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ABSTRACT 

Gene expression produces biologically functional RNAs and proteins and is essential for 

life. Nevertheless, gene expression is subject to several types of errors that are generally 

harmful. Despite the prevalence and significant consequences of expression errors, their 

genome-wide patterns are not well characterized. Furthermore, the evolutionary ramifications 

of such errors are poorly understood. In my dissertation, I address the above questions using 

novel computational approaches. I focus on two types of gene expression errors: (i) stochastic 

gene expression, which leads to a variation of the expression level among isogenic cells in 

the same environment (gene expression noise), and (ii) mistranslation, which induces protein 

misfolding and can be toxic to the cells.  

My thesis has three main chapters in addition to the introduction and conclusion chapters. 

First, in Chapter 2, I studied gene expression noises of individual genes. I decomposed noises 

of 3975 mouse genes into intrinsic noise and extrinsic noises and studied their biological 



	 xiii 

mechanisms and evolution consequences. Next, in Chapter 3, I move forward to consider 

gene expression noises for pairs of genes simultaneously. I discovered chromosome-wide 

co-fluctuation in expression for linked genes, which is partly due to chromatin 

co-accessibilities of linked loci attributable to three-dimensional proximity. I further found 

that genes encoding components of the same protein complex are more likely to become 

linked during evolution due to natural selection for intracellular among-component dosage 

balance. Thus, selection for mitigating the harm of expression noise drives the nonrandom 

genomic distributions of genes. Finally, in Chapter 4, I studied yet another kind of expression 

error: mistranslation. I focused on the relationship between mistranslation and codon usage. 

Specifically, I provide the first direct and global evidence for a prominent but unresolved 

hypothesis: preferred codons are translated more accurately.  Furthermore, I showed that 

this proposition is generally true across three domains of life. Interestingly, the relative 

translational accuracies of synonymous codons vary drastically among species, which is 

mainly explained by the variation of tRNA compositions.  Together with other information, 

these findings suggest that codon usage coevolves with the cellular tRNA pool to maximize 

translational accuracy and efficiency. 



	 xiv 

In conclusion, my dissertation documents the genome-wide patterns of gene expression 

errors and demonstrates their profound impacts on both molecular and phenotypic evolution. 

The knowledge gained has implications beyond expression errors because of the universality 

of molecular errors in cellular life. 
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Chapter 1: General Introduction 

Primum non nocere (First, do no harm). 

-Thomas Sydenham 

Background introduction 

Cellular life depends on chemical reactions, which are intrinsically stochastic and 

imprecise. As a result, many fundamental cellular processes are subject to errors. For instance, 

every step in the central dogma of molecular biology has errors: DNA replication has an error 

rate on the order of 10-10 per bp per replication, transcription has an error rate on the order of 

10-5 per bp per transcription, and translation has an error rate on the order of 10-4 per amino 

acid per translation (Milo and Phillips, 2015). Besides, DNA, mRNA, and proteins, the key 

players of the central dogma, are all subjected to noisy modifications after being produced 

(Arber and Linn, 1969; Walsh, 2006; Zhao et al., 2017). 

Errors in cellular processes have consequences. The vast majority of errors are 

deleterious or, at best, neutral (Zhang, 2018). Again, if we consider the molecular processes 

in central dogma: DNA replication errors (mutations) cause cancer (Moolgavkar and 

Knudson, 1981), transcription and translation errors cause protein misfolding that has been 

implicated in neurodegenerative diseases (Drummond and Wilke, 2009). Because of the 

burden of molecular error, many mechanisms have been evolved to reduce the error rate of 

molecular processes and/or minimize the cost of individual error events, such as homologous 

recombination DNA repair pathway (Li and Heyer, 2008), Nonsense-mediated decay of 

mRNAs containing premature stop codons (Chang et al., 2007), and kinetic proofreading in 

the process of charging tRNA with their corresponding amino-acids (Hopfield, 1974).  
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Nevertheless, despite not being the main focus of this dissertation, it is worth mentioning that 

errors can occasionally be beneficial (Tawfik, 2010)� As a neat example, mutations are the 

ultimate source of adaptation (Sniegowski and Lenski, 1995). Either way, errors profoundly 

impact molecular and phenotypic evolution�  

The fast development of omics techniques enables us to study the genome-wide patterns 

of different types of molecular errors, including but not limited to (i) genomic mutations (Liu 

and Zhang, 2019), (ii) stochastic initiation of transcription that results in gene expression 

level fluctuations (Faure et al., 2017), (iii) misincorporation of nucleotides in transcription 

(Gout et al., 2013), (iv) errors in mRNA processing such as splicing(Pickrell et al., 2010) and 

polyadenylation (Xu and Zhang, 2018), (v) errors in post-transcriptional modification (Liu 

and Zhang, 2018), (vi) misincorporation of amino acids in translation (Mordret et al., 2019), 

and (vii) stop-codon readthrough (Li and Zhang, 2019). 

Interestingly, despite the universality and significance of molecular errors, most analysis 

on omics data assumes molecular diversity observed in the data is beneficial (Gruber and 

Zavolan, 2019; Modrek and Lee, 2002), perhaps due to the bias inherent in human cognition 

that favors adaptive storytelling (Gould and Lewontin, 2020). Consequently, numerous 

dubious ‘genome-wide adaptation’ has been found. For instance, it has been reported that 

there is a genome-wide convergent adaptation in echolocating mammals(Parker et al., 2013), 

despite that the same pattern could be found in cow (Thomas and Hahn, 2015; Zou and 

Zhang, 2015), a non-echolocating mammal. At the transcriptome level, it has been routinely 

assumed that alternative splicing creates functional diversity and plays an important role in 

gene expression regulation(Modrek and Lee, 2002). However, proteomics data and various 

other indirect evidence suggest that only one isoform is translated for the vast majority of the 

genes (Tress et al., 2017). Finally, the proteome is not an exception: despite some important 

cases of phosphorylation at particular sites (Rubin and Rosen, 1975), most phosphorylation 
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sites are not conserved and are unlikely to be functional (Studer et al., 2016). 

Given that a functional perspective on omics data often results in vague and elusive 

interpretations, I hypothesize that analyzing these data from the perspective of molecular 

error could provide a more coherent picture of the genome-wide patterns of molecular 

diversity. To this end, I analyzed molecular errors occurring in gene expression processes 

using multiple omics datasets (Mordret et al., 2019; Reinius et al., 2016). Specifically, in my 

dissertation, I study the mechanisms and consequences of two kinds of gene expression errors: 

gene expression noise (Blake et al., 2003) and mistranslation (Drummond and Wilke, 2008). 

Gene expression noise will be the focus of Chapter 2(Sun and Zhang, 2020) and Chapter 3 

(Sun and Zhang, 2019), whereas mistranslation would be the focus of Chapter 4. Below, I 

will briefly summarize the content of each of the three main chapters. 

Thesis overview 

I first focus on the expression noise of individual genes in Chapter 2. The expression 

noise of a gene is the variation in the expression level of the gene among genetically identical 

cells in the same environment (Blake et al., 2003; Elowitz et al., 2002). Gene expression 

noise is often deleterious because it leads to imprecise cellular behaviors. For example, it 

may ruin the stoichiometric relationship among functionally related proteins (Veitia, 2004), 

which may further disrupt cellular homeostasis. However, under certain circumstances, gene 

expression noise can be beneficial. Prominent examples include bet-hedging strategies of 

microbes in fluctuating environments (Veening et al., 2008) and stochastic mechanisms for 

initiating cellular differentiation in multicellular organisms (Huang, 2009). Gene expression 

noise has extrinsic and intrinsic components (Elowitz et al., 2002). Extrinsic noise arises 

from cell-to-cell variation in cellular states such as different cell stages, whereas intrinsic 

noise is caused by the stochastic process of gene expression even under a given cell state. 

Dissecting expression noise into intrinsic noise and extrinsic noise has provided insights into 
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the causes of expression noise (Raser and O'shea, 2005). However, the existing method for 

measuring the two noise components is laborious and slow (Elowitz et al., 2002). As a result, 

accurate knowledge about intrinsic and extrinsic noise is limited to only a few genes, and a 

general understanding of the pattern, regulation, and evolution of these two noise components 

is lacking. To address these questions, I designed a high-throughput method for estimating 

intrinsic and extrinsic expression noises by allele-specific single-cell RNA sequencing 

(Reinius et al., 2016). Using publicly available data, I estimated the two noise components of 

3975 genes in mouse fibroblast cells. My analyses verified predicted influences of several 

factors such as the TATA-box and microRNA targeting on intrinsic or extrinsic noises and 

revealed gene function-associated noise trends implicating the action of natural selection. 

These findings unravel differential regulations, optimizations, and biological consequences of 

intrinsic and extrinsic noises and can aid the construction of desired synthetic circuits. 

While Chapter 2 studies the expression noise of individual genes, no gene functions in 

isolation. In Chapter 3, I focus on the following questions: if every gene has expression noise, 

is there any relationship in the expression fluctuations of different genes, and will this 

relationship have functional and fitness consequences? I hypothesize that neighboring genes 

on the same chromosome co-fluctuate in expression because of their common chromatin 

dynamics (Raj et al., 2006). To test this linkage hypothesis, I analyzed the mouse 

allele-specific single-cell RNA sequencing data used in Chapter 2. Unexpectedly, the 

co-fluctuation exists not only for neighboring genes but also for genes over 60 million bases 

apart on the same chromosome. I provided evidence that this long-range effect arises in part 

from chromatin co-accessibilities of linked loci attributable to three-dimensional proximity, 

which is much closer intra-chromosomally than inter-chromosomally. Most importantly, I 

discovered that genes encoding components of the same protein complex tend to become 

chromosomally linked during evolution, which is likely an outcome of natural selection for 
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intracellular among-component dosage balance (Veitia, 2010). Thus, natural selection 

mitigating the harm of expression noise has resulted in nonrandom genomic distributions of 

genes. These findings have implications for both the evolution of genome organization and 

the optimal design of synthetic genomes in the face of gene expression noise. 

Finally, in Chapter 4, I shift gear to study protein mistranslation (Drummond and Wilke, 

2008). In particular, I study how mistranslation impacts codon usage evolution (Akashi, 

1994), a prominent question in molecular evolution. Analyzing proteomic data from 

Escherichia coli (Mordret et al., 2019), I provide direct, global support for the long-standing 

hypothesis that preferred codons are translated more accurately.  Furthermore, I provide 

evidence for the generality of this hypothesis across three domains of life. Interestingly, the 

relative translational accuracies of synonymous codons vary drastically among species, and 

further analysis reveals a predominant role of the abundance of cognate tRNAs relative to 

that of near-cognate tRNAs in determining the relative translational accuracy of a codon 

(Kramer and Farabaugh, 2007). These findings, along with other information (Qian et al., 

2012), suggest that codon usage coevolves with the cellular tRNA pool to maximize 

translational accuracy and efficiency. 

In summary, I use novel computational approaches to study gene expression errors and 

their evolutionary ramifications in my dissertation research. This research is important 

because molecular and cellular errors are universal, and mitigating such errors is a major task 

in the evolution of cellular life. 
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Chapter 2: Allele-Specific Single-Cell RNA Sequencing Reveals Different Architectures 

of Intrinsic and Extrinsic Gene Expression Noises 

�Every moment happens twice: inside and outside, and they are two different histories.” 

-Zadie Smith 

2.1 Abstract 

Gene expression noise refers to the variation of the expression level of a gene among 

isogenic cells in the same environment, and has two sources: extrinsic noise arising from the 

disparity of the cell state and intrinsic noise arising from the stochastic process of gene 

expression in the same cell state.  Due to the low throughput of the existing method for 

measuring the two noise components, the architectures of intrinsic and extrinsic expression 

noises remain elusive.  Using allele-specific single-cell RNA sequencing, we here estimate 

the two noise components of 3975 genes in mouse fibroblast cells.  Our analyses verify 

predicted influences of several factors such as the TATA-box and microRNA targeting on 

intrinsic or extrinsic noises and reveal gene function-associated noise trends implicating the 

action of natural selection.  These findings unravel differential regulations, optimizations, and 

biological consequences of intrinsic and extrinsic noises and can aid the construction of 

desired synthetic circuits. 

  



	

	
	

10 

2.2 Introduction 

Gene expression noise refers to the variation in gene expression level among 

genetically identical cells in the same environment (Raser and O'shea, 2005).  Gene 

expression noise is often deleterious, because it leads to imprecise cellular behaviors.  For 

example, it may ruin the stoichiometric relationship among functionally related proteins, 

which may further disrupt cellular homeostasis (Bahar et al., 2006; Batada and Hurst, 2007; 

Kemkemer et al., 2002; Lehner, 2008; Wang and Zhang, 2011; Xu et al., 2019).  However, 

under certain circumstances, gene expression noise can be beneficial.  Prominent examples 

include bet-hedging strategies of microbes in fluctuating environments (Veening et al., 2008; 

Zhang et al., 2009) and stochastic mechanisms for initiating cellular differentiation in 

multicellular organisms (Chang et al., 2008; Huang, 2009; Turing, 1952).  

 Gene expression noise has extrinsic and intrinsic components.  The extrinsic noise 

arises from the among-cell variation in cell state such as the cell cycle stage or the 

concentrations of various transcription factors (TFs), while the intrinsic noise is due to the 

stochastic process of gene expression even under a given cell state such as the stochastic 

binding of a promoter to RNA polymerase (Hilfinger and Paulsson, 2011; Sharon et al., 2014; 

Swain et al., 2002).  Note that our definitions of intrinsic and extrinsic noises are based on the 

source of the noise.  Under these definitions, both intrinsic and extrinsic noises can vary 

among genes.  For instance, the intrinsic expression noise of a gene is predicted to be 

negatively correlated with the mean expression level of the gene (Bar-Even et al., 2006), 

whereas the extrinsic noise can be different for genes belonging to different biological 

pathways (Raser and O'shea, 2005).  Dissecting gene expression noise into the two 

components provides insights into its mechanistic basis (Raser and O'shea, 2004).  

Furthermore, the two noise components can have different biological consequences.  For 

instance, genes regulating the cell cycle should ideally have high extrinsic noise but low 
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intrinsic noise, because their expression levels should be variable among different cell states 

but stable under the same state.  Dissecting the expression noise of a gene into intrinsic and 

extrinsic components requires a dual reporter assay typically performed in haploid cells by 

placing two copies of the same gene into the genome, each fused with a distinct reporter gene 

such as the yellow florescent protein (YFP) gene or cyan florescent protein (CFP) gene 

(Elowitz et al., 2002).  This way, the intrinsic noise in protein concentration can be assessed 

by the difference between YFP and CFP concentrations within cells while the extrinsic noise 

can be measured by the covariation between YFP and CFP concentrations among cells.  

However, such experiments are laborious in strain construction and expression quantification, 

hindering the examination of many genes.  Consequently, past genome-wide studies of gene 

expression noise measured only the total noise (Faure et al., 2017; Newman et al., 2006; 

Taniguchi et al., 2010; Zoller et al., 2015).  Some authors attempted to focus on the intrinsic 

noise by limiting the analysis to cells of similar morphologies (Newman et al., 2006; 

Taniguchi et al., 2010).  But because the extrinsic noise is not completely eliminated in the 

above experiments, the estimated intrinsic noise is inaccurate.  Furthermore, these 

experiments could not study the extrinsic noise.  As a result, accurate knowledge about 

intrinsic and extrinsic noise is limited to only a few genes (Elowitz et al., 2002; Stewart-

Ornstein et al., 2012), and a general understanding of the pattern, regulation, and evolution of 

these two noise components is lacking. 

Here we propose to use allele-specific single-cell RNA sequencing (scRNA-seq) to 

estimate the intrinsic and extrinsic expression noises at the mRNA level.  When the two 

alleles of a gene are distinguished by their DNA sequences, the distinct sequences serve as 

dual reporters of mRNA concentrations in scRNA-seq.  Our method is thus in principle 

similar to the classical dual reporter assay except that we study the intrinsic and extrinsic 

expression noises at the mRNA level whereas the classical assay studies them at the protein 
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level.  Because the protein noise is widely believed to arise primarily from the mRNA noise 

(Bar-Even et al., 2006; Sherman et al., 2015), findings about the latter will not only inform us 

the mRNA noise but also largely the protein noise.  Because the dual reporters exist naturally 

at any heterozygous locus of the genotype investigated and because single-cell expression 

levels of all genes in the genome are measured simultaneously by scRNA-seq, our method 

can estimate the intrinsic and extrinsic expression noises at the genomic scale from one 

scRNA-seq experiment of a highly heterozygous genotype.  Using publically available allele-

specific scRNA-seq data from mouse fibroblast cells (Reinius et al., 2016), we estimate the 

intrinsic and extrinsic noises of 3975 genes, allowing depicting the architectures of the two 

noise components in mouse cells. 

2.3 Materials and Methods 

2.3.1 Intrinsic and extrinsic noise in diploid cells 

Let Y be the expression level of a gene in a cell and let X describe the cell state.  Y is a 

random variable that is a function of the random variable X.  Gene expression noise is 

commonly measured by noise strength !!"! ! = !"#(!)/!!(!), where Var stands for variance 

and E stands for expectation.  According to the law of total variance, !"# !
!! ! = ! !"#(!|!)

!! ! +

!"#(!(!|!))
!! ! , where the first term on the right-hand side of the equation describes the variation 

of Y given X, or intrinsic noise strength !!"#! , and the second term describes the variation of Y 

due to the variation of X, or extrinsic noise strength !!"#! .   

Most past studies of intrinsic and extrinsic expression noises of a gene were 

conducted in haploid cells by placing two copies of the gene (under the control of two 

identical, independent promoters) in the genome, each copy carrying a unique marker.  Let 

the expression levels of the two gene copies be Y1 and Y2, respectively.  It was found that the 

intrinsic noise of each gene copy can be expressed by !!"#,!! = ![ !!!!! !]
!! !! !(!!)

  and the extrinsic 
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noise of each gene copy can be expressed by !!"#,!! = !"#(!!,!!)
!(!!)!(!!)

 , where the subscript H 

indicates haploid and Cov indicates covariance (Swain et al., 2002).   

Now let us consider a diploid cell in which the two alleles of the focal gene are 

controlled by two identical, independent promoters and have unique markers.  We are 

interested in the noise of the total expression level of the two alleles.  Because the expression 

levels of the two alleles are independent given the cell state, by definition, the intrinsic 

expression noise in diploid cells is !!"#,!! = ! !"#((!!!!!)|!)
!! !!!!!

= !( !"#(!!)!!"#(!!))|!
!!! !!

=

!! !"#(!!)|!
!!! !!

= !!"#,!! /2.  Similarly, by definition, the extrinsic expression noise strength in 

diploid cells is !!"#,!! = !"#(!(!!!!!)|!)
!! !!!!!

 = !"#(!!(!!)|!)!!! !!
= !"#(!(!!)|!)

!! !!
 = !!"#,!! .  Thus, we can 

adapt previously obtained formulas of intrinsic and extrinsic noise in haploid cells for the 

study of diploid cells.   

2.3.2Allele-specific single-cell RNA-seq data and data preprocessing 

The raw read counts of allele-specific scRNA-seq data (Reinius et al., 2016) were 

downloaded from 

https://github.com/RickardSandberg/Reinius_et_al_Nature_Genetics_2016?files=1 

(mouse.c57.counts.rds and mouse.cast.counts.rds).  We preprocessed the dataset by requiring 

that (i) all cells have the same genotype and (ii) there are spike-in standards in each cell.  Two 

groups of cells satisfied our criteria: 60 cells from clone 7 and 75 cells from different clones 

or different individuals (IDs in the raw read-count dataset are 24-26, 28, 29, 31-35, 37-44, 46, 

48-51, 53, 55, 58-60, and 124-170).  Note that the latter group of cells are non-clonal and 

were isolated in different experiments; so they likely have larger variations in expression.  

Our analysis thus focused primarily on clone 7, although most results were also reproduced in 

the non-clonal cells.  Because of the dual reporter design of our analysis, sex-linked genes 

were removed.  For clone 7, we further removed genes on Chromosomes 3 and 4 due to 
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aneuploidy.  To ensure the relative reliability of our noise estimates, we limited the analysis 

to genes that have on average ≥5 reads mapped to each allele across cells.  We then corrected 

the read counts mapped to each allele in each cell using spike-ins according to the following 

procedure.  First, we obtained the number of reads mapped to spike-in molecules in each cell, 

yielding an array of 60 numbers, each specifying the number of reads mapped to spike-in 

molecules in one cell.  Second, we divided each entry in the array by the largest number in 

the array, creating an array of 60 normalized factors that are all between 0 and 1.  Third, we 

calibrated the number of reads mapped to each allele in each cell by dividing the original read 

number by the corresponding normalized factor in the array.   

The noise decomposition requires the two reporters to have the same expression 

distribution.  However, due to imprinting and polymorphisms in the regulatory regions, some 

genes might not have two alleles that are identically regulated.  We thus performed a 

Kolmogorov–Smirnov test for the single-cell expression levels of the two alleles of each 

gene, and removed genes with P < 0.05 after multiple-testing correction (Benjamini-

Hochberg correction).  The data from the non-clonal cells were processed similarly.  Some 

authors suggested normalizing single-cell expression levels of each reporter by its mean 

expression level to deal with unequal regulations between alleles (Fu and Pachter, 2016; Rhee 

et al., 2014).  While this processing should allow analyzing more genes, the statistical 

properties of the normalization are not well understood.  To be conservative, we chose to 

remove genes that do not satisfy the assumption of the dual reporter experiment instead of 

normalizing the expression levels. 

2.3.3 Estimation of intrinsic and extrinsic noises 

We estimated the intrinsic and extrinsic expression noises of haploids using an 

existing program (Fu and Pachter, 2016) and then converted them to the corresponding values 

in diploids using the formulas described above.  We then derived noise estimates that are 
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independent of the mean expression level and the mean read number, which is inversely 

correlated with the amount of technical noise (Grün et al., 2014).  Because the exact forms of 

the above dependencies are unknown, we used a rank-based measure.  Specifically, we 

performed robust linear regression of the rank of intrinsic (or extrinsic) noise on the rank of 

expression level and the rank of read number using the 'rlm' function of the 'MASS' package 

with default options in R; the residual from the regression, Dint (or Dext), is the measurement 

of intrinsic (or extrinsic) noise.  To obtain the intrinsic noise estimate of a gene that is also 

independent of its extrinsic noise, we regressed the rank of intrinsic noise on the rank of 

mean expression level, the rank of mean read number, and the rank of extrinsic noise 

simultaneously.  The obtained residual is referred to as D'int.  We similarly obtained D'ext.  The 

procedure used to process the data and estimating the two noise components is summarized 

in Fig. A1-1. 

2.3.4 Assessment of technical extrinsic noise using spike-in molecules  

We assessed the extrinsic technical noise using spike-in molecules from clone 7 and 

non-clonal cells.  First, we estimated the mean read number of each spike-in species from the 

corrected read number of each spike-in molecule in each cell.  The correction procedure was 

the same as used for correcting allele-specific reads mapped to each gene.  Second, we 

ordered the spike-in molecules by their mean read numbers and paired neighboring spike-in 

molecules whose mean read numbers are similar.  For each pair of spike-in molecules, we 

used binomial sampling to down-sample in each cell the raw reads of the spike-in molecule 

whose mean read number is larger, according to the ratio between the mean read numbers of 

the two spike-in molecules.  Finally, each pair of spike-in molecules was treated as two 

alleles of the same spike-in transcripts for estimating extrinsic noise.  As in the analysis of 

actual genes, we filtered out spike-in molecules whose mean (raw) read numbers are smaller 

than 5. 
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2.3.5 Factors influencing intrinsic and extrinsic noise 

Mouse genes with a TATA-box were downloaded from the Eukaryotic Promoter 

Database (EPD) (Dreos et al., 2016).  Information of mouse miRNAs and their targets was 

downloaded from the RegNetwork database (Liu et al., 2015).  Information about mouse 

trans-regulators and their target genes was also downloaded from RegNetwork (Liu et al., 

2015).  Note that miRNAs were considered trans-regulators in the database; so were they in 

our analysis.  Some transcription factors target themselves.  Because the total noise of a gene 

by definition correlates with the intrinsic and extrinsic noises of the gene, we removed the 

self-targeting pairs in the analysis of trans-regulators.  This problem does not involve 

miRNAs because we have no miRNA noise measures.   

To test the hypothesis that genes targeted by the same trans-regulator tend to have 

similar Dext, we grouped genes that share a trans-regulator and computed the standard 

deviation (SD) of their Dext within the group.  We then computed the median SD across all 

groups.  Because SD is undefined for groups containing only one gene, such groups were 

discarded.  We also removed trans-regulators that have noise measures and are target genes, 

such that the regulators and targets have no overlaps.   

To analyze the relationship between histone modifications and noise, we downloaded 

the computed modification peak position data from the Cistrome database (Liu et al., 2011).  

We focused on four types of histone modifications in mouse wild-type fibroblast cells: 

H3K4Me1 (Chronis et al., 2017), H3K4Me2 (Chronis et al., 2017), H3K4Me3 (Xie et al., 

2017), and H3K27AC (Xie et al., 2017) .  All four datasets used were of high quality and 

passed quality criteria of Cistrome. For each modification, we computed Spearman’s 

correlation between the number of peaks overlapped with the core promoter region ((TSS − 

200 bp, TSS + 100 bp), defined in (Faure et al., 2017)) and D'int or D'ext.  The results are 

presented in Fig. 2-2M. 
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2.3.6 Noise comparison among genes of different functions 

GO terms of mouse genes were downloaded from Ensembl BioMart (GRC38m.p5) 

(Aken et al., 2016).  Genes functioning in the mitochondrion are associated with the GO 

cellular component term of "mitochondria", whereas cell cycle genes are associated with the 

GO biological process term of "cell cycle".  Mouse protein complex data were downloaded 

from the CORUM database (http://mips.helmholtz-muenchen.de/corum/) (Ruepp et al., 

2009).   

