Excursion Epk. Any intersection of the expanded obstacle boundary with the vehicle trajectory was
counted as an obstacle hit.

3.7): (1) Peak Steering Angle θpkS , defined as the maximum steering angle; (2) Peak Driver Setpoint
θpkH , defined as the maximum driver setpoint; (3) Peak Driver Torque τ pkH , defined as the maximum
absolute driver torque; (4) Driver Lag TH computed as the time difference between the instant the
driver setpoint exceeded 5◦ and the instant the automation setpoint exceeded 5◦.

Finally, a survey was administered at the end of the experiment to gather data on: (1) driving
satisfaction, (2) trust in automation, (3) awareness of automation actions, and (4) perceived control
over the vehicle. The participants rated the four items on a five-point Likert scale (1 - Very Low, 5 -
Very High). These subjective ratings were collected only for the three shared evasion schemes.

3.2.8 Statistical Analyses

Obstacle Hits for the idle and adversarial automation cases were analyzed using mixed model
binary logistic regression. The Obstacle Hits for the Manual Driving scheme and for the intended
automation case in the three shared evasion schemes were analyzed using Poisson regression
analysis (the data failed the assumptions for a binary logistic regression analysis due to zero hits
in one evasion scheme). The survey results were analyzed using univariate analysis of variance
(ANOVA) and the remaining metrics were analyzed using linear mixed models. For the analyses, the
evasion scheme was chosen as a fixed factor and participant ID as a random factor. The significance
level was set at p < .05. Post-hoc Bonferroni tests were conducted to perform pairwise comparisons
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Figure 3.7: Performance metrics based on the steering and torque trajectories. Sample steering
and torque trajectories of a participant are shown. The automation setpoint θA was recorded from
the simulation and steering angle θS was measured during the experiment. Driver setpoint θH was
estimated using Eqn. (3.5), whereas the torque trajectories were created using Eqns. (1), (2), and
(3.4). The automation setpoint and driver setpoint exceed 5◦ threshold at the time instants t0 and t1.
The Driver Lag TH was defined as the time difference t1 − t0. The maximum values of the steering
angle and the driver setpoint were respectively defined as the Peak Steering Angle θpkS and Peak
Driver Setpoint θpkH . The maximum absolute driver torque was defined as the Peak Driver Torque
τ pkH .

between the evasion schemes.

3.3 Results

3.3.1 Vehicle Trajectory around the Obstacles

Differences in driver behavior across the four evasion schemes were apparent in the vehicle
trajectories. Fig. 3.8 shows the vehicle trajectories taken around the obstacles by the 64 participants
in four evasion schemes (with 16 participants in each scheme) separated by the type of automation
behavior (intended, idle, and adversarial). The trajectories for the Manual Driving scheme represent
the human driver’s performance with no assistance from the automation system. The trajectories in
the Manual Driving scheme were compared with the trajectories for the intended automation case in
the three shared evasion schemes. The obstacles are shown by grey ellipses and the intersections of
the trajectories with the ellipses indicate obstacle hits. Insets on the individual plots further provide
a zoomed-in view of the obstacle hits. As expected, the largest number of obstacles were hit in the
Manual Driving scheme that had no automation assistance followed the Coupled Low scheme that
had only weak automation assistance. The Decoupled with Feedback had no obstacle hits in the
intended automation case. On the other hand, in the idle and adversarial automation cases, fewer
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Figure 3.8: Driving trajectories around obstacles for all 64 participants, separated by evasion scheme
and automation behavior. Obstacles are depicted to scale by grey ellipses in each plot. Intersection
of trajectories with the obstacles indicate obstacle hits. Insets on the plots provide a zoomed-in view
of the intersections. Number of hits (out of the obstacles encountered) and the number of subjects
(N) in each case are also denoted on each plot. (Note that the obstacle in adversarial automation
case had a different size as shown in Fig. 3.5.)

obstacles were hit in the Coupled Low scheme compared to the Coupled High and Decoupled with

Feedback scheme. In terms of excursions around the obstacles, Manual Driving resulted in the
largest excursions followed by the Coupled High scheme, whereas the Decoupled with Feedback

scheme resulted in the smallest excursions.

3.3.1.1 Obstacle Hits
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**, p < .001 for ***.
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3.3.1.1.1 Intended Automation/Manual A total of 128 obstacle evasion maneuvers were per-
formed during manual driving and during the intended automation case in the shared evasion
schemes. Out of these 128 obstacles, the Decoupled with Feedback scheme resulted in no obstacle
collisions (Fig. 3.9). On the other hand, the Coupled High scheme resulted in 6, the Coupled Low

scheme in 29, and the Manual Driving scheme in 76 collisions.
Analysis on the Obstacle Hits metric indicated a main effect of evasion scheme (χ2(2, N =

64) = 48.8, p < .001). Post-hoc comparisons further revealed that the likelihood of a hit for the
Manual Driving scheme was significantly higher than all the other schemes (p < .001 for all the
comparisons). Moreover, the likelihood of a hit in the Coupled Low scheme was significantly higher
than for the Coupled High scheme (p = .001) and the Decoupled with Feedback scheme (p < .001).
The Coupled High and Decoupled with Feedback schemes showed no significant differences in
terms of obstacle hits.

3.3.1.1.2 Idle Automation In the Idle Automation case, the Coupled Low scheme resulted in
only two hits out of eight obstacles. Six out of eight obstacles were hit in the Decoupled with

Feedback scheme, while four out of eight obstacles were hit in the Coupled High scheme (Fig. 3.9).
However, the effect of evasion scheme on hits was not significant (p = .147).

3.3.1.1.3 Adversarial Automation Out of the eight obstacle evasion maneuvers performed in
the adversarial automation case, the Coupled High scheme resulted in seven obstacle hits and
Decoupled with Feedback scheme resulted in eight obstacle hits. On the other hand, Coupled Low

scheme resulted in only three hits (see Fig. 3.9). There was a significant effect of evasion scheme
in the adversarial automation case (F (2, 21) = 6.682, p = .006). Post-hoc tests revealed that the
likelihood of a hit for the Coupled Low scheme was significantly lower than for the Decoupled with

Feedback scheme (p = .007) and the Coupled High scheme (p = .035). No significant differences
were found between the Decoupled with Feedback and the Coupled High schemes.

3.3.1.2 Peak Excursion

Peak Excursion Epk was used to gauge which evasion scheme produced the largest deviations
from the center of the right lane. Epk differed significantly between the four evasion schemes
(F (3, 397) = 16.98, p < .001) (see Fig. 3.10a). Post-hoc tests revealed that the mean Epk for the
Manual Driving scheme was significantly higher than the Decoupled with Feedback (5.21 m vs.
3.70 m, p < .001), Coupled High (5.21 m vs. 4.12 m, p < .001) and Coupled Low (5.21 m vs. 4.09
m, p < .001) schemes. No other significant differences were found.
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Figure 3.10: Mean values of (a) Peak Excursion and (b) Excursion Time for the shared evasion
schemes. Error bars indicate standard error. (p < .05 for *, p < .01 for **, p < .001 for ***.)

3.3.1.3 Excursion Time

Excursion Time Te indicated how much time was spent away from the lane center during
obstacle evasion. There was a main effect of evasion scheme on Te (F (2, 346) = 4.413, p = .003)
(see Fig. 3.10b). Post-hoc tests showed that the Coupled High scheme had significantly lower mean
Te than both the Decoupled with Feedback scheme (3.07 s vs. 3.33 s, p = .005) and the Coupled

Low scheme (3.07 s vs. 3.32 s, p = .01). No other significant differences were found.

3.3.1.4 Take-over Time

Take-over Time Tt was used to measure which evasion scheme encouraged faster automation-to-
driver transitions. There were no significant differences between the mean Tt for the three schemes
(p = .348).

3.3.2 Steering Angle and Torque Trajectories

The steering angle and torque trajectories revealed several differences between the four evasion
schemes (see Fig. 3.11). In the three shared evasion schemes, the steering angle lagged the
automation setpoint whereas the driver setpoint lagged the steering angle. In the Manual Driving

scheme, on the other hand, the steering angle lagged the driver setpoint. The driver lag in the
Decoupled with Feedback scheme was significantly larger than the Coupled High scheme and was
not significantly different from the Manual Driving scheme. The driver torque was the highest in
the Coupled High scheme, but was the second highest in the Decoupled with Feedback scheme.
Moreover, the peak steering angle and driver setpoint were the lowest in the Decoupled with

Feedback scheme.
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Decoupled with Feedback (DF) Coupled High (CH) Coupled Low (CL) Manual Driving (MD)

Time from Obstacle Crossing (s) Time from Obstacle Crossing (s) Time from Obstacle Crossing (s) Time from Obstacle Crossing (s)

Figure 3.11: Steering angle and torque trajectories during obstacle evasion for all participants
separated by evasion scheme. The dash-dot lines represent human driver’s setpoint θH and torque
τH that were estimated using the driver-automation interaction model presented in section 3.2.5.
The solid lines represent steering angle θS measured using encoders and net steering torque τS
(computed using Equation (4)), and the dashed lines represent automation setpoint θA and torque
τA recorded from the simulation. The trajectories were only analyzed for the intended automation
case. Thus, a total of 128 trajectories (8 obstacles each for 16 participants) were analyzed. All the
lines represent the mean values of the trajectories and the shaded areas represent 95% confidence
intervals.
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Figure 3.12: Mean values of (a) Peak Steering Angle and (b) Peak Driver Setpoint for the four
evasion schemes. Error bars indicate standard error. (p < .05 for *, p < .01 for **, p < .001 for
***.)

Peak steering angle θpkS differed significantly between the four evasion schemes (F (3, 508) =

18.63, p < .001). The Decoupled with Feedback scheme had significantly lower mean θpkS than
the Coupled High (41.01° vs. 84.53°, p < .001), Coupled Low (41.01° vs. 82.87°, p < .001), and
Manual Driving (41.01° vs. 101.77°, p < .001) schemes (see Fig. 3.12a). No other significant
differences were found.

51



3.3.2.2 Peak Driver Setpoint

The peak driver setpoint θpkH also differed significantly between the four evasion schemes
(F (3, 508) = 19.66, p < .001). The Manual Driving scheme had a significantly larger mean θpkH
in comparison with the Coupled Low (112.71° vs. 81.79°, p = .008), Coupled High (112.71° vs.
87.28°, p = .028), and Decoupled with Feedback (112.71° vs. 35.28°, p < .001) schemes (see Fig.
3.12b). Moreover, the Decoupled with Feedback scheme had a significantly lower mean θpkH than
the Coupled Low (35.28° vs. 81.79°, p < .001) and Coupled High (35.28° vs. 87.28°, p < .001)
schemes. Only Coupled Low and Coupled High schemes showed no significant differences.
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Figure 3.13: Mean values of the (a) Peak Driver Torque, (b) Driver Lag, and (c) Participant rating
for “control over vehicle during obstacle avoidance”. Error bars indicate standard error. (p < .05
for *, p < .01 for **, p < .001 for ***.)

3.3.2.3 Peak Driver Torque

The evasion scheme also had a significant effect (F (3, 508) = 32.10, p < .001) on the peak
driver torque τ pkH . The mean τ pkH was significantly higher under the Coupled High scheme than
the Coupled Low scheme (7.67 N-m vs. 3.55 N-m, p < .001), the Decoupled with Feedback

scheme (7.67 N-m vs. 4.82 N-m, p < .001), and the Manual Driving (7.67 N-m vs. 4.14 N-m,
p < .001) scheme (see Fig. 3.13a). Moreover, the mean τ pkH for Decoupled with Feedback scheme
was significantly larger than the Coupled Low scheme (4.82 N-m vs. 3.55 N-m, p = .016).

3.3.2.4 Driver Lag

Driver lag TH was significantly different between the four evasion schemes (F (3, 508) =

6.11, p < .001). Decoupled with Feedback had a significantly larger mean TH than the Coupled

High (0.37 s vs. 0.14 s, p = .043) scheme (see Fig. 3.13b). The Manual Driving scheme had
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significantly larger mean TH than the Coupled Low (0.50 s vs. 0.24 s, p = .018) and Coupled High

(0.50 s vs. 0.14 s, p < .001) schemes.

3.3.3 Subjective Ratings

Out of the four subjective measures described in Section 3.2.7, only one metric, control over
the vehicle, was significantly influenced by the evasion scheme (F (2, 45) = 5.289, p = .009) (see
Fig. 3.13c). (Participants answered the following prompt on a five-point likert scale: Please rate
how much control you had over the vehicle during obstacle avoidance. 1- Very Low, 5-Very High.)
Post-hoc tests indicated that participants reported significantly higher mean control over the vehicle
in the Coupled Low scheme compared to the Decoupled with Feedback scheme (2.44 vs. 1.44,
p = .008).

