
Cautiously Optimistic Program Analyses
for Secure and Reliable Software

by

Subarno Banerjee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor Satish Narayanasamy, Chair
Assistant Professor Jean-Baptiste Jeannin
Professor Karem A. Sakallah
Assistant Professor Xinyu Wang

Subarno Banerjee

subarno@umich.edu

ORCID iD: 0000-0001-5449-2264

© Subarno Banerjee 2021

And I say that life is indeed darkness save when there is urge,
And all urge is blind save when there is knowledge,
And all knowledge is vain save when there is work,

And all work is empty save when there is love.

– The Prophet, by Kahlil Gibran, 1923

To my parents and teachers

ii

ACKNOWLEDGMENTS

This dissertation work is the product of many different contributions from multiple people. I’m

grateful, fortunate and often humbled by their generosity.

My advisor Satish Narayanasamy took a chance on me, has shepherded me throughout my

graduate career, and inspired me to grow as a researcher. He has taught me how to identify worthy

problems, think critically, and organize and present ideas better. He has been a steady source of

feedback and reasoned advice. I owe this PhD to him, and am eternally grateful to him.

I’m grateful to my collaborators Peter Chen and David Devecsery who have made significant

contributions in developing this body of work. Peter discusses ideas with an unmatched energy and

enthusiasm, shares advice with a genuine desire to see students succeed, and is very generous with

his time; he is a great advisor. David has an impressive expertise on nearly all topics on computer

systems, and has helped me learn and develop the tools and techniques used in this work; I hope to

be half as good as him someday. I’m grateful to Jean-Baptiste Jeannin, Karem Sakallah, and Xinyu

Wang for serving on my dissertation committee. Evaluating this dissertation and attending exams

was quite the time investment, and their insightful comments has helped improve this dissertation.

The UM-CSE department provided a stimulating learning environment and valuable resources.

I’m thankful to the brilliant CSE faculty and all staff members.

I was fortunate to work with some amazing people during a few internships, and I’m thankful

to all my hosts and colleagues: Manu Sridharan and Lazaro Clapp at Uber, Weidong Cui and

Xinyang Ge at Microsoft, and Dragos Sbirlea at Google. I’m especially grateful to Manu for

his collaboration on the NullAway paper, and for his continued mentorship and help during the job

search process. I’m also extremely grateful to Gogul Balakrishnan at Google for being an excellent

mentor and sharing his valuable insights and career advice.

iii

I would like to particularly thank Shaizeen Aga, my labmate and mentor, who served as my

lifeline during grad school. She helped me manage expectations, navigate advisor relationships,

and deal with paper rejections. My success in grad school is thanks to her. I’m fortunate to have

the generous support of our lab alumni Ram Srivatsa Kannan, Gaurav Chadha, Abhayendra Singh

and Animesh Jain. I’m also thankful to Swagath Venkataramani for his advice at different times.

I had the pleasure of working with Yirui Liu on the OPT-SC project; I thank her for the col-

laboration. And, I’d like to thank fellow CELAB students and my labmates for the many engaging

discussions, reading groups, and social events. Special thanks to Sanjay Singapuram for many

interesting conversations and for his help in proofreading this document.

I was fortunate to have excellent teachers who inspired me to pursue a research career. I’m

thankful to Mainak Chaudhuri for advising my master’s thesis work, and I doubt that I would

have pursued a PhD but for his support and encouragement. I also owe this journey to my college

professors and school teachers; I could only reach this point in life because of them.

I feel obliged to acknowledge the influence of some notable authors and speakers in informing

my general outlook: Sam Harris, Peter Singer, Vaclav Smil, and Shankar Vedantam. If you’re

reading this document at leisure, I’ll direct you to read or listen to any of their works, and your

time is guaranteed to be spent better.

I would like to thank the friends who made my time in Ann Arbor so enjoyable: Arun, Aman,

Ankush, Aditya, Mani, and Vivek. Some of my cherished memories are going places and eating

good food with them. I’m also thankful to Gourab and Dibyajyoti for their friendship and shared

grad school experiences that carried me through, and to Paritosh for his eternal friendship. I also

enjoyed a sample of the diverse student activities at UM, thanks to the climbing club, the SCUBA

club, and the Food Recovery Network. I’m also thankful to the American Red Cross, South-East

Michigan chapter for the service opportunities that brought unique life lessons and perspectives.

Finally, I’m blessed to have the constant support of my family. I’m grateful to my parents for

their tireless work to get me to where I am today, and to have my brother alongside. They shall

remain a source of purpose behind all my endeavors. I dedicate this dissertation to them.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . viii

Abstract . ix

Chapter

1 Introduction . 1

1.1 Need for Secure & Reliable Software . 2
1.2 Traditional Program Analyses Landscape . 5
1.3 Motivation and Contribution . 7

2 Cautiously Optimistic Program Analysis . 10

2.1 Conservative Hybrid Analysis . 10
2.2 Optimistic Hybrid Analysis . 11
2.3 Cautious Recovery with Safe Elisions . 15
2.4 Soundness Proof . 16

3 Iodine: Live Information-flow Security Monitoring 20

3.1 Introduction: Live Information-flow Tracking is Challenging 20
3.2 Background: Information Flow Analyses . 23
3.3 Design: Cautiously Optimistic Program Analysis for Fast DIFT 24
3.4 Iodine Implementation . 29
3.5 Evaluation: Precise Static & Fast Dynamic IFT 31
3.6 Related Work . 41

4 PROV-GC: Provenance-based Sound Garbage Collection for C 45

4.1 Introduction: Enforcing Memory Safety is Challenging 45
4.2 Background: Garbage Collection for C/C++ . 50
4.3 Design: Provenance-Based Garbage Collection 54
4.4 PROV-GC Implementation . 65
4.5 Evaluation: Sound & Efficient GC for C . 68
4.6 Related Work . 74

v

5 OPT-SC: Efficient Sequential Consistency for Java 78

5.1 Introduction: Enforcing Strong Concurrency Semantics is Challenging 78
5.2 Background: Memory Consistency Models . 81
5.3 Design: Precise Predicated Static Datarace Detection 84
5.4 Design: COPA for Efficient Sequential Consistency 88
5.5 OPT-SC Implementation . 95
5.6 Evaluation: Precise Data-race Detection & Efficient SC 98
5.7 Related Work . 106

6 Conclusion . 108

Bibliography . 112

vi

LIST OF FIGURES

Figure

1.1 Program analyses landscape . 6

2.1 COPA workflow . 13
2.2 Soundness of COPA: Transformed program P ′ . 18

3.1 Example of taint analysis . 23
3.2 DIFT optimizations . 25
3.3 Workflow of optimistic hybrid taint analysis . 27
3.4 COPA forward recovery switching mechanism . 29
3.5 Result: Dynamic information-flow tracking overheads 32
3.6 Result: Iodine compared to pure (full) dynamic and conservative hybrid DIFT. 35
3.7 Result: Taint tracking performance on SPECint C benchmarks 36
3.8 Result: Improved static taint analysis precision by assuming different invariants 37
3.9 Result: Profiling invariants while software testing . 40
3.10 Result: Iodine’s sensitivity to fraction of tainted data 41

4.1 XOR linked list . 52
4.2 Explicit pointer provenance propagation . 58
4.3 Copying a pointer via implicit flow . 60
4.4 Implicit pointer provenance propagation . 61
4.5 Result: PROV-GC dynamic pointer provenance tracking overheads 70
4.6 Result: PROV-GC reduces overhead of a single GC invocation 72
4.7 Result: PROV-GC reclaims more memory per GC invocation 72
4.8 Result: PROV-GC performance with varying heap limits 73

5.1 Benefits of predicated over conservative data-race analysis 86
5.2 Example Java program benefiting from predicated data-race analysis 87
5.3 Workflow of OPT-SC . 89
5.4 Result: OPT-SC reduces execution time overhead compared to VBD and S-VBD . . . 102
5.5 Result: OPT-SC benefits for Spark with profiling using its test suite 104

vii

LIST OF TABLES

Table

3.1 Static analysis time breakups for Iodine’s some-to-some taint analysis 38

4.1 PROV-GC Benchmark configurations . 69

5.1 COPA improved precision of intermediate static analyses and data-race detection . . . 103

viii

ABSTRACT

Modern computer systems still have various security and reliability vulnerabilities. Well-known

dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But

the additional work in enforcing these security and safety properties incurs exorbitant performance

costs, and such tools are rarely used in practice. Our work addresses this problem by constructing

a novel technique- Cautiously Optimistic Program Analysis (COPA).

COPA is optimistic- it infers likely program invariants from dynamic observations, and as-

sumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The

resulting system is fast, but also ensures soundness by recovering to a conservatively optimized

analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully re-

stricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded

rollbacks upon recovery, thereby enabling analysis for live production software.

We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas–

• Information-Flow Tracking (IFT) can help prevent security breaches and information leaks.

But they are rarely used in practice due to their high performance overhead (> 500% for web/e-

mail servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it

practical (∼ 9% overhead – 4× speedup).

ix

• Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies program-

ming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed

languages (e.g. C/C++), and manual memory management is prone to errors that have been

exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to

optimize its performance (∼ 16% overhead).

• Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies

reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains

expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly

reduce its cost (from ∼ 24% down to ∼ 5% on x86).

COPA provides a way to realize strong software security, reliability and semantic guarantees at

practical costs.

x

CHAPTER 1

Introduction

Software is everywhere– from controlling critical infrastructure to democratizing technology for

the masses. The very essential backbones of our industrial, financial, healthcare, education and

government systems are built in its realm. Today, it not only manages our modern society, but

sometimes drives aspects of its progress. Given this, ensuring that these systems are secure and

reliable is critical.

And yet, we continue hearing such news as losing identities and information of millions of

users to security breaches, and losing billions of dollars to system downtimes, and so on. As

software have evolved, it has simultaneously grown in complexity as well as its demand for per-

formance. Even advanced industrial computing machinery has been limited to meet this demand.

Since systems cannot tolerate under-performance, this unfortunately means that strong security

and reliability measures are deliberately disabled due to their prohibitive costs.

This dissertation seeks to improve the security and reliability of software systems. Some ad-

ditional work in maintaining or monitoring for these properties is fundamentally unavoidable.

But redundant costs can be eliminated by carefully reasoning and constructing analyses, that use

optimistic assumptions, dynamic information, and careful reasoning to induce more precise and

stronger optimizations. We develop a novel program analysis technique and demonstrate its prac-

tical value in designing more secure and reliable compiler and programming language runtime

support tools. This enables many powerful program analyses that provide stronger guarantees at

practical costs.

1

1.1 Need for Secure & Reliable Software

The following discussion presents a brief summary of our work along three different areas.

Always-on security monitoring
Data breaches and inadvertent leaks recur increasingly often, causing tangible damages and that to

our trust in technology. Why then are systems not running always with the necessary checks? Per-

formance considerations often preclude continuous runtime monitoring of production software, as

even simple dynamic analyses incur prohibitively large overheads. Static reasoning can help avoid

some of the unnecessary work by proving that some program operations can not ever cause poten-

tially insecure behaviors. But such reasoning is fundamentally conservative, becoming too slow

and often not completing for real programs. Even when it finishes, the results are too imprecise and

thus ineffective in practice. Optimistic hybrid analysis (OHA) [1] uses likely program invariants

to predicate static analysis, making it more precise and thereby effective in inducing more aggres-

sive optimizations that reduce dynamic analysis overheads. However, one key challenge remained-

how to guarantee analysis soundness in the rare event that an assumed invariant is dynamically vio-

lated. Rollbacks, although address this problem for offline analysis, are intolerable on live running

software as it may require re-running years of execution history, and moreover, effects of certain

operations are irreversible. We solve this rollback problem in our Cautiously Optimistic Program

Analysis (COPA) to apply it for the first time on live systems. An optimistically optimized anal-

ysis can reason two types of optimizations- (1) it can remove an analysis monitor operation that

provably does not modify the analysis metadata state, we call these noop monitors; and (2) it

can remove a monitor that although updates the analysis metadata but does not affect the analysis

outcome. We prove that removing the noop monitors are safe elisions as they maintain the exact

metadata state as in a conservative analysis. We construct rollback-free COPA to only perform

safe elisions, so that upon an invariant failure, the analysis simply performs forward recovery by

switching to the conservatively optimized analysis. This allows us to apply COPA for live security

monitoring of web / mail / database servers that require such soundness guarantees, significantly

improving the overhead (to ∼ 9%) of enforcing information flow security.