To evaluate if a group of genes with a certain function (i.e., focal genes) are 

enriched/deprived with the TATA-box or miRNA targeting, we compared the group with 

other genes (i.e., non-focal genes) after controlling mean expression levels across 13 mouse 

tissues (Söllner et al., 2017).  Specifically, we ranked the focal genes by the mean expression 

level and divided them into 50 equal-size bins.  We then obtained non-focal genes falling into 

each of these expression bins and identified the smallest number (m) of non-focal genes of all 

bins.  We randomly picked m non-focal genes per bin and used this set of non-focal genes to 

compare with the focal genes.  As expected, the non-focal genes showed similar expression 

levels as the corresponding focal genes (P = 0.28 for genes functioning in the mitochondrion, 

P = 0.37 for genes encoding protein complex members, and P = 0.45 for cell cycle genes; 

Mann-Whitney U test).  The non-focal genes are referred to as the "expression stratified 

control genes". 

DAVID GO web server with default options was used to perform the GO term 

enrichment analysis (Huang et al., 2008), in which all genes with estimated Dint and Dext were 

used as the background.  The web server returned the P-value after Benjamini-Hochberg 

correction for multiple testing.  We ranked the GO terms by the significance level and 

reported the three most significant GO terms for each group of genes with specific noise 

properties, if more than three GO terms were significantly enriched.   
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2.4 Results 

2.4.1 High-throughput estimation of intrinsic and extrinsic expression noises 

The expression noise of a gene is commonly measured by the noise strength !!, 

which is the among-cell variance in expression level divided by the squared mean expression 

level.  On the basis of previously derived formulas of intrinsic and extrinsic noises in 

haploids (Swain et al., 2002), we derived formulas for estimating intrinsic (!!"#! ) and extrinsic 

(!!"#! ) noises in diploids (see Materials and Methods).  Let the expression levels of the two 

alleles of a gene in a diploid cell be Y1 and Y2, respectively.  If the two alleles are controlled 

by two independent, identical promoters, !!"#! = ![ !!!!! !]
!! !! !(!!)

  and !!"#! = !"#(!!,!!)
!(!!)!(!!)

 , where E 

and Cov respectively stand for expectation and covariance.  Graphically, when the expression 

levels of the two alleles in each cell are respectively plotted on the x-axis and y-axis of a dot 

plot, extrinsic noise is represented by the spread of dots along the diagonal line of y = x, 

whereas the intrinsic noise is represented by the spread of dots along the direction 

perpendicular to the diagonal (left panel in Fig. 2-1A).  As an example, single-cell expression 

levels of the gene Tcof1 are plotted (right panel in Fig. 2-1A).  

 To estimate intrinsic and extrinsic gene expression noises, we used the scRNA-seq 

data of mouse fibroblast cells from an F1 hybrid of two mouse strains (Reinius et al., 2016).  

Note that scRNA-seq data are subject to large technical noises, which may also be 

decomposed into intrinsic and extrinsic technical noises (Grün et al., 2014).  The intrinsic 

technical noise is primarily caused by the low capturing efficiency of cellular transcripts and 

can result in a high variance and high dropout rate in estimating the mRNA expression level.  

The intrinsic technical noise artificially increases the level of the estimated intrinsic 

expression noise.  The extrinsic technical noise is mainly due to tube-to-tube variability in 

capturing efficiency and artificially increases the level of the estimated extrinsic expression 

noise.  Imputation, which substitutes the observed expression level of a gene in a cell by its 
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expected expression level, is often used to deal with technical noises in scRNA-seq-based 

cell classification (Wagner et al., 2016).  But, imputation cannot be used in our study because 

it leads to underestimation of gene expression noise.  Therefore, we only used spike-in 

control molecules to normalize expression levels in individual cells (see Materials and 

Methods).   

Our analysis focused on clone 7 (derived from the hybrid of CAST/EiJ male × 

C57BL/6J female) in the data, because (1) the number of sequenced cells (n = 60) is the 

largest in this clone, and (2) all sequenced cells from this clone have spike-in control 

molecules, permitting accurate read count estimation.  Upon the removal of genes whose two 

alleles show significantly different among-cell expression distributions and other steps of 

data processing (Fig. A1-1; see Materials and Methods), we obtained the intrinsic and 

extrinsic expression noises of 3975 genes.  To assess the precision of our noise estimates, we 

randomly separated the cells of clone 7 into two 30-cell groups.  We found that the estimates 

of the intrinsic noise of a gene from the two subsamples are highly correlated (Pearson's r = 

0.79, P < 1×10-300; Spearman's ρ = 0.79, P < 1×10-300; Fig. 2-1B), while those of extrinsic 

noise are moderately correlated (r = 0.42, P = 2.3×10-151; ρ = 0.44, P = 3.8×10-185; Fig. 2-

1C).  Note that the above correlations demonstrate the precision rather than the accuracy of 

our measurements.  The accuracy of our measurements depends on technical noises, which 

can in principle be estimated using spike-in molecules, because they have no biological 

variation among cells.  However, two factors render the technical noises of spike-in 

molecules not directly comparable with those of natural transcripts.  First, spike-in molecules 

provide information of the technical noise in sample preparation steps after the addition of 

spike-in molecules, so the technical noises associated with earlier steps are unknown (Wagner 

et al., 2016).  Second, spike-in molecules have much lower capturing efficiencies (Svensson 

et al., 2017) than natural transcripts.  Nonetheless, it can be shown that, after normalization 
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by spike-in molecules (see Materials and Methods), extrinsic noises disappear for spike-in 

molecules (red dots in Fig. A1-2), whereas extrinsic noises for natural transcripts remain 

substantial (black dots in Fig. A1-2), indicating that the tube-to-tube variation in sample 

preparation steps after the addition of spike-in molecules has been corrected.  Because the 

magnitudes of technical noises cannot be estimated in our dataset and because the 

measurements of intrinsic and extrinsic noises are subject to different technical noises, it is 

not possible to directly compare the contributions of intrinsic noise and extrinsic noise to the 

total noise in the data analyzed.  Nevertheless, with proper statistical processing, we can 

compare extrinsic or intrinsic noise among genes.  

In addition to clone 7, there is another group of cells with n = 75 that fulfill the above 

two criteria (see Materials and Methods), but this group of cells are non-clonal and were 

isolated in different experiments, so may be more heterogeneous in cell state and subject to 

larger technical variabilities.  Our analysis thus focused primarily on clone 7, although most 

results were also reproduced in the non-clonal cells.  While the precision of the intrinsic noise 

estimates is similarly high in the non-clonal cells (r = 0.80, P < 1×10-300; ρ = 0.79, P < 1×10-

300; Fig. A1-3A) when compared with that in the clonal cells (Fig. 2-1B), the estimates of the 

extrinsic noise are much less precise in the non-clonal cells (r = 0.31, P = 1.25×10-102; ρ = 

0.24, P = 6.9×10-65; Fig. A1-3B) than in the clonal cells (Fig. 2-1C), probably for the 

aforementioned reasons.  The assessment of technical noise in non-clonal cells (Fig. A1-3C) 

yielded similar results as in clone 7 cells (Fig. A1-2).    

In theory, the intrinsic expression noise of a gene should decrease with the mean 

expression level of the gene (Bar-Even et al., 2006; Hornung et al., 2012a), whereas no such 

relationship is expected for the extrinsic noise.  We confirmed that our estimate of the 

intrinsic noise is indeed strongly negatively correlated with the mean expression level 

(Spearman's ρ = -0.81, P < 1.0×10-300; Fig. 2-1D).  A similar trend was observed from the 
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non-clonal cells (Fig. A1-3D).  Intriguingly, we also found a weak, but significant negative 

correlation between the extrinsic noise and mean expression level (ρ = -0.083, P = 1.9×10-7; 

Fig. 2-1E).  Because the extrinsic noise is the normalized covariance between Y1 and Y2, and 

because the normalized covariance tends to be underestimated for lowly expressed genes due 

to larger sampling errors, the estimated extrinsic noise is expected to be positively correlated 

with the mean expression level for technical reasons.  To assess the impact of the technical 

noise on extrinsic expression noise, we correlated across genes the extrinsic noise with the 

mean allele-specific read number, because the mean read number is not normalized by gene 

length so contains more information about the technical variation when compared with the 

mean expression level.  Indeed, a positive correlation is observed between the estimated 

extrinsic noise and mean allele-specific read number instead of expression level (ρ = 0.06, P 

= 3.4×10-5).  Thus, the observed negative correlation between extrinsic noise and expression 

level is likely biological.  The trend observed in the non-clonal cells is similar to that in the 

clonal cells (Fig. A1-3E). 

It is preferable to remove the correlation between a noise measure and the mean 

expression level in order to identify factors that impact intrinsic or extrinsic noise not simply 

due to their influences on the mean expression level.  In addition, because technical noise in 

scRNA-seq decreases with mean read number (Grün et al., 2014), it would be important to 

further remove the impact of the mean read number on our expression noise measures.  To 

this end, we used robust linear regressions to remove the covariations with the mean 

expression level and mean read number in our measures of intrinsic and extrinsic noise (see 

Materials and Methods), which are referred to as Dint and Dext, respectively.  Note that Dint 

and Dext are residuals in the regressions of expression noise ranks so have values potentially 

from -3975 to 3975.  We used ranks instead of raw noise estimates because we do not know 

the exact relationship between the noises and the mean expression level or read number, 
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because the expression noise estimates contain contributions from technical noises, and 

because rank statistics are robust to outliers.  As expected, Dint is correlated with neither the 

mean expression level (ρ = -0.003, P = 0.85) nor the mean read number (ρ = -0.004, P = 

0.82).  Similarly, Dext is correlated with neither the mean expression level (ρ = -0.002, P = 

0.89) nor the mean read number (ρ = -0.0005, P = 0.98).  To assess the precision of these new 

noise measures, we plotted the correlation between the estimates from two subsamples of 

clone 7 for Dint (Fig. 2-1F) and Dext (Fig. 2-1G), respectively.  We found the rank correlation 

of Dint from the two subsamples (r = 0.44, P = 1.7×10-180; ρ = 0.40, P = 2.4×10-149) similar to 

that of Dext from the two subsamples (r = 0.44, P = 1.3×10-182; ρ = 0.44, P =1.7×10-183).  

Because our subsequent statistical analyses of Dint and Dext are all rank-based, the 

measurement precision of Dint and Dext can be treated as comparable.  Compared with those 

in the clonal cells, the precision of Dint is similar (r = 0.48, P = 6.1×10-272; ρ = 0.40, P = 

1.3×10-188; Fig. A1-3F) but that of Dext is lower (r = 0.24, P = 8.8×10-66; ρ = 0.23, P = 

2.7×10-64; Fig. A1-3G) in the non-clonal cells. 

 Interestingly, we observed a weak, but significant positive correlation between Dint 

and Dext (ρ = 0.11, P = 3.8×10-12; Fig. 2-1H).  Similar results were obtained from the non-

clonal cells (ρ = 0.047, P = 0.0008; Fig. A1-3G).  Although previous theoretical studies 

predicted a dependency of intrinsic noise on extrinsic noise, the direction of the correlation 

was unpredicted (Hilfinger and Paulsson, 2011; Shahrezaei et al., 2008; Sherman et al., 

2015).  Because of this observed correlation, we further acquired an intrinsic noise estimate 

that is independent of the extrinsic noise by regressing the rank of intrinsic noise on the rank 

of mean expression level, the rank of mean read number, and the rank of extrinsic noise 

simultaneously.  The obtained rank residual, referred to as D'int, is correlated with none of the 

mean expression level (ρ = -0.002, P = 0.88), mean read number (ρ = -0.002, P = 0.90), and 

extrinsic noise (ρ = -0.003, P = 0.85).  We similarly obtained D'ext, which is correlated with 
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none of the mean expression level (ρ = -0.005, P = 0.76), mean read number (ρ = -0.002, P = 

0.91), and intrinsic noise (ρ = 0.005, P = 0.72).  Finally, we used the “scran” package to 

divide the cells from clone 7 into G1 and G2–M cell cycle stages based on the total reads of 

each gene in each cell (Lun et al., 2016).  We then computed D'int and D'ext of each gene in 

each stage.  We found that both D'int and D'ext are similar between the stages (Fig. A1-3I and 

J, which can be compared with Fig. 2-1F and G, respectively), indicating that the adjusted 

noise is a robust property of a gene across cell cycle stages. 

2.4.2 The TATA-box is associated with elevated intrinsic and extrinsic noises 

Our estimates of Dint and Dext for thousands of mouse genes allow testing the potential 

impacts of several factors on the two noise components.  We focused on three factors with 

prior theoretical predictions of their effects.  The first factor is the presence/absence of the 

TATA-box in the promoter region.  The TATA-box has been predicted to increase the intrinsic 

noise because it enlarges the burst size in bursty gene expression through interacting with 

nucleosomes (Blake et al., 2006; Hornung et al., 2012a). In addition, the TATA-box can 

increase intrinsic noise by reducing the number of states in promoter cycles (Zoller et al., 

2015).  Indeed, Dint is significantly higher for genes with the TATA-box in the promoter than 

those without (Fig. 2-2A).  The same is true for D'int, which is independent of Dext (Fig. 2-

2A).  Similar results were obtained from the non-clonal cells (Fig. A1-4A). 

The presence of the TATA-box sensitizes the promoter to trans-regulation (Hornung 

et al., 2012b; Tirosh and Barkai, 2008) so should also increase the susceptibility of the 

promoter to cell state changes (Paulsson, 2004; Pedraza and van Oudenaarden, 2005).  

Hence, we predict that the TATA-box also raises the extrinsic noise.  Supporting this 

prediction, genes with the TATA-box show significantly higher Dext and D'ext than those 

without (Fig. 2-2B).  Similar patterns were observed in the non-clonal cells (Fig. A1-4B).  

Because the above analyses of the TATA-box are based on correlations, they do not 
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prove causality.  Nevertheless, the only other known property of the TATA-box on gene 

expression is to increase the mean expression level (Kim et al., 1993), which has already 

been controlled in our Dint and Dext estimates.  Our observations, coupled with manipulative 

experiments showing increased (total) expression noise conferred by the TATA-box (Blake et 

al., 2006; Murphy et al., 2010; Raser and O'shea, 2004), suggests that the influences of the 

TATA-box on both intrinsic and extrinsic noise revealed here is causal.  

2.4.3 Opposing effects of microRNAs on the intrinsic and extrinsic noise of target genes 

A microRNA (miRNA) regulates the expressions of its target genes by degrading their 

mRNAs and/or suppressing their translations (Bartel, 2018).  Combining mathematical 

modeling and experimental validation, Schmiedel et al. showed that a gene would have an 

elevated extrinsic protein expression noise if it is targeted by a miRNA than when it is not, 

because the miRNA concentration varies among cells (Schmiedel et al., 2015).  For the same 

reason, we expect that miRNA targeting increases the extrinsic mRNA expression noise.  

Schmiedel et al. also showed that the protein intrinsic noise of a gene is reduced when it is 

targeted by a miRNA than when it is not (Schmiedel et al., 2017).  This is because, under the 

assumption that the mean mRNA concentration is unaltered, being targeted by a miRNA 

means a reduction in mRNA half-life and a compensatory increase in transcription.  Even 

though the magnitude of the fluctuation of the mRNA concentration in a cell may be 

unaltered (see below), the frequency of the fluctuation is higher, which leads to a lower 

protein intrinsic noise.  However, the impact of miRNA targeting on the mRNA intrinsic 

noise depends on the mechanism underlying the compensatory increase in transcription.  If 

the increased transcription is caused by a higher burst frequency in transcriptional initiation, 

mRNA intrinsic noise will be reduced.  Alternatively, if it is caused by a greater burst size, 

mRNA intrinsic noise will be increased.  It is also possible that the increased transcription is 

due to a combination of the two mechanisms.  We thus explore the following three questions.  
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First, do genes targeted by miRNAs have lower or higher Dint and D'int than those not targeted 

by miRNAs?  Second, do genes targeted by more miRNA species have lower or higher Dint 

and D'int?  Third, do genes targeted by miRNAs have higher Dext and D'ext than those not 

targeted by miRNAs?  We obtained relationships between miRNAs and their targets from the 

RegNetwork database (Liu et al., 2015) (see Materials and Methods).  We found that genes 

targeted by miRNAs have significantly lower Dint and D'int than genes not targeted by 

miRNAs (Fig. 2-2C).  Furthermore, Dint (Fig. 2-2D) and D'int (Fig. 2-2E) of a gene are 

significantly negatively correlated with the number of miRNA species targeting the gene.  

Regarding the extrinsic noise, Dext and D'ext are significantly higher for genes targeted by 

miRNAs than those not targeted by miRNAs (Fig. 2-2F).  Similar results were obtained from 

the non-clonal cells (Fig. A1-4C-F), except that the results on Dext and D'ext are statistically 

non-significant (Fig. A1-4F), probably due to the aforementioned lower precision of extrinsic 

noise estimates in the non-clonal cells.  Because the only other known function of miRNAs is 

to regulate the mean expression levels of their targets (Bartel, 2018), which are uncorrelated 

with our noise measures, it is likely that the effects observed here are causal.  

2.4.4 Similar extrinsic noises of genes regulated by the same trans-regulator   

According to the definitions of intrinsic and extrinsic noises, we predict that, if gene A 

trans-regulates gene B, the extrinsic but not intrinsic noise of gene B should rise with the 

expression noise of gene A.  To test this prediction, we obtained the relationship between 

trans-regulators and their target genes from RegNetwork (Liu et al., 2015).  Because both 

 !!"#!  and !!"#!  of the trans-regulator affect the extrinsic noise of the target genes, we need a 

measure of the trans-regulator noise that takes into account both  !!"#!  and !!"#! .  For each 

trans-regulator that has estimated !!"#!  and !!"#! , we computed its !!"!! =  !!"#! +  !!"#! .  Here, 

we gave equal weights to the measured  !!"#!  and !!"#! , because of the lack of knowledge of 

the relative measurement accuracy of  !!"#!  and !!"#! .  We then computed the average Dint and 
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average Dext of all the targets of the trans-regulator, respectively, after excluding the trans-

regulator itself if it self-regulates, because the extrinsic noise of a gene is by definition 

correlated with its total noise irrespective of the validity of our hypothesis.  In support of our 

hypothesis, we found a positive correlation between the mean target Dext and  !!"!!  of their 

trans-regulator (ρ = 0.27, P = 0.0024; Fig. 2-2G).  The same is true for D'ext (ρ = 0.25, P = 

0.0047; Fig. 2-2H).  By contrast, although the mean Dint of the targets and !!"!!  of their trans-

regulator are correlated (ρ = 0.20, P = 0.031; Fig. 2-2I), the correlation becomes non-

significant for D'int (ρ = 0.15, P = 0.091; Fig. 2-2J).  In the above, we considered 

 !!"!!  because it is the total noise of the regulator regardless of its source that influences the 

target extrinsic noise. 

It can be further predicted that genes regulated by the same trans-regulator should 

have more similar Dext values but not necessarily more similar Dint values, when compared 

with genes that are not co-regulated by a trans-regulator.  To test this prediction, we grouped 

all target genes of each trans-regulator, followed by calculation of the standard deviation 

(SD) of Dint and that of Dext within the group.  We then computed the median SD of Dint and 

median SD of Dext across all trans-regulators.  As a comparison, we randomized the targets of 

each regulator, requiring only that the number of targets of each regulator remained unaltered 

(see Materials and Methods).  We then similarly computed the median SD of Dint and median 

SD of Dext across all trans-regulators.  This randomization was repeated 10,000 times.  We 

found that the observed median SD of Dext is significantly lower than that from each of the 

10,000 randomizations (i.e., P < 0.0001; Fig. 2-2K).  By contrast, the observed median SD of 

Dint is smaller than that in only 25% of the 10,000 randomizations (i.e., P = 0.75; Fig. 2-2L).  

Together, our results confirm the theoretical prediction that the expression noise of trans-

regulators primarily affects the extrinsic but not intrinsic expression noise of their targeted 

genes.  We also performed the same analyses in the non-clonal cells.  Although the trends 
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exist, they are not statistically significant (Fig. A1-4G-J), likely due to the less precise 

estimation of expression noise in the non-clonal cells.  

2.4.5 Differential effects of histone modification on intrinsic and extrinsic noises 

In addition to the above factors, correlations between several histone modifications 

and gene expression noise has been reported (Chen and Zhang, 2016; Wu et al., 2017).  

Prompted by these studies, we respectively examined correlations between histone 

modification and intrinsic and extrinsic expression noises.  To this end, we collected histone 

modification peak data from Cistrome (Liu et al., 2011), and computed the correlation 

between histone modification strength in the core promoter and D'int or D'ext.  We found 

H3K4Me1 modification to be significantly positively correlated with D'int but not 

significantly correlated with D'ext (Fig. 2-2M).  The same can be said for H3K4Me2 (Fig. 2-

2M).  By contrast, H3K4Me3 modification is significantly negatively correlated with both 

D'int and D'ext, but the correlation with D'ext is much stronger than that with D'int (Fig. 2-2M).  

H3K27Ac modification is significantly negatively correlated with D'int but not significantly 

correlated with D'ext (Fig. 2-2M).  These observations suggest that histone modification often 

differentially impacts intrinsic and extrinsic expression noises.   

The genome-wide finding that (i) the TATA-box increases both Dint and Dext, (ii) 

miRNAs decrease the Dint but increase the Dext of its targets, (iii) the Dext but not Dint of a 

gene is impacted by the expression noise of its trans-regulator and (iv) histone modification 

differentially impacts D'int and D'ext not only reveals mechanisms responsible for the 

variations of intrinsic and extrinsic expression noises among genes, but also demonstrates 

that our high-throughput estimation of intrinsic and expression noises is reliable.  Because the 

above analyses were all based on rank statistics, the absolute effect sizes are unknown and 

hence it is hard to answer whether the above findings are biologically relevant.  In the 

following section, we address this question by examining patterns of Dint and Dext among 
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genes of various functions and testing if the two noise components have been subject to 

differential natural selection. 

2.4.6 Genes with mitochondrial functions show lowered extrinsic expression noise 

Previous studies found that the variation in mitochondrial function among cells is a 

primary source of global extrinsic noise of gene expression, because protein synthesis 

requires ATP, which is largely produced by the mitochondrion (Das Neves et al., 2010; 

Johnston et al., 2012).  We thus predict that natural selection should have minimized the 

expression noise of (nuclear) genes that function in the mitochondrion in order to reduce the 

gene expression noise globally.  Indeed, one source of the protein level noise of proteins 

localized to the mitochondrion is the partition of mitochondria during the cell division, and 

recent work showed that this partition is tightly regulated presumably to ensure equal 

partitions (Jajoo et al., 2016).  To achieve a low expression noise at the mRNA level for 

nuclear genes with mitochondrial functions, selection could have reduced the intrinsic noise, 

extrinsic noise, or both.  However, for highly expressed genes, the extrinsic noise is the main 

contributor to expression noise, because the intrinsic noise is naturally low when the mean 

expression is high (Schmiedel et al., 2015; Taniguchi et al., 2010).  We noticed in our data 

that nuclear genes of mitochondrial functions are highly expressed relative to other nuclear 

genes (P = 1.9×10-15, Mann–Whitney U test).  Because Dint and Dext are independent of the 

mean expression level, we predict that genes functioning in the mitochondrion should have 

reduced Dext but not necessarily reduced Dint.  Indeed, Dext is significantly lower for nuclear 

genes functioning in the mitochondrion when compared with other nuclear genes (Fig. 2-3A), 

and this disparity remains for D'ext (Fig. 2-3A).  By contrast, Dint is not significantly different 

between the two groups of genes (Fig. 2-3B), whereas D'int is even slightly larger for genes 

functioning in the mitochondrion than other genes (Fig. 2-3B).  Similar results were obtained 

from the non-clonal cells (Fig. A1-5).  
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What are the underlying molecular mechanisms responsible for the reduction of Dext 

of genes functioning in the mitochondrion?  Based on the earlier results (Fig. 2-2), possible 

mechanisms include the underrepresentation of the TATA-box in genes functioning in the 

mitochondrion, underrepresentation of miRNA targeting, and preferential regulation by quiet 

trans-regulators.  Because our noise data do not include many trans-regulators, we focused 

on the first two mechanisms.  Indeed, compared with other genes, those functioning in the 

mitochondrion are depleted of the TATA-box (P = 4.6×10-5, Fisher's exact test; Fig. 2-3C) 

and are less targeted by miRNAs (P = 0.036, Fisher's exact test; Fig. 2-3D).  To explore 

whether the depletion of TATA-box and miRNA targeting can fully account for the reduction 

in extrinsic noise of nuclear genes functioning in the mitochondrion, we regressed Dext as a 

linear function of the presence/absence of TATA-box and miRNA targeting.  The residual of 

the above regression provided an extrinsic noise measure upon the control for TATA-box and 

miRNA targeting.  We found that the difference in extrinsic noise between nuclear genes that 

function in the mitochondrion and other genes remains significant (Dext: P = 0.001, Mann–

Whitney U test; D'ext: P = 0.00065, Mann-Whitney U test).  Thus, depletions of the TATA-

box and miRNA targeting are only part of the mechanisms responsible for the selective 

reduction of the Dext of genes functioning in the mitochondrion.  

