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ABSTRACT

As cities struggle to cope with the ever-increasing demand on their transportation infras-

tructures, ride-hailing services have emerged as a potential remedy that promises to rev-

olutionize urban mobility by making on-demand transportation available at the touch of

a fingertip. The long-term sustainability of these services, however, can only be realized

when their rides are aggregated by having individual vehicles serve multiple trips simulta-

neously to maximize the utilization of available seat capacity, i.e., by “true” ride sharing.

While the community has long recognized ride sharing’s potential for reducing traffic con-

gestion, energy consumption, parking utilization, and greenhouse gas emissions, numerous

unsolved challenges—from providing attractive mechanisms to incentivize modal shifts to

building trust among unacquainted passengers—remain to hinder its widespread adoption.

A key obstacle to ride sharing’s ubiquity is the difficulty of coordinating rides with

matching locations and schedules combined with the absence of algorithms capable of

matching riders and drivers quickly and effectively. This research addresses this challenge

by focusing on finding optimal routing plans for fleets of conventional and autonomous

vehicles that maximize ride sharing for commute trips to power future ride-sharing plat-

forms. The need to design routes that match trips to and from the workplace—that in

turn, are dispersed spatially and temporally with schedules that may change every day—

while respecting time-window, ride-duration, and vehicle-capacity constraints highlights

the complexity of the problem. Driven by an original desire to investigate the potential of

optimized ride-sharing platforms in relieving the parking pressure induced by the thousands

of commuters traveling to the University of Michigan campus in Ann Arbor, Michigan, this

xvii



research: (1) develops the mathematical framework for modeling the problem of seeking

the optimal routing plan that maximizes ride sharing for commute trips for conventional

and autonomous vehicles, (2) proposes techniques to decompose the problem and designs

exact and approximate algorithms to tackle its computational complexity, and (3) quantifies

the potential benefits and drawbacks of the generated plans and provides insight into the

different factors that influence their performance through a real case study.

Aside from investigating modeling and decomposition techniques that specifically ex-

ploit the structure imposed by the problem constraints and the spatio-temporal characteris-

tics of the trips, this research also proposes solution approaches that leverage state-of-the-

art linear-programming and combinatorial-optimization techniques, ranging from column

generation to discover useful routes on demand to dynamic programming to efficiently find

resource-constrained least-cost paths. The solution approaches share a common character-

istic: Each produces a valid lower bound to the objective value which allows the calculation

of an optimality gap to quantify its solution quality. These algorithms are further bolstered

by the availability of a real-world dataset of the commute trips made by 15,000 drivers that

use 15 university-operated parking structures in downtown Ann Arbor over April 2017; it

not only allows the algorithms to be evaluated on real-world data, but analyses of its results

provide invaluable insights into the performance characteristics of the optimized routing

plans. This research demonstrates that through the optimal plans, the number of vehicles

for these trips can be potentially reduced by 57% and 92% when using conventional and

autonomous vehicles respectively. It also quantifies numerous other potential benefits and

drawbacks from utilizing the plans, some of which include reductions in vehicle usage

during peak hours, decreases in vehicle miles traveled, and increases in average commute

times.
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CHAPTER 1

Introduction

The emergence of smartphones and ride-hailing services have revolutionized the landscape
of urban mobility by making on-demand transportation available at the touch of a fingertip;
however, traffic congestion remains a growing burden on urban areas as vehicle ownership
continues to rise. The INRIX 2017 Traffic Scorecard (Cookson 2018) estimates that traf-
fic congestion has costed the US economy more than $305 billion in 2017 alone, which
is up $10 billion from the previous year. While car-pooling services provide an appeal-
ing alternative due to their potential benefits, be it in reducing traffic congestion, energy
consumption, or parking utilization (Shaheen and Rodier 2005), their adoption remains
poor. In fact, solo driving has remained as the overwhelming choice for daily commuting
(McKenzie 2015) due to several challenges associated with car pooling. A study on factors
influencing car-pool formation by Li et al. (2007) revealed difficulty in finding people with
matching locations and schedules as the primary barrier to car pooling. This highlights the
opportunity available for matching platforms to alleviate this burden by automatically iden-
tifying commuting groups based on factors that are consequential to individuals’ commut-
ing decisions. It also emphasizes the critical role of rider-matching and route-optimization
algorithms to enable such platforms.

To this end, this dissertation considers the problem of designing optimal routing plans

for fleets of conventional and autonomous vehicles that maximize ride sharing for commute

trips to power these platforms. It envisions a platform that utilizes a reservation-based sys-
tem to receive (recurring) commute-trip requests ahead of time and then generates a routing
plan that optimally matches riders (and drivers) to maximize ride sharing. The complexity
of the optimization problem stems from the need to match trips to and from the workplace
that are dispersed spatially and temporally and whose schedules may change every day. A
successful ride-sharing platform for commuting would necessarily require efficient solu-
tion approaches that are capable of solving the problem quickly, yet very little attention has
been given to their development. This work aims to fill this void by synthesizing mathe-
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Figure 1.1: Locations of the 15 Parking Structures Operated by the University of Michigan
in Downtown Ann Arbor.

matical models of the problem and developing decomposition and algorithmic techniques

to effectively solve them.
This study was originally motivated by a desire to investigate the potential of optimized

ride-sharing platforms in relieving the parking pressure induced by the thousands of daily
commuters traveling to the University of Michigan campus in Ann Arbor, Michigan. Being
the largest employer in the city with more than 50,000 employees, the university operates
several large parking structures located in the downtown area which are not only expensive
but are also located at prime locations for the convenience of the commuters. If not for their
high demand, these prime spaces—that are utilized to park idle vehicles during the day
and that are mostly vacant during the weekends—could otherwise be used to house other
infrastructures that could bring more economical or recreational benefit to the surrounding
community. A collaboration between the Michigan Institute for Data Science (MIDAS)
and the Logistics, Transportation, and Parking (LTP) division of the university allowed
us to gather detailed information about the commuting patterns of approximately 15,000
drivers who used 15 of these university-operated parking structures over the month of April
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Figure 1.2: Arrival and Departure Time Distributions on Second Week of April 2017.

Figure 1.3: Commuting Origins and Destinations from Ann Arbor Commute-Trip Dataset.

2017 (the locations of these structures are displayed in Figure 1.1). The data consisted of
the precise arrival and departure times of these commuters to and from the structures as
well as their home addresses, which are located within an area spanning 13,000 square
miles that covers the city of Ann Arbor as well as its surrounding neighborhoods. Figure
1.2 shows the distribution of the arrival and departure times of this population to and from
the parking structures over the busiest week of the month. Their travel patterns display a
remarkable amount of consistency and similarity, with the peak arrival and departure times
coinciding with the typical 6–9 am and 4–7 pm peak commute hours respectively every day.
Next, Figure 1.3 provides an overview of the spatial distribution of the commuting origins
(home locations) of the population relative to the destinations (parking structures) obtained
by geocoding every address into their global positioning system (GPS) coordinates.

The availability of this rich dataset allowed us to reconstruct the daily trips of these
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commuters, which then not only permitted us to evaluate our proposed solution approaches
on real-world data, but also enabled us to further analyze the computational results to un-
earth key insights into the benefits and drawbacks of these ride-sharing platforms and con-
sequentially reveal the factors that are critical to the platforms’ performance. The key
contributions of this dissertation can be summarized as follows:

1. It develops the mathematical framework for modeling the problem—which seeks the
optimal routing plan that maximizes ride sharing for commute trips—for conven-
tional and autonomous vehicles.

2. It proposes techniques to decompose the problem and designs exact and approximate
algorithms to address its computational complexity.

3. It quantifies the potential benefits and drawbacks of the generated plans and provides
insight into the different factors that influence their performance through a real case
study.

The rest of this chapter is organized as follows. Section 1.1 first outlines the key con-
cepts and terminologies that are used throughout this dissertation, while Section 1.2 reviews
the main optimization techniques that are used in the dissertation. Section 1.3 then reviews
literature related to this study. Finally, Section 1.4 provides an overview of this dissertation:
It describes how the dissertation is structured and summarizes the contents of each chapter.

1.1 Concepts and Terminologies

This section outlines the key concepts and terminologies that are used throughout this dis-
sertation: commute trips, characteristics of routes of conventional and autonomous vehicles
(and their key differences), and optimal routing plans. This work assumes the utilization
of a homogeneous fleet of vehicles with capacity K to serve all rides, and that the triangle

inequality is satisfied for all travel times and distances.

1.1.1 Commute Trips

A trip t = {o, d, dt, at} is a tuple that consists of an origin–destination pair, o and d, which
specifies the pickup and drop-off locations of the trip, and the desired service times at both
locations; a departure time dt at the origin and an arrival time at at the destination. On any
day, a commuter c makes two trips: a trip to the workplace, t+c , and a trip back home, t−c .
These trips are referred to henceforth as inbound and outbound trips respectively. A round
trip, trtc = (t+c , t

−
c ), is the pair of inbound and outbound trips made by commuter c.
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1.1.2 Routes of Conventional Vehicles

A route rT is a sequence of origin and destination locations from a set of inbound or out-
bound trips, T , whereby each origin and destination from the set is visited exactly once (i.e.,
it is elementary). A route that visits the origin oc of a trip tc must also visit its destination dc
(and vice versa), and it must visit the origin before the destination. These are referred to as
the pairing and precedence constraints respectively. For instance, a possible route for trips
t1 = {o1, d1, dt1, at1} and t2 = {o2, d2, dt2, at2} is r{t1,t2} = o2 → o1 → d1 → d2. An
inbound route r+ covers only inbound trips and an outbound route r− covers only outbound
trips. Each route r serves a set of riders Cr. For a conventional vehicle, the driver Dr of
a route r comes from its set of riders, i.e., Dr ∈ Cr. The route must therefore begin at its
driver’s origin and end at her destination. These are referred to as the driver constraints.
For instance, rider 2 must be the driver of route o2 → o1 → d1 → d2. The total number of
riders on the vehicle at any point along a route cannot exceed its capacity. In other words,
a route must satisfy the vehicle-capacity constraints.

Definition 1.1.1 (Valid Route). A valid route r visits oc before dc for every rider c ∈ Cr,
starts at oDr and ends at dDr , respects the vehicle capacity, and is elementary.

Let Ti denote the time at which service begins at location i, ζi be the service duration
at i, pred(i) denote the location on a route visited just before i, and τ(i,j) be the estimated
travel time for the shortest path between locations i and j. It is assumed that commuters
sharing rides are willing to tolerate some inconvenience in terms of deviations to their trips’
desired departure and arrival times as well as in terms of extensions to the ride durations
of their individual trips. Therefore, a time window [ai, bi] is constructed around the desired
times and is associated with each pickup location i, where ai and bi denote the earliest
and latest times at which service may begin at i respectively. Conversely, only an upper
bound bj is associated with each drop-off location j as the arrival time at j is implicitly
bounded from below by aj = ai + ζi + τ(i,j), where i is the corresponding pickup location
for j. Finally, a duration limit Lt is associated with each trip t to denote its maximum ride
duration.

Definition 1.1.2 (Feasible Route). A feasible route rT is a valid one with pickup and drop-
off times Ti ∈ [ai, bi] for each location i ∈ rT that ensures the ride duration of each trip
t ∈ T does not exceed Lt.

A feasible route is therefore a valid one that satisfies the time-window constraints of
its locations as well as the ride-duration limit constraints of its trips. Determining if a
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valid route r is feasible amounts to solving a feasibility problem defined by the following
constraints on r:

aoc ≤ Toc ≤ boc ∀c ∈ Cr (1.1)

Tdc ≤ bdc ∀c ∈ Cr (1.2)

Tpred(oc) + ζpred(oc) + τ(pred(oc),oc) ≤ Toc ∀c ∈ Cr \ {Dr} (1.3)

Tpred(dc) + ζpred(dc) + τ(pred(dc),dc) = Tdc ∀c ∈ Cr (1.4)

Tdc − (Toc + ζoc) ≤ Ltc ∀c ∈ Cr (1.5)

Constraints (1.1) and (1.2) are the time-window constraints for the pickup and drop-off
locations respectively, while constraints (1.3) and (1.4) describe compatibility requirements
between pickup/drop-off times and travel times between consecutive locations along the
route. Finally, constraints (1.5) specify the ride-duration limit for each rider’s trip. Note that
constraints (1.3) allow waiting at pickup locations. Moreover, constraints (1.3) and (1.4)
enforce strictly increasing start of service times at consecutive locations along r, which
then ensures that the route is elementary. Numerous algorithms have been proposed for
solving this feasibility problem efficiently, e.g. Tang et al. (2010), Haugland and Ho (2010),
Firat and Woeginger (2011), and Gschwind and Irnich (2015). In the sequel, the Boolean
function feasible(r) is used to indicate whether a route r admits a feasible solution to
constraints (1.1)–(1.5).

Definition 1.1.3 (Feasible Round-Trip Route). Let rT + and rT − denote feasible routes for
a set of inbound trips T + and a set of outbound trips T − respectively. A feasible round-trip
route rT rt = (rT + , rT −) is a pair of feasible inbound and outbound routes serving the same
set of commuters, i.e., CrT+ = CrT − , and having the same driver, DrT+ = DrT −

.

1.1.3 Routes of Autonomous Vehicles

The key difference between routes of autonomous vehicles (AVs) and conventional vehicles
is the absence of drivers from the former. They are therefore not subjected to the driver
constraints described in Section 1.1.2; instead, an AV route begins and ends at a depot.
Some algorithms in this work attempt to leverage the spatial structure of the origins and
destinations from the Ann Arbor dataset by decomposing an AV route into a sequence of
shorter constituents called mini routes.

Mini Routes A mini route r is a sequence of locations that visits each origin and desti-
nation from a set of inbound or outbound trips exactly once. A mini route r must respect
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the vehicle capacity, i.e., | Cr | ≤ K, and consists of three phases: a pickup phase where
passengers are picked up, a transit phase where the vehicle travels to the destination, and a
drop-off phase where all the passengers are dropped off. During the pickup (resp. drop-off)
phase, the vehicle visits only origins (resp. destinations), whereas it travels from an origin
to a destination in the transit phase. For instance, a possible mini route for a car withK = 4

serving trips t1 = {o1, dt1, d1, at1}, t2 = {o2, dt2, d2, at2}, and t3 = {o3, dt3, d3, at3} is
r = o2 → o1 → o3 → d1 → d2 → d3, and its pickup, transit, and drop-off phases are given
by o2 → o1 → o3, o3 → d1, and d1 → d2 → d3 respectively. A mini route travels only in a
single direction (either inbound or outbound), therefore, an inbound mini route r+ covers
only inbound trips and an outbound mini route r− covers only outbound trips.

Definition 1.1.4 (Valid Mini Route). A valid mini route r serving a set Cr of riders visits
all of its origins, {oc : c ∈ Cr}, before its destinations, {dc : c ∈ Cr}, covers only inbound
or outbound trips, respects the vehicle capacity, i.e., it has | Cr | ≤ K, and is elementary.

This validity requirement bounds the number of locations visited by a mini route r to
2K. Let Ċr denote the first commuter served on r. Similar to a conventional-vehicle route,
for a valid mini route to be feasible, it has to satisfy the time-window constraints at each
location and the ride-duration limit constraints of its trips.

Definition 1.1.5 (Feasible Mini Route). A feasible mini route r is valid, has pickup and
drop-off times Ti ∈ [ai, bi] for each location i ∈ r, and ensures the ride duration of each
rider c ∈ Cr does not exceed Ltc .

Determining if a valid mini route r is feasible amounts to solving a feasibility problem
defined by constraints (1.1), (1.2), (1.4), (1.5), and

Tpred(oc) + ζpred(oc) + τ(pred(oc),oc) ≤ Toc ∀c ∈ Cr \ Ċr. (1.6)

Constraints (1.6) describe increasing start of service time requirements between pickup
locations and their predecessors. They allow waiting at pickup locations, and together with
constraints (1.4), they ensure the service starting times at consecutive locations along r

are strictly increasing, thus enforcing the elementarity of r. The algorithms for checking
the feasibility of conventional-vehicle routes listed in Section 1.1.2 are also applicable to
this feasibility problem, therefore the Boolean function feasible(r) is also used to indicate
whether a mini route r admits a feasible solution to constraints (1.1), (1.2), (1.4), (1.5), and
(1.6).
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AV Routes An AV route ρ = vs → r1 → . . . → rk → vt is a sequence of k distinct
mini routes that starts at a source node vs and ends at a sink node vt, both representing a
designated depot.

Definition 1.1.6 (Feasible AV Route). A feasible AV route ρ consists of a sequence of
distinct, feasible mini routes, starts and ends at a designated depot, and is elementary.

In other words, for ρ to be feasible, each of its mini routes must be valid and satisfy con-
straints (1.1), (1.2), (1.4), (1.5), and (1.6). Let ṙ denote the first location visited on r and
r̈ denote the last. Moreover, each mini route ri (1 ≤ i ≤ k) must satisfy the following
constraints:

Tvs + τ(vs,ṙ1) = Tṙ1 (1.7)

Tr̈i + ζr̈i + τ(r̈i,ṙi+1) ≤ Tṙi+1
∀i = 1, . . . , k − 1 (1.8)

Tr̈k + ζr̈k + τ(r̈k,vt) = Tvt (1.9)

Constraints (1.7)–(1.9) describe compatibility requirements between the ending and the be-
ginning service times of consecutive mini routes along ρ and the travel times between them.
The constraints, together with (1.4) and (1.6), enforce strictly increasing starting times for
service at all consecutive locations along ρ, therefore ensuring that ρ is elementary. This
work also assumes that an AV may begin and end its route at any time of the day, therefore
Tvs and Tvt are not subjected to any time-window constraints.

1.1.4 Optimal Routing Plan

A routing plan for a set of commuters C is a set of feasible routes (of conventional or AVs)
that covers every inbound and outbound trip of C exactly once. An optimal routing plan
is one that has the minimum cost. The problems of finding the optimal routing plans for
either conventional or AVs being considered in this study are therefore generalizations of
the Vehicle Routing Problem (VRP), a problem which is well known to be NP-hard (Toth
and Vigo 2002).

1.2 Preliminaries

This section provides an overview of several linear-programming (LP) techniques for solv-
ing (large-scale) mixed-integer programs (MIPs) that are used in this dissertation: column
generation, branch and price, and branch and cut.
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1.2.1 Column Generation

Consider the following MIP, referred to as the master problem (MP), that is defined on a
large (potentially exponential) set of variables x = {xi : i ∈ I}:

z∗MP = min cᵀx (1.10)

s.t. Ax = b (1.11)

xi ∈ {0, 1} ∀i ∈ I (1.12)

A potential solution approach to the MP is to first enumerate the columns ai associated
with each xi for every i ∈ I and then solve the MP with a MIP solver. However, the
enumeration of I may not be practical for certain problems if the set is too large.

Column generation is a procedure that solves the LP relaxation of the MP. It obviates
the difficulty of enumerating I, especially for problems where the enumeration is imprac-
tical, by generating the columns on demand. It is an iterative procedure that repeatedly
solves a restricted master problem (RMP) and a pricing subproblem (PSP) until a conver-
gence criterion is satisfied. First, it solves a RMP which is the linear relaxation of the MP
that is defined on only a subset of its variables x′ = {xi : i ∈ I ′ ⊆ I}, i.e.:

zRMP = min c′ᵀx′ (1.13)

s.t. A′x′ = b (1.14)

xi ≥ 0 ∀i ∈ I ′ (1.15)

It then solves a PSP that searches for new variables that could improve the objective
value zRMP, i.e., variables that would enter the basis of the optimal solution to the RMP.
Such a variable, xe, would enter the basis if its reduced cost c̄e is negative, i.e., if

c̄e = ce − πᵀae < 0, (1.16)

where ce is the objective coefficient of the variable, π is the vector of optimal duals of
the RMP, and ae is the column of constraint coefficients of the variable. The entering
variable(s) and its associated column(s) is typically identified by solving a combinatorial-
optimization problem that exploits the meaning of the variables.

The entering variable(s) is then used to augment the RMP: The augmentation produces
a new RMP that is defined on a larger subset of variables {xi : i ∈ I ′ ∪ {e}}. The RMPs
and the PSP are solved iteratively, with I ′ being progressively enlarged after each iteration,
until the PSP cannot identify any new variable with a negative reduced cost. At this point,
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zRMP converges to the optimal objective value z∗ of the linear relaxation of the original
MP. This is because none of the undiscovered variables in I \ I ′ would enter the basis if
they were available as their reduced costs are non-negative. Therefore, the objective value
zRMP at convergence represents a primal lower bound to z∗MP, and the solution of the RMP
constitutes the optimal solution to the MP if it is integral.

1.2.2 Branch and Price

As mentioned in the previous section, the solution of the RMP at convergence is also op-
timal for the original MP if it is integral. Otherwise, several approaches can be adopted to
yield an integer solution. The first is to simply solve the final RMP with integer variables,
i.e., to solve the following problem:

zRMP-I = min c′ᵀx′ (1.17)

s.t. A′x′ = b (1.18)

xi ∈ {0, 1} ∀i ∈ I ′ (1.19)

with a MIP solver. However, the solution to this problem may not be optimal for the original
MP as it does not consider the complete set of variables {xi : i ∈ I}. In fact, its objective
value zRMP-I only constitutes an upper bound to z∗MP, and since zRMP = z∗ ≤ z∗MP ≤ zRMP-I,
an optimality gap given by (zRMP-I− zRMP)/zRMP-I can be calculated to assess the quality of
the solution.

An exact approach for obtaining the optimal solution to the MP using column gen-
eration is called branch and price: It supplements the classical, LP-based branch-and-
bound procedure for solving MIPs by incorporating column generation into its LP bounding
phase. The classical branch-and-bound procedure begins by first solving the LP relaxation
of the MIP; if all the relaxed variables happen to have integer values in the LP solution,
then the solution is also valid and optimal for the original MIP. Otherwise, the procedure
selects a variable whose value must be integer but is fractional in the LP relaxation and
branches on the variable. Suppose such a variable is xb and its fractional value is x∗b . The
branching on xb is performed by creating two new MIPs that both exclude the fractional
value: The first imposes an additional constraint xb ≤ bx∗bc, while the second introduces
constraint xb ≥ dx∗be. The added constraints are referred to as the branching decisions.
The procedure is then repeated on the two MIPs, whereby their LP relaxations are solved
and new branching variables are selected and branched on if necessary. This repetition
constitutes the exploration of a search tree, whereby each new MIP represents a tree node.
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When the LP relaxation at a tree node produces an integer solution, the solution is
designated as the incumbent (the best integer solution discovered so far) if one has not
been discovered or if its objective value is better than the existing incumbent’s. The node
is also designated as being fathomed, i.e., it becomes a permanent leaf and is not further
branched upon. A node is also fathomed when its LP relaxation is infeasible or when the
relaxation’s objective value is worse than that of the incumbent. The fathoming of the latter
prunes the search tree as the node obviously cannot yield an integer solution that is better
than the incumbent.

The search procedure also naturally maintains an upper and a lower bound to the opti-
mal objective value. Suppose the original MIP is a minimization problem, then the objec-
tive value of the incumbent constitutes the upper bound, whereas the best bound, obtained
by taking the minimum of the LP-relaxation objective values of all the unexplored nodes
(nodes that have yet to be branched upon), constitutes the lower bound. The latter explains
why solving the LP relaxation at each node is termed the bounding phase. The difference
between the upper and the lower bound yields an (absolute) optimality gap, which when
zero proves the optimality of the incumbent solution.

The branch-and-price approach is especially useful for finding the exact solution to
MIPs whose variable and column sets are too large to be practically enumerated; it ad-
dresses the issue by searching for the columns on demand within the classical branch-
and-bound framework. More specifically, it utilizes column generation to solve the LP
relaxation at each tree node; thus, it may introduce new columns in every bounding phase.
Furthermore, the incorporation of column generation makes it necessary to enforce the
branching decisions in both the RMP and the PSP to ensure that the bounding phase pro-
duces the correct LP bounds.

1.2.3 Branch and Cut

The branch-and-cut approach augments the LP-based branch-and-bound procedure for solv-
ing MIPs by incorporating cutting-plane generation to progressively tighten the LP relax-
ations. More specifically, after the evaluation of the LP relaxation at each tree node, the
approach executes separation algorithms / heuristics to identify violated valid inequali-

ties: constraints that are satisfied by all feasible integer solutions but are violated by the
fractional LP solution. A classical example of such an inequality is Gomory’s cut (Go-
mory 1960). The separated inequalities are then added to the problem formulation to cut
off the fractional solution, with the hope of making subsequent LP relaxations “less frac-
tional”. As the cutting-plane separation procedure is executed in every bounding phase, the
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branch-and-cut approach accumulates the valid inequalities that are violated by previous
LP relaxations, cutting off their fractional solutions from all subsequent LP evaluations,
and progressively strengthens the best LP bound. This strengthening, in turn, is hoped to
expedite the discovery of an optimal solution by further narrowing the optimality gap.

1.3 Related Work

The Vehicle Routing Problem with Time Windows (VRPTW) is perhaps the most well-
studied variant of the VRP: It seeks a set of minimum cost routes, each departing from and
returning to a designated depot, that serve a set of customers, each with a capacity demand
and a time window within which service may commence. The problem must ensure that
each customer is served exactly once within her time window while not allowing the vehicle
capacity to be exceeded. It is well known to be NP-hard, as Savelsbergh (1985) showed
that finding a feasible solution to the problem for a fixed vehicle count is strongly NP-
complete. It has been studied extensively in the literature, and numerous methods have
been suggested to tackle its complexity, from metaheuristics like Taillard et al. (1997) and
Bräysy and Gendreau (2005), to exact solution methods using Lagrangian relaxation (Kohl
and Madsen 1997, Kallehauge et al. 2006), column generation (Desrosiers et al. 1984,
Desrochers et al. 1992), or polyhedral approaches (Kohl et al. 1999, Bard et al. 2002,
Kallehauge et al. 2007). An extensive review of the problem is provided by Cordeau et al.
(2002).

The VRPTW was generalized to the Pickup and Delivery Problem with Time Win-
dows (PDPTW) by Dumas et al. (1991), whereby service locations come in pairs, a pickup
and a delivery location for each customer, that must be serviced in order by the same route.
The problem models services that first pick up and then deliver merchandise within spec-
ified time windows. They proposed a dynamic-programming, label-setting algorithm to
search for routes that satisfy the new pairing and precedence constraints along with the ex-
isting time-window and vehicle-capacity constraints. The algorithm is incorporated within
a column-generation procedure to solve the problem. A similar approach was also adopted
by Ropke and Cordeau (2009) in their branch-and-cut-and-price algorithm for the PDPTW,
while Ruland and Rodin (1997) used a polyhedral approach to solve the version of the prob-
lem without time-window constraints. The Dial-a-Ride Problem (DARP) generalizes the
PDPTW by introducing ride-duration constraints which limit the maximum duration be-
tween each pickup and delivery location pair. The constraints model the maximum time
spent on the vehicle by every customer and is critical for guaranteeing a quality of ser-
vice (QoS) for services that transport passengers instead of merchandise, like door-to-door

12



transportation services for the disabled or the elderly or those for ride sharing. The prob-
lem has also been extensively reviewed by Cordeau and Laporte (2003a, 2007), and it has
been tackled with methods ranging from approximate ones like heuristics (Bodin and Sex-
ton 1986, Jaw et al. 1986) and metaheuristics (Cordeau and Laporte 2003b, Ritzinger et al.
2016), to exact ones utilizing cutting-plane methods (Cordeau 2006) or column generation
(Gschwind and Irnich 2015).

Of the many solution approaches proposed for the various generalizations of the VRP,
column generation is perhaps the most popular due to its elegance in only considering a
subset of the feasible routes that can improve the objective function, and its proven ef-
fectiveness in producing strong lower bounds to the problem objective when used in con-
junction with the Dantzig–Wolfe decomposition (Dantzig and Wolfe 1960). The latter
technique decomposes an edge-flow formulation of the VRP into a master problem and a
pricing subproblem. The master problem typically solves a set-partitioning/covering prob-
lem on a set of feasible routes to ensure every customer is served, whereas the pricing
subproblem searches for new feasible routes to be added to the set. The latter problem
uses the duals of the linear relaxation of the master problem to identify new routes satisfy-
ing problem-specific feasibility constraints with negative reduced costs. It is typically cast
as an Elementary Shortest Path Problem with Resource Constraints (ESPPRC), whereby
resource contraints are used to model the feasibility constraints, and the elementarity re-
quirement ensures that each customer is serviced exactly once. Unfortunately, the ESPPRC
has been proven to be NP-hard in the strong sense by Dror (1994), and while exact so-
lution methods have been proposed for the problem, e.g., Feillet et al. (2004), Chabrier
(2006), Boland et al. (2006), and Drexl (2013), the elementarity requirement is often re-
laxed to produce a Shortest Path Problem with Resource Constraints (SPPRC) which ad-
mits a pseudo-polynomial solution approach. A variety of strategies are then adopted to
handle non-elementary paths, e.g., Desrosiers et al. (1984), Dumas et al. (1991), Ropke
and Cordeau (2009), and Gschwind and Irnich (2015) eliminate them by either preventing
their selection in an integer solution or by using infeasible-path elimination constraints in
the master problem, while Desrochers et al. (1992) and Irnich and Villeneuve (2006) take a
middle-ground approach by eliminating 2- and k-cycles from the discovered paths respec-
tively. Regardless of whether an SPPRC or an ESPPRC is used in the pricing subproblem,
they are typically solved via dynamic-programming algorithms, the most popular being
the generalized label-setting algorithm for multiple resource constraints by Desrochers
(1988). Other suggested dynamic-programming approaches include the label-correcting
algorithm by Desrosiers et al. (1983) which is based on the Ford-Bellman-Moore algo-
rithm and the label-setting algorithm by Desrochers and Soumis (1988) which generalizes
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Dijkstra’s algorithm. Methods utilizing Lagrangian relaxation (Beasley and Christofides
1989, Borndörfer et al. 2001), constraint programming (Rousseau et al. 2004), heuristics
(Desaulniers et al. 2008), and cutting planes (Drexl 2013) have also been proposed. An
in-depth overview of the SPPRC is provided by Irnich and Desaulniers (2005).

Another common approach to solving routing problems is the polyhedral approach
which generates cutting planes to progressively “trim” the convex hull defining the fea-
sible region of the problem’s linear relaxation. Its application on VRPs traces its roots
back to the seminal work by Dantzig et al. (1954) for solving the Traveling Salesman
Problem (TSP). Their procedure uses an edge-flow formulation of the problem which is
iteratively solved to identify subtours which break the feasibility of the solution. A family
of valid inequalities, commonly referred to now as the Dantzig-Fulkerson-Johnson (DFJ)
subtour-elimination constraints (SECs), are then progressively introduced to prevent gen-
eration of the subtours in subsequent solutions. Grötschel and Padberg (1975) later proved
that the DFJ SECs induce facets of the polytope of the convex hull of the feasible solu-
tions, which explains why they were so effective at strengthening the LP bound, while
Padberg and Rinaldi (1990) proposed an exact algorithm for separating the inequalities.
In a similar vein, many other works have focused on identifying facet-defining inequal-
ities together with algorithms/heuristics for separating the violated inequalities, e.g., D+

k

and D−k inequalities for the TSP by Grötschel and Padberg (1985), predecessor and suc-
cessor inequalities for the Precedence-Constrained Asymmetric Traveling Salesman Prob-
lem (PCATSP) by Balas et al. (1995), tournament and generalized tournament constraints
for the Asymmetric Traveling Salesman Problem with Time Windows (ATSPTW) by As-
cheuer et al. (2000), and 2-path cuts for the VRPTW by Kohl et al. (1999). Most approaches
for routing problems embed the cutting-plane generation within the classical branch-and-
bound framework for solving MIPs to produce a more sophisticated branch-and-cut proce-
dure; the heuristics for separating violated valid inequalities are executed on the solution of
the LP relaxation from the bounding phase of each tree node. The separated inequalities are
then introduced into the problem formulation to strengthen the LP bound of the procedure.
The proposed branch-and-cut algorithms typically begin with an edge-flow formulation and
then introduce numerous existing and/or new families of valid inequalities that are tailored
specifically for the type of routing problem being solved. Examples of these branch-and-
cut algorithms include Padberg and Rinaldi (1991) for the TSP, Fischetti and Toth (1997)
for the Asymmetric Traveling Salesman Problem (ATSP), Ruland and Rodin (1997) for
the Pickup and Delivery Problem (PDP), Ascheuer et al. (2001) for the ATSPTW, Naddef
and Rinaldi (2001) for the VRP, Bard et al. (2002) and Kallehauge et al. (2007) for the
VRPTW, and Cordeau (2006) for the DARP.

14



More recently, an increased awareness for the sustainability of passenger transportation
systems combined with the availability of large-scale, real-world trip datasets has shifted
the focus towards optimization of car-pooling and ride-sharing services to reduce traffic
congestion and pollution. Baldacci et al. (2004) studied the Car-Pooling Problem (CPP)
which seeks to minimize the number of private cars used for commuting to a common
workplace. They considered a variant of the problem which optimizes car pooling for the
trips to the workplace independently from those for the return trips and assumes that the set
of drivers and passengers are known beforehand, making it a specialization of the DARP.
The effectiveness of their proposed Lagrangian column-generation method was demon-
strated on instances derived from real-world data provided by a research institution in Italy.
Agatz et al. (2011) contrasts the CPP with the dynamic ride-sharing problem, whereby the
latter matches drivers and riders for single, non-recurring trips in real time. They proposed
an optimization method which casts the problem as a graph-matching problem which is
solved at regular intervals within a rolling-horizon framework. They also presented a case
study which applies the approach on real-world travel-demand data from metro Atlanta.
Santi et al. (2014) introduced the notion of shareability graphs as a tool to quantify the po-
tential benefits of ride sharing, and applied it on trip data from the New York City (NYC)
Taxi and Limousine Commission (TLC) trip record (NYC Taxi & Limousine Commission
2020) which stores information of more than one billion taxi rides in NYC recorded since
January 2009. Alonso-Mora et al. (2017) then built on this idea to propose an anytime op-
timal algorithm for the on-demand ride-sharing problem, and the efficacy of their method
was also demonstrated through its application on the trips from the NYC taxi dataset. Agatz
et al. (2012) discusses the different planning considerations for and the issues arising from
dynamic ride sharing by classifying the different variations of the problem and reviewing
the optimization approaches proposed for them. Mourad et al. (2019) takes a broader view
of shared mobility in their survey, whereby applications which combine transportation of
people and freight in both pre-arranged and real-time settings are reviewed together with
their corresponding optimization approaches.

The advent of self-driving technology combined with the race to achieve full driving au-
tomation has also spurred a growing interest in shared autonomous vehicle (SAV) systems.
Advances in shared mobility services (SMS) and AV technology are widely considered to
be mutually beneficial, as the widespread adoption of AVs in SMS could help make AVs
financially viable (Gurumurthy and Kockelman 2018, Stocker and Shaheen 2019) and ac-
celerate the proliferation of SMS (Thomas and Deepti 2018) at the same time. The potential
impact of SAV services, ranging from their effect on the economy and the environment to
the changes in policy necessary for their governance, have also been widely discussed and
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reviewed in works like Milakis et al. (2017), Soteropoulos et al. (2019), and Narayanan
et al. (2020). Narayanan et al. (2020) also proposed classifying SAV services as either
on-demand or reservation-based systems, according to the time frame within which the trip
requests are made. The former allows requests to be made in real time, making it better
suited for serving dynamic trips, whereas the latter requires requests to be made in advance,
making it better for recurring trips. Each has its own set of advantages: While on-demand
systems can address dynamically changing trip demand, reservation-based systems can
further reduce the fleet size and increase the efficiency of their routes (by reducing empty
cruising time and increasing the number of customers served per vehicle), as demonstrated
by Wang et al. (2014), as they know the requests ahead of time and can optimize trips over
a longer time horizon. Several optimization approaches have been proposed for both sys-
tems. For on-demand systems, Farhan and Chen (2018) proposed a three-step approach for
optimizing a fleet of SAVs that serves on-demand trips. It first discretizes the time horizon
into 5-minute intervals, clusters trip requests from each interval by assigning riders to the
nearest vehicles, and finds the optimal vehicle routes by modeling the requests from each
cluster as a VRPTW and solving the problem using a tabu-search metaheuristic. On the
other hand, Pinto et al. (2020) considered integrating SAVs with an existing public transit
system to better serve lower density areas by using a bi-level modeling framework to jointly
optimize the transit network schedule together with the sizing of the AV fleet. They pro-
posed an iterative heuristic which solves a transit-network frequency-setting problem using
a non-linear solver in the upper level and solves a dynamic combined mode choice-traveler
assignment problem using an agent-based simulation in the lower level. For reservation-
based systems (which are similar to the system proposed in this study), Ma et al. (2017)
proposed an approach to optimize a fleet of SAVs for trip requests that are known ahead
of time. However, their approach only allows vehicle sharing whereby each trip is served
without being interrupted by other trip requests. This restriction admits an LP model for
the problem which can then be solved efficiently. The modeling technique, however, is
not applicable to ride-sharing problems like the one considered in this study. Bongiovanni
et al. (2019) considers a variant of the DARP that uses electric AVs called the e-ADARP.
It extends the classical DARP by incorporating additional considerations, like battery man-
agement and intermediate stops for vehicle recharging, that only apply to the operation of
electric AVs. They proposed two- and three-index formulations for the problem which are
then solved using a traditional branch-and-cut approach which incorporates new, problem-
specific valid inequalities. They demonstrated the approach’s ability to produce optimal
solutions for instances with up to 40 trip requests. This study, however, considers instances
that are five times larger and therefore requires a more robust approach. Numerous other
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works have touted the potential benefits of these SAV systems, ranging from reducing traf-
fic (Martinez and Viegas 2017, Alazzawi et al. 2018, Salazar et al. 2018), to increasing
road capacity (Friedrich 2015, Tientrakool et al. 2011, Talebpour and Mahmassani 2016,
Mena-Oreja et al. 2018, Olia et al. 2018), to reducing parking demand (Zhang et al. 2015,
Dia and Javanshour 2017, Zhang and Guhathakurta 2017). However, there also appears to
be a consensus that the benefits require AV adoption reaching a critical mass before they
can be truly realized.

1.4 Dissertation Overview

Each chapter in this dissertation is intended to provide a self-contained description of the
work from a specific publication. Chapters 2, 3, and 4 consider numerous aspects of solving
the ride-sharing problem for commute trips with conventional vehicles; they focus on the
optimization of routing plans whereby the trips are served by vehicles that are driven by
the commuters themselves. On the other hand, Chapters 5 and 6 approach the same ride-
sharing problem from a different angle; they assume the availability of autonomous vehicles

to serve the commute trips and concentrate on how fleets of SAVs can be capitalized to
generate optimal routing plans. The computational evaluations of the algorithms described
in every chapter, however, center around problem instances that are derived from the Ann
Arbor commute-trip dataset. The results, therefore, do not only demonstrate the efficiency
and performance of the various algorithms, but they also allow the extraction of numerous
metrics from a real case study that are consequential to the operation of a car-pooling or
ride-sharing platform, e.g., measurements of potential reductions to the number of vehicles
used, of savings in vehicle miles traveled, and of increases to average commute times.

Chapter 2 describes a community-based trip sharing approach. Based on the work in
Hasan et al. (2018), the approach explores several optimization models that attempt to
leverage the structure of commuting patterns and urban communities to maximize ride-
and car-sharing. Several models that each enforce different driver- and passenger-matching
requirements are proposed: Each implements a different set of guiding principles that
describe factors that are consequential to individual commuting decisions. The common
theme across all models is that the cars are driven by the commuters themselves, and the
goal is to evaluate the “price” of implementing the various guiding principles in terms of
vehicle reduction capability. The chapter also introduces a spatial clustering algorithm
into the optimization workflow which, in addition to ensuring that the riders commute
with those living in close proximity to them, provides a convenient decomposition mecha-
nism that facilitates computational tractability. The work also describes an efficient route-
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enumeration algorithm that exhaustively searches for all feasible routes that are required
by the optimization models. The computational evaluations from the chapter reveal a key
insight: that flexibility in driving and sharing preferences is critical to maximizing trip
aggregation. The model that requires the riders to adopt different roles and to ride with
different drivers and passengers daily produced the best vehicle reduction potential, which
indicates that the riders will have to relax some of their commuting preferences—and thus
incur some psychological discomfort—in order to increase the shareability of their trips.

Chapter 3 provides a more in-depth investigation into the car-pooling model from Chap-
ter 2 that produced the best vehicle reduction performance. Based on the work in Hasan
et al. (2020), the chapter refines the model, proposing a lexicographic objective function
that first minimizes the number of vehicle utilized and then minimizes their total travel
distance, and formalizes the model as the Commute Trip-Sharing Problem (CTSP). It
also carefully examines the constraints that are imposed by the problem, contrasting them
against those of the more popular DARP, and suggests an alternate solution method: a
branch-and-price algorithm. Driven by a desire for an approach that better scales to larger
vehicle capacities or to problems with more riders, the proposed method uses column gen-
eration to search for feasible routes on demand as opposed to exhaustive enumeration. It
incorporates a novel wait-time relaxation technique in its pricing subproblem and a bi-level
branching strategy that first branches on driver selection and then on the order of serving
riders. Finally, the chapter also explores an alternate method for decomposing large-scale
problems: a spatio-temporal clustering algorithm that groups commuters based on the spa-

tial and temporal proximity of their trips. The computational experiments from the chapter
unearthed some new insights. Not only did the results demonstrate a potential to reduce
daily vehicle counts by up to 57%, but further analysis of the optimal routes revealed a crit-
ical shortcoming: The routes’ inherently short nature, induced by the spatial and temporal
constraints on the drivers’ trips, limit the possibility for even more trip aggregation. The
results also showed that a column-generation heuristic, obtained by only solving the root
node of the branch-and-price tree, is capable of producing high-quality solutions within a
short time frame.

Chapter 4 considers a realistic, operational setting for the CTSP by introducing some
uncertainty into the commuter trip schedules. It addresses the following question: How
should the model respond to changes in the return trip schedules, which occur later in
the day, when the drivers of the trips need to be committed earlier in the day before the
schedule changes occur? In other words, the goal is to find a robust driver assignment, one
that can cover as many return trips as possible, despite the uncertainty in their schedules.
The chapter describes the work by Hasan and Van Hentenryck (2020) which leverages a

18



scenario-sampling technique: It assumes the availability of historical trip-schedule data for
each commuter to which a probability distribution can be fit and then sampled from. The
sampling of every commuter distribution produces a sampled scenario. The technique is
then incorporated into a two-stage optimization approach. The first solves a model that is
defined on a set of sampled return-trip scenarios to assign a day’s drivers and optimize their
routes to the workplace. The second stage re-optimizes the return routes once the return-
trip schedules have been confirmed for a setting where they are finalized by a deadline, or
it re-optimizes them within a rolling-horizon approach for a setting where the schedules
are confirmed in real time. Computational simulations using real trip data confirm the
effectiveness of the approach: They reveal an increase in robustness of the routing plans as
more sampled scenarios are utilized in the first stage. There was a price to the improved
robustness however; it came with a corresponding increase in the required vehicle count.
A method to formally evaluate the trade-off between robustness and vehicle reduction was
then proposed.

Chapter 5 focuses on tackling the main limitation of the CTSP: its short routes which
restrict its ride-sharing potential, i.e., its ability to further reduce the daily vehicle counts.
Based on the work by Hasan and Van Hentenryck (2021a), the chapter considers utiliz-
ing AVs to circumvent all the driver-related constraints that were limiting the CTSP’s trip
aggregation potential. It formalizes the problem of serving the commute trips with AVs
as the Commute Trip-Sharing Problem for Autonomous Vehicles (CTSPAV): The prob-
lem still utilizes the same lexicographic objective function of the CTSP, and its routes
are also still subjected to the same spatial and temporal constraints of the riders’ trips.
Elimination of the driver-related constraints introduces a new set of complexities: As the
AVs can serve trips throughout the day, their routes are expected to be significantly longer
and thus algorithmically harder to discover. The work therefore investigates two solution
approaches to the problem. The first considers a model that exploits the spatial struc-
ture of the commute-trip dataset. It solves a scheduling problem that chains together mini
routes: shorter, single-direction routes with distinct pickup, transit, and drop-off phases. A
CTSPAV column-generation procedure is then proposed to find a high-quality solution for
the model. The second approach reduces the CTSPAV into a DARP; it then uses a more
traditional DARP column-generation procedure to solve the problem. Computational eval-
uations revealed that each approach has complementary performance trade-offs. The first
finds strong integer solutions quickly but generates weak lower bounds. On the other hand,
the second approach is much slower and therefore cannot find good integer solutions within
a reasonable time frame; however, it also consistently produces stronger primal and dual
lower bounds. The results also confirmed the initial expectations of the AV route lengths.
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For instance, within city limits, the CTSPAV routes covered an order of magnitude more
trips than the CTSP’s. The longer routes consequently permitted the utilization of signif-
icantly fewer vehicles to cover the same number of trips: They allowed a staggering 92%
reduction in the daily vehicle counts, improving upon the results of the CTSP by 35%.

Chapter 6 takes the work on the CTSPAV a step further by attempting to synthesize a
method that can leverage the unique strengths of the two methods considered in Chapter 5,
i.e., one that can quickly find strong integer solutions and produce strong lower bounds at
the same time. Based on the work by Hasan and Van Hentenryck (2021b), it investigates
a novel, dual-modeling approach to find exact solutions to the CTSPAV. On one hand, the
approach solves a CTSPAV MIP that exploits the spatial structure of the dataset by chaining
together exhaustively enumerated mini routes to find strong integer solutions. On another,
it solves the LP relaxation of a DARP formulation that minimizes the vehicle count to
produce strong primal and dual lower bounds to the problem’s primary objective. The ap-
proach solves the CTSPAV MIP using a branch-and-cut procedure and the DARP LP using
column generation in parallel, all the while asynchronously transmitting new lower bounds
from the DARP LP to the CTSPAV MIP to be used in valid inequalities for the branch-
and-cut procedure. This approach is then compared against a more conventional branch-
and-cut procedure that uses other well-established families of valid inequalities that are
tailored for routing problems as well as against the CTSPAV column-generation heuristic
from Chapter 5. The computational results highlight the effectiveness of the dual-modeling
approach: Not only was it able to successfully close the optimality gap for several large-
and medium-sized problem instances as well as those for all tight instances considered, it
also consistently outperformed the other two methods it was pitted against. Furthermore, a
deeper analysis of the results revealed several new insights on the benefits and drawbacks
of the CTSPAV platform. In addition to significantly reducing the vehicle count, it can
also reduce traffic congestion by more effectively aggregating multiple rides per vehicle.
The utilization of AVs, however, will also necessarily introduce some empty miles (vehicle
miles traveled without any passengers onboard) into the total travel distance.

Finally, Chapter 7 concludes the dissertation by providing a summary of the findings
from each chapter and suggesting some future research directions.

20



CHAPTER 2

Community-Based Trip Sharing for Urban
Commuting

2.1 Introduction

Car-pooling services provide an appealing alternative for urban mobility due to their po-
tential benefits, be it in reducing traffic congestion, energy consumption, greenhouse gas
emissions, or parking utilization. For instance, a case study on the CarLink car-pooling
program of about 50 people revealed up to 43.5% reduction in the number of single occu-
pant vehicle trips, a 23 miles reduction in average commute vehicle travel distance per day,
and reduced parking utilization (Shaheen and Rodier 2005). Private cars however have re-
mained as the primary choice for daily commuting due to a number of challenges associated
with car pooling. For instance, a survey by Li et al. (2007) indicated difficulty in finding
people with matching schedules and locations as the primary reason for not car pooling.
This highlights the potential for matching platforms which alleviate this burden and auto-
matically identify commuting groups based on factors determined to be consequential to
individuals’ commuting decisions. A meta-analysis of related work reveals the following
set of guiding principles that should ideally be supported by car-pooling and car-sharing
platforms:

1. Spatial proximity of riders (Richardson and Young 1981, Buliung et al. 2009).
2. Temporal proximity of riders (Tsao and Lin 1999, Buliung et al. 2010, Poulenez-

Donovan and Ulberg 1994).
3. Guaranteed ride back home (Correia and Viegas 2011).
4. Low coordination costs (Arning et al. 2013).
5. Low trust concerns (Arning et al. 2013, Correia and Viegas 2011).
6. Clear commuter roles (Buliung et al. 2010, Richardson and Young 1981).
The first two principles reduce per-trip costs by matching commuters based on their

schedules and locations. The third principle highlights the importance of accounting for
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the commute needs for the entire day–individuals who cannot be matched for the return
trip should not be matched for the incoming one. Principles (4–6) account for various
psychological factors by limiting the perceived coordination costs, by alleviating trust con-
cerns, and by assigning clear commuter roles to individuals.

To address these challenges, this chapter explores the concept of community-based trip

sharing which uses the structure of communities and commuting patterns to optimize trip
sharing for urban communities. Community-based trip sharing identifies matches accord-
ing to the schedules and locations of riders and guarantees a ride home, hence satisfying
guiding Principles (1–3) by construction. The implementation of community-based trip
sharing first clusters commuters by communities before applying an optimization model to
determine optimal routing plans minimizing daily car usage. Community-based trip shar-
ing can be applied both to car pooling, where commuters use their own cars, and to car
sharing, where a community has at its disposal a pool of cars for commuting purposes.

This chapter also studies the cost of implementing Principles (4–6). The implementa-
tion of each of these principles reduces the opportunities for trip sharing and the trade-off
between the effectiveness of a trip-sharing platform and these guiding principles is largely
unexplored. To provide new insights on this issue, this study proposes a series of opti-
mization models for community-based trip sharing that incrementally enforce additional
constraints to implement these principles. For instance, Principle (6) forces a given com-
muter to be either a driver or a passenger in all her trips, which may minimize opportunities
for trip sharing as her schedule may vary on different days.

This study evaluates the potential and limitations of community-based trip sharing on a
large case study using the Ann Arbor commute-trip dataset which contains trip data from
15,000 commuters traveling to the downtown area of the city of Ann Arbor, Michigan, over
the span of a month. Ann Arbor is facing significant pressure on its downtown parking lots
and congestion has been increasing annually. The results indicate that community-based
trip sharing may reduce daily car usage by as much as 61% while implementing Principles
(1–3). However, the benefits continuously decrease as Principles (4–6) are implemented,
up to a point where they become almost negligible. This highlights the trade-off between
the effectiveness of trip sharing and the (psychological) comfort of commuters.

The main contributions of this study are as follows:
1. Community-based trip sharing is introduced and applied to both car pooling and car

sharing.
2. An effective implementation of community-based trip sharing is proposed, which

combines clustering and optimization to minimize daily car usage.
3. Community-based trip sharing is evaluated with a large-scale, high-fidelity case study

22



of car pooling and car sharing for commuting purposes.
4. The study provides compelling quantitative evidence for the inherent trade-off be-

tween the benefits of trip sharing and the psychological burden imposed on com-
muters.

The rest of this chapter is organized as follows. Section 2.2 formally specifies the community-
based trip sharing algorithm while Sections 2.3 and 2.4 present the optimization models for
car pooling and car sharing respectively. Section 2.5 presents the experimental setup and
results. Finally, Section 2.6 provides concluding remarks and future research directions.

2.2 Community-Based Trip Sharing

The community-based trip sharing algorithms aim to produce optimal routing plans that
minimize the number of cars needed daily to cover all the commute trips of a set of com-
muters C for a set of daysD subject to specific driver- and commuter-matching constraints.
It uses the daily commute trip requests of C as input and proceeds in three major stages:
(1) It clusters the commuters based on the spatial proximity of their home locations, (2)
it identifies all feasible routes for each cluster, and (3) it solves an optimization model to
obtain the optimal routing plan for each cluster. This section focuses on steps (1–2). The
next two sections present the optimization models.

2.2.1 Clustering

Community-based trip sharing first clusters commuters residing in close proximity to each
other to produce artificial neighborhoods within which trip sharing is considered exclu-
sively, implementing Principle (1) from the introduction. Trip sharing is only considered
intra-cluster to foster intra-community interactions and limit the distance traveled by the
drivers when picking up or dropping off passengers. While it must be acknowledged that
this approach precludes the acquisition of a global optimal solution, it is a necessary trade-
off in this study as initial evaluations have revealed that a global solution cannot be obtained
for the dataset considered within a time frame that is reasonable for an operational setting.
The clustering approach not only improves tractability by decomposing the problem into
smaller, independent subproblems, it also allows trip sharing for each cluster to be opti-
mized concurrently. This strategy is also in line with the conclusion by Agatz et al. (2012)
which recognizes the necessity of effective decomposition techniques to make large-scale
problems computationally feasible.

This clustering algorithm aims to produce clusters of approximately equal size by
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grouping no more than N commuters into each cluster based on the spatial proximity of
their home locations. It treats commuters as points in R2 whose positions are specified by
the Cartesian coordinates of their homes. The algorithm itself is similar to the k-means
clustering algorithm (Lloyd 1982), with a small exception to its assignment step. For any
N , the number of clusters, k = d| C |/Ne, is first calculated. The centers for each cluster are
then initialized using the k-means++ method by Arthur and Vassilvitskii (2007). A center
u1 is first selected uniformly at random from C. Let S(x) denote the Euclidean distance
between point x to the nearest center already selected. The ith center ui is then selected
from C with probability S(ui)

2/(
∑

c∈C S(c)2) until k centers are obtained.
Once the cluster centers are initialized, the points are assigned to their nearest cluster

centers. This assignment step is similar to that of the k-means clustering algorithm, except
that it does so subject to a constraint that each cluster is assigned at most N points. Let U
denote the set of all cluster centers and S(x,y) the Euclidean distance between points x
and y. The assignment step is performed by solving the following generalized-assignment
problem:

min
∑
c∈C

∑
u∈U

S(c,u)Xc,u (2.1)

s.t.
∑
u∈U

Xc,u = 1 ∀c ∈ C (2.2)∑
c∈C

Xc,u ≤ N ∀u ∈ U (2.3)

Xc,u ∈ {0, 1} ∀c ∈ C,∀u ∈ U (2.4)

The model is defined in terms of a binary variable Xc,u which indicates whether commuter
c is assigned to cluster center u. Objective function (2.1) minimizes the total distance
between the commuters and their assigned cluster centers. Constraints (2.2) ensure each
commuter is assigned to one cluster center, while constraints (2.3) limit the number of
commuters assigned to each cluster center by N .

