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ABSTRACT

The emerging application of autonomous driving provides the benefit of eliminating the driver from
the control loop, which offers opportunities for safety, energy saving and green house gas emissions
reduction by adjusting the speed trajectory. The technological advances in sensing and computing
make it realistic for the vehicle to obtain a preview information of its surrounding environment,
and optimize its speed trajectory accordingly using predictive planning methods. Conventional
speed following algorithms usually adopt an energy-centric perspective and improve fuel economy
by means of reducing the power loss due to braking and operating the engine at its high fuel
efficiency region. This could be a problem for diesel-powered vehicles, which rely on catalytic
aftertreatment system to reduce overall emissions, as reduction efficiency drops significantly with
a cold catalyst that would result from a smoother speed profile.

In this work, control and constrained optimization techniques are deployed to understand the
potential for and achieve concurrent reduction of fuel consumption and emissions. Trade-offs be-
tween fuel consumption and emissions are shown using results from a single objective optimal
planning problem when the calculation is performed offline assuming full knowledge of the whole
cycle. Results indicate a low aftertreatment temperature when energy-centric objectives are used,
and this motivates the inclusion of temperature performance metric inside the optimization prob-
lem.

An online optimal speed planner is then designed for concurrent treatment of energy and emis-
sions, with a limited but accurate preview information. An objective function comprising an energy
conscious term and an emissions conscious term is proposed based on its effectiveness of 1) con-
current reduction of fuel and emissions, 2) flexible balancing between the emphasis on fuel saving
or emissions reduction based on performance requirements and 3) low computational complexity
and ease of numerical treatment. Simulation results of the online optimal speed planner over mul-
tiple drive cycles are presented, and for the vehicle simulated in this work, concurrent reduction
of fuel and emissions is demonstrated using a specific powertrain, when allowing flexible modi-
fication of the drive cycle. Hardware-in-the-loop experiment is also performed over the Federal
Test Procedure (FTP) drive cycle, and shows up to 15% reduction in fuel consumption and 70%
reduction in NOx emissions when allowing a flexible following distance.

Finally, the stringent requirement of accurate preview information is relaxed by designing a

xi



robust re-formulation of the energy and emissions conscious speed planner. Improved fuel econ-
omy and emissions are shown while satisfying the constraints even in the presence of perturbations
in the preview information. A Gaussian mixture regression-based speed prediction is applied to
test the performance of the speed following strategy without assuming knowledge of the preview
information. A performance degradation is observed in simulation results when using the pre-
dicted velocity compared with an accurate preview, but the speed planner preserves the capability
to improve fuel and tailpipe emissions performance compared with a non-optimal controller.
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CHAPTER 1

Introduction

1.1 Background

An urgent need of the 21st century is to address the global climate change. According to [10],

atmospheric concentrations of carbon dioxide (CO2), the majority of green house gas (GHG) emis-

sions, has risen 35% since the beginning of the industrial revolution, 10% of which coming from

road transportation. To reduce GHGs and mitigate the potential harm from a warming planet, ve-

hicle manufacturers and researchers have made significant improvements in fuel efficiency. Driver

behaviors such as avoiding braking, delays caused by stops as well as lowering acceleration levels

have been shown to yield lower fuel consumption [23], which in turn generates lower CO2. Unfor-

tunately, always driving with best fuel consumption performance is not a possible solution in urban

traffic, as the actual driving behavior is determined by complex interactions of many factors such

as the human driver and the traffic environment. Being studied and developed since the mid-1980s,

self-driving car techniques provide the benefit of eliminating the driver from the control loop, and

offer more opportunities for energy saving and GHGs reduction [84]. If aided with vehicle-to-

vehicle (V2V) or vehicle-to-infrastructure (V2I) communication [79, 8, 73, 61, 39, 53, 57], the

automated vehicle could be capable of perceiving the environment better and automated driving

assistance systems such as adaptive cruise controllers could provide opportunities to reduce fuel

consumption and emissions by adjusting the speed of the vehicle for foreseen, near-future events.

This smooth driving style computed using route and/or traffic forecasting information to have min-
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imal energy and thus reduced fuel consumption is usually referred to as “eco-driving” [27].

Besides CO2 emissions, NOx emissions are also generated during vehicle operation due to the

high gas temperature behind the flame inside the cylinders when combustion happens [35]. NOx

emissions can lead to adverse health impacts from ground-level ozone and microscopic airborne

particles. Environmental Protection Agency (EPA) imposes NOx standards on passenger cars and

trucks, and these standards have been revised over time [82] to protect public health and as a

response to the Clean Air Act. For heavy-duty diesel engines in the U.S., real-world driving

emissions (RDE) tests are already a part of emissions regulations. The test procedure requires

measurement of in-use emissions while these heavy-duty diesel engines are operated within a

broad range of speed and load points (the Not-To-Exceed Control Area), as well as under normal

vehicle operation conditions [1]. The time averaged emissions are compared to the standard to be

compliant with the regulation.

1.1.1 Fuel Economy Benefits from Automated Vehicles

Advanced driver assistance systems (ADAS) have been developed in recent decades to enhance

driving comfort, reduce driving errors, improve safety, increase traffic capacity and reduce fuel

consumption for vehicles driving in traffic. Among the multiple functionalities, cruise controller

(CC) and adaptive cruise controller (ACC) are two of the most popular and widely available tech-

niques for longitudinal control [90]. Cruise controller, which tracks a constant reference speed,

does not rely on perception of environmental information [90]. Adaptive cruise controller, which

is an enhanced version of cruise controller, was first launched by Daimler Chrysler at the Paris

motor show in 1998 [58, 3]. It typically relies on radar to measure the distance gap between ve-

hicles, and aims at maintaining a reference speed whilst keeping a minimum time-headway [58].

Although the initial goal of ACC was to offer driver comfort support, field tests showed that a well-

designed ACC controls the vehicle with much less rapid acceleration transients, fuel consumption

and vehicle emissions than a human driver [58, 90].

The next advancement happened when connectivity was present in vehicles. This is also re-
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ferred to as cooperative adaptive cruise control (CACC), where vehicle-to-vehicle (V2V) commu-

nication is used in coordination of multiple vehicles starting from sharing feedback information

obtained by in-vehicle sensors [5], enabling shorter headway time and formation of platoons (i.e.,

vehicles driving closely behind each other) [27, 5], leading to reduced air drag and increased fuel

savings [92, 5]. CACC usually takes a centralized approach, while connected cruise control (CCC)

is not cooperative, where vehicles exploit information for their own advantage [27]. Information

from vehicle-to-infrastructure (V2I) communication and V2V communication is available to au-

tomated vehicles with higher level of connectivity, which may include information of traffic and

signalized intersections, and (a potentially forecast) vehicle acceleration information that provides

the intents of surrounding vehicles [27]. This information allows the vehicle to make more signif-

icant change to its speed trajectory, and provides better safety, passenger comfort and higher fuel

economy.

In such cases, model predictive control (MPC) method can be applied to solve for the optimal

policy or speed trajectories. In fact, this technology provides a high chance of improvement of the

performance of automated vehicles. For instance, authors of [47] show that a 10 to 20% fuel con-

sumption reduction can be achieved with a good information for the next 10 to 15 seconds when the

speed trajectory is adjusted to achieve minimal fuel consumption. With traffic signal prediction, an

optimal velocity trajectory solved with deterministic dynamic programming in a receding horizon

manner is used to avoid unnecessary energy loss due to speed adjustment at red lights [7]. Simula-

tion results show a 6% increase in fuel economy on average is achieved if traffic light information

is available, compared with the case when the information is not available. V2V information is

also usually utilized in car-following scenarios. In such cases, the inter-vehicular distance may

be adjusted to avoid abrupt acceleration and brake events and increase energy efficiency [79, 76].

Receding horizon optimization is again often used to generate the optimal velocity trajectories

[76, 70, 27]. Vehicle following trajectory that is directly optimized for fuel consumption follows

a pulse-and-glide strategy [75, 54], but this strategy sacrifices driver comfort. Another effective

objective is to penalize acceleration and deceleration [70], which, in addition to reduced energy
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use, gives a much smoother and thus comfortable driving style. The effect of reduced acceleration

and deceleration on improving fuel efficiency was demonstrated in [70], where the controller was

tested using different drive cycles on an Advanced Light-Duty Powertrain and Hybrid Analysis

Tool developed for a 2013 Ford Escape with a 1.6L EcoBoost engine.

1.1.2 Emissions Reduction Techniques for Diesel Powered Vehicles

NOx emissions reduction is a crucial performance metric for a vehicle, which is strictly required by

federal organizations [82]. Exhaust gas re-circulation (EGR) is a technique to reduce the formation

of NOx inside cylinders and is used in many engine control systems. EGR affects NOx formation

mainly through reduced flame temperature - by recycling the exhaust gas and diluting the engine

intake, it increases the heat capacity of the cylinder charge per unit mass of fuel, and reduces

the flame temperature [35]. An equivalent emission minimization strategy is developed in [93]

for causal minimization of CO2 emissions in diesel engines while keeping pollutant emissions at

certain levels. In [89], a model-based Integrated Emission Management (IEM) strategy is proposed

to minimize operational costs including fuel consumption and diesel exhaust fluid (DEF) within

emission constraints by controlling fuel consumption, EGR and Variable Turbine Geometry (VGT)

valve positions.

To further reduce NOx emissions outside of the engine cylinders, many diesel vehicles are

equipped with a catalytic aftertreatment system, which usually includes devices such as diesel ox-

idation catalyst (DOC), selective catalytic reduction (SCR) and diesel particulate filter (DPF). An

example configuration of the aftertreatment system is shown in Fig. 1.1. SCR technique has been

the leading de-NOx approach in recent years [45, 12]. SCR technique (also called Urea-SCR or

ammonia SCR), reduces NOx by converting NOx into nitrogen and oxygen with the aid of catalyst

and reactant ammonia, which is generated from urea solution (or often called diesel exhaust fluid,

DEF) injected on the upstream of the SCR catalyst [42, 12]. For Cu/Zeolite SCR catalysts, 95%

de-NOx efficiency is achieved between 220 − 320◦C during laboratory evaluation, but efficiency

drops rapidly to 50% at 150◦C [15]. For a given catalyst and exhaust gas with given chemical com-
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Figure 1.1: Engine and aftertreatment system configuration for 6.7L diesel engine considered in
this thesis.

position, de-NOx efficiency is usually also dependent on the concentration of ammonia and mass

flow rate beside temperature [42, 88, 12, 43, 17]. Although increasing the amount of ammonia

by injecting more urea helps with increasing the reaction efficiency, the concern is that excessive

urea injection may lead to high ammonia slip especially during large catalyst bed temperature

ramps [18]. Since mass flow rate is decided majorly by the engine operation condition, reduction

efficiency is usually improved through thermal management of the SCR [12, 17].

In-cylinder post fuel injection is a commonly used technique for SCR thermal management

and maintaining the temperature at the high efficiency range [67, 52], however, the late injection

reduces the vehicle fuel economy, as the post-injected fuel decreases combustion quality [91], or is

burned in the DOC block instead of cylinder so it does not contribute to the torque output. In [16],

a control-oriented thermal model is developed to capture the thermal behaviors of the aftertreat-

ment systems with and without post-injection. The same group also proposes a coordinated active

thermal management and SCR control strategy to maintain high NOx conversion efficiency and

low tailpipe ammonia slip with the least post-injected fuel and urea usage for a known and fixed

speed profile [17]. For hybrid vehicles, because of the extra degree of freedom introduced by the

torque split ratio, fuel consumption and emissions can be successfully balanced if the effect of
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aftertreatment on reducing tailpipe emissions is taken into account explicitly [46, 80].

If the vehicle torque demand is controllable, e.g., in vehicle-following scenarios when the

velocity trajectory is adjusted to achieve performances benefits, it is possible to reduce engine

emissions by choosing the torque demand that optimizes engine operation points. For instance,

the engine raw emissions reduce inherently when full pedal accelerations are avoided [73, 69]. In

[73], the authors suggest integrating the reduction of engine-out NOx emission with the fuel con-

sumption minimization problem to find an optimal, variable distance car following policy, which

results in a 13% fuel consumption reduction and 24% engine NOx emissions reduction. Similarly,

velocity trajectory is optimized for a known route considering fuel consumption, trip time and total

emissions constraint [69]. The problem is simplified into a multi-objective optimization problem

and trade-offs between fuel and NOx is studied. Authors of [86] consider the engine emissions

reduction problem for a chain of automated vehicles in a congested platoon, and show that reduced

emissions and travel delay could be achieved through MPC-based longitudinal control.

1.2 Relationship to the State-of-the-Art Eco-Driving

In previous efforts in the powertrain control community, eco-driving and eco-following are majorly

done to reduce engine fuel consumption via platooning, better engine efficiency, or eco-driving,

especially if some preview information is available [70, 79] and the automated vehicle can follow

a carefully planned, smooth trajectory to save fuel while satisfying all traffic constraints. Although

low torque demand can lead to a reduced engine NOx emissions [73], little attention has been paid

to the performance of the vehicle tailpipe emissions and the corresponding aftertreatment system

during eco-driving. In fact, result from a comparison of real-world fuel economy and tailpipe

emissions from parallel hybrid and conventional diesel buses shows that due to lower exhaust

temperature, hybrid diesel buses emit higher tailpipe NOx, although the engine NOx is lower

[28]. The same may also happen to the eco-following vehicle, as temperature in the aftertreatment

system will drop inevitably when torque demand drops during the smoothing.
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In this work, we explore the opportunity to perform a type of eco-driving such that the trajec-

tory is not only fuel efficient, but it also yields less engine raw emissions and a well-maintained

aftertreatment system activity level to reduce tailpipe NOx emissions. To achieve this, the af-

tertreatment system should be included in the optimal control problem. Due to the relatively large

heat capacity of the turbine, the DOC and the SCR, the thermal dynamics of the aftertreatment

system is very slow and subject to highly varying delays [50]. This varying delay increases the

difficulty to model as well as to control the aftertreatment thermal dynamics. Although models

of various levels of complexity exist for estimating the temperature (distribution) in the turbine as

well as each catalyst blocks in the aftertreatment system, including multiple thermal states in the

eco-driving-related optimization problem is a challenging task. Thus, some simplification of the

thermal dynamics is necessary. In this thesis, we present an MPC-based speed planning algorithm

with a surrogate optimization function instead of directly doing the optimization with full-order

system dynamics for fuel and emissions, to reduce the computation complexity. The effectiveness

of this proposed algorithm for reducing fuel consumption and tailpipe NOx in vehicle-following

scenarios for connected vehicles is shown using simulation results and hardware-in-the-loop test

results.

Another challenge raised from using the preview information of the leader vehicle is prediction

inaccuracy. The preview information of the leader vehicle can be obtained through velocity predic-

tion [61, 53, 37, 33] and/or V2V communication [61]. Either case presents a challenge for having

an accurate preview. In the former case, it is difficult to predict the motion of the lead vehicle, as

it needs to react to the movements of the other traffic participants, creating high uncertainty. In

the latter case, even if the leader vehicle knows its future speed trajectory perfectly, perturbations

may be applied to the information to be shared over V2V due to privacy concerns [2, 94]. Hence,

achieving a robust eco-driving performance while maintaining safety is crucial.

Some researchers have recognized this challenge and shown that preview inaccuracy can have

enormous impact on fuel-saving performance [61, 33]. Authors of [61] also develop a chance

constrained MPC and a randomized MPC to reduce the risk of constraint violation and the fuel
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consumption at the same time. Unfortunately, constraint violations still exist. To resolve the con-

straint violation problem, provably-correct controllers have been designed when uncertainties exist

in the speed preview. Controllers presented in [63, 31] generate car-following trajectories that sat-

isfy minimum headway specifications, and controllers in [49, 59, 44] aim at avoiding collision with

front vehicle. The main method used in the literature to synthesize the correct control variables

is the calculation of a robust control invariant set. Efforts typically focus only on the constraint

satisfaction and only consider the vehicle kinematic performance. The only exception known to

the author is the work reported in [44], where the researchers report 12% energy saving using their

robust adaptive cruise controller compared with the non-optimized leader. To the best of the au-

thor’s knowledge, there does not yet exist a fuel and emissions-efficient controller that is robust to

errors in preview information.

In this thesis, an optimal speed controller that is robust to inaccuracies in leader velocity pre-

view is presented. To simulate real-world driving scenarios, a realistic speed prediction is con-

sidered where the speed preview does not rely on knowledge of the future velocity profile (even

partially) of the leader vehicle. Simulation results are used to demonstrate the effectiveness of

the controller in reducing fuel and NOx compared with the non-optimal counterpart, as well as in

guaranteeing constraint satisfaction.

1.3 Thesis Organization and Contributions

The main focus of this work is on developing an MPC application on speed planning for automated

diesel vehicles in eco-following scenarios. The target is to achieve not only fuel efficiency, but

also to reduce emissions for diesel vehicles with emissions aftertreatment systems. The main

contributions of this thesis are summarized as follows:

• Demonstration of fuel economy - tailpipe NOx emissions trade-offs for diesel-powered

vehicles in an optimal vehicle-following scenario.

A control oriented vehicle and aftertreatment model is presented in Chapter 2 and is used to
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calculate optimal velocity trajectories for an autonomous vehicle to follow a leader vehicle,

assuming the whole trajectory of the leader is known beforehand. Constraints are imposed

on the inter-vehicular distance, vehicle speed and acceleration. Four objective functions are

considered including minimizing acceleration, minimizing fuel consumption, minimizing

engine NOx emissions and minimizing tailpipe NOx. Dynamic programming method is ap-

plied [77] on a reduced-order model to solve the constrained trajectory optimization problem

and calculate an optimal vehicle velocity profile over the temperature stabilized phase (Bag

2) of the EPA Federal Test Procedure (FTP), and fuel consumption and emissions perfor-

mances are evaluated in simulation. This part of the work is presented in Chapter 3.

