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Abstract 

 The emergence of wireless sensors capable of sensing, embedded computing, and 

wireless communication has provided an affordable means of monitoring large-scale civil 

infrastructure systems with ease. To date, the majority of the existing monitoring systems, 

including those based on wireless sensors, are stationary with measurement nodes installed 

without an intention for relocation later. Many monitoring applications involving structural 

and geotechnical systems require a high density of sensors to provide sufficient spatial 

resolution to their assessment of system performance. While wireless sensors have made 

high density monitoring systems possible, an alternative approach would be to empower 

the mobility of the sensors themselves to transform wireless sensor networks (WSNs) into 

mobile sensor networks (MSNs). In doing so, many benefits would be derived including 

reducing the total number of sensors needed while introducing the ability to learn from the 

data obtained to improve the location of sensors installed. One approach to achieving 

MSNs is to integrate the use of unmanned aerial vehicles (UAVs) into the monitoring 

application. UAV-based MSNs have the potential to transform current monitoring 

practices by improving the speed and quality of data collected while reducing overall 

system costs. The efforts of this study have been chiefly focused upon using autonomous 

UAVs to deploy, operate, and reconfigure MSNs in a fully autonomous manner for field 

monitoring of civil infrastructure systems. 



 xxi 

 This study aims to overcome two challenges pertaining to UAV-enabled wireless 

monitoring: the need for high-precision localization methods for outdoor UAV navigation 

and facilitating modes of direct interaction between UAVs and their built or natural 

environments. A vision-aided UAV positioning algorithm is first introduced to augment 

traditional inertial sensing techniques to enhance the ability of UAVs to accurately localize 

themselves in a civil infrastructure system for placement of wireless sensors using an MSN 

architecture. Multi-resolution fiducial markers indicating sensor placement locations are 

applied to the surface of a structure, serving as navigation guides and precision landing 

targets for a UAV carrying a wireless sensor. Visual-inertial fusion is implemented via a 

discrete-time Kalman filter to further increase the robustness of the relative position 

estimation algorithm resulting in localization accuracies of 10 cm or smaller. The precision 

landing of UAVs that allows the MSN topology change is validated on a simple beam with 

the UAV-based MSN collecting ambient response data for extraction of global mode 

shapes of the structure. The work also explores the integration of a gripper with a UAV 

that facilitates the picking up and dropping of payloads with a ferrous surface. Specifically, 

the work explores the use of a magnetic gripper to drop defined weights from an elevation 

to provide a high energy seismic source for MSNs engaged in seismic monitoring 

applications. The dissertation reveals a 70% success rate in picking up payloads in an 

autonomous manner. Leveraging tailored visual detection and precise position control 

techniques for UAVs, the work illustrates the ability of UAVs to—in a repeated and 

autonomous fashion—deploy wireless geophones and to introduce an impulsive seismic 

source by dropping a weight from a defined elevation for in situ shear wave velocity 

profiling using the spectral analysis of surface waves (SASW) method. The dispersion 
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curve of the shear wave profile of the geotechnical system is shown nearly equal between 

the autonomous UAV-based MSN architecture and that taken by a traditional wired and 

manually operated SASW data collection system. The developments and proof-of-concept 

systems advanced in this study will extend the body of knowledge of robot-deployed MSN 

with the hope of extending the capabilities of monitoring systems while eradicating the 

need for human interventions in their design and use. 
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Chapter 1 Introduction 

1.1 Robotic Automation Technologies for Infrastructure Monitoring and 

Management 

 Civil infrastructure systems such as buildings, bridges, tunnels, dams, pipelines, 

and power plants represent an important asset of the society ensuring economic prosperity 

and social welfare. Consequently, the preservation and maintenance of existing civil 

infrastructure is crucial to enable, sustain, and enhance societal quality of life. The recent 

American Society of Civil Engineers (ASCE) Report Card for America’s Infrastructure in 

2021 has renewed attention to the condition of infrastructure in the United States. The 

report card gives the nation’s infrastructure a C- grade overall but some infrastructure 

systems receive a lower grade including dams (D), levees (D), roads (D), and stormwater 

systems (D), just to name a few (ASCE 2021a). It is estimated that failure to invest in the 

aging infrastructure would cost the United States more than $10.3 trillion in gross domestic 

product (GDP) by the year 2039 and more than 3 million jobs in 2039 (ASCE 2021b). 

Preventing these high economic costs can be addressed through improvements in 

inspecting and maintaining civil infrastructure systems. Among modern infrastructure 

maintenance practices, structural health monitoring (SHM) has played an increasingly 

critical role in ensuring the safety and integrity of in-service structures. 

 SHM entails deploying sensors temporarily or permanently installed in various 

locations in a civil infrastructure system to collect data on its response and load 
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environment. SHM also entails building analytical frameworks to extract value from the 

collected load and response time histories in the form of identified damage and 

deterioration (Farrar and Worden 2010). The information obtained from SHM can be used 

to verify structural properties, assess damage levels (namely, damage detection), plan 

timely preservation and maintenance activities, and predict future structural behavior and 

condition (namely, prognosis). By providing accurate and timely structural condition 

information to infrastructure owners and managers, SHM is rapidly becoming an essential 

component of structural asset management methods necessary to ensure sustainable and 

resilient civil infrastructure. 

 In traditional SHM system designs, sensor measurements are stored within a central 

data repository with communication between the repository and sensors established 

through the use of coaxial wiring. While wired communications are a secure and reliable 

means of transferring data, the installation of wires in large and complex structures can be 

expensive and labor-intensive. For example, the installation of a 12-channel wired 

structural monitoring system in a mid-rise building in 2002 for seismic monitoring cost up 

to $50,000 (roughly $4,200 per channel) (Çelebi 2002). Wired monitoring systems 

installed in the Tsing Ma suspension bridge in Hong Kong were estimated to cost in excess 

of $20,000 per sensing channel (Farrar 2001). In 2003, the costs for purchasing and 

deploying 40 permanent seismic stations, as part of the USArray network designed to 

examine Earth’s subsurface structure, were estimated to be $4.6 million (NRC 2006). 

 Wireless telemetry offers an alternative approach to transferring data in an SHM 

system; this can lower system costs while making systems more scalable (Sohraby, Minoli, 

and Znati 2007). Exploiting the latest advances in micro-electro-mechanical systems 
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(MEMS), microprocessors, and radio technologies, wireless sensors are essentially mobile 

data collection nodes capable of collecting data from traditional sensors (e.g., 

accelerometers, strain gages) and communicating sensor data wirelessly (Lynch and Loh 

2006). Compared to conventional tethered monitoring systems, the time and cost to install 

wireless sensors have been shown to be significantly reduced (S. Kim et al. 2007). When 

integrated with cloud computing platforms, data management for wireless sensor networks 

(WSNs) is more efficient and secure (Zhang et al. 2016). Another attractive functional 

attribute of wireless sensors are their onboard computation capabilities. These resources 

allow them to perform data interrogation tasks at the point of data collection. The benefit 

of onboard computing is the conversion of raw, high-bandwidth data into compressed 

information to be transmitted, thereby reducing data volumes to be transmitted (Bajwa et 

al. 2006). The use of wireless transmission of processed data helps to ensure the scalability 

of SHM systems for large and complex civil structures over long-term periods of 

monitoring. 

 Within the research community, wireless SHM systems have been installed and 

validated on a diverse set of civil infrastructure systems. Straser (1998) presented his early 

endeavors in designing and prototyping a wireless accelerometer system on the Alamosa 

Canyon Bridge in the state of New Mexico. The SHM system highlighted capabilities of 

both periodic monitoring and detection of extreme events such as earthquakes. Similarly, 

Lynch et al. (2006) successfully demonstrated a short-term deployment of a wireless 

monitoring system comprising 14 accelerometers in the Geumdang Bridge in South Korea. 

The wireless monitoring system was capable of accurate estimation of modal parameters 

of the bridge using the collected time-history acceleration responses. Buildings are 
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important to our everyday lives but are subjected to hazards such as strong winds and 

severe earthquakes. To mitigate these hazards, risk monitoring of buildings using a network 

of wireless sensors was proposed and validated on a two-story steel structure by Kurata et 

al. (2005). These wireless sensors called MOTE (Wait et al. 2002) were able to detect 

damages in different stories during shaking table tests. To aid in monitoring and designing 

of wind turbines, Swartz et al. (2010) reported on their use of wireless sensors including 

accelerometers and strain gauges to collect high-quality response data from three 

operational turbines and perform complete modal analysis of them. Ship hull monitoring 

benefits the prediction of ship responses and the assessment of the hull’s fatigue life. 

Johnson et al. (2018) validated their design of a wireless hull monitoring system and an 

associated analytical framework that was able to collect hull measurements and assess the 

performance of a vessel over its full life cycle. 

 While the advancement of sensing technology has unquestionably improved the 

way infrastructure systems are monitored, the vast majority of the current field deployed 

monitoring and SHM systems are stationary, meaning that their sensors (wired or wireless) 

are installed in a fixed location permanently with a geometric layout tailored to the 

objectives the monitoring system. Even though wireless sensors could be moved with great 

ease, they rarely are ever moved after installation as has been the case in the previously 

cited wireless monitoring studies. Therefore, a large array of sensors is needed to densely 

instrument a civil structure as is often required in order to achieve damage detection due to 

the local nature of damage and damage’s impact on measurements. This is unfortunate as 

an early promise of wireless sensing was the freedom afforded by being untethered. 
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 A wireless sensor network can be upgraded to a mobile sensor network (MSN) by 

including mobile sensing nodes that are designed to be moved over time (Akyildiz et al. 

2002; Zhu 2014). The monitoring process starts by deploying the MSN nodes in a localized 

neighborhood of a large structure to collect sufficient measurements within this area. The 

MSN is then moved to the next region of interest (ROI) with a different configuration. This 

procedure is repeated until the entire structure has been monitored by sensors. By 

monitoring a portion of the structure in a ROI for a period of time, a smaller number of 

nodes are required to achieve high spatial density, as shown in Figure 1-1. By reducing the 

number of sensing nodes needed in the MSN architecture, the overall cost of the monitoring 

system is reduced, thereby potentially driving greater adoption of sensors for SHM. 

Another advantage of a mobile, deployable sensing system compared to its fixed-location 

counterparts is the ability to adapt its sensing topology to structural changes and loading 

events as they emerge. For example, if damage is discovered at one location, sensors used 

at other locations can be moved to densify measurements at locations where more data is 

needed to quantify the damage. Statically placing an array of sensors in structures without 

any future topological modifications can be ineffective due to the fact that the location and 

timing of events of interest (i.e., structural damage) are usually unknown a priori (Huston 

et al. 2003). This uncertainty of when and where to measure often times puzzles the 

designers and users of SHM systems. If wireless sensors are rapidly moved to more 

advantageous positions when emergent structural damage is detected, the structural 

parameters associated with damage can be measured and recorded in a more timely and 

detailed fashion. 
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 To realize the benefits of mobile sensing networks, inducing the mobility of the 

sensors is of utmost importance. Manual movement by human installers is a 

straightforward solution. While humans have unique advantages in installing and 

uninstalling sensors, they also suffer from several disadvantages. First, manual sensor 

deployment processes can pose safety risks to the installer. For example, workers installing 

sensors on high bridges are exposed to dangers such as climbing potentially unstable 

 

(a) 

 

(b) 

Figure 1-1. Comparison of a static wireless sensor network and a “mobile” wireless 
sensor network deployed on a bridge: (a) a static sensor network comprising 13 sensing 
nodes installed at fixed locations with relatively low spatial resolution; (b) a mobile 
sensor network of eight nodes but movable from location to location in three regions of 
interest thereby offering high spatial resolution to the data collected. 
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structures and being suspended from significant heights. Another challenge is the general 

accessibility of many operational infrastructure systems. For example, traffic control can 

be necessary to ensure safe access to transportation structures where sensors are installed. 

Also, some infrastructure systems may be located in remote regions with site access 

difficult. Finally, human-operated sensor deployments and reconfigurations can have high 

costs associated with them including the cost of labor, operational shutdown of the 

structure (resulting in revenue loss such as in wind turbines), and human mistakes due to 

bias and fatigue. 

 Mounting wireless sensors onto robots is another option to achieve sensor mobility 

that is driving recent excitement. Advances in robotics have made robots increasingly 

feasible for autonomous field services. Modern robotic systems are gradually achieving 

performance similar to humans while enabling extended uses in contexts where human 

accessibility is impractical. By including a mobile robot as an integral part of the sensing 

system, a number of the aforementioned challenges with manual installation of sensors in 

structures can be overcome or at least reduced. In particular, robots can be used to—

possibly in an autonomous manner—first deploy and later move sensors around complex 

environments (Wang and Wu 2007), deliver power to sensors (Griffin and Detweiler 2012), 

calibrate sensor error (Gong, Yuan, and Ni 2000), detect sensor failure (Goel et al. 2000), 

collect sensor data (Kumar, Rus, and Singh 2004), and perform inference for decision-

making (Chung and Burdick 2007). The integration of robots into SHM systems holds 

tremendous promise and has only recently been explored (Sony, Laventure, and Sadhu 

2019). They can be the key ingredient to realizing MSN architectures that drive high levels 

of spatial efficiency of SHM systems. 
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1.1.1 Opportunities and Benefits 

 The increasing demands to maintain and preserve our crucial civil infrastructure 

systems to ensure safe and efficient operation has driven the field to explore monitoring 

solutions (including SHM) to collect quantitative data related to the response of 

infrastructure. Concurrently, the field is also exploring robotics as a way to eliminate the 

need for human actors in the process including robotic approaches to replacing human 

inspectors (Lattanzi and Miller 2017). Clearly, robots also hold great potential to play a 

role in the deployment and operation (including topology adaptation associated with MSN 

solutions) of structural monitoring solutions. Richardson et al. (2017) in the white paper 

on robotics for resilient infrastructure envisioned a society where “infrastructure 

engineering is undertaken with zero disruption to human activity and zero environmental 

impact”. An extension of this visionary view of the future are robots that play a major role 

in automating infrastructure SHM solutions. The emergence and development of robotics 

and autonomous systems (RAS), defined as technological systems that can sense, analyze, 

interact with, and manipulate their physical environments (Marvin et al. 2018), are opening 

new research directions across the full spectrum of infrastructure management methods 

including inspection, maintenance, and repair using autonomous ground, maritime, and 

aerial robots. Potential advantages of RAS over traditional human-based practices in wide 

use today include, but are not limited to: 

• increased inspection productivity and higher overall safety, especially in situations 

where human accessibility to infrastructure is difficult or dangerous; 

• greater accuracy in data collection that goes beyond the capabilities of humans; 
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• proactive and repetitive activities able to free humans from undertaking dirty, 

mundane, and dangerous inspection and repair tasks; 

• improved efficiency and reduced costs derived from automation; 

• greater asset manager insight and judgment derived through the integration of 

artificial intelligence (AI) and machine learning (ML) algorithms to automate the 

collection and processing of data. 

The RAS field is growing at an accelerated pace that is producing new technologies and 

automation methods, all of which benefit the use of RAS in civil infrastructure applications. 

For example, the RAS global market is projected to reach $145.5 billion by 2026, 

progressing at a compound annual growth rate (CAGR) of 24.6% (KBV Research 2020). 

In the United States, the position paper ‘A Roadmap for US Robotics: From Internet to 

Robotics’, classifies robots aiming for infrastructure inspection, maintenance, and 

rehabilitation under the domain of professional service robots and predicts this specific 

domain to grow by 30% annually (CRA 2016). 

 Already, RAS technology has been adapted to achieve more efficient monitoring, 

repair, and control of civil infrastructure systems and has changed the way humans interact 

with their built environments. Infrastructure inspection robots have been the most 

commonly studied RAS-based solution in the infrastructure field. Among all civil 

engineering structures, storage tanks have relatively simple shapes enabling early 

development efforts in the field of robotic inspection of storage tanks. Neptune, a crawler 

robot designed by Schempf et al. (1995) for filled tank inspection, used magnetic switching 

treads to attach the robot to the vertical walls of the storage tanks. Onboard cameras and 

ultrasonic sensors capable of operating fully immersed in fluids (e.g., water, oil) were used 
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by the robot to determine the state of corrosion of the tank floor and sidewalls. The benefits 

of this RAS solution were that tanks were no longer required to be emptied, cleaned, or 

vented before a human inspector could gain access to its inside space and to perform visual 

inspection. Similarly, Kalra et al. (2006) developed a wall climbing robot utilizing the same 

magnetic adhesion mechanism of Schempf et al. (1995) to inspect storage tanks from the 

outside. The robot navigated on the tank external walls with an embedded autonomous 

surface coverage algorithm and carried an ultrasonic sensor to uncover possible structural 

defects. Another simple structure that has been studied by researchers for RAS inspections 

are building facades. The robot developed by Inoue et al. (2010) was attached to tiled 

building surfaces while hanging from two wires suspended from a hanger truck. Acoustic 

analysis involving the use of a hammer to strike the tile face was adopted by the robotic 

system to detect the existence and extent of tile exfoliation on the structure facade. 

 Several researchers have successfully used RAS platforms to monitor the structural 

behavior of more complex structures such as bridges, pipelines, and tunnels. The inspection 

of cables of suspension bridges is critical to the safety of the overall bridge system but 

often poses safety risks to bridge inspectors and maintenance crews. Recognizing the 

inherent difficulties of manual inspections, Cho et al. (2013) studied the use of a cable 

climbing robot for visual inspection of the hanger cables in suspension bridges. The robot 

featured three identical locomotion modules assembled circumferentially around the cable, 

each providing functional mechanisms such as adhesion, mobility, and landing. While 

climbing up and down a cable, the robot transmitted in real time its position on the cable 

and 360° visual images of the cable surfaces for onsite inspectors to observe. Moving 

beyond visual inspections that can only identify structural distress visible on bridge 



 11 

surfaces, researchers have also developed robot-based non-destructive testing (NDT) 

methods able to reveal damages beneath structural surfaces. RABIT (Robotics Assisted 

Bridge Inspection Tool), a concrete bridge deck monitoring system developed by Gucunski 

et al. (2015), utilized four NDE technologies: electrical resistivity (ER), impact echo (IE), 

ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. These 

technologies complemented each other to enhance the characterization of different types 

of bridge deck deterioration including corrosion, delamination, and overall concrete quality 

degradation. In another example, Zhu et al. (2012) prototyped a climbing robot equipped 

with magnetic wheels capable of adhering to and navigating on a steel bridge. The robots 

carried accelerometers as their payload and measured structural vibrations at high spatial 

resolution. The results were used to perform modal analysis and system identification of 

the bridge for global-based damage detection purposes. 

 Structural condition assessment of underground pipelines is of utmost importance 

because of the deterioration processes (e.g., aging, corrosion, and fissures) induced by both 

natural (e.g., corrosive environments) and man-made impacts (e.g., operational loading). 

However, pipeline inspections have long posed access difficulties for human inspectors 

requiring removal of pipe sections and high replacement costs. RAS solutions are a 

promising alternative and have been studied intensively for use in pipeline networks with 

widely varying pipe types and diameters. In fact, the use of “PIGs” (pipeline inspection 

gauges) which are non-robotic data collection platforms used to inspect industrial pipelines 

has always placed pipelines at the vanguard of SHM innovation (Quarini and Shire 2007). 

Extending on PIGs for data collection, KANTARO, an autonomous mobile robot 

developed by Nassiraei et al. (2007), was able to move in straight sewer pipes with a 
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diameter range of 0.2-0.3 m and capable of maneuvering past a number of different pipe 

bends. The onboard sensor suite contained in their solution included a laser scanner for 

detecting navigational landmarks and a fisheye camera to assist with assessing pipe state 

and fault detection. From the collected images, nine different fault types could be detected 

including crack and water infiltration, among others. Other than optical sensors, specialized 

inspection sensors for measuring the internal geometry of a pipe have also been used such 

as electromagnetic sensors tailored for ferrous pipes. One example of this mechanism can 

be found in the works of Valls Miro et al. (2018), where the authors mounted pulsed eddy 

current (PEC) sensors onto a robot for estimating pipe wall thickness and identifying wall 

loss patches in cast iron pipes. The robot highlighted special Mecanum wheels that allow 

movement and control in both the longitudinal and circumferential pipe detections. A 

Gaussian process (GP) model was also developed to produce detailed density maps of the 

pipe inner surface from the robot’s limited set of inspection data. 

 Tunnels require regular inspections but the environment inside is usually 

constrained to human inspectors to safely operate in. Potential hazards include exposure to 

dust, absence of natural light, and tunnel users (such as cars, trucks, and trains for 

transportation tunnels). In response to this problem, Yu et al. (2007) developed a robotic 

inspection system for measuring cracks in concrete tunnels. The mobile robot was 

controlled to keep a constant distance from the tunnel walls while acquiring image data 

using an onboard camera. The authors also proposed an autonomous crack detection 

method based on Dijkstra’s shortest path algorithm (Dijkstra 1959), which yielded high 

recall scores but low precision scores. Another recent example of robotic tunnel inspection 

was the ROBO-SPECT system developed by Menendez et al. (2018). Composed of a 
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mobile vehicle, a crane, and a robotic arm, ROBO-SPECT was able to position its onboard 

sensors (e.g., cameras, ultrasonic sensors, lasers) near the tunnel lining with high accuracy 

and detect deformations of the tunnel; the system also included a camera enabling extra 

teleoperation modes for inspectors. 

 There have also been budding efforts within the research community to extend 

RAS’s role in SHM to not only inspect structures and collect condition and response data 

from them, but to carry out maintenance and repair tasks as well. Power lines are an 

example that can benefit from the developments of RAS solutions. Teleoperated or 

autonomous robots have been explored for inspection and maintenance of transmission 

lines, especially those in hard-to-reach locations such as along cross sections of roads, over 

rivers, and through mountainous terrain. Insulator contamination from dust, vegetation, and 

salt is one of the main causes of the power failure and requires routine cleaning 

predominantly done by water jets. Cho et al. (2006) introduced specialized robots to handle 

the task of cleaning insulators in transmission lines. The robot utilized a clamping 

mechanism to attach to a transmission line while using a rotating brush and a circular 

motion apparatus to clean the insulation of the wires. A megohmmeter sensor and an impact 

generating device were also used to measure insulation resistance and to detect cracks that 

can lead to long-term insulator failure. Another common damage on overhead transmission 

wires are broken strands which are often caused by mechanical loading, lightning strikes, 

electrical arcing, and long-term fatigue accumulation. The level of damage associated with 

wire strands cannot be quantified from the ground, but robots can be sent to inspect and 

make repairs to damaged sections. The LineScout robot developed by Canada’s Hydro-

Québec Research Institute is a leading unmanned RAS platform in this area (Pouliot, 
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Richard, and Montambault 2015). The three-frame mobile platform design (i.e., a wheel 

frame, a gripper frame, and a center frame) allowed the robot to undertake inspection and 

repair tasks while rolling along a power line and crossing most obstacles (e.g., transmission 

towers) found on the grid infrastructure. Installed with a programmable pan-and-tilt camera 

and a dedicated repair tool, LineScout supported visual inspection of line components and 

installation of a clamp to secure the broken strands around the wire. 

 In summary, this section has highlighted some of the key studies performed to date 

in RAS platforms applied to infrastructure monitoring and repair with particular emphasis 

on storage tanks, buildings, bridges, pipelines, tunnels, and electrical transmission systems. 

Other civil infrastructure have also seen a growing body of research into using RAS for 

maintenance operations include in house roofs (Romano et al. 2019), levees (Akiyama et 

al. 2021), and even ship hulls (Prabakaran et al. 2020). The field of RAS solutions for 

infrastructure is still in its infancy, but looking chronologically, the increase in research 

efforts has given impetus to future platforms serving as commercially viable solutions that 

can augment and potentially replace traditional human-based urban infrastructure practices. 

More broadly, robots are likely to be solutions that proactively navigate around cities of 

the future to gather data from different assets, undertake reasoning about the condition of 

infrastructure, observe how people use their infrastructure, and perform maintenance and 

repair work on them with limited or no human assistance. 

1.1.2 Technological Challenges 

 The ability of infrastructure robots to move freely within a structure, especially in 

difficult-to-reach areas, is both a primary motivation behind their use as mobile data 

collecting agents as well as a critical technological challenge. Understanding and 
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implementing different robotic locomotive mechanisms to allow access to all portions of a 

large and complex structure is one of the key design elements of robots for structural 

applications. Various locomotive mechanisms have been proposed by engineers to allow 

robots access to different types and areas of structures. In general, they can be categorized 

into ground-based, crawling, climbing, marine, or aerial propulsion (Lattanzi and Miller 

2017). Ground-based locomotion based on motorized wheels provides a stable instrument 

platform and lends itself well to uses on flat surfaces such as roadways and tunnels. 

Crawling and climbing robots are able to access hard-to-reach areas of structures such as 

vertical surfaces and high-elevation cables but require much more power for adhesion and 

motion than ground-based wheeled systems do. Unmanned marine vehicles (UMVs) and 

unmanned aerial vehicles (UAVs) provide perhaps the most locomotive flexibility but 

impose limited payload capacity and reduced stability when faced with environmental 

disturbances such as waves and wind gusts, respectively. The choice of locomotive 

mechanism calls for a balance between payload capacity, platform stability, the needs for 

overcoming environmental disturbances, and public safety requirements (especially for 

UAVs). There is potential for research into how this compromise can be diminished 

utilizing technology advances. For instance, higher-payload-capacity robotic platforms and 

lighter-weight sensors would expand the range and duration of robots used for sensing. 

Also, advanced controller and actuator designs for robots would enhance their stability and 

resilience when operating in harsh and complex outdoor environments. 

 Another ongoing challenge tied to the varied and complex infrastructure 

environment is the sophisticated autonomy and efficient planning algorithms needed for 

robots to navigate in it. The problem of a robot navigating an unknown environment is 
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described as the simultaneous localization and mapping (SLAM) (Durrant-Whyte and 

Bailey 2006; Bailey and Durrant-Whyte 2006). While roaming an unknown environment, 

the robot seeks to build a map of the environment, and at the same time it wishes to 

determine its location relative to this map given noisy data collected from onboard sensors. 

The SLAM problem is especially challenging to solve in many civil infrastructure systems 

with very complex geometries (e.g., steel truss bridges with dense truss elements) and tight, 

confined interior spaces (e.g., enclosed buildings, trunnels, pipelines). While recent 

progress has been made, current methods can only handle simple tasks in structured, static, 

and limited-scale environments. There is a need for more theoretical research on mapping 

unstructured, dynamic, and large-scale environments as are often posed by infrastructure 

in a more real-time and robust fashion (Stachniss, Leonard, and Thrun 2016). Robust 

motion planning and object avoidance methods are another major research need in the 

community. These methods must be capable of real-time operation and provide safety and 

robustness guarantees in close proximity to moving objects such as humans. At present, 

teleoperation is still the predominant choice when operating a robot in unknown and 

unstructured environments such as those that occur in post-disaster scenarios (Queralta et 

al. 2020). A principled integration of SLAM and motion planning techniques is required to 

reach the level of full autonomy for robots to explore the environment safely and become 

helpful partners to humans. 

 There is substantial need for more research on how to perceive and represent 

damage consistently and accurately with robot-based monitoring systems. Because of the 

inherent localization and navigation inaccuracies of autonomous robots (Kümmerle et al. 

2009; Delmerico and Scaramuzza 2018), sensor data acquired from mobile robotic 
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platforms can be inaccurate, incomplete, or intermittent depending on navigation 

inaccuracies and the application. Variable environmental conditions such as weather and 

the time of day can substantially degrade the usefulness of commonly adopted sensors. For 

instance, laser range finders (such as light detection and ranging (LiDAR)) may fail in the 

presence of rain or fog; visual measurements using cameras are also highly susceptible to 

weather but also to changes in lighting and shadows. There is a distinct need to determine 

acceptable accuracy metrics for robotic measurements, without which it will be difficult 

for infrastructure owners or operators to justify and allow the use of robots for monitoring 

and condition assessment. 

 The limited battery life and onboard storage space of mobile robots also pose 

challenges regarding sufficient spatial coverage of the system, especially in a large-scale 

infrastructure system (Franco and Buttazzo 2015; Nagarajan et al. 2019). While complete 

coverage of the structure is not always necessary, more work is required on assimilating 

local information collected by robots with global knowledge of the structure to make 

structure-specific assessments. The massive amount of data produced in long-term 

applications (especially those using LiDAR and cameras) is another impediment to 

automated monitoring (Krishnappa and Turner 2014; Cura, Perret, and Paparoditis 2017). 

More research is needed to develop scalable data management systems and automated 

robot-level information retrieval approaches to reduce the amount of data that needs to be 

stored and analyzed. 

 While the majority of current research (e.g., Debenest et al. 2008; Leon-Rodriguez, 

Hussain, and Sattar 2012; La et al. 2013; Debenest, Guarnieri, and Hirose 2014; Schäfer et 

al. 2016) on infrastructure robots is centered on structural inspection applications, there is 
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potential for research into robot interaction with the physical systems to broaden a robot’s 

role from sensing and gathering data from its surrounding environment to physically 

interacting with it. Achieving dexterous manipulation like that of a human in a robot for 

use in the field environment, especially in large and heavy structures, is likely a longer-

term goal that requires significant innovation. Perhaps the biggest impediment to 

implementation of interactive robots is the absence of a robust and skillful manipulator 

ensuring the accomplishment of the manipulation task. Given the promise of robotic 

manipulation, it is an active research area in the robotics field (Berenson et al. 2009; 

Alonso-Mora et al. 2015; Erhart and Hirche 2015; Sui et al. 2017; Fan et al. 2018). Some 

of the important issues include the modeling of the interfaces that exist between the robot 

and the environment along the execution of the robot’s motion (Kuffner and Xiao 2016). 

A major difficulty is the integration of a robotic manipulator with a moving platform. 

Designers of such joint systems must account for the dynamics of both components (i.e., 

robot platform and an attached manipulator) and build sophisticated controllers to stabilize 

them in the face of external environmental disturbances. To date, the difficulties of 

simultaneous mobility and manipulation have led to limited research efforts in the 

automation of infrastructure repair in general, but some work has been reported on a small 

set of simple structures such as power lines (Pouliot, Richard, and Montambault 2015) and 

ship hulls (Hachicha et al. 2019). Also, the manipulators used have had very simple 

mechanistic designs including the use of open/close grippers (Zhou et al. 2016) and 

magnetic latches (Stibinger et al. 2021), etc. 