After the assignment step, the coordinates of each cluster center are updated with the
mean of the coordinates of all assigned commuters:

u =

∑
c∈C Xc,uc∑
c∈C Xc,u

∀u ∈ U (2.5)

The assignment and update steps are repeated until the assignments stabilize, i.e., until
the commuter-cluster center assignments stop changing, at which point the algorithm is
terminated.
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2.2.2 Trip Sharing

This section describes the Route-Enumeration Algorithm (REA) which is used to enumer-
ate the sets of all feasible inbound, outbound, and round-trip routes for day γ, denoted by
Ω+
γ , Ω−γ , and Ωrt

γ respectively. The REA is applied on each day γ ∈ D and on each cluster
before the enumerated sets are used by the optimization models in the very last stage. The
REA is inspired by Santi et al. (2014) which introduced the notion of shareability networks
as a tool to quantify the shareability potential of a set of trips, T , for a fleet of shared ve-
hicles with capacity K. The shareability network is a K-bounded hypergraphH = (T , E).
The nodeset T represents a set of trips while the set of hyperedges E contains all non-
empty subsets of shareable trips from T with a maximum cardinality of K. A set of trips
Ti ⊂ T is shareable and can therefore be combined to form a hyperedge in E if and only if
| Ti | ≤ K and there exists a feasible route that covers all the trips in Ti.

The REA formalizes a procedure for enumerating the feasible routes for each hyperedge
in E of such a hypergraph whose nodeset T contains all the commute trips from a day and
a cluster. Without loss of generality, the following describes the REA for Ω+

γ for a single
cluster and day γ. For the rest of this chapter, let C be the set of commuters from a cluster,
T +
γ , T −γ , and T rtγ denote the set of all inbound, outbound, and round trips taken by C on day
γ respectively, i.e., T +

γ = {t+c,γ : c ∈ C}, T −γ = {t−c,γ : c ∈ C}, and T rtγ = {trtcγ : c ∈ C},
and ς(i,j) denote the distance of the shortest path between locations i and j.

Algorithm 1 summarizes how Ω+
γ is obtained from T +

γ and vehicle capacity K. Routes
of all individual trips from T +

γ are first added to Ω+
γ (lines 2–3). To obtain feasible routes

covering more than 1 trip, an index k is first set to the desired number of shared trips
after which all k-combinations of trips from T +

γ (denoted by Qk) are enumerated (lines
4–5). For each trip combination q ∈ Qk, the set of valid routes for the combination, Ωv

q ,
is then enumerated. For instance, for k = 2, q = {t1, t2}, t1 = {o1, dt1, d1, at1}, and
t2 = {o2, dt2, d2, at2}, Ωv

q = { o1 → o2 → d2 → d1, o2 → o1 → d1 → d2 }. Let Cq
denote the set of all riders making the trips in q. The algorithm then iterates over every
rider c ∈ Cq and considers only routes in Ωv

q where c is the driver, i.e., {r ∈ Ωv
q : Dr = c}

(lines 8–10). The feasibility of every route in the set is then checked using the feasible(r)
function, and routes that are feasible are stored in a temporary set Ωtemp. Only the route
with the shortest total distance from Ωtemp is then added to Ω+

γ (line 13). Note that this step
is optional. It is done to reduce the size of Ω+

γ using the fact that only a single route for
each driver covering Cq can be used in a routing plan, so the one with the minimal total
distance is selected by the REA. The procedure of exploring all k-combinations is repeated
with incremental values of k from 2 up to K to completely enumerate Ω+

γ .
At a high level, the REA checks the shareability of every non-empty subset of trips
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Algorithm 1 REA for Ω+
γ

Require: T +
γ , K

1: Ω+
γ ← Ø

2: for each t+c,γ ∈ T +
γ do

3: Ω+
γ ← Ω+

γ ∪ {o+
c,γ → d+

c,γ}
4: for k = 2 to K do
5: Qk ← {all k-combinations of T +

γ }
6: for each q ∈ Qk do
7: Ωv

q ← {all valid routes of q}
8: for each c ∈ Cq do
9: Ωtemp ← Ø

10: for each r ∈ Ωv
q : Dr = c do

11: if feasible(r) then
12: Ωtemp ← Ωtemp ∪ {r}
13: Ω+

γ ← Ω+
γ ∪ {arg minr∈Ωtemp

∑
(i,j)∈r ς(i,j)}

14: return Ω+
γ

from T +
γ with a maximum cardinality of K. It does so by considering every k-combination

of trips up to k ≤ K. The algorithm therefore iterates over O(nK) trip combinations,
where n = | C | represents the size of a cluster, as for a fixed vehicle capacity K,

(
n
K

)
=

O(nK). For each iteration, in which it considers a combination of trips q, the algorithm
considers every rider c ∈ Cq as a potential driver (therefore, up to K different drivers
per combination) and then searches for the shortest feasible route for each driver. The
search for the shortest feasible route considers up to (2(K − 1))!/(2K−1) possible location
permutations per driver; for a K-combination of trips, a designated driver visits another
2(K − 1) locations, and the precedence constraint requiring origins to be visited before
destinations reduces the (2(K − 1))! location permutations by a factor of 1/(2K−1) (a
complete proof to this is provided by Ruland and Rodin (1997)). Finally, the algorithm
checks the feasibility of each route permutation using the feasible(r) function. There are
several ways of implementing the function, e.g., Gschwind and Irnich (2015) proposed a
feasibility test with an O(K2) time complexity. Therefore, for each iteration, the REA
that uses such a feasibility test will have a time complexity of O(K3(2(K − 1))!/(2K−1)).
Furthermore, as only the shortest feasible route for each potential driver is added to Ω+

γ ,
each iteration produces O(K) routes. Nevertheless, as both the time complexity and the
number of routes generated per iteration are functions of K which is fixed in this study, the
total time and space complexity of the entire REA reduces to O(nK).

In practice, the search procedure on lines 7–13 may be implemented efficiently using
a depth-first search procedure that uses the length of shortest feasible route discovered to
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Table 2.1: Summary of Optimization Models for Trip Sharing.

Application Name Constraints Principles

Ride sharing

MIP-DD • Drivers of inbound and outbound routes
identical for any given day

(1–3)

MIP-DD-DIO • Commuters of inbound and outbound
routes identical for any given day

(1–5)

MIP-WD-DIO • Commuters of inbound and outbound
routes identical for any given day

• Drivers identical every day

(1–6)

MIP-WD-WIO • Commuters of inbound and outbound
routes identical for any given day

• Drivers identical every day
• Passenger-driver pairings identical ev-

ery day

(1–6)

Car sharing MIP-DC • Total number of inbound and outbound
routes identical for any given day

(1–3)

prune the search tree. Moreover, since the search procedure for all q ∈ Qk are independent
of each other, they may be executed concurrently in parallel. The same algorithm may be
repeated on T −γ to enumerate Ω−γ , and only a minor modification is needed for the algorithm
to enumerate Ωrt

γ . On lines 9–13, the algorithm essentially searches for the shortest feasible
route covering the inbound trips of Cq with c as the designated driver. To enumerate Ωrt

γ , the
search procedure is extended so that it then searches for the shortest feasible route covering
the outbound trips of the same set of commuters Cq with the same driver c. The pair of
feasible routes covering the inbound and outbound trips of Cq with c as the designated
driver represents a feasible round-trip route that can then be added to Ωrt

γ . The algorithm
would therefore require T rtγ to enumerate Ωrt

γ .

2.3 Optimization Models for Ride Sharing

This section presents the optimization models for finding the optimal routing plan for each
cluster and for every day γ ∈ D. The models utilize the sets of feasible routes enumer-
ated from the previous section. The names, high-level constraints, and adopted guiding
principles of each model are summarized in Table 2.1.
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2.3.1 MIP-DD

MIP-DD is the least constrained optimization model for ride sharing and satisfies Princi-
ples (1–3) from the introduction. It minimizes the number of cars required subject to the
constraint that the set of drivers are identical for the inbound and outbound routes. This
ensures the cars leaving a cluster returns to the cluster every day. The model optimizes the
routing plan for each day independently. As a result, the set of drivers selected for different
days do not need to be identical. Passengers also do not need to be matched with the same
driver for inbound and outbound routes on the same day or on different days.

The model is defined in terms of binary variable Xr which indicates whether route
r ∈ Ω+

γ ∪ Ω−γ is selected for the optimal plan of day γ. The model for day γ is specified as
follows:

min
∑

r∈Ω+
γ ∪Ω−γ

Xr (2.6)

s.t.
∑

r∈Ω+
γ :c∈Cr

Xr = 1 ∀c ∈ C (2.7)

∑
r∈Ω−γ :c∈Cr

Xr = 1 ∀c ∈ C (2.8)

∑
r∈Ω+

γ :Dr=c

Xr =
∑

r∈Ω−γ :Dr=c

Xr ∀c ∈ C (2.9)

Xr ∈ {0, 1} ∀r ∈ Ω+
γ ∪ Ω−γ (2.10)

Objective function (2.6) minimizes the number of cars used for inbound and outbound
routes. Constraints (2.7) and (2.8) indicate that exactly one inbound and one outbound
route must be selected for each commuter respectively. Constraints (2.9) ensure the set of
drivers selected for the inbound routes are identical to that for the outbound routes.

2.3.2 MIP-DD-DIO

MIP-DD-DIO contains an additional requirement compared to MIP-DD. It requires that the
commuters of any pair of inbound and outbound routes are identical on any day. This con-
straint reduces coordination costs and alleviates trust concerns by reducing the maximum
unique matches per commuter from 2 to 1 per day. Hence the model can be considered
to satisfy Principles (1–5), although it does so partially. To satisfy this constraint, the
model utilizes Ωrt

γ since a round-trip route already ensures the commuters of its inbound
and outbound routes are identical. Similar to MIP-DD, the model optimizes the routing

28



plan for each day independently. It uses a single binary variable Xr to indicate whether
route r ∈ Ωrt

γ is selected for the optimal plan. The model for day γ is specified as follows:

min
∑
r∈Ωrtγ

Xr (2.11)

s.t.
∑

r∈Ωrtγ :c∈Cr

Xr = 1 ∀c ∈ C (2.12)

Xr ∈ {0, 1} ∀r ∈ Ωrt
γ (2.13)

Objective function (2.11) minimizes the number of cars used for the round trips and con-
straints (2.12) state that exactly one round-trip route must be selected for each commuter.

2.3.3 MIP-WD-DIO

MIP-WD-DIO has the same objective and constraints as MIP-DD-DIO, with an additional
requirement that the drivers designated for every day γ ∈ D must be identical. In other
words, a commuter is prohibited from being a driver on some days and a passenger on
others. This model satisfies Principles (1–6), since drivers and passengers now have clearly
defined roles. The model uses two binary variables: variable Xr is the same as in MIP-
DD-DIO and variable Yc indicates whether commuter c ∈ C is selected as the driver of a
round-trip route. Pr denotes the set of passengers of route r, i.e., Pr = Cr \ {Dr}. The
model is specified as follows:

min
∑
γ∈D

∑
r∈Ωrtγ

Xr (2.14)

s.t.
∑

r∈Ωrtγ :c∈Cr

Xr = 1 ∀γ ∈ D,∀c ∈ C (2.15)

YDr ≥ Xr ∀γ ∈ D, ∀r ∈ Ωrt
γ (2.16)

Yc ≤ 1−Xr ∀γ ∈ D,∀r ∈ Ωrt
γ ,∀c ∈ Pr (2.17)

Xr ∈ {0, 1} ∀γ ∈ D,∀r ∈ Ωrt
γ (2.18)

Yc ∈ {0, 1} ∀c ∈ C (2.19)

Objective function (2.14) globally minimizes the number of cars for every day γ ∈ D.
Constraints (2.15) ensure exactly one round-trip route is selected for each commuter every
day, constraints (2.16) assign drivers of selected round-trip routes, and constraints (2.17)
ensure passengers of selected routes are never assigned as drivers. The differences with
MIP-DD-DIO are quite subtle when formalized: The key is to recognize that the univer-
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sal quantification in constraints (2.16) and (2.17) forces a driver to drive every day and a
passenger to never drive. Model MIP-DD-DIO, in contrast, is optimized independently for
each day, therefore it does not require a commuter to be assigned exclusively as a driver or
a passenger every day.

2.3.4 MIP-WD-WIO

MIP-WD-WIO adds a final requirement that passenger-driver pairings for every day γ ∈ D
must be identical, i.e., a passenger must always commute with the same driver. This is
the most desirable model as it strongly obeys all principles. Let Ωrt denote the set of
all feasible round-trip routes across all days, i.e. Ωrt = {r ∈ Ωrt

γ : γ ∈ D}, and W
denote the set of all passenger-driver pairs obtained from all feasible round-trip routes, i.e.,
W = {(c,Dr) : c ∈ Pr, r ∈ Ωrt}. The model uses three binary variables: Xr and Yc are
the same as those used in MIP-WD-DIO, while Vw keeps track of each passenger-driver
pair w ∈ W selected in the optimal plan. Furthermore, let Γc denote the set of all routes
where c is a passenger, i.e., Γc = {r ∈ Ωrt : c ∈ Pr}, and Λc denote the set of all possible
drivers for passenger c, i.e., Λc = {Dr : r ∈ Γc}. The objective function of the model is
given by (2.14), subject to (2.15), (2.16), (2.17), (2.18), (2.19), and

V(c,Dr) ≥ Xr ∀γ ∈ D,∀r ∈ Ωrt
γ ,∀c ∈ Pr (2.20)

V(c,p) ≤ 1−Xr ∀γ ∈ D,∀r ∈ Ωrt
γ , ∀c ∈ Pr,∀p ∈ Λc \ {Dr} (2.21)

Vw ∈ {0, 1} ∀w ∈ W (2.22)

Constraints (2.20) select passenger-driver pairs according to selected round-trip routes,
while constraints (2.21) prohibit selection of passenger-driver pairs other than those from
selected round-trip routes.

2.4 Optimization Model for Car Sharing

This section studies community-based car sharing and assumes that each cluster has a pool
of cars that can be used by anyone for commuting trips. Model MIP-DC minimizes daily
car usage for commuting trips subject to the constraint that the number of inbound routes is
equal to the number of outbound routes for any day. This constraint ensures that the number
of cars shared in the cluster remains the same day after day. The model approximates the
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number of daily cars and routes required for a car-sharing model.1 Drivers for inbound and
outbound routes on any day do not need to be identical, which makes the model even less
restrictive than MIP-DD. The model optimizes the routing plan for each day independently.
It uses a binary variable Xr like in MIP-DD. Its objective function is given by (2.6) subject
to (2.7), (2.8), (2.10), and ∑

r∈Ω+
γ

Xr =
∑
r∈Ω−γ

Xr (2.23)

Constraint (2.23) ensures the total number of inbound and outbound routes are identical for
any day γ. This model satisfies the same set of principles as MIP-DD.

2.5 Computational Results

The Dataset The problem instances of this chapter are constructed with trips from the
Ann Arbor commute-trip dataset. The dataset provides trip information for 15,000 com-
muters within an area spanning 13,000 square miles. About 9,000 people commute to these
parking lots on any given weekday. For additional insight, the commuters are partitioned
into two sets; the 4,000 commuters living within city limits (the Ann Arbor region bounded
by highways US-23, M-14, and I-94), and the 11,000 commuters living outside that region.
Results are given for the busiest week of the month (week 2), and focus on the trips made
on Monday–Thursday, which are the busiest days. As was shown in Figure 1.2, the com-
muting pattern of this population is remarkably predictable and consistent, which is a key
property for effective car pooling (Buliung et al. 2010).

Experimental Settings This study assumes that any commuter i, when requesting a com-
mute trip for any day, would specify the desired arrival time at the destination of the in-
bound trip, at+i , and the desired departure time at the origin of the outbound trip, dt−i .
This assumption is similar to that made in other literatures, e.g., Jaw et al. (1986), Cordeau
and Laporte (2003b), Cordeau (2006). On top of that, it also assumes that each tolerates
a maximum time shift of ±∆ to the desired times. Therefore, by treating the arrival and
departure times to and from the parking structures as the desired times, time windows of
[ad+i , bd

+
i

] = [at+i − ∆, at+i + ∆] and [ao−i , bo
−
i

] = [dt−i − ∆, dt−i + ∆] are associated
with the destination of the inbound trip, d+

i , and the origin of the outbound trip, o−i , of
commuter i respectively. Accordingly, letting L+

i and L−i denote the ride-duration limit of

1For simplicity, we ignore where the cars are parked in the cluster: They can be at a central location or
with the drivers. We also assume that the cars within each cluster are easily reachable by all drivers and
ignore how the drivers get to the cars.
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commuter i’s inbound and outbound trips respectively, the time windows at the origin of her
inbound trip, o+

i , and at the destination of her outbound trip, d−i , are defined by [ao+i , bo
+
i

] =

[ad+i −ζo+i −L
+
i , bd+i −ζo+i −τ(o+i ,d

+
i )] and [ad−i , bd

−
i

] = [ao−i +ζo−i +τ(o−i ,d
−
i ), bo−i +ζo−i +L−i ]

respectively. Finally, similar to Hunsaker and Savelsbergh (2002), this study assumes that
every commuter i tolerates an R% maximum extension to the duration of her direct trip,
i.e., Li = (1 +R)τ(oi,di).

Unless stated otherwise, ∆ = 10 mins and R = 50% are used in most experiments, al-
though sensitivity analyses to both parameters that utilize other values are also performed.
Due to the non-deterministic nature of the initialization of the clustering algorithm, it is
repeated 100 times for every value of N considered, after which only the result with the
smallest final total distance is used. Unless stated otherwise, a value of N = 200 is used
for most experiments as it produces clusters that are sufficiently large to promote ample
trip sharing, but not ones that are excessively large so as to make the problem instances
intractable. However, a sensitivity analysis that utilize other N values is also performed.
As the study investigates the use of cars, K is set to 4 in all experiments. The GPS coor-
dinates of every address considered are geocoded using Geocodio, while the shortest path,
travel time, and distance between any two locations are estimated using the GraphHopper
Directions API which uses data from OpenStreetMap. All algorithms are implemented
in C++ using OpenMP to handle parallelization duties, and the Gurobi 7.5.1 solver is in-
voked to solve all optimization models and MIPs. Every problem instance is solved on a
high-performance compute cluster, utilizing 12 cores of a 2.5 GHz Intel Xeon E5-2680v3
processor, 48 GB of RAM, and a time limit of 4 hours. The optimization models for every
problem instance considered could be solved to optimality within the time limit.

2.5.1 Computation Times

Figures 2.1(a) and 2.1(b) summarize the total computation times of each optimization algo-
rithm for several cluster sizes when ∆ = 10 mins andR = 50%. The clusters with different
sizes are constructed by simply varyingN for the clustering algorithm. Figure 2.1(a) shows
the wall times for solving each model exclusively, without the inclusion of the times for
enumerating their routes. A logarithmic time scale is used to highlight the time differences
for small cluster sizes. Figure 2.1(b) shows the total wall times for solving each model and
for enumerating their routes on a linear time scale. For MIP-DC, MIP-DD, and MIP-DD-
DIO which optimize routing plans on a daily basis, the total time shown consists of the time
to solve the optimization model combined with the time to enumerate their respective sets
of feasible routes (Ω+

γ ∪Ω−γ for MIP-DC and MIP-DD, Ωrt
γ for MIP-DD-DIO) for trips from

32



W
a

ll
 t

im
e
 (

s)

0.001

0.01

0.1

1

10

100

1000

10000

50 75 100 125 150 175 200 225 250

W
a
ll

 t
im

e 
(s

)

Cluster size

MIP-DC

MIP-DD

MIP-DD-DIO

MIP-WD-DIO

MIP-WD-WIO

(a) Excluding Route Enumeration Times

0

1000

2000

3000

4000

5000

6000

50 75 100 125 150 175 200 225 250

W
a
ll

 t
im

e 
(s

)

Cluster size

MIP-DC

MIP-DD

MIP-DD-DIO

MIP-WD-DIO

MIP-WD-WIO

Round-trip route

enumeration (1 day)
Round-trip route

enumeration (4 days)

(b) Total Including Route Enumeration Times

Figure 2.1: Computation Times of Every Optimization Model.

a single day. Conversely, as MIP-WD-DIO and MIP-WD-WIO optimize plans for multiple
days at once, their total times consist of the time to solve the optimization model for trips

from all four days considered (D = {Monday,Tuesday,Wednesday,Thursday}) combined
with the time to enumerate their sets of feasible routes, {Ωrt

γ : γ ∈ D}. And since the
number of traveling commuters from each cluster is not identical every day, the cluster size
for the latter two models are represented by the cluster’s daily average number of travelers.
For additional perspective, the time spent by the REA for enumerating Ωrt

γ for a single day
and for the four days considered are also displayed.

Figure 2.1(b) depicts the total computation time of every model increasing exponen-
tially with cluster size. While MIP-WD-DIO and MIP-WD-WIO appear to be more ex-
pensive than the other three models in the figure, this is only because their total run times
are dominated by their route-enumeration stages, which have to enumerate the feasible
routes for all four days as opposed to only for a single day for the other three models. The
optimization models for MIP-WD-DIO and MIP-WD-WIO alone solve almost instanta-
neously; their optimal solutions are consistently found in less than 2 seconds for the cluster
sizes considered as shown in Figure 2.1(a). The same can also be said for MIP-DD-DIO
whose total run time is completely dominated by its route-enumeration stage and whose
model solves almost instantaneously. By contrast, the optimization models for MIP-DC
and MIP-DD are harder to solve. In some cases, the times for solving their optimization
models are comparable to those for enumerating their routes. Figure 2.1(a) shows that not
only are they significantly more expensive, but their solution times also appear to increase
exponentially with cluster size.

2.5.2 Reduction in Car Usage

Figure 2.2 summarizes car reduction results during the busiest week of the month using
∆ = 10 mins, R = 50%, and N = 200 for the clustering algorithm. It shows the aggre-
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Figure 2.2: Car Reduction Results of Every Optimization Model.

gated number of required cars from all clusters for every optimization model for the first
4 weekdays of week 2. It also displays the counts as a percentage of the number of cars
under the existing no-sharing conditions.

The first insight is that ride-sharing and car-sharing programs may bring substantial
benefits for the city of Ann Arbor. For both programs, the results show a potential reduction
of about 59% in daily car utilization for community-based ride sharing (MIP-DD) and 61%
for community-based car sharing (MIP-DC). This would substantially reduce pressure on
parking in the city and congestion during the morning and evening commutes.

The second insight is that these benefits require flexibility. As the models enforce ad-
ditional constraints on driver selection and driver-passenger matching, the results signifi-
cantly deteriorate. When the matching must be the same for inbound and outbound routes
on any day (MIP-DD-DIO), the potential reduction in car utilization is around 37%. This
is still significant, but these results also highlight the challenge of matching commuters in
round trips versus one-way trips. When the drivers and the driver-passenger matching are
identical every day (MIP-WD-WIO), the reduction falls to about 8%. It remains around
25% when the drivers are identical every day, but the driver-passenger matching must only
be the same inbound and outbound each day (but may differ on different days) (MIP-WD-
DIO). It is particularly interesting that desirable properties (4–6) for ride-sharing and car-
sharing platforms are extremely hard to enforce while reducing car utilization effectively.
Any effective platform will require a different sharing pattern for every weekday, although
these schedules can be repeated week after week. As a result, these platforms will nec-
essarily impose some psychological burden as commuters need to interact with different
people and adopt different roles daily.

Figures 2.3(a) and 2.3(b) provide the car reduction results when the algorithms only
consider the commuters inside or outside the city limits respectively. A quick comparison
of the results inside and outside the city for each model reveals that the vehicle reduction
percentage of each is larger outside the city than inside. This can be attributed to the
way the temporal constraints are defined for trip-sharing feasibility in this study. While
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(b) Outside City Limits

Figure 2.3: Car Reduction Results of Every Model Inside/Outside City Limits.

the parameter that directly controls the size of the time windows is identical for every
trip (∆ = 10 mins), the ride-duration limit for every trip is defined as a constant factor
of the direct-trip duration (1.5× in these results as R = 50%). The absolute value of
the extension to the direct-trip duration is therefore larger for longer direct trips, which is
exactly the case for commuters living outside the city. The longer duration limits allow the
REA to combine more trips to form more feasible routes, consequently providing every
model with more routes to choose from during optimization, and finally leading to the
better vehicle reduction results observed outside the city. This factor is also evidenced by
the number of feasible inbound and outbound routes enumerated, |Ω+

γ ∪ Ω−γ |, per cluster
outside the city being approximately an order of magnitude larger on average than that
inside. Otherwise, the general trend observed in Figure 2.2 is still present both inside and
outside the city limits, whereby car reduction performance degrades as more driver- and
commuter-matching constraints are enforced across the different models.

2.5.3 Reduction in Vehicle Miles Traveled

Figure 2.4 summarizes the total travel distance of the routing plans of all clusters for every
optimization model. Similar to Section 2.5.2, the results are obtained using ∆ = 10 mins,
R = 50%, and N = 200, and the percentage of each total as a fraction of that under the
existing no-sharing conditions is also displayed. The reduction in travel distance of the
different models displays a trend that mimics that from Figure 2.2 for the reduction in cars
utilized, whereby the least constrained model, MIP-DC, produces the most significant re-
duction, and the reductions decline progressively as the models implement more driver-
and commuter-matching constraints. The best performing models, MIP-DC and MIP-DD,
reduces the daily vehicle miles traveled by an average of 142,000 per day, which translates
to approximately 16 miles per commuter. The trend observed is intuitive as the models
that utilize fewer cars also produce less vehicle miles traveled due to their ability to ag-
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Figure 2.4: Total Travel Distance of Every Optimization Model.
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Figure 2.5: Total Travel Distance of Every Model Inside/Outside City Limits.

gregate more trips per route. The main takeaway from the previous section therefore also
applies here, where flexibility in the commuters’ matching and role-adoption preferences
is necessary to obtain significant reductions in vehicle miles traveled.

Figures 2.5(a) and 2.5(b) then separate the total travel distance results of clusters inside
and outside city limits. The results once again mirror those for car reduction from Figures
2.3(a) and 2.3(b), whereby the reductions for every model outside city limits are greater
than those inside. This can be attributed to the same reason described earlier; the larger
ride-duration limits for trips originating further away from the parking structures also allow
more trip aggregation which eventually improve travel distance reduction.

2.5.4 Car Reduction Sensitivity to N , ∆, and R

Figure 2.6 summarizes the sensitivity of the car reduction results of every model to the
cluster size. For this analysis, smaller clusters were first created by setting N to 100 and
150 for the clustering algorithm. The routing plan for these clusters were then optimized
with every model, after which their aggregated number of cars are compared against those
for N = 200 shown earlier. The values of ∆ and R were kept constant at 10 mins and 50%
throughout. Firstly, the results show degradations in car reductions for every model as the
clusters become progressively smaller, which is not unexpected as the smaller clusters have
fewer trips which consequently provide fewer intra-cluster trip-sharing opportunities. The
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Figure 2.6: Car Reduction Results of Every Model for N ∈ {100, 150, 200}.

results, however, do not fundamentally change the nature of the prior conclusions. MIP-
WD-WIO shows the least sensitivity to changes in N , whereby its results changed by only
±1% when N is increased or decreased by 50 from 150. Both MIP-DC and MIP-DD dis-
play moderate sensitivity to N , whereby decreasing it by 50 from 150 degrades the results
by 3–4%, while increasing N by 50 improves the results by 1–2%. Finally, the intermedi-
ate models MIP-DD-DIO and MIP-WD-DIO show the most sensitivity, with degradations
and improvements of about 4% and 2–3% respectively, which are not negligible, but the
improvements do not bring their results close to those of MIP-DC or MIP-DD. While larger
N values are always desirable for increasing trip sharing, they also cause the computation
times to increase exponentially as was shown in Figure 2.1(b). Therefore, its value has
to be judiciously selected in an operational setting to provide ample opportunities for trip
sharing while ensuring that the resulting problem instances are still tractable.

Figure 2.7 shows the car reduction performance of each model as ∆ is varied between
{5, 10, 15} mins while keeping N = 100 and R = 50%. Recall that ∆ directly affects
the size of the time windows of the arrival and departure times at the parking structures.
Therefore, the parameter impacts the QoS of the trip-sharing platform, where smaller val-
ues allow the commuters to arrive and depart at times that are closer to their desired times.
Smaller values of ∆ are therefore more desirable from a QoS enhancement perspective.
However, as seen in Figure 2.7, decreasing ∆ by merely 5 mins from the 10 mins ref-
erence value significantly degrades the car reduction performance of most models. MIP-
WD-WIO appears to be the least sensitive model again, but its results still degraded by
3–4%. MIP-DC and MIP-DD was more sensitive, having their results degrade by 7–9%,
and MIP-DD-DIO and MIP-WD-DIO were the most severely affected, having double digit
percentage degradations of 10–12%. Reducing ∆ affected the results by making the trip
schedules less flexible, consequently decreasing the number of trips that can be combined
by the REA to form feasible routes and the final performance of each model. Increasing ∆

by 5 mins from the 10 mins reference improved the car reduction performances of every
model, however by smaller degrees compared to their degradations, signaling diminishing
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Figure 2.7: Car Reduction Results of Every Model for ∆ ∈ {5, 10, 15} mins.

marginal improvements to car reduction as ∆ is increased. And while increasing ∆ im-
proves trip shareability by making the trip schedules more flexible, it comes at the price
of a corresponding decrease in QoS. This explains why ∆ is set to 10 mins for most of
the experiments, as it was deemed to still allow significant trip sharing while not severely
inconveniencing the commuters.

Finally, Figure 2.8 shows the sensitivity of each model to R while N and ∆ are kept
constant at 100 and 10 mins respectively. Recall that R directly influences the maximum
ride duration of every commuter’s trip. Thus, similar to ∆, it also affects the platform’s
QoS and keeping R as small as possible is most desirable from a QoS improvement point
of view. One would also anticipate a similar trade-off between car reduction and user
convenience when varying this parameter as its increase positively affects the flexibility of
trip schedules, which in turn leads to performance improvements for the models as shown
earlier. Unsurprisingly, such is the observation for Figure 2.8, where decreasing R by 25%
from the reference 50% value degrades the car reductions of every model. MIP-WD-WIO
is least affected (by only 3%), MIP-WD-DIO and MIP-DD-DIO are moderately affected
by 10–12%, and MIP-DD and MIP-DC are most severly affected in this case, having their
performance decline significantly by 15–18%. Increasing R by 25% and 50% relative to
the 50% reference expectedly improve car reduction, but by smaller degrees compared to
their declines, once again indicating diminishing marginal improvements to car reduction
performance with increases in R. Once again, by increasing R, one is trading off user
convenience for (marginal) improvements to car reduction performance. This also provides
the rationale for using R = 50% in most experiments, as it was deemed to provide the best
car reduction-user convenience trade-off.

2.5.5 Cost of Car Balancing

All models ensure that the cars leaving a cluster return to the cluster. Figure 2.9 shows
that the cost of this balancing constraint is relatively small. It compares MIP-DD and MIP-
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Figure 2.8: Car Reduction Results of Every Model for R ∈ {25%, 50%, 75%, 100%}.
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Figure 2.9: Cost of Car Balancing.

DC with two models, MIP-I and MIP-O that minimize the inbound and outbound routes
independently. Balancing the cars induces a cost increase of about 2% for MIP-DD and
0% for MIP-DC over MIP-O. The balancing cost of MIP-DD is slightly higher as it not
only balances the inbound and outbound car counts like MIP-DC, but it also ensures that
the drivers of their inbound and outbound routes are identical. Interestingly, the results of
MIP-O indicate that optimization of the outbound trips is more challenging due to their less
regular trip schedules.

2.6 Conclusion

This chapter explored the idea of community-based trip sharing and its application to car
pooling and car sharing. It studied the trade-off between the effectiveness of community-
based trip sharing in reducing daily car usage and the desirable principles for trip-sharing
platforms. These ideas were explored on a large case study using a dataset of 15,000
commuters working in downtown Ann Arbor, Michigan.

The results showed that a platform implementing the core principles for trip sharing
can reduce daily car usage by up to 61%, which amounts to approximately 5,400 cars, and
reduce traveled miles by 142,000 daily. However, as additional principles are integrated,
e.g., low coordination costs and clear commuter roles, the benefits progressively decline
and eventually disappear almost entirely. This study also showed that these results are ro-
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bust with respect to the cluster sizes, time windows, and ride-duration extensions, although
more flexibility on each dimension helps alleviate some of the trade-off, with temporal flex-
ibility bringing the most benefits. The study thus indicates that there are trade-offs between
the principles themselves.

Future work will be devoted to the maximization of trip-sharing opportunities by ex-
ploring other clustering techniques, integrating personalized matching constraints based
on individual commuter preferences, and scaling the algorithms for applications in large
metropolitan areas.
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CHAPTER 3

The Commute Trip-Sharing Problem

3.1 Introduction

Parking occupies a significant portion of our cities. In the United States, for instance, there
are at least 800 million parking spaces and, in Los Angeles County, 14% of the city space
is devoted to parking (Taylor 2018). Parking also contributes to congestion: Based on a
sample of 22 studies in the United States, the average share of traffic cruising to find a
parking spot is 30% and the average cruising time is just under 8 minutes in downtown
areas (Shoup 1997, 2006).

Parking pressure has also been steadily increasing in cities, university campuses, and
corporations, alongside other concerns such as traffic congestion, fuel prices, and green-
house gas emissions. In the city of Buffalo, New York, the overall supply of parking space
has remained constant for the last 20 years, while the downtown population and the work-
force have increased by 70% and 30% respectively (Epstein 2018). These parking short-
ages are perceived as an impediment to future economic developments, as corporations may
elect to move elsewhere when growing their operations. University campuses feel similar
parking pressures. For instance, Stanford University suffers from a lack of parking spaces
due to construction and a growth in population (Chesley 2017). The research underlying
this paper was originally motivated by parking pressure at the University of Michigan in
Ann Arbor. Figure 3.1 depicts the parking utilization of the 15 most used parking lots in
downtown Ann Arbor. They show a typical parking usage: Cars arrive in the morning, park
in the lot for 6 to 10 hours, and leave the lot in the evening.

To address the increasing demand on these lots, we started to investigate the potential
of a community-based car-pooling program in Chapter 2. The idea was to implement a
car-pooling program organized around the communities commuting to the university, ex-
ploiting the knowledge of when employees were arriving in the morning and leaving in
the evening. However, while car pooling has long been proposed as a solution to reduce
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Figure 3.1: Occupancy of the Main University Parking Lots in Downtown Ann Arbor.

peak-hour congestion and parking utilization, its adoption in the US remains poor as 76.4%
of American commuters chose to drive alone according to the 2013 American Community
Survey (McKenzie 2015). A study on factors influencing car-pool formation by Li et al.
(2007) revealed difficulty in finding people with the same location and schedule as the pri-
mary reason for not car pooling. As a result, we investigated how to alleviate this burden
and studied the feasibility of a matching platform that would automatically identify com-
muting groups based on factors determined to be consequential to individuals’ commuting
decisions in Chapter 2. One of the results of our study was the recognition that an effective
car-pooling platform will need to accommodate different sharing patterns for every week-
day and, as a result, the platform will need to optimize trip matching on a daily basis to
allow significant car pooling to occur.

The goal of this chapter is to propose and analyze scalable optimization algorithms for
powering such a platform. A meta-analysis of related work reveals that car-pooling and
car-sharing platforms should at least implement the following three guiding principles:

1. Spatial proximity of riders (Richardson and Young 1981, Buliung et al. 2009).
2. Temporal proximity of riders (Tsao and Lin 1999, Buliung et al. 2010, Poulenez-

Donovan and Ulberg 1994).
3. Guaranteed ride back home (Correia and Viegas 2011).

The first two guidelines are natural since car pooling is unlikely to occur for riders who are
not close spatially or whose schedules are not compatible. The third guideline is critical:
It is unlikely that many riders will use a platform that does not guarantee a ride back home
in the evening. The guarantee of a ride back home is one of the main contributions of this
work: For instance, the car-pooling platform SCOOP provides only weak guarantees for
“ride back” and has monthly limits on how much auxiliary services can be used when a
ride back is not available. In contrast, this study approaches the matching of riders in two
steps. In the first step, riders are grouped into neighborhoods using a clustering algorithm.
In the second step, an optimization algorithm selects drivers and matches riders to minimize
the number of cars and the total travel distance. The approach follows the three guiding
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principles listed above and, in particular, ensures that every rider has a guaranteed ride
back. The contributions of this study are threefold:

1. It first defines the CTSP to formally capture the matching problem described previ-
ously.

2. It proposes two algorithms, an REA and a Branch-and-Price Algorithm (BPA), to
solve the CTSP for a cluster of riders.

3. It analyzes the scalability of the two algorithms along different dimensions, including
the capacity of the vehicles, the size of the clusters, and their ability to be deployed
in real situations.

The CTSP can be viewed as a generalization of the VRP with routes satisfying time-
window, capacity, pairing, precedence, ride-duration, and driver constraints. In addition
to picking up and dropping off riders within desired time windows while ensuring vehicle
capacities are not exceeded, routes in the CTSP must also ensure their ride durations are not
excessively long to limit user inconvenience. In this sense, the CTSP shares some similari-
ties with the DARP. It differs from the DARP in that it relies on the use of personal vehicles
to serve all trip requests, which come in pairs for each commuter as each rider makes a trip
to the workplace and another back home. The drivers of these vehicles therefore belong the
set of riders, and their routes to the workplace and back home must be carefully constructed
and balanced to ensure that every rider is covered on their way to work and guaranteed a
ride back home. These additional requirements make the CTSP unique and particularly
challenging. The CTSP also uses a lexicographic objective function that first minimizes
the number of cars and then the total travel distance.

This study proposes two exact algorithms for the CTSP: An REA which exhaustively
searches for feasible routes from all possible trip combinations before route selection is
optimized with a MIP, and a BPA which uses column generation and a pricing algorithm
based on dynamic programming. On top of the two algorithms, this study highlights the
key characteristics of the CTSP that differentiate it from the DARP that allow its routes
to be enumerated by the REA. While the BPA builds on conventional techniques to solve
the CTSP via column generation, it introduces a wait-time relaxation technique, which is
a novel alternative to the weak and strong dominance relations proposed by Gschwind and
Irnich (2015) for finding feasible routes that simultaneously satisfy time-window and ride-
duration constraints in the pricing problem. This study also proposes a time-limited, root-
node heuristic which is derived from the BPA and demonstrates its capability to produce
high-quality solutions for medium to large problem instances within a 10-minute time span,
making it well suited for time-constrained scenarios within an operational setting. Finally,
this study proposes and compares a couple of clustering algorithms to decompose large-
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scale problems by grouping commuters based on their home locations and trip schedules.
The algorithms are then used to generate problem instances from the real-world dataset of
commute trips from the city of Ann Arbor, Michigan.

The remainder of this chapter is organized as follows. Section 3.2 provides a formal
definition and a mathematical formulation of the CTSP, followed by Section 3.3 which
discusses the first algorithm to solve the problem, the REA. Next, Section 3.4 describes the
second algorithm, the BPA, together with its derived root-node heuristic. The clustering
algorithms are presented in Section 3.5, while the computational results are reported in
Section 3.6. Finally, some concluding remarks are provided in Section 3.7.

3.2 The Commute Trip-Sharing Problem

The CTSP aims at finding a set of minimum-cost feasible routes to cover all inbound and
outbound trips of a set of commuters C for a given day while ensuring the set of drivers
for the inbound and the outbound routes are identical. Let Ω+ and Ω− denote the set of all
feasible inbound and outbound routes respectively, and cr denote the cost of route r. The
CTSP formulation uses a binary variable Xr to indicate whether a route r ∈ Ω+ ∪ Ω− is
selected, a binary constant αr,i which is equal to 1 iff route r serves rider i (i.e., αr,i = 1 iff
i ∈ Cr), and a binary constant βr,i which is equal to 1 iff rider i is the driver of route r (i.e.,
βr,i = 1 iff i = Dr). The problem formulation is given by (3.1)–(3.5).

min
∑

r∈Ω+∪Ω−

crXr (3.1)

s.t.
∑
r∈Ω+

αr,iXr = 1 ∀i ∈ C (3.2)∑
r∈Ω−

αr,iXr = 1 ∀i ∈ C (3.3)∑
r∈Ω+

βr,iXr −
∑
r̂∈Ω−

βr̂,iXr̂ = 0 ∀i ∈ C (3.4)

Xr ∈ {0, 1} ∀r ∈ Ω+ ∪ Ω− (3.5)

The model features a lexicographic objective that first minimizes the number of vehicles
and then the total distance. It is rewritten into a single objective by appropriate weighting
of the two sub-objectives. The cost cr penalizes the total distance of route r and heavily
penalizes its selection. Let ς(i,j) denote the distance of the shortest path between nodes i
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and j. The cost cr is then given by the addition of variable and fixed costs of the route:

cr = ĉr + c̄ (3.6)

where the variable and fixed costs, ĉr and c̄, are given by:

ĉr =
∑

(i,j)∈r

ς(i,j) (3.7)

c̄ = M max
r∈Ω+∪Ω−

∑
(i,j)∈r

ς(i,j) (3.8)

where M is a large number. In practice, M is set to 1000, which is sufficiently large to
ensure that the number of selected routes is first minimized followed by their total distance.
Constraints (3.2) and (3.3) enforce coverage of each rider’s inbound and outbound trips
by exactly one route each, while constraints (3.4) ensure drivers of inbound and outbound
routes are identical. The set-partitioning problem of (3.1)–(3.5) is referred to as the MP
throughout the rest of this chapter.

The CTSP is essentially a VRP with capacity, time-window, pairing, precedence, ride-
duration, and driver constraints, making it most similar to the DARP. However, the key
distinctions of the CTSP are:

(a) Drivers in the CTSP are members of the set of riders, i.e., Dr ∈ Cr. This leads to
driver constraints which require routes to start and end at the drivers’ origins and des-
tinations respectively, whereas requests in the DARP are served by shared vehicles
whose routes begin and end at a central depot.

(b) The set of drivers for the inbound and the outbound routes needs to be balanced, lead-
ing to constraints (3.4) in the MP. These constraints add another layer of complexity
which is not present in the DARP.

Therefore, the CTSP can also be seen as a DARP with additional constraints.

3.3 The Route-Enumeration Algorithm

The first approach for solving the CTSP is by enumerating all routes in Ω+ ∪ Ω− before
solving the MP with a MIP solver. The REA, described in detail in Section 2.2.2, supports
this approach by exhaustively searching for these routes from all possible combinations of
inbound or outbound trips with a maximum cardinality of K. Therefore, in this approach,
the REA is first executed to enumerate Ω+ ∪ Ω−, after which the MP is solved to obtain a
solution to the CTSP.
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The fact that the drivers are commuters themselves is the key characteristic of the CTSP;
it allows its routes to be exhaustively enumerated. Indeed, drivers must complete their trips
within specific time windows and, most importantly, their trips are subject to ride-duration
constraints. As a result, in general, a route typically consists of three phases: A pickup
phase where the driver picks up passengers, a driving phase where the vehicle travels to
the destination, and a drop-off phase where the driver drops off all the passengers before
ending her trip. After the drop-offs, the driver has no time to go back and pick up another
set of passengers due to her trip’s time-window and ride-duration constraints. This permits
the REA to consider only routes that contain up to K passengers to enumerate all possible
routes, and K is typically small. In fact, as shown in Section 2.2.2, |Ω+ ∪ Ω− | = O(nK).
In contrast, the DARP uses dedicated drivers who are not subjected to any ride-duration
constraints and can serve riders throughout the day. Therefore it cannot restrict its attention
to routes with only K passengers, as the number of passengers in its routes is not limited
by the capacity of the vehicle, but it is limited by the total number of travelers.

3.4 The Branch-and-Price Algorithm

The BPA combines existing techniques with some novel elements to solve the CTSP. At
its core is a conventional column-generation algorithm which utilizes a RMP—the linear
relaxation of the MP defined on a subset of all feasible routes Ω+′ ∪ Ω−′—and solves a
PSP to identify new feasible routes with negative reduced costs to augment Ω+′ ∪Ω−′. The
PSP solves several dynamic programs that search for resource-constrained shortest paths
representing the feasible routes. The column-generation algorithm solves the RMP and the
PSP iteratively until the PSP is unable to find any routes with negative reduce cost, at which
point the objective value of the RMP converges to the optimal objective value of the linear
relaxation of the original MP. Furthermore, the solution of the RMP represents the optimal
solution to the original MP if it is integral at the convergence stage. Otherwise, a bi-level
branching strategy that is tailored specifically for the CTSP is employed to search for the
optimal integer solution.

This work introduces a novel wait-time relaxation technique that not only obtains fea-

sible routes that simultaneously satisfy time-window and ride-duration constraints in the

PSP, but also guarantees elementarity of the routes. It proposes utilization of a resource
that models trip durations excluding wait times which allow the dynamic programs to pro-
duce preliminary routes with minimal reduced costs that first satisfy a set of constraints
necessary for route feasibility. The feasibility of the preliminary routes are then evaluated
with the inclusion of wait times, and infeasible ones are added to a set of forbidden paths
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whose members are prevented from subsequent discovery via the dynamic-programming
approach of Di Puglia Pugliese and Guerriero (2013a).

3.4.1 The Pricing Subproblem

The PSP is responsible for finding new feasible routes with negative reduced costs. Letting
π+
i , π−i , and σi denote the optimal duals of constraints (3.2), (3.3), and (3.4) of the RMP

respectively, the reduced cost of an inbound route r+ is given by:

rcr+ = cr+ −
∑
i∈Cr+

π+
i − σDr+ (3.9)

while that of an outbound route r− is given by:

rcr− = cr− −
∑
i∈Cr−

π−i + σDr− (3.10)

The desired routes are obtained by considering each rider d ∈ C as the driver of an inbound
route r+

d and an outbound route r−d , and then finding such routes with minimum reduced
costs. To obtain these routes, the algorithm builds a pair of graphs G+

d and G−d for each
d ∈ C. In the following, G denotes the set of all constructed graphs, i.e., G = {G+

d : d ∈
C} ∪ {G−d : d ∈ C}. Without loss of generality, the presentation outlines how a route r+

d

with minimal reduced cost is found from G+
d .

First, let n = | C |, and O+ = {1, · · · , n} and D+ = {n + 1, · · · , 2n} denote the sets
of all origin and destination nodes respectively. The origin and destination of rider i are
then represented by nodes i and n + i respectively. The graph G+

d = (N+
d ,A

+
d ) is built

with nodesN+
d = O+ ∪D+ and fully-connected edges A+

d . A ride-duration limit Li and a
demand κi, representing the number of riders to be picked up at node i, are then associated
with each node i ∈ O+, a time window [ai, bi] and a service duration ζi are associated with
each node i ∈ N+

d , and a travel time τ(i,j) and a reduced cost c(i,j) are associated with each
edge (i, j) ∈ A+

d . Letting δ+(i) and δ−(i) denote the set of outgoing and incoming edges
of node i, the edge costs are defined as follows so that the total cost of any path from d to
n+ d is equivalent to rcr+d :

c(i,j) =


c̄+ ς(i,j) − π+

i − σd ∀(i, j) ∈ δ+(d)

ς(i,j) − π+
i ∀i ∈ O+ \ {d}, ∀(i, j) ∈ δ+(i)

ς(i,j) ∀i ∈ D+, ∀(i, j) ∈ δ+(i)

(3.11)
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Inbound Route Graph, 

For each commuter i:
• Origin node: i
• Destination node: n + i
Virtual source node: 0
Virtual sink node: 2n + 1

Figure 3.2: Graph G+
d After Application of Edge Elimination Rules (a) and (b) from Section

3.4.2 (Each Dotted Line Represents a Pair of Bidirectional Edges).

Similarly, letting O− and D− denote the sets of all outbound origin and destination
nodes, the graph G−d = (N−d ,A

−
d ) is built with nodesN−d = O− ∪D− and fully-connected

edges A−d , and the costs of edges (i, j) ∈ A−d are defined as follows to ensure the total cost
of any path from d to n+ d in G−d is equal to rcr−d :

c(i,j) =


c̄+ ς(i,j) − π−i + σd ∀(i, j) ∈ δ+(d)

ς(i,j) − π−i ∀i ∈ O− \ {d}, ∀(i, j) ∈ δ+(i)

ς(i,j) ∀i ∈ D−, ∀(i, j) ∈ δ+(i)

(3.12)

A priori feasibility constraints, further detailed in Section 3.4.2, are then applied to identify
and eliminate edges that cannot belong to any feasible route. Figure 3.2 provides a sketch
of G+

d after application of several of these edge-elimination rules.
The minimum-reduced-cost r+

d is then obtained by finding the least-cost feasible path
from d to n + d in G+

d . Recall that for the path to be feasible, it must satisfy the time-
window, capacity, pairing, precedence, ride-duration, and driver constraints. The problem
is therefore an ESPPRC which is known to be NP-hard (Dror 1994). While the driver
constraint is enforced by construction by making d the source and n + d the target of the
shortest-path problem, the remaining constraints are implemented by introducing and en-
forcing constrained resources in a Resource-Constrained Shortest Path Algorithm (RCSPA)
which is further elaborated in Section 3.4.3. On the whole, the PSP involves solving 2n

independent ESPPRCs to produce up to 2n feasible routes with negative reduced costs.
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3.4.2 Time-Window Tightening and Edge Elimination

Pre-processing of the time-window, precedence, pairing, capacity, ride-duration limit, and
driver constraints makes it possible to identify edges that cannot belong to any feasible
route which may then be removed from G. Without loss of generality, the following de-
scription focuses on edge elimination for G+

d .
Prior to determining infeasible edges, the time windows of all nodes are tightened by

sequentially reducing their upper and lower bounds using the following rules introduced by
Dumas et al. (1991).

• bi = min{bi, bn+d − ζi − τ(i,n+d)}, ∀i ∈ D+ \ {n+ d}
• bi = min{bi, bn+i − ζi − τ(i,n+i)}, ∀i ∈ O+ \ {d}
• ai = max{ai, ad + ζd + τ(d,i)}, ∀i ∈ O+ \ {d}
• ai = max{ai, ai−n + ζi−n + τ(i−n,i)}, ∀i ∈ D+ \ {n+ d}

The following constraints and rules, derived by combining those proposed by Dumas et al.
(1991) and Cordeau (2006), are then applied to identify and eliminate infeasible edges:

(a) Driver: Edges {(d, n+ i), (i, d), (i, n+ d), (n+ i, d), (n+ d, i), (n+ d, n+ i) : i ∈
O+ \ {d}}.

(b) Pairing and precedence: Edges {(n+ i, i) : i ∈ O+}.
(c) Capacity: Edges {(i, j), (j, i), (i, n+j), (j, n+ i), (n+ i, n+j), (n+j, n+ i) : i, j ∈
O+ ∧ i 6= j ∧ κi + κj > K}.

(d) Time windows: Edges {(i, j) : (i, j) ∈ A+
d ∧ ai + ζi + τ(i,j) > bj}.

(e) Ride-duration limit: Edges {(i, j), (j, n + i) : i ∈ O+ ∧ j ∈ N+
d ∧ i 6= j ∧ τ(i,j) +

ζj + τ(j,n+i) > Li}.
(f) Pairing, time windows, and ride-duration limit:

• Edges {(i, n+ j) : i, j ∈ O+ ∧ i 6= j ∧ ¬feasible(j → i→ n+ j → n+ i)}.
• Edges {(n+ i, j) : i, j ∈ O+ ∧ i 6= j ∧ ¬feasible(i→ n+ i→ j → n+ j)}.
• Edges {(i, j) : i, j ∈ O+ ∧ i 6= j ∧ ¬feasible(i → j → n + i → n + j) ∧
¬feasible(i→ j → n+ j → n+ i)}.

• Edges {(n + i, n + j) : i, j ∈ O+ ∧ i 6= j ∧ ¬feasible(i → j → n + i →
n+ j) ∧ ¬feasible(j → i→ n+ i→ n+ j)}.

Note that the rules in (f) utilize the feasible function introduced in Section 1.1.2 to
determine if a partial route satisfies the time-window and the ride-duration limit constraints.
For instance, the first says edge (i, n + j) is infeasible if route j → i → n + j → n + i

is infeasible. Edge elimination rules for G−d are obtained by replacing O+, D+, and A+
d in

the rules above with O−, D−, and A−d respectively.
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3.4.3 The Resource-Constrained Shortest Path Algorithm

The PSP uses an RCSPA that is based on the label-setting dynamic program proposed by
Desrochers (1988) to find the least-cost feasible path from any graph in G, i.e., one that
satisfies time-window, capacity, pairing, precedence, and ride-duration constraints. The
path searched by this algorithm is identical to that sought in the PSP of the DARP by
Gschwind and Irnich (2015). Their method incorporated novel dominance rules in the
labeling procedure to directly enforce all constraints in the dynamic program.

On the other hand, the RCSPA presented here first searches for the minimum-cost, fea-

sible route that ignores the wait times. The routes that are infeasible with respect to the
wait times are then pruned in a second step. This procedure is motivated by the fact that the
optimal values for the wait times require knowledge of the complete route, which is only
known at the end of the search. By relaxing the wait times, the dynamic program first finds
a candidate route which is later evaluated for feasibility with respect to the wait times once
it is complete. Moreover, subsequent empirical evaluations revealed that for the problem
instances considered, an overwhelming majority of the candidate routes are feasible with
the inclusion of wait times. The resources utilized in the algorithm are also capable of
guaranteeing generation of elementary paths.

The RCSPA can therefore be seen as a middle ground approach between the method
by Ropke and Cordeau (2006) which completely relaxes the ride-duration constraint in
the PSP and prevents selection of paths that violate the constraint through infeasible path
elimination constraints in the RMP, and that by Gschwind and Irnich (2015) which directly
enforces all constraints in the dynamic program of the PSP. Without loss of generality, this
section describes the algorithm for G+

d .

