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ABSTRACT

Gene expression produces biologically functional RNAs and proteins and is essential for

life. Nevertheless, gene expression is subject to several types of errors that are generally

harmful. Despite the prevalence and significant consequences of expression errors, their

genome-wide patterns are not well characterized. Furthermore, the evolutionary ramifications

of such errors are poorly understood. In my dissertation, | address the above questions using

novel computational approaches. | focus on two types of gene expression errors: (i) stochastic

gene expression, which leads to a variation of the expression level among isogenic cells in

the same environment (gene expression noise), and (ii) mistranslation, which induces protein

misfolding and can be toxic to the cells.

My thesis has three main chapters in addition to the introduction and conclusion chapters.

First, in Chapter 2, | studied gene expression noises of individual genes. | decomposed noises

of 3975 mouse genes into intrinsic noise and extrinsic noises and studied their biological

xii



mechanisms and evolution consequences. Next, in Chapter 3, | move forward to consider

gene expression noises for pairs of genes simultaneously. | discovered chromosome-wide

co-fluctuation in expression for linked genes, which is partly due to chromatin

co-accessibilities of linked loci attributable to three-dimensional proximity. | further found

that genes encoding components of the same protein complex are more likely to become

linked during evolution due to natural selection for intracellular among-component dosage

balance. Thus, selection for mitigating the harm of expression noise drives the nonrandom

genomic distributions of genes. Finally, in Chapter 4, | studied yet another kind of expression

error: mistranslation. | focused on the relationship between mistranslation and codon usage.

Specifically, | provide the first direct and global evidence for a prominent but unresolved

hypothesis: preferred codons are translated more accurately. Furthermore, | showed that

this proposition is generally true across three domains of life. Interestingly, the relative

translational accuracies of synonymous codons vary drastically among species, which is

mainly explained by the variation of tRNA compositions. Together with other information,

these findings suggest that codon usage coevolves with the cellular tRNA pool to maximize

translational accuracy and efficiency.

Xiii



In conclusion, my dissertation documents the genome-wide patterns of gene expression

errors and demonstrates their profound impacts on both molecular and phenotypic evolution.

The knowledge gained has implications beyond expression errors because of the universality

of molecular errors in cellular life.

Xiv



Chapter 1: General Introduction
Primum non nocere (First, do no harm).
-Thomas Sydenham
Background introduction

Cellular life depends on chemical reactions, which are intrinsically stochastic and
imprecise. As a result, many fundamental cellular processes are subject to errors. For instance,
every step in the central dogma of molecular biology has errors: DNA replication has an error
rate on the order of 10™° per bp per replication, transcription has an error rate on the order of
107 per bp per transcription, and translation has an error rate on the order of 10 per amino
acid per translation (Milo and Phillips, 2015). Besides, DNA, mRNA, and proteins, the key
players of the central dogma, are all subjected to noisy modifications after being produced
(Arber and Linn, 1969; Walsh, 2006; Zhao et al., 2017).

Errors in cellular processes have consequences. The vast majority of errors are
deleterious or, at best, neutral (Zhang, 2018). Again, if we consider the molecular processes
in central dogma: DNA replication errors (mutations) cause cancer (Moolgavkar and
Knudson, 1981), transcription and translation errors cause protein misfolding that has been
implicated in neurodegenerative diseases (Drummond and Wilke, 2009). Because of the
burden of molecular error, many mechanisms have been evolved to reduce the error rate of
molecular processes and/or minimize the cost of individual error events, such as homologous
recombination DNA repair pathway (Li and Heyer, 2008), Nonsense-mediated decay of
MRNAS containing premature stop codons (Chang et al., 2007), and kinetic proofreading in

the process of charging tRNA with their corresponding amino-acids (Hopfield, 1974).



Nevertheless, despite not being the main focus of this dissertation, it is worth mentioning that

errors can occasionally be beneficial (Tawfik, 2010). As a neat example, mutations are the

ultimate source of adaptation (Sniegowski and Lenski, 1995). Either way, errors profoundly

impact molecular and phenotypic evolution.