 The need for flexible mobile robotic systems for infrastructure systems propels 

UAVs to the front of all other robotic platforms that can be considered (Lattanzi and Miller 
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2017). A large number of civil engineering researchers and practitioners are adopting 

UAVs because they have matured into versatile data acquisition platforms that can be 

safely and easily deployed via flight. Compared to manned aircraft, UAVs are much 

smaller, more agile, and orders of magnitude cheaper, allowing them a greater range of 

movement and easier access to traditionally hard-to-reach areas such as remote sites and 

confined spaces. Carrying a wide variety of sensors onboard, UAVs are able to collect data 

that is difficult to obtain using conventional sensing strategies. Recent development of 

UAV autonomy further allows them to be programmed to execute missions autonomously. 

The benefits presented by UAVs makes them potentially invaluable tools for infrastructure 

monitoring applications. In the context of the aforementioned challenges with RAS 

solutions, UAVs offer the best opportunity for addressing those challenges. This 

dissertation will use UAVs as the primary RAS platform to explore the potential for RAS 

solutions for structural monitoring and geo-structural analysis. 

1.2 UAVs: High-Precision and Purpose-Built Mobile Sensing Platforms 

 Widely referred to by the public as drones, UAVs are aircraft that can either fly 

autonomously or be remotely piloted by either a human operator or a ground control station 

(GCS); that is, without an on-board human pilot in control. UAVs are often small platforms 

and have lower costs compared to traditional aircraft. In recent years, UAV technology has 

gained increasing interest from both academic and industrial uses given their versatility. 

UAVs have become central to the functions of various businesses (e.g., real-estate, 

agriculture) and governmental organizations including defense organizations (Floreano 

and Wood 2015). Today, UAV models are available in varying grades ranging from small 

consumer models designed for aerial photography and first-person view (FPV) 
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entertainment (Kim et al. 2018), mid-sized professional drones meant to patrol borders 

(Bein et al. 2015), report oil spills (Gómez and Green 2017), survey wildlife (Linchant et 

al. 2015), and regulate fisheries (Raoult and Gaston 2018), all the way to massive 

enterprise-level platforms created for specific purposes such as precision agriculture 

(Mogili and Deepak 2018) and firefighting (Innocente and Grasso 2019). In the United 

States, the Federal Aviation Administration (FAA) which regulates the airspace in which 

drones fly, forecasts that by the end of 2024, around 828,000 UAVs will be deployed for 

commercial use, which is more than twice as large as the number of 385,000 in 2019 (FAA 

2020a). In addition, while the pace of recreational registration ownership has slowed down 

over the past few years, the recreational UAV fleet are expected to attain its peak at around 

1.48 million units by 2024. Globally, the UAV market is estimated to grow from $22.5 

billion in 2020 to $42.8 billion in 2025 at a CAGR of 13.8% (Schroth 2020). 

1.2.1 The Evolution of UAV Technology 

 Headlines featuring UAVs and drones have become a common occurrence in recent 

times. For example, Amazon’s Prime Air drone made its first delivery in the United 

Kingdom in 2016, bringing the company “one step closer to making 30-minute package 

delivery by drone a reality” (Popper 2016). Other Internet corporate giants like Google 

(Project Loon) and Facebook (Internet.org) have also been developing balloon or UAV-

based wireless networks to bring low-cost internet access to unserved or underserved 

regions around the globe (Richards 2014). While these headlines might make UAVs seem 

like a new and young technology, the reality is that UAVs are a fairly old and mature 

technology first explored in the military and later adopted in civilian applications.  
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 The UAV technology we see today is an outcome of a complex evolutionary 

process that has its roots in the military with development starting more than a century ago. 

UAVs were first introduced in the early 1900s as practice targets for training military 

personnel mostly in the United States (Shaw 2014). During World War I (WWI), UAVs 

were imagined as radio-controlled aircraft capable of carrying explosives. They were 

intended for use as flying bombs or aerial torpedoes (a forerunner of today’s cruise 

missiles), that could be delivered behind enemy lines. Integrating wood and fabric 

airframes with sensors such as gyroscope and propeller revolution counters, the most 

advanced UAVs at that time could carry payloads of almost 200 pounds of explosives along 

a distance of approximately 40 miles (Keane and Carr 2013). However, WWI UAVs faced 

two operational problems: (1) difficulties with launching and recovery, and (2) struggles 

to determine the flight characteristics of the airframe to stabilize it during flight (Pearson 

1969). In the period between the two wars and into World War II (WWII), there was a 

continued effort to perfect radio-controlled weapon delivery using UAVs. In 1937, the U.S. 

Navy developed a UAV called Curtiss N2C-2 requiring two remote control pilots, one 

seated in a field cart and the other in a companion aircraft that flew alongside the UAV 

(Fahrney 1980). The pilot on the ground could control the UAV during takeoff and landing 

while the second pilot in the plane could take control of the UAV when it was airborne. 

Although these operations seem inefficient today, N2C-2 represented a noteworthy step in 

the development of radio-controlled UAV technology. The most remarkable UAV event 

during WWII was the emergence of the German V-1 Doodlebugs, the world’s first 

successful cruise missile. The V-1 flying bomb was equipped with an autopilot whose 

guidance system used a pair of gyroscopes to monitor yaw and pitch, a barometric device 
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to measure altitude, a small propeller attached on the nose of the missile serving as an air-

log to measure the distance the missile had travelled, and a magnetic compass to keep the 

missile heading along a predetermined bearing to the target (Zaloga 2011). The sensor suite 

in V-1 was quite innovative and functioned as a prototype of modern-day inertial 

navigation systems (INS). 

 With the start of Cold War, UAVs were seen as a viable platform to gather 

intelligence, surveillance, and reconnaissance (ISR) data. The transition of UAV from 

being a munition conveyance system to a remote sensing platform greatly extended its field 

of use in military applications. In 1973, Israel developed its first military UAV, the Tadiran 

Mastiff, for surveillance and scouting purposes. The Mastiff had over seven hours of flight 

time and a data-link system capable of streaming live video of targeted areas (Tucker et al. 

2008). Around the same time, reconnaissance UAVs were deployed by the U.S. Army in 

the battlefields of Vietnam. These UAVs were used to take photos from low and high 

altitudes for the purpose of strike planning and post-strike battle damage assessment (BDA). 

Statistics showed that a total of 3,435 operational reconnaissance UAV missions were 

flown across southeast Asia between 1964 and 1975. Around one-third of these missions 

were carried out by various models of the Ryan Model 147 Lightning Bug (Clark 1999). 

The Ryan 147 featured a midair retrieval system (MARS) where a helicopter could catch 

it while in its parachute descent and return it undamaged (Wagner and Sloan 1992). In 

1986, the United States and Israel jointly developed one of the most versatile UAV 

platforms at the time, the RQ-2 Pioneer. The RQ-2 was equipped with three sensor 

packages including an optical camera, a forward looking infrared (FLIR) sensor, and an 

electro-optical/infrared (EO/IR) dual-sensor. The camera or EO sensor was suited for 
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daytime operations, while the FLIR or IR sensors enabled usage at night by establishing 

images from heat signatures (Major 2012). 

 Fusing surveillance and lethality, weaponized UAVs were introduced in the 1990s 

and since then have been heavily invested in to provide offensive capabilities without 

committing humans to dangerous situations. With the help of UAV pioneers like Abraham 

Karem, the United States developed the famous MQ-1 Predator drone in 1994 (Whittle 

2013). The Predator had a wingspan of 55 feet, a gross weight of 2,249 pounds, and could 

reach top speeds of 135 mph. Equipped with various cameras and radio detection and 

ranging (RADAR) sensors, and up to two Hellfire air-to-surface missiles, the Predator 

provided the warfighter persistent ISR information together with a kill capability (Whittle 

2015). Thirteen years later in 2007, a larger, heavier, and more powerful successor to the 

MQ-1 Predator was introduced called the MQ-9 Reaper. The Reaper was able to cruise at 

almost three times the speed of the Predator and carry 15 times more ordnance (AFPN 

2006). The Predator and Reaper created the public image of modern military drones 

striking targets worldwide. The rapid proliferation of UAV technology has changed the 

character of warfare. As of 2020, more than 10 countries have conducted UAV strikes, and 

about 40 countries maintain armed UAVs in their arsenals (Bergen, Salyk-Virk, and 

Sterman 2020). Today, UAV technology in the military sector is much more advanced than 

any other sector. Many of the technological innovations of military UAVs remain top secret 

and unknown to the public. 

 The military development of UAV technology over the previous century make the 

introduction and adoption of UAVs for civilian applications inevitable. UAVs have been 

common as a hobbyist pursuit for decades with the general public building and flying radio-
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controlled (RC) aircraft such as fixed wing planes and traditional helicopters. However, 

one of the first uses of UAVs for non-military, and non-hobbyist use  was recorded as early 

as 2006, when the FAA issued a certificate of authorization allowing Predators to be used 

for search and rescue (SAR) for survivors of disasters (Robinson 2006). The past 15 years 

has seen a rapid advancement of the civilian UAV technology ecosystem and a 

corresponding exponential growth of civilian UAV applications. Consumers use them for 

aerial photography and FPV cinematography (Mollica 2020) while government agencies 

use them for border patrol (Haddal and Gertler 2010), traffic monitoring (Kanistras et al. 

2013), and disaster management (Erdelj et al. 2017); private businesses use them for 

facility inspection (Jordan et al. 2018), cargo delivery (Yoo, Yu, and Jung 2018), and 

industrial warehousing (Fernández-Caramés et al. 2019). The evolution of civilian UAV 

technology has had four major phases of development (Figure 1-2): 

1. development of stable and reliable flight controls; 

2. integration of onboard sensors for effective data collection; 

3. advancement of UAV intelligence and data management tools; 

4. customization for specialized functionality and UAV-as-a-service (UAVaaS). 

The following subsections highlight these four phases and their current status of 

development. 

1.2.1.1 Stage 1: Development of Stable and Reliable Flight Controls 

 The first fundamental challenge began with the understanding of vehicle flight 

dynamics and the ability to keep the UAV bodies aloft reliably and with adequate control. 
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Multiple research groups around the globe published a large amount of papers at this stage, 

demonstrating state-of-the-art technologies for vehicle modeling, state estimation, and 

control (Bouabdallah, Murrieri, and Siegwart 2004; Tayebi and McGilvray 2006; Huang 

et al. 2009; Mahony, Kumar, and Corke 2012; Brescianini and D’Andrea 2016). Academic 

researchers tested their flight control algorithms intensively in both simulation and 

experiment using real UAVs on the field. Real-life testing environments were established 

indoors utilizing high-accuracy optical motion-capture systems, such as Real-time indoor 

Autonomous Vehicle test ENvironment (RAVEN) at Massachusetts Institute of 

Technology (MIT) (How et al. 2008), the GRASP Multiple Micro-UAV Testbed at the 

University of Pennsylvania (UPenn) (Michael et al. 2010), and the Flying Machine Arena 

at ETH Zurich (Lupashin et al. 2014). Among the various airframe choices for UAVs, 

 

Figure 1-2. Four major stages of the evolution of civilian UAV technology. 
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multirotor designs gained the most attention due to the simple rotor mechanics required for 

control and stability of their frames in flight. Based on the number and configurations of 

motors, multirotors are named tricopter, quadcopter, hexacopter, or octocopter when 

referring to 3-, 4-, 6-, 8-rotor rotorcraft, respectively. Quadcopters dominate the 

mainstream consumer market and became known to the public after various TED talks 

presented by UAV pioneers Dr. Vijay Kumar at UPenn (Kumar 2012; 2015) and Dr. 

Raffaello D’Andrea at ETH Zurich (D’Andrea 2013; 2016). These talks impressively 

demonstrated the ability of quadcopters to perform aggressive maneuvers and work in 

concert with one another to perform intricate tasks. These early demonstrations showed the 

maturity of control algorithms used to control UAVs with such precision and agility. 

 At the same time, the UAV industry outside of academia was going through a rapid 

evolution with many startups building prototypes that could be general purpose or were 

designed for specific applications (Giones and Brem 2017). An example of an 

entrepreneurial startup was 3D Robotics (3DR), co-founded in 2009 by Chris Anderson 

and Jordi Muñoz (Shontell 2014). The company targeted the manufacture of versatile 

UAVs with an open-source software platform that could enable a wide range of capabilities 

developed by developers and UAV end users. Although the company ultimately failed as 

a commercial UAV manufacturer, it pivoted into providing software solutions to the 

construction industry in 2016 (Mac 2016). Nonetheless, its open-source UAV software 

ArduPilot (ArduPilot.org) remained in active development and has become one of the most 

well-accepted UAV autopilot systems in current use globally (Benowitz 2021). Another 

startup entrant at this stage was the French company called Parrot. In 2010, Parrot released 

AR.Drone at the Consumer Electronics Show (CES) 2010 in Las Vegas. The navigation 
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and control design of the vehicle involved collaborations with the company’s academic 

partner MINES ParisTech (Bristeau et al. 2011). The AR.Drone could be safely piloted by 

an app installed on a smartphone. The commercial efforts of 3DR and Parrot attested to the 

ability of UAVs to be reliable solutions with accessible software architecture that allowed 

end users to use UAVs in a wide range of applications. This dissertation will use a 3DR 

UAV at the core of its research. 

1.2.1.2 Stage 2: Integration of Onboard Sensors for Effective Data Collection 

 When looking at the hardware components layout of a typical civilian-use 

quadcopter in Figure 1-3, it is clear that the commercial UAV industry has taken advantage 

of technological advances in sensing. Specifically, the miniaturization of electronic 

components (e.g., MEMS-based inertial measurement units (IMUs), electronic speed 

controls (ESCs)), faster and more powerful processing units (e.g., 32-bit floating-point unit 

(FPU) computers), lighter and stronger materials (e.g., carbon fiber structures), among 

other advancements, made it possible to design and build small UAVs with a wide range 

of functionality at a modest cost. However, it was not until the Chinese company Da-Jiang 

Innovations (DJI) releasing its Phantom product line in early 2013 that UAV technology 

truly went mainstream in the commercial market. The Phantom incorporated a global 

positioning system (GPS) sensor and could resist windblasts when used outdoors due to its 

robust flight controller (Mulcahy 2013). Most importantly, the UAV came off the shelf 

with a 2-axis professional Zenmuse gimbal that can hold a GoPro Hero3 action camera. 

The unique combination of a stable UAV and a high-quality camera quickly drove 

widespread adoption in the field of aerial photography/videography. Unlike the all-in-one 

and ready-to-fly solutions provided by DJI, the PX4 team led by Dr. Lorenz Meier at ETH 
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Zurich took a different approach by delivering an open-hardware autopilot compatible with 

user customizable sensor peripherals. In 2013, the PX4 team partnered with 3DR to 

develop Pixhawk (pixhawk.org), an advanced hardware flight controller designed to serve 

the needs of the hobby, academic, and industrial UAV user communities (Auterion 2020). 

The PX4 team offered its own complete flight control stack PX4-Autopilot, but Pixhawk 

could also be paired with other autopilot software such as ArduPilot (Ebeid, Skriver, and 

Jin 2017). Pixhawk greatly improved the reliability of UAV flight control while allowing 

for ease of use for users willing to customize their own sensor suite on board. 

 During the phase of commercial drones like DJI Phantom coming to market, 

onboard sensors for UAVs capable of collecting data in a range of applications emerged. 

Fastening a camera to a UAV is the dominant configuration in the literature. UAVs were 

 

Figure 1-3. Typical hardware components and their layout on a typical 4-rotor civilian 
UAV (similar layouts would be found in 3-, 6-, and 8-rotor UAVs). 
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used to monitor and survey wildlife populations in hard-to-reach areas with a high-

resolution digital camera (Hodgson et al. 2016). Similar image-based 

inspection/monitoring UAVs equipped with digital cameras were widely deployed in many 

applications such as boarder surveillance (Haddal and Gertler 2010), traffic management 

(Salvo, Caruso, and Scordo 2014), geotechnical site modeling (Zekkos et al. 2018), road 

maintenance (Inzerillo, Di Mino, and Roberts 2018), building/bridge monitoring 

(Eschmann et al. 2012; Chen et al. 2019), and railway operation (Li et al. 2020). These 

camera-based UAV solutions all aimed to replace costly human teams these applications 

typically used. There were also efforts to integrate more sophisticated cameras (i.e., non-

optical cameras) into UAV systems. For example, multispectral cameras installed on UAVs 

allowed farmers to determine crop classification, monitor crop growth, assess fertilizer 

responses, and forecast crop yields (Lottes et al. 2017; Schut et al. 2018). SAR UAVs 

permitted rescue organizations to quickly detect and geo-localize human during a disaster 

relief effort with the help of thermal IR cameras (Rudol and Doherty 2008; Burke et al. 

2019). UAVs equipped with specialized FPV cameras expanded into recreative space and 

found new uses such as live streaming extreme sports (X. Wang, Chowdhery, and Chiang 

2017; Fincky 2019), hosting virtual tours (Song and Ko 2017; Beautiful Destinations 2019), 

and FPV racing (Bloomberg Quicktake 2016; Barin, Dolgov, and Toups 2017). Another 

popular sensor payload on a UAV is LiDAR that was mainly used for survey and mapping. 

In the forestry industry, UAV-LiDAR systems were used to measure tree location, height, 

and crown width with high spatial accuracy (Wallace et al. 2012). In glaciology, an 

airborne LiDAR flown by UAVs was deployed to make observations of land and sea ice 

for mapping surface elevation and topography (Crocker et al. 2012). As a means to develop 
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3D models that could quantify terrain changes, camera and LiDAR data obtained from a 

UAV measuring its position in space were taken advantage of to obtain 3D point clouds 

and to generate digital terrain model (DTM) outputs (Fuad et al. 2018). Other UAV sensors 

were also reported in the literature for specific aims, such as particle number concentration 

(PNC) monitors for air pollution monitoring (Villa et al. 2016), metal oxide (MOx) gas 

sensors for gas leakage localization (Rossi and Brunelli 2016). 

1.2.1.3 Stage 3: Advancement of UAV Intelligence and Data Management Tools 

 While remotely controlled UAVs have tremendous commercial value, their 

operations are manual meaning a skilled human operator and oftentimes visual observers 

are required. Manual UAVs are difficult to fly and easy to crash, reducing their 

effectiveness and scalability as a viable data collection platform. The human operator can 

be expensive and erodes some of the cost efficiencies of UAVs. Limited autonomy is 

granted usually by providing GPS waypoints for the UAV to follow from point to point. 

Although the global navigation satellite systems (GNSS) enabled successful 

commercialization of some autonomous outdoor UAV applications, GPS typically has low 

accuracy (roughly, in meters) and is unavailable (or unreliable) in confined, cluttered, or 

indoor environments. As a result, even the most highly trained pilots avoid flying UAVs 

in close proximity to their targets to avoid crashing. In fact, in civil infrastructure 

applications, vortex shedding by large structures on even lightly windy days can present 

demanding disturbances that pose a serious risk to UAVs. 

 The next generation of the UAV technology is based on autonomous operations; 

this requires higher precision flight controls with more advanced computing hardware and 
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real-time software supporting those flight control laws. Although full automation (level 5) 

is not likely to happen in the next few years, recent advances have shown promise in key 

areas such as environment mapping (Newcombe, Lovegrove, and Davison 2011; Pizzoli, 

Forster, and Scaramuzza 2014; Greene et al. 2016), path planning (Ratliff et al. 2009; 

Oleynikova et al. 2017; B. Zhou et al. 2019), obstacle avoidance (Ragi and Chong 2013; 

Ma et al. 2016; Y. Lin and Saripalli 2017), and object tracking (Hare et al. 2016; Bertinetto 

et al. 2016; Gordon, Farhadi, and Fox 2018). Multiple research groups have proposed 

different UAV platforms installed with various onboard navigation sensors tailored to solve 

the SLAM problem (Shen, Michael, and Kumar 2011; Tomic et al. 2012; Sa et al. 2017). 

In the meantime, the industry is also pushing forward fully autonomous flight technology 

that can navigate UAVs in unknown, cluttered environments. The California-based UAV 

manufacturer Skydio is one of the leaders in creating intelligent UAVs capable of safe 

operations in cluttered flight environments. In 2019, the company released its Skydio 2 (S2) 

drone featuring six navigation cameras and an Nvidia Tegra TX2 with 256 GPU cores that 

runs a state-of-the-art autonomy engine. The autonomous flight stack utilizes visual-

inertial odometry (VIO) for state estimation and deep-learning-based algorithms for depth 

estimation and obstacle avoidance (Robotics Today 2021). The S2 is able to see and 

understand its surroundings, plan a flight path through them, and constantly avoid obstacles 

in any direction. Two particular industrial applications for S2 have been bridge 3D 

inspection (Skydio 2020a) and roof scanning (Skydio 2020b). 

 With the widespread use of UAVs as data collection platforms in civilian 

applications comes the problem of data management, including services for data storage, 

aggregation, processing, visualization, and sharing. As organizations start to scale their 
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UAV programs, they typically grow acutely aware of the high volume of data UAVs collect 

demanding cost-efficient data management solutions. Specific challenges include 

organizing massive amounts of aerial data (e.g., camera imagery, LiDAR point clouds) in 

a local machine or a cloud database, fusing other relevant data, utilizing AI and ML 

algorithms to derive benefits from the UAV-collected data such as feature recognition and 

defect detection, and establishing collaborative data management platforms that allow 

multiple workgroups to interact and share key insights from UAV data. 

1.2.1.4 Stage 4: Customization for Specialized Functionality and UAV-as-a-Service 

 As the precision of UAVs increase and their customization is easier (and cheaper) 

to do, it will be increasingly feasible to introduce new functionality in a broad array of 

niche spaces for UAVs. UAV manufacturers have been faced with the task of tweaking 

their designs and developing purpose-built enterprise solutions. An example is SkySpecs, 

a startup based at Ann Arbor that offers automated inspection services to identify 

maintenance issues for wind farms (Adler 2018). SkySpecs develops customized UAVs 

with high tolerance for strong winds which can maintain precise location, control, and 

image capture while navigating around a wind turbine with high levels of vortex shedding. 

Standard commercial solutions would fail in this task because turbines are located in windy 

locations and the rapidly changing wind speed and direction around turbine blades makes 

UAV stabilization and control extremely difficult (Froese 2018). Another example of a 

customized UAV is the Elios drone from the Swiss company Flyability (Palomba 2017). 

Carrying a ball-shaped protective frame around itself, Elios is able to bounce off and roll 

around obstacles without the risk of crashing, thereby enabling inspections inside tight 

spaces such as conduits, sewers, bunkers, chimneys, and other hard-to-reach locations 
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(Flyability 2016). An attractive feature of the cage surrounding the UAV is that it rotates 

independently of the UAV itself, meaning the UAV body and the onboard camera can stay 

upright even after it comes into contact with an obstacle. High-precision UAVs have also 

shown great promise in the logistics industry. Currently inside warehouses, many 

companies including Verity (verity.ch), Vtrus (vtr.us), Eyesee (eyesee-drone.com), and 

doks.innovation (doks-innovation.com) report to have implemented UAVs for inventory 

management. In order to successfully implement UAVs in warehouses, these companies 

utilize vision-based SLAM technology for precise indoor navigation (due to the denial of 

GPS in these settings) enabling the UAV to create a 3D map of its surrounding and locate 

itself inside the map in real time (Wawrla, Maghazei, and Netland 2019). Externally, UAVs 

have been also explored for product delivery. For example, the American drone delivery 

company Zipline manufactures and operates its self-designed fixed-wing UAVs to deliver 

medical product such as blood and vaccines to remote regions (Lydgate 2018). The UAV 

features a quickly swapped battery for rapid turnaround between flights and can cruise at 

a top speed of 100 km/h before dropping its onboard medical supplies (up to 1.75 kg) based 

on use of a parachute. The company have also invented a unique launching and catching 

system for the UAV that ensures quick response and safe landing (Real Engineering 2019). 

 UAVs can be used to provide services in an on-demand and pay-as-you-go manner. 

The idea of UAVaaS rather than requiring individuals to purchase their own UAVs reduces 

the cost and risks of owning, licensing, operating, and maintaining UAVs (Yapp, Seker, 

and Babiceanu 2016). UAVaaS providers host both hardware and basic software on behalf 

of their customers, freeing up users to focus on thought-provoking tasks that require 

creativity, critical thinking, and human judgement. Integration of UAVaaS with existing 
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business intelligence systems enables deeper insight and quicker decision-making by 

integrating and analyzing data from multiple organizations. Another advantage of the 

UAVaaS infrastructure is its adaptability and scalability. For example, UAVs can be flown 

in a manner that serves more than one user (Loke 2015). 

 On account of the risks of causing damage to individuals and property, a 

prerequisite for the UAVaaS infrastructure is absolute safety and security. Currently, 

regulators in the United States are looking to deploy an unmanned aircraft system traffic 

management (UTM) system to allow safe operations of multiple beyond visual line-of-

sight UAVs (i.e., fully autonomous UAVs) and manage the increased airspace traffic at 

low altitudes, indicating a major influx of UAVs coming into the market in the near future 

(FAA 2020b). The first step to building a UTM and at later stage integrating UAVs into 

the national airspace system (NAS) is to set up rules and a method for UAVs to be 

identified and communicated with by other parities (including agents in the commercial 

airline industry), commonly known as remote identification (remote ID). The FAA released 

final rules of remote ID on December 28, 2020 requiring most UAVs operating in U.S. 

airspace to have remote ID capability, making way for UAV services in the future to move 

to completely autonomous flights at scale and with order that ensures public safety (FAA 

2021). 

1.2.2 Limitations of Existing UAV Systems for Infrastructure Monitoring 

 Over the past decade, the fast-paced development of UAVs has spawned a diverse 

set of applications in the realm of civil infrastructure systems. Fundamentally, UAVs are 

revolutionizing the field by providing previously unobtainable data collection capabilities 

that surpass conventional civil engineering methods in terms of ease, accuracy, and 
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affordability (Greenwood, Lynch, and Zekkos 2019). UAVs are finding use in inspecting 

existing structures (Chan et al. 2015), documenting construction progress (J. J. Lin, Han, 

and Golparvar-Fard 2015), surveying geotechnical sites (Turner, Lucieer, and De Jong 

2015), performing post-disaster reconnaissance (Zekkos et al. 2016), and estimating traffic 

flow (Ke et al. 2018), among others. In fact, any application that could utilize a mobile data 

acquisition platform could conceivably include UAVs as an integral data collection 

component. 

 To date, UAVs have been predominantly used in the civil engineering domain 

based on Stage 2 phase of development, to collect data most often with a human operator 

in control and with a camera used for data collection. UAV-based photogrammetry is 

widely used and currently the main means of assessing civil infrastructure systems (Ham 

et al. 2016). Leveraging computer vision techniques, a significant amount of research has 

focused on taking photographs and videos of structures with a UAV that can be used for 

onsite evaluation or subsequent virtual offsite assessment (Sankarasrinivasan et al. 2015; 

Ellenberg et al. 2016; Gopalakrishnan et al. 2018). Vision-based monitoring poses many 

challenges regarding storage and processing of the enormous number of images collected, 

manual labelling of ground-truth for deep learning-based algorithms, and assimilation of 

data from image sequences, among others (Spencer, Hoskere, and Narazaki 2019). For 

structural analysis applications, although recent research work has successfully 

demonstrated the feasibility of vision algorithms for measuring modal information (Yoon 

et al. 2017; Hoskere et al. 2019), accurate displacement information is hard to obtain due 

to limited camera resolution and poor UAV motion accuracy. The role of UAVs also can 

go well beyond photogrammetry driven by manual operations by offering UAVs the 
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possibility to carry and install other sensor types to be deployed onto the structure for data 

collection. In the case of structural modal analysis, traditional motion sensors such as 

accelerometers are more effective and reliable in recording vibrations of a structure than a 

remote UAV with cameras. 

 The issue of poor positioning accuracy of UAVs in most civil applications is due 

to the use of black-box commercial UAVs by these teams with general-purpose flight 

controls and reliance on GPS and IMU navigation. Maintaining stability and spatial 

accuracy for UAVs in outdoor environments is a major challenge because of their 

susceptibility to environmental disturbances. The majority of civil engineering UAV 

research programs therefore use remotely operated vehicles (ROVs), eschewing autonomy 

for human-controlled navigation. Although limited autonomy is provided in some 

applications by offering GPS waypoints for the UAV to follow, GPS signals are only 

available outdoors and typically are insufficiently accurate resulting in positioning errors 

at the meter-scale level. There are clear opportunities to enhance the autonomy of UAVs 

in both outdoor and indoor environment by exploiting more advanced Stage 3 UAV 

technologies such as SLAM and visual odometry. To move to Stage 3 and 4 phases of 

development, higher performing controllers are needed and better positioning technology 

that offers positioning at the cm-level accuracy level (and not GPS m-level accuracy). 

 Despite the abundance of research work exploring the coupling of UAV mobility 

and sensing capability, the majority of these studies have been limited to observing 

infrastructure from afar yet avoiding direct contact with the structure. Within the civil 

engineering research community, UAVs are primarily used for flythroughs for applications 

of inspection or surveillance while minimizing interactions with the physical structure 
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being studied. By allowing the UAV to physically interact with and manipulate its physical 

environment, an entirely new set of applications in the civil engineering domain can be 

envisioned. First, providing UAVs with the ability to perch on beams or rods can greatly 

increase their flight time and hence the overall endurance of their missions. This can be 

especially valuable in applications where UAVs are placing MSN nodes at optimal sensing 

locations. Moreover, if perch locations are equipped with charging stations, UAVs can be 

recharged during missions to reach an extended lifespan. Currently, limited onboard 

batteries used to power UAVs result in short (<	1 hour) flight times. When UAVs are large 

and carry more payloads, these flight times reduce in proportion to the total UAV weight 

(Greenwood, Lynch, and Zekkos 2019). Second, empowering UAVs to grasp objects 

would enable new and exciting applications for civil infrastructure monitoring. UAVs can 

be used to deploy sensor payloads and modify their spatial configurations when needed as 

part of an MSN monitoring architecture. Modular structures can be assembled or 

disassembled by a team of cooperative UAVs installed with grippers. Robotic manipulation 

also gives UAVs access to payloads that are potentially beneficial to geotechnical 

applications such as a drop weight for earth subsurface investigation (Zekkos et al. 2014; 

Greenwood et al. 2018). 