3.4.3.1 Label definition

Let Pkl denote the kth path from the source d to node l. A label Lkl with five resources
(ckl , T

k
l , Ckl ,Rk

l ,Wk
l ) is associated with each Pkl . Resource ckl represents the total cost of

edges in Pkl , i.e., ckl =
∑

(i,j)∈Pkl
c(i,j), whereas T kl is the time at which service at node l

begins for Pkl . Resource Ckl denotes the set of riders on the vehicle right after visiting node
l on Pkl . It is equivalent to the set of pickup nodes visited on Pkl whose corresponding
drop-off nodes have yet to be visited. On the other hand, Rk

l denotes the set of all riders
that have been picked up by Pkl after visiting node l. It is equivalent to the set of all pickup
nodes visited by Pkl . Finally, Wk

l is the set of trip durations, excluding wait times, for
each rider in Rk

l . Letting Pkl (m) denote the set of edges from Pkl on which rider m is
on the vehicle and wkl (m) be the trip duration of rider m excluding wait times on Pkl , i.e.,
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wkl (m) =
∑

(i,j)∈Pkl (m) ζi+τ(i,j), thenWk
l = {wkl (m) : m ∈ Rk

l }. The load Y k
l of a vehicle

after visiting node l on path Pkl can be easily obtained from Y k
l =

∑
i∈Ckl

κi. Therefore,
Lkl contains sufficient information to ensure Pkl satisfies pairing, precedence, time-window,
and capacity constraints. While resourceWk

l is not sufficient for verifying compliance to
the ride-duration limit for each rider, it does provide a lower bound to each ride duration
which must necessarily satisfy the limit for Pkl to be feasible.

3.4.3.2 Label extension

Label Lkl is maintained using a forward dynamic program. In the label-setting algorithm,
an attempt is made to extend Lkl along edge (l, j) to produce label Lk′j for path Pk′j . The
resources in Lk′j are calculated as follows:

ck
′

j = ckl + c(l,j) (3.13)

T k
′

j =

max{aj, T kl + ζl + τ(l,j)} if j ∈ O+

T kl + ζl + τ(l,j) otherwise
(3.14)

Ck′j =

Ckl ∪ {j} if j ∈ O+

Ckl \ {j − n} otherwise
(3.15)

Rk′

j = Rk
l ∪ {j} if j ∈ O+ (3.16)

wk
′

j (j) = 0 if j ∈ O+ ∧ j /∈ Rk
l (3.17)

wk
′

j (i) = wkl (i) + ζl + τ(l,j) ∀i ∈ Ckl (3.18)

The extension is performed if and only if:

T k
′

j ≤ bj, (3.19)

j /∈ Ckl if j ∈ O+, (3.20)

j − n ∈ Ckl if j ∈ D+, (3.21)∑
i∈Ck′j

κi ≤ K, and (3.22)

wk
′

j (i)− ζi ≤ Li ∀i ∈ Ckl . (3.23)

Constraints (3.19)–(3.23) list conditions that are necessary to ensure feasibility ofPk′j . Note
that if wk′j (i)− ζi, which constitutes rider i’s ride duration excluding wait times and hence
is the lower bound to her ride duration, is already exceeding Li, then Li will certainly be
exceeded if wait times were included. Therefore, the conditions in (3.23) are necessary but

51



not sufficient for enforcing the ride-duration limit constraint for each rider.
The algorithm is initialized by path P1

d whose label L1
d = (0, ad, {d}, {d}, {0}), and a

preliminary solution is given by path Pk∗n+d whose cost ck∗n+d is minimal and whose resource
Ck∗n+d = Ø. Note that a non-elementary path may result if the graph contains a negative-cost
cycle. However, such paths may be eliminated by setting the ride-duration limit of each
rider to be less than twice the ride duration of her direct trip, i.e., Li < 2τ(i,n+i) + ζi.

Proposition 3.4.1. Non-elementary paths will not be generated by the RCSPA if Li <
2τ(i,n+i) + ζi for each i ∈ O+.

Proof. Suppose a non-elementary path is generated by the RCSPA. On the path, there
must exist at least one rider i who is served more than once. For such riders, both i and
n + i must be visited more than once with i preceding n + i each time and n + i being
visited first before i is visited again due to the pairing and precedence constraints. As a
result, resource wk∗n+d(i) ≥ 2(ζi + τ(i,n+i)) and therefore wk∗n+d(i) − ζi ≥ 2τ(i,n+i) + ζi. If
Li < 2τ(i,n+i) + ζi, then wk∗n+d(i) − ζi > Li. Condition (3.23) is thus violated, causing the
path to not be extended.

Also note that as the restrictions on Wk
l are not sufficient for ensuring satisfaction of

the ride-duration constraints, Pk∗n+d may be infeasible. Therefore, an additional step needs
to be performed to verify the feasibility of Pk∗n+d.

3.4.3.3 Forbidding paths violating the ride-duration limit

Feasibility of the preliminary solution Pk∗n+d with the inclusion of wait times can be verified
using the feasible function as Pk∗n+d represents a complete route. A feasible path Pk∗n+d

represents the optimal solution to the ESPPRC. While initial empirical evaluations revealed
that the vast majority of the preliminary routes found (> 99% of the paths found) are
feasible, infeasible paths are still discovered on rare occasions. In such cases, the infeasible
path is added to a set of forbidden paths associated with the graph, after which the RCSPA
is executed again repeatedly to generate newer paths until a feasible one is found.

The shortest path problem with forbidden paths (Villeneuve and Desaulniers 2005, Di
Puglia Pugliese and Guerriero 2013b,a) is a method that has been successfully applied for
handling constraints which are hard or impossible to model as resources. This work exploits
this idea to properly enforce the ride-duration limit constraints by preventing infeasible
preliminary routes from being discovered by the RCSPA again. The dynamic-programming
approach of Di Puglia Pugliese and Guerriero (2013a) is employed for this purpose since it
fits well into the label-setting framework.
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Firstly, let F+
d denote the set of forbidden paths for G+

d . Also let ḟ denote the first
edge of a forbidden path f , | f | denote the total number of edges on the path, and hkl (f)

denote the number of consecutive edges of f starting from ḟ that is present in Pkl . To forbid
paths in F+

d from being discovered by the RCSPA, an additional resource Hk
l = {hkl (f) :

f ∈ F+
d } is introduced to the label so that Lkl = (ckl , T

k
l , Ckl ,Rk

l ,Wk
l ,Hk

l ). During label
extension along edge (l, j),Hk′

j is calculated as follows:

hk
′

j (f) =



1 if (l, j) ∈ f ∧ hkl (f) = 0 ∧ (l, j) = ḟ

0 if (l, j) ∈ f ∧ hkl (f) = 0 ∧ (l, j) 6= ḟ

hkl (f) + 1 if (l, j) ∈ f ∧ hkl (f) ≥ 1 ∧ consec(Pkl , (l, j), f)

0 if (l, j) ∈ f ∧ hkl (f) ≥ 1 ∧ ¬consec(Pkl , (l, j), f)

0 if (l, j) /∈ f

∀f ∈ F+
d

(3.24)
consec(Pkl , (l, j), f) is a function that returns true if there exists a set of consecutive edges
in path {Pkl , (l, j)} ending with (l, j) that exactly matches a set of consecutive edges in path
f starting from ḟ , and returns false otherwise. The extended resource must then satisfy the
following constraints:

hk
′

j (f) ≤ | f | − 1 ∀f ∈ F+
d (3.25)

since Pk′j would contain a forbidden path otherwise. The resource is initialized with
h1
d(f) = 0 for each f ∈ F+

d . Resource Hk
l prevents the RCSPA from discovering in-

feasible preliminary routes stored in F+
d again, thus ensuring that the algorithm’s solution

is always feasible.

3.4.3.4 Label elimination

As efficiency of the label-setting algorithm increases with the number of eliminated labels,
a label and its associated path is eliminated if it is established that they cannot belong to
either an optimal or a feasible solution. Firstly, dominance rules are applied to determine
if a label does not belong to an optimal solution.
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Definition 3.4.1 (Label Domination). Lkl dominates Lk′l if and only if:

ckl ≤ ck
′

l , (3.26)

T kl ≤ T k
′

l , (3.27)

Ckl ⊆ Ck
′

l , (3.28)

wkl (i) ≤ wk
′

l (i) ∀i ∈ Ckl , and (3.29)

hkl (f) ≤ hk
′

l (f) ∀f ∈ F+
d . (3.30)

If Lk′l is dominated by Lkl , then Lk′l and its associated path Pk′l cannot belong to an
optimal solution to the ESPPRC as every feasible extension to Pk′l is also applicable to Pkl
at an equal or lower cost. Therefore Lk′l and Pk′l may be eliminated.

Next, the following rules are applied to identify labels that cannot belong to a feasible
solution:

(a) Lkl such that Ckl \ {d} 6= Ø is eliminated if there exists i ∈ Ckl \ {d} where the path
extension l→ n+ i→ n+ d is infeasible.

(b) Lkl such that | Ckl \{d} | ≥ 2 is eliminated if there exists i, j ∈ Ckl \{d}∧ i 6= j where
path extensions l → n + i → n + j → n + d and l → n + j → n + i → n + d are
both infeasible.

For the rules above, feasibility of the path extensions are verified by checking if they satisfy
the time-window and ride-duration constraints excluding wait times, i.e., by checking if
each node along the extension satisfies conditions (3.19) and (3.23). The rules are inspired
by the notion of non-post-feasible labels introduced by Dumas et al. (1991). They are
essentially heuristics which check if at least one (for rule (a)) or two (for rule (b)) of the
riders on the vehicle, excluding the driver, can be delivered to their destinations while
respecting their time windows and ride-duration limits if wait times are ignored. While not
sufficient, these conditions are necessary for the feasibility of any extension to Pkl , and they
result in the elimination of a large number of infeasible labels in practice.

3.4.4 Obtaining an Integer Solution

The unique structure of the MP lets us infer a few properties about its solution. Firstly,
since the total number of selected inbound routes must match that of outbound routes in
any solution, the total number of selected routes in an integer solution must be even, i.e.,∑

r∈Ω+∪Ω− Xr ∈ {2a : a ∈ Z≥0}. Secondly, since only integral distances are used in this
work, all routes costs and consequently the objective value of an integer solution must also
be integral, i.e.,

∑
r∈Ω+∪Ω− crXr ∈ Z≥0.
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These two properties are leveraged to obtain an integer solution should the optimal
solution of the RMP not be integral. Let χ∗ denote the total number of selected routes at
column-generation convergence, i.e., χ∗ =

∑
r∈Ω+′∪Ω−′ Xr, and z∗ denote the objective

value at convergence. If χ∗ is not an even integer, the following cut is introduced to the
RMP to round up the total number of selected routes to the nearest even integer.

∑
r∈Ω+′∪Ω−′

Xr ≥ 2

⌈
χ∗

2

⌉
(3.31)

The dual of the cut is appropriately transferred to the PSP and the column-generation pro-
cedure is resumed until convergence again. If z∗ is not integral at this point, another cut is
added to the RMP to round up its objective value to the nearest integer:∑

r∈Ω+′∪Ω−′

crXr ≥ dz∗e (3.32)

Once again, the dual of the cut is transferred to the PSP and the column-generation proce-
dure is resumed until convergence. If the solution of the RMP is still not integral at this
stage, then a branch-and-bound tree needs to be explored whereby additional columns may
be generated at each tree node.

A bi-level branching scheme is employed for the branch-and-bound tree, whereby in-
tegrality of driver selection is enforced in the first level and integrality of edge flow is
enforced in the second. In the first level, let Vi be a variable that indicates whether rider i
is selected as the driver in a solution. It is given by:

Vi =
∑
r∈Ω+′

βr,iXr ∀i ∈ C (3.33)

In an integral solution, all Vis must be binary. Therefore if they are not, a fractional Vi is
selected and two branches are created; one fixing it to 0 and another fixing it to 1. The
branch decision of Vi = 0 is enforced in the RMP by removing columns where rider i is
the driver, i.e., {r ∈ Ω+′ ∪ Ω−′ : Dr = i}, while it is enforced in the PSP by not solving
the ESPPRC on graphs where rider i is the driver, i.e., G+

i and G−i . To enforce Vi = 1, the
following cut is introduced to the RMP:∑

r∈Ω+′:Dr=i

Xr = 1 (3.34)

while ensuring its dual is properly incorporated into the PSP. No additional steps are
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needed to enforce the branch decision in the PSP since the ESPPRCs on graphs G+
i and G−i

are already being solved by default.
If all Vis are binary and the solution of the RMP is still fractional, then a second branch-

ing scheme based on that proposed by Desrochers et al. (1992) is utilized. In the second
level, let ω(i, j) denote the set of all routes utilizing edge (i, j), i.e., ω(i, j) = {r ∈
Ω+′ ∪ Ω−′ : (i, j) ∈ r}, and let F(i,j) be the flow variable for edge (i, j) that indicates
if node i should be served before node j in a solution. It is given by:

F(i,j) =
∑

r∈ω(i,j)

Xr ∀(i, j) ∈ {A+
d ∪ A

−
d : d ∈ C} (3.35)

Also let A+ and A− denote the set of edges from all inbound and outbound graphs respec-
tively, i.e., A+ = {A+

d : d ∈ C}, A− = {A−d : d ∈ C}. In an integer solution, all F(i,j)s
must be binary. In a fractional solution however, one of the following cases may occur:

(a) F(i,j) for all (i, j) ∈ A+ are binary, but there exists (u, v) ∈ A− such that F(u,v) is
fractional.

(b) F(u,v) for all (u, v) ∈ A− are binary, but there exists (i, j) ∈ A+ such that F(i,j) is
fractional.

(c) There exist (i, j) ∈ A+ and (u, v) ∈ A− such that both F(i,j) and F(u,v) are fractional.
If either case (a) or (b) occurs, then an edge (i, j) whose flow is fractional is selected
(from either A+ or A− depending on the case) and two branches are created; one setting
F(i,j) = 0 and another setting F(i,j) = 1. Should case (c) occurs, then two edges whose
flows are fractional are selected, (i, j) ∈ A+ and (u, v) ∈ A−, and four branches are
created with the following decisions:

1. F(i,j) = 0 ∧ F(u,v) = 0.
2. F(i,j) = 0 ∧ F(u,v) = 1.
3. F(i,j) = 1 ∧ F(u,v) = 0.
4. F(i,j) = 1 ∧ F(u,v) = 1.
F(i,j) = 0 is enforced in the RMP by removing columns containing edge (i, j), whereas

in the PSP, edge (i, j) is removed from all graphs to prevent columns containing it from
being generated. To enforce F(i,j) = 1, edges in sets δ+(i)\{(i, j)} and δ−(j)\{(i, j)} are
removed from all graphs in the PSP and columns containing the edges are correspondingly
removed from the RMP.

In practice, cuts (3.31), (3.32), and (3.34) are introduced into the RMP (one for every
rider i ∈ C in the case of (3.34)) from the very beginning with their right-hand sides
initially set to ≥ 0. The right-hand sides are then correspondingly updated to those shown
in (3.31), (3.32), and (3.34) as the algorithm progresses. Let µ, ν, and φi denote the duals
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of cuts (3.31), (3.32), and (3.34) respectively. These duals are incorporated into the PSP by
updating the costs of edges (i, j) ∈ A+

d defined earlier in (3.11) to:

c(i,j) =


c̄(1− ν) + ς(i,j)(1− ν)− π+

i − σd − µ− φi ∀(i, j) ∈ δ+(d)

ς(i,j)(1− ν)− π+
i ∀i ∈ O+ \ {d}, ∀(i, j) ∈ δ+(i)

ς(i,j)(1− ν) ∀i ∈ D+, ∀(i, j) ∈ δ+(i)

(3.36)
and those of (i, j) ∈ A−d defined in (3.12) to:

c(i,j) =


c̄(1− ν) + ς(i,j)(1− ν)− π−i + σd − µ ∀(i, j) ∈ δ+(d)

ς(i,j)(1− ν)− π−i ∀i ∈ O− \ {d}, ∀(i, j) ∈ δ+(i)

ς(i,j)(1− ν) ∀i ∈ D−, ∀(i, j) ∈ δ+(i)

(3.37)

3.4.5 Implementation Strategies

Several strategies are adopted in our implementation to reduce its execution time. Firstly,
since the PSP involves solving at most 2n ESPPRCs which are independent, they are solved
in parallel and multiple columns are added to the RMP in each column-generation iteration.

Secondly, to check for the convergence of the column-generation phase, a primal upper
bound and a dual lower bound are maintained for the optimal objective value, z∗. The
objective value of the RMP after each iteration, zRMP, serves as the primal upper bound
while the lower bound proposed by Lübbecke and Desrosiers (2005) is used as the dual
lower bound. It is given by zLB = zRMP + rc∗λ, where rc∗ is the smallest route reduced
cost discovered in the PSP and λ is an upper bound to the number of selected routes, i.e.,
λ ≥

∑
r∈Ω+∪Ω− Xr. In this case, it is easy to see that λ can be chosen as 2n.

Let χRMP and χLB be the upper and lower bounds to the total number of selected routes,
obtained by considering only the fixed cost contributions to zRMP and zLB respectively.
Since the number of selected routes must be even for an integer solution, the column gen-
eration is first suspended when 2dχRMP/2e − χLB < 2. Cut (3.31) is then introduced to
the RMP to round up the total to the nearest even integer after which the column genera-
tion is resumed. Since the optimal objective value of the MP must be integral, the column
generation is terminated when dzRMPe − zLB < 1, after which cut (3.32) is introduced.

Finally, the branch-and-bound tree is explored depth first to quickly obtain integer so-
lutions. During the tree exploration, a best integer solution may be obtained at any tree
node by solving the RMP as a MIP (in practice, this is only done for every 1,000 tree nodes
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explored beginning with the root node due to its potentially high expense). Let zMIP denote
the objective value of the MIP solution, z∗int be that of the optimal integer solution sought,
and z∗min be the smallest z∗ from all unexplored tree nodes. Since at any stage of the tree
exploration, z∗min ≤ z∗int ≤ zMIP, it is terminated when zMIP − z∗min < 1, at which point the
optimal integer solution is given by the best integer solution.

3.4.6 The Root-Node Heuristic

To assess the algorithm’s ability to produce high-quality solutions in an operational setting,
a heuristic is conceived based on the BPA. It simply executes column generation at the root
node of the branch-and-price tree within an allocated time budget tRMP, and then finds an
integer solution by solving the RMP as a MIP within another time budget tMIP. The lexico-
graphic objective function is simplified to only minimize the number of selected routes by
setting route costs cr ≡ 1. The quality of the heuristic solution is assessed by calculating
its optimality gap, given by (zMIP− zLB)/zMIP, where zMIP is the objective value of the MIP
solution and zLB is its lower bound. Bound zLB is given by the optimal objective value
of the RMP at convergence, z∗. Should the RMP not converge within tRMP, a dual lower
bound to z∗ that is calculated using the method proposed by Farley (1990) is used instead.
Farley’s lower bound is given by:

zLB = zRMP
cr′

πᵀar′
(3.38)

where r′ = arg minr∈Ω+∪Ω−{cr/πᵀar : πᵀar > 0}, π is the dual optimal solution of
the RMP, and ar is the column of constraint coefficients of route r. The unit route costs
simplify the lower bound to zLB = zRMP/(1− rc∗).

An alternate variant of the heuristic which relaxes forbidden paths in the RCSPA is also
considered. The consideration is made based on a couple of preliminary observations: (1)
Preliminary solutions to the RCSPA are very rarely infeasible, and (2) forbidding discovery
of infeasible paths in the RCSPA is expensive. A consequence of this relaxation is that
infeasible routes may be introduced into the RMP and therefore: (1) They will need to
be filtered out before the RMP is solved as a MIP, and (2) the RMP may converge to a
weaker lower bound, zLB ≤ z∗. Despite the potential loss in solution quality, the relaxation
strategy may still be worthwhile as the loss may be very small and it may be outweighed
by the gains resulting from shorter computation times.
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3.5 The Clustering Algorithms

Similar to Chapter 2, this work first clusters the commuters into artificial neighborhoods
with no more than N commuters before the CTSP is solved for each cluster independently.
It is the mechanism by which problem instances of different sizes are constructed for the
following computational evaluations. The clustering strategy is adopted for the same rea-
sons described in Section 2.2.1: It is necessary to produce computationally tractable prob-
lem instances, as preliminary evaluations have revealed that a global solution cannot be
obtained for the dataset considered within a time frame that is reasonable for an opera-
tional setting, and it is also a decomposition technique that is in line with recommendations
from other works, e.g. Agatz et al. (2012). The same caveats mentioned in Section 2.2.1
therefore also apply here: While the technique decomposes the dataset into smaller, inde-
pendent subproblems which can then be solved concurrently, the tractability gained comes
at the price of the preclusion of a global optimal solution. Nevertheless, as the follow-
ing computational results will show, an attempt is still made to estimate a global optimal
solution using the root-node heuristic, albeit with an inordinate time budget.

This work considers two clustering techniques. The primary technique, referred to as
the spatial clustering algorithm, is identical to that described in Section 2.2.1. As a brief
recap, it groups commuters by the spatial proximity of their home locations by first treating
each as a point in R2. A point for commuter c is simply a 2-dimensional position vector,
xᵀ
c = {xc, yc}, whose components xc and yc are given by the x- and y-coordinates of

the commuter’s home on the Cartesian plane. The algorithm itself proceeds in a similar
manner to the k-means clustering algorithm (Lloyd 1982) with k = d| C |/Ne, with a small
exception to its assignment step which assigns at most N commuters to each cluster. The
assignment is accomplished by solving a generalized-assignment MIP whose objective is
to minimize the total Euclidean distance between every point and their assigned cluster
centers.

The secondary technique considered is motivated by the desire to evaluate the efficacy
of grouping commuters based on the temporal proximity of their trips in addition to the
spatial proximity of their homes. To accomplish this goal, each commuter c is represented
by a 4-dimensional position vector, xᵀ

c = {xc, yc, dt+c , at−c }. The first two components, xc
and yc, are identical to those used in the spatial clustering technique; they are the spatial
coordinates of the commuter’s home. As every commuter makes two trips per day, the other
two components account for the times of these trips; dt+c denotes the time the commuter
departs from her home for her inbound trip, while at−c denotes the time the commuter
arrives at her home for her outbound trip. This algorithm is otherwise similar to the spatial
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clustering algorithm; its only difference is that it represents the commuters as points in R4

and utilizes the Euclidean distances between those points. It is therefore still an algorithm
that groups no more than N commuters into clusters, albeit based on the spatio-temporal

proximity of the origins of their inbound trips and the destinations of their outbound trips.
As the position vectors in this algorithm contain components with vastly different units
and scales, the values from each dimension are first standardized before the algorithm is
executed; they are scaled so that the values from each dimension have zero mean and unit
variance. This is done so that each dimension has an approximately equal contribution
to the Euclidean distances used in the algorithm. In other words, the standardization is
performed to prevent the distance calculations from being biased towards or dominated by
the components of any one dimension. This second technique is referred to as the spatio-

temporal clustering algorithm for obvious reasons.

3.6 Experimental Results

This section reports the computational results for the proposed algorithms, as well as their
effectiveness in reducing parking pressure.

3.6.1 Experimental Setting

The computational performance of the algorithms is evaluated using problem instances
derived from the Ann Arbor commute-trip dataset. The experiments in this chapter focus
on the trips made by the approximately 3,900 commuters living within Ann Arbor’s city
limits (the region bounded by highways US-23, M-14, and I-94), an area spanning 27
square miles, from which approximately 2,200 commute trips are made on a daily basis.

Several assumptions are made regarding commuters using the trip-sharing platform.
Firstly, it is assumed that when requesting a commute trip, rider i would specify the desired
arrival time at the destination of her inbound trip, at+i , and the desired departure time at
the origin of her outbound trip, dt−i . This assumption is consistent with that made in other
DARP literature, e.g. Jaw et al. (1986), Cordeau and Laporte (2003b), and Cordeau (2006).
It is also assumed that the commuters are willing to tolerate a maximum shift of ±∆ to the
desired times. Therefore, by treating the arrival and departure times to and from the parking
structures as the desired times, time windows of [an+i, bn+i] = [at+i − ∆, at+i + ∆] and
[ai, bi] = [dt−i −∆, dt−i + ∆] are associated with the destination of the inbound trip and the
origin of the outbound trip of rider i respectively. Consequently, time windows at the origin
of the inbound trip and at the destination of the outbound trip of rider i are calculated using
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[ai, bi] = [an+i−ζi−Li, bn+i−ζi−τ(i,n+i)] and [an+i, bn+i] = [ai+ζi+τ(i,n+i), bi+ζi+Li]

respectively. It is also assumed that each commuter is willing to tolerate at most an R%

extension to her direct-ride duration, i.e., Li = (1+R)τ(i,n+i). This assumption is similar to
that made by Hunsaker and Savelsbergh (2002). Finally, for the spatio-temporal clustering
algorithm, the departure and arrival times of the inbound and outbound trips of rider i are
defined as follows: dt+i = at+n+i − ζi − τ(i,n+i) and at−i = dt−i−n + ζi−n + τ(i−n,i).

3.6.2 Algorithmic Settings

The clustering algorithms are used to construct problem instances of different sizes by
varying N . Due to the non-deterministic nature of their initialization step, the algorithms
are executed 100 times for each value of N , after which only the solution with the smallest
assignment objective value is selected. The shortest path, travel-time estimate, and travel-
distance estimate between any two locations are obtained using the GraphHopper Direc-
tions API which uses data from OpenStreetMap. All algorithms are implemented in C++
with parallelization duties being handled by OpenMP. The resource-constrained shortest
path function from Boost 1.64.0’s Graph Library is used to implement the RCSPA, while
Gurobi 7.5.1 is invoked to solve all LPs and MIPs. The route fixed cost c̄ is obtained by
making a very conservative overestimate of the longest route length. The RMP of the BPA
is initialized with the set of all feasible single- and two-trip routes, which is generated using
the REA with K = 2. Each problem is solved on a high-performance computing cluster
using 12 cores of a 2.5 GHz Intel Xeon E5-2680v3 processor and 64 GB of RAM. Unless
stated otherwise, a time limit of 12 hours is applied to all problems and the best feasible
solution is reported for those that cannot be solved optimally within the time limit.

3.6.3 Selecting Values for ∆ and R

Half of the time-window size, ∆, and the ride-duration limit, Li = (1 +R)τ(i,n+i), directly
influence the QoS of rider i; the former represents the maximum amount of time by which
the rider needs to shift (up or down) her desired arrival time to or departure time from a
parking lot, whereas the latter represents the maximum amount of time the rider has to
spend on the vehicle. Therefore, it is ideal for any rider to have the values of ∆ and R
be as small as possible. However, doing so will also limit the potential for trip sharing.
Indeed, selecting values for either parameter involves a trade-off between user convenience
and trip shareability. A sensitivity analysis was therefore performed to study the impact of
these two parameters on the vehicle reduction of the CTSP algorithm, by first applying the
spatial clustering algorithm with N = 100 on the commuters traveling on each of the first
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Figure 3.3: Effect of Increasing ∆ on Total
Vehicle Count (R = 50%).
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Figure 3.4: Effect of Increasing R on Total
Vehicle Count (∆ = 10 mins).

four weekdays of week 2, and then optimizing trip sharing within each cluster using the
REA with K = 4 (the capacity of a car). The following values were used in the analysis:
∆ ∈ {5, 10, 15} mins and R ∈ {25, 50, 75}%.

Figures 3.3 and 3.4 summarize the results of the analysis for ∆ andR respectively. They
include the required number of vehicles under the existing no-sharing conditions as well
as the percentage of each vehicle count as a fraction of the no-sharing count for additional
perspective. The figures quantify the trade-off mentioned earlier; while the smaller values
of ∆ = 5 mins and R = 25% may be convenient for the riders, the results indicate that the
vehicle-reduction potential is significantly hampered by these values. Vehicle reduction
increases, albeit at a decreasing rate, as both ∆ and R are increased. While the largest
values of both parameters produce the best vehicle-reduction potential, they also demand
the highest amount of tolerance to inconvenience from the riders. Therefore, ∆ = 10 mins
and R = 50% were deemed to be the best compromise, as they still produced a sizeable
amount of vehicle reduction while not inducing a significant amount of inconvenience to
the riders. These values are therefore used in the rest of the experiments.

3.6.4 Vehicle Capacity Scaling

The next set of computational experiments explores the scalability of the REA and the
BPA with increasing vehicle capacity. A variety of car-pooling programs provide small
vans to commuters: These vans can typically carry up to 8 people and it is important to
evaluate the benefits of using such vehicles. Problem instances are created by applying the
spatial clustering algorithm with N ∈ {75, 100} on commuters traveling on a selected day
(Wednesday of week 2, which had 2,200 commute trips) and setting K ∈ {4, 5, 6, 7, 8}.
Let n denote the size of a cluster. Since N only controls the upper bound for the size of
clusters produced by the algorithm, residual clusters with n < N are also generated when
the total number of commuters, | C |, is not an exact multiple of N . For the experiments,
only clusters with sizes of exactly 75 and 100 are selected as the main problem instances (24
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Figure 3.5: Optimality Gap of MIP Solution at Root Node of BPA for Problem Instances
with n = 75.
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Figure 3.6: Optimality Gap of MIP Solution at Root Node of BPA for Problem Instances
with n = 100.

clusters with n = 75 and 22 with n = 100) for in-depth study. Detailed results of the REA
and the BPA on these selected clusters are presented in Tables A.1 and A.2 respectively in
Appendix A. However, Figures 3.13–3.15 which aggregate vehicle count, route distance,
and average ride duration for the day utilize results from all clusters.

The REA is unable to complete route enumeration within the time limit when K > 6,

therefore results of the algorithm for K ∈ {7, 8} are not available. This is not surprising,
owing to the O(nK) time complexity of its route-enumeration phase. The time limit for
clusters C9-100 and C20-100 when K = 6 also had to be extended to obtain a solution.
While the BPA is able to handle larger vehicle capacities for the most part, it could not find
a root-node solution within the time limit for cluster C10-75 when K = 8, so the time limit
for this case had to be extended too. As expected, when problems are solved to optimality,
identical objective values are produced by both algorithms as shown by the same vehicle
counts and total route distances in their results.

The REA produces optimal results in all instances when K ≤ 6, while the BPA does so
for all but 14 instances. Unsurprisingly, these 14 instances are typically characterized by
large vehicle capacities (K ≥ 5) as well as relatively large edge counts. For these instances,

the optimality gap of the best feasible solution is consistently < 5%, and a comparison of

their vehicle-count results against those of the REA that are available reveals that they

are in fact optimal. Also notable is the number of columns generated by the BPA being
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Figure 3.7: Computation Times for Problem Instances with n = 75 and K = 4.
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Figure 3.8: Computation Times for Problem Instances with n = 75 and K = 5.

consistently less than the REA, and in some cases significantly so. Another notable result
is the excellent quality of the BPA’s root-node solution which is summarized in Figures 3.5
and 3.6 for problem instances with n = 75 and n = 100 respectively. Its optimality gap is
< 6% in all instances and is zero for some cases, signaling that it is a viable option when
optimality is not crucial. The integrality gap, also being< 6% for all instances, emphasizes
the strength of the primal lower bound provided by the RMP’s optimal objective value.

Lastly, another notable observation is the disparity in the total number of feasible in-
bound and outbound edges of the graphs of the BPA. Recall that feasible edges are those
that satisfy the a priori feasibility constraints outlined in Section 3.4.2. The edge counts can
be seen as a rough indicator of the shareability potential of the set of trips being considered,
and the number of outbound edges being less than inbound edges in all problem instances
indicates fewer sharing opportunities for outbound trips. This can be attributed to the wider
distribution of their departure times as was shown in Figure 1.2 which further complicates
ride sharing. It also highlights another unique challenge to solving the CTSP, as maximal
sharing is sought over two sets of trips (inbound and outbound) with different shareability
potential.

Figures 3.7–3.9 summarize the computation times of both algorithms for the problem
instances with n = 75 andK ∈ {4, 5, 6}, while Figures 3.10–3.12 do the same for n = 100

and K ∈ {4, 5, 6}. The figures reveal that the computation times of the REA are more
consistent across problem instances with the same n and K values. The times also appear
to be dominated by the route-enumeration phase for these instances. The figures also show
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Figure 3.9: Computation Times for Problem Instances with n = 75 and K = 6.
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Figure 3.10: Computation Times for Problem Instances with n = 100 and K = 4.
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Figure 3.11: Computation Times for Problem Instances with n = 100 and K = 5.

that computation times of the REA are more sensitive to K; they appear to increase more
rapidly with increasing K than the BPA. The former’s sensitivity can be attributed to its
route-enumeration phase’s O(nK) time complexity and the fact that it is dominating the
total computation times in these instances. The BPA is slower in 13 out of 24 instances
when K = 4 and n = 75, and it is slower in nine out of 22 instances when K = 4

and n = 100. These fractions decrease however as K becomes larger to the point where
the BPA is faster in all but one instance when K = 6 and n = 75 and in all but three
instances when K = 6 and n = 100. These observations, combined with the results
showing the BPA’s ability to obtain solutions for K > 6, indicate that the BPA scales
better with increasing vehicle capacity. Also noteworthy is the time taken to produce the
root-node solution for the BPA; it is faster than the REA in all but one instance when
n = 75, and in all but two instances when n = 100. This further strengthens the case for it
being a viable option when an optimal solution is not sought.
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Figure 3.12: Computation Times for Problem Instances with n = 100 and K = 6.

Finally, Figures 3.13, 3.14, and 3.15 summarize the effect of increasing K on total
vehicle count, total distance of selected routes, and average ride time per commuter respec-
tively. They show aggregated results from all clusters from a single weekday (Wednesday
of week 2) as N is kept constant. The percentage of each quantity as a fraction of its value
when K = 1 as well as the results for K ∈ {1, 2, 3} are included for additional perspec-
tive. Firstly, Figures 3.13 and 3.14 reveal diminishing marginal decreases in total vehicle
count and total travel distance as K is increased. Furthermore, the benefit of increasing
vehicle capacity almost diminishes completely beyond K = 3. This can be attributed to
the nature of the routes in the CTSP being very short. Each needs to start and end at the
origin and destination of its driver respectively, and ride-duration limits are imposed on the
driver in addition to all passengers. The length of each route is therefore constrained by the
ride-duration limit of its driver. As longer routes are needed to fully utilize the capacities
of larger vehicles (to pick up and drop off more riders), the routes of this problem do not

benefit from larger vehicle capacities. For this reason, subsequent computational experi-
ments only consider the use of cars by limiting K to 4. Figure 3.15 provides a first glimpse
of the trade-off to ride sharing: Increased average ride durations. As vehicle capacity is
increased, so does ride-sharing opportunities. Consequently, an increase in ride duration
should also be expected as a ride is shared with more and more people. There appears to
be an inverse relationship between average ride duration and vehicle count or total travel
distance, as the former increases as either of the latter decreases. A similar diminishing
effect in the marginal increase of average ride duration is also seen as vehicle capacity is
increased.

3.6.5 Cluster Size Scaling

The next set of experiments explores the scalability of the REA and the BPA with increasing
cluster size. To this end, the spatial clustering algorithm is applied on the commuters
traveling on each of the first four weekdays of week 2 (which had 2065, 2161, 2200, and
2203 commute trips respectively) with N ∈ {200, 300, 400} (results for N ∈ {75, 100} are
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Figure 3.13: Effect of Increasing Vehicle
Capacity on Total Vehicle Count.
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Figure 3.14: Effect of Increasing Vehicle
Capacity on Total Route Distance.
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Figure 3.15: Effect of Increasing Vehicle Capacity on Average Ride Duration.

already available from Section 3.6.4). K is fixed to 4 in all experiments. Detailed results
of the REA and the BPA, shown in Tables A.3 and A.4 respectively in Appendix A, and
the rest of the discussions in this section focus on selected clusters with sizes of exactly
200, 300, and 400 (11 with n = 200, 13 with n = 300, and 8 with n = 400) as the results
are intended to show the effect of progressively increasing the cluster size by increments of
100. However, results from all clusters, including residuals with n < N , are used in Figures
3.21, 3.22, and 3.23 which show aggregate vehicle count, route distance, and average ride
duration respectively for each day.

Figure 3.16 summarizes the number of instances that can be solved optimally by both
algorithms together with the total number of instances considered for each n value and the
percentage of each quantity as a fraction of the total. When n = 200, the REA is able to
obtain the optimal solution for all but one instance. Conversely, the BPA is only able to
produce optimality for four instances. As n is increased, so do the size and complexity
of the problem instances as evident from the number of columns generated and the edge
counts, which lead to fewer instances being solved to optimality by either algorithm. When
n = 400, none of the instances could be solved to optimality by the BPA, and only five out
of eight instances could be solved optimally by the REA.

Figure 3.17 displays the optimality gaps produced by both algorithms in these experi-
ments. The optimality gaps of suboptimal solutions of the REA are excellent, being< 0.5%

for all instances. Moreover, the optimal vehicle count is obtained in all these instances. The

67



1
0

0
%

1
0

0
%

1
0
0
%9

1
%

4
6

%

6
3
%

3
6

%

8
%

0
%

0

2

4

6

8

10

12

14

n = 200 n = 300 n = 400

P
ro

b
le

m
 i

n
st

a
n

ce
 c

o
u

n
t

Total REA BPA

Figure 3.16: Number of Problem Instances Solved Optimally when n ∈ {200, 300, 400}.
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Figure 3.17: Optimality Gaps of the REA and the BPA for Problem Instances with n ∈
{200, 300, 400}.

optimality gaps of suboptimal BPA solutions are competitive, being < 4% in all instances,
however there are a few instances where the optimal vehicle count is not obtained, e.g.
clusters C8-200, C3-300, and C0-400. For these instances, the vehicle count is typically
off by one when compared to the optimal counts of the REA. Root-node solutions of the
BPA remain excellent as their optimality gaps are also < 4% in all of the instances consid-
ered, with it being optimal for one instance (cluster C3-200). The total number of columns
generated by the BPA also remain fewer than the REA in all instances.

Figures 3.18–3.20 compare the computation times of both algorithms for all problem
instances with n ∈ {200, 300, 400}. When combined with Figures 3.7 and 3.10, they
provide a clear picture of how both algorithms scale with increasing cluster size as K is
kept constant at 4. Figure 3.18 shows the REA being faster then the BPA in eight out of
the 11 instances tested when n = 200. The allocated time quickly gets saturated in most
problem instances by either algorithm as n is increased to the the point where the BPA
reaches the time limit in all problem instances when n = 400, while the REA also does
so for three out of the eight instances tested. The computation times of the REA are still
dominated by its route-enumeration phase in most instances, however there also exist a
few instances where solving the MP consumes a bigger portion of the total computation
times, e.g. cluster C8-200 in Figure 3.18. This is due to the increased complexity of
solving the MIP from the higher column counts. More fluctuations are also observed in the
computation times of the REA across problems with the same n value, and this too can be
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Figure 3.18: Computation Times for Problem Instances with n = 200.
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Figure 3.19: Computation Times for Problem Instances with n = 300.
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Figure 3.20: Computation Times for Problem Instances with n = 400.

attributed to the complexity of solving the MIP as the time for the route-enumeration phase
remains consistent for all instances. The root-node solution of the BPA remains a viable
option if a quick, high-quality solution is required, as it is faster than the REA in all but
nine instances. The results indicate that the REA is a better choice for large cluster sizes if
an optimal solution, or one that is as close to optimal as possible, is sought. However, the
root-node solution of the BPA is the best option if only a high-quality solution is needed,
as it is faster than the REA in most of the instances tested.

Finally, Figures 3.21, 3.22, and 3.23 illustrate the effect of increasing N on the overall
results in terms of the total vehicle count, the total distance of selected routes, and the
average ride time per commuter. The figures show aggregated results from all clusters for
the first four weekdays of week 2. Results for unshared trips as well as the value of each
quantity as a percentage of their corresponding unshared values are included for added
context. Figure 3.21 also includes the estimated vehicle count results of the CTSP when
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Figure 3.21: Effect of Increasing Cluster Size on Total Vehicle Count.
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Figure 3.22: Effect of Increasing Cluster Size on Total Route Distance.

the commuters are not clustered (labeled “Global” in the figure) for even more perspective.
These global results are obtained using the root-node heuristic (the variant that relaxes
forbidden paths) with a massive time budget of tRMP = 24 hours and tMIP = 24 hours, and
their optimality gaps range between 4.0–5.5%.

As expected, the total vehicle count and total route distance results improve as N is
increased, as largerN values produce larger ‘neighborhoods’ which provide increased ride-
sharing opportunities. Figure 3.21 also indicates that the total vehicle counts can be further
reduced by approximately another 5–6% if the commuters are not clustered at all, however
these results can only be obtained at the steep price of using an inordinate time budget.
Average ride duration also increases with N as expected. Diminishing marginal decreases
(respectively increases) in total vehicle count and total route distance (respectively average
ride duration) are also observed with increasingN , however the effect is not as pronounced
as that from increasing K, signaling that increasing maximum cluster size is more effective
at improving ride-sharing results than increasing vehicle capacity for the CTSP.

3.6.6 Generalizability of Vehicle Reduction Results

To assess the generalizability of the vehicle reduction results shown earlier (e.g., in Fig-
ure 3.21), additional datasets are artificially constructed by randomly permuting the trip
itineraries of the population considered; the commuting destinations together with the cor-
responding arrival and departure times to and from the destinations of every commuter
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Figure 3.23: Effect of Increasing Cluster Size on Average Ride Duration.
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Figure 3.24: Aggregated CTSP Vehicle Counts for Randomized Datasets.

in the original dataset are randomly shuffled. This random permutation is performed to
eliminate any underlying temporal structure that may exist in the original dataset. The
performance of the CTSP algorithm on the randomized dataset is then evaluated by first
applying the spatial clustering algorithm with N ∈ {100, 200, 300, 400} and then applying
the REA on every cluster to generate the CTSP routing plan. This experiment is repeated
on 20 different random permutations of the dataset to produce 20 sets of results. The re-
sults are summarized in Figure 3.24. It shows the mean of the aggregated vehicle counts
of the 20 random permutations for each N value, with error bars illustrating the 95% con-
fidence interval for each value, calculated by taking twice the standard deviation of the
aggregated counts of the 20 permutations. For additional context, the figure includes the
vehicle count results from the original dataset, and it also shows percentage values which
represent each count as a fraction of the total number of vehicles used under the present
no-sharing conditions.

Most evident from the figure is how small the variations in total vehicle counts are
for the various permutations: At most, their percentages vary by ±1% from the mean.
This signifies that despite the numerous trip variations, the CTSP algorithm is still able to
produce consistent vehicle reductions. On top of that, the results of the original dataset
are always within the 95% confidence intervals, except for the results on Monday when
N = 300. Even then, its percentage differs from the mean of the randomized results by
less than 1%. This once again alludes to the robustness of the vehicle count results of the

71



U
n
sh

ar
ed

U
n
sh

ar
ed

U
n
sh

ar
ed

U
n
sh

ar
ed

N
 =

 1
0
0

N
 =

 1
0
0

N
 =

 1
0
0

N
 =

 1
0
0

N
 =

 1
0
0

N
 =

 1
0
0

N
 =

 1
0
0

N
 =

 1
0
0

N
 =

 2
0
0

N
 =

 2
0
0

N
 =

 2
0
0

N
 =

 2
0
0

N
 =

 2
0
0

N
 =

 2
0
0

N
 =

 2
0
0

N
 =

 2
0
0

N
 =

 3
0
0

N
 =

 3
0
0

N
 =

 3
0
0

N
 =

 3
0
0

N
 =

 3
0
0

N
 =

 3
0
0

N
 =

 3
0
0

N
 =

 3
0
0

N
 =

 4
0
0

N
 =

 4
0
0

N
 =

 4
0
0

N
 =

 4
0
0

N
 =

 4
0
0

N
 =

 4
0
0

N
 =

 4
0
0

N
 =

 4
0
0

1
0
0

.0
%

1
0
0

.0
%

1
0
0

.0
%

1
0
0

.0
%

5
3

.7
%

5
4
.5

%

5
4

.7
%

5
4
.0

%

5
0

.2
%

4
9
.4

%

4
9

.3
%

5
0
.4

%

4
6
.3

%

4
6
.5

%

4
6

.9
%

4
7
.8

%

4
5
.3

%

4
5

.2
%

4
5
.3

%

4
5
.6

%

4
5

.2
%

4
4
.4

%

4
4
.7

%

4
4
.1

%

4
3
.4

%

4
3

.5
%

4
4

.3
%

4
4
.8

%

4
1

.7
%

4
2

.9
%

4
2

.6
%

4
2

.9
%

4
3
.5

%

4
2

.2
%

4
3
.2

%

4
2
.9

%

0

500

1000

1500

2000

2500

Monday Tuesday Wednesday Thursday

V
eh

ic
le

 c
o
u

n
t

Spatial clustering

Spatio-temporal

clustering

Figure 3.25: Comparison of Total Vehicle Count Results Between Spatial and Spatio-
Temporal Clustering.
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Figure 3.26: Comparison of Total Route Distance Results Between Spatial and Spatio-
Temporal Clustering.

CTSP. It indicates that the magnitudes of the vehicle reductions observed earlier are not
one-off results that are unique to the original dataset; similar reductions may be expected
from other trip variations due to the robustness of the CTSP algorithm.

3.6.7 Spatial Versus Spatio-Temporal Clustering

Section 3.5 proposed a spatio-temporal clustering technique which groups the commuters
based on the temporal proximity of the trip times at their commuting origins in addition to
the spatial proximity of their homes. To evaluate the effectiveness of this technique, it is
applied on the dataset with several N values—N ∈ {100, 200, 300, 400}—after which the
CTSP routing plan is generated for every cluster using the REA. Aggregated results from
all clusters are then compared against those from the spatial clustering technique. Figure
3.25 compares the aggregated vehicle count results of both clustering techniques, while
Figure 3.26 compares their aggregated route distances. Both figures include results from
unshared trips and the percentages of each quantity as a fraction of the unshared values for
additional context.

Firstly, the spatio-temporal clustering technique appears to be more effective at group-
ing commuters with similar trip itineraries for the purpose of minimizing vehicle counts
when N is small. Figure 3.25 shows that the spatio-temporal clusters require an average
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(a) Spatial Clusters (b) Spatio-Temporal Clusters

Figure 3.27: Visualization of Spatial and Spatio-Temporal Clusters for Wednesday of Week
2 (N = 100).

of 4.4% fewer vehicles than the spatial clusters when N = 100. This indicates that when
the clusters are small, temporal proximity of the trips plays a significant role in assisting
the CTSP algorithm to discover more compatible trip itineraries within each cluster, which
in turn allows more trips to be combined to increase ride-sharing potential. This benefit,
however, progressively diminishes as N is incremented to the point where it disappears
completely when N = 400. This indicates that the role of temporal proximity becomes
less prominent as the cluster size increases, as the CTSP algorithm has increasingly larger
pools of trips at its disposal which consequently makes discovery of trips with compatible
itineraries less of a challenge. It also signifies that the vehicle reduction capability of the
CTSP algorithm becomes more robust to the two clustering techniques considered as the
problem size increases.

There is also a drawback to the spatio-temporal clustering technique, which is illus-
trated in Figure 3.26. Its total route distance results are consistently larger, and therefore
they are comparatively poorer than those of the spatial clustering algorithm, regardless of
the value of N . This observation can be easily explained by comparing the spatial repre-
sentations of the resulting clusters. For instance, Figures 3.27(a) and 3.27(b) visualize the
convex hulls of the clusters produced by each technique on the spatial plane. The spatial
clustering algorithm minimizes the total Euclidean distance on the spatial plane, therefore
it produces spatially separated clusters that each occupies minimal area on the plane. On
the other hand, the spatio-temporal clustering algorithm minimizes the total Euclidean dis-
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Figure 3.28: Optimality Gaps of Root-Node Heuristics for Problem Instances with n ∈
{200, 300, 400}.
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Figure 3.29: RMP Convergence Times of Root-Node Heuristics for Problem Instances with
n ∈ {200, 300, 400}.

tance in R4, and Figure 3.27(b) merely shows the projection of the clusters on the spatial
plane. Therefore, on the spatial plane, the spatio-temporal clusters overlap each other and
they occupy relatively larger areas than the spatial clusters. As a result, the CTSP routes
for the spatio-temporal clusters have to cover longer distances when picking up passengers
for their inbound trips and when dropping them off for their outbound trips. This leads to
the larger total distances observed in Figure 3.26.

3.6.8 Efficiency of the Root-Node Heuristic

Finally, the root-node heuristic is applied on the selected clusters with n ∈ {100, 200, 300,

400} from Sections 3.6.4 and 3.6.5 with time budgets of tRMP = 8 minutes and tMIP =

2 minutes, resulting in a total time budget of 10 minutes per instance which is deemed
reasonable for an operational setting. The detailed results are presented in Table A.5 in
Appendix A.

Figure 3.28 compares the optimality gaps of the two variants of the heuristic—the
one that enforces forbidden paths and the one that does not—for problem instances with
n ≥ 200, while Figure 3.29 compares the time spent for their RMPs to converge. It can
be seen from the first figure that the optimality gaps of both variants are typically < 5%,
with the relaxation heuristic having an optimality gap that is only 0.1% larger on average.
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This minimal loss can be attributed to its small fraction of infeasible routes (< 0.5% of all
generated routes in the instances tested). In some instances, the relaxation heuristic pro-
duces optimality gaps that are smaller, and this can be attributed to it being able to solve
significantly more column-generation iterations within its time budget compared to the
other heuristic which has to execute the expensive forbidden-path algorithm. The second
figure shows the relaxation heuristic completing its column-generation phase faster in the
majority of the problem instances, with it being 26% faster on average than the first heuris-
tic. Nevertheless, regardless of the variant used, the results further reinforce initial claims
that the root-node heuristic is indeed able to generate provably high-quality solutions in
time-constrained scenarios for problem instances of various sizes.

3.7 Conclusion

To relieve parking pressure which has been steadily increasing in cities and in university
and corporate campuses, this chapter explores a car-pooling platform that would match
riders and drivers, while guaranteeing a ride back and exploiting spatial and temporal lo-
cality. It formalizes the CTSP to find a routing plan that maximizes ride sharing for a set
of commute trips and proposes two exact algorithms for the CTSP: the REA and the BPA.
The former exhaustively searches for feasible routes from all possible trip combinations,
which are then supplied to a MIP which solves a set-partitioning problem. The latter uses
column generation which applies a dynamic-programming algorithm to search for feasible
routes with negative marginal costs on demand. A couple of clustering algorithms are also
proposed to group trips based on the spatial proximity of the commuters’ home locations
or the spatio-temporal proximity of their trip itineraries to maintain problem tractability.
The REA and the BPA are then used to optimally match commute trips from the real-world
dataset of the city of Ann Arbor, Michigan.

Results of the computational experiments revealed that the BPA is better suited for
problems with larger vehicle capacities, although they also revealed that there is very little
benefit to utilizing vehicles with capacity greater than 4 in the CTSP as their effectiveness
is mitigated by ride-duration limits of the drivers which restrict route length. On the other
hand, the REA is found to be better suited for problems with large commuter counts, as it
consistently produced results that are optimal or results that have optimality gaps that are
often smaller than the BPA. The root-node solution of the BPA is also found to be a good
heuristic for producing high-quality solutions in time-constrained scenarios, as it typically
produces solutions with optimality gaps of< 5%, even for larger problem instances, within
a 10-minute time span.
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When it is assumed that commuters are willing to shift their desired arrival and depar-
ture times by ±10 minutes and tolerate a 50% increase to their ride durations, the algo-
rithms can produce optimal solutions for problems with up to 200 commuters and achieve
high-quality results for problems with up to 400 commuters. When the maximum cluster
size is set to 400, the results show the CTSP plans potentially reducing vehicle utilization
by 57% and decreasing vehicle miles traveled by 46% at the cost of a 22% increase in
average ride duration. The results thus highlight the significant potential and effectiveness
of the CTSP in easing traffic and parking pressure on otherwise congested areas. Future
work will be dedicated to further increasing the efficiency of the algorithms while making
them more robust to changes in commuter schedules and additions of new customers to the
commuting pool. Similarly, behavioral studies to determine the acceptance and adoption of
such a car-pooling platform will be performed to understand how much of the theoretical
potential can be achieved in various practical settings.
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CHAPTER 4

The Flexible and Real-Time Commute
Trip-Sharing Problems

4.1 Introduction

The CTSP was formalized in Chapter 3 in an effort to reduce peak-hour traffic congestion
and parking utilization for urban areas. It seeks a car-pool routing plan that maximizes ride
sharing for a set of commute trips. Each commuter makes two trip requests per day, one
to the workplace and another back home. Each request has specific pickup and drop-off
locations which must be visited in order, time windows describing allowable service times
at each location, and a ride-duration limit. The routes must serve these trips exactly once
according to their specifications while ensuring the capacity of the vehicles used is not
exceeded. In addition to this, the vehicle drivers for any day are selected from the set of
commuters (every commuter is assumed to possess a car and is therefore a potential driver);
therefore, the set of drivers selected for the trips to the workplace must be identical to that
for the return trips.

The CTSP is therefore a VRP with time-window, capacity, pairing, precedence, ride-
duration, and driver constraints. It is a generalization of the VRPTW which is well known
to be NP-hard (Savelsbergh 1985). It was solved in Chapter 2 using a three-stage approach
which first clusters the commuters according to their residential locations, searches ex-
haustively for all feasible routes within each cluster, and then solves a MIP to optimize the
selection of routes. Chapter 3 then introduced a branch-and-price algorithm to solve the
problem that uses column generation to search for feasible routes on demand.

This work generalizes the CTSP by considering a setting in which trip schedules are
known in advance, however there are uncertainties associated with the return-trip sched-
ules as they occur later in the day. More specifically, it describes: (1) The Flexible Com-
mute Trip-Sharing Problem (FCTSP) whereby the commuters are required to confirm their
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return times by a fixed deadline and (2) the Real-Time Commute Trip-Sharing Problem
(RT-CTSP) whereby the commuters confirm their return times in real time with some ad-
vance notice. Regardless of the problem variant, the routing plan must commit the day’s
drivers before the return times are confirmed. The challenge is therefore to ensure that
the plan is robust, i.e., to ensure that the drivers can still cover the return trips despite the
uncertainties in their schedules.

This chapter explores a scenario-sampling approach to handle these uncertainties. The
method was first used by Bent and Van Hentenryck (2004) for the VRP with stochastic
customers and then by Srour et al. (2018) to tackle temporal uncertainty in the VRPTW.
It assumes knowledge of probability distributions for every commuter describing the like-
lihood of their return-trip times which can be sampled to obtain potential scenarios. This
work incorporates the method into a multi-stage framework, whereby the first stage opti-
mizes a plan for several scenarios while subsequent stages re-optimize the return-trip plan
when additional information becomes available, i.e., just after the deadline for the FCTSP
or at a regular frequency for the RT-CTSP which re-optimizes batches of trips with con-
firmed return times.

