
Mapping and Real-time Navigation
with Application to Small UAS Urgent Landing

by

Jeremy D. Castagno

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in the University of Michigan
2021

Doctoral Committee:

Professor Ella Atkins, Chair
Assistant Professor Maani Ghaffari Jadidi
Professor Nadine Sarter
Professor Quentin Stout



Jeremy D. Castagno

jdcasta@umich.edu

ORCID iD: 0000-0001-5458-9787

© Jeremy D. Castagno 2021



ACKNOWLEDGMENTS

I have received a great deal of support and assistance throughout the writing of this dissertation.
I first want to thank my advisor, Prof. Ella Aktins, for her unwavering support these last five years.
You have consistently helped me every week in research, writing, and even classwork! Whenever I
doubted myself or struggled you helped me step back and see the bigger picture of my research
goals and work. You paved the runway and provided the wind for my own research to take flight.

I would like to thank my committee members for valuable feedback on my work and ideas. Prof.
Sarter, thank you for your encouragement to persevere in adversity and teaching me that rejection is
par for the course. Prof. Stout, thank you for instilling in me a passion for writing efficient software
and providing the knowledge to create parallel programs. Thank you Prof. Ghaffari for having an
open ear and giving me opportunities in academic service.

Thank you to the past teachers and mentors who have supported me to this point. Prof. Heden-
gren, thank you for hiring me as an undergraduate assistant which began my journey to pursue
higher education. Mr. Lenski (Jerry), thank you for being a wonderful mentor and teaching me
everything I know about industrial control systems. You taught me that with patience and careful
planning even seemingly insurmountable engineering tasks can be accomplished.

Thank you to everyone in the A2SYS lab (in the order I met them): Pedro, Mia, Hossein, Cosme,
Brian, Prashin, Matt, Prince, Joseph, Paul, Mark, Anne, John. It has been a great honor in my life
getting to know each of you. Matt, Prince, and Prashin, I will always remember the hackathons
we joined and the thrill of competing together. Cosme and Brian, you are wonderful friends and
research partners. Thank you for being a great example for me and listening to my crazy ideas.

Next I want to thank my family. Mom, you shine as an example of love and service. Thank you
for all your support especially during the vulnerable parts of my childhood. To my siblings JD and
Meghan, thank you for your love, affection, and friendship. To my kids Kiara, Emily, and Alan: you
are treasures in my life and bring me joy every day. It is a privilege to be your Guardian and learn
from you. Finally, I want to acknowledge my wife, Natalia. We have taken this journey together.
Whenever life became stressful and I faltered, you always stepped up and supported me through
adversity. I love you completely. I am so excited for our next journey!

Funding This work was supported by the Rackham Merit Fellowship Program and NSF I/UCRC
Award 1738714.

ii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 UAS Emergency Landing Background . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Geographic Information System Background . . . . . . . . . . . . . . . . . . . 4
1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Research Approach and Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Contributions and Innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Polygons from 2D Point Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Triangulation with Half-Edge Decomposition . . . . . . . . . . . . . . . 13
2.4.2 Triangle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Triangular Mesh Region Extraction . . . . . . . . . . . . . . . . . . . . 14
2.4.4 2D Polygon Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Benchmarking Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Plane Segmented Point Clouds from RGBD Images . . . . . . . . . . . 20
2.5.2 State Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Alphabet Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Random Polygon Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii



2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Polygons from 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Planar Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Polygonal Shape Extraction . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 3D Data Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Dominant Plane Normal Estimation . . . . . . . . . . . . . . . . . . . . 34

3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Mesh Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Unorganized 3D Point Clouds . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Organized 3D Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.3 User Provided Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Mesh Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Laplacian Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Dominant Plane Normal Estimation . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.1 Gaussian Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.2 Peak Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Planar Segmentation and Polygon Extraction . . . . . . . . . . . . . . . . . . . . 50
3.7.1 Planar Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7.2 Polygon Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.3 Algorithm Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9.1 Dominant Plane Normal Estimation . . . . . . . . . . . . . . . . . . . . 56
3.9.2 Unorganized 3D Point Clouds . . . . . . . . . . . . . . . . . . . . . . . 57
3.9.3 Organized 3D Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9.4 User-Defined Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.10.1 Point Cloud Characteristics and Parameter Selection . . . . . . . . . . . 72
3.10.2 Algorithmic Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.10.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Roof Shape Classification from Satellite Images and LiDAR Data . . . . . . . . . . . 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Roof Geometry Classification . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 The Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . . 80
4.2.3 Feature Extraction and Classical Machine Learning . . . . . . . . . . . . 81

4.3 GIS Data Processing, Image Generation, and Training . . . . . . . . . . . . . . . 82
4.3.1 Classified Image Set Generation . . . . . . . . . . . . . . . . . . . . . . 82

iv



4.3.2 LiDAR Image Construction . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.3 Satellite Image Construction . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.4 Stage 1: CNN Architectures and Training . . . . . . . . . . . . . . . . . 87
4.3.5 Stage 2: SVM and Random Forest Classifier Training . . . . . . . . . . 88

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Case Study Dataset Generation . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 CNN Training and Results . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Feature Extraction for SVM and Random Forest Training . . . . . . . . 94
4.4.4 Analysis of Final Dual Input Model . . . . . . . . . . . . . . . . . . . . 96

4.5 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Map-Based Planning for Small UAS Rooftop Landing . . . . . . . . . . . . . . . . . . 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Sensor Based Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Map-Based Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.3 Multi-Goal Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.4 Urban Landscape and Rooftop Landings . . . . . . . . . . . . . . . . . 107

5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.1 Coordinates and Landing Sites . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 3D Path Planning with Mapped Obstacles . . . . . . . . . . . . . . . . . 108

5.4 Landing Site Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.1 Flat-like Roof Identification . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.2 Flat Surface Extraction for Usable Landing Area . . . . . . . . . . . . . 110
5.4.3 Touchdown Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.4 Landing Site Risk Model . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Three-Dimensional Maps for Path Planning . . . . . . . . . . . . . . . . . . . . 116
5.6 Planning Risk Metric Analysis and Integration . . . . . . . . . . . . . . . . . . . 118

5.6.1 Real-time Map-Based Planner Architecture . . . . . . . . . . . . . . . . 119
5.6.2 Trade-off Between Landing Site and Path Risk . . . . . . . . . . . . . . 119
5.6.3 Multi-Goal Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Maps and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.7.1 Landing Sites and Risk Maps . . . . . . . . . . . . . . . . . . . . . . . 125
5.7.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7.3 Urgent Landing Statistical Analysis . . . . . . . . . . . . . . . . . . . . 128

5.8 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Rooftop Touchdown Point Selection Using On-Board LIDAR and Vision . . . . . . . 136

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.1 Unprepared Landing Site Selection . . . . . . . . . . . . . . . . . . . . 138
6.2.2 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2.3 Polygon Extraction from Depth Data . . . . . . . . . . . . . . . . . . . 140

v



6.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 Touchdown Point Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5.1 Semantic Segmentation for Scene Understanding . . . . . . . . . . . . . 143
6.5.2 Semantic Polygon Extraction . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.3 Contingency Planning Overview . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.6.1 Analysis of Rooftops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.6.2 Generating City Rooftop Environments . . . . . . . . . . . . . . . . . . 147
6.6.3 Vehicle, Camera, and LiDAR Models . . . . . . . . . . . . . . . . . . . 149

6.7 Semantic Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.7.1 Creating Image Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.7.2 Training and Testing Results . . . . . . . . . . . . . . . . . . . . . . . . 151

6.8 Touchdown Point Selection Results . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.8.1 Semantic Polylidar3D Accuracy and Speed . . . . . . . . . . . . . . . . 153
6.8.2 Decision Height Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.10 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Flight Experiment Results for Touchdown Point Selection . . . . . . . . . . . . . . . 161

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Touchdown Point Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3.1 Sensor Package Construction . . . . . . . . . . . . . . . . . . . . . . . 162
7.3.2 Sensor Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.3 Quadrotor Frame and Sensor Package Integration . . . . . . . . . . . . . 163
7.3.4 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3.5 Hardware and Software Integration . . . . . . . . . . . . . . . . . . . . 165

7.4 Experimental Results for Touchdown Point Selection . . . . . . . . . . . . . . . 167
7.4.1 Hand Carry Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.4.2 Flight Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4.3 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.4.4 Trajectory Error Analysis of Intel RealSense T265 . . . . . . . . . . . . 171

7.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.2.1 Robustly Segmenting Rooftop Point Clouds . . . . . . . . . . . . . . . . 176
8.2.2 Improving Polylidar3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.2.3 Extending Touchdown Point Definition to Fixed-Wing Aircraft . . . . . . 177
8.2.4 Remembering the Human Factor . . . . . . . . . . . . . . . . . . . . . . 177
8.2.5 Gaining Confidence in the Data . . . . . . . . . . . . . . . . . . . . . . 178
8.2.6 Creating a More Complete Picture of Risk . . . . . . . . . . . . . . . . . 179

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

vi



A.1 Polylidar3D Source Code Summary . . . . . . . . . . . . . . . . . . . . . . . . 182
A.2 Fast Gaussian Accumulator Source Code Summary . . . . . . . . . . . . . . . . 185
A.3 Organized Point Filters Source Code Summary . . . . . . . . . . . . . . . . . . 188

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

vii



LIST OF FIGURES

FIGURE

1.1 Motivation for rooftop landing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Common data types used in GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview of dissertation topics and structure . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Demonstration of Polylidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Delaunay triangulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Region growing example from triangulation . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Polylidar datastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Polylidar boundary following procedure . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Extracting a polygon from a plane-segmented RGBD point cloud . . . . . . . . . . . 22
2.7 Execution and accuracy results from state shape benchmark . . . . . . . . . . . . . . 23
2.8 Visual comparison of different polygon extraction methods . . . . . . . . . . . . . . . 23
2.9 Example of high and low convexity polygons . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Overview of Polylidar3D framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Example polygons that can be generated from plane segmented point clouds . . . . . . 31
3.3 Example Gaussian Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Converting an unorganized 3D point cloud to a 3D triangular mesh . . . . . . . . . . 37
3.5 Converting an organized point cloud into a 3D triangular mesh . . . . . . . . . . . . . 38
3.6 Example non-manifold meshes with condition one violations . . . . . . . . . . . . . . 42
3.7 Example non-manifold meshes with condition two violations . . . . . . . . . . . . . . 42
3.8 Visualization of a triangle’s neighborhood during bilateral filtering . . . . . . . . . . . 44
3.9 Approximation of the unit sphere with an icosahedron . . . . . . . . . . . . . . . . . 45
3.10 Space filling curve (SFC) of a level four refined icosahedron . . . . . . . . . . . . . . 46
3.11 Linear prediction model for space filling curve indices on a Gaussian Accumulator . . 48
3.12 Example using Fast Gaussian Accumulator on a triangular mesh . . . . . . . . . . . . 49
3.13 Demonstration of Polylidar3D extracting planes and their polygonal representations . 53
3.14 Example polygon extraction from a planar triangular segment . . . . . . . . . . . . . 54
3.15 Example of polygon post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.16 Example of Polylidar3D used with unorganized point cloud data . . . . . . . . . . . . 59
3.17 Example of Polylidar3D used with the KITTI autonomous driving dataset . . . . . . . 60
3.18 Example of Polylidar3D used with Red Green Blue Depth (RGBD) cameras . . . . . . 64
3.19 Example of using Polylidar3D on a SynPEB scene with the highest noise level . . . . 65
3.20 Example of Polylidar3D used with user defined meshes . . . . . . . . . . . . . . . . . 70

viii



3.21 Results of parallel speedup and execution timing of Polylidar3D . . . . . . . . . . . . 71

4.1 Roof classification data fusion and processing pipeline . . . . . . . . . . . . . . . . . 77
4.2 Example of a fully connected and convolutional neural network . . . . . . . . . . . . 80
4.3 Example of a SVM and random forest classifier. . . . . . . . . . . . . . . . . . . . . 82
4.4 Demonstration of LiDAR filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Satellite image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Convolutional Neural Networks (CNN) architecture templates . . . . . . . . . . . . . 88
4.7 Feature extraction for use in SVM and random forest model training . . . . . . . . . . 89
4.8 RGB and LiDAR example images of roof shapes. . . . . . . . . . . . . . . . . . . . . 91
4.9 RGB and LiDAR example images classified as unknown . . . . . . . . . . . . . . . 91
4.10 Results of CNN networks on validation set . . . . . . . . . . . . . . . . . . . . . . . 93
4.11 Accuracy between region-specific and combined training datasets . . . . . . . . . . . 95
4.12 Test Set 1 Accuracy (Witten/Manhattan) . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.13 Confusion Matrices for Test Set 1 (Witten/Manhattan) and Test Set 2 (Ann Arbor). . . 97
4.14 Test Set 1 confidence threshold impact on precision and recall for multiple classes. . . 99
4.15 Test Set 2 confidence threshold impact on precision and recall for multiple classes. . . 100

5.1 Emergency planning logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Comparison of multi-goal planning definitions . . . . . . . . . . . . . . . . . . . . . 106
5.3 Satellite image of an urban environment with multiple flat roof landing sites . . . . . . 107
5.4 Processing pipeline to construct landing site and occupancy map databases . . . . . . 109
5.5 Maps of predicted flat rooftops in three cities. . . . . . . . . . . . . . . . . . . . . . . 110
5.6 Flat surface extraction from rooftops . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.7 Touchdown point extraction on rooftops . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.8 Mapping area size to risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.9 Example occupancy and risk map of New York City . . . . . . . . . . . . . . . . . . 118
5.10 Flow chart of proposed map-based planner . . . . . . . . . . . . . . . . . . . . . . . 118
5.11 Example Pareto frontier for landing site and path risk . . . . . . . . . . . . . . . . . . 120
5.12 Maps of landing sites and associated risk . . . . . . . . . . . . . . . . . . . . . . . . 126
5.13 Maps of case studies for emergency landing . . . . . . . . . . . . . . . . . . . . . . . 127
5.14 Pareto frontier of case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.15 Maximum distance between landing sites . . . . . . . . . . . . . . . . . . . . . . . . 134
5.16 Metrics for map-based planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1 Overview of Semantic Polylidar3D for touchdown point selection . . . . . . . . . . . 137
6.2 Rooftop-based contingency landing planning overview . . . . . . . . . . . . . . . . . 141
6.3 Coordinate frames for sensor package . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4 Visualization of Semantic Polylidar3D . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5 Map of Manhattan buildings observed for rooftop assets . . . . . . . . . . . . . . . . 147
6.6 Histogram of twelve common rooftop items observed from a Manhattan dataset . . . . 148
6.7 Examples of rooftop asset modelling and customization . . . . . . . . . . . . . . . . 149
6.8 Example simulated urban city . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.9 LiDAR model used in simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.10 Image sampling strategy for creating an annotated dataset of rooftop segmentation . . 152

ix



6.11 Gathering test data in simulation environment . . . . . . . . . . . . . . . . . . . . . . 154
6.12 Three examples of touchdown point selection on rooftops . . . . . . . . . . . . . . . 155
6.13 Example of Semantic Polylidar3D on a challenging rooftop . . . . . . . . . . . . . . 156
6.14 Comparison of Semantic Polylidar3D IoU accuracy . . . . . . . . . . . . . . . . . . . 156
6.15 Decision height analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.16 Proposed rooftop archival polygon update procedure . . . . . . . . . . . . . . . . . . 159

7.1 Sensor package components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 Sensor package coordinate frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3 Sensor package and quadrotor integration . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4 Flight lab setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.5 Overview of hardware interfaces and software architecture . . . . . . . . . . . . . . . 166
7.6 Picture of terminal user interface for urgent landing . . . . . . . . . . . . . . . . . . . 167
7.7 Real-time constructed meshes and polygons during hand carry test . . . . . . . . . . . 168
7.8 Visualization of flight path used in all experiments . . . . . . . . . . . . . . . . . . . 169
7.9 Flow diagram of flight experiment protocol . . . . . . . . . . . . . . . . . . . . . . . 169
7.10 Real-time constructed meshes and polygons during flight test . . . . . . . . . . . . . . 170
7.11 Trajectory of quadrotor from flight #1 . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.12 Comparison of Motion Capture System (MCS) versus T265 . . . . . . . . . . . . . . 172

A.1 Page 1 of the Polylidar3D repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.2 Page 2 of the Polylidar3D repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.3 Page 3 of the Polylidar3D repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.4 Page 1 of the Fast Gaussian Accumulator repository . . . . . . . . . . . . . . . . . . 185
A.5 Page 2 of the Fast Gaussian Accumulator repository . . . . . . . . . . . . . . . . . . 186
A.6 Page 3 of the Fast Gaussian Accumulator repository . . . . . . . . . . . . . . . . . . 187
A.7 Page 1 of the Organized Point Filter repository . . . . . . . . . . . . . . . . . . . . . 188
A.8 Page 2 of the Organized Point Filter repository . . . . . . . . . . . . . . . . . . . . . 189

x



LIST OF TABLES

TABLE

1.1 Data sources proposed for small UAS contingency management plans. . . . . . . . . . 4

2.1 Concave hull extraction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Parameters for test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 RGBD plane segmented point clouds benchmark results . . . . . . . . . . . . . . . . 21
2.4 Alphabet letter benchmark results, 26 shapes . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Random polygon tests; CV = Convexity Metric . . . . . . . . . . . . . . . . . . . . . 24
2.6 Algorithm timings - Mean of 30 runs in milliseconds . . . . . . . . . . . . . . . . . . 26

3.1 Levels of refinement for an icosahedron. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Execution time comparisons for synthetic and real world datasets . . . . . . . . . . . 57
3.3 Polylidar3D parameters for rooftop detection. . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Polylidar3D parameters for KITTI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Mean execution timings (ms) of Polylidar3D on KITTI . . . . . . . . . . . . . . . . . 62
3.6 Intel RealSense SDK post-processing filter parameters. . . . . . . . . . . . . . . . . . 62
3.7 Polylidar3D parameters for RealSense RGBD . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Mean execution timings (ms) of Polylidar3D with RGBD data. . . . . . . . . . . . . . 64
3.9 Polylidar3D parameters for the SynPEB benchmark test set . . . . . . . . . . . . . . . 66
3.10 SynPEB benchmark results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.11 Mean execution timings (ms) and accuracy of Polylidar3D on SynPEB . . . . . . . . 67
3.12 Execution timing (ms) for one and five iterations of Laplacian filtering . . . . . . . . . 68
3.13 Execution timing (ms) for one and five iterations of bilateral filtering . . . . . . . . . . 68
3.14 Polylidar3D parameters for the basement mesh . . . . . . . . . . . . . . . . . . . . . 69
3.15 Polylidar3D parameters for the main floor mesh . . . . . . . . . . . . . . . . . . . . . 69

4.1 CNN architectures and hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 SVM and random forest training configurations . . . . . . . . . . . . . . . . . . . . . 89
4.3 Satellite, LiDAR, and building data sources . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Breakdown of roof labels by city . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Best CNN model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Best Classifiers using CNN extracted features . . . . . . . . . . . . . . . . . . . . . . 96
4.7 Results for recall, precision, and quality evaluation metrics for Test Set 1 . . . . . . . 97
4.8 Results for recall, precision, and quality evaluation metrics for Test Set 2 . . . . . . . 98

5.1 Terrain type and property cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



5.2 Satellite, LiDAR, and building data sources . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Emergency landing case study parameters . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Emergency landing case study locations . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Common rooftop items with average quantities . . . . . . . . . . . . . . . . . . . . . 147
6.2 Semantic segmentation accuracy results . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Semantic Polylidar3D parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.4 Execution time (ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5 Maximum height for Semantic Polylidar3D to identify a human on the roof . . . . . . 157

7.1 Sensor package details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Mean and standard deviation of execution times (ms) . . . . . . . . . . . . . . . . . . 170
7.3 Mean Absolute Trajectory Error (ATE) for T265 . . . . . . . . . . . . . . . . . . . . 171

xii



LIST OF ALGORITHMS

ALGORITHM

2.1 Initialize Data Structures for Polylidar . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Extract Linear Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Extract Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Extract Triangles from Organized Point Cloud (OPC) . . . . . . . . . . . . . . . . . 39
3.2 Extract Half-Edges from OPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Find Cell Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Group Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Region Growing Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Filtering of Airborne LiDAR Point Cloud . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Touchdown Point Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Multi-Goal Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Semantic Triangle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xiii



LIST OF ACRONYMS

AHC Agglomerative Hierarchical Clustering

CNN Convolutional Neural Networks

DSM Digital Surface Model

ECAL Enhanced Communication and Abstraction Library

GIS Geographic Information System

GPS Global Positioning System

GPU Graphics Processing Unit

GCS Geographic Coordinate System

INS Inertial Navigation System

IOU Intersection over Union

LiDAR Light Detection and Ranging

ML Machine Learning

MCS Motion Capture System

OPC Organized Point Cloud

xiv



OSM OpenStreetMap

PIC Pilot in Command

RGB Red Green Blue

RGBD Red Green Blue Depth

SfM Structure from Motion

SBC Single Board Computer

UAS Unmanned Aircraft Systems

UTM UAS Traffic Management

sUAS small Unmanned Aircraft Systems

VTOL Vertical Take-of and Landing

VR Virtual Reality

xv



ABSTRACT

Small Unmanned Aircraft Systems (sUAS) operating in low-altitude airspace require flight near
buildings and over people. Robust urgent landing capabilities including landing site selection are
needed. However, conventional fixed-wing emergency landing sites such as open fields and empty
roadways are rare in cities. This motivates our work to uniquely consider unoccupied flat rooftops
as possible nearby landing sites. We propose novel methods to identify flat rooftop buildings, isolate
their flat surfaces, and find touchdown points that maximize distance to obstacles. We model flat
rooftop surfaces as polygons that capture their boundaries and possible obstructions on them.

This thesis offers five specific contributions to support urgent rooftop landing. First, the Polylidar
algorithm is developed which enables efficient non-convex polygon extraction with interior holes
from 2D point sets. A key insight of this work is a novel boundary following method that contrasts
computationally expensive geometric unions of triangles. Results from real-world and synthetic
benchmarks show comparable accuracy and more than four times speedup compared to other
state-of-the-art methods.

Second, we extend polygon extraction from 2D to 3D data where polygons represent flat surfaces
and interior holes representing obstacles. Our Polylidar3D algorithm transforms point clouds into a
triangular mesh where dominant plane normals are identified and used to parallelize and regularize
planar segmentation and polygon extraction. The result is a versatile and extremely fast algorithm
for non-convex polygon extraction of 3D data.

Third, we propose a framework for classifying roof shape (e.g., flat) within a city. We process
satellite images, airborne LiDAR point clouds, and building outlines to generate both a satellite
and depth image of each building. Convolutional neural networks are trained for each modality
to extract high level features and sent to a random forest classifier for roof shape prediction. This
research contributes the largest multi-city annotated dataset with over 4,500 rooftops used to train
and test models. Our results show flat-like rooftops are identified with > 90% precision and recall.

Fourth, we integrate Polylidar3D and our roof shape prediction model to extract flat rooftop
surfaces from archived data sources. We uniquely identify optimal touchdown points for all landing
sites. We model risk as an innovative combination of landing site and path risk metrics and conduct
a multi-objective Pareto front analysis for sUAS urgent landing in cities. Our proposed emergency
planning framework guarantees a risk-optimal landing site and flight plan is selected.

xvi



Fifth, we verify a chosen rooftop landing site on real-time vertical approach with on-board
LiDAR and camera sensors. Our method contributes an innovative fusion of semantic segmentation
using neural networks with computational geometry that is robust to individual sensor and method
failure. We construct a high-fidelity simulated city in the Unreal game engine with a statistically-
accurate representation of rooftop obstacles. We show our method leads to greater than 4%
improvement in accuracy for landing site identification compared to using LiDAR only.

This work has broad impact for the safety of sUAS in cities as well as Urban Air Mobility
(UAM). Our methods identify thousands of additional rooftop landing sites in cities which can
provide safe landing zones in the event of emergencies. However, the maps we create are limited by
the availability, accuracy, and resolution of archived data. Methods for quantifying data uncertainty
or performing real-time map updates from a fleet of sUAS are left for future work.
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CHAPTER 1

Introduction

1.1 Motivation

Unmanned Aircraft Systems (UAS) are expected to proliferate in low-altitude airspace over the
coming decade. Drones with vertical takeoff and landing (VTOL) capability have been proposed
to offer fast package delivery, monitor and secure assets, perform inspections, and entertain. Low-
altitude operation of UAS in urban areas will require flight near buildings and over people. A
primary safety concern is ensuring a robust urgent landing capability [1, 2]. Urgent landing requires
landing site selection, trajectory planning, and stable flight control to actually reach the selected site
[3]. It is possible a UAS may identify a safe site within sensor range allowing for an immediate
landing. However, when no safe site is within range the UAS must devote time and energy to
exploring sites beyond sensor range or else utilize pre-processed data to identify a safe site [4, 5]. An
onboard database of maps including landing sites can be incorporated into an efficient autonomous
decision making framework [6]. Offline data sources such as satellite images, airborne LiDAR point
clouds, and existing map data may be used to aid map construction.

Flat

Gabled

Obstacles

People
Gabled

Flat

Vegetation

(a)

Obstacle

(b)

Figure 1.1: Motivation for rooftop landing. (a) Satellite image of an urban environment with
multiple flat rooftops. Select roof shapes and obstacles are labeled. (b) A rooftop surface can be
represented as a non-convex polygon with an exterior shell (green) and interior hole(s) (orange).

Conventional fixed-wing emergency landing sites such as open fields and empty roadways
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are extremely rare in and around cities. Consider the satellite image in Figure 1.1a which shows
the typical sparsity of conventional landing zones in the city Witten, Germany. However, these
images show a multitude of unoccupied flat rooftops that may provide nearby landing sites for
small lightweight UAS. Obstacles such as air conditioning units, skylights, and rooftop entrances on
these surfaces may be present and must be explicitly modeled and avoided during an urgent landing.
Polygons can accurately and simply represent these flat surfaces as well as obstacles embedded on
them per Figure 1.1b. Archived data can be processed such that rooftop landing sites substantially
augment existing conventional landing site databases.

1.2 UAS Emergency Landing Background

UAS may experience a number of anomalies requiring emergency landing such as low battery
energy, lost communication link, adverse weather, sensor or actuator failure, or operator emergency
landing directives. Currently available UAS emergency recovery capabilities are limited to simple
methods such as loitering or returning to a predefined waypoint such as the launch location [7, 8].
However, loitering or returning to a distant waypoint may present a higher level of risk to the
overflown population and property compared to landing at nearby alternative sites. For this reason,
emergency landing research has held a long term focus on autonomous landing site selection and
trajectory generation. This dissertation defines related terms as follows.

Definition 1 (Prepared Landing Site). An area designated for aircraft landing, e.g., runways, heli-

ports, and vertiports. Surface improvements ensure suitable size, shape, and slope characteristics.

Markers maximize visibility. Protective barriers and routine inspections minimize probability of

obstacles/debris.

Definition 2 (Unprepared Landing Site). An open area with no improvements or protections, e.g.,

fields, roadways, and rooftops. Landing requires a visual assessment to identify or validate a

suitable touchdown point.

Definition 3 (Touchdown Point). The geographic point within a landing site area where the aircraft

intends to first contact the surface.

The landing site selection process is typically accomplished by utilizing on-board sensors or
a database of prepared/unprepared landing sites [9, 4]. Prepared landing sites can be assumed
capable of supporting a safe landing provided no other traffic is present. Unprepared landing sites
can be mapped a priori or identified in real-time. Unprepared sites are not protected thus must be
confirmed safe prior to touchdown.
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On-board Sensors On-board exteroceptive sensors including camera, radar, and LiDAR can
provide a wealth of information about the surrounding environment for use in emergency landing
planning. However, the range and field-of-view of the sensor will limit the amount of useful data
available. Vision-based systems that employ monocular cameras are widely used because they are
lightweight and low cost [10]. Much research focuses on finding landing pads or predefined targets
within images using computer vision techniques [11]. Unprepared and unstructured landing sites
are found by identifying flat surfaces with sufficient size and shape characteristics within images [9].
Many of these methods find unprepared landing sites from a single image or from multiple images.
Single image methods utilize techniques like Canny edge detectors and assume homogeneous
textures indicate planarity [12, 13]. Structure from Motion (SfM) algorithms may convert multiple
images into points clouds to constructs height maps for planarity assessment [14, 15]. LiDAR
sensors offer a significant increase in range, precision, and accuracy but at the cost of increased
expense and weight. Fully autonomous landing of helicopters utilizing only on-board LiDAR has
been demonstrated [16, 17]. A fusion of sonar and LiDAR for small UAS landing site identification
has also shown to be effective at finding unprepared landing sites [18]. However, all such methods
require unprepared landing sites to be within range of on-board sensors.

On-board Database Increased data availability, low-cost storage, and accessible cloud-based
infrastructure provide new opportunities for UAS risk management. A Geographic Information
System (GIS) allows free or low-cost access to a variety of geographic data including elevation maps,
man-made structures, land use, and population density. Table 1.1 lists GIS database sources and
their use in prior research to support UAS emergency landing. Prior work demonstrates combining
and analyzing a variety of data sources to identify unprepared landing sites and accompanying
maps for trajectory generation. Additionally, risk models are formulated allowing an autonomous
decision framework to choose from multiple candidate landing sites.

Rooftop Landing All references in Table 1.1 strictly focus on identifying and assessing risk for
terrain-based landing sites such as open fields or roadways. Per. [10] there has been significantly
less research conducted on using building rooftops for landings. Only emerging small UAS are
sufficiently lightweight to land on an unprepared roof without risking structural damage or collapse.
Ref. [27] proposed rooftop landing methods that rely on pre-positioned landing pads to guide
landing site selection and pose estimation. However, this approach assumes a rooftop has already
been established as a prepared site, whereas only a few manned helicopter vertiports have actually
been established in each urban area today. Ref. [15] uses a monocular camera and employs a dense
motion stereo approach for 3D reconstruction while assessing planarity and slope for appropriately-
sized landing sites. However, this method is limited to identifying rooftop landing sites only within
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Table 1.1: Data sources proposed for small UAS contingency management plans.

Information Type Reference Source

Elevation Data [19, 20] Shuttle Radar Topographic Mission (SRTM)
[4] US Geological Survey, National Elevation Set
[21, 22, 23] Airborne LiDAR Point Clouds

Structures/Buildings [4] New York City Land Use Tax-lot
[24, 19] OpenStreetMap

Land Use Type [4] US Geological Survey, National Land Cover Dataset
[24, 19] OpenStreetMap

Population [4, 25] US Census, LandScan
[26] National Human Activity Pattern Survey
[24] Mobile Phone Call Detail Records

the camera field of view and at low altitudes. Our work shows that there may be hundreds of viable
rooftop landing sites within 200 meters of a small UAS randomly positioned in a dense urban
environment.

1.3 Geographic Information System Background

A Geographic Information System (GIS) is a framework to acquire, label, and update geographic
data that model economic, environmental, and social properties [28]. Each GIS data record is marked
by a geographic location in an Earth-referenced coordinate frame. Earth-referenced coordinate
systems allow heterogeneous data to be aligned in multi-layer maps. This dissertation utilizes three
main GIS data types: raster, vector, and point cloud data. Publicly available point cloud data are
becoming increasingly available worldwide from both regional and federal governments. Figure 1.2
shows GIS data examples.

Reference Coordinate Systems The most widely used Geographic Coordinate System (GCS) is
WGS84 [29] measured in degrees of latitude and longitude where positive values correspond to
North of the Equator and East of the Prime Meridian, respectively. This spherical coordinate system
is unsuitable for use in metric distance and area calculations needed for landing site selection so
projected coordinate systems map the spherical surface to a two-dimensional Cartesian planes called
map projections [30]. This dissertation utilizes the Universal Transverse Mercator (UTM) system
unless otherwise noted. Data from disparate coordinate systems may be overlaid and aligned by
transforming coordinates from one coordinate reference system to another. These transformation
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(a) Raster, Satellite Image (b) Vector, Building Outline (c) Airborne LiDAR Point Cloud

Figure 1.2: Common data types used in GIS

are done by specialized software, such as PROJ4 [31].

Raster Data A raster is composed of a matrix of cells organized into rows and columns, where
each cell represents information. Common rasters include images, digital terrain elevation models,
and rasterized population density maps. Imagery can be captured by satellite or aircraft. Satellite
data offer global coverage with the highest resolution currently offered at 30 cm/pixel [32]. Aerial
imagery has resolutions as high as 2.5 cm/pixel [33, 32].

Vector Data Vector data provides a more precise representation of the location and shape of
world features in comparison to raster data [30]. Common vector features include streets, park/field
outlines, and building footprints. Vector features are constructed as ordered pairs of (x,y) vertices
which reside on a map projection plane. A vector feature may be represented as points, polylines, or
polygons.

Point Cloud Data A point cloud is a collection of 3D points defined in a Cartesian reference
frame. Point clouds in GIS are often generated with a top-down vantage point from aircraft outfitted
with Light Detection and Ranging (LiDAR), Global Positioning System (GPS), and an Inertial
Navigation System (INS). LiDAR scans are stitched together in an airborne LiDAR point cloud.

1.4 Problem Statement

This dissertation addresses the following challenges:

1. Where can a small UAS safely land in a city during an urgent or emergency landing situation?
2. How can maps be constructed and risk evaluated for landing site selection and path planning?
3. How can a small UAS verify a landing zone is safe in real-time on approach to that site?
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Previous research has proposed the use of public GIS datasets such as satellite images, airborne
LiDAR point clouds, digital elevation maps, census data, and building outlines for terrain-based
landing site identification, risk assessment, and path planning [34, 24, 35, 19]. However increased
use of small Unmanned Aircraft Systems (sUAS) in urban cities motivates this work to additionally
consider building rooftops as landing sites. To our knowledge this dissertation is the first work to
explicitly use GIS data to automatically identify flat rooftop buildings, isolate flat surfaces, and find
risk-minimum touchdown points that maximize distance to obstacles.

1.5 Research Approach and Thesis Outline

This dissertation proposes to process existing GIS data to extract safe landing sites and risk
evaluate for landing site selection. To accomplish this computational geometry algorithms have
been developed to enable efficient extraction of flat surfaces as non-convex polygons. The overall
structure of this dissertation is shown in Figure 1.3 and can be summarized as accomplishing the
following seven tasks:

1. Efficiently extract non-convex polygons with interior holes from 2D point sets. (Ch. 2)
2. Extend polygon extraction methods from 2D point sets to 3D data where polygons represent

flat surfaces and interior holes represent obstacles embedded on the surface. (Ch. 3)
3. Classify rooftop shape in a city (e.g., flat) with high confidence in model prediction. (Ch. 4)
4. Assimilate publicly available GIS data such as satellite images, airborne LiDAR point clouds,

and building outlines into an urgent landing site database with associated risk metrics as well
as occupancy maps for path planning. (Ch. 5)

5. Create a multi-goal planner to efficiently search candidate sites and account for landing site
risk as well as flight path risk to that site. The planner identifies a landing site/path pair to
minimize combined total risk as well as computation time for this search. (Ch. 5)

6. Create a real-time touchdown point selection algorithm to verify a landing zone on approach.
Construct a high fidelity simulated city for testing. (Ch. 6)

7. Perform flight experiments to verify the planned touchdown location is safe in real-time using
on-board LiDAR. (Ch. 7)

Our research approach begins with developing methods for extracting non-convex polygons
from 2D & 3D data in Chapters 2 and 3, respectively. Though the chapters present methods and
examples which are general to many domains, this thesis will highlight their use for rooftop surface
extraction. Chapter 4 presents our methods of labelling rooftop shapes with a machine learning
framework by utilizing satellite image and airborne LiDAR point clouds. Chapter 5 integrates
polygon extraction and roof shape prediction in order to create an emergency landing site database
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Figure 1.3: Overview of dissertation topics and structure.

that uniquely includes rooftops. We propose several risk metrics that allow a multi-goal planner
to choose the risk-minimal landing site and path/pair. Chapter 6 proposes methods to validate a
landing site on approach by using on-board LiDAR and camera sensors. We extend Polylidar3D to
integrate with semantic segmentation and show improved robustness from individual sensor failure.
Finally, Chapter 7 experimentally evaluates the use of Polylidar3D for real-time touchdown point
selection with on-board LiDAR.

1.6 Contributions and Innovations

Specific contributions of this dissertation include:

• A faster open source library for non-convex (multi)polygon extraction from 2D point sets.
An open source benchmark comparison of leading non-convex polygon extraction techniques
in terms of accuracy and speed is provided.

• An efficient and versatile open source framework, Polylidar3D, for non-convex (multi)polygon
extraction from 3D data representing flat surfaces. Polylidar3D can handle unorganized and
organized 3D point clouds as well as triangular meshes. Computation time is minimized with
CPU multi-threading and GPU acceleration.

• Multiple open source and reproducible experiments showing qualitative and quantitative
benchmark results of Polylidar3D applied to sensors including LiDAR and RGBD cameras.

• A fast open source dominant plane normal estimation library, FastGA, using a novel Gaussian
Accumulator with efficient search.

• A deep learning framework for predicting roof shapes from a fusion of satellite image,
airborne LiDAR point cloud, and existing building outline data. Over 4,500 buildings
rooftops spanning three cities were manually classified for training, validation, and testing.
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• A multi-goal planner that guarantees a risk-optimal solution is found rapidly by avoiding
exploration of high-risk options. Plans are optimized over a combination of landing site and
path risk metrics.

• Experimental UAS results of real-time landing site validation with touchdown point selection
using Polylidar3D.

Specific innovations of this dissertation are:

• A novel computationally-efficient algorithm to extract non-convex polygons from 2D point
sets while accounting for holes. The proposed method utilizes half-edge boundary following
with edge-case detection instead of alternatives such as the expensive union of triangles.

• The first parallelized non-convex polygon extraction framework working with several forms
of 3D data. Polygons represent dominant planar surfaces with interior holes representing the
shape of obstacles embedded on their surface. Polylidar3D’s speed and data input versatility
allow its use for many applications.

• The first large-scale multi-city analysis for predicting roof shapes. The provided annotated
dataset contains diverse examples from small to large metropolitan city centers.

• The first rigorous method to incorporate flat rooftops as candidate landing sites for urgent
landing of small UAS in cities. Optimal touchdown sites on rooftop surface are determined
using geometric methods with risk evaluated according to size and proximity to alternative
touchdown sites.

1.7 Products

Publications, software, and datasets connected to this dissertation are:

Conference

• J. Castagno, C. Ochoa, and E. Atkins, “Comprehensive Risk-based Planning for Small Un-
manned Aircraft System Rooftop Landing,” in 2018 International Conference on Unmanned

Aircraft Systems (ICUAS), Jun. 2018, pp. 1031–1040, doi: 10.1109/ICUAS.2018.8453483.
• K. McDonough, J. Castagno, J. Player, and E. Atkins, “RANGR: Risk Aware Navigation and

Guidance Resilience,” presented at the AUVSI Xponential, Denver, CO, USA, May 2018.
• J. Castagno and E. M. Atkins, “Automatic Classification of Roof Shapes for Multicopter

Emergency Landing Site Selection,” in 2018 Aviation Technology, Integration, and Operations

Conference, American Institute of Aeronautics and Astronautics, 2018.
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Journal

• J. Castagno, Y. Yao, and E. Atkins, “Autonomous Rooftop Touchdown Point Selection”.
Journal of Intelligent Robot Systems. Submitted, Under Review.

• J. Castagno, M. Romano, P. Kuevor, and E. Atkins, “Multi-UAV Wildire Boundary Estimation
using a Semantic Segmentation Neural Network,” Journal of Aerospace Information Systems,
vol. 18, no. 5, pp. 231–249, 2021, doi: 10.2514/1.I010912.

• J. Castagno and E. Atkins, “Map-Based Planning for Small Unmanned Aircraft Rooftop Land-
ing,” in Handbook on Reinforcement Learning and Control, Springer, 2021. doi:10.1007/978-
3-030-60990-0.

• J. Castagno and E. Atkins, “Polylidar3D - Fast Polygon Extraction from 3D Data,” Sensors,
vol. 20, no. 17, Art. no. 17, Jan. 2020, doi: 10.3390/s20174819.

• J. Castagno and E. Atkins, “Polylidar - Polygons From Triangular Meshes,” IEEE Robotics

and Automation Letters, vol. 5, no. 3, pp. 4634–4641, Jul. 2020, doi: 10.1109/LRA.2020.3002212.

• J. Castagno and E. Atkins, “Roof Shape Classification from LiDAR and Satellite Image Data
Fusion Using Supervised Learning,” Sensors, vol. 18, no. 11, Art. no. 11, Nov. 2018, doi:
10.3390/s18113960.

Open Source C++ libraries (with Python bindings)

• J. Castagno, “Polylidar3D,” [Online] Available: https://github.com/JeremyBYU
/polylidar, 2020.

• J. Castagno, “Fast Gaussian Accumulator,” [Online] Available: https://github.com
/JeremyBYU/FastGaussianAccumulator, 2020.

• J. Castagno, “Organized Point Filters,” [Online] Available: https://github.com/Jer
emyBYU/OrganizedPointFilters, 2020.

Open Data Sets

• J. Castagno, “Annotated Roof Shape Dataset,” [Online] Available: https://www.mdpi
.com/1424-8220/18/11/3960/s1, 2018.

• J. Castagno, “Annotated Roof Asset Dataset,” [Online] Available: https://github.c
om/JeremyBYU/UnrealRooftopLanding/blob/master/assets/data/ma

nhattan/buildings.csv, 2021.
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CHAPTER 2

Polygons from 2D Point Sets

2.1 Introduction

This chapter presents Polylidar, an efficient algorithm to transform 2D point sets into simplified
non-convex (i.e., concave) polygons with holes. Polylidar begins by triangulating the point set and
filtering triangles given user-specified parameters such as maximum triangle edge length. Once
filtering is complete, edge-connected triangles are combined into regions creating a set of triangular
meshes representing the shape of the point set. Next, Polylidar converts each mesh region to a
polygon through a novel boundary following method which accounts for holes. Figure 2.1b shows
Polylidar applied to a 2D point set while (c) shows Polylidar used on a plane segmented point cloud
from an RGBD image.

We show that the Polylidar algorithm is approximately four times faster than leading open source
approaches for concave polygon extraction. Polylidar’s speed is attributed to rapidly identifying
boundary edges (shell and holes) and then performing boundary following to ensure a valid polygon
is returned.

Contributions of this chapter are:

• A faster open source [36] concave (multi)polygon extraction algorithm from 2D point sets.

• A benchmark comparison of leading concave polygon extraction techniques in terms of
accuracy and speed.

Below, Sections 2.2 and 2.3 provide background on non-convex shape generation and mathe-
matical preliminaries, respectively. Section 2.4 describes Polylidar algorithms, while Section 2.5
shows benchmark test results of Polylidar versus other methods. Section 2.6 describes test results.
Sections 2.7 and 2.8 provide discussion and conclusions.

2.2 Background

Characterizing the shape of a set of 2D points P has been a long-term focus of computational
geometry research. A convex hull is defined as the smallest convex polygon that fully encapsu-
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(a) (b) (c)

Figure 2.1: Demonstration of Polylidar. (a) Convex hull of a point set (red); (b) MultiPolygon
extraction using Polylidar (green). (c) Polygon extraction from a plane segmented point cloud
from an Intel RealSense RGBD camera capturing paper towel rolls on a basement floor. Note that
Polylidar also identifies holes (orange).

lates all points in a set P . Although widely used to estimate shape, point sets with non-convex
distributions are poorly characterized by a convex hull [37]. Convex hull over-estimation can be a
serious issue when the points represent physical objects, e.g., obstacle free navigable areas. Several
algorithms have been developed to construct shapes that “fit” or “cover” point sets more closely.

Figure 2.1 compares convex and concave hulls. Figure 2.1b is the multipolygon output of
Polylidar described below. While there is a unique convex hull, there is no true or unique concave
hull. Concave hull algorithm implementations can also have different output types. Some return
only an unordered set of edges while others return a single polygon. Some algorithms return
multiple disconnected polygons (multipolygon), and some can generate holes inside a polygon.

The α-shape algorithm is an early strategy to generate a family of shapes ranging from a convex
hull to a point set [38]. The parameter α dictates the radius of a closed disk used to prune/remove
area in the convex hull. This disk is allowed to move freely shaving off the excess shape until it finds
points. When disk radius is large, ideally infinite, the convex hull is produced; when disk radius
is infinitesimally small only the points remain. A common implementation of α-shape organizes
points using Delaunay triangulation and filters triangles whose circumcircle radius is less than α.
The final shape is represented by the remaining edges and triangles. Note that the α-shape method
creates multiple non-intersecting shapes with the possibility of holes.

The algorithm in [37] produces polygons from point sets called χ-shapes. Like some α-shape
implementations, the χ-shape approach begins with Delaunay triangulation to order and spatially
connect data points. The algorithm differs by iteratively removing the longest exterior edges from
triangulation based on a specified maximum length parameter l. A corner case occurs when edge
removal results in a non-simple polygon, i.e., the polygon wraps into itself; in this case edge removal
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is skipped. The χ-shape produced is a single polygon with no possibility of holes.
The geospatial software library Spatialite [39], an extension to SQLite [40], contains a concave

hull extraction procedure. The algorithm again starts with Delaunay triangulation then analyzes
the distribution of each triangle’s edge length to determine mean µl and standard deviation σl. Any
triangle with edge length greater than C · σl + µl is removed, where C is a user-defined parameter.
The final geometry returned is the union of all triangles computed with GEOS, a high performance
open source geometry engine. The output may be a multipolygon (i.e., multiple disjoint polygons)
with the possibility of holes inside each.