The fast development of omics techniques enables us to study the genome-wide patterns
of different types of molecular errors, including but not limited to (i) genomic mutations (Liu
and Zhang, 2019), (ii) stochastic initiation of transcription that results in gene expression
level fluctuations (Faure et al., 2017), (iii) misincorporation of nucleotides in transcription
(Gout et al., 2013), (iv) errors in mMRNA processing such as splicing(Pickrell et al., 2010) and
polyadenylation (Xu and Zhang, 2018), (v) errors in post-transcriptional modification (Liu
and Zhang, 2018), (vi) misincorporation of amino acids in translation (Mordret et al., 2019),
and (vii) stop-codon readthrough (Li and Zhang, 2019).

Interestingly, despite the universality and significance of molecular errors, most analysis
on omics data assumes molecular diversity observed in the data is beneficial (Gruber and
Zavolan, 2019; Modrek and Lee, 2002), perhaps due to the bias inherent in human cognition
that favors adaptive storytelling (Gould and Lewontin, 2020). Consequently, numerous
dubious ‘genome-wide adaptation’ has been found. For instance, it has been reported that
there is a genome-wide convergent adaptation in echolocating mammals(Parker et al., 2013),
despite that the same pattern could be found in cow (Thomas and Hahn, 2015; Zou and
Zhang, 2015), a non-echolocating mammal. At the transcriptome level, it has been routinely
assumed that alternative splicing creates functional diversity and plays an important role in
gene expression regulation(Modrek and Lee, 2002). However, proteomics data and various
other indirect evidence suggest that only one isoform is translated for the vast majority of the
genes (Tress et al., 2017). Finally, the proteome is not an exception: despite some important

cases of phosphorylation at particular sites (Rubin and Rosen, 1975), most phosphorylation



sites are not conserved and are unlikely to be functional (Studer et al., 2016).

Given that a functional perspective on omics data often results in vague and elusive
interpretations, | hypothesize that analyzing these data from the perspective of molecular
error could provide a more coherent picture of the genome-wide patterns of molecular
diversity. To this end, I analyzed molecular errors occurring in gene expression processes
using multiple omics datasets (Mordret et al., 2019; Reinius et al., 2016). Specifically, in my
dissertation, | study the mechanisms and consequences of two kinds of gene expression errors:
gene expression noise (Blake et al., 2003) and mistranslation (Drummond and Wilke, 2008).
Gene expression noise will be the focus of Chapter 2(Sun and Zhang, 2020) and Chapter 3
(Sun and Zhang, 2019), whereas mistranslation would be the focus of Chapter 4. Below, |
will briefly summarize the content of each of the three main chapters.

Thesis overview

I first focus on the expression noise of individual genes in Chapter 2. The expression
noise of a gene is the variation in the expression level of the gene among genetically identical
cells in the same environment (Blake et al., 2003; Elowitz et al., 2002). Gene expression
noise is often deleterious because it leads to imprecise cellular behaviors. For example, it
may ruin the stoichiometric relationship among functionally related proteins (Veitia, 2004),
which may further disrupt cellular homeostasis. However, under certain circumstances, gene
expression noise can be beneficial. Prominent examples include bet-hedging strategies of
microbes in fluctuating environments (Veening et al., 2008) and stochastic mechanisms for
initiating cellular differentiation in multicellular organisms (Huang, 2009). Gene expression
noise has extrinsic and intrinsic components (Elowitz et al., 2002). Extrinsic noise arises
from cell-to-cell variation in cellular states such as different cell stages, whereas intrinsic
noise is caused by the stochastic process of gene expression even under a given cell state.

Dissecting expression noise into intrinsic noise and extrinsic noise has provided insights into



the causes of expression noise (Raser and O'shea, 2005). However, the existing method for
measuring the two noise components is laborious and slow (Elowitz et al., 2002). As a result,
accurate knowledge about intrinsic and extrinsic noise is limited to only a few genes, and a
general understanding of the pattern, regulation, and evolution of these two noise components
is lacking. To address these questions, I designed a high-throughput method for estimating
intrinsic and extrinsic expression noises by allele-specific single-cell RNA sequencing
(Reinius et al., 2016). Using publicly available data, I estimated the two noise components of
3975 genes in mouse fibroblast cells. My analyses verified predicted influences of several
factors such as the TATA-box and microRNA targeting on intrinsic or extrinsic noises and
revealed gene function-associated noise trends implicating the action of natural selection.
These findings unravel differential regulations, optimizations, and biological consequences of
intrinsic and extrinsic noises and can aid the construction of desired synthetic circuits.