Chapter 2 and Chapter 3 are based on the following paper:

– Huang, C., Salehi, R. and Stefanopoulou, A.G., 2018, June. Intelligent cruise control

of diesel powered vehicles addressing the fuel consumption versus emissions trade-off.

In 2018 Annual American Control Conference (ACC) (pp. 840-845). IEEE [39].

• Design of an online, real-time implementable energy and emissions conscious optimal

speed planner.

Motivated by the work in Chapter 3, a novel MPC-based, online speed planner (called energy

and emissions conscious MPC, or E2C-MPC) is designed for concurrent treatment of energy

and emissions of the connected and automated diesel vehicles in car-following scenarios.

The MPC design process involves a selection of the appropriate objective function for better

performance, and extensive simulation is performed to support this selection, as well as to

determine its parameters for acceptable optimality and computational performance. This

part of the work is presented in Chapter 4.

Chapter 4 is based on the following paper:

– Huang, C., Salehi, R., Ersal, T. and Stefanopoulou, A.G., 2020. An energy and emis-

sion conscious adaptive cruise controller for a connected automated diesel truck. Vehi-
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cle System Dynamics, 58(5), pp.805-825 [38].

• Hardware-in-the-loop validation with a real-time implementation of E2C-MPC.

Experimental validation is performed using a hardware-in-the-loop setup with a Ford 6.7L

V8 Powerstroke diesel engine and a stock emissions aftertreatment system from a Ford F250

medium-duty truck, allowing detailed and realistic evaluation of fuel economy, tailpipe NOx

emissions as well as vehicle following metrics. A full vehicle model with longitudinal

dynamics, engine dynamics, gear shift logic, and torque converter is designed and imple-

mented. The optimal speed planner is used as a high-level planner to generate an optimal

reference velocity and a PI-based cruise controller is used as a low-level controller to track

the optimized speed.

Chapter 5 is based on the following paper:

– Huang, C., Salehi, R., Stefanopoulou, A.G., Ersal, T., Hardware-in-the-loop explo-

ration of energy vs. emissions trade-off in eco-following scenarios for connected auto-

mated vehicles, under preparation.

• A robust re-formulation of the energy and emissions conscious optimal speed planner

to ensure satisfaction of traffic constraints with inaccurate preview information.

Real-world velocity prediction is hardly accurate due to prediction error. Issues raised from

prediction error in real-world vehicle following scenarios are considered. To ensure satis-

faction of constraints and guarantee driving safety, a robust formulation of the predictive

speed controller is presented. Simulation is performed first with perturbation modeled as

zero-mean Gaussian noise to show that the presented formulation is robust to inaccuracies

in leader vehicle velocity and preserves the trade-off between optimizing fuel consumption

and emissions. Additional simulation is performed with a realistic speed predictor based on

Gaussian mixture regression, where online preview of the leader vehicle is generated only
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using history velocity information. Results show effectiveness of the controller in reducing

fuel and NOx compared with the non-optimal counterpart in real-world driving scenarios.

This part of the work is presented in Chapter 6.

Chapter 6 is partially based on the following papers:

– Zhang, X., Huang, C., Liu, M., Stefanopoulou, A. and Ersal, T., 2019. Predictive cruise

control with private vehicle-to-vehicle communication for improving fuel consumption

and emissions. IEEE Communications Magazine, 57(10), pp.91-97 [94].

– Huang, C., Zhang, X., Salehi, R., Ersal, T. and Stefanopoulou, A.G., 2020, July. A

Robust Energy and Emissions Conscious Cruise Controller for Connected Vehicles

with Privacy Considerations. In 2020 American Control Conference (ACC) (pp. 4881-

4886). IEEE [40].
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CHAPTER 2

Control-Oriented Vehicle Model

A vehicle model including longitudinal dynamics, powertrain steady-state maps and the thermal

dynamics of the aftertreatment system is developed for a Ford F250 medium-duty truck and is

presented in this chapter. This model is used for the development of model-based controllers in

later chapters, as well as simulating fuel consumption and tailpipe emissions of the vehicle.

The model structure of the studied vehicle in this thesis is shown in Fig. 1.1 in the last chapter.

The aftertreatment system includes a Diesel Oxidation Catalyst (DOC), a Selective Catalytic Re-

duction (SCR) block, and a Diesel Particulate Filter (DPF). The vehicle model in Fig. 2.1 includes

a single varying input, namely, the vehicle acceleration aveh, and the key outputs are the vehicle

position pveh, speed vveh, fuel consumption rate ṁfuel and tailpipe NOx emissions rate ṁNOx.TP. The

details of each submodel in Fig. 2.1 are described as follows.

2.1 Longitudinal Model

Assuming the vehicle as a point mass system, the vehicle state vector
[
pveh, vveh

]T , which comprises

vehicle position and speed, is calculated using:

ṗveh

v̇veh

 =

0 1

0 0


pveh

vveh

+

0

1

 aveh, (2.1)

given the vehicle acceleration aveh as the input.
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Figure 2.1: Vehicle schematic and its model structure for the diesel powered vehicle considered in
this paper.

With the vehicle speed vveh and acceleration aveh, the demanded vehicle traction force ftract is

calculated using the longitudinal dynamics model:

ftract = Mvaveh + frr + fair. (2.2)

In (2.2), Mv represents the vehicle mass, and frr and fair represent the rolling resistance and the air

drag resistance, respectively. They are calculated as:

frr = CR Mv g sgn(vveh), (2.3)

fair = 0.5 ρair Af Cd vveh |vveh|, (2.4)

with CR being the rolling resistance coefficient, ρair and Cd the air density and air drag coefficient,

and Af the vehicle frontal area. In this work, the effect of road grade is ignored for simplicity.
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2.2 Engine Model and Gear Shift

2.2.1 Gear Shift Model

A unique gear level (GL) is assigned based on the vehicle speed vveh and acceleration aveh as shown

in Fig. 2.21. Then, the engine speed Ne and the calculated torque Tq are obtained as:

Ne = FRGR(GL)
1

Rw
vveh, (2.5)

Tq =


gTq(ftract

vveh
Neηt

), if not at idle

Tidle, if at idle
(2.6)

where FR, GR(GL) and Rw represent the final drive ratio, gear ratio at present gear level GL and

wheel radius, respectively, and ηt represents the lumped transmission efficiency. gTq is a mapping

from the physical engine torque to the non-negative calculated torque Tq that the manufacturer

uses as input to the look-up tables. When the vehicle is stopped, the engine idle speed is set to be

600 rpm and the engine idle torque demand is a constant number Tidle.

2.2.2 Engine and Efficiency Models

Fuel rate ṁfuel, exhaust flow rate ṁexh, engine out NOx emission rate ṁNOx.Eng and steady state

turbine out temperature TTB.ss are calculated using look-up tables mapped with engine speed Ne

and torque Tq, as shown in Fig. 2.3. These maps are created, validated, and provided by the manu-

facturer. This calculation is based on the following three simplifying assumptions: (1) The engine

air path dynamics are ignored, (2) the engine raw NOx contains only NO, and NO oxidization in

diesel catalytic converter is ignored since DOC temperature is nearly always lower than 250 ◦C in

the stabilized phase [14], (3) the SCR efficiency ηSCR is determined by an efficiency table for the

NO conversion, based on SCR brick temperature Tb.SCR [14]. Based on these assumptions, tailpipe

1This gear level map is used for the sake of study in this work, and does not represent the actual gear shift logic
used in the corresponding vehicle.
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Figure 2.2: Look-up tables used to calculate engine outputs.

NOx emissions rate ṁNOx.TP is calculated as

ṁNOx.TP = (1− ηSCR(Tb.SCR))ṁNOx.Eng, (2.7)

where the calculation of SCR temperature Tb.SCR is presented in the next section.

2.3 Aftertreatment Dynamics

2.3.1 Full-Order Model

To calculate the SCR brick temperature Tb.SCR in (2.7), a complete thermal model, including that

of turbine, DOC and SCR, is needed. A first-order lag is assumed for the dynamics of the turbine

outlet gas temperature TTB:

TTB =
1

1 + τs
TTB.ss, (2.8)
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Figure 2.3: Gear shift and engine maps used in the vehicle model.

where τ is assumed to be inversely proportional to exhaust mass flow rate [16], i.e., τ ∝ 1
ṁexh

.

The DOC and SCR catalysts are modeled as thermal masses, and their thermal models are de-

rived under the following assumptions: (1) Heat conduction from the exhaust gas into the catalytic

brick is negligible compared with heat convection between them. (2) Axial heat diffusion in the

fluid phase and axial conduction in the solid phase are ignored. (3) Heat capacity of the gas trapped

in the catalytic brick is too small compared with that of the brick. Hence, there is no dynamics

for the gas temperature inside the catalyst. (4) Heat radiations between the gas and the brick, and

between the brick and the ambient are ignored based on the experimental validation results in the

literature [51]. With these assumptions, the following first-order system is utilized to model the
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thermal dynamics of the DOC [51, 13].

Tg.DOC =

ṁexhCpg

VDOC
Tindelay.DOC + (h1α1)DOCTb.DOC

(h1α1)DOC + ṁexhCpg

VDOC

, (2.9)

(1− εDOC)ρbCb
dTb.DOC

dt
= (h1α1)DOC(Tg.DOC − Tb.DOC)− (h2α2)DOC(Tb.DOC − Ta), (2.10)

where Tg.DOC and Tb.DOC are the DOC outlet gas and brick temperatures, ρb and Cb are the density

and specific heat capacity of the monolith, εDOC is a parameter showing the fraction of the DOC

open cross sectional area [66], Cpg is the specific heat capacity of the exhaust gas, VDOC is the

volume of the catalytic brick, h1 and h2 are the heat convection coefficients from the gas flow to

the monolith, and from the block surface to the ambient, α1 and α2 are the corresponding geometric

surface area-to-volume ratios [66], and Ta is the ambient temperature, which is set to be 25◦C in

this paper. Both h1 and h2 are assumed to be changing linearly depending on the exhaust mass

flow rate.

Tindelay.DOC in (2.9) is calculated as:

Tindelay.DOC(t) = TTB(t−∆τd.DOC), (2.11)

and the variable ∆τd.DOC, which causes a dead-time in DOC temperature when engine operation

condition changes, is defined by the following equation and calculated using an iterative method:

∫ t

t−∆τd.DOC

Cpg
ADOC(1− εDOC)ρbCb

ṁexhds = cd.DOC, (2.12)

with ADOC(1 − εDOC) being the cross sectional wall area of DOC brick [13]. This equation cor-

responds to a transport phenomenon, with the integrand being the speed of flow, and the constant

parameter cd.DOC is the distance that heat propagates in the DOC brick. The delay time ∆τd.DOC

accounts for a residence time needed for heat to propagate into the monolith. It corresponds to

a transport phenomenon according to a Plug-Flow assumption; see [13] for details. As shown in

(2.9) and (2.10), the presented thermal model ignores exothermic reactions of CO and unburned
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hydrocarbons with oxygen in the DOC, which happens mainly when there is in-cylinder post in-

jection.

The same model structure is considered to calculate the SCR output gas temperature Tg.SCR and

brick temperature Tb.SCR because of the similar physical structures of SCR and DOC.

Tg.SCR =

ṁexhCpg

VSCR
Tindelay.SCR + (h1α1)SCRTb.SCR

(h1α1)SCR + ṁexhCpg

VSCR

, (2.13)

(1− εSCR)ρbCb
dTb.SCR

dt
= (h1α1)SCR(Tg.SCR − Tb.SCR)− (h2α2)SCR(Tb.SCR − Ta), (2.14)

Tindelay.SCR(t) = Tg.DOC(t−∆τd.SCR). (2.15)

∆τd.SCR is calculated using a similar equation as (2.12) with different parameters identified for

SCR. Furthermore, based on simulation results, the changes of ṁexh and Tindelay.SCR caused by urea

solution injection are found to be small and are therefore ignored in the SCR model.

2.3.2 Reduced-Order Model

Since including all the states in vehicle longitudinal model and thermal model will lead to a huge

computation burden, instead of the thermal model described in Section 2.3.1, a reduced-order

model with only one state is used in DP to simulate SCR temperature. In the reduced-order model,

the aftertreatment system including SCR is assumed to be lumped to a thermal mass with the

following dynamics:

Tg.rSCR =

ṁexhCpg

(A∆x)rSCR
TTB.ss + (h1a1)rSCRTb.rSCR

(h1a1)rSCR + ṁexhCpg

(A∆x)rSCR

(2.16)

(1− εrSCR)ρbCb
dTb.rSCR

dt
= (h1a1)rSCR(Tg.rSCR − Tb.rSCR)

− (h2a2)rSCR(Tb.rSCR − Ta) (2.17)
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where Tg.rSCR and Tb.rSCR represent outlet gas and brick temperature for the SCR reduced model.

Compared with the original model, the reduced lumped model has only one state (instead of three)

and the delay terms in (2.11) and (2.15) are ignored.

2.4 Model Validation
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Figure 2.4: Validation results for the vehicle longitudinal model

The parameters in the above models are identified using measured vehicle speed, engine speed

and torque, and aftertreatment gas temperatures for a MY2013 Ford F-250 Super-duty truck with

a 6.7 L diesel engine when it is running a federal test procedure (FTP). Validation results for

engine speed and torque prediction are shown in Fig. 2.4. Due to the fact that this model does not

include a torque converter, the simulated engine speed and torque during transient conditions are

more oscillatory than the measured variables as shown in the second and third subplots in Fig. 2.4.

During slow transients and steady operation conditions, the model follows engine speed and torque
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trajectory sufficiently closely for the purposes of this study.

Figure 2.5: Thermal model validated over the standard FTP drive cycle.

500 600 700 800 900 1000 1100 1200 1300

Time [s]

90

92

94

96

98

S
C

R
 E

ff
ic

ie
n
c
y
 [
%

]

Data

Model

Figure 2.6: Comparison of SCR efficiency traces calculated with modeled SCR temperature and
data over the standard FTP drive cycle.

Figure 2.5 shows the validation results of the aftertreatment system gas temperatures compared

with real vehicle measurements. Due to the delayed structure of the thermal dynamics presented in

(2.9)-(2.15), temperature histories from the cold start phase are required as initial conditions in the

DOC and SCR models in the stabilized phase. Thus, in all temperature calculations in this paper,
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simulations start from the starting point of the cold start phase to provide reasonable initial condi-

tions for the stabilized phase of FTP. However, only the stabilized phase is used for comparison and

verification, or for control purposes in Section 4.3. As observed, the gas temperature dynamics is

effectively slowed down from TTB to Tg.SCR. The thermal model sometimes misses the dynamics

in Bag 1 as it does not include post-injection or water condensation effect. The root-mean-square

errors for the turbine, the DOC and the SCR temperatures in Bag 2 are 9.0◦C, 10.6◦C, and 10.4◦C,

respectively. SCR efficiency traces calculated using the model and the measured SCR tempera-

ture are shown in Fig. 2.6. Here we model the SCR efficiency using an efficiency table based on

SCR temperature [15]. The root-mean-square error for efficiency is 1.12%. Thus, the model is

considered to be accurate enough for the purpose of this thesis.
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CHAPTER 3

Offline Speed Optimization Using Dynamic

Programming

Vehicle autonomy, semi-autonomy, or plain driver-advisory velocity signal could assist in reduc-

ing emissions and fuel consumption by allowing a flexible speed trajectory to the autonomous

vehicle in a given traffic condition. Assuming a vehicle-following traffic scenario, the follower

autonomous vehicle should be able to navigate itself to stay in a distance after the leader vehicle,

ensuring the driver safety and no car cuts in from other lanes. Enforcing the distance constraint,

the follower’s speed profile can be optimized to have minimal acceleration, so that fuel economy

is improved indirectly due to the removal of acceleration spikes [70]. Other constraints such as

trip time [60], road topography [81], traffic conditions [32] and traffic signals [41] can also be in-

cluded in the fuel optimization to replicate all conditions that happen in real road traffic and travel

missions.

Similar to the fuel economy, vehicle emissions also depend on vehicle velocity and how the au-

tonomous vehicle follows the leader. An aggressive acceleration, for example, generates a peak in

the engine out emissions which can challenge the clean-up capability of the vehicle aftertreatment

system. With the traffic preview, the vehicle might be driven such that the engine raw emissions

are low or/and the aftertreatment system is active enough to keep the tailpipe emissions, such as

NOx, within regulation limits. NOx emissions reduction in modern diesel engines heavily relies

on a Selective Catalytic Reduction (SCR) aftertreatment system [62]. The SCR catalyst uses a

reducing agent, ammonia (NH3), to react with NOx and reduce it to nitrogen and oxygen, and its

22



efficiency is highly dependent on catalyst brick temperature. For example, a Cu/Zeolite based SCR

system has more than 95% efficiency in the range [220-320] ◦C, while the efficiency drops to 60%

at 150 ◦C and is only 20% at 130 ◦C [14]. Therefore, it is critical to control the aftertreatment

temperature as well as the engine raw emissions to reduce the vehicle tailpipe (TP) emissions, both

dependent on the driving style.

The engine raw emissions reduce inherently when full pedal accelerations are avoided [73],

however, tailpipe emissions also depend on the aftertreatment system performance and its control.