PostGIS is a geospatial database of computational geometry routines such as the concave hull
method in [41]. This algorithm first calculates the convex hull and then shrinks the hull by adjusting
vertex connections to closer points which “cave in” the hull. This process recursively shrinks a
boundary until a user-specified percent reduction in area from the convex hull is achieved. The
resulting shape is a single polygon with the possibility of holes.

Table 2.1: Concave hull extraction methods

Algorithm Output Holes?

χ-shapes
unordered

set of edges No

CGAL α-shape
unordered

set of edges Yes

Spatialite (multi)polygon Yes
PostGIS polygon Yes

Polylidar (new) (multi)polygon Yes

Table 2.1 provides a summary of the concave hull algorithms discussed above. The Computa-
tional Geometry Algorithms Library (CGAL) is used as the implementation of the α-shape method
[42]. Note that the time complexity of all algorithm implementations, with the exception of Post-
GIS, is O(n log n). This chapter contributes a procedure to more rapidly compute (multi)polygon
output with the possibility of holes. Though this is a complex output to generate, we show through
benchmarks that our algorithm and implementation outperforms other available approaches.

2.3 Preliminaries

A 2D point set is an arbitrarily ordered set of two dimensional points in a Cartesian reference
frame. Each point is defined by orthogonal bases êx and êy with

~pi = x êx + y êy = [x, y] (2.1)

where x, y are plane coordinates.
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An n-point array P = {~p1, ~pi, . . . , ~pn} contains points ~pi ∈ R2 indexed by i. A triangular mesh
T is defined by

T = {t1, ti, . . . , tk} (2.2)

where each ti is a triangle with vertices defined by three point indices {i1, i2, i3} ∈ [1, n] referencing
points in P .

We follow the Open Geospatial Consortium (OGC) standard [43] for defining linear ring and
polygon. A linear ring is a consecutive list of points that is both closed and simple. This requires
a linear ring to have non-intersecting line segments that join to form a closed path. The key
components of a valid polygon are a single exterior linear ring representing the shell of the polygon
and a set of linear rings (possibly empty) representing holes inside the polygon.

2.4 Methods

Sections 2.4.1, 2.4.2, and 2.4.3 describe the triangulation data structures, filtering, and mesh
extraction respectively. Section 2.4.4 describes polygon extraction.

2.4.1 Triangulation with Half-Edge Decomposition

Polylidar begins with the Delaunator library [44] performing a Delaunay triangulation of point
set P . The original algorithm was written in JavaScript but a C++ port of the library is used in
Polylidar [45]. Note that we have modified Delaunator to use robust geometric predicates to ensure
correctness during triangulation [46]. Delaunator was chosen for its ease of integration, speed, and
output data structure which returns a half-edge triangulation. A half-edge triangulation decomposes
a shared edge using two half-edges A→B and B→A. An example of this decomposition and
resulting data structures is shown in Figure 2.2.
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Figure 2.2: Delaunay triangulation example. (a) Triangulation of a square point set using Delaunator
[44] with output data structure indexed by half-edge ids in (b). HE=half-edge, PI=point index,
t=triangle. Grey edges show shared edges decomposed individually.
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Figure 2.2a triangulates point set {PI0, PI1, PI2, PI3}. Triangulation produces two triangles,
t0 and t1, with half-edges {HE0, HE1, HE2} and {HE3, HE4, HE5}, respectively. Each half-edge
supports clockwise travel to the next half-edge in that triangle’s edge set. Figure 2.2b lists the
resulting halfedges, triangles, and points data structures. The halfedges array is indexed by a
half-edge reference id. It provides the opposite half-edge of a shared edge if it exists; otherwise -1
is returned. The triangles array is also indexed by half-edge id and gives the starting point index of
the associated half edge. The relationship between half-edge and triangle indices is t = floor(he/3).

2.4.2 Triangle Filtering

As with Spatialite and α-shape methods the initial shape starts with k triangles in T per Eqn.
2.2 returned from Delaunay triangulation. Also similar to α-shape and Spatialite methods, Polylidar
filters triangles by configurable criteria for each triangle. Polylidar allows the user to perform
triangle filtering using either the α parameter or maximum triangle edge length parameter lmax. The
filtered triangle set is denoted Tf .

2.4.3 Triangular Mesh Region Extraction

An iterative plane extraction procedure inspired from [47] generates subsets of Tf that are
spatially connected. These subsets are denoted Tr which represent triangular mesh regions. A
spatial connection between triangles exists when they share an edge. A random seed triangle is
selected from Tf where a new region is created and expanded by its adjacent edge neighbors from
the halfedges data structure. Region growth halts when no more triangles in Tf connect to the region.
The process repeats with another seed triangle until all triangles in Tf have been examined.
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Figure 2.3: Region growing example from triangulation. (a) Example of two regions extracted
denoted by orange and blue. Triangles t0 and t1 are one region while t4 and t5 are another. (b) Two
regions are also extracted with a shared vertex.

Figure 2.3a shows triangular mesh region examples. Distinct regions are shown in orange and
blue; light grey edges denote triangles that have been filtered out. The output of this step is a set of
spatially connected triangular mesh regions, TR, where each specific region, Tr,i, is a set of triangle
indices. We denote the set of m triangular mesh regions as:
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TR = {Tr,1, Tr,i, . . . , Tr,m} (2.3)

Tr,i = {ti, . . . , tj} (2.4)

2.4.4 2D Polygon Extraction

Polygon extraction has three steps: data structure initialization, concave shell extraction, and
hole(s) extraction. Each of these steps is described below. Note that polygon extraction is indepen-
dent of the specific triangular mesh regions Tr,i, thus subsequent notation will drop the i index for
brevity when used in algorithms. The following steps are executed for each of the m regions in TR
to generate m polygons.

2.4.4.1 Data structure initialization

Data structure initialization is shown in Algorithm 2.1 which produces three data structures: a
boundary half-edge set, a point index hash map, and the extreme point. A visual example of these
data structures is shown in Figure 2.4. Boundary half-edge set BE contains the half-edge indices
that are on the exterior border of a region, marked in blue in Figure 2.4a. A half-edge is marked as a
boundary if it has no opposite half-edge (meaning it is on the convex hull of the full triangulated
set) or if its adjacent triangle is not in Tr,i. The last check is important because a half-edge may
share an edge with an interior triangle that is not part of Tr,i as seen in the rightmost edge for the
blue region in Figure 2.3a. The halfedges data structure is fixed at triangulation and is not aware of
filtered triangles or the regions discussed in Section 2.4.3.

0 1 2 3 4
0

1

2

3

4

5

0 1 2 3

4 5 6 7

8 9 10

11 12 13 14

15 16 17 18

19 20

21

HE78

HE79
HE37

HE48

HE14

HE84

HE85

HE42HE4
4

HE6 HE0

HE39

HE40
HE6

0

HE28

HE87

HE88

HE75

HE7
0

Extreme
  Point

(a)

Key:PI

PI = Point Index
HE = Half Edge Index

Value: List of HE

10 [HE28, HE42]

21 [HE70]

18 [HE75]

7 [HE84]

(b)

Figure 2.4: Polylidar datastructures. (a) The boundary half-edge set is marked in blue and point
index 21 (PI21), the farthest point on the x-axis, is noted. (b) A sample of the resulting point index
hash map, PtE is shown. Note that the display order has been arbitrarily chosen.
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The second data structure is a point index hash map, PtE, whose key is a point index and
value is a list of outgoing boundary half-edges from the keyed point index. This unordered hash
map is represented in Figure 2.4b; note the keyed point index 7 mapping to the single element
list containing half-edge 84. The final data structure represents an extreme point in the triangle
mesh, referring to the point farthest to the right on the x-axis. This point will be used as the starting
point index when extracting the concave hull to help ensure extraction does not start on a hole edge.
Multiple points may exist on the extreme edge; the algorithm will track the first one found.

Algorithm 2.1: Initialize Data Structures for Polylidar
Input :Triangular Mesh Region , Tr = {ti, . . . , tk}

Shared Halfedges, halfedges
Triangles Point Index, triangles

Output :Half Edge Set , BE = {hei, . . . , hen}
Point Index Hash Map, PtE
Extreme Point, pixp

1 BE = ∅ ; // boundary half-edge set
2 PtE = ∅ ; // Point to half-edge hashmap
3 pixp = 0 ; // will be overwritten
4 for ti ∈ Tr do
5 for hei ∈ ti do
6 hej = halfedges[hei]; // opposite edge
7 tj = floor(hej/3) ; // adjacent tri
8 if tj /∈ Tr then
9 BE = BE + hei ; // boundary edge

10 pi = triangles[hei]
11 pixp = TrackXp(pi, pixp)
12 if pi /∈ PtE then

/* create half-edge list */
13 PtE[pi] = [hei]

14 else
15 Append(PtE[pi], hei)

16 end
17 end
18 return BE , P tE, pixp

2.4.4.2 Concave Shell Extraction

Outer shell extraction begins by traversing the half-edge graph, starting with the half-edge
provided by the extreme point. As the edges are traversed the point indices are recorded in a list
representing the linear ring of the concave hull. Edges are removed from the boundary half-edge set,
BE , as they are traversed. In Figure 2.4a the extreme point index is PI21 and the starting half-edge is
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HE70. This starting half edge and start point index are arguments to the ExtractLinearRing
procedure in Algorithm 2.2, with the procedure halting when edge traversal returns back to the
starting point index, indicating a closed linear ring has been extracted. The hole in this shape,
represented by edges (HE28, HE0, HE14, HE44), with a shared vertex at PI10, must be carefully
handled as explained below. This is an example of an non-manifold mesh.

The example in Figure 2.4 begins with HE70 traversing to PI10. The outgoing boundary half-
edges for this point index are determined from PtE which provides a list of both HE28 and HE42.
However HE28 is an edge for a hole in this polygon while HE42 is the correct half-edge to traverse
for the outer shell. The SelectEdge procedure determines which of these edges to choose and is
visually outlined in Figure 2.5a. Angles between the proposed edges and previous edge HE70 are
calculated and the edge with the largest angle is chosen which guarantees the largest concave hull.
This edge cannot be a hole edge because that would imply that the hole is outside the concave shell,
which is invalid.

On rare occasions the extreme point may have more than one outgoing half edge, meaning
that a hole is connected to it. This can be handled in the same way stated above by using the
SelectEdge procedure. The only difference is that the previous hull edge is not known (the
procedure has just started), but since we know we are on the far right of the hull we can substitute
the previous edge for the unit vector [0,1] per Figure 2.5b. This unit vector is guaranteed to provide
a stable order of the angle differences which would have been provided by the actual previous hull
edge.
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Figure 2.5: Polylidar boundary following procedure. (a) Edge selection for Fig. 2.4a. HE70 leads
to point index PI10 during shell extraction. Half-edges HE28 and HE42 leave PI10. The correct
edge to follow (HE42) has the greatest angle with HE70. (b) If the extreme point has two outgoing
edges (HE1, HE2), choose the edge with largest angle difference with the unit vector [0,1]. This is
edge HE2. (c) Edge case of two holes sharing the same vertex at PI16. The outer shell (green) is
already extracted. (d) When traversing from HE19 to point index PI16, two outgoing edges (HE0
and HE29) are found. Edge HE29 with the largest angle difference from HE19 is chosen.
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Algorithm 2.2: ExtractLinearRing
Input :Half Edge Set , BE = {hei, . . . , hen}

Point Index Hash Map, PtE
Starting half-edge, he
Start point index, startPI
Triangles Point Index, triangles

Output :Linear Ring , lr = [pi1, . . . , pik]
1 lr = [ ] ; /* empty linear ring */
2 while True do
3 BE = BE \ he
4 het = NextTriangleEdge(he)
5 pi = triangles[het]
6 Append(lr, pi)
7 if pi is startPI then

/* closed linear ring */
8 break
9 nextEdges = PtE[pi]

10 he = SelectEdge(he, nextEdges)

11 end
12 return lr

2.4.4.3 Hole(s) Extraction

After the outer shell of the concave hull has been determined, only the holes remain to be found
(if any holes exist). Any edges that remains inside BE are hole edges and will be extracted using Al-
gorithm 2.3. A half-edge is randomly chosen from BE for which the same ExtractLinearRing
procedure is run. Figure 2.5c shows a corner case of a non-manifold mesh that must be handled if
two holes share the same vertex. The previously extracted concave shell is displayed in green while
the remaining half-edges to be processed are in blue; note the shared vertex at PI16. Figure 2.5d
shows the event when HE19 is randomly chosen for hole extraction leading to PI16. HE0 or HE29
is chosen in the manner previously discussed: the edge with largest angle guarantees the smallest
hole thus is chosen. If the other edge was chosen this would indicate a hole inside a hole which is
invalid.

2.4.5 Time Complexity

This section describes the time complexity of Polylidar. The Delaunay triangulation is first
computed in O(n log n) [48]. Region extraction from Section 2.4.3 is O(n):

• At most t = 2n− 2 triangles are returned from Delaunay triangulation by Euler’s formula so
t is linear in n.
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Algorithm 2.3: Extract Holes
Input :Half Edge Set , BE = {hei, . . . , hen}

Point Index Hash Map, PtE
Triangles Point Index, triangles

Output :Set of Linear Ring Holes ,HR = {lr1, . . . , lrk}
1 HR = ∅ ; /* empty hole set */
2 while BE is not empty do
3 he = RandomChoice(BE)
4 pi = triangles[he]
5 lr = ExtractLinearRing(BE , P tE, he, pi, triangles)
6 HR = HR+ lr

7 end
8 returnHR

• The maximum of 2 ∗ t iterations occurs. One loop filters triangles; worst case no triangles are
removed. A second loop occurs over remaining connected triangles.

• Determining shared edges for expansion requires an O(1) lookup in the halfedges array.

• Output generation Tr is O(1) for each insertion.

Polygon extraction is also O(n). The initialization procedure in Algorithm 2.1 is O(n) per the
following analysis:

• Assuming the worst case, the algorithm loops through every edge of every triangle, providing
a maximum number of iterations of 3 · t. Therefore the number of iterations is linear with n.

• Determining if an edge is a boundary edge is an O(1) operation. Line 6 is O(1) lookup in
halfedges array. Line 8 is O(1) lookup in the input triangle set.

• Output generation, the half-edge set and point index hash map, is O(1) for each insertion.

Algorithm 2.2 is linear in n for similar reasons:

• The number of iterations is the number of boundary edges computed, a subset of the iterations
in Alg. 2.1.

• The output linear ring is O(1) for each insertion.

• The SelectEdge procedure is O(1) with no loops.

Finally Algorithm 2.3 is also linear with respect to n. It is executed as many times as there
are holes in a polygon. A hole contains a minimum of one triangle; we have shown previously
that t grows linearly with n. Selecting a random half-edge, Line 3, is an O(1) operation. Overall,
Polylidar has complexity O(n log n) from the initial triangulation.
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2.5 Benchmarking Comparisons

This section benchmarks Polylidar against other common concave hull extraction methods which
also extract holes; all code is open source1. Three other implementations are tested: CGAL’s Alpha
Shape function and the ST ConcaveHull function from PostGIS and Spatialite. For uniformity,
Polylidar and CGAL are set to use the same α parameter to guarantee exact shape reproduction.
Note that CGAL’s Alpha Shape returns an unordered set of boundary edges; it does not convert
these edges into a valid (multi)polygon. These edges produce the same shape as Polylidar when
drawn on a canvas, but lack the desired polygon semantic data structure. PostGIS’s concave hull
implementation only returns single polygons, so MultiPolygon test cases are not evaluated against it.
Both PostGIS and Spatialite are databases which require upload of the point set prior to algorithm
execution; benchmark timing does not include data upload time.

Section 2.5.1 provides a benchmark from plane segmented point clouds produced by an RGBD
camera. Section 2.5.2 generates synthetic 2D point sets from the state shapes of California (CA)
and Hawaii (HI) to explore how the algorithms scale with respect to point size. Section 2.5.3 shows
a similar benchmark but with the English alphabet. All utilize ground truth (multi)polygon shape
GT to evaluate shape accuracy. Each implementation takes as input a point set and produces a
concave shape, CS, which is similar to the ground truth polygon. The L2 error norm, the area of
the symmetric difference between GT and CS, is computed to enable evaluation of shape error
area((GT−CS)∪(CS−GT ))

area(CS)
.

Each implementation contains its own parameter(s) modified to minimize L2 error. Shape
accuracy is therefore subject to parameter selection. Table 2.2 displays the parameters chosen
and used for all test cases (RGBD, CA, HI, Alphabet). Rows with two parameters separated by a
semicolon indicate parameters for use with non-hole and hole cases. Polylidar and CGAL use the
same α parameter adjusted on a case by case basis. For each case we calculate point density pd and
compute parameter α as 2p−1d . This gives reasonable but not necessarily optimal results. Spatialite’s
concave hull implementation has parameter C which at its default value (C = 3) produces excellent
results. C is adjusted as needed (for CA, HI) to further reduce error. PostGIS’ target percent is
set to provide the optimal accuracy based on percent area reduction required. The most important
takeaway when interpreting accuracy is thus trends in accuracy, not small numerical differences.

2.5.1 Plane Segmented Point Clouds from RGBD Images

Point clouds were generated with an Intel RealSense D435i camera at 424X240 resolution from
eleven different scenes. Ten scenes were taken with the camera 1.5m above ground level pointing
directly downward as shown in the top of Figure 2.6. Floor obstacle positions and orientations were

1https://github.com/JeremyBYU/concavehull-evaluation
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Table 2.2: Parameters for test cases

Algorithm Parameter RGBD CA HI Alph.

CGAL/Polylidar α 2p−1d 2p−1d 2p−1d 2p−1d
Spatialite C 3.0 2.0 2.0;1.3 3
PostGIS target % Varies 0.76;0.72 - Varies

changed in each scene. The camera was placed higher and angled for the eleventh scene shown in
the bottom of Figure 2.6. The floor can be quickly segmented using planar segmentation techniques
[49, 50]. However for this experiment the floor was manually segmented, rotated to align with the
XY image plane, and subsequently projected. This creates a 2D point set of the floors 3D point
cloud. The ground truth polygon of each segmented point cloud was labeled by hand to provide
accuracy scores. The average size of the eleven segmented point clouds is 83,184 points. Table 2.3
displays the aggregate execution timings and accuracy results of all eleven points clouds for each
algorithm. Polylidar is fastest. Polylidar, CGAL, and Spatialite have similar accuracies. Note that
Polylidar and CGAL are configured to produce the same shape and therefore have the same L2 error
values.

Table 2.3: RGBD plane segmented point clouds benchmark results

L2 error % Time (ms)
Algorithm mean std max mean std max

Polylidar 2.2 1.5 6.4 47.9 4.3 50.9
CGAL 2.2 1.5 6.4 248.3 25.0 267.7
PostGIS 7.5 1.6 9.9 2734.7 249.3 2939.9
Spatialite 2.2 1.5 6.3 13333.0 2486.6 16386.5

2.5.2 State Shapes

Figure 2.7 shows CA and HI test case geometries (first column), execution times (second
column), and error results (third column). Each state shape is processed with and without random
holes ; dashed lines indicate results where holes are included in the ground truth polygon. Point sets
are randomly sampled from the state shapes. Each test was run 10 times with input point set sizes
ranging from (2, 4, 8, 16, 32, 64) thousand points with mean timing and error plotted. Confidence
intervals are provided for execution timing, however they are almost imperceptible because the
variance is low at this scale. Polylidar and CGAL are significantly faster than the other methods,
with Spatialite having the slowest implementation. An inset (zoomed) box that focuses solely on
CGAL and Polylidar is shown in the second column, showing that on average Polylidar is ∼ 4
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Figure 2.6: Extracting a polygon from a plane-segmented RGBD point cloud. Two example scenes
(top/bottom) from RGBD benchmark. A point cloud is generated from depth image (right) and
manually segmented to include only the ground floor. The polygonal output of Polylidar is shown
in the RGB image (left). Green is the hull, orange represents holes.

times faster than CGAL. The presence of holes affected each method differently: decreased time
in Spatialite (fewer triangles to union), increased time for PostGIS (a decrease in target percent

increases run-time). No significant changes were noted for CGAL and Polylidar.
Spatialite produced shapes with the least error, followed by Polylidar/CGAL and then PostGIS.

Spatialite has the lowest error because it incorporates triangle edge length statistics into its triangle
filtering which better handles random sampling. In contrast, Polylidar/CGAL offer comparable
accuracies with RGBD data due to the more uniform point distribution in top-down RGBD imagery.
PostGIS error increased markedly with holes since it did not accurately reproduce them. Figure 2.8
shows a visual comparison of CA concave polygon outputs for each algorithm.

2.5.3 Alphabet Shapes

Polygons from 26 capital letters of the English alphabet were generated and 2000 points
randomly sampled inside. The “A” in Figure 2.1b shows an example capital letter with the output
of Polylidar’s concave hull. Table 2.4 provides aggregate statistics of all 26 test cases. Polylidar
continues to lead in speed. Spatialite leads in accuracy by a marginal amount. The alphabet shapes
are significantly more concave than previous benchmarks. Documentation of PostGIS indicates
that the run time grows quadratically as concavity increases leading to the high execution times
observed [41].
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Figure 2.7: Execution and accuracy results from state shape benchmark. Rows from top to bottom
correspond to outlines of California (CA) (a, b, c), and Hawaii (HI) (d, e, f) with random holes
inserted. The first column shows ground truth polygons with circular holes in orange. The second
column shows execution time as a function of number of 2D points provided. The third column
shows shape error as a function of number of 2D points provided. Dashed lines show results where
holes were placed inside the polygon outline, while solid lines show results with no holes. PostGIS
cannot handle MultiPolygons thus was not tested for HI.

polylidar
spatialite
postgis

Figure 2.8: Visual comparison of different polygon extraction methods. Concave polygon output
from Polylidar/CGAL (left), Spatialite (center), and PostGIS (right). Input to each algorithm was a
4000 point set sampled from the California (CA) polygon with holes per Figure 2.7a.

2.6 Random Polygon Tests

More than 19,600 polygons were randomly generated to test Polylidar. Half the test cases had
random holes. Polygon complexity is characterized by convexity metric

CV =
Area(P )

Area(CH(P ))
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Table 2.4: Alphabet letter benchmark results, 26 shapes

L2 error % Time (ms)
Algorithm mean std max mean std max

Polylidar 12.8 1.8 16.8 1.2 0.3 2.4
CGAL 12.8 1.8 16.8 5.4 0.9 7.2
PostGIS 36.5 9.9 53.7 13091.8 7500.6 28451.0
Spatialite 11.2 4.5 22.1 230.2 6.3 242.9

where P is the polygon and CH() is the convex hull function. A convexity of 1 indicates the sample
polygon is its convex hull. 8,000 points were randomly sampled for each polygon and input to
Polylidar with the α parameter from Table 2.2. Execution time and accuracy are summarized in
Table 2.5. The table is partitioned into high, medium, and low ground truth polygon convexity
defined by CV ≥ 0.75, 0.75 < CV ≥ 0.55, and CV < 0.55 respectively. Every polygon produced
by Polylidar was confirmed valid independently by the GEOS geometry library. As polygon
convexity (CV ) decreases Polylidar shape estimation accuracy also decreases. Polygons in our
“low” convexity class have extremely non-convex shapes, the lowest with CV = 0.26 per Figure
2.9.

Table 2.5: Random polygon tests; CV = Convexity Metric

L2 error % Time (ms)
CV mean std max mean std max

hi 4.4 0.5 6.1 4.6 0.1 5.0
mid 8.0 1.1 13.0 4.6 0.1 8.1
low 15.5 3.0 25.0 4.7 0.2 9.9

(a) (b)

Figure 2.9: Example of high and low convexity polygons. (a) High convexity polygon; CV = 86.1%.
(b) Low convexity polygon; CV = 26.2%.
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2.7 Discussion

The benchmarks above indicate that Polylidar is the faster concave (multi)polygon extraction al-
gorithm with the possibility of holes. This section discusses why Polylidar was faster in comparison
to others. We specifically analyze the execution time of the major steps in Polylidar in comparison
to other triangulation-based methods, namely CGAL and Spatialite. The three major steps are:

1. Triangulation - The point set is triangulated creating a mesh of faces, edges, and vertices.

2. Shape Extraction - Mesh simplices are removed based upon the α parameter or edge length.
Remaining triangles, edges, and vertices represent the “shape”.

3. Polygon Extraction - The “shape” is converted to a (multi)polygon with the possibility of
holes.

Triangulation All perform Delaunay triangulation using robust geometric predicates but use
different libraries to do so. Polylidar uses Delaunator, CGAL uses its own 2D triangulation, and
Spatialite uses GEOS.

Shape Extraction Polylidar and Spatialite are most similar, focusing only on filtering triangles
in the mesh. However Polylidar goes further with region growing (Section 2.4.3) that isolates
disconnected regions in the mesh. For memory efficiency and speed we represent the filtered
triangle set Tf as a bit array with 1/0 indicating in/out of set. This allows rapid triangle filtering
and region growing which was previously profiled to be slower when using hashmaps. On the
other hand CGAL first creates “interval hashmaps” for its simplices, including triangles, edges,
and vertices. These hashmaps store data detailing at what α-interval a specific simplex would be
in the α-complex. These ordered hashmaps give the ability to more quickly compute a family of
α-shapes from a point set. These data structures are implemented as C++ multimaps with O(log n)

for insertion/look-up in comparison to unordered maps having O(1). This design choice leads to
shape extraction having an O(n log n) complexity for CGAL. By creating hash maps for edges and
vertices CGAL can also return the singular points and edges which are isolated and not attached to
any triangle in the α-complex (e.g., a single point far removed from all others). Polylidar need not
do this because singular points and edges cannot be polygons thus are not required steps in shape
extraction.

Polygon Extraction Polylidar independently converts each region into a polygon. Algorithm 2
quickly identifies all border edges and uses efficient unordered contiguous memory hashmaps to
store this information in BE and PtE. The essence of Algorithms 3 and 4 are entirely border-edge
based leading to a significant speed up compared to triangle based methods (i.e., perimeter vs. area).
Spatialite uses GEOS to take the union of all unfiltered triangles to generate a valid multipolygon.
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CGAL’s Alpha Shape produces an unordered list of the boundary edges of the α-shape. However
CGAL does not provide any explicit function to convert this list to a valid (multi)polygon.

Table 2.6: Algorithm timings - Mean of 30 runs in milliseconds

Algorithm triangulation
shape

extraction
polygon

extraction
total

Polylidar 36.0 4.4 1.0 41.4
CGAL 44.5 154.0 – 198.5

Spatialite 234.2 135.3 10788.7 11158.1

Table 2.6 summarizes mean execution timings for each of the main steps for Polylidar, CGAL,
and Spatialite. The 64,000 point set in the shape of California (with holes) is used, with each
algorithm executed 30 times with the mean presented. Relative execution times with other point sets
are similar. Delaunator in Polylidar triangulated this specific point set fastest with CGAL a close
second. Polylidar achieves a more significant speed-up in shape extraction for which Polylidar is 35
and 32 times faster than CGAL and Spatialite, respectively. Also, Polylidar’s polygon extraction
is about four orders of magnitude faster than Spatialite whereas CGAL does not extract polygons.
CGAL instead offers a general purpose α-shape construction routine to compute a family of shapes
from different α-values.

2.8 Conclusion

This chapter has introduced Polylidar, an efficient 2D concave hull extraction algorithm which
produces (multi)polygon output with holes. Comparison benchmarks of numerous test sets, similarly
done in [37], show Polylidar is faster than competing approaches with comparable or better accuracy.
Additionally we perform random polygon tests that confirm every polygon produced by Polylidar
is valid. In future work we will extend Polylidar to operate directly on 3D point cloud data by
performing both planar segmentation and polygon extraction. We will remove Polylidar’s reliance
on Delaunay triangulation when used with organized point clouds (e.g., range images) similar to
[51]. Triangulation can be performed in O(n) time by exploiting the spatial relationship inherit in
range images. The OpenMP library will be used to parallelize iteration independent loops such as
triangle filtering. Additionally we will explore task-based parallelization by making use of the data
independence between polygons, i.e., spawning polygon extraction tasks immediately after a plane
is segmented [52].
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CHAPTER 3

Polygons from 3D Data

3.1 Introduction

Flat surfaces are pervasive in engineered structures and also occur in natural terrain. For example,
structures such as walls, floors, rooftops, and roadways are often flat or “flat-like”. Similarly,
home and office furnishings are typically composed of multiple flat surfaces. Sensors such as
LiDAR and RGBD cameras generate dense 3D point clouds of these predominately flat surface
environments. This observation has been exploited for tasks in localization and mapping [53], digital
preservation with Photogrammetry and laser scanning [54, 55, 56], and point cloud registration [57].
Planar segmentation techniques are often used to group points together belonging to a flat surface [49,
50, 58]. However points clouds are dense incurring a high computational cost when used directly
in higher level tasks. Planar point clouds can be converted to lower dimensional representations
such as polygons. Polygons reduce map size, accelerate matching for localization [59], and support
model reconstruction and object detection [47].

Planar points clouds may be converted to convex polygons [60]. Convex polygons are simple and
efficient to generate but often do not represent the true shape of a point set. Non-convex polygons
may be generated using techniques such as α-shapes but operate strictly on 2D data, requiring the
projection of each 3D planar point cloud and expensive triangulation [51, 38]. Pixel-level boundary
following of organized point clouds can be used to extract non-convex polygons but often only
captures the exterior shell of the polygon [59]. These methods are not able to capture interior holes
in a polygon representing the shape of obstacles on flat surfaces. Finally, speed is an important
consideration for many of the applications mentioned previously. Parallel algorithms written for
multi-core CPUs and GPUs should be used to reduce latency.

This chapter presents Polylidar3D, a non-convex polygon extraction algorithm which takes as
input either unorganized 3D point clouds (e.g., airborne LiDAR point clouds), organized point
clouds (e.g., range images), or user provided meshes. The non-convex polygons extracted represent
flat surfaces in an environment, while interior holes represent obstacles on these surfaces. Fig-
ure 3.1 provides an overview of Polylidar3D’s data input, front-end, back-end, and output. Currently
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Figure 3.1: Overview of Polylidar3D framework. Input data can be 2D point sets, unorga-
nized/organized 3D point clouds, or user-provided meshes. Polylidar3D’s front-end transforms
input data to a half-edge triangulation structure. The back-end is responsible for mesh smoothing,
dominant plane normal estimation, planar segmentation, and polygon extraction. Polylidar3D out-
puts both planes (sets of spatially connected triangles) and corresponding polygonal representations.
An example output of color-coded extracted planes from organized point clouds is shown (top right).
An example of extracted polygons from a user-provided mesh is shown (bottom right). The green
line represents the concave hull; orange lines show interior holes representing obstacles.

only one planar direction can be extracted from unorganized 3D point clouds while all other 3D data
inputs do not have this limitation. The front-end transforms input data into a half-edge triangular
mesh. This representation provides a common level of abstraction offering increased efficiency for
back-end operations. The back-end is composed of four core algorithms: mesh smoothing, dominant
plane normal estimation, planar segment extraction, and polygon extraction. Polylidar3D outputs
planar triangular segments, sets of flat connected triangles, and their polygonal representations.
Polylidar3D is extremely fast, typically executing in a few milliseconds. It makes use of CPU
multi-threading and Graphics Processing Unit (GPU) acceleration when available. Polylidar3D
is a substantial extension to Polylidar, the 2D algorithm presented above. The baseline Polylidar
algorithm only operated on 2D point sets and offered no parallelism. The primary contributions of
this chapter are:

• An efficient and versatile open source [36] framework for concave (multi)polygon extraction
for 3D data. Input can be unorganized/organized 3D point clouds or user-provided meshes.
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• A fast open source [61] dominant plane normal estimation procedure using a Gaussian
Accumulator that can also be used as a stand-alone algorithm.

• Multiple diverse open source experiments showing qualitative and quantitative benchmark
results from data sources including LiDAR and RGBD cameras [62, 63, 64].

• Improved half-edge triangulation efficiency for organized point clouds; CPU multi-threaded
and GPU accelerated mesh smoothing [65].

• Planar segmentation and polygon extraction performed in tandem using task-based parallelism
to reduce latency for time-critical applications.

Below, Sections 3.2 and 3.3 provide background and mathematical preliminaries, respectively.
Section 3.4 describes Polylidar3D’s front-end methods for mesh creation. Section 3.5 outlines
optional mesh smoothing while Section 3.6 introduces our dominant plane normal estimation
algorithm. Section 3.7 describes plane and polygon extraction with parallelization techniques. Sec-
tion 3.8 proposes optional post-processing methods to refine and simplify the polygons. Section 3.9
provides qualitative results as well as quantitative benchmarks. Sections 3.10 and 3.11 provide
discussion and conclusion, respectively.

3.2 Background

This section summarizes baseline methods on which Polylidar3D is constructed. Plane seg-
mentation and polygon extraction background is followed by a description of 3D data denoising
techniques such as mesh smoothing and plane normal estimation with Gaussian accumulators.

3.2.1 Planar Segmentation

Planar segmentation processes an input 3D point cloud and segments it into groups of points
representing flat surfaces. These point groups are often informally called “planes” but differ from
the geometric definition. A geometric plane is defined by a unit normal n̂ ∈ R3 and a single point
on the plane p ∈ R3. Flat surface representation as a point set is advantageous because:

1. Point sets are naturally bounded (i.e., have finite extent). Bounded surfaces better correspond
with most real-world flat surfaces.

2. Holes inside a plane may be represented implicitly by the absence of points. This representa-
tion can also indicate obstacles embedded in a flat surface.

3. Best-fit geometric planes can also be computed after segmentation using least-squares, princi-
pal component analysis (PCA), or RANSAC based methods [66].
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4. Merging similar planes can be rapidly performed by combining their points sets.

Planar segmentation can be performed with region growing methods. Algorithms can exploit
the spatial structure of an organized point cloud for which data is arranged into rows/columns like
an image (e.g., range images). Region growing algorithms extract connected components in point
clouds with neighborhood information (e.g., pixel neighbors or k nearest neighbors). A seed is
chosen and assigned a unique label, then its neighbors are iteratively analyzed and assigned the
seed’s label if their characteristics are sufficiently similar to the seed’s [66]. Characteristics such
as normal orientation, color, or Euclidean distance from each other may be used. A unique label
assigned to each point denotes a grouping in a planar surface.

Holz et al. [51] outlines planar segmentation by employing approximate polygonal meshing
from organized point clouds. Mesh construction exploits the organized structure of a range image.
Point normals are computed from the mesh and smoothed using bilateral filtering techniques which
preserve edges. Region growing is performed sequentially until all possible points have been
examined. Points are merged based on differences in normal angles and Euclidean distances.
Reported benchmarks show that a 320 × 240 range image can be segmented in approximately
125 ms. Feng et al. [49] proposes the use of agglomerative hierarchical clustering (AHC) on
organized point clouds to perform fast planar segmentation. The algorithm first creates a graph
by uniformly dividing the points in image space. Initial node size (e.g., 4 × 4 pixel group) is
user-configurable and allows a trade-off between execution speed and the detail of extracted planes.
Nodes belonging to the same plane are merged through AHC until plane fitting error exceeds a
user-defined threshold. A final refinement is done though pixel-wise region growing with possible
plane merging. The algorithm is extremely fast; a 640 × 480 image with an initial node size of 10
× 10 can be segmented in ≈30 ms.

Schaefer et al. [58] details a probabilistic plane extraction (PPE) algorithm to detect planes
in organized 3D laser range scans. The algorithm utilizes AHC with individual laser reflection
in the scene to define an initial candidate plane set. Each plane is then iteratively merged with
adjacent planes that maximize the measurement likelihood of the scan. Measurement likelihood
is computed using a Gaussian probability density function modelling ray length. The algorithm
is implemented in MATLAB with GPU acceleration but has execution times exceeding one hour
for a 500 × 500 scan. Trevor et al. [67] similarly operates on organized point clouds and exploits
neighbor information for merging. Surface normals are estimated for every point using methods
in [51]. Points are merged if their normals and orthogonal distances are below a threshold which
creates locally planar segments later refined through plane fitting and filtering out segments that
exceed curvature constraints.

Salas-Moreno et al. [68] outlines a fast GPU accelerated planar segmentation method for use
in simultaneous localization and mapping (SLAM) from range images. A range image is first
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converted into surfels (surface elements) describing a point position and orientation. A surfel
similarity bit mask is created and marked 1 if neighbor surfels to the left and above are similar in
normals and plane distance, 0 otherwise. This bit mask is used to perform region growing where
similar and contiguous pixels are merged to the same plane. The algorithm executes in real-time
and can perform planar extraction with SLAM in 66 ms. Oesau et al. [69] presents a parallel plane
extraction method specifically designed for unorganized point clouds. First, points are organized
using an octree from which multiple seed points are uniformly selected. Region growing occurs
in parallel for each seed point with points inside the same cell in the octree used for plane fitting.
Region growing is periodically interrupted to perform regularization of the planar shapes detected.
Regularization is carried out by merging planes captured on the same flat surface by refitting through
PCA. The implementation is GPU accelerated and can segment point clouds with 1.1 million points
in approximately three seconds.

Polylidar3D segments points clouds through region growing but operates on triangles instead
of the points themselves. Region growing is regularized and parallelized by first identifying
dominant plane normals in the mesh. Triangles having similar normals to a dominant plane are
grouped. Each group (in parallel) then performs region growing accounting for normal orientation,
Euclidean distance, and point to plane distance. Note this method relies upon the data to be
properly denoised.

3.2.2 Polygonal Shape Extraction

Representing planar surfaces as point sets has the disadvantage of high memory and computa-
tional overhead. Dense planar point sets have redundant information about the underlying surface
they represent. Polygonal representations of point sets removes redundant information. We consider
convex polygons, non-convex polygons, and non-convex polygons with holes per Figure 3.2.

(a) 2D Point Set (b) Convex (c) Non-convex (d) Non-convex with holes

Figure 3.2: Example polygons that can be generated from plane segmented point clouds. (a) 2D point
set representation of a floor diagram with interior offices; (b) Convex polygon; (c) non-convex poly-
gon; (d) and non-convex polygon with holes. The exterior hull (green) and interior holes (orange)
are indicated.
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Biswas et al. [60] represents flat surfaces as convex polygons extracted from range images. First,
points are randomly sampled in the image with nearby pixel neighbors used for fast RANSAC
plane fitting. This returns numerous sparse point subsets which may be coplanar. The convex hull
is computed for each of these subsets generating many convex polygons in the scene. Polygons
belonging to the same surface are then merged with GPU accelerated correspondence matching.
The sparse random sampling of the point cloud and efficient generation of convex hulls allows the
algorithm to run in real-time (less than 2 ms). However, convex hulls ignore boundary concavities,
overestimate the area of the enclosed point set, and do no not account for holes per Figure 3.2b.
Poppinga et al. [70] outlines a method to convert plane segmented range images into convex
polygons. Each plane segment is decomposed into a set of convex polygons. Each polygon is
progressively built through scan-lines; a new polygon is generated when convexity constraints are
not met. This allows a concave plane to be represented by multiple convex polygons. Lee et al. [59]
generates non-convex polygons from range images. The range image is first planar-segmented using
an eight-way flood fill algorithm. This involves region growing which accounts for the normal vector
to each point. Each of the planar segments is then converted to a non-convex polygon. Exterior
boundary pixels of a plane segment are sampled and neighboring samples connected to create a
non-convex polygon. However interior holes in the plane segments are not explicitly captured as
shown in Figure 3.2c. Trevor et al. [67] performs a similar polygon extraction procedure through
boundary tracing of the exterior hull.

Non-convex polygons with holes may be generated through a variety of methods, many under the
name of concave hulls [38, 39, 41]. Many of these methods strictly operate on 2D data, requiring the
3D planar point cloud segments be projected to the best fit geometric plane to produce 2D point
sets. Holz et al. [51] proposes this technique and the use of α-shapes to extract such polygons [38].
In Chapter 2 we developed a faster open source polygon extraction algorithm, Polylidar, which
extracts non-convex polygons with holes from 2D point sets. The point set is converted to a 2D
mesh through Delaunay triangulation, and triangles are subsequently filtered by edge length creating
the “shape” of the point set. This filtered mesh is then converted to a polygon through boundary
following while accounting for holes. Benchmarks demonstrate that our algorithm is a minimum
of four times faster than leading methods [71]. This chapter extends Polylidar to operate directly
on 3D data, performing planar segmentation and polygon extraction in parallel. This integration
allows Polylidar3D to skip expensive Delaunay triangulation previously required for organized
point clouds as shown in Section 3.4.2. Planar segments represented as non-convex polygons with
holes gives the following advantages:

1. Significantly reduced memory requirements, on the order of square root (perimeter vs area).

2. Faster computation of geometric values of interest, e.g., centroid, area, perimeter.
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3. Ability to dilate, erode, and simplify polygons through computational geometry routines.

4. Holes inside a polygon account for gaps or obstacles on flat surfaces.

3.2.3 3D Data Denoising

This section discusses two methods to smooth a mesh. The Laplacian filter performs weighted
averaging of nearby vertex neighbors to reduce noise [72]. Vertices are updated according to

vo = vi ·
λ

W

N∑
j=1

wj · (vi − vj) (3.1)

wj = ||vi − vj||−1 W =
N∑
j=1

wj (3.2)

where vo, vi, vj , andN denote the output (smoothed) vertex, input vertex, neighboring vertex, and to-
tal number of neighbors, respectively. Weighting for each neighbor vertex wj is the inverse of its
Euclidean distance and is normalized withW . Parameter λ adjusts smoothing [0-1], though multiple
iterations may be performed to increase smoothing. The Laplacian filter is not edge-preserving.

Zheng et al. [73] proposes a bilateral filtering technique on triangular meshes that is analogous
to images. Filtering occurs in two stages: normal smoothing and vertex updating. The first stage
performs local iterative normal filtering to smooth normals but preserves edges as given by:

no = K
N∑
j=1

Wc(||ci − cj||) ·Ws(||ni − nj||) · nj (3.3)

Wc(||ci − cj||) = exp(−||ci − cj||2/2σ2
c ) (3.4)

Ws(||ni − nj||) = exp(−||ni − nj||2/2σ2
s) (3.5)

K = 1/
N∑
j=1

Wc(||ci − cj||) ·Ws(||ni − nj||) (3.6)

where no, ni, ci, nj , cj , and N denote smoothed triangle normal, input normal, centroid, neighbor
normal, neighbor centroid, and number of neighbors, respectively. Triangle weights Wc and Ws

exponentially decay based upon deviation from the triangle position and normal and parameters σc
and σs. Sharp edges can be preserved. Holz et al. [51] performs a similar normal filtering technique
but includes an optional intensity term for colored point clouds. A second stage updates vertices
using a method proposed by Sun et al. [74] which executes weighted averaging of neighboring
vertices using the newly smoothed normals. Note that smoothing may not be possible if a triangular
mesh is so noisy that neighboring triangles have significantly different normals.

33



Both Laplacian and bilateral filtering rely upon neighboring triangles for smoothing. The neigh-
bors are often limited to their 1-ring neighbors defined by vertex or edge neighbors. In Section 3.2.3
we provide accelerated implementations of these algorithms for use with organized point clouds.
The organized structure allows an implicit triangular mesh to be defined (i.e., no data structures is
needed to store the graph) with the ability to use arbitrary kernel sizes to expand the neighorhood
graph, a necessary feature with dense noisy point clouds.

3.2.4 Dominant Plane Normal Estimation

The Gaussian accumulator (spherical histogram) is a widely used method for detecting planar
surfaces [75]. It discretizes the surface of the unit sphere (S2) into individual cells, creating “bins”
or “buckets” of a histogram. A “vote” for a possible plane, often in the form of unit normal and
origin offset, are accumulated into this histogram. Peak detection strategies on the histogram can
then find dominant plane normals. Many discretization strategies of S2 exist with tradeoffs in speed,
memory requirements, and subsequent peak detection.

The UV Sphere discretization strategy (Figure 3.3a,b) decomposes S2 into a 2D array by
polar coordinates θ and φ. Each dimension is discretized in equal steps creating a fixed number
of cells, nθ × nφ. A unit normal to be integrated, n̂i ∈ R3, is converted to polar coordinates
θi ∈ [0, 360], φi ∈ [0, 180] to identify its corresponding histogram cell in the 2D array. Finding
the 2D array index requires a simple operation, e.g., θindex = θi/360◦ · nθ. However UV Sphere
cells have different shapes and area with very small cells at the poles resulting in three issues:
unequal weighting (voting) during accumulation, singularities at the poles, and non-equivariant
kernels for peak detection. Figure 3.3e shows an example UV sphere histogram that fails to detect a
plane at the top (North) pole.

Borrmann et al. [75] and Limberger et al. [76] recommend adjusting azimuth step size based
upon elevation angle leading to more uniform cell area. This creates a ‘Ball” Sphere with strips
with a varying number of cells for each elevation angle stored as a list of lists (Figure 3.3c,d).
Cell areas are similar but have different shapes; a substantially larger cap is placed at the poles.
Limberger et al. [76] attempts to handle the singularity near the poles after peak detection through
a vote weighting scheme. However any discretization strategy by polar coordinates will not have
equivariant kernels during peak detection caused by anisotropic cells [77].
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(a) UV Sphere, Equator (b) UV Sphere, Pole (c) Ball Sphere, Equator (d) Ball Sphere, Pole
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Figure 3.3: Example Gaussian Accumulators. Two identically “noisy” planes (red arrows, Gaus-
sian distributed) are integrated into a UV Sphere (a,b) and Ball Sphere (c,d). Note the anisotropic
property of sphere cells caused by unequal area and shape; (e) The UV Sphere histogram is unable
to detect the peak at the pole; (f) The Ball sphere is able to detect both peaks, but the north pole cell
is significantly larger leading to an incorrectly higher value than the equator cell.