2.4.7 Genes encoding protein complex members have lowered intrinsic expression noise 

Because dosage balance is important for protein complex members (Birchler and 

Veitia, 2012; Papp et al., 2003) and because as long as members of the same protein complex 

are co-regulated in expression, extrinsic noise does not create dosage imbalance (Stewart-

Ornstein et al., 2012), we predict that protein complex members have reduced intrinsic noise 

but not necessarily reduced extrinsic noise.  An early yeast study showed that, compared with 

other proteins, protein complex members have lowered protein level noises measured in 

morphologically similar cells, suggesting that they have reduced intrinsic noise (Lehner, 
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2008).  In our data where intrinsic and extrinsic noises are explicitly separated, we found Dint 

significantly lower for genes encoding protein complex members than other genes (Fig. 2-

4A).  The same is true for D'int (Fig. 2-4A).  By contrast, although Dext is significantly lower 

for genes encoding protein complex members than other genes (Fig. 2-4B), this disparity 

becomes non-significant for D'ext (Fig. 2-4B).  Similar patterns were observed in the non-

clonal cells (Fig. A1-6).  

Potential mechanisms underlying the Dext difference between genes encoding protein 

complex members and other genes can include a depletion of the TATA-box and an 

enrichment of miRNA targeting in the former group.  Indeed, compared with other genes, 

those encoding protein complex members tend not to use the TATA-box (Fig. 2-4C), tend to 

be targeted by miRNAs (Fig.2-4D), and tend to be targeted by more miRNA species (Fig. 2-

4E).  The difference between genes encoding protein complex members and other genes in 

intrinsic noise after adjusting the presence/absence of TATA-box and the number of miRNA 

species targeting the gene by linear regression remains significant for both Dint (P= 0.017, 

Mann–Whitney U test) and D'int (P= 0.031, Mann–Whitney U test), suggesting that other 

mechanisms also contribute to the lowered intrinsic noise of protein complex members.  

2.4.8 Cell cycle genes have low intrinsic but high extrinsic noise  

Cell cycle genes are those that control the cell cycle and hence should express 

differently at different cell cycle stages (Cho et al., 1998).  However, within a cell that is at a 

cellular stage, cell cycle genes should preferably show consistent expressions.  Thus, we 

predict that cell cycle genes have been selected to have low Dint but high Dext.  Indeed, 

compared with other genes, cell cycle genes show significantly lower Dint and D'int (Fig. 2-

5A), but significantly higher Dext and D'ext (Fig. 2-5B).  This finding echoes the recent report 

that the genetic circuit underlying the biological clock often has an architecture to buffer the 

harmful internal fluctuation of signals while responding to the variation of the functional 
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external stimuli (Pittayakanchit et al., 2018).  The analysis of the non-clonal cells yielded 

similar results (Fig. A1-7). 

Given the noise features of the cell cycle genes, we predict that they should be 

preferentially targeted by miRNAs, because miRNA targeting lowers the intrinsic noise but 

raises the extrinsic noise.  In addition, we know that the impact of miRNAs on the intrinsic 

noise (but not necessarily the extrinsic noise) of a target rises with the number of miRNA 

species targeting the gene (Fig. 2-2C).  We found that the fraction of genes targeted by 

miRNAs is not significantly higher for cell cycle genes than other genes (P = 0.30, Fisher's 

exact test; Fig. 2-5C), but the median number of miRNA species targeting a gene is 

significantly higher for cell cycle genes than other genes (P = 0.0071, Mann–Whitney U test; 

Fig. 2-5D).  These observations suggest that miRNA targeting is not responsible for cell cycle 

genes' high Dext but is responsible for their low Dint.  Notwithstanding, we cannot rule out the 

possibility that the non-significant result in Fig. 5C is due to the relatively small sample size 

of cell cycle genes (n = 570, as opposed to 935 for genes encoding protein complex members 

and 1603 for genes functioning in the mitochondrion).  After adjusting the number of miRNA 

species targeting a gene, we found that cell cycle genes still have lower Dint (P = 0.0057, 

Mann–Whitney U test) and D'int (P = 0.0013, Mann–Whitney U test) than other genes, 

suggesting the existence of other factors contributing to the low intrinsic noise of cell cycle 

genes. 

2.4.9 Other genes with exceptionally high or low extrinsic or intrinsic noise 

To learn more about the biological implications of intrinsic and extrinsic noise, we 

performed gene ontology (GO) analysis on genes with extreme Dext and/or Dint values.  We 

first defined high Dext genes as those genes whose Dext values are in the highest 10% of all 

3975 genes and low Dext genes as those whose Dext values are in the lowest 10% of all 3975 

genes.  We similarly defined high Dint genes and low Dint genes.  These genes show 
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enrichments of various functional categories (Table 2-1).  For instance, both the high Dext 

group and high Dint group are enriched with genes encoding secreted proteins and 

extracellular proteins.  Secreted and extracellular proteins synthesized from many individual 

cells are mixed together and function outside the cells, so there is no need to reduce their 

expression noise at the mRNA level.  Thus, their high noise likely reflects a lack of selection 

minimizing their noise.  By contrast, the low Dext group are enriched with genes whose 

products interact with RNAs, whereas the low Dint group are enriched with genes encoding 

phosphoproteins and proteins with coiled coil structure, again indicating that the biological 

implications of extrinsic noise and intrinsic noise can be different.  Similar results were found 

for the non-clonal cells (Table A1-1).  

We further examined genes with different combinations of extreme extrinsic and 

intrinsic noises (Table 2-1 and Table A1-1).  Specifically, we identified genes with both high 

Dext and high Dint, high Dext but low Dint, low Dext but high Dint, and both low Dext and low 

Dint, respectively.  Here, a gene is considered to have high (or low) noise if its noise is ranked 

in the top (or bottom) 25% among the 3975 genes.  As expected, the group with both high 

Dext and high Dint is enriched with genes encoding secreted and extracellular proteins, while 

the group with high Dext but low Dint is enriched with cell cycle genes.  The group with low 

Dext but high Dint is not enriched with any GO category.  Finally, the group with both low Dext 

and low Dint is enriched with genes encoding RNA-interacting proteins and phosphoproteins.  

The identification of genes with extreme noise values can help further understand the 

biological significance and constraints of intrinsic and extrinsic gene expression noises.   

2.5 Discussion 

Using allele-specific scRNA-seq, we performed the first genomic estimation of 

intrinsic and extrinsic expression noises of any species.  The mRNA noise estimates obtained 

allowed us to evaluate the predicted effects of various factors.  In particular, we found that (i) 



	

	
	

33 

the presence of the TATA-box in the promoter of a gene increases both the intrinsic and 

extrinsic expression noise of the gene, (ii) miRNAs lower the intrinsic noise but increase the 

extrinsic noise of their target genes, (iii) the extrinsic noise of a gene increases with the total 

expression noise of its trans-regulator, and (iv) genes regulated by the same trans-regulator 

have more similar extrinsic expression noises than genes not co-regulated.  Considering gene 

functions, we formulated hypotheses on natural selection for lowered or elevated intrinsic 

and/or extrinsic noise of groups of genes, and were able to find evidence supporting our 

hypotheses.  Specifically, we predicted and then demonstrated that (nuclear) genes 

functioning in the mitochondrion have reduced extrinsic noise, genes encoding protein 

complex members have decreased intrinsic noise, and cell cycle genes have lowered intrinsic 

noise but elevated extrinsic noise.   

It is valuable to compare our results with previous genome-wide studies of total 

protein or total mRNA expression noise.  For example, a study in yeast showed that nuclear 

genes functioning in the mitochondrion have unusually high protein noise, presumably due to 

the random partition of mitochondria during cell division (Newman et al., 2006).  Multiple 

studies reported that expression noise of nuclear genes functioning in the mitochondrion can 

result in large, presumably harmful among-cell variation in global gene expression (Das 

Neves et al., 2010; Dhar et al., 2019; Johnston et al., 2012).  It was thus unclear whether the 

gene expression noise of nuclear genes functioning in mitochondrion has been subject to 

selective minimization.  Our results on the mRNA expression noise of nuclear genes 

functioning in the mitochondrion provide clear evidence for the minimization.  Our ability to 

detect this signal is likely because mRNAs are located in the cytoplasm so are not subject to 

the problem of block partition of mitochondrial proteins.  Regarding genes encoding protein 

complex members, a previous study (Lehner, 2008) suggested that their low noise may be 

explained by one or more of the following reasons.  First, protein complex members are 
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enriched for essential genes and essential genes tend to have low noise.  Second, protein 

complex members are more dosage-sensitive due to the requirement for dosage balance 

among members of the same complex.  Third, the low noise of protein complex members is a 

by-product of their short protein half-lives.  Our results do not support the first or third 

reason, because the first reason would predict both low extrinsic noise and low intrinsic 

noise, contrasting our observation of reduction in Dint but not Dext, while the third reason 

would predict no reduction in the mRNA expression noise, contradictory to our observation 

of lowed Dint.  With respect to cell cycle genes, no previous research has ever found them to 

have low expression noise despite the suggestion that cell cycle should be robust to 

biochemical noise (Li et al., 2004; Vilar et al., 2002).  This is possibly because previous 

studies did not separate intrinsic from extrinsic noise, while cell cycle genes are expected to 

and indeed have low Dint but high Dext.  Regarding mRNA expression noise, several previous 

studies used scRNA-seq data.  For instance, Wu et al. analyzed how histone modification 

independently modulates expression noise and mean expression level (Wu et al., 2017).  

Morgan et al. reported a correlation between CpG island and expression noise (Morgan and 

Marioni, 2018).  In particular, allele-specific scRNA-seq has been used to characterize the 

technical noise versus biological noise (Kim et al., 2015) and estimate expression noise-

related quantities such as transcriptional burst size and frequency (Jiang et al., 2017).  

Nevertheless, none of the previous studies used scRNA-seq to decompose expression noise 

into intrinsic and extrinsic noises.  

Our analyses have several caveats that are worth discussion.  First, although many of 

our statistical results are highly significant, the effect sizes of some factors appear small.  

This may be due to the high technical noises of scRNA-seq-based expression level measures 

(Marinov et al., 2014), which is further exacerbated in allele-specific scRNA-seq, because 

only reads containing information of the allele of origin, which constitute a small fraction of 
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all reads, are useful to our analysis.  The high technical noise introduces both random errors 

and systematic errors in our estimation of expression noise.  Random errors are not expected 

to create spurious results in large samples (Hedge et al., 2018).  By contrast, systematic errors 

may create spurious results.  In our analysis, we removed known systematic errors from 

technical noises (Grün et al., 2014) by controlling for the number of reads per gene.  Thus, 

the remaining errors in our estimation of intrinsic noise and extrinsic noise should be largely 

random, and these random errors have likely caused underestimation of effect sizes in our 

study.  Furthermore, whether an effect is evolutionarily important depends on whether it is 

detectable by natural selection.  Our observation of differential uses of various molecular 

mechanisms such as the TATA-box and miRNA targeting in the optimization of intrinsic and 

extrinsic noise levels demonstrates that the detected effects are important.  Second, previous 

theoretical studies showed that noise decomposition using the dual reporter system is 

accurate under static environments but may not be accurate under dynamic environments; in 

the latter case, noise decomposition may not reveal the underlying mechanism (Hilfinger and 

Paulsson, 2011; Shahrezaei et al., 2008; Sherman et al., 2015).  Notwithstanding, we found 

that the intrinsic and extrinsic noises estimated in this study largely follow expectations.  

More importantly, intrinsic and extrinsic noises do have different biological meanings and 

hence are differentially tuned evolutionarily.  Hence, the noise decomposition appears 

biologically meaningful and useful.  Third, a central topic about noise decomposition is the 

absolute magnitudes of intrinsic and extrinsic noises (Bar-Even et al., 2006; Elowitz et al., 

2002; Raser and O'shea, 2004).  As mentioned, because of the relatively large size of the 

technical noise from allele-specific scRNA-seq and different impacts of the technical noise 

on measures of intrinsic and extrinsic noises, it is impossible to compute and compare the 

absolute magnitudes of intrinsic and extrinsic noises.  This limitation forced us to use rank-

based statistics, which made it difficult to estimate absolute effect sizes of various factors..  
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Fourth, our study focused on mRNA expression noise, but one might argue that mRNA noise 

does not directly correspondent to protein noise.  We believe that this should not be an issue, 

because of substantial evidence that mRNA noise is the major source of protein noise (Bar-

Even et al., 2006; Batada and Hurst, 2007; Fraser et al., 2004; Raj et al., 2006; Sherman et al., 

2015).  Finally, to obtain reliable noise estimates, we filtered out genes with low average read 

counts.  Therefore, our conclusions mainly apply to genes with moderate or high expression 

levels.  Because the expressions of lowly expressed genes are impacted most by noise (Bar-

Even et al., 2006), it will be important to study intrinsic and extrinsic noises of lowly 

expressed genes in the future.  

In sum, our study performed the first genome-scale estimation of intrinsic and 

extrinsic gene expression noise at the mRNA level.  We demonstrated the general reliability 

of our noise estimates and illustrated the utility of these estimates for understanding the 

mechanisms controlling and selections on the two noise components.  Our findings may have 

implications for synthetic biology, where one often needs to design genetic circuits that have 

robust yet dynamic behaviors.  For example, the detailed mechanisms that cells employ to 

allow cell cycle genes to have high extrinsic noise but low intrinsic noise may provide 

insights for designing oscillators that are sensitive to different cell states yet are robust to 

intrinsic noise (Elowitz and Leibler, 2000; Fung et al., 2005; Potvin-Trottier et al., 2016).  
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Table 2-1 Significantly enriched GO terms among genes with extreme intrinsic 
and/or extrinsic expression noise in clone 7. The three most significant terms are 
presented if more than three terms are significantly enriched. 
GO terms Corrected P-values 
High extrinsic noise 
Secreted 3.5�10-12 

Extracellular region 1.5�10-11 

Signal peptide 7.3�10-9 

  
Low extrinsic noise 
Poly (A) RNA binding 6.7�10-7 

RNA binding                                                1.2�10-6�

rRNA processing 1.8�10-6 
  
High intrinsic noise 
Extracellular region 1.4�10-8 

Signal peptide 3.1�10-8 

Disulfide bond 1.0�10-7 

  
Low intrinsic noise 
Phosphoprotein 1.9�10-6 

Coiled coil 4.6�10-6 

 
High extrinsic noise and high intrinsic noise 
Signal peptide 1.2�10-13 

Secreted 4.9�10-13 

Extracellular region 2.1�10-12 

  
High extrinsic noise and low intrinsic noise 
Cell cycle 0.01 
  
Low extrinsic noise and low intrinsic noise 
Poly (A) RNA binding 1.7�10-24 

Nucleus 1.1�10-8 

Nucleolus 1.9�10-8 
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Fig. 2-1  Decomposition of gene expression noise into intrinsic and extrinsic noise.  (A) Gene 
expression noise can be decomposed to its intrinsic and extrinsic components by the dual 
reporter assay, where two reporters represented respectively by the blue and orange boxes are 
controlled by independent, identical promoters.  When plotting the expression level of one 
reporter against that of the other in each cell, the spread along the diagonal represents 
extrinsic noise, whereas the spread orthogonal to the diagonal represents intrinsic noise.  Y1 
and Y2 are the expression levels of the two reporters, respectively.  The left plot shows 
hypothetical data from a gene, whereas the right plot presents the spike-in adjusted read-
counts of two alleles of Tcof1 from individual cells. (B) Intrinsic noises (!!"#! ) estimated from 
two sub-samples of clone 7 are highly correlated with each other.  Ln-transformed !!"#!  is 
shown.  Each dot is a gene.  The orange line shows the diagonal.  (C) Extrinsic noises (!!"#! ) 
estimated from two sub-samples of clone 7 are moderately correlated with each other.  Ln-
transformed !!"#!  is shown.  Each dot is a gene.  The orange line shows the diagonal.  
(D) The intrinsic expression noise of a gene is strongly negatively correlated with the mean 
expression level of the gene.  Expression level is measured by Reads Per Kilobase of 
transcript per Million mapped reads (RPKM). (E) The extrinsic expression noise of a gene is 
weakly negatively correlated with the mean expression level of the gene. Because the 
extrinsic noise could be negative (see Materials and Methods), we added a small value (0.1 - 
the minimum of computed extrinsic noise) to all !!"#!  values before taking the natural log.  
(F) Intrinsic noise estimates adjusted for mean expression level and technical noise (Dint) are 
significantly correlated between two sub-samples of clone 7.  The orange line shows the 
diagonal.  (G) Extrinsic noise estimates adjusted for mean expression level and technical 
noise (Dext) are significantly correlated between two sub-samples of clone 7.  The orange line 
shows the diagonal.  (H) Dint and Dext are positively correlated.    
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Fig. 2-2  Factors influencing intrinsic and/or extrinsic gene expression noise. (A) Genes with 
a TATA-box in the promoter (pink) have significantly higher intrinsic noise (Dint) than genes 
without a TATA-box (blue).  The same is true when intrinsic noise is measured by D'int, which 
is uncorrelated with extrinsic noise.  The lower and upper edges of a box represent the first 
(qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates the 
median (md), the whiskers extend to the most extreme values inside inner fences, 
md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers).  (B) Genes 
with a TATA-box in the promoter (pink) have significantly higher extrinsic noise (Dext) than 
genes without a TATA-box (blue).  The same is true when extrinsic noise is measured by 
D'ext, which is uncorrelated with intrinsic noise.(C) Genes targeted by miRNA (green) have 
significantly lower intrinsic noise (Dint and D'int) than genes not targeted by miRNA (yellow).  
(D) Genes targeted by more miRNA species have lower Dint.  The blue line displays the 
linear regression of Dint of a target gene on the number of miRNA species targeting it.  (E) 
Genes targeted by more miRNA species have lower D'int.  The blue line displays the linear 
regression of D'int of a target gene on the number of miRNA species targeting it.  (F) Genes 
targeted by miRNA (green) have significantly higher extrinsic noise (Dext and D'ext) than 
genes not targeted by miRNA (yellow). (G) The mean extrinsic noise (Dext) of genes targeted 
by the same trans-regulator is significantly positively correlated with the total noise 
(!!"#! +  !!"#! ) of the trans-regulators. (H) The mean extrinsic noise (upon the control for 
intrinsic noise) (D'ext) of genes targeted by the same trans-regulator is significantly positively 
correlated with the total noise (!!"#! +  !!"#! ) of the trans-regulators. (I) The mean intrinsic 
noise (Dint) of genes targeted by the same trans-regulator is significantly positively correlated 
with the total noise (!!"#! +  !!"#! ) of the trans-regulator. (J) The mean intrinsic noise (upon 
the control for extrinsic noise) (D'int) of genes targeted by the same trans-regulator is not 
significantly positively correlated with the total noise (!!"#! +  !!"#! ) of the trans-regulator. (K) 
The observed median standard deviation of Dext among genes regulated by the same trans-
regulator (red arrow) is significantly smaller than the random expectation (histograms).  (L) 
The observed median standard deviation of Dint among genes regulated by the same trans-
regulator is not significantly different from the random expectation (histograms). (M) 
Spearman’s correlation between the number of histone modification peaks that overlap the 
core promoter and intrinsic or extrinsic noise. 
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Fig. 2-3  Nuclear genes functioning in the mitochondrion have lower extrinsic noise but not 
lower intrinsic noise when compared with other genes.  (A) Nuclear genes functioning in the 
mitochondrion (pink) have significantly lower extrinsic noise (Dext and D'ext) than other genes 
(blue).  The lower and upper edges of a box represent the first (qu1) and third quartiles (qu3), 
respectively, the horizontal line inside the box indicates the median (md), the whiskers extend 
to the most extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent 
values outside the inner fences (outliers).  (B) Nuclear genes functioning in the 
mitochondrion (pink) do not have significantly lower intrinsic noise Dint and even have 
significantly higher D'int than other genes (blue). (C) TATA-box is underrepresented in the 
promoters of nuclear genes functioning in the mitochondrion (pink) when compared with 
other genes of similar expression levels (yellow). (D) Nuclear genes functioning in the 
mitochondrion (pink) are less targeted by miRNAs than other genes with similar expression 
levels (yellow). 
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Fig. 2-4  Genes encoding protein complex components have lower intrinsic noise but not 
lower extrinsic noise than other genes. (A) Genes encoding protein complex components 
(pink) have significantly lower intrinsic noise (Dint and D'int) than other genes (blue).  The 
lower and upper edges of a box represent the first (qu1) and third quartiles (qu3), respectively, 
the horizontal line inside the box indicates the median (md), the whiskers extend to the most 
extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside 
the inner fences (outliers).  (B) Genes encoding protein complex components (pink) have 
significantly lower Dext but not significantly lower D'ext than other genes (blue).  (C) TATA-
box is underrepresented in the promoters of genes encoding protein complex components 
(pink) when compared with other genes of similar expression levels (yellow).  (D) Genes 
encoding protein complex components (pink) are more likely to be targeted by miRNAs 
when compared with other genes of similar expression levels (yellow).  (E) Genes encoding 
protein complex components (pink) tend to be targeted by more miRNA species when 
compared with other genes of similar expression levels (yellow). 
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Fig. 2-5  Cell cycle genes have lower intrinsic noise but higher extrinsic noise than other 
genes.  (A) Cell cycle genes (pink) have significantly lower intrinsic noise (Dint and D'int) 
when compared with other genes (blue).  The lower and upper edges of a box represent the 
first (qu1) and third quartiles (qu3), respectively, the horizontal line inside the box indicates 
the median (md), the whiskers extend to the most extreme values inside inner fences, 
md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers).  (B) Cell 
cycle genes (pink) have significantly higher extrinsic noise (Dext and D'ext) when compared 
with other genes.  (C) Fraction of genes targeted by miRNAs is not significantly different 
between cell cycle genes (pink) and other genes of similar expression levels (yellow).  (D) 
Cell cycle genes (pink) tend to be targeted by more miRNA species than other genes of 
similar expression levels (yellow). 
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Chapter 3: Chromosome-Wide Co-Fluctuation of Stochastic Gene Expression in 

Mammalian Cells 

No man is an island. 

-John Donne 

3.1 Abstract 

Gene expression is subject to stochastic noise, but to what extent and by which means 

such stochastic variations are coordinated among different genes are unclear.  We 

hypothesize that neighboring genes on the same chromosome co-fluctuate in expression 

because of their common chromatin dynamics, and verify it at the genomic scale using allele-

specific single-cell RNA-sequencing data of mouse cells.  Unexpectedly, the co-fluctuation 

extends to genes that are over 60 million bases apart.  We provide evidence that this long-

range effect arises in part from chromatin co-accessibilities of linked loci attributable to 

three-dimensional proximity, which is much closer intra-chromosomally than inter-

chromosomally.  We further show that genes encoding components of the same protein 

complex tend to be chromosomally linked, likely resulting from natural selection for 

intracellular among-component dosage balance.  These findings have implications for both 

the evolution of genome organization and optimal design of synthetic genomes in the face of 

gene expression noise.  
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3.2 Introduction 

Gene expression is subject to considerable stochasticity that is known as expression 

noise, formally defined as the expression variation of a given gene among isogenic cells in 

the same environment (Blake et al., 2003; Elowitz et al., 2002; Raser and O'shea, 2005).  

Gene expression noise is a double-edged sword.  On the one hand, it can be deleterious 

because it leads to imprecise controls of cellular behavior, including, for example, destroying 

the stoichiometric relationship among functionally related proteins and disrupting 

homeostasis (Bahar et al., 2006; Batada and Hurst, 2007; Kemkemer et al., 2002; Lehner, 

2008; Wang and Zhang, 2011).  On the other hand, gene expression noise can be beneficial.  

For instance, unicellular organisms may exploit gene expression noise to employ bet-hedging 

strategies in fluctuating environments (Veening et al., 2008; Zhang et al., 2009), whereas 

multicellular organisms can make use of expression noise to initiate developmental processes 

(Chang et al., 2008; Huang, 2009; Turing, 1952). 

By quantifying protein concentrations in individual isogenic cells cultured in a 

common environment, researchers have measured the expression noise for thousands of 

genes in the bacterium Escherichia coli (Taniguchi et al., 2010) and unicellular eukaryote 

Saccharomyces cerevisiae (Newman et al., 2006).  Nevertheless, because genes are not in 

isolation, one wonders whether and to what extent expression levels co-vary among genes at 

a steady state, which unfortunately cannot be studied by the above data.  By simultaneously 

tagging two genes with different florescent markers, Stewart-Ornstein et al. discovered strong 

co-fluctuation of the concentrations of some functionally related proteins in yeast such as 

those involved in the Msn2/4 stress response pathway, amino acid synthesis, and 

mitochondrial maintenance, respectively(Stewart-Ornstein et al., 2012), and the expression 

co-fluctuation of these genes is facilitated by their sharing of transcriptional regulators 

(Stewart-Ornstein et al., 2013).   
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Here we explore yet another mechanism for expression co-fluctuation.  We 

hypothesize that, due to the sharing of chromatin dynamics (Raj and van Oudenaarden, 

2008), a key contributor to gene expression noise (Brown et al., 2013; Raj and van 

Oudenaarden, 2008; Sanchez et al., 2013), genes that are closely linked on the same 

chromosome should exhibit a stronger expression co-fluctuation when compared with genes 

that are not closely linked or unlinked (Fig.3-1).  We refer to this potential influence of 

chromosomal linkage of two genes on their expression co-fluctuation as the linkage effect.  

The linkage-effect hypothesis is supported by two pioneering studies demonstrating that the 

correlation in expression level between two reporter genes across isogeneic cells in the same 

environment is much higher when they are placed next to each other on the same 

chromosome than when they are placed on separate chromosomes (Becskei et al., 2005; Raj 

et al., 2006).  However, neither the generality of the linkage effect nor the chromosomal 

proximity required for this effect are known.  Furthermore, the biological significance of the 

linkage effect and its potential impact on genome organization and evolution have not been 

investigated.  In this study, we address these questions by analyzing allele-specific single-cell 

RNA-sequencing (RNA-seq) data from mouse cells (Reinius et al., 2016).  We demonstrate 

that the linkage effect is not only general but also long-range, extending to gene pairs that are 

tens of millions of bases apart.  We provide evidence that three-dimensional (3D) chromatin 

proximities are responsible for the long-range co-fluctuation through mediating chromatin 

accessibility covariations.  Finally, we show theoretically and empirically that the linkage 

effect has likely impacted the evolution of the chromosomal locations of genes encoding 

members of the same protein complex.  