While Chapter 2 studies the expression noise of individual genes, no gene functions in
isolation. In Chapter 3, I focus on the following questions: if every gene has expression noise,
is there any relationship in the expression fluctuations of different genes, and will this
relationship have functional and fitness consequences? | hypothesize that neighboring genes
on the same chromosome co-fluctuate in expression because of their common chromatin
dynamics (Raj et al., 2006). To test this linkage hypothesis, | analyzed the mouse
allele-specific single-cell RNA sequencing data used in Chapter 2. Unexpectedly, the
co-fluctuation exists not only for neighboring genes but also for genes over 60 million bases
apart on the same chromosome. | provided evidence that this long-range effect arises in part
from chromatin co-accessibilities of linked loci attributable to three-dimensional proximity,
which is much closer intra-chromosomally than inter-chromosomally. Most importantly, |
discovered that genes encoding components of the same protein complex tend to become

chromosomally linked during evolution, which is likely an outcome of natural selection for



intracellular among-component dosage balance (Veitia, 2010). Thus, natural selection
mitigating the harm of expression noise has resulted in nonrandom genomic distributions of
genes. These findings have implications for both the evolution of genome organization and
the optimal design of synthetic genomes in the face of gene expression noise.

Finally, in Chapter 4, | shift gear to study protein mistranslation (Drummond and Wilke,
2008). In particular, I study how mistranslation impacts codon usage evolution (Akashi,
1994), a prominent question in molecular evolution. Analyzing proteomic data from
Escherichia coli (Mordret et al., 2019), | provide direct, global support for the long-standing
hypothesis that preferred codons are translated more accurately. Furthermore, | provide
evidence for the generality of this hypothesis across three domains of life. Interestingly, the
relative translational accuracies of synonymous codons vary drastically among species, and
further analysis reveals a predominant role of the abundance of cognate tRNAs relative to
that of near-cognate tRNAs in determining the relative translational accuracy of a codon
(Kramer and Farabaugh, 2007). These findings, along with other information (Qian et al.,
2012), suggest that codon usage coevolves with the cellular tRNA pool to maximize
translational accuracy and efficiency.

In summary, | use novel computational approaches to study gene expression errors and
their evolutionary ramifications in my dissertation research. This research is important
because molecular and cellular errors are universal, and mitigating such errors is a major task

in the evolution of cellular life.
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Chapter 2: Allele-Specific Single-Cell RNA Sequencing Reveals Different Architectures
of Intrinsic and Extrinsic Gene Expression Noises

“Every moment happens twice: inside and outside, and they are two different histories.”

-Zadie Smith

2.1 Abstract

Gene expression noise refers to the variation of the expression level of a gene among
isogenic cells in the same environment, and has two sources: extrinsic noise arising from the
disparity of the cell state and intrinsic noise arising from the stochastic process of gene
expression in the same cell state. Due to the low throughput of the existing method for
measuring the two noise components, the architectures of intrinsic and extrinsic expression
noises remain elusive. Using allele-specific single-cell RNA sequencing, we here estimate
the two noise components of 3975 genes in mouse fibroblast cells. Our analyses verify
predicted influences of several factors such as the TATA-box and microRNA targeting on
intrinsic or extrinsic noises and reveal gene function-associated noise trends implicating the
action of natural selection. These findings unravel differential regulations, optimizations, and
biological consequences of intrinsic and extrinsic noises and can aid the construction of

desired synthetic circuits.



2.2 Introduction

Gene expression noise refers to the variation in gene expression level among
genetically identical cells in the same environment (Raser and O'shea, 2005). Gene
expression noise is often deleterious, because it leads to imprecise cellular behaviors. For
example, it may ruin the stoichiometric relationship among functionally related proteins,
which may further disrupt cellular homeostasis (Bahar et al., 2006; Batada and Hurst, 2007,
Kemkemer et al., 2002; Lehner, 2008; Wang and Zhang, 2011; Xu et al., 2019). However,
under certain circumstances, gene expression noise can be beneficial. Prominent examples
include bet-hedging strategies of microbes in fluctuating environments (Veening et al., 2008;
Zhang et al., 2009) and stochastic mechanisms for initiating cellular differentiation in
multicellular organisms (Chang et al., 2008; Huang, 2009; Turing, 1952).