Toony et al. [78] proposes unit sphere tessellation into 1996 equilateral triangle cells. This
approach gives near uniform cells in area and shape, resolving previous issues with unequal
weighting, pole singularities, and non-equivariant kernels. The process of integrating a unit normal
into the histogram is no longer an indexing scheme. They propose to use a K-D tree to spatially
index each cell using its triangle normal. A nearest neighbor search must be conducted for every
unit normal integrated into the histogram. Peak detection is not performed, instead the sorted
histogram distribution is analyzed to predict the shape of the object being integrated (e.g., circle,
plane, or torus).

In Polylidar3D we tessellate the unit sphere with triangles by recursively subdividing the primary
faces of an icosahedron. The recursion level dictates the approximation of the unit sphere. Our
search strategy does not rely uponK-D trees but instead uses a global index from space filling curves
followed by local neighborhood search. We unfold the icosahedron into a 2D image in a particular
way that guarantees equivariant kernels as outlined in [77]. Standard 2D image peak detection is
performed with nearby peaks clustered using Agglomerative Hierarchical Clustering (AHC).
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3.3 Preliminaries

A 3D point ~p is defined in a Cartesian reference frame by orthogonal bases êx, êy, and êz:

~p = x êx + y êy + z êz = [x, y, z] (3.7)

An unorganized 3D point cloud is an arbitrarily ordered array of points denoted as P =

{~p0, ~pi, . . . , ~pn−1} with an index i ∈ [0, n− 1]. An organized 3D point cloud is structured with 2D
indices u ∈ [0,M − 1], v ∈ [1, N − 1] such that ~pu,v = [~xu,v, ~yu,v, ~zu,v]. Neighboring 2D indices
(u, v) and (u+ 1, v + 1) represent 3D proximity relationships between pu,v and pu+1,v+1 when they
lie on the same surface [49]. These 2D indices create an image space with M and N denoting the
rows and columns. Note that the 2D indices can be collapsed to a 1D stacked array by i = u ·N + v.
A triangular mesh T with k triangles is defined by

T = {t0, ti, . . . , tk−1} (3.8)

where each ti is a triangle with vertices defined by three point indices {i0, i1, i2} ∈ [0, n− 1]

referencing points in P . A half-edge triangulation further decomposes each triangle into three
individual half-edges. Specifically each edge in the mesh is split into two oriented half-edges, often
called twin or opposite edges [79]. Each half-edge is represented by a unique id hej in triangle
ti = floor(hej/3). An ordered arrayHE is created to find corresponding twin edges. Specifically
the twin edge of hei can be found at index i inHE . If no twin exists, i.e., the edge is on a border,
then -1 is returned.

3.4 Mesh Creation

Polylidar3D requires a half-edge triangulated mesh to perform plane and polygon extraction.
Mesh generation for unorganized and organized 3D points clouds is described below, followed by
details on converting a user-provided triangular mesh to half-edge form.

3.4.1 Unorganized 3D Point Clouds

We convert an unorganized 3D point cloud P into a 3D triangular mesh through 2.5D Delaunay
triangulation [48]. P is projected to the xy plane, creating a corresponding 2D point set that is
subsequently triangulated. Half-edge triangulation is provided by the Delaunator library with robust
geometric predicates [44, 46]. Although triangulation is performed in 2D, both 2D and 3D point
sets have 1:1 correspondence, allowing dual construction of the 3D mesh. Figure 3.4 demonstrates
this technique applied to a synthetic rooftop scene with noisy point clouds from an overhead sensor.
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The rooftop is captured at a slight angle providing points of one side of a building wall. Only planar
segments roughly aligned with xy plane can be extracted with this technique, i.e., only the rooftop
can be extracted, no walls. This type of conversion is most suitable for 3D points clouds generated
from a top down viewpoint, such as airborne LiDAR point clouds as shown in Section 3.9.2.1.
In this situation the plane normal to be extracted is already aligned with the xy plane.
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Figure 3.4: Converting an unorganized 3D point cloud to a 3D triangular mesh. (a) Synthetic point
cloud of a rooftop scene generated from an overhead laser scanner. A single wall is captured because
the scanner is slightly angled; (b) The point cloud is projected to the xy plane and triangulated,
generating the dual 3D mesh. Only planes aligned with the xy plane can be captured.

Plane normals may not be aligned with the inertial xy plane, e.g., 3D laser scanner rigidly
mounted on an automobile. The point cloud, generated in the sensor frame, must then be rotated
such that desired plane to be extracted is aligned with xy plane. This requires a priori knowledge
of the plane normal and rigid body transformation necessary to align the sensor frame point cloud
as demonstrated in Section 3.9.2.2 where the ground plane (road) is extracted from point clouds
generated by a spinning LiDAR sensor mounted on a car.

3.4.2 Organized 3D Point Clouds

Half-edge triangulation of an M × N organized point cloud can be quickly computed using
spatial relationships from the image space. The triangulation is computed using neighboring
image indices to define triangle vertex connections. This is in contrast to Delaunay triangulation
which operates on the points themselves and maximizes the minimum angle of all the angles for
each triangle in the triangulation [48]. Our procedure is similar to Holz et al. [51] except our
method creates an explicit half-edge triangulation and only uses right-cut triangles. Our half-
edge triangulation allows efficient triangle region growing which is a requirement for real-time
polygon extraction. Holz et al. [51] performs adaptive meshing, switching between right and left
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cut triangles, to better handle missing data at the expense of increased computational demand.
Figure 3.5 demonstrates an example conversion of a 7 × 7 organized point cloud to a half-edge
mesh using our procedure. The procedure creates the triangle set T , half-edge array HE , and a
triangle map Tmap as documented below.

71
70

61
60

13
12

1
2

3
4

5
6

7
8

9
10

11
0

N = 7 Columns

M
 = 7 R

ow
s

Valid Point
Invalid Point

N' = 6 Columns

M
' = 6 R

ow
s

(a) Implicit Mesh, TFC

First

Sec.

Top

Right

Left

Bott.

1 2

4 3

k=0
k=1

(b) Triangle indexing scheme

0

N = 7 Columns

M
 = 7 R

ow
s

1
2

3
4

5 6
7

8

10
9

60
5951

52

N' = 6 Columns

M
' = 6 R

ow
s

(c) Final Mesh, T

Figure 3.5: Converting an organized point cloud into a 3D triangular mesh. Example conversion of
a 7 × 7 Organized Point Cloud (OPC) to a half-edge triangular mesh. Points are represented by
circles; red indicates an invalid value (e.g., 0 depth measurement). (a) Implicit mesh of OPC with
right cut triangles, TFC . A unique global id GID = 2 · (u · (N − 1) + v) + k is shown inside each
triangle; (b) Indexing scheme to define GIDs for triangles in TFC ; (c) Final mesh T with triangles
created if and only if all vertices are valid. Unique indices into T are marked. Tmap maps between
GIDs in TFC to T .

First, any invalid data in the point cloud is set to an NaN floating point value. This keeps the point
cloud organized and prompts removal of invalid triangles in the mesh. An implicit fully-connected
right-cut mesh triangulates all points, including invalid points marked red in Figure 3.5a and
denoted TFC . Each 2 × 2 grid in the OPC creates two triangles, which we denote first and second
as shown in Figure 3.5b. Each triangle in TFC is indexed by tu,v,k where k ∈ {0, 1} represents the
first or second triangle, respectively. A unique global id GID = 2 · (u · (N − 1) + v) + k is shown
inside each triangle in Figure 3.5a. This GID represents the triangle order within TFC . The final
mesh returned T is shown in Figure 3.5c with construction outlined in Algorithm 3.1. The data
structure Tmap defines a mapping of global ids in TFC to their index positions in T (if they exist,
else −1) which is used later in half-edge extraction. Algorithm 3.1 begins by iterating over all 2 ×
2 point grids and constructs the first and second triangle for each. These respective triangles are
only added to T if all three points are valid. Triangle point indices are added counter-clockwise
with the three half-edges implicitly defined by the ordered traversal of point indices, e.g., the first
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triangle’s half-edges are [PI3→ PI2, PI2→ PI1, PI1→ PI3].
Algorithm 3.1: Extract Triangles from OPC

Input :Organized Point Cloud: P
Rows: M, Columns: N

Output :Triangle Set: T
Triangle Map: Tmap

1 N ′ = N − 1, M ′ = M − 1
2 T = ∅
3 SV = −1 /* Sentinel Value indicating invalid triangle */
4 Tmap = [SV, SV, . . . , SV ] /* |Tmap| = 2 ·M ′ ·N ′ */
5 ntri = 0
6 for u← 0 to M ′ − 1 do
7 for v ← 0 to N ′ − 1 do
8 FirstGID = 2 · (u ·N ′ + v), SecondGID = 2 · (u ·N ′ + v) + 1
9 p1, p2, p3, p4 = GetPointIndices(u, v)

/* First Triangle */
10 if NotNan(p1, p2, p3, P):
11 T = T + { p3, p2, p1 }
12 Tmap[FirstGID] = ntri
13 ntri = ntri + 1

/* Second Triangle */
14 if NotNan(p1, p3, p4, P):
15 T = T + { p1, p4, p3 }
16 Tmap[SecondGID] = ntri
17 ntri = ntri + 1

18 end
19 end
20 return T , Tmap

The half-edge array HE is constructed using the previously calculated Tmap and is shown in
Algorithm 3.2. The algorithm begins at Line 3 by setting all half-edges inHE to the default sentinel
value of −1 indicating no shared edge. Line 4 and 5 then begin iterating through every 2 × 2 grid
in the OPC inspecting the first and second triangles in TFC . Line 6 and 7 retrieve the index of these
triangles in T using Tmap if they exist. If these triangles exist then their neighboring triangles may
be assigned in Lines 9 and 18, respectively. For example in Line 13 if the right triangle neighbor
exists then its first edge corresponding to a half-edge id of 3 · Rightidx will be linked to the first
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half-edge of the first triangle.
Algorithm 3.2: Extract Half-Edges from OPC

Input :Triangle Map: Tmap
Rows: M, Columns: N

Output :Half-Edge Set: HE
1 N ′ = N − 1, M ′ = M − 1
2 SV = −1 /* Sentinel value indicating no shared edge */
3 HE = [SV, SV, . . . , SV ] /* |HE| = 3 · |T | */
4 for u← 0 to M ′ − 1 do
5 for v ← 0 to N ′ − 1 do
6 Firstidx = Tmap[2 · (u ·N ′ + v)]
7 Secondidx = Tmap[2 · (u ·N ′ + v) + 1]
8 TopGID, RightGID, BottomGID, LeftGID = GetNeighborsGID(u,v)
9 if Firstidx != SV :

10 Topidx = Tmap[TopGID]
11 Rightidx = Tmap[RightGID]
12 if Rightidx != SV :
13 HE [Firstidx · 3] = Rightidx · 3
14 if Topidx != SV :
15 HE [Firstidx · 3 + 1] = Topidx ·3 + 1
16 if Secondidx != SV :
17 HE [Firstidx · 3 + 2] = Secondidx ·3 + 2

18 if Secondidx != SV :
19 Bottomidx = Tmap[BottomGID]
20 Leftidx = Tmap[LeftGID]
21 if Leftidx != SV :
22 HE [Secondidx · 3] = Leftidx ·3
23 if Bottomidx != SV :
24 HE [Secondidx · 3 + 1] = Bottomidx ·3 + 1
25 if Firstidx != SV :
26 HE [Secondidx · 3 + 2] = Firstidx ·3 + 2

27 end
28 end
29 return T , Tmap

3.4.3 User Provided Meshes

We define a user-provided triangle mesh as a triangle set T with a corresponding 3D point
cloud P . These meshes can be generated from 3D data using a variety of methods [80, 81, 82].
The front-end of Polylidar3D creates the half-edge setHE of this mesh to determine shared edges
in similar manner to [83]. This entails first constructing half-edge hashmaps where the key is each
half-edge’s ordered point indices and value its half-edge ID. Opposite half-edges for any half-edge
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can then be found by reversing the order of its point indices and performing a hashmap lookup. If a
shared half-edge is found then its half-edge ID is mapped intoHE .

Certain forms of non-manifold meshes must be explicitly handled. We focus on a subclass of
meshes that are not two-manifold. First we define two key properties of a two-manifold mesh:

1. Every vertex connects to a single edge-connected set of triangles.

2. Every edge is shared by one or two triangles.

Figure 3.6 shows examples of non-manifold meshes where condition (1) is violated. Polyli-
dar3D handles violations of (1) using methods from our previous work [84]. The missing triangles
(shown as white) are explicitly captured as holes inside a polygon for Figure 3.6a–c, while the
mesh is split into two polygons for Figure 3.6d. Figure 3.7 shows cases of non-manifold meshes
that violate condition (2). No mesh generated per Sections 3.4.1 and 3.4.2 will violate (2) because
triangulation occurs in 2D space so all edges share at most two triangles. However a user-provided
3D mesh may not satisfy condition (2).

The half-edge arrayHE used for neighbor expansion during planar segment extraction in Sec-
tion 3.7.1 only maps twin half-edges, making condition (2) mesh violations problematic. Three op-
tions can handle cases when more than two shared edges exist:

1. Store only the first pair of edges found and ignore any others.

2. Select the pair of edges that are most similar. Similarity between edges is defined by
comparing angular distance of their owning triangle normals.

3. Ignore all of them by labelling all as boundary edges.

Option one is advantageous in speed and will generally have minimal consequences in the
event an incorrect half-edge pairing is chosen, e.g., a green and orange triangle edge are linked
in Figure 3.7. If green and orange triangle normals are sufficiently different then planar segment
extraction will not connect them. However there is no guarantee that this may occur and may fail
as in (Figure 3.7c). Option two attempts to remove the issue entirely by connecting only the pair
of edges that are most similar (edges shared by green triangles). This technique will work for
(Figure 3.7a,b) but will fail once again on (Figure 3.7c). Finally option three is the safest, it links
none of the shared edges and treats them as border edges (edges sharing no neighbor). This keeps
the critical invariant that no condition (2) violation will exist in an extracted planar mesh. However
superfluous border edges will exist which can be handled downstream. Currently only option (1) is
implemented in Polylidar3D [36] with future plans to allow the user to choose between any of the
three proposed solutions.
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(a) (b) (c) (d)

Figure 3.6: Example non-manifold meshes that exhibit condition (1) violations. Red vertices
specifically show examples where the vertex triangle set is not fully edge-connected. (a–c) will
extract any missing triangles as holes from the blue triangular segment; (d) The missing triangles in
this mesh also cause condition (1) violations but will not be captured as holes. They cause the green
and blue portion of the mesh to not be edge-connected for region growing in Section 3.7.1. They
will be extracted as two separate segments with no holes in their respective interiors

.

(a) Three shared edges (b) Five shared edges (c) Three shared edges

Figure 3.7: Example non-manifold meshes with condition two violations. Edges are shared by more
than two triangles. This common edge is shared by green and orange triangles. The green triangles
form a two-manifold mesh with the blue triangles while the orange triangle(s) do not. The orange
triangles in (Figure 3.7a,b) have sufficiently different normals such the green triangles half-edges
can be easily linked. However all triangles in (Figure 3.7c) have nearly equal normals making
this impossible.

3.5 Mesh Smoothing

Mesh smoothing for user-provided triangular meshes is performed using Intel Open3D smooth-
ing procedures [83]. The sections below describe our implementation of Laplacian and bilateral
filtering for the organized point cloud meshes created in Section 3.4.2. Our implementation is open
source and provides single-threaded CPU, multi-threaded CPU, and GPU accelerated routines [65].

3.5.1 Laplacian Filter

We implement the standard Laplacian filter for organized point clouds with the benefit that
no explicit triangular mesh is required, only the point cloud itself. The filtering, as described in
Equation (3.1), results in smoothed vertices of the mesh, i.e, the point cloud is denoised. Ver-
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tex neighborhood information is defined implicitly by the image space indices of the organized point
cloud. The neighborhood size is configured by adjusting the kernel size of the filter, e.g, a kernel
size of three implies eight vertex neighbors. Filtering this way offers the following benefits:

1. Neighboring vertices do not need to be found through lookup over T ,HE , or an adjacency
list.

2. Neighborhood size can be increased by adjusting filter kernel-size. Increasing the kernel size
is critical for extremely dense and noisy point clouds.

3. Parallelization is trivial, similar to image filters, with all necessary neighborhood data for a
vertex located close in memory.

The amount of filtering is controlled by λ, the kernel size, and the number of iterations. As kernel
size and number of iterations increase the computational demand of the filter also increases.
Mesh borders in image space have no defined neighbors on the exterior thus are not filtered.
This gives a negative drawback of a noisy border but a positive benefit of reducing the mesh
shrinkage inherit to Laplacian filtering. One may think of the fixed border as “pinning” the mesh to
prevent overshrinkage.

3.5.2 Bilateral Filter

We implement the bilateral mesh filtering algorithm presented by Zheng et al. [73] but for
organized point clouds. Smoothing occurs on the implicit fully-connected organized mesh TFC ,
described in Section 3.4.2. Recall the mesh spatial structure is defined through image indices
(u, v) with a final index k ∈ {0, 1} representing the first or second triangle in a 2 × 2 quad
(see Figure 3.5b). Bilateral filtering per Equation (3.3) requires data structures for each triangle’s
centroid and normal, which we denote as C and N . These are constructed in parallel (if multi-core
CPU is available) and laid out in contiguous memory with the same indexing scheme as TFC ,
i.e., the centroid of triangle tu,v,k is cu,v,k. If any of the vertices of a triangle in TFC are NaN then
the associated centroid and normal will also be NaN.

The algorithm partitions triangle smoothing in image space coordinates, smoothing both the
first and second triangles as one unit of work. Each triangle’s normal is updated using centroid and
normal information from neighboring triangles. The neighbors of a triangle are determined by a
user-configurable kernel size as shown in Figure 3.8. Note that defining neighbors in this way mixes
both n-ring and (n + 1)-ring triangle neighbors. However the exponential decay of the bilateral
filter in Equations 3.4 and 3.5 ensures that only triangles of similar properties (close in position and
orientation) will be integrated into the smoothed normal. Neighbors are not integrated if they have
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NaN values for their centroid/normal. The end result is smoothed normals for TFC ; however, what
is actually desired are smoothed normals for T per Figure 3.5c. This is quickly achieved by using
Tmap to identify the valid normals for T . Zheng et al. [73] follows up with vertex updating, but we
do not perform this step. Vertex updating is an expensive operation which provides minimal benefit
for triangle region growing downstream. Only the smoothed normals are needed in Polylidar3D.
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Figure 3.8: Visualization of a triangle’s neighborhood during bilateral filtering. Each 2 × 2 point
group forms two triangles creating a mesh. Each triangle’s neighbors are defined by the kernel size.
For example a kernel size of five includes all blue and red triangles.

The advantage of implementing bilateral smoothing in this manner is that all information is
laid out in contiguous memory to increase cache locality. These are important characteristic for
CPU and especially GPU performance. However nontrivial excess work is performed if most of the
point cloud is invalid, e.g, invalid depth measurements in a range image. The entire procedure is
controlled by σ2

c , σ2
s , kernel size, and number of iterations.

3.6 Dominant Plane Normal Estimation

We present a new method for constructing and using a Gaussian Accumulator to identify
dominant plane normals in a scene. We call this method the Fast Gaussian Accumulator (FastGA).
The input to this method is a list of k unit normals N = {n̂0, . . . , n̂k−1} which have been sampled
from a scene. Use of denoised data is advantageous but not required. Sections 3.6.1 and 3.6.2
discuss constructing the Gaussian Accumulator and performing peak detection, respectively.

3.6.1 Gaussian Accumulator

The following subsections describe the process to approximate a sphere using an icosahedron,
construct the Gaussian Accumulator, and our method to integrate information into the accumulator.
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3.6.1.1 Refined Icosahedron

A geodesic polyhedron is first constructed by using an icosahedron as the base model approxi-
mation of a unit sphere. The icosahedron is composed of 12 vertices and 20 faces and can be seen
on the far left in Figure 3.9. This polyhedron is refined by recursively dividing each face into four
equilateral triangles and then projecting the new vertices onto the surface of a sphere. The number
of iterations or levels of recursion is user configurable with higher levels better approximating a
sphere. This is a Class I geodesic polyhedron defined with the Schläfli symbol {3, 5+}1,0 with
frequency doubling at each level [85]. Figure 3.9 shows refinement up to level four while Table 3.1
displays the change in number of vertices, triangles, and approximate angular separation between
each triangle. We denote each triangle as the cell or bucket of the histogram of S2. The number of
cells, n, and their properties described below are fixed once a refinement level is chosen.

Figure 3.9: Approximation of the unit sphere with an icosahedron. The level 0 icosahedron is shown
on the left with increasing refinements to the right. Triangle cells become buckets of a histogram
on S2.

Table 3.1: Levels of refinement for an icosahedron.

Level # Vertices # Triangles Separation

0 12 20 41.8◦

1 42 80 18.0◦

2 162 320 6.9◦

3 642 1280 3.1◦

4 2562 5120 1.5◦

3.6.1.2 Gaussian Accumulator Properties

A space-filling curve (SFC) maps a multi-dimensional space into a one-dimensional space,
e.g., R2 → R. Hilbert curves are a widely used SFC because they preserve locality well during
transformation [86]. This means that points close in 1-D space are close inN -D, though the converse
is not guaranteed to be true. In practice a SFC is approximated using discrete integers. The S2
Geometry library [87] provides a SFC routine that transforms any real-valued unit normal n̂i ∈ R3

to a 64 bit unsigned integer. The method works by projecting the unit sphere to a cube, creating
2D→ 1D Hilbert curves for each of the six faces, and finally stitching them together to make one
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unbroken linear chain. Each cell in the refined icosahedron has a surface normal n̂ci that can be
mapped to a unique ID denoted s2id using this procedure. This generates a one-dimensional thread
that passes through every cell such that each cell is visited exactly once as seen in Figure 3.10.

Figure 3.10: Space filling curve (SFC) of a level 4 icosahedron. Curve generated using the S2
Geometry Library. Each cell’s surface normal is mapped to an integer creating a linear ordering for
a curve. The curve is colored according to this mapping and traverses each cell.

The final Gaussian Accumulator (GA) is then an ordered array of Cells = [ci, . . . , cn−1].
Each cell contains its surface normal n̂ci , unique s2idi, and an accumulating integer counti. The cell
array is sorted by s2id, creating the invariant that cells close together in the array are close in
physical space. A neighborhood data structure Nbrsi,j is constructed as an N×12 matrix in which
the ith row contains the 12 neighboring cell indices of the ith cell in the Cells array. Neighboring
triangles are defined as those in the 1-ring vertex adjacency. A maximum of 60 triangles at any level
of refinement have only 11 neighbors; all others have 12. For these cells the 12th neighbor index is
given a sentinel value of −1 to indicate no neighbor is present.

3.6.1.3 Integrating the Gaussian Accumulator With Search

Integrating a list of k unit normals N = {n̂0, . . . , n̂k−1} into the Gaussian Accumulator is
done through a search that finds the corresponding cell whose surface normal is closest to an input
normal n̂i then incrementing the cell’s counti member. Instead of a K-D tree search we propose
combining a sorted integer search with a local neighborhood search. Though similar, there are
nontrivial differences and optimizations that make our method faster. The main components of
the search are as follows: map n̂i to an integer s2id, perform sorted integer interpolation search
to reduce search bounds, perform branchless binary search within these bounds in the Cells array,
then perform local neighborhood search to find the correct cell. Algorithm 3.3 outlines this search
routine and is explained below.

There exist several methods for sorted integer search such as interpolation and binary search.
Interpolation search works by predicting the index of a value in a sorted array by interpolating
between the first and last value of the sorted array (thus computing a slope). The process continues
iteratively, each time reducing the search window and recomputing a new line for improved predic-
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tion. Interpolation search is best used for linear data but still often underperforms in comparison
to binary search in practice due to its use of repeated computationally expensive calculations of
slope [88].

Algorithm 3.3: Find Cell Index
Input :Unit Normal: n̂i ∈ R3

Cells Array: Cells
Neighbor Matrix: Nbrs

Output :Cell Index: kbest ∈ [0, |Cells|]
1 s2id = GetS2ID(n̂i)
2 [kmin, kmax] = SearchWindow(s2id)
/* get closest neighbor by s2id */

3 k′ = BranchlessBinarySearch(s2id, Cells, kmin, kmax)
4 kbest = k′

5 distbest = ||n̂ck′ − n̂i||
/* local neighbor search by actual distance */

6 for j ← 0 to 12 do
7 knbr = Nbrsk′,j
8 if knbr is −1:
9 continue

10 dist = ||n̂cknbr
− n̂i||

11 if dist < distbest:
12 kbest = knbr
13 distbest = dist

14 end
15 return kbest

Figure 3.11a shows a graph of cells in the Gaussian Accumulator where the x-axis is the s2id
and the y-axis is the corresponding index into the sorted Cells array. We use least squares regression
to fit a line to the data shown in Figure 3.11a, in contrast to only using the first and last values
typical of interpolation search. Figure 3.11a shows this regressed line (green) accurately fits the data
overall. In a zoomed plot (Figure 3.11b), model error, the difference between actual and predicted
cell array index, is shown as the red line with values on the right vertical axis. Since the model/data
domain and range are ordered and finite we can compute the negative and positive error bounds
which is fixed once the GA refinement level is chosen. This is significant because one can reliably
predict the correct index position of a cell with small known error bounds. This means that one does
not need to perform a full binary search through the array of histogram cells but only a small subset
of it. For example, refinement level four with 5120 histogram cells has maximal error bounds of
−16 and +16 from any predicted position, thereby reducing the search from 5120 to 32 cells. This
technique brings the benefits of linear interpolation search without excess computational overhead
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because the model can be computed at compile time.
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Figure 3.11: Linear prediction model for space filling curve indices on a Gaussian Accumulator.
The 5120 GA cells are sorted in an array (Cells) by their corresponding spatial index s2id; (a) Plot
relating cell s2id and index position in the Cells array with a regressed line (green) to the data; (b)
Zoomed-in view showing model error (red line) indicating difference between predicted and actual
index for each s2id.

This predicted index and maximal bounds are used to create a binary search window in the Cells
array, shown at Line 2 in Algorithm 3.3. A branchless binary search is used which is faster than
standard binary search for arrays of small sizes that fit into CPU L1/L2 caches [89]. All the search
windows at realistic levels of refinement are sufficiently small to meet this criterion. The output
of branchless binary search is an index k′ into Cells with s2id closest to the mapped s2id of n̂i
(Line 3). There is no guarantee this cell’s surface normal n̂ck′ is closest to n̂i than neighboring cells
though it is guaranteed to be close. Therefore a local neighbor search is performed where all 12
neighboring cells’ surface normals are compared to n̂i. The cell index with closest surface normal
is then returned.

3.6.2 Peak Detection

The histogram of the Gaussian Accumulator is normalized between the range [0–255]. Fig-
ure 3.12a shows an example mesh of a basement where the dominant planes are the floor and walls.
Figure 3.12b shows a colored visualization of the GA after integrating triangle normals of this mesh.
Higher values are bright yellow; lower values are dark purple. Peaks representing the basement
floor and walls are clearly visible near the top and side of the sphere, respectively. Note that more
peaks exist on unseen sides of the sphere. We use the technique described by Cohen et al. [77]
to unwrap the refined icosahedron into a 2D image as shown in Figure 3.12c. The center image
shows unwrapping of the icosahedron to create five charts. The vertices of these five charts map
to hard-coded correspondences of pixels in the right image. This requires every vertex take the
average value of its neighboring triangles. Finally a one-pixel padding is performed on the edges
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of each chart by copying neighbors of adjoining charts. This creates duplicate pixel values on the
bottom and left of the image as well as between charts. The end result is a 2D image guaranteed to
provide equivariant convolution for kernels. The unwrapped image of the example GA is shown in
the Figure 3.12d.

(a) 3D mesh of basement (b) Colorized Gaussian Accumulator

(c) Unwrapping Process. Reprinted from [77]
Published open access under a CC-BY 4.0 license
http://proceedings.mlr.press/v97/cohen19d.html

 1 

 1 

 2 

 3 

 4 

 5 

 5 

(d) Unwrapped GA, rotated

Figure 3.12: Example using Fast Gaussian Accumulator on a triangular mesh. (a) Example basement
scene mesh; (b) Mesh triangle normals are integrated into the Gaussian Accumulator and colorized
showing peaks for the floor and walls; (c) Overview of unwrapping a refined icosahedron into a
2D image. Five overlapping charts are stitched together to create a grid. Padding between charts is
accomplished by copying adjoining chart neighbors using the unwrapping process and its illustration
from [77]; (d) Unwrapped Gaussian Accumulator creating a 2D image used for peak detection.
White boxes indicate detected peaks. Duplicate peaks are merged (1 & 5) with agglomerative
hierarchical clustering.

We use a standard 2D peak detector algorithm to find local peaks in the image. A peak is in
the center of a 3X3 pixel group if it is the maximum in the group and its value is higher than a
user-configurable vmin. Once a peak is detected in the 2D image it is converted to its corresponding
surface normal on the GA. Duplicate peaks may be detected near chart borders because of copy
padding discussed above, or two peaks may be close together. In either case it is desirable to
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collapse them into a single peak. AHC is used to merge these peaks and take their weighted average.
AHC will only merge peaks whose Euclidean distance is less than dpeak.

3.6.2.1 Application To Polylidar3D

Polylidar3D uses the Fast Gaussian Accumulator (FastGA) to estimate dominant plane normals.
Triangle normals from the half-edge triangular mesh are input to FastGA. Not all triangle normals are
needed to achieve acceptable results, so a user-configurable percent sampling parameter samplepct
is used to reduce computational demand. After peak detection the l unique dominant plane normals
are returned as a list N d = {n̂d0, . . . , n̂dl−1} for plane and polygon extraction. Note that alternative
strategies of generating input normals such as fast RANSAC plane fitting with weighted voting may
also be used [76].

3.7 Planar Segmentation and Polygon Extraction

The following sections build upon our previous work in polygon extraction from 2D triangular
meshes. Section 3.7.1 describes planar segmentation while Section 3.7.2 outlines polygon extraction.

3.7.1 Planar Segmentation

The main input for planar segmentation is the half-edge triangular mesh, composed of P , T , N ,
HE , and the set of l dominant plane normalsN d. Polylidar3D performs parallelized and regularized
triangle mesh region growing via partitioning with dominant plane normals. Triangles having
similar normals to a dominant plane are grouped for region growing. Different groups are grown in
parallel. This process is controlled through user-provided parameters including maximum triangle
edge length lmax, minimum angular similarity angmin, maximum point to plane distance ptpmax,
minimum number of triangles trimin, and minimum number of vertices in a hole verticesholemin. These
parameters limit the maximum distance between points for spatial connectivity, ensure common
normal orientation in planar segments, force planar constraints, and remove spurious/small planes
and holes. Note that angmin is computed from the dot product between a triangle normal and its
closest dominant plane normal; a value of 1.0 requires exact alignment while a value of 0.96 allows
a ≈ 14◦ difference.

We first create triangle group array G to store group labels for each of the k triangles in T .
Algorithm 3.4 outlines this procedure and begins with iterating through all triangles (Line 4). G is
composed of 8-bit unsigned integers [0–255] with 255 being a reserved sentinel value indicating
a triangle does not belong to any planar segment. The following steps filter unused triangles and
cluster triangles by normal orientation. The first geometric predicate (Line 5) removes triangles
whose edge length exceeds a user-specified value. Lines 9–15 iterate though all dominant plane
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Algorithm 3.4: Group Assignment
Input :Triangle Set: T , Point Cloud: P , Triangle Normals: N

Dominate Plane Normals: N d, Max Length: lmax, Min Angular Similarity:
angmin
Output :Triangle Group Set: G

1 SentinelValue = 255
2 k = |T |
3 l = |N d|
/* Loop through every triangle */

4 for t← 0 to k do
5 edge length = GetMaximumTriangleEdgeLength(t, T ,P)
6 if edge length ¿ lmax:
7 G[t] = SentinelValue
8 continue
9 max similarity = -1.0

/* Loop through every dominant plane normal */
10 for j ← 0 to l do
11 similarity = n̂t · n̂dj
12 if similarity ¿ max similarity:
13 G[t] = j
14 max similarity = similarity
15 end
16 if max similarity ¡ angmin:
17 G[t] = SentinelValue
18 end
19 return G

normals finding the one most similar to the triangle’s surface normal n̂t. Line 16 performs a check to
ensure the triangle normal is within an angular tolerance of its nearest dominant plane normal. If a
triangle is assigned the group 255 it will not participate in subsequent region growing. Using 8-bit
integers limits the maximum number of dominant plane normals extracted to 254. This procedure is
iteration-independent and is parallelized by OpenMP [90]. Figure 3.13a,b show an example input
mesh and color-coded group assignments, respectively. In this example the floor (blue) and the wall
(red) are the two dominant plane normals to be extracted. Note that the seat of the chair is assigned
the same group label as the floor, and that superfluous triangles are also assigned in the top left of
Figure 3.13b.

Region growing is decomposed using task-based parallelism, where l dominant plane normals
create l separate tasks of regions growing. These tasks are executed in parallel by a threadpool
and can themselves spawn additional dynamic tasks [52]. Each independent task performs a serial
region growing procedure that is similar to our previous work on 2D meshes [84] and was inspired
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by [47]. Algorithm 3.5 outlines this procedure for a single group g. The routine begins by creating
empty sets to store planar triangular segments and their corresponding polygonal representations,
denoted T g and PLg. An iterative plane extraction procedure begins with a seed triangle t verified
to belong to group g (Line 5). Subroutine ExtractPlanarSegment uses the seed triangle to
create edge-connected triangular subsets from T which have the same group label in G and meet
user-provided planarity constraints (Line 7). If a user-specified minimum number of triangles is met
then this set, T gi , is added to T g. A dynamic task is then created to perform polygon extraction for
this segment (Line 10). This procedure call is non-blocking; the region growing task continues to
extract any remaining spatially connected planar segments before terminating. This means planar
segmentation and polygon extraction may occur in parallel if multi-core is enabled.

Algorithm 3.5: Region Growing Task
Input :Triangle Set: T , Point Cloud: P , Half Edge Set: HE , Triangle Group Set: G

Dominate Plane Normal: nd, Dominate Plane Label: g
Point To Plane: ptpmax, Min Triangles: trimin, Min Hole Vertices: verticesholemin

Output :Planar Segment Set: T g, Polygon Set: PLg
1 T g = ∅
2 PLg = ∅
3 k = |T |
/* Loop through every triangle */

4 for t← 0 to k do
5 if G[t] 6= g:
6 continue
7 T gi = ExtractPlanarSegment(t, T ,P ,HE ,G, nd, ptpmax)
8 if —T gi | > trimin:
9 T g = T g + T gi

10 PLg = PLg + SpawnTask(PolygonExtraction, T gi , verticesholemin)

11 end
12 WaitForTasks
13 return T g,PLg

Figure 3.13c shows three planar segments extracted that represent the floor, chair seat, and wall.
The floor and chair surfaces have similar surface normals but are not spatially connected so
independent planar segments and corresponding polygons are created. The small bump on the floor
did not meet the planarity constraints (configured with ptpmax) thus is not included in the floor
planar segment. This hole in the mesh will be extracted as an explicit interior hole of a polygon.
The wall surface belongs to a separate group and is extracted in parallel with the floor and chair.
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(a) Mesh (b) Group Assignment (c) Planar Segments (d) Extracted Polygons

Figure 3.13: Demonstration of Polylidar3D extracting planes and their polygonal representations. (a)
An example mesh to demonstrate planar segmentation and polygon extraction using two dominant
plane normals, represented by the floor and wall;(b) Every triangle is inspected for filtering and
clustered through group assignment. Blue and red triangles meet triangle edge length constraints
and are within an angular tolerance of the floor and wall surface normals, respectively; (c) Region
growing is performed in parallel for the blue and red triangles. The top chair surface and floor
are distinct planar segments; (d) Polygonal representations for each planar segment are shown.
The green line represents the concave hull; the orange line depicts any interior holes. Note that
small segments and small interior holes are filtered.

3.7.2 Polygon Extraction

Polygon extraction is performed on each planar mesh segment T gi . Each polygon is defined by
a single linear ring of points representing the concave hull/shell and a (possibly empty) set of linear
rings representing interior holes. The same boundary following method we proposed in our previous
work [84] is used with small modifications because triangular meshes are no longer 2D. Polygons
are defined in a 2D subspace and are provided explicit guarantees through their definition per [43].
For example the edges in linear rings must not cross in this 2D space. For this reason boundary
following in polygon extraction is carried out in the 2D projection of T gi on its geometric plane.
Note that only the boundary edges of T gi need to be projected. Figure 3.14 shows the projection of
T gi to its geometric plane and extraction of its polygonal representation. The three main components
of polygon extraction are:

1. Data Structure Initialization

2. Extract Exterior Hull/Shell

3. Extract Interior Holes

The data structure initialization identifies all boundary half-edges inside T gi which are high-
lighted in purple in Figure 3.14b and denoted BE . Additionally a mapping between point indices
and these boundary half-edges are created denoted PtE. Finally any point on the exterior on the
shell is found denoted pixp. The outer exterior shell is then extracting beginning with pixp. Boundary
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following is performed by progressively building a linear ring by following each points outgoing
half-edge(s) using PtE. Special routines handle scenarios when a hole is connected to the exterior
hull. After the hull is extracted any interior holes remaining are extracted with the same special
routines to handle rare scenarios when holes are connected.

The only modification to our previous work occurs in projecting the boundary edges. This
is needed in finding pixp and for the special routines in handling multiple outgoing edges during
boundary following. Note that the final polygons returned are represented as point indices in P .
The underlying 3D structure of the polygon is retained, i.e., it will follow a noisy surface per
Figure 3.13d. The polygon can also be projected to the surface’s geometric plane as described in
Section 3.8 for post-processing.

Given noisy and dense planar mesh segments, border edges may cross during projection to
the geometric plane. When this occurs an invalid polygon will be generated, most often a small
self-intersection. This issue does not occur with unorganized point clouds because they are projected
to the x-y plane where triangulation has already taken place; this guarantees edges do not cross.
However planar segments from user-provided meshes and organized point clouds may be projected
to arbitrary geometric planes. Additionally the tolerance in “flatness” of the planar triangular
segment is user-configurable. This issue, if it occurs, is managed in polygon post-processing as
described in Section 3.8. Although rare, if this condition must be handled before post-processing
one might instead project all vertices of T gi to the geometric plane and perform polygon extraction
on the 2D point set as shown in our previous work [84].
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Figure 3.14: Example polygon extraction from a planar triangular segment. (a) Planar triangular
segment T gi . Note the four holes in the mesh; (b) Projection of a triangle segment to a geometric
plane. Only border edges (purple) are actually needed for projection; (c) A polygon is extracted
from border edges with a concave hull (green) and multiple interior holes (orange).
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3.7.3 Algorithm Parallelization

Planar segmentation and polygon extraction use both data and task-based parallelism. We use
OpenMP for data parallelism which is carried out in “hot” loops that are iteration independent,
e.g., triangle group assignment in Algorithm 3.4 as well as computing triangle normals. We use
the MARL library to handle task scheduling and synchronization primitives [91]. Note that region
growing of a single dominant plane normal is still a serial process as is the polygon extraction
process of a single planar triangular segment. Therefore if only one dominant plane normal exists
than task-based parallelism will provide minimal speed up. However group assignment is still
fully parallelized. Benefits of parallelism are further explored in Section 3.9.4 experiments where
speedup is calculated as number of threads and number of dominant plane normals vary.

3.8 Post Processing

The polygons returned by Polylidar3D can be further processed to improve visualization and
filter superfluous polygons and/or holes. All operations are implemented on the 2D projection of
the polygon on its geometric plane. The following sequential operations are executed:

1. Polygon is simplified with parameter α meters

2. Polygon is buffered outward by parameter βpos meters

3. Polygon is buffered inward by parameter βneg meters

4. Polygon is removed if its area is less than γ meters

5. Interior holes are removed if area is less than δ meters

The simplification algorithm is used to remove redundant vertices and “smooth” the polygon [92].
The α parameter indicates the maximum distance between any point in the new polygon from
the original. This reduction of superfluous vertices also decreases the computational demand for
subsequent buffering. The buffering process is defined as the Minkowski difference of the polygon
with a circle of radius equal to a buffer distance β [93]. A positive buffer will expand a polygon and
may fill in holes, while a negative buffer enlarges holes and recedes the concave hull. A positive
buffer will fix any small self-intersections that may have occurred during the projection. Small
polygons and/or interior holes are then filtered by area. Currently all of these steps are single
threaded and handled in Python using the geometry processing library Shapely which binds to the
C++ GEOS library [94]. An example of the first three steps of this process are shown in Figure 3.15.
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Figure 3.15: Example of polygon post processing. The shaded blue polygon is the original polygon
extracted (see Figure 3.14c). All dashed lines indicate a new polygon generated from a step of post
processing. (a) The polygon is simplified; (b) The polygon is applied a positive buffer. Two small
holes have been “filled” in; (c) The polygon is applied a negative buffer; only two holes remain.

3.9 Results

We present several examples of our methods applied to real-world and synthetic 3D data.
Section 3.9.1 provides execution time benchmarks evaluating the speed of our proposed Fast
Gaussian Accumulator. Section 3.9.2 shows examples of Polylidar3D applied to unorganized 3D
points including airborne LiDAR point clouds and point clouds generated on a moving vehicle.
Section 3.9.3 shows Polylidar3D applied to organized point clouds including RGBD cameras as
well as a challenging synthetic benchmark set. Finally Section 3.9.4 presents Polylidar3D applied
to 3D meshes and explores how polygon extraction scales with additional CPU cores.

All experiments/benchmarks use the same consumer desktop computer. The CPU is an AMD
Ryzen 3900X 12 Core CPU with a frequency at 4.2 GHz equipped with 32 GB of RAM. Note that
all results obtained with CPU parallelization are annotated with number of threads used; the default
is four. An NVIDIA GeForce RTX 2070 Super is used for GPU acceleration.

3.9.1 Dominant Plane Normal Estimation

This section evaluates the Fast Gaussian Accumulator (FastGA) proposed for dominant plane
normal estimation. We specifically analyze CPU execution time needed to integrate a set of k unit
normals into the accumulator with k varied over the tests. Per Section 3.6.1.2 we use sorted integer
search coupled with local neighborhood search instead of K-D trees [78]. To allow comparison,
we created an alternative K-D tree Gaussian Accumulator implementation that uses nanoflann,
a high performance C++ K-D tree library [95]. A leaf size of eight is used which offers the best
results for our test cases. Results were generated on two test sets with hundreds of runs to provide
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statistically significant results [96]. All benchmark code is open source [61].
A GA with refinement level four (5120 triangle cells) was used for all tests. The first test

generated 100,000 randomly distributed surface normals on the unit sphere and integrated them into
the GA. The second test integrated all 60,620 triangle normals from the basement mesh previously
shown in Figure 3.12a. Recall that the GA is fixed once refinement level is chosen, so building the
K-D tree index is not part of execution timing. Results of integrating all k normals for each test set
are shown in Table 3.2. FastGA is more than two times faster than using a K-D tree, though the
K-D tree implementation is also fast and could be used as an alternative method if desired. We
can conclude that exploiting the known fixed structure of triangular cells on S2 (using space filling
curves and sorted integer search) outperforms a general purpose K-D tree method.

Table 3.2: Execution time comparisons for synthetic and real world datasets

Algorithm Mean (ms) Std (ms)

a Synthetic: 100,000 Random Normals

K-D tree 20.0 0.1
FastGA (ours) 9.1 0.1

b Real World: 60,620 Normals

K-D tree 9.7 0.2
FastGA (ours) 4.4 0.1

Peak detection is currently implemented in Python using the scikit-image image processing
library [97]. Agglomerative hierarchical clustering (AHC) of any detected peaks is implemented in
Python with the scipy library [98]. The unwrapped 2D image of the icosahedron does not depend
on the number of integrated normals but only the refinement level of the GA. Generated images
are rather small (e.g., 90 × 34 pixels for a level four GA) resulting in very fast peak detection and
clustering, e.g., it takes approximately 1 ms to detect peaks and perform AHC on a level four refined
GA. FastGA results from additional datasets are shown below.

3.9.2 Unorganized 3D Point Clouds

Sections 3.9.2.1 and 3.9.2.2 describe results from Polylidar3D applied to airborne LiDAR point
clouds and point clouds generated on a moving vehicle, respectively. Both datasets offer real-world
unorganized 3D point cloud evaluation of Polylidar3D.
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3.9.2.1 Rooftop Detection

This section presents qualitative results of Polylidar3D extracting flat rooftops in cities from
airborne LiDAR point clouds of buildings. These unorganized point clouds are captured from an
overhead viewpoint but are typically angled based on sensor location; wall surfaces can therefore
be visible. Point cloud xy components are in a planar projected coordinate system while the z
component represents elevation. Therefore points of a flat rooftop surface are already aligned with
the xy plane making them suitable for 2.5D Delaunay triangulation to create a half-edge triangular
mesh. The mesh is smoothed with Laplacian and bilateral filtering using Open3D [83]. Flat surfaces
are then extracted as polygons and any non-flat obstacles on them become holes. Figure 3.16 shows
the extracted polygons of buildings in Witten, Germany. Satellite imagery is overlaid with colorized
point clouds. Each flat surface is extracted as a polygon with holes. All parameters used for this
dataset are shown in Table 3.3.