 In conclusion, while Stage 2 UAV technologies have already stimulated many 

innovative uses of UAVs in the civil engineering domain, there are still challenges facing 

the field to developing and implementing more advanced Stage 3 and Stage 4 technologies 

for automated civil infrastructure monitoring. The existing challenges or limitations of 

currently adopted UAV systems can be summarized as: 
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• UAV outdoor navigations have low positioning accuracy (meter level) due to heavy 

reliance on GPS signals. 

• None of the prior UAV applications have high degrees of autonomy (they use 

manual flights and belong to Stage 2 efforts). 

• UAVs are mainly used for flythroughs avoiding direct contact and interactions with 

their built or natural environments. 

• The majority of studies in the field use UAVs to payload non-contact sensors (e.g., 

cameras) with limited detection capability of structural behavior and severe control 

limitations. 

• Multiple UAVs deploying MSNs suffer from time synchronization issues due to 

low performing time synchronization algorithms which are OK for low dynamic 

applications (e.g., modal analysis of structures) but NOT OK for high dynamic 

applications (e.g., dispersion analysis of seismic sites). 

1.3 Dissertation Goal and Objectives 

 In response to the limitations of RAS solutions in general (as identified in Section 

1.1.2) and UAV-based civil infrastructure monitoring technologies in particular (as 

identified in Section 1.2.2), the overarching goal of this dissertation is to empower 

structural and geotechnical monitoring applications by advancing a UAV autonomy 

framework tailored for these applications, with a focus on using vision for accurate UAV 

position control. Towards this end, several multi-rotor UAVs will be equipped with 

onboard computers and visual cameras to—in an autonomous fashion—explore structures, 

deploy wireless sensors onto ROIs within structures, provide impulse excitations by 

dropping weight payloads, and reconfigure MSN topologies by moving wireless sensors to 
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subsequent ROIs. Two real-life applications of the UAV autonomy framework are 

demonstrated, one entails conducting modal analysis of a beam structure using UAV-

moved wireless accelerometers, and the other involves autonomous earth subsurface 

characterization with UAV-deployed wireless geophones and impulsive sources. To the 

best of the author’s knowledge, the UAV autonomy framework and its validation on real-

world civil infrastructure applications are the first of their kind and represent the huge 

potential of automation in civil infrastructure monitoring applications. 

 Figure 1-4 outlines the primary research objectives of this dissertation and 

illustrates how each chapter addresses the limitations of existing UAV systems for 

automation of structural monitoring. This doctoral research has three primary research 

objectives. First, it is clear that the accuracy of current UAV navigations in outdoor 

environments has to date been limited as a result of strong dependence upon GPS signals. 

To address this challenge, the first objective of this study is to develop a high-accuracy 

UAV positioning algorithm for autonomous outdoor flights using vision-aided position 

 

Figure 1-4. Goal and primary research objectives of UAV-enabled automated civil 
infrastructure monitoring. 
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control of UAVs. Multi-resolution fiducial markers are proposed for attachment to 

structures to serve as navigation reference targets. Also, to advance the ability for UAVs 

to interact with their environments, UAV payloads are painted with unique colors for visual 

detection and aerial grasping. Tailored computer vision algorithms are designed to 

recognize fiducial markers and colored patterns to estimate the relative pose (i.e., position 

and orientation) of the UAV relative to these visual patterns. Vehicle state estimation will 

be implemented based on visual and inertial fusion using a discrete-time Kalman filter (KF). 

Combined with cascaded position and attitude proportional-integral-derivative (PID) 

controllers, the accuracy of UAV positioning will be substantially improved to cm-level 

which will outperform GPS-only navigation. The efficacy of the proposed vision-based 

control method for autonomous UAV flights and several novel structural monitoring 

applications driven by the precision control of UAVs will be validated in this dissertation. 

 With the achievement of a UAV platform that reaches a high degree of spatial 

accuracy, the second objective of this study is to build a fully autonomous system 

architecture of UAV flight operations necessary for full automation of infrastructure 

monitoring. This dissertation accomplishes this objective by creating dedicated finite-state 

machines (FSMs) for different applications that enable flexible organization and robust 

management of all aspects of the automation process of UAVs working together. The vast 

majority of UAV use in civil infrastructure to data have been a single UAV performing 

mission tasks; in contrast, this dissertation shows the utility of UAV fleets working 

collectively. This empowers MSN-applications for infrastructure monitoring. The FSM 

design for each UAV accounts for the collective action of the UAV-based MSN in the 

design of each UAV FSM. For example, in the application of UAV-based autonomous 
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MSN deployment and reconfiguration, the complicated mission is split into manageable 

pieces by the FSM such as searching for a sensor installation location while exploring a 

structure, flying to the installation location, assessing the location of other UAVs of an 

MSN, and performing a precision landing of the UAV for sensor placement. Transitions 

between separate tasks and terminations of them are well defined, ensuring safe, reliable, 

and efficient flight operations. The FSMs are embedded in the UAV’s onboard computer, 

rendering the UAV a completely self-operating intelligent agent independent of off-board 

instructions from a human pilot or a GCS. The powerful computing capability of the 

onboard computer greatly facilitates the UAV’s onboard decision-making ability, which is 

crucial to autonomous operations of any kind. 

 Leveraging the vision-aided precision control of UAVs and UAV autonomy 

framework, the last objective of this study is to devise novel methodologies for automation 

of field monitoring and demonstrate the value of the proposed UAV system. For this 

purpose, UAVs designed in this study are primarily used to deploy wireless sensor 

networks and reconfigure their geometries. While generic wireless monitoring systems 

have been deployed on large structures and in geotechnical field applications, this 

dissertation emphasizes the automated deployment of wireless monitoring systems in 

structural monitoring and geotechnical site investigation applications using autonomous 

UAVs. A considerable fraction of the research effort has been dedicated to the design and 

implementation of UAV-sensor pairs for each application. For instance, the proposed 

wireless geophone node is the first modular, low-cost, and open-source seismic sensing 

technique of its kind and is also capable of being deployed by a mobile UAV for shear 

wave investigation of field sites. The UAV-enabled sensor deployment strategy is unique 
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in its ability to deploy wireless sensors rapidly with a high spatial accuracy by virtue of the 

agility and accurate positioning of the UAV. It gives new meaning to sensor network 

deployment as part of an MSN architecture and adds to the limited body of knowledge of 

automated monitoring of civil infrastructure using RAS. 

1.4 Dissertation Outline 

 The outline of the dissertation is now delineated. Chapter 2 demonstrates the 

feasibility of using vision-based autonomous UAVs to deploy wireless sensor networks for 

structural monitoring purposes, which falls into the realm of applications of Stage 3 UAV 

technology. While GPS-based waypoint navigation is available for automating UAV flight 

operations, such positioning tools do not provide the accuracy necessary for precision 

placement of sensor payloads on structures. In this chapter, computer vision-based pose 

estimation is used to improve the accuracy of UAV localization for sensor placement. 

Multi-resolution fiducial markers applied to the surface of the structure are adopted as 

navigation and precision landing targets that identify sensor placement locations. Visual 

and inertial measurements are fused by means of a discrete-time Kalman filter to further 

increase the robustness of the relative position estimation algorithm that is included in the 

PID control law used for UAV landing. Field experiments are conducted to validate the 

proposed vision-aided control of the UAV for sensor placement; the UAV is able to land 

on a predefined landing point within 10 cm. UAVs moving wireless accelerometers to 

locations on a beam structure are used to experimentally show the validity of automating 

UAV sensor placement for modal analysis using reconfigurable sensor network topologies. 

 Chapter 3 is devoted to the development and validation of two crucial hardware 

components that are essential for automated geo-structural analysis such as earth 
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subsurface characterization. In this chapter, the UAV is explored to deploy seismic sources, 

as a substitute for traditional human-based methods, by autonomously picking up and 

dropping off a heavy weight. This is particularly valuable in areas where human 

accessibility is difficult or impractical such as those that occur in post-disaster scenarios. 

Following the same vision-aided control strategy of the UAV introduced in Chapter 2, this 

chapter extends the UAV’s visual perception ability with a tailored color blob detection 

algorithm so that the UAV can track the weight’s location after dropping it. This is essential 

for processing shear wave data because the distance between the impulse source and sensor 

is needed. The second piece of hardware presented in this chapter is a self-contained 

wireless geophone node with the capability of recording high-resolution seismic waves and 

precisely time-stamping the collected time histories. The open-software approach adopted 

in the design of the wireless sensor node renders it much more affordable when compared 

to its commercial counterparts without sacrificing performance and functionality. 

 Chapter 4 extends the efforts and accomplishments made in Chapter 2 and Chapter 

3 to geotechnical applications and introduces a RAS solution to seismic surveying using 

the spectral analysis of surface waves (SASW) method. The autonomous robotic system is 

designed for uses in remote or dangerous sites without any human intervention. The RAS 

developed in this chapter is an application of Stage 4 UAV technology and covers the full 

spectrum of a seismic survey including sensor installation, seismic source deployment, and 

data acquisition. Three autonomous UAVs are employed in the RAS solution with two of 

them deploying a pair of wireless geophone nodes and the third one impacting the ground 

surface by dropping an instrumented weight from significant heights. The work shows 

excellent positioning of all three UAVs relative to a cube-shaped anchor that is located at 
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the sensors’ midpoint. The work also verifies the quality of the data collected by building 

an in situ dispersion curve of the field site and comparing it against one constructed from 

data collected by a commercial wired seismic monitoring system. 

 Chapter 5, the final chapter of the dissertation, presents a dissertation summary 

including highlights of key intellectual contributions achieved and a discussion focused on 

future extensions of the research needed to realized Stage 4 UAVs for civil infrastructure 

monitoring applications. 
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Chapter 2 Autonomous Wireless Sensor Deployment with UAVs for 

Structural Monitoring Applications 

2.1 Introduction 

 Adoption of sensing is growing increasingly attractive in a wide range of civil 

engineering applications due to the reduction of sensor cost, the integration of wireless 

communication that make deployments easier, and the improvement of analytical 

frameworks that extract value from collected data (Law and Lynch 2019). This has made 

monitoring common in many field applications such as SHM. In SHM applications, dense 

sensor arrays are often needed which can drive system costs high. For example, long-span 

bridges could require hundreds of sensors to ensure sufficient spatial coverage for SHM 

(Jang et al. 2010). If sensors could be moved, the density of permanent sensors could be 

reduced, thereby lowering system monitoring costs while rendering systems more flexible 

to adapt to the needs of the SHM application. To date, the placement of sensors on a 

structure are done manually with the assumption that they do not move. However, 

autonomous robotic systems could be developed for the initial placement and later 

movement of sensors which would make monitoring systems more flexible and cost-

effective. 

 UAVs could potentially be one such solution that offer mobility to sensors that 

allow for the collection of data that is difficult to obtain using conventional stationary 

monitoring approaches. The data collection capabilities of UAVs have already proven 
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valuable in many civil engineering applications such as infrastructure inspection, traffic 

monitoring, and remote sensing (Greenwood, Lynch, and Zekkos 2019). For instance, in 

earthwork survey projects, Siebert et al. (2014) showed that a camera-equipped UAV 

conducting photogrammetric surveying is able to provide more accurate spatial 

measurements while requiring less time to collect than traditional ground-based real-time 

kinematic (RTK) GPS surveying. To complement conventional oil and gas pipeline 

monitoring methods (e.g., periodic inspections by foot patrols, air surveillance using light 

aircraft or helicopters), Gómez et al. (2017) explored the use of UAV systems equipped 

with active/passive sensors that can inspect pipelines for damage. Computer vision 

methods offer a promising approach to identifying the condition of infrastructure with 

inexpensive cameras installed on the UAV. For example, recent studies have demonstrated 

several innovative applications of UAVs equipped with cameras (e.g., optical, infrared) to 

conduct infrastructure monitoring such as delamination detection of concrete bridge decks 

(Escobar-Wolf et al. 2018), modal analysis of a pedestrian suspension bridge (Hoskere et 

al. 2019), and visual inspection of a steel girder bridge (Fujino and Siringoringo 2020). In 

all of these applications, the UAV systems are primarily used as a mobile data collection 

platform to observe the system from afar and make no direct contact with the structure. 

Also, navigation of the UAV is controlled by either a human pilot operating the UAV or 

using a GPS module providing waypoint coordinates for autonomous flight operations. 

Both navigation methods lack accuracy and struggle to give desirable or reliable 

measurements for cases where precise spatial control of the UAV is required. The utility 

of UAVs could be further enhanced if they not only carry sensor payloads, but also have 

the ability to deploy sensors. This can be especially valuable in applications where data 
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collection may be required over a longer period of time (e.g., days, years) than what current 

UAV flight endurances allow (e.g., minutes, hours). In the literature, the idea of using 

robots to deploy mobile sensor networks in structures has been developed and validated by 

several researchers. Huston et al. (2004) studied the use of a mobile robot that was able to 

crawl along bridge girders while measuring girder flange thickness with an ultrasonic 

sensor. Zhu et al. (2012) prototyped a climbing robot equipped with magnetic wheels 

capable of adhering to and navigating on a steel bridge. The robots carried accelerometers 

as a robot payload and moved around the bridge to sample structural vibrations. In this 

paper, aerial delivery of sensing payloads based on computer vision and position estimation 

is proposed as part of an autonomous UAV sensor deployment system. Aerial deployment 

has advantages over prior wheel-based robots including more freedom to move and a more 

efficient approach to sensor deployment. 

 Precision control of a UAV to land on desired positions (i.e., within 0.5 m or less) 

is necessary for effective sensor placement. GPS-based waypoint navigation techniques 

used in other SHM applications (e.g., collection of imagery data) are insufficient due to 

UAV positioning errors being as large as meters that would result in inaccurate and 

unsuccessful sensor placement. Modern computer vision object detection and pose 

estimation algorithms are a promising alternative to GPS. Autonomous landing of UAVs 

using vision as the primary data source is currently an active topic of research. Among 

early investigations, printed patterns have been used to mark the landing target. Saripalli 

et al. (2003) demonstrated vision-based autonomous landing of a model helicopter on an 

“H”-shaped pad; landing position accuracy was reported to be within 40 cm. To extend the 

detection distance, Merz et al. (2006) proposed an autonomous precision landing method 



 48 

featuring a landing pattern consisting of five circle triplets of different size (with their radii 

varying from 2 to 32 cm) with the same center point; touch down precision of 42 cm was 

reported. Lange et al. (2009) designed a landing pattern with several concentric white rings 

on a black background and was able to hover a Hummingbird quadcopter above the pattern 

with a maximum deviation of 23 cm over 5 minutes. One drawback of the printed patterns 

used in the aforementioned works is that they lack generality. The fact that they lack an 

extensible design limits their usage when multiple landing targets in a structure are 

required. Also, the detection performance of a UAV using these markers under challenging 

scenarios such as low lighting has not been rigorously analyzed. To address these 

challenges, researchers have developed fiducial marker systems with a large number of 

distinguishable features that perform robustly under challenging field conditions (e.g., 

ARToolKit (Kato and Billinghurst 1999), ArUco (Garrido-Jurado et al. 2014), AprilTag 

(Olson 2011)). With a known pattern and size, a fiducial marker can be used to calculate 

the location and orientation of cameras observing them. Borowczyk et al. (2017) gave a 

demonstration of autonomous landing of a DJI M100 quadcopter on a moving vehicle with 

a speed of up to 50 km/h. The landing pad featured a 30×30 cm2 AprilTag for visual 

estimation and a mobile phone for transmitting the GPS and IMU data of the moving 

vehicle. To keep track of the single AprilTag, both a gimbal-mounted camera and a fixed 

bottom facing camera were installed onboard the UAV. Although good performance was 

achieved, the system required two cameras. Chaves et al. (2015) accomplished autonomous 

landing of a UAV (Parrot AR.Drone) on a Segway using a landing platform with four 

AprilTags: one large marker in the center for initial detection and three small markers on 

the side for fine pose control at close range when completing the landing maneuver. The 
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drawback of this system is that computations were not done on the UAV so a separate 

laptop was needed to run the system code and a wireless connection was used by the laptop 

to stream commands to the UAV. To further extend the detection range, Araar et al. (2017) 

designed a landing pad using a total of 28 AprilTags with bigger tags surrounding smaller 

ones. They used an AR.Drone 2.0 quadrotor for experimental validation and reported an 8 

cm landing error from the pad center on a stationary target and a 13 cm error on a moving 

target; similar to Chaves et al. (2015), all computations were run on a separate laptop 

computer. The past works of precision landing of UAVs using fiducial markers reveal that 

a single fiducial marker does not provide the range necessary for detection from afar while 

being sufficiently small for close-range navigation. Also, landing pads with too many 

markers demand a long computation time or the use of powerful computers on the UAV. 

In this paper, a simple yet universal landing pattern design for different detection ranges is 

proposed for detection by a UAV onboard computer in near real-time to be used by a UAV 

controller during precision landing. 

 In this study, multi-rotor UAVs are explored for autonomously deploying wireless 

sensors for structural monitoring applications. The work emphasizes the integration of 

precise landing and mission management capabilities within the onboard computer of the 

UAV for truly autonomous operations. Figure 2-1 provides the operational principles of 

the autonomous UAV-based sensor deployment system proposed including the use of 

fiducial-based landing pads for placement of a wireless sensor that can be moved from 

location to location. The proposed landing pad design is easily adjustable and able to 

provide reliable visual estimation by the UAV (using an onboard computer) during the  

 



 50 

entire landing process, thereby ensuring an accurate placement of the sensor payload. The 

envisioned applications include movement of sensors (e.g., accelerometers) on a structure 

for structural monitoring (with locations predetermined and marked with landing pads). 

The work aims to make three major intellectual contributions. First, a computer vision 

approach using four AprilTag markers for a single landing pad is created to trade off 

precision with onboard computational time for real-time control of the UAV landing. 

Second, a fully autonomous system architecture is advanced to control UAV flight 

operations and sensor placement using only the onboard computing resources of the UAV. 

Third, the integrated UAV system is demonstrated to autonomously perform modal 

analysis of a simply supported beam where the only human intervention is impacting the 

beam with a modal hammer (which emulates ambient vibrations). This work evaluates the 

 

Figure 2-1. Overview of the proposed autonomous UAV system for wireless sensor 
deployment: UAV autonomously explores a structure, finds target landing patterns, 
performs precision landing, attaches sensor payload onto the structure, collects sensor 
measurements, repeats the process until all deployment locations are covered, and 
returns home. 
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precision and repeatability of the autonomous landing process for sensor placement. The 

work also showcases the quality of the sensor data collected by performing complete modal 

analysis of the monitored structure using the reconfigurable sensor networks. 

2.2 UAV Platform: Hardware and Software 

2.2.1 UAV Hardware 

 In this study, two UAV platforms are used: a 3D Robotics (3DR) X8 octocopter 

and a Lumenier QAV210 quadcopter (Figure 2-2). The X8 has an “X” shape similar to a 

typical quadcopter but features two motors spinning in opposite directions on each of the 

four arms (thus eight motors in total). The X8 has a durable aluminum frame that is 

mechanically sturdy, yet light weight. Eight Sunnysky 2206-12 800 Kv motors are installed 

and give the X8 more lift to carry nearly a 1 kg payload. The eight motors also provide 

redundancy offering enough lift and control should a motor burn out on a mission. The X8 

is powered by a 16,000 mAh 4S 20C LiPo battery and can stay aloft for about 15 minutes. 

The QAV210 UAV has a much smaller size with a diagonal length of 210 mm (where the 

name “QAV210” comes from). The QAV210 has a symmetric carbon fiber frame design 

featuring four efficient Lumenier RX2206-11 2350 Kv motors. The QAV210 has a payload 

capacity of 300 grams and a flight endurance of about 10 minutes using two 2,200 mAh 

3S 40C LiPo batteries in parallel. In this study, the heavy-duty X8 is mainly used for 

thorough testing of the UAV control algorithms with a heavy payload carried on board, 

while the mini QAV210 is used during the experiments related to delivering light-weight 

wireless sensor nodes onto a narrow beam to validate system integration and autonomy. 
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(a) 

 

(b) 

Figure 2-2. Customized multi-rotor UAVs used in this study: (a) the 3DR X8 octocopter 
sitting on the landing pad with a sensor box attached (retroreflective passive markers are 
installed on both the UAV and the landing pad for pose tracking using the Qualisys 
motion capture system in M-Air); (b) two Lumenier QAV210 quadcopters carrying 
wireless sensor payloads on a simply supported aluminum beam (AprilTag markers are 
put on the beam to detect landing spots and on top of each UAV for visual identification 
of UAV positions on the beam). 
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 The X8 comes preinstalled with an original 3DR Pixhawk flight controller first 

released in 2013 (Rees 2013). The Pixhawk has a 32-bit STM32F427 ARM Cortex-M4 

processor with 256 KB RAM and 2 MB Flash, and operates at 168 MHz. The flight 

controller includes sensors for inertial measurements including two 

gyroscope/accelerometer sensors (TDK InvenSense MPU6000 gyroscope/accelerometer, 

and STMicroelectronics L3GD20H gyroscope/LSM303D accelerometer), a 14-bit 

STMicroelectronics LSM303D magnetometer, and MEAS MS5611 barometer. The 

Pixhawk also provides many connectivity options including five universal asynchronous 

receiver/transmitters (UARTs), two controller area network (CAN) ports, and one inter-

integrated circuit (I2C) interface. An external u-blox LEA-6H GPS module is paired with 

the Pixhawk for outdoor navigation. For the QAV210, its small frame size requires a flight 

controller with a scaled-down form factor. In this study, a Holybro Pixhawk 4 Mini is 

chosen. The Pixhawk 4 Mini has only half the footprint of the Pixhawk but has higher 

computing performance. The Pixhawk 4 Mini features an upgraded 32-bit STM32F765 

Arm Cortex-M7 processor running at 216 MHz with 512 KB RAM and 2 MB memory. 

The enhanced onboard sensor suite includes an InvenSense ICM-20689 and Bosch 

BMI055 gyroscope/accelerometer pair, an iSentek IST8310 magnetometer, and the same 

MS5611 barometer as the 3DR Pixhawk. The external GPS sensor is also upgraded to a u-

blox Neo-M8N module. Both flight controllers have a FrSky XSR receiver connected via 

SBus so that a user can manually command the vehicle using a RC transmitter that operates 

on the 2.4 GHz radio frequency. 

 To expand the onboard computational capabilities of both UAVs, a more powerful 

single-board computer (SBC) is integrated. The Nvidia Jetson TX2 is selected as the 
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companion computer to perform tasks on the UAVs that are computationally resource 

intensive. The TX2 is equipped with a 256-core Pascal graphics processing unit (GPU), a 

dual-core Nvidia Denver 2.0 central processing unit (CPU), a quad-core ARM Cortex-A57 

CPU, and 8 GB 128-bit LPDDR4 memory. In addition, the TX2 includes Wi-Fi 

communication capabilities. A small carrier board (Connect Tech’s Orbitty Carrier) to 

which the TX2 module is attached is selected. This small carrier board (87×50×15 mm3) 

takes little space on the UAV but offers a variety of interface communication ports (one 

universal serial bus (USB), two UARTs, one I2C, and four general-purpose input/outputs 

(GPIOs)). Communications between the Pixhawk flight controller and the TX2 is 

established using a serial connection (UART) with a baud rate at 921,600. A ground-based 

personal computer (PC) is also used to communicate with the Nvidia Jetson TX2 through 

its 5 GHz Wi-Fi interface. The flight controller takes commands from the TX2 in the form 

of MAVLink messages (MAVLink 2010) posted over the UART port. At any time, a 

human pilot can retake control of the UAV by commanding the flight controller through 

the FrSky Taranis X9D transmitter (although this will not be needed in this study). The 

complete system hardware architecture is shown in Figure 2-3. 

 The camera is another critical component for the precise control of both UAVs. A 

downward facing Logitech C270 high definition (HD) web camera is connected to the 

bottom of the UAV and attached directly to the TX2 via USB. This low-end webcam is 

purposely chosen due to its lack of auto-focus functionality which could create blurry 

images when the UAV is moving at high speeds. Although the auto-focus function found 

in high-end webcams could be disabled, field tests have shown that this low-cost webcam 

outperforms top-of-the-line webcams by consistently providing clear, sharp images ideal 
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for visual position estimation. Despite the camera’s ability to record 720p HD video clips, 

image resolution is set to a much lower 640×480 px2 resolution so that images can be 

processed in real-time on the TX2. The camera is mounted beneath the front of the UAV 

using rubber dampers that dampen vibrations. The use of a gimbal is intentionally avoided 

to ensure an unfiltered view of the ground is obtained from which the pose of the UAV can 

be estimated. An additional camera (GoPro HERO5 Session) is included in the X8 for 

flight video logging only during validation experiment (and not for use in pose estimation 

during landing); this GoPro communicates directly with the Ground PC using a 5 GHz Wi-

Fi connection. 

 The Martlet wireless sensing node (Kane et al. 2014) (Figure 2-4(a)) developed at  

 

 

Figure 2-3. UAV system hardware architecture showing system components, embedded 
software and communication links. 
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the University of Michigan is selected as the primary data collection platform for 

accelerometers used to measure structural vibrations. The computing core of the Martlet is 

a 16-bit Texas Instruments (TI) TMS320F28069 modified microcontroller unit (MCU) 

with a clock frequency up to 80 MHz. An attractive feature of the MCU is its dual-core 

design. The main CPU is able to handle regular single-precision floating-point calculations, 

while a 32-bit control law accelerator (CLA) is used for complex double-precision floating-

point computations. The Martlet contains a 9-channel dual sample-and-hold 12-bit analog-

to-digital converter (ADC) capable of sampling analog signals at a maximum sampling 

frequency of 3 MHz. An ADC sensor interface board (Figure 2-4(b)) is attached on top of 

the Martlet baseboard to provide bandpass filtering and amplification of input analog 

signals (100 Hz cut-off frequency and 1× gain in this study). Wireless communication 

between the Martlet and a ground-based PC is established through a power amplified TI 

CC2520 2.4 GHz IEEE 802.15.4 transceiver integrated with Martlet. A customized 

enclosure (Figure 2-4(c)) is designed to house the Martlet and a Crossbow CXL02LF1 

   

(a) (b) (c) 

Figure 2-4. The wireless sensing node to be attached on the bottom of the QAV210: (a) 
Martlet wireless node baseboard; (b) inside of the sensing enclosure (left: the Martlet 
baseboard together with the ADC daughter board; right: the Crossbow accelerometer); 
(c) exterior of the sensing enclosure. 
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accelerometer (Figure 2-4(b)) with 2 g range and 1 mg RMS noise floor. The sensor 

enclosure is firmly attached to the bottom of the QAV210 and will be moved to different 

locations on the beam structure together with the vehicle. 

2.2.2 Embedded Software Architecture 

 Embedded software is needed to automate the operations of the UAVs for the 

deployment of wireless sensors used for monitoring civil engineering systems. Software is 

written for the two onboard computing elements of the UAV: the TX2 companion 

computer and the Pixhawk flight controller. High-level flight planning like mission 

management and compute-intensive tasks like visual pose estimation will be executed 

using the TX2, while position and attitude control of the UAV are implemented on the 

flight controller. Figure 2-5 shows the layout of the software architecture distributed across 

the two computing elements. To speed up the development of the UAV, the open-source 

ArduCopter firmware from the ArduPilot project (ArduPilot 2011b) is selected to run on 

the Pixhawk flight controller as the real-time flight control stack. ArduCopter provides 

reliable and responsive flight control operations for UAVs in a full range of flight modes 

including manual and automatic flight operations. High-level control abstractions and 

interfaces are well documented that enable customized flight features and the development 

of complex use cases. ArduCopter also has well defined communication interfaces that 

allow a companion computer (like the TX2) to gain access to flight data and to allow extra 

computing power to handle computationally intensive tasks not easily executable on the 

flight controller. The ArduPilot project also offers several simulators (e.g., SITL (for 

software in the loop), Gazebo) (ArduPilot 2011c) to test the behavior of the UAV prior to 

going to the field thereby lowering the risks of testing in the field. 
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 The main loop (Figure 2-5) of the ArduCopter flight code includes a 24-state 

extended Kalman filter (EKF) (ArduPilot 2011a; Pittelkau 2003) for vehicle state 

estimation (e.g., vehicle attitude �⃗� = [𝑞A	𝑞B	𝑞C	𝑞D]F ∈ ℝI, vehicle velocity in the global 

North-East-Down (NED) frame �⃗� = [𝑣K	𝑣L	𝑣M]F ∈ ℝD, vehicle position in the NED frame 

�⃗� = [𝑝K	𝑝L	𝑝M]F ∈ ℝD , gyro bias offsets in the UAV’s local body frame 𝑏PQQQQ⃗ =

R𝑏PS	𝑏PT	𝑏PUV
F ∈ ℝD, gyro scale factor in the local IMU frame 𝑠PQQQ⃗ = R𝑠PS	𝑠PT	𝑠PUV

F ∈ ℝD, 

acceleration bias in vehicle body Z direction 𝑏&U ∈ ℝB, earth magnetic field in the NED 

frame 𝑚(QQQQQ⃗ = [𝑚K	𝑚L	𝑚M]F ∈ ℝD , body magnetic field 𝑚YQQQQQ⃗ = [𝑚S	𝑚T	𝑚U]F ∈ ℝD , wind 

velocity 𝑣ZQQQQ⃗ = [𝑣ZK	𝑣ZL]F ∈ ℝC ). In this study, the vehicle attitude �⃗� , velocity �⃗� , and 

position �⃗� will be used for control of the UAV. The EKF is designed to linearize the 

nonlinear UAV flight dynamics and sensor measurement equations using IMU dead-

 

Figure 2-5. Software architecture for the UAV platform where the TX2 provides high-
level mission management and image processing while the Pixhawk flight controller is 
responsible for vehicle state estimation and control. 
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reckoning to propagate the state and onboard sensor (e.g., GPS, barometer) measurements 

to update the state estimation. Advantages of the EKF include being able to switch between 

sensors (in case a sensor fault is identified) and the estimation of external flight variables 

such as gyro and accelerometer biases and wind speed leading to better flight performance. 

The ArduCopter main loop is run on the Pixhawk at 400 Hz including the EKF filter. A 

number of background threads are running constantly on the flight controller to provide 

input to the EKF algorithm including updates of the GPS (50 Hz), barometer (10 Hz), and 

IMU (400 Hz). As a result, the EKF provides estimations of the UAV attitude, position, 

and velocity using available flight data at the 400 Hz main loop execution rate. 