Gene expression noise has extrinsic and intrinsic components. The extrinsic noise
arises from the among-cell variation in cell state such as the cell cycle stage or the
concentrations of various transcription factors (TFs), while the intrinsic noise is due to the
stochastic process of gene expression even under a given cell state such as the stochastic
binding of a promoter to RNA polymerase (Hilfinger and Paulsson, 2011; Sharon et al., 2014;
Swain et al., 2002). Note that our definitions of intrinsic and extrinsic noises are based on the
source of the noise. Under these definitions, both intrinsic and extrinsic noises can vary
among genes. For instance, the intrinsic expression noise of a gene is predicted to be
negatively correlated with the mean expression level of the gene (Bar-Even et al., 2006),
whereas the extrinsic noise can be different for genes belonging to different biological
pathways (Raser and O'shea, 2005). Dissecting gene expression noise into the two
components provides insights into its mechanistic basis (Raser and O'shea, 2004).
Furthermore, the two noise components can have different biological consequences. For

instance, genes regulating the cell cycle should ideally have high extrinsic noise but low

10



intrinsic noise, because their expression levels should be variable among different cell states
but stable under the same state. Dissecting the expression noise of a gene into intrinsic and
extrinsic components requires a dual reporter assay typically performed in haploid cells by
placing two copies of the same gene into the genome, each fused with a distinct reporter gene
such as the yellow florescent protein (YFP) gene or cyan florescent protein (CFP) gene
(Elowitz et al., 2002). This way, the intrinsic noise in protein concentration can be assessed
by the difference between YFP and CFP concentrations within cells while the extrinsic noise
can be measured by the covariation between YFP and CFP concentrations among cells.
However, such experiments are laborious in strain construction and expression quantification,
hindering the examination of many genes. Consequently, past genome-wide studies of gene
expression noise measured only the total noise (Faure et al., 2017; Newman et al., 2006;
Taniguchi et al., 2010; Zoller et al., 2015). Some authors attempted to focus on the intrinsic
noise by limiting the analysis to cells of similar morphologies (Newman et al., 2006;
Taniguchi et al., 2010). But because the extrinsic noise is not completely eliminated in the
above experiments, the estimated intrinsic noise is inaccurate. Furthermore, these
experiments could not study the extrinsic noise. As a result, accurate knowledge about
intrinsic and extrinsic noise is limited to only a few genes (Elowitz et al., 2002; Stewart-
Ornstein et al., 2012), and a general understanding of the pattern, regulation, and evolution of
these two noise components is lacking.

Here we propose to use allele-specific single-cell RNA sequencing (SCRNA-seq) to
estimate the intrinsic and extrinsic expression noises at the mRNA level. When the two
alleles of a gene are distinguished by their DNA sequences, the distinct sequences serve as
dual reporters of mMRNA concentrations in SCRNA-seq. Our method is thus in principle
similar to the classical dual reporter assay except that we study the intrinsic and extrinsic

expression noises at the mMRNA level whereas the classical assay studies them at the protein
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level. Because the protein noise is widely believed to arise primarily from the mRNA noise
(Bar-Even et al., 2006; Sherman et al., 2015), findings about the latter will not only inform us
the mRNA noise but also largely the protein noise. Because the dual reporters exist naturally
at any heterozygous locus of the genotype investigated and because single-cell expression
levels of all genes in the genome are measured simultaneously by scRNA-seq, our method
can estimate the intrinsic and extrinsic expression noises at the genomic scale from one
scRNA-seq experiment of a highly heterozygous genotype. Using publically available allele-
specific SCRNA-seq data from mouse fibroblast cells (Reinius et al., 2016), we estimate the
intrinsic and extrinsic noises of 3975 genes, allowing depicting the architectures of the two
noise components in mouse cells.
2.3 Materials and Methods
2.3.1 Intrinsic and extrinsic noise in diploid cells

Let Y be the expression level of a gene in a cell and let X describe the cell state. Y isa
random variable that is a function of the random variable X. Gene expression noise is

commonly measured by noise strength nZ,, = Var(Y)/E?(Y), where Var stands for variance

Var(Y) _ E(Var(Y|X))
E2(Y)  E2(Y)

and E stands for expectation. According to the law of total variance,

Var(E(Y|X))
E%(Y)

, Where the first term on the right-hand side of the equation describes the variation
of Y given X, or intrinsic noise strength n?.,, and the second term describes the variation of Y
due to the variation of X, or extrinsic noise strength n2,..