Table 3.3: Polylidar3D parameters for rooftop detection.

Algorithm Parameters

Laplacian Filter λ = 1.0, iterations = 2
Bilateral Filter σl = 0.1, σa = 0.1 , iterations = 2
Plane/Poly Extr. trimin = 200, angmin = 0.94, lmax = 0.9, verticesholemin = 8, ptpmax = 0.20

Poly. Filtering α = 0.1, βneg = 0.1, βpos = 0.00, γ = 16, δ = 0.5

Figure 3.16a shows a single building with two flat surfaces identifiable from the overlaid blue
and purple points representing higher and lower elevation respectively. Polylidar3D successfully
separates both of these flat surfaces as two polygons. Rooftop obstacles such as air vents and A/C
units are captured as holes. Figure 3.16b,c images show additional examples of obstacle detection
and surface separation, respectively. The large building on the left in (Figure 3.16d) hosts a structure
on top of its own flat rooftop (bright yellow points). This small structure is distinguished, and its
own smaller flat rooftop is also extracted. The building in (Figure 3.16e) also has a small rooftop
structure captured as a hole in the larger building’s rooftop surface, but this structures rooftop is too
small to meet the minimum area constraint used during polygon filtering. Note that Polylidar3D
failed to extract several small obstacles in (Figure 3.16d) for the building on the right. Such obstacles
are too small to be extracted after mesh smoothing.

3.9.2.2 Ground and Obstacle Detection

The KITTI Vision Benchmark Suite provides raw datasets of Velodyne LiDAR point clouds,
color video, and calibration data captured from a car while driving in Karlsruhe, Germany [101].
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(a) (b) (c)

(d) (e)

Figure 3.16: Example of Polylidar3D used with unorganized point cloud data. Demonstrates
flat rooftop extraction from airborne LiDAR. Each figure (a,b,c,d,e) shows the satellite image
overlaid with the extracted polygons (green) representing flat surfaces with interior holes (orange)
representing obstacles. A colorized point cloud is also overlaid ranging from dark purple to bright
yellow denoting a normalized low to high elevation. LiDAR data and satellite images are provided
from [99] and [100] respectively.

Calibration data gives fixed transformations between vehicle body frame, Velodyne LiDAR frame,
and camera frame. Raw point cloud is projected into the video image, and points outside the
image are removed. Next, the point cloud is reduced to half its original size by skipping every
odd point index. The filtered point cloud is then transformed to the vehicle body frame. A single
beam/point is deemed an outlier and removed if its left and right neighboring beams are part of a
common flat surface and the point strongly deviates from this surface. The filtered point cloud is
then sent to the Polylidar3D front-end for 2.5D Delaunay triangulation. Flat connected surfaces
on the mesh are extracted as polygons, capturing any obstacles as interior holes. Polygons are
filtered and simplified using methods in Section 3.8. Filtered polygons are then transformed back to
the camera frame and projected into the color image for visualization (e.g., top of Figure 3.17a).
A second image is generated of the 3D point cloud and polygons from a bird’s eye viewpoint (e.g.,
bottom of Figure 3.17a). This process is repeated for every frame of 24 distinct “drives” (continuous
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video/LiDAR sequences) provided by KITTI. Visual qualitative results and execution timings are
presented in Sections 3.9.2.3 and 3.9.2.4 respectively. All code is open source [62] and the videos
of the generated polygons in their entirety can be found here [102].

(a) (b)

(c) (d)

Figure 3.17: Example of Polylidar3D used with the KITTI autonomous driving dataset [101]. Four
scenes (a,b,c,d) are shown, each with two subimages. The top subimage shows polygons projected
into the color image while the bottom image shows 3D point cloud and surface polygon(s) from a
bird’s eye view. Obstacles on the ground such as the light and signal in (a) are extracted as (orange)
holes.

3.9.2.3 Qualitative Results

Roads are not truly flat; they often have elevation changes such as a raised center line for
drainage. For this reason we do not use the point-to-plane distance parameter in Polylidar3D to
allow flexibility in capturing semi-flat ground surfaces in street environments. Table 3.4 shows
the set of parameters used for plane/polygon extraction and filtering with KITTI. Parameter trimin
filters out small planes, angmin provides the tolerance for flatness, lmax sets the max distance
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between points, and verticesholemin filters small holes. The post-processing step of polygon filtering
further removes spurious holes and polygons while simplifying polygons for visualization. Note
that Polylidar3D is neither designed nor trained specifically to find road surfaces; it is designed to
extract flat surfaces as polygons and capture obstacles as holes. The results below thus must not be
misconstrued as author intent to apply Polylidar3D for standalone road detection.

Table 3.4: Polylidar3D parameters for KITTI.

Algorithm Parameters

Plane/Poly Extr. trimin = 3500, angmin = 0.97, lmax = 1.25, verticesholemin = 6
Poly. Filtering α = 0.2, βneg = 0.3, βpos = 0.02, γ = 30, δ = 0.5

Figure 3.17a shows Polylidar3D extracting the road and connected pedestrian walkway as one
flat connected surface (green line). A light post and traffic signal are captured as holes because
they are in the polygon interior. The cyclist and white vehicle are not captured as holes because
they are exterior to the concave hull of the polygon. At greater distances vertical beam spacing
becomes greater than lmax preventing additional planar surface from being included in the polygon.
Figure 3.17b shows a scene where a cyclist is explicitly captured as a hole. Figure 3.17c displays
the street and a slightly elevated pedestrian walkway being extracted as one polygon. Surfaces are
connected at the smooth wheel chair access transition. This occurs because without a point to plane
distance constraint “flat” surfaces with similar normals and a smooth spatial connection will be
extracted together. However failures can occur when sensor noise inadvertently dominates a small
height change between two surfaces. This is seen in Figure 3.17d when the road and part of the
adjoining railroad tracks are extracted together.

3.9.2.4 Execution Timings

Polylidar3D processed 6608 frames from 24 recorded “drives” from the raw KITTI dataset.
Mean execution timings for each processing step are presented in Table 3.5. The average size of
the point cloud processed by Polylidar3D was 9316 points. No mesh smoothing is performed;
the LiDAR is precise and has significant vertical spacing between beams such that the mesh is
already sufficiently smooth. Only plane and polygon extraction are run in parallel with a maximum
of four threads. The most demanding step is the post processing of polygons through filtering
and simplification.
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Table 3.5: Mean execution timings (ms) of Polylidar3D on KITTI

Point Outlier Removal Mesh Creation Plane/Poly Ext. Polygon Filtering Total

5.1 4.1 0.7 6.8 16.7

3.9.3 Organized 3D Point Clouds

Sections 3.9.3.1 and 3.9.3.2 show Polylidar3D applied to RGBD imagery captured and a
benchmark planar segmentation dataset, respectively. Both datasets are stored as organized 3D
point clouds.

3.9.3.1 RGBD Cameras

We used an Intel RealSense D435i to capture depth and RGB frames in two home environment
scenes. The D435i uses stereo infrared cameras to generate a depth map. Depth noise grows
quadratically with distance, and empirical evidence indicates as much as four centimeter RMS error
at a two meter distance [103]. The Intel RealSense SDK provides denoising post-processing filters
including decimation (downsampling), spatial bilateral smoothing, temporal filtering, and depth
thresholding [104]. Parameters used for each of these filters are shown in Table 3.6, and Polylidar3D
parameters used for captured RGBD data are shown in Table 3.7. Each sensor is sampled at 424 ×
240 resolution in a well-lit indoor environment shielded from direct sunlight. Raw data is recorded
to assure all qualitative and quantitative results can be reproduced [63].

Table 3.6: Intel RealSense SDK post-processing filter parameters.

Algorithm Parameters

Decimation magnitude = 2
Temporal α = 0.3, δ = 60.0, persistence = 2
Spatial α = 0.35, δ = 8.0, magnitude = 2, hole fill = 1
Threshold max distance = 2.5 m
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Table 3.7: Polylidar3D parameters for RealSense RGBD

Algorithm Parameters

Laplacian Filter λ = 1.0, kernel size = 3, iterations = 2
Bilateral Filter σl = 0.1, σa = 0.15, kernel size = 3, iterations = 2
FastGA level = 3, vmin = 50, dpeak = 0.28, samplepct = 12%

Plane/Poly Extr. trimin = 500, angmin = 0.96, lmax = 0.05, ptpmax = 0.1, verticesholemin = 10
Poly. Filtering α = 0.02 , βneg = 0.02, βpos = 0.005, γ = 0.1, δ = 0.1

The first scene is composed of 2246 frames (74 s) with the camera traversing from one side
of a basement to the other. While walking the camera is pointed in many directions including the
floor, ceiling, and walls. Multiple dominant planar surfaces are captured at the same time. Small
surfaces are explicitly removed by filtering planes and polygons that do not meet minimum number
of triangles and area constraints. Figure 3.18a shows several image pairs for this scene. The left
image is the RGB video with overlaid 3D polygon projections; the right image is the associated
filtered and colorized depth map. Image (1) shows three planar segments with a common surface
normal being extracted from the ceiling. Image (2) shows three planar segments with different
normals being extracted. Image (3) shows the floor being extracted with a hole representing a
bucket obstacle. The last bottom image shows Polylidar3D incorrectly capturing items on a shelf
as polygons which erroneously appear as “planar” surfaces. This occurs because the small gaps
between the items on the shelf become smoothed and appear planar after RealSense post-processing
of the depth image.

The second scene is composed of 2735 frames (91 s) with the camera moving on the main
floor through dining area, kitchen, and living room. The camera is pointed in many directions
and with many dominant planar surfaces extracted as polygons. Figure 3.18b shows several still
images captured. The first and second images show Polylidar3D capturing three planar segments on
walls and a ceiling. A lamp and an art stand break up extracted planar segments with the polygons
forming around them. For the third image, Polylidar3D does not distinguish the wall from the
chalkboard because the depth difference is too small after the RealSense post-processing filters are
applied. The fourth image shows Polylidar3D extracting curtains and a lower portion of a wall as
one flat surface which surrounds the fruit basket. The floor is not captured because its resulting
polygon did not mean minimum area constraints. The adjacent wall to the left did not meet planarity
constraints with the window forming a separate segment which in itself was too small and filtered.

Table 3.8 summarizes mean execution timings for each step of Polylidar3D over all frames of
each respective RGBD scene. Polygon filtering is most computationally demanding and includes
polygon buffering and simplification routines. Image and mesh filtering (RealSense SDK and our
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Figure 3.18: Examples of Polylidar3D used with RGBD cameras. Four scenes are shown from the
basement (a) and main floor (b) datasets. Color and depth frames are shown side by side for each
scene. Polygons are projected onto the color image. Green denotes the exterior hull, and orange
denotes any interior holes in the polygon.

mesh filtering) are extremely fast because they take advantage of the organized point cloud data
structure. Dominant plane normal estimation with FastGA is quick and effective. Planar segmenta-
tion and polygon extraction are both completed in less than 2ms. Note that GPU acceleration is
used for Laplacian and bilateral filtering, and four threads are used for plane/polygon extraction.
All other steps are single-threaded.

Table 3.8: Mean execution timings (ms) of Polylidar3D with RGBD data.

Scene RS Filters Mesh Laplacian Bilateral FastGA Plane/Poly Ext. Poly. Filt. Total

Basement 2.4 0.4 0.4 0.5 1.2 1.7 4.8 11.4
Main Floor 2.4 0.4 0.4 0.5 1.3 1.6 5.1 11.7

3.9.3.2 SynPEB Benchmark

We also evaluated Polylidar3D on SynPEB, a challenging benchmark dataset used to evaluate
plane segmentation algorithms, created by the authors of PPE [58]. This synthetic dataset is
generated from a room populated with various polyhedra resulting with an average of 42.6 planes.
LiDAR scans are simulated with different levels of normally distributed radial and tangential noise
producing organized point clouds. There are four levels of tangential noise in the dataset with
0.5 mdeg, 1 mdeg, 2 mdeg, and 4 mdeg standard deviation. Data is partitioned into a training set
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to tune algorithms parameters and a test set for evaluation. The combination of high-noise data
and numerous small, connected, but distinct planes results in challenges for plane segmentation
as shown in Figure 3.19. The illustrated example uses the highest noise level (4 mdeg tangential
standard deviation) from the benchmark set.

(a) SynPEB Organized Point Cloud (b) Generated Mesh (c) Mesh Smoothing

(d) Polylidar3D Generated Planes (e) Polylidar3D Generated Polygons

Figure 3.19: Example of using Polylidar3D on a SynPEB scene with the highest noise level. Point
cloud, generated mesh, and mesh smoothed through Laplacian and bilateral filtering are shown in
(a–c), respectively. Planes and polygons generated by Polylidar3D are shown in (d,e). Red, green,
and yellow blocks in (d) represent missed, spurious, and oversegmented planes.

We used the training set to tune our methods parameters including mesh smoothing (Laplacian
and bilateral filter), dominant plane normal estimation (FastGA), and plane/polygon extraction.
We found that the most important parameter was the number of iterations of Laplacian smoothing
needed. We trained a linear regression model to predict the most suitable number of iterations
given an estimate of point cloud noise. All parameters used for test set reproduction are shown in
Table 3.9. Note that the significant number of noisy distinct planes, up to 72, required a higher than
expected refinement level for FastGA and an increased focus on smoothing.
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Table 3.9: Polylidar3D parameters for the SynPEB benchmark test set

Algorithm Parameters

Laplacian Filter λ = 1.0, kernel size = 5, iterations = varies (predicted)
Bilateral Filter σl = 0.1, σa = 0.1 , kernel size = 3, iterations = 2
FastGA level = 5, vmin = 2, dpeak = 0.1, samplepct = 12%

Plane/Poly Extr. trimin = 1000, angmin = 0.95, lmax = 0.1, ptpmax = 0.07, verticesholemin = 10

Table 3.10 shows benchmark test results of Polylidar3D against other plane segmentation
methods. The test set is limited to 1mdeg of tangential noise with results of other methods including
timings provided by Schaefer et al. [58]. Note that execution times cannot be directly compared
but will give an idea of real-time capability. Polylidar3D produces both a point set and polygonal
representation of identified planes, however this benchmark must be evaluated by the point set.
A “plane” is considered correctly identified if its point set overlaps with the ground truth plane with
the standard 80% threshold described in Hoover et al. [105]. Key metrics are f representing the
percent of ground truth planes identified, k indicating percent of the point cloud correctly identified,
and RMSE quantifying accuracy of each plane fit. Variables no, nu, nm, and ns represent the
absolute numbers of oversegmented, undersegmented, missing, and spurious planes, respectively,
compared to the ground-truth segmentation. See [58, 105] for detailed definitions of these metrics.
An f metric of 47.3% indicates that Polylidar3D did not capture most of the planes in the benchmark,
however the k metric of 78.3% indicates our algorithm did well in capturing the large dominant
planes comprising most of the point cloud. Additionally there are fewer spurious, over segmented,
and under segmented planes generated by Polylidar3D than with other methods. The RMSE value is
also the lowest, indicating the predicated planes have a good fit. Plane segmentation is accomplished
in significantly less time, especially in comparison to the front runner PPE. PPE’s f and k metrics
indicate it does an excellent job of capturing the numerous small planes in the scene, but it fails
more often in capturing the large dominant planes. Polylidar3D also uniquely generates concave
polygons which provide a condensed representation of identified planes.

Table 3.10: SynPEB benchmark results.

Method f [%] k [%] RMSE [mm] no nu nm ns time

PEAC [49] 29.1 60.4 28.6 0.7 1.0 26.7 7.4 33 ms
MSAC [106] 7.3 35.6 34.3 0.3 1.0 36.3 10.9 1.1 s

PPE [58] 73.6 77.9 14.5 1.5 1.1 7.1 16.5 1.6 hr
Polylidar3D (proposed) 47.3 78.3 7.2 0.1 0.3 22.8 4.9 34 ms
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Table 3.11 shows mean execution timings for each Polylidar3D method applied to SynPEB.
Each organized point cloud is 500X500 but can be efficiently downsampled by striding over rows
and columns. This reduces computational complexity at the cost of reduced accuracy. Note that
GPU acceleration is used for both Laplacian and bilateral filtering, while plane/polygon extraction
is parallelized up to four CPU cores; all other algorithm steps are single threaded.

Table 3.11: Mean execution timings (ms) and accuracy of Polylidar3D on SynPEB

Point Cloud Mesh Creation Laplacian Bilateral FastGA Plane/Poly Ext. Total f [%]

500 × 500 9.3 1.1 3.0 6.6 14.9 33.9 47.3
250 × 250 2.0 0.5 0.7 2.5 4.1 9.8 44.6

3.9.3.3 Organized Point Cloud Mesh Smoothing

This section provides execution timing analysis of our accelerated mesh smoothing algorithms
on OPC per Section 3.5. Laplacian and bilateral filtering are tested on two organized point clouds;
one from a random scene in SynPEB and another random frame from our RGBD dataset. Execution
timing is most influenced by point cloud size which varies substantially for these two examples.
For example the SynPEB OPC has 499 · 499 · 2 = 498, 002 triangles whereas the RGBD frame
has at most 50,218 triangles. For each filter we report CPU single-threaded, CPU multi-threaded,
and GPU accelerated timings. Only four threads are used in multi-threaded runs, and a kernel
size of three is used in all runs. We compare our filters with Open3D’s general purpose triangle
mesh Laplacian filter [83]. Note that Open3D uses a general filter and does not take into account
the organized structure of the mesh and must therefore create an adjacency list for each vertex to
deterimine neighbors. Additional overhead occurs by returning a new triangle mesh whereas our
Laplacian implementation returns only the smoothed vertices. Open3D does not have a bilateral
filter implementation nor is its Laplacian filter CPU parallelized or GPU accelerated. The smoothed
meshes produced by Open3D and ours are nearly the same except for a noisy one pixel border on
the boundary of our mesh.

Table 3.12 shows the results of our Laplacian filter for one and five iterations with results
separated by a semicolon. Our CPU single-threaded performance is faster than Open3D. This is
mostly explained by not needing to compute a vertex adjacency list. Our CPU multi-threaded
results nearly reach the ideal 4X speedup in most scenarios. GPU acceleration is quite fast but has
substantial overhead on the first iteration of smoothing. This is because the OPC in CPU memory
must be transferred to GPU memory which is an expensive operation. This penalty is only paid
once no matter how many iterations of smoothing occur.
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Table 3.12: Execution timing (ms) for one and five iterations of Laplacian filtering

Data & Size
Ours Open3D

CPU-S CPU-M GPU CPU-S

SynPEB, 500 × 500 7.0; 35.0 2.0; 9.2 0.8; 0.9 205.9; 240.6
RGBD, 120 × 212 0.7; 3.5 0.2; 0.9 0.1; 0.2 14.3; 17.5

Table 3.13 shows execution timing results of our bilateral filter for one and five iterations with
results separated by a semicolon. This filter is substantially slower than the Laplacian filter primarily
because both triangle normals and their centroids must be computed before this filter can run
(included in timing). Additionally each of these data structures is nearly twice as large in memory
as the input OPC (≈ 2 triangles per vertex). The weighting of neighbors in Equations (3.4) and 3.5
relies on an exponential function which is significantly slower than the floating point multiplication
and division required for Laplacian filter per Equation (3.2). Finally significantly more neighbors
and data are used in Equation (3.3) to produce a smoothed normal. A maximum of 16 triangle
neighbors (accessing both their normals and centroids) are used for the bilateral filter whereas
the Laplacian uses a max of eight vertex neighbors. The memory transfer from CPU to GPU is
significantly higher as well because 4X as much memory is needed.

Table 3.13: Execution timing (ms) for one and five iterations of bilateral filtering

Data & Size CPU-S CPU-M GPU

SynPEB, 500 × 500 73.0; 354.0 19.4; 90.9 3.2; 4.4
RGBD, 120 × 212 7.2; 35.0 1.9; 9.2 0.5; 0.5

3.9.4 User-Defined Meshes

We apply Polylidar3D on two meshes of an indoor home environment. Both meshes were
generated by gathering color and depth frames from an Intel RealSense D435i camera and integrating
them into a triangular mesh using methods from Zhou et al. [82] implemented in Open3D [83].
The method works by integrating the frames into a voxel grid and then performing marching cubes
on the grid to create a triangular mesh. An important parameter in this process is the voxel size
which if small makes a denser mesh that may also integrate noise from the sensor. The first mesh is
of a basement and has a 5 cm voxel size leading to a smoother approximation. Note this spacing
is significantly higher than the noise of the sensor. The second mesh is of the main floor and
is much larger and denser with 1 cm voxel spacing leading to significantly more noise from the
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RGBD camera. Only the main floor mesh is post-processed with Laplacian filtering using Open3D.
The basement mesh is composed of 60,620 triangles while the main floor mesh has 3,618,750
triangles. The parameters for Polylidar3D for both meshes are shown in Tables 3.14 and 3.15.
The most significant difference in parameter sets is that the basement is configured to capture small
surfaces (lower trimin and γ) in comparison to the main floor.

Table 3.14: Polylidar3D parameters for the basement mesh

Algorithm Parameters

FastGA level = 4, vmin = 15, dpeak = 0.1, samplepct = 12%

Plane/Poly Extr. trimin = 80, angmin = 0.95, lmax = 0.1, ptpmax = 0.08, verticesholemin = 6
Poly. Filtering α = 0.01, βneg = 0.025, βpos = 0.0, γ = 0.07, δ = 0.05

Table 3.15: Polylidar3D parameters for the main floor mesh

Algorithm Parameters

FastGA level = 4, vmin = 15, dpeak = 0.1, samplepct = 12%

Plane/Poly Extr. trimin = 1000, angmin = 0.95, lmax = 0.1, ptpmax = 0.08, verticesholemin = 6
Poly. Filtering α = 0.02, βneg = 0.05, βpos = 0.02, γ = 0.25, δ = 0.1

Figure 3.20a,b show the polygons output from Polylidar3D on the basement mesh. The floor and
all walls are appropriately captured as well as any obstacles on their flat surfaces. The top surface
of the chair, table top, and monitor have also been captured. However there are several small planar
segments on an occluded wall in (Figure 3.20b) which may not be desirable for capture. In this same
image a collection of stacked boxes are not truly flat and the polygon line segment goes “behind“
the mesh surface. Figure 3.20c,d show polygons output for the dense first floor mesh. The floor and
most walls have been successfully captured. However some walls have too much noise thus do not
meet planarity constraints, e.g., the far wall in (Figure 3.20c). The ground floor is not extracted as
one continuous polygon instead separating at the edge of the mesh in (Figure 3.20d). This occurs
because the floor areas have differences in height (in the mesh, not in reality); the point-to-plane
distance constraint is exceeded between these two surfaces causing two extractions. This can be
remedied by increasing ptpmax by 1cm but is left here to highlight the issue.

3.9.4.1 Parallelization Analysis

This section explores how Polylidar3D scales with additional CPU threads. We specifically
focus on plane/polygon extraction in Polylidar3D’s back-end. Both meshes are used in these steps
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(a)

Line Behind Mesh

(b)

(c) (d)

Figure 3.20: Example of Polylidar3D used with user defined meshes. Meshes are of an indoor home
environment. (a,b) show results on a basement mesh which has a smoother approximation and less
noise; (c,d) show results on a significantly larger, denser, and nosier mesh of the main floor.

and we limit the dominant plane normals to the top four in the scene, i.e., only floors and walls are
extracted. Figure 3.21 shows the parallelization speedup and execution timing of plane/polygon
extraction as up to eight threads are provided. The color of the line indicates how many dominant
plane normals are requested for extraction, i.e., blue indicates only the floor while orange indicates
both the floor and one wall. The more dominant plane normals requested the more CPU cycles
are needed.

Figure 3.21a shows the speedup and execution timings of the sparse basement mesh. The parallel
speedup does not go any higher than 2.4 with one dominant plane normal (blue-solid) and reaches
approximately 4.0 with four dominant planes (red-solid). The execution timings (dashed lines)
clearly show the diminishing returns as more threads are provided and plateaus around 0.5 ms
at 4 threads. Figure 3.21b shows a similar trend for the much larger and more dense main floor
mesh. The trends are clear that greater speedup is possible as more unique dominant planes normals
are requested because this work gets partitioned to independent tasks. However there is a limit to
this parallelism as not all procedures within the tasks are themselves parallelized. This is a clear
example of Amdahl’s law in effect which explains a theoretical limit to speedup as a function of
the percent of a program that is actually parallelizable [107]. In essence the theoretical speedup is
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always limited by the serial tasks, which in our case becomes (roughly) the combined execution
time of planar segmentation of the single largest dominant plane normal and the polygon extraction
of its largest planar segment. New threads do not reduce the time to complete these tasks because
their algorithms are serial.
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Figure 3.21: Results of parallel speedup and execution timing of Polylidar3D. Both basement (a)
and main floor meshes (b) are analyzed. Solid lines indicate parallel speedup and link to the left
y-axis while the dashed lines indicate execution time and link to the right y-axis. The color indicates
number of dominant plane (DP) normals extracted.

3.10 Discussion

Results show Polylidar3D successfully extracts flat surfaces as polygons with interior holes
from unorganized/organized point clouds and user-provided meshes. One of Polylidar3D’s primary
strengths is its polygon extraction speed. The key to this speed is the fast construction of half-edge
triangular meshes used directly in polygon extraction. No secondary re-triangulation is necessary
after planar segmentation. Our Fast Gaussian Accumulator was benchmarked against competing
K-D tree methods and shown to be two times faster and effective at identifying dominant plane
normals. Data and task-based parallelism is also exploited to efficiently allocate work to available
CPU cores.

Results also illustrate limitations. First, rooftop and ground extraction in Section 3.9.2 shows
that only one plane normal can be extracted from unorganized 3D points clouds. As described in our
methods the front-end currently performs 2.5D Delaunay triangulation which requires 3D→ 2D pro-
jection. This projection is most suitable when the sensing viewpoint and flat surface of interest
are aligned, as is for airborne LiDAR point clouds. However this is not a hard requirement as
shown with ground detection from the KITTI dataset. We chose 2.5D Delaunay triangulation for
its speed, however other methods may be used such as the ball pivot algorithm [81] or Poisson
surface reconstruction [80]. These methods created 3D meshes which could then be processed
by Polylidar3D.
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Polylidar3D planar segmentation expects a mesh to be reasonably smoothed. The amount of
smoothing depends on user-specified parameters for surface extraction and the noise of the input
data. If only large distinct flat surfaces are required then minimal smoothing is necessary. We
define distinct surfaces as plane normals that are well-separated on the Gaussian Accumulator
(e.g., 90◦). This smoothing aids in GA peak detection and appropriately groups triangles during
planar segmentation.

The Fast Gaussian Accumulator can only detect plane normals; it currently has no concept of
origin offset. This means that if there are two flat surfaces separated far from each other in a scene,
with similar (but not the same) surface normals, it is possible they will appear near each other on
the GA and be merged. Noise in the mesh affects how close these two peaks can be on the GA
and still be detected as distinct peaks. As the mesh is further smoothed (with edge-preservation
filters) the noise is reduced and the peaks become more defined. This is exactly what had to be
done to detect the numerous noisy planes in the SynPEB benchmark. Also, group assignment in
Algorithm 3.4 will assign common triangles to these detected peaks if they meet a user defined
angular threshold angmin from a detected peak. This means any detected peaks should be greater
than 2 · arcos(angmin) from each other to guarantee no overlap. Note also that angmin can be
increased as the mesh is smoothed.

Only dominant planes, flat surfaces that account for most of the 3D data, can be reliably captured
from organized point clouds and user-provided meshes. We see numerous qualitative examples
of this from RGBD sensor data, the SynPEB benchmark, and user-provided meshes. Polylidar3D
is only able to extract 47.3% of the average 42.6 planes in the SynPEB test scenes. However the
percent of point cloud metric k at 78% shows Polylidar3D doing an excellent job of capturing large
dominant planes. Scenes in this benchmark are the antithesis for what Polylidar3D was designed for
(dozens of small noisy planes), yet we show Polylidar3D still performs well in important metrics
such as minimizing the number of over/under-segmented planes, spurious predictions, and execution
time. We believe these metrics taken as a whole demonstrate Polylidar3D’s efficiency and reliability
for polygon extraction of dominant planar surfaces.

3.10.1 Point Cloud Characteristics and Parameter Selection

Each of the experimental result sections use different sensors resulting in dissimilar point
cloud characteristics such as density, spatial distribution, noise, and accuracy to the ground truth
surface. These characteristics have been studied both for Airborne Laser Scanning (ALS) technology
[108, 109], Velodyne LiDAR [110] and Intel RGBD [103] sensors. The airborne LiDAR point
clouds used in Section 3.9.2.1 were captured in swathes with a Nominal Point Spacing (NPS) of
30 cm creating a semi-random distribution with less than 2.5 cm RMSE [99]. Section 3.9.2.2
uses single scan Velodyne HDL-64E point clouds that are dense in azimuth/rotation but sparsely
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distributed in elevation due to beam spacing with a reported depth accuracy of less than 2 cm [101].
Finally RGBD sensor data analyzed in Section 3.9.3.1 contains dense and uniformly distributed
point clouds but with noise growing quadratically with distance [111].

The Polylidar3D parameters in Tables 3.3, 3.4, and 3.7 were chosen to give the best qualitative
results for each sensor and then applied to all data in their respective section. Most of the parameters
are straightforward and can be interpreted and justified when taking into consideration point cloud
characteristics. First, the parameters for Laplacian and Bilateral filtering are influenced by the noise
and density of the point cloud. No smoothing was required on the KITTI dataset (Velodyne sensor)
because the sensor had minimal noise with large point spacing leading to long skinny triangles for a
smooth mesh. The airborne LiDAR point clouds of rooftops were much denser leading to smaller
noisy triangles requiring two iterations of Laplacian and bilateral filtering. The raw RGBD depth
image is extremely dense and noisy requiring the use of Intel’s own post-processing image filters
with parameters described in [104]. However the generated point clouds were still noisy needing
additional smoothing using three iterations of both Laplacian and bilateral filtering.

Our Fast Gaussian Accumulator (FastGA) algorithm has several parameters which are influenced
both by point cloud characteristics as well as real-time computational needs. First the samplepct
parameter will downsample triangle normals in the mesh as input to FastGA to reduce computation
time. The authors found that a 12% down-sample was more than sufficient to extract dominant
planes in all scenes in the experiments. GA refinement level should be set to 3 or 4 depending on
the noise of the point cloud and accuracy required for extracted dominant plane normals. A lower
refinement level has a coarser tessellation of the sphere but is better for noisy data because noise is
“smoothed” into larger histogram cells. Peak detection parameter vmin is scaled between 0–255; the
authors found a value between 15–50 to be best. If only large dominant planes are needed then a
high value may be used but must be lowered to detect smaller planar segments.

Plane and polygon extraction algorithm parameters are influenced by density, point spacing,
and noise in the point cloud. The parameter lmax should be set to the maximum triangle edge length
in the mesh expected for a flat surface which is in turn influenced by the point spacing. For example,
KITTI dataset points are well-separated requiring lmax to be set higher than one meter while the
dense RGBD point clouds require only 5 cm. The parameter angmin depends on mesh smoothness
and the user’s tolerance for deviation from perfect flatness. The authors found a value between
0.94–0.99 to be ideal which corresponds to a 20◦–10◦ allowance in angle deviation. The parameter
ptpmax forces all segmented points to be within a certain distance from a segment’s geometric plane
which is influenced by point cloud noise. Small planar segments will be quickly removed if the
number of triangles is below the parameter trimin. Additionally, small interior holes in polygons
will be removed if their number of vertices are below the parameter verrticesholemin. Both these
parameters are influenced by point cloud density and the user’s tolerance for superfluous planes
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and/or holes in polygons.
Polygon post-processing parameter values are chosen more from scene context than from

underlying point cloud properties. For example parameters γ and δ remove polygons and holes
based on minimum area constraints and are not influenced by the point cloud. If a user desires to
extract only large surfaces (e.g., walls and floors) they can set γ to be high to filter small planar
patches such as a chair seat. Buffering and simplification parameters (α, βneg, βpos) are used to
remove redundant vertices and extraneous details for visualization and subsequent processing.

3.10.2 Algorithmic Complexity

The time complexity of Polylidar3D varies depending upon the data input. Unorganized 2D
and 3D point clouds have a total time complexity of O(n log n) where n is the number of points.
This is limited by the 2D and 2.5D Delaunay triangulation in the front-end which can only be
completed in O(n log n) time [48]. However the time complexity for organized 3D point clouds
and user provided meshes isO(n). The mesh creation procedure for organized point clouds exploits
the image structure to quickly determine pixel neighbors and creates a mesh in O(n) time. This
time complexity is the same for user-provided meshes which uses O(1) insert/access hashmaps to
determine half-edge relationships. Mesh smoothing on organized point clouds isO(n) by once again
exploiting the image structure to determine neighboring triangles for smoothing. Dominant plane
normal estimation using FastGA is likewise completed in O(n) time. The s2id generation (using
Hilbert curves) is independent of the number of points n being integrated into the sphere. The search
process for the histogram cell is likewise independent of n and only influenced by the refinement
level of the GA which is known at compile time. Region growing for planar segmentation is also
completed in O(n) by having quick O(1) access to neighboring triangles using half-edges array
HE . Polygon extraction itself is completed in O(n) time [84]. Any plane and polygon extraction
parallelism reduces time by a constant factor which does not affect the overall time complexity of
these algorithms.

3.10.3 Future Work

There are three significant techniques that will improve Polylidar3D’s robustness in future work:
polygon merging, time integration, and integrating intensity/color data. Many planar segmentation
algorithms perform “plane” merging of extracted segments (point sets) which are deemed similar
by Euclidean distance and plane-fit error tolerance [49, 69, 67, 60]. This is most often used to
combine oversegmented predictions of a common surface. Polylidar3D can be extended to perform
the same action with polygons. Detailed meta-data about each polygon can be stored to aid in the
merging process including geometric plane normal, centroid, axis-aligned bounding box, and even
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the convex hull if necessary. This information will aid the pairwise matching between polygons
in a scene before a possibly expensive polygon merger. There are several methods to perform a
non-convex polygon merge including morphological operations such as dilation and erosion.

Polylidar3D processes each point cloud distinctly. Time integration incorporates data from
multiple data frames in a sequence by filtering and refining extracted polygons based on previous
results. In a static scene with fixed sensor viewpoint time integration can reduce the variance of
polygons produced over time. All linear rings of the polygon (both hull and holes) can be explicitly
tracked using meta-data previously discussed and removed if certain thresholds are not met. With a
dynamic scene or moving sensor time integration would require significant extension to Polylidar3D
to incorporate additional data such as sensor (vehicle) motion estimates and even semantic scene
information. Additional work investigating the use of Bayesian filtering will be done.

Data such as intensity and/or color of the point cloud can be used to further determine similarity
between neighbors in the point cloud during region growing. Such data has been shown to improve
results for point cloud registration [57] and mesh smoothing [51]. Additionally, deep neural network
may perform semantic segmentation on RGBD images to quickly output class labels for each pixel
in the image [112]. This information can then be fused into Polylidar3D to better inform partitioning
of work and similarity between neighboring triangles.

3.11 Conclusions

This chapter introduced Polylidar3D, a non-convex polygon extraction method capturing flat
surfaces from a variety of 3D data sources. Front-end methods transform unorganized point clouds,
organized point clouds, and 3D triangular meshes to a common half-edge triangular mesh format.
Back-end core algorithms perform mesh smoothing, dominant plane normal estimation, planar
segmentation, and polygon extraction. A novel Gaussian accumulator, FastGA, was demonstrated
robust and quick at detecting dominant plane normals in a 3D scene. These dominant plane normals
are used to parallelize planar segmentation and polygon extraction. Polylidar3D is evaluated in
five separate experiments with airborne LiDAR point clouds, automotive LiDAR point clouds,
RGBD videos, synthetic LiDAR benchmark data, and meshes of indoor environments. Qualitative
and quantitative results demonstrate Polylidar3D’s speed and versatility. All of Polylidar3D is open
source and available to be freely used and improved upon by the community [36, 61, 65].
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CHAPTER 4

Roof Shape Classification from Satellite Images and LiDAR Data

4.1 Introduction

Geographic information system (GIS) data are openly available for a variety of applications.
Data on terrain height and type have historically been available, with high-accuracy labeled data
now increasingly available, e.g., building footprints and heights. Systematic characterization of
building roof architecture and slope offers a new dimension to traditional terrain data. These data
could be used to rapidly identify building change or damage from the air, to improve in-flight
localization capabilities in GPS-denied areas, and to inform small Unmanned Aircraft Systems
(UAS) of alternative ditching sites, a problem previously investigated by the authors [5, 113].
Databases such as OpenStreetMap (OSM) [114] provide limited roof information, but such data
have been manually entered to-date thus is sparse.

This chapter fuses satellite imagery and airborne Light Detection and Ranging (LiDAR) data
through multiple stages of machine learning classifiers to accurately characterize building rooftops.
With these results, roof geometries worldwide can be stored in an easily-accessible format for UAS
and other applications. Supervised training datasets are automatically generated by combining
building outlines, satellite, and LiDAR data. The resulting annotated dataset provides individual
satellite image and LiDAR (depth) image representations for each building roof. Roof shapes are
automatically categorized through a novel combination of convolutional neural networks (CNNs)
and classical machine learning. Transfer learning is employed in which multiple pre-trained CNN
model architectures and hyper-parameters are fine-tuned and tested. The best performing CNN
for both satellite and LiDAR data inputs is used to extract a reduced feature set which is then fed
into either support vector machine (SVM) or random forest classifiers to provide a single roof
geometry decision. Validation and test set accuracies are evaluated over a suite of different classifier
options to determine the best model(s). A range of urban environments are used to train and test
the proposed models. Data from Witten, Germany; Ann Arbor, Michigan; and the Manhattan
borough of New York City, New York are collected and manually labeled to represent small to large
metropolitan city centers. We show that combining datasets from both small and large cities leads
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Figure 4.1: Roof classification data fusion and processing pipeline. LiDAR, building outlines, and
satellite images are processed to construct RGB and LiDAR images of a building rooftop. In Stage
1, these images are fed into a CNN for feature extraction, while Stage 2 uses these features with a
random forest for roof classification. These data can be stored for quick reference, e.g., navigation
or emergency landing site purposes.

to a more generalized model and improves performance. Figure 4.1 provides an overview of the
data processing pipeline and illustrates a UAS localization and contingency landing use case [113].
Specific contributions include:

• Over 4500 building roofs spanning three cities have been manually classified and archived
with a satellite and LiDAR depth image pair. This dataset is released with this chapter.

• New “complex-flat” and “unknown” roof shape classes enable the machine classifier to
distinguish flat roofs with infrastructure (e.g., air conditioning and water towers), unfamiliar
roof shapes, and images of poor quality.

• This work significantly reduces the set of outliers that previously required manual removal
for training and test datasets (from 45% in [115] down to 5% in this work). This chapter’s
test set accuracies represent a reasonable expectation of results when deployed in new areas.

• An analysis of confidence thresholding is presented to improve the model’s predictive power.
This ensures only correct labels are assigned which is critical for use in high risk scenarios.

• Expanded results are presented from use of a single trained classifier (over Witten and
Manhattan) tested with datasets from three cities, one of which (Ann Arbor) was never used
for training or validation.

The chapter is structured as follows. First, GIS data sources and prior roof geometry classifi-
cation work are summarized. Next, background in machine learning and data extraction methods
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is provided. Specific methods to extract data for input to this chapter’s machine learning feature
extraction and classification system are presented, followed by a description of training, validation,
and test runs performed. Statistical accuracy results are presented followed by a discussion and
conclusions.

4.2 Background

This section summarizes related work. First, GIS data sources and previous efforts to extract
roof geometries are reviewed. Next, convolutional neural networks (CNNs) and their application to
feature extraction are reviewed.

4.2.1 Roof Geometry Classification

Satellite color images and 3D point cloud data from airborne LiDAR sensors provide comple-
mentary roof information sources. High resolution satellite images offer rich information content
and are generally available worldwide. However, extracting 3D building information from 2D
images is difficult due to occlusion, poor contrast, shadows, and skewed image perspectives [116].
LiDAR point clouds provide depth and intensity measurements that capture the features of roof
shapes, yet LiDAR does not offer other world feature information from ambient lighting intensity
and color. LiDAR point cloud data are often processed and converted to digital surface models
(DSM) representing the top surface layer of any terrain.

The amount of detail desired for roof geometry influences data processing methods. Detailed
reconstruction of 3D city maps for visualization or simulation purposes often requires a detailed
representation of the geometric elements in a 3D building model. This is often accomplished using
a model based or data driven approach. In a model-based approach, a collection of parameterized
building models are selected as possible candidates given prior knowledge of buildings in the
geographic region of interest. Buildings are then fit to these models using the gathered data points,
and the best 3D model is chosen. This method can reliably extract parameters from data points so
long as the building shape is simple and roof details are not required [117]. A data-driven approach
does not require a priori knowledge of building structures, instead using large datasets to generate
a high-fidelity model. Data points are grouped to define planar surfaces which in turn are used to
construct 3D lines fully specifying building geometry. For example, work by Ref. [118] segments
potential roof points in a building through their normal vectors, which are later collapsed into planar
elements that conform to the defined constraints of roof planes.

The photogrammetry community has demonstrated recent success in applying data driven
approaches for 3D building reconstruction. Ref. [119] proposed a dynamic multi-projection-contour
(DMPCA) framework that uses super generalized stereo pairs (SGSP) to generate and iteratively
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refine 3D buildings models. This method minimizes the total difference between the projection-
contour of a building across SGSPs and the projection-contours of the simulated 3D model. Using
building images captured by a UAS, Ref. [54] generated a dense point cloud from image matching.
This point cloud is then clustered by RANSAC shape detection. Planar geometry is then determined
through least squares fitting, and finally refined details (e.g., dormers and eaves) are modeled. Ref.
[120] proposed the use of both thermal infrared (TIR) and RGB images taken by UAS to generate
point clouds. These distinct point clouds are then aligned with an iterative closest point (ICP)
procedure generating a high fidelity building model with accompanying RGB textures. Similarly,
Ref. [121] proposed a roof-contour and texture-image guided interpolation (RTGI) method that
generates facades as well as texture maps of buildings. A common theme in most of the above
research is the increased use of UAS to capture high resolution data from multiple viewpoints to
improve model accuracy.

The localization and landing site applications for UAS referenced by this chapter only require
a simple classification of building roof shape. In fact, complex model representations are undesirable
given that UAS applications would be computed by a low-power lightweight embedded processor.
Classical machine learning algorithms such as support vector machines (SVM), logistic regression,
and decision trees are often used in these classification scenarios but invariably face computational
complexity challenges caused by the high dimensionality found in these GIS data sources. To
employ these algorithms, a reduction in dimensionality through feature selection is often performed.
Recent work by Ref. [122] performed roof classification through SVM’s by reducing a DSM image
of a roof to a set of handcrafted features such as the number of roof surfaces for each building and
the distribution of the binned slope angles. A set of 717 buildings in Geneva, Switzerland were
manually labeled for training and testing purposes of the model, resulting in an overall accuracy
of 66% for a six roof type classification. The same authors also experimented using a random
forest classifier with similarly handcrafted features from a DSM on a 1252 building dataset from
Switzerland. The test set was a 25% random sampling of the labeled dataset with a reported total
accuracy of 70% when identifying six roof types [123].

Recent advances with deep learning with techniques such as convolutional neural networks
(CNN) have demonstrated the ability to accurately and robustly classify high dimensional data
sources such as camera images [124]. The GIS community has begun to apply CNNs to roof
identification. Perhaps most closely related to this chapter, Ref. [125] trained CNNs using satellite
Red Green Blue (RGB) imagery and Digital Surface Model (DSM) images to label basic roof
shapes. However, the final predicted roof shape was simply taken as the highest probability result
between the two models (RGB, DSM); no feature fusion or training was performed between different
modalities. Training and test set sizes are not explicitly provided, however two test set accuracies
are reported: 95% and 88% using the the authors’ best model.
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Complementary work by Ref. [126] fine-tuned a CNN using patched satellite images of building
rooftops. Using the fine-tuned CNN, the authors extracted high-level features of images as inputs to
a second-stage SVM classifier. Approximately 3000 images in Munich, Germany were used for
training and testing resulting in 76% total accuracy. Our chapter adopts an analogous two-stage
processing approach to roof classification with the novel addition of LiDAR and satellite image
feature fusion. Specifically, this fusion allows the creation of a nonlinear decision function that
exploits the strengths of each modality. Finally, unlike all previous work we have encountered, this
chapter incorporates data from geographically diverse cities and assesses models on their ability to
generalize across regions.

4.2.2 The Convolutional Neural Network (CNN)

An artificial neural network is composed of a series of functional layers connected in a weighted
graph structure. Each neural network layer consists of a node vector, a node activation function,
and weighted edges typically feeding forward to the next network layer. A layer is considered fully
connected (FC) if every node in the layer is connected to every node in the previous layer. Repeating
layers are called blocks and can have unique structural and functional designs. An example is shown
in Figure 4.2a.

Input
layer

Hidden
layer

Output
layer

(a) (b)
Figure 4.2: Example of a fully connected and convolutional neural network. (a) Fully connected
neural network with one hidden layer. (b) CNN with two convolutional blocks.