In-cylinder post fuel injection is a common technique used to increase SCR temperature [67], [52],

however, the late injection reduces the vehicle fuel economy. In [17], a coordinated active thermal

management is applied to control post-injection and urea injection into SCR for reducing 97.8%

of engine out NOx emissions while satisfying NH3 slip requirements in a known and fixed speed

profile. For hybrid electric vehicles, combustion engines and electric motors can be coordinated

by the energy management to optimize fuel economy and tailpipe emissions for a given drive cycle

by choosing torque split ratio [80], [46]. In all aforementioned works the aftertreatment system

is controlled when the vehicle speed profile is assumed as a fixed trajectory with limited viola-

tion boundary permitted by the standard FTP test, and modifications are made inside the engine,

aftertreatment system, or the torque split demand is changed if for hybrid vehicles. Less works

have been done to approach the problem through modification of the velocity trajectory. In [73],

a following distance corridor is considered to optimize speed profile for better fuel economy and

diesel engine emissions. Through reducing fast transients of pedal input, their experimental results

showed 24% engine NOx reduction with 13% fuel consumption reduction. However, performance

of aftertreatment was not included in their work.

In this chapter, an optimal car-following scenario is used to study fuel economy-tailpipe NOx

emissions trade-offs, assuming an SCR aftertreatment system. The leader vehicle is scheduled to

transverse the standard FTP drive cycle, and the following vehicle is an autonomous diesel vehicle.

Optimal speed trajectory for the following vehicle is calculated, and multiple key performances are

utilized as objective functions, including acceleration, fuel consumption, engine NOx and tailpipe

23



NOx emissions. The model presented in Chapter 2 is applied to evaluate the resulting fuel con-

sumption and emissions performances, and dynamic programming method [77] is applied to find

the global optimal solution of the above optimization problems.

The main contribution of this chapter is to demonstrate a clear fuel economy-NOx emissions

trade-off and indicate the importance of the aftertreatment system in optimal vehicle-following sce-

narios. This observation will motivate formulation of a fuel and tailpipe emissions co-optimization

problem, as well as the change to solve the optimal velocity trajectory using a causal methodology

in later chapters.

The content of this chapter has been presented in [39],

• Huang, C., Salehi, R. and Stefanopoulou, A.G., 2018, June. Intelligent cruise control of

diesel powered vehicles addressing the fuel consumption versus emissions trade-off. In 2018

Annual American Control Conference (ACC) (pp. 840-845). IEEE.

3.1 Problem Formulation

We consider a car-following scenario where the ego vehicle, which is automated, follows a leader

vehicle and optimizes its velocity trajectory utilizing information of the future motion of the leader

vehicle. To explore the benefit of autonomy while making the ego vehicle follow the leader with

a relatively short distance, spacing constraint on the following distance are imposed to mimic the

traffic constraints to avoid rear end collisions and keep the following distance from being too long

to avoid frequent cut-ins from adjacent lanes. Any following trajectories that satisfy this spacing

constraint are considered feasible.

In this chapter, it is assumed that the whole drive cycle of the leader vehicle is available to

the ego follower, such that it can perform offline computation to calculate its preferred velocity

trajectory.
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3.2 Optimal Control Problem Formulation

The speed trajectory of the autonomous vehicle is optimized when it is following a leader vehicle

driving the standard FTP drive cycle. The optimization minimizes one of these four objectives:

acceleration, fuel consumption, engine raw NOx emission and tailpipe emission. The following

vehicle is designed to drive exactly the FTP cycle during the cold start phase in all optimization

cases where post injection and other warm up control strategies are active. Thus, the speed opti-

mization only considers the second phase of the FTP. To simulate real traffic conditions, upper and

lower limits of the following vehicle position are defined based on the leader vehicle position and

speed, and used as a constraint in the optimization.

The dynamic programming function from MATLAB [77] is used to solve the speed trajectory

optimization problem. Dynamic programming method is subject to the curse of dimensionality,

which in this context means that the computation complexity grows exponentially with the number

of states and inputs. To reduce the number of states included in the system, the reduced-order

model presented in Section 2.3.2 is utilized when solving for the optimal trajectories.
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Four optimization scenarios are tested with a single objective function in each case as:

min
{aveh(k)}Nk=0

Ji(x) =
N∑
k=0

Ci(k), i = 1, 2, 3, 4 (3.1a)

subject to − 6 m/s2 ≤aveh(k) ≤ 6 m/s2 (3.1b)

p(vl(k)) ≤pveh(k) ≤ p̄(vl(k)) (3.1c)

p̄(vl(k)) =pl − vl ·∆tL (3.1d)

p(vl(k)) =pl −


vldmax if vl < 20 MPH

vldmin otherwise
(3.1e)

0 ≤vveh(k) ≤ 67 MPH (3.1f)

150◦C ≤Tb.rSCR(k) ≤ 300◦C (3.1g)

System dynamics and constraints (2.1)-(2.8) (3.1h)

for k = 0,1, ..., NP − 1. (3.1i)

System dynamics (2.1)-(2.8), (2.16)-(2.17) discretized using dT = 0.1 s, with a zero-order hold

on input aveh. In above, k = 0 and N represent the starting step and ending step of the stabilized

phase in FTP, pl and vl are the position and velocity of the leader vehicle, ∆tL is selected pro-

portional to the vehicle length, dmax and dmin are selected 10 ft/MPH and 4 ft/MPH. p̄(vl(k)) is

the closest position of follower car considered for safety and p(vl(k)) is the farthest position that

would prevent cut-ins from other lines [70]. Table 3.1 describes the cost function used in each

optimization scenario and its corresponding states.
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Table 3.1: Cost functions defined for optimization scenarios

Objective Cost function States
(optimal) acceleration C1(k) = aveh(k)2 [pveh, vveh]T

(optimal) fuel or MPG C2(k) = mf (k) [pveh, vveh]T

(optimal) Engine NOx C3(k) = mNOx.Eng(k) [pveh, vveh]T

(optimal) TP NOx C4(k) = mNOx.TP(k) [pveh, vveh, Tb.rSCR]T

Finally, inputs and states are discretized before applying DP with grid sizes

Input: ∆aveh = 0.5 m/s2, (3.2a)

States:


∆pveh =

p̄(vl(k))−p(vl(k))

30
m

∆vveh = 1
4

m/s

∆Tb.rSCR = 3 ◦C.

(3.2b)

3.3 Results

Table 3.2: Effect of optimization objective on major vehicle outputs

Objective Orig. Acce. Fuel Eng. NOx TP NOx
MPG 16.3 18.2 19.3 19.2 13.7

Engine NOx [g] 5.20 3.50 8.09 3.24 5.47
Tailpipe NOx [g] 0.342 0.388 0.664 0.385 0.141

NOx Reduction [%] 93.4 88.9 91.8 88.1 97.4
Urea Solution [g] 14.2 9.10 21.7 8.33 15.6

The following autonomous vehicle is simulated with the optimized speed profile for each of

the four scenarios listed in Table 3.1. Main results for the two extreme cases, namely least fuel

and least TP emissions, are shown in Fig. 3.1. Detailed key results including the vehicle fuel
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Figure 3.1: Summary of the fuel & TP NOx optimization results normalized by the standard FTP
drive cycle

economy (in MPG), engine raw emissions, NOx reduction rate, and tailpipe emissions are listed in

Table 3.2 for all four cases. As plotted in Fig. 3.1, MPG in fuel optimized scenario is 18% higher

than the standard baseline, but tailpipe NOx is almost doubled; while directly optimizing tailpipe

emission decreases NOx 59% compared to the standard with 17% less fuel efficiency. Therefore,

a complete trade-off exists between the vehicle fuel economy and emissions such that improving

one deteriorates another.

Speed trajectories for the four scenarios in Table 3.1 and the standard driving are shown in

Fig. 3.2. As shown, all four optimization scenarios recommend a relatively constant speed over

[690-710] s. When the fuel is minimized, a pulse and glide speed trajectory is generated. This

commands the engine to operate with high torque as is shown in visitation plot in Fig. 3.3-(d).

The engine, however, generates very high amount of NOx at high torque conditions, specifically

if the engine speed is low (Fig. 3.3-(b)). This is the reason that raw emissions increase with fuel

optimized drive cycle as shown in Table 3.2.

SCR temperature traces for all five cases are shown in Fig. 3.4 along with 97.5%, 95% and
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Figure 3.2: Comparison between the standard and optimized vehicle speed trajectories

85% SCR efficiency levels. As observed, the SCR temperature and consequently its efficiency

are low when only the fuel economy is optimized. The low SCR efficiency together with the

high raw engine emissions are reasons that the tailpipe NOx is doubled compared to the standard

FTP driven speed profile as Table 3.2 shows. From Fig. 3.4 it is observed that maintaining high

temperature for the SCR is required to minimize the tailpipe NOx emissions. To increase the SCR

temperature, DP designs the vehicle speed such that the turbine out temperature rises as verified

by TTB.ss distribution shown in Fig. 3.5. The cost for this high SCR temperature, however, is higher

fuel consumption since the high TTB.ss points are not necessarily located in high engine efficiency

regions.

Finally, results from the acceleration and engine NOx minimized optimizations are found to
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Figure 3.3: Engine maps for brake-specific fuel consumption (BSFC), CNOx.Eng, TTB.ss, and visita-
tion points from different optimization scenarios compared with the standard FTP drive cycle

be between the fuel and the tailpipe emission minimized scenarios (Table 3.2). Therefore, the two

former objective functions can be used to compromise between fuel and tailpipe emissions. Espe-

cially, the raw emissions minimization scenario is recommended since it improves fuel economy

while maintaining tailpipe emission level close to the baseline speed profile.

3.4 Summary

In this chapter, vehicle speed trajectory optimization scenarios are tested to minimize four objec-

tive functions, namely acceleration, fuel consumption, engine NOx emissions, and tailpipe NOx

emissions. A model is developed for a medium duty diesel truck to calculate fuel consumption

and NOx emissions. The vehicle follows a leader which is driven based on the standard FTP

drive cycle. Then, dynamic programming is applied to calculate optimal velocity trajectory for the

following vehicle during the stabilized (warmed-up) phase of the FTP.
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Figure 3.5: TTB.ss probability distribution comparison between tailpipe NOx optimization scenario
and the standard FTP drive cycle

Results show when only the fuel economy is optimized, the tailpipe NOx emissions are dou-

bled (compared to a non-optimized baseline) due to low aftertreatment efficiency and high engine

emissions. When the optimization target is changed to the tailpipe emissions, however, 17% of the

fuel efficiency is sacrificed to keep the aftertreatment efficiency high, which lowers down tailpipe

NOx emissions by 59%. Therefore, it is concluded that maximum fuel saving from an autonomous

driving cannot be achieved at the same time as the maximum emission reduction is reached. Fi-

nally, it is observed that minimizing the engine out emissions would not reduce tailpipe emissions

and one should include the aftertreatment system thermal dynamics in the optimization problem.

Since none of the single objective optimization considered in this chapter achieves concurrent
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reduction in fuel consumption and tailpipe NOx, this observation also motivates us to consider a

multi-objective function and include both fuel and emissions performance in the objective function

to find a set of pareto optimal solutions. Ideally, we are looking for points on the pareto curve that

reduce both the total amount of fuel and emissions. Moreover, it is assumed in this chapter that the

whole drive cycle of the leader vehicle is available to the follower to perform offline optimization.

The next step is to solve the optimization problem using a causal methodology to react to real-time

changes in the traffic conditions.
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CHAPTER 4

Online Optimal Speed Planner with Accurate

Preview

In the previous chapter, we have seen a clear fuel economy-NOx emissions trade-off and as well

as the importance of the aftertreatment system in optimal vehicle-following scenarios. But the

assumption that accurate information of the whole cycle of the leader vehicle is available to the

ego follower makes the solution non-causal and cannot be used in real-world driving scenarios.

A commonly used method for causal trajectory optimization is through model predictive con-

trol (MPC). Model predictive control is usually used to control a process when the system needs to

satisfy a set of constraints, which is a suitable for the considered problem when traffic constraints

and system feasibility constraints of the vehicle should be enforced when optimizing the speed

trajectory of the ego follower. In literature, MPC has been used for speed planning to achieve eco-

driving of connected and automated vehicles and usually targets at reducing total fuel consumption

[70, 36, 6, 39, 76, 61, 53] and sometimes also engine NOx emissions [73]. [73] consider engine

feedgas emissions performance for a conventional diesel engine while optimizing the velocity trace

during eco-driving, and show that a trade-off among cycle time, emissions and fuel consumption

should be addressed carefully to avoid excess NOx emissions. When following a fixed drive cy-

cle, existing literature use variable geometry turbocharger (VGT), exhaust gas recirculation (EGR)

techniques as well as airpath controllers to improve fuel efficiency and reduce feedgas emissions

for diesel engines [30, 55, 56, 29, 72] via modifying the engine control strategy. As the system

is highly nonlinear and constrained, again these papers use model predictive controllers to handle
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the high-level objectives and constraints, e.g., minimizing brake-specific fuel consumption (BSFC)

[30, 29, 87], pumping loss [56, 72], tracking EGR rate target and fueling rate [55, 72] under instan-

taneous emissions constraints [30, 29], engine safety constraints [55] or average emissions limits

[72]. For vehicles with emissions aftertreatment systems, researchers have also studied control

strategies to achieve near-optimal tailpipe emissions with lowest cost through aftertreatment oper-

ations [17], without changing the driving behavior at vehicle level. None of the existing literature

considers the problem at vehicle level by modifying the driving behavior.

Motivated by the observation in the previous chapter, we propose to tackle the fuel consumption

and emissions minimization problem by modifying the vehicle behaviors. The vehicle following

problem is formulated as an online fuel and tailpipe emissions co-optimization problem, and the

optimal following velocity trajectory is solved using MPC.

Due to the relatively large heat capacity of the turbine, the DOC and the SCR, the thermal

dynamics of the aftertreatment system is very slow and subject to highly varying delays [50]. The

varying and long delay that exists in the aftertreatment system increases the difficulty to perform

real-time optimization directly on the aftertreatment thermal dynamics. To solve this problem, a

surrogate cost function is proposed in this chapter, leading to an energy and emissions conscious,

MPC-based, vehicle-following algorithm named E2C-MPC. Simulation is performed to show the

effectiveness of the proposed algorithm, instead of including the full aftertreatment system and

the tailpipe emissions directly in the objective function. The E2C-MPC algorithm is the main

contribution of this chapter.

The content of this chapter has been presented in [38],

• Huang, C., Salehi, R., Ersal, T. and Stefanopoulou, A.G., 2020. An energy and emission

conscious adaptive cruise controller for a connected automated diesel truck. Vehicle System

Dynamics, 58(5), pp.805-825.

34



4.1 General Architecture for Optimal Vehicle Speed Planning

The predictive controller solves the following optimal control problem (OCP) to acquire the opti-

mal input at each time step t:

min
U

J(t) =

NP−1∑
k=0

J(k|t) (4.1)

where NP is the number of samples in the prediction horizon, J is the optimization objective

function, with several possible selections presented in later sections, and the optimization variable

U =

[
aveh(0|t) aveh(1|t) · · · aveh((NP − 1)|t)

]T
, is the evenly sampled vehicle acceleration

over the prediction horizon, with a constant sampling time dt. Thus the prediction horizon is equal

to NP ·dt. The notation z(k|t) (here z is used to represent a generic variable) refers to the predicted

value of the variable z at the kth step in the prediction horizon, which is the predicted value at time

(t+ k · dt) given the information at time t.

The OCP is solved under the following constraints ∀k = 0, 1, . . . Np − 1:

p(vl(k · dt+ t+ 1)) ≤pveh(k + 1|t) ≤ p(vl(k · dt+ t+ 1))

vf ≤vveh(k + 1|t) ≤ vf

aveh ≤aveh(k|t) ≤ aveh

x(k + 1|t) = x(k|t) + dt · f(x(k|t), u(k|t)),

(4.2)

where vl(k · dt+ t+ 1) is the future speeds of the leader at time (k · dt+ t+ 1), which is used to

generate constraints in the OCP. The above four constraints are:

• upper and lower limits of the follower vehicle position (p, p) for keeping a positive inter-

vehicular distance and avoiding cut-ins from other lanes, constructed using the leader vehi-

cle’s position pl and speed vl:

p = pl − 0.3vl (4.3)
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p(s) =


pl − (4vl + 3), if vl > 9

pl − (10vl + 3), if 0.7 < vl ≤ 9

pl − 10, if vl ≤ 0.7

. (4.4)

This formulation is the same as in [70], except that the distance gap is enlarged by changing

the values for the multipliers in (4.4) and (4.3), as well as adding the constant offset in (4.4).

These numbers are design parameters and can be adjusted by the user based on the traffic

condition and controller performance. Enlarging the distance gap will provide more flexi-

bility in varying the speed and thus will deliver better performance, but traffic capacity will

drop [48]. Note that the Heaviside step function can be utilized to formulate the expression

for (4.4). The parameters in (4.4) and (4.3) are design parameters and can be changed by the

user.

• upper and lower limits of the follower speed, with the upper limit vf set to be the road speed

limit, and the lower limit vf set to be 0 to enforce a non-negative speed.

• upper and lower limits of the follower acceleration, with aveh = −6 m/s2 and aveh = 6 m/s2.

The limits are chosen to be twice that of the maximum vehicle acceleration/deceleration

driving the FTP drive cycle.

• system dynamics, which is explained in detail in Sections 4.2 and 4.3.