3.3 Results 

3.3.1 Linkage effect on gene expression co-fluctuation is general and long-range 

Let us consider two genes A and B each with two alleles respectively named 1 and 2 
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in a diploid cell.  When A and B are chromosomally linked, without loss of generality, we 

assume that A1 and B1 are on the same chromosome whereas A2 and B2 are on its homologous 

chromosome (Fig.3-2A).  Expression co-fluctuation between one allele of A and one allele of 

B (e.g., A1 and B2) is measured by Pearson's correlation (re, where the subscript "e" stands for 

expression) between the expression levels of the two alleles across isogenic cells under the 

same environment.  Among the four possible pairs of alleles A1-B1, A2-B2, A1-B2, and A2-B1, 

the former two pairs are physically linked whereas the latter two pairs are unlinked.  The 

linkage-effect hypothesis asserts that, at a steady state, expression correlations between 

linked alleles (cis-correlations) are greater than those between unlinked alleles (trans-

correlations).  That is, !! = [!! !!,!! + !! !!,!! − !! !!,!! − !! !!,!! ]/2 > 0.  Note 

that this formulation is valid regardless of whether the two alleles of the same gene have 

equal mean expression levels.  While each of the four correlations could be positive or 

negative, in the large data analyzed below, they are mostly positive and show approximately 

normal distributions across gene pairs examined.   

To verify the above prediction about !!, we analyzed a single-cell RNA-seq dataset of 

fibroblast cells derived from a hybrid between two mouse strains (CAST/EiJ × C57BL/6J) 

(Reinius et al., 2016).  Single-cell RNA-seq profiles the transcriptomes of individual cells, 

allowing quantifying stochastic gene expression variations among isogenic cells in the same 

environment (Hashimshony et al., 2016; Macosko et al., 2015; Picelli et al., 2014).  DNA 

polymorphisms in the hybrid allow estimation of the expression level of each allele for 

thousands of genes per cell.  The dataset includes data from seven fibroblast clones and some 

non-clonal fibroblast cells of the same genotype.  We focused our analysis on clone 7 

(derived from the hybrid of CAST/EiJ male × C57BL/6J female) in the dataset, because the 

number of cells sequenced in this clone is the largest (n = 60) among all clones.  We excluded 

from our analysis all genes on Chromosomes 3 and 4 due to aneuploidy in this clone and X-
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linked genes due to X inactivation.  To increase the sensitivity of our analysis and remove 

imprinted genes, we focused on the 3405 genes that have at least 10 RNA-seq reads mapped 

to each of the two alleles.  These genes form 3404×3405/2 = 5,795,310 gene pairs, among 

which 377,584 pairs are chromosomally linked.  

For each pair of chromosomally linked genes, we computed their δe by treating the 

allele from CAST/EiJ as allele 1 and that from C57BL/6J as allele 2 at each locus.  The 

fraction of gene pairs with δe > 0 is 0.61 (Fig.3-2B). As shown by the 95% confidence 

intervals, this trend is significantly higher than null expectation.  Because a gene can appear 

in multiple gene pairs, the δe from all pairs might not be fully independent. To be 

conservative, we further applied binomial test in a subset of gene pairs where each gene 

appears only once. Specifically, we randomly shuffled the orders of all genes on each 

chromosome and considered from one end of the chromosome to the other end non-

overlapping consecutive windows of two genes. The result is still significantly exceeding the 

null expectation of 0.5 (P < 2.4×10-16, binomial test).   That most gene pairs exhibit δe > 0 

holds in each of the 17 chromosomes examined, with the trend being statistically significant 

in 6 chromosomes even using the very conservative test as described above (nominal P < 

0.05; Fig.3-2C).  As a negative control, we analyzed gene pairs located on different 

chromosomes, treating alleles the same way as described above.  As expected, this time the 

fraction of gene pairs with δe > 0 is not significantly different from 0.5 (P = 0.25; Fig.3-2B).  

The fraction of gene pairs with δe > 0 appears to vary among chromosomes (Fig.3-2C).  To 

assess the significance of this variation, we compared the fraction of independent gene pairs 

with δe > 0 between every two chromosomes by Fisher's exact test.  After correcting for 

multiple testing, we found no significant difference between any two chromosomes. 

To examine the generality of the findings from clone 7, we also analyzed clone 6 

(derived from the hybrid of C57BL/6J female × CAST/EiJ male), which has 38 cells with 
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RNA-seq data. In the supplementary material of reference 23(Reinius et al., 2016) , the 

authors mentioned that 10 cells of clone 6 are aneuploidy for different chromosomes. We 

therefore removed these 10 cells. Similar results were obtained (Fig.A2-1A and A2-1B).  

Because clone 6 was from a male whereas clone 7 was from a female, our results apparently 

apply to both sexes.  We also analyzed 47 non-clonal fibroblast cells with the same genetic 

background (cell IDs from 124 to 170, derived from the hybrid of C57BL/6J female × 

CAST/EiJ male), and obtained similar results (Fig.A2-1C and Fig.A2-1D).  These findings 

establish that the linkage effect on expression co-fluctuation is neither limited to a few genes 

in a specific clone nor an epigenetic artifact of clonal cells, but is general.  The linkage effect 

on co-fluctuation (and the decrease of the effect with genomic distance shown below) is 

robust to the definition of δe, because similar results are obtained when correlation 

coefficients are replaced with squares of correlation coefficients in the definition of δe.    

We next investigated how close two genes need to be on the same chromosome for 

them to co-fluctuate in expression.  We divided all pairs of chromosomally linked genes into 

100 equal-interval bins based on the genomic distance between genes, defined by the number 

of nucleotides between their transcription start sites (TSSs).  The median δe in a bin is found 

to decrease with the genomic distance represented by the bin (Fig.3-2D).  Furthermore, even 

for the unbinned data, δe for a pair of linked genes correlates negatively with their genomic 

distance (Spearman's ρ = -0.029).  To assess the statistical significance of this negative 

correlation, we randomly shuffled the genomic coordinates of genes within chromosomes and 

recomputed the correlation.  This was repeated 1000 times and none of the 1000 ρ values 

were equal to or more negative than the observed ρ.  Hence, the linkage effect on expression 

co-fluctuation of two linked genes weakens significantly with their genomic distance (P < 

0.001). 

Surprisingly, however, median δe exceeds 0 for every bin except when the genomic 
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distance exceeds 150 Mb (Fig.3-2D).  Hence, the linkage effect is long-range.  To 

statistically verify the potentially chromosome-wide linkage effect, we focused on linked 

gene pairs that are at least 63 Mb apart, which is one half the median size of mouse 

chromosomes.  The median δe for these gene pairs is 0.017, or 68% of the median δe for the 

left-most bin in Fig.3-2D.  We randomly shuffled the genomic positions of all genes and 

repeated the above analysis 1000 times.  In none of the 1000 shuffled genomes did we 

observe the median δe greater than 0.017 for linked genes of distances >63 Mb, validating the 

long-range expression co-fluctuation in the actual genome.  The above observations are not 

clone-specific, because the same trend is observed for cells of clone 6 (Fig.A2-1B).  

Notably, a previous experiment in mammalian cells (Raj et al., 2006) detected a 

linkage effect for chromosomally adjacent reporter genes (δe = 0.834) orders of magnitude 

stronger than what is observed here.  This is primarily because expression levels estimated 

using single-cell RNA fluorescence in situ hybridization in the early study (Raj et al., 2006) 

are much more precise than those estimated using allele-specific single-cell RNA-seq (Raj et 

al., 2008) here.  We thus predict that the linkage effect detected will be more pronounced as 

the expression level estimates become more precise.  As a proof of principle, we gradually 

raised the required minimal number of reads per allele in our analysis, which should increase 

the precision of expression level estimation but decrease the number of genes that can be 

analyzed.  Indeed, as the minimal read number rises, the fraction of chromosomally linked 

gene pairs with a positive δe (Fig.3-2E), median δe for all chromosomally linked gene pairs 

(Fig.3-2F), and median δe for the left-most bin (Fig.3-2F) all increase.  Further more,through 

simulation that incorparates known parameters with regard to our dataset(see Methods), we 

can estimate a lower bound for δe. As shown in Fig.A2-6A, if we take into account the low 

capturing efficiency of single-cell RNA-seq, we will have the relationship:  

estimated !!  =  0.13×true !! + 0.0009 
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The median estimated δe in our data set is 0.020, therefore, the true δe is estimated to be 

(0.02− 0.0009)/0.13 ≈ 0.15. This estimation is strictly a lower bound, since we only 

considered the transcript capturing loss in the reverse transcription step whose magnitude we 

have empirical knowledge about. The true δe can only be larger.  

Because what matters to a cell is the total number of transcripts produced from the 

two alleles of a gene instead of the number produced from each allele, we also calculated the 

pairwise correlation in expression level between genes using either the total number of reads 

mapped to both alleles of a gene or normalized expression level of the gene.  We similarly 

found a long-range linkage effect (Fig.A2-2), with trends and effect sizes close to the 

observations based on allele-specific expressions.  

Previous studies reported that the relative transcriptional orientations of neighboring 

genes influence their expression co-fluctuation (Yan et al., 2016).  This impact, however, is 

unobserved in our study (Fig.A2-4), which may be due to the limited precision of the 

expression estimates and the fact that only 422 pairs of neighboring genes satisfy the minimal 

read number requirement.   

3.3.2 Shared chemical environment for transcription results in the long-range linkage 

effect 

What has caused the chromosome-wide expression co-fluctuation of linked genes?  

Individual chromosomes in mammalian cells are organized into territories with a diameter of 

1~2 µm (Dekker and Mirny, 2016), whereas the diameter of the nucleus is ~8 µm (Dekker 

and Mirny, 2016).  Thus, the physical distance between chromosomally linked genes is below 

1~2 µm, whereas that between unlinked genes is usually > 1~2 µm and can be as large as ~8 

µm.  Because it takes time for macromolecules to diffuse in the nucleus, linked genes tend to 

have similar chemical environments and hence similar transcriptional dynamics (i.e., 

promoter co-accessibility and/or co-transcription) when compared with unlinked genes.  We 
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thus hypothesize that the linkage effect is fundamentally explained by the 3D proximity of 

linked genes compared with unlinked genes (Fig.3-3A).  Below we provide evidence for this 

model.  

We started by comparing the 3D distances between linked alleles with those between 

unlinked alleles.  The 3D distance between two genomic regions can be approximately 

measured by Hi-C, a high-throughput chromosome conformation capture method for 

quantifying the number of interactions between genomic loci that are nearby in 3D space 

(Belton et al., 2012).  The smaller the 3D distance between two genomic regions, the higher 

the interaction frequency between them(Dekker et al., 2013).  It is predicted that the 

interaction frequency between the physically linked alleles of two genes (cis-interaction) is 

greater than that between the unlinked alleles of the same gene pair (trans-interaction).  To 

verify this prediction, we analyzed the recently published allele-specific 500kb-resolution Hi-

C interaction matrix (Giorgetti et al., 2016) of mouse neural progenitor cells (NPC).  For any 

two linked loci A and B as depicted in the left diagram of Fig.3-2A, we computed !! =

[! !!,!! + ! !!,!! − ! !!,!! − ! !!,!! ]/2, where F is the interaction frequency 

between the two alleles in the parentheses and the subscript "i" refers to interaction.  We 

found that 99% of pairs of linked loci have a positive !! (P < 2.2×10-16, binomial test on 

independent locus pairs; Fig.3-3B).  By contrast, among unlinked gene pairs, the fraction 

with a positive !! is not significantly different from that with a negative !! (P = 0.90, 

binomial test on independent locus pairs; Fig.3-3B).  In the analysis of unlinked loci, we 

treated all alleles from one parental species of the hybrid as alleles 1 and all alleles from the 

other parental species of the hybrid as alleles 2 in the above formula of !!.  These results 

clearly demonstrate the 3D proximity of genes on the same chromosome when compared 

with those on two homologous chromosomes.    

To examine if the above phenomenon is long-range, we plotted !! as a function of the 
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distance (in Mb) between two linked loci considered.  Indeed, even when the distance 

exceeds 63 Mb, one half the median size of mouse chromosomes, almost all locus pairs still 

show positive !! (Fig.3-3C).  Similar to the phenomenon of the linkage effect on gene 

expression co-fluctuation, we observed a negative correlation between the genomic distance 

between two linked loci and !! (ρ = -0.81 for unbinned data).  This correlation is statistically 

significant (P < 0.001), because it is stronger than the corresponding correlation in each of 

the 1000 negative controls where the genomic positions of all genes are randomly shuffled 

within chromosomes. 

  As mentioned, 3D proximity should synchronize the transcriptional dynamics of 

linked alleles.  Based on the bursty model of gene expression (Phillips et al., 2012), 

transcription involves two primary steps.  In the first step, the promoter region switches from 

the inactive state to the active state such that it becomes accessible to the transcriptional 

machinery.  In the second step, RNA polymerase binds to the activated promoter to initiate 

transcription.  In principle, the synchronization of either step can result in co-fluctuation of 

mRNA concentrations.  Because the accessibility of promoters can be detected using 

transposase-accessible chromatin using sequencing (ATAC-seq) (Buenrostro et al., 2015a) in 

a high-throughput manner, we focused our empirical analysis on promoter co-accessibility.  

To verify the potential long-range linkage effect on chromatin co-accessibility, we 

should ideally use single-cell allele-specific measures of chromatin accessibility.  However, 

such data are unavailable.  We reason that, the accessibility covariation of genomic regions 

among cells may be quantified by the corresponding covariation among populations of cells 

of the same type cultured under the same environment.  In fact, it can be shown 

mathematically that, under certain conditions, chromatin co-accessibility of two genomic 

regions among cells equals the corresponding chromatin co-accessibility across cell 

populations (see Methods).  Based on this result, we analyzed a dataset collected from allele-
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specific ATAC-seq in 16 NPC cell populations (Xu et al., 2017).  We first removed sex 

chromosomes and then required the number of reads mapped to each allele of a peak to 

exceed 50 for the peak to be considered.  This latter step removed imprinted loci and ensured 

that the considered peaks are relatively reliable.  About 3500 peaks remained after the 

filtering.  This sample size is comparable to the number of genes used in the analysis of 

expression co-fluctuation.  For each pair of ATAC peaks, we computed !! = [!! !!,!! +

!! !!,!! − !! !!,!! − !! !!,!! ]/2, where ra is the correlation in ATAC-seq read 

number between the alleles specified in the parentheses (following the left diagram in Fig.3-

2A) across the 16 cell populations and the subscript "a" refers to chromatin accessibility.  The 

fraction of peak pairs with a positive !! is significantly greater than 0.5 for linked peak pairs 

but not significantly different from 0.5 for unlinked peak pairs (binomial test on independent 

peak pairs; Fig.3-3D).  Furthermore, after grouping ATAC peak pairs into 100 equal-interval 

bins according to the genomic distance between peaks, we observed a clear trend that !! 

decreases with the genomic distance between peaks (ρ = -0.05 for unbinned data, P < 0.001, 

within-chromosome shuffling test; Fig.3-3E).  In addition, even for linked peak pairs with a 

distance greater than 63 Mb, their median !! is significantly greater than that of unlinked 

peak pairs (P < 0.001, among-chromosome shuffling test).  Together, these results 

demonstrate a long-range linkage effect on chromatin co-accessibility.  Similar to the !!, the 

observed !! is small in our dataset. As already shown in Fig.A2-5C~D, this is likely also due 

to the low capturing efficiency in high-throughput sequencing technique. Through simulation 

that incorporates known parameters of our dataset, we have (Fig.A2-6B): 

                                           !"#$%&#!' !! = 0.04×true !! + 0.002  

Given that the median δa is 0.0036, the true δa is at least (0.0036− 0.002)/0.04 ≈ 0.03, an 

order of magnitude larger. Again, this estimation is strictly a lower bound since we only 

consider capturing loss due to reverse transcription. 
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Because we hypothesize that the linkage effect on expression co-fluctuation is via 3D 

chromatin proximity that leads to chromatin co-accessibility (Fig.3-3A), we should verify the 

relationship between 3D proximity and chromatin co-accessibility for unlinked genomic 

regions to avoid the confounding factor of linkage.  To this end, we converted ATAC-seq 

read counts to a 500kb resolution by summing up read counts for all allele-specific chromatin 

accessibility peaks that fall within the corresponding Hi-C bin, because the resolution of the 

Hi-C data is 500kb.  Because alleles from different parents are unlinked in the hybrid used for 

ATAC-seq, for each pair of bins, we computed the mean correlation in chromatin 

accessibility between the alleles derived from different parents among the 16 cell 

populations, or trans-ra = ra(A1, B2)/2 + ra(A2, B1)/2.  For the same reason, we computed the 

sum of Hi-C contact frequency between the alleles derived from different parents, trans-F = 

! !!,!! + ! !!,!! .  Because interaction frequencies in Hi-C data are generally low for 

unlinked regions, we separated all pairs of bins into two categories, contacted (i.e., trans-F > 

0) and uncontacted (i.e., trans-F = 0).  We found that trans-ra values for contacted bin pairs 

are significantly higher than those for uncontacted bin pairs (P < 0.0001; Fig.3-3F), 

consistent with our hypothesis that 3D chromatin proximity induces chromatin co-

accessibility.  The above statistical significance was determined by performing a Mantel test 

using the original trans-ra matrix of the aforementioned allele pairs and the corresponding 

trans-F matrix.  Corroborating our finding, a recent study of single-cell (but not allele-

specific) chromatin accessibility data also found that the co-accessibility of two loci rises 

with their 3D proximity (Buenrostro et al., 2015b).  

To test the hypothesis that chromatin co-accessibility leads to expression co-

fluctuation (even for unlinked alleles) (Fig.3-3A), we analyzed the allele-specific ATAC-seq 

data and single-cell allele-specific RNA-seq data together.  Although these data were 

generated from different cell types in mouse, we reason that, because the 3D chromosome 
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conformation is highly similar among tissues (Dixon et al., 2012), chromatin co-accessibility, 

which is affected by 3D chromatin proximity (Fig.3-3F), may also be similar among tissues.  

Hence, it may be possible to detect a correlation between chromatin co-accessibility and 

expression co-fluctuation.  To this end, we used unbinned ATAC-peak data to compute trans-

ra but limited the analysis to those peaks with at least 10 reads per allele.  We used the allele-

specific RNA-seq data to compute trans-!! = !! !!,!! /2+ !! !!,!! /2 for pairs of linked 

genes.  We then assigned each gene to its nearest ATAC peak and averaged trans-re among 

gene pairs assigned to the same pair of ATAC peaks.  We subsequently grouped ATAC peak 

pairs into 100 equal-interval bins according to their co-accessibilities, and observed a clear 

positive correlation between median trans-ra and median trans-re across the 100 bins (Fig.3-

3G).  For unbinned data, trans-ra and trans-re also show a significant, positive correlation (ρ 

= 0.021, P = 0.027, Mantel test).   

Heretofore we showed qualitatively shared chemical enviroment due to 3D proximity 

can result in chromatin co-accessibility, which leads to expression co-fluctuation. In order to 

visualize the relationship between 3D proximity and expression co-fluctuation quantitatively, 

we analyzed Hi-C contact frequency and gene expression co-fluctuation together. Notice, for 

vast majority of unlinked genomic regions, the Hi-C contact frequency is zero, which means 

their 3D proximity information is lost.  Therefore, we only consider genomic region pairs that 

are linked in this analysis. For Hi-C contact requency of each genomic region pair, we sum 

up all four interaction frequencies as a measure of total interaction frequencies for that pair.  

Next, we assigned each gene in our dataset to their nearest Hi-C bin. For each gene pair, we 

compute the correlation as the average of the four allelic pair expression correlations 

computed previously. And for gene pairs that assigned to the same genomic region pairs 

defined by the Hi-C bins, we computed the average correlations of all pairs. We subsequently 

grouped the region pairs into 100 bins according to their Hi-C total contact frequency. For 
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each bin, we computed the median Hi-C contact frequency and the median expression co-

fluctuation. Because the dynamic range of Hi-C contact frequency is large, we converted 

median Hi-C contact frequency in each bin into log scale. We found a clear positive trend 

between Hi-C total contact frequencies and expression co-fluctuation (Fig.3-3H).  To assess 

the significance of this trend, we first ordered the genomic region pairs by their Hi-C contact 

frequencies in a descending order. We then went through all the genomic region pairs and 

recorded the newly encounter genomic regions. If we encounter a genomic region pair that 

contains a genomic region that already recorded before, we removed that genomic pair. This 

operation allows us to obtain a set of independent pairs for which every genomic region only 

appears once. The reason that we ordered our pairs first is to ensure that genomic region pairs 

with high Hi-C measurement accuracy are more likely to be retained, since the measurement 

for low Hi-C contact frequency values is inaccurate due to small number effect. We further 

controlled 1D distance using partial correlation. We found that the correlation between Hi-C 

contact frequency and expression co-fluctuation is significant (Partial r=0.14, P=0.004). We 

then explored whether or not co-accessibility mediated by physical proximity can fully 

account for the positive correlation. To obtain co-accessibility measure for each independent 

genomic region pair, we used the trans-ra computed previously and computed cis-ra 

similarly. We used the average of all the  ra values as our co-accessibility measure for the 

independent genomic pairs that we kept.We found that the correlation remains significant 

after controlling for co-accessibility (Partial r=0.13, P=0.01). The above results give 

quantitative support for our model demonstrated in Fig.3-3A. 

 The above results support our hypothesis that, compared with unlinked genes, linked 

genes have a shared chemical environment due to their 3D proximity and hence chromatin 

co-accessibility, which leads to their expression co-fluctuation (Fig.3-3A).  However, 3D 

proximity can lead to promoter co-accessibility by several means, which have been broadly 
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summarized into three categories of mechanisms (Dekker and Mirny, 2016): 1D scanning, 

3D looping, and 3D diffusion.  1D scanning refers to the spread of chromatin states along an 

entire chromosome.  However, 1D scanning is rare, with only a few known examples such as 

X-chromosome inactivation (Dekker and Mirny, 2016).  Hence, 1D scanning is unlikely to be 

the mechanism responsible for the broad linkage effect discovered here.  3D looping refers to 

the phenomenon that a chromosome often forms loops to bring far-separated loci into 

contact, whereas 3D diffusion refers to chromosome communication by local diffusion of 

transcription-related proteins.  For tightly linked loci, our data do not allow a clear distinction 

between 3D looping and 3D diffusion in causing the linkage effect discovered here.  But 3D 

diffusion seems more likely for the long-range effect, because the range of 3D looping seems 

limited to loci separated by no more than 200 kb simply due to the rapid decrease of the 

contact frequency with the physical distance between two loci (Hahn and Kim, 2013), evident 

in Fig.3-3C (note the log scale of the Y-axis).  It has been estimated that loci separated by 10 

Mb behave essentially the same as two loci that are on different chromosomes in terms of the 

contact frequency (Dekker and Mirny, 2016), and any contact-based mechanism is unlikely 

to be long-range (e.g., topologically associating domains) (Dixon et al., 2012).  Therefore, the 

most likely cause of our observed long-range linkage effect is 3D diffusion.   

In the 3D diffusion mechanism, which molecule is most likely responsible for the 

observed long-range linkage effect on expression co-fluctuation?  If the chemical influencing 

transcription has a diffusion time in the nucleus much shorter than the interval between 

transcriptional bursts, two genes have essentially the same environment with respect to that 

chemical regardless of their 3D distance (Mahmutovic et al., 2012) and hence no linkage 

effect is expected (top cell in Fig.3-3I).  On the contrary, if the chemical diffuses too slowly 

to even distribute evenly in a chromosomal territory in a time comparable to the interval 

between transcriptional bursts, the linkage effect will be local (Mahmutovic et al., 2012) and 
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hence cannot be chromosome-wide (bottom cell in Fig.3-3I).  Therefore, the diffusion rate of 

the chemical responsible for the long-range linkage effect cannot be too low or too high such 

that they become evenly distributed in a chromosome territory but not the whole nucleus in a 

time comparable to the interval between transcriptional bursts (middle cell in Fig.3-3I).  The 

typical transcriptional burst interval is 18-50 minutes in mammalian cells (Dar et al., 2012; 

Suter et al., 2011).  The time for a chemical to distribute evenly in a given volume with radius 

R is on the order of R2/D, where D is the diffusion coefficient of the chemical (Phillips et al., 

2012).  Most molecules in the nucleus are rapidly diffused.  For example, transcription 

factors typically have a diffusion coefficient of 0.5-5 µm2/s in the nucleus (Hager et al., 2009; 

Phillips et al., 2012), meaning that they can diffuse across the whole nucleus in ~3~30 

seconds.  By contrast, core histone proteins such as H2B proteins diffuse extremely slowly 

due to their tight binding to DNA.  They are usually considered immobilized because 

diffusion is rarely observed during the course of an experiment (Hager et al., 2009; Lever et 

al., 2000).  Therefore, none of these molecules are responsible for the long-range linkage 

effect observed.  Interestingly, linker histones, which include five subtypes of H1 histones in 

mouse that play important roles in chromatin structure and transcription regulation (Fyodorov 

et al., 2018), have a diffusion coefficient of ~0.01µm2/s (Bernas et al., 2014).  Thus, it takes 

H1 proteins 25-100 seconds to diffuse through a chromosome territory, but ~30 minutes to 

diffuse across the whole nucleus.  The former time but not the latter is much smaller than the 

typical transcriptional burst interval.  Hence, it is possible that H1 diffusion in the nucleus is 

the ultimate cause of the linkage effect.  We provide empirical evidence for this hypothesis in 

a later section.  