Convolutional neural networks (CNNs) are primarily distinguished by their shared weights and
translation-invariance characteristics. CNNs hold multiple convolutional blocks that are generally
composed of a convolutional filter layer, an activation layer, and finally a pooling or downsampling
layer. These blocks generate high level features from their inputs which are then fed into the next set
of blocks. Figure 4.2b shows an example of an input image passing through two convolution blocks.
Eventually, a final feature set is produced which feeds into fully-connected layers generating an
output feature vector or classification. The dimensions of CNN blocks and how they interconnect
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with each other and subsequent layers determines the architecture of the network. Researchers
have developed several CNN architectures that have been tested against large image sets such as
Imagenet [127]. These networks are trained from scratch, meaning their weights are randomly
initialized, and take weeks (of real-time) to converge even with the aid of general purpose graphics
processing units (GPGPUs). For example, the Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) holds a dataset of over a million images with the task of distinguishing between
1000 categories. CNN classifiers achieved “Top 5” accuracies of greater than 95%.

For a CNN to be applied to an application such as roof classification, a large supervised domain-
specific training set is needed. If a large training dataset is not available, a technique called transfer
learning can be applied. Transfer learning accelerates machine learning by transferring knowledge
from a related, perhaps generalized, domain to a new domain [128]. This technique requires the
use of an existing pre-trained CNN. The beginning layers of the pre-trained CNN often generate
domain-independent features (e.g., features which distinguish lines or color changes) that will be
useful for other domains. The base architecture and associated weights are used as the starting
layers in a new CNN to be trained. An opportunity also arises during the training process to freeze a
variable number of initial layers’ weights, thereby reducing the number of parameters to learn and
overall training time. In essence, the more initial layers that are frozen, the more the CNN relies
upon the pre-trained model’s domain knowledge.

In addition to transfer learning, image augmentation (rotation, cropping, etc.) can be used to
artificially inflate the training dataset, which tends to reduce overfitting. Parameters such as the size
of the fully connected layers or number of frozen initial layers influence the accuracy of the model.
Optimal parameters are determined by evaluating multiple trained networks against a validation set
and assessing its accuracy. Parameter adjustments are grouped as hyperparameters to determine
an optimal model structure.

4.2.3 Feature Extraction and Classical Machine Learning

Supervised learning classification algorithms such as support vector machines (SVM) and
decision trees have difficulty handling large GIS datasets such as images or point clouds. However,
when given a reduced feature set, both approaches can be effective for final classification [129, 122].
Researchers have begun to use CNN’s to extract a “Stage 1” reduced feature set that is then fed
into a downstream “Stage 2” classifier. Support vector machines (SVM) divide a feature space
into linear hyperplanes for class separation, but often use kernels to project input features into
higher-dimensional spaces to create non-linear decision boundaries. The best kernel to be used is
dependent upon the feature set provided; however, linear, polynomial, and radial based function (rbf)
kernels are often the first used. Figure 4.3a shows an SVM separating a binary class (red/green) with
the line that maximizes margin distance between classes; a linear kernel is used. Similarly, random
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forest classifiers create nonlinear decision boundaries through ensemble learning, a technique that
trains many decision trees on random subsets of the training data as shown in Figure 4.3b. The
forest is represented by the many decision trees created and trained, and the final classification is the
statistical mode of the trees’ collected predictions. The forest is often limited by the number of trees
(i.e., number of estimators) as well as the maximum depth of any tree in its collection. Random
forest classifiers are resilient to overfitting through the collected knowledge of the ensemble. This
chapter will train both SVM and random forest classifiers on CNN extracted features from satellite
and LiDAR building images in an effort to improve classification accuracy.
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Figure 4.3: Example of a SVM and random forest classifier. (a) SVM separating two classes with a
hyperplane. Optimal class separation is guaranteed by maximizing margin size. (b) Random forest
with multiple decision trees being trained on random samples from the training data.

4.3 GIS Data Processing, Image Generation, and Training

Section 4.3.1 details the process of generating an annotated dataset and its random split into
distinct training, validation, and testing subsets. Sections 4.3.2 and 4.3.3 outline image generation
techniques from LiDAR and satellite data, respectively. Section 4.3.4 details the specific CNN
architectures and training procedures, followed by validation assessment. Section 4.3.5 explores
CNN feature extraction as input for several chosen classical machine learning algorithms and their
associated parameters.

4.3.1 Classified Image Set Generation

Generation of an annotated roof dataset requires three data sources for each building: satellite
imagery, airborne LiDAR data, and building outlines with corresponding roof labels (from manual
classification). Buildings outlines are used to extract individual roofs from satellite and LiDAR data.
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Using building outlines to filter such data sources is a technique used within the GIS community
[130, 131]. For example, Ref. [132] used 2D cadastral maps to clip buildings from a DSM for 3D
building reconstruction. This clipping step allows for the subsequent generation of images focused
on the building of interest and enhances feature extraction.

All three of these data sources must be properly geo-referenced so they can be fused together.
Care must be taken to select a geographic area where data sources for all of these items are present.
Although OSM provides the necessary building outlines in many geographic regions, the associated
roof shape label is most often incomplete. Some geographic regions (e.g., Germany) are more likely
to have a denser collection of labeled roof shapes through a higher volunteer involvement. Previous
work by the authors relied upon pre-labeled roof shapes provided by the OSM database [115] in
Witten, Germany. However, this chapter broadens the categories of classifiable roof shapes as well
as sampling from diverse regions including small to large city centers. The authors found that OSM
did not provide sufficient pre-labeled buildings, necessitating manual classification of thousands
of roof shapes (by the first author). Once the appropriate data sources are found or generated, the
methods described below can be employed to generate satellite and LiDAR images for each building
in preparation for supervised learning and subsequent use in roof shape classification.

Satellite, LiDAR, and building outline data sources have their own spatial reference systems
(SRS). The SRS defines a map projection and determines the transformations needed to convert
to a different SRS. These reference systems are uniquely identified though a spatial reference
system identifier (SRID) which designates an authority and an identifier. For example, the European
Petroleum Survey Group (EPSG) can be used to specify SRIDs. Many map vendors, such as OSM,
choose to store building outlines as polygons, with each vertex stored in WGS84 (EPSG:4326).
Satellite images from common map vendors (ArcGIS, Bing, and Google) often use WGS84/Pseudo-
Mercator (EPSG:3857). LiDAR data are usually stored in a region-specific SRS; for example, data
for Witten, Germany uses EPSG:5555. To convert a point stored in one SRS to another, a program
specialized in these transformations, such as proj.4, must be used [31]. Building polygons are
transformed to their LiDAR and satellite counterpart coordinate systems so that the building outlines
are consistent.

4.3.2 LiDAR Image Construction

A depth image representation of each building’s roof shape is generated from a LiDAR point
cloud. However, many outlier points can inadvertently be present during image generation leading
to poor quality or misleading images. To attenuate these effects, bulk preprocessing and per-building
filtering steps are performed as described below.
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4.3.2.1 Bulk Preprocessing

LiDAR point cloud data are often stored and publicly released in an industry-standard LASer
file binary format [133]. This specification not only details the storage of the xyz coordinates of
each point, but also supports data classification. If the LAS file’s ground points have been classified
previously, one can filter the ground points from the file to improve image generation. However, if
the ground points are not already classified, ground point removal per building can be performed as
outlined in Section 4.3.2.2.

Airborne LiDAR point clouds often include points from building wall surfaces that are not of
interest for roof shape classification. These points appear as noise around the edges of the generated
LiDAR image and can be removed by estimating the normal vectors for each 3D point and removing
points that are nearly orthogonal to the unit vector k̂ facing up. Normal vectors may be estimated by
gathering points in a configurable search radius, r, and then performing a least squares fit to a plane.
The authors chose to use the open source White Box Analysis Tools for generating normal vectors in
bulk [134]. A search radius of one meter was chosen to generate a point normal, n̂i for each point
p̂i, with points stored that satisfy

∣∣n̂i · k̂
∣∣ > 0.3. This ensures that only points with normals that are

within 72° of ±k̂ are kept for further use.

4.3.2.2 Individual Building Filtering and Projection

Individual building LiDAR filtering begins by constructing a 2D planar bounding box (BBOX)
from a polygon building outline. This BBOX is used first to quickly remove points in the point
cloud that are not related to the building of interest. The resulting subset of points is filtered again
using the polygon roof outline, resulting in only points encapsulated in the building outline. Points
are determined to be within the polygon by employing a ray casting algorithm [135]. At this time,
the 3D point cloud may be noisy and contain undesirable points.

Ground points not already removed due to a ground label per Section 4.3.2.1 must now be
removed. First, the minimum ground height zmin must be identified; this value is specific to the
building of interest. Ground height can be determined by applying a buffer to the BBOX ensuring
a ground point is within the set and then finding the point with the minimum height. Any point
whose z coordinate, p̂i,z, less than zmin plus a configurable threshold zbuff can be considered a
ground point and then removed, as shown in Equation (4.1). The authors found zbuff = 2.5 meters
is sufficient to remove most ground points. Note this fractional zbuff accounts for sheds, etc. with
low height.

zmin + zbuff < p̂i,z (4.1)

A final step of filtering will remove stray points often caused by overhanging trees or other
interference. This technique relies upon analyzing the distribution of the z-coordinates of each
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building’s point cloud. This chapter employs median absolute deviation (MAD) to construct a
modified z-score that measures how deviant each point is from the MAD as in [136]. This
method only applies to unimodal distributions; however not all buildings height are distributed as
such. For example, there exist complex flat buildings that contain multiple height levels resulting in
a multimodal distribution. To distinguish these buildings, the dip test statistic is employed which
measures multi-modality in a sample distribution [137]. The test outputs a p-value ranging from
zero to one, with values 0.10 or less suggesting bimodality with marginal significance [138]. Any
building with a p-value greater than 0.2 is considered unimodal, and outlier removal is performed
as shown in Algorithm 4.1. Results of this filtering technique are shown in Figure 4.4.

Algorithm 4.1: Filtering of Airborne LiDAR Point Cloud
Input : Collection of 3D points, A
Output : Filtered 3D point cloud, B

1 Z = Az
2 B = ∅
3 p-value = diptest(Z)
4 if p-value ≥ .2 then
5 MAD = median ( |Zi −median(Z)| )
6 for p in A do
7 diff = |pz −median(Z)|
8 z-score = 0.6745 · diff/MAD
9 if z-score ≤ 3.0 then

10 B = B + p
11 end
12 end
13 else
14 B = A
15 end
16 return B

Once LiDAR point extraction is complete, the points are projected onto a plane, creating a 2D
grid that takes the value of each point’s height information. The 2D grid world dimensions are the
same as the bounding box of the building, with the discrete grid size being the desired square image
resolution. Grid points use interpolation of nearest neighbor if no point is available. Afterward,
this grid is converted into a grayscale image, where each value is scaled from 0 to 255 with higher
values appearing whiter and lower areas darker. Figure 4.4c demonstrates this process. The CNN’s
used in this chapter require the grayscale LiDAR data be converted to a three-channel RGB image
by duplicating the single channel across all three color channels. This final image is referred to as
the LiDAR image.
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Figure 4.4: Demonstration of LiDAR filtering. LiDAR data of a gabled roof. Histogram of height
distribution and generated image (a) before filtering and (b) after filtering, using median absolute
deviation. (c) Projection of filtered point cloud.

4.3.3 Satellite Image Construction

It is preferable that the satellite imagery be orthorectified to remove image tilt and relief effects.
Ideally, the building polygon can be used to completely stamp out a roof shape image. However,
if the aforementioned issues are present in the image, it is unlikely that the polygon will exactly
match the building outline in the image. To work around these issues, an enlarged crop can be made
around the building. The enlarged crop is produced by generating a buffer around the building
polygon by a configurable constant, and then using the bounding box of the new polygon as the
identifying stamp. After the image is produced, the image is resized to the square image resolution
required by the CNN. The authors found this technique to be necessary only in Witten, while
Manhattan and Ann Arbor building outlines were fairly consistent with satellite images. After
experimentation, this configurable constant was set to three meters when processing the Witten
dataset. Figure 4.5a shows an example original building outline (red shade) overlaid on a satellite
image, and the expanded polygon bounding box in cyan. The resulting generated image is shown in
Figure 4.5b. This final image is referred to as the RGB image below.

86



(a) (b)
Figure 4.5: Satellite image processing. (a) Witten building outline in red shading overlaid on the
satellite image. The enlarged crop area is shown in cyan shading. (b) The final generated image,
resized.

4.3.4 Stage 1: CNN Architectures and Training

The CNN base architectures chosen for experimentation are Resnet50 [139], Inceptionv3 [140],
and Inception-ResNet [141]. All three of these architecture structures are distinct; when trained
and tested on ImageNet [127] they received “Top 5” accuracy scores of 92.8%, 93.9%, and 95.3%,
respectively. The computational complexity and size of the network increases progressively from
Resnet50 to Inceptionv3, with the Inception-ResNet architecture combining the previous archi-
tectures to produce a deeper overall network. Each CNN makes use of successive convolutional
blocks to generate a final feature map (referred to as the base layers) which are subsequently used
by downstream fully-connected layers to make a 1000 categorical prediction (referred to as the
top layers). The top layers are domain specific and are not needed for roof classification thus are
removed. This chapter applies a global average pooling layer after the final feature layer of each
architecture, reducing the convolved feature layers to be used as input into a roof classifying layer.
This final classifying layer is composed of an optional fully connected layer (FC1) and a softmax
prediction layer as shown in Figure 4.6. A FC1 size of 0 means the fully connected layer is omitted,
and the features map directly to the softmax layer. These models are then trained individually on
the RGB and LiDAR images.

Training initializes base layer weights with their respective parent architecture. The optimizer
chosen for gradient descent is Adam [142] for its ability to effectively adjust learning rate auto-
matically for individual weights; this optimizer is kept consistent for all architectures and training
sessions with learning rate initialized at 0.001. The option of freezing initial layers is exploited
with a variable number of frozen layers chosen. When Layer 11 is said to be frozen, this means
all previous layers, (Layers 1–11), are frozen during training. All base architectures and tested
hyperparameters are shown in Table 4.1.
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 Base Layers

(Resnet50, Inceptionv3,
Inception-Resnet)
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Figure 4.6: CNN architecture templates.

Table 4.1: CNN architectures and hyperparameters

Base CNN Model FC1 Size Frozen Layers

Resnet50 0, 100 50, 80
Inceptionv3 0, 100 11, 18, 41
Inception-Resnet 0, 100 11, 18, 41

Keras [143], a high-level neural network API written in Python, is used to import the pretrained
CNN models and construct the new architectures discussed above. A maximum of 1000 epochs
are run during the training process, while early stopping is employed at the end of each epoch.
Early stopping is a technique where after each epoch, the model is run against the validation set and
accuracy metrics are reported. If validation accuracy is not improved after seven epochs, training is
halted. This ensures that the the model does not needlessly overfit the training data, and the most
generalized model is saved. Data augmentation is performed randomly with horizontal and vertical
image flips as well as rotations ranging from 0◦–45◦.

After training is complete on all CNN architectures and hyperparameters, the best performing
CNN with respect to the validation set accuracy for both LiDAR and RGB images is selected for
further use. Another training session is performed to determine if region-specific training improves
region model accuracy, i.e., whether a model that is trained with data in a specific region (city)
will be better at predicting roof shapes in that region compared to a model trained on more diverse
data. In this study, model architecture is held constant; only training data quantity and diversity are
manipulated.

4.3.5 Stage 2: SVM and Random Forest Classifier Training

The best CNN models are used to extract high level image features as input to a downstream
“Stage 2” classifier. This step determines if improved results can be obtained by combining both
classical and deep learning models together, as shown in Figure 4.7. In this scenario, only the layers
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up to global average pooling are used to generate a condensed feature map for each image in the
dataset. The augmented training set images are reduced to this small feature vector and are used to
train both sets of classifiers (SVM and random forest) over a variety of configurations, as shown in
Table 4.2. The Python machine learning library Scikit-learn is used to train and validate the
models [144]. The final model is chosen which holds the highest test score accuracy.

Table 4.2: SVM and random forest training configurations

Classifier Parameters

SVM Regularization Constant (C): 1, 10, 100
Kernel: linear, rbf, poly, sigmoid

Random Forest Criterion: gini, entropy
Number of Estimators: 5, 10, 50
Max Depth: 5, 10, 50

Best Fine-tuned  
LIDAR CNN 

LIDAR 

Best Fine-tuned 
RGB CNN 

RGB 
Features

Features 
LIDAR 
SVM 

Random Forest 

RGB 
SVM 

Random Forest 

DUAL 
SVM 

Random Forest 

Figure 4.7: Feature extraction for use in SVM and random forest model training. The “dual” model
refers to both LiDAR and RGB features being combined as input for model training and prediction.

4.4 Results

4.4.1 Case Study Dataset Generation

This section outlines the data sources of several cities used to generate images of building
rooftops for this chapter’s case studies. Procedures for manually labeling images are discussed, and
a complete breakdown of labeled roof categories is presented. Example images are shown for each
category along with explanations of training, validation, and testing datasets.
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4.4.1.1 Data Sources

The geographic regions used in the following case studies are chosen to maximize diversity in
roof shape architectural examples. Diversity within each class translates to image differences such
as colors and outline shapes for roofs. Data from the cities of Witten, Germany; the Manhattan
borough of New York City, New York; and Ann Arbor, Michigan are used to generate case study
data. Witten represents a small urban city with minimal high rise buildings and numerous single-
family residential buildings, whereas Manhattan represents a sprawling metropolis with a diverse
range of flat-like building roofs with structural additions to the rooftops (antennas, water towers, air
conditioning units, etc.). Ann Arbor, used only as an independent test set, includes a combination
of building architectures found in Witten and Manhattan. Each of these cities provide publicly
available high resolution satellite images, LiDAR data, and building outlines per Table 4.3. Building
sampling was random in the downtown districts of Ann Arbor and Manhattan, while Witten was
sampled uniformly over the entire city.

Table 4.3: Satellite, LiDAR, and building data sources

City
Satellite LiDAR Buildings

Provider Resolution Provider Spacing Provider

Witten Land NRW [100] 0.10 m/px Open NRW [99] 0.30 m OSM [114]

New York NY State [145] 0.15 m/px USGS [146] 0.70 m NYC Open Data [147]

Ann Arbor Bing [148] 0.15 m/px USGS [149] 0.53 m OSM [114]

4.4.1.2 Image Generation and Labeling

Using the methods described in Section 4.3, RGB and LiDAR images are generated for each
building roof in all cities and then randomly downsampled. All data are treated as unlabeled, requir-
ing manual classification by the authors. One of eight roof shape labels can be assigned to each
image: unknown, complex-flat, flat, gabled, half-hipped, hipped, pyramidal,
and skillion (shed). This set was determined by observing the most abundant roof architec-
tures present in Witten and Manhattan and merging them together. Unknown is a catch-all category
used to account for roof shapes outside the other seven, often labeled complex in other litera-
ture [122, 125]. Additionally, poor quality images unsuitable for roof prediction are also marked
unknown. A complex-flat roof differs from a flat roof in the significance of obstructions
on the surface of the roof, or if there are multiple height layers. A flat roof should have minimal
objects and a near homogeneous height profile, while a complex-flat roof may have additional
items such as water towers or superstructures but still contain sufficient flat structure, e.g., for a
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safe small UAS landing. This distinction is more apparent in Manhattan than Witten; separating
these categories is beneficial to provide class diversity in an otherwise architecturally binary dataset.
Practically all roofs in Manhattan are either flat-like or classified as unknown. Examples
of RGB and LiDAR images for the seven classes of roof shapes are shown in Figure 4.8 while
examples of the unknown class are found in Figure 4.9.

RGB

LIDAR

flat hippedgabled pyramidal skillionhalf-hippedcomplex-flat

Figure 4.8: RGB and LiDAR example images of roof shapes.

LIDAR

RGB

Figure 4.9: RGB and LiDAR example images classified as unknown. This category includes
buildings with poor quality images as well as complex roof structures.

LiDAR and satellite images may in some cases be labeled differently. For example, a building
with an actual gabled roof may have a LiDAR image which is malformed leading to an unknown
class label, while the RGB image may be clear leading to a gabled label. These differences must
be noted to prevent models from being trained on incorrect classifications; we want the LiDAR
model to learn that the LiDAR image is poor and that an unknown classification should be given
while the RGB model should learn the true label. When label differences occur, both labels are kept
for training and model validation, leading to differences between the LiDAR and RGB training and
validation datasets. However, the test dataset do not have these label difference between modalities;
the test set instead marks every image with the true building label. This ensures that the test set
presents an accurate prediction of results with slightly lower classifier accuracy than validation
datasets. If both modality images are poor, then the true label is unknown because no prediction is
possible.
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A final rare case exists where one modality is clear and correctly labeled but the other modality
is misleading with an incorrect label. This occurs especially in LiDAR images of half-hipped
buildings appearing as though they are gabled. There is often only a subtle difference between
the two classes, a small triangular dip near the edge of the building, that may not be captured fully
in the LiDAR image. When this occurs, the LiDAR image is removed from the training/validation
set because one does not want to train on an image that will give inaccurate results. However,
the test dataset is left intact. In all cases, the test dataset holds the true roof label based on
manual classification, and performance of all machine learning models is assessed in comparison to
predicting the true label.

Models that require both input modalities for prediction must have a single label reference for
training. If a conflict exists between the two image labels, then the true label is used as was done in
the test dataset. This is beneficial as it forces the model to learn to rely on another modality when
one input is known to be incorrect. A complete breakdown of the annotated dataset by city is in
Table 4.4. Witten and Manhattan data are combined together and divided into training, validation,
and testing data in a 60/20/20 random split. The Ann Arbor data are used only as a secondary test
set to determine generalizability of the model and results.

Table 4.4: Breakdown of roof labels by city

Roof Shape Witten Manhattan Ann Arbor

unknown 133 792 14
complex-flat 125 785 37

flat 454 129 24
gabled 572 7 96

half-hipped 436 0 3
hipped 591 3 20

pyramidal 110 0 0
skillion 189 0 2

Total 2610 1716 196
Removed 212 65 0

Note that some data were removed from each city because of discrepancies between satellite
and LiDAR data resulting from the time the data were recorded. For example, a newly constructed
neighborhood in Witten has newer satellite images capturing the neighborhood while old LiDAR
data show a flat undeveloped area. This situation was attenuated in Manhattan by looking at building
construction dates and only using buildings whose date of construction is before the creation of
earliest data sources. However, this information was not able to be found for Witten leading to a
much higher removal rate. Overall, about 5.6% of the data were manually discarded for Dataset 1
(Witten and Manhattan). No buildings were removed from the Ann Arbor dataset used for testing.
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4.4.2 CNN Training and Results

All training was performed on the University of Michigan Flux system, providing a server with
a minimum of six gigabytes of RAM, two CPU cores, and a single NVIDIA Tesla K40. The training
and validation was performed only on Dataset 1, the combination of the Manhattan and Witten data.
Figure 4.10a plots validation set accuracy for the best-performing CNN models with RGB input,
while Figure 4.10b displays results for LiDAR input. The horizontal axis of both figures indicates
whether the network uses a fully connected layer after features are extracted from each CNN.
Consistent with previous research, accuracy results are substantially higher (∼10%) using LiDAR
data versus RGB data. The best performing network for RGB input is Inception-Resnet with
a fully connected layer providing a validation set accuracy of 78.0%. Accuracy appears to increase
for RGB input models with increasing CNN model complexity as well as the addition of a fully
connected layer.
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Figure 4.10: Results of CNN networks on validation set. Colors indicate the base model used while
the horizontal axis specifies whether a fully connected layer is part of the architecture. (a) RGB
(satellite) image input and (b) LiDAR image input.

The best performing model for LiDAR input was Resnet50 with a validation set accuracy of
88.3%, which narrowly outpaced Inceptionv3 with a score of 88.1%. The accuracy differences
are statistically insignificant, however the difference in model complexity in terms of memory and
computations is significant. Resnet50 is approximately 50% smaller in amount of floating-point
operations and took 36 min to train versus the 81 min Inceptionv3 required [150]. In fact, all models
performed similarly, and the addition of a fully connected layer (adding more complexity) provided
marginal benefit for accuracy. All these factors indicate that a simpler model is desirable for LiDAR
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input. Intuitively, the complex nature of satellite RGB images would necessitate a deeper network to
extract useful features, while the more simplistic LiDAR images would require a less complicated
model. The final model architectures chosen are displayed in Table 4.5 along with their training
parameters.

Table 4.5: Best CNN model architectures

Input Base Model FC Layer? Frozen Layers

RGB Inception-Resnet Yes 11
LiDAR Resnet50 No 80

Using the best performing models, as shown in Table 4.5, another region-specific training session
was performed. Concretely, the training and validation datasets are separated by region, one for
Witten and one for Manhattan (New York), and the same architectures are retrained on this subset
of the original combined data. Figure 4.11 shows the results of comparing these new region-specific
models to the previous combined models. Accuracy results are significantly higher for RGB input
by using the model trained on the combined dataset, clearly demonstrating the benefits of data
quantity and diversity. However, LiDAR input has mixed results, with Witten performing better
with additional data and Manhattan performing worse. It is possible that the limited amount of class
diversity in the Manhattan dataset has not benefited by the diverse architectural examples Witten
provides. However, the results as a whole indicate that the models trained on the combined dataset
are overall more accurate and should be chosen for use in new cities.

4.4.3 Feature Extraction for SVM and Random Forest Training

Training set images from Manhattan and Witten have their salient features extracted using
the trained models in Table 4.5. These features come after the global average pooling layer and
are vector sizes of 1536 and 2048 for Inception-Resnet and Resnet, respectively. This
new high level feature training set is then fed to SVM and random forest classifiers with varied
configurations for training as specified previously in Table 4.2. Once all classifiers are trained, they
are run against Test Set 1 (Witten and Manhattan). Results are shown in the Figure 4.12 swarm plot
where each dot represents a model trained at a different configuration; input modality is determined
by its placement on the horizontal axis. The color represents base model type, and CNN accuracies
are also shown for comparison. The y-axis is configured to begin at 45% accuracy, truncating
low accuracy outlier models. There are six outliers not shown which are all SVM models using a
polynomial kernel.

As before we see an increase in model accuracy using LiDAR data in comparison to only
RGB, and even higher accuracy is achieved by combining the features into a “dual” input classifier.
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Figure 4.11: Accuracy between region-specific and combined training datasets. Results labeled
“combined dataset” are trained on images from both Witten and Manhattan. Validation set accuracy
on the vertical axis is specific to the region indicated on the horizontal axis. (a) RGB (satellite)
image input and (b) LiDAR image input.

Focusing on RGB input, the best classifiers are all random forest, with the top classifier achieving
73.3% accuracy. This result scores higher than CNN accuracy, underscoring the strengths of random
forests for generalized classification. In this instance, the random forest was configured with 50
maximum estimators, an entropy split, and a maximum depth of 10.

LiDAR models score significantly higher, with both SVM and random forest models achieving
similar top accuracies of 84.8% versus 84.4%, respectively. This top scoring SVM is configured to
use a radial basis function (rbf) kernel with a regularization constant of 10, while the random forest
is the same configuration that scored highest for RGB input. Once again, these classical machine
learning algorithms outperformed the CNN network in classification on the reduced feature set.

The dual input results validate previous research in that combining multiple streams of modality
data can lead to greater accuracy than use of either data type individually. The top classifier is once
again a random forest with the same configuration previously discussed; this configuration performs
consistently well in all classification tasks. Overall, an improvement of 2.4% is observed by fusing
features together resulting in an accuracy of 87.2%. Table 4.6 shows the top model classifiers and
associated parameters for each modality. The authors chose the “dual” input random forest classifier
for the final analyses described below.

Three SVM model outliers can be seen for all three inputs. The RGB outlier model used a
sigmoid kernel, while the LiDAR and dual input model outliers used a polynomial kernel. No
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Figure 4.12: Test Set 1 Accuracy (Witten/Manhattan). Comparison of using CNN feature extraction
coupled with SVM and random forest classifiers.

random forest model provided a low test accuracy to be considered an outlier.

Table 4.6: Best Classifiers using CNN extracted features

Input Model Parameters Test Set 1 Accuracy

RGB Random Forest Criteria: Entropy, # Estimators: 50, Max Depth: 10 73.2%
LiDAR SVM Regularization Coefficient: 10, kernel: rbf 84.8%
Dual Random Forest Criteria: Entropy, #Estimators: 50, Max Depth: 10 87.2%

4.4.4 Analysis of Final Dual Input Model

Section 4.4.4.1 provides analysis for the final dual input random forest model by generating
confusion matrices for both Test Set 1 and Test Set 2. Section 4.4.4.2 aggregates flat-like classes
for the UAS emergency landing application and evaluates the tradeoff between precision and recall
through confidence thresholding.

4.4.4.1 Confusion Matrices

The total accuracy for Test Set 1 (Witten and Manhattan) is 87.2%, while Test Set 2 (Ann Arbor)
scored 86.7%. The final dual input model’s confusion matrices for Test Set 1 and Test Set 2 are
shown in Figure 4.13a,b, respectively. The row-wise percentage of each cell is computed and color
coded along with the specific quantity classified in parentheses underneath. We can see that for
both test sets one of the largest errors comes from the confusion between complex-flat and
flat roofs. The authors found difficulty in labeling some flat-like roof examples, especially ones
that bear traits of both classes; it is clear this confusion carried over into the trained model. In
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Figure 4.13: Confusion Matrices for Test Set 1 (Witten/Manhattan) and Test Set 2 (Ann Arbor).

some cases, a roof is on the threshold of being flat or complex-flat, and this ambiguity
makes it difficult to provide a consistent “correct” answer. Indeed, this case often applies between
the complex-flat and unknown labels as well: When does a complex-flat roof become
too complex to support a safe small UAS landing? The authors attempted to be consistent in
answering this question when labeling data, however edge cases were observed. Table 4.7 and 4.8
list results for recall (completeness), precision (correctness), and quality for Test Set 1 and Test Set
2, respectively. Note that there were no pyramidal roofs shapes in the Ann Arbor test set and too
few half-hipped and skillion roofs to calculate valid metric results.

Table 4.7: Results for recall, precision, and quality evaluation metrics for Test Set 1

Type Recall Precision Quality

Unknown 0.90 0.88 0.80
Complex-Flat 0.79 0.83 0.68
Flat 0.81 0.84 0.70
Gabled 0.97 0.90 0.87
Half-Hipped 0.88 0.91 0.81
Hipped 0.95 0.92 0.87
Pyramidal 0.82 1.00 0.82
Skillion 0.82 0.77 0.66
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Table 4.8: Results for recall, precision, and quality evaluation metrics for Test Set 2

Type Recall Precision Quality

Unknown 0.86 0.60 0.55
Complex-Flat 0.76 0.90 0.70
Flat 0.92 0.82 0.76
Gabled 0.93 0.96 0.88
Half-Hipped N/A N/A N/A
Hipped 0.80 0.84 0.70
Pyramidal N/A N/A N/A
Skillion N/A N/A N/A

4.4.4.2 Confidence Thresholding

With every model prediction, there is a probability distribution of the likelihood the example
belongs to a class. The class with the highest probability is then chosen as the final prediction.
Model precision can be increased by adjusting the confidence threshold a model requires to make
a prediction, and, if not met, the example is marked unknown. This will generally decrease the
number of false positives at the expense of an increase in false negatives. For the UAS emergency
landing use case, operators need confidence that a roof labeled as “flat-like” is actually flat. We
use confidence thresholding to combine complex-flat and flat roofs into one flat-like
category used for UAS roof identification. Figure 4.14 shows individual graphs of how the model’s
predictive power on Test Set 1 is impacted as the confidence threshold is manipulated. This process
is repeated on Test Set 2 in Figure 4.15, with half-hipped, skillion, and pyramdial

classes omitted due to lack of examples.
We can clearly see the inverse relationship between precision and recall as the required confi-

dence threshold is increased. Unfortunately, this relationship is clearly not linear for all classes;
moderate increases in precision come at a large decrease in recall for flat-like, gabled,
half-hipped, and hipped classes. Indeed, as precision increases above 95% recall drops
exponentially to around 60%. These figures certainly show there is a limit to the effectiveness
of confidence thresholding; setting too high a confidence threshold may even lead to a drop in
precision in some cases as seen for the hipped class in Figure 4.14. However, these results show
promise that class-specific thresholds can be set to ensure high-precision predictions are generated.
For UAS landing, these results indicate we can achieve near-perfect precision at the expense of only
finding ∼60% of the flat roofs within a region.
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Figure 4.14: Test Set 1 confidence threshold impact on precision and recall for multiple classes.

4.5 Discussion and Future Work

The presented study demonstrates that a combination of a Stage 1 CNN feature extractor coupled
with a Stage 2 random forest classifier can reliably and effectively label city wide roof shapes
with publicly available GIS data. In addition, we show good generalization of our final model on
diverse city landscapes ranging from small to large urban centers. Two independent test sets show
similar results in model quality metrics providing a realistic expectation of model performance,
where one set, Ann Arbor, was not used in training. Others have successfully performed roof
shape classification through machine learning, but no previous work to-date has demonstrated
effectiveness to the scale analyzed here in both breadth and depth. Over 9000 images (two for each
building) have been manually labeled from three diverse cities to generate the training, validation,
and test sets. In comparison, the largest labeled dataset the authors found in the literature for roof
top classification is 3000 images and encompasses only one city [126].

A comparison of our accuracy results with other work is difficult because no benchmark
test set has been available to date for roof shape classification. Benchmarking datasets are of
critical importance to compare the results of applying different algorithms [151]. Since no such
benchmarking data exist for roof shape classification, the authors propose this chapter’s released
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Figure 4.15: Test Set 2 confidence threshold impact on precision and recall for multiple classes.

annotated dataset serve as an initial dataset for future roof shape classification research.
The challenge of comparing algorithms is compounded by differences in expected model input.

Many models preprocess LiDAR input into handcrafted features, such as slope, aspect, and number
of roof surfaces [123, 122]. Others rely on a raw DSM image of a roof, while our work relies upon
automatically generating a depth image from point clouds specifically filtered for each building roof.
Our work is one of the few that relies upon both satellite images and LiDAR data for classification,
and is the only one that uses deep learning to train on both modalities together to enhance model
accuracy. In addition, our work classifies eight roof categories, naturally bringing down accuracy
results in comparison to most others works attempting to classify six or at most seven roof shapes.

The largest weakness in this study comes from one of its greatest strengths: the fusion of LiDAR
and satellite input is only effective if both data sources observe the same thing. If one modality sees
a newly constructed neighborhood and the other sees undeveloped area, for example, the model
will become confused. The authors attempted to mitigate this issue by looking at construction dates
for buildings, and removing buildings constructed during/after the earliest data source. However,
this construction information is difficult to obtain in all cities/countries, and does not guarantee the
removal of all possible data source inconsistencies. Future work is needed to automatically detect
inconsistent datasets if present and automatically label the roof as unknown. Note that inconsistent
datasets are immediately apparent to the human eye.

As the authors have continually refined the LiDAR pre/post-processing methods for depth
image generation, they have concluded that an alternative method may be more suitable. Instead of
painstakingly converting point clouds to high quality depth images for a CNN, it should theoretically
be better to operate directly on the point cloud itself in a deep learning model. Several advances have
been proposed in deep learning for both point cloud segmentation and classification, e.g., PointNet
and SpiderCNN [152, 153]. These neural network architectures sample from the point cloud and
directly learn global and local geometric features of the point cloud surface. These methods have
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been shown to be successful in small scale object classification (household items, pedestrians, etc.)
using high resolution LiDAR data; future work should investigate their use on airborne LiDAR data.

Small UAS rooftop landing requires a high degree of confidence that a flat-like surface exists
for safe landing. This chapter demonstrates that flat-like roofs can be be reliably predicted with
high precision by adjusting the final model’s confidence threshold. After flat-like roofs have been
identified, further post processing may be performed to quantify metrics such as ideal landing
position, surface roughness, and rooftop geometry. The output of this future work can then reliably
generate a database of emergency landing sites that is risk-aware.

4.6 Conclusions

Building outline and height information is useful for visualization and 3D reconstruction but
roof shape is often missing or at best incomplete in existing databases. GIS data such as satellite
images, LiDAR point clouds, and building outlines are often available. This chapter processes these
data to construct individual image representations of depth and color of roof shapes. Datasets are
constructed and manually labeled across multiple cities. The final model uses deep learning for
feature extraction and a random forest algorithm for subsequent roof shape classification. Two test
sets from diverse cities show good generalization of the trained model, reporting total accuracies
near 87%. Confidence thresholds are manipulated leading to greater than 98% precision in labeling
flat-like roofs in all three tested cities, an important increase in precision for applications
such as UAS rooftop landing. The generalized models and test datasets show promise for applying
machine learning to automatically label roof shapes around the world with high confidence.
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CHAPTER 5

Map-Based Planning for Small UAS Rooftop Landing

5.1 Introduction

A primary safety concern for UAS is ensuring a robust emergency landing capability [1, 2].
Emergency landing requires landing site selection, trajectory planning, and stable flight control
to actually reach the selected site [3]. It is possible a UAS may identify a safe site within sensor
range allowing for an immediate landing. However, when no safe site is within range the UAS
must devote time and energy to exploring sites beyond sensor range or else utilize pre-processed
data to identify a safe site [4, 5]. An onboard database of maps including landing sites can be
incorporated into an efficient autonomous decision making framework. For example, Refs. [3, 34]
and [6] utilize airborne flight risk models to build emergency landing plans for fixed-wing and urban
flight operations, respectively. We call such a decision making framework a map-based planner.

Urban areas typically do not offer classic emergency landing sites such as unpopulated open
fields. This requires a planner to consider unconventional yet safe alternatives. We propose flat
building rooftops as viable urgent landing sites for small UAS. These UAS will likely operate at low
altitudes and at times even in urban canyons. During landing site selection, a map-based planner
must be able to assess landing site risk posed to the aircraft and bystanders at touchdown. The UAS
may pose risk to people and property it overflies enroute, so the planner must assess path risk once
the landing flight plan is known. Landing site and path risk together offer an estimate of total risk.

Map data used for emergency landing planning must have high integrity and low-latency access
to support timely decision making. This chapter proposes an offline data processing pipeline and
online multi-objective, multi-goal landing planner that enable a UAS to minimize total risk when a
nearby emergency landing is required. Landing site and local area map information is pre-processed
and stored onboard. The multi-goal onboard emergency landing planner explores available ground
and rooftop landing sites likely to minimize overall total risk while greedily pruning options known
to have higher risk. Pareto fronts over landing site and path risk are generated for three urban
regions: Witten, Germany; Ann Arbor, Michigan; and mid-town Manhattan in New York City.
We statistically analyze results with respect to availability and quality of landing sites as well as
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execution time of the map-based planner.
The first contribution of this chapter is a novel method to identify flat rooftop surfaces from

airborne LIDAR data to identify the largest clear small UAS landing location on each flat roof.
Risk metrics are quantified from offline construction of a database using public data sources. A
second contribution is our proposed approach to model and optimize plans over a combination
of landing site and path risk metrics. Our third contribution is a multi-goal onboard planner that
guarantees a risk-optimal solution is found rapidly by avoiding exploration of high-risk options.
The proposed emergency planning framework enables a UAS to select an emergency landing site
and corresponding flight plan with minimum total risk.

The chapter is structured as follows. Section 5.2 provides background in emergency landing
planning and multi-goal path planning. Section 5.3 reviews preliminaries in data sources and
planning. Section 5.4 discusses offline construction of a risk-aware landing site database. Section
5.5 outlines methods for generating occupancy and risk maps used for 3D path planning, while
Section 5.6 summarizes our map-based planning approach. Section 5.7 presents case studies with
focus on analysis of trade-offs between landing site and path risk and statistics on required planning
time. Section 5.9 presents conclusions and future work.

5.2 Background

Emergency landing planning is typically accomplished with either onboard sensor-based plan-
ning or map-based planning [9, 4]. Sensor-based planners rely strictly on real-time data streams
while map-based planner use information previously gathered and stored onboard. Planners using a
combination of maps and onboard sensors can capitalize on both data sources [4]. Section 5.2.1
outlines sensor-based planning while an overview of map-based planning is presented in Section
5.2.2. Sec 5.2.3 provides background on multi-goal planning which our map-based planner utilizes.
A meta-level framework to unify sensor and map-based planning has been proposed for general
(fixed-wind) aviation [3] as well as multicopter UAS [4] as shown in Fig. 5.1. This planner relies
on local sensor data to land if the immediate area is safe but calls a map-based planner otherwise.
Sensor and map based methods can be merged to capitalize on each other’s strengths. Previous
work all focuses on open landscapes and/or runways and considers only a single landing site in each
planning epoch. We propose map-based planning with consideration of rooftop landing sites and
dual risks from both the landing site and its path for the first time in this chapter. Previous research
in sensor-based planning, map-based planning, and multi-goal planning is summarized below.
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Failure 
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Planner
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Figure 5.1: Emergency planning logic. Reprinted from Ref. [4], originally published open access
under a CC-BY 4.0 license. https://link.springer.com/article/10.1007/s10846-016-0370-z

5.2.1 Sensor Based Planning

Onboard exteroceptive sensors including camera, radar, and LiDAR can provide a wealth of
information about the surrounding environment for use in emergency landing planning. Ref. [9]
uses downward facing camera data to identify and characterize possible landing sites according to
size, shape, slope, and nearby obstacles. Ref. [17] provides methods and experimental results of
autonomous local landing using video and LiDAR data. Ref. [15] specifically identifies candidate
landing sites on rooftops using a single camera, while Ref. [14] identifies terrain-based landing
sites in an image plane from 2D probabilistic elevation maps generated over terrain. In all cases
landing site identification is only possible within the sensor field of view.

5.2.2 Map-Based Planning

There are two main approaches in generating landing sites for use in map-based UAS emergency
landing: one producing a specific landing site database and the other generating a risk grid from
which landing sites can be selected. Both approaches, sometimes used together, rely on similar data
sources such as census records, DSM and map vector data but differ in output representations. A
georeferenced database contains vector geometries of landing sites with associated meta data used
for risk evaluation. A risk grid is a two or three dimensional data structure where each cell refers to
the risk of a specific location on Earth.

Ref. [24] uses data such as census records, OpenStreetMap (OSM), and mobile phone records
to quantify risk for unmanned aircraft requiring an emergency landing. Risk factors include risk
to the vehicle, human population, property, and an area risk to assess the quality of a landing site.
Landing sites such as open fields, grasslands, and highways are identified, risk evaluated, and stored
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in a landing site database. The proposed planning architecture uses this onboard database to select
a risk-optimal landing site within a feasible flight footprint. After a landing site is chosen, path
planning is performed at a constant altitude, assessing risk to people through a fusion of census data
and mobile phone activity.

Ref. [4] proposes the use of three dimensional risk grids to identify landing sites and perform
path planning for an energy-constrained multicopter in urban environments. A 3D occupancy grid
to represent risk is generated as a combination of terrain, population, and obstacle costs. Terrain
risk is evaluated using slope as well as terrain type, census data is used to determine population risk,
and property risk is assigned equally to all buildings. A linear combination of these risks is used
to generate a final 3D grid for flight planning. In this grid a landing site is a terrain cell that has
a lower cost than a configurable threshold. All landing sites are treated equally, meaning the first
landing site found by the planner is the “optimal” choice returned.

Ref. [154] proposes generation of a 2D risk map that quantifies risk to population on the ground.
The map is created taking into account an aircraft’s model parameters and the local environment
conditions while considering their uncertainties. The risk map is defined for a specific altitude and
is the combination of several risk layers including population density, obstacles, sheltering, and no
fly zones.

We propose an emergency landing framework that uses both a landing site database and a 3D
risk grid to evaluate landing site risk and path risk as independent metrics. Our work is focused
on Vertical Take-Off and Landing (VTOL) UAS that might require an urgent landing but still have
sufficient flight control to stably follow a prescribed path to touchdown. We provide a multi-goal
planner to trade off risk of landing sites with risk-optimal paths to each site while efficiently finding
the minimum total risk solution. We uniquely identify usable area on flat rooftops using machine
learning and computational geometry techniques. Previous efforts to quantify an area risk of a
landing site approximated risk as length or area of a site’s buffered geometry [24]. However not all
area in a landing site is suitable for landing. For example, many rooftops have obstacles such as air
conditioning units, vents, and rooftop entrances. Additionally, the choice of a singular touchdown
point at a chosen landing site is often simplified to be the centroid or pseudo-centroid of the site or
cell [24, 8]. However both of these choices do not represent the optimal touchdown location with
respect to ensuring flatness and distance from obstacles. We formulate the problem of choosing a
touchdown position as finding the largest inscribed circle in its 2D polygon representation. Circle
placement guarantees landing target coordinates are maximally separated from any obstacle or edge.

5.2.3 Multi-Goal Planning

Multi-goal planning has two different definitions:
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1. One start state and multiple goal states. The algorithm seeks to find the singular goal/path
pair that minimizes/maximizes an objective function.

2. One start state, intermediary goal states, and a final end goal state. The algorithm seeks to find
a connecting route, which includes multiple connected state pairs, that minimizes/maximizes
some objective function. This formulation is commonly called the travelling salesman
problem (TSP) [155].

A visual representation of these definitions is shown in Figure 5.2. This chapter focuses on the
first definition per Figure 5.2b. Work by Ref. [156] investigated a form of multi-goal search using
uninformed planners in a 2D grid. In this work all goals are valued equally with the objective to
return paths for all start/goal combinations. Each start/goal pair can be treated as an independent
path planning problem. Lim et al. propose reusing previous information, e.g., node expansions and
costs, to reduce search overhead for the next goal. Results indicate that retaining information from
previous searches reduces overhead in 2D grids when using uninformed search.