3.4 Discussion

Whether higher control authority should be provided to the driver or to the automation depends
on which agent can outperform the other in a particular driving scenario. In emergency obstacle
evasion scenarios, automation can often outperform the driver due to its faster reaction times.
However, even in emergency scenarios, the driver might still require the means to override the
automation in case the automation system misses an obstacle or activates unjustifiably. This study
focused on understanding how the control authority should be allocated between the driver and
automation in emergency scenarios, and through what kind of obstacle evasion scheme.

I investigated the relative merits of providing full control authority to the automation by com-
pletely decoupling the steering wheel from the road versus sharing the control authority between
driver and automation by keeping the steering wheel coupled to the road. With a coupled steering
wheel, I further investigated whether a high or a low automation impedance (level of authority)
promoted superior driver-automation team performance. In particular, I compared the evasion
schemes in their ability to provide protection against driver and automation faults. I created an
initially faultless automation system which was designed to provide protection against driver faults
by helping the driver avoid obstacles that appeared unexpectedly on the road. I then introduced
an automation fault to test which driving scheme allowed the drivers to prevent collisions (and
thereby protect against automation faults). I also analyzed performance with purely manual driving
to understand the advantages of adding automation to manual driving and the capability of drivers
to avoid obstacles on their own.

Adding automation to purely manual driving improved the obstacle evasion performance. When
driving manually, the participants hit 59% of obstacles which was significantly higher than the
23%, 5%, and 0% collision rates obtained in the three shared evasion schemes (Coupled Low,
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Coupled High, and Decoupled with Feedback respectively). This indicates that while the protection
against driver faults provided in manual driving was not zero, it was still lower than the protection
provided in the shared evasion schemes. Moreover, both the peak excursion and driver setpoint
obtained in manual driving were significantly larger than the shared evasion schemes, indicating
that without automation assistance, participants performed significantly more aggressive and less
efficient maneuvers around the obstacles (as also shown in Fig. 3.8). These results establish the
baseline obstacle avoidance performance of the participants in emergency scenarios.

The results on collisions across the shared evasion schemes confirmed the hypothesized fault
protection tradeoff that was presented in Fig. 3.1: as the authority of an agent (human or automation)
increased, the fault protection (obstacle evasion) provided by the other agent was reduced. During
driver faults, participants hit significantly more obstacles when they drove alongside the automation
system with low impedance. Assuming that impedance directly corresponds to authority (see
[13,131]), the low impedance automation provided lower authority to automation and higher
authority to the driver. Higher driver authority reduced the automation’s ability to suppress the
driver’s tendency to fight the automation-initiated maneuvers. On the other hand, when automation
was provided more authority, driver disturbance was suppressed allowing safer obstacle evasion
maneuvers. This observation was further supported by the 0% collision rate obtained in the
decoupled driving mode where automation was provided full control authority and driver input was
completely suppressed.

On the other hand, during automation faults—in particular when the automation activated
unjustifiably—the participants hit significantly more obstacles when they drove alongside the au-
tomation system with higher impedance. Participants in the high impedance automation group
reported that they recognized the automation failure but found it difficult to overpower the automa-
tion in time to prevent the collision (consistent with the observations in [60,131,132]). Clearly,
the high impedance automation provided more authority to automation and less authority to the
drivers resulting in more collisions during automation faults. For the same reason, decoupling the
steering wheel resulted in 100% collision rates because the driver had no authority over the vehicle.
These results corroborate the known pitfalls of using higher levels of automation in systems where
automation is subject to faults. If the automation system is unreliable, giving automation more
authority precludes the driver from covering for automation faults [139].

Driving alongside the automation system with high impedance also caused driver discomfort.
Some participants in the high impedance automation group reported that the transitions from manual
to automated driving were abrupt and discomforting because the automation system intervened with
a large force. These observations were further borne out in the mean driver torque metric, which
was found to be the highest for the high impedance automation case. The discomfort experienced by
the participants may also have caused significantly shorter excursion times in the high impedance
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automation case. It is possible that the struggle for control against the automation system forced the
participants to return to the lane center earlier and shorten the duration of excursions.

One of the main objectives of this study was to investigate whether it is reasonable to decouple
the driver for the duration of an obstacle evasion. Clearly decoupling the driver avoided causing
driver discomfort observed in the high impedance automation case and avoided collisions during
driver faults observed in the low impedance automation case. However, decoupling also resulted in
the highest number of collisions when automation failed as it took away the driver authority required
to intervene and prevent collisions. The lack of driver authority further resulted in the out-of-the-
loop problem; decoupled driving degraded driver vigilance and caused collisions when automation
did not activate [19]. As shown in Fig. 3.8, six out of eight participants in the decoupled driving
scheme were not able to avoid the obstacles when automation was inactive. Being out-of-the-loop
also made the drivers significantly less active during obstacle evasion. Decoupled drivers exhibited
both significantly lower peak steering angle and driver setpoint than the other evasion schemes,
indicating that they did not apply the steering angle necessary to avoid the obstacles. Further, as
indicated by the driver lag metric, the drivers reacted slower to the emergencies when they were
decoupled and did not attempt to avoid the obstacles in time (consistent with [140]).

Another shortcoming of decoupled driving is the lack of system transparency and the potential
for miscommunication with the driver [141,142]. Especially in emergency interventions, where the
drivers are decoupled for a short interval but are still provided torque feedback corresponding to
automation action, drivers can be misled into believing that they have some control over the vehicle.
This tends to reduce driver’s awareness of the driving mode (manual or automated driving) and
results in “mode confusion” which can be detrimental to the driving performance [62,128,141].
Results on the estimated driver torque revealed that the participants were confused about who was
in control at a given point in time. Participants in the decoupled driving mode applied significantly
larger driver torque than in the low impedance automation case. This was unexpected because the
automation system in the decoupled case and the low impedance automation case were designed
with the same mechanical impedance. Moreover, five out of 18 participants in the decoupled scheme
reported that they had some control over the vehicle during obstacle evasion when in fact they
had no control. Two participants in the decoupled scheme reported that they tried to counteract
automation because they thought they could influence the vehicle trajectory.

Note that in terms of obstacle evasion, the decoupled and coupled high impedance automation
schemes exhibited similar performance. There were no significant differences in the collision
rates obtained in the two schemes either during driver faults or automation faults. None of the
subjective ratings collected through the survey were significantly different between the two schemes.
Both schemes provided a high authority to the automation system and resulted in performance
breakdowns during automation failures and human factors issues. These results indicate that until
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automation is fully reliable, an obstacle evasion scheme that provides high authority to automation
might cause more issues than a scheme that provides low authority to automation. Decoupling the
drivers may result in out-of-the-loop issues and mode confusion and high impedance automation
may cause driver discomfort. Such human factors issues were not observed with low impedance
automation and manual driving in this study.

One limitation of this study was the absence of speed control. Subjects reported that the lack
of brakes and throttle made it difficult to avoid collisions. While in the real world drivers may
prefer braking instead of steering away from the obstacles, past research has shown that at the
speed and time-to-collision chosen in this experiment, steering maneuvers result in more successful
obstacle evasion than braking [61,64,143]. Moreover, adding speed control in the study would have
made it difficult to isolate the influence of a driver’s steering behavior on obstacle evasion. Another
limitation of the study was lack of warnings and alerts prior to obstacle evasions. Some subjects
reported that the interventions were too abrupt and startling at times and a warning could have
prepared the drivers and improved the obstacle evasion performance (consistent with [64,68]). In
future experiments it would be valuable to explore the effectiveness of providing haptic, visual, and
audio alerts before the obstacle evasions.

3.5 Conclusions and Future Work

This driving simulator study investigated the performance of four emergency obstacle evasion
schemes during driver and automation faults. The evasion schemes differed in the amount of control
authority provided to the human drivers. Drivers were either provided no driving authority by
decoupling their steering inputs from the tires, or a partial driving authority by keeping them coupled
with a low or high automation impedance, or full driving authority by removing the automation
assistance. The results revealed a tradeoff between the control authority provided to one agent
(driver or automation) and the fault protection provided by the other agent. Higher driver authority
reduced automation’s ability to prevent collisions during driver faults while higher automation
authority reduced driver’s ability to prevent collisions during automation faults. Moreover, coupled
high impedance automation resulted in driver discomfort, as a significantly larger effort was required
to overpower the high impedance automation. Decoupling the drivers prevented driver discomfort
and reduced collisions during driver faults by taking the driver out of the loop, but caused more
collisions during automation faults. Decoupled driving further reduced driver’s vigilance and mode
awareness during obstacle evasions.

As long as automation remains only partially reliable, decoupled driving appears unacceptable
as it deprives the drivers of the ability to intervene during automation failures. Moreover, decoupled
driving may carry human factors issues that can put both the drivers and the surrounding vehicles at
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risk. Coupled driving may prevent these issues but may result in collisions during driver faults if
designed with a low impedance and may result in collisions during automation faults if designed
with a high impedance. Future studies could focus on designing coupled driving schemes that are
safe to operate during both driver and automation faults. One potential way forward is to combine
the advantages of low and high impedance automation system through an adaptive impedance
automation design. An adaptive impedance system would assume a high level of authority during
emergency situations in which the automation has high confidence, and a low level of authority
during situations in which the automation has low confidence, so as to grant override power to the
human [13,132,144]. The design challenge for such a system would be to modulate automation
impedance as a function of driver intention, sensor precision, and environment complexity.

57



CHAPTER 4

Estimating Road Feedback for Driving on Uneven Roads

4.1 Introduction

The torque experienced by a driver at the steering wheel, also referred to as steering feel,
significantly influences a driver’s perception of a vehicle [73–75]. In modern cars, this torque
feedback is primarily regulated by the Electric Power Steering (EPS) system [145]. An EPS system
modulates the torque feedback by overlaying controlled amounts of torque on the steering column
of the vehicle [69]. The objectives of the EPS system are to make the driving task easier, safer, and
more comfortable while keeping the driver aware of road conditions [146,147].

To achieve these objectives, the EPS system uses an estimate of rack force [70,145,148]. Rack
force is defined as the force transmitted from the front tires to the steering rack of a vehicle through
the tie rods. Tire forces and moments, and hence the rack force, arise from the interaction of tires
with the road. Naturally, rack force depends on the road profile, but also on how the road profile
is traversed, and thus depends on the steering angle in combination with the road profile. When a
driver performs a steering maneuver, the tire forces and moments and hence the rack force generally
oppose the effort applied by the driver. The counteracting rack force increases the driver effort
needed to steer the vehicle, however it also informs the driver of the vehicle state and the road
conditions. Accordingly, EPS uses rack force estimates to attenuate the rack force and assist the
driver in performing the maneuver, while leaving a portion of the counteracting force unattenuated
to maintain driver awareness [70,71,146].

Apart from the EPS assist torque, rack force estimates are also used to determine the EPS torque
needed to reject disturbances arising from elements internal to the steering system [69,71,75]. Lane
keeping and steer-by-wire systems also utilize the estimates of rack force [148–150]. Unfortunately,
it is expensive to install reliable measurement systems for rack force in commercial vehicles
[74,150]. As a result, estimation of rack force using real-time capable techniques has attracted the
attention of researchers both in industry and academia [69,73,148,151].

One real-time capable technique used for rack force estimation utilizes system identification
(SID) methods. An SID-based estimator uses data generated through driving experiments to
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identify a model between the measured output rack force and a measured input signal (such as
rack displacement) [151,152]. Such estimators are computationally inexpensive and can be used in
vehicles of different configurations [151]. However, current SID-based estimators can only estimate
rack force due to the steering angle and ignore the effect of road profile variations on rack force.

(a) (b)

Figure 4.1: Two common methods to estimate rack force due to steering angle and road profile. (a)
In a steering model-based (SM-based) rack force estimator, the sensed EPS motor angular position,
speed, and torque along with the steering column torque are fed into an input observer to compute
rack force. (b) In a vehicle and tire model-based (VTM-based) rack force estimator, the road profile
and the steering angle are fed into a combined vehicle and tire model to compute rack force.

A rack force estimator that disregards the effect of road profile variation can negatively affect
the driver’s safety. Studies show that any inability to account for road profile variation, such as road
bank, road grade, and side-slopes, can result in long periods of unaccounted steering disturbances
which might increase the chance of rollover and loss of steering control [153–156]. Therefore,
estimators that can account for road profile variation in rack force estimation have the potential to
improve both the safety and comfort of the driver. Estimators shown in Fig. 4.1 utilize models of
the steering and vehicle systems to estimate the effect of road profile variation on rack force. I call
the estimator shown in Fig. 4.1(a) a steering model-based (SM-based) rack force estimator, and the
estimator shown in Fig. 4.1(b) a vehicle and tire model-based (VTM-based) rack force estimator.

The SM-based rack force estimator uses a lumped parameter model of the steering system along
with the EPS motor torque, position, and speed, and the steering column torque to produce an
estimate of rack force [69,70,148,157]. The SM-based rack force estimators have been widely used
in EPS applications because of their ability to produce sensor-level-accurate rack force estimates.
However, the SM-based estimators do not support decomposition of rack force; the SM-based
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estimators cannot estimate the contribution of road profile variation to rack force independent of the
contribution of steering angle. The SM-based estimators further require identification of the inertia,
damping and stiffness values of steering system components [148].