3.3.3 Beneficial linkage of genes encoding components of the same protein complex 

Our finding that chromosomal linkage leads to gene expression co-fluctuation implies 

that linkage between genes could be selected for when expression co-fluctuation is beneficial.  
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Due to the complexity of biology, it is generally difficult to predict whether the expression 

co-fluctuation of a pair of genes is beneficial, neutral, or deleterious.  However, the 

expression co-fluctuation of genes encoding components of the same protein complex is 

likely advantageous.  To see why this is the case, let us consider a dimer composed of one 

molecule of protein A and one molecule of protein B; the heterodimer is functional but 

monomers are not.  We denote the concentration of dissociated protein A as [A], the 

concentration of dissociated protein B as [B], and the concentration of protein complex AB as 

[AB].  At the steady state, [AB] = K[A][B], where K is the association constant (Veitia, 

2010).  Furthermore, the total concentration of protein A, [A]t, equals [A] + [AB], and the 

total concentration of protein B, [B]t, equals [B] + [AB].  Based on these relationships, we 

simulated 10,000 cells, where the mean and coefficient of variation (CV) are respectively 1 

and 0.2 for both [A]t and [B]t (see Methods).  We assumed K = 105 based on empirical K 

values of protein complexes (Milo et al., 2009).  We found that, as the correlation between 

[A]t and [B]t increases, mean [AB] of the 10,000 cells rises (Fig.3-4A).  If we assume that 

fitness rises with [AB], the co-fluctuation of [A]t and [B]t is beneficial, compared with 

independent fluctuations of [A]t and [B]t.  Furthermore, because mean [A] and mean [B] must 

decrease with the rise of mean [AB], the co-fluctuation of [A]t and [B]t could also be 

advantageous because it lowers the concentrations of the unbound monomers that may be 

toxic.  Indeed, past studied found better expression co-fluctuations of genes encoding 

members of the same protein complex than random gene pairs (Budnik et al., 2018; Sigal et 

al., 2006), suggesting a demand for expression co-fluctuation of members of the same protein 

complex. We also simulated the concentration of  [AB] under a wide range of K (K=0.1, 

1,10, 100, 1000, 10000, 100000), our results remain largely unchanged, and the lower bound 

mean [AB] is 3% higher under co-fluctuation than under no co-fluctuation. Moreover, the 

effect size rises substantially if CV of protein is larger. For example, when CV = 0.5, the 
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effect rises to 20%. For eukaryotic species, CV of protein generally ranges from 0.1 to 1 

(Milo et al., 2009).We also considered dimers with different stoichiometries and suboptimal 

mean concentrations (see Methods). In all of the combinations of the parameters, the mean 

concentration of the protein complex increases as the correlation in expression levels of A 

and B increases, albeit with a wide range of effect sizes (0.001% to 27% higher under co-

fluctuation than under no co-fluctuation).  

 To test if genes encoding components of the same protein complex tend to be linked, 

we used the mouse protein complex data from CORUM and downloaded the chromosomal 

positions of all mouse protein-coding genes from Ensembl (Aken et al., 2016).  Because 

genes may be linked due to their origins from tandem duplication(Ibn-Salem et al., 2016), the 

data were pre-processed to produce a set of duplicate-free mouse protein-coding genes (see 

Methods).  We then randomly shuffled the genomic positions of the retained genes encoding 

protein complex components among all possible positions of the duplicate-free mouse 

protein-coding genes.  The observed number of linked pairs of genes encoding components 

of the same protein complex is significantly greater than the random expectation (Fig.3-4B).  

For comparison, we also computed the number of linked pairs of genes encoding components 

of different protein complexes.  This number is not significantly greater than the random 

expectation (Fig.3-4C).  Thus, the enrichment in gene linkage is specifically related to coding 

for components of the same protein complex.  Interestingly, the observed median distance 

between the TSSs of two linked genes encoding protein complex components is not 

significantly different from the random expectation, regardless of whether components of the 

same (Fig.3-4D) or different (Fig.3-4E) protein complexes are considered.   

The phenomenon that members of the same protein complex tend to be encoded by 

linked genes could have arisen for one or both of the following reasons.  First, selection for 

co-fluctuation among proteins of the same complex has driven the evolution of gene linkage.  
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Second, due to their co-fluctuation, products of linked genes may have been preferentially 

recruited to the same protein complex in evolution.  Under the first hypothesis, originally 

unlinked genes encoding members of the same protein complex are more likely to become 

linked in evolution than originally unlinked genes that do not encode members of the same 

complex.  To verify this prediction, we examined mouse genes using rat and human as 

outgroups (Fig.3-4F).  We obtained pairs of genes encoding components of the same protein 

complex in both human and mouse.  Hence, these pairs likely encode members of the same 

protein complex in the common ancestor of the three species.  Among them, 875 pairs are 

unlinked in human and rat, suggesting that they were unlinked in the common ancestor of the 

three species.  Of the 875 pairs, 25 pairs become linked in the mouse genome, significantly 

more than the random expectation under no requirement for gene pairs to encode members of 

the same complex (P = 0.005; Fig.3-4F; see Methods).  Therefore, the first hypothesis is 

supported.  Under this hypothesis, the result in Fig.3-4D may be explained by the long-range 

linkage effect on expression co-fluctuation, such that once two genes encoding components 

of the same protein complex move to the same chromosome, selection is not strong enough to 

drive them closer to each other.  To test the second hypothesis, we need gene pairs encoding 

proteins that belong to the same protein complex in mouse but not in human nor rat, which 

require such low false negative errors in protein complex identification that no current 

method can meet.  Hence, we leave the validation of the second hypothesis to future studies.  

As mentioned, our theoretical consideration suggests that, due to their intermediate 

diffusion coefficient, H1 histones may be responsible for the observed chromosome-wide 

expression co-fluctuation.  Because the local H1 concentration fluctuates more when its 

cellular concentration is lower, we predict that the benefit of and the coefficient of selection 

for linkage of genes encoding members of the same protein complex is greater in tissues with 

lower H1 concentrations.  Given that gene expression is costly, for a given gene, it is 
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reasonable to assume that the relative importance of its function in a tissue increases with its 

expression level in the tissue (Cherry, 2010; Gout et al., 2010).  Hence, we predict that, the 

more negative the across-tissue expression correlation is between a protein complex member 

gene and H1 histones, the higher the likelihood that the gene is driven to be linked with other 

genes encoding members of the same protein complex.  To verify the above prediction, we 

used a recently published RNA-seq dataset (Söllner et al., 2017) to measure Pearson's 

correlation between the mRNA concentration of a gene that encodes a protein complex 

member and the mean mRNA concentration of all H1 histone genes across 13 mouse tissues.  

Indeed, the linked protein complex genes show more negative correlations than the unlinked 

protein complex genes (P = 0.012, one-tailed Mann-Whitney U test; Fig.3-4G).  The 

disparity is even more pronounced when we compare linked protein complex genes that 

become linked in the mouse lineage with unlinked protein complex genes (P = 0.00068, one-

tailed Mann-Whitney U test; Fig.3-4G).  This is likely owing to the enrichment of genes that 

are linked due to the linkage effect in the group of evolved linked protein complex genes 

(!"#$%&$'!!"## !"#!$%&%'()!"## !"#!$%&%'() = !"!!"
!" = 92%) when compared with the group of linked protein 

complex genes (!"#$%&$'!!"## !"#!$%&%'()!"## !"#!$%&%'() = !""!!"!
!"! = 24%).  The above three groups of genes 

(evolved linked protein complex genes, linked protein complex genes, and unlinked protein 

complex genes) were constructed using stratified sampling so that their mean expression 

levels across tissues are not significantly different (see Methods).  For comparison, we 

performed the same analysis but replaced H1 histones with TFIIB, a general transcription 

factor that is involved in the formation of the RNA polymerase II preinitiation complex and 

has a high diffusion rate (Vosnakis et al., 2017).  The trends shown in Fig.3-4G no longer 

holds (unlinked vs. linked: P = 0.11, one-tailed Mann-Whitney U test; unlinked vs. evolved 

linked: P = 0.63, one-tailed Mann-Whitney U test).  We also performed the same analysis but 

replaced H1 histones with core histone proteins, which are immoblized (Lever et al., 2000).  



 
 

70 

Again, the trends in Fig.3-4G disappeared (unlinked vs. linked: P = 0.48, one-tailed Mann-

Whitney U test; unlinked vs evolved linked: P = 0.89, one-tailed Mann-Whitney U test).  

These results support our hypothesis about the role of H1 histones in the linkage effect of 

expression co-fluctuation. 

3.4 Discussion 

Using allele-specific single-cell RNA-seq data, we discovered chromosome-wide 

expression co-fluctuation of linked genes in mammalian cells.  We hypothesize and provide 

evidence that genes on the same chromosome tend to have close 3D proximity, which results 

in a shared chemical environment for transcription and leads to expression co-fluctuation.  

While the linkage effect on expression co-fluctuation is likely an intrinsic cellular property, 

when the expression co-fluctuation of certain genes improves fitness, natural selection may 

drive the relocation of these genes to the same chromosome.  Indeed, we provide evidence 

suggesting that the chromosomal linkage of genes encoding components of the same protein 

complex is beneficial owing to the resultant expression co-fluctuation that minimizes the 

dosage imbalance among these components and has been selected for in genome evolution.   

Although many statistical results in this study are highly significant, the effect sizes 

appear small in several analyses, most notably the δe and δa values for linked genes.  The 

small effect sizes are generally due to the large noise in the data, less ideal types of data used, 

and mismatches between the data sets co-analyzed. For instance, δe between linked genes 

estimated here (Fig.3-2D) is much smaller than what was previously estimated for a pair of 

linked florescent protein genes (Raj et al., 2006), due in a large part to the inherently large 

error in quantifying mRNA concentrations by single-cell RNA-seq (Marinov et al., 2014).  

The small size of δa (Fig.3-3E) is likely caused at least in part by the low efficiency of 

ATAC-seq in detecting open chromatin (see Methods).  The positive correlation between 

trans-ra and trans-re (Fig.3-3G) is likely an underestimate due to the use of different cell 
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types in RNA-seq and ATAC-seq.  As shown in Figs. 2E and 2F, the actual effect sizes 

would be much larger should better experimental methods and/or data become available.  

Hence, it is likely that many effects are underestimated in this study. In addition, the co-

fluctuation effect detected by Raj et al. may be unusually large because in that study the 

chromosomal distance between the two genes was extremely small and the two genes used 

identical regulatory elements (Raj et al., 2006).Regardless, it is important to stress that 

whether an effect is large or not depends on the sensitivity of natural selection. According to 

the results of Fig.3-4 B~G, the effects appear visible to natural selection, as reflected in the 

preferential chromosomal linkage of genes encoding members of the same protein complex. 

It may seem surprising that the apparently small effect of single cell co-fluctuation can be 

detected by natural selection. However, based on basic population genetics (Ohta, 1992), 

natural selection can detect a selection adavantage as small as the inverse of the effective 

population size. The mouse effective population size is about 70,000 (Phifer-Rixey et al., 

2012), so natural selection can detect a fitness differential that is as small as 1/70000. 

Because we used RNA-seq to measure expression co-fluctuation, our results apply to 

the co-fluctuation of mRNA concentrations.  In the case of protein complex components, it is 

presumably the co-fluctuation of protein concentrations rather than mRNA concentrations 

that is directly beneficial.  Although the degree of covariation between mRNA and protein 

concentrations is under debate (Kustatscher et al., 2017; Liu et al., 2016), the two 

concentrations correlate well at the steady state (Raj et al., 2006).  One key factor in this 

correlation is the protein half-life, because, when the protein half-life is long, mRNA and 

protein concentrations may not correlate well due to the delay in the effect of a change in 

mRNA concentration on protein concentration (Raj et al., 2006).  It is interesting to note that 

in Raj et al.'s study (Raj et al., 2006), mRNA and protein concentrations still correlate 

reasonably well (r = 0.43) when the protein half-life is 25 hours, which is much longer than 
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the reported mean protein half-life of 9 hours in mammalian cells (Eden et al., 2011).  

Corroborating this finding is the recent report (Popovic et al., 2018) that mRNA and protein 

concentrations correlate well across single cells in the steady state (mean r = 0.732).  Note 

that, although the correlation between mRNA and protein concentrations measured at the 

same moment may not be high when the protein half-life is long, the current protein level can 

still correlate well with a past mRNA level (Gedeon and Bokes, 2012).  Because our study 

focuses on cells at the steady state, co-fluctuation of mRNA concentrations is expected to 

lead to co-fluctuation of protein concentrations.   

We attributed the preferential linkage of genes encoding components of the same 

protein complex to the benefit of expression co-fluctuation, while a similar phenomenon of 

linkage was previously reported in yeast and attributed to the potential benefit of co-

expression of protein complex components across environments (Teichmann and Veitia, 

2004), where co-expression refers to the correlation in mean expression level.  In mammalian 

cells, our hypothesis is more plausible than the co-expression hypothesis for five reasons.  

First, across-environment (or among-tissue) variation in mean mRNA concentration does not 

translate well to the corresponding variation in mean protein concentration (Franks et al., 

2017; Kustatscher et al., 2017), while mRNA concentration fluctuation explains protein 

concentration fluctuation quite well (Popovic et al., 2018; Raj et al., 2006).  Hence, gene 

linkage, which enhances mRNA concentration co-fluctuation and by extension protein 

concentration co-fluctuation, may not improve protein co-expression across environments.  

Second, co-expression of linked genes appears to occur at a much smaller genomic distance 

than the linkage effect on co-fluctuation reported here (Hurst et al., 2004).  Thus, if selection 

on co-expression were the cause for the non-random distribution of genes encoding members 

of the same protein complex, these genes should be closely linked.  This, however, is not 

observed (Fig.3-4D).  Hence, the previous finding that genes encoding members of (usually 
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not the same) protein complexes tend to be clustered is best explained by the fact that certain 

chromosomal regions have inherently low expression noise and that these regions attract 

genes encoding protein complex members because stochastic expressions of these genes are 

especially harmful (i.e., the noise reduction hypothesis) (Batada and Hurst, 2007; Chen and 

Zhang, 2016).  Third, the protein complex stoichiometry often differs among environments, 

which makes co-expression of complex components disfavored in the face of environmental 

changes (Ori et al., 2016; Slavov et al., 2015).  Nonetheless, under a given environment, 

protein concentration co-fluctuation remains beneficial because of the presence of an optimal 

stoichiometry at each steady state.  Fourth, gene linkage is not necessary for the purpose of 

co-expression, because the genes involved can use similar cis-regulatory sequences to ensure 

co-expression even when they are unlinked.  In fact, a large fraction of co-expression of 

linked genes is due to tandem duplicates (Hurst et al., 2004), which have similar regulatory 

sequences by descent.  However, even for genes with the same regulatory sequences, linkage 

improves expression co-fluctuation at the steady state.  Finally, the co-expression hypothesis 

or noise reduction hypothesis cannot explain our observation of the relationship between the 

expression levels of H1 histones and those of linked genes encoding protein complex 

members across tissues (Fig.3-4G).  Taken together, these considerations suggest that it is 

most likely the selection for expression co-fluctuation rather than co-expression across 

environments that has driven the evolution of linkage of genes encoding members of the 

same protein complex.   

Several previous studies reported long-range coordination of gene expression 

(Fukuoka et al., 2004; Ghanbarian and Hurst, 2015; Kustatscher et al., 2017; Lercher and 

Hurst, 2006; Levesque and Raj, 2013; Liao and Zhang, 2008; Sémon and Duret, 2006; Singer 

et al., 2004; Spellman and Rubin, 2002), but most of them was about co-expression.  As 

discussed, co-expression is the correlation in mean expression level across different tissues or 
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environments and differs from expression co-fluctuation across single cells in the same 

environment.  One study used fluorescent in situ hybridization of intronic RNA to detect 

nascent transcripts in individual cells (Levesque and Raj, 2013).  The authors reported 

independent transcriptions of most linked genes with the exception of two genes about 14 

million bases apart that exhibit a negative correlation in transcription.  Their observations are 

not contradictory to ours, because they measured the nearly instantaneous rate of 

transcription, whereas we measured the mRNA concentration that is the accumulated result 

of many transcriptional bursts.  As explained, having a similar biochemical environment 

makes the activation/inactivation cycles of linked genes coordinated to some extent, even 

though the stochastic transcriptional bursts in the activation period may still look 

independent.  

 Our work suggests several future directions of research regarding expression co-

fluctuation and its functional implications.  First, it would be interesting to know if the 

linkage effect on expression co-fluctuation varies across chromosomes.  Although we 

analyzed individual chromosomes (Fig.A2-3), addressing this question fully requires better 

single-cell expression data, because the current single-cell RNA-seq data are noisy.  This also 

makes it difficult to detect any unusual chromosomal segment in its δe distribution.  Second, 

our results suggest that 3D proximity is a major cause for the linkage effect on expression co-

fluctuation.  In particular, diffusion of proteins with intermediate diffusion coefficients such 

as H1 histones is likely one mechanistic basis of the effect.  However, the diffusion behaviors 

of most proteins involved in transcription are largely unknown.  A thorough research on the 

diffusion behaviors of proteins inside the nucleus will help us identify other proteins that are 

important in the linkage effect.  As mentioned, our data do not allow a clear distinction 

between 3D looping and 3D diffusion in causing the linkage effect on tightly linked genes.  

To distinguish between these two mechanisms definitively, we would need allele-specific 
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models of mouse chromosome conformation (Naumova et al., 2013), which require more 

advanced algorithms and more sensitive allele-specific Hi-C methods.  Third, our study 

highlights the importance of the impact of sub-nucleus spatial heterogeneity in gene 

expression.  This can be studied more thoroughly via real-time imaging and spatial modeling 

of chemical reactions (Elf and Barkefors, 2018; Mahmutovic et al., 2012).  The lack of 

knowledge about the details of transcription reactions prevents us from constructing an 

accurate quantitative model of gene expression, which can be achieved only by more accurate 

measurement and more advanced computational modeling.  Fourth, we used protein 

complexes as an example to demonstrate how the linkage effect on expression co-fluctuation 

influences the evolution of gene order.  But, to understand the broader evolutionary impact of 

the linkage effect, a general prediction of the fitness consequence of expression co-

fluctuation is necessary.  To achieve this goal, whole-cell modeling may be required (Carrera 

and Covert, 2015).  Note that some other mechanisms such as cell cycle (Rustici et al., 2004) 

can also lead to gene expression co-fluctuation and so should be considered when predicting 

the relationship between gene expression and fitness.  Fifth, because expression co-

fluctuation could be beneficial or harmful, an alteration of expression co-fluctuation should 

be considered as a potential mechanism of disease caused by mutations that relocate genes in 

the genome.  Sixth, our analysis focused primarily on highly expressed genes due to the 

limited sensitivity of single-cell RNA-seq.  Because lowly expressed genes are affected more 

than highly expressed genes by expression noise (Raj et al., 2010), expression co-fluctuation 

may be more important to lowly expressed genes than highly expressed ones.  More sensitive 

and accurate single-cell expression profiling methods are needed to study the expression co-

fluctuation of lowly expressed genes.  Seventh, we focused on mouse fibroblast cells because 

of the limited availability of allele-specific single-cell RNA-seq data.  To study how 

expression co-fluctuation impacts the evolution of gene order, it will be important to have 
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data from multiple cell types and species.  Last but not least, as we start designing and 

synthesizing genomes (Baker, 2011), it will be important to consider how gene order affects 

expression co-fluctuation and potentially fitness.  It is possible that the fitness effect 

associated with expression co-fluctuation is quite large when one compares an ideal gene 

order with a random one.  It is our hope that our discovery will stimulate future researches in 

above areas.  

3.5 Methods 

3.5.1 High-throughput sequencing data  

The processed allele-specific single-cell RNA-seq data were downloaded from 

https://github.com/RickardSandberg/Reinius_et_al_Nature_Genetics_2016?files=1 

(mouse.c57.counts.rds and mouse.cast.counts.rds).  The Hi-C data (Giorgetti et al., 2016) 

were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72697, and 

we analyzed the 500kb-resolution Hi-C interaction matrix with high SNP density (iced-

snpFiltered). The processed ATAC-seq data were provided by authors(Xu et al., 2017), and 

the data from 16 NPC cell populations were analyzed.  All analyses were performed using 

custom programs in R or python. 

3.5.2 Protein complex data and pre-processing 

The mouse protein complex data were downloaded from the CORUM database 

(http://mips.helmholtz-muenchen.de/corum/) (Ruepp et al., 2009).  The coordinates for all 

mouse protein-coding genes were downloaded from Ensembl BioMart (GRC38m.p5) (Aken 

et al., 2016).  To produce duplicate-free gene pairs, we also downloaded all paralogous gene 

pairs from Ensembl BioMart.  Note that these gene pairs can be redundant, meaning that a 

gene may be paralogous with multiple other genes and appear in multiple gene pairs.  We 

then iteratively removed duplicate genes based on the following rules.  First, if one gene in a 

pair of duplicate genes has been removed, the other gene is retained.  Second, if neither gene 
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in a duplicate pair has been removed and neither encodes a protein complex component, one 

of them is randomly removed.  Third, if neither gene in a duplicate pair has been removed 

and only one of them encodes a protein complex member, we remove the other gene.  Fourth, 

if neither gene in a duplicate pair has been removed and both genes encode protein complex 

components, one of them is randomly removed.  Applying the above rules resulted in a set of 

duplicate-free genes with as many of them encoding protein complex members as possible. 

3.5.3 Gibbs sampling for testing protein complex-driven evolution of gene order 

We obtained all mouse genes that have one-to-one orthologs in both human and rat, 

and acquired from Ensembl their chromosomal locations in human, mouse, and rat.  Gene 

pairs are formed if their products belong to the same protein complex in human as well as 

mouse, based on protein complex information in the CORUM database mentioned above.  

Among them, 875 gene pairs from 342 genes are unlinked in both human and rat, of which 25 

pairs become linked in mouse.  To test whether the number 25 is more than expected by 

chance, we compared these 342 genes with a random set of 342 genes that also form 875 

unlinked gene pairs in human and rat.  These unlinked pairs are highly unlikely to encode 

members of the same complex, so serve as a negative control.  Because of the difficulty in 

randomly sampling 342 genes that form 875 unlinked gene pairs, we adopted Gibbs sampling 

(Geman and Geman, 1987), one kind of Markov-Chain Monte-Carlo sampling (Gilks, 2005).  

The procedure was as follows.  Starting from the observed 342 genes, represented by the 

vector of (gene 1, gene 2, …, gene 342), we swapped gene 1 with a randomly picked gene 

from the mouse genome such that the 342 genes still satisfied all conditions of the original 

342 genes described above.  We then similarly swapped gene 2, gene 3, ..., and finally gene 

342, at which point a new gene set was produced.  To allow the Markov chain to reach the 

stationary phase, we discarded the first 1000 gene sets generated.  Starting the 1001st gene 

set, we retained a set every 50 sets produced until 1000 sets were retained; this ensured 
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relative independence among the 1000 retained sets.  In each of these 1000 sets, we counted 

the number of gene pairs that are linked in mouse.  The fraction of sets having the number 

equal to or greater than 25 was the probability reported in Fig.3-4F.  

3.5.4 Chromatin co-accessibility among cells vs. among cell populations 

Let us consider the chromatin accessibilities of two genomic regions, A and B, in a 

population of N cells (N = 50,000 in the data analyzed) (Xu et al., 2017).  Let us denote the 

chromatin accessibilities for the two regions in cell i by random variables Ai and Bi, 

respectively, where i=1, 2, 3, ..., and N.  We further denote the corresponding total 

accessibilities in the population as random variables AT and BT, respectively.  We assume 

that Ai follows the distribution X, while Bi follows the distribution Y.  We then have the 

following equations. 

!" = !!!
!!!   and  !" = !!!

!!!  .            (1) 

Pearson's correlation between AT and BT across cell populations all of size N is 
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Because cells are independent from one another, when ! ≠ !,     
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!
!!!

!
!!! )+ ! !! ! !!!
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                                                                    = !" !" + (!! − !)!(!)!(!).           (4) 

Combining Eq. (2) with Eq. (4), we have  

!"##(!",!") = !" !" !!"(!)!(!)
! !"#(!)∙!"#(!) =

! !" !!(!)!(!)
!"#(!)∙!"#(!) = !"##(!,!).       (5) 

Hence, if the number of cells per population is a constant and there is no measurement error, 
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correlation of chromatin accessibilities of two loci among cells is expected to equal the 

correlation of total chromatin accessibilities per population of cells among cell populations. 

 To examine how violations of some of the above conditions affect the accuracy of Eq. 

(5), we conducted computer simulations.  We assume that the accessibility of a genomic 

region in a single cell is either 1 (accessible) or 0 (inaccessible).  This assumption is 

supported by previous single-cell ATAC-seq data (Buenrostro et al., 2015b), where the 

number of reads mapped to each peak in a cell is nearly binary.  Now let us consider two 

genomic regions whose chromatin states are denoted by A and B, respectively.  The 

probabilities of the four possible states of this system are as follows.  

                Pr ! = 0,! = 0 = !,      

   Pr ! = 0,! = 1 = !, 

              Pr ! = 1,! = 0 = !,              

    and    Pr ! = 1,! = 1 = !,            (6) 

where p + q + r + s = 1.  Hence, we have        

   ! ! = ! + !,        

   ! ! = ! + !,        

   E !" = !,         

   !"# ! = ! + ! ! + ! ,       

   !"# ! = ! + ! ! + ! .            (7) 

With Eq. (7), we can compute !"## !,! .  In other words, for any given set of p, q, r, and 

s, we can compute the among-cell correlation in chromatin accessibility between the two 

regions.  

 We then generated 10,000 random sets of p, q, r, s from a Dirichlet distribution.  For 

each set of p, q, r, and s, we simulated the state of a cell by a random sampling from the four 

possible states.  We did this for 16 cells as well as 16 cell populations each composed of 
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50,000 cells.  We computed the total accessibility of each region in each cell population by 

summing up the corresponding accessibility of each cell.  As expected, the among-cell 

correlation between the two regions in accessibility matches the true correlation (Fig.A2-5A).  