An objective or cost function may consider both the cost of a start/goal path and also the worth
of the goal itself. Ref. [157] investigates efficient methods to conduct search for multiple agents
seeking different products in a free market. The authors propose a multi-goal planner that maximizes
expected overall utility from the set of opportunities found (e.g., products/goals) minus the costs
associated with finding that set. In this work the worth or value of a goal is probabilistic and can
only be ascertained through search. The objective function aims to balance goal achievement reward
against the cost of obtaining that goal.

In our work multiple landing sites (goals) will typically be identified. Risk is a function of the
path to each site as well as the site itself. Our objective is to find the singular goal/path pair which
minimizes the combined risk of the landing site and a flight path from the initial UAS location to
that site.

(a) Case study with one
initial state and four goal
states.

(b) Planning to a single
goal despite multiple
choices.

(c) Traveling Salesman
Problem with given initial
state.

Figure 5.2: Comparison of multi-goal planning definitions. The green state depicts the initial state,
e.g., where the UAS begins its emergency landing trajectory. Unfilled circles are goal states.
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5.2.4 Urban Landscape and Rooftop Landings

An emergency landing requires first identifying safe nearby landings sites. Cities lack conven-
tional emergency landing sites such as open fields or grasslands. Empty lots are often sparsely
distributed, and parks may be unexpectedly occupied. The satellite image in Fig. 5.3 illustrates a
typical urban landscape that affords rooftop landing. Obstacles on a flat rooftop, e.g., air condition-
ing units, can be removed from potential landing site surfaces. We identify rooftop landing sites
given sufficient flatness and distance from obstacles and edges.

Figure 5.3: Satellite image of an urban environment with multiple flat roof landing sites. Select roof
shapes and obstacles are labeled.

Our proposed flight planner requires the vehicle to execute a stable approach to an emergency
landing site. Failure scenarios can be detected and handled in time to execute a controlled landing.
Scenarios in which an urgent landing can be achieved without loss-of-control include: low battery
energy, lost communication link, adverse weather, non-essential sensor or actuator failure, operator
emergency landing directive, and non-cooperative aircraft nearby. The methods and optimization
techniques discussed in this chapter can be used for any VTOL aircraft. The case studies and
simulations presented are specific to a multicopter in an urban environment.

Steps required to construct a database of buildings and suitable ground-based landing zones
(e.g., parks, fields, etc.) from OSM are described in our previous work [113]. This database is
geospatial, in the sense that each row refers to a geographic entity (e.g., building or field) with
polygonal shape. Meta data is also captured about each entity, e.g., height and land use.
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5.3 Preliminaries

5.3.1 Coordinates and Landing Sites

While map data will be globally georeferenced, low-altitude urban flights can be planned in a
local Cartesian reference frame. Let orthogonal bases for this Cartesian coordinate frame be denoted
êx, êy, and êz. The position of the UAS body frame with respect to the local Cartesian reference
frame can then be defined as:

OUAS = x êx + y êy + z êz = [x, y, z]. (5.1)

A set of candidate landing sites are generated within a radial footprint R defined as

Sls = {li, . . . , ln} (5.2)

where each li refers to a landing site with properties

li = {c, rl, rp} (5.3)

c ∈ R3 (5.4)

rl, rp ∈ R (5.5)

where c is landing site location in the Cartesian reference frame, rl is landing site risk, and rp is path
risk. Both risk values are in domain [0, 1]. Landing site risk is calculated offline and represents the
risk intrinsic to touching down at that landing site. Path risk must be calculated online and accounts
for the path distance and proximity to obstacles. The calculation of rl is shown in Section 5.4.4,
while rp is described in Section 5.5.

5.3.2 3D Path Planning with Mapped Obstacles

Path planning requires a cost function to guide search space exploration in pursuit of a feasible
and optimal solution. For discrete search planners, the space must first be discretized into a graph
G(V,E), where V denotes graph vertices with edge set E and associated transition costs. This
graph is defined implicitly for a 3D grid. The vertices are the cells/voxels accessed with indices
(i, j, k). The edge of each cell are dynamically computed from the 26 neighbors. In a mapped
environment, A* search applies a heuristic to reduce search overhead. A* sums actual path cost
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Figure 5.4: Processing pipeline to construct landing site and occupancy map databases. Landing
sites and occupancy map are risk evaluated.

g(n) and heuristic h(n) estimating cost-to-go to form node n total cost f(n):

c(n′, n) = dist(n′, n) · (1 + risk(n)) (5.6)

g(n) = g(n′) + c(n′, n) (5.7)

f(n) = g(n) + h(n) (5.8)

where c is transition cost from previous node n′ to current node n, dist(·) is Euclidean distance
between adjacent nodes n′ and n, and risk(·) represents normalized risk encoded in the 3D map. The
search space is limited to cells within the the radial footprint R to bound worst case scenarios. We
use a 3D octile distance heuristic h(n) which has been shown much more effective than Euclidean
distance [158].

5.4 Landing Site Database

Data is fused from OSM, LiDAR, and satellite image sources to construct a feature-rich landing
site database. Figure 5.4 provides an overview of the data processing pipeline that provides the
features needed to construct a landing site database with risk metrics and maps. Below, Section 5.4.1
summarizes the Machine Learning (ML) process detailed in Chapter 4 to find flat-like rooftops from
which landing sites are identified. Section 5.4.2 describes our procedure to refine each landing site
by determining usable area. Section 5.4.3 describes a method to compute the touchdown location
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on large flat surfaces. Landing site risk models are described in Section 5.4.4.

5.4.1 Flat-like Roof Identification

Information on building roof shape is sparse in existing databases. Chapter 4 shows that a total
accuracy of 86% is achievable when evaluating a trained ML pipeline on independent test sets. By
adjusting the confidence threshold to 50%, precision and recall of 95% and 75% can be achieved
in classifying flat-like roofs in cities. This chapter employs the roof shape prediction model from
Chapter 4 to label building roof shapes for subsequent landing site identification. High precision is
necessary to assure that few false positives will be identified. Note that offline map building allows
human inspection of city-wide rooftop landing sites to assure each identified unsafe site is pruned
prior to landing site database use by a UAS.

(a) Ann Arbor, Michigan (b) Witten, Germany (c) Manhattan, New York

Figure 5.5: Maps of predicted flat rooftops in three cities. Buildings with a predicted flat-like roof
shape are outlined in dark yellow with blue dashed lines through the center. Parks and grasslands are
shown in green. Maps from ©OpenStreetMap contributors and ©CARTO. License: Open Database
License: https://www.openstreetmap.org/copyright

Figure 5.5 shows results of our roof prediction model for the cities of Ann Arbor, Michigan,
Witten, Germany, and mid-town Manhattan in New York City. In previous work only parks and
grasslands were processed to identify emergency landing zones. This work adds new landing site
options identified from the illustrated flat-like rooftops as described below.

5.4.2 Flat Surface Extraction for Usable Landing Area

Airborne LiDAR point cloud data is used to determine planarity, shape, and extent of potential
UAS landing site surfaces. Proposed polygonal landing sites are buildings with predicted flat-like
roof shapes and terrain locations with land use keywords listed in Table 5.1. A point-in-polygon ray
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Figure 5.6: Flat surface extraction from rooftops. Point cloud data for a building is displayed in
(a); (b) shows the generated planar triangular mesh. Conversion of the 3D mesh to a 2D polygon is
shown in (c) with subsequent polygon inward buffering and simplification shown in dashed lines. A
reference satellite image is shown in (d).

casting algorithm is used to generate the point set Pls [135] where point clouds only reside in the
outline of the landing site.

Next, flat surface extraction from Pls is performed using the Polylidar3D algorithm developed
by the authors in Chapter 3. The algorithm works by generating triangular meshes of an input
point cloud, filtering triangles by planarity and edge length, extracting subsets of the mesh which
are spatially connected, and finally converting the mesh to a polygon format. Polylidar3D is
configurable by user provided planarity constraints and maximum triangle edge length. This
guarantees the polygon can represent flat surfaces with interior holes denoting obstacles. Highlights
of this procedure are shown in Figure 5.6.

After the flat surface is extracted as the orange polygon in Figure 5.6c, the polygon is buffered
inward and simplified as denoted by dashed lines. The buffering process is defined as the Minkowski
difference of the polygon with a circle with radius equal to a buffer distance [93]. We set the buffer
distance to 0.5 meters which contracts the exterior hull and expands the interior holes. Afterwards
we use the Douglas-Peucker’s simplification algorithm to remove redundant vertices and “smooth”
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the polygon [92]. Narrow flat surfaces can be removed in this process as shown near the (6, 17)
point in subfigure (c). The final output of this procedure is a set of polygons denoting flat and
obstacle free surfaces.

5.4.3 Touchdown Points

Once flat surface(s) have been extracted from potential rooftop and ground-based landing sites
and represented as polygons, an ideal landing touchdown point must be defined. We define this
ideal point to be farthest from any non-flat region or obstacle. In other words, the touchdown point
is the furthest distance away from the exterior hull and any interior holes. This requirement may
be framed as the Poles of Inaccessibility problem [159] and the Polylabel algorithm as proposed
in [160] provides a solution. This algorithm aims at efficiently determining the largest inscribed
circle in a polygon within a prescribed tolerance. The largest inscribed circle for the same rooftop
in Figure 5.6 is shown in Figure 5.7a. There are additional suitable touchdown sites on this rooftop
that can be used. We propose Algorithm 5.1 to capture the remaining touchdown points as a ranked
list of circles. The algorithm begins by calling Polylabel to find the point and radius representing
the largest circle inside an input polygon P . A 16-sided polygon representation of this circle is
created denoted Pc. If the radius is below a user provided minimum radius rmin then the empty set is
returned. Pc is subtracted from the input polygon to create a smaller polygon Pdiff . The procedure
ends by returning the union of Pc and the result of a recursive call to TouchdownExtraction
with Pdiff as the input polygon. This recursive call continues the process of finding next largest
circle. The end result is an ordered set of circular polygons with a radius greater than rmin. This
minimal radius is user defined and should determined by UAS characteristics. Visualization after
the first and second procedure call are in Figure 5.7a,b respectively, with the final rankings shown
in Figure 5.7c.
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Figure 5.7: Touchdown point extraction on rooftops. Rooftop surface shown in orange. The
best (largest circle) landing zone is shown in (a). (b) Polygon subtraction of a previously found
touchdown zone. The complete ranked touchdown site set is shown in (c).
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Algorithm 5.1: TouchdownExtraction
Input : Polygon: P , Mininum Radius: rmin
Output : Set of Polgyon Circles

1 point, r = Polylabel(P )
2 Pc = PolgyonCircle(point, r)
3 if r < rmin:
4 return ∅
5 Pdiff = P − Pc
6 return Pc ∪ TouchdownExtraction(Pdiff , rmin)

The final landing site chosen for each surface is the top ranked touchdown site. The remaining
circles are kept in the database for further use in risk assessment.

5.4.4 Landing Site Risk Model

Each landing site corresponds to the largest clear touchdown area on either flat terrain or building
rooftop surfaces. This chapter adopts the risk model first presented in Ref. [113]. Risk is quantified
as vehicle cost (Cv), property cost (Cp), and human occupancy cost (Co). Each of these risks are
numeric values created from a functional composition of the attributes of each feature (land use,
available area, etc.) as outlined in Sections 5.4.4.1, 5.4.4.5, and 5.4.4.6 respectively. Landing site
risk is the weighted sum

rl = wv · Cv + ws · Cp + wo · Co (5.9)

wv + ws + wo = 1

where wv, ws, and wo are weights for vehicle, property and human occupancy cost respectively.

5.4.4.1 Vehicle Cost

We denote risk to the UAS ”vehicle” as

Cv = wtCt + waCa + wcaCca (5.10)

Cv, Ct, Ca, Cca ∈ [0, 1] (5.11)

where Ct, Ca, and Cca are risk-based costs associated with terrain type, usable area, and cumulative
usable area respectively. The variables wt, wa, and wca are the user-defined weights aggregating
these metrics into a total Cv value.
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5.4.4.2 Terrain Cost

Terrain cost Ct approximates the risk posed to the vehicle due to landing on a specific type of
terrain. We use keywords gathered from OSM that describe type of terrain. Following a similar
taxonomy from [24], these keywords are aggregated into groups and assigned costs as shown in
Table 5.1. The trend of these costs is that groups with generally unoccupied open areas, such as
Group 2, have lower risk than groups with possible cluttered areas, such as Group 5. Building
rooftops, Group 1, have a slightly higher terrain cost than Group 2 because of increased risk at
landing at higher altitudes. Group 7, industrial and commercial areas, have more diverse and
uncertain terrain characteristics and assigned a higher cost. These costs are subjective in nature thus
would be refined later by stakeholders.

Table 5.1: Terrain type and property cost

Group Keywords Terrain
(Ct)

Property
(Cp)

Group 1 building rooftops 0.25 0.5
Group 2 brownfield, grass, grassland

village green, greenfield
0.0 0.0

Group 3 meadow, cemetery, scrub 0.25 0.0
Group 4 water, riverbank 0.75 0.0
Group 5 recreation ground, garden,

golf course, track, pitch,
playground, common, park

0.5 0.25

Group 6 parking 0.75 0.75
Group 7 industrial, commercial 1.0 1.0

5.4.4.3 Area Cost

Large flat surfaces pose less risk to UAS than small clearings. Our proposed risk model quantifies
this as an area cost Ca. We propose Eq. 5.12 to map small areas to high risk (1), average areas to
medium risk (0.5), and large areas to low risk (0). This piecewise exponentially decaying function
is governed by user-defined minimum area Amin and maximum area Aavg. Note that Amin is the
area of the circle with radius rmin used in Algorithm 5.1. These values would take UAS-specific
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landing area requirements into account.

Area Cost(a) =

1 a ≤ Amin

e−c·a a > Amin
(5.12)

c =
ln 2

Aavg − Amin
(5.13)

An example of this mapping is shown in Figure 5.8.
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Figure 5.8: Mapping area size to risk. Function maps area size to a cost value between [0, 1]. In
this example Aavg and Amin are 100 and 12.5m2, respectively.

5.4.4.4 Cumulative Area Cost

A landing site that is nearby additional sites has advantage to landing sites with no other nearby
options. We capture this metric as a cumulative area cost Cca. The cumulative area of all touchdown
sites available on an individual building or terrain surface is computed as shown in Figure 5.7c.
This area is then mapped to Cca using equation 5.12.

5.4.4.5 Property Cost

UAS may inadvertently damage a landing site in the event of an unplanned landing. Landing
site characteristics can impact the likelihood, severity, and cost of damage. Table 5.1 provides
example normalized estimates for the costs of similar landing sites. The proposed metric assigns
increase cost to areas that may be damaged in the event of a high impact crash. Natural terrain areas
have low cost while buildings and other maintained properties have higher cost. Parking lots and
industrial areas are marked with the highest cost to people and property, e.g., cars, pedestrians.
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5.4.4.6 Human Occupancy Risk Mapping

Overflight risk to people is typically estimated with an occupancy grid based on Census records
[161, 4, 162]. Census records in the United States are released every 10 years in an aggregated form
in which the smallest areal unit is the census block. The size of a census block may vary from a city
block to a much larger area in a rural community. For example in New York City the average size
of a census block is a 121X121 meter square but with substantial variance over the city landscape.
This average resolution is suitable for city-wide risk assessment but not ideal for higher-resolution
occupancy mapping. Techniques such as daysymetric modelling [163] are used to improve the
spatial resolution of Census datasets at the cost of greater uncertainty [164].

Census records only provide information of where people reside which is most often representa-
tive of a region’s nighttime population [24]. UAS will fly at all times of the day so time-varying
population estimates are critical for accurate risk assessment. Work by Ref [24] fused census data
with publicly available mobile phone call detail records (CDR) in Italy to generate a temporal
population model for UAS risk assessment. Results indicated significant population migration
throughout the day reinforcing the inadequacy of using a static population model. However, CDRs
are not generally open for public use, and access to other real-time data streams such as aggregated
mobile phone GPS is limited. Most of the landing sites proposed in this chapter are on flat rooftops
likely to be unoccupied despite high building occupancy. Many population risk models introduce a
shelter factor which estimates zero casualties whenever the building is not penetrated, e.g., during a
UAS rooftop landing [26].

This work requires risk assessment for landings sites and paths over small radial footprints
(< 250 m). The authors have previously used census data to assess population risk in this situation.
However, a static low-resolution population model may provide misleading risk assessments.
Therefore this work does not use population risk metrics by setting wo to 0 in Eq. 5.9. Our
combined risk model will include path length, which when minimized, is a proxy to minimizing
the risk to people during urgent landings so long as population is uniformly distributed rather than
clustered, e.g., for special events not modeled in census data.

5.5 Three-Dimensional Maps for Path Planning

Let the city occupancy and risk map generated for path planning be denoted Rmap. This map is
a dense 3D voxel structure of size M ×N ×K, where the rows, columns and slices are M,N and
K respectively. Each cell is indexed by triplet (i, j, k) returning occupancy and risk information
for a specific position. Publicly available airborne point cloud data or a DSM may be used as
the primary data source to construct Rmap. A DSM is a raster where each pixel holds a height
value above Earth’s Mean Sea Level (MSL) including buildings and foliage. Such data sources are

116



often georeferenced in a projected coordinate system which minimizes distortion of shape, area,
or distance. This Cartesian coordinate system is ideal for path planning thus is carried into the
voxel map. The rest of this procedure assumes the use of a DSM with equal pixel resolution and
associated affine transformation matrix to convert from pixel space to the local Cartesian frame.

The procedure begins with a city DSM of size M ×N . The minimum and maximum height,
zmin and zmax, are computed from the DSM. The value of zmax is bounded at 400 feet above local
terrain level in this work. Note that FAA Part 107 restricts flying small UAS more than 400 feet
above the tallest nearby obstacle [165]. An affine transformation matrix A is generated for Rmap:

A =

xres 0 0 xmin

0 −yres 0 ymax

0 0 zres zmin

 (5.14)

[
x y z

]T
= A ·

[
i j k

]T
(5.15)

where xmin, xres, ymax, and yres are provided by the DSM affine matrix. Eq. 5.15 performs the
conversion from 3D voxel space to the local Caretesian coordinate system. The number of slices,
K, is equal to

⌊
zmax−zmin

zres

⌋
. An M ×N ×K data structure storing unsigned 8 bit integers is zero

initialized to represent Rmap.
The occupancy map is generated similar to [4] where each (i, j) cell in the DSM is matched to

an Rmap cell (i, j, k). The index k is calculated by
⌊
DSM(i,j)−zmin

zres

⌋
. All cells in Rmap at the (i, j)

position and below the k slice are then set to the value 255 to indicate an obstacle exists. This is
done for each pixel in the DSM until a full 3D occupancy map is generated for Rmap. Afterwards a
potential field cost is applied to Rmap which fills empty cells near each obstacle cell with nonzero
risk values. Three possible levels of potential field risk are assigned to an empty cell based upon its
shortest Manhattan distance to an obstacle cell. Distances of one, two, and three provide integer
risk values of 254, 170, and 85 respectively. An example 3D grid of New York City is shown in
Figure 5.9.

An A* path planner is used to generate optimal collision free trajectories inside Rmap. Obstacle
nodes, cells with a value of 255, are ignored for state transitions. The risk function described in Eq.
5.6 is defined as

risk(i, j, k) =
Rmap(i, j, k)

255
(5.16)

The path risk to a goal cell, ng, is the path cost to the goal node normalized by R

rp =
g(ng)

R
(5.17)
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Figure 5.9: Example occupancy and risk map of New York City. Obstacles are colored orange with
a surrounding potential field denoted by pink, light blue, and dark blue colors. Buildings which do
not fit in the map (higher then 400 feet AGL), are shown with orange roofs.
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Figure 5.10: Flow chart of proposed map-based planner.

5.6 Planning Risk Metric Analysis and Integration

Section 5.6.1 describes the architecture of our proposed map-based planner. Section 5.6.2
outlines the inherent trade-off between landing site and path risk and our planning method. Section
5.6.3 provides underlying theoretical and algorithmic formulations of our multi-goal planner.
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5.6.1 Real-time Map-Based Planner Architecture

The proposed architecture for our map-based planner is shown in Figure 5.10 which is modified
from our previous work [3, 113]. The landing site and path planning database might be provided
as part of NASA’s UAS Traffic Management (UTM) service [166]. Before mission operations
begin, a preflight download commences from UTM servers to retrieve relevant data for the flight
operational area. These data are lightweight thus can be stored onboard the UAS. In the event
an urgent landing situation arises our map-based planner logic will be executed. First a footprint
specifying the bounds of the reachable landing area is generated. Construction of such a footprint
is not the focus of this chapter, however work by [167, 3] and [4] have investigated its generation
for fixed-wing and multicopter aircraft, respectively. For simplification our footprint is a circle of
radius R whose center is the UAS position. Next we efficiently query the spatially indexed landing
site database to provide the set of risk-evaluated landing sites Sls. Landing sites are filtered by user
defined constraints such as landing site height or area. If no valid landing sites are found constraints
are relaxed as needed.

The planner must identify a low risk landing site and flight plan from the set of candidate landing
sites Sls. In order to assess each landing site’s path risk the physical path to each landing site is
needed. Optimal collision-free path planning in three dimensional space can take a significant
amount of time thus is impractical to perform in real-time for the numerous potential landing sites
that may be available for a small UAS in a city environment. Therefore we use a heuristic to
prioritize landing sites in Sls by minimum total risk. This sorted list is then sent to our multi-goal
planner which efficiently searches over landing sites until the risk-optimal landing site/path pair is
found. Finally the landing site and path is sent to a navigation controller.

5.6.2 Trade-off Between Landing Site and Path Risk

Minimizing the landing site risk and path risk to a site requires solving a multi-objective (MO)
optimization problem from which there may not be a single solution simultaneously optimal over
both objectives. An analysis of trade-offs is required for MO problems by computing and analyzing
a Pareto frontier. Frontier visualization aids system designers in choosing the relative weighting of
objective trade-offs to select a single “best” solution [168].

Fig. 5.11 shows an example Pareto frontier that minimizes two objectives: landing site risk
and path risk. Each purple dot represents a landing site. The x-axis represents landing site risk
and the y-axis represents path risk to that site. The green line connects three points on the Pareto
frontier, the set of non-dominated landing sites for which any improvement in one objective results
in a negative trade-off in the other. Each of these three landing sites is “optimal”, and a quantifiable
relationship between each objective must be constructed to select a final choice. A linear weighting
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Figure 5.11: Example Pareto frontier for landing site and path risk. Demonstrates trade-off between
to minimize both objectives. Points in the Pareto frontier are connected by a green line.

scheme between the objectives is proposed below for each landing site li ∈ Sls:

rt = wl · rl + wp · rp (5.18)

where rt refers to the total risk and wl and wp are weights for landing site risk and path risk,
respectively. The optimal landing site can then be found by solving the optimization problem shown
in Eq. 5.19.

li∗ = arg min
li ∈ Sls

rt (5.19)

5.6.3 Multi-Goal Planner

Our multi-goal planner selects a landing site that minimizes total risk given a user-defined
weighted trade-off between landing site risk and path risk. Each landing site’s position and risk is
assumed known a priori. Path risk cannot be known until the physical path is computed. Because
this work relies on preprocessed map data rather than real-time perception, path planning has the
highest real-time computational overhead. Multi-goal search allows exploration of many low-risk
landing sites but will be computationally expensive. Our planner efficiently prunes high risk
goals/paths from the search space to reduce computational overhead. Ultimately the planner returns
one goal/path pair minimizing combined total risk. The algorithm begins by creating an array of
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landing site data structures with the following form:

li = {c, rl, rp, rt,min, found} (5.20)

c ∈ R3 (5.21)

rl, rp, rt,min ∈ R (5.22)

found ∈ { 0, 1 } (5.23)

where c is landing site position, rl is landing site risk, rp is path risk, rt,min is minimum total risk,
and found is a Boolean indicating whether a path has been found to landing site i. The minimum
total risk is computed from

rt,min = wl · rl + wp · h(OUAS, c)/R (5.24)

where h() is an admissible heuristic, 3D octile distance in this work. We access elements in li
through dot (.) notation, e.g. li.rt,min refers to the minimum total risk of the ith landing site in
Sls. Section 5.6.3.1 provides definitions and a theorem for our multi-goal planner. Section 5.6.3.2
describes the planning algorithm and its implementation.

5.6.3.1 Theory

Definition 4. Total Ordered Set Binary relation, ≤, is a total order on set X if ∀a, b ∈ X

1. a ≤ b and b ≤ a =⇒ a = b Anti-symmetry

2. a ≤ b and b ≤ c =⇒ a ≤ c Transitivity

3. a ≤ b or b ≤ a Connexity

We define binary operator ≤ on the set Sls ∀li, lj ∈ Sls:

li ≤ lj : li.rt,min ≤ lj.rt,min (5.25)

This operator is used to sort Sls such that the natural numbers i, j ∈ [1, N ] index with the following
property:

∀li, lj ∈ Sls li ≤ lj ⇐⇒ i ≤ j (5.26)

where N = |Sls|. We use bracket operator [·] to index Sls, e.g., li = Sls[i].
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Theorem 1. Let i∗ ∈ [1, N ] and k ∈ [1, N ] be natural numbers where i∗ ≤ k. If ∀j ∈
[1, k], li∗ .rt ≤ lj.rt and li∗ .rt ≤ lk+1.rt,min then li∗ has the minimum total risk:

li∗ = arg min
li ∈ Sls

li.rt (5.27)

Proof. The stated inequalities partition Sls into two ordered sets for some index k ∈ [1, N ]. We
denote S lowls = {l1, . . . , lk} where li∗ ∈ S lowls and Shils = {lk+1, . . . , lN} ∪ {li∗}. We must show that
li∗ represents the minimum total risk in both sets. When ∀j ∈ [1, k] li∗ .rt ≤ lj.rt holds true, by the
definition of argmin we know that:

(1) li∗ = arg min
li ∈ Slowls

li.rt

To show li∗ has the minimum actual total risk of Shils we begin by noting that for each landing site lj

(2) ∀j ∈ [1, N ], lj.rt,min ≤ lj.rt

If a landing site li has total risk li.rt which is less than the minimum total risk of landing site lj
denoted lj.rt,min then

(3) ∀ i, j ∈ [1, N ] li.rt ≤ lj.rt,min =⇒ li.rt ≤ lj.rt

From the transitivity property of Sls we obtain

(4) ∃ i∗, k ∈ [1, N ] s.t. li∗ .rt ≤ lk+1.rt,min =⇒ ∀j ∈ [k + 1, N ] li∗ .rt ≤ lj.rt,min

Finally by combining (3) and (4) we obtain

(5) ∃ i∗, k ∈ [1, N ] s.t. li∗ .rt ≤ lk+1.rt,min =⇒ ∀j ∈ [k + 1, N ] li∗ .rt ≤ lj.rt

Using the definition of argmin we restate (5) as

(6) ∃ i∗, k ∈ [1, N ] s.t. li∗ .rt ≤ lk+1.rt,min =⇒ li∗ = arg min
li ∈ Shils

li.rt

Statements (1) and (6) show that li∗ has the minimum total risk in S lowls and Shils if both qualifying
predicates hold true. Therefore the union of these sets, Sls, has the same minimum li∗ .rt.

Remark. There may not exist a k for which the second clause li∗ .rt ≤ lk+1.rt,min in Theorem 1
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holds true. In this case S lowls = Sls and path planning must be performed for every landing site to
guarantee risk-optimality.

5.6.3.2 Multi-goal Path Planning Algorithm

Our multi-goal path planner is shown in Algorithm 5.2. First, Sls is sorted by minimum total risk
as described in Definition 4. The algorithm next initializes variables l̂min, p̂min, and r̂t to track the
minimum risk landing site, associated path, and total risk, respectively. These variables represent
the current best landing site/path pair and are updated each time a lower risk landing site is found.

Our algorithm repeatedly investigates the next most promising landing site li from Sls. Line
11 starts a path planning sequence with 3D octile distance heuristic guiding the planner to li. The
planner is opportunistic so that other landing sites (goals) may be found during the search. For
this reason the identified landing site is returned from function PathPlanning, lj , and will not
always be equal to li. The true total risk of lj is then calculated for the full flight plan and its found

flag set. This landing site’s total risk is then compared to the current best and updated if appropriate,
ensuring the first clause of Theorem 1 is satisfied.

The first element in Sls which has not been found is returned in Line 18 as the next unplanned
landing site that has minimum total risk. The tracked total risk is compared with this element’s
minimum total risk, and if less or equal will satisfy the second clause in Theorem 1. Once both
predicates are satisfied iteration terminates and l̂min, p̂min are returned as the risk-optimal landing
site and plan, respectively. If the optimal site is not found then the procedure continues. Line 21
ensures that if li was not found (lj is not li) then the planner will retry li in the next iteration. This is
accomplished by decrementing the loop variable i. The total number of iterations is equal to k in
Theorem 1 which represents the number of landing sites searched.

Note that the algorithm can return the best found landing site and path at any iteration step if
computational time becomes a concern. In addition a worst case bound of unnecessary risk can be
computed from the difference between the returned landing site’s total risk and the minimum total
risk of the next landing site to be searched.

5.7 Maps and Simulation Results

Landing site databases and path planning obstacle maps were generated for the cities of Ann
Arbor, Michigan; Witten, Germany; and mid-town Manhattan, New York City, New York using the
methods outlined in Sections 5.4 and 5.5. Public data sources used for all three cities are shown in
Table 5.2. Visualization and analysis of each city’s databases and maps are found in Section 5.7.1.
Section 5.7.2 presents two urgent landing scenarios for each city with results from our proposed
framework. Section 5.7.3 provides statistical analysis of our planners speed and efficacy in all three
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Algorithm 5.2: Multi-Goal Search
Input :Landing Site Set (Sls),

Map (M ),
UAS Location (OUAS)
Footprint Radius (R),
Weighting Trade-off (wl, wp),
Heuristic (h(ci, cj))

Output :Best landing site and path, l̂min and p̂min
1 Sls = LandingSitePrioritization(Sls,OUAS, R, wl, wp, h)
2 N = | Sls |
3 l̂min = None
4 p̂min = None
5 r̂t =∞
6 for i = 0 to N do
7 li = Sls[i]
8 if li.found then
9 continue

10 goals = {∀ li ∈ Sls | not li.found}
11 lj, pj = PathPlanning(M,OUAS, R, h, li, goals)
12 lj .found = true
13 lj .rt = wl · lj .rl + wp · Cost(pj)

R

14 if lj.rt < r̂t then
15 r̂t = lj.rt

16 l̂min = lj
17 p̂min = pj
18 ln = FirstElement({∀ li ∈ Sls | not li.found})
19 if r̂t <= ln.rt,min then
20 break
21 if not li.found then
22 i = i - 1
23 end
24 return l̂min, p̂min

cities. Table 5.3 displays parameters used throughout all case studies and simulations. The average
touchdown site areas Aavg in each city were set to 150, 100, and 100 square meters for Ann Arbor,
Witten, and New York respectively. The minimum touchdown radius and corresponding area were
set to 2 meters and 12.5 square meters, respectively, for all cases.
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Table 5.2: Satellite, LiDAR, and building data sources

City Satellite LiDAR Buildings
Ann Arbor Bing [148] USGS [149] OSM[114]

Witten Land NRW [100] Open NRW [99] OSM[114]
New York New York State [145] USGS [146] OSM[114]

Table 5.3: Emergency landing case study parameters

Group Parameter Value Description

Landing Site Risk wv 0.8 Weight for vehicle cost
ws 0.2 Weight for property cost
wo 0.0 Weight for human occupancy cost

Vehicle Cost wt 0.4 Weight for terrain type cost
wa 0.4 Weight for area cost
wca 0.2 Weight for cumulative area cost

Multi-Goal Planner wl 0.6 Weight for landing site risk
wp 0.4 Weight for path risk
R 250m Search radius footprint

5.7.1 Landing Sites and Risk Maps

Figure 5.12 shows extracted landings sites and their associated risks for the cities of Ann Arbor
(a), Witten (b), and New York (c). Landing site risk is color-coded from low (light yellow) to
high (dark orange). Touchdown sites are displayed as blue circles. The operating regions are
approximately 1500× 1500, 1500× 1300, and 1500× 3000 meters for Ann Arbor (AA), Witten
(WT), and New York (NY), respectively. Three-dimensional risk grids as described in Section
5.5 were generated for all three cities. Each voxel in Rmap is a cube with two meter edge length.
This resolution provides a balance between file size and providing sufficient resolution for use in
path planning. The resulting file sizes are approximately 37, 26, and 67 MB for AA, WT, and NY
respectively.

5.7.2 Case Studies

We present two case studies for each city where an urgent landing is required for a small UAS.
Figure 5.13 presents a map of each case study with locations shown in Table 5.7.2. The first row
(a,b) is for Ann Arbor, the second row (c,d) is for Witten, and the final row (e,f) is for Manhattan.
Position of the UAS during the urgent landing event is indicated by the green marker. Landing
site risk is colorized from low (yellow) to high (dark orange) risk with associated touchdown sites
marked as blue circles. The lowest risk landing sites, not considering path risk, are ranked and
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(a) Ann Arbor

(b) Witten (c) New York

Figure 5.12: Maps of landing sites and associated risk. Landings site risk for the cities of Ann Arbor
(a), Witten (b), and New York (c). Landing sites are color-coded from low risk (light yellow) to high
risk (dark orange). Touchdown sites are denoted by blue circles. Maps from ©OpenStreetMap con-
tributors and ©CARTO. License: Open Database License: https://www.openstreetmap.org/copyright

marked with blue numbered icons. Our planner’s chosen landing site is marked in red which trades
off landing site and path risk. Pareto plots are also provided for each of these case studies in
Fig. 5.14. To generate these plots, collision-free paths to all landing sites for each scenario were
generated, providing their actual path risk. The first, second, and third row correspond to Ann Arbor,
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Witten, and New York, respectively. Each scenario graph has the same axis limits, allowing the
reader to compare each scenario visually. Each purple dot represents a landing site, while the red
dot represents the landing site chosen by the map-based planner. The Pareto set for each scenario is
depicted by the green line.

(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Maps of case studies for emergency landing. Maps of Ann Arbor (a,b), Witten (c,d),
and New York (e, f). Failure position of the UAS is indicated by the green marker. Landing site
risk is colorized from low (yellow) to high (dark orange) risk, with associated touchdown sites
marked as blue circles. The lowest risk landing sites are ranked and marked with blue numbered
icons. Our planner’s chosen landing site is marked in red which trades off landing site and path
risk. Maps from ©OpenStreetMap contributors and ©CARTO. License: Open Database License:
https://www.openstreetmap.org/copyright
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Table 5.4: Emergency landing case study locations

Scenario Lng/Lat (degrees) Height, MSL (m)

AA CS#1 42.2783, -83.7473 260
AA CS#2 42.2748, -83.7357 270
WT CS#1 51.4391, 7.3369 109
WT CS#2 51.4443, 7.3359 130
NY CS#1 40.7460, -73.9905 19
NY CS#2 40.7662, -73.9903 17

Figure 5.13a,b shows results of our map-based planner in Ann Arbor case studies 1 and 2. In
case study 1 landing sties with low landing site risk are nearby, generating the Pareto frontier seen
in the first row and column in 5.14. The resulting front is approximately linear and the multi-goal
planner, which favors landing site risk per Table 5.3 chooses the landing site with lowest rl. Case
study 2 has the unfortunate situation where the best landing sites are far away, resulting in a Pareto
front that has a sharp vertical drop. This drop allows the planner to make a trade-off between landing
site risk and path risk which favors the point near the bottom of the front which represents a landing
site near the UAS.

Witten case studies are shown in Figure 5.13c,d. The Pareto front for case study 1 is nearly
linear with the exception of a dip caused by one landing site (red point). The significant drop in
path risk causes it to have the minimum total risk and be selected. Case study 2 shows a Pareto front
shifted far to the right, indicating that few landing sites with low rl are available. In addition few
landing sites are immediately nearby for landing, forcing the planner to select a landing site which
has a higher total risk than seen in case study 1.

New York City case studies are shown in Figure 5.13e,f. A clear difference from the prior city
case studies is the increased number of landing sites that are available. In New York hundreds of
flat rooftops offer viable landing site options. However it should be noted that quantity does not
necessarily imply quality as many of these landing sites have high landing site risk. Case study 2
shows the fortunate situation where the UAS failure is next to a low risk landing site causing the
elbow shape Pareto front in the last row/col in Figure 5.14. This point (marked in red) is selected by
our planner because it provides the minimum total risk.

5.7.3 Urgent Landing Statistical Analysis

Two practical questions emerge from this study. First, how practical will it be for a small UAS
to land in each analyzed city? Second, how quickly can the UAS identify a solution using the
Algorithm 2 planner? Section 5.7.3.1 analyzes the minimum search radius needed to guarantee a
landing site, offering a practical constraint on required UAS range for an urgent landing in a given
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region. Section 5.7.3.2 analyzes key performance metrics of our proposed planner.

5.7.3.1 Minimum Radius Footprint

A search radius footprint, R, determines the maximum distance the planner will search for
available landing sites. If this number is too small it is possible that no landing sites will be returned,
potentially requiring an unsafe ditching / flight termination. It is therefore desirable to quantify the
minimum radius footprint necessary to guarantee at least one landing site will be found anywhere in
a mapped region. Figure 5.15 shows a planning area map of Ann Arbor, Witten, and New York in
meters. All landing sites with a minimum radius of two meters are denoted by blue circles while the
center of the red circle represents the point on the map farthest from any landing site. This point is
found by finding the largest inscribed circle contained in the map that does not touch or contain any
landing site. These maximum distances, dmax, are computed to be 123, 106, and 207 meters for
Ann Arbor, Witten, and New York, respectively. Note that this technique does not account for points
near the edge of the map which may be farther from landing sites (such as northeast Manhattan).
Therefore to guarantee a landing site is found with R ≥ dmax, the operating region of this city map
must be shrunk by each city’s respective dmax. Alternatively, one can set R ≥ 2 · dmax.

5.7.3.2 Performance Benchmarks

Monte Carlo simulations were performed to gather four key performance metrics of our proposed
urgent landing planner: number of available landing sites in the landing footprint, database query
time, multi-goal planning time, and number of landing site searched (k in Theorem 1). All results
were computed using a desktop computer running an AMD 3900X 4.1 GHz processor. Each city
had 500 uniformly sampled failure positions for which our framework provided a landing site and
path with minimum total risk. Parameters were set to those from Table 5.3. Figure 5.16 displays a
swarm plot with a box and whisker plot overlay showing results. Each data point is shown with the
box capturing the inter-quartile range, the line in the box representing the median, and whiskers
denoting 0-95th percentile. Outliers, if existing, are labeled in the top right of the graph.

Figure 5.16a shows the number of available landing sites in the reachable footprint for each of
the cities. Ann Arbor has the least number of landings sites, followed by Witten and then New York.
Manhattan in particular has the highest number of possible landings sites. In some sections of the
borough there are more than 300 landing sites within reach; this is most often near small clustered
flat buildings found in the Northeast map region per Figure 5.12c. However, in one particular case
there is only one landing site available in Southern Central Park. In all simulations at least one
landing site is available.

Figure 5.16b displays the number of milliseconds needed to query the database to provide
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available landing sites Sls. The median time to execute this geospatial query is under 2 ms for all
cities. New York once again has a longer tail distribution since hundreds of possible landing sites
are returned. This query is made efficient through the use of R* trees for spatial indexing allowing
for fast lookup in the database.

Figure 5.16c shows multi-goal planner execution time in milliseconds. Mean planning times are
2.0, 3.1, and 9.4 milliseconds for Ann Arbor, Witten, and New York, respectively. Although the
mean is low, all cities have a long tail distribution, with New York requiring up to 166 milliseconds
in one scenario. Some scenarios take longer than average because the 3D octile distance heuristic
underestimates true path length particularly in New York due to of its many high rise buildings
presenting obstacles to be avoided. The degraded heuristic affects the planner in two ways: A* path
planning takes longer due to substantial search node expansion, and the multi-goal planner must
search for more landing sites to prove the risk-optimal site is found. Figure 5.16d shows the number
of landing sites searched by the multi-goal planner, i.e., the number of loop iterations in Algorithm
5.2. Each of these iterations requires an independent A* path planning procedure. The worst case
is found in New York with 11 planning iterations requiring an overall multi-goal planning time of
166ms.

5.8 Discussion and Future Work

The presented landing site risk model evaluates risk to both the vehicle and nearby property.
Vehicle risk currently includes terrain type, planarity, and area size metrics. However, future work
should investigate load bearing capability of buildings, ingress and egress clearance and complexity,
wind patterns, and the direction of abort paths [16]. The risk to overflown population could not be
calculated in this chapter because population density data at high spatial resolution is not widely
publicly available. Census records have low spatial resolution and do not accurately represent
population distribution during the day. Anonymized call detail records can be used to augment this
data to create temporal population models but are only available as sample datasets in a few regions
[24]. Additionally, the population models must have high spatial resolution in order to discriminate
between landing sites within the small radial footprints needed for sUAS urgent landing. This data
will allow a more complete picture of the risk to humans especially when coupled with building
sheltering factors [26].

The risk models presented in this chapter closely follow multiattribute utility theory while
substituting utility maximization for risk minimization[169]. This theory assumes that the overall
risk of a decision is the sum of the magnitude of each attribute multiplied by a risk score. These
magnitudes are subjective and require thoughtful human determination. However, humans in urgent
problem solving situations do not have time to consider all factors and often rely on simplified
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heuristics or shortcuts [170]. Decisions generated with heuristics are often acceptable (satisficing),
quickly determined, but non-optimal [171]. Results from this chapter indicate that our proposed
multi-goal planner is quick, providing a risk-optimal landing site/path decision in less than 100ms.
Future work should be performed to gather expert pilot opinions on whether the proposed metrics are
sufficient and if additional metrics are needed. Participant will also rank, categorize, and group the
most important attributes. Scenarios similar to the presented case studies can be shown where pilots
will choose a landing site/path pair. A fully integrated visualization of 2D maps, 3D environments,
and risk graphs can be presented to allow research participants to make informed decisions. The
interface will be designed such that participants can dynamically adjust rankings and/or weights of
attributes to visualize changing Pareto frontiers. The results of this work will inform attribute and
weight definitions in our final risk models.

In the event of an emergency, our proposed emergency planner can operate locally and au-
tonomously; a data-link for remote operator action is not required. However, it may be desirable to
give a time-limited opportunity for a remote human operator to participate in the emergency response
process. Some failure scenarios may pose high-risk toward humans requiring an immediate decision
(i.e., sub-second) for landing. These situations do not allow elaborate human interaction with an
emergency planner interface; we must prioritize the necessary speed of the autonomous system
against the value a human operator may provide. A simple interface displaying the optimal landing
site/path pair with a confirmation or “go” button may be used in such situations. These confirmation
displays are often used in high risk situations, e.g., the Iron Dome autonomous weapons system
where a human operator has less than one second to confirm the launch of intercepting missiles
against incoming short-range rockets [172]. However, many sUAS failures will not pose immediate
high risk to overflown populations such that prompt human feedback may be beneficial. Humans
in this role should not focus on low level details of landing site identification or flight planning.
Instead they act in a supervisory role by choosing the best course of action that is presented [173].

For this purpose, an intuitive user interface for our emergency planner should be carefully
defined. The type, amount, and form of information presented should be balanced with cognitive
strain humans encounter during time-sensitive, high risk, and uncertain situations [170]. Research
indicates that humans in this “problem-solving” mode look for cues from data, perform hypothesis
generation and selection, and finally action selection [171]. Therefore our user interface should be
limited to elements that successfully aid humans through this decision making process. First, our
emergency planner interface should have separate pre-takoff configuration and emergency action

selection screens. The pre-takeoff screen allows a user to configure the mission specific constraints
and attribute rankings for risk minimization during landing site selection. Constraints such as flight
altitude, flight time, landing site distance, and landing site type (e.g., prepared or unprepared) should
be able to be removed and added through the interface. Additionally, users may select an option to
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bias landing site rank to those closer to a critical destination point (e.g., a hospital) rather than being
near the sUAS itself. A slider can also be presented that changes the ranking of landing sites based
on landing site or path risk metrics. This screen may be information dense as time is not a constraint
during this pre-flight process. In contrast, the emergency action selection screen must afford quick
operator selection. For example, showing all available landing sites, which may total more than 300,
is not recommended because it is likely to overwhelm and distract the user. Instead, the top ranked
sites should be presented to the operator to bring attention to the most likely of choices. Concise
summary views of each landing sites and their paths should be presented. Future work should gather
opinions of pilots and user interface design engineers to begin the process of both interface designs.