An estimator that produces estimates of rack force due to road profile independent of the steering
angle holds additional advantage for EPS control; two separately estimated components of rack
force can be compensated individually to different degrees to enhance the steering feel. Several
researchers have adopted the idea of performing decomposition of steering signals such as rack force
[71,73], steering angle [158,159], and steering torque [74,147,160,161] with the aim of performing
targeted compensation on the signal components and improving the steering feel. Currently, only the
VTM-based rack force estimators (depicted in Fig. 4.1(b)) are capable of producing component-wise
estimates of rack force. A VTM-based estimator uses sensed steering angle and road profile together
with a vehicle model and tire model to produce its estimate of rack force.

VTM-based rack force estimators have appeared in various forms. Software packages such
as CarSim and CarMaker use relatively more complex VTM-based estimators to produce highly
accurate rack force estimates [162,163]. A disadvantage of the estimators used in these packages is
that they are computationally heavy and therefore cannot be used in real-time in production vehicles.
They can, however, be used for running simulation studies to verify the estimation performance of
other estimators [164,165]. Real-time capable VTM-based estimators appearing in the literature
use simpler vehicle and tire models for rack force estimation and are computationally inexpensive.
Conventional VTM-based estimators ignore the presence of road profile variations and only consider
the steering angle as an input when estimating the rack force (perhaps due to the unavailability of
real-time road profile measurements) [69,75,77,78].

In this chapter, I present three VTM-based estimators that I developed to estimate and decompose
rack force using sensed steering angle and road profile inputs. I develop the estimators with the same
vehicle model but three different tire models to isolate the effect of the tire model on estimation
accuracy. I present the results from three driving experiments to comment on which features of the
tire models improve or reduce the accuracy of rack force estimation. In addition, I present a CarSim
simulation study to test whether the estimates of rack force due to steering angle and rack force due
to road profile produced by one of the three estimators can potentially be used to perform targeted
compensation.

This chapter is organized as follows. In Section 4.2 I briefly discuss the overall structure of
a VTM-based rack force estimator. Section 4.3 presents the details of the vehicle model and the
three tire models used to estimate the rack force. In Section 4.4 I describe the driving experiments
which were used to compare the model fidelity of the three estimators, and the simulation setup that
was used to produce the component-wise estimates of rack force. Section 4.5 presents the results
and discussion for the driving experiments and the simulation study followed by Section 4.6 that
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presents the conclusions of the chapter.

4.2 Modeling Framework

Figure 4.2: Simplified structure of the VTM-based rack force estimator. The road profile and the
steering angle are inputs to a vehicle model and tire model that in combination enable rack force
estimation. The tire model includes a slip kinematics model to estimate the tire slip angles, a model
to estimate tire normal force, and a tire-road interaction model to estimate tire forces and moments.
The vehicle model includes a vehicle dynamics model to estimate vehicle states and a steering
kinematics model to estimate rack force.

Fig. 4.2 shows the simplified structure of a VTM-based rack force estimator. For a relatively
constant non-zero vehicle speed, the two inputs to the estimator are steering angle and road profile.
While the steering angle is primarily governed by the driver, the road profile is determined by the
environment. Road profile is generally characterized by the slope and the frequency content of the
road. Various advanced model-based and sensor-based methods can be used to estimate road profile.
The model-based methods include input observers or disturbance observers that work alongside a
vehicle model to estimate road profile inputs [166,167], and sensor-based methods include use of
cameras [168], radar [169], LiDAR sensors [170], and GPS working alongside on-board vehicle
sensors [171]. Certain road profile inputs, especially road slopes, can also be estimated on the fly
using on-board sensors (see [135,172], for example). The focus of this study was limited to only
two types of road profile variations: road slopes (longitudinal and lateral) and road cleats.

Referring to Fig. 4.2, in a VTM-based rack force estimator, the steering angle and road profile
signals are first made available to a vehicle model that generates vehicle states. The same signals
along with the vehicle states are then used in a tire model to obtain tire slip angles and tire forces
and aligning moments. These forces and moments are in turn used in the vehicle model to generate

61



vehicle states for the next time instant. Meanwhile, the tire aligning moments are used to determine
the steering rack force using a steering kinematics model that relates tire aligning moments to the
rack force.

4.3 Modeling

In this section I present three VTM-based estimators that I developed to determine rack force.
The three estimators are only distinguished by their tire models. The first estimator has a Linear
Tire model [173], and is called the LT Model. The second estimator has a nonlinear Brush Tire
model (also known as the elastic foundation model) [113], and is called the BT Model. The third
estimator has a Rigid Ring tire model [174], and is called the RR Model. All the estimators are
based on the same vehicle dynamics given by the 2DOF bicycle model presented in [135].

The following assumptions apply to all rack force estimators presented in this chapter:

1. The tire parameters such as tire stiffness and damping and tire radius were assumed constant.

2. Tire inertia and wheel camber were assumed negligible. Tire-road friction µ was assumed
constant: µ = 1.

3. The components of the steering system were assumed mass-less. The vehicle’s mass was
assumed constant.

4. The influence of the suspension system on rack force was assumed negligible.

In the following subsections, I first describe the vehicle model common to the three estimators
followed by a description of the three tire models that distinguish the estimators. I then present
how rack force was estimated using the tire models and briefly describe the assembly of the vehicle
and tire models that enable rack force estimation. I conclude the section by describing how VTM-
based estimators can be used to produce component-wise estimates of rack force and how the
component-wise estimates can be used to perform targeted compensation to improve steering feel.

4.3.1 Vehicle Model

Consider a vehicle of mass m and yaw inertia I driven with steering angle δ and speed u. Let
the the vehicle yaw angle be ψ, and let the forces on the vehicle’s front (f ) and rear (r) tires in
the longitudinal (x) and lateral (y) directions respectively be denoted by Fxf , Fxr and Fyf , Fyr (see
Fig. 3). Likewise, let the tire aligning moments for the front and rear tires be denoted by Mzf and
Mzr. Then the two degrees of freedom of the vehicle, namely, lateral speed v and yaw rate ψ̇, or the
lateral dynamics of the vehicle for driving on a flat road are governed by the following differential
equations [135]
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Figure 4.3: Schematic of a 2DOF bicycle model. In the configuration shown, the bicycle drives
along a road with lateral slope θ with speed u and steering angle δ . The two degrees of freedom
are lateral speed v and yaw rate ψ̇. The vertical tire forces, slip angles, tire lateral forces, and tire
aligning moments are denoted by Fzi, αi, Fyi, and Mzi, respectively, where i ∈ {f, r} denotes the
front and rear tires.

mv̇ +muψ̇ = Fxf sin δ + Fyf cos δ + Fyr

Iψ̈ = lfFxf sin δ + lfFyf cos δ − lrFyr,
(4.1)

where the distance between the center of mass of the vehicle and the centroid of the front tire contact
patch is lf and the distance between the center of mass of the vehicle and the centroid of the rear
tire contact patch is lr.

Assuming the steering angle δ remains small, the differential equations governing the lateral
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dynamics of the vehicle can be rewritten as

mv̇ +muψ̇ = Fyf + Fyr

Iψ̈ = lfFyf − lrFyr.
(4.2)

Now consider driving on an uneven road. Equation (4.2) also applies for driving on a longitudinal
slope or a road grade because the longitudinal slope does not significantly influence the lateral
dynamics of the vehicle [135]. Likewise, although driving over a cleat or a pothole changes the tire
dynamics considerably, cleats or potholes do not directly influence the vehicle’s lateral dynamics.
On the other hand, for driving on a lateral road slope or a road bank (simply referred to as road
slope in this chapter), the differential equation for the lateral speed is different. If the lateral slope of
the road is θ, as shown in Fig. 4.3, and the acceleration due to gravity is denoted by g, the vehicle
states are governed by the equations

mv̇ +muψ̇ +mg sin θ = Fyf + Fyr

Iψ̈ = lfFyf − lrFyr.
(4.3)

A detailed derivation of these equations can be found in [135].

4.3.2 Tire Model

The rack force is primarily influenced by the aligning moments acting on the front tires of a
vehicle because the movement of the steering rack is linked to the steering angle of the front tires.
Therefore, to enable rack force estimation, the primary objective of a tire model is to estimate the
aligning moments acting on the front tires. For the bicycle model, since the front tires are lumped
into a single tire, the goal of the tire model is simply to estimate the aligning moment Mzf .

In order to obtain the aligning moment, it is first required to obtain tire slip angles and tire
normal forces. The vehicle states obtained using Equations (4.2) and (4.3) can be used to determine
the lateral slip angles αf and αr of the front and rear tires using the equations

αf =
v + lf ψ̇

u
− δ,

αr =
v − lrψ̇
u

.

(4.4)

The tire normal forces for the front tires Fzf and for the rear tires Fzr for driving on the road slope θ
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are given by the following equations

Fzf =
mglr cos θ

2(lf + lr)
,

Fzr =
mglf cos θ

2(lf + lr)
.

(4.5)

The slip angles presented in Equation (4.4) and normal forces presented in Equation (4.5) remain
the same in the tire models which are discussed next.

4.3.2.1 Linear Tire (LT) Model

The lateral forces on the front and rear tires with respective cornering stiffness Cαf
and Cαr are

given by

Fyf = Cαf
αf ; Fyr = Cαrαr. (4.6)

To express the lateral forces acting on both the front (f ) and rear (r) tires using a single equation,
let us rewrite Equation (4.6) in the following form

Fyi = Cαi
αi, (4.7)

where i ∈ {f, r}.
The front tire pneumatic trail tp for the LT Model is given by the expression [175]

tp = tp0

(
1− sgn(αf )

Cαf

3µFzf
tanαf

)
,

where tp0 is the pneumatic trail at zero front slip angle.
The aligning moment Mzf for the front tire is then given by

Mzf = −(tp + tm)Fyf , (4.8)

where the front tire mechanical trail tm is a constant for a given vehicle. For a detailed description
of the pneumatic trail tp and the mechanical trail tm, the reader is referred to [113].

Note that the tire lateral forces are directly proportional to the slip angles which is why this
model is referred to as the “linear tire” model. Such proportionality only applies within a range of
slip angles, in particular for low values of slip angles, after which it no longer captures the variation
of tire forces accurately [113].

65



4.3.2.2 Brush Tire (BT) Model

Unlike the LT Model where the tire forces vary linearly with the slip angles, in the BT Model the
tire forces are non-linear in the slip angles. Therefore, the BT Model can provide a better estimate
of rack force over a larger range of slip angles. According to [113], the lateral tire force for the front
(f ) and rear (r) tires is given by

Fyi =

{
µFzi(3θsαi − 3(θsαi)

2 + (θsαi)
3) if αi ≤ 1

θs

µFzi if αi ≥ 1
θs
,

(4.9)

where again i ∈ {f, r} and µ is the coefficient of friction between tire and road. The normal force
Fzi is given by Equation (4.5), and θs is a tire parameter that, for tire tread stiffness of cp and the
contact patch length of 2a, is defined by

θs =
2

3

cpa
2

µFzi

The front tire pneumatic trail tp for the BT Model is given by the expression [113]

tp =
1

3
a

1− 3|θsαf |+ 3(θsαf )
2 − |θsαf |3

1− |θsαf |+ 1
3
(θsαf )2

. (4.10)

For mechanical trail tm, the tire aligning moment Mzf can then be obtained by using the following
expression which is the same as the one used in the LT Model

Mzf = −(tp + tm)Fyf . (4.11)

4.3.2.3 Rigid Ring (RR) Model

In the LT and BT models, road unevenness is incorporated only in the vehicle model. For
instance the road slope θ only influences the vehicle states and the normal force acting on the
vehicle which in turn influence the slip angles and hence the tire aligning moment Mzf . Any tire
deformation due to road unevenness is not taken into account in the LT and BT tire models. This
simplification may work when the vehicle travels over low frequency road profile variations such as
smooth road grades or banks. However, as the frequency of road profile variations increase, the
tires start deforming significantly making it crucial to estimate the influence of tire deformation on
tire moments.