 To control UAV motions for autonomous flight, ArduCopter implements a 

cascaded control structure with a position controller followed by an attitude controller. The 

first step of the control solution is the “flight mode update” which is used to offer a target 

mode for the UAV. For example, the “Land” mode reduces vehicle altitude to the ground 

level, the “Alt Hold” mode holds altitude and only allows movement in the horizontal 

plane, the “RTL” mode returns the vehicle to the launching point, etc. Flight mode update 

can be informed by a command from a radio controller when in manual mode or, as is done 

in this study, issued by the external onboard computer (i.e., the TX2) as part of a state 

machine associated with automated flight operations. Depending on the flight mode, the 

flight controller utilizes different control strategies. The “Land” mode is most pertinent to 

this study and the control logic behind precision landing is described here (Figure 2-6). The 

outermost control loop is the position controller that is based on a proportional-integral-

derivative (PID) controller design. The position controller takes in a target vehicle position 

𝑟\'] and velocity �⃗�\'] from the precision-landing Kalman filter (which will be illustrated 
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in the next section) and the vehicle’s actual position 𝑟 and velocity �⃗� from the 24-state EKF 

to generate a target vehicle attitude �⃗�\']  that will be fed into the attitude controller. 

Similarly, the attitude controller adopts a PID design for each angle axis and outputs 

desired angular body rates ΩQQ⃗ \'] (i.e., [Ω\']S	Ω\']T	Ω\']U]F ∈ ℝD along the three axes 

of the vehicle’s body frame) for the vehicle. At the end of the ArduCopter main loop, 

outputs from the attitude and position controllers are converted to absolute motor outputs 

(i.e., pulse-width modulation (PWM) values) for the specific frame type (e.g., quad, X8) 

and sent to the ESCs which command each motor with a PWM output, �⃗�\']  (i.e., 

[𝐹B	𝐹C …𝐹a]F ∈ ℝa, where 𝑛 is the number of motors). It should be emphasized that the 

contributions of this work lay mainly on the TX2 side, where visual estimation of the 

UAV’s relative position to the landing pad is provided based on computer vision methods. 

In contrast, the Pixhawk is used as coded with an addition of a Kalman filter for precision 

landing and fine tuning of the PID control parameters for precision control of the UAV. 

 

Figure 2-6. Cascaded control of the UAV during a precision landing maneuver. 
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 The Nvidia Jetson TX2 companion computer running Linux (Ubuntu 16.04) 

constitutes the other significant part of the UAV software system. The main thread 

embedded on the TX2 is a finite-state machine (FSM) for automated flight operations 

including where and when to place wireless sensors on a structural system. As will be 

described in the next section, the FSM is primarily focused on implementing a target search 

for identifying sensor locations and performing precision landing of the UAV while 

ensuring flight safety and efficiency. To do this, the UAV’s bottom mounted camera 

interfaced to the TX2 will be used to search for landing locations identified with fiducial 

markers and to improve UAV positioning during precision landing. The DroneKit-Python 

API (DroneKit 2014) is set up on the TX2 to establish communication between the 

Pixhawk flight controller and the TX2 using the MAVLink communication protocol. 

Through this low-latency communication protocol, the TX2 is able to get real-time access 

to the vehicle’s state and to command vehicle movement and operations to the flight 

controller. 

2.3 Methodology 

2.3.1 Sensor Deployment State Management 

 This study is focused on full automation of UAVs for deployment of wireless 

sensors for structural monitoring applications. The major intellectual merit of the work is 

embodied in the methodology associated with automation of sensor deployment and 

redeployment. At the core of the work is the creation of an FSM embedded in the UAV 

onboard computer (i.e., TX2) that choreographs each step of the fully autonomous sensor 

deployment. The deployment strategy (Figure 2-1) will be based on a structure with pre-

determined sensor locations defined by fiducial markers. The role of the UAV is to deploy 
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sensors to the locations predetermined by precise landing and placement. Once sufficient 

data is collected, the sensor is retrieved by the UAV and taken to another installation 

location. This deployment strategy will be executed by the UAV using the FSM embedded 

in the onboard TX2 computer. 

 The FSM approach partitions the autonomous sensor deployment method into a set 

of well-defined operational states with deterministic transitions between them. As shown 

in Figure 2-7, the task of deploying a wireless sensor node is split into manageable pieces 

such as searching for the target landing pattern in the air, hovering above the landing 

pattern, and performing a precision landing of the UAV for sensor placement. The FSM 

guides the UAV to first take off from the home position to a target height and to fly a 

predetermined flight path while searching for the desired fiducial marker on the structure 

that indicates the installation location of the wireless sensor (e.g., sensor location 1 in 

Figure 2-1). If the desired landing pattern is found, a precision landing maneuver based on 

computer vision is performed to precisely land on the target pattern for precise placement 

of the sensor. After desired measurements are taken, the UAV takes off and searches for 

the next installation location (e.g., sensor location 2 in Figure 2-1). The UAV will repeat 

this procedure until all required locations are visited, at which point the UAV will return 

to its home position. A challenge with UAVs in general is their limited battery energy; this 

requires an efficient FSM that does not waste scarce energy. Certain states in the FSM 

presented in Figure 2-7 are only granted a limited time for the UAV to stay in so that battery 

life is not wasted. For example, if the UAV has spent an unreasonably long time searching 

for landing patterns due to situations like bad GPS data or strong winds, the FSM would 

command the vehicle to land immediately to save battery life. 
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 In the flight operations dictated by the FSM, the UAV will rely on two primary 

sources of data for spatial pose estimation: vehicle state estimation data (e.g., vehicle 

position �⃗�, velocity �⃗�, attitude �⃗�) queried by the TX2 companion computer from the flight 

controller and camera images viewing the landing pattern which are a set of unique fiducial 

markers. The TX2 has a flight path defined by GPS waypoints that is communicated point 

by point to the flight controller over the MAVLink communication interface. The GPS data 

is sufficiently accurate (i.e., within meters) for guiding the UAV over large distances but 

too coarse for precision landing. Once the fiducial markers corresponding to a desired 

landing location is found, the UAV uses the TX2 computer to estimate with greater 

precision (i.e., within centimeters) the UAV position 𝑟 and orientation �⃗�  using camera 

images of the fiducial markers and a Kalman filter. Once the landing pattern is detected, 

the cascaded position and attitude controller (Figure 2-6) inside the Pixhawk controls the 

 

Figure 2-7. Finite-state machine for the UAV-based sensor placement mission; certain 
operations are only granted a limited time to stay in for battery life preservation (Note: 
reliability and flight protection are provided by issuing an immediate land command 
whenever things go wrong). 
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UAV to land using the estimated UAV pose relative the landing pattern as an input to the 

control law. The processing of the camera images and relative pose estimation are done by 

the TX2 computer using tailored software written in Python and executed by the Linux OS 

of the TX2. The fusion of the camera estimates and other sensor data such as IMU-based 

measurements is implemented via a second Kalman filter (i.e., independent of the EKF) 

embedded in the Pixhawk flight controller by the author; this Kalman filer in written in 

C++. 

2.3.2 Landing Pattern Design and Detection 

2.3.2.1 Need for Tags of Variable Sizes 

 Being able to detect the landing pattern defined by fiducial markers is fundamental 

to the automated sensor deployment FSM. Specific challenges include keeping the visual 

target within the camera’s limited field of view (FoV), robust detection of the landing 

pattern using low-resolution images, and use of the fiducial markers for UAV state 

estimation for precision landing. A multi-resolution tag pattern is designed to address these 

challenges. During a precision landing task, ground areas covered by the UAV’s downward 

facing camera is limited by the camera’s FoV and the height, 𝑑𝑧, of the UAV. A camera 

from a higher altitude with a wider FoV has better coverage of the ground. More 

specifically, as shown in Figure 2-8, the maximum lateral and longitudinal ground distance 

covered by the camera, 𝑑𝑥 and 𝑑𝑦, can be calculated as: 

 
𝑑𝑥 = 2 ∙ 𝑑𝑧 ∙ tan h

𝐹𝑜𝑉k
2 l, 

(2-1) 

𝑑𝑦 = 2 ∙ 𝑑𝑧 ∙ tan h
𝐹𝑜𝑉m
2 l, 
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where 𝐹𝑜𝑉k and 𝐹𝑜𝑉m are the camera’s field of view along the 𝑥 and 𝑦 axis, respectively. 

The designed landing pattern includes fiducial markers of different sizes which are 

intentionally positioned as guides to the UAV at different distances from the target during 

landing, leading to better precision. Bigger markers allow the UAV to detect landing spots 

from high altitudes, but smaller markers are needed to ensure precision during landing. As 

the UAV descends, bigger tags gradually leave the camera’s FoV while smaller ones 

become detectable, thereby providing a continuous navigation guide for the UAV. 

2.3.2.2 AprilTag Fiducial Detection System 

 The AprilTag fiducial detection system is chosen for the design of the landing pad 

due to its robust performance with respect to suboptimal lighting conditions, occlusion,  

 

 

Figure 2-8. Diagram illustrating camera’s limited field of view. Area covered on the 
ground by a downward facing camera is restrained by the camera’s FoV and the height 
of the camera (in this case, only the two smallest tags stay completely in the camera’s 
FoV).  
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and motion blur (Olson 2011). These black and white, QR-code-like square tags contain 

identification information (tag ID) and provides full pose estimation of a calibrated camera 

with respect to a tag. The AprilTag detection system is composed of two major 

components: tag detector and coding system. The detector’s job is to estimate the position 

of potential tags in an image and the coding system enables encoding/decoding of 

distinguishable IDs. The detection process starts with detecting line segments by grouping 

together pixels with similar gradient directions and magnitude (Figure 2-9(a)). Sequences 

of line segments that form a 4-sided shape (i.e., possible tag boundaries) are then identified 

based on a recursive depth-first search method (Figure 2-9(b)). The final stage of the 

detection algorithm is payload decoding, where bits from the tag-relative payload field are 

extracted one by one (Figure 2-9(c)). Once the data payload is determined, the coding 

system determines whether it is a valid tag or not. The AprilTag encoding scheme utilizes 

a modified lexicographic coding system that ensures minimum Hamming distance between 

codewords while rejecting simple patterns that commonly occur in natural scenes (Olson 

2011). Different families of tags are provided by the AprilTag coding system, depending 

on the size of the tag (e.g., 4×4, 5×5, 6×6 grids) and the minimum Hamming distance 

   

(a) (b) (c) 

Figure 2-9. AprilTag detection process: (a) line segments detection; (b) quad detection; 
(c) payload decoding. 
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between codewords. In general, families with smaller grid size (and hence larger pixel size) 

enable detection from afar while those with a larger grid size allow larger Hamming 

distance thereby providing higher identification accuracy. In this study, the Tag36h11 

AprilTag family (6×6 codewords with a 11 bits minimum Hamming distance) is adopted 

for its high detection accuracy with low processing time. A Python module is implemented 

in the UAV TX2 to detect the AprilTag (Swatbotics 2016). 

2.3.2.3 Superiority of a Fixed Landing Point over Floating Landing Points 

 When using a multi-resolution AprilTag landing pattern, several tags may be 

detected at the same time from an image. Different strategies can be applied regarding 

which detected tags to use for precision landing. In previous work (Zhou, Lynch, and 

Zekkos 2019), the smallest AprilTag among all detected is set as the active one and the 

landing point is assigned as the center of the active tag (Figure 2-10(a)). This method is 

time efficient but struggles to produce smooth landing trajectories. The suboptimality of 

this strategy can be explained by the following. When a switch of active AprilTag happens, 

the sudden change of the target landing point could drive the UAV to make a dramatic 

horizontal move in the air, which could further result in a large camera tilt angle and 

possibly a permanent loss of the landing patten. During development and testing, it has 

been found that when the UAV is not well tuned (i.e., PID parameters are not well tuned 

so that the UAV cannot track its desired position or velocity tightly), visual loss of the 

landing pattern occurs frequently. One way to alleviate this problem is to organize different 

tags in a carefully designed pattern. For instance, having tags arranged in a circular pattern 

with smaller ones sitting closer to the center of the circle (Figure 2-10(a)) outperforms a 

pattern with randomly placed tags. This patten design is still suboptimal though. As smaller 
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tags come into view, chances are the active tag would bounce between different tags, which 

could cause oscillations and other unexpected behavior of the UAV. In this study, a new 

strategy that abandons the switching of active tags is proposed. All tags identifiable in an 

image are employed to construct a fixed landing point, and the UAV estimates its pose 

relative to this single reference point. In this way, all kinds of landing pattern can be used 

as long as all the tags stay relatively close to each other (so that when a bigger tag leaves 

FoV, smaller ones become detectable) and the predetermined fixed landing point is near 

the smallest tag (because the smallest tag needs to stay in FoV to provide guidance at the 

final stage of landing). In this study, a landing pattern with the appearance of Figure 2-10(b) 

is adopted. The pattern contains four different levels of tag resolution with the fixed landing 

point defined at the middle of the bottom edge of the smallest AprilTag. Detection range 

is easily configurable by using different sizes of print. 

 

 

(a) (b) 

Figure 2-10. Two landing pattern designs and their associated landing points shown as 
gray crosses: (a) a design with four AprilTags placed in a circular pattern (note: the 
floating landing point is assigned as the center of the smallest Apriltag among the 
detected); (b) The landing pattern adopted in this study with a fixed landing point defined 
at the middle of the bottom edge of the smallest AprilTag. 
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2.3.3 Visual Position Estimation 

 Having detected the landing pad and identified the pixel coordinates of the detected 

AprilTags’ feature points (i.e., tag center and corners), estimation of the relative position 

of the UAV relative to the landing point is now possible. Towards this end, a robust relative 

position estimation method relying on both IMU and vision data is developed. To 

compensate for cases where visual localization data is not available, a Kalman filter is next 

implemented to provide continuous estimation of the UAV position relative to the landing 

point. 

2.3.3.1 Relative Position Estimation 

 Figure 2-11 presents the method for positioning the UAV with respect to the 

landing point 𝑀. In this study, a superscript on the location variable denotes the reference 

frame (e.g., 𝑃o denotes the coordinates of point 𝑃 with respect to frame 𝐴). Three main 

coordinate frames and transformations between them are illustrated in Figure 2-11. The 

global North-East-Down frame, denoted Ground, is located at the UAV’s home position 𝑃 

(i.e., where it takes off). The North direction (𝑥+) is provided by the magnetometer sensor 

onboard the vehicle. The UAV body frame is set at its center of gravity (CG), point 𝑄, with 

the 𝑥q  axis pointing between two of the arms towards the front of UAV, the 𝑦q  axis 

pointing to the right, and the 𝑧q axis pointing to the bottom of the UAV. A Camera frame 

𝑂(𝑥r, 𝑦r, 𝑧r) is defined at the optical center 𝑂. Common practice is to set 𝑥r to right of 

the camera, 𝑦r down, and 𝑧r outwards from the camera lens. The objective is to find the 

relative position of the landing point 𝑀 with respect to the UAV’s CG, point 𝑄, in the 

Ground frame. Because the UAV’s coordinates in the Ground frame (i.e., 𝑄s)tua]) is 
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provided as state estimations by the 24-state EKF implemented in the Pixhawk flight 

controller, the objective then becomes to find 𝑀’s coordinates in the Ground frame (i.e., 

𝑀s)tua]). 

 The first step is to compute the landing point 𝑀’s representation in the Camera 

frame, 𝑀%&'()&. To this end, a pinhole camera model (Figure 2-12) is adopted to construct 

the mathematical relationship between coordinates of point 𝑀 in a 3D world frame and the 

2D coordinates of its projection point denoted as point 𝑁 in the image pixel frame. Four 

coordinate systems are defined in the pinhole model of Figure 2-12. The Camera reference 

 

Figure 2-11. Diagram illustrating how to compute the relative position of the landing 
point 𝑀 with respect to the UAV’s CG, 𝑄, in the Ground frame. 
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frame is as defined in Figure 2-11. The World frame 𝑊(𝑥w, 𝑦w, 𝑧w)  is the frame of 

reference for absolute positioning. The Image coordinate frame, denoted as 𝐺(𝑥s, 𝑦s), is 

defined with the origin 𝐺 at the top-left corner of the image with 𝑥s  pointing to the right. 

The fourth reference frame Pad, denoted as 𝑀(𝑥y, 𝑦y, 𝑧y), is defined at the landing point 

𝑀. In the Pad frame, 𝑥y points up, 𝑦y points to the right, and 𝑧y points inward to the pad. 

Both the 𝑥y and 𝑦y axes are parallel to tag boundaries. 

 The pinhole camera model can be formulated as (see Appendix A.1 for details): 

where 𝑐 ∈ ℝ  is a scaling factor, 𝐾 ∈ ℝD×D  is the camera intrinsic matrix, 

[𝑅wt)}]
%&'()&|𝑡wt)}]

%&'()&] ∈ ℝD×I is the camera extrinsic matrix representing the relative rotation 

 

Figure 2-12. Pinhole camera model showing the landing point 𝑀 in the 3D World frame 
and its projection point 𝑁 in the Image plane through the camera lens center 𝑂. 

 𝑐𝑁�'&P( = 𝐾[𝑅wt)}]
%&'()&|𝑡wt)}]

%&'()&]𝑀wt)}], (2-2) 
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and translation of frame World with respect to frame Camera, 𝑁�'&P( = [𝑢	𝑣	1]F ∈ ℝD×B 

and 𝑀wt)}] = [𝑥	𝑦	𝑧	1]F ∈ ℝI×B  are homogeneous coordinates of point 𝑁  and 𝑀 , 

respectively. The camera intrinsic matrix, 𝐾, is based on the camera optics and is a constant 

matrix that only needs to be found once. Equation (2-2) can be expanded as: 

Note that the translation vector 𝑡wt)}]
%&'()& can be interpreted as the coordinates of the origin 

of the World frame with respect to the Camera frame (Figure 2-12). By purposefully 

defining the World frame exactly as the Pad frame, the landing point 𝑀 becomes the origin 

of the World frame, and 𝑀’s representation with respect to the Camera frame is simply 

𝑡wt)}]
%&'()&, i.e., 

𝑀%&'()&  represents all the necessary information about the landing point that can be 

obtained from a single image needed for control of the UAV to land with precision on the 

pad. Specifically, 𝑀%&'()& , or the translation vector 𝑡wt)}]
%&'()& , defines the relative 

distances, Δ𝑥, Δ𝑦, and Δ𝑧, of the camera with respect to the landing pad that will be used 

to control the UAV landing with the control law aiming to drive 𝑡wt)}]
%&'()& to zero. 

 The problem of estimating the pose of a calibrated camera (with known intrinsic 

matrix, 𝐾) based on a set of 𝑛 reference 3D points and their corresponding 2D projections 

is commonly referred to as the Perspective-n-Point (PnP) problem. Mathematically, the 

PnP problem can be defined as given a set of 𝑛  3D world coordinates-2D image 

 𝑐 �
𝑢
𝑣
1
� = 𝐾 �

𝑟BB 𝑟BC 𝑟BD 𝑡B
𝑟CB 𝑟CC 𝑟CD 𝑡C
𝑟DB 𝑟DC 𝑟DD 𝑡D

� �

𝑥
𝑦
𝑧
1

�. (2-3) 

 𝑀%&'()& = 𝑡wt)}]
%&'()& ≜ [𝑡B	𝑡C	𝑡D]F. (2-4) 
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coordinates pairs, determine the camera extrinsic matrix [𝑅wt)}]
%&'()&|𝑡wt)}]

%&'()&]  (Equation 

(2-2)). Existing solutions to the PnP problem can be classified into two methods: 

optimization-based iterative methods (solved by minimizing a properly defined cost 

function, e.g., Lu, Hager, and Mjolsness 2000) and closed form methods (solving the 

equation directly, e.g., Lepetit, Moreno-Noguer, and Fua 2009). Making use of the open-

source computer vision library, OpenCV (Bradski 2000), an iterative method called 

solvePnP (OpenCV 2019) is selected here. The cost function used by solvePnP is the 

reprojection error, which is defined as the sum of squared distances between the observed 

projection points and those calculated in each iteration. Solutions of the extrinsic matrix 

[𝑅wt)}]
%&'()&|𝑡wt)}]

%&'()&] that minimize the reprojection error are found based on the well-known 

Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt 1963). 

 The compute-intensive solvePnP algorithm is implemented in the TX2. After 

obtaining the translation vector 𝑡wt)}]
%&'()& (i.e., 𝑡B, 𝑡C, and 𝑡D) from each image, MAVLink 

messages encoding 𝑡B, 𝑡C, and 𝑡D are sent from the TX2 to the flight controller (Figure 2-6). 

These visual estimations are used as a measurement update for a precision-landing Kalman 

filter that will be illustrated next. 

 Once 𝑀%&'()& is computed, a set of homogeneous transformations can be applied 

to get 𝑀s)tua] based on rigid motions between different frames: 

where 𝑀s)tua] and 𝑀%&'()& are 4×1 homogeneous coordinates augmenting the original 

3×1 coordinates by a fourth component of 1. A homogeneous transformation matrix 𝐻�o 

 𝑀s)tua] = 𝐻�o�s)tua]𝐻%&'()&�o� 𝑀%&'()&, (2-5) 
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(4×4) is nothing but a compact way to include both the relative rotation 𝑅�o and translation 

𝑡�o between two frames 𝐴 and 𝐵, i.e., 

𝐻�o�s)tua] comes from the attitude and position estimations for the UAV in real time, and 

𝐻%&'()&�o�  is a preset constant dependent on how and where the camera is mounted on the 

UAV. 

 On a side note, the rotation matrix 𝑅wt)}]
%&'()&, or specifically 𝑅+&]%&'()&, produced by 

the solvePnP algorithm is utilized to line up the Camera frame and the Pad frame such that 

the camera’s 𝑥r axis coincides with the pad’s 𝑦y axis. Before precision landing starts, the 

vehicle is commanded to yaw an appropriate angle based on this rotation matrix. In this 

way, the orientation of the UAV is deterministic with respect to the landing pad when it 

lands. 

2.3.3.2 Kalman Filter for Landing Position Estimation 

 The IMU can be further exploited to increase the robustness and accuracy of the 

vision-based relative position estimation. Visual and inertial fusion has been an active topic 

of research to address accurate and reliable localization and mapping in a wide range of 

robotic oriented applications. The rich information contained in images in a longer time 

window, together with the accurate short-term estimates by gyroscopes and accelerometers 

complement each other, making visual and inertial measurements ideal for fusion. Existing 

approaches found in the literature can be broadly classified into two categories: batch 

nonlinear optimization methods (Leutenegger et al. 2015; Forster et al. 2016; Qin, Li, and 

 𝐻�o = �𝑅�
o 𝑡�o
0 1

�. (2-6) 
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Shen 2018) and recursive filtering methods (Mourikis and Roumeliotis 2007; Bloesch et 

al. 2015). The optimization methods jointly minimize errors from both the IMU and vision 

measurements, while filter based methods commonly use IMU measurements for state 

propagation with updates originating from visual observations. Nonlinear optimization 

methods are higher performing but their increased accuracy comes at a cost of more 

computational resources. Hence, a recursive linear Kalman filter is adopted in this work 

due to its simplicity and the flight controller’s limited computing power. 

 A standard visual-inertial filtering method requires a state vector involving states 

of both the vehicle and the landing pad (e.g., their positions and velocities). When visual 

data is not available, state estimation for the UAV is provided by the 24-state EKF 

implemented in the Pixhawk flight controller stack. When an image is available, the 

original 24-dimension state vector would be augmented to include the landing pad’s states. 

This approach would require a large number of modifications to the original flight 

controller EKF codebase shown in Figure 2-5. Alternatively, a less accurate but more 

efficient approach taken herein is adding a second Kalman filter for relative position and 

velocity estimations of the landing pad while leaving the state estimates for the UAV from 

the original 24-state EKF filter unchanged. State estimations from the 24-state EKF can be 

used as inputs to the second Kalman filter, while visual estimation results from the previous 

section will be used as measurement updates (Figure 2-6). 

 The second Kalman filter is established as follows. As the dynamics of the UAV 

are loosely coupled in the 𝑥+, 𝑦+, and 𝑧+ directions in the Ground frame, they are modeled 

independently during the precision landing process. In the 𝑧+ direction, a standard landing 

maneuver is commanded. On the horizontal plane, two discrete Kalman filters are used 
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independently: one in the 𝑥+  (North) direction and another in the 𝑦+  (East) direction. 

Without loss of generality, the Kalman filter in the 𝑥+ direction is illustrated. The states of 

the Kalman filter are the relative position and relative velocity of the landing pad with 

respect to the UAV, 𝑠 = [𝑥)(}	𝑣)(}]F. The next state 𝑠��B is propagated from the currents 

state 𝑠� using the following motion model: 

The Kalman filter assumes a constant relative speed in 𝛿𝑡, which is reasonable because the 

filter is updated at 400 Hz. The controlled input 𝑢 = [0	𝛿𝑣)(}]F  is the negative of the 

UAV’s velocity change over the timestep 	𝛿𝑡 . The process noise 𝑞� =

[0	𝛿𝑣at��(�
)(}]F~𝑁(0, 𝑄�) is set to be the estimated accelerometer noise times 𝛿𝑡. Both 

𝛿𝑣)(} and 𝛿𝑣at��(
)(} comes directly from the original 24-state EKF. Relative distance is 

measured and updated when visual data arrives. The measurement model is simply: 

where 𝑚� comes from the relative position estimates described in the previous section. The 

measurement noise 𝑟� = 𝛿𝑚at��(�
)(}~𝑁(0, 𝑅�) is assigned to be 2% of the UAV’s distance 

to landing point. The Kalman filter is solved with the following prediction and update steps. 

 
𝑠��B = �

𝑥��B)(}

𝑣��B)(} � = �1 𝛿𝑡
0 1 � �

𝑥�)(}

𝑣�)(}
� + � 0

𝛿𝑣�)(}
� + �

0
𝛿𝑣at��(�

)(}� 
(2-7) 

 ≜ 𝐹�𝑠� + 𝐺�𝑢� + 𝑞�. 

 𝑚� = 𝑥'(&��
)(} = [1 0] �

𝑥�)(}

𝑣�)(}
� + 𝛿𝑚at��(�

)(} ≜ 𝐻�𝑠� + 𝑟�, (2-8) 

 
Prediction: �̂���B = 𝐹�𝑠� + 𝐺�𝑢�, 

(2-9) 
 𝑃���B = 𝐹�𝑃�𝐹�F + 𝑄�; 
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The Kalman filter predicts the state mean, �̂���B, and the state covariance matrix, 𝑃���B, 

before updating the state mean, 𝑠��B, and state covariance matrix, 𝑃��B, with the Kalman 

gain, 𝐾��B, and innovation, 𝛾��B. 

 The discrete Kalman filter is run on the Pixhawk flight controller since the real-

time operating system provides a precise time base. The use of a Kalman filter allows 

compensation for bad visual localization data or even the loss of it. Erroneous and 

inaccurate state estimates are detected based on the normalized innovations squared (NIS) 

metric (Bar-Shalom, Li, and Kirubarajan 2004). The NIS check for Kalman Filters is based 

on the assumption that under nominal conditions, the normalized innovations will have unit 

variance. If NIS exceeds a predefined threshold, the measurement is likely to be imprecise 

or erroneous and thus cannot be used for the update of the filter states. In cases when a 

visual update if unavailable, for example, if the camera fails to detect the landing point in 

a blurry image, the filter will only predict for this iteration and compensates in the next 

update step for the then longer time interval. This allows the system to recover from several 

dropped camera frames. 

 

Update: 𝐾��B = 𝑃���B𝐻��BF [𝐻�𝑃���B𝐻��BF + 𝑅��B]�B, 

(2-10) 

 𝛾��B = 𝑚��B − 𝐻��B𝑥���B, 

 𝑠��B = �̂���B + 𝐾��B𝛾��B, 

 
𝑃��B = (𝐼 − 𝐾��B𝐻��B)𝑃���B(𝐼 − 𝐾��B𝐻��B)F 

															+𝐾��B𝑅��B𝐾��BF . 
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2.3.3.3 Visual-Inertial Synchronization 

 Conducting image capture and processing as close to real-time as possible is critical 

for a healthy Kalman filter. High latency could result in incorrect position estimations. A 

seemingly simple frame polling command from the TX2 to the camera introduces latency 

because polling involves image processing in the camera, USB transfer of the image, and 

image decoding by the TX2. To reduce latency present in the polling process, an image 

capture background thread is adopted by the TX2 that continually polls the camera and 

labels each resulting frame with a timestamp. Image processing is carried out in the main 

thread with landing point estimations transferred to the flight controller via the MAVLink 

protocol when available. Because of the latency present in the camera image pipeline, an 

 

Figure 2-13. Diagram showing visual-inertial synchronization. The total image delay is 
the lapse of time from the camera shutter time to the moment the Pixhawk executes a 
measurement update. Kalman filter is run on a delayed time horizon on the Pixhawk. 
Results from the Kalman filter are further predicted forward to produce state estimations 
for the current time utilizing an IMU buffer. 



 79 

observation of the landing pad is received by the filter framework with a delay. To 

synchronize inertial and visual data, a buffer of IMU measurements is maintained since the 

IMU data is updated faster (400 Hz) than the image measurements (about 30 Hz). Once the 

Pixhawk receives a visual position estimate, it performs an update step of the Kalman filter 

on the delayed time horizon, and then predict forward to the current time using the buffered 

IMU data. Figure 2-13 illustrates the data fusion process. 

2.4 Experiments and Results 

 Two different sets of experiments were designed to quantitatively assess the 

proposed UAV-based vision system for precision placement of wireless sensors on 

structures. The first round of experiments focused on testing each individual system 

component such as position estimation of the UAV relative to the landing pattern and the 

control method used for precision landing of the UAV. These experiments were conducted 

using the 3DR X8 UAV mainly due to its sturdy frame design (allowing for possible 

crashes during experimental validation) and relatively long flight times (15 minutes with a 

1 kg payload). The second round of experiments were intended to validate the concept of 

deploying sensors on a structure in a modular fashion. Two UAVs carrying cameras and 

wireless sensors with accelerometers were used to perform modal analysis of a beam 

structure. The case study featured fully autonomous operations of two QAV210 UAVs 

carrying a Martlet wireless sensor node that is programmed to safely land on a simply 

supported beam with a restricted surface area. The two UAVs are programmed to move the 

sensors so as to accurately identify the beam mode shape. 