Through selection of different cost functions, the vehicle speed trajectory can be calculated to

optimize a required criterion. For instance, one can select to minimize aveh as done in [57, 70]

if an energy conscious optimization is of interest. The selection of the cost function impacts the

outcome of velocity trajectory and its critical performance parameters, namely, tailpipe NOx and

fuel economy. In the following sections, these performance parameters are simulated with the

vehicle model presented in Chapter 2.
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Table 4.1: Cost functions defined for both EC-MPC optimization scenarios

i Case name Objective to minimize Cost function
1 EC-MPCf Fuel J1(k|t) = ṁFuel(k|t)dt
2 EC-MPCa Acceleration J2(k|t) = aveh(k|t)2

4.2 Conventional Energy Conscious Model Predictive Controller

(EC-MPC)

4.2.1 EC-MPC Control Strategy

With fuel consumption as the optimization objective, the OCP in (4.1) can be solved with different

energy conscious cost functions to calculate the optimal speed trajectory of the ego follower. For

instance, the vehicle acceleration is used in [57, 70] as a variable correlated with fuel consumption,

and in [32, 76, 73] the fuel consumption model is used for optimal speed planning. In this chapter,

two cases are studied as benchmarks, where in each of them a cost function from Table 4.1 is used

for optimal fuel speed planning calculated using the predictive controller in (4.1). Therefore, the

cost at every step t

Ji(t) =

NP−1∑
k=0

Ji(k|t), i = {1, 2}, (4.5)

is used in (4.1) over a horizon of NP steps. The problem in (4.1)-(4.5) is solved numerically using

the optimization command fmincon in Matlab with the sequential quadratic programming algo-

rithm. The sampling time dt is set to 0.1 s and then the length of prediction horizon is (0.1NP) s.

4.2.2 EC-MPC Performance Evaluated over FTP Drive Cycle

Vehicle fuel consumption and NOx emissions simulated using the vehicle model in (2.2)-(2.15)

with the optimal acceleration from the two EC-MPC controllers are shown in Fig. 4.1 and 4.2 for

different prediction horizons. For the lead vehicle, the federal test procedure for light duty vehicles

is selected as the desired speed trajectory. Also, the plotted accumulative mass of fuel and tailpipe

NOx are normalized with the corresponding values when the vehicle is driven with the nominal
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FTP speed trajectory. In other words, we are comparing the scenario when the follower vehicle

is driving the optimized trajectory with the nominal case when the follower vehicle is driving the

leader’s drive cycle exactly without any speed planning. The plots in Fig. 4.1 indicate that both

EC-MPCf and EC-MPCa can effectively reduce fuel consumption, but at the same time, both of the

controllers increase tailpipe NOx emissions compared with the nominal trajectory due to the drop

in SCR efficiency despite that engine emitted NOx is reduced in most cases (Fig. 4.2). It is also

shown that although EC-MPCf performs better in reducing fuel consumption, it generates more

engine and tailpipe NOx emissions compared with EC-MPCa.

With longer prediction horizon in EC-MPC controllers, acceleration level is reduced and, at

the same time, cycle-averaged turbine temperature and SCR efficiency are also reduced as shown

in Fig. 4.2. Due to the lower SCR efficiency, the resulting tailpipe NOx (in Fig. 4.1) does not drop

even though the trip acceleration level is reduced.
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Figure 4.1: Normalized comparison of the optimal solutions of EC-MPC controllers with different
prediction horizons. Fuel consumption, engine out and tailpipe emissions performances are shown
in subplots from top to bottom, respectively.
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Figure 4.2: Correlation between cycle-averaged turbine temperature TTB, SCR efficiency and ve-
hicle acceleration |a|, of the optimal trajectories when follower vehicle is using the EC-MPC con-
trollers. Lower acceleration level yields lower turbine temperature and lower SCR efficiency.

4.3 Energy and Emissions Conscious Model Predictive Con-

troller (E2C-MPC)

The conventional ego speed controllers described in the previous section indicate degraded tailpipe

emissions performance despite better fuel economy when the formulation is only energy conscious

and emissions are ignored. To avoid this problem, an intuitive solution would be to add an addi-

tional constraint to the OCP to limit the follower vehicle’s total tailpipe NOx emissions:

Ntotal∑
k=0

{ṁNOx.TP(k)}MPC · dt ≤
Ntotal∑
k=0

{ṁNOx.TP(k)}Nom · dt, (4.6)

where the subscript “MPC” refers to the driving scenario in which the follower vehicle drives the

optimized trajectory, and “Nom” refers to the nominal driving scenario in which the ego follower

drives the leader vehicle’s drive cycle exactly. This way, the emissions performance could be in-

cluded in the control loop. Dynamic programming method could be used to solve the OCP with the
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additional constraint (4.6) by considering the accumulative NOx as an additional state. However,

this solution strategy would be non-causal, since it requires knowledge of the whole drive cycle

before starting to solve for the optimal solution. Furthermore, it would be very computationally

costly. Thus, optimization problems with this terminal constraint are hard to solve using causal

control strategies due to the fact that the summation is calculated over the whole trip. Hence, an

alternative strategy is developed in this section that is practically implementable.

4.3.1 E2C-MPC Design and Approximations

The emissions constraint in (4.6) is relaxed to be a soft constraint and embedded into the cost

function by adding an additional term to the previous EC-MPC cost function defined in (4.5),

which is the instantaneous emissions scaled by an equivalence factor. This forms the energy and

emissions conscious cost:

JE2C NOx(t) =

NP−1∑
k=0

(
ṁfuel(k|t) + w · ṁNOx.TP(k|t)

)
dt. (4.7)

With the cost function defined in (4.7), the OCP aims to reduce the predicted tailpipe NOx emis-

sions in the prediction horizon in addition to reducing the predicted fuel consumption.

Note that the equivalence factor w should be pre-tuned offline. A method is proposed in [93]

to calculate the equivalence factor online by calculating an approximation of the optimal cost-to-

go function. This method, however, needs finding the dynamic programming solution with high

computational burden and with a knowledge of the whole drive cycle. Therefore, an alternative

approach is adopted in this chapter; namely, we focus on designing the energy and emissions

conscious MPC, and identify a range for w that works for most of the well known drive cycles.

The OCP satisfies the same constraint as in (4.2) with the system dynamics f(x, u) for the state

vector x =

[
pveh, vveh, Tb.rSCR

]T
, and Tb.rSCR is the state for SCR brick temperature simulated with

the reduced-order model presented in Section 2.3.2, where the aftertreatment system including

SCR is assumed to be lumped into one thermal mass. The vehicle longitudinal dynamics and the
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powertrain model from (2.1)-(2.7) remain the same. Note that this reduced SCR model is only

used in the MPC and the plant is still simulated with the full thermal model; i.e., the full thermal

model is used for evaluating the optimal trajectory and update the initial conditions at each MPC

run.

Two considerations are worth highlighting here: (1) The results in Fig. 4.2 show that as acceler-

ation increases, fuel consumption increases, but, at the same time, turbine temperature increases as

well, which leads to higher SCR temperature and SCR efficiency, and consequently, lower tailpipe

NOx. (2) Since the prediction horizon will be limited, we would expect an MPC with a faster

dynamics to perform more consistently than that with slower dynamics. From the above observa-

tions, increase in turbine temperature could potentially be used as an indication of reduced tailpipe

NOx emissions with MPCa.

Based on these considerations, a second E2C-MPC formulation is developed as follows in an

effort to seek a simpler OCP. In particular, a new cost function JE2C TB(t) is introduced, which is

obtained by replacing the ṁfuel term in (4.7) with acceleration, and replacing the mNOx.TP(k|t) term

with turbine temperature as follows.

JE2C TB(t) =

NP−1∑
k=0

(
a(k|t)2 + w(TTB(k|t)− Tthr)

2 · ITB(k)
)
, with

ITB(k) =


1, if TTB(k|t) < Tthr

0, if TTB(k|t) ≥ Tthr

,

(4.8)

where Tthr is a pre-tuned parameter, which represents the lower desired threshold for the turbine

temperature. The OCP satisfies the same constraint as in (4.2) with the system dynamics f(x, u)

for the state vector x =

[
pveh, vveh, TTB

]T
including (2.1)-(2.8). Thus, this formulation, called

E2C-MPCTB, aims to reduce acceleration while maintaining turbine temperature. As shown in the

next section, this formulation is able to balance fuel consumption and NOx emissions, and it can

do so with simpler dynamics that makes solving the OCP numerically easier.
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4.3.2 E2C-MPC Performance Evaluation over FTP Drive Cycle

4.3.2.1 Selection of E2C-MPC Optimization Criterion

The two E2C-MPC controllers are evaluated over the FTP drive cycle with different length of pre-

diction horizons with results shown in Fig. 4.3. The sampling time dt is increased to 1 s compared

with 0.1 s as used in Section 4.3 to shorten the computation time. For each selected horizon,

the equivalence factor w is swept from 0 to 1 to show the trade-off between emissions and fuel

consumption. In other words, the multi-objective optimization problem is scalarized to build the

Pareto-optimal curve. In each plot, the accumulative fuel and tailpipe NOx values are normalized

by their respective nominal values.
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Figure 4.3: Fuel and emissions reduction effects using E2C-MPCNOx (labeled with NOx), and
E2C-MPCTB (labeled with T TB). Different data points on a same curve are due to monotonically
varying w.

End of drive cycle results shown in Fig. 4.3 indicate E2C-MPCTB outperforms E2C-MPCNOx

since (1) the emission-fuel consumption curve is smoother and more monotonic in both fuel and

emissions performance, and (2) better fuel economy is obtained at the same level of NOx emis-
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Figure 4.4: Optimal trajectories using E2C-MPCNOx and E2C-MPCTB with 40s prediction horizon.
The two optimized trajectories (correspond to the diamond marked points on the left figure) are
chosen such that they have the same tailpipe NOx emissions as the nominal FTP trace.

sions. One reason for E2C-MPCTB being more effective than E2C-MPCNOx is that the objective

function JE2C TB(t) is numerically easier to optimize. The turbine thermal dynamics and the

quadratic acceleration terms are less complicated, and have a larger gradient due to faster dynam-

ics than that of the reduced SCR thermal dynamics and the fuel consumption terms. The smooth

and predictable NOx and fuel consumption trade-off observed for E2C-MPCTB offers convenience

for calibrating the equivalence factor w for achieving the best fuel economy for a given tailpipe

emissions.

Figure 4.4 shows the optimal speed traces and the distance between the two vehicles for the

two optimization formulations, E2C-MPCTB and E2C-MPCNOx, both with a 40 s prediction horizon.

The selected points are marked with diamond markers in Fig. 4.3, and their equivalence factors are

selected such that both MPC controllers generate the same tailpipe NOx emissions as the nominal

FTP trace. However, E2C-MPCTB with 40 s horizon results in 14% better fuel economy, while
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E2C-MPCNOx improves the fuel economy by 9% compared to the nominal. This behavior is re-

lated to the fact that, as the distance trajectories in Fig. 4.4 show, with the E2C-MPCTB utilized

for the optimal speed planning, the advantage of having a flexible following distance is exploited

more compared to the E2C-MPCNOx, in which the vehicle distance is almost constant. One reason

for this performance difference is that with the more complicated reduced SCR thermal and emis-

sions models involved in the E2C-MPCNOx, it is easier for the optimizer to get stuck at infeasible

regions (7% of cases, as shown in Table 4.2) or not being able to satisfy the first-order optimality

conditions before design step size tolerance is reached (87% of cases) compared to E2C-MPCTB

(0% and 1% of cases, respectively). With E2C-MPCTB, the chance of finding the point satisfying

the first-order optimality conditions is much higher (99% of cases). Note that if the design step

size tolerance is reached before the first-order optimality conditions are met, that means the current

point satisfies the constraints and is possibly close to a local optimum, but the violation of the first-

order optimality conditions is larger than that required by the optimality tolerance and reducing

this violation would require a smaller design step size than the allowed minimum threshold. Also

note that the formulation with NOx is using minimum step size as 0.001 m/s2, while with TB the

minimum step size is 0.01 m/s2, 10 times of that for the NOx formulation. This means that the

formulation with NOx has a more sensitive cost function, which explains the more consistent and

better performance of E2C-MPCTB in Fig. 4.3.

Exit reason Not feasible
Reaches maximum

First-order optimal
Design step size

number of iterations tolerance reached

w/NOx 7% 2% 4% 87%
w/TTB 0% 0% 99% 1%

Table 4.2: Reasons for terminating optimization process when solving for optimal trajectories
using E2C-MPCNOx and using E2C-MPCTB (trajectories are associated with Fig. 4.4), when the
optimal control problem is solved with optimization command fmincon in Matlab.

The computation time required for calculating the optimal speed over the prediction horizon

at each step with E2C-MPCTB is expected to be reduced significantly due to simplified dynamics

when it is compared with E2C-MPCNOx. Table 4.3 shows the statistical features of computation
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MPC Type w/ NOx w/ TTB

Horizon [s] 20 30 40 50 20 30 40 50

Mean [s] 0.62 1.65 3.27 5.39 0.02 0.03 0.05 0.08
Std [s] 0.35 0.75 1.23 1.82 0.01 0.02 0.03 0.07
Max [s] 1.82 4.98 8.18 11.82 0.14 0.28 0.28 0.63

Table 4.3: Comparison of statistics calculated from computation time of all optimization steps for
E2C-MPCNOx and for E2C-MPCTB.

time for the two OCPs calculated with time step of 1 s. The simulations results are obtained on a

desktop computer with an Intel Core i7-7700 CPU at 3.6GHz. The code is written and executed in

the Matlab environment with the purpose of comparing the computation time of these two OCPs.

It is expected that less computation time can be achieved by re-writing and optimizing the code in

a compiled language if run on the same hardware. As shown, with the same prediction horizon,

the E2C-MPCTB with TTB dynamics runs almost 10 times faster than the E2C-MPCNOx where SCR

and NOx models with reduced order thermal dynamics for the aftertreatment system are used.

4.3.2.2 Selection of Prediction Horizon

The length of the prediction horizon is a design parameter for MPC. Thus, its impact on the E2C-

MPCTB controller is studied and shown in Fig. 4.5 for prediction horizons from 10 s to 70 s.

As shown, when the prediction horizon increases from 10 s to 40 s, the normalized Fuel - NOx

curve moves towards the left-lower direction, which means less fuel consumption and tailpipe NOx

emissions. However, as also shown, increasing the prediction horizon beyond 40 s does not help in

saving more fuel or tailpipe NOx, but increases the computational load due to the increased number

of optimization variables. Thus, it is concluded that E2C-MPCTB with a 40 s prediction horizon is

an acceptable design to reduce fuel consumption while maintaining emissions performance of the

ego follower.
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Figure 4.5: Normalized fuel consumption vs. TPNOx for optimal trajectories with E2C-MPCTB

evaluated over FTP with different selections of w and prediction horizon NP.

4.3.2.3 Effect of the Equivalence Factor w

Optimized ego speed, acceleration trajectories, and histogram of acceleration for two equivalence

factors, both with a 40 s prediction horizon, are shown in Fig. 4.6 and 4.7. With larger w, the con-

troller penalizes the acceleration relatively less, and thus results in trajectories with larger acceler-

ations. This is seen more clearly in Fig. 4.7, since the acceleration distribution for smaller w is lo-

cated mostly in the range of [−1, 1] m/s2, while for larger w, this range grows into [−1.5, 1.5] m/s2.

On the one hand, the resulting average turbine temperature grows with w as shown in Fig. 4.8(b)

as well as the time resolved plot Fig. 4.9(a), as there is higher cost for dropping turbine temperature

for larger ws. On the other hand, since the relative penalty on a large acceleration is decreased,

a more oscillatory trajectory ensues with larger w and that leads to higher fuel consumption as

shown in Fig. 4.8(a). As the result of higher turbine temperature, SCR temperature is also in-

creased as shown in Fig. 4.9(b), which avoids the large SCR temperature drop to around 160◦C as

happens with w = 0 and could maintain the SCR temperature to stay above 200◦C with larger w
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Figure 4.6: Optimized ego speed and acceleration traces using E2C-MPCTB controllers with two
different equivalence factors corresponding to a more fuel-efficient trajectory (w = 0.1) and a
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(Fig. 4.8(c)). This results in a higher average SCR efficiency, as shown in Fig. 4.8(d). Hence, it is

inferred that the reason for why increasing w reduces tailpipe NOx emissions as seen in Fig. 4.8(d)

is that average SCR efficiency (which is also the average NOx conversion efficiency) increases

with the equivalence factor.

4.3.3 Robustness of E2C-MPC: Performance Evaluation over Different Drive

Cycles

The robustness of the proposed E2C-MPC controller with the surrogate cost (i.e., E2C-MPCTB) to

variations in the drive cycle is evaluated by testing the controller over five additional drive cycles in-

cluding Heavy Duty FTP (FTPHD), the Supplemental Federal Test Procedure (SC03), Worldwide
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Harmonised Light Vehicle Test Procedure (WLTP), World Harmonized Vehicle Cycle (WHVC),

and New European Driving Cycle (NEDC). Fig. 4.10 shows the vehicle speed and acceleration

visitation points of these six selected drive cycles when the E2C-MPC with 40 s prediction horizon

is used to optimize the velocity trajectory. As shown, these six drive cycles span a wide range of

vehicle operating conditions.

The temperature of the aftertreatment system at the end of the FTP Bag 1 is selected as the

initial condition for all the other cycles for consistent evaluation and comparison to the FTP Bag 2

results presented in the previous sections. Similar to the FTP simulations, it is assumed that a

leader vehicle is driving one of the five drive cycles mentioned above, and the follower vehicle is

using the E2C-MPCTB controller design to optimize its speed trajectory. The equivalence factor w

is swept for each test to generate the normalized Fuel - NOx curves for these trajectories, as shown

in Fig. 4.11. The fuel consumption and tailpipe NOx values for different tests are normalized by

their respective values corresponding to each test’s nominal driving scenario.
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Figure 4.8: Effect of w on normalized fuel consumption, turbine temperature, SCR temperature
range (maximum and minimum SCR temperature) and average SCR efficiency when the controller
is applied to the FTP drive cycle.

Figure 4.9: Effect of equivalence factor w on turbine temperature and SCR temperature, shown as
time resolved results.