The Rigid Ring (RR) tire model can estimate tire forces and moments due to tire deformation on
high frequency road profile variations such as road cleats and potholes [113,174,176]. To estimate
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the forces and moments, the RR model utilizes the road profile inputs generated by an “enveloping
model” [174]. The enveloping model uses the measurements of the actual road profile to produce an
“effective road profile” that the deformed tires effectively experience on uneven roads. Enveloping
models are discussed in detail in [174,177]. In this study, I used a double track, three-dimensional,
tandem tire enveloping model presented in [174] that takes as inputs the dimensions of the cleats
(length, height, and angle) and the location of cleats. The 3D enveloping model produces an effective
road profile in terms of three road geometry parameters: effective tire height w, effective tire lateral
slope βx, and effective tire longitudinal slope βy. For a tire with vertical stiffness Cz, the effective
road profile is used to estimate the radial deflection of the tire ρz as

ρz =

(
w − mglr cos θ

2Cz(lf + lr)

)
cos βy, (4.12)

which in turn is used to estimate the radial tire force F rad
z using the following equation

F rad
z = qFz1(1 + qFz3(βx)

2)ρz + qFz2ρ
2
z. (4.13)

Given the effective road profile, and the radial tire force F rad
z , the RR model estimates the contact

patch normal force FcN as follows (see [178] for a detailed derivation):

FcN =
1

cos βx
(F rad

z + ((DN sin(CN arctan(BNβx))) cos βx − F rad
z sin βx) sin βx) (4.14)

Using FcN , the tire lateral forces Fyi (i ∈ {f, r}) can then be estimated using [174]

Fyi = Dy sin(Cy arctan{Byαyi − Ey(Byαyi − arctan(Byαyi))}) + SV y. (4.15)

The front tire pneumatic trail tp for the RR Model is given by

tp = Dt cos(Ct arctan{Btαtf − Et(Btαtf − arctan(Btαtf ))}),

and the resulting aligning moment Mzf acting on the front tire can be estimated using

Mzf = −tpFyf +Dr cos(arctanBrαrf ), (4.16)

where the slip angles (αyi, αti, and αri) are given by

αyi = SHy + tanαi, αti = SHt + tanαi, αri = tanαi.

The coefficients By, Br, Bt, Cy, Ct, Dy, Dr, Dt, Ey, Et, SHy, and SHt are either constants or
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are functions of slip angles (αyi, αti, and αri) and contact patch normal forces FcN , and tire normal
forces Fzi [174,178].

4.3.3 Rack Force Estimation

The aligning moment Mzf obtained using each model was used to estimate the resultant road
feedback or the rack force RF using the expression

RF = ipMzf , (4.17)

where the constant ratio ip defines the tire moment to rack force transmission ratio for a given
vehicle, and is determined using steering kinematics.

4.3.4 Model Assembly
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Figure 4.4: An expanded version of Fig. 4.2 is used to describe the rack force estimation process
with references to the equations presented in Section 4.3.

Referring to Fig. 4.4, the vehicle states (lateral speed v and yaw rate ψ̇) are produced using
the vehicle dynamics represented by Equation (4.3) for sloped roads. Independently, the vehicle’s
mass and dimensions and the road slope are used to compute normal tire forces using Equation
(4.5). In the tire model, the vehicle states are used to find the tire slip angle for the front and rear
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tires using Equation (4.4). Tire slip angles and normal forces are then used to find tire forces and
aligning moments using Equations (4.7) and (4.8) for the LT Model, Equations (4.9) and (4.11) for
the BT Model, and Equations (4.15) and (4.16) for the RR Model. The tire forces are fed back into
the vehicle model in Equations (4.2) and (4.3) to generate the vehicle states for the next time instant.
During this process, the rack force for each time instant is obtained through Equation (4.17) using
the aligning moment estimated in Equation (4.8) for the LT Model, in Equation (4.11) for the BT
Model, and in Equation (4.16) for the RR Model.

4.3.5 Targeted Compensation using Rack Force Components

VTM-based estimators can be utilized to determine the rack force due to steering angle indepen-
dent of the rack force due to road profile. The components can then be used to compensate for the
individual effects of steering angle and road profile on the steering feel. However, there are some
preliminary requirements for performing such a targeted compensation. In this subsection, I attempt
to outline these requirements.

Consider rack force RF obtained in Equation (4.17). RF is clearly a nonlinear function of
steering angle and road profile, and can be expressed using a generic function f as

RF = f(δ, θ). (4.18)

Now let us denote rack force due to steering angle by RFSteering and rack force due to road profile
by RFRoad. Using Equation (4.18), RFSteering and RFRoad can be obtained by using one input at a
time in function f as follows

RFSteering = f(δ, 0), RFRoad = f(0, θ). (4.19)

Since rack force is nonlinear, RFSteering and RFRoad may not be the only components of rack
force. Rack force may consist of additional nonlinear components arising from the interaction of
steering angle and road profile inputs. Let us combine the additional components of rack force
into a single variable ∆RF which I call the residual rack force. The rack force RF can then be
decomposed into three components

RF = RFSteering +RFRoad + ∆RF (4.20)

Clearly, to properly perform targeted compensation it is important to verify whether the residual
rack force ∆RF is small in comparison to RFSteering and RFRoad. If RFSteering and RFRoad are
not the primary components of rack force, compensating only for the effect of steering angle and
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road profile may not be sufficient. The unknown and uncompensated residual rack force may result
in incorrect compensation which in turn may result in a substandard or undesirable steering feel.
According to Equation (4.20), ∆RF can be obtained by subtracting the sum of the components of
rack force, that is RFSteering +RFRoad, from the total estimated rack force RF . In Section 4.5, I
therefore compare RFSteering +RFRoad with rack force RF to verify whether ∆RF is small and
whether the rack force is primarily composed of only RFSteering and RFRoad.

To perform targeted compensation, it is also important to verify whether the estimates of rack
force due to steering angle RFSteering and rack force due to road profile RFRoad obtained using
the estimator accurately represent the contributions of steering angle and road profile to rack
force. Unfortunately, unlike the total rack force RF , the component-wise estimates of rack force
RFSteering and RFRoad cannot be validated using the force measurements available from strain
gauges mounted on the steering rack. However, estimates produced by higher DOF VTM-based rack
force estimators, such as those available in commercial vehicle dynamics packages, can still serve
as a reference to compare the estimates produced by low DOF VTM-based rack force estimators. In
the next section I discuss how the component-wise estimates produced by one of the estimators were
compared with the estimates produced by a higher DOF rack force estimator available in CarSim.

4.4 Methods

In this section I describe the experimental setup and the simulation setup used to test the
performance of the three rack force estimators developed in this chapter. I first describe the three
driving experiments and the hardware setup that were used to determine and compare the real-time
estimation accuracies of the rack force estimators. After that, I explain the simulation setup that was
used to verify whether the component-wise estimates of rack force can be used to perform targeted
compensation.

4.4.1 Experimental setup

Driving experiments were performed at test tracks with known road profile variations. The test
tracks were located at Ford’s Dearborn Development Center (formerly Dearborn Proving Grounds)
in Dearborn, Michigan. The results from the following experiments are described in this chapter:

1. Experiment 1: Driving on a road with varying lateral slope

Driving experiment 1 was performed on a crowned road with 11◦ slope on the two sides of
the road crown. The vehicle was driven from one side to the other side with a speed of about
20 km/h.

2. Experiment 2: Aggressive slalom driving on a road with constant lateral slope

70



Experiment 2 was performed on a road with constant lateral slope of about 11◦. The steering
angle was varied between approximately −60◦ and 60◦ to perform a slalom maneuver with a
speed of about 15 km/h.

3. Experiment 3: Slalom driving on a road with cleats of varying heights

Experiment 3 was performed on a road with thirteen metal cleats of known dimensions:
the first four cleats were 1 cm tall, the next five cleats were 2 cm tall, and the remaining
cleats were 3 cm tall. All cleats were 4 cm long and were oriented transverse to the road.
Driving speed was maintained at about 30 km/h. The steering angle was varied between
approximately−30◦ and 30◦ so that the vehicle impacted the cleats at an angle (roughly equal
to the steering angle). This maneuver was performed to test the performance of the estimators
for driving over arbitrary high frequency unevenness, such as oblique cleats, on the road.
Moreover, hitting the cleats straight with zero impact angle did not significantly influence the
tire aligning moment and therefore did not induce much rack force.

Figure 4.5: Experimental setup. (a) Lincoln MKX test vehicle. (b) Tie rod instrumented with strain
gauges to measure the steering rack force. (c) Inertial measurement unit (IMU) mounted inside the
car used to measure the road slopes during driving.

The experiments were performed using the Lincoln MKX vehicle equipped with Pirelli (Scorpion
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Verde AS) tires shown in Fig. 4.5 (a). The tire model specific parameters used in the models were
taken from Table A3.1, Appendix 3, in [113] and from Table B.1, Appendix B, and Table 3.5
(section 3.7), in [174]. The tests required to identify the parameters of the RR model are further
discussed in Section 3.7 in [174] and Appendix 3 in [113]. Other tire and vehicle specific parameters
can be found in [135]. To evaluate the estimation performances of the models, the rack force
estimates produced by the three models were compared to the measurements from strain gauges
installed on the tie rods of the test vehicle (shown in Fig. 4.5 (b)). The steering angle and the
vehicle speed were measured using steering angle and tire speed sensors, respectively. The vehicle
speed was calculated by multiplying the tire rolling circumference with the angular speeds of the
left and right rear tires and then averaging the two resulting products. The vehicle acceleration was
computed by digitally differentiating and filtering the vehicle speed.

Figure 4.6: Vehicle acceleration was used to determine the location of cleats during the experiments.
Each impulse marked the beginning of a cleat. The vehicle speed and cleat lengths were used to
estimate the duration of each tire-cleat interaction.

During the driving tests, a rapid control prototyping platform (dSPACE MicroAutoBox) was
used to link sensed steering angle, road profile, and vehicle speed signals with an online simulation
of the three rack force estimators (integrated in real-time Simulink), using CAN-bus communications
at 250 Hz. Five road profile parameters were used in the models: lateral road slope, longitudinal
road slope, cleat height, cleat length, and cleat locations. The road slopes (both longitudinal and
lateral) were obtained using the pitch and roll measurements obtained from a high fidelity IMU
(OXTS RT3003 v2) installed in the vehicle (shown in Fig. 4.5 (c)) that transmitted signals at 100
Hz. The pitch and roll measurements were assumed to be roughly equal to the longitudinal and
lateral slopes of the road. The cleat dimensions (height and length) were physically measured on
the test track and were fed into the estimator models in Simulink. The vehicle acceleration was
used to determine the location of cleats. When tires hit the cleats, the vehicle acceleration showed
finite impulses. The impulses were used to synchronise the cleat measurements with the real-time
simulation of the RR model in Simulink; each impulse marked the beginning of a cleat (see Fig.
4.6). The length of the cleat and speed of the vehicle were then used to estimate the duration of
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tire’s impact with the cleats. Ideally the cleat dimensions and locations would be estimated using
road preview sensors.

4.4.2 Simulation Setup

The BT Model was used to produce the component-wise estimates of rack force: rack force
due to steering angle RFSteering and rack force due to road profile RFRoad. Unlike the estimates of
total rack force, the component-wise estimates of rack force could not be measured using sensors
available in the vehicle. Therefore, a higher DOF VTM-based estimator available in CarSim was
chosen as a reference to validate the component-wise estimates of rack force produced by the
BT Model. The VTM-based estimator in CarSim had a four-wheel vehicle model that had 15
mechanical degrees of freedom (DOF) in comparison to the bicycle model with only two DOF
used in the BT Model. The math model for the 15 DOF model vehicle in CarSim had over 250
state variables. For tire models, CarSim provided various options for tire models that had higher
complexity than the Brush Tire model used in the BT Model. I used the semi-empirical tire model
called “Internal Table Model with Simple Camber” which used combined slip theory [179] and
similarity method [180] to compute tire forces and moments [181].

To perform the simulation experiment, I recreated Experiment 1 described in Section 4.4.1 in
the CarSim environment. I fed the recorded steering angle from Experiment 1 into the CarSim
Simulink Model and re-created the same road profile in the CarSim driving environment that was
traversed while performing Experiment 1. Moreover, I performed the simulation on an SUV vehicle
with the parameter values, such as vehicle dimensions, mass, yaw inertia and tire sizes, exactly the
same as the parameter values for the Lincoln MKX vehicle on which the actual test was performed.

The CarSim simulation setup is summarized in Fig. 4.7. The first simulation experiment was
used to estimate RFRoad where the steering angle was set to zero but the driving was simulated
on a sloped road (shown in Fig. 4.7 (a)). The second simulation experiment was used to estimate
RFSteering where the steering angle was non-zero but the driving was simulated on a flat road
(shown in Fig. 4.7 (b)). The vehicle speed remained the same in both simulation experiments. The
component-wise estimates obtained using CarSim were then compared with the estimates obtained
using the BT model. Finally, the sum of component-wise estimates obtained using the BT Model
was compared with the total rack force estimate to determine the contribution of residual rack force
to the total rack force.

4.4.3 Performance Analysis

To quantify the performance of a given estimator, I used the normalized root mean square
error (NRMSE) between the rack force estimate produced by the estimator RF and the rack force
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Figure 4.7: CarSim setup for component-wise rack force estimation. (a) RFRoad was estimated by
setting the steering angle to zero in the CarSim Simulink model and by creating a sloped road profile
in the driving environment. (b) RFSteering was estimated by making the steering angle non-zero in
the CarSim Simulink model and by creating a flat road profile in the driving environment.

estimated using a reference estimator RFref . NRMSE was expressed as a percentage and was
obtained using the following equation

NRMSE(%) =

√
mean((RFref −RF )2)

max(RFref )−min(RFref )
× 100 (4.21)

For the driving experiments the sensors mounted in the vehicle served as the reference, whereas for
simulation experiments the rack force estimates produced using CarSim served as the reference.
I also compared the rack force estimation performance of the estimators to each other to find out
which estimator had the highest relative accuracy.