 Field experiments were performed in M-Air, a netted outdoor flying lab 

(22.4×36.6×15.2 m3) designed for UAV research located on the campus of the University 
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of Michigan. A Qualisys motion capture system is permanently integrated into M-Air and 

includes 30 cameras installed around the facility to provide accurate (mm-level) tracking 

of object motion. Retroreflective passive markers were mounted on the objects of interest, 

in this case, this study’s UAV and landing pads (Figure 2-2(a)), for tracking purposes. The 

cameras’ threshold was adjusted so that only the bright reflective markers were captured. 

UAV and landing pad positioning data were reported by the Qualisys IR system in real-

time at 60 Hz and were used as ground truth for the validation studies. 

2.4.1 UAV System Component Testing 

 For testing and validation purposes, the landing pattern was designed with four 

AprilTags (Figure 2-10(b)) with side lengths of 22.4 cm, 11.2 cm, 5.6 cm, and 2.8 cm. The 

largest AprilTag could be reliably detected from as high as 12 m from the air. The smallest 

ApilTag fits into the X8 camera’s FoV even when the UAV sits on the ground over the 

landing spot (there is a 9.2 cm distance between the camera and the ground). 

2.4.1.1 SolvePnP Validation 

 First, the performance levels of relative position estimation method proposed in 

Section 2.3.3.1 were evaluated. Two types of test flights were performed to quantify the 

performance of the solvePnP algorithm for estimating the relative position of the landing 

point, 𝑀, with respect to the camera lens of the UAV (i.e., 𝑀%&'()&). In the first round of 

test flights, the UAV was kept in a relatively close position above the AprilTag landing 

pattern with the UAV continuously estimating its position relative to the landing point, 𝑀. 

The Qualisys IR motion capture system was used to determine the relative position of the 

UAV with respect the landing pattern as ground truth. The second round of testing centered 
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on how distance affects the estimation accuracy of the embedded algorithm. In these tests, 

the UAV took off from the landing pad and rose up to about 12 m.  

 Test results for two of the flights are shown in Figure 2-14. Estimations of 𝑀%&'()& 

(𝑡B, 𝑡C, and 𝑡D from solvePnP) are shown in red plus signs and ground truth measurements 

from the motion capture system are shown in solid blue lines. Figure 2-14(a)-(c) shows 

results of a flight where the UAV was flown relatively close to the landing pattern at a 

height of roughly about 1.4 m, while Figure 2-14(d)-(f) shows another flight where the 

UAV was slowly flown away from the landing pattern getting to a height of more than 12 

m. In both test flights, the solvePnP algorithm is able to provide estimations that follow the 

ground truth tightly in all three directions, which demonstrates the accuracy of the 

algorithm. Root mean square error (RMSE) for the estimations are shown in Table 2-1. For 

the first test flight, RMSEs in all three directions are well under 3 cm, which indicates the 

ability for the UAV to precisely land. 

 The second test flight shows that the landing pattern can be detected by the camera 

from as far away as 12 m. However, as the distance between the camera and landing point 

(i.e., ¡𝑂𝑀QQQQQQ⃗ ¡) grows larger, the estimation accuracy decreases. The accuracy of the position 

estimation algorithm was assessed as a function of the relative distance ¡𝑂𝑀QQQQQQ⃗ ¡. Figure 2-15 

presents the estimation errors with respect to the relative distance in all three directions. 

Also shown in the figure is the number of AprilTags detected and used to compute the 

relative distances indicated by blue stars. As shown, only one AprilTag is detected when 

the vehicle is far from the pattern (¡𝑂𝑀QQQQQQ⃗ ¡ 	> 6.0 m) and close to the pattern (¡𝑂𝑀QQQQQQ⃗ ¡ 	< 0.6  
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 2-14. Estimation of 𝑀%&'()& : (a)-(c) UAV flown relatively close to landing 
pattern at a distance roughly about 1.4 m; (d)-(f) UAV took off from the landing point 
and slowly flown away. 
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Table 2-1. RMSEs of the solvePnP position estimation algorithm (Units are in meters). 

 𝑴𝒙
𝑪𝒂𝒎𝒆𝒓𝒂 (𝒕𝟏) 𝑴𝒚

𝑪𝒂𝒎𝒆𝒓𝒂 (𝒕𝟐) 𝑴𝒛
𝑪𝒂𝒎𝒆𝒓𝒂 (𝒕𝟑) 

1st Flight (Figure 2-14(a)-(c)) 0.0107 0.0165 0.0269 
2nd Flight (Figure 2-14(d)-(f)) 0.0637 0.1282 0.2008 

 

  

(a) (b) 

 

(c) 

Figure 2-15. Estimation errors with respect to the relative distance between the UAV and 
the landing pattern. Overlayed on the figure is the number of AprilTags detected and 
used to compute relative distances. 

m), which proves the necessity of the inclusion of all four AprilTags in the landing pattern. 

Figure 2-15(b) and Figure 2-15(c) shows a clear correlation between the number of 
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detected tags and the estimation accuracy. When all four AprilTags in the pattern are 

detected (¡𝑂𝑀QQQQQQ⃗ ¡ ≈ 1.6 m), the estimation error is the smallest (close to zero). Another 

interesting finding is that comparing Figure 2-15(a) and Figure 2-15(b), when ¡𝑂𝑀QQQQQQ⃗ ¡ is 

relatively large, the estimation errors in the Camera’s 𝑥r direction are smaller than those 

in the 𝑦r direction. This is possibly due to the landing pattern’s larger overall length in the 

𝑥r direction (thus more accurate pixel coordinates of the feature points and better distance 

estimation). 

2.4.1.2 Image Transmission Delays 

 It is important for attitude data from the Pixhawk flight controller and the camera-

based estimation of the UAV position relative the landing pattern to be synchronized. The 

UAV was flown over a landing pattern and the time delay between image capture (i.e., 

opening of the camera shutter) and transmission of extracted UAV position information 

(i.e., 𝑡B , 𝑡C , and 𝑡D ) from the TX2 to the Pixhawk over the MAVLink interface was 

calculated. This delay is shown in Figure 2-16 as the solid red curve with cross markers. 

The delay, which is 31.5 ms on average, is mostly due to the time needed to load the image 

from the camera and process the image. The processing time for the TX2 to process the 

image of the landing pattern is shown as the green curve with plus markers in Figure 2-16. 

The computation time is on average 13.9 ms and less variable. Also, this computation time 

is not affected by the number of AprilTags (indicated by blue star markers in Figure 2-16) 

used in calculation of the UAV relative position. There is a high level of variability in the 

total delay (red curve with cross markers) not seen in the computation time (green curve 

with plus markers) of the UAV position estimation. This variability is associated with 
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stochastic delays of the TX2 operating system (which is not a real-time operating system) 

when servicing the MAVLink interface and executing image capturing in the background. 

 Once the relative position estimate is determined, the TX2 will transmit its relative 

position to the Pixhawk controller. The MAVLink interface operates at a baud rate of 

921,600 and requires about 17.8 ms to transmit its data. If average total delay of the TX2 

getting an image from the camera, calculating the relative UAV position using the image, 

and sending out the relative position is 31.5±11.1 ms, then the total delay for the Pixhawk 

controller is 49.3±11.1 ms. With the Pixhawk generating attitude data at 400 Hz and an 

average delay of image data at 49.3 ms, then an IMU buffer (discussed in Section 2.3.3.3) 

is programmed to have 20 or more data points. 

 

Figure 2-16. Image data transmission delay: the total delay equals the delay from image 
capturing to the transmission of a MAVLink message by the TX2 (red curve, on average 
31.5 ms) plus the actual transmission time of the message from the TX2 to the Pixhawk 
(about 17.8 ms, not shown in the figure). IMU buffer size is set to 20 to compensate for 
the delayed visual measurement. 
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2.4.1.3 Precision Landing 

 Next, the UAV’s capability of precision landing was tested thoroughly. Figure 2-17 

shows a sequence of snapshots from the onboard webcam during a typical precision 

landing. Detected AprilTags are highlighted in each image with the corners and centers of 

each detected tag marked by orange dots. Based on these feature points, pixel coordinates 

for the fixed landing point 𝑀  are computed and marked with a red cross. 𝑀%&'()&  is 

further extracted using the direct method and shown on top of each frame (𝑡B, 𝑡C, 𝑡D in 

green). As shown in the sequence of snapshots, only the largest AprilTag among the four 

is detectable at the very beginning of the landing process when the UAV is at about 4.43 

m above the pattern (Figure 2-17(a)). Smaller AprilTags gradually come into the camera’s 

FoV as the UAV descends. At the height of about 1.14 m, all four AprilTags are 

successfully detected (Figure 2-17(c)). After that, larger AprilTags slowly leave the 

camera’s FoV and only the smaller AprilTags contribute to visual estimations and provide 

guidance to the landing vehicle. Figure 2-17(f) shows the camera view when the vehicle 

lands. Relative horizontal distance from the camera lens to the desired landing point at this 

final stage is only about 0.02 m. 

 Figure 2-18 illustrates state estimation results from the discrete Kalman filter during 

one typical landing. The Kalman filter shows good performance along the whole landing 

trajectory. Relative distance estimations (red curves) in both the Ground frame’s 𝑥+ 

(North) and 𝑦+ (East) directions follow the ground truth (blue curves) well. Green vertical 

lines indicate the moments when a visual measurement is received by the Pixhawk and 

used to update the Kalman filter. When visual measurements are not available (e.g., during  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2-17. A sequence of images captured by the webcam during precision landing 
(computed landing point 𝑀 and visual estimations from the direct method are presented 
in each image), roughly: (a) 4.43 m; (b) 3.46 m; (c): 1.14 m; (d) 0.73 m; (e) 0.61 m; (f) 
0.10 m height. 
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(a) (b) 

 

(c) 

Figure 2-18. Relative distance estimations in the Ground coordinate system during a 
typical precision landing: (a) 𝑥+ (north); (b) 𝑦+ (east); (c) −𝑧+ (up). 

21-23 s in Figure 2-18(a) and Figure 2-18(b), the landing pattern leaves the camera’s FoV 

due to the UAV’s aggressive maneuvers to correct its position), the Kalman filter is still 

able to provide estimations by only executing the prediction step. 

 A set of landings are performed 25 times to assess the repeatability of the landing 

and to quantify landing precision. Figure 2-19 illustrates these 25 landing trajectories and 

their associated landing locations with respect to the desired landing point. The trajectory 
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data shown in Figure 2-19(a) are recorded by the motion capture system. Below a height 

of about 2.5 m, all of the landing trajectories are within a deviation of 25 cm from the 

desired landing point in the horizontal plane. All 25 landing maneuvers are able to land the 

vehicle on the pad within 15 cm from the desired landing point, among which 22 are in a 

circle with a radius of 10 cm as shown in Figure 2-19(b). 

2.4.2 Case Study: Autonomous Modal Analysis of a Structural Beam 

 The objectives of the second case study are to evaluate the feasibility of UAVs to: 

(1) autonomously place wireless sensor nodes on a simply supported beam structure; (2) 

localize the sensors on the structure; (3) collect ambient acceleration data from the 

 

 

(a) (b) 

Figure 2-19. 25 landing trajectories and their associated landing spots: (a) landing 
trajectories captured by Qualisys IR system in red with blue circles indicating a deviation 
of 25 cm from the desired landing point in the horizontal plane; (b) landing accuracy 
with landing positions indicated by red crosses. 
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structure; and (4) perform modal analysis of the beam. Towards this end, experiments were 

performed in M-Air using a simply support aluminum beam (182.5 cm long, 30.5 cm wide, 

and 0.6 cm thick). Three different sets of landing patterns are attached on the beam along 

its longitudinal length representing target sensor locations equidistant from one another. 

Two QAV210 UAVs were adopted to each carry a sensor enclosure containing a Martlet 

sensing node and an accelerometer sensor. The sensor enclosure is firmly mounted on the 

bottom of the UAV and moves from location to location on the beam surface as the UAV 

takes off and lands. Attached on top of each UAV is another distinct AprilTag used for 

localization of the UAV-sensor pair on the beam using tailored visual algorithms. Figure 

2-20 shows the setup of the case study. 

 The experiment is performed in several steps. First, UAV 1 takes off, searches in 

the air for the landing pattern of sensor location 1, and delivers the sensing node onto the 

beam by landing on the pattern. Once UAV 1 lands, UAV 2 takes off, flies above the beam 

and UAV 1, and delivers its wireless sensing node to sensor location 2. While UAV 2 is in 

the air, it is also able to register the position of the landed UAV 1 using camera data of the 

AprilTag on top of UAV 1. This allows the precise location of UAV 1 on the beam to be 

determined. Soon after the landing of UAV 2, a human operator strikes the beam with a 

modal hammer while both UAVs command their wireless sensing nodes to collect and 

transmit acceleration data to a ground PC. The hammer impulse is equivalent to white noise 

ambient excitation expected in a real, operational structure. UAV 1 then takes off again and 

moves from sensor location 1 to sensor location 3. Position registration of UAV 2 is 

accomplished during this process using images of its overhead AprilTag captured by UAV 
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(a) 

 

(b) 

Figure 2-20. Experiment setup of the case study: (a) two QAV210s sit on the ground, 
ready to deliver wireless sensors measuring structural acceleration; (b) landing patterns 
on beam where acceleration measurements are desired. 



 92 

1. Upon landing of UAV 1, the human operator excites the beam again and data collected 

by the accelerometers now at different locations on the beam are transmitted back to the 

ground PC. Lastly UAV 2 is commanded to fly over UAV 1 and leave the beam in order to 

register UAV 1’s last position. At the final stage of the experiment, modal analysis of the 

 

 
(c) 

 

(a) 

 

(d) 

 

(b) (e) 

Figure 2-21. Case study procedures: (a)-(b) human operator striking the beam with two 
QAV210s landing on it; (c)-(e) spatial registration of UAV landed on the beam with 
(𝑥, 𝑦) coordinates expressed in the frame shown in (a)-(b). 
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beam is performed using the acceleration response data collected at the three locations 

along the beam length. The frequency domain decomposition (FDD) (Brincker, Zhang, and 

Andersen 2000) method is used to assemble two-point mode shapes for each sensor 

configuration; overlap in the mode shapes allow them to be stitched together to from global 

modes of the beam structure. The experiment is fully autonomous with the human operator 

only intervening to impulse the beam structure which would not be necessary in 

applications in real civil engineering structures with ambient vibrations. 

 As shown in Figure 2-21(a)-(b), the two QAV210s successfully positioned the 

Martlet wireless sensing nodes on the beam after carefully following each operation in the 

FSM. Position registration of the UAV is accomplished by detecting both its overhead 

AprilTag and at least one more AprilTag on the beam at the same time (See Appendix A.2 

for details). Computed UAV positions are shown in the top-left corner of the snapshots 

(Figure 2-21(c)-(e)). Estimation error is within 2 cm when comparing to ground truth of 

the UAV positions using a measuring tape. Figure 2-22 illustrates the locations of the 

landed UAVs after repeating the test four times. All landing locations are within 5 cm 

(shown with dashed circle with 5 cm radius) from their desired locations. 

 After the human operator strikes the beam with a modal hammer, the wireless 

sensing nodes collect acceleration data at 100 Hz as shown in Figure 2-23(a) for the first 

 

Figure 2-22. Spatial registration of wireless accelerometers. 
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test. The FDD method is then used to extract the natural frequencies and mode shapes of 

the beam from the collected time history data. Figure 2-23(b) shows the singular values of 

the power spectral density (PSD) function matrix for the first and second sensor locations 

of the first test. As it appears, the 1st and 2nd natural frequencies of the beam are at 13 Hz 

and 43 Hz. 

 The theoretical natural frequencies and mode shapes of a simply supported Euler-

Bernoulli beam are computed as (See Appendix B for details): 

where 𝐸 is the Young’s modulus of the beam, 𝐼 is the area moment of inertia of the beam’s 

cross section, 𝜌 is the mass density of the beam, 𝐴 is the cross-section area of the beam, 𝐿 

is the length of the beam, 𝑥 is the distance along the length of the beam from 0 to 𝐿, and 𝐶 

is any nonzero constant. Using the material and geometric parameters of the aluminum 

  

(a) (b) 

Figure 2-23. Modal analysis of the simply supported beam: (a) raw acceleration data 
collected by the Martlet sensing node; (b) 1st singular values of the PSD matrices. 

 𝑓a =
𝑛C𝜋
2 ¸

𝐸𝐼
𝜌𝐴𝐿I , 𝜙a

(𝑥) = 𝐶 sin
𝑛𝜋
𝐿 𝑥 , 𝑛 = 1, 2, …	, (2-11) 
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beam ( 𝐸 = 6.89 × 10BA  N/m2, 𝐼 = 4.6785 × 10�¿  m4, 𝜌 = 2.7 × 10D  Kg/m3, 𝐴 =

2.31 × 10�D  m2, 𝐿 = 1.825  m). The theoretical 1st and 2nd natural frequencies are 

determined to be 10.7 Hz and 42.6 Hz, which are in strong agreement to the experimental 

results. 

 To get the complete mode shape of beam (Figure 2-24), mode shapes generated 

from the two strikes are stitched together using the common point sensor location 2. For 

the four different executions of the experiment, there is strong agreement between the mode 

shapes as well as the theoretical mode shapes. 

2.5 Conclusion 

 The study presented herein explores the development of UAVs as an intelligent 

agent capable of deploying wireless sensor nodes autonomously for structural monitoring 

applications. The proposed UAV system can autonomously detect landing patterns, 

 

 

Figure 2-24. 1st and 2nd mode shapes of the beam. 
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perform precision landing maneuvers, install accelerometers onto structures, and collect 

structural vibration data using only onboard sensors and computing units. Transition 

between different mission like pattern searching and precision landing is accomplished 

using a reliable finite-state machine embedded in the TX2 onboard computer of the UAVs. 

Precision positioning of a UAV in the outdoor environment is made possible by the 

integration of a customized fiducial marker pattern, a robust vision-IMU coupled 

estimation method, and a discrete Kalman filter. The landing pattern is designed to be 

universal for general use. The study reveals excellent landing and sensor positioning 

accuracy of less than 10 cm. The study features fully autonomous operations of UAVs and 

proves the feasibility of using UAVs as a viable sensor resource delivery and 

reconfiguration platform in a modal analysis application. Using two wireless sensors, the 

system is shown to be effective at precisely landing on a simply supported beam to within 

5 cm of the desired location with accurate mode shapes determined. 
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Chapter 3 Integration of Wireless Geophones and Impulsive Source 

Generation with a UAV for Surface Wave Monitoring 

3.1 Introduction 

 Seismic surveying is a technique used to determine the composition and structure 

of the subterranean areas based upon the analysis of how surface-generated seismic waves 

travel through different layers underground (Onajite 2014). Fundamentally, a seismic wave 

is generated with an energy source (e.g., explosives, vibrators, impact hammer), travels 

into the earth, and then picked up by a line or grid of sensors (e.g., geophones, 

hydrophones) as it bounces off subsurface formations such as layers, subsurface structures, 

and rock formations, just to name a few. Traditionally, the collection of seismic data is a 

time and labor consuming process requiring detailed planning by engineers well ahead of 

sensor deployment. Treacherous terrain and harsh weather pose serious challenges for 

seismic data acquisition (Selley and Sonnenberg 2015). Aside from these external 

environmental factors, the equipment used for seismic data collection is typically 

cumbersome and expensive which complicates seismic surveys conducted in the field. The 

method for near-surface site characterization is commonly referred to as the surface wave 

method (SWM), whose primary goal is to retrieve a 1D (depth) or 2D (depth and surface 

location) shear wave velocity (𝑉Á) model of a site (Foti et al. 2017). Among various SWMs 

developed over the past century (Pelekis and Athanasopoulos 2011), two techniques—the 

spectral analysis of surface waves (SASW) method (Nazarian 1984; Stokoe et al. 1994) 
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and the multichannel analysis of surface waves (MASW) method (Park, Miller, and Xia 

1999)—have found widespread uses because of their relatively simple in-field operation 

and data processing routine. The SASW method requires the use of two geophones and a 

spectral analyzer to study the frequency and phase differences of the recorded signal pairs. 

While in the MASW method, a spread of geophones (typically 12 or more) is employed to 

collect data at multiple locations at the same time. Both methods estimate the dispersion 

properties of a site first and then undergo an inversion process to construct the 𝑉Á profile 

of the site. 

3.1.1 Wireless Sensing for Seismic Surveying 

 The majority of the current seismic acquisition systems are cable-based. Modern-

day seismic acquisition systems adopting the SASW or MASW method normally require 

the installation of long runs of coaxial cable to connect multiple external geophone sensors 

to an acquisition unit called seismograph that can digitize, amplify, filter, and synchronize 

the acquired analog signals. Additional external cables and connectors are extended from 

the geophones to hook them up to the main data acquisition unit. Most systems also require 

a long ethernet cable to subsequently transfer the digitized seismic data to a field PC for 

data storage and processing. The extensive use of cables and connectors introduces 

substantial weight and cost to field instrumentation, limiting survey flexibility and 

reliability. The excess weight introduced by cables may account for up to 20% of the 

operational cost of a typical land survey (Savazzi and Spagnolini 2008). This is especially 

true with high-density acquisition systems. A typical 4000-channel crew with a station 

spacing of 110 ft entails a strikingly 184-mile-long cable and more than 9300 connectors 

(Freed 2008). Another challenge associated with cable-based systems is the operating and 
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maintenance costs pertaining to the cables and connectors. Surveyors oftentimes spend the 

better part of a day laying out bulky cables and troubleshooting connection problems. 

Worse still, these field components are vulnerable to damage from both natural and man-

made sources, demanding recurrent maintenance and repair. Typically, a set of cables, 

connectors, and sensors can be used for five years (at best) before they must be replaced 

(Freed 2008). The final significant challenge linked to conventional seismic surveys is their 

heavy reliance on human labor to operate. Current seismic operations require field 

personnel manually placing geophones at different offsets away from an impulsive or 

vibratory source (e.g., in MASW, a sledgehammer is manually operated to deliver a seismic 

impulsive source in a repetitive fashion). As a result, cable-free acquisition systems 

embracing wireless technologies represent the future. 

 Recent technological innovations have made cableless seismic surveying solutions 

practical. Microprocessors and memory continue to decline in cost (MacK 2011), high-

precision analog-to-digital converters (ADCs) continue to offer higher resolutions and 

higher sampling rates, advances in wireless network technology enable wireless (cable-

free) communications. These trends in the embedded systems field have spurred innovation 

in high performing wireless sensors used in a variety of structural (Noel et al. 2017) and 

geotechnical (Muduli, Mishra, and Jana 2018) monitoring applications. By eliminating 

cables, wireless seismic monitoring systems have the potential to be lighter, more cost-

effective, and offer easier access to difficult-to-reach or environmentally sensitive areas 

where deployment of wired systems is restricted. The proclivity towards wireless data 

collection systems has spurred many researchers (Dai et al. 2015; Martinez et al. 2017; 

Attia et al. 2020) and companies (Crice 2011; Mougenot 2012; Dean, Tulett, and Barnwell 
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2018) to develop and invest in wireless seismic acquisition approaches. As previously 

discussed in the first chapter, wireless sensors are essential to the development of MSN, 

especially those deployed by RAS platforms like UAVs. For example, Chapter 2 laid an 

illustrative foundation of the use of UAVs to deploy wireless sensors for structural 

monitoring in an MSN architecture tailored for modal analysis of structures. As this 

dissertation moves toward extending these accomplishments to geotechnical systems and 

seismic surveying, the demands to be placed on the wireless sensor increase due to the need 

to sense seismic waves with low amplitudes at high frequencies. Also, the high frequencies 

of seismic signals will demand high precision synchronization of wireless sensor clocks to 

ensure accurate phase information is maintained between sensing nodes. 

 This work proposes a completely self-contained wireless seismic sensing node 

comprising an SBC (for autonomous operations), a geophone sensor (to record velocity 

signals), a high-resolution ADC (to digitize geophone measurements), and a high-accuracy 

GPS module (to offer each node precise timing to a common GPS clock). Adopting a 

modular design, the wireless geophone node is lightweight, low-cost, and convenient to 

operate and maintain. The open-source software embedded in the wireless node separates 

it from its commercially available counterparts, whose closed-source software is 

impossible or hard to adapt leading to limited usages for research (most especially those 

using RAS platforms for sensor deployment and redeployment). 

 In this study, a wireless seismic sensor is developed for adoption in SASW and 

MASW tests. The objectives of this study are to: (1) design a wireless geophone node with 

the ability of capturing small-amplitude ground surface vibrations and performing interunit 

time synchronization; (2) quantify the performance of the wireless geophone node against 
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a commercial seismic data acquisition system. While several wireless seismic sensors have 

been proposed for monitoring geo-structures as in the previously cited studies, the node 

proposed in this study is specifically designed to emphasize two critical features necessary 

to the MSN architecture: light weight and small size to be carried and deployed by a robot 

and open-source software to be integrated into the RAS system. This chapter presents 

detailed descriptions of the hardware and software architecture of the wireless geophone 

node. Detailed prices of all hardware components are also listed, proving the cost-

effectiveness of the designed node. To illustrate the utility of the proposed wireless 

geophone sensor, two of the designed nodes are arranged in a SASW test topology to 

collect seismic waves generated by a sledgehammer. The study shows the quality of the 

data collected by the wireless geophone nodes comparable to a commercial wired data 

acquisition system. The development in this study makes advancement in the transition 

from cable-based seismic systems to cableless recording. 

3.1.2 RAS Deployment of Seismic Source Weights 

 RAS platforms like UAVs can be developed to facilitate automation of in situ 

surveying with increased efficiency and reduced cost. While the design of a low-cost and 

energy-efficient cableless geophone unit is a necessary step to achieve mobility and 

automation, a UAV platform also needs to be developed to deploy wireless sensors and to 

deploy an impulsive source for seismic surveys such as SASW and MASW field tests. The 

UAV must be able to use vision to pick up and drop off a weight in an autonomous manner 

to generate surface waves during field surveying. Utilizing an UAV platform for test 

execution of a seismic survey is of great interest but has only been explored on a very 

limited basis (Greenwood, Lynch, and Zekkos 2019). UAV implementation in the 
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geotechnical engineering domain has primarily focused on remote sensing making use of 

onboard sensors such as cameras and LiDARs. While UAVs as a data collection platform 

has revolutionized how the geometric characteristics of remote sites are documented using 

techniques such as surface imaging and photogrammetry (Puppala et al. 2018), its potential 

for subsurface characterization has not been fully realized. For instance, in a SASW or 

MASW seismic test, UAVs can serve as an active impact source by dropping from aloft an 

instrumented weight to act on the ground surface to generate seismic waves. Zekkos et al. 

(2014) and Greenwood et al. (2018) are two of the first to demonstrate the idea of UAV-

dropped weights as an active impact source in both indoor and outdoor field tests. The 

UAV-dropped weight was found more advantageous than a traditional sledgehammer 

source due to the large amount of energy generated (Greenwood 2018). However, a major 

shortcoming of these field tests is the manual operation of the UAV and the need for a 

human-triggered payload release mechanism, limiting the automation of the method in 

remote sites. Additionally, for signal stacking and repeated testing at a site, a method of 

effectively retrieving the drop weight with the UAV needs to be developed for repeated 

testing using the same SASW and MASW sensor topologies. 

 A successful aerial grasping presents several challenges. First, a UAV mounted 

gripper needs to be lightweight due to restrictions on flight times associated with heavy 

payloads. Second, the gripper and the payload the gripper picks up may dramatically alter 

the flight dynamics of the UAV, requiring flexible yet robust flight controllers. For 

autonomous missions, additional feedback information about whether the payload is 

successfully picked up or not is also required. The UAV should be able to detect an 
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unsuccessful grasp and make decisions about whether a second attempt to grab a weight is 

needed. 

 Different approaches to address these challenges exist in the literature. Thomas et 

al.  (2013) analyzed the dynamics of a quadrotor equipped with a servomotor-driven gripper 

claw and designed control laws for the coupled system to achieve avian-like high-speed 

object retrieval. Gawel et al. (2017) proposed a novel gripper design that features an 

electro-permanent magnet coupled with a passively compliant mechanical structure, which 

could be used to pick up objects with partly ferrous surfaces. Utilizing a flock of 

autonomous UAVs equipped with grippers, several groups presented the autonomous 

assembly of small structures (Lindsey, Mellinger, and Kumar 2012; Augugliaro et al. 2014). 

There have also been research efforts on the design of more advanced non-linear controller 

tailored to stabilize UAVs equipped with multi-link dexterous manipulators (Jimenez-

Cano et al. 2013; Heredia et al. 2014). However, most of the prior research published to 

date focuses on aerial grasping in indoor environments where an accurate motion capture 

localization system is used to provide reliable measurement of UAV pose. In an outdoor 

environment, it is difficult to estimate UAV dynamics and impose control due to 

environmental disturbances such as wind. 

 In this study, the aerial grasping problem is simplified in two ways. First, an electro-

permanent magnetic gripper is integrated into the design of a UAV to pick up and drop off 

a steel plate (acting as a seismic source when dropped from a defined height). The magnetic 

gripper is attached to the bottom of the UAV without introduction of a robotic arm. The 

use of a multi-link arm is intentionally avoided because of its extra weight linked to the 

requirement of a large force and torque demands induced by the heavy weight. Another 
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advantage of magnetic gripping is that it allows for a slightly higher tolerance on position 

error due to the magnetic field radiating a small distance away from the UAV. During 

payload pickup, the UAV will naturally encounter turbulence as it gets close to the ground, 

which makes the task difficult. The work addresses the challenge by separating aerial 

grasping into two steps: first the precision landing on top of the drop weight followed by 

magnetic gripping while the UAV is landed. The drop weight is featured with a unique 

color coupled with an AprilTag pattern. These visual attributes are able to provide 

continuous guidance to a UAV with a downward pointing camera throughout the precision 

landing process. Upon landing above the drop weight, the UAV will conduct a gripping 

attempt of it. A novel approach to identifying a successful grip event is implemented 

utilizing sound waves that define the snapping of the weight to the magnetic gripper 

surface. 