For all the tested drive cycles, there exists a range of w such that the optimal trajectories have

lower fuel consumption and lower tailpipe NOx emissions than the nominal (Fig. 4.11). To visu-

alize this range, the resulting normalized fuel consumption and tailpipe NOx are separately shown

at each w in Fig. 4.12. As observed, the trend is the same for all trajectories; with increasing

equivalence factor, fuel consumption increases and tailpipe NOx emissions decrease. The green

dashed box in Fig. 4.12 shows the range of the equivalence factor w in the proposed E2C-MPCTB

controller when a selected w is acceptable for all drive cycles; i.e., the E2C-MPCTB controller with

that w will yield an optimal trajectory that is both more fuel-efficient and NOx-efficient than its

leader vehicle’s drive cycle. Note that a priori knowledge of the drive cycle would allow for im-
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commonly used for vehicle certification.

proving the selection of w by performing offline computations to make the optimal trajectory more

fuel/emissions-efficient. However, if the drive cycle is not known beforehand, choosing the small-

est acceptable w will yield a causal controller, which results in 5-15% improvement in the fuel

economy with a corresponding 0-25% NOx emissions reduction for these tested cycles. Fig. 4.12

also shows that with w = 0, the E2C-MPCTB controller simplifies into the conventional EC-MPCa

and optimized traces for 5 of the 6 tested drive cycles result in more tailpipe NOx emissions than

their corresponding leading cycles. This observation confirms that the E2C-MPCTB controller has

better performance in maintaining low emissions than the EC-MPCa controller.

4.4 Summary

This chapter contributes a noval model predictive control formulation, namely E2C-MPC, to bal-

ance fuel consumption and tailpipe NOx emissions in vehicle-following scenarios for diesel ve-

hicles that are equipped with SCR-exhaust aftertreatment systems, by planning an optimal speed

trajectory based on predictive information of leader drive cycle and a flexible following distance

between the two vehicles. Simulation results with a validated medium duty diesel truck model

confirm that the new formulation can achieve 5-15% improvement in the fuel economy with a cor-

responding 0-25% NOx emissions reduction in all the drive cycles tested including FTP, NEDC,

WHVC etc. The new formulation’s design parameters, namely, the prediction horizon and the

equivalence factor, are studied to understand their impact on the controller’s performance, and it

is found that a good performance can be achieved with the same design parameters across all the
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Figure 4.11: Pareto-shaped fronts observed for normalized fuel consumption versus NOx when
testing different drive cycles with E2C-MPCTB controller design.

drive cycles tested, where a good performance means improved fuel economy without a reduction,

and in fact often an improvement, in NOx emissions performance.

The analysis of the computational performance of the new controller reveals that an online

implementation could be feasible. Hence, the results encourage further development and experi-

mental testing of this controller. Furthermore, it is important to note that the exact numbers for fuel

consumption and tailpipe emissions are heavily relied on the accuracy of the engine and aftertreat-

ment model. Unfortunately, “all models are wrong”, and in fact, modeling the engine behaviors

during transient conditions as well as de-NOx performance of the SCR-aftertreatment system is

a very complex matter and there is still ongoing research in order to understand the exact phe-

nomenon occurring inside the system. Coming up with a comprehensive model is not part of the

goal of this thesis, so in the next chapter, an experimental validation is performed via hardware-in-

the-loop test setup to provide detailed and realistic evaluation of this algorithm.

There are two important challenges for the proposed method so far. First, accurate information
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Figure 4.12: Effect of equivalence factor w on normalized fuel consumption and tailpipe NOx
emissions of different drive cycles.

of the lead vehicle speed within the future 40 s is required to use the predictive controller for speed

planning, and second, there are some traffic rules that are not captured by requiring the controlled

vehicle to follow the leader vehicle. In terms of the speed prediction, in practice, speed prediction

within the future 40 s is not a trivial task in real driving conditions. In this thesis, we propose

a modified formulation to tackle the challenge caused by inaccurate prediction. Analyzing the

effect of inaccurate predictions on E2C-MPC performance and developing remedies to minimize

the expected deterioration in performance and to honor the designed constraints are crucial for

understanding the actual performance of the algorithm if used in real world, and are studied in

Chapter 6.
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CHAPTER 5

Hardware-In-the-Loop Experiment

As mentioned at the end of the previous chapter, there are some inevitable limitations for pre-

dicting the engine feedgas NOx and tailpipe NOx emissions when engine feedgas NOx emissions

and SCR de-NOx efficiency are modeled as look-up tables, which will affect the accuracy of the

simulation results. An accurate model of the engine NOx emissions especially in transient drive

cycles typically requires a full-order physics-based air path model that includes, e.g., the effect

from EGR flow rate and intake manifold pressure, and an example can be seen in [20]. In terms

of the model for SCR reduction ratio in urea SCR catalyst, de-NOx efficiency depends on exhaust

gas composition, exhaust mass flow rate, concentration of the ammonia, and the SCR temperature.

This also drives a need for a detailed model for chemical reactions [17, 43, 88, 42, 12, 83]. More-

over, the lumped SCR temperature model introduces errors into the system, and temperature model

for SCR catalytic converters with a honeycomb structure of various complexities can be found in

[64, 85, 51, 83, 25].

Although it is possible to create more accurate models, this will introduce high simulation

complexity and will need huge effort in model identification. Thus in this section, we instead utilize

experiments with hardware-in-the-loop to study the performance of the E2C speed planner as well

as the trade-off between fuel consumption and tailpipe emissions in vehicle-following scenarios.

A networked, real-time hardware-in-the-loop simulation architecture presented in [21] is extended

with a speed planner to test this planning algorithm in a vehicle following scenario, and Fig. 5.1 in

this chapter shows a schematic architecture. Model-in-the-loop as well as the hardware-in-the-loop
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Figure 5.1: A schematic showing the architecture of the hardware-in-the-loop simulation frame-
work.

results of a Ford 6.7L V8 Powerstroke diesel engine and a stock emissions aftertreatment system

from a Ford F250 medium-duty truck are provided, allowing detailed and realistic evaluation of

fuel economy and tailpipe NOx emissions.

With an emissions-centric calibration, tailpipe NOx emissions is reduced by 18% with 7%

more fuel consumption and 10% higher average engine torque level than a standard fuel-centric
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calibration. And for all the cases tested, the E2C-MPC controller performs better in both fuel and

tailpipe emissions than a simple PI-based ACC controller. Thus, the effectiveness of the E2C-MPC

is demonstrated experimentally.

The content of this chapter is included in a paper that is under preparation:

• Huang, C., Salehi, R., Stefanopoulou, A.G., Ersal, T., Hardware-in-the-loop exploration of

energy vs. emissions trade-off in eco-following scenarios for connected automated vehicles,

under preparation.

5.1 Real-time HIL Experiment Architecture

The ego vehicle considered in this work is a Ford F-250 medium-duty truck. A networked hardware-

in-the-loop setup is created by following the principles described in [21, 22]. Three major com-

ponents involved in the networked experimental setup are (1) the ego vehicle simulation with a

physical 6.7-liter diesel engine, a physical SCR-based aftertreatment system, as well as the data

acquisition, engine and dynamometer control systems in the loop, (2) the leader vehicle simula-

tion, and (3) the speed planner. The leader vehicle and the speed planning algorithm (either the

E2C planner in Chapter 4 or an adaptive cruise controller), as well as the components of the fol-

lower vehicle except the engine and aftertreatment system (including idle controller, drivetrain,

and the vehicle dynamics) are simulated in Matlab/Simulink. The leader and the ego vehicles are

simulated in one Matlab/Simulink instance, and the E2C planner is simulated in another separate

Matlab/Simulink instance as an on-demand service, and responds to calls from the ego vehicle

model only when needed. A third Matlab/Simulink instance is integrated with AVL EMCON, a

real-time engine and dyno control and data acquisition system.

User Datagram Protocol (UDP) is used to achieve communication over the internet between

each pair of Matlab/Simulink simulation instances. Two UDP sockets are created to allow com-

munication between the two client-server pairs (Network1 and Network2 in Fig. 5.1). For the first

pair (called Network1 in Fig. 5.1), the Matlab/Simulink instance with AVL EMCON integration
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Table 5.1: Specifications of the simulated Ford F-250 vehicle.

Parameter Value and Unit

Vehicle mass 4060 kg

Gear ratio [3.97,2.31,1.51,1.14,0.85,0.67]

Transmissions efficiency 90%

Front area 4.3066 m2

Air drag coefficient 0.4

Rolling resistance 0.0093

Simulation time step ∆T 0.02 s

acts as the client and the ego vehicle setup acts as the server, where engine and aftertreatment mea-

surements are sent from client to server, and engine and dynamometer control demands are sent

from server to client. The ego setup also acts as the client for the second pair (called Network2 in

Fig. 5.1), and the Matlab/Simulink instance with E2C speed planner acts as the server, where the

ego states and leader preview information are sent from client to server, and E2C planner sends the

optimized ego velocity trajectory from server to client.

5.1.1 Model of the Ego Vehicle

The vehicle model used in this work is adopted from the modeling framework presented in [21].

The idle controller, drivetrain including torque converter, transmission and gear shift logic, as well

as the vehicle dynamics are simulated for the ego vehicle similar to [21]. The gear strategy is

simulated such that the target gear level is decided by vehicle speed and acceleration [38], and an

off-delay operation exists to avoid chattering behaviors in gear shifting. The transmission loss is

modelled with a constant transmission efficiency. The model of the ego vehicle is simulated with a

step time ∆T = 0.02 s. The specifications of the modelled vehicle are summarized in Table 5.1.
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5.1.2 Driving Modes and Tracking Controllers

Two modes are simulated.

The first mode is E2C speed planning mode 1 (referred to as E2C mode), where the E2C plan-

ning algorithm is used as a high-level planner to generate an optimal reference velocity and a

low-level PI-based cruise controller (CC) is used to generate the desired pedal or brake command

to track the reference speed.

The second mode is adaptive cruise control mode (referred to as ACC mode), where a PI

controller is designed to track a pre-defined reference distance headway dACC,ref defined as

dACC,ref = τACCvf + dACC, (5.1)

with τACC being the desired time headway and dACC being a constant distance.

5.1.3 Description of the Hardware

Two major hardware components involved in this study are the engine, as well as the exhaust pipe

and the aftertreatment system.

A 6.7-liter Powerstroke turbodiesel V8 engine from Ford Motor Co. is used for this study. The

engine is controlled using speed-throttle mode, where speed and throttle demands come from the

tracking controller (ACC or CC) inside the vehicle simulation, and is controlled using an AVL

EMCON 400 testbed monitoring and control system. The engine speed and throttle are the only

variables directly demanded to the engine. The engine control strategy for normal warmed-up

conditions in the engine control unit (ECU) is active and is not modified for this study. Specifically,

the EGR level and urea injection rate are controlled by the ECU strategy, and the strategy does not

change with the selection of the driver model or the optimized speed trajectory.

A high-fidelity, AC electric dynamometer couples the physical engine with the simulation mod-

1We abuse the notation of E2C in this chapter. Depending on the context, it can mean 1) the E2C planning algo-
rithm, 2) the Matlab/Simulink instance that implements the E2C planning algorithm, or 3) the driving mode when E2C
planning algorithm is activated.
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els in real time. The engine output torque is measured by the dynamometer and sent back to the

Matlab/Simulink instance integrated with AVL EMCON.

The SCR-based aftertreatment system lies at the downstream of the exhaust pipe and includes

a diesel oxidization catalyst (DOC), a urea injector, a urea mixer, and an SCR system, as shown in

Fig. 5.2. The temperature at the exhaust pipe downstream (also at the DOC upstream) as shown in

Urea
Mixer

Urea 
Injector𝑻𝒆𝒙𝒉,𝒅𝒔

DOC SCRExhaust Pipe

𝑻𝑺𝑪𝑹,𝒖𝒔

Figure 5.2: A schematic of the aftertreatment system and the locations of the thermal couples.

Fig. 5.2 is measured by a K-type thermal couple from Omega [65] and sent back to the EMCON

computer. This temperature signal is involved in the control loop when E2C speed planning mode

is activated.

For other key performance measurements, fuel rate and engine NOx concentration signals

are both from ECU sensors, tailpipe NOx is measured by AVL SESAM i60 FT SII, a Fourier-

Transform InfraRed (FTIR) exhaust gas measurement system [9].

5.2 Implementation of the E2C Algorithm

Due to the non-linearity in the turbine thermal dynamics, the optimization problem presented in

(6.6) is a nonlinear optimization problem with a nonlinear objective function and linear constraints.

It is solved using the Sequential Quadratic Programming (SQP) algorithm. With the optimal ac-

celeration trace in the prediction horizon, the optimal speed trace is calculated using the system

dynamics and the initial velocity. Details of the implementation of the speed planning algorithm is

described in this section.
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With the linear longitudinal dynamics presented in (2.1), if we define vectors V and P as


V =

[
vf(0|t) vf(1|t) · · · vf

(
(NP − 1)|t

)]T
P =

[
pf(0|t) pf(1|t) · · · pf

(
(NP − 1)|t

)]T (5.2)

to represent the follower velocity and position traces in the prediction horizon, respectively, then

V and P are both affine functions of the decision variable U . This means all constraints on speed

and position in (6.6b)-(6.6e) are linear constraints on U . Then, the optimization problem in (6.6)

is abstracted as:

min
U

J(t) = fabs(U) (5.3a)

subject to AabsU ≤ babs, (5.3b)

where fabs is a nonlinear function, and all constraints on acceleration, speed and position are

summarized with AabsU ≤ babs.

Problem (5.3) is solved using the SQP approach. A similar implementation of the SQP algo-

rithm for a general nonlinear MPC problem with nonlinear system dynamics in a real-time iteration

scheme has been presented in [26], but in this work, the decision variable is selected to be only the

actuator value U to avoid nonlinear constraints, whereas the decision variable is selected to be the

union of U and states in [26].

Problem (5.3) is approximated by a sequence of Quadratic Programming problems (QPs) with

a guess Uguess:

min
∆U

1

2
∆UTHfabs

∣∣∣
Uguess

∆U +∇fTabs

∣∣∣
Uguess

∆U (5.4a)

subject to Aabs(∆U + Uguess) ≤ babs, (5.4b)

where Hfabs and∇fabs represent the Hessian matrix and the gradient of fabs. The QP problems are
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solved with mpcQPsolver block in Simulink. Then, a step size α ∈ [0, 1] is computed following a

line search procedure to guarantee descent [26] and Uguess is updated with Uguess ← Uguess +α∆U .

The SQP optimization process is triggered every ∆TE2C = 1 s, which is the updating timestep

for the E2C speed planner. This iteration for updating Uguess terminates if the step size or the

difference of objective function between two iterations is small enough, or if the problem is taking

longer than ∆TSQP = 0.7 s to solve. We also note that this variable ∆TSQP is calculated based on

wall-clock time of the ego vehicle system to avoid the inaccuracy caused by discrepancy between

the simulation time and wall clock time, if delay happens in the optimization process.

5.3 Experiment Design and Results

The performance of the E2C speed planner is investigated assuming the leader vehicle is driving

the speed profile shown in Fig. 5.3, which is comprised of an initialization part and a testing

part. The initialization part contains the second bag of the FTP cycle, 60 s idle and then the first

bag of the FTP cycle. During the initialization part of the cycle, the ego vehicle uses the ACC

controller to follow, regardless of what mode it uses in the testing part. The purpose of running a

long initialization part is to make sure that the engine and the aftertreatment system have the same

warmed-up initial condition before entering the testing part. The testing part is the second bag of

the FTP cycle (also called the stabilized phase) which lasts for approximately 15 minutes. Either

the E2C speed planner or the ACC controller is applied to decide the speed of the ego vehicle

during the testing part of the cycle depending on the mode selection.

Three different weight factors (w ∈ {0.0, 0.2, 0.4}) are tested to study the performance of the

E2C speed planner as it becomes more fuel-centric (w = 0.0) or emissions-centric (w = 0.4). The

ACC mode is also tested for comparison with the E2C speed planning mode. The tests and their

respective descriptions are summarized in Table 5.2, and related parameters for the ACC and the

E2C planner are summarized in Table 5.3.

An example result for computation and communication delay time is obtained in mode E2C
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Figure 5.3: The speed profile of the tested cycle.

Table 5.2: Test cases and their respective descriptions.

i Ego mode Description

1 E2C (0.0) E2C speed planner, fuel-centric

2 E2C (0.2) E2C speed planner, weight factor w = 0.2

3 E2C (0.4) E2C speed planner, emissions-centric

4 ACC ACC controller

(0.2) and is shown in Fig. 5.4. The total time delay for the ego vehicle from sending the demand

to receiving the optimized velocity trace corresponds to the sum of computation delay and com-

munication delay, and is always less than 1 s, which is the updating time of the reference velocity

trace optimized by E2C. This is important, because we want to make sure the optimized reference

speed is updated before the optimization demand at the next time step is sent. It is also observed

that most of the communication delay is less than 0.06 s, and with a simulation time of 0.02 s, this

means that in most cases, the speed planner (as shown in Fig. 5.1) needs no more than 3 times

before it successfully sends the packet back to the ego vehicle. Regarding the computation time

in the speed planner, unless it finds the local optimal solution, the optimization process terminates

only after it receives the terminating demand from the vehicle after ∆TSQP = 0.7 s, the actual time

used for computing the optimal solution is almost always smaller than 0.8 s. ∆TSQP value is set
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Table 5.3: Controller parameters for ACC mode and E2C planning mode.

Mode Category Parameter(s)

E2C

Horizon NP = 40 s

Sampling time ∆TE2C = 1 s

Headway
τ1 = 1 s, d1 = 0 m

τ2 = 3 s, d2 = 10 m

Speed v = 0 m/s, v = 30 m/s

Acceleration af = −6 m/s2, af = 6 m/s2

Temperature Tthr = 230 ◦C

ACC Headway τACC = 1.6 s, dACC = 5 m

such that the sum of computation delay and communication delay is less than ∆TE2C.