The approach is evaluated on the real-world dataset of commute trips from the city
of Ann Arbor, Michigan. The results show that the method produces plans that become
more robust as the number of sampled scenarios increases. Unfortunately, the increase in
robustness comes at the price of using more vehicles. A method is therefore proposed to
evaluate the trade-off between plan robustness and vehicle reduction.

The rest of this chapter is organized as follows. Section 4.2 summarizes the mathe-
matical formulation of the CTSP and the column-generation algorithm from Chapter 3 for
solving it. Section 4.3 then describes in detail the problem settings for the FCTSP and
RT-CTSP together with their optimization algorithms. Section 4.4 reports the experimental
setup and the results of the computational evaluations. Finally, Section 4.5 provides some
concluding thoughts.

4.2 The Column-Generation Algorithm for the CTSP

The CTSP formulation uses Ω+ and Ω− to denote the set of all feasible inbound and out-
bound routes to serve a set of commuters C on any given day. Binary variable Xr indicates
whether route r ∈ Ω+ ∪ Ω− is used in the optimal plan. The problem is defined by (4.1)–
(4.5). Objective function (4.1) minimizes the number of routes used. Constraints (4.2)
and (4.3) enforce coverage of each rider’s inbound and outbound trips by exactly one route
each, while constraints (4.4) ensure the sets of drivers for inbound and outbound routes are
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identical.

min
∑

r∈Ω+∪Ω−

Xr (4.1)

s.t.
∑

r∈Ω+:c∈Cr

Xr = 1 ∀c ∈ C (4.2)∑
r∈Ω−:c∈Cr

Xr = 1 ∀c ∈ C (4.3)∑
r∈Ω+:Dr=c

Xr −
∑

r̂∈Ω−:Dr̂=c

Xr̂ = 0 ∀c ∈ C (4.4)

Xr ∈ {0, 1} ∀r ∈ Ω+ ∪ Ω− (4.5)

Section 2.2.2 proposed an REA to possibly enumerate Ω+ ∪ Ω−. The REA considers
all commuter combinations of size k ≤ K (of which there are O(nK) combinations in
total, where n = | C | is the problem size), and for each k-combination, it considers each
of the k commuters as the potential driver of a route. Finally for each driver considered, it
enumerates the (2(k − 1))!/(2k−1) possible location permutations for the route and checks
the feasibility of each using the feasible function described in Section 1.1.2. Section 2.2.2
showed that for a fixed vehicle capacity K, |Ω+ ∪ Ω− | = O(nK). Unfortunately, this
enumeration procedure is only computationally practical for small n and K.

For operational settings and problem instances whereby application of the REA is too
expensive (such as the problem instances considered in this work), Chapter 3 proposed
a column-generation algorithm which only considers routes with negative marginal costs
that could potentially improve the model’s objective function. The algorithm leverages the
shadow prices of the constraints of an RMP—the linear relaxation of the original problem
defined on a subset Ω+′∪Ω−′ of all feasible routes—to calculate the reduced costs of routes.
A PSP is executed alternately with the RMP to search for new routes with negative reduced
costs which are then added to Ω+′ ∪ Ω−′. The RMP and the PSP are solved repeatedly
until the PSP is unable to find any new route with negative reduced cost, at which point
the optimal objective value of the RMP converges to the optimal objective value z∗ of the
linear relaxation of the original problem. An integer solution is then obtained by solving
the RMP as a MIP, and its quality is evaluated by calculating an optimality gap which uses
z∗ as the primal lower bound.

The PSP considers each rider c ∈ C as the driver of an inbound route r+
c and an out-

bound route r−c , searches for such routes with minimum reduced costs, and adds them to
Ω+′ ∪ Ω−′ should the costs be negative. The routes are found by first constructing a pair
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of graphs G+
c = (N+

c ,A+
c ) and G−c = (N−c ,A−c ) for each driver c whose nodes N+

c and
N−c represent the locations (the origins and destinations) of all inbound and outbound trips
respectively and whose edgesA+

c andA−c represent location pairs that satisfy a priori feasi-
bility constraints. Edge costs are calculated using the dual optimal solution of the RMP so
that the total cost of any path from oc to dc is equivalent to the path’s reduced cost. A wait-
time relaxation algorithm based on the label-setting, dynamic-programming algorithm by
Desrochers (1988) is then used to search for the minimum-cost feasible route from oc to dc
from each graph. The algorithm searches for a preliminary feasible route with relaxed wait
times and then verifies its feasibility with the inclusion of wait times using the feasible
function. Infeasible routes are added to a set of forbidden paths whose members are pre-
vented from being discovered in subsequent runs, and the algorithm is executed repeatedly
until a feasible solution is found. Complete details of the wait-time relaxation algorithm
are provided in Section 3.4.3.

4.3 Robust Planning for the FCTSP and the RT-CTSP

In a practical setting for the CTSP, on any day, each commuter would make her trip re-
quest in the morning, specifying the desired arrival time at her workplace and the expected
departure time for her return trip. The ride-sharing platform would then generate an opti-
mal routing plan based on these times which consists of the day’s designated drivers, the
passengers they need to cover in their inbound and outbound routes, and the corresponding
routes they need to take.

This work takes a step further by considering a setting in which the desired arrival times
are certain as they occur in the morning, soon after the requests are made. However, the
departure times might change due to unforeseen events occurring later in the day. The
FCTSP considers a setting whereby the departure times are confirmed by a fixed deadline,
whereas the RT-CTSP considers a more dynamic setting whereby the departure times are
confirmed in real time with some advance notice. Regardless of the problem setting, an
inbound routing plan which commits drivers for the day needs to be generated before the
departure times can be confirmed. Therefore, the driver assignment needs to be robust to

ensure that they can cover as many return trips as possible, as the uncovered trips will need

to be served by an external, more expensive resource.

Most works on robust planning for transportation scheduling focus on addressing de-
mand uncertainty. For instance, Serra et al. (2019) proposed a two-stage stochastic pro-
gramming formulation for handling uncertain passengers in the integrated last-mile trans-
portation problem (Raghunathan et al. 2018a,b), a problem which considers a fleet of shared
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vehicles working in concert with a mass transit service to provide last-mile passenger trans-
portation. To our knowledge, Srour et al. (2018) were the first to tackle service-time un-
certainty in the VRPTW. They utilized scenario sampling, a method which assumes the
differences between confirmed and forecast service times of every customer are random
variables whose distributions can be gleaned from historical data. A sampled scenario is
obtained by drawing presumed service times from every customer distribution, and the
stochastic information from several sampled scenarios is leveraged by deriving a routing
plan for each scenario and selecting the plan that most resembles every other plan using a
consensus metric.

This work incorporates scenario sampling into a two-stage approach to produce ro-
bust plans for the FCTSP and the RT-CTSP. The first stage optimizes selection of drivers
and inbound routes by solving a model that optimizes route selection for a single inbound
scenario and a set of sampled outbound scenarios simultaneously. The second stage re-
optimizes the outbound routing plan once the departure times have been confirmed by a
deadline (FCTSP) or re-optimizes the outbound plan in a rolling-horizon approach as the
departure times are progressively confirmed over time (RT-CTSP).

4.3.1 Stage 1: Optimizing Selection of Drivers and Inbound Routes

In the first stage, a model which selects drivers for the day together with their inbound
routes is optimized. A single inbound scenario is derived from the commuters’ desired
arrival times, while a set of outbound scenarios is generated either by using the expected
departure times to obtain a scenario where the commuters don’t change their return sched-
ules or by sampling the departure-time distributions of every commuter to obtain one where
the commuters do. Let S denote the set of outbound scenarios and Ω−s denote the set of all
feasible outbound routes for scenario s. The model is defined in terms of a binary variable
Xr which indicates whether a route r is selected for the optimal plan. The model is defined
by (4.6)–(4.10). Objective function (4.6) minimizes the total number of selected routes.
Constraints (4.7) enforce coverage of each commuter’s inbound trip by exactly one route,
while constraints (4.8) do the same for each commuter’s outbound trip in each scenario
s ∈ S . Finally, constraints (4.9) ensure the set of drivers selected for the inbound trips is
identical to that for each outbound scenario s ∈ S.
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min
∑
r∈Ω+

Xr +
∑
s∈S

∑
r∈Ω−s

Xr (4.6)

s.t.
∑

r∈Ω+:c∈Cr

Xr = 1 ∀c ∈ C (4.7)∑
r∈Ω−s :c∈Cr

Xr = 1 ∀s ∈ S,∀c ∈ C (4.8)

∑
r∈Ω+:Dr=c

Xr −
∑

r̂∈Ω−s :Dr̂=c

Xr̂ = 0 ∀s ∈ S,∀c ∈ C (4.9)

Xr ∈ {0, 1} ∀s ∈ S,∀r ∈ Ω+ ∪ Ω−s (4.10)

A column-generation algorithm similar to that used for the original CTSP is utilized
to obtain a high-quality solution for the model. An RMP is first introduced as the linear
relaxation of the model defined on a subset of all feasible routes, {Ω+′ ∪Ω−′s : s ∈ S}. Let
π+
c , π−c,s, and σc,s denote the optimal duals of constraints (4.7), (4.8), and (4.9) of the RMP

respectively. The reduced cost of an inbound route r+ is then given by:

rcr+ = 1−
∑
c∈Cr+

π+
c −

∑
s∈S

σDr+ ,s (4.11)

while that of an outbound route for scenario s, r−s , is given by:

rcr−s = 1−
∑
c∈C

r−s

π−c,s + σD
r−s
,s (4.12)

A PSP is then composed to find new routes with negative reduced costs. The PSP
considers each rider c ∈ C as the driver of an inbound route r+

c and |S| outbound routes
{r−c,s : s ∈ S}. For each such route, the PSP finds one with minimum reduced cost and
then selects those with negative reduced costs to augment {Ω+′ ∪ Ω−′s : s ∈ S}. To
find these routes, a complete inbound graph G+

c = (N+
c ,A+

c ) and |S| complete outbound
graphs {G−c,s = (N−c,s,A−c,s) : s ∈ S} are first constructed for each driver c. The nodes in
N+
c represent all inbound originsO+ and destinations D+, whereas those inN−c,s represent

all outbound origins O−s and destinations D−s . A time window [ai, bi] is associated with
each inbound node i ∈ O+ ∪ D+ based on the requested trip times and similarly a time
window [ai,s, bi,s] is associated with each outbound node i ∈ O−s ∪ D−s based on the trip
times for scenario s. Edge costs are defined so that the total cost of any path from oc to dc
is equivalent to the path’s reduced cost. Let c(i,j) denote the cost of edge (i, j) and δ+(i)
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Inbound Route Graph, 

For each commuter i:
• Origin node: i
• Destination node: n + i

Virtual source node: 0
Virtual sink node: 2n + 1

Figure 4.1: Graph G−c,s After Edge Elimination (Each Dotted Line Represents a Pair of
Bidirectional Edges).

denote the set of outgoing edges of node i. Costs of edges (i, j) ∈ A+
c are then given by:

c(i,j) =


1− π+

i −
∑

s∈S σc,s ∀(i, j) ∈ δ+(oc)

−π+
i ∀i ∈ O+ \ {oc}, ∀(i, j) ∈ δ+(i)

0 ∀i ∈ D+, ∀(i, j) ∈ δ+(i)

(4.13)

while those of edges (i, j) ∈ A−c,s are given by:

c(i,j) =


1− π−i,s + σc,s ∀(i, j) ∈ δ+(oc)

−π−i,s ∀i ∈ O−s \ {oc}, ∀(i, j) ∈ δ+(i)

0 ∀i ∈ D−s , ∀(i, j) ∈ δ+(i)

(4.14)

A priori feasibility constraints proposed by Dumas et al. (1991), Cordeau (2006), and Hasan
et al. (2020) —listed in Section 3.4.2—are then applied to all edges to identify and elim-
inate those that cannot belong to any feasible route. Figure 4.1 provides a sketch of G−c,s
after edge elimination.

The wait-time relaxation algorithm described in Section 3.4.3 is then applied to find the
minimum-cost feasible route from oc to dc from each graph, and the routes with negative
costs are added to {Ω+′ ∪ Ω−′s : s ∈ S}. The RMP and the PSP are solved repeatedly until
the RMP converges. An upper and a lower bound to z∗ are maintained for this purpose.
The upper bound is given by the optimal objective value of the RMP after each iteration,
zRMP, while the lower bound zLB is calculated using the method by Farley (1990), where
zLB = zRMP/(1 − rc∗) and rc∗ denotes the smallest route reduced cost discovered in the
PSP. Since constraints (4.9) restrict the objective value of any integer solution to be an
integer multiple of β = 1 + |S|, the column-generation procedure is terminated when
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βdzRMP/βe − zLB < β.
After convergence, an integer solution is obtained by solving the RMP as a MIP, and

its quality is assessed by calculating its optimality gap. Let zMIP denote the objective value
of the MIP solution. The optimality gap is then given by (zMIP − zRMP)/zMIP as zRMP is the
primal lower bound to zMIP. The solution of the first stage is given by the set of selected
inbound routes Ẑ = {r ∈ Ω+′ : Xr = 1} and their corresponding drivers D̂ = {Dr : r ∈
Ẑ}.

4.3.2 The FCTSP

The FCTSP considers a second stage that re-optimizes the outbound routing plan once the
departure times have been confirmed by a fixed deadline. Let Ω−D̂ be the set of all feasible
outbound routes with drivers from D̂, i.e., Ω−D̂ = {r ∈ Ω− : Dr ∈ D̂}. The FCTSP model
is defined in terms of two binary variables: Xr to indicate the selection of route r ∈ Ω−D̂
and Yc to indicate if rider c cannot be covered in the outbound routing plan. The model is
defined by (4.15)–(4.18). The objective function minimizes the number of uncovered riders
and constraints (4.16) ensure Yc is set to 1 if rider c cannot be covered by any outbound
route.

min
∑
c∈C

Yc (4.15)

s.t.
∑

r∈Ω−
D̂

:c∈Cr

Xr + Yc = 1 ∀c ∈ C (4.16)

Xr ∈ {0, 1} ∀r ∈ Ω−D̂ (4.17)

Yc ∈ {0, 1} ∀c ∈ C (4.18)

This model is solved using a column-generation algorithm similar to that used in the
first stage. The key difference here is that only outbound routes driven by riders in D̂ need
to be generated in this model. Letting λc denote the optimal dual of constraints (4.16) of
the model’s RMP, the reduced cost of an outbound route r is given by:

rcr = −
∑
c∈Cr

λc (4.19)

The PSP of this model finds routes with negative reduced costs by first constructing a graph
Ĝ−c = (N̂−c , Â−c ) for each driver c ∈ D̂, finding the route from oc to dc with minimum
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reduced cost from each Ĝ−c , and adding the route to Ω−′D̂ if its cost is negative. The nodes
N̂−c consist of all outbound origins O− and destinations D−, and each node i ∈ O− ∪ D−

has associated with it a time window [ai, bi] based on the confirmed outbound trip times.
The costs of edges (i, j) ∈ Â−c are given by:

c(i,j) =

−λi ∀i ∈ O−

0 ∀i ∈ D−
(4.20)

so that the total cost of any path from oc to dc is equivalent to rcr.
The same wait-time relaxation algorithm from the first stage is also used to find the

minimum-cost feasible route from oc to dc for each Ĝ−c . The RMP and the PSP are solved
repeatedly until the PSP cannot find any new route with negative reduced cost, after which
the RMP is solved as a MIP to obtain an integer solution.

4.3.3 The RT-CTSP

The RT-CTSP is tailored for a setting where the departure times are continuously confirmed
by the riders over time. It requires each rider i to confirm her actual departure time, dtactual

i ,
in advance by at least a time interval ∆lead. In other words, dtactual

i is confirmed at time
cti ≤ dtactual

i −∆lead. Interval ∆lead will be referred to henceforth as the lead time, and it is
assumed to be identical for every rider.

A rolling-horizon approach which executes the FCTSP optimization algorithm from
Section 4.3.2 once every ∆opt, where ∆opt is a fixed time interval, is proposed for this
setting. Let otk denote the time of the kth optimization run of this approach and Zk be its
solution (i.e., its set of selected routes). Each optimization run includes a batch of trips
whose departure times have been confirmed, i.e., the trips of riders {i ∈ C : cti ≤ otk}. At
the same time, a different set of trips is excluded from the kth run. These are the trips whose
departure-time windows have expired, i.e., the trips of riders {i ∈ C : boi ≤ otk}, and the
trips covered by the routes from Zk−1 that have already departed. Letting str denote the
starting time of route r, the latter set of excluded trips are those of riders {i ∈ Cr : r ∈
Zk−1, str ≤ otk}.

The scheme is executed until each rider i ∈ C is either served by a departed route or has
her departure-time window expire without being served by any route. The riders that are
not served by any route will have to resort to an external resource to cover their return trips.
The rolling-horizon algorithm is summarized in Algorithm 2. The riders that are not served
by any route are stored in a set of uncovered riders U , whereas the routes that have departed
throughout the execution of the algorithm are stored in Zrolling-horizon which represents the
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Algorithm 2 Rolling-Horizon Optimization of Outbound Routing Plan
1: k ← 1
2: otk ← 0, Zk−1 ← Ø
3: Zrolling-horizon ← Ø, U ← Ø
4: while C 6= Ø do
5: Zrolling-horizon ← Zrolling-horizon ∪ {r ∈ Zk−1 : str ≤ otk}
6: C ← C \ {i ∈ Cr : r ∈ Zrolling-horizon}
7: U ← U ∪ {i ∈ C : boi ≤ otk}
8: C ← C \ U
9: Ck ← {i ∈ C : cti ≤ otk}

10: Zk ← Solution of FCTSP re-optimization on outbound trips of riders in Ck
11: k ← k + 1
12: otk ← otk−1 + ∆opt

13: return Zrolling-horizon, U

final solution of the approach.
Note that in this algorithm, the routes that have departed are considered finalized and

therefore, they are never modified post departure. This is done because, as was revealed
in Chapter 3, the routes of the CTSP are typically very short as each driver can only pick
up and drop off one set of passengers before having to end the route to ensure satisfaction
of the time-window constraints at her trip destination and her ride-duration limit. There is
therefore very little to be gained from the redirection of these short routes post departure.
This, combined with the potential inconvenience that may be induced on the drivers by the
route redirections, led to the decision of not modifying the routes once they have departed.

4.4 Computational Results

4.4.1 The Experimental Setting

The algorithms are evaluated on trips from the Ann Arbor commute-trip dataset. The ex-
periments focus on the trips of commuters living within the city limits, which amount to
approximately 2,400 trips per weekday. To maintain tractability, the trips are partitioned
into smaller problem instances by clustering the commuters into clusters of size n ≈ 300

using the spatial clustering algorithm described in Section 2.2.1 and only considering ride
sharing intra-cluster.

Similar to Jaw et al. (1986), Cordeau and Laporte (2003b), and Cordeau (2006), this
work assumes on any day, each commuter c would specify a desired arrival time at the des-
tination of her inbound trip, at+c , and a desired departure time at the origin of her outbound
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trip, dt−c . It also assumes that each would tolerate a shift of±∆ to the desired times. There-
fore, time windows of [adc , bdc ] = [at+c −∆, at+c + ∆] and [aoc , boc ] = [dt−c −∆, dt−c + ∆]

are associated with the destinations of inbound trips and origins of outbound trips respec-
tively. Consequently, time windows of [aoc , boc ] = [adc − ζoc − Ltc , bdc − ζoc − τ(oc,dc)] and
[adc , bdc ] = [aoc+ζoc+τ(oc,dc), boc+ζoc+Ltc ] are assigned to the origins of inbound trips and
destinations of outbound trips respectively. Similar to Hunsaker and Savelsbergh (2002),
each rider c is also assumed to be willing to tolerate an R% extension to her direct-ride
duration τ(oc,dc); therefore Ltc = (1 +R)τ(oc,dc).

A Laplace distribution is fit to the historical departure times of each commuter using
maximum-likelihood estimation and the distributions are sampled to generate an outbound
scenario s. The Laplace distribution is selected due to its suitability for modeling phenom-
ena with heavy tails or those with higher peaks than the normal distribution. It is used
in this work based on the assumption that the commuters are very likely to depart close
to a standard departure time, however there may be exceptions where they are delayed or
need to leave early. For a selected day, the inbound scenario for a set of commuters C is
obtained using their arrival times from the dataset. The departure times from the dataset,
however, are treated as expected departure times, and they are used to construct an ex-
pected outbound scenario, sexpected. The actual scenario is simulated by first selecting a
fraction f of the commuters uniformly at random and then sampling their departure-time
distributions. The set of selected commuters, Cf , represents those who had to change their
return schedules. The actual departure times of the remaining commuters in C \ Cf stay at
their expected values. Every set of outbound scenarios S contains sexpected to ensure that
every return trip can be covered when there are absolutely no schedule changes, as sexpected

corresponds to the scenario where f = 0.0. Therefore, when |S| = 1, S = {sexpected}. The
algorithms are implemented in C++ and they invoke Gurobi 7.5.1 to solve the LPs and the
MIPs. All experiments useK = 4, ∆ = 10 mins, and R = 0.50, and they are conducted on
a high-performance computing cluster with 12 cores of a 2.5 GHz Intel Xeon E5-2680v3
processor and 32 GB of RAM.

4.4.2 The Impact of the Number of Scenarios on the Vehicle Count

The first set of experiments vary the number of outbound scenarios, |S|, in the first stage
to measure the “price” of robustness, i.e., its impact on the number of vehicles. Table
4.1 summarizes the results from solving the first-stage model on eight clusters for |S| ∈
{1, 4, 8, 12, 16, 20}. Since the experiments for |S| > 1 involve random sampling, each is
repeated 20 times and the table lists the average results from the 20 runs. Its first three
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Figure 4.2: Average Vehicle Counts from the First-Stage Model for Clusters C0-308, C1-
309, C2-303, C3-302, C4-321, and C5-320.

columns list the cluster IDs, the cluster sizes, and the number of outbound scenarios used.
The next three display the model’s results in terms of the average number of columns
generated, the average vehicle count, and the average optimality gap of the solution. The
final three columns show the average times spent on solving the RMP, the MIP, and the
problem instance as a whole. Note that a 60 s time limit was placed on the MIP solver, and
the vehicle counts reported are from the best feasible solutions. The time limit allows each
problem instance to be solved in < 15 minutes, and despite the time limit, every solution
produced an optimality gap of < 3%. Figure 4.2 summarizes the effect of increasing |S| on
the first six clusters (the results of the remaining two are consistent). The key observation
here is that the vehicle count increases with |S|, a result which can be attributed to the
model having to cater to more outbound scenarios.

4.4.3 The FCTSP

The second set of results considers the FCTSP on the same instances with f ∈ {0.0, 0.2, 0.4,
0.6, 0.8, 1.0} : f = 0.0 models a scenario whereby none of the commuters change their de-
parture times, whereas f = 1.0 models one in which every commuter does. The results are
summarized in Table 4.2. Similar to Table 4.1, the first three columns display the cluster
IDs, the cluster sizes, and the outbound scenario counts, while the next lists the vehicle
count results of the first-stage model. The final six columns show the number of uncov-
ered riders resulting from the re-optimized outbound plans of the FCTSP for each f value.
Since the experiments for f > 0.0 involve the random selection of Cf and the random
sampling of their departure times, the experiment for each f value is repeated 25 times and
the table lists the average results from the 25 runs. The computation times are not shown
here as every instance was solved in less that 15 s. Figure 4.3 illustrates how increasing the
number of sampled scenarios improves the robustness of the outbound plan by showing the
average number of uncovered riders for cluster C1-309 for f ∈ [0.0, 1.0]. As expected, all
riders are covered when f = 0.0 as every set S contains sexpected. Moreover, the number
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Table 4.1: First-Stage Optimization Results for |S| ∈ {1, 4, 8, 12, 16, 20}.
Cluster

ID
Cluster

size
Scenario

count
Average
column
count

Average
vehicle
count

Average
optimality
gap (%)

Average wall time (s)

RMP MIP Total

C0-308 308

1 4883.0 153.0 1.31 76.3 3.8 80.1
4 10081.0 178.8 1.46 159.8 49.1 208.9
8 16695.2 194.1 1.16 277.1 46.6 323.7

12 23013.4 205.1 0.93 392.3 30.4 422.8
16 29373.8 212.3 0.75 510.5 19.5 530.0
20 35840.6 216.8 0.72 629.9 17.9 647.9

C1-309 309

1 5398.0 147.0 2.04 90.1 3.2 93.3
4 11459.5 174.1 1.12 188.8 43.9 232.7
8 18684.2 190.8 0.79 297.0 25.1 322.1

12 25834.0 200.1 0.63 418.9 17.2 436.1
16 32887.2 207.1 0.55 541.0 16.8 557.8
20 40018.5 211.9 0.43 658.4 8.4 666.8

C2-303 303

1 5508.0 135.0 1.48 112.9 34.4 147.3
4 12066.0 162.5 1.33 256.8 57.0 313.8
8 20178.2 177.2 1.24 361.9 53.1 415.0

12 27980.1 186.2 0.99 469.9 48.5 518.4
16 35783.6 192.1 0.83 607.4 48.1 655.5
20 43499.9 196.2 0.61 753.7 42.9 796.6

C3-302 302

1 4343.0 157.0 1.27 59.4 2.2 61.6
4 9102.5 179.0 1.00 143.1 38.4 181.5
8 15134.6 195.1 0.79 252.7 26.0 278.7

12 21046.1 205.4 0.51 366.0 14.7 380.7
16 26973.7 211.7 0.52 468.0 11.0 478.9
20 32909.5 216.9 0.39 573.5 7.6 581.0

C4-321 321

1 5828.0 148.0 0.68 88.2 60.0 148.2
4 12828.7 172.4 1.42 226.4 55.3 281.7
8 21312.7 188.6 0.98 371.4 47.7 419.1

12 29317.1 199.2 0.78 500.7 32.4 533.0
16 37375.4 206.9 0.68 649.2 25.5 674.7
20 45243.6 213.9 0.63 780.9 20.1 801.0

C5-320 320

1 4457.0 169.0 1.18 66.4 6.7 73.0
4 9193.4 198.4 0.68 162.0 19.2 181.2
8 15239.4 216.3 0.56 286.5 8.0 294.5

12 21258.2 228.1 0.68 409.9 9.5 419.4
16 27342.9 235.8 0.32 532.7 4.2 536.9
20 33495.3 241.7 0.29 661.2 2.1 663.3

C6-300 300

1 5479.0 137.0 1.46 83.5 43.2 126.8
4 11953.5 160.3 1.53 182.9 57.5 240.5
8 19708.7 177.3 1.10 291.4 40.8 332.2

12 27263.2 186.9 0.75 402.2 26.8 429.0
16 34790.7 194.5 0.62 512.7 22.6 535.3
20 42193.0 200.3 0.50 612.2 15.5 627.7

C7-299 299

1 3952.0 165.0 0.61 61.9 12.2 74.1
4 8724.6 190.8 0.71 145.4 15.8 161.2
8 14866.7 207.6 0.48 252.1 19.5 271.6

12 20976.4 216.6 0.51 356.6 11.6 368.2
16 27013.2 223.4 0.40 468.3 9.6 477.9
20 33037.1 227.9 0.28 575.9 4.8 580.7
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Figure 4.3: Average Number of Uncovered Riders from the FCTSP for Cluster C1-309.
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Figure 4.5: Average Number of Uncov-
ered Riders and Vehicle Count Results of
the FCTSP for Several Clusters with |S| ∈
{1, 4, 8, 12, 16, 20} and f = 1.0.

of uncovered riders generally increases with f for any fixed |S|, indicating the increasing
challenge of accommodating progressively more changing schedules. However, for any
fixed f , the average number of uncovered riders declines as |S| is increased, signifying an
increase in plan robustness. The marginal benefits, however, diminish with increasing |S|,
and the benefits come at the price of increases in vehicle count as shown in Figure 4.2.
This trade-off is further illustrated in Figures 4.4 and 4.5 which plot the average number
of uncovered riders for several clusters against their corresponding vehicle counts for each
|S| ∈ {1, 4, 8, 12, 16, 20} when f = 0.2 and f = 1.0 respectively. Each point in the fig-
ures represents the average number of uncovered riders and the vehicle count results for a
specific |S| value and, for each curve, as |S| increases going from left to right, so do plan
robustness and vehicle count, highlighting the trade-off between robustness and vehicle
reduction.

4.4.4 The RT-CTSP

The next set of results considers the RT-CTSP on the same instances with ∆opt = 10

mins, |S| ∈ {1, 12}, and ∆lead ∈ {30, 60, 90} mins. Table 4.3 summarizes these results.
The first four columns list the cluster IDs, the cluster sizes, the outbound scenario counts,
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Table 4.2: FCTSP Results for |S| ∈ {1, 4, 8, 12, 16, 20} and f ∈ {0.0, 0.2, 0.4, 0.6, 0.8,
1.0}.

Cluster
ID

Cluster
size

Scenario
count

Vehicle
count

Average # of uncovered riders

f = 0.0 f = 0.2 f = 0.4 f = 0.6 f = 0.8 f = 1.0

C0-308 308

1 153 0.0 10.5 17.1 21.3 24.8 25.4
4 177 0.0 4.5 8.1 10.0 10.9 12.0
8 195 0.0 1.4 3.2 4.0 4.8 5.3

12 206 0.0 0.7 1.8 2.1 2.8 2.5
16 212 0.0 0.8 1.3 1.5 2.2 2.5
20 216 0.0 0.5 1.0 1.2 1.4 1.4

C0-308 308

1 153 0.0 10.5 17.1 21.3 24.8 25.4
4 177 0.0 4.5 8.1 10.0 10.9 12.0
8 195 0.0 1.4 3.2 4.0 4.8 5.3

12 206 0.0 0.7 1.8 2.1 2.8 2.5
16 212 0.0 0.8 1.3 1.5 2.2 2.5
20 216 0.0 0.5 1.0 1.2 1.4 1.4

C2-303 303

1 135 0.0 12.4 20.1 25.8 27.2 27.4
4 160 0.0 4.0 7.7 9.8 10.0 10.2
8 175 0.0 2.2 3.8 5.2 5.3 5.4

12 188 0.0 1.8 2.2 2.2 2.3 2.6
16 195 0.0 1.2 1.5 1.4 1.4 1.5
20 196 0.0 0.8 1.2 1.1 1.1 1.4

C3-302 302

1 157 0.0 10.0 17.4 19.3 21.9 20.9
4 178 0.0 4.6 8.1 7.3 8.6 8.4
8 191 0.0 2.8 4.8 4.6 5.5 5.3

12 201 0.0 1.5 3.5 2.8 3.9 3.5
16 211 0.0 0.6 2.2 1.7 2.3 1.8
20 216 0.0 0.4 1.5 1.0 1.9 1.5

C4-321 321

1 148 0.0 9.3 18.2 22.4 24.0 25.0
4 169 0.0 5.2 9.4 11.4 11.4 12.8
8 184 0.0 3.0 4.8 7.0 6.2 7.7

12 195 0.0 1.4 2.6 3.8 3.6 4.6
16 203 0.0 1.0 1.9 3.2 2.5 3.2
20 211 0.0 0.8 1.6 2.4 2.0 2.1

C5-320 320

1 169 0.0 11.1 20.5 26.7 26.8 25.5
4 200 0.0 5.3 10.2 12.1 11.8 11.8
8 218 0.0 2.0 4.8 5.8 5.4 5.1

12 230 0.0 1.4 2.8 3.3 3.1 2.7
16 239 0.0 0.9 1.5 1.8 1.9 1.8
20 245 0.0 0.8 1.2 1.3 1.4 1.3

C6-300 300

1 137 0.0 9.5 17.6 23.5 22.5 22.5
4 158 0.0 3.1 6.8 9.1 9.2 8.9
8 177 0.0 2.1 4.5 5.2 4.9 4.4

12 187 0.0 1.7 3.2 3.9 3.9 3.0
16 192 0.0 1.4 1.7 2.6 2.5 2.0
20 200 0.0 1.0 1.3 1.8 2.0 1.6

C7-299 299

1 165 0.0 8.6 17.4 21.7 23.4 24.0
4 192 0.0 3.9 7.3 8.0 8.0 9.4
8 211 0.0 1.6 2.8 3.3 4.7 3.8

12 218 0.0 1.8 2.8 3.0 3.7 3.7
16 227 0.0 0.8 1.5 1.2 2.4 1.6
20 228 0.0 0.6 1.4 1.1 2.1 1.4
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Figure 4.6: Average Number of Uncovered Riders from the RT-CTSP for Cluster C1-309.

and the lead time values, while the remaining six show results of the algorithm for each
f ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} in terms of the average number of uncovered riders ob-
tained from repeating the experiment 25 times for each f value. Figure 4.6 then illustrates
the results for cluster C1-309 and it includes the results of the FCTSP for additional per-
spective. As expected, the robustness of the rolling-horizon method is never better than
that of the FCTSP as the former only optimizes batches of trips at a time. However, the
results of the former is only slightly worse than the latter when |S| = 12, demonstrating the
viability of the real-time approach. Its results also quickly approach those of the FCTSP as
the lead time is increased.

4.4.5 Evaluating the Plan Robustness-Vehicle Reduction Trade-Off

Figure 4.7 reexamines the average uncovered riders-vehicle count curve of cluster C2-303
when f = 1.0 (taken from Figure 4.5), which is the worst-case scenario obviously. Each
point on the curve represents a potential operating point for the ride-sharing platform, and
the goal is to find the point with the best trade-off between plan robustness and vehicle
reduction. Let ∆u and ∆v denote the change in the number of uncovered riders and the
change in vehicle count respectively resulting from moving between two points along the
curve, and let cu and cv be the cost per uncovered rider and the cost per unit of vehicle
increase respectively. The marginal cost of moving between two points along the curve
is therefore given by ∆ucu + ∆vcv. A negative marginal cost will result in a reduction to
the operating cost, thus moving from one point on the curve to another is beneficial when
∆ucu + ∆vcv < 0. Rearranging the inequality results in cv/cu < −∆u/∆v, where ∆u/∆v

is given by the slope of the curve. Therefore, it is beneficial to move right along the curve
when the cv/cu ratio is less then the negative of the curve’s slope.

For instance, consider the leftmost curve segment in Figure 4.7 which has a slope of
−0.69. Suppose the cost of an uncovered rider is given by the average price of using a
ride-hailing service to cover a return trip, while the cost per unit of vehicle increase is

92



Table 4.3: RT-CTSP Results for ∆opt = 10 mins, |S| ∈ {1, 12}, ∆lead ∈ {30, 60, 90} mins,
and f ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

Cluster
ID

Cluster
size

Scenario
count

Lead time
(mins)

Average # of uncovered riders

f = 0.0 f = 0.2 f = 0.4 f = 0.6 f = 0.8 f = 1.0

C0-308 308

1
30 9.0 17.8 24.2 28.7 33.0 33.2
60 1.0 11.8 18.1 22.5 25.8 26.6
90 0.0 11.1 17.4 21.6 25.2 25.7

12
30 0.0 1.7 2.9 3.5 4.8 4.6
60 0.0 0.8 1.8 2.1 2.8 2.6
90 0.0 0.7 1.8 2.1 2.8 2.5

C1-309 309

1
30 5.0 17.0 26.4 31.7 31.5 32.6
60 0.0 11.1 19.8 23.4 24.6 24.9
90 0.0 10.0 18.7 22.0 23.5 24.0

12
30 0.0 1.8 3.0 3.6 4.4 4.0
60 0.0 0.7 1.8 2.0 2.2 2.6
90 0.0 0.7 1.8 2.0 2.2 2.6

C2-303 303

1
30 6.0 19.6 28.2 33.7 34.9 35.6
60 0.0 14.1 21.4 27.3 28.4 28.8
90 0.0 13.0 20.5 26.4 27.6 27.9

12
30 3.0 4.3 4.6 4.9 5.2 6.4
60 0.0 2.2 2.4 2.4 2.4 2.8
90 0.0 1.9 2.2 2.2 2.3 2.6

C3-302 302

1
30 3.0 16.4 24.7 26.5 28.5 28.1
60 0.0 11.1 18.4 20.5 22.2 21.8
90 0.0 10.4 17.6 19.5 22.0 21.0

12
30 0.0 2.9 5.4 5.1 6.3 5.4
60 0.0 1.6 3.6 3.0 4.1 3.6
90 0.0 1.5 3.5 2.8 3.9 3.5

C4-321 321

1
30 6.0 17.3 27.0 31.5 32.7 34.1
60 0.0 11.0 20.0 24.4 26.1 26.9
90 0.0 10.0 18.8 23.0 24.7 25.6

12
30 2.0 4.4 5.6 6.3 6.0 8.0
60 0.0 1.6 2.8 3.9 3.8 5.1
90 0.0 1.4 2.6 3.8 3.6 4.7

C5-320 320

1
30 1.0 16.3 27.5 32.1 32.7 31.6
60 0.0 12.2 21.7 27.3 27.7 26.1
90 0.0 11.6 20.8 26.7 27.0 25.6

12
30 1.0 2.8 4.0 4.9 4.4 3.8
60 0.0 1.5 2.9 3.4 3.1 2.8
90 0.0 1.4 2.8 3.3 3.1 2.7

C6-300 300

1
30 8.0 16.8 26.3 32.4 30.9 30.6
60 0.0 11.2 19.4 25.6 24.0 24.0
90 0.0 10.1 18.2 23.9 22.9 23.1

12
30 2.0 3.1 5.5 6.6 6.3 6.0
60 0.0 1.8 3.3 4.1 4.1 3.0
90 0.0 1.7 3.3 4.0 3.9 3.0

C7-299 299

1
30 5.0 14.6 22.9 27.0 28.3 29.6
60 0.0 9.6 18.4 22.7 23.8 24.6
90 0.0 8.7 17.6 21.8 23.4 24.1

12
30 1.0 3.3 4.2 4.6 5.0 5.0
60 0.0 2.0 3.0 3.1 3.8 3.7
90 0.0 1.9 2.8 3.0 3.7 3.7
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Figure 4.7: Average Uncovered Riders-Vehicle Count Curve of Cluster C2-303 when f =
1.0.

well represented by the per-day cost of a parking lot (which in turn is given by its total
cost amortized over its useful lifetime). Then suppose a scenario in which cu = $15 and
cv = $8. The cv/cu ratio is 0.53 which is less than the negative of the slope. Therefore it
is beneficial to move from the point with |S| = 1 to that with |S| = 4 as it will result in a
marginal cost of −$57. However, suppose an alternate scenario whereby cu = cv = $12.
The cv/cu ratio is now 1.0 which is larger than the negative of the slope. In this case, it is
beneficial to just stay at the point where |S| = 1 as moving to the right neighboring point
will result in an increase to the operating cost.

4.5 Conclusion

This chapter proposes a two-stage algorithm for generating robust plans for the FCTSP and
the RT-CTSP. It addresses a practical setting in which there are uncertainties associated
with the schedules of outbound trips by incorporating scenario sampling, a method which
assumes the availability of historical data on trip schedules of every commuter to which
probability distributions can be fit and sampled to obtain potential scenarios. A model
which optimizes the routing plan for a single inbound scenario and multiple sampled out-
bound scenarios is first solved to select the daily drivers and generate their inbound routes.
The outbound routing plan is then obtained either statically for the FCTSP or dynami-
cally for the RT-CTSP by solving another model, one that is defined on just the outbound
trips, once their schedules have been confirmed. When applied on a real-world dataset
of commute trips, the approach produces plans whose robustness generally increases with
the sampled-scenario count. However, the robustness is also accompanied by an increase
in vehicle count. Therefore, a method which compares the per-unit price ratio of vehicle
increase to uncovered riders is proposed to best evaluate the trade-off between plan robust-
ness and vehicle reduction.
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CHAPTER 5

The Benefits of Autonomous Vehicles for
Community-Based Trip Sharing

5.1 Introduction

The notion of community-based trip sharing—leveraging the structure of commuting pat-
terns and urban communities when optimizing trip sharing—was first explored in Chap-
ter 2 to reduce parking pressure and congestion on university and corporate campuses.
The study, which was originally motivated by the desire to relieve the parking pressure
at the University of Michigan, Ann Arbor, investigated the effects of different driver- and
commuter-matching arrangements on trip shareability for a car-pooling or a car-sharing
platform. Trip shareability was loosely defined as the ability to aggregate as many trips
as possible to reduce the number of vehicles required to serve them. The evaluation of
several different optimization models revealed that commuter-matching flexibility, i.e., a
willingness to be matched with different drivers and passengers daily, is key for an effec-
tive trip-sharing platform.

This early work was extended in Chapter 3 where the CTSP was formalized. The CTSP
seeks a car-pool routing plan for a set of commute trips that minimizes a lexicographic
objective. The primary objective is to minimize the number of vehicles to cover all the
trips, while the secondary objective is to minimize the total travel distance. Every commute
trip consists of a pair of trip requests, one to the workplace (inbound) and another back
home (outbound), each with specific pickup and drop-off locations as well as time windows
specifying allowable service times at each location. Routes of the CTSP must serve each
request exactly once and ensure that a vehicle capacity and trip specific ride-duration limits
are not exceeded. The ride-duration constraint guarantees a level of QoS for the riders.
Finally, as the routing plan selects drivers from the set of commuters, it must ensure that
the set of drivers selected for the inbound trips is identical to that for the outbound trips.
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The CTSP is thus a VRP with time-window, capacity, pairing, precedence, ride-duration,
and driver constraints. Chapter 3 considered two exact algorithms to solve the CTSP and
applied them on the real-world dataset from the city of Ann Arbor, Michigan. The case
study shows that community-based car pooling can decrease daily vehicle usage by up to
57%. These results highlighted the significant potential in vehicle reduction of community-
based trip sharing. However, the vehicles in the CTSP routing plans are still mostly idle,
as they perform a single inbound and outbound route a day. Moreover, the constraint that
a route starts at the driver origin and ends at the driver destination limits the potential
for ride sharing. These limitations make the adoption of AVs for the CTSP particularly
appealing, as the absence of drivers would directly address these key shortcomings and
could potentially lead to further reductions in fleet size, higher vehicle utilization, and
increased ride sharing.

The goal of this chapter is to examine the potential benefits of using AVs for performing
the same trips, quantifying the reduction in fleet size and the miles traveled. It studies the
CTSPAV which is similar to the CTSP but uses a fleet of AVs that depart from and return
to a designated depot to serve all the commute trips. The CTSPAV is very similar to, and
is a specialization of, the DARP (Cordeau 2006). The main difference is that trip requests
in the CTSPAV come in pairs, one to the workplace (typically in the morning) and another
to return back home (typically in the evening). This feature makes it possible to adopt
solution techniques that are computationally attractive.

Our proposed solution approach involves chaining mini routes, i.e., short routes with
distinct pickup, transit, and drop-off phases, to form longer AV routes. It is especially
suited for problem scenarios involving commuters traveling to a common/centralized loca-
tion, e.g., the commute trips of employees of a university or a corporate campus, or those
involving commuters living in a common/centralized location, e.g., the commute trips orig-
inating from an apartment complex or a residential neighborhood. In other words, the
approach is aimed at problems whose commuting origins and destinations exhibit a hub-
and-spoke spatial structure, whereby either the origins or the destinations are concentrated
in a common location, as it attempts to leverage the structure to more efficiently solve the
problem. Generally speaking, the spatial structure separates the trip origins and destina-
tions into two disjoint “islands”. This separation naturally decomposes a long AV route,
which travels back and forth between the two islands throughout a day, into a sequence
of shorter mini routes, and this structure is then exploited by our proposed algorithm. By
contrast, the DARP makes no assumptions with regards to the spatial structure of its trip
locations, therefore making it a more general version of the problem. Trips from the Ann
Arbor commute-trip dataset fit the profile described, making it a prime candidate for eval-
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uating the efficacy of the proposed approach.
The main contributions of this work can be summarized as follows:

1. The work formalizes the CTSPAV that seeks an optimal set of routes for a fleet of
AVs for serving a set of commute trips subject to the passenger-related constraints of
the original CTSP.

2. The work proposes a column-generation procedure to find a high-quality solution
to the problem. The procedure uses a pricing problem to generate mini routes that
are then assembled in a master problem. Each mini route serves the inbound (resp.
outbound) trips for a number of riders, satisfying the time-window and the ride-
duration constraints of the trips as well as the capacity constraints of the vehicles.
This approach is a departure from classical column-generation procedures commonly
adopted for VRPs and the DARP, whereby the pricing problem searches for complete
routes departing from and returning to a depot, while the master problem solves a set-
covering/partitioning problem that ensures every customer is served.

3. The work shows that the proposed algorithm outperforms a state-of-the-art DARP
algorithm based on the classical column-generation approach for the CTSPAV.

4. The work applies the proposed algorithm on the large-scale, real-world dataset of
commute trips from the city of Ann Arbor, Michigan. The experimental results show
that the algorithm is capable of reducing daily vehicle usage by 92%, improving
upon the results of the original CTSP by 34%, while also reducing daily vehicle
miles traveled by approximately 30%.

Overall, the results demonstrate the significant potential of AVs for serving the commuting
needs of a community whose members work at a common location. The work also includes
a coarse cost analysis that highlights that fleet sizing is the correct metric to optimize when
the goal consists of maximizing the profitability of the service.

The rest of this chapter is organized as follows. Section 5.2 specifies the CTSPAV and
presents a MIP model that formalizes the CTSPAV. Section 5.3 describes the column-
generation procedure. Section 5.4 sketches a DARP-based procedure that is used for com-
parison purposes. Section 5.5 presents detailed computational results and examines the
performance of the proposed approach for servicing the commuting needs of the commu-
nity under study. Finally, Section 5.6 provides some concluding remarks.
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5.2 The Commute Trip-Sharing Problem for Autonomous
Vehicles

This section specifies the CTSPAV that seeks a set of AV routes of minimal cost to serve
each inbound and outbound trip of a set of commuters C exactly once. Let n = | C | denote
the total number of commuters,P+ = {1, . . . , n} andD+ = {n+1, . . . , 2n} denote the sets
of all pickup and drop-off nodes of inbound trips respectively, and P− = {2n+ 1, . . . , 3n}
and D− = {3n + 1, . . . , 4n} denote the sets of all pickup and drop-off nodes of outbound
trips respectively. Let P = P+ ∪ P− and D = D+ ∪ D−. The nodes have been defined
such that the inbound pickup, inbound drop-off, outbound pickup, and outbound drop-off
locations of commuter i are represented by nodes i, n+ i, 2n+ i, and 3n+ i respectively,
and n+ i gives the corresponding drop-off node of pickup node i ∈ P .

Let G = (N ,A) denote a directed graph with the node set N = P ∪ D ∪ {vs, vt} con-
taining all pickup and drop-off nodes together with a source and a sink node representing a
designated depot. A ride-duration limit Li is associated with each node i ∈ P . A time win-
dow [ai, bi] and a service duration ζi are also associated with each node i ∈ P ∪ D. There
are no time-window constraints for the start and end times of any AV route, as it is assumed
that the AVs may start and end their routes at any time of the day. In a first approximation,
the edge set A = {(i, j) : i, j ∈ N , i 6= j} consists of all possible edges. A travel time
τ(i,j), a distance ς(i,j), and a cost c(i,j) are associated with each edge (i, j) ∈ A. The sets of
all outgoing and incoming edges of node i are denoted by δ+(i) and δ−(i) respectively. By
definition of AV routes, the following precedence constraints apply to the set of nodes:

i ≺ n+ i ≺ 2n+ i ≺ 3n+ i ∀i ∈ P+ (5.1)

where i ≺ j denotes the precedence relation between nodes i and j, i.e., the constraint
indicating that i must be visited before j on an AV route.

This work considers two distinct optimization objectives: (1) a lexicographic objective
that first minimizes the number of vehicles and then their total travel distance, and (2) a
single objective that only minimizes the total travel distance.

5.2.1 A MIP Model for the CTSPAV

This section presents a MIP model for the CTSPAV. The MIP formalizes the CTSPAV and
is the foundation of the column-generation procedure presented in the next section. It is
defined in terms of the set Ω of all feasible mini routes and the graph G.

The MIP, also referred to as the master problem (MPCTSPAV), is defined by (5.2)–(5.12).
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It uses two sets of binary variables: variable Xr indicates whether mini route r ∈ Ω is
selected and variable Ye indicates whether edge e ∈ A is used in the optimal routing plan.
It also uses a continuous variable Ti to represent the start of service time at node i ∈ P∪D.
The model minimizes the total cost of all selected edges. Constraints (5.3) enforce coverage
of each trip by exactly one mini route, while constraints (5.4) ensure that edges belonging
to selected mini routes are selected. Constraints (5.5) and (5.6) conserve flow through each
pickup and drop-off node while ensuring each is visited exactly once. Constraints (5.7) and
(5.8) enforce compatibility of service start times and travel times along selected edges by
utilizing large constants for M(i,j) and M̄(i,j). Constraints (5.9) describe the ride-duration
limit for each trip, while constraints (5.10) are time-window constraints for all pickup and
drop-off nodes.

min
∑
e∈A

ceYe (5.2)

s.t.
∑

r∈Ω:i∈r

Xr = 1 ∀i ∈ P (5.3)∑
r∈Ω:e∈r

Xr − Ye ≤ 0 ∀e ∈ A \ {δ+(vs) ∪ δ−(vt)} (5.4)∑
e∈δ+(i)

Ye = 1 ∀i ∈ P ∪ D (5.5)

∑
e∈δ−(i)

Ye = 1 ∀i ∈ P ∪ D (5.6)

Ti + ζi + τ(i,j) ≤ Tj +M(i,j)(1− Y(i,j)) ∀i, j ∈ P ∪ D (5.7)

Ti + ζi + τ(i,j) ≥ Tj − M̄(i,j)(1− Y(i,j)) ∀i ∈ P ∪ D,∀j ∈ D (5.8)

Ti+n − (Ti + ζi) ≤ Li ∀i ∈ P (5.9)

ai ≤ Ti ≤ bi ∀i ∈ P ∪ D (5.10)

Xr ∈ {0, 1} ∀r ∈ Ω (5.11)

Ye ∈ {0, 1} ∀e ∈ A (5.12)

The lexicographic objective is accomplished using a blended approach that appropri-
ately weights the sub-objectives: It assigns an identical, large fixed cost to each AV route
and a variable cost to each that is proportional to its total distance. Let R denote the set of
all feasible AV routes. The edge costs are then defined as follows:

ce =

ςe + 100 · ς̂max ∀e ∈ δ+(vs)

ςe otherwise
(5.13)
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where ς̂max is a constant equal to the length (total distance) of the longest AV route, i.e.:

ς̂max = max
ρ∈R

∑
(i,j)∈ρ

ς(i,j) (5.14)

The fixed cost, 100· ς̂max, that is significantly larger than the total length of any AV route and
that is also identical for every edge e ∈ δ+(vs), drives the model to first minimize the total
flow emanating from the depot, vs. This flow is identical to the total number of AV routes,
and thus the number of vehicles used in the solution. The variable cost ςe of every edge e
then drives the model to minimize the total distance of all selected edges. The edge costs
defined in (5.13) therefore accomplish the desired lexicographic ordering of the objective,
which first minimizes the number of vehicles used in the solution and then their total travel
distance.

Conversely, when the objective is to just minimize the total distance, the edge costs are
simply defined by the edge distance, i.e.,

ce = ςe ∀e ∈ A (5.15)

The MPCTSPAV model can be seen as a scheduling problem that selects and assembles
feasible mini routes to form longer, feasible AV routes that minimize the total cost. The
optimal AV routes are obtained by constructing paths beginning at vs and ending at vt. The
start and end times (at the depot) of these routes are then obtained by applying equations
(1.7) and (1.9) respectively.

5.3 A Column-Generation Procedure for the CTSPAV

This section presents a column-generation approach to find high-quality solutions to the
CTSPAV, referred to as the CTSPAV procedure. The column-generation approach builds
on MPCTSPAV but addresses its main computational difficulty: the fact that MPCTSPAV as-
sumes that all mini routes have been pre-computed. The column-generation approach im-
plements an iterative process that considers, in each iteration, a subset Ω′ ⊆ Ω of feasible
mini routes and solves a restricted master problem, denoted by RMPCTSPAV, that is defined
as the linear relaxation of MPCTSPAV over Ω′. Using the dual information from RMPCTSPAV,
the column-generation algorithm then searches for feasible mini routes with negative re-
duced costs by solving a pricing subproblem (PSPCTSPAV). If such mini routes exist, they
are added to Ω′. Each iteration thus defines a new restricted master problem over a larger
subset of feasible mini routes. The solving of restricted master problems and pricing sub-
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problems is repeated until the pricing subproblem cannot find any feasible mini routes with
a negative reduced cost. Upon completion, the optimal objective value of RMPCTSPAV con-

verges to z∗, the optimal objective value of the linear relaxation of MPCTSPAV. Whenever
the solution of RMPCTSPAV is integral at convergence, it is also optimal for MPCTSPAV. Oth-
erwise, the column-generation approach solves the final restricted master problem as a MIP
to obtain an integer solution. The objective value of the MIP provides an upper bound to
the optimal solution, while the objective value z∗ of its linear relaxation provides a lower
bound. Together, they are used to compute an optimality gap for the integer solution.

The approach adopted in this procedure, which has its pricing subproblem search for
feasible mini routes which are then chained together in the master problem to form longer,
feasible AV routes that depart from and return to the depot, is unlike the classical column-
generation approach adopted in most literature on the VRPTW (e.g. Desrosiers et al.
(1984), Desrochers et al. (1992)), PDPTW (e.g. Dumas et al. (1991), Ropke and Cordeau
(2009)), or DARP (e.g. Gschwind and Irnich (2015)). The classical approach is an appli-
cation of the Dantzig-Wolfe decomposition on an edge-flow formulation of the problem: It
produces a set-partitioning/covering master problem that just selects feasible routes from
a set to ensure every customer is served in the solution. Its pricing problem is then solely
responsible for searching for complete feasible routes that originate from and return to the
depot (i.e., routes that would correspond to the AV routes of the CTSPAV). By contrast, our
approach shifts part of the burden of constructing the AV routes, which are anticipated to
be very long, to the master problem instead of completely relegating the task to the pricing
subproblem.