The deviation from the true correlation is due to sampling error.  Based on Eq. (5), the 

among-cell-population correlation between the two regions in total accessibility approximates 

the true correlation, which is indeed observed in our simulation (Fig.A2-5B).  

 Nevertheless, accessibility of a region may be undetected due to low detection 

efficiencies of high-throughput methods, which makes the observed correlation between the 

accessibilities of two regions lower than the true correlation. To assess the impact of such 

low detection efficiencies on the correlation, we simulated a scenario with a 10% detection 

efficiency, which is common in high-throughput methods (Marinov et al., 2014).  That is, for 

every accessible region, it is detected as accessible with a 10% chance and inaccessible with 

a 90% chance; every inaccessible region is detected as inaccessible with a 100% chance. Our 

simulation showed that the observed correlation between the accessibilities of two regions is 

weaker than the true correlation regardless of whether the data are from individual cells 

(Fig.A2-5C) or cell populations (Fig.A2-5D).  

True δa vs observed δa 

The	framework	we	developed	in	previous	section		"Chromatin co-accessibility among 

cells vs. among cell populations" allows us to perform a simulation to get a lower bound of 

true δa. We simulated the δa by considering two pairs of regions simultaneously. For each pair 

of regions, we first randomly sampled p, q, r and s, and computed the true correlation using 

Eq (7). The difference between the true correlations of the two pairs of regions is the true δa. 

Then, for each pair of regions, the estimated correlation can be obtained by simulation, from 

which we can get the estimated δa . In our allelic specific ATAC-seq data, only 55% of the 

reads are allelic specific. Given that in high-throughput sequencing data, the detection 
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efficiency is around 10%~20% when considering all reads (Hwang et al., 2018), we choose 

8.25%(= 0.15×0.55) as the detection efficiency in our simulation. We repeated this 

procedure 10000 times. And the result is plotted in Fig.A2-6B 

3.5.5 True δe vs observed δe 

To obtain a lower bound of the true δe, we performed a simulation incorporating the 

known parameters of single-cell RNA-seq in our dataset. The simulation was performed as 

follows: 

(1) We first decided the mean expression levels for a pair of genes, A and B. The 

mean expression levels were sampled from the distribution of mean expression levels of 

genes we analyzed. The mean expression level distribution of observed genes were obtained 

based on the estimation that 1 RPKM correspondent to 1 transcript per cell in the original 

dataset (Reinius et al., 2016). Notice that the mean expression level of each allele (A1, A2, B1, 

B2) will be half of the above sampled values; 

(2) We than generated the expression levels across 60 cells for a pair of alleles (A1 

and B1) from joint multivariate normal distribution. The multivariate normal distribution can 

be uniquely determined once the correlation coefficient between two alleles and their CV are 

chosen. We fixed the CV of the two alleles as 0.5, based on sm-FISH experiments for 

mammalian cells for genes whose expression levels are similar to the genes that we analyzed. 

(Battich et al., 2015). Notice the CV we used here is the mRNA CV but not the protein CV. 

The correlation between the two alleles was randomly sampled from range (-1, 1). We call 

this correlation !!. 

(3) For each allele in each cell, we used binomial sampling to determine the detected 

transcript level. In our data set, only 17% of the reads are allelic specific. Since the capturing 

efficiency is around 10%~20% for full-length single cell RNA-seq data (Hwang et al., 2018), 

we used 2.55%(= 0.15×0.17) as the sampling probability; 
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(4) We than computed the observed correlation of A1 and B1 across cells after 

binomial sampling,; 

(5) We repeated step (2)-(4). We call the newly sampled correlation !!. The true δe 

would be !! − !!, and the observed δe is the difference between the observed correlations; 

(6) Steps (1)-(5) were repeated 10000 times, with all true δe and observed δe 

recorded. And the result is plotted in Fig. A2-6A. 

Our simulation showed that the observed δe will be much weaker than the true δe 

(Fig.A2-6A). Notice this lower bound is conservative: further signal loss due to technical 

noise down-stream of the reverse-transcription (transcript capturing) is not modeled. 

3.5.6 Simulation of protein complex concentrations  

Let the concentration of protein complex AB be [AB].  To study the average [AB] 

across cells in a population, we first simulated the concentrations of subunit A and subunit B 

in each cell.  We assumed that the total concentrations of A and B, denoted by [A]t and [B]t 

respectively, are both normally distributed with mean = 1 and CV = 0.2.  We used CV = 0.2 

because this is the median expression noise measured by CV for enzymes in yeast(Wang and 

Zhang, 2011), the only eukaryote with genome-wide protein expression noise data (Newman 

et al., 2006).  Thus, the joint distribution of [A]t and [B]t is multivariate normal, which can be 

specified if the correlation (r) between [A]t and [B]t is known.  With a given r, we simulated 

[A]t and [B]t for 10,000 cells by sampling from the joint distribution.  We set the 

concentration to 0 if the simulated value is negative.  We computed [AB] in each cell by 

solving the following set of equations.  

[!]! = ! + !" , [!]! = ! + !" , and !" = ! ! ! ,                   (8) 

where we used K = 105 based on the empirical values of association constants of protein 

complexes (Milo et al., 2009).  We then took the average [AB] among all cells to acquire the 
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mean complex concentration. We also performed our simulation with  a wide range of K 

values (K=0.1, 1,10, 100, 1000, 10000, 100000), our results remain largely unchanged. 

The above simulation can be further extended to simulate the concentration of protein 

complex with different stoichiometry. In general, for protein complex AMBN: 

 [!]! = ! +! !!!! , [!]! = ! + ! !!!! , and !" = ![!]!!!      (9) 

Besides, by altering the mean expression level of A and B, we can futher simulate the 

effect when the relative concentration between A and B is suboptimal. Based on the general 

model, we simulated the concentration of protein complex across a wide range of parameters 

(K=0.1, 1,10, 100, 1000, 10000, 100000; (M, N)=(1, 1), (1,2), (1, 3), (2,2), (2, 3), (3,3); 

mean(A)=M, 2M, 0.5M whereas mean(B) keeps at N; CV=0.2 or 0.5). In all of the 

combinations of the parameters, the mean concentration of the protein complex increases as 

the correlation in expression levels of A and B increases, albeit with a wide range of effect 

size (0.001% to 27% higher under co-fluctuation than under no co-fluctuation).  

3.5.7 Analysis of the relationship in expression level between protein complex genes and 

linker histone genes across tissues 

This analysis used the RNA-seq data from 13 mouse tissues (Söllner et al., 2017) as 

well as the protein complex data aforementioned.  We divided all protein complex genes into 

three groups: unlinked genes, linked genes, and evolved linked genes.  The first two groups 

are from duplicate-free protein complex gene pairs.  A gene is assigned to the "linked" group 

if it is linked with at least one gene that encodes a member of the same protein complex.  We 

found that the gene expression levels tend to be higher for the "linked" group than the 

"unlinked" group.  To allow a fair comparison between these two groups, we computed the 

mean expression level of each gene across tissues and performed a stratified sampling as 

follows.  We lumped all genes from the two groups and divided them into 20 bins based on 

their expression levels.  For each bin, we counted the numbers of linked and unlinked genes 
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respectively, and randomly down-sampled the larger group to the size of the smaller group.  

After the downsampling, the expression levels of the two groups of genes are comparable (P 

= 0.9, two-tailed Mann-Whitney U test).  The third gene group contains genes that are linked 

in mouse but not in human nor in rat (i.e., "evolved linked").  We did not require them to be 

duplicate-free, but they were ancestrally unlinked so could not have resulted from tandem 

duplication.  The expression levels of the third group of genes are not significantly different 

from those of the first two groups after the stratified sampling (P = 0.68).  

After obtaining the three groups of genes, we examined the among-tissue correlation 

between the expression level of each of these genes and the total expression level of all 11 H1 

histone genes in mouse (Medrzycki et al., 2012).  For control, we performed the same 

analysis but replaced H1 histones with TFIIB, a rapidly diffused transcription factor.  In 

another control, we replaced H1 histones with immobilized core histones (H2A, H2B, H3, 

and H4).  H2A, H2B, H3, and H4 genes are obtained from Mouse Genome Informatics 

(http://www.informatics.jax.org/) (Bult et al., 2008): 

http://www.informatics.jax.org/vocab/pirsf/PIRSF002048 

http://www.informatics.jax.org/vocab/pirsf/PIRSF002050 

http://www.informatics.jax.org/vocab/pirsf/PIRSF002051 

http://www.informatics.jax.org/vocab/pirsf/PIRSF002052 

3.6 Data and software availability 

All statistical analyses were performed using custom R and python scripts that are 

available upon request. 
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Fig.3-1  The hypothesized linkage effect on gene expression co-fluctuation.  The cellular 
mRNA concentrations of two genes should be better correlated among isogenic cells in a 
population under a constant environment (A) when the two genes are chromosomally linked 
than (B) when they are unlinked.  In the dot plot, each dot represents a cell. 
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Fig.3-2  Chromosome-wide linkage effects on gene expression co-fluctuation in mouse 
fibroblast cells.  (A) The logic of the method for testing the linkage effect.  When gene A and 
gene B are linked, the correlations between the mRNA concentrations of the alleles of A and 
B that are physically linked (cis-correlations) should exceed the corresponding correlations of 
the alleles that are physically unlinked (trans-correlations).  That is, δe = (sum of cis-
correlations − sum of trans-correlations)/2 should be positive.  This relationship should 
disappear if gene A and gene B are unlinked.  (B) Fraction of gene pairs with positive δe.  The 
red line represents the null expectation under no linkage effect. The confidence bands based 
on raw number of pairs are presented. P-values from binomial tests on independent gene 
pairs are presented.  (C) Fraction of gene pairs with positive δe in each chromosome. The 
confidence bands based on raw number of pairs are presented.  Binomial P-values are 
indicated as follows.  NS, not significant; *, 0.01 < P < 0.05; **, 0.001 < P < 0.01; ***, 
0.0001 < P < 0.001; ****, P < 0.0001.  The red line represents the null expectation under no 
linkage effect.  The control (Ctl) shows the fraction of unlinked gene pairs with positive δe.  
(D) Median δe in a bin decreases with the median genomic distance of linked genes in the 
bin.  All bins have the same genomic distance interval.  TSS, transcription start site.  The blue 
line shows the linear regression of the binned data, and the confidence band is presented. 
Spearman's ρ from unbinned data and associated P-value determined by a shuffling test are 
presented.  (E) Fraction of linked gene pairs showing positive δe increases with the minimal 
number of reads per allele required.  (F) Median δe for all linked gene pairs (red) and median 
δe in the left-most bin of panel D (blue) increase with the minimal read number per allele 
required.   
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Fig.3-3  Mechanistic basis of the linkage effect on expression co-fluctuation.  (A) A model 
on how chromosomal linkage causes expression co-fluctuation.  (B) Fractions of linked or 
unlinked genomic region pairs with positive, 0, and negative δi values, respectively.  δi = 
(sum of cis-interactions − sum of trans-interactions)/2, where chromatin interactions are 
based on Hi-C data.  All fractions are shown, but the blue and red bars for linked regions are 
too low to be visible.  (C) δi decreases with the genomic distance between the linked regions 
considered.  Each dot represents one pair of linked genomic regions.  Shown here is log10(δi + 
5) because δi is occasionally negative and it decreases with genomic distance very quickly.  
The horizontal red line indicates δi = 0.  The blue line is a cubic spline regression of δi on the 
genomic distance.  Spearman's ρ from unbinned data and associated P-value determined by a 
shuffling test are presented.  (D) Fraction of linked or unlinked pairs of ATAC peaks with 
positive δa.  δa = (sum of cis-correlations in accessibility − sum of trans-correlations in 
accessibility)/2. The confidence bands calcuated from the raw number of pairs are presented. 
P-values from binomial tests on independent peak pairs are presented.  The red line shows 
the fraction of 0.5.  (E) δa decreases with the distance between linked ATAC peaks.  Each dot 
represents a bin.  All bins have the same distance interval.  The red line shows δa = 0.  The 
blue line shows the linear regression of the binned data.  For better viewing, one bin (X=156, 
Y= -0.02) is not shown; the extreme δa of the bin is probably due to the small sample size of 
the bin (n = 13).  Spearman's ρ computed from unbinned data and associated P-value 
determined from a shuffling test are presented.  (F) Co-accessibility (trans-ra) is greater for 
3D contacted (trans-F > 0) than uncontacted (trans-F = 0) non-allelic genomic regions 
located on homologous chromosomes.  The lower and upper edges of a box represent the first 
(qu1) and third quartiles (qu3), respectively, the horizontal line inside the box indicates the 
median (md), the whiskers extend to the most extreme values inside inner fences, 
md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers).  P-value is 
determined by a Mantel test.  (G) Expression co-fluctuation (trans-re) improves with the co-
accessibility (trans-ra) of non-allelic ATAC peaks located on homologous chromosomes.  
Each dot represents a bin.  All bins have the same distance interval.  The blue line shows the 
linear regression of the binned data. The confidence band is presented. Spearman's ρ 
computed from unbinned data and associated P-value determined by a Mantel test are 
presented. (H) Expression co-fluctuation is positively correlated with ln (Hi-C contact 
frequency). The blue line is a linear regression of expression co-fluctuation and ln (Hi-C 
contact frequency). The confidence band is presented.  (I) Diffusion rates for molecules 
responsible for the chromosome-wide linkage effect should be neither too high nor too low.  
If the diffusion is too fast, the concentration of the molecule will be similar across the nucleus 
(top); if the diffusion is too slow, the concentration cannot even be similar for loci loosely 
linked on the same chromosome (bottom).  Only when the diffusion rate is intermediate, the 
local chemical environment could be homogeneous for genes on the same chromosome but 
heterogeneous for genes on different chromosomes (middle).  The large oval represents the 
nucleus and each black "S" curve represents a chromosome.  Blue zig-zags show molecular 
diffusions, while the blue area depicts a chemically homogenous environment. 
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Fig.3-4  Genes encoding components of the same protein complex tend to be chromosomally 
linked.  (A) Mean concentration of the protein complex AB ([AB]) in 10,000 cells increases 
with the co-fluctuation of the concentrations of its two components measured by the 
correlation of the total concentration of protein A ([A]t) and that of B ([B]t).  (B-C) The 
frequency distribution of the number of pairs of linked genes encoding components of the 
same protein complex (B) and components of different protein complexes (C) in 10,000 
randomly shuffled genomes.  Arrows indicate the observed values.  (D-E) The frequency 
distribution of the median distance between two linked genes that encode components of the 
same protein complex (D) and components of different protein complexes (E) in 10,000 
randomly shuffled genomes.  Arrows indicate the observed values.  (F) Test of the hypothesis 
of protein complex-driven evolution of gene linkage, which asserts that the probability for an 
originally unlinked pair of genes to become linked is higher if they encode members of the 
same protein complex.  Of 875 pairs of genes that are unlinked in both human and rat and 
encode members of the same protein complex in both human and mouse, 25 become linked 
in mouse, as indicated by the arrow.  The frequency distribution of the corresponding 
expected number is shown by the distribution.  (G) Protein complex genes that are linked 
with at least one gene encoding a member of the same complex tend to be highly expressed in 
tissues with low abundances of linker histones.  Y-axis shows the correlation in expression 
level between protein complex genes and the linker histone genes across tissues. 
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Chapter 4: Preferred Synonymous Codons Are Translated More Accurately: Proteomic 

Evidence, Among-Species Variation, and Mechanistic Basis 

I love the right words. I think economy and precision of language are important. 

-Chelsea Clinton 

 

4.1 Abstract 

A commonly stated cause of the widespread phenomenon of unequal uses of 

synonymous codons is their differential translational accuracies.  However, this long-standing 

translational accuracy hypothesis (TAH) of codon usage bias has had no direct evidence 

beyond anecdotes.  Analyzing proteomic data from Escherichia coli, we observe higher 

translational accuracies of more frequently used synonymous codons, offering direct, global 

evidence for the TAH.  The experimentally measured codon-specific translational accuracies 

validate a sequence-based proxy; this proxy provides support for the TAH from the vast 

majority of over 1000 taxa surveyed in all domains of life.  We find that the relative 

translational accuracies of synonymous codons vary substantially among taxa and are 

strongly correlated with the amounts of cognate tRNAs relative to those of near-cognate 

tRNAs.  These and other observations suggest a model in which selections for translational 

efficiency and accuracy drive codon usage bias and its coevolution with the tRNA pool. 
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4.2 Introduction 

Eighteen of the 20 amino acids are each encoded by more than one codon, but the 

synonymous codons are usually unequally used in a genome(Hershberg and Petrov, 2008; 

Plotkin and Kudla, 2011).  Among the synonymous codons of an amino acid, those used 

more often than the average are referred to as preferred codons while the rest unpreferred.  

This phenomenon of codon usage bias (CUB), initially discovered over four decades ago 

from the first few determined gene sequences(Air et al., 1976; Efstratiadis et al., 1977; Fiers 

et al., 1975; Ikemura, 1981), is a result of the joint forces of mutation, genetic drift, and 

natural selection, but the specific selective agents have not been fully deciphered(Hershberg 

and Petrov, 2008; Plotkin and Kudla, 2011).  One long-standing hypothesis known as the 

translational accuracy hypothesis (TAH) asserts that different synonymous codons are 

translated with different accuracies and that CUB results at least in part from natural selection 

for translational accuracy(Akashi, 1994).  Indeed, the importance of accurate protein 

translation cannot be overstated, because mistranslation may lead to the loss of normal 

protein functions and gain of cellular toxicity(Drummond and Wilke, 2009) and cause severe 

diseases including cancer and neurodegenerative diseases(Chen et al., 2011).  In fact, several 

cellular mechanisms are known to ensure the overall fidelity of protein synthesis.  For 

example, conformational changes of the ribosome decoding center can be more efficiently 

induced by cognate codon-anticodon interactions than near-cognate codon-anticodon 

interaction(Ibba and Söll, 1999), allowing discrimination against incorrect decoding.  

Additionally, the accuracy of many steps in translation, such as tRNA aminoacylation(Ibba 

and Söll, 1999) and codon-anticodon matching, is enhanced by the energy-consuming kinetic 

proofreading(Hopfield, 1974).  Notwithstanding, even if synonymous codons differ in 

translational accuracy, relatively accurate synonymous codons may not be preferentially 

used.  This is because synonymous codons differ in other properties such as the translational 
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elongation speed(Hussmann et al., 2015; Weinberg et al., 2016); selection related to these 

other features(Qian et al., 2012) could triumph selection for translational accuracy.   

Several groups have attempted to test the TAH of CUB.  In particular, Akashi(Akashi, 

1994) developed an indirect test based on the idea that the benefit of using relatively accurate 

codons should be greater at evolutionarily conserved amino acid sites than unconserved sites 

of the same protein; consequently, a higher usage of preferred codons at conserved sites than 

at unconserved sites supports the TAH.  While Akashi’s test is positive for several model 

organisms investigated(Akashi, 1994; Drummond and Wilke, 2008; Stoletzki and Eyre-

Walker, 2007), this test does not directly compare translational accuracies of synonymous 

codons so cannot completely exclude alternative explanations(Akashi, 1994; Shah and 

Gilchrist, 2010).  In an early study, Precup and Parker used site-directed mutagenesis 

followed by peptide sequencing to show that AAU, an unpreferred codon of Asn, is misread 

as Lys 4-9 times more often than is AAC, a preferred codon of Asn, at a particular position of 

the coat protein gene of the bacteriophage MS2 under Asn starvation(Precup and Parker, 

1987).  Similarly, Kramer and Farabaugh observed that AAU has a significantly higher rate 

of mistranslation to Lys than AAC at a particular position of a reporter gene in Escherichia 

coli(Kramer and Farabaugh, 2007).  Nonetheless, Kramer and Farabaugh also observed that 

the unpreferred Arg codons of CGA and CGG and the preferred Arg codons of CGU and 

CGC exhibited similar rates of mistranslation to Lys(Kramer and Farabaugh, 2007).  While 

the above experiments directly tested the TAH, they were each based on the investigation of 

one amino acid site of one protein, so its genome-wide generality is unknown.  As such, a 

direct and global test of the TAH is needed.   

Capitalizing on a proteome-wide probe of mistranslation in E. coli(Mordret et al., 

2019), we here provide direct evidence that preferred codons are generally translated more 

accurately than unpreferred codons.  We then use the E. coli data to validate a sequence-based 
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proxy for relative translational accuracies of synonymous codons.  Using this proxy, we show 

that the TAH of CUB is supported in the vast majority of over 1000 diverse taxa surveyed, 

but that the relative translational accuracies of synonymous codons vary substantially among 

taxa.  We find that the relative translational accuracy of a synonymous codon is strongly 

correlated with its cognate tRNA abundance relative to near-cognate tRNA abundance.  

These and other results suggest a model in which selections for translational efficiency and 

accuracy drive the CUB and its coevolution with the tRNA pool.  

4.3 Results 

4.3.1 Preferred codons are more accurately decoded 

A direct test of the TAH of CUB requires comparing the mistranslation rate among 

synonymous codons.  Using mass spectrometry, Mordret et al. quantified mistranslations at 

individual sites of the E. coli proteome(Mordret et al., 2019).  After removing sites and 

codons where mistranslation rates cannot be quantified due to technical reasons (see 

Methods), we grouped mistranslation events according to the identities of their original 

codons.  We then computed the absolute mistranslation rate of a codon as the ratio of the total 

intensity of mistranslated peptides to that of all peptides mapped to the codon.  Finally, we 

computed the relative mistranslation rate (RMR) of a codon by dividing its absolute 

mistranslation rate by the mean absolute mistranslation rate of all codons coding for the same 

amino acid.  RMR >1 means that the codon has a higher mistranslation rate than the average 

among all codons for the same amino acid, whereas RMR <1 means the opposite.  Codon 

usage was assessed by the relative synonymous codon usage (RSCU).  The RSCU of a codon 

equals its frequency in the genome relative to the average frequency of all codons for the 

same amino acid(Sharp et al., 1986).  A codon with RSCU >1 is preferred while a codon with 

RSCU <1 is unprefered.   
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 We were able to estimate the RMR for 27 codons of nine amino acids (Fig. 4-1a).  

Except for Gly, the most preferred synonymous codon of an amino acid shows RMR <1, 

providing a significant support for the TAH (P = 0.020, one-tailed binomial test).  Similarly, 

except for Gly and Val, the least prevalent synonymous codon of an amino acid shows 

RMR >1 (P = 0.090, one-tailed binomial test).  Because both RSCU and RMR of a codon are 

relative to the mean of all codons for the same amino acid, they can be compared among 

codons of different amino acids.  Indeed, a strong negative correlation was observed between 

RSCU and RMR among the 27 codons (Pearson’s r = -0.56, P < 0.001, permutation test; 

Spearman’s ρ = -0.49, P = 0.005, permutation test; Fig. 4-1b).  Together, these findings from 

the proteomic data of E. coli demonstrate that preferred codons tend to have lower 

mistranslation rates, supporting the TAH of CUB. 

4.3.2 Relative translational accuracies of synonymous codons vary across taxa 

How do certain synonymous codons achieve higher translational accuracies than 

others?  There are two general scenarios.  In the first scenario, referred hereinafter as the 

constant accuracy hypothesis, the translational accuracy is intrinsically higher for a 

synonymous codon than another because of their different chemical nature(Hershberg and 

Petrov, 2009).  Consequently, the relative translational accuracies of synonymous codons 

should be more or less the same in different species.  For instance, given that AAA (Lys) is 

more accurate than AAG (Lys) in E. coli (Fig. 4-1a), we expect the same trend in the vast 

majority if not all species.  Alternatively, relative translational accuracies of synonymous 

codons may be greatly influenced by species-specific factors such as the tRNA pool.  Under 

this scenario, referred to as the variable accuracy hypothesis hereinafter, the relative 

accuracies of synonymous codons vary among species.  That is, AAA is more accurate than 

AAG in many species but the opposite is true in many other species.   
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Measuring the relative translational accuracies of synonymous codons in a large 

number of species will allow differentiating between the above two hypotheses, which will in 

turn help understand the mechanism underlying the translational accuracy differences among 

synonymous codons.  Because codon-specific, proteome-based translational accuracies have 

not been measured beyond E. coli, we resort to a sequence-based proxy referred to as the 

odds ratio (OR) that originated from Akashi’s test(Akashi, 1994).  Specifically, the OR of 

synonymous codon X that encodes amino acid Y in a gene is the number of times that X is 

used at invariant Y sites relative to the number of times that X is not used at invariant Y sites, 

divided by the number of times that X is used at variant Y sites relative to the number of 

times that X is not used at variant Y sites (Fig. 4-2a).  Here, invariant and variant Y sites refer 

to Y sites in the focal species whose counterparts in the ortholog from a related species have 

Y and non-Y, respectively.  The OR values computed from individual genes can be combined 

to yield a single OR using the Mantel-Haenszel procedure (see Methods).  While OR was 

originally developed for preferred codons, it can be computed for any codon of the 18 amino 

acids that have multiple synonymous codons(Qian et al., 2012).  Based on Akashi’s test, OR 

has been used as a proxy for the relative translational accuracy of a codon(Qian et al., 2012).  

To verify the relationship between OR and relative translational accuracy, we computed OR 

values by aligning E. coli genes with their Salmonella enterica orthologs.  Indeed, for the 27 

codons with RMR estimates, OR and RMR are strongly negatively correlated (r = -0.63, P = 

0.001; ρ = -0.43, P = 0.01; Fig. 4-2b), confirming that the OR of a codon is a valid proxy for 

its relative translational accuracy.  