In the following subsections, model-in-the-loop (MIL) and hardware-in-the-loop (HIL) results

are presented and compared.

5.3.1 Model-In-the-Loop Results

To test the performance of the speed planner with model-in-the-loop test, we in addition provide a

model for the engine output torque and a model for the exhaust downstream temperature.

The engine output torque dynamics is modelled using a discrete first-order system with a left

half plane pole and a right half plan zero. The transfer function is

TFtorque(z) =
k1z + k2

z − k3

, (5.5)

and the parameter values are shown in Table 5.4.

To simulate the exhaust downstream temperature, the model of the turbine thermal dynamics

from (2.8) is discretized and presented here

Texh,ds(k + 1) = Texh,ds(k) +
∆T

τ
(Texh.ss(k)− Texh,ds(k)), (5.6)
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Figure 5.4: Delay performance of the implemented E2C method.

where Texh.ss is the exhaust temperature measured at steady state, and τ = cexh
mexh

is the time constant.

Value of cexh is shown in Table 5.4. Both Texh.ss and mexh are simulated using look-up tables and

are functions of the engine operation condition.

Figure 5.5 plots the simulated engine torque and the actual engine torque measured when run-

ning the testing cycle, and Fig. 5.6 shows the histogram of the torque difference. Quantitatively, the

root mean squared error is 75.5 Nm, except for the parts with high throttle demand, the simulated

torque captures the dynamics in the measured engine torque. The torque is not captured accurately

when the throttle demand is high or low. Due to aging, the engine controller (stock ECU) has ap-

plied a derating mechanism to limit the high torques and avoid further damaging. Due to the time

limitation of the project, the engine could not get fully reconditioned and the decision was made to

proceed with the experiments. Modeling error for engine friction is causing the torque mismatch
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Table 5.4: Parameters for modeling the hardware.

Model Parameter Value

Torque
k1 -0.2512

k2 0.3002

k3 0.951
Temperature cexh 104 [g]

happens at low throttle level.

The models of engine outputs and the aftertreatment system from Chapter 2 are adopted to

simulate the NOx cleaning rate inside SCR catalyst, labelled as ACC MIL and E2C MIL. Simulated

performances of fuel consumption and emissions, as well as some other key engine outputs when

using the ACC or E2C mode are shown in Fig. 5.7-(a) and Table 5.5.

Table 5.5: Effect of controller selection and calibration on major vehicle performance outputs for
MIL test.

Mode Fuel TPNOx Ave. a2 Ave. eng. torque EngNOx SCR efficiency
[g] [g] [m2/s4] [Nm] [g] [%]

E2C (0.0) 802 0.434 0.230 61.8 6.09 92.9
E2C (0.2) 810 0.429 0.230 61.4 5.91 92.8
E2C (0.4) 872 0.391 0.278 69.5 6.79 94.2

ACC 867 0.523 0.363 67.0 9.87 94.7

It is observed that the E2C planner can generate fuel-centric, and smoother trajectories or

emissions-centric, but more aggressive trajectories by tuning a single weight factor. Choosing

an emissions-centric calibration (w = 0.4) generates 9.8% less total tailpipe NOx emissions at the

cost of a 12.4% increase in average engine torque, as well as an additional 8.8% total fuel con-

sumption compared with the fuel-centric calibration (w = 0), leading to a more aggressive driving

style (measured by averaged squared acceleration as shown in the fourth column in Table 5.5) and

worse driving comfort.

The simulated ego speed profiles, throttle position and fuel rate optimized by the various plan-
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Figure 5.5: Engine torque model result compared with data.

ners are shown in Fig. 5.8. It is obvious that as the weight factor increases, the speed trajectory

becomes less smooth and has higher acceleration level as well as higher fuel consumption rate.

This leads to the higher temperature at exhaust downstream as well as a 13◦C increase in SCR

upstream temperature measured at the end of the trajectory, as presented in Fig. 5.9, which, in turn,

reduces the total tailpipe NOx emissions.

5.3.2 Hardware-In-the-Loop Results

Figure 5.7-(b) shows the cumulative values for fuel consumption, tailpipe NOx emissions, and

Table 5.6 summarizes some key vehicle performance outputs for the HIL test. From Fig. 5.7-(a,b),

the same trade-off between fuel consumption and tailpipe NOx emissions is observed in HIL tests

as in MIL tests. This result validates the effectiveness of the E2C planner in studying the trade-off
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Figure 5.6: The histogram of engine torque difference between data and simulation.

between fuel consumption and tailpipe emissions.

Table 5.6: Effect of controller selection and calibration on major vehicle performance outputs for
HIL test.

Mode Fuel TPNOx Ave. a2 Ave. eng. torque EngNOx SCR efficiency
[g] [g] [m2/s4] [Nm] [g] [%]

E2C (0.0) 951 2.47 0.274 79.2 5.61 56.0
E2C (0.2) 974 2.35 0.276 78.9 5.94 60.4
E2C (0.4) 1021 2.03 0.322 87.3 6.34 68.0

ACC 1106 6.77 0.467 92.4 10.63 36.1

The optimized speed profile and inter-vehicular distance for the ego vehicle when using a

fuel-centric speed planner (w = 0.0) are shown in Fig. 5.10-(a,b), and Fig. 5.10-(c,d) show a

close-up of a violation of maximum distance constraint and one of a violation of a minimum

distance constraint. A discrepancy between the demanded ego speed and the actual ego speed is

observed. This is because the full vehicle model is not captured by the model used in the E2C

speed planner, and that the cruise controller has a feedback architecture. It also leads to slight

violations of the headway constraints, e.g., as shown in Fig. 5.10-(c,d) at 150 s and 690 s. We note

that this discrepancy could affect the overall performance of the speed planner, and a low-level
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Figure 5.7: Comparison of ACC controller vs. E2C speed planner (a) with model-in-the-loop
test and (b) hardware-in-the-loop test. The plotted accumulative mass of fuel consumption and
tailpipe emissions are normalized with the corresponding values when ACC controller is used in
their respective modes. Both ACC, MIL and ACC, HIL in the plots correspond to the [1, 1] point
as they are normalized with respect to themselves.

cruise controller that has better tracking performance has the potential to improve the performance

of the whole system.

Comparison between the ACC controller and different calibrations of the E2C planner in the

HIL test is presented in Fig. 5.11-5.12 and Table 5.6. Similar to what is observed in the MIL test,

as the weight factor increases, the speed trace shown in Fig. 5.11-(a) becomes less smooth (which

means worse driving comfort) and demands higher acceleration level and more speed variation

when following the leader vehicle. To generate enough acceleration to follow the varying speed

profile, a higher throttle is more frequently demanded, as we compare the case w = 0.4 (orange) to

the case w = 0.0 (cyan) at times, e.g., 500-510 s (Fig. 5.11-(c)). As a result, higher instantaneous

fuel rate and engine NOx emissions rate is observed, as shown in Fig. 5.11-(d) and 5.12-(d), and

the cycle total fuel consumption is increased by 7.5% from 951 g to 1021 g, averaged torque level

increases by 10% from 79 Nm to 87 Nm, when the cycle total engine NOx emissions is increased

by 13% from 5.61 g to 6.34 g.

Despite the higher engine NOx emissions with w = 0.4 shown in Table 5.6, the cycle total

tailpipe NOx emissions are lower, which drop by 17.8% from 2.47 g to 2.03 g. This is because of a
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Figure 5.8: Speed, acceleration, throttle position and fuel rate performances with MIL test when
using ACC controller or E2C planner as the weight varies from fuel-centric to emissions-centric.

higher de-NOx efficiency, also shown in Table 5.6, resulting from a higher engine torque level and

SCR temperature. The SCR upstream temperature traces during the test cycle with the different

speed planner calibrations are shown in Fig. 5.12-(a). A 10◦C increase is observed at the end of

the test cycle when an emissions-centric planner is used as opposed to a fuel-centric, leading to a

12% absolute increase in average SCR efficiency.

Comparing the performance of E2C speed planner to the ACC controller, Fig. 5.7-(b) and

Table 5.6 shows a consistently lower torque level, less fuel consumption and tailpipe emissions.
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Figure 5.9: Temperature performances with MIL test when using the different speed planners.

As shown in Fig. 5.11 and 5.12-(b,c), with the ACC controller, a large throttle is usually demanded

for the ego vehicle to generate a high acceleration and track the leader when the leader vehicle starts

from stop. The high throttle causes a high fuel rate and high engine emissions. Tailpipe emissions

also show peaks at these high pedal locations, and despite the warmer SCR temperature compared

with when the speed planner is used (Fig. 5.12-(a)), a lower SCR efficiency is observed on average

in the ACC test cycle compared with the cycles with the speed planner. This is because in practice,

SCR cleaning efficiency is affected by not only the SCR temperature, but also the flow rate and

inlet NOx concentration, and a peak in inlet NOx emissions can be very challenging for the SCR

catalyst. In the MIL test, where the SCR efficiency is modelled as a pure function of temperature,

tailpipe NOx emissions are underestimated when throttle demand is high. Furthermore, since the

trajectory with ACC planner more frequently demands a higher throttle than those from the E2C

planner, it is expected that the benefit of the E2C planner over ACC in tailpipe NOx emissions is

underestimated in simulation. This expectation matches with the observation, as the actual benefit

of E2C over ACC with HIL tests (60% drop in emissions) is larger than that simulated with MIL
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Figure 5.10: Speed and inter-vehicular distance with HIL test, when E2C planning is used with
fuel-centric calibration (w = 0.0).

tests (20% drop in emissions).

5.4 Summary

In this chapter, a hardware-in-the-loop test framework is extended with a real-time implementation

of the E2C-MPC strategy, and is used to explore experimentally the performance trade-off of the

planning strategy in reducing fuel consumption, improving driving comfort and reducing tailpipe

emissions for diesel-powered vehicles. The speed planning strategy is used as a upper-level con-

troller that produces an optimized velocity trajectory, and a PI-based feedback cruise controller is

70



250 300 350 400 450 500 550 600 650
0

10

20

E
g

o
 S

p
e

e
d

[m
/s

]

ACC E2C(0.0) E2C(0.2) E2C(0.4)

460 480 500 520 540 560

-2

0

2

E
g

o
 A

c
c
e

l

[m
/s

2
]

460 480 500 520 540 560
0

50

100

A
lp

h
a

[%
]

460 480 500 520 540 560

Time [s]

0

5

10

15

F
u

e
lR

a
te

[k
g

/h
r]

(a)

(b)

(c)

(d)

Figure 5.11: Speed, acceleration, throttle position and fuel rate performances when using the dif-
ferent speed planners in the HIL test.

used at lower-level to generate pedal control input to track the optimized velocity. Experiments

are performed with a 6.7-liter Ford Powerstroke diesel engine, a urea-SCR based NOx aftertreat-

ment system and a full model of a Ford F250 medium-duty truck in the loop, to provide a realistic

assessment of fuel consumption, tailpipe emissions and driving style performances. Results show
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Figure 5.12: SCR temperature, engine feedgas and tailpipe NOx emissions performances when
using the different speed planners in the HIL test.

that with an emissions-centric calibration, tailpipe NOx emissions is reduced by 18% with 7%

more fuel consumption and 10% higher average engine torque level than a standard fuel-centric

calibration. A comparative study between the speed following strategy and a PI-based adaptive

cruise controller is also presented. The various calibrations of the following algorithm yield a 8-

13% decrease in total fuel consumption, 6-14% decrease in average engine torque, and a 64-70%
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decrease in tailpipe emissions.

As a limitation of this implementation, a non-negligible discrepancy between the desired veloc-

ity and the actual velocity is observed. While this discrepancy can hardly be avoided, we argue that

instead of pairing a PI-based feedback controller with the speed planning algorithm and calculating

demanded pedal, a faster low-level cruise controller with a better model that matches the derated

engine can lead to better overall performance. For example in [55], a two-level control architecture

is applied, where the high-level MPC controller is used to calculate reference. A low-level MPC

controller coordinates multiple actuators and accounts for disturbances in the system. Since the

speed planner outputs a reference velocity trajectory, the same architecture can be applied here,

and the low-level PI-controller could be replaced by a model predictive controller to achieve a

better tracking performance.
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CHAPTER 6

Online Optimal Speed Planner with Inaccurate

Preview

As mentioned at the end of Chapter 4, we have assumed that the predictive information within each

prediction horizon is accurate. Unfortunately, this is never the case in the real world and the predic-

tion error may impose a huge challenge on almost all the benefits achieved by autonomy - safety,

energy efficiency and emissions. In terms of safety, inter-vehicular constraints are shown to be

violated several times in a simulated cycle when a baseline formulation of MPC-based speed plan-

ner is used [61]. For fuel consumption performance, [33] shows that for an MPC-based connected

cruise controller with 20 s prediction horizon, there is around 5% drop in fuel economy perfor-

mance if the preview information is accurate, while it has 40% improvement in fuel economy with

accurate prediction. This is even much worse than a feedback-based connected cruise controller,

which is shown to have 20% improvement without using any preview information. Changes in

emissions performances with preview inaccuracy have not been reported before the work in this

thesis.

Due to the above reasons, it is crucial to design the speed planner such that it preserves the

performance in safety, and to verify that it performs better in fuel efficiency and emissions than

following an non-optimal speed trajectory.

Some researches have recognized this challenge. Authors of [61] developed a chance con-

strained model predictive controller (MPC) and a randomized MPC to reduce the risk of constraint

violation and the fuel consumption at the same time. However, constraint violations still exist.
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To resolve the constraint violation problem, provably-correct controllers have been designed

when uncertainties exist in the speed preview. Controllers presented in [63, 31] generate car-

following trajectories and satisfy minimum headway specifications, and controllers in [49, 59, 44]

aim at avoiding collision with front vehicle. The main method used in the literature to synthesize

the correct control variables is the calculation of a robust control invariant set. However, efforts

typically focus only on the constraint satisfaction and only consider the vehicle kinematic perfor-

mance. The only exception known to us is the work reported in [44], where the authors report

12% energy saving using their robust adaptive cruise controller compared with the non-optimized

leader. However, to the best of our knowledge, there does not yet exist a fuel and emissions efficient

controller that is robust to errors in preview information.

In this chapter, we design and study an modified formulation of the previously presented E2C-

MPC algorithm that is robust to inaccuracies in leader vehicle velocity and is capable of concur-

rently optimizing fuel consumption and emissions. The new formulation is presented, and the

effect of preview error on the performance of the controller is analyzed when disturbances are

applied to preview information. Different levels of preview error are generated to understand the

performance of the new formulation under inaccurate preview, and an additional simulation is

performed with a realistic speed predictor based on Gaussian mixture regression, such that the

speed preview is generated only using history velocity information. Results show effectiveness of

the controller in reducing fuel and NOx compared with the non-optimal counterpart in real-world

driving scenarios.

The content of this chapter is partially based on the following papers [94, 40]:

• Zhang, X., Huang, C., Liu, M., Stefanopoulou, A. and Ersal, T., 2019. Predictive cruise

control with private vehicle-to-vehicle communication for improving fuel consumption and

emissions. IEEE Communications Magazine, 57(10), pp.91-97.

• Huang, C., Zhang, X., Salehi, R., Ersal, T. and Stefanopoulou, A.G., 2020, July. A Robust

Energy and Emissions Conscious Cruise Controller for Connected Vehicles with Privacy

Considerations. In 2020 American Control Conference (ACC) (pp. 4881-4886). IEEE.
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6.1 Predictive Speed Controller Design

As described in previous chapters, the MPC-based speed controller is taking an iterative approach,

deciding at every time step the optimal speed trajectory for the next horizon while satisfying pre-

defined state and input constraints. In this chapter, we consider the following constraints on maxi-

mum/minimum acceleration and velocity:

af ∈ U = [−af, af], (6.1)

v ≤ vf(k + 1|t) ≤ v, (6.2)

and following distance constraints based on a minimum and maximum time headway (τ1, τ2) policy

[78] with (dc1, dc2) as the standstill distances:

pl(k + t+ 1)− pf(k + 1|t) ≥ τ1vf(k + 1|t) + dc1, (6.3a)

pl(k + t+ 1)− pf(k + 1|t) ≤ τ2vf(k + 1|t) + dc2, (6.3b)

where pl and pf denote the positions of the leader vehicle and the follower vehicle.

In later sections of this chapter, a robust formulation of the predictive speed controller is pre-

sented, which is designed based on the assumptions that the velocity, acceleration and deceleration

of the leader vehicle are bounded, represented as

al ≤ al ≤ al, (6.4)

vl ≤ vl(k + 1|t) ≤ vl. (6.5)

The limits of the leader velocity are dependent on the driving scenario (e.g., speed limit of the

drive cycle), and the limits of the leader acceleration and deceleration are decided by the driving

pattern, which can be estimated by looking at history data of the considered drive cycle. Since

the leader velocity in the prediction horizon may be inaccurate due to perturbation or prediction
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inaccuracy, depending on the perturbation method and the prediction algorithm, the assumption

in (6.4) and (6.5) may not be satisfied. To perform a fair comparison between the original and

the robust formulation of the speed controller, in the following sections, speed preview computed

through all perturbation or prediction method will undergo a filtering process before fed into the

speed planning algorithm to ensure that speed and acceleration constraints in (6.4) and (6.5) are

satisfied.