2

Safe runtime systems for legacy languages

A large number of contemporary high-performance software are being developed in unsafe lan-

guages like C/C++. Since these languages do not provide a managed memory, such systems remain

vulnerable to security threats and reliability issues. However, the cost of providing a safe runtime

with a managed memory remains high for these legacy systems since reasoning for safety is much

harder under their weak language-level semantics. Garbage Collection (GC) is a useful language

feature that automatically enforces temporal memory safety of programs, prevents memory leaks,

and at the same time alleviates programmers from the burden of explicitly reasoning about mem-

ory management. Prior works that attempted to import this language feature to C essentially rely

on value-based heuristics to identify pointers (memory allocation addresses) at runtime. But, le-

gal C programs can violate type-safety and manipulate pointer values, so that pointers’ values no

longer identify their referent memory objects. Therefore, such value-based approaches are un-

sound and can incorrectly reclaim memory objects that are still reachable. How could the runtime

system correctly identify such hidden pointers? Although it is hard to identify, pointer informa-

tion has well-defined sources (memory allocation functions). So, we construct the first sound GC

for C that is provenance-based, essentially tracking all values that are derived from pointers. A

naive approach would incur significant overheads in tracking pointers through all explicit and im-

plicit channels. So, we leverage optimistic analysis, and apply targeted reasoning to identify most

common pointer operations that would not propagate sufficient pointer information and would not

entail dynamic tracking. We additionally identify optimizations induced by spatial memory safety

of programs with well-defined behavior and properties of the C language standards. This enables

us to realize a sound GC solution for C with practical overheads (∼ 16%). Our provenance-based

GC tool is sound, and it improves the scanning overheads and memory reclamation rate compared

to state-of-the-art value-based GC for C. We show that legacy systems written in weakly-typed

languages can be provided temporal memory safety at practical costs.

3

Language guarantees for concurrent programs

Modern high-performance computing applications rely on languages providing useful abstractions

for concurrency to leverage the inherent parallelisms in the application. The memory consistency

model defines the correct behavior of such concurrent programs by dictating the allowable or-

derings among accesses to shared memory from different threads of the program. While strong

memory models provide simple and intuitive semantics, thereby simplifying reasoning for pro-

gram correctness and debugging tasks, they prevent aggressive memory reordering optimizations

by the compiler and underlying hardware thus incurring a high runtime performance cost. Conse-

quently, the current language standards for widely-used C++ and Java provide strong consistency

semantics only for data-race-free programs, where all conflicting shared memory accesses are al-

ready strictly ordered by the program’s synchronization needs. The vast majority of programs with

data races run with weak or no guarantees. This can lead to concurrency bugs with obscure be-

haviors, making it very difficult for programmers to reason for correctness. We seek to close this

semantic gap and provide a strong memory consistency model- Sequential Consistency (SC), at the

language-level for all programs. While prior work has explored static program analysis and spec-

ulative compilation techniques to bring down the runtime cost of enforcing SC for all programs,

these solutions remain inadequate due to the ineffectiveness of applying inherently conservative

analyses in their optimizations. The compiler can statically identify potential data-races and then

protect only such memory accesses with expensive fence operations to enforce the SC orderings

at runtime. However, traditional static data race analyses are imprecise and are not able to prove

many memory accesses to be data-race-free. We construct an optimistic data-race analysis that

is significantly more precise, reporting 84% fewer potential races. The resulting SC-compiler for

Java, using this precise analysis, thus emits much fewer fences and enforces SC at only ∼ 5%

runtime overhead on commodity x86 hardware. We also improve upon the recovery mechanism of

our COPA to leverage the just-in-time compilation features of the Java virtual machine.

4

1.2 Traditional Program Analyses Landscape

We present the relevant background on existing program analyses techniques, discuss their limita-

tions, and motivate the challenges. Traditionally, program analyses situate along two contrasting

ends– Static or Dynamic analyses.

Static Analyses use known properties of the programming language and reason across mod-

els or representations of the program in order to prove certain properties that hold for the entire

program for all its possible executions. They attempt to be sound1 by reasoning correctly for all

possible program executions. But on the downside, characterizing possible program behaviors is

generally undecidable, and so these techniques employ conservative approximations that generally

make them imprecise thereby proving weaker properties, and becoming too slow to be practical.

Dynamic Analyses augment actual executions to track useful metadata and check or enforce

properties only for the monitored executions. They attempt to be precise by only reasoning for

program states encountered during the monitored execution and avoiding conservative approxima-

tions with dynamic observations. Dynamic analyses are widely useful in detecting well-known

bug patterns, concurrency bugs, mitigate security attacks, enforce privacy policies, and even dy-

namically re-optimize programs. But on the downside, they incur overheads in performing the

additional analysis work and can slow down programs significantly. So, their use is limited to

offline retroactive debugging and not for online continuous monitoring.

Next, we discuss the directions in which static and dynamic analyses can be combined to

overcome the shortcomings of each other. This design space is illustrated in Fig. 1.1.

Hybrid Analyses are a common approach to improve the efficiency of dynamic analyses by

using static analyses. They first perform a sound static analysis, and then use the results of that

analysis to induce optimizations that elide unnecessary or redundant dynamic analysis checks.

For example, CCured [3] enforces memory safety for C dynamically at runtime, but uses static

type inference to remove the vast majority of memory checks and only dynamically checking

1Static analyses for modern languages with dynamic features attempt to be soundy [2] and do not account for
behaviors that are hard to characterize statically, e.g. dynamic dispatch and class loading in Java.

5

those accesses for which the static type inference fails. Hybrid analysis has been used to optimize

dynamic race detectors [4], taint tracking systems [5], and enforce memory safety at runtime [6, 7].

However, traditional sound static analyses have a fundamental limitation– in order to be sound,

they become over-conservative in assuming all possible program states. This often leads to unac-

ceptable imprecision in reasoning that is inadequate in effectively reducing the dynamic overheads.

Blended Analyses work in the other direction to improve the precision of static analyses by

using light-weight dynamic analyses. They combine the results of a fast dynamic analysis over

several executions to construct a dynamic program structure representation, which can then be

used by the static analysis to significantly reduce its scope and induce more precise reasoning.

This approach has enabled useful static analyses like reasoning for web-based frameworks [8, 9],

program slicing of large complex programs [10], and taint analysis [11]. A few systems also use

the more precise static analysis to accelerate a final dynamic analysis [12, 13].

Unfortunately, the initial dynamic analysis being unsound, the resulting static analysis is also

unsound which these systems fail to compensate for. As a result, these systems provide much

weaker analysis guarantees and cannot be applied for critical analyses like security monitoring.

No
Static

Sound
Static

Unsound
Static

No
Dynamic

Unsound
Dynamic

Sound
Dynamic

Static Analysis

Dynamic

Analysis
Hybrid

Analysis COPA

Original
Program

Blended
Analysis

Fast

Scalable Precise

Figure 1.1: Program analyses landscape

6

Optimistic Hybrid Analysis (OHA) improves traditional analyses in both directions. It first

learns useful properties about programs’ dynamic behaviors from several profiling runs and uses

these likely invariants to carefully predicate the static analysis. The more precise static analy-

sis induces stronger optimizations on the final dynamic analysis. Importantly, OHA solves the

unsoundness introduced during static analysis with speculative execution, identifying when an in-

variant actually fails during any execution and then recovering to a sound conservatively optimized

analysis. This approach has enabled highly optimized solutions to program slicing and data-race

detection [1].

However, the key question in applying OHA is how to recover analysis soundness when an

assumed likely invariant fails. Because invariant violations are quite rare, prior work relies on a

rollback recovery approach. Upon an invariant violation, the optimistic analysis is rolled-back and

a conservative hybrid analysis is re-executed. However, this approach can suffer from unbounded

rollbacks, because a whole-program analysis can induce optimizations as far back as at the be-

ginning of the program. This severely limits its application only to offline post-mortem debugging

analyses where such rollback-replays can be tolerated.

1.3 Motivation and Contribution

The rollback recovery problem limits OHA from being applied with powerful whole-program anal-

yses for online monitoring on live production software. Rollback and re-execution on server ap-

plications would severely impact their availability, as re-executing the conservative analysis from

beginning would potentially incur replaying years worth of execution since the last reboot. More-

over, rollbacks are infeasible when certain operations like sending a packet over the network cannot

be reverted. This dissertation focuses on the challenge of applying OHA to online dynamic analy-

ses on live production software by eliminating the need for rollback recovery.

Thesis statement: Program analyses leveraging optimistic assumptions with cautious reasoning

can make online dynamic analyses practical on live production software.

7

Our Cautiously Optimistic Program Analysis (COPA) technique employs two key principles:

Optimistic Analysis: It infers likely program invariants from dynamic observations, and as-

sumes them in a predicated static analysis to reason more precisely thereby identifying and elid-

ing many wasteful runtime monitors from the optimized dynamic analysis. The resulting system

is fast, and is naturally sound for executions that satisfy the assumed likely invariants.

Cautious Reasoning: In case a likely invariant rarely fails at runtime, it also ensures soundness

by recovering to a conservatively optimized analysis. It identifies the exact conditions when the

optimistic analysis can become unsound, and detects such invariant violations early with eager

invariant checks. It also carefully restricts optimizations to only safe elisions that do not diverge

the analysis metadata state. These two properties together greatly simplify the recovery process

when a likely invariant rarely fails– it avoids rollback upon a likely invariant violation, and enables

forward recovery– the analysis can simply switch to a conservatively optimized one and continue

forward.

The combined benefit of these two principles can enable several useful dynamic analyses ap-

plications for online analyses on live production software at practical overheads.

Organization

The rest of this dissertation is organized as follows:

[Chapter 2] discusses the limitations of conservative and prior optimistic hybrid program analyses,

and then presents our Cautiously Optimistic Program Analysis (COPA) technique in detail with its

design objectives, the workflow, and a formal discussion of its soundness guarantee.

Then, we demonstrate COPA’s benefits in three areas–

[Chapter 3]: Dynamic Information Flow Tracking (DIFT) can actively enforce information-flow

policies and detect malicious behaviors, but remains prohibitively expensive. We solve the rollback

recovery problem in optimistic program analysis and apply it to optimize DIFT for live security

monitoring on production software.

8

[Chapter 4]: Enforcing temporal memory safety by constructing a correct garbage collector re-

mains difficult for languages like C with weak semantics. We design a sound way of garbage

collection for C by efficiently tracking provenance of pointers at runtime.

[Chapter 5]: Providing strong and intuitive semantics for concurrent programs simplifies program

analyses and debugging tasks, but remains expensive on commodity hardware platforms. We en-

able efficient language-level Sequential Consistency for Java.

[Chapter 6] concludes with a summary of our key contributions and directions for future work.

9

CHAPTER 2

Cautiously Optimistic Program Analysis

Traditional hybrid analysis remains prohibitively slow due to the fundamental conservative ap-

proach and imprecision of the underlying sound static analysis. We discuss how the recent ap-

proach of Optimistic Hybrid Analysis (OHA) [1] mitigates some of these limitations by leveraging

likely invariant assumptions, but present a new problem- how to recover soundness of the analy-

sis when an invariant assumption is violated. Then our Cautiously Optimistic Program Analysis

(COPA) approach solves this problem to enable fast dynamic analysis on live software while elim-

inating the need for rollback-replay. This chapter builds the foundational ideas of our work, and

we later elaborate on specific details while discussing its applications.

2.1 Conservative Hybrid Analysis

A naı̈ve dynamic analysis would instrument virtually all instructions with additional monitor op-

erations to maintain dynamic information that may be needed to check certain safety or security

properties. This can result in an order of magnitude or more overhead. However, this overhead

is not fundamental in enforcing most useful properties. Because, in rigorously tested and well-

behaved programs, such properties hold in most correct executions. As a result, much of the

additional work in maintaining analysis state and checking for properties is wasteful. A sound

static analysis can ideally prove for a large number of program instructions that they do not vio-

late the properties in any possible execution and then safely elide the dynamic analysis monitors

associated with them [14].

10

Traditional sound static analyses reason about all possible future executions, including many

infeasible ones due to over-approximation. As a result, the analysis state-space can explode, and

indeed many useful static analyses become too slow and do not scale to large complex software.

Moreover, if and when the analyses terminate, the results are imprecise as they cannot effectively

reason the target property for many instructions over the large space of all possible (and many

infeasible) execution states. As we will see in the following chapters, this fundamental imprecision

has limited conservative hybrid analysis from effectively optimizing dynamic analysis, and such

techniques still remain impractical.

2.2 Optimistic Hybrid Analysis

When used for optimizing online dynamic analysis during execution, the static analysis need not

reason over all possible execution states. Instead, it needs to only care about those dynamic execu-

tions that will actually be encountered.