 To examine whether the relative translational accuracies of synonymous codons vary 

among species, we took advantage of a recently built phylogenetic tree of 10,575 microbial 

taxa(Zhu et al., 2019).  Because most taxa (9,906) in the tree are from the domain Bacteria, 

we first focused our analysis on Bacteria.  We picked all 1,197 pairs of sister bacterial taxa 
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from the tree and aligned their orthologous genes (see Methods).  We randomly assigned one 

taxon in each pair as the focal taxon and computed OR for each codon as described above.  

We found a positive correlation between RSCU and OR across codons in 95% of the taxa 

examined (Fig. 4-2c), demonstrating an overwhelming support for the TAH of CUB in 

Bacteria.   

 We computed ln(OR) to make its distribution relatively symmetric to aid 

visualization, and examined as an example ln(OR) for codon CAT (His) in each of the focal 

taxa arranged according to the bacterial tree (one taxon per order is presented in Fig. 4-2d).  

We found ln(OR) to vary greatly from negative values to positive values, with a high density 

near 0 (Fig. 4-2e).  Furthermore, the extreme values of ln(OR) (bright red and bright green in 

Fig. 4-2d) are scattered across the tree rather than concentrated in a few clades, suggesting 

that the relative translational accuracy of CAT has changed substantially and frequently in 

evolution.  The across-taxon variation of OR indicates that CAT is the relatively inaccurate 

one of the two synonymous codons of His in many taxa (red in Fig. 4-2d) but the relatively 

accurate one in many other taxa (green), supporting the variable accuracy hypothesis.  From 

Fig. 4-2e, which shows the 18 amino acids each with multiple codons, it is clear that the 

pattern observed for CAT applies to all codons.  Furthermore, every codon has OR >1 in at 

least 8.9% of the taxa examined (Fig. A3-1a).  These results thus support the variable 

accuracy hypothesis for all synonymous codons.  The above observations of OR variation 

among taxa are not primarily caused by sampling error, because a similar pattern was 

detected when we analyzed a subset of taxa for each amino acid where the number of 

occurrences of each synonymous codon considered in OR estimation is at least 1000 per 

taxon (Fig. A3-1b).  They are not mainly caused by genetic drift either, because a similar 

pattern was found when we analyzed a subset of taxa with strong signals of selection for 

translational accuracy (correlation between RSCU and OR exceeding 0.5) (Fig. A3-1c).  It is 
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worth pointing out that, despite the general support for the variable accuracy hypothesis, for a 

minority of codons such as ATA (Ile), AGA (Arg), and AGG (Arg), the distribution of ln(OR) 

is strongly skewed toward negative values (Fig. 4-2e), suggesting that their relative 

translational accuracies are somewhat constrained although not invariable in evolution.   

 To investigate if the above observations from Bacteria are generalizable to the other 

two domains of life, we first expanded our analysis to Archaea represented in the large 

phylogeny mentioned(Zhu et al., 2019).  We found that the correlation between RSCU and 

OR is positive in 90% of taxa examined and that ln(OR) varies greatly across taxa for each 

codon (Fig. A3-2), further supporting the TAH and the variable accuracy hypothesis.  For 

Eukaryota, we analyzed five commonly used model organisms: human, mouse, worm, fly, 

and budding yeast (see Methods).  In each of these species, the correlation between RSCU 

and OR is significantly positive (Table A3-1), supporting the TAH.  Except for the two 

mammals, which are closely related, the ORs estimated from one species are not well 

correlated with those estimated from another species (Fig. A3-3).  Furthermore, the 

correlation in OR generally declines with the divergence time between the two species (Fig. 

A3-3), consistent with the variable accuracy hypothesis.  Taken together, our results show 

that the TAH is generally supported in all domains of life but the relative translational 

accuracies of synonymous codons vary across taxa.  

4.3.3 Mechanistic basis of among-codon and across-taxon variations of translational 

accuracies 

 The empirical support for the variable accuracy hypothesis strongly suggests that the 

determinants of the RMRs of synonymous codons vary among species.  In the 

aforementioned Kramer-Farabaugh study(Kramer and Farabaugh, 2007), the authors found 

that artificially increasing the expression level of the cognate tRNA for Arg codons AGA and 

AGG reduces their mistranslations to Lys, so proposed that the competition between cognate 
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and near-cognate tRNAs determines the mistranslation rate of a codon.  Here, the cognate 

tRNA is the tRNA whose anticodon pairs with the codon correctly (allowing wobble pairing), 

whereas the near-cognate tRNA corresponds to a different amino acid and has an anticodon 

that mismatches the codon at one position.  Consistent with the above proposal, Mordret et 

al.(Mordret et al., 2019) inferred that most of the mistranslation events in E. coli arose from 

mispairing between codons and near-cognate tRNAs.  They further noted that, for certain 

types of mistranslation, there is a negative correlation across growth phases between the 

mistranslation rate and the ratio (Rc/nc) in abundance between cognate and near-cognate 

tRNAs, although the correlation was rarely statistically significant(Mordret et al., 2019).  

Based on these past observations, we hypothesize that the relative translational accuracy of a 

synonymous codon increases with its relative Rc/nc, or RRc/nc, which is Rc/nc divided by the 

mean Rc/nc of all codons coding for the same amino acid (see Methods).  We further 

hypothesize that, because the tRNA pool varies substantially among species(Chan and Lowe, 

2009), the among-species variation of relative translational accuracies arises from the among-

species variation in RRc/nc. 

 To test the above hypotheses, we computed RRc/nc for each codon using published 

tRNA expression levels in E. coli(Mordret et al., 2019).  Indeed, we observed a significant 

negative correlation between RRc/nc and RMR (r = -0.47, P = 0.009; ρ = -0.53, P = 0.005; Fig. 

4-3a) and a significant positive correlation between RRc/nc and OR (r = 0.49, P = 0.07; ρ = 

0.74, P = 0.00001; Fig. 4-3b) across codons, supporting the hypothesis that the relative ratio 

of cognate to near-cognate tRNA abundances is a major determinant of a codon’s relative 

translational accuracy in E. coli.  Note that the relative cognate tRNA abundance alone is not 

significantly correlated with RMR (r = -0.22, P = 0.2; ρ = -0.04, P = 0.4; Fig. A3-4a), 

supporting the role of competition between cognate and near-cognate tRNAs in determining 

RMR.  As previously reported(Qian et al., 2012), the relative cognate tRNA level is highly 
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correlated with RSCU (r = 0.61, P = 0.03; ρ = 0.48, P = 0.02; Fig. A3-4b), which is likely a 

result of selection for high translational efficiency (i.e., more codons translated per unit time 

per cell) because balanced codon usage relative to cognate tRNA concentrations maximizes 

translational efficiency(Qian et al., 2012).   

We next investigated whether the above finding in E. coli applies to other bacterial 

taxa surveyed in Fig. 4-2.  Because tRNA expression levels are unknown for the vast majority 

of these taxa, we used the gene copy number of each tRNA species as a proxy for the total 

expression level of the tRNA species(Tuller et al., 2010).  Indeed, E. coli RRc/nc computed 

from tRNA gene copy numbers is highly correlated with that computed from tRNA 

expression levels (r = 0.77, P = 1.64×10-6; ρ = 0.90, P = 1.36×10-10).  Furthermore, E. coli 

RRc/nc computed from tRNA gene copy numbers is significantly correlated with RMR (Fig. 4-

3c), confirming the validity of using this proxy.  We obtained the tRNA gene annotations for 

1094 of the 1197 focal bacterial taxa examined in Fig. 4-2.  However, in many of these taxa, 

there is little tRNA gene redundancy or variation in cognate tRNA gene copy number among 

synonymous codons despite considerable CUB; in these taxa, the tRNA gene copy number is 

unlikely a good proxy for tRNA abunadnce(Wei et al., 2019).  Because the tRNA gene copy 

number is a good proxy for tRNA abundance in E. coli, which has 85 tRNA genes, we 

decided to filter out taxa with fewer than 81 tRNA genes to strike a balance between the noise 

level and number of taxa in our analysis.  This filtering left us with 59 taxa, in each of which 

we correlated the OR of a codon with its RRc/nc computed from tRNA gene copy numbers.  

The vast majority (92%) of the taxa show a positive correlation (Fig. 4-3d), supporting the 

generality of our hypothesis on the role of RRc/nc in determining the relative translational 

accuracy of a codon in Bacteria.  

To investigate whether the above finding is generalizable to other domains of life, we 

analyzed tRNA genes in Archaea taxa and Eukaryotic model organisms.  Unfortunately, no 
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Archaea taxa examined have more than 80 tRNA genes.  For each of the five eukaryotes 

(human, mouse, fly, worm, and yeast), the correlation between OR and RRc/nc computed from 

tRNA gene copy numbers is significantly positive for linear or rank correlation (Table A3-2).  

Together, our findings strongly support that, in the diverse taxa surveyed, the ratio of cognate 

tRNA abundance to near-cognate tRNA abundance is generally a major determinant of the 

relative translational accuracy of a codon.  Hence, the variation of the tRNA pool among 

species can explain the across-species variation of the relative translational accuracies of 

synonymous codons. 

4.4 Discussion 

Analyzing published proteomic data from E. coli, we provided direct, global evidence 

that preferred synonymous codons are generally decoded more accurately than unpreferred 

codons.  We found that relative translational accuracies of synonymous codons vary 

substantially among species, supporting the variable accuracy hypothesis.  We obtained 

strong evidence that the ratio of cognate tRNA abundance to near-cognate tRNA abundance 

is a major determinant of a codon’s relative translational accuracy.  Hence, the variable 

accuracies observed are mechanistically explained by the variation of the tRNA pool across 

species.  These findings, together with the previous report on the selection for translational 

efficiency(Qian et al., 2012), suggest a model in which the tRNA pool and codon usage 

coevolve to improve both translational efficiency and accuracy (Fig. 4-4a).  Specifically, 

mutation and drift can alter both codon frequencies and tRNA concentrations.  The cellular 

translational efficiency is maximized when (transcriptomic) codon frequencies equal relative 

cognate tRNA concentrations(Qian et al., 2012), whereas the translational accuracy of a 

codon is maximized when the ratio of its cognate tRNA concentration to near-cognate tRNA 

concentration is maximized.  Under this model, selections for translational efficiency and 

translational accuracy are related but not perfectly aligned, which could introduce tradeoffs 
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between translational efficiency and accuracy(Yang et al., 2014).  Indeed, our simulation of a 

simple genetic system with two amino acids, each encoded by two synonymous codons (Fig. 

4-4b), found that imposing a selection for translational accuracy can lower translational 

efficiency (Fig. 4-4c). 

Interestingly, our results imply that, even in the absence of selection for translational 

accuracy, the positive correlation between synonymous codon frequency and cognate tRNA 

concentration resulting from selection for translational efficiency(Qian et al., 2012) will 

likely render the cognate tRNA concentration relative to near-cognate tRNA concentration 

higher for more frequently used synonymous codons.  Consequently, the positive correlation 

between the relative codon frequency and relative translational accuracy may arise in the 

absence of selection for translational accuracy.  In fact, in E. coli, for 16 of the 18 amino 

acids with multiple synonymous codons, the codon with the highest cognate tRNA 

concentration has the highest RRc/nc.  Upon shuffling the expression levels among tRNA 

species, we found that, for over one half of the 18 amino acids, the codon with the highest 

cognate tRNA concentration has the highest RRc/nc.  This was true in each of 1000 shufflings.  

Nevertheless, in only 6 of these 1000 shufflings did all 18 amino acids exhibit the above 

feature.  Thus, a high but non-perfect concordance between translational efficiency and 

accuracy is expected.  Therefore, strictly speaking, the correlation in Fig. 4-1b by itself does 

not prove selection for translational accuracy.  However, this correlation, in conjunction with 

the correlation between RSCU and OR, demonstrates that evolutionarily conserved sites tend 

to use preferred synonymous codons, which tend to be relatively accurately translated, hence 

proving the role of selection for translational accuracy in causing CUB, or the TAH.  How 

codon usage and the tRNA pool evolve under the joint forces of selections for translational 

efficiency and accuracy in addition to mutation and drift is quite complex.  For instance, 

because any tRNA is simultaneously a cognate tRNA for one or more codons and a near-
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cognate tRNA for some other codons, increasing the translational accuracy of a particular 

codon might be at the expense of the translational accuracy of another codon.  Indeed, a 

previous study showed that artificially increasing the cognate tRNA expression levels for 

arginine codons can result in proteotoxic stress(Yona et al., 2013).  This subtle tradeoff could 

cause non-independent uses of codons of different amino acids.  This was indeed observed in 

the simulation aforementioned (Fig. 4-4d).  Future modeling work with realistic parameters 

might shed more light on this issue.  In addition to impacting translational efficiency and 

accuracy, synonymous mutations also affect mRNA folding(Park et al., 2013), mRNA 

stability(Presnyak et al., 2015), mRNA concentration(Chen et al., 2017; Presnyak et al., 2015; 

Zhou et al., 2016), pre-mRNA splicing(Chamary et al., 2006), and co-translational protein 

folding(Buhr et al., 2016; Walsh et al., 2020), so additional selections may shape CUB and its 

evolution.  

Our study has several caveats.  First, in our calculation of a codon’s mistranslation 

rate, we lumped all mistranslations of the codon regardless of the erroneous amino acid it is 

translated to.  Because different mistranslations of the same codon likely have differential 

fitness costs and because selection for translational accuracy likely minimizes the total fitness 

reduction caused by mistranslation instead of the mistranslation rate per se, properly 

weighting different mistranslations in RMR calculation will likely strengthen its correlation 

with RSCU.  Second, when calculating the ratio of cognate tRNA concentration to near-

cognate tRNA concentration, we did not consider the difference in interaction strength 

between different codons and anticodons(Reis et al., 2004).  Future research that takes into 

account this interaction under physiological conditions may significantly improve the signal 

in the correlation analysis of Fig. 4-3.  Third, our analysis in Fig. 4-3d was limited to taxa 

with >80 tRNA genes.  Future research using tRNA expression levels(Wei et al., 2019) when 

they become available can confirm if the same pattern holds for taxa with fewer tRNA genes.  
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Finally, due to data limitation, we did not consider tRNA expression variations across 

environments, cell cycle stages, or tissues(Gingold et al., 2014).  In the future, it would be 

interesting to study how such variations simultaneously impact translational efficiency and 

accuracy.   

Our results might help design organisms with expanded code tables(Ros et al., 2020).  

Expanding the code table is realized by introducing unnatural tRNAs that are charged with 

non-canonical amino acids.  The introduction of these tRNAs often leads to fitness defects 

due to mistranslation of normal codons(Chin, 2017).  Our research suggests that one way to 

alleviate the proteotoxic stress is to identify potential near-cognate codons that could be 

mistranslated by the unnatural tRNA and adjust the natural tRNA pool to minimize the 

impact.   

4.5 Methods 

4.5.1 Estimating relative mistranslation rates of synonymous codons from E. coli 

proteomic data 

The proteomic data analyzed came from Table A3-1 in Modret et al.(Mordret et al., 

2019).  The authors separately measured mistranslation events from high-solubility and low-

solubility proteins using mass spectrometry, and both groups of events were considered in 

our analysis.  We focused on the data from the wild-type strain BW25113 in the MOPS 

complete medium because (i) this dataset is the largest among datasets from all strain-

medium combinations and (ii) no artificial perturbation such as mutation, drug, or amino acid 

depletion was applied(Mordret et al., 2019).  We first removed sites that cannot be traced to a 

unique original codon.  We also filtered out sites showing an intensity of “NaN” for the 

unmodified (aka base) peptide or mistranslated (aka dependent) peptide.  Because different 

synonymous codons tend to generate different mistranslations by mispairing with different 

near-cognate tRNAs, if these different mistranslations have different detection probabilities, 
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the comparison between synonymous codons would be unfair. Unfortunately, some 

mistranslations produce mass shifts indistinguishable from post-translational modifications so 

cannot be reliably identified through mass spectrometry(Wei et al., 2019), which would 

produce exactly this situation in some cases.  Therefore, we removed amino acids with 

undetectable mistranslations except for Leu and Ile.  We kept these two amino acids because 

the only undetectable mistranslations for them are Leu to Ile and Ile to Leu, both can be 

considered benign due to the high physicochemical similarity between Leu and Ile(Henikoff 

and Henikoff, 1992).  Considering the structure of the genetic code table, we found that the 

underestimation of the mistranslation rate due to the negligence of mistranslations between 

Leu and Ile is severer for unpreferred than preferred codons, suggesting that the actual 

strength of evidence for higher mistranslation rates of unpreferred than preferred synonymous 

codons is stronger than what is shown in Fig. 4-1.  We then computed each codon's absolute 

mistranslation rate by dividing the total intensity of mistranslated (i.e., dependent) peptides 

by that of all (i.e., dependent + base) peptides mapped to the codon.  We divided each codon's 

absolute mistranslation rate by the mean absolute mistranslation rate of all codons coding for 

the same amino acid to obtain the codon’s relative mistranslation rate (RMR).  We removed 

amino acids without data for all of its synonymous codons because calculating RMR requires 

having data for all synonymous codons of an amino acid.  In total, we computed RMR for 27 

codons of 9 amino acids. 

4.5.2 Relative synonymous codon usage (RSCU), odds ratio (OR), and relative ratio of 

cognate tRNA concentration to near-cognate tRNA concentration (RRc/nc) for E. coli 

Peptide and cDNA sequences of E. coli (genome assembly ASM584v2) and S. 

enterica (genome assembly ASM78381v1) were downloaded from Ensembl Bacteria(Howe 

et al., 2021).  We computed RSCU of codon j of amino acid i from all coding sequences of E. 

coli by !"#$!,! =
!!!!,!

!!,!
!!
!!!

, where ni is the number of synonymous codons of amino acid i and 
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!!,!  is the number of codon j of amino acid i in all coding sequences(Sharp et al., 1986).  

Conventionally, RSCU is computed from highly expressed genes(Sharp et al., 1986).  

However, due to the lack of gene expression information from most of the species analyzed, 

we computed RSCU from all genes.  This should not qualitatively affect our analysis, because 

RSCU computed from highly expressed genes (e.g., the top 20% of genes) is nearly perfectly 

correlated with that computed from all genes (e.g., in E. coli, r = 0.96, P < 2.2×10-16).  

To calculate the OR of each codon, we first identified one-to-one orthologous proteins 

between E. coli and S. enterica using OrthoFinder(Emms and Kelly, 2019).  Next, we aligned 

these one-to-one orthologs using MUSCLE(Edgar, 2004), separating all amino acid sites into 

conserved and non-conserved sites.  For a focal codon in gene i, we tabulated !!, number of 

times the focal codon is observed at conserved amino acid sites; !!, number of times the focal 

codon is observed at unconserved sites; !!, total number of times the focal codon’s 

synonymous codons are observed at conserved sites; and !!, total number of times the focal 

codon’s synonymous codons are observed at unconserved sites.  Here, the focal codon’s 

synonymous codons do not include itself.  OR for gene i equals (aidi)/(bici).  Using the 

Mantel-Haenszel procedure, we combined the odds ratios of the focal codon from individual 

genes into one odds ratio(Akashi, 1994) by !" =
!!!!

(!!!!!!!!!!!)!
!!!!

(!!!!!!!!!!!)!
.   

To compute RRc/nc of a codon, we tabulated the cognate tRNAs and near-cognate 

tRNAs of the codon.  Cognate tRNAs are all tRNAs that can pair with the focal codon 

allowing wobble pairing at the 3rd codon position, while near-cognate tRNAs are tRNAs 

coded for a different amino acid but can pair with the focal codon with one base-pair 

mismatch (allowing wobble pairing at the 3rd codon position).  We then weighted each tRNA 

by their average relative expression levels across three growth stages in the MOPS complete 
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media (GEO number: GSE128812).  Finally, we normalized the ratio for each codon by the 

average ratio of all codons coding for the same amino acid. 

4.5.3 RSCU, OR, and RRc/nc for other species 

 RSCU, OR, and RRc/nc were calculated for non-E. coli taxa as for E. coli, with the 

differences noted below.  For the non-E. coli prokaryotic taxa, we downloaded the 

phylogenetic tree of 10,575 taxa from the Web of Life(Zhu et al., 2019) 

(https://biocore.github.io/wol/) and identified sister taxa from the tree.  Briefly, each pair of 

sister taxa are two taxa that are the single closest relative to each other in the tree.  For each 

pair of sister taxa, we downloaded from the same web site their protein-coding DNA 

sequences, protein sequences, and tRNA gene copy number data.  For eukaryotic model 

organisms, we downloaded protein-coding DNA sequences and protein sequences of human 

(Homo sapiens), mouse (Mus musculus), fly (Drosophila melanogaster), worm 

(Caenorhabditis elegans), and budding yeast (Saccharomyces cerevisiae) from the NCBI 

refseq database(O'Leary et al., 2016).  We further downloaded the protein sequences of 

Macaca mulatta (as a relative of H. sapiens), Rattus norvegicus (as a relative of M. 

musculus), Drosophila erecta (as a relative of D. melanogaster), Caenorhabditis briggsae (as 

a relative of C. elegans), and Saccharomyces paradoxus (as a relative of S. cerevisiae) from 

the NCBI refseq database.  The tRNA gene annotations in the five model organisms were 

downloaded from GtRNAdb(Chan and Lowe, 2009).  RRc/nc was computed using tRNA gene 

copy numbers instead of tRNA expression levels.  

4.5.4 Statistical analysis 

Many of the quantities estimated in our work, such as RMR, RRc/nc, RSCU, and OR, 

are not independent among synonymous codons.  To deal with this non-independence in 

statistical tests, we applied permutation tests.  Specifically, in Fig. 4-1b, we generated 1000 

permuted samples by shuffling the absolute mistranslation rates among all codons and then 
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re-estimated RMR values.  We then computed the correlation between RMR and RSCU in 

each permuted sample while holding the RSCU value of each codon unchanged.  P equals the 

fraction of permuted samples with the correlation coefficient more negative than that 

observed in the original sample.  Similarly, when testing the correlation between RMR and 

OR (Fig. 4-2b), we shuffled the absolute mistranslation rate among all codons and 

recomputed RMR while holding the OR for each codon unchanged.  When testing the 

correlation between RMR (or OR) and RRc/nc (Fig. 4-3), we shuffled the absolute 

mistranslation rates among codons and the expression levels (or gene copy numbers) among 

tRNAs.  Finally, when testing the correlation between RMR (or RSCU) and relative cognate 

tRNA concentration (Fig. A3-4), we shuffled the absolute mistranslation rate among codons 

and the expression level among tRNAs. 

To estimate the standard error (SE) of the RMR of each codon, we constructed 1000 

bootstrap samples by resampling the sites in the original data with replacement.  Similarly, 

we estimated the SE of the OR of each codon by constructing 1000 bootstrapped E. coli 

genomes via resampling its genes that have one-to-one orthologs in S. enterica.  

4.5.5 Simulation 

To assess the impact of selections for translational accuracy and efficiency on codon 

usage, we built a toy model with two amino acids: aa0 and aa1.  Amino acid aa0 is encoded by 

synonymous codons 00 and 01 while aa1 is encoded by synonymous codons 10 and 11 (Fig. 

4-4b).  Codon-anticodon pairing follows the rule that 0 pairs with 1 and vice versa.  The 

cognate tRNA of a codon has an anticodon that pairs perfectly with the codon, while the near-

cognate tRNA has an anticodon that pairs with the codon with exactly one mismatch and 

carries the other amino acid.  
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 We considered a unicellular organism with one gene consisting of n codons.  We 

assumed that the mRNA level of the gene does not change in the evolution simulated and that 

ribosomes are in shortage.  We defined the organismal fitness as follows.  

!"#$%&'( !"#$%&& = !"#$%&'# − !"#$, where       

           !"#$%&'# = !"× !!!
!!!  and !"#$ =  !!!

!!! .                                                              

Here, fi and ci are the function and cost of codon i, respectively.  We set fi = Fi if codon i 

encodes the pre-specified optimal amino acid at the codon; otherwise, fi = 0.  For each i, Fi is 

a random variable sampled from an exponential distribution with the mean equal to 1 (Eyre-

Walker and Keightley, 2007).  Following a previous study(Qian et al., 2012), we set the 

expected codon selection time per amino acid aa0 as t0 = p1
2/q1+p2

2/q2, where p1 and p2 = 1-p1 

are the fractions of amino acid aa0 encoded by codon 00 and 01, respectively, and q1 and q2 

=1-q1 are the fractions of corresponding cognate tRNAs among all tRNAs of aa0, 

respectively.  We similarly set the expected codon selection time per amino acid aa1 and 

computed the total codon selection time of all codons.  Translational efficiency TE, which is 

the number of codons translated per unit time, is the inverse of the total codon selection time.  

We set ci = !"× Ci if codon i does not encode the pre-specified optimal amino acid at the 

codon; otherwise, ci = Ci ×!"× !
!!!/!"

.  When there is no selection for translational accuracy, 

Ci = 0; otherwise, Ci for codon i is a random variable sampled from an exponential 

distribution with mean equal to 1.  Note that Ci and Fi are independent from each other.  

RRc/nc is computed as described in Results; the inverse of RRc/nc measures the mistranslation 

rate.  

We started the simulation with a coding sequence of 200 nucleotides, coding for 100 

amino acids.  Each site had a 50% chance to be 0 or 1.  For simplicity, we assumed that the 

initial amino acid sequence is optimal such that the evolution in our simulation is largely 

about codon usage.  For each of the four different tRNAs (with anticodons of 00, 01, 10, and 
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11, respectively), we sampled the initial copy number from 1, 2, and 3 with equal 

probabilities.  