 Figure 3-1 shows the comparison of a state-of-the-practice human-deployed wired 

seismic sensing system and an envisioned UAV-enabled seismic monitoring system that is 

completely wireless and autonomous. In the envisioned application, the UAV will replace 

the human operator to not only deploy the sensor network and excite the sensing system, 

but also serve as an intelligent agent that can collect, store, and process the collected data 

in real-time to aid in instant decision-making such as reconfiguring the sensor network and 

dropping the weight from a different height to facilitate better data quality. As an 

indispensable component to this vision, a method of automating the payload pickup and 

drop-off process for the UAV is presented in this chapter. The use of a UAV as a means of 

deploying seismic sources is made possible through the integration of an EPM gripper that 

can lift and drop an instrumented weight from controlled heights. The UAV is also effective 
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in autonomously tracking the location of the dropped weight and approaching it using 

onboard vision. The three intellectual contributions made in this study can be summarized 

as: (1) the integration of a robotic gripper with grasping feedbacks into the UAV system 

for object gripping and releasing; (2) the development of a tailored computer vision 

algorithm utilizing both fiducial marker patterns and color features for relative position 

estimation between the UAV and the drop weight; (3) the design of a fully autonomous 

architecture to control UAV operations in the payload pickup and drop-off application. 

These contributions will facilitate the development of a RAS solution for seismic surveying. 

 

(a) 

 

(b) 

Figure 3-1. Comparison of a human-deployed wired seismic sensing system and a UAV-
enabled wireless seismic monitoring system: (a) a wired sensing system with extensive 
uses of wires excited by a human operator manually striking a sledgehammer; (b) a 
wireless sensing system utilizing a UAV equipped with a robotic gripper to deploy 
wireless sensors and impulsive sources, command the sensor network, wirelessly collect 
data upon demand, and process data leading to onsite decision-making. 
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3.2 Design of the Wireless Geophone Node 

 The design of the wireless geophone node emphasizes ease of use and use of an 

open-source software architecture that can be easily modified to address particular research 

needs. The node is designed as a low-power and low-cost sensor node with all of its 

hardware components available off-the-shelf. To meet the needs of the specific application 

of using the node for SASW/MASW seismic monitoring, the following design 

requirements are specified ahead of its design (along with an explanation why): 

• High frequency sampling to ensure the full range of signal bandwidths can be 

acquired (sampling rates as high as 1-2 KHz if not higher); 

• High digital conversion resolution to collect low amplitude seismic signals with 

moderate to high signal-to-noise ratio (SNR); 

• Be capable of synchronizing time to a GPS clock signal with sub-millisecond 

precision due to the need for precise phase assessment between independent nodes; 

• Have a flexible wireless communication interface capable of communication to a 

base station and to other agents like a UAV; 

• Be capable of being powered for the full duration of UAV flight using a standard 

battery pack (about 20-30 minutes); 

• Weigh less than the payload capacity of a moderate to large UAV (e.g. X8) (less 

than 1 kg). 

 The wireless node design consists of four primary subsystems: a single-board 

computer, an ADC digitizer board, a GPS module for time synchronization, and a  
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Table 3-1. Technical specifications of the wireless geophone node. 

Description Value 

Operating system Interrupt-driven C++ program implemented in Linux (Ubuntu) 
Memory 64GB 

ADC 32-bit, 2-channel, 1000Hz sampling rate 
GPS 72-channel GNSS receiver (30ns time pulse accuracy) 

Wi-Fi WLAN (2.4/5.0GHz) 
Geophone Vertical (4.5Hz) 

Power supply 1000mAh 4S LiPo 
Power consumption ~5W@14.8V (~340mA) 

Size 170×120×50mm3 
Weight 810g with geophone, 495g without geophone 

 

Figure 3-2. Wireless geophone node with key components highlighted. 
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geophone sensor. Figure 3-2 shows the node components encapsulated within a sealed 

enclosure of limited dimension and size, and an externally connected geophone sensor. The 

system is powered by a four-cell 1,000 mAh LiPo battery. The amount of power required 

when all operational activities are executing has been experimentally measured to be about 

5 W. More technical details of the designed wireless seismic node are listed in Table 3-1 

and will be described in more depth in Section 3.2.1. 

 A major differentiator of the designed wireless seismic node from other 

commercial, ready-made ones such as those listed by Kendall (2015) is its high 

adaptability. The use of a single-board computer as the computing engine of the sensor 

node adds flexibility of user-defined onboard processing that can be written as scripts in 

the Linux operating system. This means that the time between data acquisition and data 

processing will be significantly reduced (i.e., in near real-time), leading to the transmission 

of information of increased value compared to raw data transmission. Meanwhile, unlike 

commercial seismic nodes where all system components are sealed in a heavy-duty 

enclosure (usually over 1.5 kg), the geophone node proposed in this study is lightweight 

(495 g without the geophone sensor and 810 g with one) ideally suited to be carried by as 

a UAV payload and contains only power-efficient components. Geophone sensors 

connected to the ADC interface and LiPo batteries powering the system can be either 

housed inside the node enclosure or connected to the node externally as will be explained 

in this dissertation. Another advantage of the designed wireless geophone node is its cost 

efficiency. Table 3-2 summarizes the total system cost; a single unit costs less than $500 

while a commercial wireless counterpart is typically around $1,000, not to mention the cost 

of the bundling software that can easily exceed $3,000 (Global Sources 2021). Due to its 
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low-power and low-cost design and its independence from proprietary software, the 

proposed wireless geophone node will be a great benefit to research on seismic data 

collection, especially those that require a wireless data acquisition platform. In particular, 

it can be deployed densely and adaptively as either a stationary or a mobile sensing unit in 

a wide range of demanding terrains such as congested areas, remote and hard-to-reach 

locations, and environmentally sensitive areas. 

3.2.1 Hardware Architecture 

 The hardware design (Figure 3-3) of the wireless geophone node is separated into 

three primary components: the ODROID-XU4 single-board computer, the ADS1282EVM 

ADC, and the SparkFun ZOE-M8Q GPS module. A geophone sensor can be directly 

connected to the ADC module of the sensing node. Figure 3-3 provides a schematic 

overview of the hardware architecture of the wireless node, with technical details of the 

Table 3-2. A summary of total cost of the wireless geophone node. 

Identification 
in Figure 3-2 

Name Price (US$) 

1 ODROID-XU4 SBC 116.90 

2 Wi-Fi antenna 8.90 
3 ADS1282EVM 178.80 

4 SparkFun ZOE-M8Q GPS Receiver 44.95 
5 GPS antenna 3.95 

6 Power regulator  21.00 
7 1000 mAh LiPo battery 23.00 

8 GS-11D 4.5Hz geophone 80.00 
9 Node Enclosure 10.00 

Total  487.50 

   



 110 

hardware parts listed in Table 3-3 (ODROID-XU4), Table 3-4 (ADS1282EVM ADC), and 

Table 3-5 (SparkFun GPS ZOE-M8Q). The following paragraphs define each functional 

module. 

 The main computing and data storage component of the mobile geophone is the 

ODROID-XU4 (Hardkernel 2016) SBC. The XU4 features two CPUs with a total number 

of eight cores: one ARM Cortex-A15 quad-core and another ARM Cortex-A7 quad-core, 

making it ideal for interrupt driven programming and multi-threaded behavior. Meanwhile, 

the XU4 has 2 GB LPDDR3 RAM and 64 GB embedded MultiMediaCard (eMMC) 5.0 

HS400 Flash Storage, providing enough storage for both the operating system and the 

collected seismic data during field operations. In terms of support for peripherals, the XU4 

offers 3 USB ports and various expansion ports (e.g., GPIO, UART, I²C, SPI (for serial 

 

Figure 3-3. Hardware design for computational core, storage space, sensing interface, 
and wireless communication. 
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peripheral interface)) for interfacing peripherals. As a result, a slew of breakout boards and 

sensory devices, such as an ADC board and a GPS module as done in this study, can be 

connected to the XU4 and interact with the external world. Data transfer and 

communication between the XU4 and a local field computer are established through the 

XU4’s Wi-Fi module, which is an IEEE 802.11ac/a/b/g/n WLAN module with dual-band 

(2.4 GHz and 5 GHz) support. A Wi-Fi interface offers the node the most flexibility in how 

it interfaces to other components in an automated seismic monitoring system including a 

UAV and a base station (ground control station). The ability to deliver seismic data through 

a local Wi-Fi network in real-time substantially strengthens the performance of the node. 

 A geophone is a self-excited (i.e., does not require a power source) transducer 

which senses ground movement and converts vibration velocities into electrical signals. 

Table 3-3. Technical specifications of the ODROID-XU4 single-board computer as the 
compute engine of the wireless geophone node. 

Description Value 

Operating system Linux (Ubuntu 18.04) 
CPU Samsung Exynos5422 ARM Cortex-A15 Quad 2.0GHz 

and ARM Cortex-A7 Quad 1.4GHz 
RAM 2GB LPDDR3 RAM PoP (750MHz, 12GB/s memory 

bandwidth, 2×32-bit bus) 
Storage 64GB eMMC5.0 HS400 Flash Storage 

Power consumption 1.5 to 10.0W@5V DC 
Expansions 2×USB 3.0, 1×USB 2.0, 1×UART, 2× I2C, 1×SPI, 

12×GPIO, 1×ADC 
Connectivity USB IEEE 802.11 ac/b/g/n 1T1R WLAN, HDMI 1.4a, 

10/100/1000Mbps Ethernet 
Size 83×58×20mm3 
Weight 97g 
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Geophones are sensitive analog sensors requiring proper conditioning and processing of its 

electrical signals. In this study, an ADS1282EVM (TI 2009) is adopted as ADC and digital 

filter. As the name suggests, the evaluation model (EVM) is equipped with a ADS1282 

ADC chip (TI 2007), which is a high-performance, delta-sigma (ΔΣ) ADC. The ADS1282 

has a resolution of 32 bits, with a programmable-gain amplifier (PGA) gain up to 64× and 

a sampling rate selectable from 250 to 4,000 samples per second (SPS). A 1× PGA gain 

(resulting in a sensitivity of Ã	V
B×(CÅÆ�B)

= 1.164	nV) and a sampling rate of 1000 SPS suits 

the needs of the application well. Following the PGA and ΔΣ modulator, the ADS1282 

provides digital filtering options consisting of three cascaded stages: a sinc filter to 

attenuate the high-frequency noise of the ΔΣ modulator, a finite impulse response (FIR) 

low-pass filter, and a high-pass filter (HPF) implemented as an infinite impulse response 

(IIR) structure programmed by end-users. The output can be taken from one of the three 

filter blocks or directly from the modulator bypassing the build-in filters. The in-chip sinc 

and FIR filters are activated in this study, which provides more than 140 dB of attenuation 

above the Nyquist frequency of the output sampling frequency (500 Hz) (TI 2007). 

Together, the amplifier, modulator, and filter dissipate about 25 mW, making the ADS1282 

a power-efficient chip suitable for energy exploration and seismic monitoring. The 

ADS1282EVM contains all support circuitry needed for the ADS1282 including an 

onboard high-accuracy 4.096 MHz clock and an OPA1632 buffer (TI 2003) which drives 

the ADC input terminals and provides a high-impedance input terminal for the geophone 

sensor. The ADS1282EVM exposes the SPI interface of the ADS1282 for configuration of 

ADC settings (e.g., sampling rate and filters used) and for the reading of data. There are 

fundamentally two ways to read data from the ADC: continuous mode and command mode. 



 113 

The continuous mode is adopted in this study. This mode generates data continuously and 

when a new sample is available, a “data ready (DRDY)” signal line goes low. The reading 

device (i.e., ODROID XU4) senses DRDY going low and knows to read the data point 

using the SPI protocol. 

 One of the most important components in the design of the wireless geophone is 

the inclusion of a low-cost GPS receiver. The GPS receiver is not used for position 

estimation (although it could), but instead as a synchronization clock to time-stamp seismic 

samples. The atomic clocks used on the GPS satellites offer one of the most precise timing  

 

Table 3-4. Technical specifications of the ADS1282EVM ADC board. 

 Description Value 

ADS1282 
Chip 

Number of channels 2 

A/D resolution 32-bit 

Sampling rate 250, 500, 1000, 2000, or 4000SPS 

PGA gain 1, 2, 4, 8, 16, 32, or 64 

Available digital filter Bypass or sinc + FIR + IIR (selectable) 

Signal-to-noise ratio 124dB (1000SPS) 

Integral nonlinearity 0.5ppm 

Power consumption 25mW 

ADS1282EVM 
Board 

Clock 4.096MHz crystal oscillator 

Temperature range −45 to +125℃ 
Analog supply +5V, ±10 to ±15V 
Digital supply 3.3V 

Digital output SPI interface 

Size 96×44×20mm3 
Weight 29g 
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Table 3-5. Technical specifications of the SparkFun ZOE-M8Q GPS Breakout. 

Description Value 

Time pulse accuracy 30ns 
Update rate Up to 18Hz 

Time to first fix: Cold: 26s; hot: 1s 
Digital supply 3.3V 

Current consumption 29mA 
Digital output UART or I2C interface 

Supported protocols NMEA, UBX, and RTCM 
Size 25.5×25.5×1mm3 
Weight 2g 

  

signals that all nodes in an MSN could receive simultaneously, offering precise timing to 

within 100 billionths of a second (Bauch and Whibberley 2017). This accurate timing is 

critical for the elimination of a centralized radio systems attempting to synchronize 

distributed clocks and paves the way for truly autonomous recording (Mougenot 2010). In 

this study, each mobile geophone tracks timing independently through an accurate and 

miniaturized GPS receiver: the SparkFun ZOE-M8Q GPS Breakout. The u-blox ZOE-

M8Q chip (U-blox 2018a) which is included in the SparkFun ZOE-M8Q board has an 

ultrasmall form factor (4.5×4.5×1.0 mm3) with the entire SparkFun breakout board only 

about the size of a US quarter. The ZOE-M8Q chip includes a 72-channel GNSS 

positioning engine, meaning it can concurrently receive signals from multiple GNSS 

systems such as QZSS, GLONASS, Galileo, and BeiDou, thereby ensuring maximum 

performance even in GNSS-hostile environments (U-blox 2018b). Most importantly, the 

module provides a reliable pulse-per-second (PPS) signal accurate to within 30 ns. The 

PPS signal is sampled every second by the wireless geophone node so that geophone 
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samples can be referenced to the global GPS time. Independent timing is acquired on each 

mobile geophone allowing interunit time synchronization to be performed after the 

collection of the geophone data. The GPS receiver is also equipped with a rechargeable 

coin cell battery that serves as a backup power supply. This design feature of SparkFun 

board significantly reduces the time to first fix (TTFF) from a cold start time of about 26 s 

to a hot start time of only 1 s. This is especially useful during field tests where the main 

power supply is sometimes turned off to save the battery life of the wireless geophone 

node. To complete the GPS system, a Molex GNSS Flex antenna is attached to the module. 

Even though the antenna has a small footprint of 4×1.5 cm2 and is only as thick as a piece 

of paper, it covers a wide frequency band and supports all compatible GNSS signals. The 

ZOE-M8Q communicates with the XU4 through a UART serial interface and is connected 

to one of the XU4’s USB ports using a UART to USB converter cable. 

3.2.2 Software Architecture 

 The embedded software for the data acquisition and recording processes of the 

wireless geophone is written as a standalone C++ program sitting on the XU4’s Linux OS 

and used an interrupt-like approach to its execution. Following an object-oriented design, 

each component (e.g., ADC and GPS) has its driver implemented as a class with the union 

of the classes forming an overarching class that represents a wireless node. The main loop 

of the embedded program operates on the wireless node class and iterates through each 

component to capture data and store them in a file until the recording time has passed. GPS 

timing and ADC sampling are driven based on real-time detection of the PPS and DRDY 

signal, respectively. Upon detection of a change in PPS or DRDY, interrupt service 

routines (ISRs) are executed almost immediately when a new GPS time or a new ADC 
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sample is ready, respectively. Although the Ubuntu 18.04 running on XU4 is not a real-

time operating system (RTOS), the ISRs are programmed cautiously so that they do not 

block other operations and precise GPS timing and the sampling rate (1,000 Hz) can be 

sustained. It should be noted that for sampling frequencies higher than 1,000 Hz, thorough 

testing will be required to determine whether the OS can handle the throughput with real-

time attributes as has been confirmed at 1,000 Hz. Figure 3-4 shows a simplified diagram 

of the data collection architecture and how it provides real-time behavior at 1,000 Hz. More 

specifically, the software is able to carry out the following functions: 

• Control overall survey parameters (e.g., recording duration and node ID). 

• Configure GPS (e.g., update rate and protocol) and ADC (e.g., sampling rate, PGA 

gain, and filters) setting. 

• Retrieve data from both sensing devices and reference ADC samples to GPS time. 

• Manage the recording of data in memory (i.e., eMMC). 

• Handle the file name assigned automatically to data records. 

 

Figure 3-4. Flowchart of the data acquisition and recording processes. 
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• Provide a CMake-based program build and configuration framework. 

3.3 Design of the UAV and the Drop Weight 

3.3.1 UAV platform 

 The UAV platform used in this study is the same 3DR X8 octocopter introduced in 

Chapter 2 with some modifications (Figure 3-5(a)). The X8 features two motors with 

inverted propellers on each of its four arms, generating twice the thrust of a normal 

quadcopter, and therefore has an enlarged payload capacity. Specifically, the UAV can 

carry up to a 1 kg payload in addition to its self-weight. Powered by a 16,000 mAh 4S LiPo 

battery, the X8 has a flight time of about 15 minutes when fully loaded (i.e., 1 kg payload), 

making it ideal for this study. In order to realize the functionality of autonomous weight 

pickup and drop-off needed in autonomous seismic surveying, two additional hardware 

components are incorporated into the UAV: a magnetic gripper and a laser-based 

rangefinder. 

 An OpenGrab electropermanent magnet (EPM) v3 gripper (Figure 3-5(b)) (Zubax 

Robotics 2016) is mounted to the bottom surface of the UAV. Connected to one of the 

Pixhawk’s AUX OUT ports, the gripper accepts grabbing/releasing commands (i.e., two 

different PWM signals) encoded using the MAVLink protocol (MAVLink 2010). This 

small cuboid-shaped (about 4×4×2 cm3) gripper is capable of securely holding up to 15 

kg of cargo that has a ferrous surface it can attract. In this study, the cargo is a steel plate 

that weighs roughly 1 kg. The gripping and releasing of the steel plate are accomplished 

by the UAV delivering a short voltage pulse to an electromagnet inside the gripper, which 

reverses its field. Steady-state power consumption for the gripper is under 50 mW (Zubax 
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Robotics 2016). However, a significant amount of power is required when first gripping or 

releasing the cargo, but this lasts of less than one second, so it does not draw down the 

UAV battery quickly. 

 Sitting on the front of the UAV is a downward facing TFMini Plus LiDAR module 

(Figure 3-5(b)) (Benewake 2019). The TFMini Plus is a rangefinder sensor operating on 

the principle of time of flight (ToF). The sensor actively emits laser beams and measures 

the time difference between the emission of the light signal and the reception of it after 

being reflected from an object. The time of flight of the light signal can then be used to 

resolve the distance between the sensor and a remote object. The TFMini Plus has an 

operating range from 10 cm to 12 m and an accuracy of ±5 cm up to a distance of 6 m and 

±1% when the distance is larger than 6 m. Measuring 35×18.5×21 mm3 and weighing 

only 11 g, the small and lightweight LiDAR sensor is integrated to the UAV system and 

  

(a) (b) 

Figure 3-5. The 3DR X8 UAV with key hardware components highlighted: (a) UAV 
sitting on grass and waiting to execute an autonomous weight drop-off and pickup 
mission; (b) zoom in view of the UAV bottom. 
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connected to one of the Pixhawk’s UART serial ports. It communicates to the flight 

controller through the UART communication protocol. Attached to the bottom of the UAV 

and facing the ground, the rangefinder is used as an altimeter in this study. As a valuable 

supplement to the GPS and barometer sensors embedded in the UAV flight controller that 

already provide height information of the UAV, laser-based measurements from the 

LiDAR are much more accurate and enable the UAV to hold a steady altitude even in heavy 

winds. This will be especially valuable for the weight dropping application since an 

accurate and consistent drop height is necessary to ensuring repeatability of the tests and 

benefits the calculation of impact energy delivered to the ground. 

 Equipped with the necessary hardware parts, the X8 follows a finite-state machine 

approach to partition the autonomous payload drop-off and pickup mission into a set of 

well-defined operations. The definition of different operations and interconnections 

 

Figure 3-6. Finite-state machine for autonomous operation of a UAV engaged in payload 
drop-off and pickup. 
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between them are shown in Figure 3-6. The software system is divided into manageable 

pieces such as flying to a preset height, payload drop-off, and precision landing. Transitions 

between different sub-missions are clearly defined. A UAV starting from the “start” state 

would eventually reach the “end” state by either accomplishing or failing the mission. The 

most difficult step over all operations is the precision landing to pick up the payload. The 

precision landing maneuver aims to precisely land the UAV over the payload using only 

onboard sensing and computation. Unlike Chapter 2 where the UAV had a clean fiducial 

marker landing pad, in seismic monitoring such structured visual reference will not be 

available. The UAV will need to use only the weight itself to assist with its landing so 

higher errors in landing are expected. Should the UAV not succeed in grabbing the payload, 

the UAV would take off and attempt to do a precision landing again, thereby offering some 

resilience in its operation. Three trials are allowed for the payload pickup before the 

mission is counted as a “failure”. 

 As shown in Figure 3-6, an essential piece of fully autonomous operations of the 

UAV is to gather feedback information from the gripper about whether the payload is 

firmly seized or not. In the event of an unsuccessful grasping, flying the UAV to the drop 

height without carrying the payload is a complete waste of time and battery life so it is 

essential the UAV know it has the weight onboard or not. Out of the box, the EPM gripper 

does not provide any feedback for confirming a successfully grab attempt. Teams attending 

the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) in 2017 provided a 

solution by installing Hall effect sensors to measure the magnetic field change when a 

ferrous object is attached (Loianno et al. 2018; Bähnemann et al. 2019). However, the 

installation of Hall effect sensors requires a customized interface board and the housing of 
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Hall effect sensors which adds extra weight and may complicate the gripper manipulation 

system. 

 In this study, a novel method that takes advantage of acoustic signature differences 

between a successful grip event and a failure is proposed. In the case of a successful grip, 

the magnetic force generated by the gripper keeps drawing the ferrous object closer until a 

firm contact between them is created. A loud click-like impulsive acoustic signature is 

generated when this tight contact is established. However, for an unsuccessful gripping 

attempt, there is no contact and thus only low-level background noise would be recorded. 

When a pickup command is issued from the flight controller to the gripper, the UAV is 

programmed to use onboard microphones included in the UAV webcam to start recording 

the ambient sound for one second. 

3.3.2 Drop Weight and Visual Detection 

 The drop weight used in this study (Figure 3-7) is a steel plate that will naturally be 

usable with the magnetic gripping mechanism. The cylinder-shaped plate weighs 0.93 kg 

and has a radius of 7.62 cm and a height of 5.40 cm. An AprilTag with a side length of 

2.80 cm is attached to both the top and bottom surfaces of the plate. This small marker is 

able to provide visual guidance to a landing UAV from a height of around 1.4 m down to 

10 cm. Unfortunately, the short detection range can only assist in the very last stages of the 

landing approch. Because of the limited surface area of the plate, the addition of larger 

AprilTags as demonstrated in Chapter 2 is not feasible. To address this problem, a method 

utilizing color detection is adopted in this study. The drop weight therefore features a 

unique color that stands out against the background color of the ground (which is typically 
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a green or brown set of hues). In this study, the drop weight is wrapped with a red polymeric 

film, making it easily distinguishable in green and brown ground surfaces. 

 Generally, a color detection algorithm searches an image for pixels that have a 

specific range of RGB values. In this study, the HSV (for hue, saturation, value) color space 

instead of the RGB (for red, green, blue) model is used mainly because the HSV model is 

more robust under lighting variations (Schwarz, Cowan, and Beatty 1987). The RGB 

system is convenient for color display but struggles when it comes to object separation 

since the R (red), G (green), and B (blue) components are all correlated with the amount of 

light hitting the object. On the contrary, the HSV description separates color information 

(hue and saturation) of an image from its intensity information (value). In particular, the 

hue dimension represents basic colors and is determined by a color’s position in the 

spectrum; the saturation component is a measure of the purity of the color (and signifies 

the amount of white light mixed with the hue); and value describes the brightness of the 

 

Figure 3-7. The steel drop weight used in this study featuring a red color and an AprilTag 
attached to both the top and bottom surfaces. 
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color (Cheng et al. 2001). Using the HSV color model, the color detection algorithm can 

search a downward view of the ground for color position and purity, therefore greatly 

improving the performance of object segmentation. In this study, a set of thresholds are 

applied to the H, S, and V components, respectively, to form a region that can represent 

the drop weight. An interactive graphical user interface (GUI) is developed as shown in 

Figure 3-8 to find the H, S, and V ranges that can best separate the red drop weight from 

green grass in an image. The ranges found in this study that best define the color blob of 

the drop weight are 135-179 for hue, 70-255 for saturation, and 50-255 for value. 

 With a successful detection of the drop weight, the relative position (of the UAV 

with respect to the drop weight) estimation algorithm used for precision landing follows 

the same design as illustrated in Chapter 2 with some modifications. As shown in Figure 

3-9, four main coordinate frames (i.e., the Ground frame 𝑃(𝑥È, 𝑦È, 𝑧È), the UAV frame 

 

Figure 3-8. The interactive GUI designed to search for the best HSV ranges that are able 
to segment the drop weight from the ground in an image. 
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𝑄(𝑥q, 𝑦q, 𝑧q), the Camera frame 𝑂(𝑥r, 𝑦r, 𝑧r), and the Weight frame 𝑀(𝑥y, 𝑦y, 𝑧y)) and 

transformations between them are illustrated. When the AprilTag on the weight surface is 

detected in an image, the landing point 𝑀 is assigned to be the tag center; otherwise 𝑀 is 

defined as the geometric center of the detected color blob of the drop weight. Recall that 

the objective is to find the landing point 𝑀’s representation in the Ground frame, 𝑀s)tua], 

which can be derived from 𝑀’s representation in the Camera frame, 𝑀%&'()&, by applying 

two rigid motion transformations as shown in Equation (2-5). When the tag is detected, 

𝑀%&'()& is simply 𝑡wt)}]
%&'()&, a direct result from the solvePnP algorithm. However, in the 

case of a color blob detection, 𝑡wt)}]
%&'()&  is no longer attainable from solving the PnP 

problem, because solvePnP requires at least four detected feature points from an image but 

the only one existing in a color blob is its geometric center 𝑀. The following is a method 

of computing 𝑀%&'()& through a careful geometric deduction. 

 The derivation of 𝑀%&'()& is separated into two parts: its direction y
ÉÊËÌÍÊ

¡yÉÊËÌÍÊ¡
 and 

its magnitude ‖𝑀%&'()&‖  (i.e., ¡𝑂𝑀QQQQQQ⃗ ¡  in Figure 3-9). First, yÉÊËÌÍÊ

¡yÉÊËÌÍÊ¡
 can be derived 

following geometric relations shown in Figure 3-9: 

 

𝑀%&'()&

‖𝑀%&'()&‖ =
𝑁%&'()&

‖𝑁%&'()&‖ = 𝑛 ÏR¡𝐴𝐼QQQQ⃗ ¡	¡𝐴𝐽QQQQ⃗ ¡	¡𝑂𝐴QQQQQ⃗ ¡V
F
Ñ 

(3-1) 
 = 𝑛Ò�

¡𝐴𝐼QQQQ⃗ ¡
¡𝑂𝐴QQQQQ⃗ ¡

	
¡𝐴𝐽QQQQ⃗ ¡
¡𝑂𝐴QQQQQ⃗ ¡

	1�
F

Ó 

 = 𝑛([tan(∠𝐴𝑂𝐼)	tan(∠𝐴𝑂𝐽) 	1]F), 
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where 𝑛(∙) is a vector normalizing function, ¡𝐴𝐼QQQQ⃗ ¡ and	¡𝐴𝐽QQQQ⃗ ¡ are the distances (in pixels) 

from the center of the image to the detected landing point 𝑁. Defining ∠𝐴𝑂𝐼 and ∠𝐴𝑂𝐽 as 

𝑂𝑓𝑓𝑠𝑒𝑡k and 𝑂𝑓𝑓𝑠𝑒𝑡m, respectively; they are: 

 

Figure 3-9.  Diagram illustrating how to compute the relative position of the landing 
point 𝑀 with respect to the UAV’s CG, point 𝑄. 

 
𝑂𝑓𝑓𝑠𝑒𝑡k ≜ ∠𝐴𝑂𝐼 =

¡𝐴𝐼QQQQ⃗ ¡
𝑤 𝐹𝑜𝑉k, 

𝑂𝑓𝑓𝑠𝑒𝑡m ≜ ∠𝐴𝑂𝐽 =
¡𝐴𝐽QQQQ⃗ ¡
ℎ 𝐹𝑜𝑉m, 

(3-2) 
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where 𝑤  and ℎ  (in pixels) are the width and height of the image, 𝐹𝑜𝑉k  and 𝐹𝑜𝑉m  (in 

radians) are the field of view in the camera’s 𝑥r  and 𝑦r  directions, respectively (See 

Appendix A.3 for derivations of 𝐹𝑜𝑉k and 𝐹𝑜𝑉m). The magnitude of 𝑀%&'()&, or ¡𝑂𝑀QQQQQQ⃗ ¡ in 

Figure 3-9, can be estimated as: 

where ¡𝑂𝐿QQQQQ⃗ ¡  is the measurement of distance from the LiDAR sensor, and ∠𝐴𝑂𝐼  (i.e., 

𝑂𝑓𝑓𝑠𝑒𝑡k) and ∠𝐴𝑂𝐽 (i.e., 𝑂𝑓𝑓𝑠𝑒𝑡m) are computed as in Equation (3-2). It should be noted 

that this approximation of ¡𝑂𝑀QQQQQQ⃗ ¡ is based on the assumption that the Image plane is parallel 

to the Ground plane, which does not hold true all of the time but works well in practice. 