4.5 Results and Discussion

4.5.1 Effect of Model Complexity on Rack Force Estimation

The differences between the three VTM-based estimators were readily apparent in the compari-
son of estimation errors between the estimators as shown in Table 4.1.

While driving on the road with large slope variation in Experiment 1, no differences were seen
between the estimation performances. Despite the significant distinction between the tire models
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Table 4.1: Estimation errors (NRMSE %) for the three experiments

Estimator/Experiment Experiment 1 Experiment 2 Experiment 3

LT (Linear Tire) 5.08% 10.70% 11.36%
BT (Brush Tire) 5.16% 8.57% 11.06%
RR (Rigid Ring) 5.01% 8.18% 7.37%

used in the estimators, all estimators seemed to agree well with the sensor measurements (Fig. 4.8).
The estimation errors were low for the three estimators and were only marginally different between
the estimators (see Table 4.1). The results indicated that both the linear and nonlinear tire models
were equally capable of estimating the rack force irrespective of the magnitude and variation of
road slope.

Driving with an aggressive slalom maneuver in Experiment 2, on the other hand, revealed
some differences between the estimator using the linear tire model and the estimator using the
nonlinear tire model. Estimators with nonlinear tire models, namely, the BT Model and the RR
Model, matched the sensor measurements better than the LT Model (Fig. 4.9). For the LT Model,
the estimation performance broke down at large steering angles and large steering angle rates (see
Fig. 4.9b) while both the BT Model and the RR Model seemed to match the measurements well
throughout the experiment (Fig. 4.9c and Fig. 4.9d). The estimation errors for the RR Model and
the BT Model were similar to each other and were both lower than the estimation error for the LT
Model (see Table 4.1).

The estimation error for the RR Model was the lowest for driving on the road with cleats in
Experiment 3. While driving on the flat part of the road, the performance of all estimators seemed
similar (Fig. 4.10). However, only the RR Model captured the rack force well when the vehicle
drove on cleats as demonstrated by the insets on the plots in Fig. 4.10. Furthermore, as shown in
Table 4.1, the estimation error for the RR Model was lower than both the BT Model and the LT
Model. The BT Model and the LT Model, on the other hand, seemed to exhibit similar estimation
performance.

Clearly, these results reflect the differences in the complexity of tire models used in the three
estimators. For example, for Experiment 2, the RR Model and the BT Model perform better than
the LT Model because the nonlinear tire models used in the BT Model and the RR Model are better
at capturing the tire forces and aligning moments for higher steering angles and slip angles as
compared to the linear tire model used in the LT Model. Likewise, in Experiment 3, the RR Model
seems to have better performance than both the BT and the LT Model because only the RR Model
accounts for high frequency road profile variations (such as cleats) in the estimation of tire forces
and moments. And clearly this capability results in a nontrivial difference between the estimation
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Figure 4.8: Experiment 1 performed on a crowned road. Vehicle speed was maintained at about 20
km/h. (a) Road profile variation (schematic) and input steering angle and road slope (graph). (b)
Rack Force estimated using the LT Model and measured using sensor. (c) Rack Force estimated
using the BT Model and measured using sensor. (d) Rack Force estimated using the RR Model and
measured using sensor.

errors of the models. On the other hand, all the estimators seem to exhibit satisfactory performance
for non-aggressive steering maneuvers regardless of the magnitude and variation of the road slopes
as demonstrated by Experiment 1.

76



Steering Angle

Road Slope

(a)

Rack Force EstimateMeasured
Rack Force

(LT Model)

(b)

Rack Force Estimate
Measured

Rack Force
(BT Model)

(c)

Rack Force Estimate
Measured

Rack Force
(RR Model)

(d)

Figure 4.9: Experiment 2 performed with a slalom maneuver on a road with constant lateral slope.
Vehicle speed maintained at about 15 km/h. (a) Vehicle maneuver (schematic) and input steering
angle and road slope (graph). (b) Rack Force estimated using the LT Model and measured using
sensor. (c) Rack Force estimated using the BT Model and measured using sensor. (d) Rack Force
estimated using the RR Model and measured using sensor.

In other words, I found that in terms of driving on roads with low frequency profile variations
(<8Hz) with non-aggressive steering maneuvers, all three estimators I developed seem to work
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Figure 4.10: Experiment 3 performed with a slalom maneuver on a road with cleats of varying
heights. Vehicle speed maintained at about 30 km/h. (a) Road profile variation (schematic) and
input steering angle and road slope (graph). (b) Rack Force estimated using the LT Model and
measured using sensor. (c) Rack Force estimated using the BT Model and measured using sensor.
(d) Rack Force estimated using the RR Model and measured using sensor.
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sufficiently well. For driving with slalom steering maneuvers on low frequency road profile
variations, however, both the BT Model and the RR Model outperform the LT Model. The BT
Model appears to be a better choice for driving on low frequency road profile variations as it is
computationally less intensive than the RR Model and produces rack force estimates of accuracy
similar to the RR Model. However, for high frequency road profile variation such as produced while
driving on road cleats, the RR Model appears to be a better choice for rack force estimation as it
supports better estimation performance than the other models.

The rack force estimators presented in this chapter are capable of estimating rack force for
driving on different types of road profiles and can therefore be utilized to develop and improve
various driver assist controllers. The estimators can be used in existing driver assist controllers that
temporarily deactivate their functions when the vehicle transitions from a flat road to an uneven
road (see, for example, controllers designed in [69,75,182,183]). The estimators can also be used
in virtual prototyping to analyse ride-comfort and durability of a vehicle and in simulating road
feedback in hardware-in-the-loop simulators and simulation experiments [78,144,184]. The RR
Model, in particular, can also be used in semi and fully autonomous vehicles equipped with advanced
road preview technology. Using the road profile inputs available from road preview sensors, the RR
Model can enable pre-emptive estimation of rack force and modulation of steering torque feedback
while driving on roads with slopes, cleats, or potholes [185].

4.5.2 Estimation of Rack Force Components

Results from the CarSim simulation study (Fig. 4.11) illustrate the accuracy of rack force
estimates due to steering angle and road profile produced by the BT Model. Inputs used to estimate
rack force due to road profile (RFRoad) are shown in Fig. 4.11a, and to estimate rack force due to
steering angle (RFSteering) are shown in Fig. 4.11c. Note that, as mentioned in Section 4.4.2, the
input steering angle and road slopes for the simulation study were modeled after the original inputs
to Experiment 1. Therefore, the higher fidelity RR model was not necessary for component-wise
estimation because the BT model and RR model had similar performance in Experiment 1 (see
Table 4.1).

The RFSteering estimated using the BT Model agreed well with RFSteering estimated using
CarSim (Fig. 4.11b). The normalized root mean square error between the estimate produced by
the BT Model and the estimate produced by CarSim was found to be only 4.27%. Likewise, the
estimates of RFRoad produced using the BT Model also matched the estimates produced using
CarSim with an estimation error of only 5.09%.

Next, I investigated how much the residual rack force ∆RF contributes to the total rack force.
To this end, I compared the sum of the component-wise estimates RFSteering and RFRoad with the
total steering rack force estimated by the BT model and to the rack force measured using the rack
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Figure 4.11: Comparison of component wise estimates of rack force generated by the BT Model
with the estimates generated by CarSim in Experiment 1. Vehicle speed maintained at about 20
km/h. (a) Input zero steering angle and non-zero road slope. (b) RFRoad estimated using the BT
Model and using CarSim. (c) Input non-zero steering angle and zero road slope. (d) RFSteering
estimated using the BT Model and using CarSim.

force sensor mounted in the vehicle (see Fig. 4.12). The sum of component-wise estimates of rack
force matched well with the total steering rack force estimated by the BT Model (Fig. 4.12b). The
normalized root mean square error between RFSteering +RFRoad and the rack force RF estimated
using the BT Model was found to be only 2.49%. In other words, the influence of residual rack
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force ∆RF on total rack force was found to be negligible.
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Figure 4.12: Comparison of total rack force estimate as a sum of component-wise rack force
estimates generated by the BT Model with the measured rack force and the total rack force estimated
using the BT Model. Vehicle speed maintained at about 20 km/h. (a) Input non-zero steering angle
and non-zero road slope. (b) Sum of component-wise rack force estimates generated by the BT
Model, total rack force generated by the BT Model, and rack force measured using sensor.

The results from the simulation study show that for driving on road slopes with large variations,
the BT Model is capable of producing component-wise estimates of rack force to perform targeted
compensation. Considering the higher DOF VTM-based estimator in CarSim as a reference, the
independent estimates of rack force due to steering angle and due to road profile produced by the
simpler BT Model were both found to be accurate. Moreover, at least for the road slope variation of
about −13◦ to 13◦ and steering angle variation of about −20◦ to 20◦, the residual rack was found to
be negligible and rack force turned out to be mostly composed of RFSteering and RFRoad.

The results on the component-wise estimates of rack force can be utilized in the design of
power steering control algorithms and driver assist features. Using the independent estimates of the
rack force components, controllers may be designed to enable targeted compensation for enhanced
steering feel (as suggested in [74,158]). Rack force components can also be suppressed entirely to
determine a fault or undesirable behavior in the steering system [147]. Targeted compensation may
also have critical applications in the steer-by-wire systems, driving simulators, and hardware-in-loop
simulators where re-creating road feel and tuning the steering feel have always been an active area
of research [78,149]. The individual components of rack force can also be selectively tuned and
displayed to the driver to realize different driving modes such as “luxurious” or “sporty” driving as
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discussed in [147].

4.6 Summary and Future Work

In this chapter, I presented three vehicle and tire model based (VTM-based) estimators that
are capable of estimating rack force for driving on uneven roads. I investigated the level of tire
model complexity required to accurately estimate rack force for driving on low and high frequency
road profile variations with aggressive and non-aggressive steering maneuvers. I found that the
estimators with non-linear tire models produced more accurate rack force estimates for driving with
aggressive steering maneuvers. Moreover, out of the three tire models, the most complex tire model
(Rigid Ring tire model) demonstrated the highest rack force estimation accuracy for driving on high
frequency road profile variations.

In addition, I tested whether the VTM-based estimators can decompose rack force into individual
components and enable targeted compensation to enhance steering feel. To this end I showed that
for a driving maneuver with large road slope variation, the component-wise estimates of rack
force produced by one of the three estimators match the component-wise estimates produced by a
higher DOF vehicle and tire model estimator available in a commercial vehicle dynamics package
(CarSim). For one driving experiment, I also showed that rack force seems to primarily consist
of rack force due to steering angle and due to road profile even though rack force is a nonlinear
function of steering angle and road profile.

In the driving experiments presented in this chapter, the speed was maintained consistent in
order to highlight the individual effects of steering angle and road profile on rack force. Likewise,
the friction conditions were assumed constant, but varying friction conditions could significantly
affect rack force estimation [148]. In future, it would be interesting to explore the effects of varying
speed and friction on the rack force estimates. The tire model presented in this chapter could be
also supplemented with friction estimators like those presented in [186,187] to estimate friction
coefficient in real-time and improve the estimation performance.

This study also assumed that an accurate estimate of road profile was always available. Since
the study was limited to only two types of road profile variations (road slopes and cleats) I only
used/developed methods that could estimate those specific types of road profile changes. Road
profile estimation using advanced methods, such as disturbance observers [166] and road preview
[168], was considered outside the scope of the study. I believe that in future it would be interesting
to explore the effects of using advance road profile estimation methods on the accuracy of rack
force estimation. Future work can also focus on studying the effects of varying friction conditions,
vehicle speeds, and road profiles on residual rack force and rack force decomposition.

In comparison to other existing estimation techniques, the VTM-based rack force estimators use
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significantly more tire and vehicle specific parameters. Future studies can investigate robustness
of VTM-based estimators against the uncertainty in the values of the parameters. It will also be
worthwhile to explore other tire models such as the Dugoff, LuGre, and Buckhardt models in
the future. Future work can also focus on using VTM-based estimators to support development
and improvement of EPS control algorithms and advanced driver assist functions, and to perform
pre-emptive estimation and rejection of road disturbances using advanced road preview. Finally,
the estimators presented in this chapter can be used to produce component-wise estimates of rack
force due to steering angle and road profile and perform targeted compensation on the rack force
components to improve steering feel.
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CHAPTER 5

Modeling Haptic Communication in Physical Human-Human Interaction

5.1 Introduction

A team of two humans, or a dyad, is generally more capable than either human performing the
same task individually. Experiments have shown that dyads demonstrate higher performance in
completing point-to-point movements [82,188], cyclical and continuous aiming movements [84],
and tracking moving targets [83,189] when compared with individual agents. The results seem to
hold true regardless of the performance and skills of either partner [87]. Investigating the means by
which a human-human dyad leads to an increased performance can help design robotic partners that
can collaborate efficiently with humans [83,190].