Most past studies of intrinsic and extrinsic expression noises of a gene were
conducted in haploid cells by placing two copies of the gene (under the control of two

identical, independent promoters) in the genome, each copy carrying a unique marker. Let

the expression levels of the two gene copies be Y3 and Yo, respectively. It was found that the

_ 2
intrinsic noise of each gene copy can be expressed by n2,, ,; = El %)) and the extrinsic
M 2E(M)E(Y2)
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noise of each gene copy can be expressed by nZ,; y = % , Where the subscript H
1 2

indicates haploid and Cov indicates covariance (Swain et al., 2002).

Now let us consider a diploid cell in which the two alleles of the focal gene are
controlled by two identical, independent promoters and have unique markers. We are
interested in the noise of the total expression level of the two alleles. Because the expression

levels of the two alleles are independent given the cell state, by definition, the intrinsic

expression noise in diploid cells is n2,, , = E(V‘ZZ(((;&::Z)) 1) = E((V“r(f;(vya)r LDLIE
1 2 1

%&)I){) = niznt,H/Z' Similarly, by definition, the extrinsic expression noise strength in

. . . Var(E(Y1+Y2)|X) _ Var(2E(Y1)|X) Var(E(Y1)|X) _
diploid cells is n,. p = EZ(Y11+Y22) = 452(1/11) = EZ(Yll) =Néxen- THUs, we can

adapt previously obtained formulas of intrinsic and extrinsic noise in haploid cells for the
study of diploid cells.
2.3.2Allele-specific single-cell RNA-seq data and data preprocessing

The raw read counts of allele-specific SCRNA-seq data (Reinius et al., 2016) were
downloaded from

https://github.com/RickardSandberg/Reinius et al Nature Genetics 20167files=1

(mouse.c57.counts.rds and mouse.cast.counts.rds). We preprocessed the dataset by requiring
that (i) all cells have the same genotype and (ii) there are spike-in standards in each cell. Two
groups of cells satisfied our criteria: 60 cells from clone 7 and 75 cells from different clones
or different individuals (IDs in the raw read-count dataset are 24-26, 28, 29, 31-35, 37-44, 46,
48-51, 53, 55, 58-60, and 124-170). Note that the latter group of cells are non-clonal and
were isolated in different experiments; so they likely have larger variations in expression.
Our analysis thus focused primarily on clone 7, although most results were also reproduced in
the non-clonal cells. Because of the dual reporter design of our analysis, sex-linked genes

were removed. For clone 7, we further removed genes on Chromosomes 3 and 4 due to
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aneuploidy. To ensure the relative reliability of our noise estimates, we limited the analysis
to genes that have on average >5 reads mapped to each allele across cells. We then corrected
the read counts mapped to each allele in each cell using spike-ins according to the following
procedure. First, we obtained the number of reads mapped to spike-in molecules in each cell,
yielding an array of 60 numbers, each specifying the number of reads mapped to spike-in
molecules in one cell. Second, we divided each entry in the array by the largest number in
the array, creating an array of 60 normalized factors that are all between 0 and 1. Third, we
calibrated the number of reads mapped to each allele in each cell by dividing the original read
number by the corresponding normalized factor in the array.

The noise decomposition requires the two reporters to have the same expression
distribution. However, due to imprinting and polymorphisms in the regulatory regions, some
genes might not have two alleles that are identically regulated. We thus performed a
Kolmogorov—Smirnov test for the single-cell expression levels of the two alleles of each
gene, and removed genes with P < 0.05 after multiple-testing correction (Benjamini-
Hochberg correction). The data from the non-clonal cells were processed similarly. Some
authors suggested normalizing single-cell expression levels of each reporter by its mean
expression level to deal with unequal regulations between alleles (Fu and Pachter, 2016; Rhee
et al., 2014). While this processing should allow analyzing more genes, the statistical
properties of the normalization are not well understood. To be conservative, we chose to
remove genes that do not satisfy the assumption of the dual reporter experiment instead of
normalizing the expression levels.