5.3.1 The Pricing Subproblem

The PSPCTSPAV identifies feasible mini routes with negative reduced costs. Let {πi : i ∈ P}
and {µe : e ∈ A \ {δ+(vs) ∪ δ−(vt)}} denote the dual values associated with constraints
(5.3) and (5.4) at optimality of RMPCTSPAV respectively. The reduced cost of a mini route r
is then given by:

c̄r = −
∑

i∈r:i∈P

πi −
∑
e∈r

µe (5.16)

The column-generation approach attempts to generate multiple feasible mini routes during
each iteration, one for each pickup node. More precisely, PSPCTSPAV considers each node
i ∈ P+ ∪ P− as the starting point of a mini route ri. For each i ∈ P+ ∪ P−, it searches
for the mini route ri with minimal reduced cost and selects those with negative reduced
costs to augment Ω′. It accomplishes this by first constructing 2n graphs, G+

i (i ∈ P+) and
G−i (i ∈ P−). It then searches for the least-cost path from i to a designated sink node that
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satisfies all mini-route feasibility constraints from each graph. The complete details of this
procedure are given in Appendix B.1.

5.3.2 Practical Implementation Considerations

This subsection reviews a number of important implementation techniques for the CTSPAV
column-generation procedure.

Filtering of Graph G Many edges in G do not belong to any feasible AV route and can
be removed from A. The following sets of infeasible edges are obtained by pre-processing
time-window, pairing, precedence, and ride-duration limit constraints on A using a combi-
nation of rules proposed by Dumas et al. (1991) and Cordeau (2006):

(a) Direct trips to and from the depot:
• {(vs, vt), (vt, vs)}
• {(i, vs), (i, vt), (vt, i) : i ∈ P}
• {(vs, i), (i, vs), (vt, i) : i ∈ D}

(b) Pairing and precedence of pickup and drop-off nodes of inbound and outbound trips
of each commuter (constraints (5.1)): {(i, 2n+ i), (i, 3n+ i), (n+ i, i), (n+ i, 3n+

i), (2n+ i, i), (2n+ i, n+ i), (3n+ i, i), (3n+ i, n+ i), (3n+ i, 2n+ i) : i ∈ P+}
(c) Time windows along each edge: {(i, j) : (i, j) ∈ A \ {δ+(vs) ∪ δ−(vt)} ∧ ai + ζi +

τ(i,j) > bj}
(d) Ride-duration limit of each commuter: {(i, j), (j, n+ i) : i ∈ P ∧ j ∈ P ∪ D ∧ i 6=

j ∧ τ(i,j) + ζj + τ(j,n+i) > Li}
(e) Time windows and ride-duration limits of pairs of trips:

• {(i, n+ j) : i, j ∈ P ∧ i 6= j ∧ ¬feasible(j → i→ n+ j → n+ i)}
• {(n+ i, j) : i, j ∈ P ∧ i 6= j ∧ ¬feasible(i→ n+ i→ j → n+ j)}
• {(i, j) : i, j ∈ P∧i 6= j∧¬feasible(i→ j → n+i→ n+j)∧¬feasible(i→
j → n+ j → n+ i)}

• {(n + i, n + j) : i, j ∈ P ∧ i 6= j ∧ ¬feasible(i → j → n + i → n + j) ∧
¬feasible(j → i→ n+ i→ n+ j)}

Note that the sets of edges in (e) utilize the feasible function described in Section 1.1.3 to
determine if a partial route satisfies the time-window and the ride-duration limit constraints.
For instance, the first condition indicates that edge (i, n+ j) is infeasible if route j → i→
n+ j → n+ i is infeasible. Figure 5.1 illustrates an example of graph G resulting from the
removal of the infeasible edges.
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Inbound Route Graph, 

For each commuter i:
• Origin node: i
• Destination node: n + i
Virtual source node: 0
Virtual sink node: 2n + 1

Figure 5.1: Graph G (Each Dotted Line Represents a Pair of Bidirectional Edges).

Big-M Constants The RMPCTSPAV utilizes big-M constants in constraints (5.7) and (5.8)
to enforce the underlying constraints only on selected edges. To ensure that the constants
are large enough to accomplish this goal while not being excessively large so as to introduce
numerical issues, they are defined as follows:

M(i,j) = max{0, bi + ζi + τ(i,j) − aj} ∀i, j ∈ P ∪ D (5.17)

M̄(i,j) = max{0, bj − ai − ζi − τ(i,j)} ∀i ∈ P ∪ D,∀j ∈ D (5.18)

When the lexicographic objective is considered, the edge cost defined in (5.13) uses ς̂max

which denotes the length of the longest AV route. Since enumeration of all feasible AV
routes in R is impractical, a conservative overestimate is used for ς̂max to accomplish the
lexicographic ordering of the sub-objectives.

Lower Bound Column-generation procedures are known to have a tailing-off effect,
whereby the rate-of-change of the RMPCTSPAV objective value zRMPCTSPAV progressively de-
creases as zRMPCTSPAV approaches z∗ (Lübbecke and Desrosiers 2005). To mitigate this effect,
a dual lower bound to z∗, zLB, is defined using the generalized version of the Lasdon bound
(Lasdon 1970), i.e.,

zLB = zRMPCTSPAV + κc̄∗r (5.19)

where κ is an upper bound to the number of selected mini routes in MPCTSPAV, κ ≥∑
r∈Ω Xr, and c̄∗r is the smallest mini-route reduced cost discovered from PSPCTSPAV. For

this problem, it is sufficient to take κ = 2n. Since the edge costs are all integral, the opti-
mal objective value of MPCTSPAV must also be integral, and therefore the column-generation
iterations can be terminated when dzRMPCTSPAVe − zLB < 1.
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Solving the Subproblem The label-setting algorithm of Gschwind and Irnich (2015) that
is used to solve PSPCTSPAV produces an intermediate set of non-dominated, feasible mini
routes, Ω̂i for each graph G+

i (i ∈ P+) and G−i (i ∈ P−). Instead of considering only the
least-cost route from Ω̂i, all routes from Ω̂i with negative reduced costs are selected and in-
troduced into Ω′ to further accelerate the column-generation convergence. Moreover, since
the mini-route search procedure on all graphs are independent, they are solved concurrently
in our implementation. Finally, Ω′ is initialized with the set of all direct-trip routes, i.e., it
is initialized with {i→ n+ i : i ∈ P}.

5.4 The DARP Column-Generation Procedure

The CTSPAV can be viewed as a specialization of the DARP: It can be converted into
a DARP by simply setting the time window of each vehicle at the depot to ±∞. This
section describes a column-generation procedure, referred to as the DARP procedure, that
is derived from the algorithm for solving the DARP by Gschwind and Irnich (2015). It is
the algorithm to which the CTSPAV procedure is compared in the computational results
section. At a high level, the DARP procedure is similar to the CTSPAV procedure as they
both use column generation. However, the DARP procedure fundamentally differs from
the CTSPAV procedure in that it adopts the classical column-generation approach. More
specifically, the DARP procedure uses a set-covering restricted master problem RMPDARP

that only selects AV routes from a set R′ to ensure every trip is covered in the solution.
Columns of RMPDARP represent AV routes whereas those of RMPCTSPAV represent mini
routes. The procedure also uses a pricing subproblem PSPDARP that searches for feasible AV
routes to augment R′. Upon convergence of the column-generation process, the RMPDARP

is solved as a MIP to obtain an integer solution.1

5.4.1 The Master Problem

The master problem MPDARP is a set-covering formulation that seeks the optimal routing
plan for the CTSPAV. It is defined on the set of all feasible AV routes R and uses a binary
variable Xρ that indicates whether route ρ ∈ R is used in the plan. The model is given by

1The branch-and-price approach proposed by Gschwind and Irnich (2015) is not considered because it is
found to be too expensive for the problem instances used in this work. Even the root node of the branch-
and-price tree cannot be solved within the allocated time budget for the real instances considered in this
work.
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(5.20)–(5.22).

min
∑
ρ∈R

cρXρ (5.20)

s.t.
∑
ρ∈R

ai,ρXρ ≥ 1 ∀i ∈ P (5.21)

Xρ ∈ {0, 1} ∀ρ ∈ R (5.22)

The objective function (5.20) minimizes the total cost of the selected routes. Constant ai,ρ
in constraints (5.21) represents the number of times node i is visited by route ρ. These
constraints ensure that each pickup node is covered in the optimal plan. A set-covering for-
mulation is preferred in this work as it was discovered to produce stronger integer solutions
than a set-partitioning formulation based on preliminary experimental evaluations.

To find a routing plan that minimizes vehicle count, the cost cρ of each route is set to
1. On the other hand, to find a plan that minimizes the total travel distance, the cost cρ is
set to the total distance of ρ, i.e., cρ =

∑
(i,j)∈ρ ς(i,j). Finally, to implement a lexicographic

objective that first minimizes the vehicle count and then their total distance, the model is
solved twice. The model is first solved to produce the optimal vehicle count χ∗MIP. The
constraint ∑

ρ∈R

Xρ = χ∗MIP (5.23)

is then introduced to the model to fix the vehicle count to its optimal value, after which the
model is solved again to optimize the secondary objective.

While a blended approach similar to that used in the CTSPAV procedure could have
also been used here to implement the lexicographic objective, initial experimental eval-
uations revealed that the greater complexity of PSPDARP, which is significantly more ex-
pensive than PSPCTSPAV, combined with the use of the Lasdon bound (5.19) results in a
column-generation phase that converges significantly slower. The proposed multi-objective
approach, which first just minimizes the vehicle count and therefore uses identical costs for
the routes of RMPDARP (unlike route costs for the blended approach), permits the use of the
dual bound proposed by Farley (1990) in the column-generation phase which is stronger
than the Lasdon bound in this setting. This stronger dual bound consequently allows the
column-generation termination criterion to be satisfied earlier, thus resulting in a faster
converging column-generation phase for the primary objective. And while a similar ap-
proach could have also been used for the CTSPAV procedure, the less expensive nature of
PSPCTSPAV makes a strong dual bound less critical for its column-generation phase which
already converges quickly. In the end, the blended and the multi-objective approaches
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are different yet valid alternatives for implementing the lexicographic objective. The lat-
ter, which applies the lexicographic ordering directly, is preferred for the DARP procedure
simply because it allows the column-generation phase for the primary objective to converge
quicker in practice and is seen as a necessity to counteract the increased complexity of its
pricing subproblem.

5.4.2 The Pricing Subproblem

The PSPDARP searches for AV routes with negative reduced costs. Let {αi : i ∈ P} denote
the set of optimal duals of constraints (5.21) and β be that of constraint (5.23). When
RMPDARP has the vehicle-count minimization objective, the reduced cost of route ρ is given
by:

c̄ρ = 1−
∑
i∈P

ai,ραi (5.24)

When the distance-minimization objective is applied, the reduced cost of ρ is given by:

c̄ρ =
∑

(i,j)∈ρ

ς(i,j) −
∑
i∈P

ai,ραi (5.25)

Finally, when constraint (5.23) is also present in RMPDARP with the distance-minimization
objective, the reduced cost of ρ is given by:

c̄ρ =
∑

(i,j)∈ρ

ς(i,j) −
∑
i∈P

ai,ραi − β (5.26)

The pricing subproblem searches for routes with negative reduced costs using a graph
G that is identical to the one described in Section 5.2. A reduced cost c̄(i,j) is assigned to
each edge (i, j) ∈ A, and it is defined according to the objective function used. For the
vehicle-count minimization objective, c̄(i,j) is given by:

c̄(i,j) =


1 ∀(i, j) ∈ δ+(vs)

−αi ∀i ∈ P ,∀j ∈ N

0 ∀i ∈ D,∀j ∈ N

(5.27)

When the distance-minimization objective is used, c̄(i,j) is given by:

c̄(i,j) =

ς(i,j) − αi ∀i ∈ P ,∀j ∈ N

ς(i,j) ∀i ∈ D ∪ {vs},∀j ∈ N
(5.28)

106



The edge reduced costs are defined so that the total cost of any path in G from vs to vt
is equivalent to the reduced cost of the path defined in (5.24)–(5.26). In the presence of
constraint (5.23) for the distance-minimization objective, (5.28) is still used to define the
edge reduced costs and −β is just added to the final path cost to obtain the reduced cost
defined in (5.26).

Once G has been set up with the proper edge reduced costs, PSPDARP just searches for
the least-cost path from vs to vt that satisfies the time-window, vehicle-capacity, pairing,
precedence, and ride-duration limit constraints. This least-cost path is then added to R′ if
the cost is negative. The problem is an SPPRC and is solved using the label-setting dynamic
program proposed by Gschwind and Irnich (2015) which utilizes resource constraints to
enforce the route-feasibility constraints.

In the presence of negative-cost cycles in G, the label-setting algorithm may produce
non-elementary paths. Whereas an additional resource may be introduced to the label-
setting algorithm to guarantee path elementarity, the SPPRC then becomes an ESPPRC
which is extremely hard to solve. Therefore, our implementation adopts a strategy from
Ropke and Cordeau (2006) and Gschwind and Irnich (2015) which simply relaxes this
elementarity requirement. While doing so theoretically causes RMPDARP to converge to a
weaker primal lower bound as it now admits a larger set of routes R′′ ⊇ R′, both Ropke
and Cordeau (2009) and Gschwind and Irnich (2015) have found that the resulting lower
bound is only slightly weaker in practice.

5.4.3 Implementation Strategies

Similar to the CTSPAV procedure, a dual lower bound is maintained during the column-
generation procedure to mitigate its tailing-off effect. When the vehicle-count minimization
objective is active, the lower bound proposed by Farley (1990) is adopted since the cost of
each route is identical. It is given by:

z′LB =
zRMPDARP

1− c̄∗ρ
(5.29)

where zRMPDARP is the objective value of RMPDARP at the end of each iteration and c̄∗ρ is the
smallest route reduced cost discovered by PSPDARP. The column generation is then termi-
nated when dzRMPDARPe − z′LB < 1. To accomplish the lexicographic objective during the
column generation, constraint (5.23) is introduced to RMPDARP after the primary objective
has converged with its right-hand side set to dzRMPDARPe. The objective function is then
switched to distance minimization after which the column generation is resumed. For the
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distance-minimization objective, the generalized Lasdon bound defined in (5.19) is used as
the dual lower bound, and the column generation is terminated when dzRMPDARPe− zLB < 1.

Our implementation also incorporates the interior-point, dual-stabilization method pro-
posed by Rousseau et al. (2007) to accelerate the column-generation convergence. Further-
more, all non-dominated routes with negative reduced costs resulting from the label-setting
algorithm in PSPDARP are added toR′. The column-generation phase is seeded with routes
{i → n + i → 2n + i → 3n + i : i ∈ P+}. Since this set of routes represents a feasible
solution to the problem, it guarantees the existence of a feasible integer solution to the MIP
for both the distance-minimization and the primary lexicographic objective. Recall that
for the secondary lexicographic objective, the right-hand side of the introduced constraint
(5.23) is set to χ∗MIP which represents the objective value of the optimal integer solution for
the primary objective. The existence of this feasible integer solution guarantees that one
also exists for the MIP with the secondary objective.

Non-elementary routes produced in the column-generation phase are removed prior to
solving RMPDARP as a MIP. Repeated nodes are identified from each non-elementary route
and only the first instance of each repeated node is preserved in the route (subsequent in-
stances are removed). The resulting route is feasible as the non-elementary version already
satisfies the time-window, vehicle-capacity, pairing, precedence, and ride-duration limit
constraints. Similarly, since a set-covering formulation is used, a node may be visited by
multiple routes in the integer solution. This is fixed by simply preserving the node in an
arbitrarily selected route and removing it from the others. Since the travel distances satisfy
the triangle inequality, this step only shortens the affected routes and hence improves the
total travel distance of the solution while maintaining its vehicle count.

5.5 Case Study and Experimental Results

This section evaluates the potential benefits of AVs on a real case study. It also reports a
variety of experimental results on the efficiency of the optimization algorithms.

5.5.1 The Dataset and Construction of Problem Instances

The performance of the CTSPAV and the DARP procedures are evaluated on problem in-
stances derived from the Ann Arbor commute-trip dataset. The results in this section focus
on the busiest days (Monday–Thursday) of the busiest week of the month (week 2). For ad-
ditional perspectives, the trips are partitioned into two sets: the approximately 2,200 daily
commute trips made by the commuters living within Ann Arbor city limits (the region
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bounded by highways US-23, M-14, and I-94), and the remainder made by the commuters
living outside the region. The rationale behind this split is to distinguish between the results
of the trips of commuters living nearer to the downtown area, where the parking structures
are located, and those of commuters living further away. The trips from each set are then
further partitioned into smaller problem instances using the spatial clustering algorithm de-
scribed in Section 2.2.1 which groups at most N commuters together based on the spatial
proximity of their home locations. The clusters are thought of as “neighborhoods” within
which trip sharing is done exclusively. This notion of breaking down a problem into smaller
instances is in line with the conclusion by Agatz et al. (2012), that effective decomposition
techniques are necessary for the computational feasibility of large-scale problems.

Several assumptions are made to characterize the nature of the requests submitted to the
trip-sharing platform. First, each rider i, when requesting a trip, specifies a desired arrival
time at+i to the inbound trip destination and a desired departure time dt−i from the outbound
trip origin. This assumption is consistent with those in the literature on the DARP, e.g.,
Jaw et al. (1986), Cordeau and Laporte (2003b), and Cordeau (2006). Secondly, each rider
tolerates a maximum shift of ±∆ to the desired times. Therefore, if the arrival and the
departure times at the parking structures from the dataset are considered as the desired
times, then a delivery-time upper bound of bi = at+i + ∆ can be associated with each
i ∈ D+ and a pickup time window of [ai, bi] = [dt−i − ∆, dt−i + ∆] can be associated
with each i ∈ P−. Consequently, a departure time window of [ai, bi] = [bn+i − ζi − Li −
2∆, bn+i − ζi − Li] is associated with each i ∈ P+ and a delivery-time upper bound of
bi = bi−n + ζi−n + Li−n is associated with each i ∈ D−. Finally, each rider i will tolerate
at most an R% extension to her direct-trip ride duration, i.e., Li = (1 + R)τ(i,n+i) for each
i ∈ P . Hunsaker and Savelsbergh (2002) also used a similar assumption. This use of a
single multiplication factor for modeling the maximum tolerable ride duration (versus a
more fine-grained approach) is seen as a practical necessity to cater to the massive volume
of trips considered in our case study, and it is seen as a more realistic alternative to the
approach used in other works on the DARP (e.g., Cordeau (2006) used an identical duration
for every trip). Results of sensitivity analyses on both ∆ andR are provided in later sections
to demonstrate their effect on the final results.

Depot Configurations This work explores two hypothetical depot configurations: (1) a
central depot configuration in which all neighborhoods are served by vehicles from a single,
centralized depot, and (2) a local depot configuration whereby each neighborhood is served
by a local depot situated within the neighborhood itself. For the first scenario, the largest
parking structure from the dataset considered is arbitrarily designated as the central depot.
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In the second scenario, the home address lc that is nearest to every other location within
cluster Pc is selected as the hypothetical local depot location, i.e.,

lc = arg min
i∈Pc

{ ∑
j∈Pc\{i}

ς(i,j) + ς(j,i)

}
. (5.30)

5.5.2 Experimental Setup and Parameters

The GPS coordinates of every address considered are geocoded using Geocodio, while
the shortest path, travel time, and travel distance between any two locations are estimated
using GraphHopper’s Directions API that uses OpenStreetMap data. All algorithms are
implemented in C++ with parallelization being handled with OpenMP. The label-setting
algorithm of Gschwind and Irnich (2015) is implemented using the resource-constrained
shortest path framework from the Boost Graph Library (version 1.70.0), while all LPs and
MIPs are solved with Gurobi 8.1.1. Every problem instance is solved on a compute cluster,
utilizing 12 cores of a 3.0 GHz Intel Xeon Gold 6154 processor and 32 GB of RAM. A
total time budget of 2 hours is allocated for each instance; 1 hour for the column-generation
phase and another 1 hour for solving the MIP for the CTSPAV procedure. The same total
time budget is allocated for the DARP procedure. However, since preliminary evaluations
revealed that it requires more time for its column-generation phase and less for solving the
MIP, 1.5 hours is allocated for its column-generation phase and 0.5 hours for solving its
MIP. All reported results are from the best feasible solution obtained within the time limit.

The experiments consider the use of autonomous cars and hence K = 4. Preliminary
empirical evaluations found that N = 100 for the clustering algorithm produces neighbor-
hoods that are sufficiently large to provide ample opportunities for trip sharing while not
producing intractable problem instances. This setting was thus used to generate the prob-
lem instances for all experiments. Finally, unless otherwise stated, values of ∆ = 10 mins
and R = 50% are used in all experiments. Appendix B.2 summarizes the optimality gaps
and the computation times of the procedures. Both the appendix and the next subsection
summarizes the results of all problem instances obtained from applying the clustering al-
gorithm on all commute trips from the Wednesday of week 2 (which generated 22 and 68
clusters inside and outside the city respectively).

5.5.3 Performance Comparison of the CTSPAV and DARP Procedures

This section presents a comparison of the results of the CTSPAV procedure against those
of the DARP, particularly the final objective values of their MIPs together with the corre-
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Figure 5.2: Comparison of Vehicle Count Results for Problem Instances Inside City Limits
with the Lexicographic Objective and the Central Depot Configuration.
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Figure 5.3: Comparison of Vehicle Count Results for Problem Instances Outside City Lim-
its with the Lexicographic Objective and the Central Depot Configuration.

sponding lower bounds of each procedure for every problem instance considered. Figure
5.2 compares their vehicle count results when the lexicographic objective and the central
depot configuration are used on the clusters inside the city, whereas Figure 5.3 does the
same for the clusters outside. The horizontal axis lists the problem instances while the
vertical displays the vehicle counts. Figure 5.2 shows a typical trend: The DARP proce-
dure produces stronger lower bounds and the CTSPAV procedure produces smaller vehicle
counts. This trend carries over to Figure 5.3. Even though there are a few instances where
the DARP procedure outperforms the CTSPAV procedure, overall, the CTSPAV matches or
outperforms the DARP on more than 80% of the instances shown in the figure. The vehicle
count results of the instances with the local depot configuration exhibit similar trends and
are not shown here.

Table 5.1 then compares the aggregated vehicle count results from all the clusters for
the same lexicographic objective and central depot configuration. This comparison is es-
pecially important as the results of all the clusters are summarized through aggregation
in the case study. The table shows a significant difference between the results of the two
procedures, with the DARP procedure producing aggregated vehicle counts that are 45%
larger inside the city, 6% larger outside the city, and 11% larger overall. This significant
difference makes another strong case for using the results of the CTSPAV procedure in the
case study.
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Table 5.1: Difference in Aggregate Vehicle Counts of CTSPAV and DARP Procedures

Location
Aggregate vehicle count

CTSPAV procedure DARP procedure Percentage difference

Inside 78 113 +45%
Outside 652 694 +6%

Combined 730 807 +11%
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Figure 5.4: Comparison of Total Distance Results for Problem Instances Inside City Limits
with the Distance-Minimization Objective and the Central Depot Configuration.

Figures 5.4 and 5.5 compare the results when minimizing total distance under the cen-
tral depot configuration for the clusters inside and outside the city respectively. The hori-
zontal axis lists the problem instances while the vertical displays the total distances. For a
few clusters outside the city, even a single column-generation iteration of the DARP pro-
cedure cannot be completed within the time limit. The comparison for these instances are
therefore excluded from Figure 5.5. Similar to Figures 5.2 and 5.3, the CTSPAV procedure
produces stronger total distance results. In fact, it outperforms the DARP procedure in
all the problem instances considered. In addition, the procedure also appears to produce
stronger lower bounds for this objective function. There is a caveat to this observation
however. The weak lower bounds of the DARP procedure in these cases can be attributed
mainly to its column-generation phase not converging within its (longer) time limit. When
the column generation does converge, e.g., in instances CO3-51 and CO3-55 in Figure
5.5, the lower bounds produced are comparable to those of the CTSPAV procedure. The
figures also highlight the excellent optimality gap of the CTSPAV procedure for this ob-
jective function. Once again, the total distance results of instances with the local depot
configuration are not summarized here as they display similar trends. Since the CTSPAV
procedure consistently produces the stronger final results, it is used to obtain the results for
the subsequent case study.
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Figure 5.5: Comparison of Total Distance Results for Problem Instances Outside City Lim-
its with the Distance-Minimization Objective and the Central Depot Configuration.

5.5.4 Vehicle and Travel Distance Reduction Results

Figures 5.6 and 5.7 show aggregated vehicle count (VC) results of all clusters inside and
outside the city limits respectively for the first four weekdays of week 2. Each figure shows
the VC results for every combination of objective function (lexicographic or distance mini-
mization) and depot configuration (central or local) for the CTSPAV: they are labeled “Lex
Central”, “Dist Central”, “Lex Local”, and “Dist Local”. Each figure also shows the VC
results of the trips under the existing no-sharing conditions and of the CTSP described in
Chapter 3 for additional perspective. The percentages of the VCs for each method as a
fraction of the no-sharing VC are also included. The figures indicate that the CTSPAV
consistently requires fewer vehicles than the CTSP to cover all the trips regardless of the
location of the clusters, the objective function, or the depot configuration. This is not sur-
prising, as the CTSPAV addresses the key limitation of the CTSP. As mentioned in Chapter
3, the routes of the CTSP are relatively short as the number of locations they can visit are
limited by the ride-duration constraints of their drivers as well as by the time windows at
the origins and destinations of the driver trips. By contrast, AVs are not subject to these
limitations. Therefore, they can travel back and forth between the parking structures and
the neighborhoods to serve trips throughout the day, consequently requiring fewer vehicles
to cover the same number of trips. What is striking, however, is the magnitude of the reduc-

tion in the number of vehicles: The VCs are reduced by 96% and 90% inside and outside

the city limits respectively when using AVs.

The results for the different objective functions show that the vehicle reduction of the
lexicographic objective is significantly better than that of the distance minimization. Again,
this result is not surprising as reducing VC is the primary goal of the former objective func-
tion, whereas it is not a consideration in the latter. The discrepancy between the vehicle
reductions inside and outside the city limits can be attributed to the larger distance between
the parking structures and the neighborhoods outside the city. As a result, the AVs serv-
ing these neighborhoods spend a larger fraction of their time in the transit phase, therefore
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Figure 5.6: Aggregate Vehicle Count Re-
sults from All Clusters Inside City Limits.
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Figure 5.7: Aggregate Vehicle Count Re-
sults from All Clusters Outside City Limits.
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Figure 5.8: Average Number of Trips Served by Routes of Each Method.

limiting the number of trips they could serve in a day. This factor is further highlighted
in Figure 5.8 which summarizes the average number of trips served by the routes of each
method. The figure also shows each count as a multiplicative factor of the count for the
CTSP, and the error bars depict the standard deviations of the trip counts. For the CTSPAV
with the lexicographic objective, the routes from the clusters outside the city visit signif-
icantly fewer nodes than those inside the city as their transit phases are longer. However,
regardless of the position of the clusters, the routes of the CTSPAV consistently cover more
trips on average than those of the CTSP. In fact, inside the city limits, the routes of the

CTSPAV with the lexicographic objective serve, on average, an order of magnitude more

trips than those of the CTSP.

Figures 5.9 and 5.10 summarize the corresponding aggregated vehicle miles traveled
(VMT) for all clusters inside and outside the city limits respectively. Similar to Figures 5.6
and 5.7, they show the CTSPAV results for every combination of objective function and
depot configuration, as well as the results of the CTSP and of the trips under the no-sharing
conditions for additional perspectives. Similarly, the percentages represent the VMT of
each method as a fraction of the no-sharing VMT. The VMT percentage of each method
outside the city limits is consistently smaller than those inside. This can be attributed to the
neighborhoods outside the city being further away from the parking structures.

When a central depot is used for the CTSPAV, the VMT is reduced by 15–19% in-
side the city (resp., 30–34% outside the city). Although sizeable, the reduction is not as
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Figure 5.9: Aggregate Vehicle Miles Trav-
eled from All Clusters Inside City Limits.
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Figure 5.10: Aggregate Vehicle Miles Trav-
eled from All Clusters Outside City Limits.
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Figure 5.11: Average Distance Traveled Per Vehicle of Each Method.

significant as that of the CTSP, as the AVs have to travel back and forth between the neigh-
borhoods and the parking structures which increases their total travel distance. When the
different objective functions for the central depot configuration are compared, the distance-
minimization objective only improves the VMT by 2–4% at the expense of significantly
larger VCs. The VMT is further reduced when local depots are used, as each AV has to
travel a shorter distance from the depot to reach its first pickup location and from its last
drop-off location back to the depot since both these locations are in the neighborhoods.
When the different objective functions for this depot configuration are compared, it can be
seen that the distance-minimization objective significantly improves the VMT by 15–21%,
but once again at the expense of a significant increase in VC. In fact, the VMT of the
distance-minimization objective is comparable to that of the CTSP. This can be explained
by referring to Figure 5.8 which shows their trip counts to be similar. In other words, the
VMT of the CTSPAV with the distance-minimization objective and the local depot config-
uration is comparable to the CTSP because its routes are serving fewer trips per day.

Figure 5.11 provides further insight into the daily average of the distance traveled per
vehicle for each method. The error bars depict the standard deviations for each method. As
expected, the average travel distances are larger for the clusters outside the city for each
method. They are also larger for the CTSPAV when the lexicographic objective is used as
the AVs travel back and forth more between the neighborhoods and parking structures in
order to reduce the vehicle count.
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Figure 5.12: Average Passenger and Busy Ride Durations of the Routes of Each Method.

Figure 5.12 takes a look at the daily average of passenger and busy ride durations. The
error bars again represent the standard deviations for each method. The passenger duration
is defined as the total duration of the day during which at least one passenger is on the
vehicle, whereas the busy duration is the passenger duration of a vehicle combined with the
duration spent traveling between locations with no passengers. The complement of the busy
duration, the idle duration, is therefore the duration of the day during which a vehicle is
parked at a depot/at home/at a parking structure, combined with the duration spent waiting
to pick up passengers while being empty. The passenger and busy durations of the CTSP are
therefore identical as its vehicles are driven by the commuters themselves. In other words,
they never travel without any passengers. For the CTSPAV, its busy duration is longer than
its passenger duration as the latter is a subset of the former. In fact, the difference between
the two represents the duration spent by the vehicle traveling without any passengers. For
the lexicographic objective, this duration takes up a large fraction of its busy time, which
supports earlier claims that the vehicles under this configuration do more back-and-forth
traveling to reduce its vehicle count.

The average durations of each method for the clusters outside the city limits are longer
than the corresponding durations inside as the vehicles must travel farther between the
neighborhoods and the parking structures. The CTSP also has the shortest passenger and
busy durations, which are consistent with the results from Figure 5.8 which showed the
CTSP having the lowest average trip count. For the various configurations of the CTSPAV,
the ones utilizing the lexicographic objective produce the largest passenger and busy du-
rations, also consistent with their average trip-count results from Figure 5.8. The results
also reveal another drawback of the distance-minimization objective. Not only does the
configuration require more vehicles to cover the same number of trips, but its vehicles are
less busy throughout the day than those of the lexicographic objective. In other words, the
vehicles spend a longer time every day being idle, which somewhat defeats the purpose of
utilizing AVs in the first place.

Figures 5.13 and 5.14 provide a deeper look into how the passenger durations are spent
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Figure 5.13: Fraction of Total Passenger
Time Spent Serving 1, 2, 3, and 4 Passen-
gers for Clusters Inside City Limits.
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Figure 5.14: Fraction of Total Passenger
Time Spent Serving 1, 2, 3, and 4 Passen-
gers for Clusters Outside City Limits.

by the routes of each method for clusters inside and outside the city limits respectively.
It shows the fraction of the total passenger duration spent serving one, two, three, or four
passengers for each configuration. Inside the city, these fractions progressively decrease
as the number of passengers increases. However, the CTSPAV spends a larger fraction of
its time serving three or four passengers than the CTSP, again reinforcing the advantage
of the CTSPAV. This is due to two factors. First, the mini routes in the CTSP must start
and finish with the same driver. Second, the CTSP must also synchronize the inbound and
outbound routes, since the same drivers are used for both. Because the schedules of the
passengers very often differ, some of the mini routes cannot be used by the CTSP but can
by the CTSPAV. This observation is carried over to the clusters outside the city, whereby
every configuration of the CTSPAV spends most of its time serving four passengers, while
the same cannot be said for the CTSP. This observation can be attributed to the longer
transit phase of the routes for the clusters outside the city combined with the vehicles being
used to their full capacity during the transit phase by the CTSPAV.

In summary, the lexicographic objective for the CTSPAV has the greatest vehicle re-
duction potential, and the configuration of the depot does not appear to affect this potential.
Its routes consistently cover the largest number of trips on average, and they also have the
longest passenger and busy durations, which are all desirable characteristics for an effec-
tive AV trip-sharing platform. The local depot configuration for the lexicographic objective
does produce slightly better VMT results. This small benefit, however, may be outweighed
by the logistical benefits of having a central depot, e.g., the convenience and the cost effec-
tiveness of having a central location for maintaining and refueling/recharging all AVs. The
CTSPAV with the distance-minimization objective and the local depot configuration con-
sistently produces the lowest VMT, however, as mentioned earlier, the result is obtained
at the expense of higher vehicle counts. Besides that, as shown in Figures 5.8 and 5.12,
the AVs also serve relatively fewer trips and spend more of their time being idle every day
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under this configuration.

5.5.5 Cost Analysis

This section reports a simple, coarse analysis to estimate the cost of operating the trip-
sharing platform over a 5- and 10-year period. The analysis is not intended to be a sophis-
ticated or complete measure of the total cost of the platform per se; instead, it is aimed to
obtain a rough understanding of the trade-off between vehicle and operating costs of the
platform. The analysis focuses only on the CTSPAV with the central depot configuration,
as it is preferred over the local depot configuration due to its aforementioned logistical ben-
efits. The analysis first considers vehicle-related costs (referred to simply as vehicle costs)
and then operating costs.

The vehicle cost is age related and consists of the vehicle depreciation over y years
and a distance-related cost. This last cost consists of an average fuel cost of $0.15 and
an average vehicle-value depreciation of $0.08 per mile traveled. An exponential decay
function is used to model how a vehicle value depreciates with age. More precisely, a
vehicle’s depreciation γ over y years is given by:

γ = p− p(1− ν)y (5.31)

where p is the vehicle’s initial price and ν is its annual depreciation rate. This analysis uses
a depreciation rate of 24% for the first year and 15% for subsequent years. The total vehicle
cost over y years is then obtained by multiplying the depreciation γ of every vehicle over
that period with the VC required to cover all daily trips, and then multiplying the distance
cost with the average daily VMT over the time period considered, assuming trips are only
made on weekdays.

Figures 5.15 and 5.16 show the results of the vehicle-cost analysis over 5 and 10 years
for clusters inside and outside the city limits respectively. In each figure, the horizontal
axis displays the range of possible initial prices of an AV, whereas the vertical axis displays
the corresponding total vehicle cost. The figures show that, for the range of initial prices
considered, the total vehicle cost is always dominated by the contributions from the vehicle-
age cost. Therefore, the distance-minimization objective that requires larger VCs is always
more expensive than the lexicographic objective, and this is true regardless of the location
of the clusters or the time period considered for the analysis.

The operating cost considers the average annual cost of a parking permit for each ve-
hicle combined with an estimated fixed cost for installing a charging station for each AV.
For this analysis, an annual parking permit cost of $800 is used together with a charging

118



0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

T
o

ta
l 

co
st

 (
m

il
li

o
n

s 
o

f 
$

)

Average vehicle price (thousands of $)

Lex Central 5yrs

Dist Central 5yrs

Lex Central 10yrs

Dist Central 10yrs

Figure 5.15: Total Vehicle Cost for CTSPAV
Platform Inside City Limits Over 5 and 10
Years.
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Figure 5.16: Total Vehicle Cost for CTSPAV
Platform Outside City Limits Over 5 and 10
Years.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

T
o

ta
l 

co
st

 (
m

il
li

o
n

s 
o

f 
$

)

Number of years

No sharing

CTSP

Lex Central

Dist Central

Figure 5.17: Total Operating Cost for
CTSPAV Platform Inside City Limits Over
10 Years.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

T
o

ta
l 

co
st

 (
m

il
li

o
n

s 
o

f 
$

)
Number of years

No sharing

CTSP

Lex Central

Dist Central

Figure 5.18: Total Operating Cost for
CTSPAV Platform Outside City Limits Over
10 Years.

station installation cost of $1,400 per vehicle. The total operating cost over y years is then
simply calculated by multiplying the charging station installation cost with the VC required
to cover all daily trips, and then multiplying the annual parking permit cost with the VC
and the number of years.

Figures 5.17 and 5.18 display the results of the total operating cost as a function of
the number of years for the clusters inside and outside the city limits respectively. The
total parking cost of the CTSP and of the vehicles under the no-sharing condition are also
included for additional perspective. Since there are no fixed costs associated with the CTSP
or with the no-sharing condition, their operating costs are lower than those of the CTSPAV
in the beginning. However, as time increases, the parking costs start to dominate, causing
the methods with larger VCs to be more expensive. In fact, inside the city limits, both the
CTSPAV methods considered become cheaper as early as the second year, while the same
happens as early as the third year outside the city. The gap in operating costs between the
different methods considered also grows with time and highlights the cost effectiveness of
the CTSPAV with the lexicographic objective as it uses the fewest number of vehicles.
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Figure 5.19: Aggregate Vehicle Count Results Inside City Limits for ∆ ∈ {5, 10, 15}mins.

5.5.6 Sensitivity to ∆

The parameter ∆ represents the maximum amount of time by which each rider needs to
shift (up or down) her desired arrival and departure times at a parking structure. It has a
direct impact on the QoS of the riders, and it is desirable to have ∆ be as small as possible.
Limiting its value however restricts the flexibility of the schedules and could negatively
impact trip shareability. To study the impact of varying ∆ on the results of the CTSPAV,
the procedure with the central depot configuration is applied on every cluster with ∆ set
to {5, 15} mins. The results are then compared against those of ∆ = 10 mins. Figures
5.19 and 5.20 compare aggregated VCs of all clusters inside and outside the city limits
respectively. Figures 5.21 and 5.22 then compare aggregated VMT from all the clusters
inside and outside the city respectively. Sensitivity results of the CTSP are also included
in the figures, as well as the results of the no-sharing condition and the percentage of each
quantity as a fraction of the no-sharing results for additional perspective.

The results show that reducing ∆ to 5 mins adversely affects the vehicle reduction
capability of the CTSP, reducing its VCs by approximately 12% inside the city (resp. 8%
outside the city). Increasing ∆ to 15 mins improves vehicle reduction by approximately 6%
inside the city (resp. 4% outside the city). This is the evidence of a trade-off between QoS
and trip shareability. By contrast, the VC results of the CTSPAV with the lexicographic
objective exhibit very little sensitivity to ∆, whereby the VCs change by ≤ 1% as ∆ is
varied by ±5 mins. This bodes very well for the CTSPAV as it indicates that a reduction in

∆ to improve the QoS for the riders will not have a significant impact on its vehicle reduc-

tion capability. Finally, the VCs of the CTSPAV with the distance-minimization objective
display a modest sensitivity to ∆, whereby decreasing ∆ by 5 mins degrades the VCs by
approximately 5% inside the city (resp. 3% outside the city), and increasing it by 5 mins
improves the VCs by approximately 2% insde the city (resp. 1% outside the city).

The sensitivity analysis on the aggregated VMT paints a different picture, whereby
every method considered exhibits comparable sensitivity to the variations in ∆. The results
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Figure 5.20: Aggregate Vehicle Count Results Outside City Limits for ∆ ∈ {5, 10, 15}
mins.
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Figure 5.21: Aggregate Vehicle Miles Traveled Inside City Limits for ∆ ∈ {5, 10, 15}
mins.
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Figure 5.22: Aggregate Vehicle Miles Traveled Outside City Limits for ∆ ∈ {5, 10, 15}
mins.

once again display a trade-off, this time between QoS and travel-distance reduction, which
is evident from the VMT decreasing as ∆ is increased and vice versa. The increase in VMT
of the CTSPAV, regardless of the objective function or the position of the clusters, when
∆ is reduced stems from the reduction of opportunities for trip aggregation as a result of
the tighter time windows. The AVs would therefore need to increase their back-and-forth
traveling between the parking structures and the neighborhoods to serve the same number
of trips, leading to the increases in their travel distance.
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Figure 5.23: Aggregate Vehicle Count Results Inside City Limits for R ∈
{25%, 50%, 75%}.
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Figure 5.24: Aggregate Vehicle Count Results Outside City Limits for R ∈
{25%, 50%, 75%}.

5.5.7 Sensitivity to R

The parameter R is yet another parameter that may influence the QoS of the riders, as it
directly influences the maximum amount of time every rider spends in a vehicle. Limiting
the value of R improves the QoS as it leads to shorter ride durations. However, it also
results in less flexible trip schedules, which could consequently reduce the potential for trip
aggregation. Therefore, one would anticipate a trade-off between QoS and trip shareability
when varying R that is similar to that observed when varying ∆. To investigate this trade-
off, a sensitivity analysis is conducted by setting R ∈ {25%, 75%}, applying the CTSPAV
procedure with the central depot configuration on every cluster, and comparing the results
with those of R = 50%.

Results of the analysis on VCs inside and outside the city limits are summarized in
Figures 5.23 and 5.24 respectively, whereas the analysis on VMT inside and outside the
city limits are displayed in Figures 5.25 and 5.26 respectively. Similar to previous analyses,
results from the original CTSP, from the no-sharing condition, and the percentages of each
quantity as a fraction of the no-sharing results are included for reference.

The VC results of the CTSP display the expected trade-off described earlier where they
appear to be very sensitive to variations in R. Vehicle reduction significantly degrades
by approximately 22% inside the city (resp. 17% outside the city) when R is reduced to
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Figure 5.25: Aggregate Vehicle Miles Traveled Inside City Limits for R ∈
{25%, 50%, 75%}.
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Figure 5.26: Aggregate Vehicle Miles Traveled Outside City Limits for R ∈
{25%, 50%, 75%}.

25%, and it improves by approximately 11% inside the city (resp. 5% outside the city)
when R is increased to 75%. This indicates that attempts to reduce the maximum ride
duration will result in significantly reduced trip shareability in the CTSP. By contrast,
such a drawback is not evident from the results of the CTSPAV with the lexicographic
objective, as its VCs exhibit very little sensitivity to the changes in R. The results show
changes that are< 1% both inside and outside the city asR is varied by±25%2. This result

provides another positive outlook for the CTSPAV as it promises that the vehicle reductions

will not be adversely affected by attempts to increase the QoS by reducing the maximum

ride durations of the riders. Finally, the VC results of the CTSPAV with the distance-
minimization objective display a relatively modest sensitivity to R, whereby decreasing R
to 25% increased the VCs by approximately 9% inside the city (resp. 6% outside the city),
and increasing R to 75% reduced the VCs by approximately 3% inside the city (resp. 1%
outside the city).

Analysis of the VMT results reveals different observations. Inside the city limits, both
objective functions of the CTSPAV appear to be more sensitive to changes in R than the
CTSP; decreasing R to 25% leads to approximately a 23% increase in VMT for both ver-

2For the clusters outside the city limits, the column-generation phase generated on average 34% more
columns for R = 75% than it did for R = 50%, which caused the MIP to be significantly harder to solve.
The MIP time limit for these instances is therefore extended to 2 hrs to account for this increase in complexity.
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sions of the CTSPAV (compared to a 17% increase for the CTSP). In fact, the increase
is so significant in this case that their aggregated values exceed those for the no-sharing
condition. This indicates that the opportunities for trip aggregation in this case is dimin-
ished to the point that any savings in travel distance is overshadowed by a greater increase
in back-and-forth traveling resulting from having to cover the trips with approximately the
same number of vehicles. Outside the city limits, the VMT of every method exhibit com-
parable sensitivity to changes in R, once again displaying the trade-off between QoS and
travel-distance reduction.

5.5.8 Effect of Increasing Vehicle Capacity

This section explores the effects of increasing vehicle capacity, K, on the results of the
CTSPAV to investigate if there are any benefits to be gained from using larger vehicles.
The results are obtained by varying K between 1 to 8 and applying the CTSPAV procedure
with the central depot configuration on all trips made on the Wednesday of week 2.3Figure
5.27 shows aggregated VCs from all clusters for every K value, while Figure 5.28 does
the same for aggregated VMT. The percentages in both figures indicate each quantity as a
fraction of the no-sharing values.

Both figures reveal that marginal improvements (reductions) to the VCs and the VMT
decrease with increasing K. In fact, they show that almost no improvement is obtained
for both the VCs and the VMT beyond K = 5, and the biggest improvement is obtained
when increasing K from 1 to 2. These results are consistent with the findings from Farhan
and Chen (2018) which focused on an SAV system for on-demand trips, whereby they dis-
covered that the decreases to the fleet size was marginal for K > 2. Alonso-Mora et al.
(2017), who studied the potential of a ride-sharing optimization algorithm that is also tai-
lored for on-demand trip requests, also discovered diminishing marginal improvements to
mean travel delay, mean waiting time, and mean travel distance when K is increased from
4 to 10. However, they did observe marginally high vehicle occupancy during peak hours
for K = 10, whereby approximately 10% of the vehicles had eight or more passengers.
The discrepancy between their results and ours is easily attributable to the enormous dis-
parity in the spatio-temporal density of the trips considered in both works, where the NYC

3To accommodate the exponential increase in problem complexity that results from the increase in K, the
following changes were applied to the CTSPAV procedure for K > 4. A 10-minute timeout is applied to the
label-setting dynamic program of the PSPCTSPAV. The algorithm is terminated if it exceeds the timeout and
it just returns all complete, non-dominated mini routes discovered at that point with negative reduced costs.
The column-generation procedure is also seeded with all feasible mini routes covering up to 2 trips which are
obtained from an exhaustive search procedure. Finally, the time budget for the column-generation phase is
extended to 2 hours.
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Figure 5.27: Effect of Increasing Vehicle
Capacity on Aggregated Vehicle Count.
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Figure 5.29: Effect of Increasing Vehicle Capacity on Average Commute Time.

taxicab dataset (NYC Taxi & Limousine Commission 2020) used in their work had a daily
average of 450,000 trip requests (25 times more than the 18,000 inbound and outbound
trips from our dataset) taking place on the island of Manhattan, NYC, which spans only
23 square miles (an area that is more than 550 times smaller than the 13,000-square-mile
region considered in our dataset). The immense spatio-temporal density of the trips from
the NYC taxicab dataset provides significantly more trip aggregation opportunities by in-
creasing the availability of trips with compatible itineraries throughout the day, a factor that
is critical for maximizing the utilization of larger vehicle capacities. It must also be noted
that the marginal benefits obtained from increasing K in this work is accompanied by an
exponential increase in problem complexity (in fact, the very slight increase in the VCs and
the VMT for K > 6 can be attributed to the increase in the problem complexity and the
procedure not being able to find better solutions even with the extended time budget).

Finally, Figure 5.29 shows the effect of increasing K on the average ride duration per
commuter. The percentages represent each quantity as a fraction of the value when K =

1. Unsurprisingly, the best average commute time is obtained when K = 1 as the rides
are not shared under this setting, and the times increase with increasing K due to the
corresponding increase in ride sharing. The diminishing nature of the marginal increases in
average commute time as K is increased also appears to mirror the marginal decreases in
the VCs or the VMT. The figure also shows that when K = 4, the average commute time
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only increases by 25% (even though R = 50%), which bodes very well for maintaining the
QoS of the riders of the CTSPAV.

5.6 Conclusion

This work originated from the desire to understand the potential benefits of autonomous
vehicles on a car-pooling platform that maximizes ride sharing for the commute trips of
a community. The central problem powering the platform is the CTSP: It was originally
introduced in Chapter 2 to reduce parking utilization and traffic congestion in urban areas
by leveraging the structure of commuting patterns and urban communities. The CTSP was
shown to reduce the number of vehicles significantly in a real case study.

Given that the vehicles are idle for most of the day by the definition of car pooling, it
is interesting to study how much additional reduction in fleet size would come from using
autonomous vehicles, as well as its impact on the miles traveled. To answer this ques-
tion, this chapter defined the CTSPAV and proposed two column-generation procedures
to obtain high-quality solutions. The first approach (the CTSPAV procedure) assembles
feasible mini routes into an overall routing plan, while the second approach (the DARP
procedure) reduces the CTSPAV into a DARP. The optimization problems considered (1)
a lexicographic objective that first minimizes the required vehicle count and then their to-
tal distance, and (2) a distance-minimization objective that just minimizes the total travel
distance.

The CTSPAV was evaluated on the large-scale, real-world dataset of commute trips
from the city of Ann Arbor, Michigan, which contains detailed information for an aver-
age of 9,000 daily commute trips over a month. The experimental results revealed that the
CTSPAV procedure with the lexicographic objective reduces daily vehicle usage by 92%
while at the same time also reducing vehicle miles traveled by 30%. Its vehicle reduction
results represent a 34% improvement relative to that of the CTSP. Examining the solutions
showed that the CTSPAV generates significantly longer routes by traveling back and forth
between the communities and the commuting destination. A cost analysis also showed that
fleets of autonomous vehicles are eminently viable from an economic standpoint in this
setting. Finally, sensitivity analyses revealed that the vehicle count results of the lexico-
graphic objective are more resilient to variations in the size of the time windows and the
length of the ride-duration limits of the trips. The number of vehicles required to cover all
the trips changed by less than 1% as the two parameters are varied, while the same cannot
be said about the CTSP.

126



CHAPTER 6

Commuting with Autonomous Vehicles: A
Branch-and-Cut Algorithm with Redundant

Modeling

6.1 Introduction

This work is the culmination of a four-year study on the benefits of ride-sharing and car-
pooling platforms for serving commuting needs. It was originally motivated by the desire
to relieve parking pressure in the city of Ann Arbor, Michigan. Parking structures are
expensive and are often located in prime locations for the convenience of commuters. In
Ann Arbor, the parking pressure was primarily caused by commuters to the University of
Michigan, the city’s largest employer which has more than 50,000 employees.

Detailed information about the commuting patterns of these employees was gathered by
recording trip data from approximately 15,000 drivers who use the 15 university-operated
parking structures located in the downtown area over the month of April 2017. The data
consisted of the exact arrival and departure times of every commuter to and from the park-
ing structures, which were then joined with the precise locations of the parking structures
and the home addresses of every commuter to reconstruct their daily trips. The dataset
revealed several intriguing temporal and spatial characteristics. First, the peak arrival and
departure times, which are depicted in Figure 1.2 for the weekdays of the busiest week,
coincide with the typical peak commuting hours. Second, the strong consistency of the trip
schedules was seen as a significant opportunity for car-pooling and ride-sharing platforms.
Third, the commuting destinations (the parking structures) are located within close vicinity
of each other in the downtown area (as they are university-owned structures), whereas the
commuting origins (the commuter homes) are located in the neighborhoods surrounding the
downtown area, as well as in Ann Arbor’s neighboring towns. This spatial structure, which
is quite typical in many American cities, was also seen as an opportunity for trip-sharing
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Figure 6.1: Convex Hulls of Artificial Neighborhoods Resulting from Clustering Algorithm

platforms.
With this in mind, Chapter 3 formalized the key optimization problem faced by a

car-pooling platform that would serve commute trips and called it the CTSP. More pre-
cisely, the CTSP conceptualizes the platform as a reservation-based system that receives
the commute-trip requests—each consisting of a request to the workplace (inbound trip)
and another to return back home (outbound trip)—ahead of time (e.g., the day ahead or
the morning of each day). Each trip request includes small time windows for its departure
and arrival, and each rider is guaranteed not to spend more than R% of her direct trip in
commuting time. The CTSP was tailored for scenarios where: (1) The commuters travel
to a common/centralized location, e.g., the commute trips of the employees of a corporate
or university campus, or (2) The commuters live in a common/centralized location, e.g.,
the commute trips originating from a residential neighborhood or an apartment complex.
These scenarios were inspired by the spatio-temporal structure observed in the Ann Arbor
commute-trip dataset described earlier.

To implement such a platform and address the complexity of dealing with the massive
volume of the trips from the dataset, we applied a two-stage approach:

1. It first clusters commuters into artificial neighborhoods based on the spatial proximity
of their home locations using an unsupervised machine-learning algorithm;

2. It then finds the optimal routes for the commuters within each cluster.
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Figure 6.1 provides an overview of the resulting clusters within Ann Arbor’s city limits: It
displays the convex hulls of the neighborhoods, as well as the convex hull of the centrally
located parking structures. The optimization problem in step 2 is the CTSP: Each day, its
goal is to use private vehicles owned by the commuters, select the set of drivers for the
inbound and outbound routes of the vehicles, and design the routes in order to minimize
the number of vehicles utilized, and hence the parking pressure. Solutions to the CTSP
were shown to reduce daily vehicle usage for the Ann Arbor dataset by up to 57%.

Despite this significant potential, the results also highlighted several factors limiting
further reductions in the daily vehicle counts. They included: (1) the nature of the CTSP
routes that are typically short and (2) the necessity to synchronize the inbound and out-
bound routes since they must be performed by the same set of drivers. Indeed, as the
drivers in the CTSP are selected from the commuters themselves, each route must begin
and end at the origin and the destination of its driver. This bookending requirement sub-
jects the total duration of the route to the temporal constraints of the driver’s trip, restricting
its length and consequently its ability to serve more trips. This, combined with the neces-
sity of selecting an identical set of drivers for the inbound and outbound routes, limits the
flexibility of the routes that can be generated and used in the CTSP routing plan.

The CTSPAV considered in this chapter was originally proposed in Chapter 5: Its goal
was to overcome these shortcomings by leveraging AV technology that is lurking in the
horizon. By removing the driver-related constraints, the CTSPAV was anticipated to allow
the AV routes to be significantly longer than the CTSP routes. While these longer routes
would significantly increase the number of commute trips that can be covered by each AV
on any day, the algorithmic complexity for finding them was also expected to increase
significantly. We therefore proposed a column-generation solution procedure, dubbed the
CTSPAV procedure, that is a departure from the classical column-generation approach for
solving typical VRPs. The latter typically entails solving a set-partitioning/covering mas-
ter problem that ensures each customer is served, and a pricing subproblem that searches
for feasible routes that depart from and return to a depot and have negative reduced costs.
The CTSPAV procedure circumvents the anticipated complexity of searching for the long
AV routes in the pricing subproblem by shifting some of the burden to the master problem
and exploiting the spatio-temporal structure of the dataset. It leverages the spatial struc-
ture of the trips, whereby their origins and destinations are located in separate, disjoint
“islands”, which naturally decomposes the long AV routes into a sequence of shorter con-
stituent routes by using a pricing subproblem that only searches for feasible “mini” routes
with negative reduced costs. The mini routes are short by construction: Each covers only
inbound or outbound trips exclusively, and each has distinct pickup, transit, and drop-off
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phases during which it first visits only trip origins, then travels from an origin to a destina-
tion, and finally visits the trip destinations. These three phases are naturally encountered by
each vehicle as it travels from a residential neighborhood to the workplace in the morning
to serve inbound trips, and vice versa in the evening to serve outbound trips.