5.9 Conclusion

UAS operating in cities need to identify safe landing sites and associated paths in real-time
whenever an urgent landing is required. This chapter proposed the use of nearby flat rooftops to
augment traditional emergency landing sites such as parks and fields. We showed that fusion of
deep learning for roof shape identification and computation geometry for flat surface extraction
results in suitable landing site identification. Landing site locations and associated risks were stored
onboard UAS along with obstacle and risk maps of the local flight area. While previous risk-based
planners have been proposed, our map-based planner is the first to explicitly trade off landing site
risk and path risk to minimize combined total risk. Our multi-goal planning algorithm efficiently
selected the landing site/path pair guaranteed to minimize a weighted total risk function. Landing
site databases and 3D risk maps were generated for three diverse cities with results presented from
six case studies. Additional Monte Carlo simulations were run on all three cities to assess key
performance metrics, showing that our planner finds risk-optimal landing sites and paths in less
than 50ms for 95% cases. Worst-case execution time across our tests was 166ms in New York City.
Future work can address this with a distributed or cloud-based path planner that offers speed up
through parallelization. Additional risk factors such as wind patterns, rooftop material and strength,
and dynamic population data will improve results. Ultimately, multiple UAS sensor data streams
can be incorporated into mapping and real-time planning systems to refine risk databases.
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Figure 5.14: Pareto frontier of case studies. Simulation results for six case studies performed in Ann
Arbor (first row), Witten (second row), and New York City (third row). The x and y axes are landing
site risk and path risk, respectively. Each purple dots represents a landing site and its associated
path, while the red dot signifies the planner’s choice which minimizes total weighted risk.
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(a) Ann Arbor

(b) Witten (c) New York

Figure 5.15: Maximum distance between landing sites. Each landing site is displayed as
a blue circle with the red circle center labelling the point farthest from any landing site.
Maps from ©OpenStreetMap contributors and ©CARTO. License: Open Database License:
https://www.openstreetmap.org/copyright
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Figure 5.16: Metrics for map-based planner. Comparison between the cities of Ann Arbor, Witten,
and New York in 500 random UAS initial positions with a search radius of 250 m. Each data point is
shown with the box capturing interquartile range and whiskers denoting 0-95th percentile. Statistics
are provided for number of available landing sites (a), time to query the database (b), time to find
the risk-optimal landing site/path pair (c), and number of landing sites searched (d).

135



CHAPTER 6

Rooftop Touchdown Point Selection Using On-Board LIDAR and Vision

6.1 Introduction

Recent advances in small Unmanned Aircraft Systems (UAS) perception systems are beginning
to enable safe three-dimensional navigation through complex uncertain environments for applica-
tions such as aerial photography, infrastructure inspection, search and rescue, and package delivery.
Urban UAS operations will necessarily occur above buildings and over people. A safe urgent
landing capability is a necessity, but no terrain-based or prepared vertiport landing option [35, 3, 24]
may be available. In densely-populated urban regions, building rooftops can offer nearby safe
landing zones for small UAS [15]. Urban roofs often have flat-like characteristics and are usually
free from human presence [174]. However, landing on urban buildings provides unique challenges
such as avoiding auxiliary structures hosted on each rooftop. Chapter 5 showed that a database of
flat rooftops, their topologies, and optimal touchdown points can be computed and stored a priori
from data such as satellite imagery and airborne survey point clouds [175]. However, a sUAS must
identify a touchdown point on approach to an unprepared rooftop landing site to confirm the landing
zone is clear or replan as needed.

This chapter proposes Semantic Polylidar3D, a suite of computational geometry (Polylidar3D)
and deep neural network (semantic segmentation [176, 177]) algorithms to identify and select
safe rooftop landing zones in real time using a combination of LiDAR and camera sensors. A
high-fidelity simulated city is constructed in the Unreal game engine [178] with particular attention
given to creating a statistically-accurate representation of rooftop obstacles that create obstructions
to safe landing, e.g., water towers, vents, air conditioning units, rooftop building access doors.
AirSim [179], a robotic vehicle simulator plugin for Unreal, generates onboard small UAS video
and LiDAR data feeds as the small UAS navigates through the simulated Unreal environment.
Semantic Polylidar3D fuses small UAS image and LiDAR data to compute the optimal obstacle-free
touchdown circle on a rooftop within UAS sensor field of view. Figure 6.1 provides a graphical
overview of processing steps. A LiDAR point cloud is classified by projecting data into a semantic
image generated by a neural network. The classified point cloud is then rapidly converted into a
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Figure 6.1: Overview of Semantic Polylidar3D for touchdown point selection. Camera RGB
(red-green-blue) images are transformed into a segmented image through a neural network. LiDAR
point cloud data is projected into the segmented image for classification. Flat surfaces are extracted
with Semantic Polylidar3D from the classified point cloud as shown in the right image indicating
a green candidate landing site polygon with orange interior “obstacle cutouts”. The blue circle
represents the largest flat, obstacle-free touchdown point in the polygon.

polygon representing clear landing area accounting for both geometric and semantic information.
Key contributions include:

• Construction of a high-fidelity visual city model from real world data of the rooftops in
midtown Manhattan, New York.

• A hybrid algorithm for planar extraction accounting for semantic information using computa-
tional geometry and deep learning.

• A novel method for finding optimal touchdown points on rooftops in a processing pipeline
viable for real-time deployment.

• A comparative study of state-of-the-art semantic segmentation models to show their classifi-
cation accuracy.

Below, a summary of related work (Section 6.2) is followed by a problem statement (Section
6.3) and definitions (Section 6.4). Section 6.5 describes our touchdown point selection procedure
using Semantic Polylidar 3D. The urban rooftop simulation environment is presented in Section
6.6, and results are presented for semantic segmentation (Section 6.7) and the integrated Semantic
Polylidar3D pipeline (Section 6.8). The chapter concludes with a discussion (Section 6.9) followed
by a brief conclusion (Section 6.10).
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6.2 Related Work

This section first summarizes the literature in aircraft unprepared landing site selection with focus
on vertical takeoff and landing (VTOL) platforms including multicopter small UAS. Background in
image pixel classification for semantic segmentation and polygon extraction is also provided.

6.2.1 Unprepared Landing Site Selection

VTOL aircraft have been flown extensively in unmapped and dynamic environments, historically
with onboard radar and vision guiding approach to landing in manned helicopter operations [16].
Per [10] and [15], terrain landing sites are commonly investigated and still remain the primary
alternative to runways/vertiports for VTOL aircraft. Rooftop landings have only recently been
considered [15, 113, 175] since only emerging small UAS are sufficiently lightweight to land on a
roof without risking structural damage or collapse. Regardless of touchdown site specifics, landing
can be decomposed into three steps: landing site identification and selection, landing trajectory
generation (flight planning), and flight plan execution [3, 180]. This chapter is specifically focused
on real-time local perception for rooftop-based landing site identification and selection.

Cameras are a common sensors used for landing site identification. For example, Ref. [10]
relies on monocular vision, an inexpensive lightweight option for small UAS. Monocular cameras
can use structure from motion (SfM) to generate 3D point clouds of the environment to aid in scene
understanding [181], but map accuracy is often limited from computational constraints. Ref. [15]
uses stereo vision to aid in depth mapping, while Ref. [182] uses a custom LiDAR system to avoid
obstacles and identify clear/flat terrain for approach and landing. Recently LiDAR sensors have
become sufficiently lightweight and economical to be carried onboard small UAS. LiDAR provides
precise range estimates to surfaces and can be directly transformed to 3D point clouds. However
this precision comes at a cost increase, and point clouds may experience distortion when mounted
on moving vehicles such as small UAS. Solid state LiDAR sensors with few to no moving parts
reduce motion distortion, and offer corresponding reductions in weight and cost [183, 184, 185]. We
assume next-generation small UAS tasked with accurately navigating a complex urban landscape
will carry a camera and LiDAR.

Researchers often use predefined landing site markers and perform image feature matching to
recognize the site [186, 11]. These algorithms use known landing site geometry patterns to robustly
estimate relative state of the aircraft to guide it through a safe touchdown. Our work is focused on
unprepared rooftop landing sites where markers will not be available so site identification and final
approach guidance must be performed from natural environment features.

Ref. [187] presents methods for a return landing to the UAS’ starting position in an unstructured
environment. The work implements a visual teach-and-repeat method where images are recorded
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during take-off and serve as known control/guide points in landing. During landing the drone
localizes to these images and descends along a similar path back to its initial position. This
procedure requires the drone to be above the original UAS take-off position, making it unsuitable
for use in areas never before visited. Ref. [15] identifies candidate touchdown points on rooftops
using a single camera to perform 3D scene reconstruction with structure from motion generating
a disparity map of a rooftop. They note variance of the disparity map along the gravity vector
corresponds to the planarity of the landing surface. Smaller changes in variance correspond to flatter
surfaces. With this assumption the authors apply a kernel filter across the disparity image to identify
pixels that are deemed planar, normalize the resulting image between [0,1] and perform Gaussian
process smoothing. This algorithm is run over a downsampled image space to select the candidate
pixel having the “flattest” region. This procedure for candidate landing site selection guarantees
a minimum distance from obstacles but does not maximize this distance, instead optimizing over
planarity.

Ref. [14] identifies terrain-based candidate touchdown points in an image plane from 2D
probabilistic elevation maps generated over terrain. As in [15], a monocular camera using structure
from motion provides depth information for each pixel. A height discrepancy filter is applied to the
depth image to determine planarity, and a distance transform is applied to the image to select the
flat pixel farthest away from any non-flat site (pixel). The computational complexity of the distance
transform necessitates limiting the size of the map to 100X100 pixels at all altitudes.

Instead of representing surfaces as 2D discretized elevation maps one can instead extract
continuous flat sections as polygons [59]. In Chapter 3 we developed Polylidar3D [188], an
algorithm and accompanying open-source software for extracting flat surfaces as non-convex
polygons with interior holes representing obstacles. Polylidar3D was used to find rooftop landing
sites from archived airborne LiDAR point clouds in Chapter 5. This offline processing pipeline also
found touchdown points on identified flat polygons that maximize distance to any edge or interior
obstacle. This chapter combines Polylidar3D with a deep neural network to generate a semantic
map of visible features from camera images and uses fused results for real-time touchdown point
selection.

6.2.2 Semantic Segmentation

Semantic segmentation describes the process of associating each pixel of an image with a class
label such as sky or rooftop. Fully convolutional networks (FCN) were first proposed for image
semantic segmentation [189] to learn an end-to-end encoder-decoder model capable of segmentation.
The encoder model is a deep CNN that extracts image features with multiple resolutions while
the decoder model contains transposed convolutions (upsampling) to predict segmentations with
different resolutions. U-Net [177] further takes advantage of high-resolution features by decoding
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after each encoding CNN block. SegNet [190] is an encoder-decoder model that upsamples from a
feature map by storing maxpooling indices from the corresponding encoder layer. Bayesian SegNet
[191] improves this model by adding dropout layers to incorporate prediction uncertainties.

Other semantic segmentation work utilizes context-aware models such as DeepLab [192, 193]
and temporal models [194]. These models have relatively high weights for mobile device ap-
plications compared to FCN-based methods. This work compares the performance of different
combinations of lightweight CNN encoders and FCN-based decoders for urban rooftop image
semantic segmentation.

6.2.3 Polygon Extraction from Depth Data

Convex polygons from RGBD images have been extracted by Ref. [60] and [70]. However,
convex polygons cannot represent boundary concavities or account for holes in the polygon. Ref.
[59] generated non-convex polygons from range images using region growing but ignored interior
holes. Ref. [67] performed polygon extraction through boundary tracing of plane-segmented range
images but also ignored interior holes.

Several methods can extract non-convex polygons with interior holes, e.g., [38, 39]. These
methods strictly operate on 2D data requiring the 3D planar point cloud segments be projected to the
best fit geometric plane to produce 2D point sets. Ref. [51] proposes this technique and the use of
α-shapes to extract polygons. However this method requires computationally-expensive projection
and Delaunay triangulation operations making it unsuitable for real-time applications. Polylidar3D
is a faster parallelized non-convex polygon extraction method that also accounts for interior holes.

6.3 Problem Statement

This chapter investigates rooftop touchdown point selection to enable small UAS operating in
urban environments to perform safe urgent landings when necessary. Figure 6.2 illustrates logic and
data flow for the rooftop contingency landing problem. This framework unifies sensor-based and
map-based planning methods previously connected in Ref. [4]. A small UAS requiring an urgent or
emergency landing must perform landing site identification and touchdown point selection to assure
landing will avoid or minimize risk to people, property, and the UAS. If an observed site is safe the
UAS will plan and execute a trajectory to that site. If the area is not safe the on-board map will be
updated and a map-based planner will identify an alternate site. Archived map data may be used
to find an alternate minimum-risk landing site that may be beyond UAS sensor field of view. On
approach to this alternate site, real-time map and touchdown point confirmation will occur. The
cycle will repeat as needed.

This chapter builds on previous work in map-based planning with geographic information
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Figure 6.2: Rooftop-based contingency landing planning overview. Boxes with gold stars indicate
research focus for this chapter.

system (GIS) data processed offline. In Chapter 5, GIS satellite imagery and airborne LiDAR point
clouds were used to construct a database of flat rooftops and their associated optimal touchdown
points [175]. Such a database can be loaded on the UAS before takeoff and used by a map-based
planner to guide landing site selection and trajectory generation. This work builds on previous
terrain-based landing site identification summarized above (e.g., [16]) to support complex flat
rooftop sensor-based landing site confirmation and touchdown point selection using on-board
LiDAR and camera sensors.

This work assumes the small UAS is equipped with a LiDAR sensor and monocular camera
mounted underneath the vehicle. The small UAS also must carry a computer sufficient for sensor
data processing and fusion. This work assumes the UAS has previously selected a rooftop landing
site from onboard maps and that the UAS has executed an approach trajectory to a hover waypoint
ten meters above the mapped touchdown point. This work proposes a process to integrate visual
(camera) and depth (LiDAR) data streams to verify the landing site is safe (e.g., flat and clear) and
adjust the touchdown point if needed. If a safe touchdown point is found a controlled landing will
then be executed; otherwise the UAS must fly to an alternate mapped landing site. By converting
depth data to planar surfaces and video data to surface type with semantic segmentation, the UAS
can conform/identify a clear and suitable touchdown point in real-time. Because a number of
semantic segmentation methods have been developed, comparative benchmarking over realistic
datasets is required to quantitatively assess options. This work relies on simulation-based datasets
designed to be statistically similar to rooftops in Manhattan since we cannot reasonably fly small
UAS above Manhattan buildings to collect actual flight data.
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6.4 Definitions

A scanning LiDAR that completes a full revolution generates a range image. This image has M
rows denoting the number of beams in the vertical direction and N columns each representing a
laser return in the full sequential scan. The range image can be converted to an organized 3D point
cloud P .

A linear ring is a consecutive list of points that is both closed and simple [43]. A linear ring must
have non-intersecting line segments that join to form a closed path. A valid polygon has a single
exterior linear ring representing the shell of the polygon and a set of linear rings (possibly empty)
representing holes inside the polygon. The vertices of the polygon may be 3D points assuming all
points lie on a 2D plane.

Figure 6.3 shows the reference frames defining vehicle body, camera, and LiDAR sensor
placements and orientations. Vehicle body frame {B} has x-axis pointing forward, z axis pointing
down, and y-axis completing a right-hand orthogonal frame. Camera frame {C} and LiDAR {L}
have a translation offset of

(
−0.05 0 −0.05

)
and

(
0.05 0 −0.05

)
respectively in the body

frame. LiDAR frame {L} follows the same conventions as body frame except rotated 90◦ about body
y such that the LiDAR x axis points directly down (aligned with body z). These axes conventions
are the standard reference designs provided by the AirSim plugin used for simulation-based tests.
The reference frame of data will be indicated by a superscript, e.g., PL denotes a point cloud in the
LiDAR frame. A homogeneous transformation from frame A to frame B is denoted HA

B.

Z

X

Y

{B} Front
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X
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ZY

Z X

Y
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Figure 6.3: Reference frames from a side view. (a) UAS body frame {B}. (b) Camera {C} and
LiDAR {L} frames.

6.5 Touchdown Point Selection

Our proposed real-time touchdown point selection strategy is a hybrid algorithm with computer
vision and computational geometry functions. Sec. 6.5.1 details the computer vision models used
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for scene understanding while Sec. 6.5.2 discusses joining this information using polygon extraction.
Finally, Sec. 6.5.3 details contingency planning steps used to identify landing sites.

6.5.1 Semantic Segmentation for Scene Understanding

Deep neural networks for computer vision can now accurately extract image features and
segment images into semantic classes. Most semantic segmentation neural networks consist of
two modules: convolutional neural network (CNN) backbones and meta-architecture elements.
CNN backbones are feature extractors or encoder networks that downsample input images to obtain
high-dimensional features. This chapter compares the performance of two backbone CNN networks:
MobileNets [176] and ShuffleNet [195]. MobileNets are lightweight deep networks designed for
mobile devices. A standard convolution operation is factorized into a depth convolution and a
pointwise convolution, termed depthwise separable convolution. ShuffleNet generalizes depthwise
separable convolution and group convolution to achieve an efficient CNN encoder for a mobile
device. A channel shuffle operation is applied to realize the connectivity between the input and
output of different grouped convolutions.

Meta-architectures are upsampling or decoder networks that reconstruct a segmentation image
from downsampled feature maps. This chapter compares two meta-architectures based on [194]:
FCN [189] and U-Net [177]. FCN combines CNN features from different depths of the encoder
network during upsampling to utilize the information from a higher resolution image. The FCN
model applied in this work combines feature maps from pool3, pool4 and conv7 layers to achieve
better precision, known in FCN as stride 8 or FCN8s. U-Net takes advantage of the higher resolution
feature by upsampling from each stage of the CNN encoder. At the end of each CNN block, the
feature map is both input to the next CNN block and combined with the upsampled feature map.
Upsampling continues until a final segmentation map is created. Our work implements and evaluates
different image semantic segmentation models [194] on a desktop platform with an RTX 2080
graphics processor.

6.5.2 Semantic Polygon Extraction

Chapter 3 introduced Polylidar3D which transforms organized point clouds into meshes and
extracts planar segments. Planar segmentation is a region growing process where a seed triangle is
chosen and edge-connected triangles are expanded based solely on planarity constraints. Polygon
extraction is then performed for each planar segment. This chapter introduces extensions to utilize
semantic information during the region growing process; we refer to this upgraded package as
Semantic Polylidar3D. The process has three steps:

1. Classify Points: The LiDAR point cloud is projected into a semantic image specifying the
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class of each pixel.

2. Semantic Polylidar3D: Polygons are extracted from rooftops utilizing both geometric and
semantic data.

3. Touchdown Site: The largest inscribed circle containing only viable landing polygons is
defined.

6.5.2.1 Classify Points

Each point in organized point cloud PL is transformed to the camera frame and subsequently
projected to the semantic image per

pC = HL
C · pL u = fx

xC

zC
+ cx v = fy

yC

zC
+ cy (6.1)

where pL = (x, y, z, 1)T is a point in the LiDAR frame, HL
C is the transformation matrix, (fx, fy)

are camera focal length values, (cx, cy) are camera principle point offsets, and (u, v) are camera
pixel coordinates. The pixel position allows each point to have a class assignment from the semantic
image. Some projected points may be outside the camera image and are classified as an “unknown”
class, e.g. u, v < 0. Class assignments are stored in auxiliary data structure C of length PL.

6.5.2.2 Semantic Polylidar3D

Classified organized point cloud PL is rapidly transformed into a half-edge triangular mesh T
per procedures in Chapter 3. The vertices of this mesh have corresponding classifications from
C. Fig. 6.4a shows these colorized classifications where green, orange, and blue denote rooftop,
obstacle, and unknown classes, respectively. The plane normal of the rooftop, n̂r, is estimated using
a Gaussian Accumulator and shown as a red arrow in Fig. 6.4a. Mesh triangles are then filtered by
geometric and semantic constraints per Algorithm 6.1. The algorithm first loops over all triangles
and calculates each triangle’s maximum edge length (lt), angle between its normal and the roof
normal (θt), and number of vertices in the rooftop and unknown class (lines 4-7). If the sum of
rooftop and unknown vertices matches or exceeds vertmin then semantic constraints pass (line 8).
Next, the algorithm dynamically reduces the angular geometric constraint if the triangle belongs to
the rooftop class (lines 9-12). This means a high confidence in semantic information may reduce the
confidence threshold requirements for planarity, allowing slightly more noisy data to pass geometric
constraints shown in line 13. Finally both constraints must pass for the triangle to be included in the
filtered triangle set Tf shown as shaded blue triangles in Fig 6.4a. A polygon is then extracted from
the planar mesh segment using methods from Chapter 3.
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Figure 6.4: Visualization of Semantic Polylidar3D. (a) Classified LiDAR point cloud with triangular
mesh: green is rooftop, orange is obstacles, blue is unknown. Triangles meeting semantic and
planarity constraints are shaded light blue. (b) Polygon extraction from planar mesh. Green is hull,
orange are interior holes, and blue is the touchdown site.

6.5.2.3 Touchdown Site

Several polygons representing disjoint flat surfaces may be returned from Sec. 6.5.2.2. These
polygons may be filtered by area size, shape complexity, or even distance from the UAS. Currently
the polygon with the largest area that is nearest to the drone is selected. The candidate touchdown
site is determined by finding the center of the largest inscribed circle in the polygon. The largest
inscribed circle in the polygon maximizes the distance between the exterior hull and any obstacles
within the polygon [175, 159]. We use the software polylabel to perform this function [160]. Fig.
6.4b shows the greatest inscribed circle (blue) inside the polygon. A touchdown site is considered
safe if it meets an aircraft-specific minimum radius constraint for safe landing clearance. If no
safe touchdown site can be found then contingency planning to a new site must be performed as
described below.

6.5.3 Contingency Planning Overview

If no touchdown site can be found at the initial UAS-approached rooftop then the UAS must
land elsewhere and updates to inaccurate map data of that rooftop can be proposed. This may occur
because of structural changes, temporary objects being placed on the surface, or dynamic obstacles
(e.g., people) being present. Control authority must then switch from the sensor-based planner to the
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Algorithm 6.1: Semantic Triangle Filtering
Input :Triangles: T , Points: PL, Class: C, Rooftop Normal: n̂r

Geometric Constraint Parameters: lmax, θmin, θmax
Semantic Constraint Parameters: cr, cuk, vertmin

Output :Filtered Triangle Set, Tf
1 k = |T |
2 Tf = ∅
/* Loop through every triangle */

3 for t← 0 to k do
4 lt = GetMaxTriangleLength(t, T ,P)
5 θt = arccos(n̂t · n̂r) /* triangle and roof */
6 vertr = CountVertices(C, cr, t)
7 vertuk = CountVertices(C, cuk, t)

/* Check Semantic Constraint */
8 semantic pass = vertr + vertuk >= vertmin

/* Update Angular Geometric Constraint */
9 if vertr >= vertmin:

10 θreq = θmax
11 else:
12 θreq = θmin

/* Check Geometric Constraint */
13 geometric pass = lt >= lmax and θt < θreq

/* Must pass both constraints */
14 if semantic pass and geometric pass:
15 Tf = Tf + t
16 end
17 return Tf

map-based planner as shown in Figure 6.2. The map-based planner will then select a new landing
site and touchdown point that optimizes both travel distance and landing site suitability. The process
then repeats with the sensor-based planner verifying the landing site during each approach.

6.6 Simulation Environment

6.6.1 Analysis of Rooftops

Before constructing the simulation environment, an analysis of rooftops in Manhattan was
performed. Since our work is focused on flat rooftop landing sites, only flat-like roofs in Manhattan
were sampled. Data was collected manually by inspecting high resolution satellite and aerial
imagery of buildings and recording the rooftop assets and associated quantities observed. Figure 6.5
shows the locations of 112 buildings randomly chosen from Manhattan near the Southwest corner
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of Central Park. The data are released in [196].

© Mapbox © OpenStreetMap

Figure 6.5: Map of Manhattan buildings observed for rooftop assets. Each blue circle represents a
rooftop used for asset analysis.

Table 6.1 lists the 12 most common object types found on a building rooftop in midtown
Manhattan and the average quantity observed. If a building does not contain an asset its quantity is
recorded as zero. The full histogram of rooftop assets is shown in Figure 6.6 with a logarithmic
vertical axis scale.

Table 6.1: Common rooftop items with average quantities

Item Mean Quantity

air-vents 1.12
small-rooftop-entrance 0.88
skylight 0.51
small-building 0.45
ac-unit 0.28
seating 0.12
air-ducts 0.11
water-tower 0.10
chimney 0.05
enclosed-water-tower 0.04
tarp 0.03
vegetation 0.02

6.6.2 Generating City Rooftop Environments

Game assets for urban city buildings were purchased from [197], and high quality rooftop
assets (e.g., ac-units, water towers) were purchased from [198]. Assets were modified to support
configurability in textures and material properties to enhance world diversification. For example, an
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Figure 6.6: Histogram of twelve common rooftop items observed from a Manhattan dataset.

air-vent can be configured to take on a variety of different metal textures and reflectivity properties.
Figure 6.7 shows a small sample of the diversity in asset classes. A base city was constructed with
33 buildings having different building textures, sizes, and shapes. This base city served as a starting
template to generate random worlds per a world generation script described below. These worlds
served as the basis for training and testing purposes. Note that for this work diversity is focused on
building rooftop assets, not the buildings themselves.

A map of the base world colorized by height is shown in Figure 6.8a. Each polygon represents
the flat surface of a rooftop with known height. A world generation script takes as input this map as
well as an asset configuration file and places assets on each rooftop in a new 3D world. This script
supports configurable options including: probability and quantity of asset placement, spatial location
on the rooftop, asset orientation, and appearance properties (e.g. materials, textures, meshes). The
distribution curve for new asset placement is assumed independent of assets already placed on
a building for simplicity. The quantity of assets can either be configured to follow a uniform
distribution or model the histogram shown in Figure 6.6. Each world is seeded with a different
number to create diverse and reproducible worlds. Figure 6.8b shows an example of building assets
being placed randomly on a roof per the world generation script. The world generation script is
released with this manuscript and may be used in any Unreal Engine project [196].
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air-vents seating rooftop-entrance ac-unit

Figure 6.7: Examples of rooftop asset modelling and customization. Four rooftop assets (air-vents,
seating, rooftop-entrance, ac-unit) and a subset of their customization in random worlds are shown.
Metallic, texture, and static mesh properties can be altered for each asset type.

6.6.3 Vehicle, Camera, and LiDAR Models

The vehicle model and simulator physics engine were provided by the AirSim plugin for Unreal
Engine. The model treats an aircraft as a rigid body with k actuators generating forces and torques.
Details of the model and physics engine are found in Ref. [179]. AirSim generates UAS-based
camera and LiDAR sensor data feeds. The camera uses a pinhole camera model with configurable
random noise. The LiDAR sensor is modeled as a spinning set of nl beams distributed equally
within a vertical angular field of view (VFOV) and rotates clockwise within a horizontal field
of view (HFOV). Simulated beam distance is calculated exactly and perfectly using ray casting.
The authors found this model insufficient because it lacked noise and did not output an organized
structure of point cloud data (i.e., range image) as spinning LiDAR systems provide. Therefore the
LiDAR model was modified to resolve these two issues as described below.

Figure 6.9 shows the LiDAR and error model developed in this work. Each beam is defined
by spherical coordinates with a range (d), azimuth angle (θ), and fixed elevation angle (φ). A
properly-calibrated spinning LiDAR system has many forms of error including but not limited to
range and encoder noise. Drawing inspiration from Refs. [58, 199], our LiDAR model assumes the
radial and azimuth error is distributed by zero-mean Gaussian noise, ed and eθ, respectively. Ref.
[200] verifies this assumption holds for an angle of incidence below a critical angle, found to be
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Figure 6.8: Example simulated urban city. (a) Map of the 33 base city flat rooftops colorized by
height. (b) Example of randomized asset placement from world generation script.

∼ 65◦. This reference also showed a calibrated 64-beam Velodyne sensor had range and azimuth
RMSE of approximately 3.2 cm and 0.03◦, respectively. We adopt similar values in our simulations.

𝑧𝑧

𝑥𝑥
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𝑒𝑒𝜃𝜃

VFOV

HFOV

True 
Point

Return 
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Figure 6.9: LiDAR model used in simulation. Error model account for range (ed) and azimuth (eθ)
error.

The simulated LiDAR used in our work is configured with nl = 64 beams with a VFOV =
(−45◦, 45◦) and a HFOV=(−45◦, 45◦). A scan is collected after the full HFOV is traversed and
recorded as an organized point cloud, with nl rows and nc columns, where nc is fixed and determined
by the scanning and rotation rate:

nc =
90◦

360◦
· PointsPerSecond

RotationsPerSecond
· 1Beam

64Beam

Rotation rate was set to 20Hz with 655360 points per seconds as modeled from an Ouster OS0
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sensor[201]. Note that this LiDAR model, like Refs. [58, 199], does not account for LiDAR motion
distortion for a moving vehicle. However, motion distortion can be removed through efficient
processing using feature scanning with an on-board inertial measurement unit (IMU) [202, 203].
Additionally, this work assumes the drone is in a stable hover such that it can be ignored in this
model.

6.7 Semantic Segmentation Results

6.7.1 Creating Image Dataset

Training, validating, and testing a neural network to segment rooftops and obstructions requires
a large annotated image dataset. To accomplish this we first generated eight random worlds used
for training the neural network. The world generation script was seeded with different numbers
generating different random worlds. Each world assumed equal likelihood for all asset placement
leading to rich and diverse rooftop assets. Note that the buildings and lighting conditions are held
constant, only rooftop assets are different in each world. An image collection script was created that
captured images of rooftops and their obstructions with corresponding ground truth segmentation
labels. The images are captured at a variety of positions and orientations pointed at the center of
the rooftops as shown in Figure 6.10. The blue arrows represent the position and direction of the
camera while the green rectangle denotes the rooftop. A sphere centered at the rooftop with a radius
five meters greater than the rooftops radial footprint fixes these sampling configurations. A total of
11,989 images were collected and split 80/20 into a training and validation set, respectively. The
test set was created in a similar manner except from random worlds following the asset quantity
distribution recorded from the Manhattan dataset. A weighted sampling procedure was used where
the weights were directly used from the data histogram per [204]. A total of 5,465 images were
collected for the test dataset.

6.7.2 Training and Testing Results

Implementation details: We evaluated four combinations of CNN backbones and decoders for
image semantic segmentation: MobileNet + FCN8s, ShuffleNet + FCN8s, MobileNet + UNet, and
ShuffleNet + UNet. We modified models based on tensorflow implementations [194] and perform
training and testing on a system with an Nvidia RTX 2080 GPU. Each model was trained for 100
epochs with early stopping enabled using the validation dataset.

Metrics: We evaluate mean intersection over union (IoU) and per-class IoU for each method on
the test dataset.

Quantitative results: As can be seen in Table 6.2, the MobileNet + UNet model achieves the best
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Figure 6.10: Image sampling strategy for creating an annotated dataset of rooftop segmentation.
Blue arrows denote the position and orientation of the camera. The green polygon denotes the
rooftop.

mean IoU and the best per-class IoU on most cases while MobileNet+FCNs performs the second
best in most Table II cases. Specifically both models outperform the ShuffleNet based methods on
small-rooftop-entrance, skylight, air-vents and ac-units which appear frequently in the real world
and are more important to rooftop landing tasks. The trained MobileNet + UNet model is chosen
for performing semantic segmentation to evaluate our proposed methods.

Table 6.2: The per-class IoU and mean IoU of different image semantic segmentation networks on
our urban rooftop dataset. The top mean IoU is highlighted in bold. The chimney class is absent
from the test dataset so its IoUs are not available.

sky ground
building

wall
building
rooftop

small
rooftop
entrance

sky
light

air-
vents

ac-
unit seating

air-
ducts

water
tower tarp vegetation

Mean
IoU

MobileNet
+ FCN8s 0.99 0.93 0.96 0.98 0.82 0.79 0.48 0.78 0.42 0.80 0.74 0.90 0.81 0.74

ShuffleNet
+ FCN8s 0.99 0.92 0.95 0.97 0.78 0.76 0.41 0.75 0.37 0.73 0.68 0.84 0.79 0.71

MobileNet
+ UNet 0.99 0.93 0.97 0.98 0.83 0.84 0.50 0.81 0.47 0.81 0.78 0.84 0.90 0.76

ShuffleNet
+ UNet 0.99 0.94 0.96 0.98 0.79 0.79 0.36 0.77 0.34 0.74 0.76 0.91 0.88 0.73

6.8 Touchdown Point Selection Results

Our proposed touchdown point selection procedure was evaluated in a newly generated simulated
city environment not used for training the semantic segmentation neural network. The rooftop assets
are newly randomized and follow the asset quantity distribution of Manhattan. The full parameters
used for Semantic Polylidar3D are shown in Table 6.3. Please see Chapter 3 for a full explanation of
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selected parameters. Note that θmax and vertmin are new parameters governing semantic integration
in polygon extraction as described in Section 6.5.2.2. The LiDAR model was configured with 64
beams/channels with range and azimuth error of 5 cm and 0.1 degrees, respectively. The camera
image size was 500 × 500.

Table 6.3: Semantic Polylidar3D parameters

Algorithm Parameters

Laplacian Filter λ=0.65, kernel=3, iterations=1
Bilateral Filter σl=0.3, σa=0.2, kernel=3, iterations=4
FastGA level=5, vmin=50, dpeak=0.28

samplepct=50%
Plane/Poly Extr. trimin=500, lmax=1.5, θmin=0.96

ptpmax = 0.2, verticesholemin = 4
θmax = 0.90,vertmin = 2

Poly. Filtering α = 0.25 , βpos = 0.1, βneg = 0.25,
γ = 4, δ = 0.1

Two analyses were performed that quantified the accuracy and speed of Semantic Polylidar3D
and evaluated the maximum height before obstacle identification failures occurred (decision height).
Each is described below.

6.8.1 Semantic Polylidar3D Accuracy and Speed

6.8.1.1 Creating Test Data

LiDAR and camera image data were collected at 10 meters above each of the 33 rooftops.
For each rooftop, the drone was positioned and orientated in five different configurations. One
configuration is at the center of the rooftop with the drone aligned with the x-axis. The other
four configurations are offset from the rooftop center ±5 meters in both the x/y axes with the
drone facing towards the rooftop center. The drone is assumed in a stable level hover with sensors
pointing down as described above. Each configuration gathers two samples, providing a total of
330 independent samples. A sample consists of a LiDAR scan and an image from the monocular
camera. The LiDAR has random noise making the two samples independent. To assess accuracy,
ground truth polygons including obstacles were required for each rooftop. However, the field of
view of the LiDAR and camera sensors are limited thus may not contain the full rooftop. Fig. 6.11a
shows the ground truth polygon of the rooftop (green/orange), the classified point cloud, and the
FOV of the camera sensor (red frustum). To resolve this issue the ground truth polygon is clipped to
the camera field of view as shown in Fig. 6.11b. This same clipping procedure is also performed on
the output of predicted polygons. This allows any method to be fairly assessed from data within
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the the camera FOV. Accuracy is assessed as the Intersection over Union (IoU) of the predicted
polygon and the clipped ground truth polygon.

(a) (b)

Figure 6.11: Gathering test data in simulation environment. (a) Rooftop ground truth polygon
(exterior=green,holes=orange), classified point cloud, and camera FOV frustum (red). (b) The
ground truth polygon is clipped (purple) to be inside the frustum.

6.8.1.2 Qualitative Results

Figure 6.12 displays three examples of our touchdown point selection process, each with two
images. The left image shows the neural network semantic classification map while the right image
displays the camera image overlaid with polygons. Semantic Polylidar3D polygons are shown in
green/orange (orange is interior obstacles); the clipped ground truth polygons are indicated by a
dashed purple line, and the center of the blue circle represents the optimal touchdown point. A safe
touchdown point is found in each of these examples. Generated polygons map reasonably to ground
truth polygons but may overestimate the size of large obstacles such as the rooftop entrances seen
in (c). This occurs when obstacles occlude perception by the camera and LiDAR sensors, leaving a
“shadow” of missing information behind them. Our method is conservative in that such regions will
not be considered touchdown options.

Fig. 6.13 demonstrates a challenging scenario where Semantic Polylidar3D does an excellent
job of correctly identifying a landing site and selecting a touchdown point. This building has a
rooftop-entrance as well as a slightly non-planar (wrinkled) tarp on its surface as shown in (a). The
rooftop-entrance has a concrete-like texture that is similar to the texture of the rooftop itself. At a
distance (e.g., 10 m) they look nearly identical which causes a neural network segmentation failure
as shown in (b). However, because both LiDAR and vision are used in the Semantic Polylidar3D
algorithm, failure in one modality did not lead to a failure in identifying the rooftop entrance. The
orange obstacle line fully encapsulates the rooftop-entrance as shown in (c). In addition, the neural
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(a) (b) (c)

Figure 6.12: Three examples of touchdown point selection on rooftops. Predicted segmentation
and camera image with overlaying projected polygons are shown on the left and right, respectively.
Dashed purple lines represent ground truth polygons while green/orange represent the predicted
polygon. The center of the blue circle is the selected touchdown point.

network was able to correctly identify the tarp allowing Semantic Polylidar3D to exclude the tarp
from the landing site polygon. The tarp is outside the polygon boundary in (c). Baseline Polylidar3D
shown in (d) only uses LiDAR and is not able to fully identify the tarp obstacle because its planarity
is similar to the ground. Only a small section on the border is captured as an interior hole. This
example shows Semantic Polylidar3D’s increased robustness to neural network errors in vision and
range error from LiDAR by fusing modalities during polygon extraction.

6.8.1.3 Accuracy Assessment

The IoU of the predicted polygon and ground truth polygon (clipped to camera FOV) is computed
for each sample to assess accuracy. We also compare these results with baseline Polylidar3D which
only uses LiDAR data in flat surface extraction. Figure 6.14 shows overlaying histograms and
kernel density estimators of the IoU results where blue and orange denote the baseline against
our new proposed method, respectively. Above the histogram are the respective mean and σ error
bars. Semantic Polylidar3D has a mean and sigma of 91.2± 4% against baseline Polylidar3D with
86.8± 6%. A T-test was conducted between each group giving a t-statistic of 11.0 with a p-value <
0.001. These results indicate a substantial improvement in touchdown point selection with Semantic
Polylidar3D’s integration of computer vision and computational geometry methods.

6.8.1.4 Execution Time

Table 6.4 displays the mean and 1σ execution time in milliseconds for all major steps in the
proposed touchdown point selection algorithm. The GPU accelerated neural network segmentation
is the most time consuming portion. Note that no optimization techniques have been performed such
as quantizing the segmentation model or reducing the number of classes. The total execution time
of the method is sufficiently low to be executed in near real-time with UAS sensor data streams.

155



Rooftop Entrance
Similar Texture

Tarp

Side View

(a)

Segmentation
Failure

(b)

(c) (d)

Figure 6.13: Example of Semantic Polylidar3D on a challenging rooftop. (a) Rooftop with tarp
and rooftop-entrance. The entrance texture is similar to the rooftops. (b) Neural network semantic
segmentation. (c) Proposed Semantic Polylidar3D polygon extraction. (d) Baseline Polylidar3D
fails to identify the tarp.
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Figure 6.14: Comparison of Semantic Polylidar3D IoU accuracy. Polylidar3D (blue, baseline)
versus Semantic Polylidar3D (orange, proposed). A higher IoU indicates the algorithm captured
more of the surface and correctly identified obstacles. Mean and 1σ bars are shown on top.
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Table 6.4: Execution time (ms)

Segment
Image

Classify
Points

Semantic
Polylidar

Touchdown
Site

Total

21.2± 1.1 1.7± 0.1 9.5± 1.5 0.1 32.6± 1.8

6.8.2 Decision Height Analysis

Landing decision height for VTOL aircraft refers to the height needed to limit glide slope and
trajectory tracking errors to smoothly transition from approach to a stable hover over a touchdown
point [205]. This height depends on vehicle performance characteristics, local environmental
conditions (e.g. wind speed), and sensor errors. The touchdown point selection algorithm proposed
in this manuscript must handle some error from both visual and range sensors as well as neural
network segmentation. We performed a series of experiments that determined the maximum hover
height at which our proposed algorithm can accurately identify a human on a rooftop as an obstacle
as shown in Figure 6.15a.

The same simulation and algorithm parameters described in Section 6.8.1 were used for this
evaluation. A multi-factor experiment was conducted over hover height set (5, 10, 15, 20, 25, 30)
meters and LiDAR sensor set (16, 32, 64) beams, respectively. The drone hovered at each height
level and covered a constant-height 2× 2 meter grid directly above the person. The drone observed
the rooftop from 25 positions within the grid, positioning itself at 0.5 meter intervals. At each
observation point the roof and obstacle were extracted using Semantic Polylidar3D. The highest
height level where 24

25
observation points correctly captured the human as an obstacle are shown

in Table 6.5. The greater the number of beams, the higher the point cloud coverage of the human
rooftop “obstacle”. Note that at ≈ 25 meters the person appears as only a few pixels in a 500× 500

camera image such that the neural network is unable to distinguish the person from the roof. This
means a camera can not solely detect the person at or above 25 meters.

Table 6.5: Maximum height for Semantic Polylidar3D to identify a human on the roof

16 Beams 32 Beams 64 Beams

Decision height 10 m 20 m 30 m

6.9 Discussion

The presented results demonstrate that Semantic Polylidar3D offers improvement in accurately
identifying touchdown points over a purely geometric method. Overall Semantic Polylidar3D had a
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Figure 6.15: Decision height analysis. (a) Rooftop environment for analysis. (b) Example observa-
tion point of a drone five meters above a person.

4% improvement in IoU accuracy compared to the geometric baseline. Additionally, Figure 6.14
shows that adding semantic information has reduced the long tail distribution of low accuracy/worst
case examples. The results show our proposed method is robust to individual sensor failures as seen
in Figure 6.13. For example, a segmentation failure to identify an obstacle does not lead to total
failure unless it is also missed by the LiDAR sensor. Additionally, successful identification of a
rooftop using the neural network attenuates range noise by reducing geometric constraints to reduce
false negatives.

The total execution of the touchdown point selection pipeline takes ≈ 30 ms, strictly dominated
by the neural network. It is likely this execution time can be significantly reduced with model
quantization, simplification, and limiting/retraining the network to binary segmentation to identify
rooftop / non-rooftop surfaces only.

The archived map for safe rooftop landing sites must be updated when the sensor-based planner
fails to find a safe touchdown point during the 10m hovering rooftop scans described in this work.
The “live polygons” (LP) extracted from the onboard sensor can be used to resolve the inaccuracies
in the “archival polygon” (AP) of the rooftop. First, the LP of the landing surface (if it exists)
must be transformed from the sensor frame to GPS coordinates to align with the map data. This
requires the aircraft to have onboard GPS with sufficient localization accuracy. Figure 6.16 shows an
example of an archival and live polygon in (a) and (b), respectively. The archival and live polygon
are intersected to create an intersection polygon (IP) shown in (c). This gives the most conservative
estimate for observable landing area that can be updated. The camera FOV is overlaid in red. Finally
an updated polygon (UP) is created through the union of the IP with the AP subtracted from the
FOV. Camera FOV limits the scope of area available for updating.
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Figure 6.16: Proposed rooftop archival polygon update procedure. The AP and LP are intersected
to create (c). The final polygon to update the rooftop is shown in (d).

6.10 Conclusion and Future Work

This chapter presented a real time touchdown point selection algorithm that extracts polygons
representing flat surfaces by fusing camera images and LiDAR point cloud data captured by a
hovering UAS above the potential unprepared landing site. Our method, Semantic Polylidar3D,
combines computer vision using neural networks with computational geometry to create a hybrid
algorithm robust to individual sensor/method failure. Evaluation was performed in a high fidelity
simulated Unreal Engine city constructed from real world rooftop asset statistics collected from
midtown Manhattan, New York. Semantic Polylidar3D showed a greater than 4% improvement
in IoU accuracy for landing site identification compared to a baseline method and took ≈ 30 ms
in computation time. The full algorithm, data on Manhattan rooftops, and Unreal Engine world
generation scripts are open source and available at [196].

Although our simulated cities model rooftop obstacles accurately, future work is required to
build more complete real-world city models that account for building height, textures, streets, parks,
etc. Additionally, our current simulation environment only generates sunny weather image data thus
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requires extension to more general lighting and weather conditions. As weather conditions worsen,
sensors will have degraded performance which will impact the methods presented. Future work
should investigate these issues. Real-world experiments of our touchdown point selection algorithm
must also be performed in the future.
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CHAPTER 7

Flight Experiment Results for Touchdown Point Selection

7.1 Introduction

Small UAS carrying LiDAR, RGBD cameras, or monocular cameras using Structure from
Motion (SfM) can generate 3D point clouds of nearby landing sites. Polylidar3D can transform
these dense point clouds to polygonal representations of flat surfaces in real-time while accounting
for obstacles. Chapter 6 presented simulation results using Polylidar3D for real-time touchdown
point selection for rooftops using on-board LiDAR and cameras. This chapter extends simulations
to real-world experiments conducted at the University of Michigan Ford Motor Company Robotics
Building Fly Lab. This work demonstrates the integration of multiple LiDAR scans into a larger
cohesive mesh in which noise is reduced. The final mesh is then sent to Polylidar3D for polygon
extraction and touchdown point selection.

We assembled a sensor package that hosts an Intel RealSense L515 LiDAR, RealSense T265
Tracking Camera, and an Odyssey x86 Single Board Computer (SBC). Together they provide
color/depth images, 6DOF tracking, and the computation power needed to implement our touchdown
point selection methods presented in Chapter 6. Safe touchdown points are found in a cluttered
indoor environment. Two separate experiments are performed: one with a hand-carried sensor
package and another with the package mounted underneath a flying quadrotor. Results indicate that
our presented methods are able to identity safe touchdown points accurately and efficiently.