2.3.3 Estimation of intrinsic and extrinsic noises

We estimated the intrinsic and extrinsic expression noises of haploids using an

existing program (Fu and Pachter, 2016) and then converted them to the corresponding values

in diploids using the formulas described above. We then derived noise estimates that are
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independent of the mean expression level and the mean read number, which is inversely
correlated with the amount of technical noise (Grin et al., 2014). Because the exact forms of
the above dependencies are unknown, we used a rank-based measure. Specifically, we
performed robust linear regression of the rank of intrinsic (or extrinsic) noise on the rank of
expression level and the rank of read number using the 'rim' function of the 'MASS' package
with default options in R; the residual from the regression, Dint (Or Dext), is the measurement
of intrinsic (or extrinsic) noise. To obtain the intrinsic noise estimate of a gene that is also
independent of its extrinsic noise, we regressed the rank of intrinsic noise on the rank of
mean expression level, the rank of mean read number, and the rank of extrinsic noise
simultaneously. The obtained residual is referred to as D'i. We similarly obtained D'ex;. The
procedure used to process the data and estimating the two noise components is summarized
in Fig. Al-1.
2.3.4 Assessment of technical extrinsic noise using spike-in molecules

We assessed the extrinsic technical noise using spike-in molecules from clone 7 and
non-clonal cells. First, we estimated the mean read number of each spike-in species from the
corrected read number of each spike-in molecule in each cell. The correction procedure was
the same as used for correcting allele-specific reads mapped to each gene. Second, we
ordered the spike-in molecules by their mean read numbers and paired neighboring spike-in
molecules whose mean read numbers are similar. For each pair of spike-in molecules, we
used binomial sampling to down-sample in each cell the raw reads of the spike-in molecule
whose mean read number is larger, according to the ratio between the mean read numbers of
the two spike-in molecules. Finally, each pair of spike-in molecules was treated as two
alleles of the same spike-in transcripts for estimating extrinsic noise. As in the analysis of
actual genes, we filtered out spike-in molecules whose mean (raw) read numbers are smaller

than 5.

15



2.3.5 Factors influencing intrinsic and extrinsic noise

Mouse genes with a TATA-box were downloaded from the Eukaryotic Promoter
Database (EPD) (Dreos et al., 2016). Information of mouse miRNAs and their targets was
downloaded from the RegNetwork database (Liu et al., 2015). Information about mouse
trans-regulators and their target genes was also downloaded from RegNetwork (Liu et al.,
2015). Note that miRNAs were considered trans-regulators in the database; so were they in
our analysis. Some transcription factors target themselves. Because the total noise of a gene
by definition correlates with the intrinsic and extrinsic noises of the gene, we removed the
self-targeting pairs in the analysis of trans-regulators. This problem does not involve
miRNAs because we have no miRNA noise measures.

To test the hypothesis that genes targeted by the same trans-regulator tend to have
similar Dexi, We grouped genes that share a trans-regulator and computed the standard
deviation (SD) of their Dey: Within the group. We then computed the median SD across all
groups. Because SD is undefined for groups containing only one gene, such groups were
discarded. We also removed trans-regulators that have noise measures and are target genes,
such that the regulators and targets have no overlaps.

To analyze the relationship between histone modifications and noise, we downloaded
the computed modification peak position data from the Cistrome database (Liu et al., 2011).
We focused on four types of histone modifications in mouse wild-type fibroblast cells:
H3K4Mel (Chronis et al., 2017), H3K4Me2 (Chronis et al., 2017), H3K4Me3 (Xie et al.,
2017), and H3K27AC (Xie et al., 2017) . All four datasets used were of high quality and
passed quality criteria of Cistrome. For each modification, we computed Spearman’s
correlation between the number of peaks overlapped with the core promoter region ((TSS —
200 bp, TSS + 100 bp), defined in (Faure et al., 2017)) and D'j; or D'ext. The results are

presented in Fig. 2-2M.
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2.3.6 Noise comparison among genes of different functions

GO terms of mouse genes were downloaded from Ensembl BioMart (GRC38m.p5)
(Aken et al., 2016). Genes functioning in the mitochondrion are associated with the GO
cellular component term of "mitochondria”, whereas cell cycle genes are associated with the
GO biological process term of "cell cycle”. Mouse protein complex data were downloaded
from the CORUM database (http://mips.helmholtz-muenchen.de/corum/) (Ruepp et al.,
2009).