In order for the mini routes to be feasible, they must visit each location within a speci-
fied time window, ensure that the time spent on the vehicle by each rider does not exceed
a specified limit, and cannot exceed the vehicle capacity. In other words, they must satisfy
time-window, ride-duration, and vehicle-capacity constraints. Furthermore, they must also
satisfy pairing and precedence constraints, which require a route visiting the origin of a
trip to also visit its destination in the correct order. The master problem of the CTSPAV
procedure is then responsible for stitching or chaining together the feasible mini routes to
form longer AV routes that begin and end at a depot. In addition to ensuring that each trip
is covered, the master problem must also select mini routes that are temporally compatible
with each other, i.e., it needs to ensure that it is possible to travel from the last destination
of one mini route to the first origin of another without violating the temporal constraints of
the selected mini routes. All of this is done in service of a lexicographic objective function
that first minimizes the number of formed AV routes (i.e., the vehicle count if each route is
assigned to an AV) and then minimizes their total travel distance.

Since the routes of the CTSPAV satisfy time-window, ride-duration, capacity, pairing,
and precedence constraints which are identical to those for the DARP (Cordeau and La-
porte 2003a, 2007), the CTSPAV can be seen as a special version of the DARP that serves
inbound-outbound trip pairs using AVs. In fact, any DARP algorithm can be used to solve
the CTSPAV. Chapter 5 explored this possibility as well by investigating a DARP pro-
cedure for solving the CTSPAV. The procedure borrows heavily from an algorithm for
the DARP proposed by Gschwind and Irnich (2015): It relies on the classical column-
generation approach and uses a novel, label-setting dynamic program to solve its pricing
subproblem. We discovered that, while the complexity of discovering the long AV routes
in its pricing subproblem severely hampered the procedure’s ability to find strong integer
solutions within a time-constrained setting, the DARP procedure also produced superior
primal lower bounds for the primary objective. On the other hand, the CTSPAV procedure
produced stronger integer solutions within a similar time-constrained setting, but it does so
at the expense of generating weaker lower bounds.

This work aims at addressing these limitations with two goals in mind:
1. To propose an exact algorithm for the CTSPAV;
2. To provide a conclusive and comprehensive analysis of the potential of the CTSPAV

in reducing vehicle counts, travel distances, and traffic congestion.

130



To meet the first goal, we present an exact algorithm that improves upon the CTSPAV
procedure from Chapter 5 by combining the insights from itself and the DARP procedure
in a redundant modeling framework (Liberti 2004, Ruiz and Grossmann 2011). The pro-
posed algorithm leverages the best characteristics of the CTSPAV and DARP procedures,
i.e., the former’s capability of producing strong integer solutions and the latter’s ability of
generating strong primal lower bounds. The methodological contribution of this work is
to propose a branch-and-cut algorithm for solving the CTSPAV which leverages a novel
dual-modeling technique. The branch-and-cut algorithm solves a mathematical model that
exploits the spatio-temporal structure of the data, making it conducive to finding high-
quality solutions quickly. At the same time, it also uses another mathematical model for
the same problem to generate valid inequalities that are separated by a column-generation
procedure to produce strong lower bounds. This work demonstrates the benefits of this
dual-modeling approach through a comparison with a dedicated branch-and-cut procedure
based on well-established families of valid inequalities, and with the heuristic column-
generation procedure from Chapter 5.

The proposed exact branch-and-cut procedure is also embedded into an end-to-end ap-
proach which combines clustering and optimization to solve large-scale, real-world in-
stances of the CTSPAV based on the Ann Arbor commute-trip dataset. This case study
complements the methodological contribution by providing unique insights into the po-
tential benefits of ride sharing and AVs for serving the commuting needs of many cities
around the world. It demonstrates that a ride-sharing platform based on AVs can provide
substantial reductions to daily vehicle counts and traffic congestion, as well as improve the
traveled miles. In addition, this work contrasts, for the first time, the potential benefits and
drawbacks of car-pooling and ride-sharing platforms along the same dimensions.

The rest of this chapter is organized as follows. Section 6.2 revisits the CTSPAV model
from Chapter 5 and describes an algorithm for enumerating mini routes. Section 6.3 pro-
vides an overview of the branch-and-cut algorithm and covers the different families of valid
inequalities considered in this work together with the heuristics used to separate them. Sec-
tion 6.4 outlines how the algorithm is evaluated and presents the computational results.
Section 6.5 documents the insights obtained from the case study. Finally, Section 6.6 pro-
vides some concluding remarks.
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6.2 The Commute Trip-Sharing Problem for Autonomous
Vehicles

This section revisits the specification of the CTSPAV which was first outlined in Chapter 5.
The problem seeks a set of minimal cost AV routes to serve every inbound and outbound
trip of a set of commuters, C.

6.2.1 Notation

Let n denote the total number of commuters, i.e., n = | C |. For every commuter i ∈ C, let
nodes i, n+ i, 2n+ i, and 3n+ i represent the inbound pickup, inbound drop-off, outbound
pickup, and outbound drop-off locations of the rider’s trips respectively. Then let the sets
of all inbound pickup, all inbound drop-off, all outbound pickup, and all outbound drop-off
nodes be denoted byP+ = {1, . . . , n},D+ = {n+1, . . . , 2n},P− = {2n+1, . . . , 3n}, and
D− = {3n+ 1, . . . , 4n} respectively. Furthermore, let P = P+ ∪ P− and D = D+ ∪ D−.
With this notation, note that n+ i provides the drop-off node corresponding to any pickup
node i ∈ P . By definition of AV routes, the following precedence constraints apply to the
following set of nodes:

i ≺ n+ i ≺ 2n+ i ≺ 3n+ i ∀i ∈ P+ (6.1)

where i ≺ j denotes the precedence relation between nodes i and j, i.e., the constraint
indicating that i must be visited before j if both i and j are served by the same AV route.

Let G = (N ,A) be a directed graph with a node set N = P ∪ D ∪ {vs, vt} containing
all pickup and drop-off nodes together with a source and a sink node (both representing the
designated depot) and an edge set A = {(i, j) : i, j ∈ N , i 6= j} consisting of all possible
edges as a first approximation. A time window [ai, bi] and a service duration ζi are then
associated with each node i ∈ P ∪ D. No time windows are associated with vs and vt as it
is assumed that the AVs may start and end their routes at any time of the day. Additionally,
a ride-duration limit Li is associated with each node i ∈ P . Finally, a travel time τ(i,j), a
distance ς(i,j), and a cost c(i,j) are associated with each edge (i, j) ∈ A, and δ+(i) and δ−(i)

denote the sets of all outgoing and incoming edges of node i respectively.

6.2.2 The MIP Model for the CTSPAV

This section revisits the MIP model for the CTSPAV. The MIP is defined by (6.2)–(6.12):
It formalizes the CTSPAV and is defined on the graph G and the set Ω of all feasible mini
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routes. The MIP formulation uses two sets of binary variables: Variable Xr indicates
whether mini route r ∈ Ω is selected and variable Y(i,j) indicates whether edge (i, j) ∈ A
is used, i.e., whether node j should be visited immediately after node i by an AV route in
the optimal solution. Additionally, the model uses a continuous variable Ti that represents
the start of service time at node i ∈ P ∪ D.

min
∑
e∈A

ceYe (6.2)

s.t.
∑

r∈Ω:i∈r

Xr = 1 ∀i ∈ P (6.3)∑
r∈Ω:e∈r

Xr − Ye ≤ 0 ∀e ∈ A \ {δ+(vs) ∪ δ−(vt)} (6.4)∑
e∈δ+(i)

Ye = 1 ∀i ∈ P ∪ D (6.5)

∑
e∈δ−(i)

Ye = 1 ∀i ∈ P ∪ D (6.6)

Ti + ζi + τ(i,j) ≤ Tj +M(i,j)(1− Y(i,j)) ∀i, j ∈ P ∪ D (6.7)

Ti + ζi + τ(i,j) ≥ Tj − M̄(i,j)(1− Y(i,j)) ∀i ∈ P ∪ D,∀j ∈ D (6.8)

Ti+n − (Ti + ζi) ≤ Li ∀i ∈ P (6.9)

ai ≤ Ti ≤ bi ∀i ∈ P ∪ D (6.10)

Xr ∈ {0, 1} ∀r ∈ Ω (6.11)

Ye ∈ {0, 1} ∀e ∈ A (6.12)

The objective function (6.2) minimizes the total cost of all selected edges. Contraints
(6.3) ensure each trip is served by exactly one mini route, while constraints (6.4) select
edges belonging to selected mini routes. Constraints (6.5) and (6.6) simultaneously ensure
each pickup and drop-off node is visited exactly once while conserving the flow through
each. Constraints (6.7) and (6.8) ensure the start of service times at the tail and the head of
every selected edge is compatible with the travel time along the edge using large constants
M(i,j) and M̄(i,j). Finally, constraints (6.9) and (6.10) describe the ride-duration limit of
every trip and the time-window constraint of every pickup and drop-off node respectively.

Note that constraints (6.7) and (6.8) are generalizations of the popular Miller-Tucker-
Zemlin (MTZ) SECs for the TSP (Miller et al. 1960). They utilize the following big-M
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constants to enforce the underlying constraints on the selected edges:

M(i,j) = max{0, bi + ζi + τ(i,j) − aj} ∀i, j ∈ P ∪ D (6.13)

M̄(i,j) = max{0, bj − ai − ζi − τ(i,j)} ∀i ∈ P ∪ D,∀j ∈ D (6.14)

The model adopts a lexicographic objective whose primary objective is to minimize
the number of vehicles used and whose secondary objective is to minimize the total travel
distance. This lexicographic ordering is accomplished by weighting the sub-objectives: An
identical, large fixed cost and a variable cost that is proportional to the route total distance
are assigned to each AV route. The edge costs are defined as follows to accomplish this
goal:

ce =

ςe + 100ς̂max ∀e ∈ δ+(vs)

ςe otherwise
(6.15)

where ς̂max is a constant equal to the length (total distance) of the longest AV route. Letting
R denote the set of all feasible AV routes, ς̂max is given by:

ς̂max = max
ρ∈R

∑
(i,j)∈ρ

ς(i,j) (6.16)

The CTSPAV model essentially solves a scheduling problem that selects and assembles
feasible mini routes to form longer, feasible AV routes to cover all trips while minimizing
the total cost. The optimal AV routes are obtained by constructing paths beginning at vs
and ending at vt from the selected edges, and their start and end times can be calculated
using equations (1.7) and (1.9) respectively.

6.2.3 The Mini Route-Enumeration Algorithm

Since the MIP model is defined in terms of all feasible mini routes, this section describes the
Mini Route-Enumeration Algorithm (MREA), a procedure for enumerating all the routes
in Ω that is based on the REA proposed in Section 2.2.2. The set Ω can be partitioned into
Ω = Ω+ ∪ Ω−, where Ω+ represents the set of all feasible inbound mini routes (which
covers only inbound trips) and Ω− represents the set of all feasible outbound mini routes
(which covers only outbound trips). Without loss of generality, this section describes the
procedure for enumerating the mini routes in Ω+.

The procedure is summarized in Algorithm 3. It requires as inputs the set T + of all in-
bound trips and the vehicle capacity K. It begins by considering all feasible inbound mini
routes for a vehicle capacity of 1 by adding the routes for all the direct trips from T + to Ω+
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Algorithm 3 Mini Route-Enumeration Algorithm for Ω+

Require: T +, K
1: Ω+ ← Ø
2: for each t+c ∈ T + do
3: Ω+ ← Ω+ ∪ {o+

c → d+
c }

4: for k = 2 to K do
5: Qk ← {all k-combinations of T +}
6: for each q ∈ Qk do
7: Ωv

q ← {all valid mini routes of q}
8: for each r+ ∈ Ωv

q do
9: if feasible(r+) then

10: Ω+ ← Ω+ ∪ {r+}
11: return Ω+

(lines 2–3). It then enumerates the feasible routes for progressively increasing vehicle ca-
pacities by incrementing a parameter k (which represents the considered vehicle capacity)
from 2 to K (line 4). For each k, the procedure first enumerates all k-combinations of trips
from T + (line 5). Let Qk represent the set of all k-trip combinations. It then enumerates
all the valid mini routes for each trip combination q ∈ Qk. Let Ωv

q be this set of routes for a
trip combination q. The procedure finally checks the feasibility of each route in Ωv

q (using
the feasible function described in Section 1.1.3) and adds the ones that are feasible to Ω+

(lines 8–10).
In summary, the enumeration procedure considers all trip combinations of size k ≤ K

(of which there areO(nK) combinations when the vehicle capacityK is fixed). It therefore
performs O(nK) iterations, within each which a trip combination is considered. For each
k-combination, it enumerates (k!)2 valid route permutations (k! pickup node permutations
followed by k! drop-off node permutations for each pickup permutation) and checks the
feasibility of each. Therefore, for each iteration, O((K!)2) mini routes are enumerated.
Additionally, since this work implements the route-feasibility check by Gschwind and Ir-
nich (2015) which has an O(K2) time complexity, the enumeration procedure for each

iteration has a time complexity of O(K2(K!)2). Therefore, when the vehicle capacity K
is fixed (as is the case for this work), the space and time complexity of the entire MREA
reduces to O(nK). Chapter 5 showed that capacities greater than 5 bring only marginal
benefits in its case study, and this will also be confirmed later in this chapter.

The labeling procedure by Gschwind and Irnich (2015) makes it possible to perform
feasibility checks when extending partial mini routes; it therefore permits a more efficient
implementation of lines 7–10 of Algorithm 3. The set of feasible mini routes for any trip
combination q can be enumerated by performing a depth-first search which checks the fea-
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sibility of each partial route as it is being extended and backtracks when an extension is
infeasible. Furthermore, the independence of the search procedure for each trip combina-
tion q ∈ Qk allows them to be performed in parallel.

6.2.4 Filtering of Graph G

Graph G can be made more compact by only retaining edges that satisfy a priori route-
feasibility constraints. This is done by pre-processing time-window, pairing, precedence,
and ride-duration limit constraints on A to identify and eliminate edges that are infeasible,
i.e., those that cannot belong to any feasible AV route. In this work, the set of infeasi-
ble edges is identified using a combination of rules proposed by Dumas et al. (1991) and
Cordeau (2006). These rules are listed in Appendix C.1.

6.3 Valid Inequalities for the CTSPAV

The CTSPAV MIP is solved with a traditional branch-and-cut procedure that exploits a
number of valid inequalities for the MIP formulation. The inequalities are valid for all
nodes of the branch-and-bound tree, and the LP relaxation at each node incorporates all
inequalities discovered up to that point. Numerous families of valid inequalities that have
been proposed for the TSP (Dantzig et al. 1954, Grötschel and Padberg 1985, Padberg and
Rinaldi 1991), the ATSP (Fischetti and Toth 1997), the PCATSP (Balas et al. 1995), the
PDP (Ruland and Rodin 1997), the ATSPTW (Ascheuer et al. 2000, 2001), the VRPTW
(Kohl et al. 1999, Bard et al. 2002, Kallehauge et al. 2007), the PDPTW (Ropke and
Cordeau 2009), and the DARP (Cordeau 2006) are also valid for the CTSPAV as the
CTSPAV is a specialization of the DARP. This work, however, considers only inequali-
ties that specifically improve the lower bound of the vehicle count (the primary objective).
This is because extensive computational experiments from Chapter 5 showed that the LP
relaxation already provides a sufficiently strong lower bound for the secondary objective
(total distance). This section describes the considered valid inequalities together with their
corresponding separation heuristics when applicable. The following notation is used to
simplify the exposition. For any set of edges A′ ⊆ A, let Y (A′) =

∑
e∈A′ Ye. For a set of

nodes S ⊆ N , let S̄ denote its complement, i.e., S̄ = {i ∈ N : i /∈ S}. For any two node
sets S, T ⊆ N , let (S, T ) = {(i, j) ∈ A : i ∈ S, j ∈ T}. For brevity, Y (S, T ) is used to
represent Y ((S, T )). Finally, for node set S ⊆ P ∪ D, let π(S) = {i ∈ P : n + i ∈ S}
and σ(S) = {n + i ∈ D : i ∈ S} denote the sets of predecessors and successors of S
respectively.
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6.3.1 Rounded Vehicle-Count Inequalities

Suppose that a (fractional) lower bound χLB is known for the vehicle count. The inequality

Y (δ+(vs)) ≥ dχLBe (6.17)

is a direct consequence of the integrality of the vehicle count. Such a lower bound can be
obtained by selecting the best bound in the branch-and-bound algorithm. Let Y ∗e denote the
value of Ye in the LP solution of the best bound. A lower bound χBB can be obtained from

χBB =
∑

e∈δ+(vs)

Y ∗e (6.18)

and be used in place of χLB in (6.17).

6.3.1.1 The Column-Generation Procedure for Deriving Vehicle-Count Lower Bounds

A stronger lower bound may be obtained from a column-generation procedure that solves
the CTSPAV as a DARP. In Chapter 5, we discovered that a column-generation procedure
which resembles that used by Gschwind and Irnich (2015) for solving the DARP is capable
of producing strong lower bounds for the vehicle count of the CTSPAV when it is paired
with an appropriate objective function. This work leverages the procedure—by creating
and then solving a redundant DARP model—to strengthen the vehicle-count lower bound
of the CTSPAV MIP.

The DARP column-generation procedure from Chapter 5 features a PSP that searches
for AV routes with negative reduced costs to improve the objective function of a set-
covering MP whose columns consist of the routes. More specifically, it utilizes a RMP
which is the linear relaxation of the MP that is defined on a subset R′ ⊆ R of all feasible
AV routes. The routes discovered by the PSP are progressively added to R′ as the RMP
and the PSP are solved iteratively. The column generation terminates when the PSP cannot
identify any AV route with a negative reduced cost. At this stage, the objective value zRMP

of the RMP converges to the optimal objective value z∗ of the linear relaxation of the orig-
inal MP. In this work, the column-generation procedure is not used to obtain a solution to
the CTSPAV per se; instead, it is just used to extract (potentially strong) lower bounds to
the primary objective of the CTSPAV. The following describes the procedure for obtaining
these lower bounds.
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The Restricted Master Problem The RMP is given by the following set-covering for-
mulation:

min z =
∑
ρ∈R′

Xρ (6.19)

s.t.
∑
ρ∈R′

ai,ρXρ ≥ 1 ∀i ∈ P (6.20)

Xρ ≥ 0 ∀ρ ∈ R′ (6.21)

It is defined on a subsetR′ ⊆ R of all feasible AV routes, and uses a variableXρ to indicate
whether AV route ρ ∈ R′ is used in the optimal solution. Its objective function (6.19)
minimizes the number z of selected AV routes and is therefore identical to the primary
objective of the CTSPAV. Constraints (6.20) ensure each pickup node is covered in the
solution, and ai,ρ is a constant that indicates the number of times node i is visited by route
ρ.

The Pricing Subproblem The PSP searches for AV routes with negative reduced costs
to be added to R′. It uses {µi : i ∈ P}, the set of optimal duals of constraints (6.20),
to compute the reduced costs of the undiscovered routes. The reduced cost of a route ρ is
given by:

c̄ρ = 1−
∑
i∈P

ai,ρµi. (6.22)

To find these routes, a graph G identical to that defined in Section 6.2 is first constructed. A
reduced cost c̄(i,j) is then associated with each edge (i, j) ∈ A, and it is defined as follows
so that the total cost of any path in G from vs to vt is equivalent to (6.22):

c̄(i,j) =


1 ∀(i, j) ∈ δ+(vs)

−µi ∀i ∈ P ,∀j ∈ N

0 ∀i ∈ D,∀j ∈ N .

(6.23)

Obtaining a solution to the PSP is then a matter of finding a feasible AV route, i.e., a path
from vs to vt that satisfies the time-window, capacity, pairing, precedence, and ride-duration
limit constraints, with a negative reduced cost. The PSP can be solved by first finding the
least-cost feasible path from vs to vt and then adding it to R′ if the cost is negative. This
approach makes the problem an ESPPRC which can be solved by the label-setting dynamic
program proposed by Gschwind and Irnich (2015). The necessity of ensuring elementar-
ity of the path (to ensure its feasibility), however, makes the problem especially hard to
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solve (Dror 1994). Since we are only interested in deriving lower bounds to the vehicle
count from this procedure and not in discovering the AV routes per se, the elementarity
requirement can be relaxed to admit a pseudo-polynomial solution from the label-setting
algorithm. While the relaxation, in theory, may cause zRMP to converge to a weaker primal
bound as the PSP would admit a larger set of routesR′′ ⊇ R′, other works that have adopted
a similar strategy (e.g., Ropke and Cordeau (2009) and Gschwind and Irnich (2015)) have
discovered that the lower bound is only slightly weaker in practice.

Extracting a Lower Bound to the Vehicle Count from the PSP As mentioned earlier,
zRMP converges to z∗ and therefore becomes a valid lower bound to the vehicle count of the
CTSPAV when the PSP is unable to discover any AV route with a negative reduced cost.
However, reaching this point in the procedure typically requires many column-generation
iterations and thus a long computation time. Prior to it, zRMP only represents an upper bound
to z∗ and therefore it cannot be used to bound the vehicle count. Fortunately, the identical
unit cost of each AV route in the RMP allows for the derivation of a lower bound to z∗ using
the method proposed by Farley (1990). The Farley bound after the kth column-generation
iteration is given by:

zkFarley =
zRMP

1− c̄kρ
(6.24)

where c̄kρ represents the smallest route-reduced cost discovered by the PSP after the kth

iteration. As the value of zkFarley tends to fluctuate between iterations, a monotonically non-
decreasing lower bound to z∗ can be obtained with the following equation:

zkFarley = max

{
zRMP

1− c̄kρ
, zk−1

Farley

}
(6.25)

As zkFarley is a lower bound to z∗, it is also a valid lower bound to the vehicle count of
the CTSPAV. Therefore, χLB for cut (6.17) may be defined as follows:

χLB = max
{
χBB, z

k
Farley

}
(6.26)

Since zkFarley as defined in (6.25) is monotonically non-decreasing and improves with the
number of column-generation iterations, it is practical to dedicate a single computational
thread for executing this column-generation procedure and use the remaining thread(s) for
solving the CTSPAV MIP in parallel. The CTSPAV MIP may then check for the most up-
to-date value of zkFarley from the column-generation thread after evaluating the LP relaxation
of each tree node and introduce cut (6.17) when there is an improvement to the rounded
vehicle-count lower bound.
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6.3.2 Two-Path Inequalities

The two-path inequality was originally conceived by Kohl et al. (1999) for the VRPTW.
It has been shown to be particularly effective at strengthening the lower bound for the
vehicle count of the VRPTW (Bard et al. 2002) and the PDPTW (Ropke and Cordeau
2009) when vehicle-count minimization is (part of) the objective function. For a set of
nodes S ⊆ P ∪ D, let κ(S) denote the minimum number of vehicles needed to serve S,
i.e., the minimum number of vehicles needed to serve all the nodes in S while satisfying
all route-feasibility constraints. The following two-path inequality,

Y (S, S̄) ≥ 2 ∀S ⊆ P ∪ D, κ(S) > 1 (6.27)

is valid when it is known that a single vehicle cannot feasibly serve all the nodes of set S,
i.e., when κ(S) > 1. Inequality (6.27) has a form that is similar to the cutset inequality:

Y (S, S̄) ≥ 1 ∀S ⊆ P ∪ D, |S| ≥ 2 (6.28)

which, in turn, is equivalent to the DFJ SEC (Dantzig et al. 1954):

Y (S, S) ≤ |S| − 1 ∀S ⊆ P ∪ D, |S| ≥ 2 (6.29)

Inequalities (6.28) or (6.29) are typically used to eliminate subtours in the TSP and the
ATSP (the subtours manifest themselves as cycles when two separate nodes are used to
represent the depot, as is done in this work). For instance, (6.28) does so by requiring
at least a unit of flow to emanate from any set S with two or more nodes. The two-path
inequality (6.27) can therefore be seen as a strengthened SEC as it requires at least two
units of flow to emanate from any set S. However, its validity is contingent upon a stronger
condition, i.e., κ(S) > 1.

For the CTSPAV, a method similar to that proposed by Ropke and Cordeau (2009) may
be used to determine if κ(S) > 1 for any S. It essentially requires one to determine if there
exists a feasible path that first visits all the nodes in π(S) \ S, followed by all the nodes in
S, and then all the nodes in σ(S) \ S. If such a path does not exist, then κ(S) > 1. The
task of determining the existence of this path can be accomplished by first constructing a
three-layered graph GS = (NS,AS) with a node set NS = π(S) ∪ S ∪ σ(S) ∪ {vs, vt} and
an initially empty edge set AS . The nodes from NS \ {vs, vt} are then grouped into three
layers, the first consisting of π(S) \ S, the second consisting of S, and the third containing
σ(S) \ S. The following sets of edges are then introduced into AS:

• {(vs, vt)}
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Figure 6.2: Graph GS (Each Dotted Line Represents a Pair of Bidirectional Edges).

• ({vs}, π(S) \ S) ∩ A
• (π(S) \ S, S) ∩ A
• (S, σ(S) \ S) ∩ A
• (σ(S) \ S, {vt}) ∩ A
• (π(S) \ S, π(S) \ S) ∩ A
• (S, S) ∩ A
• (σ(S) \ S, σ(S) \ S) ∩ A

with A denoting the set of feasible edges of the graph G described in Section 6.2 (after
it has been filtered). Figure 6.2 provides a sketch of GS . The following sets of edges are
introduced into AS should either π(S) \ S or σ(S) \ S be empty:

• If π(S) \ S = Ø, introduce ({vs}, S) ∩ A
• If σ(S) \ S = Ø, introduce (S, {vt}) ∩ A
One now needs to determine if there exists a feasible path from vs to vt that visits

every node of GS . This problem can be treated as an ESPPRC, whereby an edge cost of
−1 is first assigned to all the edges leaving the pickup nodes of NS (i.e., the edges in
(π(S),NS \ π(S))). A feasible path from vs to vt that visits every node of GS then exists if
and only if the least-cost elementary path from vs to vt has a total cost of −|π(S)|. While
this ESPPRC is well known to be NP-hard (Dror 1994), it can be solved efficiently using
the label-setting algorithm by Gschwind and Irnich (2015) when S is small. Therefore, one
just needs to solve the ESPPRC and check the total cost of the resulting elementary path. If
the cost is greater than −|π(S)|, then the nodes of S cannot be feasibly served by a single
vehicle, κ(S) > 1, and (6.27) becomes a valid inequality.
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6.3.2.1 Separation Heuristic

The separation heuristic for the two-path inequalities first identifies sets of nodes S for
which κ(S) > 1. As the two-path inequality is essentially a strengthened SEC, the heuristic
first identifies sets of nodes that form subtours (cycles) in the LP relaxation at each tree
node. Let Y ∗e denote the value of Ye from the LP solution. For every subtour S considered,
the heuristic then checks if

∑
e∈(S,S̄) Y

∗
e < 2 and then if κ(S) > 1. Satisfaction of these

two conditions indicates that the two-path inequality is valid for S and that it is violated in
the LP relaxation. The heuristic therefore adds the two-path inequality for S to eliminate
the subtour from subsequent LP solutions.

To identify subtours from an LP relaxation, the heuristic by Drexl (2013) is used. The
heuristic was proposed as a cheaper yet effective alternative for identifying violated SECs
to the exact method proposed by Gomory and Hu (1961), as it has an O(n2) complexity
compared to the O(n4) complexity of the latter. For any LP solution, a support graph,
Gsp = (Nsp,Asp), is first constructed with nodesNsp = N and edgesAsp = {e ∈ A : Y ∗e >

0}. All strongly-connected components (SCCs) of Gsp are then identified, where an SCC
of a graph is its subgraph with more than one node whereby there exists a path between all
pairs of its nodes. The rationale behind the identification of SCCs is that each constitutes
a subtour (the nodes of the SCC form a cycle(s) as every node is reachable from another).
In practice, all SCCs of Gsp can be computed using the algorithm by Tarjan (1972) which
has a time complexity of O(|Nsp| + |Asp|). Let Ssp denote the set of all SCCs of Gsp, and
for each SCC c ∈ Ssp, let Sc denote its set of nodes. For every c ∈ Ssp, the heuristic then
checks if the total flow emanating from Sc is less than 2, i.e., if

∑
e∈(Sc,S̄c)

Y ∗e < 2. If
this condition is satisfied, the heuristic then determines if κ(Sc) > 1 using the procedure
described earlier. Finally, the two-path cut Y (Sc, S̄c) ≥ 2 is introduced into the CTSPAV
MIP if κ(Sc) > 1.

Due to the expensive nature of the procedure for determining if κ(Sc) > 1, results of
the procedure for every set Sc are stored in a hash table, and the hash table is examined first
before the procedure is performed on any set S to ensure that the same calculations are not
repeated. Furthermore, the part of the procedure which solves the ESPPRC on graph GS
can also be made more efficient. Instead of directly applying the label-setting algorithm of
Gschwind and Irnich (2015) which proposes keeping track of all visited pickup nodes and
preventing path extensions to the already visited nodes to ensure elementarity, the proce-
dure proposed by Boland et al. (2006) can be used. The latter entails iteratively solving a
sequence of relaxed SPPRCs, whereby the elementarity requirement is completely relaxed
in the very beginning. A repeated node from the solution of the relaxed problem is then
selected and added to a set U , after which the problem is solved again, this time with an ad-
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ditional restriction that the nodes in U can only be visited once. The procedure is repeated
with U being progressively enlarged until an elementary path is discovered. The rationale
behind this procedure is that solving the sequence of relaxed SPPRCs is usually less ex-
pensive than solving a single ESPPRC in practice, as often times the former discovers an
elementary path without having to include all the pickup nodes in U . Desaulniers et al.
(2008) proposed adding only the first repeated node from the solution of the relaxed prob-
lem to U after each iteration, and our preliminary evaluations showed that this approach
works very well in practice.

6.3.3 Predecessor and Successor Inequalities

Predecessor and successor inequalities were first introduced by Balas et al. (1995) for the
PCATSP. The predecessor inequality (π-inequality) is given by:

Y (S \ π(S), S̄ \ π(S)) ≥ 1 ∀S ⊆ P ∪ D, |S| ≥ 2 (6.30)

and the successor inequality (σ-inequality) is given by:

Y (S̄ \ σ(S), S \ σ(S)) ≥ 1 ∀S ⊆ P ∪ D, |S| ≥ 2 (6.31)

These inequalities are essentially lifted versions of the cutset inequality (6.28). They
are also valid for the CTSPAV as it adopts precedence constraints that are similar to the
PCATSP.

6.3.3.1 Separation Heuristic

The heuristic utilized to separate π- and σ-inequalities is very similar to that described in
Section 6.3.2.1 for the two-path inequality. At each tree node, values of Y ∗e are first used to
construct a support graph Gsp, after which Ssp which represents the set of all SCCs of Gsp are
identified. For each c ∈ Ssp, the heuristic then checks if either inequalities (6.30) or (6.31)
are violated for Sc, i.e., if either

∑
e∈(Sc\π(Sc),S̄c\π(Sc))

Y ∗e < 1 or
∑

e∈(S̄c\σ(Sc),Sc\σ(Sc))
Y ∗e <

1. Finally, corresponding π- or σ-inequalities are introduced into the CTSPAV MIP for each
violation.

6.3.4 Lifted MTZ Inequalities

The lifted MTZ inequality was initially proposed by Desrochers and Laporte (1991) for the
VRPTW. They were intended to strengthen MTZ constraints that are similar to (6.7) and
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(6.8) which are well known to cause weak LP relaxations (Langevin et al. 1990, Gouveia
and Pires 1999). The MTZ constraints for an edge (i, j) is strengthened by taking into
consideration the flow along the opposite edge (j, i) combined with the fact that only one
of the edges may have positive flow in a feasible integer solution. The lifted versions
constraints (6.7) and (6.8) are given by (6.32) and (6.33) respectively.

Ti + ζi + τ(i,j) ≤ Tj +M(i,j)(1− Y(i,j))− α(j,i)Y(j,i) ∀i, j ∈ P ∪ D (6.32)

Ti + ζi + τ(i,j) ≥ Tj − M̄(i,j)(1− Y(i,j))− β(j,i)Y(j,i) ∀i ∈ P ∪ D, ∀j ∈ D (6.33)

To correctly lift the constraints using this technique, the coefficients of the flow variable
of the opposite edge, α(j,i) and β(j,i), are assigned values that are as large as possible while
ensuring that inequalities (6.32) and (6.33) are still valid for any feasible integer solution.
Desrochers and Laporte (1991) proposed coefficient values for the VRPTW that ensure
the earliest start of service times for every node. As serving pickup nodes as early as
possible may not be desirable for the CTSPAV (as doing so lengthens the ride duration of
the picked-up rider and thus increases the likelihood of exceeding her ride-duration limit),
the coefficients are adjusted to (6.34) and (6.35) for the CTSPAV.

α(j,i) =

M(i,j) − ζi − τ(i,j) − ζj − τ(j,i) if i ∈ D

M(i,j) − ζi − τ(i,j) − bi + aj otherwise
(6.34)

β(j,i) = −M̄(i,j) − ζi − τ(i,j) − ζj − τ(j,i) (6.35)

The validity of the lifted constraints can be verified by first substituting (6.34) and (6.35)
into (6.32) and (6.33) respectively, and then setting the flows along both edges (i, j) and
(j, i) to zero or setting the flow along either edge to one. First, setting Y(i,j) and Y(j,i) to
zero just disables constraints (6.32) and (6.33) for both edges. Next, setting Y(i,j) = 1 and
Y(j,i) = 0 produces the following constraints,

Ti + ζi + τ(i,j) ≤ Tj if i, j ∈ P ∪ D (6.36)

Ti + ζi + τ(i,j) ≥ Tj if i ∈ P ∪ D, j ∈ D (6.37)

which simply enforce the increasing service time requirement along edge (i, j). Finally,
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setting Y(i,j) = 0 and Y(j,i) = 1 results in the following set of constraints:

Tj + ζj + τ(j,i) ≥ Ti if j ∈ P ∪ D, i ∈ D (6.38)

Ti − Tj ≤ bi − aj if j ∈ P ∪ D, i ∈ P (6.39)

Tj + ζj + τ(j,i) ≤ Ti if j ∈ D, i ∈ P ∪ D (6.40)

Constraints (6.38) and (6.40) simply enforce increasing service times along edge (j, i),
while (6.39) is obviously a valid inequality if edge (j, i) is selected.

6.3.5 Lifted Time-Bound Inequalities

The lifted time-bound inequalities were also proposed by Desrochers and Laporte (1991)
to strengthen the time-window constraints of the VRPTW. Inequalities (6.41) and (6.42)
strengthen the time-window constraints of node i by taking into consideration the temporal
requirements along the node’s incoming and outgoing edges with positive flow.

Ti ≥ ai +
∑

(j,i)∈δ−(i)

max{0, aj − ai + ζj + τ(j,i)}Y(j,i) ∀i ∈ P ∪ D (6.41)

Ti ≤ bi −
∑

(i,j)∈δ+(i)

max{0, bi − bj + ζi + τ(i,j)}Y(i,j) ∀i ∈ P ∪ D (6.42)

6.4 Computational Results

This section presents the computational results of the branch-and-cut algorithm on problem
instances derived from a real-world dataset of commute trips.

6.4.1 Algorithmic Settings

Three variants of the branch-and-cut algorithm are considered and contrasted in the evalua-
tions; they are named CTSPAVBase, CTSPAVSEC, and CTSPAVHybrid. Each is differentiated
by the types of valid inequalities included in its implementation. They are specified as
follows:

• CTSPAVBase is the core algorithm and implements the simplest valid inequalities:
lifted time bounds, lifted MTZ, and rounded vehicle count which uses only χBB as
its lower bound;

• CTSPAVSEC is CTSPAVBase with the two-path, predecessor, and successor inequali-
ties;

• CTSPAVHybrid is CTSPAVBase with the DARP lower bound from Section 6.3.1.1.
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The last variant also uses the interior-point, dual-stabilization method proposed by Rousseau
et al. (2007) to accelerate the convergence of its DARP column-generation procedure. Fur-
thermore, instead of only selecting the least-cost feasible path with a negative reduced cost
in its PSP, all non-dominated paths resulting from the label-setting algorithm with negative
reduced costs are added toR′ to further accelerate convergence.

6.4.2 Construction of Problem Instances

Problem instances for the computational evaluations are derived from the Ann Arbor com-
mute trip dataset. The performance evaluations utilize the trips made by the commuters
living within Ann Arbor’s city limits, the region bounded by highways US-23, M-14, and
I-94. More specifically, the 2,200 commute trips from this region made on the busiest day
of the month (Wednesday of week 2) were first selected and then partitioned into smaller
problem instances using the spatial clustering algorithm described in Section 2.2.1. Trip
sharing is then only considered intra-cluster with the largest parking structure arbitrarily
designated as the depot for all clusters.

In addition to this, the following assumptions are made in order to define the time
windows and ride-duration limit of each trip. Consistent with past works on the DARP
(e.g. Jaw et al. (1986), Cordeau and Laporte (2003b), and Cordeau (2006)), each rider
i specifies a desired arrival time at+i at the destination of her inbound trip and a desired
departure time dt−i at the origin of her outbound trip when making a request. The riders
also tolerate a maximum shift of ±∆ to the desired times. By treating the arrival and
departure times to and from the parking structures as the desired times, an arrival-time
upper bound at node n + i of bn+i = at+i + ∆ and a time window at node 2n + i of
[a2n+i, b2n+i] = [dt−i − ∆, dt−i + ∆] are defined for each i ∈ P+. Consequently, the time
window at node i is given by [ai, bi] = [bn+i− ζi−Li− 2∆, bn+i− ζi−Li] and the arrival-
time upper bound at node 3n+ i is given by b3n+i = b2n+i+ ζ2n+i+L2n+i for each i ∈ P+.
Finally, consistent with Hunsaker and Savelsbergh (2002), the ride-duration limit of each
trip is defined as an R% extension to the direct trip, i.e., Li = (1 +R)τi,n+i for each i ∈ P .

A set of tight, medium, and large problem instances are constructed by varying param-
eter N of the clustering algorithm together with ∆ and R. The parameter combinations
are carefully selected to highlight the performance differences of the three variants of the
branch-and-cut algorithm considered. A vehicle capacity of K = 4 is used in all instances
to represent the use of autonomous cars. Table 6.1 summarizes the parameters used to-
gether with the number of instances created when the clustering algorithm is applied on the
set of 2,200 commuters.
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Table 6.1: Parameters for Constructing Problem Instances

Problem size N ∆ R K Number of instances

Large 100 10 mins 0.50 4 22
Medium 75 10 mins 0.50 4 30

Tight 100 5 mins 0.25 4 22

Table 6.2: Average Vehicle-Count and Optimality Gaps of Every CTSPAV Variant for Ev-
ery Problem Size

CTSPAV
variant

Average vehicle count gap Average optimality gap

Large Medium Tight Large Medium Tight

Hybrid 1.18 0.50 0.00 31.8% 16.6% 0.0%
SEC 1.73 0.73 0.09 45.5% 23.8% 1.7%
Base 2.50 1.67 0.14 68.0% 59.0% 3.2%

6.4.3 Experimental Settings

All algorithms are implemented in C++. Parallelization of the MREA is handled with
OpenMP, while the parallel execution of the column-generation procedure and the MIP of
CTSPAVHybrid is handled with the thread class from the C++11 standard library. All LPs and
MIPs are solved with Gurobi 9.0.2, while graph algorithms from the Boost Graph Library
(version 1.70.0) are used to calculate the SCCs of a graph and to implement the label-setting
algorithm of Gschwind and Irnich (2015). Gurobi’s callback feature is used to implement
the bespoke cutting-plane separation and insertion, while the MIP solver is configured with
its default parameters. For problem instance construction, Geocodio is used to geocode
GPS coordinates of every address considered, after which GraphHopper’s Directions API is
used in conjunction with OpenStreetMap data to estimate the shortest path, travel time, and
travel distance between any two nodes. Unless stated otherwise, every problem instance
is solved on a compute cluster, each utilizing 4 cores of a 3.0 GHz Intel Xeon Gold 6154
processor and 16 GB of RAM. All four cores are used for the MREA. For CTSPAVHybrid,
one core is dedicated for the column-generation procedure while the remaining three are
used for solving the MIP. All four cores are used for solving the MIPs of CTSPAVSEC and
CTSPAVBase. Finally, a 2-hour time budget is allocated for solving every MIP.

6.4.4 Algorithm Performance Comparison

Table 6.2 first summarizes the average vehicle-count gaps and the average optimality gaps
obtained for every problem size and every CTSPAV variant. Let χMIP, zMIP, and zBB de-
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note the final vehicle count, the objective value of the best incumbent solution, and the
best bound respectively. The vehicle-count gap is given by χMIP − dχLBe, while the opti-
mality gap is given by (zMIP − zBB)/zMIP. The complete results of all the computational
experiments are listed in Tables C.1–C.6 in Appendix C.2. Note that the route-enumeration
time for every problem instance is consistently less than 60 seconds, which highlights the
efficiency of the MREA.

The average optimality gaps for the large and medium instances appear to be relatively
large. However, a closer examination of the vehicle-count gaps paints a different picture,
as their values are relatively small across the board. In fact, the average vehicle-count gap
for CTSPAVHybrid is only a little above one for the large instances, and is less than one for
the tighter instances. The gap values for CTSPAVHybrid are also consistently smaller across
the board than those of CTSPAVSEC which, in turn, are smaller than those of CTSPAVBase.
This observation provides the first evidence of the capability of CTSPAVHybrid’s column-
generation procedure at producing very strong lower bounds for the primary objective; it
also demonstrates the effectiveness of the combination of the two-path, successor, and pre-
decessor inequalities at closing the vehicle-count gap (compared to an implementation that
only adopts the basic inequalities). While the latter set of inequalities produces signifi-
cant improvements in closing the primary gap, they are nevertheless outperformed by the
rounded vehicle-count inequalities of CTSPAVHybrid.

Figure 6.3 provides a different perspective by summarizing the number of problem in-
stances whose vehicle-count gaps are successfully closed within the 2-hour time limit for
every CTSPAV variant. It also displays each count as a fraction of the total number of
instances considered. For the large instances, CTSPAVHybrid could only close the gap for
three instances, while the other two variants could not for any of the problems from the set.
This number improves for the medium instances, where CTSPAVHybrid could now close the
gap for 15 out of the 30 instances, while CTSPAVSEC could do the same for 9 of the in-
stances. However, CTSPAVBase still cannot close the primary gap for any. Finally, for the
tight instances, CTSPAVHybrid finds the optimal solution for all of them, while CTSPAVSEC

closes the primary gap for 90.9% of the instances and CTSPAVBase does the same for 86.4%
of them. Regardless of the set of problem instances considered, the trend is clear: (1) The
additional set of inequalities adopted by CTSPAVSEC allows it to successfully close the
primary gap of more instances than CTSPAVBase, and (2) CTSPAVHybrid consistently out-
performs the other two CTSPAV variants at closing the optimality gap. The latter obser-
vation provides yet another evidence of the efficacy of CTSPAVHybrid’s column-generation
procedure at generating strong lower bounds for the primary objective.

Instead of aggregating the results from each problem set, Figures 6.4, 6.5, and 6.6 pro-
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Figure 6.3: Number of Problem Instances Whereby Vehicle-Count Gap is Closed by Every
CTSPAV Variant.
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Figure 6.4: Best Incumbent Solution and Lower Bound for Vehicle Count of Every
CTSPAV Variant for Every Large Problem Instance.

vide a more in-depth look at the final primary objective value and its corresponding lower
bound for every problem instance from the large, medium, and tight sets respectively. For
instance, Figure 6.4 shows the best incumbent solution and the lower bound for the vehicle
count of every CTSPAV variant for every large problem instance. The figure reveals that,
except for a few instances, all three variants produce identical final vehicle counts. The
difference, however, lies in their lower bounds. The lower bounds of CTSPAVHybrid domi-
nate those of CTSPAVSEC in every instance. In turn, those of the latter dominate the lower
bounds of CTSPAVBase in every instance as well. The same observation is carried over
to Figure 6.5 which summarizes the primary gap of every instance from the medium set.
While CTSPAVHybrid and CTSPAVSEC produce identical lower bounds for more instances
from this set, on the whole, the lower bounds of CTSPAVSEC are still dominated by those
of CTSPAVHybrid. Similarly, they both dominate the lower bounds of CTSPAVBase. Finally,
Figure 6.6 summarizes the results of the tight instances and confirms the observations from
the previous two figures. These observations lead to the following conclusion: Regardless
of the size of the problem considered, there is a clear delineation between the strengths of
the lower bound for the primary objective of the three CTSPAV variants. CTSPAVHybrid

dominates CTSPAVSEC which, in turn, dominates CTSPAVBase. The relative strength of
CTSPAVHybrid’s lower bound directly contributes to its ability to close or narrow the opti-
mality gap of more problem instances than the other two variants.
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Figure 6.5: Best Incumbent Solution and Lower Bound for Vehicle Count of Every
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Figure 6.6: Best Incumbent Solution and Lower Bound for Vehicle Count of Every
CTSPAV Variant for Every Tight Problem Instance.

6.4.5 Analysis of the Lower Bounds

Figure 6.7 presents a closer examination of the evolution of the best bound and the best in-
cumbent objective value of every CTSPAV variant over time for a specific problem instance
(instance L0). It also shows the progression of zkFarley (after it has been scaled by the fixed
cost 100ς̂max) over time; the lower bound is obtained by rounding it up to the nearest mul-
tiple of 100ς̂max. Since the MIP solver, with its default heuristics, is able to discover strong
integer solutions fairly quickly for this formulation, the critical challenge lies in closing the
optimality gap quickly. Unfortunately, the CTSPAV formulation uses big-M constants in
constraints (6.7) and (6.8) which produce weak LP relaxations.

The lifted MTZ and lifted time-bound inequalities provide only marginal improvements
to the LP relaxation. While the rounded vehicle-count inequality has the capability of
rectifying the issue, χBB rarely becomes fractional in practice, and thus the version of the
inequality that only uses χBB rarely improves the vehicle-count lower bound. This explains
why CTSPAVBase always produces the weakest lower bounds. Separation heuristics of the
two-path, successor, and predecessor inequalities attempt to alleviate this situation by first
searching for subtours that result from the flow of an LP relaxation, and then introducing the
respective inequalities to remove these subtour flows from subsequent LP solutions. The
experimental results of CTSPAVSEC demonstrate that these inequalities are indeed effective
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at further strengthening the LP bound, however the results also show that their effect on the
best bound tends to stagnate over time.

CTSPAVHybrid attempts to circumvent the CTSPAV formulation’s weak LP bound by
dedicating a computational thread to solving the same problem using a (redundant) DARP
formulation that focuses only on the primary objective. The Farley bound zkFarley of the
DARP relaxation provides a lower bound, and its scaled values in Figure 6.7 show that it
progressively improves over time even after the best bounds of CTSPAVBase and CTSPAVSEC

begin to stagnate. The ability of the column-generation procedure to produce relatively
stronger lower bounds can be attributed to a few factors:

1. The RMP formulation does not utilize any big-M constants.
2. The RMP uses only one set of binary variables (Xρ), as opposed to two by the

CTSPAV MIP (Xr and Ye). Therefore, fewer convex combinations of variables are
allowed in its LP relaxation, which leads to stronger primal (and dual) lower bounds.

3. Ropke and Cordeau (2006) showed that the set-covering formulation actually implies
several valid inequalities (precedence and strengthened precedence inequalities) that
would otherwise need to be enforced explicitly in an edge-flow formulation.

The approach of dedicating a single thread for executing the column-generation pro-
cedure also has a side benefit: It allows the branch-and-bound algorithm to freely explore
more tree nodes without being encumbered by expensive separation heuristics. This is ev-
ident from a comparison of the number of explored nodes for several problem instances,
for example, those of CTSPAVHybrid and CTSPAVSEC for instances L1, L5, and L12 from
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Tables C.1 and C.2. The comparison shows that the former is able to explore significantly
more nodes, which could, in turn, lead to the discovery of better integer solutions. While
CTSPAVHybrid had one fewer thread for solving its MIP, it also did not have to execute any
of the expensive separation heuristics of CTSPAVSEC which consequently resulted in a net
gain in terms of the number of nodes it could explore.

6.4.6 Comparison with the CTSPAV Column-Generation Heuristic

It is useful to contrast the results from this work with those of the CTSPAV column-
generation heuristic from Chapter 5. The heuristic does not exhaustively enumerate all the
mini routes in Ω. Instead, it uses a column-generation procedure consisting of a restricted
master problem (RMPCTSPAV)—the linear relaxation of MIP model (6.2)–(6.12) defined on
only a subset Ω′ ⊆ Ω of the mini routes— and a pricing subproblem (PSPCTSPAV) that
searches for mini routes with negative reduced costs to augment Ω′. The RMPCTSPAV and
PSPCTSPAV are solved repeatedly until PSPCTSPAV is unable to find any mini route with a
negative reduced cost. The heuristic then solves RMPCTSPAV as a MIP (that does not incor-
porate the valid inequalities considered in this work) to obtain a feasible integer solution.
Since the heuristic only considers a subset of the feasible mini routes, it is incapable of

proving the optimality of its solution unless the solution of its RMPCTSPAV at convergence

is integral (which is never the case for the instances considered). Nevertheless, it is still
instructive to compare its results against those of the exact CTSPAVHybrid method to gauge
the effectiveness of its column-generation procedure at identifying useful mini routes.

Tables C.7, C.8, and C.9 in Appendix C.2 give comprehensive results of the heuristic
for every large, medium, and tight instance respectively. The results show that significantly
fewer columns (mini routes) are considered by the heuristic. On average, it considers 66%,
62%, and 16% fewer columns for the large, medium, and tight instances respectively com-
pared to CTSPAVHybrid. However, the final vehicle counts and total distances of the heuris-
tic and CTSPAVHybrid are very similar. In fact, the vehicle count results of the heuristic
are identical to those of CTSPAVHybrid in all except three instances: L19, M15, and S7. For
these three instances, the counts of the heuristic are only greater than those of CTSPAVHybrid

by one vehicle. Moreover, the percentage difference in the total distance results are con-
sistently less than 1.50% (on average, they differ by 0.01%). This similarity bodes very
well for the heuristic; it highlights the effectiveness of its negative reduced cost criterion
at identifying the subset of mini routes that is critical for producing strong integer solu-
tions. It also indicates that the heuristic is more than sufficient for producing high-quality
solutions, especially in applications where proving the optimality of the final solution is
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Figure 6.8: Commute Trip Demand Over 15-Minute Intervals on Week 2.

not of paramount importance. As mentioned earlier, the heuristic is incapable of closing
the vehicle-count or optimality gap for any of the instances, so CTSPAVHybrid remains the
better candidate in applications where closing or narrowing the optimality gap is critical.

6.5 Case Study of Shared Commuting in Ann Arbor, Michi-
gan

This section summarizes the results of a case study that applies the CTSPAV to optimize
the commute trips from the Ann Arbor dataset. More specifically, it considers all trips (of
commuters living inside and outside the city limits) from the first four weekdays (Monday–
Thursday) of the busiest week of April 2017 (week 2). The parameters N , ∆, and R are
set to 100, 10 minutes, and 50% respectively for this case study.1Its goal is to demonstrate
the effectiveness of the CTSPAV at reducing vehicle usage and vehicle miles traveled, as
well as to examine some of the real-world benefits and drawbacks of the AV ride-sharing
platform.

Figure 6.8 provides an overview of the trip demand from the dataset and reports the
number of ongoing trips for every 15-minute interval throughout the four days considered.
The figure exhibits clear and consistent commuting patterns: The inbound demand peaks

1Part of the results for this case study is obtained by performing further analysis on the results from
Chapter 5 which utilized the column-generation heuristic to solve the CTSPAV.

153



1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

4
2
%

4
2
%

4
2

%

4
2
%

1
8
%

1
8
%

1
8
%

1
8
%

1
1
%

1
1
%

1
1
%

1
1
%

1
0
%

9
%

9
%

9
%

8
%

8
%

8
%

8
%

0

2000

4000

6000

8000

10000

Monday Tuesday Wednesday Thursday
V

eh
ic

le
 c

o
u

n
t

No sharing

CTSP

CTSPAV, K=1

CTSPAV, K=2

CTSPAV, K=3

CTSPAV, K=4

Figure 6.9: Total Number of Cars Used on Week 2.

between 7–8 am while the outbound demand peaks at around 5 pm every day. The highly
consistent nature of the trip distribution highlights the opportunities for optimizing them.

6.5.1 Reduction in Vehicle Counts and Travel Distances

Figure 6.9 summarizes results of the primary objective of the CTSPAV for various vehicle
capacities K ∈ {1, 2, 3, 4}. It reports the total number of vehicles needed to cover all
the trips for each K value by aggregating the final vehicle count results of every cluster.
The number of vehicles utilized under no-sharing conditions (i.e., when the commuters
travel using their personal vehicles) and under the original CTSP (with K = 4) (i.e., when
drivers are selected from the set of commuters) are included for additional perspectives.
The percentages in the figure report each count as a fraction of the no-sharing count. The

figure highlights the significant capability of the CTSPAV in reducing the number of vehicles

used. Indeed, the CTSPAV reduces the vehicle counts by up to 92% every day, and improves
upon the original CTSP by an additional 34%. In fact, the results show that, even without
any ride sharing (i.e., when K = 1), AVs still reduce the number of vehicles by 82%
and improve upon the CTSP by an additional 24%. This reduction in vehicle counts can
be translated into a significant reduction in parking spaces, which can then be utilized for
other, more useful infrastructures. The difference in the vehicle counts of the CTSP and the
CTSPAV is due to autonomy: The vehicles are not associated with drivers and can travel
back and forth between the residential neighborhoods and the workplace to serve trips
throughout the day. In the CTSP, the vehicles only perform a single inbound and outbound
route every day as they are restricted to begin and end at the trip origins and destinations of
their drivers.