Likely Invariants to Predicate Static Analysis The static analysis can be predicated by making

a set of assumptions called likely invariants. These are program properties that are almost always

true but hard to prove statically. For example– one simple type of likely invariant is unreachable

code. A vast majority of code deals with custom logic to deal with uncommon, exceptional and er-

roneous executions. Furthermore, programs only exhibit a small subset of their possible behaviors

when running under a specific configuration. So, it is reasonable to expect a significant fraction

of code being not reached in most correct executions. So, assuming this invariant would signifi-

cantly reduce the analysis state-space, allowing the static analysis to reason much more precisely

on common-case behavior of the analyzed program. Consequently, the predicated static analysis

can additionally prove the target property for many instructions in all the dynamic executions that

satisfy the assumed likely invariants.

In our work, the likely invariants are collected in a rigorous profiling phase prior to the static

analysis. Observed dynamic behaviors that hold true across all profiled executions are assumed

11

in the predicated static analysis. The type of invariants are specific to the target analysis being

optimized and their benefits are also varied. We discuss the specific invariants that we use in the

subsequent chapters.

Traditional static analyses have not leveraged such observed likely invariants for the sake of

soundness. Contrary to intuition, a key distinction of our design is that it does not achieve precision

by sacrificing soundness. Although the predicated static analysis is only sound for executions in

which the assumed likely invariants actually hold, the soundness of the final dynamic execution

can still be guaranteed as long as invariant violations are detected immediately and the execution

is then recovered appropriately.

Optimistic Dynamic Analysis The predicated static analysis effectively elides many dynamic

analysis monitors using its more precise reasoning. The resulting optimized dynamic analysis is

fast, and is guaranteed to be sound for all executions in which the assumed invariants hold. How-

ever if an invariant rarely fails, the dynamic analysis may lose all soundness guarantees. In order to

recover the analysis soundness, the dynamic analysis must then additionally validate the assumed

likely invariants during execution and somehow recover the analysis when an assumed likely in-

variant is violated. Fig. 2.1 illustrates the overall workflow of the analysis framework. Profiled

likely invariants are assumed in the predicated static analysis thereby improving its precision. The

precise static analysis results are used to effectively optimize the dynamic analysis, and invariant

checks are instrumented to validate the assumed likely invariants. In the rare event of an invari-

ant violation, the analysis must be recovered. This is the key challenge that we address in this

dissertation.

Design Objectives

Since our COPA analysis framework is to be applied on live running programs for online dynamic

analysis, it must meet the following objectives in order to be effective:

12

likely
invariants

Profiler

profiling
inputs

Predicated
Static

Analysis

Optimistic
Dynamic
Analysis

Program

precise
analysis

result

used
likely

invariants

+ invariant
checks

Cautious
Recovery

to
conservative

dynamic
analysis

invariant
violation

Figure 2.1: COPA workflow

O1 Invariants induce strong optimizations: By assuming the invariants, the predicated static anal-

ysis should be able to significantly reduce its state-space, thereby making it more precise. If

invariants do not induce such strong optimizations, they will not effectively reduce the dy-

namic overheads in the common-case.

O2 Invariant checks are inexpensive: To guarantee soundness, the dynamic execution should

additionally check that the assumed invariants hold during an execution. Theses invariant

checks should be simple and inexpensive, so that the benefits of COPA are not outweighed by

the overhead of dynamically verifying the invariants.

O3 Invariants fail only rarely: Invariants should capture dynamic behaviors that are hard to prove

but almost always hold true. This would ensure that executions do not suffer from frequent

invariant violations. Otherwise, recovering from an invariant violation can incur additional

overheads thereby limiting our system’s benefits.

O4 Invariant checks are eager: Invariant failures must be detected before the invariant actually

fails. This would allow the execution to pause at a dynamic state that has not yet been affected

by the likely invariant violation and recover the analysis without losing its guarantees.

O5 Recovery is safe and quick: The recovery process itself must be efficient and carefully con-

structed so as to not violate the analysis correctness. The support needed for recovery in a rare

execution should not entail extensive overhead during common executions. Rollback-replay

based recovery is not practical.

13

2.2.1 Problem: Rollback Recovery in OHA

In most dynamic executions, the likely invariants will hold and the optimistic dynamic analysis

will be sound. But when a likely invariant fails dynamically, it may render the predicated static

analysis’ optimizations unsound. The dynamic analysis then requires a mechanism to recover

from an invariant failure. As we use whole-program static analysis, at runtime it is non-trivial to

determine the effect of a current invariant failure on the soundness of an elided monitor in the past.

Prior OHA work [1] addressed this problem by completely replaying the program execution

from the beginning using the conservatively optimized dynamic analysis. Since invariants rarely

fail, this rollback recovery is an acceptable solution for offline retrospective analyses such as de-

bugging and forensic analyses. However, a rollback to the beginning of the program is intolerable

for online analyses on live executions, as it would severely compromise the system’s availability.

Unbounded Rollbacks Bounding rollbacks is generally hard for predicated whole-program static

analyses. Determining the latest point in program execution up to which a rollback is needed is

an unsolved problem. For many analyses, especially backward data-flow analysis, it may not be

possible to bound the rollback window. This unpredictable and unbounded downtime caused by

rollback is problematic for live executions.

Logging Overheads Support for rollback introduces significant additional overheads even for

executions where the likely invariants hold true. This overhead includes the cost of logging for re-

play and periodic check-pointing. Therefore even when the invariants are not violated, eliminating

rollbacks altogether would improve OHA by getting rid of these overheads. The actual cost for

rollback-replay is minor as invariant violations can be made to be rare with sufficient profiling.

We address this problem by enabling forward recovery upon any invariant failure, thus com-

pletely eliminating the need for rollbacks.

14

2.3 Cautious Recovery with Safe Elisions

Rollbacks are fundamentally caused by the dependence between the current monitor being elided

and potential future invariant failures. Our idea behind COPA is to distinguish safe elisions, which

do not have such dependencies, from unsafe elisions.

A predicated static analysis in OHA elides a monitor as long as it can prove that it is unnec-

essary to guarantee soundness of dynamic analysis in an execution where the invariants hold. But

an elided monitor is a safe elision only if it can additionally prove that an invariant violation in an

execution would not affect the soundness of any preceding elisions of that monitor.

Rollback-free COPA is realized by restricting its predicated static analysis to only using safe

elisions, and switching to a conservatively optimized analysis on invariant violation.

Statically proving safe elisions is non-trivial for many analyses. To make such an analysis

practical and simple to construct, we further observe that noop monitors are safe elisions. A

noop monitor is one that does not change the analysis metadata state. Eliding noop monitors is

safe for the following reasons: by construction, COPA instruments invariant checks such that they

detect any invariant violation before an execution violates the invariant. Given this, when a noop

monitor is elided before an invariant violation, it is guaranteed that it would be a noop monitor

even in the conservatively optimized analysis, and therefore its elision is sound even when there is

a later invariant violation. Thus, noop monitor elisions are safe elisions.

By restricting to only safe elisions of noop monitors that do not modify the analysis metadata

state, and eagerly checking for invariant violations dynamically, the analysis state is guaranteed

to be exactly the same as in a conservative analysis at the point of invariant violation detection.

Thereafter, the analysis can then be recovered by simply switching to a conservative analysis that

re-instruments the optimistically elided dynamic monitors. We discuss this recovery mechanism

in detail in Chapter 3.

The cautious approach of restricting to only safe elision optimizations and eagerly checking

likely invariants solves the rollback-recovery problem of OHA and enables COPA to be applied

for online analysis on live running software.

15

2.4 Soundness Proof

In this section, we formalize the notion of two analyses being state-identical, and then prove the

soundness of rollback-free COPA analysis by showing that it’s state-identical to a conservative

hybrid analysis.

2.4.1 Notations and Notions
An analysis A is a transformation of a program P that only generates additional metadata state

σA and has no side-effect on P ’s program state µP . We define outA to be the outcome of all

dynamically failed check monitors.

We will use the following notations to refer to analyses instances:

UNOP is the unoptimized dynamic analysis that does not elide any monitors.

CONS is the dynamic analysis optimized by conservative static analysis.

OPTII is the dynamic analysis optimized by predicated static analysis assuming the set of invari-

ants I .

COPAI is the rollback-free dynamic analysis optimized by safe elisions using predicated static

analysis assuming the set of invariants I .

σA(l) denotes the metadata state of dynamic analysis A at the program location l. I-FAIL(i)

denotes the point(s) in program execution where the invariant assumption i dynamically fails.

I-CHECK(i) denotes the program location(s) where the invariant validation checks are instru-

mented. A noop monitor is either a track monitor that does not modify σA, or a check monitor

that succeeds.

Definition 1. Analysis equivalence : We say that dynamic analysis A′ is equivalent to dynamic

analysis A, denoted by A′ ≡ A, if for all executions, their analysis outcomes are the same, i.e.,

outA′ = outA.

Definition 2. State-identical : We say that dynamic analysis A′ is state-identical to dynamic anal-

ysis A, denoted by A′ = A, if for all executions, their terminating metadata states σA and σA′ are

identical, i.e., σA′ = σA.

16

2.4.2 Axioms

Axiom 1. CONS is sound [14], i.e., CONS ≡ UNOP.

CONS only elides those monitors which can be proven to not change the analysis outcome in

all executions. ∴ CONS ≡ UNOP.

Axiom 2. OPTII is sound when the invariants hold [1], i.e., I |= OPTII ≡ CONS.

In addition to those elided by CONS, OPTII elides only those monitors that can be proven to not

change the analysis outcome in dynamic executions that satisfy I. ∴ I |= outOPTII = outCONS →

I |= OPTII ≡ CONS.

Axiom 3. Invariant violation is detected before a program execution reaches a state that fails an

invariant, i.e., I-CHECK(i) < I-FAIL(i).

By construction, our invariant checks are instrumented such that this property holds.

Axiom 4. COPAI only elides monitors that are noops.

By construction in §2.3, COPAI uses forward predicated static data-flow analysis to elide only

those monitors that it can prove are noops.

2.4.3 Soundness of Rollback-free COPA

We first show that COPAI is state-identical to a sound conservative hybrid analysis for execu-

tions where the invariants hold. Next, we provide a simple program transformation that makes the

COPAI state-identical to CONS even at the point of a dynamic invariant failure. Finally, we show

that the above property allows a forward recovery of COPAI upon an invariant failure, and makes

the whole dynamic analysis sound for all executions.

17

Lemma 5. COPAI is state-identical to CONS when the invariants hold, i.e., I |= COPAI =

CONS.

Proof Sketch. By Axiom 4, COPAI elides only those monitors that can be proven to be noops

in dynamic executions that satisfy I. ∴ I |= σCOPAI
= σCONS → I |= COPAI = CONS.

Lemma 6. COPAI is sound until an invariant fails, i.e., σCOPAI
(I-FAIL(i)) = σCONS(I-FAIL(i)).

Proof Sketch. Consider the analysis COPA{i} with a single invariant i. ¬{i} 6|= COPA{i} =

CONS, i.e., we cannot guarantee soundness for the entire program P if the invariant fails in a

dynamic execution.

Let I-FAIL(i) be the first instance of an invariant failure in the dynamic execution of P . Now,

consider the program P ′ obtained by the following transformation (shown in Fig. 2.2): immediately

after the location of each invariant check, we instrument a HALT instruction conditional on the

invariant i having failed. The elided monitors are shown as equivalent noops.

By Axiom 3, the invariant check preceding I-FAIL(i) will detect the invariant failure before the

program execution reaches a state that fails the invariant. Therefore, the modified program P ′ will

HALT after the failed I-CHECK(i), and before I-FAIL(i). This is equivalent to a program executing

without an invariant failure.

By Lemma 5, COPAI = CONS for P ′. Since, P and P ′ only differ in their termination

behavior and P ′ HALTs at I-FAIL(i), we have that:

σCOPAI
(I-FAIL(i)) = σCONS(I-FAIL(i)) for P .

· · ·
l1: noop
· · ·

I-CHECK(i): if (¬i)
HALT

I-FAIL(i): · · ·
l2: noop
· · ·

Figure 2.2: Transformed program P ′

18

Theorem 7. COPAI with forward-recovery is sound.

Proof Sketch. By the soundness of COPAI on the HALT-transformed program P ′ in Lemma 6,

we have that the metadata state σCOPAI
(I-FAIL(i)) at the location of invariant failure is state-

identical to that in CONS. Therefore, the forward-recovery mechanism can simply switch to

CONS on an invariant failure, and that analysis as a whole is analysis-equivalent to CONS. ∴

by Axiom 1, COPAI with forward-recovery is sound.