Common explanations for the performance improvement associated with a dyad include load
sharing, social facilitation, and haptic communication. Load sharing, that results in lowering the
individual forces required to perform a collaborative task, is often not a factor and can be eliminated
by halving the load for the single agent (see, for example, [82,83]). Social facilitation, or the effect
that people work harder with someone present in the room [191], can also be controlled in the
experiment design [82].

Haptic communication is believed to be one of the primary reasons for the performance im-
provement observed in dyads [54,82,83,85,87]. Haptic communication involves exchange of force
or velocity signals between the partners who are simultaneously engaged in perception (including
haptic perception) and motor action. When interacting through a physical link, the members of
a dyad grasp the common object or linkage, which then acts as a haptic channel between them.
Through the haptic channel, the members can coordinate contributions, communicate intentions,
negotiate roles, or adapt behaviors. Thus, haptic communication is thought to facilitate the develop-
ment of a cooperative strategy and a shared action plan that is not available to dyad members when
they work alone [82,83].

While the literature provides significant evidence on the utility of haptic communication in
establishing the performance improvement enjoyed by dyads, the evidence remains overwhelmingly
empirical. There exists limited knowledge about the interpretation of haptic signals in human-
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human dyadic interaction, making it difficult to extend the insights derived from existing studies to
designing intuitive human-robot collaboration [86,190]. We are thus motivated to develop models
of haptic communication among dyad members that can describe how a human-human dyad, by
virtue of haptic interaction, can outperform a single human.

Existing models of haptically interacting dyads focus primarily on human-robot collaboration
[85,192]. For example, Evrard and Kheddar [85] presented a model to describe interaction behaviors
of human-robot dyads in collaborative physical tasks. Wang et al. [193] presented a Hidden Markov
Model approach to enable intuitive handshaking between a human and a robot. Inga et al. [194]
proposed an optimal control approach to identify human behavior when haptically collaborating
with an automation system. The majority of the existing methods do not describe the behavior of
physically interacting human-human dyads.

Haptic human-human interaction has been studied by Feth et al. in [86] where they presented
control-theoretic models to describe dyadic interaction in a pursuit tracking task. They showed
that the McRuer crossover model [88] describes the behavior of humans working alone as well as
when working as human-human dyads. Interestingly, they showed that the crossover model cannot
describe the behavior of an agent within a dyad, indicating that haptic communication changes
individual behavior. However, the authors did not offer a mechanistic explanation for how the
individual behavior changed due to haptic interaction. Moreover, their models did not explain how
haptic interaction improved the performance of a dyad.

In this chapter, I present a simplest competent model for haptic communication that is aimed
at describing the performance improvement observed in dyadic interaction and the changes in
the behavior of an agent within a dyad. Like [86], I adopt the McRuer model to describe human
tracking behavior of an individual, but I also explicitly model haptic communication through
an object or linkage connecting two agents in the context of a pursuit tracking task. A haptic
communication pathway is uncovered that supports a means to describe how two agents acting
together can outperform either agent acting alone, even when either agent acts only on half the
mass.

5.2 Modeling Haptic Communication

Consider an object of mass m and another of mass m/2, each responding with velocity ẏ to a
force F applied by a single agent (see Figs. 5.1A 5.1B). Let us also consider an object of mass m
and velocity ẏ responding the forces F1 and F2 applied by each of two agents, as shown in 5.1C.
Assume ẏ, F , F1, and F2 are all positive when directed to the right. To rule out the possibility of
load sharing, that is that two agents can move twice the amount of load that a single agent can
move, let us compare the performance of two agents acting on mass m against a single agent acting
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on half the mass m/2. Through this comparison I aim to show that haptic feedback between the
agents will enable a performance that exceeds the additive performance of individual agents. But
first a model for haptic communication must be developed and key to that development is to split
the mass m into two parts of mass m/2 with an intervening spring of stiffness k, as in Fig. 5.1D.
The intervening spring may represent a force sensor with large stiffness located at the interaction
point between the two masses [190].
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Figure 5.1: A) and B) depict an object manipulated by a single agent; either a full or half-mass
respectively. C) and D) depict an object manipulated by two agents. The internal force in a single
rigid body (C) can be expressed as the action of an infinitely stiff spring connecting two body halves
(D).

As a response to the forces they apply, each agent feels the (common) motion ẏ of the object. Yet
the agents can communicate with one another through the object. That is, each agent knows what
force the other agent is applying even as they modulate their own applied force to produce a desired
motion. Intuitively, this haptic communication feels like a reaction force from the object—yet
the reaction to an applied force must be a motion. One way to describe haptic communication
through the object is by way of internal models: using knowledge of their own applied force and the
response motion ẏ with a model of mass dynamics ÿ = 1

m
(F1 + F2), each agent can easily figure

out the other agent’s applied force. In the following, however, I will model haptic communication
between the two agents through the internal force Fk = 1

2
(F2 − F1). The internal force can be

considered the action of an infinitely stiff spring at the center of the object that holds together the
two object halves, each of mass m/2 (see Fig. 5.1D). To anticipate a parallel derivation below, I use
a block diagram to express Fk as the action of a spring of stiffness k and then “close the loop” to
produce an equivalent model.

As shown in Fig. 5.2A, the spring force Fk creates a feedback loop around each of the mass
halves. The displacement y is simply the center of the spring, or the average of displacements x and
z. The transfer function relating the spring force Fk to the difference F2 − F1 reads

Fk
F2 − F1

=
1

ms2

2k
+ 2

∣∣∣∣
k→∞

= 1
2
, (5.1)
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Figure 5.2: As the stiffness k becomes infinitely stiff, it rigidly links the two mass halves. Block
diagram (A) may then be replaced by (B), wherein the mass halves are combined and the feedback
paths involving the spring force Fk have been eliminated. An internal force computed with the
coefficient 1/2 remains.

where s is the Laplace variable. Thus the block diagram in Fig. 5.2A, with Fk = k(x − y) is
equivalent to the block diagram with Fk = 1

2
(F2 − F1) in Fig. 5.2B.

I will adopt the McRuer Crossover model [86,88] to describe the process by which a human
operator generates and applies force F to produce object motion y that tracks an unpredictable
reference signal r (see Fig. 5.3A). An unpredictable signal does not have a perceptible pattern (for
example a large sum of sinusoids) and cannot be addressed with anticipatory control. The McRuer
model states that the open loop transfer function L(s), comprising the human controller C(s) and
plant dynamics P (s), can be described, within a decade bandwidth centered at ωc, as an integrator
having a crossover frequency ωc.

L(s) =
ωc
s
e−τs. (5.2)

The pure delay of τ s accounts for neuromotor delay. Thus according to McRuer, the human
operator inverts whatever portion of the plant dynamics P (s) = 1/ms2 necessary to produce a loop
transfer function L(s) = ωc/s. For simplicity, the neuromotor delay is ignored. In the case of a
simple mass m, human control action becomes a product of mass m, gain ωc and a differentiator,
that is, C(s) = mωcs. Assuming m = 1kg, human controller reduces to C(s) = ωcs.

With empirical support from [86], let us assume that each human operator acting as part of a
dyad also behaves according to the McRuer model, but acts also on half the mass m/2. To model
haptic feedback, let us make the internal force Fk available to each human controller as an additional
signal input (see Fig. 5.3B). Let us now assume that the response to visual signals r and y that
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Figure 5.3: Block diagram models of human tracking control in individuals (A) and dyads (B-E)
guided by visual and haptic sensory feedback.

follows the McRuer model can be separated from the response to the haptic signal Fk, and call
the two parts C̄i(s) and C ′i(s). In Fig. 5.3C I have both separated C̄i from C ′i(s) and closed the
loop around k (as in Fig. 5.2A). Note that before closing the loop around k, it becomes apparent
that C ′i(s) is a signal path in parallel to the spring force Fk for each of the two human operators
comprising the dyad. Let us then reduce the block diagram in which C ′1(s) and C ′2(s) appear as
feedback operators (assuming they are simply gains). What emerges is a two-port, or 2x2 matrix of
transfer functions that relates the applied forces F1 and F2 to the control actions u1 and u2 (see Fig.
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5.3D). A straight-forward reading of the block diagram in Figure 5.3C produces:[
F1

F2

]
=

1

1 + 1
2
(C ′1 + C ′2)

[
1 + 1

2
C ′2

1
2
C ′1

1
2
C ′2 1 + 1

2
C ′1

][
u1

u2

]
(5.3)

Note that if C ′1 = C ′2 = 0, the coefficient matrix reduces to the identity matrix, representing the
case of no haptic communication between the agents. Otherwise it is quite apparent from Fig. 5.3D
that the haptic communication has established a means for the two human agents to cooperate with
or compensate for one another. The diagonal entries of the coefficient matrix describe gains that the
other agent has available to compensate for each agent’s own control action. For example, C ′2 is a
gain belonging to agent 2 that multiplies u1 and appears on the direct path for the applied force F1

(and vice-versa). The off-diagonal entries of the coefficient matrix add components to each agent’s
applied force that depend on the other agent’s control action. That is, C1 is a gain belonging to
agent 1 that multiplies u2 and adds to the applied force F1. Combining the signal pathways yields
the alternative expression

y =
1

ms2

[
1 + C ′2

1 + 1
2
(C ′1 + C ′2)

u1 +
1 + C ′1

1 + 1
2
(C ′1 + C ′2)

u2

]
, (5.4)

as shown in Fig. 5.3E. From this block diagram and expression it becomes apparent that if u1 = u2

(the two agents apply perfectly balanced control actions) and either C ′1 = C ′2 = 0 (no haptic
communication) or C ′1 = C ′2 (perfectly balanced compensation), the loop gain L(s) = C ′1 + C ′2.

Let us assume, in the manner of McRuer, that the signals u1 and u2 are produced in response to
e = r − y using the control actions C̄1(s) = ωc1s and C̄2(s) = ωc2s. The gains ωc1 and ωc2 set the
crossover frequencies, and in general they carry different values to represent different skill levels of
the two agents. The performance of the dyad acting without haptic feedback will be determined by
the parallel configuration of controllers C̄1(s) and C̄2(s) and can be characterized by the crossover
frequency ωc1 + ωc2. With the addition of haptic feedback, the controllers C ′1(s) and C ′2(s) are
made available to the two agents. These control design variables C ′1(s) and C ′2(s) can now be set by
each agent to achieve dyad performance that exceeds the performance of either agent acting alone
and the performance of the dyad acting without haptic feedback. The new design variables enter the
expression for the loop gain in the coefficients u1 and u2 appearing in Eq. 5.4. Let us suppose that
ωc1 and ωc2 are fixed and further suppose that C ′1(s) and C ′2(s) are simply gains. Essentially any

performance can be achieved by the dyad with haptic feedback. Dyad performance can be assessed
in terms of the crossover frequency ωc achieved in the loop transfer function L(s) pertaining to the
model in Fig. 5.3E. Any loop gain or system crossover frequency can be achieved by setting gain
values for C ′1 and C ′2. However, to achieve a specific ωc, the variables C ′1 and C ′2 must be selected
in a coordinated fashion and as functions of ωc1 and ωc2 .
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Given a specific desired crossover frequency ωc for the overall system, and given the baseline
performance ωc1 and ωc2 of either agent, Eq. 5.4 can be used to establish a relationship between C ′1
and C ′2:

C ′1 =
(ωc1 − ωc)
ωc − ωc2

C ′2 +
(ωc1 + ωc2 − 2ωc)

ωc − ωc2
(5.5)

The values for C ′1 and C ′2 that together achieve a given dyad performance ωc lie along a straight

line C ′1 = mC ′2 + b with slope m =
(ωc1 − ωc)
ωc − ωc2

and intercept b =
(ωc1 + ωc2 − 2ωc)

ωc − ωc2
. These lines

are presented in the form of a color map in Fig. 5.4. Interestingly, if the skill levels are the same
(ωc1 = ωc2) then there is nothing to be done through haptic communication!

,desired

1

=6

0

5

-5
-5 -11/3 5

Figure 5.4: The system crossover frequency ωc is shown as a colormap. The crossover frequency
is a function of C ′1 and C ′2 corresponding to the loop transfer function L(s) of Fig. 5.3E. For the
plot shown ωc1 = 1 rad/s and ωc2 = 1.5 rad/s. Note that the frequency ωc is not defined for the
coordinates (C ′1, C

′
2) on the line C ′1 + C ′2 = −2 according to Eq. 5.4.