The representation of the landing point 𝑀 in the Camera frame can now be formulated as: 

3.4 Experiments and Results 

3.4.1 Experimental Validation of the Wireless Geophone Node 

 To validate the functionality of the newly developed wireless geophone node, field 

tests were performed at the Scio Flyers Model Aircraft Club in Scio Township, MI. Two 

 ¡𝑂𝑀QQQQQQ⃗ ¡ ≈ ¡𝑂𝐿QQQQQ⃗ ¡ ∙
¡𝑂𝑁QQQQQQ⃗ ¡
¡𝑂𝐴QQQQQ⃗ ¡

= ¡𝑂𝐿QQQQQ⃗ ¡ ∙ Ø1 + tanC(∠𝐴𝑂𝐼) + tanC(∠𝐴𝑂𝐽), (3-3) 

 

𝑀%&'()& =
𝑀%&'()&

‖𝑀%&'()&‖ ∙ ‖𝑀
%&'()&‖ 

(3-4) 
 = 𝑛 ÏRtan(𝑂𝑓𝑓𝑠𝑒𝑡k)	tanÙ𝑂𝑓𝑓𝑠𝑒𝑡mÚ 	1V

FÑ ∙ 

 					¡𝑂𝐿QQQQQ⃗ ¡ ∙ Û1 + tanC(𝑂𝑓𝑓𝑠𝑒𝑡k) + tanCÙ𝑂𝑓𝑓𝑠𝑒𝑡mÚ 

 = ¡𝑂𝐿QQQQQ⃗ ¡ ∙ Rtan(𝑂𝑓𝑓𝑠𝑒𝑡k)	tanÙ𝑂𝑓𝑓𝑠𝑒𝑡mÚ 	1V
F. 
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wireless geophone nodes were constructed per the design of Section 3.2 and used to verify 

their ability to record seismic waves and to synchronize their seismic signals between the 

node pair. A close-up view of the overall experiment setup and equipment layout is shown 

in Figure 3-10. The two wireless geophone nodes were placed at position A and B, 

respectively, with a 2 m inter-sensor spacing. The source target was placed along the line 

of the two geophones with an offset of 2 m from its nearest receiver. Seismic waves were 

generated by striking a 5.4 kg Dytran sledgehammer on a polyethylene plate. Ground 

vibrations recorded by the wireless geophone nodes were transmitted in real time to a field 

MacBook through a local Wi-Fi router. A commercial cabled seismic acquisition system 

was deployed side by side with the wireless system as the benchmark against which the 

wireless system should be compared. The commercial system included a Geometrics ES-

3000 seismograph for geophone signal processing and a Panasonic field PC laptop for data 

storage. Geospace GS-11D 4.5 Hz geophones (natural frequency: 4.5 ± 0.75 Hz, coil 

resistance: 380 Ω, sensitivity: 32 V/m/s) were used for both the wired and wireless data 

recording system for direct comparison. Geophone sensors interfaced with the cabled 

seismic recorder were placed in close proximity (about 10 cm) to those attached to the 

wireless nodes. 

 During the field test, both wireless geophone nodes were commanded to register 30 

seconds of data with a sampling frequency of 1,000 Hz (leading to a total of 30,000 signal 

samples for each node). Figure 3-11 illustrates the aligned time-domain geophone signals 

(blue curves) collected by the pair of wireless sensor nodes. The sledgehammer was 

manually stricken six times during the roughly 30 s time frame, which is manifested by the  
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six peaks in both signal curves. PPS signals from the GPS sensor, indicated by green dashed 

vertical lines, are layered on top of each geophone signal to annotate time-instants. 

Accurate timestamps in the format of “minute:second” are labeled above each dashed line. 

These timestamps are crucial for synchronization of signals coming from different wireless 

 

Figure 3-10. Experiment setup and equipment layout for validating the proposed wireless 
seismic recorder against a commercially available wired seismic monitoring system. 



 129 

sensor nodes and are used in this figure to align the two geophone signal plots. The numbers 

in red labelled between each pair of neighboring green vertical lines represent the number 

of ADC samples between them. The constant counting of 1,000 ADC samples between any 

two consecutive PPS signals reveals the excellent performance of the XU4 SBC in handling 

data throughput at a sampling rate of 1,000 Hz. 

 A comparison between geophone signals recorded by the wireless sensor nodes and 

the wired seismic monitoring system in both the time and frequency domains is shown in 

Figure 3-12. Figure 3-12(a) and Figure 3-12(c) are zoom-in views of the second peak in  

 

 

(a) 

 

(b) 

Figure 3-11. Time-domain signals coupled with GPS timestamps recorded by the 
wireless geophone node pair: (a) wireless geophone signal at position A; (b) wireless 
geophone signal at position B. 
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(a) (b) 

  

(c) (d) 

Figure 3-12. Comparison between measurements from the wireless geophones and 
recordings of the seismograph at locations A and B (Figure 3-10), respectively: (a) and 
(c) time histories; (b) and (d) frequency spectra. 

Figure 3-11(a) and Figure 3-11(b), respectively. Raw signal voltage (in V) from each 

geophone is converted to ground movement velocity (in m/s) using the geophone’s 

sensitivity of 32 V/m/s. Overlaid with the wireless geophone measurements (blue solid 

curve) are the wired system recordings (red dotted curve). The ES-3000 seismograph was 

configured to record seismic data at a sampling frequency of 1,000 Hz, same as the 

sampling rate of the wireless geophones, for a duration of two seconds. Triggering of the 

system, shown by the black dashdotted vertical line, was implemented via an inertial switch  
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mounted on the sledgehammer handle. As shown in Figure 3-12(a) and Figure 3-12(c), at 

both position A and B, the alignment of time-domain signals collected by the wireless 

system and the wired one is fairly well, especially given the fact the two geophone sensors 

were not deployed at the exact same location. Specifically, Table 3-6 tabulates the lapse of 

time for the first four wave peaks in Figure 3-12(a) to travel from position A to B (Figure 

3-12(c)). The wired and wireless systems report the same amount of travel time for the first 

three peaks and a slightly different (2 ms) travel time for the fourth peak. These impressive 

results underscore the effectiveness of the GPS receiver as a means of synchronizing time. 

The amplitudes of the geophone signals for the first 0.2 s since triggering (i.e., from 9.382 

s to 9.582 s in Figure 3-12(a) and Figure 3-12(c)) have an RMS error of 0.0021 m/s and 

0.0008 m/s at A and B, respectively. While this may be termed an error, given the fact that 

the wireless and wired geophone are not quite collocated, it would be expected the signals 

would not be identical. This successfully demonstrates the wireless geophone node’s 

capability of recording accurate seismic data (on the level of a commercial cabled system) 

and annotating it with correct GPS time. Presented in Figure 3-12(b) and Figure 3-12(d) 

are the frequency spectra of the signals that were obtained following the fast Fourier 

transform (FFT) method. The resemblance of frequency spectra between the wired and 

wireless geophones further validates the functionality of the proposed wireless geophone 

Table 3-6. Lapse of time from position A to position B (Units are in seconds). 

 Peak 1 Peak 2 Peak 3 Peak 4 

Wired system 0.006 0.008 0.012 0.012 

Wireless system 0.006 0.008 0.012 0.014 

 



 132 

node. This is an excellent finding as signal processing in SASW and MASW are often done 

in the frequency domain where there is very strong agreement. 

3.4.2 Field Demonstration of Autonomous Payload Pickup and Drop-off of the UAV 

 The most difficult step among all autonomous UAV operations is the precision 

landing to pick up the drop weight, the results of which are reported herein. Figure 3-13 

shows a sequence of snapshots from the onboard webcam during a typical precision 

landing, with (a)-(c) showcasing the spotting of color blob and (d)-(f) showing the 

detection of the AprilTag by the tailored onboard object detector. When the UAV was at 

relatively high altitudes, the color blob detection algorithm was used to segment the drop 

weight in the images. The target landing point 𝑀, which was computed as the geometric 

center of the color blob, is marked as a red cross marker in Figure 3-13(a)-(c). Displayed 

also on top of each image is 𝑂𝑓𝑓𝑠𝑒𝑡k  and 𝑂𝑓𝑓𝑠𝑒𝑡m  derived following the geometric 

method that were used to estimate relative UAV position. As the UAV gradually descended 

to the ground, the AprilTag detection algorithm came into effect at the height of about 1.39 

m (Figure 3-13(d)). The landing point 𝑀 in this case was assigned to be the center of the 

AprilTag. Estimations of 𝑀%&'()&  (i.e., 𝑡B , 𝑡C , and 𝑡D ) directly from the solvePnP 

algorithm are labelled in green at the top of the image. The UAV was able to land on top 

of the drop weight with a deviation from the weight center of only 2 cm (Figure 3-13(f)). 

The precision landing maneuver was tested thoroughly. Out of a total of 25 test flights, 19 

were found to have a deviation of less than 7 cm. Of the other six, the deviation was greater 

than 7 cm making the magnetic gripping of the weight spatially infeasible. With future 

tweaking of the UAV controller, the landing accuracy can be improved. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3-13. A sequence of images streamed from the webcam during precision landing: 
(a)-(c) detection of the seismic weight as a color blob; (d)-(f) detection of the AprilTag 
on the weight. 
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(a) (b) (c) (d) 

Figure 3-14. A series of snapshots from the onboard GoPro camera showcasing a 
successful payload pickup action: (a)-(b) precision landing; (c) payload grasping; (d) 
takeoff with payload onboard. 

 Figure 3-14 illustrates the process of a successful drop weight pickup action 

observed from the onboard GoPro action camera. Following a precision landing maneuver, 

the UAV was able to successfully grab the weight and take off to drop the weight again. 

Experiments on determining whether a grasping attempt is successful were also conducted. 

The drop weight was manually put in various locations under the UAV. Upon issuing a 

gripping command to the gripper, ambient sound was recorded for one second, after which 

the gripping result was observed. Figure 3-15 shows the soundwaves in both the time and 

frequency domains for a typical successful grasp and an unsuccessful one. The three peaks 

in the plots arise from capacitors inside the EPM charging three times to create a strong 

magnetic field. The maximum soundwave amplitude for a successful grasp was found to 

be around 1 while that for an unsuccessful one was always below 0.25. A criterion based 

on this maximum sound amplitude was established to identify a successful grasping action. 

Figure 3-16 shows the relative positions of the drop weight after the UAV lands in four test 

flights. The UAV was able to successfully pick up the drop weight in (a)-(c), while failed 

in (d) and had to repeat the precision landing maneuver again according to the designed 

FSM. The overall success rate for picking up the drop weight is measured to be around 

70% based on a total of 25 test flights. 
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(a) (b) 

Figure 3-15. Sound recorded in both time (up) and frequency (down) domain when a 
grip command is issued: (a) a successful grasp; (b) an unsuccessful one. 

 

    

(a) (b) (c) (d) 

Figure 3-16. Relative positions of the drop weight after the UAV lands, leading to: (a)-
(c) successful grasps; (d) unsuccessful grasp. 

3.5 Conclusion 

 This chapter presents two critical components that are necessary for the 

advancement of UAV-enabled automated subsurface characterization for remote or hard-

to-reach sites. The proposed wireless geophone node is a stand-alone seismic recorder 

capable of collecting GPS-time-referenced seismic data. Featuring a modular design and 

open-source software, the designed wireless sensor node achieves great mobility and 

adaptability that meets growing research needs. Performance of the wireless sensor node 
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is validated through side-by-side comparison with a commercial off-the-shelf (COTS) 

cabled seismic acquisition system. The wireless geophone is able to meet all the design 

requirements specified in Section 3.2. The combined functionality and affordability make 

the designed wireless geophone node an invaluable tool that can be densely deployed in 

challenging terrains where a cabled system would fail. The second piece of hardware 

introduced in this chapter is a UAV-based intelligent seismic source deployment system. 

Leveraging robust visual detection and precise position control, the UAV is able to drop 

off a weight and pick it up in a repeated and autonomous fashion. Results reveal excellent 

accuracy of less than 7 cm in the placement of the UAV on top of the drop weight and a 

success rate of 70% for grasping. A novel approach utilizing acoustic signatures to identify 

a successful gripping is also presented. The study proves the feasibility of using a UAV to 

actively deploy seismic sources and multiple wireless geophones to collect seismic 

responses. The two hardware components are geared towards a fully autonomous UAV 

system that can intelligently characterize earth subsurface stiffness, which will be shown 

in the next chapter. 
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Chapter 4 UAV-Enabled Automated Subsurface Characterization 

Using Spectral Analysis of Surface Waves 

4.1 Introduction 

 The wireless geophone node developed in Chapter 3 marks a breakthrough from 

wired seismic recording to mobile wireless sensing. As an enhancement to the wireless 

sensing technology, an MSN architecture offers additional potential benefits such as 

reduced number of sensors within a network and increased data quality using configurable 

sensor network topologies. Integrating the wireless geophone node into a mobile UAV is 

a feasible and affordable means of realizing the MSN architecture. Advanced UAV 

technologies such as precision position control and autonomous operations, as illustrated 

in Chapter 2 and Chapter 3, have made UAVs a technologically matured RAS platform 

capable of geotechnical applications such as subsurface investigations of field sites. Built 

upon the technologies and devices developed in the previous two chapters, this chapter 

presents a RAS solution to shear wave velocity profiling of geotechnical sites. 

4.1.1 Background of SWMs and SASW 

 Seismic surveys are a powerful tool to image subsurface formations using surface-

induced seismic waves. Ever since the early years of the 20th century, when the first seismic 

surveying method was patented in 1919 by German scientist Ludger Mintrop (ETHW 

2020), the development of surface methods to explore the earth subsurface has evolved 

rapidly. The goal of a SWM is to use the geometric dispersion of surface waves to infer the 
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relevant medium properties by solving an inverse problem for parameter identification 

(Socco, Foti, and Boiero 2010). A variety of near-surface applications centered on the 

SWM prompted during the past few decades including earthquake site response (Foti et al. 

2009; Comina et al. 2011), nondestructive pavement testing (Nazarian and Stokoe II 1984; 

Ryden et al. 2004), offshore site characterization (Luke and Stokoe II 1998), and 

underground anomaly detection (Nasseri-Moghaddam, Cascante, and Hutchinson 2005). 

The primary use of surface wave tests today is to determine the in situ shear wave velocity 

(𝑉Á) profile (i.e., the variation of the shear wave velocity with depth) for earth subsurface 

characterization purposes. This is usually accomplished by first experimentally measuring 

the dispersion curve (i.e., the variation of Rayleigh phase velocity 𝑉Ü  with frequency) 

associated with a given site and subsequently going through an inversion process to derive 

a shear wave velocity profile. Depending on whether the surface waves are generated by a 

source for the purpose of profiling or not, surface wave methods can be divided into two 

categories: passive methods and active methods. Passive surface wave methods utilize 

naturally occurring microtremors (i.e., small-amplitude ground surface vibrations) to 

extract information for site characterization. The most commonly used methods for passive 

field data processing include spatial autocorrelation (SPAC) (Aki 1957) and minimum-

variance distortionless look (MVDL) (Capon 1969). On the contrary, active surface wave 

methods rely on seismic pulses generated on purpose from artificial sources such as a 

sledgehammer, a drop weight, a thumper truck, or even explosives. The first active surface 

wave method developed for geotechnical site characterization was the steady-state 

Rayleigh method (Jones 1958) proposed in the 1950s. Later in the 1970s, the advent of 

portable sophisticated data acquisition and frequency analyzers led to two seminal works: 
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first the SASW (Nazarian 1984; Stokoe et al. 1994) and subsequently the MASW method 

(Park, Miller, and Xia 1999), which are widely adopted in field practice today. Both 

methods are non-invasive and non-destructive and can be performed in situ in a short time 

frame with relatively mature data processing routines. A comprehensive literature review 

on the development and technical details of SWMs can be found in the works of Socco et 

al. (2010), Pelekis et al. (2011), and Foti et al. (2011). 

 The SASW method is adopted in this work for surface wave analysis. Unlike the 

MASW method that requires an array of grid of typically more that 12 geophones (Pelekis 

and Athanasopoulos 2011), SASW only employs two geophones, rendering it ideal to use 

two mobile robots such as UAVs to carry and deploy the geophone pair. The SASW 

method is a nondestructive seismic method for near-surface profiling of sites based upon 

the dispersive characteristics of Rayleigh-type surface waves propagating in a layered 

medium. The general objective of an SASW test, as of any SWM test, is to measure the 

Rayleigh wave dispersion curve experimentally and then to obtain the 𝑉Á (stiffness) profile 

of a site through inversion of the dispersion curve. The inversion is accomplished by 

deriving a subsurface model that has a theoretical dispersion curve that closely matches the 

experimental one. Although a complete SASW test ends with the determination of the 𝑉Á 

profile, the chapter only investigates the acquisition of field data and the derivation of the 

experimental dispersion curve, allowing for a direct comparison between the conventional 

technique and the UAV technique without introducing additional variability due to the 

inversion process (Garofalo et al. 2016). The emphasis in this study is placed on automating 

the data collection process and quantifying the data quality through the constructed 

dispersion curve. 
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 A typical SASW test uses, most frequently, impulsive sources such as 

sledgehammers or steady-state sources such as electro-mechanical shakers to generate a 

seismic wave train that normally covers the frequency range of 5 to 200 Hz (Foti et al. 

2011). Other sources have also been used, most recently a dropped mass using a UAV to 

generate the surface waves (Greenwood et al. 2018). Rayleigh waves are detected by a pair 

of vertically oriented receivers (e.g., geophones) that are deployed in a linear array along 

with the source. The inter-receiver distance is ordinarily kept equal to the distance between 

the source and its near receiver. By analyzing the phase of the cross-power spectrum (CPS) 

determined between the two receivers, dispersion curves showing surface wave velocities 

over frequency ranges are determined. The data collection and processing procedure is 

repeated with increasing inter-receiver spacings (usually ×2, ×4, ×8, …), with short 

spacings used to examine the shallow layers and long spacings for characterization at 

greater depths. The most common configuration of the SASW testing promoted in the 

literature is the Common Receiver MidPoint (CRMP) geometry (Foti 2000) as shown in 

Figure 4-1. In the CRMP geometry, the two receivers are moved away from a centerline 

 

Figure 4-1. The CRMP scheme for two-station SASW testing. 
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located midway between the receivers. The source is placed at each side of the midpoint 

alternately to perform both forward and reverse profiling. The reversing of the source 

mostly serves to mitigate the effects of local material discontinuities or bedding inclination 

but also helps balance out internal phase distortion in the two geophones (Foti 2000). 

4.1.2 UAV-Based Seismic Sensing 

 UAVs are aerial robots that can navigate autonomously or be remotely controlled 

by a human pilot. A vast number of civil engineering researchers and practitioners are 

embracing this emerging technology because UAVs provide an incomparable data 

acquisition capability in areas where conventional civil engineering tools would fail 

(Greenwood, Lynch, and Zekkos 2019). The agility and fast deployment of UAVs allow 

them easier and quicker access to traditionally difficult-to-reach areas such as remote sites 

and dangerous sites. Carrying a diverse range of onboard sensors such as cameras and 

LiDARs, UAVs can vastly increase the rate of data collection and improve data quality 

when necessary. Recent development of UAV autonomy further opens door to autonomous 

mission execution. The benefits presented by UAVs makes them potentially invaluable 

tools for geotechnical studies, especially those in hard-to-reach sites that occur in post-

disaster scenarios. UAVs equipped with a RGB camera are most commonly used to 

document the damage to urban infrastructure after an extreme event occurs. Hundreds to 

thousands of high-resolution images can be captured over a broad perspective and stitched 

together to build a 3D point cloud model of a site using structure from motion (SfM) image 

processing techniques (Westoby et al. 2012; Schaefer et al. 2020). LiDAR is another sensor 

commonly incorporated into UAVs for mapping purposes. Airborne LiDAR systems have 
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been deployed to generate high-resolution DTMs to help define damage patterns (Pellicani 

et al. 2019; Hirose et al. 2015), but are used less often due to their bulky size and high cost. 

 While site surface mapping is important to advance engineering practice and 

research, site subsurface exploration such as shear wave velocity profiling using SASW 

and MASW techniques remains a research frontier with a potentially significant impact in 

engineering practice. Conventional seismic surveying requires field teams placing wired 

geophone sensors in an array or grid configuration that covers the site under exploration 

and deploying an artificial seismic source such as a sledgehammer. As presented in Chapter 

3, UAV can serve as a seismic source generator by dropping from aloft an instrumented 

weight to act on the ground surface and generate seismic waves that will be received by 

the geophones. Moreover, with the development of wireless geophone nodes shown in 

Chapter 3, UAVs can be employed, as a substitute for human operators, to deploy and 

retrieve sensor nodes following the MSN architecture. Most importantly, data collected 

from the geophones can be transmitted instantly to the UAVs or a base station through 

local wireless networks and get processed right away to provide invaluable subsequent 

planning insights. As a result, integrating a UAV platform to the seismic surveying 

framework may dramatically accelerate the time frames for reconnaissance teams to safely 

perform site subsurface investigations. 

 There have been some early but limited endeavors reported in the literature to 

develop a UAV-based autonomous system for subsurface sensing. Stewart et al. (2016) 

attached four 100 Hz spiked geophones to the bottom of a 3DR Solo quadcopter as the 

UAV’s landing legs. The authors reported an average spike penetration depth of about 10 

mm when the UAV landed on grass. The UAV-geophone pair demonstrated the ability to 
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record reasonable seismic data but with an offboard seismograph which is designed for 

wired geophones, limiting the mobility and modularity of the prototype model. Sudarshan 

et al. (2017) proposed two robotic systems to automate seismic sensor deployment: a UAV 

capable of dropping dart-shaped geophone sensors that penetrate into soil and a ground 

hexapod robot with three of the legs replaced by spiked geophones. Although the paper 

showcased several successful tests of autonomous sensor placement, location accuracy was 

relatively low at the meter-scale level. Also, sensor retrieval conducted in the study was a 

manual process with the help of a human-piloted UAV. The geotechnical industry has also 

endorsed the view of dropping wireless seismic nodes from UAVs for seismic surveying 

(Rassenfoss 2017; Whaley 2018). These recorders, known as downfall air receiver 

technology (DART), are as the name implies, shaped like a dart and can penetrate into the 

ground and biodegrade after the survey without the need for retrieval. Challenges remain 

such as ensuring the landing sensors in a nearly vertical position and using completely 

biodegradable material to keep the DART’s environmental footprint to a minimum. 

4.1.3 UAV-Enabled Automated Seismic Surveying Using SASW 

 This study explores the usage of UAVs for performing automated seismic 

surveying using the SASW method. The work emphasizes truly autonomous operations 

across the full range of seismic surveying including placement of geophone sensors in an 

array pattern, triggering of a seismic event, and wireless collection of seismic data. Figure 

4-2 provides a schematic overview of the proposed RAS solution to conduct SASW tests. 

Sensor deployment is accomplished by two autonomous UAVs flying to desired sensor 

installation locations following the CRMP scheme. A third UAV is used to deploy seismic  
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Figure 4-2. Overview of the proposed autonomous UAV system for automated seismic 
surveying using the MASW method with two smaller UAVs deploying two geophone 
sensors and a big UAV triggering a seismic event. 

sources by dropping from aloft an instrumented weight as illustrated in Chapter 3 and 

presented by our research group in Greenwood et al. (2018) and (2021). The biggest 

challenge pertaining to realizing the CRMP geometry is the alignment of the seismic source 

and the two receivers and maintaining specific distances between the three components. 

This study fulfills these stringent geometric requirements of CRMP by using vison-aided 

precision control of the UAVs. Similar to Chapter 2, multi-resolution AprilTag patterns are 

adopted to provide reliable relative position estimations for the UAVs. The work proposes 

a cube shaped object with multi-resolution AprilTag patterns applied on three of its six 

faces that will be placed at the receiver midpoint serving as a landmark for position 

reference. The cube is supposed to be deployed by a UAV before the SASW test, thereby 

eliminating the need for human interventions. Table 4-1 summarizes the requirements and 

challenges associated with the proposed RAS solution. This chapter meets all key  
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requirements while leaving several challenges open for future research. The work aims to 

make three major intellectual contributions. First and foremost, the knowledge gap in 

automating seismic surveys using RAS is addressed. The RAS solution proposed in this 

research is the first of its kind that is intended for automated subsurface imaging in remote 

or dangerous environments. Second, this research showcases several advanced Stage 3 and 

Table 4-1. Requirements and challenges of UAV-enabled automated seismic surveying 
using the SASW method (✓: resolved in this study; ✕: unresolved and requiring future 
investigations) 

 Requirements  Challenges  

Sensor 
placement 

Moving receivers in a straight 
line consistently ✓ Ensuring tight ground 

coupling ✕ 

Maintaining certain distances 
between the two receivers ✓ Maintaining a vertical position 

of the geophone sensor ✓ 

Seismic 
source 
deployment 

Payload release mechanism ✓ Ideal size and shape of the 
drop weight ✕ 

Payload release from a certain 
height ✓ Ideal drop weight ✕ 

Payload retrieval ✓ Registering the landing 
location of the weight ✓ 

Aligning the impact source on 
the line formed by the two 
receivers 

✓   

Keeping the distance between 
the source and near receiver 
equal to the distance between 
the two receivers 

✓   

Data 
collection, 
storage, 
and 
processing 

Wireless communication 
among receivers, the UAV, 
and the base station 

✓ Verifying data quantity is 
sufficient ✕ 

Dispersion curve construction ✓ Verifying data quality is 
sufficient ✕ 

𝑉Á profile generation ✕ Instant knowledge about ideal 
inter-receiver spacings ✕ 
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Stage 4 UAV technologies and the integration of them including vision-based precision 

position control and robotic manipulation. Third, seismic data collected by the RAS 

solution is used to construct a dispersion curve of the testing field, whose shape is shown 

to be similar to one constructed from a human-deployed wired data acquisition system. 

4.2 UAV Platform: Hardware and Software 

 The UAV platforms adopted in this chapter is similar to those used in the previous 

two chapters (one 3DR X8 for weight dropping, and two Lumenier QAV210s for sensor 

deployment) with specific modifications of the onboard cameras to cater to the detection 

of the cube. Ideally, with a gimbaled camera capable of moving in the elevation (i.e., pitch) 

direction included in the UAV system, the cube can be detected in a semicircle shaped area 

as shown in Figure 4-3. The radius of the semicircle is dependent on the detection range of 

the AprilTag patterns on the cube faces, which is easily adjustable by using different sizes 

 

Figure 4-3. Detection zone of the cube using a camera with a one-axis elevation gimbal 
and a 60° field of view. 
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of print. In this study, to speed up the development of the UAV systems, gimbaled cameras 

are not adopted. Instead, cameras with fixed orientations are installed on the UAVs with 

some sacrifice in the size of the detection area. However, these fixed cameras are still able 

to provide necessary visual estimations for precise localization of the UAVs during their 

autonomous operations. For instance, the smaller QAV210 has a forward-facing camera 

(Figure 4-4(a)) and uses the AprilTag pattern on the side face of the cube for position 

reference while flying relatively low to the ground. The X8 has two cameras installed 

onboard, one facing forward and the other facing downward in replacement of an elevation 

gimbal. 

 Installed on the QAV210 is also the wireless sensor node developed in Chapter 2. 

A Geospace GS-11D 4.5 Hz geophone is connected to the wireless node for recording 

  

(a) (b) 

Figure 4-4. The QAV210 quadcopter used in this study to deploy wireless geophone 
nodes: (a) UAV landing in front of the cube with key hardware components highlighted; 
(b) the geophone sensor together with its three-spike base that are firmly attached to the 
bottom of the UAV. 



 148 

ground vibration velocities. Typically, geophone sensors are mounted in an insulated 

enclosure with a spike attached to the bottom. The spike is meant to be inserted into the 

ground to ensure minimum transmission loss from seismic ground motion to the motion of 

the geophone. Geophone ground coupling is still not a well-understood problem regarding 

the ideal length, shape, and penetration depth of the spike (Krohn 1984; Drijkoningen 2000; 

Segarra et al. 2015). When using robotic systems such as UAVs to deploy the spiked 

geophones, specific challenges arise such as how to penetrate the spikes into the ground 

and how to maintain a vertical position of the geophone after its installation. In this study, 

these challenges are overcome by using a three-spike base for the geophone that also serves 

as landing legs for the UAV (Figure 4-4(b)). Geophone ground coupling relies on the self-

weight of the UAV to push the spike ends into the ground after the UAV lands. During 

development and testing, the average penetration depth in a typical grass field was found 

to be about 1.0 cm with the 1.7 kg QAV210 UAV. 

 The UAV software is much like that articulated in the previous two chapters. The 

QAV210 adopts the same FSM design as shown in Figure 2-7 with some changes in the 

precision landing module. The desired landing point is now defined at the sensor 

installation location (a predefined distance, M
C
− ]

C
, away from the vertical AprilTag plane 

as shown in Figure 4-2). The forward-facing camera on the QAV210 is able to detect the 

vertical multi-resolution AprilTag pattern and use it for precise relative position estimation 

during the entire landing process. The X8 follows the autonomous weight drop-off and 

pickup FSM defined in Figure 3-6 with an additional step of flying to the desired weight 

drop-off location after “Take off” and before “Drop off payload”. This weight drop-off 

location is defined based on the CRMP geometry and a preset height (Figure 4-2). Again, 
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the X8 uses visual feedbacks from the cube and its internal cascaded PID controller to 

correct its position until it reaches the desired location for payload dropping. Similar to 

Chapter 2, a Kalman filter and a visual-inertial fusion method are employed to provide 

robust and reliable relative position estimations for the UAV. The overall software 

architecture for the two computing units on the X8 (i.e., the TX2 and the Pixhawk) is 

identical to that shown in Figure 2-5 with the exception that everything related to “precision 

landing” is modified to “precision loiter” so that the X8 can precisely loiter near the desired 

payload drop-off location before releasing the payload. 

4.3 Dispersion Analysis 

 The experimental dispersion curve is derived from the phase of the CPS between 

the two receivers. This “folded” phase, ranging between −𝜋 and +𝜋, provides the relative 

lead or lag between the two signals detected by the pair of receivers. The cumulative phase 

shift between receivers is obtained from “unfolding” the phase plot by identifying phase 

jumps going from −𝜋 to +𝜋 (or +𝜋 to −𝜋) in the folded phase plot. The phase velocity 

𝑉Ü, as a function of frequency 𝑓, is obtained from the unfolded phase angle Φ(𝑓) (in rads) 

together with the inter-receiver spacing 𝐷, using the following relationship: 

One important aspect of the above procedure is the influence of data quality. Portions of 

the phase plot with low SNR has to be eliminated to construct the correct dispersion curve. 

This is usually accomplished using the coherence function, whose value ranges between 0 

(totally unrelated signals corrupted with noise) and 1 (linearly correlated signals without 

 𝑉Ü(𝑓) = 𝑓 ∙
2𝜋
Φ(𝑓) ∙ 𝐷. 