2.4.4 Insight Summary

Contrasting Axiom 2 and Lemma 5, the key difference is that when I holds, OPTII ≡ CONS but

COPAI = CONS. While the generic OPTII aggressively elides monitors to only preserve analysis-

equivalence, COPAI only elides noop monitors, thus being state-identical to CONS. This allows

the analysis to simply switch to conservative analysis CONS upon invariant violation.

The primary contribution of this dissertation is to solve the rollback recovery problem in an

Optimistic Hybrid Analysis framework, thereby enabling online analyses on live running soft-

ware. We first use COPA to optimize taint analysis for live security monitoring in Chapter 3, then

apply this for a novel application in Chapter 4– constructing a sound Garbage Collector for C.

In Chapter 5, we improve COPA’s recovery mechanism and apply it for efficient language-level

Sequential Consistency for concurrent Java programs.

19

CHAPTER 3

Iodine: Live Information-flow Security Monitoring

Dynamic information-flow tracking (DIFT), also referred to as taint-tracking, is useful for en-

forcing security policies, but rarely used on live running software, as it can slow down a program by

an order of magnitude. Static program analyses used to prove safe execution states and then elide

unnecessary DIFT monitors, yield only marginal benefits due to their need to maintain soundness.

Cautiously Optimistic Program Analysis (COPA) can significantly reduce DIFT overhead and

still be sound– it predicates the static taint analysis to assume likely invariants gathered from pro-

files to dramatically improve precision. The optimized DIFT is sound for executions in which

those invariants hold true, and otherwise recovers to a conservative DIFT. We overcome the main

problem with using COPA to optimize live executions – unbounded rollbacks. We eliminate the

need for any rollback during COPA recovery by limiting to only safe elision optimizations.

Our tool, Iodine, reduces DIFT overhead for enforcing security policies to 9%, which is 4.4×
lower than that with traditional hybrid analysis, while still being able to be run on live systems.

3.1 Live Information-flow Tracking is Challenging

Dynamic information-flow tracking (DIFT) [15] is a powerful method for enforcing a security or

privacy policy. It tags source data (e.g., sensitive user input) as tainted, propagates taints through

data and/or control flow, and checks if tainted data reaches sinks (e.g., network output). DIFT can

help detect a wide range of security attacks [16, 17, 18, 19, 20, 21, 22] such as SQL injection,

cross-site scripting, overwrite attacks, etc. It is also used to enforce information-flow policies that

prevent sensitive information from leaking through untrusted channels [23, 24, 25].

20

In spite of its established benefits, DIFT is rarely used in practice today, due to its prohibitive

performance overhead [26]. In a naive dynamic taint-tracking, every instruction has to be moni-

tored to propagate taints. There have been several attempts to reduce this cost, e.g. by reducing

tainted sources [27], by coarsening the taint granularity [18], and by decoupling program execution

to perform a symbolic taint analysis [28, 29]. These approaches can compromise accuracy, intro-

duce parallelization and synchronization costs, and still remain prohibitive for production use [30].

Optimistic Hybrid Analysis [1] (OHA) For rigorously tested production software, execution

paths that violate an information-flow policy are almost certainly either rare or impossible. For

such programs, pure dynamic taint analyses fundamentally do more work than necessary. A static

taint analysis can identify instructions which cannot propagate taints to a sink [14], and DIFT

monitors for such instructions can be elided. By assuming program properties that are almost

always true but hard to prove statically, OHA can dramatically improve the precision and scalability

of static taint analysis, thereby reducing DIFT overhead.

A fundamental problem with OHA is that, if the assumed likely invariants fail during an ex-

ecution, then the soundness of dynamic analysis for that execution is compromised. To ensure

soundness, prior OHA work [1] checked the likely invariants at runtime, and when they fail, the

program execution is replayed from the beginning with a conservatively optimized dynamic anal-

ysis. This unbounded rollback-recovery is acceptable only for retrospective offline analyses, and

not feasible for online security analysis of live executions.

We solve this problem by completely eliminating the need for rollbacks and enable forward

recovery on a likely invariant failure. Rollbacks in OHA are caused by the runtime dependence

between the current monitor being elided, and any potential future invariant violations that may

affect the soundness of that elision. In order to construct rollback-free COPA, we must break this

dependence. In other words, any monitor elided during a program execution, before an invariant

failure, has to be proven to be unnecessary to ensure soundness of the dynamic analysis for the

entire execution. We refer to eliding monitors satisfying this property as safe elisions.

21

Safe Elisions for rollback-free COPA: Our key idea is to constrain predicated static analysis,

such that it removes a runtime monitor only if it can prove that it is a safe elision. Given this, when

a likely invariant fails at runtime, it is sufficient to simply switch to a conservatively optimized

analysis, and continue forward with the execution.

To restrict COPA to safe elisions, we further observe that many analyses, particularly bug find-

ing and security analyses such as DIFT, often have monitors that do not modify any analysis’

metadata state when executed. We call such monitors noop monitors. By constructing a predi-

cated static analysis that identifies and elides only noop monitors, we guarantee that any elision

done by our predicated static analysis will not have any effect on dynamic analysis state until an

invariant failure. Consequently, the soundness of these elisions cannot depend on any potential fu-

ture invariant violations, because eliding a noop has the same effect as executing a noop, making

the noop elisions safe, and enabling forward recovery.

This enables efficient and sound DIFT running on live executions without requiring rollbacks.

Our work makes the following contributions:

• We construct a novel optimistic hybrid analysis technique to realize low-overhead DIFT for live

executions.

• We solve an important unresolved problem with OHA, which prevents its use for live analysis:

need for unbounded roll-back when a likely invariant fails. We prove that restricting predicated

static analysis to eliding only noop monitors guarantees meta-data equivalence between opti-

mistic and conservative hybrid analyses. This property in turn enables forward recovery when

an invariant fails.

• We improve the profiling methodology for OHA based on regression and beta-testing. We show

that likely invariants profiled using regression test suites are effective in obtaining majority of

the performance benefits.

• Our approach reduces the overhead of DIFT to 9%, which is 4.4× lower than that with conser-

vative hybrid analysis, and 68× lower than that with pure dynamic analysis.

22

3.2 Information Flow Analyses

Information-flow analysis, also called Taint Analysis [15] computes how the information in a given

value of a program state is influenced by other relevant values. The analysis requires specifying a

taint policy consisting of three components–

Sources identify program locations where a specific taint marking is attached with a value. Typical

sources include program arguments and external input interfaces like console / file / network input.

Sinks assert specified checks on the taint state of certain values at a given program location. These

checks typically assert the presence or absence of certain taints on values, typically before the

program emits them via an output interface, e.g. sending a network packet.

Propagation policy determines how taints for new values are computed. Taints typically propagate

explicitly via data-flow– when a tainted value is used in a computation, the resultant should also

carry the source’s taint(s). Taints can also propagate implicitly, e.g. via control-dependence– when

values are computed conditional on a tainted value, the resultant values should carry the taint(s) of

the condition variable. The propagation policy also specifies how to accumulate taint sets, typically

using union or re-assignment.

Additionally, some taint analyses can specify certain untaint operations that clear or sanitize a

tainted value, e.g. an encryption function may untaint the taint of its plaintext argument.

1 void main (...) {

2 int a, b, c;

3 scanf("%d", &a);

4 t(a) ← {secret} source

5 if (a < 0) b = -1;

6 t(b) ← t(a) = {secret} implicit track

7 c = a * b;

8 t(c) ← t(a) ∪ t(b) = {secret} track

9 assert(secret /∈ t(c)); check

10 send(..., c);

11 }

Figure 3.1: Example of taint analysis

A dynamic taint analysis instruments moni-

tor operations for instructions in the target pro-

gram. Track monitors propagate taints from the

source operands to the resultant of an instruc-

tion, as per the specified propagation function.

Check monitors assert predicates on the taint

state at sinks.

Fig. 3.1 shows an example program in-

strumented with taint analysis monitors (high-

lighted). In line line 3, a is read from user in-

23

put, so this is treated as a taint source and attached with a secret taint. In line line 5, b’s value

is determined by whether a is negative or not, so taint propagates implicitly. In line line 7, c is

computed from a and b, so taint propagates explicitly and is computed as the union of taints of

source operands. Finally in line line 10, c’s taint is checked before emitting it on the network.

Uses: Taint analysis can be tailored to a specific application by adjusting its taint policy. For

example, information leakage is an important concern in database and web-service applications,

where taint analysis is used to track the flow of sensitive information through program execution

and prevent its leakage through unsecured channels. Taint analysis [31] is widely used in secu-

rity analyses of programs to detect and prevent against overwrite attacks [16, 17, 18], command

injection attacks [19, 20], cross site scripting attacks in web applications [21, 22], and to enforce

information flow policies [24]. It has also been applied in semantic analysis of programs for pro-

gram understanding [32], testing and debugging [33, 34].

3.3 Cautiously Optimistic Program Analysis for Fast DIFT

First, we illustrate the limitations of conservative hybrid analysis and motivate OHA [1] with an

example of DIFT monitoring. Then we introduce the design of Iodine, an instance of our COPA

analysis that significantly reduces DIFT overhead and supports live executions by eliminating the

need for rollback-replay.

Fig. 3.2(a) illustrates naive DIFT. Assume that s is a taint source, and printf is a sink. Taint

propagates from s to y (line 2), and then it may or may not propagate to z (line 4) depending on

the branch outcome in line 3. If the taint does propagate to z, it can reach out (line 5), and then

reach the sink (line 6), causing an assertion failure.

24

3.3.1 Conservative Hybrid Taint Analysis

As shown in Fig. 3.2(a), a pure DIFT instruments virtually all instructions to propagate taints. This

can result in an order of magnitude or more overhead. However, this overhead is not fundamental

to enforcing a taint analysis. Because, in a rigorously tested program, information-flow leaks are

rare. As a result, many of the DIFT monitors are either not propagating taints, or even if they do,

they do no reach any sink. A sound static data-flow analysis can prove these properties and remove

these dynamic monitors [14].

A static analysis constructs a data-flow model of the program, using the same taint policy as

the dynamic taint analysis. From this static model, the hybrid analysis will typically optimize its

dynamic taint monitors in two ways:

Forward Taint Analysis reasons from taint sources forward in the program, determining if the

source operands of an instruction may be tainted or not. If none of the source operands may

be tainted for an instruction, then the static analysis can remove its monitor. For example, in

Fig. 3.2(b), the analysis can reason that neither source operands in the instruction x = c + 3 are

tainted, and therefore x will not be tainted, allowing its monitor to be elided.

main (…) {

x = c + 3;

y = s;

if (p < 0){

z = c * y;

}

out = z;

printf(z); }

main (…) {

x = c + 3;

y = s;

if (p < 0){

z = c * y;

}

out = z;

printf(z); }

t (z) = t (c) | t (y);

main (…) {

1 x = c + 3;

2 y = s;

3 if (p < 0){

4 z = c * y;

}

5 out = z;

6 printf(z); }

t (x) = t (c);

t (y) = t (s);

t (z) = t (c) | t (y);

assert(!t (z));

source: s sink: printf()

main (…) {

x = c + 3;

y = s;

if (p < 0){

z = c * y;

}

out = z;

printf(z); }

t (y) = t (s);

t (z) = t (c) | t (y);

inv_check();

t (y) = t (s);

t (z) = t (c) | t (y);

inv_check();

Region R is likely unreachable

R

!

t(out) = t(z);

R

assert(!t (z));

t(out) = t(z);

(b) Conservative hybrid analysis(a) Full dynamic analysis (c) Optimistic hybrid analysis (d) Rollback-free OHA

Figure 3.2: DIFT optimizations. Green dot indicates safe noop elisions, and ! indicates unsafe
elision.

25

Backward Taint Analysis reasons whether a destination operand of an instruction may reach

a sink. If not, the monitor for that instruction is elided, even if it can be tainted. In Fig. 3.2(b),

the conservative static analysis cannot leverage this optimization to elide any monitors, because it

cannot prove this property for any of the instructions considering all possible executions.

3.3.2 Optimistic Hybrid Taint Analysis

As we discussed in Chapter 2, traditional sound static analysis is limited by its sound considera-

tion of all possible execution states. But, static analyses used for optimizing a dynamic analysis

should ideally consider only those states that will be realized in the analyzed dynamic executions.

Targeting the expected executions can significantly improve the precision and scalability of static

analysis, thereby optimizing a dynamic analysis much effectively than its conservative counterpart.