6.1.1 Original MPC

We consider the following optimal control problem as the original MPC, which is adopted from a

similar formulation in Chapter 4:

min
U,ε

J(t) + cεε, (6.6a)

subject to af(k|t) ∈ U (6.6b)

v ≤ vf(k + 1|t) ≤ v (6.6c)

p̂l(k + t+ 1)− pf(k + 1|t) ≥ τ1vf(k + 1|t) + dc1 − ε (6.6d)

p̂l(k + t+ 1)− pf(k + 1|t) ≤ τ2vf(k + 1|t) + dc2 + ε (6.6e)

ε ≥ 0 (6.6f)

af(0|t) ∈ U (6.6g)

System dynamics, (6.6h)

for k = 0, 1, ..., NP − 1. (6.6i)

J(t) =
∑NP−1

k=0

(
a(k|t)2 + w(TTB(k|t)− Tthr)

2 · ITB(k)
)

as previously defined in (4.8),

U =

[
af(0|t) af(1|t) · · · af

(
(NP − 1)|t

)]T
and ε are the decision variables of the optimal

control problem. p̂l is the prediction of the position of the leader (pl) calculated using the speed

preview, and we assume the leader follows the same dynamics as the follower. (6.6b)-(6.6e) are

essentially the constraints (6.1)-(6.3b) when the prediction of position instead of the actual position
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is available.

Different from Chapter 4, a slack variable ε is used here to change a hard (distance) constraint

into a soft one and penalize the constraint violation in the cost function with a scaling factor cε. A

large value for cε is chosen. Introducing ε avoids feasibility problems that may happen when hard

constraints are used. Note that a feasible solution to this optimal control problem can always be

found, but feasibility does not guarantee the satisfaction of the constraints (6.3a)-(6.3b) as p̂l may

not be equal to pl.

After solving for the optimal U , only U(1) = af(0|t) is applied to the follower vehicle, and

then the MPC is solved again with updated states. For the original MPC, we do not impose any

additional constraint on af(0|t) except the pre-defined constraint (6.1).

6.1.2 Robust MPC

Because of the inaccurate speed preview, using the original MPC formulation above may lead to

violation of the speed or position constraints, or even worse, collisions. To avoid possible violation

of the distance constraints in the executed follower vehicle profile, we first use a feedback controller

to compute the safe action set U∗(t) at time t:

U∗(t) = U∗(d(t), vf(t), vl(t)). (6.7)

The set U∗(t) denotes the set of all admissible accelerations af(0|t) at time t that ensure existence

of a trajectory for the follower vehicle, which always satisfies velocity and headway constraints

(6.2), (6.3a) and (6.3b) for an uncertain (but bounded) leader vehicle acceleration trajectory. More

details are provided later in this section.

After obtaining U∗(t) from the feedback controller, we add this new constraint on af(0|t) to the
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original MPC (6.6).

min
U,ε

J(t)+cεε, (6.8a)

subject to Eqns. (6.6b) - (6.6f) (6.8b)

af(0|t) ∈ U∗(d(0|t), vf(0|t), vl(0|t)) (6.8c)

System dynamics. (6.8d)

The new MPC formulation in (6.8) has the following features: 1) Keeping ε as in the original

MPC formulation ensures persistent feasibility. 2) Using (6.8c) ensures that the speed profile of

the follower at time t is robust to uncertainty in the leader speed preview, as guaranteed by the

definition in (6.14) as presented next. 3) Satisfaction of the distance constraints (6.6d) and (6.6e)

with ε = 0 is not guaranteed throughout the whole horizon, but is guaranteed in the executed

profile.

6.1.3 Calculation of the Safe Action Set U∗

In this section, the steps to calculate U∗, the safe action set, is presented. The calculation is

performed by first calculating a robust control invariant set inside an admissible set X . As a first

step, the definition of an invariant set is introduced.

Consider the leader-follower system with states x =
[
d vf vl

]T , and system dynamics

represented as:

x(k + 1) = Ax(k) +Baf(k) +Gal(k),

A =


1 −Ts Ts

0 1 0

0 0 1

 , B =


−T 2

s /2

Ts

0

 , G =


T 2
s /2

0

Ts

 ,
(6.9)

since it is assumed that the leader follows the same dynamics as the follower vehicle. In the
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above equations, vl and al represent the velocity and acceleration of the leader vehicle. The set of

admissible states is defined as:

X = {x ∈ R3 : dc1 + τ1vf ≤ d ≤ dc2 + τ2vf, v ≤ vf ≤ v, vl ≤ vl ≤ vl}. (6.10)

The set Ω∗ is a robust control invariant set of X if:

∀x(k) ∈ Ω∗,∃af(k) ∈ U , s.t. x(k + 1) ∈ Ω∗,∀al(k) ∈ W
(
x(k)

)
, (6.11)

whereW is the set of possible disturbances (leader accelerations) defined as:

W
(
x(k)

) def
= {al(k) ∈ R1 : al ≤ al(k) ≤ al, x(k + 1) ∈ X}. (6.12)

To find Ω∗, we introduce the Pre(X ) operator, which gives the one-step (backward) robustly

controllable set of set X :

Pre(X )
def
={x(k) ∈ R3 : ∃af(k) ∈ U , s.t.

x(k + 1) ∈ X ,∀al(k) ∈ W
(
x(k)

)
}.

(6.13)

Calculation of Ω∗ relies on finding the fixed point of the Pre(X ) operator using the following

iterative algorithm:

Algorithm 1 Calculation of Ω∗

Initialize Ω0 = X
While Ωk 6⊆ Ωk+1

Ωk+1 = X ∩ Pre(Ωk)

End
Return Ω∗ = Ωk+1

Calculation of Pre(Ωk) from Ωk is done using the Multi-Parametric Toolbox[34] in Matlab

and following the steps proposed in [71].
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The range of input that allows the state to remain inside Ω∗, U∗(x), is calculated by:

U∗(x)
def
= {af ∈ U : Ax+Baf +Gal ∈ Ω∗,∀al ∈ W(x)}, (6.14)

with current states x =
[
d vf vl

]T ∈ Ω∗. Ω∗ is represented as a union of polyhedra, the above

set U∗(x) of af is a union of intervals, and the end points of U∗(x) can be solved using linear

programming to find the maximum/minimum af that satisfies (6.14).

6.1.4 Numerical Problems in Calculation of Robust Control Invariant Set

All the sets above are convex polyhedra represented by linear inequalities, or non-convex polyhe-

dra represented by unions of convex polyhedra. Although this algorithm works for a variety of

systems in theory, the algorithm may not terminate due to numerical issues in practice, and manual

termination may lead to an over-approximation, which means the calculated set is no more robust

control invariant [63]. A way to avoid this issue and to always produce a robust control invariant

set is to use the Inside-out algorithm [19, 63]. The key is to first find a “small” robust control

invariant set Ω̃ contained in X , and then expand into a larger invariant set Ω∗ by calculating its

one-step robustly controllable set. The union of a small robust control invariant set and its one-step

robustly controllable set is still robustly control invariant, as there exists a control input that will

bring any point in this union back into the small robust control invariant set.

6.1.5 Numerical Example

As a numerical example, we consider the speed and acceleration constraints in (6.6) to have the

parameters in Table 6.1. The range of the velocity and leader acceleration are determined by

the drive style of the leader vehicle, and thus in this work, are determined by the velocity and

acceleration ranges of the FTP drive cycle as shown in Fig. 6.1 and 6.2. The range of acceleration

and deceleration of the follower vehicle is affected by the engine torque and brake capacity, vehicle

and transmission properties, e.g., mass, wheel radius and drive ratio, as well as the gear shift logic.
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Table 6.1: Parameters for the example in Section 6.1.5

Parameter Description Range

v, v min,max ego speed 0, 25 [m/s]
vl, vl min,max leader speed 0, 25 [m/s]
af, af min,max follower acceleration −6, 2 [m/s2]
al, al min,max leader acceleration −3, 3 [m/s2]
τ1, τ2 min,max time headway 1, 1 [s]
dc1 , dc2 min,max standstill distance 0, 150 [m]
Ts sampling time 1 [s]

Figure 2.2 in Section 2.2.1 shows the feasible acceleration range at each speed for the considered

vehicle. With the vehicle speed in [0, 25] m/s, the maximum achievable acceleration is 2 m/s2,

and the maximum brake is −6 m/s2. It should be noted that by choosing the 2 m/s2 maximum

acceleration for all speed in the [0, 25] m/s range, we are conservative about the follower vehicle’s

capability (as higher acceleration is achievable if speed is relatively low), and doing so might

lead to degradation of the controller performance. However, although it is theoretically possible to

calculate the invariant set Ω∗ with a less conservative, speed-dependent follower acceleration range,

doing so will involve much larger computation complexity. And thus in the following content of

this thesis, the maximum allowed acceleration of the follower vehicle is set to be 2 m/s2.

With the parameters in Table 6.1, the set of admissible states (6.10) is set up to be:

X = {x ∈ R3 : vf ≤ d ≤ 150 + vf, 0 ≤ vf, vl ≤ 25}. (6.15)

After performing the Inside-out algorithm, Ω∗ used in this chapter is a union of polyhedra shown in

Fig. 6.3. As can be seen, Ω∗ is a subset of X , meaning that the follower vehicle states is satisfying

a stricter constraint as defined by Ω∗ in order to ensure satisfaction of constraints (6.15) when there

is uncertainty in leader vehicle acceleration.
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Figure 6.1: Histogram of the vehicle velocity in the FTP drive cycle.

6.2 Simulation with Perturbed Speed Preview

The performance of the proposed controller is first tested under the assumption of Gaussian system

error distribution. A zero-mean Gaussian noise is added to the actual speed data, and this pertur-

bation is applied to study the collision avoidance performance of the proposed controller, as well

as the trade-off between prediction error and fuel/NOx emissions performances.

6.2.1 Perturbation Method

In this section, four levels of the perturbation error is considered, with root mean squared errors

(RMSEs) being [2, 4, 6, 8] m/s, and five example trajectories are generated for each RMSE level.

Figure 6.4 shows an example trajectory of the perturbed velocity when applying Gaussian noise

with standard deviation being 8 m/s.

6.2.2 Simulation Results

Both the original MPC and the robust MPC controllers are tested when the leader vehicle is as-

sumed to be driving the FTP drive cycle.
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Figure 6.2: Histogram of the vehicle acceleration in the FTP drive cycle.

6.2.2.1 Robust Collision Avoidance

To evaluate the controller’s performance on avoiding collision and constraint violations, the per-

turbation with 8 m/s standard deviation is applied to the leader velocity, and used as input to the

MPC controller.

Figure 6.5 shows the total time that the minimum and maximum headway constraints are vi-

olated when using the original MPC and the robust MPC. Different prediction horizons and con-

troller calibrations are examined for both controller formulations.

As shown, with the original MPC formulation the headway constraint violations happen with

all the tested predictions and horizons, even when a longer prediction horizon is used, which gen-

erally yields less violation as the follower vehicle may know the information (although rough) of

the leader vehicle much ahead of time. Thus, this observation further motivates the use of a prov-

ably robust speed controller to guarantee constraint satisfaction. The controller calibration does

not seem to affect much especially with a long prediction horizon. On the other hand, using the

robust MPC design, the controller can always satisfy both the pre-defined minimum and maximum

headway constraints, regardless of the prediction horizon and controller calibration.
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Figure 6.3: The setX of admissible states and the robust control invariant set Ω∗ calculated through
the Inside-out algorithm.

A comparison of the resulted traces from the two controller formulation is shown in Fig. 6.6.

The following distance as well as the headway constraints for the whole trace are shown in Fig. 6.6-

(a,b), and Fig. 6.6-(c,d) shows a close-up of a violation event that happens with original MPC but is

avoided with robust MPC. With the original MPC, the follower vehicle first decreases its velocity

at 1125 s (where the arrow in Fig. 6.6-(c) points at), which leads to a rapid increase in follow-

ing distance. Once the distance becomes too large, it is too late for the follower vehicle to avoid

violating the maximum headway constraint, even if it turns to apply the maximum possible accel-

eration. While for the case with robust MPC, the controller demands an earlier and also smoother

acceleration, keeping the following distance between the pre-defined headway constraints.
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Figure 6.4: An example of a manually perturbed velocity trajectory when the leader vehicle is
driving the FTP drive cycle. A zero-mean Gaussian noise with 8 m/s standard deviation is assumed.

6.2.2.2 Fuel Consumption and Tailpipe Emissions

The degradation of the controller performance due to increased uncertainty in the speed preview is

shown in Fig. 6.7. The results show that generally, a monotonic increase is observed in the vehicle

fuel consumption and tailpipe emissions when standard deviation of the preview error increases.

Fig. 6.7 also shows how the fuel-NOx performance improves when the safe robust MPC is used,

which reduces the absolute value of the input accelerations. With the original MPC, due to the

large errors in the speed preview, the follower vehicle observes the leader as an aggressive driver;

thus, it reacts aggressively to the leader vehicle maneuvers to keep the headway distance. This

behavior results in a more energy-demanding trajectory and sacrifices the performance on fuel and

emissions. This demonstrates the robustness of the presented controller formulation.

The effect of perturbation level on fuel and NOx performances of the robust speed controller is

shown in Fig. 6.8. It is obvious that fuel consumption and tailpipe NOx emissions have different

sensitivity levels to prediction inaccuracy. For fuel consumption, as perturbation level goes up

from 2 m/s to 8 m/s, total fuel saving by using a fuel-centric calibration decreases from 20% to

10%. However, reduction of total tailpipe NOx emissions increases from 34% to 36% despite the

higher level of perturbation. The intuition is that with the higher inaccuracy, the leader vehicle

is considered a more aggressive driver, which causes the follower to also drive more aggressively

and thus leads to a higher temperature and efficiency in the aftertreatment system. The higher SCR
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the original MPC controller and the robust MPC controller with various prediction horizons and
controller calibrations. Bars labeled as Robust Min(d) and Robust Max(d) are hardly visible in all
the subfigures, meaning that there is no violation with the robust MPC controller.

efficiency is the major reason for a lower tailpipe NOx emissions.

One caveat is that with w = 0, i.e., the fuel-centric calibration of the controller, total fuel con-

sumption with accurate information is slightly higher than that resulting from a slightly perturbed

information when RMSE = 2 [m/s]. In terms of solving the optimization problem, consider-

ing the actual cost directly minimized in the objective function shown in Fig. 6.9, a smaller cost is

achieved with the accurate information than with the slightly perturbed speed preview. The smaller

cost leads to a higher fuel consumption, because when the velocity is very smooth (when choosing

w = 0 vs. w = 0.1), as shown in the comparative plot of engine visitation in Fig. 6.10, the engine
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Figure 6.6: Traces of following distance and constraints with perturbation, RMSE = 8 m/s and
equivalence factorw = 0. (a) with original MPC, (b) with robust MPC, (c) a close-up of a violation
event with original MPC, and (d) a close-up of the same time period as in (c), but no violation
happens with robust MPC.

runs more frequently at the low torque region. But since the BSFC value is higher at low torque

regions, even with a slightly lower torque and power demand with w = 0, it causes a lower engine

efficiency and a slightly higher fuel consumption value than w = 0.1.

6.3 Simulation with Causal Prediction

In the previous section, the robust collision avoidance property of the controller is tested, and it

is observed that a larger perturbation in the prediction would lead to a worse overall performance
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Figure 6.7: Comparison of original vs. robust speed controller with various levels of velocity
perturbation. In this plot, the prediction horizon of the speed controller is 40 s. The plotted
accumulative mass of fuel and tailpipe NOx are normalized with the corresponding values when
the vehicle is driven with the nominal FTP speed trajectory, i.e., the same drive cycle as the leader.

on fuel consumption and tailpipe NOx emissions. However, the previous section is based on the

assumption that prediction error of the leader vehicle velocity satisfies a zero-mean Gaussian dis-

tribution, which may not be true in practice. Thus, in this section, the focus is on testing the

performance of the robust speed planner under a practical speed predictor based on Gaussian mix-

ture model (GMM), which only relies the past information of the leader vehicle to generate a future

prediction.
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controller formulation are used.

6.3.1 Velocity Prediction using Gaussian Mixture Model (GMM)

6.3.1.1 GMM for Speed Series

Gaussian mixture model models the joint probability density function of a data series as a linear

combination of a finite number of Gaussian distribution components. Let

s =

[
vl(i) vl(i+ 1) · · · vl(i+N − 1)

]
(6.16)
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Figure 6.9: Values of the two optimized terms in the cost function when original and robust speed
controller with 40 s prediction horizon and with various levels of velocity perturbation. Same as
Fig. 6.7, values are normalized with the corresponding values when the vehicle is driven with the
nominal FTP speed trajectory.

be a series of speed of totally N points. The probability density function p(s) is:

p(s) =
K∑
k=1

πkN (s|µk,Σk), (6.17)

where K is the number of mixtures, πk, µk and Σk are the mixing coefficients, mean vector and

covariance matrix for the kth component of the distribution.

The model is trained using the Next Generation Simulation (NGSIM) dataset [24]. A two-step

iterative algorithm of Expectation Minimization (EM) is applied to estimate the model parameters

[11]. The mixture module implemented in scikit-learn toolbox [68] is used for model training.

Both validation score and Bayesian Information Criterion (BIC) value are used as criteria to select
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the prediction horizon is available. The dark color represents higher visitation frequency, and the
light color represents lower visitation frequency. The contour plot shows the engine BSFC map.

the best hyper-parameter, i.e., value for the number of components, to avoid overfitting the training

dataset. The validation score is calculated as the per-sample average log-likelihood when the model

is applied to the validation dataset [4], and a high validation score is preferred. The BIC value

decreases if training score increases or model dimension decreases [74, 11], and the model with

the lowest BIC value is preferred.

Figure 6.11 shows the training and validation scores, as well as the BIC values of GMM mod-

els with different number of components. Validation score achieves the highest value with 39

components, with the validation score of the model with 25 components slightly below it. The val-

idation score also converges when using more than 25 components. BIC value is the lowest with

25 components. Since a simpler model is preferred for avoiding overfitting, GMM model with 25

components is selected.