5.3 Simulation Results

A simulation study was undertaken to visualize the contribution, as predicted by the model, of
haptic communication to the performance of a dyad. I aim to validate that with haptic communication
the dyad can outperform either agent acting alone, even when either agent acts on only half the
mass. In the simulations I supposed that each agent acted to realize a single integrator in the loop
transfer function (each agent acted as a pure differentiator), but the second agent used 50% more
gain. That is, ωc1 = 1 rad/s and ωc2 = 1.5 rad/s, or C̄1 = s and C̄2 = 1.5s. I chose 6 rad/s for the
desired loop crossover frequency or loop gain ωc, as indicated in Fig. 5.4. I then selected C ′2 = 1
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and used Eq. 5.5 to obtain C ′1 = −11/3. The mass m was set to 1 kg.
To visualize the performance of the dyad relative to either agent acting alone, Fig. 5.5A shows

the step response of the dyad and each agent acting on the full mass m. Fig. 5.5B shows the dyad
and each agent acting on the half mass m/2. The dyad outperforms the single agents in both the
full and the half mass cases in terms of the response times.
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Figure 5.5: Step response of a dyad interacting with a full mass overlaid with the step response
of two agents interacting with: A) a full mass and B) a half-mass. The corresponding free-body
diagrams for a single agent and a dyad are also shown. The dyad demonstrates faster rise times and
outperforms the single agents in both cases.

Fig. 5.6A shows that the dyad attempting to track a unit step reference with the benefit of haptic
feedback outperforms a dyad acting without haptic feedback. The response with haptic feedback
corresponds to Eq. 5.4 (and Fig. 5.3E) with C ′1 = −11/3 and C ′2 = −1, and the response without
haptic feedback corresponds to Eq. 5.4 with C ′1 and C ′2 set to zero. The response is faster (the rise
time is lower) with haptic feedback in comparison to the case without feedback. Fig. 5.6B shows
the tracking performance for a multi-sine reference. Both the tracking error and the response time
of the dyad with haptic feedback are lower indicating higher performance with haptic feedback than
without feedback for the multi-sine case as well.

The forces applied by the two agents to track a unit step reference are shown in Fig. 5.7A and
Fig. 5.7B respectively. The two agents apply larger individual forces, and hence a larger net force,
when haptic feedback is present. Moreover, the magnitude of internal force applied by the agents is
larger in the presence of haptic feedback as shown in Fig. 5.7C.
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Figure 5.6: The response of single agent and dyad to: A) a step input and B) a multi-sine signal (a
sum of sinusoids). The dyad with haptic feedback outperforms the dyad without haptic feedback
both in terms of tracking performance and rise times.

5.4 Discussion

Using the internal force as a means to describe haptic communication through an object, I have
developed a dyad model that is capable of outperforming either individual acting alone and the
same dyad without haptic feedback. Whether the communication pathway that has been modeled
actually underlies the performance benefit enjoyed by dyads will have to be empirically validated.
A comparison of dyad performance across conditions with and without haptic feedback requires
an apparatus capable of rendering the force transmitted across a linkage connecting the two object
halves, such as that developed for the experiments presented in [83,86,190]. Indeed, a performance
benefit was observed in a tracking task for a dyad with haptic feedback compared to individuals
acting on either a half or full mass [83]. It will be interesting to add the dyad acting without haptic
feedback and further to determine whether the model predicts the internal forces.

It remains to extract additional testable hypotheses from the developed model. While the signals
u1 and u2 are not accessible to measurement, one could imagine running a human subject experiment
and monitoring the motion y in relation to the reference r along with the applied forces F1 and
F2 to estimate values for the gains C ′1 and C ′2 of the model. The force plots in Fig. 5.7 indicate
that the dyad members apply larger individual forces and larger internal force ((F2 − F1)/2) to
improve performance when haptic feedback is available, an observation that is already corroborated

92



-100

0

200

400

200

0

-100

50

0

-50

-100

F
o
rc

e 
(N
)

F
o
rc

e 
(N
)

A)

B)
F

o
rc

e 
(N
)

C)

m

y
.

F2F1

Dyad

F2, Haptic OnF1, Haptic On

F2, Haptic OffF1, Haptic Off

Internal Force, Haptic Off

Internal Force, Haptic On

0.8 0.9 1 1.1 1.2

Time (s)

Figure 5.7: The forces F1 and F2 applied by each member of a dyad to track a unit step reference
A) with haptic feedback and B) without haptic feedback. The resulting internal force is shown in C).
Without haptic feedback the dyad members apply lower individual forces and an internal force of
lower magnitude when compared with the forces with haptic feedback.

by experiments [86,195]. Thus one way to validate the model would be to compare predicted
and observed internal forces and check their correlation with performance improvements. The
relationship to cognitive load would also be worth exploring.

As previously highlighted in [82,83], the performance advantage conferred on the dyad does not
accrue because of load sharing. As highlighted in Fig. 5.5, the dyad can reach a level of performance
that exceeds either agent acting alone, even when the agents move only half the mass. The dyad
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performance can in fact be specified in terms of the loop gain ωc, and with the use of the relationship
in Eq. 5.5 and Fig. 5.4, values for C ′1 and C ′2 can be found to satisfy the desired system loop gain.
I showed that it is precisely haptic communication through the object, or awareness of the other
agent’s actions in addition to one’s own actions that enables new feedback loops to be closed around
the manipulation goal.

The adaptation that each dyad member undertakes in response to the other member is not a
dynamic process in the current model. Nor have I used an adaptive control framework to describe
mutual accommodation, though such a treatment might be profitable. A model that includes support
for adaptive processes would be necessary to describe negotiation, the adoption of distinct roles, and
specialization in dyads. Such processes have been the theme of several conjectures and empirical
demonstrations of dyad superiority [196]. Members of specialized dyads may adopt the distinct
roles of accelerating and decelerating the shared object [82], of executing and initiating object
motion [190], and of controlling and stabilizing the object [197]. While currently there seems to be
no interpretation of the feedback gains C ′1, C ′2 as roles adopted by the members of a dyad, I believe
that insights derived from the model can be used to understand how specialization occurs in dyadic
interaction.

I have neglected sensorimotor delay in the current model, which would be an important part to
any competent model of human behavior. Certainly sensorimotor delay is part of the base McRuer
model and could easily be incorporated into the present treatment. I have also not covered dynamic
compensation, perhaps derivative compensation that has a physical equivalent in the form of a
damper. I would also like to test whether the findings remain the same if I add a damping (and/or
a stiffness) term to the plant model which currently only consists of a mass term. Finally, the
model formulation only applies to reference tracking for moving targets as presented in [83,189]
but I believe it can easily be modified to cover point-to-point movements. Either optimal control
approaches or relationships between the information-theoretic basis of Fitt’s law [198,199] and its
control-theoretic counterparts could possibly be used as starting points.
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CHAPTER 6

Conclusion

Semi-autonomous vehicles aim to combine the capabilities of human and automation to improve
driving safety and performance. However, developing a combination scheme that preserves the
individual strengths of human and automation yet allows them to cover for each other’s faults
remains a challenge. A majority of existing schemes require the driver to monitor automation
actions and take over control in safety-critical scenarios. However, taking over control from an
automation system in unexpected scenarios usually requires additional cognitive rather than manual
skills, and skills that may be hard to develop and maintain. Drivers left with the task of supervising
automation tend to experience a reduction in vigilance, situation awareness, and even skills, and are
prone to becoming overreliant on automation. These issues can expand instead of reducing problems
for the human driver, especially when faults occur. Guidelines for human-automation interaction
design dictate that such issues can be mitigated by designing a human-automation interface that
keeps the drivers engaged in the driving task through constant interaction and keeps the driver aware
of automation’s actions and the external environment through continuous feedback.

This dissertation investigated the potential benefits of incorporating haptic feedback into the
human-automation interface for improving driver engagement and human-automation interaction
in semi-autonomous driving. I presented findings demonstrating that haptic feedback facilitates
smoother authority transitions and improves driver engagement in comparison to the available
alternative methods, presented models to estimate haptic feedback from the road for driving on
uneven roads, and presented a model for haptic communication aimed at describing how haptic
feedback improves shared task performance. These contributions are further described below.

6.1 Contributions

1. Findings demonstrating that schemes supporting continuous authority transitions, such
as haptic shared control, outperform schemes with discrete or instantaneous transitions:
Human-automation teams are particularly prone to errors during control authority transfers. De-
pending on the driving scenario, drivers may either need to use a discrete control sharing scheme,
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where the authority transfers as a lumped whole between human and automation at discrete instants
of time, or a continuous control sharing scheme, where authority transfers gradually over a period
of time. Knowing which control sharing scheme supports smooth and intuitive transfers of control
authority requires directly comparing the schemes with one another. This dissertation presented
a driving simulator study that compared the obstacle avoidance performance between continuous
and discrete control sharing schemes during human and automation faults. One continuous and
two discrete control sharing schemes were implemented in a single driving simulator featuring a
motorized steering wheel. In one discrete scheme the transitions were initiated by the driver and
in the other by the automation. The continuous control sharing scheme (HSC) supported the best
overall driving performance, in terms of obstacle avoidance, maneuvering efficiency, and driver
engagement. Team performance suffered most under the discrete control sharing scheme with
automation-initiated transitions during automation faults. On the other hand, during human faults,
the performance was the lowest under the discrete scheme with driver-initiated transitions. These
results were published in [54].

2. Findings demonstrating the existence of a ‘fault protection tradeoff’: as the control au-
thority provided to one agent increases, the protection against that agent’s faults provided by
the other agent reduces:
Determining how to allocate control authority between human and automation during emergency
scenarios is critical to driving safety, especially when both human and automation are subject to
faults. However, existing studies do not investigate the influence of different levels of automation
authority on emergency obstacle avoidance performance. This dissertation presented a driving sim-
ulator study which compared four schemes in their ability to enable successful obstacle evasion in
emergency scenarios during driver and automation faults. The steering wheel was either decoupled
from the tires and the automation was given full authority, or was coupled to the tires with HSC
and the automation was provided high or low mechanical impedance (amount of control authority).
A model to describe physical driver-automation interaction was also developed to derive insights
into driver behavior. The results highlighted the fault protection tradeoff. Additional results showed
that decoupling the drivers invoked out-of-the-loop issues and misled the drivers to believe that
they were in control. Moreover, coupled drivers in the high impedance HSC group applied larger
steering effort than the other conditions. Low impedance HSC resulted in more obstacle hits during
driver faults but prevented more collisions during automation faults. These results were published
in [133,200].

3. Development and validation of road feedback estimators for driving on uneven roads:
Haptic feedback from the road, or road feedback, is critical to maintaining a driver’s awareness
of the state of the vehicle and road conditions. Estimates of road feedback are used in a wide
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variety of driver assist systems to reduce driver effort and improve steering feel. Conventional road
feedback estimators ignore the presence of road profile variations and only consider the steering
angle as an input when estimating rack force. In this dissertation, I developed three vehicle and
tire dynamics based estimators that enable road feedback estimation on uneven roads. I tested and
compared the performance of these three estimators by performing driving experiments on different
road profile variations such as road slopes and cleats. I also presented results from a simulation
study to demonstrate that the developed estimators are capable of separately estimating the primary
components of road feedback: road feedback due to steering angle and road feedback due to road
profile. These results were published in [135,178,201].

4. Simplest competent model for haptic communication to describe the performance im-
provement observed in physical human-human interaction:
While the literature provides significant evidence that haptic communication improves the shared
performance of two human agents working together, the evidence remains mostly empirical. There
exists limited knowledge about the interpretation of haptic signals in human-human physical inter-
action, making it difficult to extend the insights derived from existing studies to automation design.
This dissertation presented a simulation study where internal force was used to model human-human
haptic communication through an object. The simulation results uncovered a haptic communication
pathway that supported a means to describe how two agents acting together could outperform the
two agents acting without haptic feedback or either agent acting alone, even when either agent acted
only on half the mass. The results also provided a mechanistic explanation for how the individual
behavior could change due to haptic interaction. These results were published in [202].

6.2 Limitations

Following are the main limitations of the work presented in this dissertation:

• Experimentation on a fixed base driving simulator: The experiments presented in Chapters
2 and 3 were both performed on a low fidelity fixed base driving simulator in a lab setting.
A human driver’s response to emergencies on a driving simulator is likely quite different
from their response in an actual vehicle where the risk is much higher. While drivers were
provided financial compensation for participating in the experiments, they were not provided
any reward for avoiding the obstacles which could have influenced their performance. The
results in the two experiments also depend on the particular implementation of each control
sharing scheme, which might be quite different in actual vehicles. The readers must take
these factors into consideration when evaluating the results presented in Chapters 2 and 3.

• Automation and human fault rates: While the timing of faults was unpredictable in the
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two human subjects experiments presented in Chapters 2 and 3, the fault rates were fixed
and rather high. Especially in the first experiment presented in Chapter 2, the fault rates for
both human and automation were set at 20% which is unrealistic to expect in actual driving
scenarios. Handling of a seldom occurring fault likely differs significantly from a fault that
occurs at an expected high rate of 20%. Learning from the Experiment 1, I reduced the rate
of faults in Experiment 2 presented in Chapter 3 to make them more ‘surprising’ and difficult
to anticipate. In Experiment 2, driver faults were induced at uneven rates in the trials during
an experiment. There were multiple trials in each experiment, and each trial had different
surroundings (the time of day and weather), and the locations of the obstacles. While these
measures were taken to discourage any learning or adaptation effects, the driver faults were
still induced at a higher and more predictable rates than they would occur in actual driving
scenarios. In actual driving, fault rates of automation are variable and are not well established.
Likewise, fault rates for humans may also vary considering the ever-changing road traffic and
driver assist technologies.