Fig. 3.2(c) illustrates this untapped opportunity. If all expected executions of this program only

have non-negative values for the variable p, the code region R is never executed. A sound static

analysis cannot assume this behavior, because there are legal executions where p < 0. However,

by constraining the static analysis to expected dynamic executions, Iodine can reason that the

variable z does not get tainted due to y in line 4, and in turn proves that out in line 5 cannot

be tainted. Therefore, it elides track monitor for line 5, and check monitor for the sink in line 6.

Furthermore, backward data-flow analysis determines that taint of y in line 2 can never reach any

sink, and elides its monitor. None of these three monitors could be elided using conservative static

analysis (Fig. 3.2(b)).

Iodine’s work-flow is illustrated in Fig. 3.3. First, a profiler observes representative executions

to gather a set of likely invariants – dynamic execution properties that almost always hold, but are

hard to prove statically, e.g. likely unreachable code, likely callee sets, and likely unrealized call

contexts [1]. Second, these likely invariants are used to constrain the state-space resulting in a

predicated static taint analysis. This is much more precise and scalable than a conservative sound

static taint analysis, and enables Iodine to aggressively elide DIFT monitors. The program is then

instrumented with the remaining DIFT monitors along with necessary invariant checks.

26

likely
invariantsProfiler

profiling
inputs

Predicated
Static Taint

Analysis

Predicated
Points-to
Analysis

Monitor
Instrumenter

Monitored
Dynamic
Execution

Program

points-
to set

instrumented
binary with
monitors &

invariant
checks

Taint

Policy

Figure 3.3: Workflow of optimistic hybrid taint analysis

3.3.3 Safe Elisions of noop Monitors

In §2.2.1, we saw how invariant violations in a general OHA analysis may require a rollback to

recover the analysis. For example, in Fig. 3.2 (c), if the likely unreachable code invariant (R) is

violated in line 3, it would render the past elision of monitor for line 2 to be unsound since the taint

metadata state would diverge.

We then discussed in §2.3, how to overcome this problem by identifying noop monitors and

performing safe elisions. A noop track monitor is one that does not change the taint analysis

metadata state. A noop check monitor is one that always succeeds the taint check. For example,

in Fig. 3.2(c), monitors for lines 5 and 6 are noop monitors, if we assume R is unreachable.

Monitor for line 2, however, is not a noop monitor, as its execution can modify the taint set even

if invariants hold true.

Elisions in Predicated Forward Analysis are Safe

In §3.3.1, we discussed forward and backward static taint analysis. Forward static data-flow taint

analysis elides a monitor for an instruction by proving that its source operands must not be tainted.

The taint for the destination operand of such an instruction remains unchanged. Thus, all the mon-

itors elided by predicated forward taint analysis are noop monitors, and therefore safe elisions.

Fig. 3.2(d) shows that in rollback-free COPA, the elision of the monitors for lines 5 and 6

induced by forward taint analysis, are both noop safe elisions.

27

Elisions in Predicated Backward Analysis may not be Safe

Monitors elided by a predicated backward taint analysis are not guaranteed to be safe elisions. A

backward taint analysis seeks to prove that an instruction’s destination taint does not reach a sink,

and if so it elides its monitor. Monitors elided by this analysis are not guaranteed to be noops.

For example, the monitor for line 2 in Fig. 3.2(d) is not a noop, because it changes the taint of y.

But a predicated backward analysis can elide it by assuming R is unreachable. However, during

an execution, if that invariant fails, recovery must somehow produce the correct taint state of y,

before proceeding forward. Given that we use a whole-program analysis, it is unclear how far the

execution needs to be rolled-back and re-executed.

A more fundamental reason why elisions in backward-analysis may not be safe is their depen-

dence on invariants holding true in the future. It may still be possible to construct safe elisions

through sophisticated optimizations. For example, if we can somehow determine the set of all

monitors elided due to a particular invariant (R is unreachable), then hoisting the invariant check

before those elisions can make them safe elisions. Such a transformation is non-trivial for a pred-

icated whole program analysis. Fortunately, we found the predicated forward taint analysis to be

quite effective by itself. Also, backward analysis is not useful for certain information-flow policies

such as one that monitors taints from sources to all possible locations in a program.

3.3.4 Rollback-Free Cautiously Optimistic Taint Analysis

Iodine uses a predicated forward taint analysis along with a conservative backward taint analysis.

Optimized dynamic analysis (fast-path) is executed until an invariant fails. As the analysis only

elides noop monitors, it tracks exactly the same metadata as a conservative analysis at all program

points. Fig. 3.4 shows the forward recovery mechanism– a conditional branch is instrumented for

every invariant check, which switches the control to a conservative analysis (slow-path) when any

check fails. The execution then continues forward in the slow-path. This switch is safe due to

two reasons: (1) the two paths only differ in analysis logic and maintain the same program state,

and (2) safe elision guarantees equal analysis metadata state at invariant violation. Care is taken to

28

fast-path slow-path

if(¬𝒊)

if(¬𝒊)

Figure 3.4: COPA forward recovery switching mechanism: Each function implements fast-path
and slow-path in separate control flow domains, and execution switches from fast-path to slow-
path upon detecting an invariant violation.

ensure a safe switch. At the time of the switch, the return addresses on the stack would be pointing

to fast-path return sites. We address this problem by checking every return site, and transferring

control to either the fast or slow path based on the current mode of execution.

Iodine conservatively disables all optimistic optimizations upon an invariant violation. Given

adequate profiles for a rigorously tested production software, invariant failures are very rare. If

there is indeed an invariant failure in production, the program can be re-optimized offline after

removing the offending invariant from the likely-invariant set. Thus, in the steady-state, invariant

violations would be extremely rare. Alternatively, only the optimizations induced by the violated

invariant could be selectively disabled. Also, since it is common for live systems to be periodically

restarted [35], the execution can switch back to the fast-path on a restart.

3.4 Iodine Implementation

We present an overview of the notable features of our tool here, and the details of its implementa-

tion are presented in [36, §5].

The Iodine tool consists of a profiler, a profile-driven predicated static analysis phase, and

the optimized dynamic analysis instrumenter. These are implemented in the LLVM 3.9 compiler

infrastructure [37], and we run our analysis tool after all other compiler optimization passes. Io-

29

dine supports programs written in the C language, tracks taint flows through external libraries via

static linkage. The final optimized DIFT is added using LLVM’s Data Flow Sanitizer[38] as our

instrumentation backend.

Specifying Information-Flow Policies By default, Iodine uses a configurable taint policy that

treats all types of external inputs to the program as potential taint sources (e.g. terminal, file,

socket input functions, and command-line arguments) and asserts that the appropriate arguments

to standard output interfaces (e.g. terminal, file and socket outputs) should not be tainted.

Useful taint policies can be specified to identify custom taint sources, sink locations, and un-

taint functions via a flexible interface of source-level annotations. This adapts the tool to evaluate

security-critical applications with realistic information flow policies– e.g. the Postfix mail server

with policies to check for email integrity and privacy, and the Nginx web server with detection

against malicious overwrite attacks.

Static Taint and Pointer Analysis Static taint analysis computes how the taints of data prop-

agate through the program under a given selection of taint sources, sinks, and propagation poli-

cies. The static taint analysis uses a whole-program context-sensitive flow-sensitive data-flow

may-analysis [16] to constructs a inter-procedural definition-use graph (DUG) [39]. To track taint

flows via indirect memory operations to aliased locations, we compute the points-to set of each

pointer location and then use this information to add taint-flow edges to the DUG from pointer

definition to its aliasing uses.

Once the DUG is constructed, the analysis can induce two optimizations.

Forward optimizations: Taints are propagated through the whole-program DUG using for-

ward data-flow until a transitive closure is reached. Since our dataflow analysis is a may analysis,

the absence of taint flow is a sound must not assertion. Therefore, any instruction without tainted

source operands can elide dynamic monitors for taint tracking.

Backward optimizations: Taint flows that do not eventually reach a sink can be pruned out

using a backward co-reachability analysis on the DUG. These optimizations are only enabled in

the conservative static analysis.

30

Predicated Static Taint Analysis To improve the precision of the static taint analysis, Iodine

profiles three types of likely invariants – likely unreachable code, likely callee set, and likely un-

realized call contexts [1]. By assuming these likely invariants, the DUG constructed for static

analysis is much smaller, thereby improving scalability and accuracy of our optimistic pointer and

taint analyses. Iodine implements predicated versions of pointer analysis and forward data-flow

analysis, and the backward data-flow analysis is not predicated as required in §2.3.

Optimistic Hybrid Taint Analysis The predicated static taint analysis identifies the set of in-

structions that need to be monitored. DIFT monitors for only these instructions are then instrument

using LLVM DFSan [38], effectively eliding the remaining noop monitors.

Metadata tracking monitors track taints for each program variable and memory locations at the

byte-granularity in separate taint data structures in a shadow memory, and we only consider explicit

taint flows [26]. Iodine can track a single logical taint as well as multiple taint tags per location.

Invariant checks for all used invariants are added to detect if an invariant is violated dynamically.

3.5 Evaluation

We compare the performance of our approach with conservative hybrid and state-of-the-art full

dynamic taint tracking [38]. Dynamic taint tracking incurs 7× overhead over native execution, and

hybrid analysis-optimized taint tracking incurs 37% overhead. Our optimized taint tracking tool

brings down the overhead of dynamic taint tracking to 9%. Our evaluation shows that Iodine:

• Enables production use of taint tracking by dramatically reducing the overhead of taint tracking

compared to conservative hybrid analysis and pure dynamic analysis.

• Efficiently implements real-world information-flow policies for security-critical applications.

• Requires reasonable profiling efforts. We show regression tests are adequate to get majority of

the performance benefits.

• Improves the precision and scalability of static taint analysis.

31

Experimental Setup

We evaluate Iodine over several security-sensitive real-world applications, including web servers,

mail server, database server, and utility programs. Our benchmarks are listed in Table 3.1.

We test Iodine in a manner that parallels how we envision it will be used in practice. We first

profile a set of profiling executions to gather likely invariants. Then, we use these profiled invari-

ants in a predicated static analysis to construct our final optimized dynamic taint analysis for a

given information-flow policy. We generate a set of 500 diverse profile inputs by sweeping the

programs’ parameter space (e.g., data size, #clients, #requests, compression factor, etc.; excluding

standardized parameters, e.g., TCP/SMTP port). We randomly partition these inputs into two dis-

joint sets- a profile set consisting 400 executions, and a performance test set of 100 executions. We

note that in an actual production environment the profiling overhead of Iodine would be amortized

over all future executions of the program, not just the 100 we test.

All experiments are run on a single core of an Intel Xeon E5-2620 processor with 16GB RAM

running Linux 4.4.

7.23

8.14

5.25

1
.2

7

1
.3

2

1
.5

2

1
.0

7

1
.0

7

1
.1

2

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

smtp integrity qmqp integrity nginx security

N
o

rm
al

iz
e

d
 d

yn
am

ic
 a

n
al

ys
is

 t
im

e

Full Dynamic Conservative Hybrid Iodine

Figure 3.5: Result: Dynamic information-flow tracking overheads

32

3.5.1 IFT Security Policies

We demonstrate the effectiveness of Iodine using real taint policies by applying it to a set of com-

monly used applications with realistic taint policies adapted from Dytan [26] and Google desktop’s

privacy policy [40]. The policies we study are:

Email integrity and privacy: We add security checks to the Postfix mail server, following

the policies outlined in [27, 40]. These policies ensure: receiver addresses are entirely determined

by user input and message dates are only determined by the time system call (email integrity),

and message bodies are passed through sanitizing functions that perform encryption, and check for

unmatched HTML tags or scripting tags (privacy + security).

Overwrite attacks on web server: We enforce a taint policy on the Nginx web server that

taints all network inputs, and asserts that tainted values are not used as function pointers, return

addresses, or format strings. This policy detects a malicious overwrite attack [26].

Results: Iodine shows a 4.4× reduction in runtime overhead for these realistic case studies,

incurring only 7% to 12% overhead, compared to 27% to 52% obtained with conservative hybrid

analysis. These results are shown in Fig. 3.5, as well as those of a naive dynamic IFT analysis. With

these significant runtime improvements Iodine enables taint tracking in many production systems

where performance concerns often preclude security.

3.5.2 Generic Information-Flow Policies

We further test Iodine’s effectiveness in reducing taint overhead over additional benchmarks by

using two synthetic taint policies to evaluate the effectiveness of our framework in a forward-only

analysis versus a forward-backward analysis.

Some-to-some: Propagates taints from a randomly sampled fraction of the taint sources to the

set of all sink instructions. This uses both forward and backward static taint analyses.