6.3.1.2 Prediction Algorithm

With the trained model from above, Algorithm 2 describes the procedure for generating a predic-

tion of the leader velocity ŝf ,l. At each time step, the future velocity trajectory with the highest
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Figure 6.11: Subplot (a): Training score and validation score of GMM models with different
number of components. Subplot (b): Bayesian Information Criterion (BIC) value of GMM models
with different number of components.

likelihood conditioned on the past velocity is used as the prediction result. Note that, due to the

filtering process mentioned in Section 6.1, the predicted velocity of the leader vehicle satisfies all

the assumptions used when calculating the robust control invariant set Ω∗.

Figure 6.12 shows the prediction result for the FTP drive cycle. The solid line is the predicted

mean value, which is utilized as the predicted velocity, as the mean value is the most likely out-

come, and the dashed lines are showing ±σ, the standard deviation. Figure 6.13 shows the RMSE

of prediction error at each step in the prediction horizon. As observed, the error at the first 10 s

is relatively smaller, but increases almost linearly with the length of prediction horizon. Once the
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Algorithm 2 Prediction phase

1: Input: A Gaussian mixture model p(s) =
∑K

k=1 πkN (s|µk,Σk). Bounds of leader vehicle
acceleration and deceleration al, al. Bounds of leader vehicle speed vl, vl.

2: for t = 1, 2, ..., T do
3: History information of the leader vehicle’s speed

sh,l =
[
vl(−Nh + 1) vl(−Nh + 2) . . . vl(0)

]
, sh,l ∈ RNh , Nh is the length of history information.

4: Calculate the prediction of future speed using:

ŝf ,l = argmaxzp(z|sh,l)

, ŝf ,l ∈ RNf , Nf is the prediction horizon.

prediction horizon becomes longer than 10 s, the error becomes much larger, and finally converges

to 6.3 [m/s] with a very long prediction horizon.

6.3.2 Result with GMM prediction

The robust collision avoidance property of the proposed controller is studied using perturbation in

Section 6.2.2.1. In this section, fuel consumption and tailpipe NOx emissions performances are

discussed when the GMM predictor is applied.

The degradation of the controller performance due to inaccuracy in the speed preview is shown

in Fig. 6.14. Simulation cases include prediction horizon ranges from 10 s to 40 s for both accurate

speed preview and prediction from the GMM predictor. For speed planning case with accurate

preview information, 30 second prediction horizon and 40 second prediction horizon are generating

similar trade-off curves. This observation is also true for the case with prediction from the GMM

predictor. However, when the GMM predictor is applied, simply increasing the prediction horizon

does not always lead to a better trade-off curve as what happens with accurate information. In fact,

Fig. 6.14 shows that for fuel-centric calibrations, e.g., w = 0 or 0.1, using 20 s prediction horizon

is even better than 30 or 40 s. This is majorly because of two reasons. First, error in the whole

prediction horizon causes deterioration of the convergence property of the optimized result, and

second, there is large error in the long term prediction between 20-40 s. A maximum of 13.5%
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Figure 6.12: Prediction result of the FTP drive cycle.

fuel saving is achieved without increasing tailpipe NOx emissions using 20 s horizon, and 41.5%

reduction in emissions is achieved at most when using 40 s horizon.

Similar to what is shown in Section 6.2.2.2, the effect of prediction inaccuracy on fuel con-

sumption and tailpipe NOx emissions are different. With 40 seconds prediction horizon, a compar-

ison between the controller results using accurate information and using GMM prediction is shown

in Fig. 6.15. Again it is observed that an inaccurate prediction information seriously degrades the

fuel saving performance of the controller, and the total fuel saving drops by 10% of the total fuel

consumption during the FTP drive cycle. For tailpipe NOx emissions, however, using the GMM

predictor actually improves the performance of the controller as long as the controller is calibrated

to be emissions-centric. From Fig. 6.15, a more than 10% decrease in total tailpipe emissions is

observed. The intuition is same as mentioned in Section 6.2.2.2. With the GMM prediction, the

inaccurate preview information makes the eco-follower a more aggressive driver, which causes a

higher torque level and thus higher aftertreatment temperature and efficiency. This improves the
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Figure 6.13: Root mean squared error (RMSE) of the prediction result.

de-NOx ability and reduces tailpipe NOx emissions.

6.4 Summary

In this chapter, an application of the predictive speed planner presented in Chapter 4 for connected

and automated vehicles in a car-following scenario is studied considering the uncertainty in pre-

view information. A robust energy and emissions-efficient optimal speed controller is presented

for a diesel-powered ego vehicle and is shown in simulation to guarantee constraint satisfaction for

inter-vehicular distance under preview error. Simulation is performed over the stabilized phase of

the FTP drive cycle. Results show that a degradation in the overall fuel consumption and tailpipe

emissions performances happens when the prediction error increases. But the effects on fuel and

NOx emissions are different. It is observed that fuel reduction capability is more sensitive to the

accuracy of the prediction than the emissions reduction.

Simulations also show the effectiveness of this robust controller to improve fuel and emissions

performances with a Gaussian mixture regression-based speed predictor, compared with its non-

optimal counterpart. It is observed that with the speed predictor instead of assuming accurate

prediction, 0-13.5% of fuel saving is achieved with 0-41.5% reduction in tailpipe NOx emissions.
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Figure 6.14: Comparison of results from the robust speed controller with GMM prediction vs.
accurate prediction. Different lengths of prediction horizon are examined.

It should be noted that this is achieved using only history data, as calculation of the robust control

invariant set does rely on driving pattern and vehicle parameters, e.g., velocity limits, acceleration

and brake limits for the leader and ego vehicles. History data is used to identify these values as well

as the parameters of the speed predictor. Hence, the dependency on real-time accurate velocity

preview is relaxed. Thus, the observation shows the potential of applying the speed planner in

real-world vehicle-following scenarios where accurate velocity preview of the leader vehicle is not

available. It also shows the capability of the speed planner in improving fuel consumption and

tailpipe emissions.

The following limitations of the current formulation should be noted. First, to calculate the

control invariant set, we are assuming leader acceleration to be the only source of unknown distur-

bance into the system, and modeling error, computation delays, actuator delays and dynamics can

97



0 0.1 0.2 0.3 0.4 0.5

Weight

0.5

1

1.5

2

N
o

rm
. 

T
P

N
O

x

FTP

Accurate

GMM predictor

0 0.1 0.2 0.3 0.4 0.5
0.75

0.8

0.85

0.9

0.95

1

1.05

N
o

rm
. 

F
u

e
l 
C

o
n

s
u

m
p

ti
o

n

Figure 6.15: Normalized fuel consumption and tailpipe NOx emissions as a function of controller
calibration. For this figure, 40 s prediction horizon and the robust controller formulation are used.

affect the result and are not considered in this chapter. Moreover, the computation is performed

in discrete time, which means that constraint satisfaction is only guaranteed at the sampled time

steps. The time step is selected to be 1 sec in this chapter, but in reality, a much smaller time step

should be used to achieve a better approximation of the actual performance in continuous time.

This will hugely increase the computation burden. In this case, some data-driving methods may

provide a better approximation of the control invariant set.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

With the emergence of vehicle autonomy and the stringent need to save energy and reduce green

house gases, the goal of this thesis is to develop an optimal car-following algorithm that aims at

reducing fuel and emissions for on-road automated diesel vehicles. This thesis shows the feasi-

bility to achieve this goal by applying the presented vehicle-following algorithm with realistic and

reasonable assumptions and without modifications in vehicle hardware, engine or aftertreatment

system.

A model-based approach is adopted in this thesis. We first consider the most ideal case in

Chapter 3, i.e., assuming full and accurate knowledge of the drive cycle, vehicle and aftertreatment

model. Under this assumption, we demonstrate the fuel and emissions trade-off when driving

behavior of the ego vehicle is optimized for different performance targets in an offline fashion.

Total values for fuel consumption and tailpipe emissions are quantified for a specific vehicle over

the FTP cycle.

Based on this observation and to relax the assumptions, Chapter 4 proposes a novel MPC-

based algorithm, namely, E2C-MPC, for online optimization of the following trajectory assuming

accurate but only partial knowledge of the drive cycle, and knowledge of the accurate vehicle

model. Information of the aftertreatment model is used only indirectly when coming up with a

temperature threshold. Simulation results over various drive cycles are shown in this thesis and
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can be indicative of a 5-15% improvement in the fuel economy with a corresponding 0-25% NOx

emissions reduction.

Hardware-in-the-loop experiments are also performed to clarify the performance of the pro-

posed planner as presented in Chapter 5. Since the detailed model and control strategy of the

engine, the aftertreatment system and the low-level speed tracking controller are not fully avail-

able, the E2C-MPC is not specially calibrated. The experimental results demonstrate the effective-

ness of the algorithm assuming partial and accurate knowledge of the leader’s drive cycle, without

knowing all the details of the underlying engine and aftertreatment control strategies.

The final step taken in this thesis targets at removing the dependency on partial and accu-

rate knowledge of the leader’s drive cycle. As there is inevitable error in predicting the future

speed of the leader vehicle, a robust formulation of the E2C-MPC strategy is presented to keep the

inter-vehicular distance between the pre-define limits. A Gaussian mixture regression-based speed

prediction is applied to test the performance of the speed following strategy and the effectiveness

of the algorithm without external preview information is demonstrated.

So far, an automated diesel vehicle equipped with SCR-aftertreatment system and the pre-

sented strategy is capable of balancing the reduction in fuel consumption and tailpipe NOx when

following another vehicle, with partial knowledge of its own vehicle and engine properties.

7.2 Future Work

There are several limitations we mention throughout the thesis, and are summarized here, followed

by some future research directions:

1. A gap for real-world implementation of the E2C-MPC algorithm is that as mentioned in

Chapter 4, we assume the follower vehicle could satisfy all the traffic rules by following the

leader vehicle. Thus, the controller presented in this thesis is so far not capable of dealing

with cases where the follower vehicle needs to stop at either stop signs or traffic intersections.

Other works have presented control strategies to use signal phasing and timing information
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to develop fuel-efficient speed trajectories for automated vehicles. Fuel saving is achieved

by tracking a target velocity that avoids red lights [36]. Potentially, a similar idea might also

be applicable here by removing the distance constraint and adding a velocity tracking term

in the cost function when there is no leader vehicle or when the vehicle is near to a traffic

light. The applicability of such techniques in the context of this thesis is an open research

question.

2. An existing limitation for the current implementation in Chapter 5 is that a non-negligible

discrepancy between the desired velocity and the actual velocity is observed. To improve

the tracking performance, a potential method is to use a similar architecture as presented in

[55], where the E2C-MPC is the high-level controller that calculates reference setpoints, and

the low-level controller can be an MPC controller that coordinates multiple actuators and

accounts for disturbances in the system.

3. As mentioned in Chapter 6, the formulation presented there only deals with the uncertainty

in preview information, and does not consider model uncertainty or delays in the system,

e.g. computation and actuator delays. Also, the problem is solved in discrete time. These

lead to two problems. First, constraint satisfaction is not guaranteed between the sampled

time steps. Second, although the ego vehicle action is probably discretely determined, the

leader vehicle action is continuous, and thus by approximating the leader with a discrete

set of actions, we are underestimating the disturbance. In practice, using a smaller time

discretization will reduce the error in calculating the control invariant set, but the calculation

complexity grows, and thus theoretical approach may not be feasible. In this case, some

data-driven methods may provide a better approximation of the control invariant set.

4. A necessary condition for the E2C-MPC algorithm to effectively reduce tailpipe emissions

when calibrated to be more emissions-centric is that an increase in SCR temperature leads to

an increase in the de-NOx efficiency, and more importantly, the increase in efficiency should

be large enough such that the effect of efficiency change dominates the increase in engine
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NOx emissions caused by the change in driving behavior. This means that the proposed

strategy should only be calibrated to be emissions-centric if the exhaust and aftertreatment

temperatures are in appropriate ranges, and if the SCR is functioning correctly. Otherwise,

the proposed strategy should be selected to be fuel-centric, and other thermal control tech-

niques should be applied to improve the temperature in the aftertreatment system for emis-

sions reduction.

5. In this thesis, the simulations and experiments are mainly studied over the FTP drive cycle.

It would be interesting to also examine the other drive cycles and study the types of the drive

cycle where the proposed method performs best. Moreover, considering the other NOx re-

duction method via modified strategy inside the engine or aftertreatment system, it would be

interesting to understand how to combine different techniques to achieve the maximum NOx

reduction with the smallest fuel consumption penalty. Specifically, a comparison between

different techniques under different driving conditions would be worth studying. Besides,

since the reference velocity trajectory is optimized by the E2C-MPC and is known to the

underlying engine and aftertreatment control strategies, these strategies, e.g., the urea injec-

tion strategy, may vary once we know the future trajectory of the ego vehicle. Utilizing this

information and coordinating the multiple techniques and actuators can potentially improve

the overall performance.

102



BIBLIOGRAPHY

[1] 40 cfr subpart n - exhaust test procedures for heavy-duty engines. https://www.law.
cornell.edu/cfr/text/40/part-86/subpart-N. accessed: 2020-12-08.

[2] Danger ahead: The government’s plan for vehicle-to-vehicle communication threatens pri-
vacy, security, and common sense. https://www.eff.org/deeplinks/2017/05/
danger-ahead-governments-plan-vehicle-vehicle-communication
-threatens-privacy. Posted: 2017-05-08.

[3] New products at the paris motor show. https://mercedes-benz-publicarchive.
com/marsClassic/instance/ko.xhtml?relId=1001&fromOid=
4912915&resultInfoTypeId=172&borders=true&styleId=5001&
viewType=thumbs&sortDefinition=manualsort-1&oid=4912915&
thumbScaleIndex=0&rowCountsIndex=5#toRelation.

[4] sklearn.mixture.gaussianmixture. https://scikit-learn.org/stable/
modules/generated/sklearn.mixture.GaussianMixture.html#
sklearn.mixture.GaussianMixture.score. accessed: 2021-4-21.

[5] Assad Al Alam, Ather Gattami, and Karl Henrik Johansson. An experimental study on the
fuel reduction potential of heavy duty vehicle platooning. In Intelligent Transportation Sys-
tems (ITSC), 2010 13th International IEEE Conference on, pages 306–311. IEEE, 2010.

[6] Assad Alam, Jonas Martensson, and Karl H Johansson. Look-ahead cruise control for heavy
duty vehicle platooning. In Intelligent Transportation Systems-(ITSC), 2013 16th Interna-
tional IEEE Conference on, pages 928–935. IEEE, 2013.

[7] Behrang Asadi and Ardalan Vahidi. Predictive cruise control: Utilizing upcoming traffic
signal information for improving fuel economy and reducing trip time. IEEE transactions on
control systems technology, 19(3):707–714, 2010.

[8] Behrang Asadi and Ardalan Vahidi. Predictive cruise control: Utilizing upcoming traffic
signal information for improving fuel economy and reducing trip time. IEEE transactions on
control systems technology, 19(3):707–714, 2011.

[9] AVL. AVL SESAM i60 FT SII. https://www.avl.com/-/
avl-sesam-i60-ft-multi-component-exhaust-measurement-system.
accessed: 2021-5-10.

103

https://www.law.cornell.edu/cfr/text/40/part-86/subpart-N
https://www.law.cornell.edu/cfr/text/40/part-86/subpart-N
https://www.eff.org/deeplinks/2017/05/danger-ahead-governments-plan-vehicle-vehicle-communication
https://www.eff.org/deeplinks/2017/05/danger-ahead-governments-plan-vehicle-vehicle-communication
-threatens-privacy
https://mercedes-benz-publicarchive.com/marsClassic/instance/ko.xhtml?relId=1001&fromOid=4912915&resultInfoTypeId=172&borders=true&styleId=5001&viewType=thumbs&sortDefinition=manualsort-1&oid=4912915&thumbScaleIndex=0&rowCountsIndex=5#toRelation
https://mercedes-benz-publicarchive.com/marsClassic/instance/ko.xhtml?relId=1001&fromOid=4912915&resultInfoTypeId=172&borders=true&styleId=5001&viewType=thumbs&sortDefinition=manualsort-1&oid=4912915&thumbScaleIndex=0&rowCountsIndex=5#toRelation
https://mercedes-benz-publicarchive.com/marsClassic/instance/ko.xhtml?relId=1001&fromOid=4912915&resultInfoTypeId=172&borders=true&styleId=5001&viewType=thumbs&sortDefinition=manualsort-1&oid=4912915&thumbScaleIndex=0&rowCountsIndex=5#toRelation
https://mercedes-benz-publicarchive.com/marsClassic/instance/ko.xhtml?relId=1001&fromOid=4912915&resultInfoTypeId=172&borders=true&styleId=5001&viewType=thumbs&sortDefinition=manualsort-1&oid=4912915&thumbScaleIndex=0&rowCountsIndex=5#toRelation
https://mercedes-benz-publicarchive.com/marsClassic/instance/ko.xhtml?relId=1001&fromOid=4912915&resultInfoTypeId=172&borders=true&styleId=5001&viewType=thumbs&sortDefinition=manualsort-1&oid=4912915&thumbScaleIndex=0&rowCountsIndex=5#toRelation
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.score
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.score
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.score
https://www.avl.com/-/avl-sesam-i60-ft-multi-component-exhaust-measurement-system
https://www.avl.com/-/avl-sesam-i60-ft-multi-component-exhaust-measurement-system


[10] Kevin A Baumert. Navigating the numbers: Greenhouse gas data and international climate
policy, washington dc. http://www. wri. org/publication/navigating-the-numbers, 2005.

[11] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
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