• Absence of speed control: The experiments presented in Chapters 2 and 3 also did not
provide any speed control. Subjects in both experiments reported that the lack of brakes
and throttle made it difficult to avoid collisions. While in the real world, drivers may prefer
braking instead of steering away from the obstacles, or some combination of the two, past
research has shown that for the speed and time-to-collision chosen in the experiments, steering
maneuvers result in more successful obstacle evasion than braking [61,64,143]. Moreover,
adding speed control in the study would have made it difficult to isolate the influence of the
driver’s steering behavior on obstacle evasion which was the focus of this dissertation.

• Lack of warnings and alerts: Another limitation of the two experiments presented in
Chapters 2 and 3 was a lack of warnings and alerts prior to obstacle evasions. Some subjects
reported that a warning could have prepared the drivers and improved the obstacle evasion
performance (consistent with [64,68]). Especially in the emergency collision avoidance
scenarios presented in Chapter 3, which provided only one second to the drivers to avoid the
obstacles, a warning could significantly influence obstacle avoidance performance. However,
note that one of the prime objectives of the two experiments was to evaluate the sensitivity of
different control sharing schemes to unanticipated faults. Adding warnings to the experiments
would have made the faults more predictable and would have made it difficult to evaluate the
capabilities of the control sharing schemes independent of the warnings.

• Influence of varying friction conditions and vehicle speed on road feedback estimation:
In the driving experiments presented in Chapter 4, the speed was maintained constant in
order to highlight the individual effects of steering angle and road profile on road feedback.
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Likewise, the friction conditions were assumed constant, but varying friction conditions
could significantly affect road feedback estimation [148]. The tire model used in the road
feedback estimators could be also supplemented with friction estimators like those presented in
[186,187] to estimate friction coefficient in real-time and improve the estimation performance.

• Road profile measurements in estimating road feedback: Road feedback estimators pre-
sented in Chapter 4 assumed that an accurate estimate of road profile was always available.
Moreover, since the focus of the work in Chapter 4 was limited to only two types of road
profile variations (road slopes and cleats), only the methods that could estimate those specific
types of road profile changes were used/developed. However, the problem of estimating the
road profile in real-time while driving is quite challenging. To account for any other type of
road profile variation in road feedback estimation, more work will have to be done on road
profile estimation.

• Plant model and human controller in the haptic communication model: Human agents
were modeled using a simple McRuer model in Chapter 5. While the McRuer crossover model
has been shown to describe the pursuit tracking behavior of an individual, only some evidence
exists towards its utility in predicting a human’s behavior in human-human interaction [86]. I
also neglected sensorimotor delay in the McRuer model, which would be an important part to
any competent model of human behavior. Furthermore, the designed human controller did not
capture the adaptation that each human agent undertakes in response to the other in human-
human interaction. Incorporating an adaptive controller in the model would be necessary
to describe negotiation, the adoption of distinct roles, and specialization in human-human
teams. I have also not tested whether the findings remain the same if I add a damping (and/or
a stiffness) term to the plant model which currently only consists of a mass term.

6.3 Future Work

6.3.1 Adaptive impedance haptic shared control

Chapter 3 presented a design tradeoff between the control authority provided to one agent and the
protection against that agent’s faults provided by the other agent. This became particularly evident
when comparing the results between the high and low automation impedance haptic shared control.
Using a high automation impedance in HSC resulted in more collisions during automation faults
but fewer collisions during driver faults. High impedance HSC was also perceived as discomforting
and difficult to overpower by the subjects. On the other hand, low impedance HSC resulted in
significantly fewer hits during automation faults and significantly higher hits during driver faults.
Low impedance HSC was easier to overpower but failed to suppress driver input during driver faults.
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Future studies should therefore focus on designing haptic shared control with automation
impedance that is safe to operate during both driver and automation faults. One potential way
forward is to combine the advantages of low and high impedance HSC design through an adaptive
impedance HSC system. An adaptive impedance HSC system would assume a high level of
authority during emergency situations in which the automation has high confidence, and a low level
of authority during situations in which the automation has low confidence, so as to grant override
power to the human [13,132,144]. The design challenge for such a system would be to estimate
automation confidence and to modulate automation impedance as a function of driver intention,
sensor precision, and environment complexity.

6.3.2 Multi-axis haptic feedback at the steering wheel

HSC takes its inspiration from two humans collaborating on a manual task. Just like two humans
pushing and pulling on an object can read each other’s intention through haptic feedback, the human
driver and the automation system in HSC can read each other’s control intentions (steering angle
command) and control authority (mechanical impedance) by feeling the other agent’s torque in the
axis of control (at the steering wheel). However, two cooperating humans typically supplement
their pushing and pulling with other communication channels, which often leads to significant
improvements in performance on the shared task. Likewise, haptic feedback in the axis of control
can be further supplemented with additional communication channels to further improve driving
performance.

One way to introduce an additional channel of communication in HSC is by providing haptic
feedback in the axis of steering grip. Human drivers tend to increase their grip on the steering
wheel when they desire more control authority [55]. A steering wheel that can sense driver grip
force can immediately communicate to the automation system that the driver is sending a takeover
request. Moreover, if the same steering interface provides force feedback in the axis of grip it can
communicate to the driver whether their takeover request is accepted or denied. The force feedback
on the steering wheel can be further accompanied with shape change to make the feedback more
noticeable. For example, a driver squeezing the steering wheel to request greater control authority
who feels the steering wheel expand in response can immediately know that the takeover request
was not granted. On the other hand, if the steering wheel deflates under an increase in grip, the
driver will immediately know that the takeover request was granted and that they are now in control.
Advantageously, the axis of grip and shape change will be orthogonal to the axis of control, which
will ensure that the shape change is independent of the actual steering task further making the
interface information-rich. Moreover, feedback through shape change can communicate both visual
(change in shape) and tactile (haptic feedback) information.
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6.3.3 Adding speed control and warnings to the driving simulator

As mentioned in section 6.2, one limitation of the two experiments presented in Chapters 2
and 3 of this dissertation is the absence of speed control and collision warnings. In future studies
it will be worthwhile to add throttle and brake controls to study how the driver’s steering input is
influenced and supplemented by the driver’s speed input. As demonstrated in [61], input at throttle
and brakes can further be used to estimate driver intent of avoiding an obstacle, which can be critical
in deriving further insights into driver behavior. Likewise, in future experiments it will be valuable
to explore the effectiveness of providing haptic, visual, and audio alerts and warnings before the
obstacle evasions.

6.3.4 Driver assistance systems utilizing road feedback components

As shown in Chapter 4, there are two primary components of road feedback—road feedback due
to steering angle and road feedback due to road profile—and these components can be estimated
independently using the developed rack force estimators. Using the component-wise estimates of
road feedback, controllers may be designed to enable targeted compensation for enhanced steering
feel (as suggested in [74,158]). Targeted compensation may also have applications in the steer-by-
wire systems, driving simulators, and hardware-in-loop simulators where re-creating road feel and
tuning the steering feel have been an active area of research [78,149]. Road feedback components
can also be suppressed entirely to determine a fault or undesirable behavior in the steering system
[147]. Finally, they can also be selectively tuned and displayed to the driver to realize different
driving modes such as “luxurious” or “sporty” driving as discussed in [147].

6.3.5 Preemptive road feedback estimation and compensation

The estimators developed in Chapter 4 can be utilized in semi and fully autonomous vehicles
equipped with advanced road preview technology to estimate road feedback ahead of time. This
is possible because the developed estimators use road profile explicitly as input to estimate road
feedback. In contrast, the conventional road feedback estimation methods do not use road profile as
input limiting them to only estimate road feedback when or after a road profile is traversed. Using
the road profile inputs available from road preview sensors (such as cameras, LiDAR and radar) the
developed estimators can preemptively estimate the steering torque feedback that the driver will
experience in the future [185]. Such estimates can be used to design smarter driver assist algorithms
that would preemptively compensate for any steering torque that might result from driving on
uneven roads such as slopes, cleats, or potholes, to further reduce driver effort and enhance steering
feel.

101



6.3.6 Empirical validation of haptic communication model

Chapter 5 described a human-human interaction model which revealed a haptic communication
pathway that can describe how two agents acting together with haptic feedback can outperform
the same two agents without haptic feedback and outperform either agent acting alone. While our
simulation results matched the results obtained in some empirical studies performed in the past,
they were still strictly theoretical in nature and were not supported by any new human subject
experiments. Future studies can perform a comparison of dyad performance across conditions with
and without haptic feedback using an apparatus capable of rendering the force transmitted across a
linkage connecting the two object halves, such as that developed for the experiments presented in
[83,86,190].

The force plots presented in Chapter 5 indicated that the dyad members apply larger individual
forces and larger internal force to improve performance when haptic feedback is available, an
observation that is already corroborated by experiments [86,195]. Thus another way to validate the
model would be to run a human subject experiment to compare predicted and observed internal
forces and check their correlation with performance improvements. One could also imagine
monitoring the output in relation to the reference along with the applied forces to estimate values
for the gains that are hypothesized to enable performance improvement with haptic communication.
These gains can then be utilized to design a robotic partner (or an automation system) that can
collaborate more efficiently with the human operator.
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[46] M. B. Bešlin, “Bile duct injuries during open and laparoscopic cholecystectomy at sestre milosrdnice university
hospital rom 1995 till 2001,” Acta Clin Croat, vol. 42, no. 3, pp. 217–223, 2003.

[47] D. A. Norman, “The ‘problem’ with automation: inappropriate feedback and interaction, not ‘over-automation’,”
Philosophical Transactions of the Royal Society of London. B, Biological Sciences, vol. 327, no. 1241, pp.
585–593, 1990.

[48] C. E. Billings, Aviation Automation: The Search For a Human-centered Approach. CRC Press, 2018.

105



[49] D. Abbink and M. Mulder, “Neuromuscular analysis as a guideline in designing shared control,” Advances in
Haptics, pp. 499–517, 2010.

[50] P. G. Griffiths and R. B. Gillespie, “Shared control between human and machine: haptic display of automation
during manual control of vehicle heading,” In: Proc. 12th International Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems (HAPTICS), pp. 358–366, 2004.

[51] B. A. Forsyth and K. E. MacLean, “Predictive haptic guidance: Intelligent user assistance for the control of
dynamic tasks,” IEEE transactions on visualization and computer graphics, vol. 12, no. 1, pp. 103–113, 2005.

[52] M. Mulder, D. a. Abbink, and E. R. Boer, “The effect of haptic guidance on curve negotiation behavior of
young, experienced drivers,” Conference Proceedings - IEEE International Conference on Systems, Man and
Cybernetics, pp. 804–809, 2008.

[53] S. M. Erlien, “Shared vehicle control using safe driving envelopes for obstacle avoidance and stability,” Ph.D.
dissertation, Stanford University, 2015.

[54] A. Bhardwaj, A. H. Ghasemi, Y. Zheng, H. Febbo, P. Jayakumar, T. Ersal, J. L. Stein, and R. B. Gillespie,
“Who’s the boss? arbitrating control authority between a human driver and automation system,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 68, pp. 144–160, 2020.

[55] H. Nakamura, D. Abbink, and M. Mulder, “Is grip strength related to neuromuscular admittance during steering
wheel control?” in 2011 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2011, pp.
1658–1663.

[56] P. G. Griffiths and R. B. Gillespie, “Sharing control between humans and automation using haptic interface:
primary and secondary task performance benefits,” Human factors, vol. 47, no. 3, pp. 574–590, 2005.

[57] K. K. Tsoi, M. Mulder, and D. A. Abbink, “Balancing safety and support: Changing lanes with a haptic
lane-keeping support system,” in 2010 IEEE international conference on systems, man and cybernetics. IEEE,
2010, pp. 1236–1243.

[58] M. Della Penna, M. M. van Paassen, D. A. Abbink, M. Mulder, and M. Mulder, “Reducing steering wheel
stiffness is beneficial in supporting evasive maneuvers,” in 2010 IEEE International Conference on Systems,
Man and Cybernetics. IEEE, 2010, pp. 1628–1635.

[59] F. Mars, D. Mathieu, and J.-M. Hoc, “Analysis of human-machine cooperation when driving with different
degrees of haptic shared control,” IEEE Transactions on Haptics, vol. 1412, no. c, pp. 1–1, 2014.

[60] S. M. Petermeijer, D. A. Abbink, and J. C. de Winter, “Should drivers be operating within an automation-free
bandwidth? evaluating haptic steering support systems with different levels of authority,” Human factors, vol. 57,
no. 1, pp. 5–20, 2015.

[61] M. Heesen, M. Dziennus, T. Hesse, A. Schieben, C. Brunken, C. Löper, J. Kelsch, and M. Baumann, “Interaction
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