Some-to-all: Treats all instructions as potential sinks and propagates taints from the sampled

taint sources. Only forward static taint optimizations are used to optimize this analysis.

Some-to-all taint policies are useful in many non-security contexts such as database provenance

33

and lineage queries, information flow in debugging and software testing. This optimization also

isolates the forward optimizations of our hybrid IFT framework, showing directly how effective

predicated static analysis is at optimizing taint checks versus a sound static analysis. We treat all

input interfaces from console/file/network as potential taint sources and elect to randomly sample

1
3

of them for these taint policies. All output interfaces to console/file/network are taint sinks.

Results: When applied to some-to-some taint tracking (Fig. 3.6a), Iodine reduces the dynamic

overhead of conservative hybrid taint analysis by 2.8×, bringing the overhead of taint tracking

from 51% with conservative hybrid analysis down to 18% over native unmonitored execution.

Iodine sees similar reductions in some-to-all tracking overhead (Fig. 3.6b), reducing overhead of

taint tracking to 24%, versus 92% for conservative hybrid analysis, and 276% for a pure dynamic

analysis. Once again, Iodine brings overheads down significantly, demonstrating its capability to

enable taint-tracking on production systems.

SPEC benchmarks: To further evaluate Iodine’s performance on compute-intensive programs,

we run it with the same randomized some-to-some analysis setup on the SPECint benchmarks that

are written in C with reference inputs. The results of these experiments are shown in Fig. 3.7. The

SPECint benchmarks are tuned to be CPU bound, and therefore exhibit higher DIFT overheads

compared to our other case studies. Iodine improves the dynamic overhead of taint analysis by

4.5×, bringing the overhead of taint tracking over unmonitored execution from 183% with conser-

vative hybrid analysis down to 41%.

Comparison to ideal analysis: We construct an optimal analysis that only monitors instruc-

tions that are dynamically found to propagate taint, the very minimum set of instructions a some-

to-all analysis could gather. We measure the average dynamic overhead of this ideal some-to-all

taint analysis to be 13%. This shows that at 24% overhead, Iodine is 86% closer to optimal than

traditional hybrid’s 92%, and beginning to approach the realm of optimal dynamic taint analysis.

34

3
.6

7
1

.3
2

1
.1

4

3
.0

3
1

.5
0

1
.1

3

3
.8

4
1

.3
1

1
.1

4

3
.2

3
1

.2
8

1
.1

1

5
.7

4
1

.7
7

1
.1

5

2
.1

4
1

.3
8

1
.2

2

2
.4

6
1

.3
9

1
.1

9

2
.6

4
1

.5
3

1
.2

8

2
.0

6
1

.3
2

5
.1

3
1

.7
1

1
.1

8

3
.7

6
1

.5
1

1
.1

8

0

1

2

3

4

5

6

7

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

qmqp-
sink

qmqp-
source

smtp-
sink

smtp-
source

sendmail nginx thttpd redis vim gzip Mean

N
o

rm
al

iz
e

d
 d

yn
am

ic
 a

n
al

ys
is

 t
im

e

Baseline execution Invariant checks Monitors

9.93

(a) some-to-some taint analysis

3
.6

7
1

.5
5

1
.1

2

3
.0

3
1

.5
1

1
.1

5

3
.8

4
1

.5
2

1
.1

3

3
.2

3
1

.4
9

1
.1

1

5
.7

4
2

.2
5

1
.1

5

2
.1

4
1

.6
0

1
.2

2

2
.4

6
1

.6
3

1
.2

7

2
.6

4
1

.8
2

1
.3

7

4
.8

0
1

.5
2

5
.1

3
2

.5
3

1
.4

5

3
.7

6
1

.9
2

1
.2

4

0

1

2

3

4

5

6

7

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

Fu
ll

C
o

n
s.

Io
d

in
e

qmqp-
sink

qmqp-
source

smtp-
sink

smtp-
source

sendmail nginx thttpd redis vim gzip Mean

N
o

rm
al

iz
e

d
 d

yn
am

ic
 a

n
al

ys
is

 t
im

e

Baseline execution Invariant checks Monitors

9.93

(b) some-to-all taint analysis

Figure 3.6: Result: Iodine compared to pure (full) dynamic and conservative hybrid DIFT.

35

6
.5

5

5
.1

4 5
.7

4

2
.7

2

5
.5

4

3
.4

8

4
.5

2

4
.2

1

7
.5

8

4
.8

4

3
.3

3

2
.7

9 3
.4

2

2
.1

3

3
.2

4

2
.1

4 2
.5

7

2
.4

7

3
.9

6

2
.8

3

1
.4

8

1
.3

3

1
.2

9 1
.8

7

1
.2

5

1
.2

1

1
.3

6

1
.3

4 1
.6

5

1
.4

1

0

1

2

3

4

5

6

7

8

N
o

rm
al

iz
e

d
 d

yn
am

ic
 a

n
al

ys
is

 t
im

e

Full Dynamic Conservative Hybrid Iodine

Figure 3.7: Result: Taint tracking performance on SPECint C benchmarks

3.5.3 Memory Overheads

Iodine maintains the exact metadata state as a conservative analysis. Therefore, the memory space

overhead of metadata tracking remains unchanged. Iodine does increase code-size by generating

two versions of the code: the fast-path and slow-path. However, as only one version of the code is

executed at a time, this has little impact on the caching behavior or performance of the program.

On average, the code footprint of a program instrumented by Iodine increases by 2.1×, compared

to 1.4× with conservative hybrid taint analysis, and 1.8× with pure dynamic taint analysis.

3.5.4 Iodine’s Framework Overheads

Invariant Check Cost: Fig. 3.6 also isolates the invariant checking costs. Invariant checks are

only required in Iodine’s optimistic analysis framework and are absent from the full dynamic and

conservative hybrid analysis. Overall we observe that invariant checks have nearly no effect on

end runtime, incurring only 2% of overall execution time.

36

Invariant Violations and Switching Overhead: Overall Iodine observes largely inconsequen-

tial rates of invariant violations, with only sendmail, redis and vim violating an invariant

during some-to-all analysis in 3, 2, and 5 (out of 100) executions respectively. This indicates

that our profiling methodology captures the common-case dynamic execution behavior effectively,

significantly optimizing the dynamic analysis. The amortized overhead of the slow path analysis

resulting from these violations is less than 0.5%. Note that the slow-path overhead can be no worse

than that of conservative hybrid analysis.

We also find that the runtime overhead of the switching mechanism at function call return sites

is negligible.

3.5.5 Precise and Scalable Static Analysis

Fig. 3.8 shows how assuming different types of invariants successively reduces the number of

required static monitors for a some-to-some taint analysis. While the conservative static analy-

0
.5

5
0

0
.5

8
4

0
.6

8
6

0
.7

2
9

0
.7

0
9

0
.5

8
0

0
.6

1
1

0
.5

4
9 0
.6

0
2 0

.6
8

4

0
.6

2
5

0
.3

8
3

0
.4

1
7

0
.4

2
2

0
.4

2
7 0

.5
0

7

0
.4

6
4

0
.4

7
8

0
.4

2
9

0
.4

1
6 0
.4

6
5

0
.4

3
9

0
.3

8
3

0
.3

6
4 0
.4

2
2

0
.3

8
8 0
.4

4
7

0
.4

3
2

0
.4

3
2

0
.3

7
2

0
.3

8
1

0
.3

9
5

0
.4

0
1

0
.3

5
9

0
.3

4
2

0
.3

7
9

0
.3

5
3 0
.4

0
7

0
.4

1
7

0
.4

2
5

0
.3

2
2

0
.2

9
3

0
.3

9
5

0
.3

6
7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

ti
o

n
 o

f
st

at
ic

 m
o

n
it

o
rs

Conservative +Unreachable Codes +Callee Sets +Call Contexts

Figure 3.8: Result: Improved static taint analysis precision by assuming different invariants– Con-
servative some-to-some analysis uses a context-insensitive pointer-analysis, while the predicated analysis
can scalably apply a context-sensitive pointer analysis.

37

Table 3.1: Static analysis time breakups for Iodine’s some-to-some taint analysis

Benchmark Conservative Static Analysis Predicated Static Analysis
Points-to Taint Total Profiling Points-to† Taint Total

qmqp-sink 8s 4m 28s 4m 36s 1m 19s 12s 36s 2m 07s
qmqp-source 7s 14m 18s 14m 25s 1m 45s 5s 1m 12s 3m 02s
smtp-sink 9s 6m 12s 6m 21s 2m 00s 16s 44s 3m 39s
smtp-source 11s 11m 44s 11m 55s 2m 19s 9s 1m 08s 3m 35s
sendmail 15s 16m 53s 17m 08s 2m 02s 13s 1m 37s 4m 32s
nginx 19s 20m 04s 20m 24s 1m 12s 12s 1m 30s 2m 54s
thttpd 18s 17m 54s 18m 12s 59s 16s 1m 14s 2m 29s
redis 1m 18s 19m 43s 21m 01s 2m 01s 10s 1m 25s 3m 35s
vim 32s 61m 22s 61m 54s 5m 12s 88s 2m 54s 9m 35s
gzip 8s 8m 49s 8m 58s 7m 03s 17s 1m 22s 8m 42s

†Our optimistic framework enables us to scalably apply more accurate context-sensitive points-to analysis during the
predicated static analysis

sis requires instrumenting 63% instructions on average, our predicated static taint analysis nearly

halves this value at 37%, providing the foundation for Iodine’s performance results. This translates

to eliding 54%(nginx)−86%(vim) of the dynamic taint checks from a conservatively optimized

analysis.

Table 3.1 summarizes the breakdown of static analysis times for both the conservative static

and our predicated static versions. Applying the invariant assumptions to constrain the static anal-

ysis search space enables us to scalably apply a context-sensitive pointer analysis. This further

improves the precision of our predicated static analysis. We see that a reasonable effort spent in

profiling significantly reduces the overall static taint analysis time. In fact, the total static analysis

time including the profiling time is lower than that of conservative static analysis for all our test

programs. This makes Iodine suitable for deployment in production where the applications are

constantly evolving thereby requiring re-analyzing them statically for hybrid analysis.

3.5.6 Profiling During Regression Testing Is Effective

An important concern with profile-based optimizations is the time and effort spent in profiling as

well as the system’s sensitivity to the profile set. We observe that software regression tests seek to

maximize code and path coverage, and are therefore good candidates for conservative profiling.

38

We evaluate this approach by profiling three programs- nginx, redis on their packaged

regression test suites, and vim on open-source test suites [41, 42]. The results in Fig. 3.9 show that

profiling on regression test suites alone is very effective. It reduces the runtime overhead to 31%

compared to 55% with conservative hybrid analysis. We however observe invariants being violated

dynamically after this profiling, and so recommend further profiling on beta tests. Profiling on the

beta tests (shaded right halves) reduces the invariant violation rate significantly and brings down

the analysis overhead to 23%.

Thus, we leverage the existing software testing suites to perform Iodine’s initial profiling, and

recommend reasonable beta testing for learning invariants to optimize Iodine. Moreover, Iodine is

resilient to weak profiling. Our analysis needs no guarantees that all states are profiled; and even if

the invariants fail dynamically, the constructed optimized analysis is still sound. Failing invariants

can be learned over time and the optimized analysis can be adaptively re-constructed to exclude

those without requiring analysis rollbacks. Iodine requires test suites with reasonable coverage for

profiling, and is moreover resilient to profiling inaccuracies.

3.5.7 Sensitivity to Fraction of Tainted Data

Hybrid analyses (both traditional and Iodine) elide instrumentation that cannot propagate taint. As

a growing set of inputs carry taints, the taints spread faster to nearly the program’s entire data space.

If nearly all data is tainted, there is no optimization opportunity and Iodine fails to effectively elide

taint checks. To investigate this behavior, in Fig. 3.10, we look at how Iodine’s normalized runtime

varies with increasing the taint sampling fraction in our some-to-all taint analysis in §3.5.2. We

statically identify all viable taint sources (input interfaces from console/file/network) and randomly

sample the stipulated fraction of them to be active. Since selected sources might vary in their

dynamic execution frequencies, we run on 100 different samples for a given sampling fraction

(except for 100%).