7.2 Touchdown Point Selection

Chapter 6 proposed our method of selecting a touchdown point from a single scan of a rotating
LiDAR sensor mounted underneath a sUAS. The single range image is quickly transformed into a
mesh of the environment. This chapter proposes to alternatively integrate multiple scans to create
a unified mesh of the environment. This integration process requires the sUAS to have precise
localization capabilities. This capability is provided by the Intel RealSense T265 tracking sensor
and mounted on-board the quadrotor and validated by a motion capture system.
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The L515 LiDAR is able to produce an RGBD image by aligning the depth and color data
streams. Multiple RGBD frames are integrated into a cohesive map using methods from Zhou et
al. [82] and implemented in Open3D [83]. The technique works by creating a truncated signed
distance field within a voxel volume. The volume is updated by deprojecting points from an RGBD
image into the volume which requires both intrinsic and extrinsic parameters of the camera. The
signed distance field is then extracted as a triangular mesh using the marching cubes algorithm
[206]. In this work we use a voxel size of 5cm which provides more than enough resolution for
landing site decisions. At 3m of distance the range noise of the L515 LiDAR is less than 1cm [185];
noise is nearly removed after integrating multiple frames.

After the mesh is extracted, Polylidar3D is used to extract flat surfaces as polygons. Any
obstacles embedded on the surface are captured as interior holes. The largest inscribed circle of the
largest polygon is used to select a landing zone. A circle must meet the minimum radial footprint
of 0.75 meters, determined by quadrotor size, or no touchdown point is selected. We develop
an open-source hardware and software platform that implements this functionality and validate it
experimentally.

7.3 Experimental Setup

7.3.1 Sensor Package Construction

The sensor package is shown in Figure 7.1. The package is composed of a (1) RealSense L515
LiDAR/Color Sensor, (2) RealSense T265 Tracking Camera, (3) Odyssey x86 SBC, and a (4) 12V
Li-ion battery pack. The package is held together with 3D printed plates and standoffs having a
total mass of 720 grams. The dimensions of the package are 120× 110× 50mm. The L515 device
is mounted directly underneath the sensor package pointing down, while the T265 is mounted in the
front. The Odyssey SBC and battery are placed between the printed plates.

(4) 12V Battery Pack

(2) RealSense T265

(1) RealSense L515

(3) Odyssey X86 SBC ↓

(a) Front View

(2) RealSense T265

(1) RealSense L515

(b) Underside View

Figure 7.1: Sensor package components.
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7.3.2 Sensor Coordinate Frames

The coordinate frames of the L515 LiDAR and T265 tracking sensors are shown in Figure 7.2
and denoted as {L} and {T}, respectively. The L515 follows nominal camera axis conventions
(z-axis forward, x-axis right) while the tracking sensor follows Virtual Reality (VR) conventions
(z-axis backwards, x-axis right). The T265 outputs a 6DOF pose (position and orientation) with
respect to a world frame origin denoted {WT} set during initialization. As a result {WT} follows
VR axes conventions which is non-standard in Aerospace applications. Another world frame
{WNED} is created to be coincident to {WT} but rotated such that it follows NED conventions
(z-axis down, x-axis forward). The reference frame of data will be indicated by a superscript, e.g.,
PL denotes a point cloud in the LiDAR frame. A homogeneous transformation from frame A to
frame B is denoted HA

B.

{T}

{L}
{WT}

𝐻𝑊𝑇
𝑇

𝐻𝑇
𝐿

x-axis y-axis z-axis

Figure 7.2: Sensor package coordinate frames.

Volume integration as described in Section 7.2 requires LiDAR camera intrinsic and extrinsic
calibration parameters. The intrinsics of the L515 are factory calibrated and provided by the
RealSense SDK [111]. The T265 pose provides the extrinsics HT

WT of the T265 sensor with respect
to {WT}. This pose must be appropriately transformed to create the extrinsics of the L515 camera
in the world NED frame:

HL
WNED = RWT

WNED ·HT
WT ·HL

T

where RWT
WNED denotes the rotation from {WT} to {WNED}. The matrix HL

WNED may then
transform points in {L} to {WNED} to create a mesh in this reference frame.

7.3.3 Quadrotor Frame and Sensor Package Integration

We utilize the M330 quadrotor designed at the University of Michigan Autonomous Aerospace
Systems (A2Sys) Lab for all flight experiments [207]. The frame measures 33cm diagonally
between each pair of motors and is powered by a 4S 3000mAh LiPo battery. Markers are placed
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on the quadrotor frame and tracked by a Motion Capture System (MCS). The MCS sends pose
estimates of the quadrotor to the flight controller using a wireless serial radio. The quadrotor is
controlled by a custom autopilot running on a BeagleBone Blue that uses these ground truth pose
estimates for position and yaw control. The sensor package is mounted directly underneath the
quadrotor as shown in Figure 7.3. The vehicle body frame {B} is defined by the MCS. The total
mass of the quadrotor and sensor package is 1744 grams.

Motion Capture Markers

Sensor Package

BeagleBone Blue (BBB)
Auto Pilot

x-axis y-axis z-axis

{B}

Figure 7.3: Sensor package quadrotor integration. The sensor package is mounted directly under-
neath the quadrotor. The Beagle Bone Blue autopilot, motion capture markers, and quadrotor body
frame {B} are indicated.

We continue to use the MCS for quadrotor position control because the T265 sensors accuracy,
precision, and reliability have not been fully tested for flight experiments. The T265 is only used
to generate a mesh of the environment to give a final touchdown point command to the quadrotor.
Note that the T265 sensor initializes the {WNED} frame during startup. Therefore the quadrotor
is positioned such that the MCS coordinate frame is closely aligned with {WNED} before every
flight. However, there is a marginal height offset (< 10cm) between these frames because the
T265 is mounted higher than the ground plane. All commanded touchdown points are given in the
{WNED} frame.

7.3.4 Environment

All experiments were performed inside the University of Michigan’s Ford Robotics Building
Fly Lab. Four obstacles were placed on the floor including three boxes and one small ladder. The
environment, obstacle labelling, and origin frame are shown in Figure 7.4a. Obstacle dimensions
were measured using a ruler and placed at known positions within the environment. An overlay of
the environment and obstacles is shown in Figure 7.4b. The workspace was limited to a 3.5m×3.5m

box centered at the MCS origin and represents the safely navigable region for the drone also within
MCS view. Together the workspace and obstacles form a ground truth polygon to assess the
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accuracy of any proposed landing area created by Polylidar3D. The obstacles were chosen to have
a mix of convex and non-convex shapes to challenge our polygon extraction methods. The size
and placement of the obstacles were selected to prevent overloading the workspace and to provide
an open area for landing. In future experiments we will diversify obstacles and their placement to
further challenge our proposed methods.

OB1OB2

OB3

OB4

{WNED}

(a)

21012
Y (m)

2

1

0

1

2

X 
(m

)

WNED

OB1
OB2

OB3

OB4

Workspace

(b)

Figure 7.4: Flight lab setup. (a) Photo of flight lab and obstacle placement. (b) Ground truth graph
of the environment.

7.3.5 Hardware and Software Integration

The data streams and frequencies for each sensor are shown in Table 7.1. Because of the real-
time computational demand of integrating RGBD frames into a volume the frequency of the L515
was reduced to 6Hz. However, the authors noticed no degradation in mesh quality in comparison to
running at full speed (30Hz) on a desktop computer. The resolution of the depth stream and RGB
stream were set at the recommended levels from Intel to further reduce computational demand.

Table 7.1: Sensor package details

Sensor Stream Frequency Description

L515 LiDAR Camera
Depth 6 Hz 640X480, Depth Stream
Color 6 Hz 1280X720, RGB Stream

T265 Tracking Camera 6DOF 100 Hz Position and Orientation

Figure 7.5 shows a diagram of the devices and software used in the experiments. The top left of
the diagram displays the hardware interfaces, the top right is a legend, and the bottom is the software
architecture. The Odyssey SBC communicates to the quadrotor Beaglebone Blue flight controller
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Message

USB or Wired SerialIMU

Motion Capture 
System (MCS)

Wireless Serial

Figure 7.5: Overview of hardware interfaces and software architecture.

through a serial connection. The communication is one-way and allows the emergency landing
software to command a landing position. Currently the command is issued only once, cannot be
cancelled, and the quadrotor will immediately fly a constant altitude path to the position and then
land. More sophisticated emergency landing logic is beyond the scope of this work.

The urgent landing software is composed of four main programs: RS-Pub, RS-Integrate,
Landing Sever, and Record. Programs communicate with each other with messages using
Enhanced Communication and Abstraction Library (ECAL), a fast publish-subscribe middleware
that manages inter-process communication [208]. The program RS-Pub is responsible for con-
figuring and gathering data from the RealSense devices and publishes shared memory messages
containing RGBD frames with pose information. The program RS-Integrate subscribes to
these messages and will integrate them into a cohesive voxel volume using Open3D [83]. It
also runs a TCP/IP server that upon request will extract a mesh from the volume. The program
Landing-Sever contains the algorithms and software previously presented in this dissertation.
This contains our own software including mesh smoothing, polygon extraction, polygon filtering,
and touchdown point selection. This program also runs an interactive terminal user interface, shown
in Figure 7.6, which allows a user to activate the emergency landing protocols. Finally, the program
Record efficiently records all messages with synchronized timestamps. All code for this work is
open-source and freely available [209].
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Figure 7.6: Picture of terminal user interface for urgent landing.

7.4 Experimental Results for Touchdown Point Selection

Sections 7.4.1 and 7.4.2 present results for hand-carry and flight tests for our touchdown
point selection algorithm, respectively. Section 7.4.3 provides execution timings statistics for our
algorithms. Section 7.4.4 presents a trajectory evaluation error analysis for the Intel T265 sensor.

7.4.1 Hand Carry Test

Five hand-carry tests were performed in the Flight Lab. An identical software suite as presented
in Section 7.3.5 was running except landing commands to the quadrotor were disabled. To simulate
flight, we attached an extendable pole to the sensor package. The package was then picked up
and moved around within the environment. The landing software automatically created meshes
of the environment and used Polylidar3D to extract flat surfaces for landing areas. A risk-optimal
touchdown point was then selected by finding the greatest inscribed circle within the polygon.
Figures 7.7a,b show qualitative results for the mesh, polygon, and touchdown point for two of the
hand-carry tests. The green and orange lines represent the exterior shell of the polygon and interior
holes (obstacles), respectively. The center of the blue circle denotes the risk-optimal touchdown
point.

Figures 7.7c,d display the same polygons shown in (a,b) but projected to theXY plane alongside
the ground truth workspace previously shown in Figure7.4b. The landable area and obstacles are
accurately captured in both examples. Our methods intentionally slightly exaggerate the size
of obstacles to provide a safety buffer for landing. We provide quantitative accuracy results by
calculating the Intersection over Union (IOU) of each extracted polygon and the ground truth
workspace polygon. The mean IOU for all five tests was 94.2% which indicates that the surface
extraction was highly accurate. There seems to be a small positional bias (< .05m) in obstacle
placement which may be from inaccurate localization in the T265 tracking sensor. The is investigated
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Figure 7.7: Real-time constructed meshes and polygons during a hand carry test. (a,b) Meshes,
polygons, and touchdown points from two hand carry tests. Polygons are in green/orange and the
touchdown circle in blue. (c,d) Comparisons of the ground truth polygon (dashed purple) versus
extracted polygons.

more thoroughly in Section 7.4.4.

7.4.2 Flight Tests

Three flight tests were conducted with the sensor package payload. In all experiments a
University of Michigan graduate student with remote piloting experience acted as Pilot in Command
(PIC) and manually controlled the quadrotor to execute the flight path shown in Figure 7.8. This
box pattern allowed full coverage of the workspace by the L515 LiDAR during the integration
process. A flow diagram of the experiment protocol is shown in Figure 7.9. After scanning the
environment, the urgent landing protocol was activated which extracted a mesh of the environment,
found the optimal touchdown point, and began autonomous trajectory generation, navigation and
landing procedures. In all flight tests the quadrotor successfully found the touchdown point and
landed. Each flight experiment took approximately 75 seconds.

Figures 7.10a,b show the meshes generated in real-time from the flight experiments. We can see
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Figure 7.8: Visualization of flight path used in all experiments.
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Figure 7.9: Flow diagram of flight experiment protocol.

that the mesh, polygons, and touchdown point are accurate of the environment. Figures 7.7c,d show
the extracted polygons projected to the XY plane and compared with the ground truth polygon of
the workspace. The mean IOU for all three flight tests was 92.7%, slightly lower than the 94.3%
accuracy of the hand carry tests. This may indicate that the T265 struggled with more precise
localization in flight versus being hand carried.

7.4.3 Execution Time

The computation time for the major steps in our methods are calculated and presented in Table
7.2. The table shows the mean execution time and standard deviation for all experiments conducted
on both the low-power Odyssey x86 SBC as well as a desktop computer. Both computers ran
the same software over recorded data for all experiments. The Odyssey board has an Intel J4105
processor with 4 Cores and 8 GB of RAM while the desktop is configured with a 12 core AMD
3900X processor with 32 GB of RAM. In both systems a maximum of 2 threads were used for
parallelization in Polylidar3D for polygon extraction. All other steps are single threaded.

For each test approximately 111 RGBD frames were integrated into a voxel volume. Once the
volume is created, a triangular mesh of the environment is extracted. Polylidar3D then extracts a
polygon of the mesh, filters/simplifies it, and an optimal touchdown point is found. The Odyssey
SBC executes volume integration sufficiently fast to match the real-time 6 Hz stream of the LiDAR
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Figure 7.10: Real-time constructed meshes and polygons during flight test. (a,b,c) Meshes, polygons,
and touchdown points from three flight tests, respectively. The polygon is shown in green/orange
and touchdown circle in blue. (c,d,e) Comparisons of the ground truth polygon (purple) versus
extracted polygons.

sensor. Additionally, our landing site selection software is able to find a safe landing site in less than
60 ms. In most cases the desktop computer is ≈ 3 times faster than the Odyssey SBC. However,
frame integration has a 10X performance degradation when using the Odyssey board in comparison
to the desktop computer. This can be seen not only from the average execution times but also the
large standard deviation of 27ms.

Table 7.2: Mean and standard deviation of execution times (ms)

Computer
Volume Integration Touchdown Point Selection

Integrate Frame Extract Mesh Extract Polygon Filter Polygon Touchdown Point

Odyssey SBC 19.6± 27.2 47.8± 8.4 18.3± 2.9 39.1± 9.2 0.2
Desktop 2.5± 0.5 16.9± 2.6 6.7± 0.9 14.0± 5.1 0.1
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7.4.4 Trajectory Error Analysis of Intel RealSense T265

This section provides a trajectory error analysis of the T265 pose predictions in comparison
to the ground truth MCS. The T265 predicted pose estimates are given an initial alignment to the
ground truth trajectory following standard evaluation procedures in [210]. Figure 7.11 shows the
3D trajectory of the quadrotor in the first flight experiment using pose estimates from the MCS
(orange) and the T265 (blue). The predicted T265 trajectory closely follows MCS but appears to
drift away marginally after time. Figure 7.12 provides time response plots for the x, y, z, roll, pitch,
and yaw estimates for all three flight experiments.

MCS
T265

Takeoff

Landing

Figure 7.11: Trajectory of quadrotor from Flight #1. Trajectory of Motion Capture System (orange)
and T265 (blue) shown.

The mean absolute trajectory error is calculated for each flight and displayed in Table 7.3. The
position and rotation error are computed following procedures in [210]. The average length of each
flight experiment path is approximately 17.2m. The position and rotation error is low for the first
and second flight but markedly higher in the third flight. During take-off of the third flight the
T265 had strong deviations in altitude, roll, and pitch from the MCS as seen in Figure 7.12c. The
estimated roll and pitch continued to track correctly but with a large bias of approximately 4 degrees.
The positional altitude quickly recovered after 5 seconds when the T265 experienced a “pose jump”
after a loop closure occurred. Currently “pose jumping” for the T265 is only implemented for
translation and does not correct orientation error [211].

Table 7.3: Mean Absolute Trajectory Error (ATE) for T265

Trial Length (m) Mean ATEpos (m) Mean ATErot (deg)

Flight #1 17.1 0.11 0.98
Flight #2 16.6 0.10 1.03
Flight #3 17.9 0.35 3.7
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Figure 7.12: Comparison of Motion Capture System (MCS) versus T265.

7.5 Conclusion and Future Work

Multiple experiments were conducted to validate our proposed methods for real-time touchdown
point selection. We developed a sensor package that holds an Intel RealSense L515 LiDAR,
RealSense T265 Tracking Camera, and an Odyssey x86 Single Board Computer (SBC). Together
they provide depth data, localization and mapping, and the computational power necessary for
our landing software. The sensor package was both hand-carried and flown with a quadrotor in
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an obstacle cluttered indoor environment. Accurate meshes of the environment were generated
in real-time for which landing sites were extracted as polygons. The polygons representing safe
landing areas were compared against the ground truth map and found to be accurate. In every
experiment a safe landing zone was found which correctly minimized risk.

Future work should be performed to expand upon the diversity and placement of obstacles in
the workspace. For example, adding larger more non-convex obstacles with holes in the center
will further challenge our methods to more fully verify their efficacy. In addition, highly cluttered
environments should be tested to verify our touchdown point selection algorithm will only select
safe landing points. The size of the environment, the number of obstacles, and obstacle shape
complexity will have an impact on the computation time needed for our landing software. Further
work should be performed to quantify this relationship and determine its impact. Experimental work
should also be conducted to integrate a semantic neural network with Polylidar3D as proposed in
Chapter 6. Data of real-world and synthetic environments should be captured and labelled to train
the proposed network. The Odyssey board should be swapped with a SBC with an on-board GPU
to provide minimal inference time for semantic segmentation. Further flight experiments above
real-world city rooftops can then be conducted to further validate our touchdown point selection
algorithm.
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CHAPTER 8

Conclusions

This dissertation has developed and integrated methods to enable safe and robust small UAS
urgent landing capabilities in complex urban environments with focus on perception, mapping,
and flight planning necessary to support unprepared rooftop landings. To identify and quantify
the risk of landing sites we present methods integrating a multitude of data sources through novel
computation geometry algorithms and deep learning.

Prior to this work, an sUAS needed to be near prepared sites or open terrain suitable for urgent
landing. This dissertation has shown that within cities there may be hundreds of nearby flat rooftops
available for landing. This drastic increase in landing site options requires on-board autonomy
to be as prepared, efficient, and lazy as possible. First, preparedness comes from preprocessing
as much data as possible to accurately assess the risk level of landing sites and their surrounding
environments. Never leave work to be done online during an emergency that can instead be done
offline. Second, it is essential to be efficient by utilizing appropriate data structures and algorithms
while also exploiting parallelism. For example, using spatial indexes vastly reduces spatial query
execution time, heuristic choices should be guided by the environment (3D octile distance for 3D
grids), and work should be partitioned into as many isolated tasks as possible while distributed in
parallel asynchronously. Finally, software should attempt to be as lazy as possible by only executing
functions that are actually needed. This is especially true for expensive computations, such as path
planning, that need only be executed when required. No amount of algorithmic optimization will
ever outperform a no-op (no operation). These three principles have guided our research approach
and contributed to numerous open source algorithms and datasets for the academic community.

8.1 Contributions

The contributions of this dissertation include:

• In Chapter 2, we proposed our algorithm Polylidar to extract non-convex polygons with
interior holes from 2D point sets. The point set is firstly triangulated where the shape is
extracted using efficient region growing of triangle simplices. Unlike other methods which
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extract polygons by taking the union of triangle sets, Polylidar carefully walks the boundary
of the set while accounting for interior holes. We benchmark our proposed algorithm on
several state-of-the art algorithms showing more than 4X speed improvement and comparable
accuracy.

• In Chapter 3, we extended Polylidar to extract polygons representing flat surfaces from a
variety of 3D data sources such as unorganized 3D point clouds, organized 3D point clouds,
and user-defined meshes. As part of this work we present a novel fast Gaussian Accumulator
that can quickly identify dominant plane normals within a 3D scene. Flat surfaces of non-
connected surfaces are extracted independently though our parallel region growing and
polygon extraction routines. We evaluate our methods on five separate datasets showing the
speed and versatility of our methods.

• In Chapter 4, we proposed a method for identifying the roof shape of buildings using deep
learning from airborne LiDAR point clouds, satellite images, and building outline data.
A prepossessing routine takes raw data and generates both an RGB and depth image for
each rooftop. Over 4500 building roofs spanning three cities were manually classified and
archived. This is the largest dataset for roof shape identification at the time of publication. A
combination of a CNN for feature extraction and a random forest for classification gave the
best results with an accuracy of 86% on test data sets. We show that confidence thresholding
can lead to greater than 95% precision and 75% recall in labeling flat-like roofs.

• In Chapter 5, we proposed a framework for assimilating GIS data to identity and evaluate
risk for emergency landing sites, uniquely including building rooftops. Our work not only
identifies flat rooftops, but isolates obstacle-free flat surfaces on them and quantifies the
usable landing space thereon for risk evaluation. We presented a multi-goal planner that
efficiently selected the landing site/path pair guaranteed to minimize a weighted total risk
function. Several case studies and Monte Carlo simulations are conducted showing that our
planner finds risk-optimal landing sites in less than 50ms for 95% of all cases.

• In Chapter 6, we proposed a hybrid computational geometry and deep neural network algo-
rithm to identify and select safe rooftop landing zones in real-time using a combination of
LiDAR and camera sensors. For testing, we created a high-fidelity simulated city in the Unreal
game engine with particular attention given to creating a statistically accurate representation
of rooftop obstacles. Results showed that our fusion of geometric and semantic information
improved landing site identification accuracy over 4%.

• In Chapter 7, we successfully evaluated our proposed methods for touchdown point selection
with a drone platform. We used on-board solid state LiDAR and 6DOF tracking sensors to
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create full environmental meshes of an indoor flight environment. Obstacle-free flat surfaces
were extracted with Polylidar3D and optimal touchdown points selected for autonomous
landing. In all three flights a landing site was found and the drone landed successfully.

8.2 Future Work

Although this dissertation has presented multiple contributions in computational geometry,
machine learning, and urgent landing for sUAS, there are still many challenges to improve reliability
of autonomous urgent landing in cities. Specific challenges are discussed below.

8.2.1 Robustly Segmenting Rooftop Point Clouds

Chapter 4 proposed a general framework for identifying rooftop shapes through RGB and depth
images using CNNs. There have recently been many advances in deep learning which can operate
more directly on 3D data [152, 153, 212]. These neural network architectures sample from the
point cloud and directly learn global and local geometric features of the point cloud surface. These
methods have been shown to be successful in shape classification, object detection and tracking, and
point cloud segmentation [213]. Our methods on rooftop landing site detection could be improved
if aerial LiDAR point clouds could be more accurately segmented and classified before being given
to Polylidar3D. Polylidar3D could then be modified to take advantage of these segmentation classes
to provide a more robust estimate of landing areas.

8.2.2 Improving Polylidar3D

Polylidar3D is currently designed for extracting dominant planes within scenes such as floors
and walls. This focus allows Polylidar3D to be extremely fast at grouping triangles that may belong
to the same continuous surface and performing region growing of disparate regions in parallel.
However, this limits Polylidar3D’s use in applications that require detailed extraction of smaller
surfaces within a 3D scene. Future work should investigate integrating new techniques that use
Spherical Convex Hulls to iteratively refine surface normal estimates during region growing [214].
There is potential to combine our proposed Gaussian Accumulator for an initial estimate of planes
and the Spherical Convex Hull for refinement and extraction of the remaining small surfaces.

Polylidar3D was designed to be a versatile framework to take many forms of 3D input. This
versatility expands its applicability but creates a challenge for creating unified and optimized
software. For example, there are many ways to further increase and parallelize Polylidar3D when
working with range images. The structure of a range image allows neighbor information to be
implicitly computed and does not need require explicit neighborhood data structures such as the
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half-edge neighbors of triangles. Optimized routines for each data input will allow further speedup
and possibly improved accuracy with new techniques.

8.2.3 Extending Touchdown Point Definition to Fixed-Wing Aircraft

This work has focused on finding terrain and rooftop landing sites suitable for Vertical Take-
of and Landing (VTOL) sUAS urgent landing within cities. Touchdown points on landing sites
were found by calculating the largest inscribed circle of the polygonal representations of flat
surfaces. These touchdown circles are ideal for VTOL aircraft but are not suitable for fixed-wing
aircraft which require a level strip of smooth ground, i.e., an unprepared runway, to support safe
deceleration to a full stop. The flat terrain-based landing sites identified in this work may be
suitable for fixed-wing aircraft if alternative touchdown locations are defined. Future work should
investigate finding the longest inscribed rectangle inside a non-convex polygon with sufficient width
and length necessary for safe aircraft landing. This problem is related to prior work which finds
a rotated rectangle with the largest area inside non-convex polygons [215]. However, the method
cannot handle polygons with interior holes and optimizes for the area of the rectangle instead of
its length. Future work should develop methods for finding multiple “runways” inside polygons
that can optimize for the approach and roll-out of a fixed-wing aircraft needing immediate landing.
Wind, nearby terrain, et al. must also be considered in future work.

8.2.4 Remembering the Human Factor

The risk models presented in Chapter 5 assume that the overall risk of a decision is the sum
of the magnitude of each attribute multiplied by a risk score. The choice of attributes and their
magnitudes are subjective and require thoughtful human determination [169]. Future work should
be performed to gather expert pilot opinions on whether the proposed attributes are sufficient and if
additional metrics are needed. Participant will also rank, categorize, and group the most important
attributes. Scenarios similar to the presented case studies in Chapter 5 can be shown where pilots
will choose a landing site/path pair. A fully integrated visualization of 2D maps, 3D environments,
and risk graphs can be presented to allow research participants to make informed decisions. The
result of this work will inform attribute and weight definitions in our final risk models.

In the event of an emergency, our proposed emergency planner can operate locally and au-
tonomously; a data-link for remote operator action is not required. However, it may be desirable
to give a time-limited opportunity for a remote human operator to participate in the emergency
response process. Some failure scenarios may pose high-risk toward humans requiring an immediate
decision for landing (i.e., sub-second). These situations do not allow elaborate human interaction
with an emergency planner interface; we must prioritize the necessary speed of the autonomous
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system against the value a human operator may provide. A simple interface displaying the optimal
landing site/path pair with a confirmation or “go” button may be used in such situations. These
confirmation displays are often used in high risk situations, e.g., autonomous weapon defense
systems where a human operator has less than one second to confirm the launch of intercepting
missiles against incoming short-range rockets [172]. However, many sUAS failures will not pose
immediate high risk to overflown populations such that more in depth human feedback may be
beneficial. Humans in this role should not focus on low level details such as trajectory planning but
act in a supervisory role by choosing the best course of action that is presented [173].

For this purpose, an intuitive user interface for our emergency planner should be carefully
defined. The type, amount, and form of information presented should be balanced with cognitive
strain humans encounter during time-sensitive, high risk, and uncertain situations [170]. Research
indicates that humans in this “problem-solving” mode look for cues from data, perform hypothesis
generation and selection, and finally action selection [171]. Therefore our user interface should be
limited to elements that successfully aid humans through this decision making process. First, our
emergency planner interface should have separate pre-takoff configuration and emergency action

selection screens. The pre-takeoff screen allows a user to configure the mission specific constraints
and attribute rankings for risk minimization during landing site selection. Constraints such as flight
altitude, flight time, landing site distance, and landing site type (e.g., prepared or unprepared) should
be able to be removed and added through the interface. Additionally, users may select an option to
bias landing site rank to those closer to a critical destination point (e.g., a hospital) rather than being
near the sUAS itself. A slider can also be presented that changes the ranking of landing sites based
on landing site or path risk metrics. This screen may be information dense as time is not a constraint
during the pre-flight process. In contrast, during an urgent crisis the action selection screen must
afford quick operator selection. Therefore, only the top ranked sites should be presented to the
operator to bring attention to the most likely of choices. Concise summary views of each landing
site and their paths should be available. The operator may then choose a final landing site/path pair.
Future work should gather expert opinions of pilots and user interface design engineers to begin
designing both interfaces.

8.2.5 Gaining Confidence in the Data

Our proposed methods have successfully identified thousands of additional landing sites within
cities by finding rooftops suitable for landing. However, the maps we create are limited by the
availability, accuracy, and resolution of the archived GIS data sources. The characteristics of the
underlying data may change over time and by location in the world. Future work should be done
to quantify data quality and uncertainty while determining their effects for use in urgent landing.
Examples of important attributes include the date and time of recording, satellite image resolution,
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point cloud spacing and noise, image occlusion and distortion, and many others. A common example
of inaccurate data is when airborne LiDAR point clouds are several years old which may mislead our
methods about the current state of the environment. Our methods attenuate these effects by fusing
multiple data streams together (e.g., satellite and LiDAR data), but sometimes both modalities can
be incorrect. Future work should be able to explicitly mark rooftops identified using low quality
sources by attaching a “grade” that indicates its reliability.

Our methods for rooftop identification need not be limited to archived data sources. Future work
should investigate methods of integrating real-time data streams from UAS into a remote cloud
database. This data could then be processed in the cloud to significantly augment existing data
and further reduce uncertainty. However, this does introduce new challenges as multiple datasets,
possibly conflicting, must now be integrated. It is likely that this future work will require the use of
distributed consensus algorithms to enforce data consistency [216]. Database changes could then be
streamed to UAS with a datalink to provide the most up to date information.

8.2.6 Creating a More Complete Picture of Risk

The efforts in this dissertation have found hundreds of safe nearby landing zones by utilizing
rooftops. Yet a complete quantification of the risks sUAS pose to themselves, people, and property
are difficult to accurately calculate. For example, quantifying the effects of wind on sUAS trajec-
tories is an important task left for future work. However, supporting a quick nearby landing that
minimizes flight time, and knowing whether a rooftop is truly unoccupied at the time of landing are
keys to risk reduction. Yet high resolution temporal population information is missing from public
datasets. Large corporations, such as Google and Apple, have access to this data through location
tracking on mobile devices. The transformation and packaging of this and other personal data
becomes the corporation’s property and is either used internally or sold to business partners. This is
an example of a centralized tracking program. However, the recent COVID-19 pandemic has shown
that a decentralized, user-friendly, and anonymous location tracking program is not only possible
but beneficial for public health [217, 218]. These opt-in applications have been used successfully
during the COVID-19 pandemic to allow more rapid contact tracing during outbreaks. This same
technology can be used to enable real-time anonymized population density information within cities
to inform decision making for autonomous safety systems. A drone with real-time access to such a
data stream can make a more informed choice for landing site selection and path planning.

A future is soon coming where there will be hundreds of autonomous drones navigating the urban
skies. This will present challenges as drones will need to cooperate with each other when executing
their individual missions. These challenges are similar to those facing the autonomous vehicles (AV)
industry. Vehicle to Vehicle (V2V) communication is proposed as a solution which can increase
the safety of passengers by sending and receiving local omni-directional messages informing
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vehicles of nearby potential accidents/crashes/threats. In addition, Vehicle to Infrastructure (V2I)
communication can allow vehicles to send their position, velocity, and important observations to a
centralized server. We critically need trusted datalink for next-generation air traffic management,
system-wide. Human voice communication has served us well but simply cannot scale. A traffic
management server can then inform others about traffic congestion and provide warnings for
hazardous situations [219]. UAS can greatly benefit by utilizing V2V and V2I (V2I2V) techniques
and NASA’s proposed UAS Traffic Management (UTM) system would be an excellent fit for V2I
functionality. A drone or future advanced air mobility taxi may ingest these local and cloud-based
messages to create a more complete picture of local risks.
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APPENDIX A

Source Code Summary

This dissertation presents numerous algorithms which aid in identifying safe rooftop landing
sites in cities. However, many of our methods are general and can be applied to other domains. In
particular, our Polylidar3D algorithm has applications to any problem domain that requires polygon
extraction from 2D or 3D data. Such problems readily arise in fields such as computational geometry,
GIS, and robotics. We have released the open-source software implementations of Polylidar3D
and its supporting software under the permissive MIT license [220]. We have carefully optimized
each software implementation and tested on both Windows and Linux platforms. All software is
hosted online using GitHub, a software development and version control website. Our software
is currently being used by academic researchers, software engineers, and geographic information
system scientists. The three main software repositories of interest are:

1. Polylidar3D - Fast polygon extraction from 2D and 3D data.
Hosted at: https://github.com/JeremyBYU/polylidar

2. Fast Gaussian Accumulator (FastGA) - Dominant plane normal estimation for 3D scenes.
Hosted at: https://github.com/JeremyBYU/FastGaussianAccumulator

3. Organized Point Filters (OPF) - Fast smoothing for organized 3D point clouds.
Hosted at: https://github.com/JeremyBYU/OrganizedPointFilters

Each software repository is written in C++ for high performance but includes bindings to Python.
We utilize CPU parallelism if available. The build system uses CMake and is tested with the msvc
and gcc compilers. Each repository provides documentation through examples as well as the
application programming interface (API). Bug reports may be filed at each individual repository.
Each section below will provide multi-page screenshots of their respective source code repositories.
The screenshots are of the README.md file which provides a summary of the software.
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A.1 Polylidar3D Source Code Summary

Below is a multi-page screenshot of the README.md file for the Polylidar3D source code
repository hosted at https://github.com/JeremyBYU/polylidar

 README.md

Polylidar3D 

Polygon Extraction from 2D Point Sets, Unorganized/Organized 3D Point Clouds, and Triangular Meshes

Key Features • Documentation • Use Cases • Credits • Related • Citations • License

 

APIAPI docsdocs  Cite 2DCite 2D 10.1109-LRA.2020.300221210.1109-LRA.2020.3002212  Cite 3DCite 3D 10.3390/s2017481910.3390/s20174819

Key Features

Fast (Multi)Polygon Extraction from multiple sources of 2D and 3D Data
Written in C++ for portability
Extremely fast single-threaded but includes CPU multi-threading using data and task-based parallelism
Polygons with holes may be returned

Python3 bindings using PyBind11
Low overhead for calling python/cpp interface (no copying of point cloud data)

Python and C++ Examples
Examples from 2D point sets, unorganized 3D point clouds, organized 3D point clouds (i.e., range images), and user provided
meshes

Cross platform
Windows and Linux ready

Polylidar3D is a non-convex polygon extraction algorithm which takes as input either unorganized 2D point sets, unorganized 3D point
clouds (e.g., airborne LiDAR point clouds), organized 3D point clouds (e.g., range images), or user provided meshes. In 3D, the non-convex
polygons extracted represent flat surfaces in an environment, while interior holes represent obstacles on said surfaces. The picture above
provides an examples of Polylidar3D extracting polygons from a 2D point set and a 3D triangular mesh; green is the concave hull and
orange are interior holes. Polylidar3D outputs planar triangular segments and their polygonal representations. Polylidar3D is extremely
fast, taking as little as a few milliseconds and makes use of CPU multi-threading and GPU acceleration when available.

Here is a small introductory blog-post about Polylidar3D.

Documentation and Branches

Please see documentation for installation, api, and examples. Note that Polylidar went though major changes in July 2020 for 3D work, now
called Polylidar3D . The old repository for 2D work (and some basic 3D) is found in the branch polylidar2D and is connected to this paper.
Polylidar3D  can still handle 2D point sets but the API is different and not the focus of this repo. For papers referencing Polylidar2D and

Polylidar3D please see Citations.

Eventually I am going to make a standalone cpp/header file for 2D point set -> polygon extraction for those that don't need any of the
features of Polylidar3D .

Figure A.1: Page 1 of the Polylidar3D repository
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Polylidar Use Cases

Polylidar-RealSense - Live ground floor detection with Intel RealSense camera using Polylidar
Polylidar-KITTI - Street surface and obstacle detection from autonomous driving platform
PolylidarWeb. An very old Typescript (javascript) version with live demos of Polylidar2D
Concave-Evaluation - Evaluates and benchmarks several competing concavehull algorithms

Credits

This software is only possible because of the great work from the following open source packages:

Delaunator - Original triangulation library
DelaunatorCPP - Delaunator ported to C++ (used)
parallel-hashmap - Fast hashmap library (used)
marl - A parallel thread/fiber task scheduler (used)
PyBind11 - Python C++ Binding (used)
Robust Geometric Predicates - Original Robust Geometric predicates
Updated Predicates -Updated geometric predicate library (used)

Related Methods

2D ConcaveHull Extraction

CGAL Alpha Shapes - MultiPolygon with holes
PostGIS ConcaveHull - Single Polygon with holes
Spatialite ConcaveHull - MultiPolygon with holes
Concaveman - A 2D concave hull extraction algorithm for 2D point sets

Contributing

Any help or suggestions would be appreciated!

Citation

2D

If are using Polylidar for 2D work please cite:

J. Castagno and E. Atkins, "Polylidar - Polygons From Triangular Meshes," in IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4634-
4641, July 2020, doi: 10.1109/LRA.2020.3002212. Link to Paper

@ARTICLE{9117017, 
  author={J. {Castagno} and E. {Atkins}}, 
  journal={IEEE Robotics and Automation Letters},  
  title={Polylidar - Polygons From Triangular Meshes},  
  year={2020}, 
  volume={5}, 
  number={3}, 
  pages={4634-4641} 
} 

3D

If you are using Polylidar3D for 3D work please cite:

Figure A.2: Page 2 of the Polylidar3D repository
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J. Castagno and E. Atkins, "Polylidar3D - Fast Polygon Extraction from 3D Data," in MDPI Sensors, vol. 20, no.17, 4819, September 2020, doi:
10.3390/s20174819 Link to Paper

@Article{s20174819, 
author = {Castagno, Jeremy and Atkins, Ella}, 
title = {Polylidar3D-Fast Polygon Extraction from 3D Data}, 
journal = {Sensors}, 
volume = {20}, 
year = {2020}, 
number = {17}, 
article-number = {4819}, 
url = {https://www.mdpi.com/1424-8220/20/17/4819}, 
issn = {1424-8220} 
} 

License

MIT

GitHub @jeremybyu

Figure A.3: Page 3 of the Polylidar3D repository
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A.2 Fast Gaussian Accumulator Source Code Summary

Below is a multi-page screenshot of the README.md file for the FastGA source code repository
hosted at https://github.com/JeremyBYU/FastGaussianAccumulator.

 README.md

Fast Gaussian Accumulator
pypipypi v1.0.5v1.0.5  APIAPI docsdocs  Run TestsRun Tests passingpassing  licenselicense MITMIT

A Gaussian Sphere Accumulator refers to the notion of discretizing the surface of the unit sphere (a gaussian surface) into buckets/cells.
One can then integrate/accumulate a list of unit normals into these buckets. The end result is then a histogram of the sphere. There are
many choices for the discretization process, however this library uses equilateral triangles because each cell will have nearly the same area
and shape. This process is done by recursively subdividing (called "refining") the primary faces of an icosahedron. The following image
shows our discretization strategy. The first object discretizes a sphere with uniform spacing of phi/theta (note small cells at poles, this
represenation is not used), the second object is an icosahedron, the third object is the first level of recursion for an icosahedron, the last
object is the second level of recursion of an icosahedron.

Once a level of refinement is chosen, one can then integrate the surface normals of 3D triangular mesh into the cells/buckets. For example
integrating the normals into a level four (4) icosahedron would look like the image below. Bright yellow indicates more counts for the
triangle cells. This is basically showing that the floor [0, 0, 1] and walls [0, +/-1, 0] are common. Documenation can be found here.

Figure A.4: Page 1 of the Fast Gaussian Accumulator repository
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Integrating Normals into the Gaussian Accumulator

To integrate normals into the Gaussian Accumulator one must find the cell that corresponds to the normal. This is a search process that
has been implemented in several fashions in this repo. The main ways are as follows:

3D KD Tree - Do a nearest neighbor search using a binary tree.
GaussianAccumulatorKDPY  - One implementation using scipy kdtree.
GaussianAccumulatorKD  One implementation uses C++ nanoflann.

Global Index and Local Search - A 3D point is transformed to a unique integer id. The unique ids have the property that ids close to
each other will be close to each other in 3D space. The closest id is found corresponding to a triangle cell. A local search of triangle
neighbors is performed to find closest triangle cell to the point.

GaussianAccumulatorOpt  - Works good on only on the top hemisphere. Projects 3D point to plane using Azimuth Equal Area
projection. Convert 2D point to int32 index using Hilbert Curve. This implementation is severely limited and is not recommended.
GaussianAccumulatorS2Beta  - Works on full sphere! Uses Googles S2 space filling curve (uint64). 3D point is projected to unit

cube, assigned to a face of the cube, and then a Hilbert curve index is found for that cube face. This is recommended, and what I
use.

Use GaussianAccumulatorS2Beta! Look at python -m examples.python.run_normals

Peak Detection

There are two (2) peak detection methods used within this repository. The user can choose which one best suit their needs.

2D Image Peak Detection

This method basically unwraps the icosahedron as a 2D image in a very particular way as described by Gauge Equivariant Convolutional
Networks and the Icosahedral CNN. This unwrapping is hardcoded and fixed once a refinement level is chosen so it is very fast. The library
then uses a 2D peak detector algorithm followed up with agglomerative hierarchial clustering (AHC) to group similar peaks. All of this is
user configurable.

1D Signal Peak Detection

This performs peak detection on the 1D thread following the hilbert curve. This produces more peaks which are actually near each other on
S2 and are then grouped with AHC. This actually works pretty well, but I recommend to use the 2D Image Peak Detector.

Installation

For python there are pre-built binary wheel on PyPI for Windows and Linux. You can install with pip install fastgac .

Below are instruction to build the C++ Package (and python package) manaully with CMake. Installation is entirely through CMake now.
You must have CMake 3.14 or higher installed and a C++ compiler with C++ 14 or higher.

For C++ Users

1. mkdir cmake-build && cd cmake-build . - create build folder directory
2. cmake ../ -DCMAKE_BUILD_TYPE=Release  . For windows also add -DCMAKE_GENERATOR_PLATFORM=x64
3. cmake --build . -j4 --config Release  - Build FastGA

For Python Users (Requires CMake)

1. Install conda or create a python virtual environment (Why?). I recommend conda for Windows users.
2. pip install .

If you want to run the examples then you need to install the following (from main directory):

Figure A.5: Page 2 of the Fast Gaussian Accumulator repository
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1. pip install -r dev-requirements.txt

Build and Install Python Extension and C++

Here building is entirely in CMake. You will build C++ Library and Python extension manually with CMake Commands.

1. Install conda or create a python virtual environment (Why?). I recommend conda for Windows users.
2. cd cmake-build && cmake --build . --target python-package --config Release -j$(nproc)
3. cd lib/python_package && pip install -e .

If you want to run the examples then you need to install the following (from main directory):

1. pip install -r dev-requirements.txt

Documentation

Please see documentation website for more details.

Citation

To support our work please cite:

@Article{s20174819, 
author = {Castagno, Jeremy and Atkins, Ella}, 
title = {Polylidar3D-Fast Polygon Extraction from 3D Data}, 
journal = {Sensors}, 
volume = {20}, 
year = {2020}, 
number = {17}, 
article-number = {4819}, 
url = {https://www.mdpi.com/1424-8220/20/17/4819}, 
issn = {1424-8220} 
} 

Figure A.6: Page 3 of the Fast Gaussian Accumulator repository
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A.3 Organized Point Filters Source Code Summary

Below is a multi-page screenshot of the README.md file for the OPF source code repository
hosted at https://github.com/JeremyBYU/OrganizedPointFilters.

 README.md

Organized Point Filters
APIAPI docsdocs

This module is a collection of filters for use on organized point clouds (OPC). Note that this software has not been as extensively tested as
my other work. The filters:

Laplacian Mesh Smoothing applied to an implicit fully connected right cut triangular mesh of an OPC.
Single threaded, CPU Multi-threaded, and GPU accelerated.

Bilateral Mesh Normal Smoothing applied to an implicit fully connected right cut triangular mesh of an OPC.
Single threaded, CPU Multi-threaded, and GPU accelerated.

Intel RealSense Bilateral Spatial and Disparity Transform filters used on depth images.
I thought it would be useful to pull this code out of the Intel SDK such that it can be used by others who are not using realsense
cameras. Apache 2.0 License.

Here is an example GIF of Laplacian and Bilateral Filtering of a noisy organized pont cloud of stairs. The colors indicate the triangle normals
of the mesh. The more uniform the colors, the smoother the surface

Installation

Installation is entirely through CMake now. You must have CMake 3.14 or higher installed and a C++ compiler with C++ 14 or higher. No
built binaries are included currently.

Build Project Library

1. mkdir cmake-build && cd cmake-build . - create build folder directory
2. cmake ../ -DCMAKE_BUILD_TYPE=Release  . For windows also add -DCMAKE_GENERATOR_PLATFORM=x64
3. cmake --build . -j$(nproc)  - Build OPF

Build and Install Python Extension

1. Install conda or create a python virtual envrionment (Why?). I recommend conda for Windows users.
2. cd cmake-build && cmake --build . --target python-package --config Release -j$(nproc)
3. cd lib/python_package && pip install -e .

If you want to run the examples then you need to install the following (from main directory):

Figure A.7: Page 1 of the Organized Point Filter repository
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1. pip install -r dev-requirements.txt

You also need cupy  to be installed with cuda device drivers if you want GPU acceleration. I cant vouch that this will always work:

1. conda install cudatoolkit=10.1
2. pip install cupy-cuda101

Documentation

Please see documentation website for more details.

Citation

To support our work please cite:

@article{s20174819, 
author = {Castagno, Jeremy and Atkins, Ella}, 
title = {Polylidar3D - Fast Polygon Extraction from 3D Data}, 
journal = {Sensors}, 
volume = {20}, 
year = {2020}, 
number = {17}, 
article-number = {4819}, 
url = {https://www.mdpi.com/1424-8220/20/17/4819}, 
issn = {1424-8220} 
} 

Figure A.8: Page 2 of the Organized Point Filter repository
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