(4-1) 
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noise). The evaluation of the coherence function necessarily uses several pairs of signals 

from the two receivers, leading to a requirement for repeated testing on the same source-

receiver layout. A small decline of the coherence function (e.g., less than 0.99) usually 

indicates large fluctuations in the phase. Therefore, frequency ranges corresponding to low 

values in the coherence function are rejected during the development of the dispersion 

curve. In addition to the coherence criterion, there are also restrictions for the acceptable 

range of wavelengths such as those suggested by Heisey (1982): 

where 𝐿Ü(𝑓) =
�Þ(ß)
ß

 is the wavelength. The dispersion curve is further screened following 

Equation (4-2) to avoid the near field and far field effects. The process of building 

dispersion curve is repeated using successively larger receiver spacings for signals with 

lower frequency and longer wavelength. These individual dispersion curves from different 

receiver spacings are stitched together to form a composite dispersion curve for the site. 

4.4 Experiments and Results 

 Field experiments were performed at the Scio Flyers Model Aircraft Club in Scio 

Township, MI. The aims of the experiments were twofold. The first set of tests (experiment 

1) was carried out to test if the proposed RAS solution can reliably realize the CRMP 

geometry. An inter-receiver spacing of 4 m was chosen and thoroughly tested. Tests were 

performed multiple times to build up a statistical basis for evaluating the positioning 

accuracy of system. The second set of tests (experiment 2) was conducted to investigate 

the usefulness of the ground-coupling measurements compared to data collected from a 

 𝐷
2 < 𝐿Ü(𝑓) < 3𝐷, (4-2) 
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separate set of well-planted wired geophones. The aim was to see whether the same 

dispersion curve can be built from the measurements. 

4.4.1 Experiment 1: Sensor Installation and Source Deployment Accuracy 

 As mentioned above, these tests were undertaken to evaluate the positioning 

accuracy of the proposed RAS. Figure 4-5 shows the schematic overview of the first 

experiment. For testing and validation purposes, a cube with a side length, 𝑑, of 0.5 m was 

used. Three unique multi-resolution AprilTag patterns were firmly attached on the left, 

right, and up faces of the cube. The AprilTag pattern adopted the same design as shown in 

Figure 2-10(b) including four tags with side lengths of 22.4 cm, 11.2 cm, 5.6 cm, and 2.8 

cm. The pattern has a detection range of about 12 m when an image resolution of 640×480 

px2 is used. Extended range is achievable through the use of larger tags or higher resolution 

cameras. In this experiment, inter-receiver spacing, 𝐷, was set to be 4 m, and the drop 

weight height, 𝐻, was to set to be 6 m. 

 

Figure 4-5. Schematic overview of experiment 1 (𝐷 = 4 m, 𝑑 = 0.5 m, 𝐻 = 6 m).  



 152 

 

(a) 

 

(b) 

Figure 4-6. Sensor deployment and weight dropping accuracy: (a) bird’s-eye view of a 
typical field test; (b) spatial accuracy of five field tests. 

 Figure 4-6 illustrates the locations of the landed UAVs and the dropped weight after 

repeating the test five times. All landing locations are within 0.5 m (shown with dashed 

orange circle with 0.5 cm radius) from their desired locations. Drop weight locations are 

within a slightly larger deviation of 0.725 m from their desired locations, although as 

discussed in Greenwood et al. (2021) this accuracy can be increased significantly, when 

necessary with a number of methods including RTK GPS, or other visual-based positioning 

control. However, for the purposes of this study, improving the accuracy of the drop 

location was not an objective. Another interesting finding from Figure 4-6 is that the 

positioning algorithm is precise (i.e., all measurements are close to each other) but not very 

accurate (i.e., measurements are not close to the true value). This behavior is expected as 
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Figure 2-15(c) suggests that the accuracy of the AprilTag position estimation algorithm 

decreases as the camera moves away from the tag pattern. This reduced accuracy can be 

resolved by carefully calibrating the system before using it. 

4.4.2 Experiment 2: Data Quality Assessment and Dispersion Analysis 

 In this set of tests, the usefulness of the data collected by UAV-deployed wireless 

geophones is investigated with respect to their use for dispersion analysis of the field site. 

The schematic overview of the second experiment is shown in Figure 4-7. A 5.4 kg 

sledgehammer was adopted as the seismic source instead of the UAV-dropped weight to 

increase the data acquisition speed and the quality of the seismic data collected. As 

Greenwood (2018) estimated, the 5.4 kg sledgehammer source has similar energy output 

 

Figure 4-7. Schematic overview of experiment 2 (spacing between receivers of 2, 4, 8, 
and 16 m are used). 
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to dropping a 4.7 kg mass from a 15 m height (approximate potential energy of 700 J), and 

the relatively light 0.93 kg drop weight adopted in this study is only “appropriate for testing 

where high frequency surface waves transmitted across short distances are of interest”. 

Also, during development and testing, it has been found that the steel plate used in this 

study has a tendency to bounce (i.e., recoil) after impacting the ground, resulting in poor 

data quality. Greenwood et al. (2021) has shown that the bounce on the ground is reduced 

when the mass is dropped from a higher elevation and that a sphere drop weight provides 

better quality data. Optimization of the drop weight was also outside the scope of this study. 

As shown in Figure 4-7, a total of four tests were conducted with inter-receiver spacings 

of 2, 4, 8, and 16 m, respectively. Each test was performed in three steps. First, two 

QAV210 UAVs were manually flown to the desired sensor installation locations, A and B, 

one at each side of the cube. The manual operations of the UAVs were to eliminate errors 

in positioning the UAVs and ensure accurate sensor installations. Then, two wired 

geophones (GS-11D 4.5 Hz vertical), same as those attached to the wireless nodes but with 

a single spike, were manually deployed besides the wireless geophone nodes for direct 

comparison. The wired geophones were connected to a commercial seismograph 

(Geometrics ES-3000) for seismic data collection. Finally, seismic waves were generated 

by manually operating the sledgehammer at the desired source location, S. The hammer 

was operated five times in each test to obtain five sets of data, which were stacked in later 

processing for improved SNR. Figure 4-8 illustrates the hardware layout of the SASW tests 

performed in the field site. In addition to the SASW tests, an MASW test was also 

conducted to provide a dispersion curve of the site as the baseline for comparison. The 

MASW test used a 2 m receiver spacing and 5 m nearest offset. The midpoint of the MASW 
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survey line coincided with the SASW-CRMP survey line so that the two tests share similar 

sampling range in the space. The seismic source in the MASW test was the same 

sledgehammer, which was applied five times on the strike plate for signal stacking. 

 Figure 4-9 to Figure 4-12 show the collected wireless and wired geophone 

measurements at position A and B in both the time and frequency domains. It can be 

observed that for the wireless-wired sensor pair close to the source, the single-spike wired 

geophone is more sensitive to ground vibrations at the moment of detection (larger wave 

amplitude) but also dissipates energy quicker than the three-spike wireless geophone. This 

phenomenon is not obvious though for the other sensor pair at the farther end of the source. 

In the frequency domain, the wired geophone almost always picks up more energy in the 

high frequency band (≥ 70 Hz) than the wireless geophone. 

 

 

Figure 4-8. SASW field tests for comparison of data acquisition from UAV-deployed 
wireless geophones and a commercial wired system. 
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(a) (b) 

  

(c) (d) 

Figure 4-10. Comparison between wireless and wired geophone measurements at 
position A and B (Figure 4-7) with 4 m spacing in both the time and frequency domains. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4-9. Comparison between wireless and wired geophone measurements at position 
A and B (Figure 4-7) with 2 m spacing in both the time and frequency domains. 
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(a) (b) 

  

(c) (d) 

Figure 4-12. Comparison between wireless and wired geophone measurements at 
position A and B (Figure 4-7) with 16 m spacing in both the time and frequency domains. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4-11. Comparison between wireless and wired geophone measurements at 
position A and B (Figure 4-7) with 8 m spacing in both the time and frequency domains. 
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(a) (f) 

  

(b) (g) 

  

(c) (h) 

  

(d) (i) 

  

(e) (j) 

Figure 4-13. Two-receiver data elaboration when inter-receiver spacing is 2 m: (a)-(e) 
wireless geophones; (f)-(j) wired geophones. 
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(a) (f) 

  

(b) (g) 

  

(c) (h) 

  

(d) (i) 

  

(e) (j) 

Figure 4-14. Two-receiver data elaboration when inter-receiver spacing is 4 m: (a)-(e) 
wireless geophones; (f)-(j) wired geophones. 
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(a) (f) 

  

(b) (g) 

  

(c) (h) 

  

(d) (i) 

  

(e) (j) 

Figure 4-15. Two-receiver data elaboration when inter-receiver spacing is 8 m: (a)-(e) 
wireless geophones; (f)-(j) wired geophones. 
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(a) (f) 

  

(b) (g) 

  

(c) (h) 

  

(d) (i) 

  

(e) (j) 

Figure 4-16. Example of a two-receiver data elaboration when inter-receiver spacing is 
16 m: (a)-(e) wireless geophones; (f)-(j) wired geophones. 
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(a) 

 

(b) 

Figure 4-17. Comparison of dispersion curves constructed from the MASW method and 
those built from the SASW method using (a) wireless geophone measurements and (b) 
wired geophone data. 

 Figure 4-13 to Figure 4-16 illustrate the development of dispersion curves using 

both wireless and wired geophone data under each inter-receiver spacing. The process 

starts by computing the CPS phase (a and f) of the signal pair collected at position A and B 

and unfolding it (b and g). Data with a coherence score below 0.99 (c and h) and that not 

satisfying the wavelength criteria (Equation (4-2)) is then discarded to form the valid phase 

plot (d and i), from which the dispersion curve (e and j) can be constructed directly using 

Equation (4-1). The figures also provide a side-by-side comparison of each step built from 

data collected by the wireless and wired geophone sensors. The resulting dispersion curves 

of each spacing are closely matched, which validates the quality of data collected using the 

proposed UAV systems. Figure 4-17 shows the comparison of dispersion curves developed 
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from the MASW and SASW techniques. The SASW data using the wireless geophones 

were successful in capturing the first and second modes. 

4.5 Conclusion 

 An innovative RAS solution for subsurface characterization of geosystems using 

the SASW technique is introduced in this study. As a natural extension to the previous two 

chapters, this chapter combines the efforts and accomplishments already made into a 

feasible solution to fully automating seismic surveying in remote or dangerous areas. Three 

independent UAVs are adopted in the RAS and work collaboratively to install wireless 

geophone sensors, trigger seismic events, and collect seismic data. The work shows 

excellent positioning accuracy of the UAVs being able to meet the CRMP geometric 

requirements. The work verifies the quality of the data collected by the UAV-deployed 

wireless geophones comparable to that collected by well-planted single-spike wired 

geophones. The study also highlights the RAS’s ability to construct complete in situ 

dispersion curves of a field site. 
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Chapter 5 Conclusions and Future Research Directions 

5.1 Summary and Conclusions 

 As sensing technology has rapidly matured, the ability to deploy large arrays of 

sensors in various engineering applications has increased. In particular, the integration of 

miniaturized sensors, low-power embedded system components, and wireless telemetry 

has fueled the Internet of things (IoT) revolution. While these advances have undoubtedly 

created new opportunities for monitoring, the majority of current structural monitoring 

systems adopt permanently installed sensors that are manually deployed and remain in a 

fixed location indefinitely. Recent advances in robotics have made mobile robots 

increasingly suitable for field operations. Robot-operated sensor deployment has the 

potential to extend the scope of structural condition assessment far beyond the range of 

currently available mechanisms. Particularly, robots offer mobility to wireless sensors and 

enable easy configurations of the geometry of a WSN. Besides bringing mobility and 

adaptability to WSNs, autonomous robots also give possibility to automation of field 

monitoring operations, leading to increased efficiency and reduced cost. Given the 

significant potential of robotics and automation technologies, the overarching goal of this 

dissertation is to explore the feasibility of using autonomous UAVs to automate structural 

monitoring and geo-structural analysis of civil infrastructure systems. 

 The focus of the research presented in this dissertation is to build a UAV autonomy 

framework necessary to automated sensor deployment in response to the field’s prevailing 
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challenges: accurate UAV positioning in outdoor environments and extended sensing 

capabilities beyond photogrammetry. This is demonstrated in this dissertation through the 

development of a vision-aided control algorithm for outdoor UAV localization and the 

creation of several unique UAV-sensor pairs tailored for civil engineering applications 

such as structural analysis and geotechnical site characterization. Furthermore, the sensing 

systems feature fully autonomous deployments by UAVs to reduce their installation time 

and cost, so their adoption and proliferation are more practical. As a prerequisite to 

mobility, sensors deployed by UAVs need to be untethered, with the potential of obtaining 

data and transmitting them in real time over a wireless link to aid asset owners in onsite 

decision-making. Towards this end, a wireless geophone node capable of being deployed 

by a UAV and collecting GPS-time-annotated seismic vibrations is developed. The 

resulting seismic sensing platform and its autonomous deployment by UAVs will greatly 

facilitate seismic data collection in difficult-to-reach sites, particularly those occur in post-

disaster scenarios. The contributions of the dissertation combine to assist automation of 

field monitoring operations, especially the arduous and repetitive ones, so that humans can 

focus on tasks that require creativity and critical thinking. The hope is that the UAV 

technologies developed in this dissertation and its applications in SHM will open door for 

a new civil infrastructure monitoring paradigm that is safe, efficient, and with minimal 

human intervention. The research results and contributions of each chapter are summarized 

as follows. 

 To confront the challenge that GPS-based UAV outdoor navigation lacks the 

accuracy necessary for precision placement of sensor payloads on structures, a vision-aided 

UAV localization algorithm was developed (described in Chapter 2). A calibrated camera 
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combined with a set of four multi-resolution fiducial markers with known sizes are adopted 

to provide pose estimation for the UAV. Various sets of markers are attached to the surface 

of the structure that identify sensor placement locations. The UAV uses these artificial 

visual attributes as both navigation landmarks and precision landing targets. To 

compensate for cases where visual detections are not available, the chapter builds a robust 

visual-inertial fusion framework based on a discrete-time Kalman filter. Synchronization 

between the camera and IMU sensor is accomplished by cautiously measure delays in data 

transfer between the two computing components onboard the UAV: the Pixhawk flight 

controller and the Nvidia Jetson TX2 computer. Relative position and velocity estimations 

of the UAV with respect to the landing pad are integrated into the cascaded PID control 

law for precision landing. Validation of the proposed vision-aided control strategy of the 

UAV is performed in M-Air, a netted outdoor flying lab where a sophisticated motion 

capture IR system is installed and used as ground truth. The autonomous UAV landing 

achieves great accuracy; the UAV is able to land on a predefined landing point within 10 

cm in 22 out of a total of 25 landing tests. 

 The UAV autonomy framework is shown (in Chapter 2) to be successful for control 

of UAV flight operations and sensor placement using only the onboard computing 

resources of the UAV. This is achieved through a dedicated FSM that is embedded on the 

onboard TX2 SBC. The FSM approach partitions a complicated system into a set of well-

defined states with deterministic interconnections between them. One attractive attribute 

of this approach is its scalability: the UAV autonomy architecture can be easily extended 

to other autonomous applications by defining custom-built processes and transitions. In 

this chapter, the UAV autonomy framework is devoted to moving wireless accelerometers 
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to locations on a beam structure. The UAV is able to explore the beam structure following 

a predetermined flight path, localize itself around the sensor installation locations defined 

by AprilTag patterns applied on the beam surface, and precisely land on top of the pattern 

for sensor placement. The case study proves the quality of the acceleration data collected 

by performing complete modal analysis of the monitored structure using reconfigurable 

sensor networks. It should be highlighted that the integrated UAV-enabled sensing system 

is fully autonomous where the only human intervention is impacting the beam with a modal 

hammer (which emulates ambient vibrations), although this latter process can also become 

autonomous. 

 A step forward in implementing UAV-based sensing of civil infrastructure is to 

allow UAVs to interact with the environment beyond flythroughs. One example of such 

interactions with geo-infrastructure is provided in Chapter 3, where a UAV is used to drop 

a payload to generate Rayleigh surface waves for subsurface characterization of the ground. 

Equipped with a downward facing LiDAR sensor acting as an altimeter and an EPM 

gripper, the UAV is able to hold a steady altitude and drop a weight up to 1 kg. The ability 

of the UAV to efficiently recover the drop weight is also investigated. A tailored visual 

detection algorithm built upon color detection techniques is devised to provide robust 

segmentation of the drop weight in an image. Relative position between the UAV and drop 

weight is estimated through a careful geometric deduction. Feeding the visual 

measurements into the vision-aided UAV control framework presented in Chapter 2, the 

UAV is capable of autonomously landing on top of the drop weight with an accuracy of 7 

cm and successfully grasping it 70 percent of the time. For autonomous missions, 

confirmation of pickup is essential to ensure efficiency of field operations. This study 
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proposes a novel approach to identify a successful grasping leveraging ambient sound 

differences between an effective grasping and a failed attempt. To conclude, the study 

proves the feasibility of using an autonomous UAV as a replacement for human operators 

to actively deploy seismic sources. The proposed approach can be readily applied in remote 

sites where human accessibility is restricted or impractical, but also has broader implication 

for autonomous characterization of the ground (in earth as well as in extraterrestrial 

applications). 

 A major premise of a mobile sensor is the elimination of long coaxial wires for data 

transmission and being able to communicate wirelessly. Recognizing this inherent 

requirement for mobility, a wireless geophone node was designed (Chapter 3) that aims at 

autonomous deployment by intelligent robots such as UAVs. The core of the design is a 

powerful SBC that is able to sample the geophone signals quick enough (1000 Hz) and 

reference the signals to accurate GPS timestamps. The Linux-based SBC allows flexibility 

of sensor-level data assimilation by the inclusion of a slew of open-source tools and custom 

written scripts for signal processing. The ADC board used to digitalize and filter the analog 

GPS signals provides 32-bit resolution and a sampling rate up to 4000 Hz, which is more 

than capable of seismic energy exploration. One highlight of the system is the integrated 

GPS module serving as an accurate time source that contributes to cross-unit 

synchronization. The performance of the proposed wireless seismic recorder is validated 

against a commercial wired seismic acquisition system. Field experiment results show 

fairly similar data quality of the two systems in both the time and frequency domains. The 

development of the wireless geophone node addresses the research need for a lightweight, 
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low-cost, and nonproprietary seismic recorder that can be integrated into a robot-deployed 

monitoring system. 

 The previous development and findings enable the fully autonomous application of 

UAVs for subsurface characterization of geosystems (Chapter 4). A RAS solution tailored 

for the SASW method is proposed and validated. In the RAS solution, one X8 UAV with 

high payload capacity is used to deploy seismic sources while two custom-made QAV210s 

are employed to install wireless geophone sensors and record seismic data. The monitoring 

system features fully autonomous operations that is aimed for deployments in remote or 

hard-to-reach areas. To comply with the state-of-practice CRMP scheme regulating source-

sensor layouts, the chapter adopts a unique design of an AprilTag-decorated cube that sits 

at the receiver midpoint and serves as a position reference landmark. The advanced vision-

aided position controller embedded in the UAVs enables them to localize themselves 

around the cube with high accuracy. The UAV-geophone pair designed in this study 

highlights the use of a three-spike base for the geophone, which also functions as landing 

legs for the UAV. This stable structure ensures the vertical position of the geophone after 

the UAV lands on ground. Although ground-coupling can be improved, this study shows 

that data collected using the RAS has similar quality to that collected by well-planted 

single-spike geophones. The UAV experiments in this chapter are motivated by a strong 

desire to develop automated methods for performing MASW tests to assess subsurface 

material properties. The resulting RAS solution marks a breakthrough in unmanned seismic 

surveying, and from a broader perspective, provides a new paradigm on robot-aided 

monitoring of future civil infrastructure systems. 
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5.2 Recommendations for Future Research 

 Chapter 1 described some of the challenges associated with integrating robotics and 

autonomous systems into the inspection, maintenance, and repair of civil infrastructure and 

particularly challenges of UAV-enabled infrastructure monitoring. These challenges 

cannot be overcome by any single discipline working in isolation; impactful solutions will 

require multidisciplinary teams of researchers working in close collaboration. Future 

efforts will require civil engineers to develop strong linkages to researchers in robotics, 

computer science, social science, and public health, just to name a few, and will strongly 

emphasize purpose-driven robotic designs. It is shown in this dissertation that custom-

made autonomous UAV systems can be applied to deploy and operate structural 

monitoring systems with great success. However, there are areas that this research does not 

directly address and are worthy of further investigation. Listed below are some research 

areas where additional contributions can be made. 

 Onboard decision-making: The proposed autonomous UAV sensor deployment 

system could be improved by incorporating on-the-fly decision-making capabilities. In the 

context of UAV-enabled seismic surface wave testing, some examples of onboard 

decision-making would be to determine if additional weight drops are needed for a certain 

inter-receiver spacing and to predict the next ideal inter-receiver spacing based on results 

from previous drop weight testing. The ability to quickly interpretate results and make 

decisions on next moves will greatly reduce both timelines and costs of the data acquisition 

process and improve data quality. 

 Advanced robot-environment interaction: When it comes to deployment of 

geophone sensors, good contact between the geophone spike and soil is important for 
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obtaining quality data. Soil penetration in Chapter 4 is reliant on the self-weight of the 

UAV after landing; more research is needed on better geophone-ground coupling. One 

possible solution is to use counter-rotating propellers (Rotor Riot 2016) to generate a 

downward push that sinks the geophone spike into the ground. However, this method 

requires thrust inversion capabilities of the UAV and advanced control law that takes into 

account the ground reaction force to maintain the vertical position of the geophone sensor 

during the spike penetration process. 

 Reliability and robustness assessment of UAV systems: Reliability and robustness 

assessment is a key component of optimizing the design of UAV systems to identify 

potential system weaknesses and prevent catastrophic failures. Although this work 

demonstrates proof-of-concept trails of UAVs precisely landing on a multi-AprilTag 

pattern, system reliability and robustness is not well studied. The author has observed 

landing failures under environmental disturbances such as strong wind gusts and crumpled 

AprilTag sheet due to moisture. There is substantial research need of quantification of 

UAV susceptibility to environmental disturbances and improved UAV operational 

stability—including reliability, repeatability, and safety—in outdoor environments. 

 General-purpose UAV localization method: Fiducial markers offer accurate pose 

estimation of UAVs equipped with a calibrated camera but are not available in a natural 

environment. In general, there is substantial need for a reliable general-purpose UAV 

localization method in the field environment. RTK GPS is a promising high-accuracy 

positioning technology with proven applications such as drone light show (Intel 2021) but 

remains expensive and requires careful setup on a pre-surveyed base-station (Langley 

1998). Complete UAV autonomy is likely a longer-term goal and remains an active 
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research topic. Recent advancement in the visual-inertial SLAM technologies and deep 

leaning-based depth estimation methods provides promising opportunities for autonomous 

navigation of UAVs in an unknown environment. 

 UAV swarm sensing: A swarm of UAVs working together to deploy WSNs have 

obvious benefits such as increased coverage and higher speed of mission. However, 

deployment of physical UAV swarms is both a hardware and a software challenge  

requiring more basic research at the intersection of control, perception, and communication 

(Parker, Rus, and Sukhatme 2016). The field has expanded quickly in recent years but is 

still an active area of research with many open research issues remaining to be solved. 
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Appendix 

A. Pinhole Camera Model 

A.1 Geometry and Formulation 

 Considering the pinhole camera model in Figure A-1 with a point 𝑀 in the 3D space 

and its projection point 𝑁 in the 2D image, 

where 𝑓 is the focal length (i.e., the distance from the optical center 𝑂 to the image plane). 

Because the three points 𝑀,𝑁, 𝑂 are collinear, the following relationship holds: 

Therefore: 

Image coordinates of the projection point 𝑁  (i.e., [𝑢	𝑣]F ) can be computed from its 

representation in the Camera frame (i.e., [˗𝑑	˗𝑒]F) by applying a scaling (in pixel/meter) 

followed by a translation (in pixels), that is: 

 𝑀%&'('& = [˗𝑎	˗𝑏	𝑐]F, 𝑁%&'()& = [˗𝑑	˗𝑒	𝑓]F, (A-1) 

 
𝑎
𝑑 =

𝑏
𝑒 =

𝑐
𝑓. 

(A-2) 

 𝑑 = 𝑓
𝑎
𝑐 , 𝑒 = 𝑓

𝑏
𝑐. 

(A-3) 
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where 𝛼, 𝛽 have units of pixel/meter, 𝑐k, 𝑐m have units of pixel, and 𝛼, 𝛽 > 0. Define: 

both in pixels, Equation (A-4) can be written as: 

or in a more compact form: 

where 𝐾 is defined as the camera intrinsic matrix.  

 

Figure A-1. Pinhole camera model showing a point 𝑀 in the 3D world and its projection 
point 𝑁 in the image plane through the camera lens center 𝑂. 
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 The next step is to convert 𝑀’s coordinates from the Camera frame to the World 

frame. From the theory of rigid motion transformation (Spong, Hutchinson, and 

Vidyasagar 2006), if a frame 𝐵  is obtained from another frame 𝐴  by first applying a 

rotation specified by 𝑅�o followed by a translation given (with respect to frame 𝐴) by 𝑡�o, 

then the coordinates of a point 𝑃 in frame 𝐴 are given by: 

The rotation matrix 𝑅�o can be built by projecting the axes of frame 𝐵 onto the coordinate 

axes of frame 𝐴, i.e., 

The translation vector 𝑡�o contains important geometric implications: it is the coordinates 

of the origin of frame 𝐵 with respect to the frame 𝐴.  

 Now assuming that the relative pose between the Camera frame and the World 

frame is known, i.e., 

or more specifically: 

where [𝑅|𝑡] is called the camera extrinsic matrix. Plugging Equation (A-11) into Equation 

(A-7) results in: 

 𝑃o = 𝑅�o𝑃� + 𝑡�o. (A-8) 
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Equation (A-12) reveals the complete relationship between the coordinates of a 3D point 

in the World coordinate system and the coordinates of its projection point in pixels.  

 Comparing Equation (A-10) with Equation (A-8), it is clear that 𝑡  in Equation 

(A-10) is actually 𝑡wt)}]
%&'()&. In other words, 𝑡 is the coordinates of the origin of the World 

frame with respect to the Camera frame. This interpretation of 𝑡 is crucial for deriving the 

relative pose between the UAV and the landing pad as illustrated in Section 2.3.3.1. 

A.2 Position Registration of Placed Wireless Sensor Node 

 Position registration of the placed sensor enclosure requires the detection of both 

the AprilTag on top of the UAV and at least one more AprilTag in the landing patterns that 

are attached to the beam. The objective is to find the unknown position of the sensor 

enclosure, which is represented by the AprilTag on top of the UAV, from the known 3D 

coordinates of AprilTags in the landing patterns. Consider the pinhole camera model with 

the origin of the World frame defined at any point on the beam surface. The camera 

extrinsic matrix [𝑅|𝑡] can be found by solving the PnP problem using information from the 

detected AprilTags on the beam. The 𝑧 coordinate of the AprilTag on top of the UAV can 

be measured in advance and is therefore known. In order to compute its remaining 𝑥 and 𝑦 
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coordinates, a two-step method can be followed by first computing the scaling factor 𝑐 in 

Equation (A-12) and then solving for 𝑥 and 𝑦. Rewrite Equation (A-12) as: 

Note that 𝑐 can be solved using only the third row of the left-hand side and right-hand side 

of Equation (A-13) because 𝑧  is known. The solutions to 𝑥  and 𝑦  are immediate after 

plugging the computed 𝑐 back into Equation (A-13). 

A.3 Derivation of 𝑭𝒐𝑽𝒙 and 𝑭𝒐𝑽𝒚 

 Additional findings can be drawn from the camera pinhole model, such as 𝐹𝑜𝑉k 

and 𝐹𝑜𝑉m shown in Figure A-1. Combining Equation (A-3) and Equation (A-5), it is easy 

to derive that: 

 Note that 𝛼𝑑  and 𝛽𝑒  can be interpreted as distances 𝑑  and 𝑒  in Figure A-1 

expressed in pixels, respectively. Considering the geometric relationship between the two 

similar triangles ∆𝑂𝐴𝐶 and ∆𝑂𝐵𝐷 in Figure A-1, Equation (A-14) implies that 𝑓k and 𝑓m 

are simply the focal length 𝑓 interpreted in pixels, and they should be of the same value in 

theory. With this interpretation of 𝑓k and 𝑓m in mind, the camera’s field of view in the 𝑥 

and 𝑦 direction can be calculated as: 
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B. Theoretical Modal Analysis of a Simply Supported Beam 

 Considering a Euler-Bernoulli beam under the assumptions that plane sections 

remain plane and deformed beam angles (slopes) are small, the equation of the motion of 

beam can be written as: 

where 𝑣 is the transverse displacement, 𝑥 is the distance along the length of the beam from 

0 to 𝐿, 𝑡 is time, 𝐸 is the Young’s modulus of the beam, 𝐼 is the area moment of inertia of 

the beam’s cross section, 𝜌 is the mass density of the beam, and 𝐴 is the cross-section area 

of the beam. One form of solution to this equation can be obtained by separation of 

variables using: 

which suggests that the free-vibration motion of the beam is of a specific shape 𝜙(𝑥) 

having a time-dependent amplitude 𝑌(𝑡). Plugging Equation (B-2) back into Equation 

(B-1) would yield two ordinary differential equations: 

The solution to Equation (B-3) is: 

 𝐸𝐼
𝜕I𝑣(𝑥, 𝑡)
𝜕𝑥I + 𝜌𝐴

𝜕C𝑣(𝑥, 𝑡)
𝜕𝑡C = 0, (B-1) 

 𝑣(𝑥, 𝑡) = 𝜙(𝑥)𝑌(𝑡), (B-2) 

 �̈�(𝑡) + 𝜔C𝑌(𝑡) = 	0, (B-3) 

 𝑑I𝜙(𝑥)
𝑑𝑥I −

𝜔C𝜌𝐴
𝐸𝐼 𝜙(𝑥) = 0. (B-4) 

 𝑌(𝑡) = 𝑌(0) cos𝜔𝑡 +
�̇�(0)
𝜔 sin𝜔𝑡. (B-5) 
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Considering a simply supported beam with boundary conditions: 

the solutions to Equation (B-4) are (Clough and Penzien 1993): 

where 𝜙a  is the 𝑛óô  mode shape of the beam, and 𝐶  is any nonzero constant. The 𝑛óô 

natural frequency of the beam is therefore: 

 

 𝜙(0) = 𝜙(𝐿) = �̈�(0) = �̈�(𝐿) = 0,	 (B-6) 
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