As expected, we observe that Iodine’s performance degrades in general when dealing with

larger fraction of tainted inputs, although Iodine shows significant benefits for many realistic levels

39

16 16 13
9

6 4 4 4 4 4
0 0 0 0

1.0

1.2

1.4

1.6

1.8

2.0

0 20 40 60 80 100 120 140 160

N
o

rm
al

iz
e

d
 n

u
m

b
e

r
o

f
p

ro
fi

le
d

 in
va

ri
an

ts

N
o

rm
al

iz
e

d
 d

yn
am

ic
 a

n
al

ys
is

 t
im

e

Profiling time (s)

Regression Tests Beta Tests

(a) nginx

18 18 17 15
12

9
8 8 8 8 5

32

2

1.0

1.2

1.4

1.6

1.8

2.0

0 500 1000 1500 2000 2500

N
o

rm
al

iz
e

d
 n

u
m

b
e

r
o

f
p

ro
fi

le
d

 in
va

ri
an

ts

N
o

rm
al

iz
e

d
 d

yn
am

ic
 a

n
al

ys
is

 t
im

e

Profiling time (s)

Regression Tests
Beta
Tests

(b) redis

2926
21

18
14

11 11 11 11 11

7
6 5 5

1.0

1.2

1.4

1.6

1.8

2.0

0 100 200 300 400 500 600 700 800

N
o

rm
al

iz
e

d
 n

u
m

b
e

r
o

f
p

ro
fi

le
d

 in
va

ri
an

ts

N
o

rm
al

iz
e

d
 d

yn
am

ic
 a

n
al

ys
is

 t
im

e

Profiling time (s)

Regression Tests Beta Tests

(c) vim
Figure 3.9: Result: Profiling invariants while software testing– Profiling is done in two phases- first on
regression test suites (left unshaded), and then on beta tests (right shaded). The solid marked lines plot anal-
ysis overheads with Iodine using invariants gathered at different stages of profiling. The numbers labeled
on the plot indicate the number of dynamic invariant violations. The horizontal solid lines representing con-
servative hybrid analysis are an upper bound to Iodine’s overheads. The dashed lines against the secondary
(right) y-axis plot the number of invariants used normalized to that after profiling a single execution.

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

N
or

m
al

ize
d

dy
na

m
ic

 a
na

ly
si

s t
im

e
(v

s.
 F

ul
l)

% Sampled taint sources

qmqp-sink qmqp-source smtp-sink smtp-source nginx
thttpd gzip sendmail redis vim

14% 19% 23%

Figure 3.10: Result: Iodine’s sensitivity to fraction of tainted data – performance benefits reduce
with larger fractions of the program’s data space being tainted. Fraction of taints observed for
realistic taint policies (§3.5.1) are annotated.

of tainted input. This behavior is fundamental to hybrid analysis, and is no worse in Iodine than

in a conservative hybrid analysis. Iodine is effective when the target program and the taint policy

induce a low fraction of tainted data. We observe that this property indeed holds for the IFT

security policies studied in §3.5.1; the static fraction of active taint sources therein are between

14-23% (circled in Fig. 3.10).

3.6 Related Work

Iodine builds on the prior optimistic hybrid analysis work [1] in two major ways- (1) it constructs

a rollback-free OHA by limiting to only safe elision optimizations thereby solving the recovery

problem in OHA, and (2) applies this novel technique to realize a low overhead DIFT solution for

live executions. Below, we discuss relevant prior work on DIFT, hybrid program analyses, and

profile-based optimizations.

41

Dynamic Analysis

There has been significant work on dynamic taint tracking systems [26, 43, 23]. Past work has

developed many optimized dynamic techniques, such as creating highly specific information-flow

policies [25, 20, 19], reducing its scope to only apply to related processes [44], optimizing low-

level taint operations [45], writing minimal emulators targeted for taint tracking [30], or even

providing custom hardware support [24, 46, 47, 48]. All of these optimizations operate purely on

the dynamic state of the program, attempting to make existing set of taint operations faster. Iodine

elides taint operations through static analysis, reducing the set of instructions monitored, making

its optimization complementary to these prior approaches.

Taint tracking has also been parallelized either by partitioning the execution into epochs to per-

form local analysis and then aggregating results [49, 50], or by decoupling taint analysis from the

program execution [51, 28, 29, 52], wherein the dynamic instrumentation only performs lightweight

logging followed by an offline analysis. These efforts reduce latency of taint tracking through

parallelization, but not overall work, like Iodine does. They too are complimentary to Iodine’s

optimizations.

Static Analysis

Several systems have attempted to solve taint tracking using language features to enforce a taint

policy at compile-time, sometimes with limited dynamic checks [53, 54]. These systems achieve

low runtime overhead, but place the burden on the programmer to specify and guarantee taint

policy using an unfamiliar restrictive language. Iodine optimizes dynamic analysis, and does not

require source code changes, other than trivial annotations specifying taint sources, sinks, and

untaint functions.

Hybrid Analysis

Hybrid analysis has been explored in the past [55] for accelerating DIFT. Moore et al. provide the

soundness conditions for static analysis to determine when it is safe to stop tracking certain vari-

42

ables dynamically [14]. In addition to removing unnecessary monitors using static analysis, Chang

et al. statically transform untrusted programs into policy-enforcing programs to further reduce the

amount of data to be tracked dynamically [5]. Jee et al. statically separate the taint tracking logic

from the program logic and then optimize it using abstract taint flow algebra [28]. Hybrid sys-

tems have also coalesced taint checks through static analysis [18, 56]. While these traditional

hybrid analyses use sound static analysis to conservatively reduce dynamic overheads, Iodine fur-

ther improves runtime overheads with use of unsound, predicated static analysis. Iodine’s use of

optimistic hybrid analysis with forward recovery could likely be combined with these systems for

further taint optimizations.

Blended analysis [8] uses dynamic information to improve the accuracy of a best-effort static

taint checking tool for JavaScript applications [11]. While they utilize dynamic information to

make static analysis tractable for corner-case dynamic language features (e.g., eval), our likely

invariants captures common program behaviors to improve whole-program static analysis. More-

over, their end goal is just to improve static analysis, and stop short of optimizing dynamic analysis.

They also do not provide soundness or completeness guarantees for any results produced. Iodine

produces sound and complete dynamic analysis for live executions.

Profile-guided Compiler Optimizations

Profile-guided optimizations [57, 58] learn invariants through profiling and use them for local

optimizations. In particular, work on JIT optimizing compilers such as those that speculatively

inline functions [59], or speculatively convert indirect function calls to direct function calls [60],

speculatively optimize execution, as done in Iodine. Our work differs in two key ways. First,

while compiler optimizations focus on optimizing program logic, Iodine aims at eliding unnec-

essary runtime DIFT monitors. A more fundamental difference is that Iodine uses invariants to

improve precision and scalability of whole-program static analysis. In contrast, profile-guided op-

timizations do not typically consider whole-program static analysis, and therefore the methods for

checking invariants and recovery are simpler and cheaper than optimistic hybrid analysis.

43

Summary

Iodine presents a novel Cautiously Optimistic Program Analysis (COPA) technique to optimize

DIFT. We solve a key challenge in applying COPA to online analyses on live executions – roll-

back recovery. We eliminated the need for rollbacks by restricting our predicated static analysis

optimizations to noop safe elisions. Iodine significantly improves the precision of static data-flow

and pointer analysis, thereby drastically reducing DIFT overhead for important security policies to

9%.

44

CHAPTER 4

PROV-GC: Provenance-based Sound Garbage Collection for C

Garbage collection (GC) support for unmanaged languages can reduce programming burden

in reasoning about liveness of dynamic objects. It also avoids temporal memory safety violations

and memory leaks. Sound GC for weakly-typed languages such as C/C++, however, remains

an unsolved problem. Current value-based GC solutions examine values of memory locations

to discover the pointers, and the objects they point to. The approach is inherently unsound in

the presence of arbitrary type casts and pointer manipulations, which are legal in C/C++. Such

language features are regularly used, especially in low-level systems code.

In this paper, we propose Dynamic Pointer Provenance Tracking to realize sound GC. We ob-

serve that pointers cannot be created out-of-thin-air, and they must have provenance to at least

one valid allocation. Therefore, by tracking pointer provenance from the source (e.g., malloc)

through both explicit data-flow and implicit control-flow, our GC has sound and precise informa-

tion to compute the set of all reachable objects at any program state. We discuss several static anal-

ysis optimizations, that can be employed during compilation aided with profiling, to significantly

reduce the overhead of dynamic provenance tracking from nearly 8× to 16% for well-behaved

programs that adhere to the C standards. Pointer provenance based sound GC invocation is also

13% faster and reclaims 6% more memory on average, compared to an unsound value-based GC.

4.1 Enforcing Memory Safety is Challenging

Unmanaged languages such as C/C++ are the languages of choice for a vast set of large, com-

plex, ubiquitous, and critical software bases, such as- Linux, OpenSSL, Nginx, Redis, and these

languages continue to be popular among many developers. Unmanaged languages require pro-

grammers to explicitly allocate and free memory space. This requirement not only increases pro-

45

gramming burden, but is also a source of common classes of bugs: use-after-free and memory

leaks. Use-after-free bugs are not just a reliability issue, but a significant source of security vul-

nerabilities in modern systems [61], as they compromise temporal memory safety [6]. In spite

of significant advancements, prior solutions for temporal memory safety incur prohibitive perfor-

mance overheads (∼ 60% [6, 7, 62]). Memory leaks also compromise system reliability and can

cause unpredictable performance [63]. Prior solutions have tried to address memory leaks through

a combination of offline bug detectors [61, 64], and runtime systems that probabilistically repair

these bugs [65, 66, 67].

Replacing manual deallocation of memory in unmanaged languages with a sound and efficient

garbage collector (GC) would address all of the above problems by guaranteeing temporal memory

safety, avoiding memory leaks, and reducing programmer burden. Unfortunately, a sound GC for

weakly-typed languages like C/C++ has remained elusive.

A sound GC is one that guarantees to not free an object that is accessed later 1. Typically,

a sound mark-and-sweep GC [68] automatically reclaims memory at runtime by freeing a set of

objects that can be guaranteed to be unreachable from a set of “root” pointers (pointers in global

variables, stack variables, and registers). To compute this set at runtime, given a pointer, a GC

should be able to (1) identify a pointer’s dynamic points-to object, that is, the object reached by

dereferencing the pointer, and (2) locate all the pointers contained in that reachable object. We refer

to the latter set as the pointers-within set for an object. In strongly-typed, memory-safe languages

like Java, both of these operations are straightforward [69]. A pointer’s value can be used to

identify its dynamic points-to object due to spatial memory safety [70], and the pointers-within set

of an object can be easily determined due to the strong type system.

C/C++, however, is weakly-typed. Pointer values can reside in, or be computed from, non-

pointer variables, making it difficult to locate them within a reachable object at runtime. Even

if we can locate all the locations with pointer values, they are not guaranteed to point within the

referenced objects. This is true even in spatially memory safe programs, as a pointer value may

1Ideally GCs would free objects that will not be accessed later, but real GCs settle for the cannot be accessed
approximation.

46

be arbitrarily transformed to point away from the object, then manipulated back just before a

dereference. Such pointer manipulations are regularly used in low-level systems code [71].

Prior works on GC for C/C++ [72, 73] have tried to overcome some of these problems using

value-based heuristics, but these works do not guarantee soundness. They assume that only mem-

ory locations with values within an allocated heap object’s address range are valid pointers, and

that the value points within the referent object. This assumption is unsound as they cannot identify

the referent object when a pointer value goes out-of-bounds due to arbitrary pointer manipulations

allowed in C/C++. They are also imprecise, and therefore, prone to memory leaks when non-

pointer locations hold values that happen to be within the heap address range. Finally, they have to

examine the value of every reachable memory location to determine if it is a pointer or not, leading

to higher performance overhead.

We design the first sound GC for C/C++ called Provenance-based Garbage Collection (PROV-

GC). We observe that a C/C++ program cannot create a pointer out-of-thin-air; instead, pointer

values must be derived from a valid pointer source. Valid pointer sources are from allocation func-

tions (e.g. malloc) and the address-of (&) operator. These pointer values subsequently propagate

to other variables either through explicit data-flow or implicit control-flow. Thus, our key idea is

to use dynamic information-flow tracking to soundly and precisely determine the set of all mem-

ory locations that hold values derived from pointers, and the object locations they point-to. Our

mark-and-sweep GC uses this information to soundly reclaim unreachable objects.

Conventional dynamic information-flow tracking (DIFT), however, is known to incur signifi-

cant performance overhead, slowing execution down by several times [26]. This is due to the need

to execute a “monitor” typically for every instruction that could propagate a “taint”. Furthermore,

taint propagation through implicit control-flow (a necessity for us to ensure soundness) is known to

be not only expensive in terms of performance, but also can imprecisely taint a significant fraction

of memory locations [26].