           Next, we simulated the coevolution between the tRNA pool and codon usage 

following a strong selection, weak mutation regime.  We first generate a mutation.  With a 

probability of 0.02, it alters the copy number of a tRNA.  In this case, we randomly pick a 

tRNA species to change its copy number by +1 or -1 with equal probabilities unless the copy 

number is 1, in which case it is +1.  With a probability of 0.98, the mutation is a random point 

mutation at a randomly picked site of the coding sequence.  The fitness of the mutant is then 

computed following the above fitness definition.  The mutation is fixed with a probability of 

!!!!!
!!!!!, where r is the ratio of the absolute fitness of the mutant to that of the wild-type and N 

is the population size(Moran, 1958).  The above mutation-selection process was repeated 

100,000 rounds in each simulation to reach an equilibrium.  For each N, we simulated 200 

times with and 200 times without selection for translational accuracy. 
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Fig. 4-1 More frequently used synonymous codons tend to be decoded more accurately in E. 
coli. a, Comparison of relative synonymous codon usage (RSCU, bars) and relative 
mistranslation rate (RMR, dots) among synonymous codons for nine amino acids with 
proteome-based RMR estimates. b, A significant negative correlation between RSCU and 
RMR across the 27 codons in panel a. The red line is the linear regression. In both panels, 
error bars represent one standard error estimated by the bootstrap method. The standard error 
of RSCU estimated by the bootstrap method is negligible due to the large number of each 
codon in the genome, so is not shown. P-values are based on permutation tests. 
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Fig 4-2 Variation of relative translational accuracies of synonymous codons across taxa. a, 
Diagram explaining the calculation of odds ratio (OR) of the codon CAT that serves as a 
proxy for its relative translational accuracy. Showing here is a hypothetical alignment of 
orthologous proteins (and the underlying coding sequences) between the focal species and a 
related species. b, OR is negatively correlated with RMR across codons in E. coli. P-values 
are based on permutation tests. The red line is the linear regression. c, Frequency distribution 
of Pearson’s correlation between RSCU and OR in 1197 bacterial taxa. Ninety-five percent of 
these taxa show positive correlations. d, ln(OR) of codon CAT for each of 118 bacterial taxa, 
one per order, arranged according to their phylogeny shown in the middle. e, Violin plots 
showing frequency distributions of ln(OR) of individual codons of the 18 amino acids that 
have multiple synonymous codons across 1197 bacterial taxa.  
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Fig. 4-3 The relative ratio of cognate tRNA concentration to near-cognate tRNA 
concentration (RRc/nc) is a major determinant of a codon’s relative translational accuracy. a, 
RMR is negatively correlated with RRc/nc across codons in E. coli. b, OR is positively 
correlated with RRc/nc across codons in E. coli. c, RMR is negatively correlated with RRc/nc 
computed using tRNA gene copy numbers instead of tRNA concentrations in E. coli. d, 
Frequency distribution of Pearson’s correlation between OR and RRc/nc computed using tRNA 
gene copy numbers in bacterial taxa with >80 tRNA genes. All P-values are based on 
permutation tests. In a-c, the red line is the linear regression.   
 



124 
 

 
Fig. 4-4 Selections for translational efficiency and accuracy shape the tRNA pool and codon 
usage. a, A model for the coevolution of the tRNA pool and codon usage driven by selections 
for translational efficiency and accuracy. b. A toy model with two amino acids, each encoded 
by two synonymous codons. A dotted line connects a codon with its near-cognate tRNA. c, 
Translational efficiency is significantly lower in the presence of selection for translational 
accuracy than in the absence of this selection. d, The absolute difference between the RSCU 
of 00 (RSCU00) and that of 11 (RSCU11) is smaller under the selection for translational 
accuracy than without this selection. With the selection, codon usage for aa0 and that for aa1 
become coupled, because selection disfavors the cognate tRNA of the common codon of aa0 
to become the near-cognate tRNA of the common codon of aa1, and vice versa. In c and d, 
each box plot shows the distribution from 200 replicates. The lower and higher edges of a 
box represent the first (qu1) and third (qu3) quartiles, respectively; the horizontal line inside 
the box indicates the median (md); the whiskers extend to the most extreme values inside 
inner fences, md ± 1.5(qu3-qu1); and the dots are outliers. *, 0.01 ≤ P < 0.05, Wilcoxon rank-
sum tests; **, 0.001 ≤ P < 0.01; ***, P < 0.001. 

 |
R

SC
U

0
0

 −
 R

SC
U

1
1
|

107 108 109

** ** **

Population size

Figure 4

Bala
nc

e b
etw

ee
n 

co
do

n u
sa

ge
 an

d 

rel
ati

ve
 co

gn
ate

 tR
NA 

co
nc

en
tra

tio
ns

Maximization of R
c/nc 

of individual codons

tRNA pool

Codon usage

Coevolution Mutation and Drift

Selection for accuracy

Selection for efficiency

Preferential use of 

high-R
c/nc codons

a

b c d

107 108 109

1.00

0.99

0.98

*** *** ***

T
ra

n
sl

at
io

n
al

 e
ff

ic
ie

n
cy

 (
A

U
)

Population size

Without selection for translational accuracy With selection for translational accuracy

Amino  
acids

Codons
(5'-3')

Cognate tRNAs
(3'-5')

aa0

aa1

00 

01

10 

11

11 

10

01 

00



	 125 

 

 

 

Chapter 5: Conclusions 

Sometimes we may learn more from a man’s errors than from his virtues. 

-Henry Wadsworth Longfellow 

 

Summary 

In my dissertation, I studied the genome-wide patterns of expression errors, with specific 

focuses on (i) stochastic gene expression and (ii) protein mistranslation. Three central tenets 

emerged from my analysis. First, errors are pervasive in biological systems. All kinds of 

errors I studied happen on a genome-wide scale: every gene has noise (Raser and O'shea, 

2005), each pair of genes co-fluctuates to some extent (Stewart-Ornstein et al., 2012), and 

every codon has a non-negligible rate of mistranslation (Milo and Phillips, 2015). Second, 

these errors have consequences and are usually harmful. This tenet is best illustrated by the 

evidence for natural selection in minimizing the harms for each kind of error I studied. To be 
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concrete, in Chapter 2, I showed that noise level varies across genes associated with different 

functions and is anticorrelated with the expected level of harm of each functional group. In 

Chapter 3, I showed that natural selection optimized genome order to alleviate the deleterious 

effects of dosage imbalance among cells for protein complex genes. Last but not least, in 

Chapter 4, I provided direct evidence for the hypothesis that preferred codons are translated 

more accurately, which is a hypothesis that relies on the second tenet. Third, natural selection 

for minimizing errors is likely a difficult optimization problem, and a perfect solution is 

unlikely to arise. This is most apparent in Chapter 4, where I showed that lowering the error 

rate of one codon might be at the expense of increasing the error rate of other codons. 

Furthermore, pervasive trade-offs apparently exist between translation efficiency and 

translation accuracy. Similar trade-offs are expected to exist in other kinds of errors, 

including gene expression noise (Hausser et al., 2019) I studied. Besides uncovering the three 

main tenets, I also explored diverse biological mechanisms of expression errors in all three 

main Chapters of my dissertation. Together, these results demonstrate the universality of 

expression errors, show the importance of considering genome-wide diversity from the 
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perspective of errors(Warnecke and Hurst, 2011), and pave the way for future studies in other 

kinds of biological errors. 

Limitations 

My dissertation has several limitations that are worth discussing. First, all my analyses 

are bioinformatic analyses of publicly available data that are not specifically designed for our 

hypotheses. This means most of the conclusions are inherently correlational. Although I 

carefully controlled for the known confounding factors in my analysis, it is not definite proof 

of the causal relationship because there could always be some unknown confounding factors. 

To provide definite proof of our conclusions, carefully designed experiments are needed 

(Hernán and Robins, 2010; Pearl, 2009). 

Second, in my analysis, most conclusions tested are about qualitative trends instead of 

precise quantitative predictions. To obtain and test more precise quantitative predictions, 

rigorous models of error evolution, in combination with realistic population parameters, have 

to be developed and tested in the future (Levins, 1966).  

Last but not least, my research considers molecular errors as purely deleterious events. 

However, as mentioned earlier in the dissertation, molecular errors are also the main source 
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for adaptation, despite beneficial errors being relatively rare (Darwin, 1909). In the future, it 

would be of interest to develop a study framework that could integrate both the deleterious 

and beneficial aspects of errors. Nevertheless, I believe that the first step to study the 

beneficial effects of errors should be to document the harmful effects of errors because 

defining the norm enables us to detect the exceptions (Fisher, 1956).  

Future work 

Besides documenting the cause and consequences of molecular errors at a genome-wide 

level, my work also suggests several future research directions. First of all, my dissertation 

only focuses on two types of expression errors. Because of the increasing availability of 

omics data (Karczewski and Snyder, 2018), it is possible to study other kinds of molecular 

errors, such as mutations, RNA modifications, and post-translational modifications in a 

similar fashion. Extending our analysis to these errors could further confirm or refute the 

tenets I uncovered and will certainly bring new insights. Second, as mentioned in the 

“limitations” section, knowing the norm (deleterious errors) allows us to detect the 

exceptions (adaptive errors), which are the main interest of both medical scientists and 

evolutionary biologists. Third, as mentioned previously, it is important to develop rigorous 
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and realistic mathematical models in order to understand the evolution of errors. There is 

already some promising progress along this line, such as the “drift-barrier” model proposed 

by Michael Lynch (Sung et al., 2012) and the interesting model of global-local error 

proposed by Joanna Masel and her colleagues (Rajon and Masel, 2011). My research on the 

mechanisms and consequences of errors could facilitate the further development of these 

works. Finally, knowing the general properties of bugs sheds light on the design of better 

programs. My study on expression errors thus has implications for synthetic biology, whose 

goal is to design biological systems that could outperform natural organisms in specific tasks 

related to human welfare (Khalil and Collins, 2010).  It is my hope that my work would 

stimulate further research in the above directions. 

	

	

	

	

	

	

	

	

 

 

 

 



	 130 

References 

Darwin,	C.	(1909).	The	origin	of	species	(PF	Collier	&	son	New	York).	

	

Fisher,	 R.A.	 (1956).	 Mathematics	 of	 a	 lady	 tasting	 tea.	 The	 world	 of	 mathematics	 3,	

1514-1521.	

	

Hausser,	 J.,	 Mayo,	 A.,	 Keren,	 L.,	 and	 Alon,	 U.	 (2019).	 Central	 dogma	 rates	 and	 the	

trade-off	between	precision	and	economy	 in	gene	expression.	Nature	communications	

10,	1-15.	

	

Hernán,	M.A.,	and	Robins,	J.M.	(2010).	Causal	inference	(CRC	Boca	Raton,	FL;).	

	

Karczewski,	K.J.,	and	Snyder,	M.P.	(2018).	Integrative	omics	for	health	and	disease.	Nat	

Rev	Genet	19,	299.	

	

Khalil,	A.S.,	and	Collins,	J.J.	(2010).	Synthetic	biology:	applications	come	of	age.	Nat	Rev	

Genet	11,	367-379.	

	

Levins,	 R.	 (1966).	 The	 strategy	 of	 model	 building	 in	 population	 biology.	 Am	 Sci	 54,	

421-431.	

	

Milo,	R.,	and	Phillips,	R.	(2015).	Cell	biology	by	the	numbers	(Garland	Science).	

	

Pearl,	J.	(2009).	Causality	(Cambridge	university	press).	

	

Rajon,	E.,	and	Masel,	J.	(2011).	Evolution	of	molecular	error	rates	and	the	consequences	

for	evolvability.	Proceedings	of	the	National	Academy	of	Sciences	108,	1082-1087.	

	

Raser,	 J.M.,	 and	 O'shea,	 E.K.	 (2005).	 Noise	 in	 gene	 expression:	 origins,	 consequences,	

and	control.	Science	309,	2010-2013.	

	

Stewart-Ornstein,	 J.,	 Weissman,	 J.S.,	 and	 El-Samad,	 H.	 (2012).	 Cellular	 noise	 regulons	

underlie	fluctuations	in	Saccharomyces	cerevisiae.	Mol	Cell	45,	483-493.	



	 131 

	

Sung,	 W.,	 Ackerman,	 M.S.,	 Miller,	 S.F.,	 Doak,	 T.G.,	 and	 Lynch,	 M.	 (2012).	 Drift-barrier	

hypothesis	 and	 mutation-rate	 evolution.	 Proceedings	 of	 the	 National	 Academy	 of	

Sciences	109,	18488-18492.	

	

Warnecke,	T.,	and	Hurst,	L.D.	 (2011).	Error	prevention	and	mitigation	as	 forces	 in	 the	

evolution	of	genes	and	genomes.	Nat	Rev	Genet	12,	875-881.	

 



132 
 

 

 

 

Appendix 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



133 
 

Table A1-1 Significantly enriched GO terms among genes with extreme intrinsic and/or 
extrinsic expression noise in the non-clonal cells. The three most significant terms are 
presented if more than three terms are significantly enriched. 
GO terms Corrected P-values 
High extrinsic noise 
Secreted 5.7�10-20 

Extracellular region 2.1�10-17 

Disulfide bond 8.4�10-17 

  
Low extrinsic noise 
Splice variant 1.7�10-5 

Alternative splicing 7.8�10-5 

Regulation of transcription, DNA-templated 1.2�10-2 

  
High intrinsic noise 
Extracellular space 1.3�10-13 

Extracellular region 3.0�10-13 
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Fig. A1-1 Procedure for clone 7 scRNA-seq data processing and noise estimation. 
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Fig. A1-2 The extrinsic noise of genes (black dots) are above technical extrinsic noises (red 
dots) estimated from spike-in molecules in clone 7 cells. 
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Fig. A1-3 Decomposition of gene expression noise into intrinsic and extrinsic noises in 
non-clonal cells.  (A) Intrinsic noises (!!"#! ) estimated from two sub-samples of the 
non-clonal cells are highly correlated with each other.  Ln-transformed !!"#!  is shown.  
Each dot is a gene.  The orange line shows the diagonal.  (B) Extrinsic noises (!!"#! ) 
estimated from two sub-samples of the non-clonal cells are moderately correlated with each 
other.  Ln-transformed !!"#!  is shown.  Each dot is a gene.  The orange line shows the 
diagonal.  (C) The extrinsic noise of genes (black dots) are above technical extrinsic noises 
(red dots) estimated from spike-in molecules.(D) The intrinsic expression noise of a gene is 
strongly negatively correlated with the mean expression level of the gene.  Expression level 
is measured by Reads Per Kilobase of transcript per Million mapped reads (RPKM).  (E) 
The extrinsic expression noise of a gene is weakly negatively correlated with the mean 
expression level of the gene.  Because the extrinsic noise could be negative (see Materials 
and Methods), we added a small value (0.1 - the minimum of computed extrinsic noise) to all 
!!"#!  values before taking the natural log.  (F) Intrinsic noise estimates adjusted for mean 
expression level and technical noise (Dint) are significantly correlated between two 
sub-samples of non-clonal cells.  The orange line shows the diagonal. (G) Extrinsic noise 
estimates adjusted for mean expression level and technical noise (Dext) are significantly 
correlated between two sub-samples of non-clonal cells.  The orange line shows the 
diagonal. (H) Dint and Dext are positively correlated.  The blue line displays the linear 
regression of Dint on Dext. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

 

 
 
 

ρ =-0.14, P =1.9×10-23

A B

C D

E F

G H

I J

Figure S4

Dint D'int
P=6.3×10-8 P=9.6×10-8  ρ =-0.14, P =2.2×10-24

Dext D'ext

P=0.29 P=0.57

 ρ =0.24, P =0.094

P=0.30 P=0.62

 ρ =-0.042, P =0.60

Dint
P=4.5×10-16

D'int
P=3.2×10-15

Dext D'ext

P=1.7×10-21 P=3.8×10-18

Obs Obs



139 
 

 
Fig. A1-4 Factors influencing intrinsic and/or extrinsic gene expression noise in non-clonal 
cells. (A) Genes with a TATA-box in the promoter (pink) have significantly higher intrinsic 
noise (Dint) than genes without a TATA-box (blue).  The same is true when intrinsic noise is 
measured by D'int, which is uncorrelated with extrinsic noise.  The lower and upper edges of 
a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside 
the box indicates the median (md), the whiskers extend to the most extreme values inside 
inner fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences 
(outliers). (B) Genes with a TATA-box in the promoter (pink) have significantly higher 
extrinsic noise (Dext) than genes without a TATA-box (blue).  The same is true when 
extrinsic noise is measured by D'ext, which is uncorrelated with intrinsic noise.(C) Genes 
targeted by miRNA (green) have significantly lower intrinsic noise (Dint and D'int) than genes 
not targeted by miRNA (yellow). (D) Genes targeted by more miRNA species have lower 
Dint.  The blue line displays the linear regression of Dint of a target gene on the number of 
miRNA species targeting it. (E) Genes targeted by more miRNA species have lower D'int.  
The blue line displays the linear regression of D'int of a target gene on the number of miRNA 
species targeting it. (F) Genes targeted by miRNA (green) have similar levels of extrinsic 
noise (Dext and D'ext) as genes not targeted by miRNA (yellow). (G) The mean extrinsic noise 
(Dext) of genes targeted by the same trans-regulator is not significantly correlated with the 
total noise (!!"#! +  !!"#! ) of the trans-regulators.(H) The mean intrinsic noise (Dint) of genes 
targeted by the same trans-regulator is not significantly correlated with the total noise 
(!!"#! +  !!"#! ) of the trans-regulator. (I) The observed median standard deviation of Dext 
among genes regulated by the same trans-regulator (red arrow) is not significantly different 
from the random expectation (histograms). (J) The observed median standard deviation of 
Dint among genes regulated by the same trans-regulator is not significantly different from the 
random expectation (histograms).  
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Fig. A1-5 Nuclear genes functioning in the mitochondrion have lower extrinsic noise but not 
lower intrinsic noise when compared with other genes in non-clonal cells.  (A) Nuclear 
genes functioning in the mitochondrion (pink) have significantly lower extrinsic noise (Dext 
and D'ext) than other genes (blue).  The lower and upper edges of a box represent the first 
(qu1) and third quartiles (qu3), respectively, the horizontal line inside the box indicates the 
median (md), the whiskers extend to the most extreme values inside inner fences, 
md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers). (B) 
Nuclear genes functioning in the mitochondrion (pink) do not have significantly lower 
intrinsic noise Dint and even have significantly higher D'int than other genes (blue). 
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Fig. A1-6 Genes encoding protein complex components have lower intrinsic noise but not 
lower extrinsic noise than other genes in non-clonal cells. (A) Genes encoding protein 
complex components (pink) have significantly lower intrinsic noise (Dint and D'int) than other 
genes (blue).  The lower and upper edges of a box represent the first (qu1) and third quartiles 
(qu3), respectively, the horizontal line inside the box indicates the median (md), the whiskers 
extend to the most extreme values inside inner fences, md±1.5(qu3-qu1), and the dots 
represent values outside the inner fences (outliers). (B) Genes encoding protein complex 
components (pink) do not have significantly lower Dext or D'ext than other genes (blue).  
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Fig. A1-7 Cell cycle genes have lower intrinsic noise but higher extrinsic noise than other 
genes in non-clonal cells. (A) Cell cycle genes (pink) have significantly lower intrinsic noise 
(Dint and D'int) when compared with other genes (blue).  The lower and upper edges of a box 
represent the first (qu1) and third quartiles (qu3), respectively, the horizontal line inside the 
box indicates the median (md), the whiskers extend to the most extreme values inside inner 
fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers). (B) 
Cell cycle genes (pink) have significantly higher extrinsic noise (Dext and D'ext) when 
compared with other genes.  
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Fig. A2-1 The linkage effect on expression co-fluctuation in clone 6 cells and non-clonal 
cells. (A) Fraction of gene pairs with positive !! in clone 6. The red line represents the null 
expectation under no linkage effect. P-values from binomial tests on independent gene pairs 
are presented. (B) In clone 6, median !! in a bin decreases as the median genomic distance 
between linked genes in the bin rises. All bins have the same distance interval. TSS, 
transcription start site. The red line shows !! = 0. The blue line shows the linear regression 
of binned data. Spearman's ! from unbinned data and associated P-value determined by a 
shuffling test are presented. (C) Fraction of gene pairs with positive !! in non-clonal mouse 
fibroblast cells. The red line represents the null expectation under no linkage effect. P-values 
from binomial tests on independent gene pairs are presented. (D) In non-clonal cells, median 
!! in a bin decreases as the median genomic distance between linked genes in the bin rises. 
All bins have the same distance interval. TSS, transcription start site. The red line shows !! 
= 0. The blue line shows the linear regression of binned data. Spearman's ! from unbinned 
data and associated P-value determined by a shuffling test are presented. 
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Fig. A2-2 The linkage effect on expression co-fluctuation in clone 7 cells analyzed using 
total reads of two alleles per locus. (A) Median △! in a bin decreases with the median 
genomic distance between linked genes in the bin. △! for a linked gene pair is the 
correlation in RNA-seq read number between the two genes minus the median correlation for 
pairs of unlinked genes. All bins have the same distance interval. TSS, transcription start site. 
The red line shows △!= 0. The blue line shows the linear regression of binned data. 
Spearman's ! of unbinned data and associated P-value determined by a shuffling test ae 
presented. (B) Median △!!  in a bin decreases with the corresponding median genomic 
distance between linked genes in the bin. △!!  for a linked gene pair is the correlation in 
expression level measured by RPKM (Reads Per Kilobase per Million mapped reads) 
between the two genes minus the corresponding median correlation for pairs of unlinked 
genes. The blue line shows the linear regression of binned data. Spearman's ! from 
unbinned data and associated P-value determined by a shuffling test are presented. 
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Fig. A2-3 !! decreases with distance between genes on each mouse chromosome. Blue lines 
show linear regressions for binned data. All bins have the same distance intervals, while 
different chromosomes contain different numbers of bins depending on the chromosome 
length. Spearman's correlations from unbinned data and associated nominal P-values 
determined by shuffling tests are presented. Upon multiple testing correction, the correlations 
remain significant for chromosomes 1, 2, 5, 6, 11, and 12. 
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Fig. A2-4 !! for pairs of neighboring genes with different orientation types. The lower and 
upper edges of a box represent the first (qu1) and third quartiles (qu3), respectively, the 
horizontal line inside the box indicates the median (md), the whiskers extend to the most 
extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside 
the inner fences (outliers). The nearest pairs were identified using the coordinates 
downloaded from Ensembl. After requiring a minimal read number of 10 for each allele, we 
separate neighboring gene pairs into three categories according to the orientations of their 
transcription directions. NS, P > 0.05, Wilcoxon rank-sum test.  
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Fig. A2-5 Demonstration of chromatin co-accessibility between two ATAC peaks quantified 
using single-cells vs. using cell populations via simulation (A) The correlations quantified 
using single-cell-based measurements are close to their corresponding true correlations when 
the capturing efficiency is 100%. (B) The correlations quantified using cell-population-based 
measurements are close to the true correlations when the capturing efficiency is 100%. (C) 
The correlations quantified using single-cell-based measurements tend to be weaker than 
their corresponding true correlations when the capturing efficiency is 10%. (D) The 
correlations quantified using cell population-based measurements tend to be weaker than the 
true correlations when the capturing efficiency is 10%. 
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Fig. A2-6 Simulation shows low capturing efficiency will lead to underestimation of δe and 
δa. (A) The magnitude of !! estimated from allelic specific single cell RNA-seq is much 
smaller than the true !!. (B) The magnitude of !! estimated from allelic specific ATAC-seq 
is much smaller than the true !! . 
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Table A3-1 Pearson (r) and Spearman (ρ) correlations  
Between OR and RSCU in eukaryotic model organisms. 
Species r P ρ P 
Fly 0.84 <0.001 0.83 <0.001 
Human 0.80 <0.001 0.74 <0.001 
Mouse 0.74 <0.001 0.68 <0.001 
Worm 0.42 <0.001 0.39 0.002 
Yeast 0.35 0.01 0.39 0.003 
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Table A3-2 Pearson (r) and Spearman (ρ) correlations  
between OR and RRc/nc in eukaryotic model organisms.  
Species r P  ρ P 
Fly 0.21 0.109 0.25 0.046 
Human 0.39 0.007 0.29 0.055 
Mouse 0.29 0.081 0.41 0.018 
Worm 0.54 <0.001 0.57 <0.001 
Yeast 0.42 0.045 0.37 0.053 
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Fig. A3-1  Observed patterns of variation of relative translational accuracies of synonymous 
codons across bacterial taxa are robust. a, Fraction of 1197 taxa with OR > 1 for each codon. 
b, Violin plots showing frequency distributions of ln(OR) of individual codons across a 
subset of taxa in which the number of occurrences of each synonymous codon considered in 
OR estimation is at least 1000. c, Violin plots showing frequency distributions of ln(OR) of 
individual codons across a subset of taxa with strong signals of selection for translational 
accuracy (i.e., Pearson’s correlation between RSCU and OR exceeds 0.5). 
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Fig. A3-2 Variation of relative translational accuracies of synonymous codons among 
Archaea taxa. a, Frequency distribution of Pearson’s correlation between RSCU and OR in 63 
taxa. Ninety percent of taxa show positive correlations. b, ln(OR) of codon CAT for each of 
the taxa arranged according to their phylogeny shown in the middle. c, Violin plots showing 
frequency distributions of ln(OR) of individual codons across taxa. ln(OR) appears less 
variable here than in Bacteria because of the much fewer Archaea taxa examined.  
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Fig. A3-3.  Correlation in odds ratio (OR) across codons between eukaryotic model 
organisms. Each dot is a codon.  
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Fig. A3-4. Relationship between the cognate tRNA concentration and RMR or RSCU in E. 
coli. a, RMR of a codon is not significantly correlated with its relative cognate tRNA 
concentration, which is its cognate tRNA concentration divided by the mean cognate tRNA 
concentration of all codons coding for the same amino acid. b, RSCU of a codon is 
significantly positively correlated with its relative cognate tRNA concentration. P-values are 
based on permutation tests. Only the 27 codons with RMR estimates are analyzed in each 
panel to allow a direct comparison.  
 
 