Figure 6.10 summarizes the total travel distance of the vehicles, which is the secondary
objective of the CTSPAV, under the same configurations. The results are again obtained
by aggregating the results from every cluster, and the percentages represent each quantity
as a fraction of the no-sharing total. The first result that stands out is how many more
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Figure 6.10: Total Travel Distance on Week 2.
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Figure 6.11: Average Empty Miles Per Vehicle on Week 2.

miles are traveled by the CTSPAV when K = 1 (92–94% more than those under the no-
sharing conditions). When K = 1 for the CTSPAV, the AVs need to perform significantly
more back-and-forth traveling between the neighborhoods and the workplace to cover the
same number of trips, which consequently leads to their inflated total travel distance. The
results improve significantly when K is increased to 2 as the vehicles allow for more trip
aggregation, yet the traveled miles are still 5–6% more than those of the private vehicles.
Net savings in travel distance are only realized when K ≥ 3: Beyond this point, the

reduction in travel distance from ride sharing exceeds the additional empty miles (the miles

traveled by an AV with no passengers onboard) introduced by the back-and-forth traveling

of the AVs. Nevertheless, the 29–30% reduction in miles traveled when K = 4 is still
not as significant as that offered by the original CTSP which is around 56–57%. Indeed,
the CTSP does not introduce any empty miles and benefits from all the distance savings
from ride sharing. On the other hand, the CTSPAV total will necessarily include some
empty miles from when the vehicles travel without any passengers onboard as they go
from the workplace back to the residential neighborhoods in the morning (or vice versa in
the evening) to pick up more trips. There is obviously a trade-off between the reduction in
vehicle count and travel distance. Figure 6.11 provides a closer look at the average empty
miles per vehicle for the various vehicle capacities. The results are quite intuitive: The
average decreases as K increases, since the larger vehicle capacities allow for more ride
sharing and require less back-and-forth traveling to cover the same number of trips.
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Figure 6.12: Efficiency of Vehicle Routes

Figure 6.12 then attempts to quantify the route efficiency of the various configurations,
i.e., the number of trips covered per mile traveled. It also displays a multiplicative factor
for each quantity as a multiple of the no-sharing value. The results indicate that the CTSP
produces the most efficient routes, whereas the CTSPAV, whenK = 1, is the least efficient.
The CTSPAV gains more efficiency (albeit at a decreasing rate) as its vehicle capacity is
increased; while its routes are more efficient than those of the private vehicles whenK = 4,
it still cannot outperform the CTSP. There is an intuitive explanation for this observation.
The CTSPAV loses its route efficiency from its empty miles and then has to recover them
by maximizing ride sharing to cover as many trips as possible. In contrast, the CTSP does
not have to contend with any efficiency losses from empty miles.

6.5.2 Congestion Analysis

Figure 6.13 presents results on congestion to understand the reduction (or increase) in traf-
fic caused by AVs compared to conventional vehicles. It tallies the total number of vehicles
used by each configuration over every 15-minute interval throughout the four days con-
sidered. The goal is to investigate, qualitatively and comparatively, the capability of each
configuration in flattening the traffic curve originally produced by the private vehicles. The
CTSPAV with K = 1 appears to aggravate traffic as its curve is as tall as, and is wider
than, that of the private vehicles. This is not surprising. As illustrated earlier, this configu-
ration produces the most vehicle miles traveled and also the most empty miles. The curve
is drastically flattened as soon as K is increased to 2, and it keeps becoming flatter (at a
decreasing rate) as K is further increased. When K = 4, the CTSPAV produces about a
58% reduction in traffic at peak hours. The traffic curves of the CTSP appear to dominate
slightly those of the CTSPAV with K = 4 most of the time. This observation is also in line
with the route efficiency calculations. However, regardless of their relative performance,
the figure provides the evidence that both the CTSP and the CTSPAV have the potential to

significantly reduce traffic congestion, especially during peak hours.
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Figure 6.13: Number of Vehicles on the Road Over 15-Minute Intervals on Week 2.

6.5.3 Analysis of Commuting Properties

Figure 6.14 aims to quantify the relative amount of ride sharing taking place throughout
each day for the different configurations. It reports the average number of riders per vehicle
for every 15-minute interval throughout the four days considered. Results for the private
vehicles and for the CTSPAV with K = 1 are not included for obvious reasons (they do
not allow any sharing). The amount of ride sharing throughout a typical weekday mimics
the shape of the trip demand: They both peak during the same periods of the day. This is
to be expected as the CTSP and the CTSPAV maximize ride sharing, which is easier when
the trip demand is higher. The figure also shows that the relative amount of sharing for
the CTSPAV increases with the vehicle capacity. Moreover, when K = 4, there is more

ride sharing in the CTSPAV than in the CTSP most of the time. This can be attributed to
the higher flexibility of the mini routes of the CTSPAV compared to those of the CTSP.
Indeed, a CTSP route must start and end at the origin and the destination of its driver’s trip
respectively, which constrains its total duration by the ride-duration limit of the driver. Mini
routes of the CTSPAV are not subjected to these restrictions, allowing for more flexibility
in serving trips. Interestingly, during peak hours, the average number of riders per vehicle
is between 3.0 and 3.5 (for the CTSPAV with K = 4) due to the spatial and temporal
characteristics of the trips from the dataset. This also indicates the types of AVs that will be
most useful in the future, at least for cities like Ann Arbor, do not require large capacities.

Figure 6.15 reports the average commute times, i.e., the average time spent on the
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Figure 6.14: Average Riders Per Vehicle Over 15-Minute Intervals on Week 2
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Figure 6.15: Average Commute Time on Week 2.

vehicle by each rider. The percentages of each quantity are calculated relative to the no-
sharing value. The results shed light on another inherent trade-off in ride-sharing services
as the ride duration necessarily increases. During ride sharing, a route may deviate from the
optimal path to pick up or drop off other riders. This, combined with possible wait times
incurred at the pickup locations, contributes to the increased ride durations. The results
reveal an expected trend for the CTSPAV: The average commute times increase with the
increase in vehicle capacity. However, it is interesting to observe that, although parameter

R was set to 50% for the case study, the commute times of the CTSPAV with K = 4 only

increase by an average of 26%. The CTSPAV thus guarantees a high QoS for its riders.
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6.6 Conclusion

The purpose of the CTSPAV is to synthesize an optimal routing plan for serving a large
set of commute trips with AVs. Its design was originally motivated by the desire to ad-
dress the growing parking and traffic congestion problems induced by an average of 9,000
daily commuters traveling to parking lots operated by the University of Michigan located
in downtown Ann Arbor, Michigan. Utilization of AVs was seen as the key to addressing
the shortcomings of the original CTSP—a conventional car-pooling problem with the same
objectives as the CTSPAV—by obviating any driver-related requirements that could limit
its ride-sharing potential. A first attempt at solving the problem in Chapter 5 investigated
two different methods: (1) A CTSPAV procedure which used column-generation to dis-
cover mini routes—short routes covering only inbound or outbound trips that have distinct
pickup, transit, and drop-off phases—with negative reduced costs which are chained to-
gether to form longer AV routes in its master problem and (2) A DARP procedure which
uses a classical column-generation approach originally developed for the DARP to solve
the CTSPAV. Both methods utilized identical lexicographic objectives which sought to first
minimize the required vehicle count and then minimize their total travel distance. To deal
with the complexity of handling the massive volume of trips, the commuters were first clus-
tered into groups representing artificial neighborhoods, after which ride sharing within each
cluster was optimized exclusively. We discovered that each method had a trade-off. The
CTSPAV procedure produced strong integer solutions but had weak primal lower bounds.
Conversely, the DARP procedure generated stonger primal lower bounds especially for the
primary objective, but it was slow and therefore could not obtain strong integer solutions
within time-constrained scenarios.

The trade-offs of the two procedures presented an opportunity for exploring a method

that could leverage the strengths of both, which is the primary methodological contribu-

tion of this work. This work thus proposes a branch-and-cut procedure that exploits a
dual-modeling approach for solving the CTSPAV. The core of the procedure is a MIP for-
mulation of the CTSPAV that chains (exhaustively enumerated) mini routes to form longer
AV routes and that is capable of producing high-quality integer solutions. This core is
complemented by a DARP formulation (for minimizing vehicle counts) whose relaxation
is obtained through a column-generation procedure. The DARP formulation is less ef-
fective at finding high-quality integer solutions, but its relaxation produces strong lower
bounds. The overall algorithm solves the core branch-and-cut procedure and the DARP re-
laxation in parallel, transmitting new lower bounds asynchronously from the relaxation to
the branch-and-cut procedure. Computational evaluations that use instances derived from
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the Ann Arbor commute-trip dataset demonstrated that this hybrid algorithm consistently
outperforms a similar branch-and-cut procedure that utilizes other well-established valid
inequalities like 2-path cuts and successor and predecessor inequalities. It successfully
closed the optimality gaps for several large- and medium-sized instances as well as those
for all tight problem instances considered in the evaluation, of which none could be opti-
mally solved by the CTSPAV procedure from Chapter 5.

With the availabilty of the exact branch-and-cut procedure, this work then provided a
comprehensive analysis of the potential of the AV ride-sharing platform in relieving parking
pressure and traffic congestion for a medium-sized city. In particular, the work presented
the results of a case study which applies the clustering-CTSPAV optimization workflow on
the large-scale dataset of commute trips from the city of Ann Arbor, Michigan. The analysis

revealed several invaluable insights, including the CTSPAV’s capability of reducing daily

vehicle counts by 92%, further improving upon the already massive 57% vehicle reductions

of the original CTSP. It does so by generating AV routes that are very long—a stark contrast
to the short routes of the CTSP—allowing each AV to cover significantly more trips every
day. It could also effectively flatten the vehicle usage curve (which represents the number
of vehicles used per unit time), suggesting a concomitant ability to effectively reduce traffic
congestion. The CTSPAV also produced higher averages of trips shared per unit time than
the CTSP, indicating that it is superior at aggregating trips for ride sharing. The analysis
also revealed some drawbacks, the most significant being the introduction of empty miles
into the daily travel-distance totals. The empty miles degrade the efficiency of the CTSPAV
routes, which measures the average number of trips covered per distance traveled, making
them less efficient than the routes of the CTSP. Empty miles are unfortunately a by-product
that is inherent to the utilization of AVs, and its introduction is a trade-off that will need
to be carefully weighed against the benefits of AVs by the ride-sharing platform operator.
Nonetheless, the case study indicated that the CTSPAV routing plan, even with its empty
miles, is still able to reduce the total miles traveled by 30% while producing routes that are
1.4 times more efficient than those of private vehicles. On the whole, the case study showed
that a CTSPAV-based ride-sharing platform could significantly reduce daily vehicle counts
and the number of vehicles used per unit time. Such a platform would be highly effective at
aggregating trips, making it a very promising solution for reducing parking space utilization
and for mitigating traffic congestion induced by large-scale commuting.
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CHAPTER 7

Conclusion

This work began from a collaboration between MIDAS and the LTP division of the Uni-
versity of Michigan that sought to relieve the parking pressure induced by the 15,000 com-
muters traveling to the 15 university-operated parking structures located in downtown Ann
Arbor, Michigan. The desire to explore the potential of optimized car-pooling and ride-
sharing platforms in reducing this pressure led to a series of studies that focused on tackling
the computational complexities of numerous aspects of the optimization problem. These
studies have culminated in this dissertation, which describes the development of mathe-
matical models, decomposition approaches, and algorithmic techniques to solve numer-
ous vehicle-routing problems that are tailored for commuting, ranging from selecting and
scheduling drivers to pick up and drop off other riders on their way to work and back home,
to designing optimal routes for fleets of autonomous vehicles to cover the commute trips.
Every solution approach proposed in this work shares a common characteristic: Each re-
lies on LP-based techniques that produce valid lower bounds to its objective value (unlike
typical heuristics), which lets the solution quality be quantified through the calculation of
an optimality gap. They are also bolstered by the availability of the Ann Arbor commute-
trip dataset, which allowed the algorithms to be evaluated on real-world data, and whose
analyzed results provided invaluable insight into the performance characteristics of the op-
timized routing plans.

The dissertation begins with three chapters that consider the optimization of routing
plans whereby the trips are served by conventional vehicles driven by the commuters them-
selves. Chapter 2 first explores several optimization models that adopt different driver-
and passenger-matching requirements aimed at satisfying different guiding principles that
are deemed desirable for a ride-sharing platform. It then considers a clustering-route
enumeration-MIP solving workflow to solve each model. Its computational results re-
vealed that the model demanding the highest amount of flexibility in role adoption and
sharing preferences also permitted the most trip sharing and hence produced the best ve-
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hicle reduction potential. Chapter 3 then selects and expands upon the best performing
model, formalizing it as the CTSP. It also proposes an exact and an approximate algorithm
for solving the model, both utilizing column generation, to scale the solutions to larger
vehicle capacities and to more riders. An analysis of its computational results showed
the model’s ability to reduce the commuting vehicle count in Ann Arbor by up to 57%,
and it also revealed that the inherently short nature of the model’s routes was limiting its
ability to further aggregate trips. Chapter 4 approaches the CTSP from a realistic, opera-
tional perspective in which commuters may decide to alter their return trip schedules due
to unforeseen circumstances. It proposes a two-stage optimization approach that incor-
porates a scenario-sampling technique to select the set of drivers that can best respond to
this schedule uncertainty. A simulation using real-world data demonstrated the approach’s
ability to increase plan robustness by utilizing more sampled scenarios, and it also revealed
a robustness-vehicle reduction trade-off that can be optimally evaluated by comparing the
per-unit prices of vehicle increase and uncovered riders.

The next two chapters approach the CTSP from a different angle. Driven by the desire to
address the key factor—the driver induced constraints—that was limiting further reduction
of the vehicle counts, and to capitalize on the emergence of autonomous-driving technol-
ogy, the chapters consider the problem of optimizing fleets of autonomous vehicles to serve
the trips of the CTSP. Chapter 5 formalizes this problem as the CTSPAV and contrasts two
approaches to tackle the complexity of designing the anticipated longer AV routes. The first
attempts to leverage the spatial structure of the trip data by using a CTSPAV MIP formula-
tion that chains together short, single-direction mini routes, while the second uses a more
traditional DARP formulation. Each was then solved with a formulation-specific column-
generation procedure, and subsequent computational comparisons revealed that each had
complementary performance trade-offs: The CTSPAV procedure finds strong integer solu-
tions quickly but has weak lower bounds, whereas the DARP procedure produces strong
primal and dual lower bounds, but it is slower and thus develops weaker integer solutions.
This discovery led to the work in Chapter 6 which aims to leverage the unique strengths
of both approaches by melding them together. It resulted in a branch-and-cut procedure
that solves the CTSPAV MIP and retrieves vehicle-count lower bounds from a column-
generation procedure that solves a DARP formulation of the same problem in parallel. The
computational evaluations demonstrated the efficacy of this novel dual-modeling approach,
whereby it outperformed another branch-and-cut procedure that relied on other families of
valid inequalities and the CTSPAV column-generation procedure from Chapter 5. Further
analysis of its routing plans revealed that the CTSPAV is not only able to reduce commuting
vehicle counts in Ann Arbor by 92%, but it also significantly reduces (by 58%) the number
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of vehicles on the road during peak hours, which bodes very well for its ability to ease traf-
fic congestion. An inherent drawback to using AVs, however, is that they introduce some
inefficiencies in terms of empty miles when they sometimes travel without any passengers
onboard.

On the whole, the case studies have demonstrated that there are numerous potential
benefits that can be unlocked through the use of optimized ride-sharing platforms for com-
muting, ranging from reductions to the daily number of vehicles required—and hence to
the total demand for parking spaces—to decreases to the number of vehicles on the road
during peak hours—and hence to the traffic congestion over the same period. When using
conventional vehicles, our study showed that a platform that optimizes routing plans on a
daily basis—by selecting different sets of drivers and having passengers share rides with
different people on their trips to the workplace and back home every day—is needed to
permit the maximum amount of trip aggregation for the varying daily schedules. Such a
platform was shown to be capable of reducing daily vehicle counts and vehicle miles trav-
eled for the commute trips from Ann Arbor by approximately 57% while also decreasing
peak vehicle usage by 62%. When using AVs that depart from and return to a centralized
depot, the daily vehicle counts can be further reduced by 92% while decreasing peak ve-
hicle usage by 58%. Reductions to vehicle miles traveled are more modest at only 30%
as the AVs introduce some empty miles into their travel distance totals. These benefits,
however, are not free. They come at the price of numerous psychological discomforts and
inconveniences that have to be tolerated by the riders. They include increased commute
times, having to potentially travel with different people on every trip, reduced flexibility
in trip choices, and having to plan and book trips in advance. There also exist trade-offs
between the benefits of conventional and autonomous vehicles for the platform: While the
vehicle reduction capability of the AVs are unmatched, their routes are also significantly
less efficient than those of the conventional vehicles. The AV routes cover longer distances
per trip served as their distance totals will necessarily include some empty miles that are
introduced when the vehicles travel without any passengers onboard.

From a problem-solving/optimization perspective, a careful analysis of the problem
constraints and of the characteristics (e.g. spatial and temporal) of the input data to unearth
structures/patterns inherent to the problem that can be exploited by a solution approach
remains a pivotal factor to effectively solve NP-hard VRPs such as those considered in this
work. For instance, the key to effectively solve the CTSP was to recognize that its routes
will travel in a single direction (inbound/outbound) and that each will be bookended by
the origin and the destination of its driver, and how this constraint would, in turn, limit the
length of the routes. This recognition drove the synthesis of the various proposed solution
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approaches: It not only affected the formulation of the CTSP MIP, but it also led to the
conception of the REA which could exhaustively enumerate the routes in polynomial time,
and it influenced the design of the PSPs of the column-generation approaches, whereby
they consider each commuter as a driver and searched for the optimal routes driven by
each by solving multiple independent ESPPRCs. On the other hand, the key to solving the
CTSPAV was to recognize the existence of the hub-and-spoke-like spatial structure in the
origins and the destinations of the trips, and to realize that the structure is common not only
to the commute trips in most American cities, but also to other problems like the last-mile
transportation problem which involves shuttling passengers to and from the transportation
hubs of a multi-modal system (Raghunathan et al. 2018b,a, Mahéo et al. 2019, Pinto et al.
2020, Basciftci and Van Hentenryck 2020). This structure innately decomposes a long AV
route into shorter constituents that each travel in a single direction (inbound/outbound) and
that each visits only origins followed by only destinations. This decomposition allowed
the derivation of the CTSPAV MIP that exploits the structure by using a formulation that
chains together feasible mini routes to form the longer AV routes, the conception of the
MREA that exhaustively enumerates the mini routes in polynomial time, and the design of
the PSP of the column-generation procedure which only searches for optimal mini routes.
In addition to exploiting inherent problem structures, any effective solution approach to
large-scale optimization problems will also necessitate the evaluation of different trade-
offs to the available solution techniques, several of which have been explored in this work.
Examples of some trade-offs that have been considered include the trade-off between com-
putational speed and proving optimality, whereby a solution approach that is required to
complete quickly is typically unable to close its optimality gap within its allocated time
limit, and the trade-off between the effectiveness of a decomposition approach and its gen-
eralizability, whereby a decomposition approach that is tailored to specifically exploit a
problem structure makes it more effective at solving the problem, but it also makes the
approach less applicable to more general problems that do not exhibit the structure.

Even though tremendous strides have been made in this dissertation to design effective
solution approaches for the CTSP and the CTSPAV, there remains a vast room for im-
provement that presents opportunities for future research. Some potential future research
directions include:

1. Role of heuristics: Heuristics will continue to play an important role in solving VRPs,
especially in operational settings where computational speed is of the paramount im-
portance compared to proving optimality or quantifying solution quality, e.g., when
dealing with dynamic requests where the problem needs to be solved quickly at a
regular frequency. Studying their potential in solving the various subproblems of the
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proposed solution approaches and contrasting their trade-offs against the exact meth-
ods used in this work would therefore be very illuminating, e.g.: (1) Using the Lin-
Kernighan heuristic (Lin and Kernighan 1973, Helsgaun 2000) to discover negative
reduced cost routes from the PSPs of the numerous column-generation procedures,
(2) Using the Wedelin heuristic (Wedelin 1995, Bastert et al. 2010) to solve the nu-
merous MIPs to find feasible integer solutions, or (3) Using tabu search (Cordeau
and Laporte 2003b) to solve the CTSP or the CTSPAV in its entirety.

2. Applicability to metropolitan areas: The experimental evaluations in this study have
thus far focused on the trips from a medium-sized city. It would therefore be in-
teresting to not only perform a similar case study on metropolitan areas, but to also
investigate the applicability of some of the solution approaches that was tailored
specifically for the Ann Arbor dataset, e.g., the CTSPAV procedures that leveraged
the hub-and-spoke spatial structure of the trips. The absence of such a structure
would provide opportunities to explore other creative ways of grouping trips so that
they would benefit the CTSPAV procedures, or to analyze the trip data to unearth
other exploitable structures and to tailor new decomposition approaches for them.

3. Schedule uncertainty for the CTSPAV: While a scenario-sampling approach was pro-
posed to handle such uncertainties for the CTSP, a similar study have yet to be per-
formed on the CTSPAV. The absence of drivers and the longer nature of the routes
in the CTSPAV will necessitate a different perspective and approach to handling the
issue. Such a study will also require the development of a real-time simulator that
keeps track of the state of the entire ride-sharing system at every moment, e.g., the
position of every vehicle, the trips being served by them, and the set of trips that have
and have not been completed throughout the day.

4. Social acceptance studies: While this dissertation has focused on the algorithmic
side to operating a ride-sharing service, there is another side to the problem that is
just as equally important: the social aspect that needs to be well understood before
such a service can be successfully deployed. Studying this side will require numer-
ous surveys combined with pilot and user-acceptance tests to better understand user
preferences for various aspects including, but not limited to, their reception to the
idea of potentially traveling with strangers every day, convenient mechanisms for
booking trips, and acceptable time-window and ride-duration limit tolerances.
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APPENDIX A

Appendix for Chapter 3

A.1 Computational Results

Results of the vehicle capacity scaling experiments for the REA are presented in Table A.1.
The first three columns show the cluster size, vehicle capacity, and cluster ID which char-
acterize each problem instance. The next column lists the number of columns generated
by the algorithm, while the following three show the results of solving the MP with a MIP
solver. They show the vehicle count, the total distance of selected routes, and the optimality
gap of the MIP solution. Finally, the remaining two columns display computation times of
the route-enumeration phase and of the entire algorithm including the MIP solve times.
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Table A.1: Results of REA Scalability with Increasing Vehicle Capacity (∆ = 10 mins,
R = 50%).

Cluster
size

Vehicle
capacity

Cluster
ID

Column
#

Vehicle
#

Total
distance

(m)

Optimality
gap (%)

Wall time (s)

Route
enumeration Total

75

4

C0-75 508 47 356296 0.00 11 11
C2-75 1946 40 643541 0.00 9 9
C3-75 2068 38 487061 0.00 11 11
C4-75 1483 43 398265 0.00 10 10
C5-75 274 61 230460 0.00 9 9
C6-75 3071 36 451262 0.00 11 12
C7-75 690 46 437743 0.00 10 10
C8-75 1350 37 487561 0.00 10 10
C9-75 3926 31 328525 0.00 10 37

C10-75 4137 32 527544 0.00 13 14
C11-75 866 47 443770 0.00 12 12
C12-75 592 46 298162 0.00 11 11
C13-75 2143 37 481869 0.00 12 12
C14-75 863 47 301108 0.00 10 10
C15-75 1512 36 460087 0.00 10 10
C17-75 457 50 348581 0.00 9 9
C19-75 496 57 245827 0.00 10 10
C20-75 752 46 420825 0.00 10 10
C22-75 2288 40 472247 0.00 10 11
C23-75 1574 36 385434 0.00 9 10
C24-75 1926 37 425807 0.00 11 12
C26-75 468 52 333692 0.00 9 9
C28-75 750 44 293838 0.00 10 10
C29-75 2541 32 548779 0.00 10 11

5

C0-75 509 47 356296 0.00 306 306
C2-75 2014 40 643540 0.00 316 316
C3-75 2117 38 487061 0.00 341 342
C4-75 1559 43 398216 0.00 326 326
C5-75 274 61 230460 0.00 264 264
C6-75 3331 35 450414 0.00 355 356
C7-75 690 46 437743 0.00 316 316
C8-75 1352 37 487245 0.00 335 335
C9-75 4110 31 327993 0.00 346 378

C10-75 5589 32 526188 0.00 352 354
C11-75 870 47 443770 0.00 300 300
C12-75 592 46 298162 0.00 308 308
C13-75 2207 37 479166 0.00 351 351
C14-75 867 47 301108 0.00 304 304
C15-75 1522 36 460087 0.00 335 335
C17-75 457 50 348581 0.00 293 293
C19-75 496 57 245827 0.00 279 279
C20-75 752 46 420825 0.00 309 309
C22-75 2344 40 472040 0.00 347 348
C23-75 1628 35 379234 0.00 306 307
C24-75 1996 37 425806 0.00 339 339
C26-75 468 52 333692 0.00 292 292
C28-75 751 44 293838 0.00 315 315
C29-75 2594 32 543850 0.00 350 351

6

C0-75 509 47 356296 0.00 4761 4761
C2-75 2016 40 643540 0.00 5109 5110
C3-75 2120 38 487061 0.00 6009 6009
C4-75 1562 43 398216 0.00 5375 5375
C5-75 274 61 230460 0.00 3220 3220
C6-75 3406 35 450414 0.00 6341 6341
C7-75 690 46 437743 0.00 6135 6135
C8-75 1352 37 487245 0.00 7172 7172
C9-75 4116 31 327993 0.00 7893 7916

C10-75 6571 32 525115 0.00 7480 7482
C11-75 870 47 443770 0.00 5413 5413
C12-75 592 46 298162 0.00 5206 5206
C13-75 2209 37 479166 0.00 6164 6164
C14-75 867 47 301108 0.00 4658 4658
C15-75 1522 36 460087 0.00 5668 5668
C17-75 457 50 348581 0.00 4147 4147
C19-75 496 57 245827 0.00 4000 4000
C20-75 752 46 420825 0.00 4983 4983
C22-75 2345 40 472040 0.00 5961 5961
C23-75 1629 35 379234 0.00 5008 5008
C24-75 2001 37 425806 0.00 5843 5844
C26-75 468 52 333692 0.00 4254 4254
C28-75 751 44 293838 0.00 4935 4935
C29-75 2594 32 543850 0.00 6071 6071
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Cluster
size

Vehicle
capacity

Cluster
ID

Column
#

Vehicle
#

Total
distance

(m)

Optimality
gap (%)

Wall time (s)

Route
enumeration Total

100

4

C0-100 854 63 488119 0.00 34 34
C1-100 456 75 331497 0.00 31 31
C2-100 3802 46 596824 0.00 36 36
C3-100 4510 46 586434 0.00 35 36
C4-100 4232 44 558323 0.00 35 41
C5-100 732 70 366565 0.00 31 31
C6-100 2579 47 724844 0.00 35 35
C7-100 2020 53 661648 0.00 34 34
C8-100 1803 51 609120 0.00 34 34
C9-100 12034 40 527217 0.00 36 38

C10-100 1095 58 426386 0.00 34 34
C11-100 2374 51 427829 0.00 34 35
C12-100 989 62 413012 0.00 33 33
C13-100 909 61 483087 0.00 34 34
C14-100 4306 40 693825 0.00 35 40
C15-100 4605 48 790005 0.00 34 37
C16-100 1578 55 627423 0.00 33 33
C17-100 1151 60 640945 0.00 33 33
C18-100 952 58 681240 0.00 34 34
C19-100 2226 51 503252 0.00 34 35
C20-100 4254 46 569724 0.00 35 36
C21-100 667 78 328216 0.00 32 32

5

C0-100 854 63 488119 0.00 1185 1186
C1-100 456 75 331497 0.00 1072 1072
C2-100 3910 46 596658 0.00 1356 1357
C3-100 4814 46 584077 0.00 1357 1359
C4-100 4487 44 552862 0.00 1298 1342
C5-100 735 70 366565 0.00 1034 1034
C6-100 2596 47 724844 0.00 1362 1362
C7-100 2043 53 661528 0.00 1326 1326
C8-100 1842 51 609038 0.00 1317 1317
C9-100 16749 40 519564 0.00 1419 1451

C10-100 1096 58 426386 0.00 1254 1254
C11-100 2418 51 427829 0.00 1320 1321
C12-100 990 62 413012 0.00 1208 1208
C13-100 912 61 483087 0.00 1221 1221
C14-100 4448 40 689319 0.00 1383 1457
C15-100 5985 48 788340 0.00 1287 1294
C16-100 1599 55 626787 0.00 1226 1227
C17-100 1155 60 640945 0.00 1218 1218
C18-100 953 58 681240 0.00 1292 1293
C19-100 2291 51 503252 0.00 1352 1352
C20-100 4761 46 568797 0.00 1352 1354
C21-100 667 78 328216 0.00 1080 1080

6

C0-100 854 63 488119 0.00 25088 25088
C1-100 456 75 331497 0.00 20117 20117
C2-100 3917 46 596658 0.00 33455 33456
C3-100 4872 46 584048 0.00 33801 33802
C4-100 4510 44 552862 0.00 29993 30180
C5-100 735 70 366565 0.00 18613 18613
C6-100 2598 47 724844 0.00 43135 43136
C7-100 2043 53 661528 0.00 38791 38792
C8-100 1848 51 609038 0.00 39437 39437
C9-100 18758 40 517624 0.00 48359 48403

C10-100 1096 58 426386 0.00 36941 36941
C11-100 2419 51 427829 0.00 39761 39763
C12-100 990 62 413012 0.00 31038 31038
C13-100 912 61 483087 0.00 33881 33881
C14-100 4456 40 689319 0.00 41455 41492
C15-100 6939 48 788340 0.00 36980 36990
C16-100 1600 55 626787 0.00 32031 32031
C17-100 1155 60 640945 0.00 34810 34810
C18-100 953 58 681240 0.00 38501 38501
C19-100 2294 51 503252 0.00 42573 42574
C20-100 4898 46 568797 0.00 43900 43903
C21-100 667 78 328216 0.00 29507 29507
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Table A.2 shows results of the same set of experiments for the BPA. Similar to Table
A.1, the first three columns list the cluster size, vehicle capacity, and cluster ID for each
problem instance. The next two columns present the total number of unique feasible edges
from all inbound and outbound graphs to further characterize the size of the problem in-
stances, while the following two show the total number of tree nodes explored and columns
generated by the algorithm. The next two display the results in terms of the vehicle count
and the total distance of selected routes. The following two columns list optimality gaps of
the MIP solution at the root node and of the best feasible solution, while the next lists the
integrality gap of the best feasible solution, which is the relative gap between its objective
value and z∗. Finally, the remaining four columns show computation times for the RMP
to converge, for finding the MIP solution at the root node, for arriving at the best feasible
solution, and for executing the entire algorithm.
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Table A.2: Results of BPA Scalability with Increasing Vehicle Capacity (∆ = 10 mins,
R = 50%).

Cluster
size

Vehicle
capacity

Cluster
ID

Inbound
edge #

Outbound
edge #

Tree
node

#

Column
#

Vehicle
#

Total
distance

(m)

Optimality gap (%) Integrality
gap (%)

Wall time (s)

Root
node soln.

Best
feasible

soln.

RMP
conv.

Root
node
soln.

Best
feasible

soln.
Total

75

4

C0-75 1661 1565 15 462 47 356296 0.00 0.00 0.00 1 1 1 1
C2-75 1906 1405 57 1043 40 643541 0.01 0.00 0.01 2 2 7 12
C3-75 3099 1809 31 1247 38 487061 0.00 0.00 0.00 2 2 12 13
C4-75 2052 1851 79 915 43 398265 0.01 0.00 0.01 1 1 8 12
C5-75 823 810 1 267 61 230460 0.00 0.00 0.00 1 1 1 1
C6-75 3427 2012 17 1420 36 451262 2.77 0.00 2.77 4 5 5 16
C7-75 2458 1649 25 615 46 437743 2.17 0.00 2.17 1 1 1 2
C8-75 3002 2183 27 1028 37 487561 2.69 0.00 2.69 2 2 11 15
C9-75 3550 2341 428 2613 31 328525 3.22 0.00 3.21 7 8 493 528

C10-75 2856 1580 151 2085 32 527544 3.11 0.00 3.11 11 11 168 232
C11-75 1955 1193 23 639 47 443770 0.00 0.00 0.00 1 1 1 2
C12-75 1801 1347 5 501 46 298162 0.00 0.00 0.00 1 1 1 1
C13-75 2699 1302 141 1392 37 481869 2.70 0.00 2.70 2 2 17 37
C14-75 2045 1332 17 626 47 301108 0.00 0.00 0.00 1 1 1 2
C15-75 3007 1443 23 1098 36 460087 0.01 0.00 0.01 2 2 2 11
C17-75 1492 835 3 404 50 348581 0.00 0.00 0.00 1 1 1 1
C19-75 1497 664 1 390 57 245827 0.00 0.00 0.00 1 1 1 1
C20-75 2323 1254 17 683 46 420825 0.00 0.00 0.00 1 1 2 2
C22-75 3113 1524 119 1373 40 472247 2.49 0.00 2.49 2 2 17 45
C23-75 2069 1548 169 1105 36 385434 5.53 0.00 5.53 2 2 28 45
C24-75 2446 1694 305 1479 37 425807 2.70 0.00 2.69 2 3 72 94
C26-75 1957 1039 17 432 52 333692 0.00 0.00 0.00 1 1 1 1
C28-75 1781 1452 5 611 44 293838 0.00 0.00 0.00 1 1 1 1
C29-75 2495 2238 1242 2217 32 548779 3.03 0.00 0.02 4 19 623 805

5

C0-75 1661 1565 15 462 47 356296 0.00 0.00 0.00 1 1 1 1
C2-75 1906 1405 115 1085 40 643540 0.02 0.00 0.01 2 2 33 42
C3-75 3099 1809 37 1274 38 487061 0.00 0.00 0.00 3 3 22 24
C4-75 2052 1851 75 946 43 398216 2.27 0.00 0.01 1 2 14 19
C5-75 823 810 1 267 61 230460 0.00 0.00 0.00 1 1 1 1
C6-75 3427 2012 39 1519 35 450414 2.85 0.00 2.85 48 48 107 243
C7-75 2458 1649 21 619 46 437743 2.17 0.00 2.17 1 1 1 2
C8-75 3002 2183 41 1049 37 487245 2.69 0.00 2.69 2 2 26 27
C9-75 3550 2341 399 2597 31 327993 3.22 0.00 3.22 14 15 721 781

C10-75 2856 1580 197 2350 32 526188 3.12 0.00 3.12 130 131 382 1854
C11-75 1955 1193 23 645 47 443770 0.00 0.00 0.00 1 1 1 3
C12-75 1801 1347 5 506 46 298162 0.00 0.00 0.00 1 1 1 1
C13-75 2699 1302 161 1367 37 479166 2.70 0.00 2.70 3 4 59 67
C14-75 2045 1333 21 626 47 301108 0.00 0.00 0.00 1 1 2 3
C15-75 3003 1443 35 1117 36 460087 0.01 0.00 0.01 3 3 3 23
C17-75 1492 835 3 404 50 348581 0.00 0.00 0.00 1 1 1 1
C19-75 1497 664 1 390 57 245827 0.00 0.00 0.00 1 1 1 1
C20-75 2323 1254 17 683 46 420825 0.00 0.00 0.00 1 1 2 2
C22-75 3113 1524 199 1399 40 472040 2.50 0.00 2.49 3 3 19 105
C23-75 2069 1548 25 983 35 379234 2.84 0.00 2.84 3 3 13 18
C24-75 2446 1694 705 1620 37 425806 5.25 0.00 2.70 3 6 109 252
C26-75 1957 1039 17 430 52 333692 0.00 0.00 0.00 1 1 1 1
C28-75 1781 1452 5 628 44 293838 0.00 0.00 0.00 1 1 1 1
C29-75 2495 2238 619 2097 32 543850 0.02 0.00 0.02 8 8 454 578

6

C0-75 1661 1565 15 462 47 356296 0.00 0.00 0.00 1 1 1 1
C2-75 1906 1405 87 1072 40 643540 0.02 0.00 0.01 2 3 27 39
C3-75 3099 1809 35 1281 38 487061 0.00 0.00 0.00 4 4 30 33
C4-75 2052 1851 75 929 43 398216 2.27 0.00 0.01 2 2 16 20
C5-75 823 810 1 267 61 230460 0.00 0.00 0.00 1 1 1 1
C6-75 3427 2012 53 1557 35 450414 2.85 0.00 2.85 42 42 224 336
C7-75 2458 1649 29 617 46 437743 2.17 0.00 2.17 1 1 1 2
C8-75 3002 2183 19 1019 37 487245 2.69 0.00 2.69 2 2 10 14
C9-75 3550 2341 103 2127 31 327993 3.22 0.00 3.22 17 18 246 339

C10-75 2856 1580 73 2029 32 525115 3.11 0.00 3.11 2763 2764 2764 17162
C11-75 1955 1193 23 648 47 443770 0.00 0.00 0.00 1 1 1 3
C12-75 1801 1347 5 505 46 298162 0.00 0.00 0.00 1 1 1 1
C13-75 2699 1302 369 1484 37 479166 2.70 0.00 2.70 5 5 88 151
C14-75 2045 1333 15 620 47 301108 0.00 0.00 0.00 1 1 1 2
C15-75 3007 1443 19 1061 36 460087 0.01 0.00 0.01 3 3 3 13
C17-75 1492 835 5 411 50 348581 0.00 0.00 0.00 1 1 1 1
C19-75 1497 664 1 390 57 245827 0.00 0.00 0.00 1 1 1 1
C20-75 2323 1254 17 671 46 420825 0.00 0.00 0.00 1 1 2 2
C22-75 3113 1524 141 1358 40 472040 2.50 0.00 2.49 3 4 53 84
C23-75 2069 1548 35 981 35 379234 2.84 0.00 2.84 3 3 16 26
C24-75 2446 1694 613 1572 37 425806 5.25 0.00 2.70 4 9 94 256
C26-75 1957 1039 17 430 52 333692 0.00 0.00 0.00 1 1 1 1
C28-75 1781 1452 5 622 44 293838 0.00 0.00 0.00 1 1 1 1
C29-75 2495 2238 555 2050 32 543850 0.02 0.00 0.02 9 9 9 667
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7

C0-75 1661 1565 15 463 47 356296 0.00 0.00 0.00 1 1 1 1
C2-75 1906 1405 79 1072 40 643540 0.02 0.00 0.01 3 3 30 39
C3-75 3099 1809 21 1238 38 487061 0.00 0.00 0.00 4 4 4 20
C4-75 2052 1851 139 962 43 398216 2.27 0.00 0.01 1 2 33 33
C5-75 823 810 1 267 61 230460 0.00 0.00 0.00 1 1 1 1
C6-75 3427 2012 33 1515 35 450414 2.85 0.00 2.85 48 48 186 247
C7-75 2458 1649 31 616 46 437743 2.17 0.00 2.17 1 1 1 3
C8-75 3002 2183 23 1025 37 487245 2.69 0.00 2.69 2 2 9 18
C9-75 3550 2341 189 2347 31 327993 3.22 0.00 3.22 20 20 482 594

C10-75 2856 1580 2 1459 32 525115 3.12 3.12 3.12 39153 39154 39154 43200
C11-75 1955 1193 24 650 47 443770 0.00 0.00 0.00 1 1 1 3
C12-75 1801 1347 5 502 46 298162 0.00 0.00 0.00 1 1 1 1
C13-75 2699 1302 337 1470 37 479166 2.70 0.00 2.70 2 3 78 105
C14-75 2045 1332 19 619 47 301108 0.00 0.00 0.00 1 1 2 2
C15-75 3007 1443 25 1089 36 460087 0.01 0.00 0.01 2 3 3 17
C17-75 1492 835 7 411 50 348581 0.00 0.00 0.00 1 1 1 1
C19-75 1497 664 1 390 57 245827 0.00 0.00 0.00 1 1 1 1
C20-75 2323 1254 11 672 46 420825 0.00 0.00 0.00 1 1 2 2
C22-75 3113 1524 161 1382 40 472040 2.50 0.00 2.49 3 3 52 79
C23-75 2069 1548 23 940 35 379234 2.84 0.00 2.84 3 3 12 19
C24-75 2446 1694 745 1666 37 425806 5.25 0.00 2.70 3 6 148 329
C26-75 1957 1039 17 430 52 333692 0.00 0.00 0.00 1 1 1 1
C28-75 1781 1452 5 621 44 293838 0.00 0.00 0.00 1 1 1 1
C29-75 2495 2238 523 2052 32 543850 0.02 0.00 0.02 7 8 8 619

8

C0-75 1661 1565 15 461 47 356296 0.00 0.00 0.00 1 1 1 1
C2-75 1906 1405 75 1047 40 643540 0.02 0.00 0.01 2 2 26 36
C3-75 3099 1809 35 1268 38 487061 0.00 0.00 0.00 4 4 30 33
C4-75 2052 1851 101 928 43 398216 0.01 0.00 0.01 2 2 27 28
C5-75 823 810 1 267 61 230460 0.00 0.00 0.00 1 1 1 1
C6-75 3427 2012 62 1584 35 450414 5.54 0.00 2.85 39 40 266 362
C7-75 2458 1649 31 618 46 437743 2.17 0.00 2.17 1 1 1 2
C8-75 3002 2183 49 1064 37 487245 2.69 0.00 2.69 3 4 9 81
C9-75 3550 2341 105 2199 31 327993 3.22 0.00 3.22 26 27 300 398

C10-75 2856 1580 1 1425 32 525207 3.12 3.12 3.12 84928 84928 84928 84928
C11-75 1955 1193 24 641 47 443770 0.00 0.00 0.00 1 1 1 3
C12-75 1801 1347 5 508 46 298162 0.00 0.00 0.00 1 1 1 1
C13-75 2699 1302 427 1513 37 479166 2.70 0.00 2.70 4 4 77 144
C14-75 2045 1332 17 624 47 301108 0.00 0.00 0.00 1 1 1 2
C15-75 3005 1443 21 1093 36 460087 0.01 0.00 0.01 3 3 3 16
C17-75 1492 835 7 410 50 348581 0.00 0.00 0.00 1 1 1 1
C19-75 1497 664 1 390 57 245827 0.00 0.00 0.00 1 1 1 1
C20-75 2323 1254 11 671 46 420825 0.00 0.00 0.00 1 1 2 2
C22-75 3113 1524 161 1357 40 472040 2.50 0.00 2.49 3 4 65 103
C23-75 2069 1548 25 959 35 379234 2.84 0.00 2.84 4 4 16 22
C24-75 2446 1694 677 1567 37 425806 2.70 0.00 2.70 3 3 83 265
C26-75 1957 1039 15 430 52 333692 0.00 0.00 0.00 1 1 1 1
C28-75 1781 1452 5 620 44 293838 0.00 0.00 0.00 1 1 1 1
C29-75 2495 2238 573 2163 32 543850 0.02 0.00 0.02 9 9 353 625

100 4

C0-100 3488 1930 45 777 63 488119 0.00 0.00 0.00 2 2 2 5
C1-100 1825 1642 5 429 75 331497 0.00 0.00 0.00 2 2 2 3
C2-100 5540 3106 1445 2652 46 596824 2.17 0.00 2.17 6 7 995 1397
C3-100 5383 3127 823 2794 46 586434 2.17 0.00 2.16 8 9 558 695
C4-100 4211 2787 50653 6120 44 558323 2.27 0.00 2.26 8 9 730 31745
C5-100 1960 1452 39 575 70 366565 0.00 0.00 0.00 2 2 2 4
C6-100 4708 3393 33 1805 47 724844 0.00 0.00 0.00 8 8 39 44
C7-100 4120 2205 23 1227 53 661648 0.00 0.00 0.00 3 3 3 10
C8-100 4952 2656 3 1285 51 609120 0.00 0.00 0.00 3 3 3 4
C9-100 5664 3572 2316 6235 40 527217 2.50 0.00 2.49 57 59 7410 14795

C10-100 2995 2611 147 980 58 426386 1.72 0.00 1.72 2 2 14 16
C11-100 4606 2964 61 1506 51 427829 0.00 0.00 0.00 3 4 14 32
C12-100 2863 2459 1 794 62 413012 0.00 0.00 0.00 2 2 2 2
C13-100 3232 2441 17 755 61 483087 0.00 0.00 0.00 2 2 3 3
C14-100 4335 3403 2695 3757 40 693825 4.85 0.00 2.49 15 1297 3093 6348
C15-100 3711 2642 26493 3217 48 790005 4.16 0.00 4.16 7 8 2068 26100
C16-100 3278 2302 21 1085 55 627423 1.81 0.00 1.81 3 3 5 8
C17-100 3413 1603 7 881 60 640945 0.00 0.00 0.00 2 2 2 3
C18-100 3778 2518 81 872 58 681240 1.72 0.00 1.72 2 2 2 10
C19-100 3722 3405 353 1656 51 503252 1.96 0.00 1.96 4 4 64 192
C20-100 4377 2653 1863 2708 46 569724 2.17 0.00 2.17 7 7 1135 1144
C21-100 2597 1223 1 524 78 328216 0.00 0.00 0.00 2 2 2 2

171



Cluster
size

Vehicle
capacity

Cluster
ID

Inbound
edge #

Outbound
edge #

Tree
node

#

Column
#

Vehicle
#

Total
distance

(m)

Optimality gap (%) Integrality
gap (%)

Wall time (s)

Root
node soln.

Best
feasible

soln.

RMP
conv.

Root
node
soln.

Best
feasible

soln.
Total

100

5

C0-100 3488 1930 43 772 63 488119 0.00 0.00 0.00 2 2 2 5
C1-100 1825 1642 5 429 75 331497 0.00 0.00 0.00 2 2 2 2
C2-100 5540 3106 1513 2637 46 596658 2.17 0.00 2.17 9 10 1269 1942
C3-100 5383 3127 191 2449 46 584077 2.17 0.00 2.16 60 61 860 950
C4-100 4209 2787 67 2111 44 552862 2.26 0.00 2.26 18 27 141 183
C5-100 1964 1452 47 586 70 366565 0.00 0.00 0.00 2 2 2 4
C6-100 4708 3393 29 1807 47 724844 0.00 0.00 0.00 8 8 26 54
C7-100 4120 2205 27 1234 53 661528 0.00 0.00 0.00 4 4 4 13
C8-100 4952 2656 3 1287 51 609038 0.00 0.00 0.00 3 3 3 5
C9-100 5559 3570 459 4860 40 521285 2.49 2.49 2.49 798 799 29422 43304

C10-100 2995 2611 169 971 58 426386 1.72 0.00 1.72 2 2 2 17
C11-100 4606 2964 53 1462 51 427829 0.00 0.00 0.00 4 5 18 38
C12-100 2863 2459 1 787 62 413012 0.00 0.00 0.00 2 2 2 2
C13-100 3232 2441 17 758 61 483087 0.00 0.00 0.00 2 2 2 3
C14-100 4335 3403 1067 3293 40 690964 2.49 2.49 2.49 70 72 39918 43218
C15-100 3711 2642 11238 4146 48 788340 4.16 4.16 4.16 22 22 4167 43205
C16-100 3278 2302 65 1151 55 626787 1.81 0.00 1.81 2 2 14 24
C17-100 3413 1603 19 902 60 640945 0.00 0.00 0.00 2 2 2 5
C18-100 3778 2518 65 868 58 681240 1.72 0.00 1.72 2 3 3 9
C19-100 3722 3405 633 1695 51 503252 1.96 0.00 1.96 4 4 263 359
C20-100 4377 2653 1785 2948 46 568797 2.17 0.00 2.17 12 13 1765 1815
C21-100 2597 1223 1 525 78 328216 0.00 0.00 0.00 2 2 2 2

6

C0-100 3488 1931 59 782 63 488119 0.00 0.00 0.00 2 3 3 7
C1-100 1825 1642 5 429 75 331497 0.00 0.00 0.00 2 2 2 2
C2-100 5540 3106 1439 2614 46 596658 2.17 0.00 2.17 10 11 1618 2309
C3-100 5383 3127 415 2690 46 584048 2.17 0.00 2.16 76 77 1791 1841
C4-100 4211 2787 309 2656 44 552862 2.26 0.00 2.26 21 24 178 773
C5-100 1959 1452 43 583 70 366565 0.00 0.00 0.00 2 2 2 4
C6-100 4708 3393 27 1821 47 724844 0.00 0.00 0.00 11 11 30 85
C7-100 4120 2205 29 1243 53 661528 0.00 0.00 0.00 4 4 4 15
C8-100 4952 2656 3 1277 51 609038 0.00 0.00 0.00 3 3 3 4
C9-100 5664 3572 35 2997 40 518571 2.49 2.49 2.49 10273 10275 10275 43211

C10-100 2995 2611 149 982 58 426386 1.72 0.00 1.72 2 2 16 17
C11-100 4606 2964 45 1453 51 427829 0.00 0.00 0.00 4 4 18 40
C12-100 2863 2459 1 790 62 413012 0.00 0.00 0.00 2 2 2 2
C13-100 3232 2441 17 760 61 483087 0.00 0.00 0.00 2 2 2 3
C14-100 4335 3403 532 3161 40 693512 2.50 2.50 2.50 144 148 21052 43203
C15-100 3711 2642 3810 3876 48 788340 4.16 4.16 4.16 142 142 15775 43217
C16-100 3278 2302 69 1151 55 626787 1.81 0.00 1.81 3 3 3 41
C17-100 3411 1603 9 881 60 640945 0.00 0.00 0.00 2 2 2 3
C18-100 3778 2518 59 867 58 681240 1.72 0.00 1.72 2 2 2 8
C19-100 3722 3405 1364 1761 51 503252 1.96 0.00 1.96 5 5 696 977
C20-100 4377 2653 2993 3190 46 568797 2.17 0.00 2.17 21 22 3242 3252
C21-100 2597 1223 1 527 78 328216 0.00 0.00 0.00 2 2 2 2

7

C0-100 3488 1931 65 783 63 488119 0.00 0.00 0.00 2 2 2 6
C1-100 1825 1642 5 429 75 331497 0.00 0.00 0.00 2 2 2 2
C2-100 5540 3106 1613 2710 46 596658 2.17 0.00 2.17 11 12 1811 2822
C3-100 5383 3127 247 2572 46 584048 2.17 0.00 2.16 68 69 1250 1297
C4-100 4209 2787 87 2212 44 552334 2.26 0.00 2.26 13 15 220 240
C5-100 1959 1452 35 583 70 366565 0.00 0.00 0.00 2 2 2 4
C6-100 4708 3393 27 1807 47 724844 0.00 0.00 0.00 11 11 29 82
C7-100 4120 2205 27 1209 53 661528 0.00 0.00 0.00 3 4 4 13
C8-100 4952 2656 3 1270 51 609038 0.00 0.00 0.00 3 3 3 4
C9-100 5664 3572 1 2482 40 520597 2.50 2.50 2.50 43846 43847 43847 43847

C10-100 2995 2611 155 981 58 426386 1.72 0.00 1.72 2 2 16 17
C11-100 4606 2964 57 1456 51 427829 0.00 0.00 0.00 5 5 29 49
C12-100 2863 2459 1 793 62 413012 0.00 0.00 0.00 2 2 2 2
C13-100 3232 2441 17 757 61 483087 0.00 0.00 0.00 2 2 2 3
C14-100 4335 3403 369 2927 40 692956 2.49 2.49 2.49 240 242 242 43244
C15-100 3711 2642 993 2445 48 789091 4.16 4.16 4.16 942 942 942 43215
C16-100 3278 2302 63 1131 55 626787 1.81 0.00 1.81 4 4 28 53
C17-100 3413 1603 9 875 60 640945 0.00 0.00 0.00 2 2 2 3
C18-100 3778 2518 81 872 58 681240 1.72 0.00 1.72 2 2 2 10
C19-100 3722 3405 639 1714 51 503252 1.96 0.00 1.96 5 6 306 407
C20-100 4377 2653 1669 2890 46 568797 2.17 0.00 2.17 16 17 1180 2009
C21-100 2597 1223 1 525 78 328216 0.00 0.00 0.00 2 2 2 2

8

C0-100 3488 1931 65 784 63 488119 0.00 0.00 0.00 2 2 2 7
C1-100 1825 1642 5 429 75 331497 0.00 0.00 0.00 1 1 1 2
C2-100 5540 3106 1477 2619 46 596658 2.17 0.00 2.17 13 13 1790 2605
C3-100 5383 3127 71 2209 46 584048 2.17 0.00 2.16 90 91 389 518
C4-100 4210 2787 71 2176 44 552334 2.26 0.00 2.26 13 15 253 271
C5-100 1964 1452 53 575 70 366565 0.00 0.00 0.00 2 2 2 5
C6-100 4708 3393 27 1822 47 724844 0.00 0.00 0.00 11 12 29 87
C7-100 4120 2205 29 1250 53 661528 0.00 0.00 0.00 3 4 4 15
C8-100 4952 2656 3 1273 51 609038 0.00 0.00 0.00 3 3 3 5
C9-100 5664 3572 4 2577 40 517627 2.49 2.49 2.49 34816 34818 34818 43200

C10-100 2995 2611 159 976 58 426386 1.72 0.00 1.72 2 2 16 18
C11-100 4606 2964 53 1457 51 427829 0.00 0.00 0.00 4 5 19 45
C12-100 2863 2459 1 789 62 413012 0.00 0.00 0.00 2 2 2 2
C13-100 3232 2441 13 760 61 483087 0.00 0.00 0.00 2 2 2 3
C14-100 4060 3403 460 3150 40 693850 2.50 2.50 2.50 196 198 33298 43354
C15-100 3711 2642 321 2353 48 789091 4.16 4.16 4.16 2597 2598 2598 44157
C16-100 3278 2302 29 1116 55 626787 1.81 0.00 1.81 4 4 13 32
C17-100 3413 1603 9 873 60 640945 0.00 0.00 0.00 2 2 2 3
C18-100 3778 2518 71 871 58 681240 1.72 0.00 1.72 2 2 2 9
C19-100 3722 3405 719 1709 51 503252 1.96 0.00 1.96 5 5 394 487
C20-100 4377 2653 1760 2899 46 568797 2.17 0.00 2.17 21 22 1737 2192
C21-100 2597 1223 1 524 78 328216 0.00 0.00 0.00 1 2 2 2
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Tables A.3 and A.4 summarize results of the cluster size scaling experiments for the
REA and the BPA respectively. They list the same quantities as those listed in Tables A.1
and A.2 respectively.