To evaluate if a group of genes with a certain function (i.e., focal genes) are
enriched/deprived with the TATA-box or miRNA targeting, we compared the group with
other genes (i.e., non-focal genes) after controlling mean expression levels across 13 mouse
tissues (Sollner et al., 2017). Specifically, we ranked the focal genes by the mean expression
level and divided them into 50 equal-size bins. We then obtained non-focal genes falling into
each of these expression bins and identified the smallest number (m) of non-focal genes of all
bins. We randomly picked m non-focal genes per bin and used this set of non-focal genes to
compare with the focal genes. As expected, the non-focal genes showed similar expression
levels as the corresponding focal genes (P = 0.28 for genes functioning in the mitochondrion,
P =0.37 for genes encoding protein complex members, and P = 0.45 for cell cycle genes;
Mann-Whitney U test). The non-focal genes are referred to as the "expression stratified
control genes".

DAVID GO web server with default options was used to perform the GO term
enrichment analysis (Huang et al., 2008), in which all genes with estimated Djn; and Dex; Were
used as the background. The web server returned the P-value after Benjamini-Hochberg
correction for multiple testing. We ranked the GO terms by the significance level and
reported the three most significant GO terms for each group of genes with specific noise

properties, if more than three GO terms were significantly enriched.
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2.4 Results
2.4.1 High-throughput estimation of intrinsic and extrinsic expression noises

The expression noise of a gene is commonly measured by the noise strength 1?2,
which is the among-cell variance in expression level divided by the squared mean expression
level. On the basis of previously derived formulas of intrinsic and extrinsic noises in
haploids (Swain et al., 2002), we derived formulas for estimating intrinsic (n2,.) and extrinsic
(n2,.) noises in diploids (see Materials and Methods). Let the expression levels of the two

alleles of a gene in a diploid cell be Y; and Y5, respectively. If the two alleles are controlled

i identi 2 _ El(r1-13)?] 2 Cov(YpY;)
by two independent, identical promoters, 1j,, = .-~~~ AT and ng,, = FRATIL

where E
and Cov respectively stand for expectation and covariance. Graphically, when the expression
levels of the two alleles in each cell are respectively plotted on the x-axis and y-axis of a dot
plot, extrinsic noise is represented by the spread of dots along the diagonal line of y = x,
whereas the intrinsic noise is represented by the spread of dots along the direction
perpendicular to the diagonal (left panel in Fig. 2-1A). As an example, single-cell expression
levels of the gene Tcofl are plotted (right panel in Fig. 2-1A).

To estimate intrinsic and extrinsic gene expression noises, we used the SCRNA-seq
data of mouse fibroblast cells from an F1 hybrid of two mouse strains (Reinius et al., 2016).
Note that SCRNA-seq data are subject to large technical noises, which may also be
decomposed into intrinsic and extrinsic technical noises (Griun et al., 2014). The intrinsic
technical noise is primarily caused by the low capturing efficiency of cellular transcripts and
can result in a high variance and high dropout rate in estimating the mRNA expression level.
The intrinsic technical noise artificially increases the level of the estimated intrinsic
expression noise. The extrinsic technical noise is mainly due to tube-to-tube variability in
capturing efficiency and artificially increases the level of the estimated extrinsic expression

noise. Imputation, which substitutes the observed expression level of a gene in a cell by its

18



expected expression level, is often used to deal with technical noises in sScCRNA-seq-based
cell classification (Wagner et al., 2016). But, imputation cannot be used in our study because
it leads to underestimation of gene expression noise. Therefore, we only used spike-in
control molecules to normalize expression levels in individual cells (see Materials and
Methods).

Our analysis focused on clone 7 (derived from the hybrid of CAST/EiJ male x
C57BL/6J female) in the data, because (1) the number of sequenced cells (n = 60) is the
largest in this clone, and (2) all sequenced cells from this clone have spike-in control
molecules, permitting accurate read count estimation. Upon the removal of genes whose two
alleles show significantly different among-cell expression distributions and other steps of
data processing (Fig. Al-1; see Materials and Methods), we obtained the intrinsic and
extrinsic expression noises of 3975 genes. To assess the precision of our noise estimates, we
randomly separated the cells of clone 7 into two 30-cell groups. We found that the estimates
of the intrinsic noise of a gene from the two subsamples are highly correlated (Pearson's r =
0.79, P < 1x107%; Spearman's p = 0.79, P < 1x107%; Fig. 2-1B), while those of extrinsic
noise are moderately correlated (r = 0.42, P = 2.3x10™; p = 0.44, P