Table A.3: Results of REA Scalability with Increasing Cluster Size (K = 4, ∆ = 10 mins,
R = 50%).

Cluster
size

Cluster
ID

Column
#

Vehicle
#

Total
distance

(m)

Optimality
gap (%)

Wall time (s)

Route
enumeration Total

200

C0-200 2286 129 702670 0.00 618 618
C1-200 10955 84 1122469 0.00 653 654
C2-200 15149 85 1067503 0.00 646 2361
C3-200 3101 113 824730 0.00 629 630
C4-200 2627 114 684981 0.00 632 878
C5-200 22061 80 937514 0.00 660 744
C6-200 11844 86 1136870 0.00 673 680
C7-200 16235 76 1365475 0.00 668 1165
C8-200 27913 78 923290 0.49 684 43211
C9-200 5289 99 1055393 0.00 655 702

C10-200 7790 87 1249784 0.00 676 8731

300

C0-300 33262 118 1652972 0.16 3301 43206
C1-300 32536 119 1928887 0.44 2796 43203
C2-300 7994 150 1096341 0.00 3249 4367
C3-300 36568 113 1511806 0.00 3499 3650
C4-300 15394 134 1477823 0.13 3198 43205
C5-300 22072 124 1773852 0.00 3342 4325
C6-300 33541 119 1927882 0.35 3191 43205
C7-300 6554 157 1105570 0.00 3152 3158
C8-300 53120 114 1418494 0.20 3129 43204
C9-300 30568 114 1911085 0.17 2258 43203

C10-300 6370 156 1085481 0.00 2736 2776
C11-300 34630 118 1903034 0.37 3037 43204
C12-300 7137 153 1067479 0.00 2339 2632

400

C0-400 28968 180 1617748 0.00 8897 35048
C1-400 52194 145 1901974 0.19 6972 43203
C2-400 28025 173 1627074 0.00 10060 18906
C3-400 41012 152 2114911 0.20 7842 43203
C4-400 26314 182 1687079 0.00 10447 10531
C5-400 53948 151 1988361 0.00 7043 12685
C6-400 26109 173 1640438 0.00 10716 10986
C7-400 68190 145 1887086 0.32 7117 43202
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Table A.4: Results of BPA Scalability with Increasing Cluster Size (K = 4, ∆ = 10 mins,
R = 50%).

Cluster
size

Cluster
ID

Inbound
edge #

Outbound
edge #

Tree
node

#

Column
#

Vehicle
#

Total
distance

(m)

Optimality gap (%) Integrality
gap (%)

Wall time (s)

Root
node soln.

Best
feasible

soln.

RMP
conv.

Root
node
soln.

Best
feasible

soln.
Total

200

C0-200 10281 5900 113 1747 129 702670 1.55 0.00 1.55 13 13 35 40
C1-200 17096 10087 5870 6121 84 1122544 3.50 2.37 2.37 59 96 6951 43201
C2-200 13922 9341 7479 7506 85 1067640 2.35 2.34 2.34 55 74 6263 43203
C3-200 10551 7643 99 2272 113 824730 0.00 0.00 0.00 19 20 20 78
C4-200 9806 8163 5901 2616 114 684981 1.75 0.00 1.75 17 31 2896 4149
C5-200 18385 10756 3695 9115 80 937514 1.26 1.25 1.25 111 121 14244 43203
C6-200 16047 9533 13563 9572 86 1136870 2.29 1.16 1.16 45 202 14218 43201
C7-200 15672 11696 2279 8993 76 1367209 3.88 2.62 2.62 140 6148 23012 43213
C8-200 16483 12874 1 6027 79 928401 2.53 2.53 2.53 319 43209 43209 43209
C9-200 14587 9841 15783 4425 99 1055393 1.01 0.00 1.00 25 37 6671 20722

C10-200 15459 11600 4244 6328 87 1249965 2.29 2.29 2.29 45 150 9471 43202

300

C0-300 38471 31409 242 11624 118 1665487 0.85 0.85 0.85 900 1018 1018 43265
C1-300 36931 22949 496 12533 119 1938007 2.52 2.52 2.52 944 4151 4151 43229
C2-300 26167 20901 11208 6629 150 1096341 1.33 1.33 1.33 81 124 7967 43200
C3-300 35614 23695 762 13192 114 1510444 1.75 1.75 1.75 426 12864 12864 43212
C4-300 30651 26297 1091 8757 134 1478291 1.49 1.49 1.49 278 519 39914 43243
C5-300 32453 25677 400 9653 125 1772096 0.80 0.80 0.80 622 14460 14460 43259
C6-300 35954 20702 483 12056 119 1934456 2.52 2.52 2.52 734 1914 1914 43218
C7-300 24094 19880 3185 5592 157 1105570 1.26 0.00 0.64 70 1027 3841 10016
C8-300 38059 22799 255 12441 115 1423615 2.60 2.60 2.60 480 29027 29027 43201
C9-300 33512 23617 779 13090 114 1934405 2.64 2.64 2.64 515 666 666 43252

C10-300 22339 16909 23037 5367 156 1085482 0.64 0.64 0.64 63 70 7449 43202
C11-300 34544 21130 698 12376 118 1910713 3.38 3.38 3.38 568 988 988 43227
C12-300 24520 17238 12001 6091 153 1067479 0.65 0.65 0.65 88 124 4043 43200

400

C0-400 49218 39758 1 10357 181 1613436 1.65 1.65 1.65 528 43205 43205 43205
C1-400 53747 35507 1 13136 147 1926300 2.72 2.72 2.72 751 43207 43207 43207
C2-400 54300 35489 675 12751 173 1631283 1.16 1.16 1.16 406 540 540 43223
C3-400 55542 42004 1 12834 153 2124836 1.96 1.96 1.96 1596 43204 43204 43204
C4-400 49195 31033 3523 11881 182 1688282 1.10 1.10 1.10 222 239 25641 43201
C5-400 57633 34496 1 13557 152 1983300 1.97 1.97 1.97 684 43204 43204 43204
C6-400 46155 30320 3708 12494 173 1640472 1.16 1.15 1.15 240 289 11566 43210
C7-400 61393 38346 1 14833 146 1886534 2.73 2.73 2.73 960 43206 43206 43206
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Finally, Table A.5 shows results of the experiments which investigate the efficiency of
the root-node heuristic. The first two columns show the cluster size and ID of each prob-
lem instance. The next set of five columns list the results of the heuristic which enforces
forbidden paths. They show the number of columns generated, the resulting vehicle count,
its optimality gap, and the times spent on solving the RMP and its MIP. The next set of six
columns display the same information for the heuristic which relaxes forbidden paths, with
an additional column showing the number of infeasible columns it generated.
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Table A.5: Results of Root-Node Heuristics with tRMP = 8 mins and tMIP = 2 mins (K = 4,
∆ = 10 mins, R = 50%).

Cluster
size

Cluster
ID

Enforce forbidden paths Relax forbidden paths

Column
#

Vehicle
#

Optimality
gap (%)

Wall time (s) Column
#

Infeasible
column #

Vehicle
#

Optimality
gap (%)

Wall time (s)

RMP MIP RMP MIP

100

C0-100 720 63 0.00 2 0 720 0 63 0.00 2 0
C1-100 422 75 0.00 2 0 423 0 75 0.00 2 0
C2-100 1828 46 2.17 5 0 1792 6 46 4.35 4 0
C3-100 1735 46 2.17 4 0 1729 6 46 2.17 4 0
C4-100 1653 44 2.27 6 5 1624 4 44 2.27 5 1
C5-100 537 70 0.00 1 0 541 0 70 0.00 2 0
C6-100 1637 47 0.00 5 0 1628 3 47 0.00 4 0
C7-100 1130 53 0.00 2 0 1123 5 53 0.00 2 0
C8-100 1198 52 1.92 2 0 1184 3 51 0.00 2 0
C9-100 2360 41 4.88 29 10 2467 10 41 4.88 37 2

C10-100 891 58 1.72 2 0 895 1 58 1.72 2 0
C11-100 1272 51 0.00 3 0 1252 0 51 0.00 2 0
C12-100 767 62 0.00 2 0 776 2 62 0.00 2 0
C13-100 708 61 0.00 2 0 708 0 61 0.00 1 0
C14-100 2003 41 4.88 11 2 1994 12 41 4.88 8 2
C15-100 1548 48 4.17 3 0 1580 9 48 6.25 4 0
C16-100 992 55 1.82 2 0 988 2 55 1.82 2 0
C17-100 817 60 0.00 2 0 810 3 60 0.00 2 0
C18-100 808 58 1.72 2 0 808 0 58 1.72 1 0
C19-100 1337 51 1.96 3 0 1334 9 52 3.85 3 0
C20-100 1672 46 2.17 4 1 1643 2 46 2.17 4 1
C21-100 500 78 0.00 2 0 503 0 78 0.00 1 0

200

C0-200 1537 129 1.55 12 0 1539 2 129 1.55 12 0
C1-200 4216 85 3.53 35 1 4146 19 84 2.38 35 2
C2-200 4019 85 2.35 34 2 4018 16 85 3.53 33 3
C3-200 2029 113 0.00 13 0 2022 4 113 0.00 13 0
C4-200 2017 114 1.75 14 0 2039 4 114 1.75 13 0
C5-200 5161 80 1.25 82 9 5010 29 81 2.47 48 35
C6-200 4294 87 2.30 28 1 4315 18 87 2.30 25 3
C7-200 5516 76 2.63 81 67 5563 38 77 3.90 63 12
C8-200 5925 79 2.53 245 120 5986 29 79 2.53 209 120
C9-200 3142 99 1.01 16 2 3165 8 99 1.01 17 1

C10-200 4118 87 2.30 38 5 4150 10 87 2.30 30 3

300

C0-300 9312 119 1.68 449 120 9366 58 119 1.68 235 120
C1-300 9928 119 2.52 376 120 9795 44 120 4.17 171 114
C2-300 4879 150 1.33 63 5 4894 3 150 1.33 62 6
C3-300 9465 114 1.75 286 62 9530 43 116 3.45 264 120
C4-300 7002 134 1.49 192 8 7021 24 134 1.49 113 14
C5-300 7920 125 0.80 296 120 7832 30 125 1.60 142 19
C6-300 9495 119 2.52 433 28 9531 70 119 3.36 157 14
C7-300 4311 158 1.27 63 4 4298 3 158 1.27 55 1
C8-300 9726 116 3.45 243 120 9756 31 115 2.61 219 120
C9-300 9796 115 3.48 401 120 9835 55 115 3.48 304 120

C10-300 3884 156 0.64 50 2 3915 8 156 1.28 49 1
C11-300 9354 119 4.20 303 120 9685 51 118 4.24 196 26
C12-300 4207 153 0.65 59 1 4285 6 153 0.65 53 1

400

C0-400 10289 181 1.66 356 120 10355 27 182 2.20 318 120
C1-400 12853 152 5.92 417 120 12965 42 151 5.30 419 120
C2-400 9989 173 1.16 185 42 10112 19 173 1.16 203 21
C3-400 12615 155 11.61 486 120 12714 44 157 4.46 472 120
C4-400 8872 182 1.10 153 18 8948 22 183 2.19 146 26
C5-400 13162 154 3.25 415 120 13248 45 153 2.61 443 120
C6-400 8971 173 1.16 155 70 9130 28 173 1.73 159 25
C7-400 14322 150 6.67 504 120 14412 64 152 6.58 461 120
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APPENDIX B

Appendix for Chapter 5

B.1 The Pricing Subproblem PSPCTSPAV

Construction of graphs for PSPCTSPAV Let vit denote a virtual sink node for graph G+
i

or G−i . Since a mini route covers only inbound trips or outbound trips, G+
i = (N+

i ,A+
i )

(resp. G−i = (N−i ,A−i )) contains, in addition to vit, only the nodes for inbound trips (resp.
outbound trips), i.e., N+

i = P+ ∪ D+ ∪ {vit} (resp. N−i = P− ∪ D− ∪ {vit}). The set A+
i

(resp. A−i ) then represents all feasible edges for G+
i (resp. G−i ), i.e., location pairs from

N+
i (resp. N−i ) that satisfy a priori route-feasibility constraints. Without loss of generality,

the following elaborates further on how G+
i is constructed.

Construction of G+
i = (N+

i ,A+
i ) begins with the introduction of the set of nodesN+

i =

P+ ∪ D+ ∪ {vit} and a set of fully-connected edges A+
i = {(u, v) : u, v ∈ N+

i , u 6= v}.
A ride-duration limit Lu is associated with each node u ∈ P+, a time window [au, bu] and
a service duration ζu are associated with each node u ∈ P+ ∪ D+, and a travel time τ(u,v)

and a reduced cost c̄(u,v) are associated with each edge (u, v) ∈ A+
i . As the goal is to find a

feasible mini route from i to vit with minimum reduced cost, c̄(u,v) is defined as follows so
that the total cost of any path from i to vit is equivalent to that defined in (5.16).

c̄(u,v) =


−πu − µ(u,v) ∀u ∈ P+,∀v ∈ P+ ∪ D+

−µ(u,v) ∀u ∈ D+,∀v ∈ P+ ∪ D+

0 ∀(u, v) ∈ δ−(vit)

(B.1)

Edges from A+
i that cannot belong to any feasible mini route are then identified by pre-

processing time-window, pairing, precedence, and ride-duration limit constraints. Prior to
this pre-processing step, knowledge of i being the source of the path sought from G+

i allows
the time windows of all nodes u ∈ P+ ∪ D+ to be tightened, by sequentially increasing
their lower bounds using the following rules proposed by Dumas et al. (1991):
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Inbound Route Graph, 

Virtual source node: 0
Virtual sink node: 2n + 1

Figure B.1: Graph G+
i (Each Dotted Line Represents a Pair of Bidirectional Edges).

• au = max{au, ai + ζi + τ(i,u)},∀u ∈ P+ \ {i}
• an+u = max{an+u, au + ζu + τ(u,n+u)},∀u ∈ P+ \ {i}

The following sets of infeasible edges are then identified and consequently removed from
A+
i :
(a) Direct trips to source i and from sink vit: δ

−(i) ∪ δ+(vit)

(b) Precedence of pickup and drop-off nodes:
• {(i, v) : v ∈ D+ \ {n+ i}}
• {(u, vit) : u ∈ P+}
• {(u, v) : u ∈ D+ ∧ v ∈ P+}

(c) Time windows along each edge: {(u, v) : (u, v) ∈ A+
i \δ−(vit)∧au+ζu+τ(u,v) > bv}

(d) Ride-duration limit of each commuter: {(u, v), (v, n+u) : u ∈ P+∧v ∈ P+∪D+∧
u 6= v ∧ τ(u,v) + ζv + τ(v,n+u) > Lu}

(e) Time windows and ride-duration limits of pairs of trips:
• {(u, n+ v) : u, v ∈ P+ ∧ u 6= v ∧ ¬feasible(v → u→ n+ v → n+ u)}
• {(n+ u, v) : u, v ∈ P+ ∧ u 6= v ∧ ¬feasible(u→ n+ u→ v → n+ v)}
• {(u, v) : u, v ∈ P+ ∧ u 6= v ∧ ¬feasible(u → v → n + u → n + v) ∧
¬feasible(u→ v → n+ v → n+ u)}

• {(n + u, n + v) : u, v ∈ P+ ∧ u 6= v ∧ ¬feasible(u → v → n + u →
n+ v) ∧ ¬feasible(v → u→ n+ u→ n+ v)}

An example of graph G+
i that results from the removal of the infeasible edges is shown in

Figure B.1.

Search for path with minimum reduced cost The final step in PSPCTSPAV is to find a
path from i to vit from each graph G+

i (i ∈ P+) and G−i (i ∈ P−). On top of having the
minimum cost, the path must also represent a feasible mini route. Notice that, as shown
in Figure B.1, construction of the graphs eliminates all edges {(u, v) : u ∈ D ∧ v ∈ P}.
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Therefore, any path from i to vit is guaranteed to begin with a pickup phase that only visits
nodes in P and end with a drop-off phase that only visits nodes in D. In other words, the
graphs ensure the precedence feasibility constraint, which requires all pickup nodes of a
mini route to precede all of its drop-off nodes, is satisfied by construction. All that remains
to guarantee the feasibility of any path found is to ensure that the path:

1. Visits each node within its specified time window,
2. Visits the corresponding drop-off nodes of every pickup node visited,
3. Satisfies the ride-duration limit of each rider served,
4. Respects the vehicle capacity, and
5. Visits each node at most once (i.e., the path is elementary).
The problem of finding a feasible, least-cost path from i to vit is essentially an ESPPRC,

whereby the remaining route-feasibility constraints can be modeled with resource con-
straints. In fact, this ESPPRC is identical to that in the column-generation pricing prob-
lem of the DARP considered in Gschwind and Irnich (2015). They proposed a dynamic-
programming, label-setting algorithm that uses strong label-dominance rules to find the
optimal solution to the problem.

While the algorithm can also be used to effectively solve this work’s ESPPRC, it has
a pre-requisite; it requires that the edge reduced costs c̄(u,v) satisfy the delivery triangle
inequality (DTI). The DTI, introduced by Ropke and Cordeau (2009), requires that the
reduced costs fulfill c̄(u,v) ≤ c̄(u,w) + c̄(w,v) for all edges (u, v), (u,w), (w, v) ∈ {A+

i : i ∈
P+} ∪ {A−i : i ∈ P−} and w ∈ D. Unfortunately, the reduced costs in this problem do
not satisfy the DTI. A cost-matrix transformation, also proposed by Ropke and Cordeau
(2009), is therefore first applied to the reduced costs to transform them into an equivalent
set of costs that does satisfy the DTI, after which the label-setting algorithm of Gschwind
and Irnich (2015) is applied on each graph G+

i (i ∈ P+) and G−i (i ∈ P−) to find the feasi-
ble, least-cost path from i to vit. Finally, note that enforcement of pairing and precedence
resource constraints of the label-setting algorithm on the origin and destination node pairs
of the graphs is sufficient to ensure elementarity of the paths produced, as the graphs lack
edges {(u, v) : u ∈ D ∧ v ∈ P} which are necessary to produce cycles in the presence of
the pairing and precedence resource constraints. Therefore, additional resource constraints
dedicated to specifically ensure elementarity of the paths are not necessary for PSPCTSPAV.

B.2 Optimality Gaps and Computation Times

The optimality gaps and computation times of all experiments for the CTSPAV procedure
are summarized in Tables B.1 and B.2. In Table B.1, which summarizes the results of prob-
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lem instances with the lexicographic objective, the first two columns specify the location
of the clusters and the configuration of their depots. The following two columns list av-
erage values of the absolute gap for the vehicle count. The absolute gap is calculated by
taking the vehicle count results of the MIP and subtracting from it its lower bound. The
first gap uses the results from RMPCTSPAV. Letting Y ∗e be the value of Ye from RMPCTSPAV

at convergence, the primal lower bound to the vehicle count is given by d
∑

e∈δ(vs) Y
∗
e e.

The second gap uses the primary objective results of RMPDARP, particularly dz′LBe as the
vehicle-count lower bound. It was found to consistently provide a stronger lower bound
than d

∑
e∈δ(vs) Y

∗
e e from RMPCTSPAV, and therefore it is included here to provide an ad-

ditional perspective. The next column shows the average optimality gap, which is given
by (zMIP − z∗)/zMIP for each instance, where zMIP denotes the MIP’s final objective value,
and z∗, the objective value of RMPCTSPAV at convergence, provides a primal lower bound to
zMIP. However, for a few problem instances representing clusters outside the city limits, the
column-generation phase did not converge within the time limit. For these instances, the
dual lower bound zLB is used in place of z∗ when calculating the optimality gap, and the
vehicle-count lower bound from the CTSPAV procedure is obtained by considering only
the fixed cost contributions to zLB. All uncertainties are represented by the standard error
of the mean.

While the average optimality gap for the lexicographic objective is relatively high at
approximately 70% (resp. 76%) for clusters inside the city (resp. outside the city), the
vehicle-count gap, which depicts the absolute gap of the primary objective, paints a differ-
ent picture, averaging at 2.5 and 7.0 vehicles for clusters inside and outside the city limits
respectively. Moreover, when the lower bounds produced by the DARP procedure are used,
the vehicle-count gap averages at even lower values of 1.1 and 4.2 vehicles for clusters in-
side and outside the city limits respectively. These lower values highlight a key strength
of the DARP procedure: It consistently produces stronger lower bounds for the primary

objective. When these stronger lower bounds are used, some problem instances produced
an absolute vehicle-count gap of zero, indicating that their primary objective results are
optimal.

The next column shows the average number of mini routes, i.e. columns, generated in
the column-generation phase, while the following two columns summarize the time spent
in this phase. The latter of the two summarizes the fraction of problem instances in which
the column-generation phase met or exceeded the 1-hour time limit (i.e., the fraction of
instances whereby the column-generation phase did not converge within the time limit),
while the former shows the average wall time spent on column generation for problem

instances that did not exceed the time limit. It can be seen that on average, the time spent
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Table B.1: Optimality Gaps and Computation Times of the CTSPAV Procedure with the
Lexicographic Objective

Cluster
location

Depot
config.

Average
vehicle

count gap

Average
vehicle

count gap
(DARP LB)

Average
optimality
gap (%)

Average
mini route

count

Average
colgen
time (s)

% ≥
colgen
time
limit

% ≥
MIP
time
limit

Inside
city

Central 2.55 ± 0.14 1.09 ± 0.15 70.5 ± 1.4 5394 ± 741 86 ± 28 0.0 100.0

Local 2.50 ± 0.16 1.09 ± 0.16 69.8 ± 1.7 5699 ± 893 161 ± 84 0.0 100.0

Outside
city

Central 7.07 ± 0.45 4.19 ± 0.28 75.5 ± 2.1 19949 ± 1021 926 ± 141 32.4 100.0

Local 7.03 ± 0.47 4.12 ± 0.30 75.5 ± 2.2 19631 ± 974 922 ± 133 36.8 100.0

Table B.2: Optimality Gaps and Computation Times of the CTSPAV Procedure with the
Distance-Minimization Objective

Cluster
location

Depot
config.

Average
optimality
gap (%)

Average
mini route

count

Average
colgen
time (s)

% ≥ colgen
time limit

% ≥MIP
time limit

Inside
city

Central 1.75 ± 0.17 5396 ± 752 73 ± 22 0.0 36.4

Local 1.35 ± 0.17 5453 ± 803 105 ± 37 0.0 13.6

Outside
city

Central 3.05 ± 0.48 20533 ± 1147 960 ± 112 8.8 82.4

Local 4.75 ± 1.04 21114 ± 1140 1126 ± 129 19.1 73.5

on column generation is significantly higher for clusters outside the city limits. On top of
that, more than 30% of the instances did not achieve convergence within the time limit.
This can be attributed to the significantly larger number of columns generated from these
clusters. Finally, the last column shows the fraction of problem instances in which the MIP-
solving phase met or exceeded its 1-hour time budget. For the lexicographic objective, the
time limit was exceeded by all problem instances.

Table B.2 summarizes the results of problem instances with the distance-minimization
objective. It displays the same information as Table B.1, except that it does not list the
average vehicle-count gaps. This is due to the lower bound of the vehicle count not be-
ing available from the objective. It can be seen that the optimality gaps for the distance-
minimization objective are excellent, being less than 2% on average for cases inside the
city and less than 5% on average for cases outside. Similar to the instances with the lex-
icographic objective, the average number of columns generated from clusters outside the
city limits is significantly larger than that from clusters inside, which consequently results
in the significantly longer average time spent on the column-generation phase. Finally, the
percentage of problem instances that exceed the time limits of the column-generation and
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the MIP phases is fewer than that for the lexicographic objective in every case, and this can
be attributed to the relatively stronger primal lower bound provided by the LP relaxation of
MPCTSPAV when the distance-minimization objective is utilized.

Table B.3 summarizes the average optimality gaps and computations times of the same
set of problem instances for the DARP procedure with the lexicographic objective. Once
again, all uncertainties are represented by the standard error of the mean. Its first two
columns specify the cluster location and the depot configuration of the instances. The next
lists the average number of columns generated, followed by two columns which show the
average absolute gap and the average optimality gap of the primary objective value. Letting
z′MIP denote the final primary objective value of the MIP and recalling that z′LB denotes its
dual lower bound, the absolute gap of an instance given by z′MIP−dz′LBewhile its optimality
gap is given by (z′MIP − dz′LBe)/z′MIP. The average optimality gaps are relatively high at
approximately 48%. However, the absolute gaps reveal a different story, whereby they
average at only 2.6 and 4.8 vehicles inside and outside the city limits respectively. These
values, however, are higher than those for the CTSPAV procedure which utilize the same
lower bounds (dz′LBe).

The next column specifies the fraction of problem instances whereby the column-
generation phase for the primary objective did not converge within the time limit, followed
by one which specifies the fraction of instances whereby the column-generation phase for
both objectives did not converge. When only the primary objective is considered, the col-
umn generation for more than two-thirds of the instances inside the city and almost all
instances outside the city did not converge. On top of that, out of the 180 problem in-
stances in total, only two had their column-generation phases for both objectives converge
within the allocated time limit, even after more time has been allocated for this phase (recall
that 1.5 hours is allocated for this phase of the DARP procedure as opposed to only 1 hour
for the CTSPAV procedure). This highlights the harder nature of PSPDARP which searches
for the longer AV routes (as opposed to PSPCTSPAV which only searches for mini routes).
Nevertheless, even though its column-generation phase did not converge in most instances,
the DARP procedure was still able to consistently produce stronger lower bounds for the

primary objective.
The next column shows the fraction of problem instances in which the MIP for the

primary objective exceeded the time limit, while the last shows the fraction of instances in
which the MIP for both objectives exceeded the time limit. Both columns show that the
MIP can be solved within the time limit for a majority of the problem instances, which
is in stark contrast to the MIP of the CTSPAV procedure, whereby its longer time limit is
exceeded by all problem instances. This difference can be attributed to the relatively easier
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Table B.3: Optimality Gaps and Computation Times of the DARP Procedure with the
Lexicographic Objective

Cluster
location

Depot
config.

Average
column
count

Average
primary
absolute

gap

Average
primary

optimality
gap (%)

% ≥
primary
colgen

time limit

% ≥
colgen
time
limit

% ≥
primary

MIP time
limit

% ≥
MIP
time
limit

Inside
city

Central 34107 ± 5602 2.68 ± 0.14 47.9 ± 2.1 68.2 100.0 18.2 36.4

Local 33911 ± 5554 2.55 ± 0.16 49.0 ± 2.7 68.2 100.0 9.1 27.3

Outside
city

Central 6801 ± 907 4.81 ± 0.23 48.2 ± 1.5 95.6 98.5 14.7 25.0

Local 6698 ± 870 4.79 ± 0.25 47.6 ± 1.6 95.6 98.5 14.7 19.1

MPDARP which just solves a set-covering problem (instead of the MPCTSPAV which solves
a route-scheduling problem) and the stronger primal lower bound provided by its linear
relaxation.

Table B.4 summarizes the average optimality gaps and computations times for the
DARP procedure with the distance-minimization objective. Similar to Table B.3, the first
three columns specify the cluster locations, the depot configurations, and the average num-
ber of columns generated. The following two show the average optimality gaps of the final
MIP results. The first uses the dual lower bound, dzLBe, in the gap calculation, whereas
the second uses the primal lower bound produced by the CTSPAV procedure, z∗. For the
distance-minimization objective, the CTSPAV procedure consistently produces stronger
lower bounds, therefore the optimality gaps calculated using its lower bound are also
smaller. The dual lower bound dzLBe is weaker in this case because the column-generation
phase could not be completed within the time limit for almost all problem instances. This
is further highlighted by the next column which shows the fraction of problems in which
the column-generation phase could not be completed. Out of the 180 problem instances in
total, only four managed to achieve convergence. For these four instances, the strength of
dzLBe is comparable to z∗ from the CTSPAV procedure. Finally, the last column shows the
fraction of problem instances in which the MIP exceeded its time limit. A larger fraction
of instances inside the city exceeded the time limit due to their relatively larger column
counts.
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Table B.4: Optimality Gaps and Computation Times of the DARP Procedure with the
Distance Minimization Objective

Cluster
location

Depot
config.

Average
column
count

Average
optimality
gap (%)

Average
optimality
gap (%)

(CTSPAV LB)

% ≥ colgen
time limit

% ≥MIP
time limit

Inside
city

Central 34286 ± 5323 98.0 ± 2.0 28.5 ± 1.7 100.0 77.3

Local 30712 ± 4640 95.2 ± 3.8 36.4 ± 3.1 100.0 77.3

Outside
city

Central 6154 ± 902 94.8 ± 2.6 28.4 ± 1.6 96.7 36.7

Local 5816 ± 838 95.5 ± 2.6 44.5 ± 1.8 96.9 37.5
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APPENDIX C

Appendix for Chapter 6

C.1 Filtering of Graph G

The following sets of infeasible edges, identified using rules proposed by Dumas et al.
(1991) and Cordeau (2006) which pre-process time-window, pairing, precedence, and ride-
duration limit constraints on A, are eliminated to produce a more compact representation
of graph G:

(a) Direct trips to and from the depot:
• {(vs, vt), (vt, vs)}
• {(i, vs), (i, vt), (vt, i) : i ∈ P}
• {(vs, i), (i, vs), (vt, i) : i ∈ D}

(b) Precedence of pickup and drop-off nodes of inbound and outbound trips of each
commuter (constraints (6.1)): {(i, 2n+ i), (i, 3n+ i), (n+ i, i), (n+ i, 3n+ i), (2n+

i, i), (2n+ i, n+ i), (3n+ i, i), (3n+ i, n+ i), (3n+ i, 2n+ i) : i ∈ P+}
(c) Precedence of pickup and drop-off nodes of inbound and outbound mini routes:

• {(i, j) : i ∈ P+ ∧ j ∈ P− ∪ D−}
• {(i, j) : i ∈ D+ ∧ j ∈ D−}
• {(i, j) : i ∈ P− ∧ j ∈ P+ ∪ D+}
• {(i, j) : i ∈ D− ∧ j ∈ D+}

(d) Time windows along each edge: {(i, j) : (i, j) ∈ A \ {δ+(vs) ∪ δ−(vt)} ∧ ai + ζi +

τ(i,j) > bj}
(e) Ride-duration limit of each commuter: {(i, j), (j, n+ i) : i ∈ P ∧ j ∈ P ∪ D ∧ i 6=

j ∧ τ(i,j) + ζj + τ(j,n+i) > Li}
(f) Time windows and ride-duration limits of pairs of trips:

• {(i, n+ j) : i, j ∈ P ∧ i 6= j ∧ ¬feasible(j → i→ n+ j → n+ i)}
• {(n+ i, j) : i, j ∈ P ∧ i 6= j ∧ ¬feasible(i→ n+ i→ j → n+ j)}
• {(i, j) : i, j ∈ P∧i 6= j∧¬feasible(i→ j → n+i→ n+j)∧¬feasible(i→
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Inbound Route Graph, 

For each commuter i:
• Origin node: i
• Destination node: n + i
Virtual source node: 0
Virtual sink node: 2n + 1

Figure C.1: Graph G (Each Dotted Line Represents a Pair of Bidirectional Edges).

j → n+ j → n+ i)}
• {(n + i, n + j) : i, j ∈ P ∧ i 6= j ∧ ¬feasible(i → j → n + i → n + j) ∧
¬feasible(j → i→ n+ i→ n+ j)}

Note that the sets of edges in (f) utilize the feasible function described in Section 1.1.3
to determine if a partial route satisfies the time-window and ride-duration limit constraints.
For instance, the first condition indicates that edge (i, n+ j) is infeasible if the partial route
j → i→ n+j → n+ i is infeasible. Figure C.1 illustrates an example of graph G resulting
from this pre-processing step.

C.2 Computational Results

Table C.1 summarizes the results of CTSPAVHybrid for every large problem instance. Its
first column shows the name of every instance. The next three columns display properties
that characterize the size of each instance. They list the node count of graph G, |N |, the
edge count of the graph (after the pre-processing step), |A|, and finally the number of
mini routes generated by the MREA, |Ω|, for every instance. The next column shows the
wall time spent to the enumerate the mini routes. The remaining columns summarize the
results of CTSPAVHybrid. The first two show the vehicle count and total travel distance
from its best incumbent solution. The next two display the absolute gap for the vehicle
count and the optimality gap for the objective value of the best incumbent solution. The
following column shows the number of tree nodes explored in the solution process. The
last two columns display the (total) wall time spent to solve the MIP and that spent to
close the vehicle count gap. For the very last column, values are only listed for instances
whereby the vehicle count gap could be closed within the 2-hour time limit. It is left blank
otherwise. Tables C.3 and C.5 provide the same set of information for CTSPAVHybrid for
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every medium and tight problem instance respectively. On the other hand, Tables C.2, C.4,
and C.6 show the results of CTSPAVSEC and CTSPAVBase for all large, medium, and tight
problem instances respectively.

Table C.1: Results of CTSPAVHybrid for the Large Problem Instances
Instance

name
Node
count

Edge
count

Mini
route
count

Route
enumeration

time (s)

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s)

MIP
Optimal

count

L0 402 23983 3730 22 3 642049 0 0.0 156016 5360 1284
L1 402 22621 1093 21 3 463065 1 33.3 524584 7200 -
L2 402 26781 51175 24 4 817348 2 49.9 6424 7200 -
L3 402 26496 63597 24 4 841180 2 49.9 7430 7202 -
L4 402 25309 49147 23 4 813018 1 24.9 11734 7201 -
L5 402 22425 1605 20 3 512675 1 33.3 189596 7200 -
L6 402 26420 20060 23 4 955285 2 49.9 7935 7201 -
L7 402 24699 21403 23 4 888490 1 24.9 22067 7201 -
L8 402 25710 14818 23 4 844674 1 24.9 23822 7200 -
L9 402 27315 191067 25 5 737361 3 59.9 1511 7200 -

L10 402 24386 5807 25 3 555102 1 33.3 30016 7201 -
L11 402 25639 18237 23 3 570036 1 33.3 13176 7201 -
L12 402 23748 3631 21 3 581863 1 33.3 125059 7200 -
L13 402 24581 6835 24 3 624843 1 33.3 23394 7202 -
L14 402 26287 72200 23 4 949361 2 49.9 5138 7201 -
L15 402 24898 114817 38 4 1108007 2 49.9 7258 7200 -
L16 402 24203 9231 22 4 847394 1 24.9 75500 7200 -
L17 402 23734 6404 22 4 863265 0 0.0 22485 7200 5883
L18 402 24712 4417 33 4 914762 1 24.9 33188 7201 -
L19 402 25513 35873 24 3 698599 1 33.3 11984 7201 -
L20 402 25528 58833 23 3 779684 1 33.3 8639 7200 -
L21 402 22832 4870 21 2 457911 0 0.0 166142 7200 2217
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Table C.2: Results of CTSPAVSEC and CTSPAVBase for the Large Problem Instances

Instance
name

CTSPAV variant

SEC Base

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s) Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s)

MIP
Optimal

count MIP
Optimal

count

L0 3 646884 1 33.3 43103 7200 - 3 652906 2 66.5 24638 7201 -
L1 3 463065 1 33.3 135613 7228 - 3 463065 2 66.6 408157 7202 -
L2 4 821989 2 49.9 6369 7218 - 4 824321 3 74.8 5229 7201 -
L3 4 849844 2 49.9 4713 7215 - 4 843208 3 74.8 5291 7200 -
L4 5 820800 3 59.9 10005 7202 - 5 831319 3 59.9 20952 7201 -
L5 3 512838 1 33.3 73463 7202 - 3 512675 2 66.5 195089 7201 -
L6 4 971911 2 49.9 9541 7207 - 4 967746 3 74.8 11540 7204 -
L7 4 891808 2 49.9 7244 7206 - 4 893550 3 74.8 15275 7201 -
L8 4 845333 2 49.9 8301 7201 - 4 845100 3 74.8 16814 7200 -
L9 5 730915 3 59.9 2023 7200 - 5 720023 4 79.9 1906 7200 -

L10 3 555102 1 33.3 21162 7200 - 3 555102 2 66.5 21223 7201 -
L11 3 573246 1 33.3 3428 7203 - 3 574227 2 66.5 21195 7200 -
L12 3 581863 1 33.3 34193 7200 - 3 581863 2 66.5 57588 7202 -
L13 3 626100 1 33.3 15871 7221 - 3 625042 2 66.5 36251 7201 -
L14 4 949659 2 49.9 5431 7213 - 4 932389 3 74.8 4986 7200 -
L15 4 1108620 2 49.9 4435 7202 - 4 1116187 3 74.8 2732 7201 -
L16 4 857161 2 49.9 12595 7203 - 4 846684 3 74.8 21489 7200 -
L17 4 867674 2 49.9 21259 7201 - 4 865011 2 49.9 21691 7200 -
L18 4 917395 2 49.9 18251 7201 - 4 914762 2 49.9 20825 7200 -
L19 4 697540 2 49.9 4925 7298 - 4 706887 3 74.9 15757 7200 -
L20 3 772418 1 33.3 6277 7318 - 3 778248 2 66.5 7573 7200 -
L21 3 447435 2 66.6 1632 7259 - 2 458460 1 49.9 86453 7205 -
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Table C.3: Results of CTSPAVHybrid for the Medium Problem Instances
Instance

name
Node
count

Edge
count

Mini
route
count

Route
enumeration

time (s)

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s)

MIP
Optimal

count

M0 302 14024 3233 7 2 481141 0 0.0 109840 7200 445
M1 262 11267 8986 6 3 605515 1 33.3 39142 7200 -
M2 302 13973 31559 7 3 847030 0 0.0 27300 7200 4567
M3 302 15253 30739 10 3 668490 1 33.3 18968 7201 -
M4 302 14426 28359 9 3 535195 1 33.3 19036 7201 -
M5 302 12739 503 6 2 333048 0 0.0 1348803 3409 340
M6 302 15515 47521 8 3 657988 1 33.3 12023 7200 -
M7 302 14485 3485 7 3 595519 1 33.3 123341 7200 -
M8 302 15404 10828 8 3 689147 1 33.3 21890 7201 -
M9 302 15882 55026 9 3 489997 1 33.3 14828 7201 -

M10 302 14898 119198 10 3 719639 1 33.3 18473 7200 -
M11 302 13800 5845 10 2 602968 0 0.0 205444 7200 1814
M12 302 13542 1884 7 2 417175 0 0.0 61043 1007 122
M13 302 14564 28922 9 3 652724 1 33.3 18510 7200 -
M14 302 13902 3207 7 2 401064 0 0.0 51325 2406 270
M15 302 14801 14693 7 3 627967 0 0.0 39332 7200 7030
M16 254 10233 3968 4 3 599126 0 0.0 30465 2949 2787
M17 302 13224 1380 7 2 490178 0 0.0 14669 134 73
M18 290 11758 749 5 2 347259 0 0.0 30780 418 416
M19 302 13043 3174 7 2 339073 0 0.0 278853 6566 6004
M20 302 14184 4380 7 3 551547 1 33.3 81164 7200 -
M21 258 10135 1696 6 3 620764 0 0.0 273752 4256 4116
M22 302 14856 19435 8 3 683612 1 33.3 18247 7200 -
M23 302 14230 12339 7 3 556522 1 33.3 31373 7200 -
M24 302 14694 23970 7 3 588191 1 33.3 18586 7200 -
M25 286 13139 19056 6 3 596412 1 33.3 24223 7201 -
M26 302 13505 1547 11 3 445952 0 0.0 55454 1576 1311
M27 262 10980 4981 4 3 712881 0 0.0 34804 1648 1422
M28 302 13883 3565 11 2 394323 0 0.0 1737 183 104
M29 302 15142 38021 10 3 729149 1 33.3 18677 7200 -
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Table C.4: Results of CTSPAVSEC and CTSPAVBase for the Medium Problem Instances

Instance
name

CTSPAV variant

SEC Base

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s) Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s)

MIP
Optimal

count MIP
Optimal

count

M0 2 480223 0 0.0 229608 7200 2756 2 480225 1 49.9 143747 7201 -
M1 3 603771 1 33.3 21394 7203 - 3 604103 2 66.5 20833 7200 -
M2 3 846579 1 33.2 16221 7207 - 3 846597 1 33.2 21540 7201 -
M3 3 668248 1 33.3 15377 7205 - 3 682726 2 66.5 21125 7200 -
M4 3 535334 1 33.3 7076 7298 - 3 535195 2 66.5 21423 7200 -
M5 2 333048 0 0.0 14122 335 95 2 333366 1 49.9 1119738 7200 -
M6 3 656983 1 33.3 6422 7201 - 4 655969 3 74.9 20905 7200 -
M7 3 595519 1 33.3 45152 7204 - 3 595519 2 66.5 65095 7201 -
M8 3 679167 1 33.3 21493 7201 - 3 687498 2 66.5 21259 7200 -
M9 3 489461 1 33.3 5734 7238 - 3 497878 2 66.6 21032 7200 -

M10 3 719788 1 33.3 8781 7215 - 3 722278 2 66.5 3697 7201 -
M11 2 601111 0 0.0 35354 7202 1730 2 601041 1 49.8 29943 7200 -
M12 2 417175 0 0.0 50401 1911 195 2 417185 1 49.9 251358 7200 -
M13 3 655996 1 33.3 7966 7212 - 3 653183 2 66.5 21185 7202 -
M14 2 401064 0 0.0 26183 5314 983 2 401064 1 49.9 92983 7200 -
M15 4 622760 2 49.9 20584 7203 - 4 622717 2 49.9 23019 7200 -
M16 3 599126 1 33.3 80256 7205 - 3 599442 2 66.5 32695 7200 -
M17 2 490178 0 0.0 4120 141 58 2 490178 1 49.9 272323 7200 -
M18 2 347259 0 0.0 436 156 151 2 347259 1 49.9 1064235 7201 -
M19 2 339073 0 0.0 4695 1645 637 2 339073 1 49.9 192573 7200 -
M20 3 551547 1 33.3 41920 7203 - 3 551547 2 66.5 39175 7200 -
M21 3 620783 1 33.3 211984 7200 - 3 620764 2 66.5 319796 7200 -
M22 3 685043 1 33.3 15662 7205 - 3 683300 1 33.3 24972 7200 -
M23 3 556571 1 33.3 21292 7200 - 3 555996 2 66.5 20915 7200 -
M24 3 588191 1 33.3 17174 7223 - 3 587860 2 66.5 21374 7200 -
M25 3 597367 1 33.3 20807 7200 - 3 596653 2 66.5 21527 7201 -
M26 3 445952 1 33.3 114827 7202 - 3 445952 2 66.6 189359 7200 -
M27 3 712881 1 33.3 25439 7202 - 3 712881 2 66.5 21500 7200 -
M28 2 394323 0 0.0 1830 431 241 2 394323 1 49.9 139970 7200 -
M29 3 731148 1 33.3 10958 7204 - 3 729946 2 66.5 19975 7203 -
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Table C.5: Results of CTSPAVHybrid for the Tight Problem Instances

Instance
name

Node
count

Edge
count

Mini
route
count

Route
enumeration

time (s)

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s)

MIP
Optimal

count

S0 402 20870 374 19 5 961566 0 0.0 144186 544 129
S1 402 20847 267 18 3 619257 0 0.0 19909 143 124
S2 402 21424 971 20 5 1246019 0 0.0 27515 459 333
S3 402 21472 1268 21 5 1192722 0 0.0 19049 830 721
S4 402 21352 1204 20 5 1187914 0 0.0 957524 5084 238
S5 402 20918 304 17 3 676142 0 0.0 1887 28 24
S6 402 21050 707 20 6 1503404 0 0.0 14494 224 187
S7 402 21022 687 20 5 1345009 0 0.0 121198 1524 1180
S8 402 20896 581 31 5 1310231 0 0.0 2705 37 32
S9 402 21876 1666 30 6 1094536 0 0.0 14475 384 262

S10 402 21044 430 29 4 805606 0 0.0 17905 228 228
S11 402 21614 835 29 4 819652 0 0.0 11194 211 188
S12 402 20946 393 32 4 837723 0 0.0 448878 1504 86
S13 402 21137 504 20 4 914708 0 0.0 136179 1149 667
S14 402 21438 1056 32 5 1450697 0 0.0 10064 71 17
S15 402 21156 2825 31 5 1613836 0 0.0 2646 20 8
S16 402 21005 528 32 5 1220586 0 0.0 8396 147 136
S17 402 20844 499 30 5 1252397 0 0.0 9523 68 34
S18 402 20713 392 31 6 1452716 0 0.0 18044 201 200
S19 402 21377 1267 31 4 1030225 0 0.0 513121 4069 1218
S20 402 21542 1541 33 4 1144849 0 0.0 8369 222 211
S21 402 20959 313 19 3 580008 0 0.0 204235 2267 2131
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Table C.6: Results of CTSPAVSEC and CTSPAVBase for the Tight Problem Instances

Instance
name

CTSPAV variant

SEC Base

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s) Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Nodes
explored

Wall time (s)

MIP
Optimal

count MIP
Optimal

count

S0 5 961566 0 0.0 95266 388 82 5 961566 0 0.0 151291 533 90
S1 3 619257 0 0.0 9643 97 89 3 619257 0 0.0 24230 326 323
S2 5 1246019 0 0.0 13952 277 203 5 1246019 0 0.0 21299 917 902
S3 5 1192722 1 20.0 178946 7201 - 5 1192722 1 19.9 241540 7201 -
S4 5 1187914 0 0.0 400941 2668 187 5 1187914 0 0.0 17315 406 225
S5 3 676142 0 0.0 3023 13 5 3 676142 0 0.0 4393 14 6
S6 6 1503404 0 0.0 14190 284 284 6 1503404 0 0.0 73967 1653 1567
S7 5 1345009 0 0.0 216353 3000 2352 5 1345009 0 0.0 243780 2824 1953
S8 5 1310231 0 0.0 1459 22 21 5 1310231 0 0.0 3948 46 44
S9 6 1094536 1 16.6 152214 7202 - 6 1094536 1 16.6 193079 7201 -
S10 4 805606 0 0.0 16966 236 226 4 805606 0 0.0 9222 84 80
S11 4 819652 0 0.0 9997 168 150 4 819652 0 0.0 12619 210 197
S12 4 837723 0 0.0 161991 665 99 4 837723 0 0.0 155274 554 157
S13 4 914708 0 0.0 94311 1553 1301 4 914708 0 0.0 304917 5579 5231
S14 5 1450697 0 0.0 1250 44 31 5 1450697 0 0.0 14449 39 7
S15 5 1613836 0 0.0 3338 24 12 5 1613836 0 0.0 1600 19 11
S16 5 1220586 0 0.0 3471 78 72 5 1220586 0 0.0 1348 54 52
S17 5 1252397 0 0.0 7338 48 32 5 1252397 0 0.0 10428 76 55
S18 6 1452716 0 0.0 26594 278 268 6 1452716 0 0.0 22340 375 374
S19 4 1030225 0 0.0 553629 4371 1324 4 1030225 0 0.0 173744 1736 326
S20 4 1144849 0 0.0 9894 199 188 4 1144849 0 0.0 22515 504 500
S21 3 580008 0 0.0 138098 2078 2042 3 580008 1 33.3 886186 7201 -
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Tables C.7, C.8, and C.9 list results of the CTSPAV column-generation heuristic from
Chapter 5 for every large, medium, and tight instance respectively. Their first columns
show the instance names, followed by three columns that show the number of columns
(mini routes) generated, the final vehicle count, and the total travel distance results for
every instance. The following two columns display the absolute gap of its vehicle-count
results and the optimality gap of its best incumbent solution. Since the heuristic does not
utilize all the feasible mini routes, it has to use the optimal LP solutions of RMPCTSPAV to
derive the primal lower bounds for these gap calculations. The final three columns show the
percentage difference between the column count, the vehicle count, and the total distance
of the heuristic relative to those of CTSPAVHybrid.

Table C.7: Results of CTSPAV Column-Generation Heuristic for Large Problem Instances

Instance
name

Column
count

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Percentage difference

Column
count

Vehicle
count

Total
distance

L0 2231 3 647661 2 66.5 -40% 0% -0.75%
L1 901 3 463065 2 66.6 -18% 0% 0.00%
L2 8713 4 817348 3 74.9 -83% 0% 0.05%
L3 9347 4 841180 3 74.8 -85% 0% -0.30%
L4 7253 4 813018 3 74.8 -85% 0% -0.14%
L5 960 3 512675 2 66.6 -40% 0% 0.00%
L6 6330 4 955285 3 74.8 -68% 0% 1.19%
L7 5087 4 888490 3 74.8 -76% 0% 0.35%
L8 4902 4 844674 3 74.8 -67% 0% 0.00%
L9 13892 5 737361 4 79.9 -93% 0% -0.22%

L10 2884 3 555102 2 66.5 -50% 0% 0.05%
L11 5659 3 570036 2 66.5 -69% 0% 0.88%
L12 2116 3 581863 2 66.5 -42% 0% 0.00%
L13 3106 3 624843 2 66.5 -55% 0% 0.01%
L14 9539 4 949361 3 74.8 -87% 0% -0.66%
L15 8161 4 1108007 3 74.8 -93% 0% 0.80%
L16 3513 4 847394 3 74.8 -62% 0% 0.37%
L17 2886 4 862155 3 74.8 -55% 0% 0.11%
L18 2912 4 914762 3 74.8 -34% 0% 0.49%
L19 6278 3 698599 2 74.9 -82% 33% 0.27%
L20 8291 3 779684 2 66.5 -86% 0% -1.40%
L21 1397 2 457911 1 49.9 -71% 0% -0.01%
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Table C.8: Results of CTSPAV Column-Generation Heuristic for Medium Problem In-
stances

Instance
name

Column
count

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Percentage difference

Column
count

Vehicle
count

Total
distance

M0 1664 2 481141 1 49.9 -49% 0% -0.19%
M1 2643 3 605515 2 66.5 -71% 0% -0.17%
M2 4349 3 846579 2 66.5 -86% 0% 0.75%
M3 5461 3 668490 2 66.5 -82% 0% 1.07%
M4 3556 3 535195 2 66.6 -87% 0% 0.04%
M5 464 2 333048 1 49.9 -8% 0% 0.00%
M6 6217 3 657988 2 66.5 -87% 0% 0.36%
M7 2081 3 595519 2 66.5 -40% 0% 0.00%
M8 3728 3 689147 2 66.5 -66% 0% -0.21%
M9 6545 3 489997 2 66.6 -88% 0% 0.01%

M10 6938 3 719639 2 66.5 -94% 0% 0.03%
M11 2142 2 602968 1 49.9 -63% 0% -0.40%
M12 1198 2 417175 1 49.9 -36% 0% 0.00%
M13 4821 3 652724 2 66.5 -83% 0% 0.17%
M14 1712 2 401064 1 49.9 -47% 0% 0.08%
M15 4122 3 627967 2 74.9 -72% 33% -1.07%
M16 1849 3 599126 2 66.5 -53% 0% 0.07%
M17 964 2 490178 1 49.9 -30% 0% 0.00%
M18 528 2 347259 1 49.9 -30% 0% 0.00%
M19 914 2 339073 1 49.9 -71% 0% 0.00%
M20 2153 3 551547 2 66.5 -51% 0% 0.00%
M21 1172 3 620764 2 66.5 -31% 0% 0.00%
M22 4527 3 683612 2 66.5 -77% 0% 0.16%
M23 3416 3 556522 2 66.5 -72% 0% -0.09%
M24 4949 3 588191 2 66.5 -79% 0% 0.04%
M25 3969 3 596412 2 66.5 -79% 0% 0.16%
M26 1043 3 445952 2 66.6 -33% 0% 0.09%
M27 2336 3 712881 2 66.5 -53% 0% 0.02%
M28 1810 2 394323 1 49.9 -49% 0% 0.00%
M29 6028 3 729149 2 66.5 -84% 0% -0.38%
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Table C.9: Results of CTSPAV Column-Generation Heuristic for Tight Problem Instances

Instance
name

Column
count

Vehicle
count

Total
distance

(m)

Vehicle
count
gap

Optimality
gap (%)

Percentage difference

Column
count

Vehicle
count

Total
distance

S0 359 5 961566 2 39.9 -4% 0% 0.00%
S1 267 3 619257 1.97 65.4 0% 0% 0.00%
S2 813 5 1246019 2 39.9 -16% 0% 0.00%
S3 969 5 1192722 2.92 58.3 -24% 0% 0.00%
S4 840 5 1187914 1 20.0 -30% 0% 0.05%
S5 291 3 676142 1 33.3 -4% 0% 0.00%
S6 633 6 1503404 2 33.3 -10% 0% 0.00%
S7 575 5 1345009 2 49.9 -16% 20% -1.19%
S8 502 5 1310231 1 19.9 -14% 0% 0.00%
S9 1273 6 1094536 3 49.9 -24% 0% 0.13%

S10 421 4 805606 2 49.9 -2% 0% 0.00%
S11 744 4 819652 1 25.0 -11% 0% 0.01%
S12 377 4 837723 2 49.9 -4% 0% 0.00%
S13 461 4 914708 2 49.9 -9% 0% 0.12%
S14 876 5 1450697 1.62 32.2 -17% 0% 0.01%
S15 1072 5 1613836 1 19.9 -62% 0% 0.01%
S16 502 5 1220586 2 39.9 -5% 0% 0.00%
S17 453 5 1252397 2 39.9 -9% 0% 0.00%
S18 383 6 1452716 2 33.3 -2% 0% 0.00%
S19 762 4 1030225 1.50 37.4 -40% 0% 0.15%
S20 934 4 1144849 1 24.9 -39% 0% 0.00%
S21 305 3 580008 2 66.5 -3% 0% 0.00%
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Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations Research
53(6):1007–1023, URL http://dx.doi.org/10.1287/opre.1050.0234.

Ma J, Li X, Zhou F, Hao W (2017) Designing optimal autonomous vehicle sharing and reserva-
tion systems: A linear programming approach. Transportation Research Part C: Emerging
Technologies 84:124 – 141, ISSN 0968-090X, URL http://dx.doi.org/https:
//doi.org/10.1016/j.trc.2017.08.022.
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