We observe several optimization opportunities that we exploit using hybrid taint analysis [36]

to realize a low-overhead DIFT for pointer provenance. A common property that our static analysis

47

exploits is that if an instruction destination operand’s taint meta-data is guaranteed to not change,

then the taint monitor for that instruction can be elided. This property holds true for instructions

that are non-pointer operations (e.g., inta = intb * 10;), which is the vast majority of the

instructions executed. We also show that if an instruction’s destination operand is a statically de-

clared pointer and its source operand is guaranteed to be a “safe” pointer (value points within the

object), then its taint value is known at compile time, and therefore a runtime monitor is unnec-

essary (e.g., int* ptr = safe_ptr;). This category includes common pointer assignments,

where the pointer has not been manipulated arithmetically. Finally, if the source and destination

operands of an instruction are the same (e.g., ptr = ptr+4;), then there is no need to update the

destination’s taints.

Somewhat surprisingly, tracking implicit information flows, known to be intractable in general,

turns out to be practical for pointer provenance. Conditional branches dependent on pointer vari-

ables can propagate taint implicitly to its control-dependent instructions. While we do not expect

reasonable programmers to use such programming constructs, to realize sound GC, we must con-

sider its possibility, as they are legal in C/C++. Fortunately, we are able to show that when branch

conditions are based on comparisons between in-bounds pointers or with NULL value, there is in-

sufficient implicit information flow to require dynamic tracking. While we need modest dynamic

checks to establish that pointer values are in-bounds, we never have to propagate implicit flow for

the programs we studied.

Finally, to prove the above properties statically to aggressively elide dynamic taint monitors,

we apply Cautiously Optimistic Program Analysis (COPA) [1, 36]. OHA uses profiled likely

invariants to predicate the whole-program context-sensitive flow-sensitive static taint analysis.

The C standard [74] specifies several restrictions on using pointers and operations that can be

performed on pointer types. We show that assuming these properties benefits our pointer prove-

nance tracking significantly, and reduces the overall cost of GC for standard-compliant programs.

We provide solutions with and without this optimization, because, in practice, there are many pro-

grams that regularly violate the standard [75], and as such they require provenance tracking without

48

optimizations that depend on these C standard specifications.

We evaluate our PROV-GC tool on several long-running large applications as well as memory-

intensive benchmark programs. Unlike the Boehm-Demers-Weiser GC (BDW-GC) [73], PROV-

GC is sound. For well-behaved programs that are C standards-compliant, we pay only an addi-

tional 16% average performance cost to dynamically track pointer provenance. Of which, 14%

is due to explicit data-flow tracking, and the remaining is to track implicit-flow. We find that our

optimistic optimizations that elide dynamic monitors are very effective with adequate profiling.

Without them, we see nearly 8× slowdown. In addition to soundness, compared to BDW-GC, the

performance of our GC invocation is about 13% faster, as we avoid scanning, and reclaim about

6% more memory per GC invocation due to our GC’s improved precision.

16% performance overhead of our GC is especially appealing as it obviates the need for a

slower dynamic temporal safety solution (60% overhead [62]), besides reducing programming

burden and avoiding memory leaks.

We make the following contributions in this paper:

• We present PROV-GC, a GC that is sound for all legal C/C++ programs. Previous GC solutions

for C/C++ are unsound as they might free reachable objects.

• We present the idea of dynamic pointer provenance, and use it to realize a sound GC for C/C++.

• We show how we can elide taint monitors for a vast majority of instructions such as operations

on non-pointers, “safe” pointers, etc.

• We show tracking implicit information-flow in the context of pointer provenance is necessary

and practically feasible.

• We show how the C standard specifications induce a significantly improved provenance tracking

solution for standard-compliant programs.

• We apply optimistic hybrid analysis [1] to optimize dynamic pointer provenance and realize an

efficient GC that incurs 16% overhead. This overhead is much lower than dynamic temporal

safety checking, and it avoids memory leaks and reduces programmer burden.

49

4.2 Garbage Collection for C/C++

We briefly discuss the motivation for using GC in weakly-typed languages like C/C++, and the

unsolved problems in realizing a sound GC for them.

4.2.1 Why GC for C/C++?

GC obviates the need for manual memory management and thereby eliminates two common

classes of bugs in unmanaged languages: memory leaks and use-after-free [63, 61]. Memory leaks

and use-after-free bugs are considered important classes of bugs and thus have received significant

attention from academia and industry, who have tried to address these bugs through a variety of

methods. For memory leaks, there exists a number of offline debugging tools and runtime proba-

bilistic methods to mitigate the ill effects of these bugs [63, 76, 77, 78, 79, 80, 81, 82]. We argue

that GC for C/C++ would address the memory leak problem more comprehensively than these

methods.

Use-after-free bugs are particularly important because they compromise system security. These

bugs violate temporal memory safety [6], which along with spatial safety is necessary to ensure full

memory safety. Recognizing the importance of memory safety, even commodity processors (e.g.,

Intel MPX) [83] have started providing specialized hardware support for efficiently implementing

spatial memory safety checks. Spatial memory safety, however, solves only part of the problem.

Efficiently guaranteeing temporal safety remains expensive, as state-of-the-art solutions incur ∼

60% performance overheads [62].

We argue that if we can realize a sound and efficient GC for C/C++, it would not only reduce

the burden on future software development, but also help improve reliability and security of both

future and legacy systems. If the execution time overhead of GC can be made lower than the

overhead of other temporal safety solutions, then it certainly would be a superior solution, as it not

only removes temporal errors, but also improves programmability.

50

4.2.2 GC and its Pointer Data Requirements

Identifying dead objects precisely at a given instant of a program’s execution is hard as it depends

on future execution. Therefore, current GCs conservatively identify live objects by assuming that

the set of all “reachable” objects from a “root” set of pointers are live. The root-set consists of all

pointers in the registers, global and stack address space. A reachable object can still be dead as it

may never get referenced in future. Current GCs use either incremental mark-and-sweep [73] or

reference counting [84, 85] to compute reachability. In this paper, we use mark-and-sweep, though

our provenance-based approach could also be used by a reference-counting GC.

When a mark-sweep GC is invoked, it performs two separate steps: marking computes the live

set of objects that are transitively reachable from a root set of pointers, and sweeping reclaims

memory from unreachable objects. To perform the reachability analysis, the mark step requires

two crucial pieces of information about pointers: a pointer’s points-to object (PT), and an object’s

pointers-within set (PW). The points-to object of a pointer is the dynamic object that can be

dereferenced using that pointer. The pointers-within set of an object is the set of all pointers that

are contained within that object.

Both points-to and pointers-within data are straightforward to determine soundly and precisely

in type and memory safe languages such as Java, Python, and C#. The points-to object of a

pointer can be determined from its value due to spatial memory safety. That is, a pointer’s value

is guaranteed to be within the address range of its points-to object. Furthermore, due to type

safety, given an object, it is possible to precisely and quickly determine its pointers-within set,

because only variables that are typed as pointers can hold pointer data; non-pointer variables cannot

hold pointer data. Determining points-to and pointers-within data in weakly-typed languages like

C/C++, however, is a significant challenge as we discuss next.

4.2.3 Value-based GCs for C/C++ is Unsound

All prior attempts to provide GC for C/C++ use value-based heuristics to compute points-to and

pointers-within information. For example, the best-known such work [73] computes the pointers-

51

1 typedef struct { uintptr_t val, xptr; } xorlist;
2 xorlist *head = NULL, *tail = NULL;
3 void traverse(xorlist *start) {
4 xorlist *prev = NULL, *curr = start;
5 while (curr) {
6 printf("%ld\n", curr->val);
7 uintptr_t next = (uintptr_t)

prev ˆ curr->xptr;
8 prev = curr;
9 curr = next;

10 }
11 }

12 void main() {
13 insert(...);

...
14 traverse(head);
15 traverse(tail);
16 }

A B C D E
val 01 23 45 67 89
xptr head ⊥⊕B A⊕C B⊕D C⊕E D⊕⊥ tail

Figure 4.1: XOR linked list – Doubly Linked Lists can save space by storing the XOR of previ-
ous and next node pointers in a single integer location; uintptr_t is sufficiently long to hold
pointer values. The inner nodes never store literal pointer values, but have sufficient information
to reconstruct valid pointers to its two adjacent nodes.

within set of an object by scanning every pointer-sized field in the object and checking if its value

falls within the address range of any allocated heap object. If the check succeeds, then that field is

assumed to be a pointer, and the points-to object for that field is assumed to be the allocated heap

object whose address range includes that field’s value.

Value-based GCs work by assuming that any allocated heap object that may be referenced in the

future has at least one live register or memory location pointing to it at all times. This assumption

may be violated, for instance, if the C program breaks any of the following three assumptions:

(A1) Pointers are only stored in variables that are declared to be pointers or in sufficiently large

integral type that can hold a pointer. (A2) If a memory location’s value falls within the bounds

of an allocated heap object then it is a valid pointer, or else it is a non-pointer. (A3) A pointer

discovered through its value is assumed to point within its points-to object. Value-based GCs are

unsound whenever any of the above invariants is violated.

In C/C++, even legal programs can violate these three assumptions because C/C++ has a weak

type system and allows programs to store pointer values in integers and manipulate them in arbi-

trary ways. Fig. 4.1 shows an example of a XOR linked list, a clever representation of a doubly

52

linked list used in memory constrained embedded systems [86]. Each node stores the XOR of

pointers in the two directions and recovers them using XOR operations during traversal. Note that

none of the inner nodes store literal values of pointers, but have information encoded to reconstruct

two valid pointers. A purely value-based GC approach can incorrectly reclaim objects pointed to

by such hidden pointers, e.g. node C’s address is not stored literally anywhere in the program state.

This is a legal C program which can break the correctness of a value-based GC. More extreme ex-

amples are also possible via casting and other manipulations; for example, a program may split a

pointer into several smaller integers then reconstruct the pointer later; this would violate all three

assumptions.

Value-based GCs can also be imprecise because they may think a non-pointer is a pointer

when its value happens to lie within the heap address range. If this non-pointer’s value points-to

an unreachable object, then GC would avoid reclaiming it. This can lead to memory leaks and

lower performance. There has been follow-up work [87, 88] that addressed this problem by adding

another assumption that pointers only reside in declared pointer typed variables. This approach

achieves greater precision, but sacrifices even more soundness, as it would ignore an integer value

derived from a pointer through a cast.

Value-based GCs can also incur significant overhead while scanning the state space for point-

ers. Given a reachable object, GC has to scan each of its fields, and check if it could be a valid

pointer or not. The check involves looking into a data-structure that maintains the address ranges

of all heap objects.

In this work, we improve upon pure value-based GCs by using dynamic pointer provenance

to soundly and precisely determine the set of all pointers and the objects they point-to. Also, this

can quickly identify pointers-within set of an object without scanning each field, improving GC

performance.

53

4.2.4 Need for Sound GCs

Guaranteeing correct GC behavior– i.e. objects reachable from the root set of pointers will not be

freed, is important for all programs in the same way that it is important to have a sound compiler

or runtime. Value-based GCs impose additional restrictions, as seen in §4.2.3 earlier, making them

work correctly only on a subset of the language. These language properties might not be followed

by legacy programs, and can be generally difficult to verify for new programs and compiler imple-

mentations that strive to conform to the standards but still may not. Moreover, new programs also

reuse existing library code. So, there is value in supporting sound GC behavior for all programs

without imposing additional restrictions on the language itself.

4.3 Provenance-Based Garbage Collection

We address these problems by designing a sound and efficient provenance-based garbage collector.

We will first motivate how a provenance-based garbage collector solves the soundness issue, and

outline a simple-but-sound strawman GC. Then, we discuss optimizations to reduce the overhead

of our strawman GC, leading to a provenance-based GC that is both fast and sound.

We assume that, aside from temporal safety errors, the given program is a valid C/C++ pro-

gram and obeys the properties necessary for the compiler and hardware to guarantee well-defined

behavior. This includes spatial memory safety [70] and data-race-freedom [89], which many prior

works have addressed.

4.3.1 The Soundness of Provenance-Based GC

We propose that instead of using the value of a pointer to identify its points-to set, a GC can use

the provenance of the pointer to soundly derive its dynamic points-to set.

The soundness of our provenance-based solution is based on the assumption that allocated

heap memory addresses cannot appear out-of-thin-air. That is, without knowing the return value

of an allocation function (e.g. malloc in C), it is impossible for the programmer to compute

54

the address of any dynamically allocated heap object. This assumption is true of most real type-

unsafe languages, including C. Given this assumption, any well-behaved program must ensure

that any heap addresses dereferenced by a load or store operation are derived from the return of

heap allocation functions. Consequently, an object allocated within the heap is only reachable in

the future if it has one or more live register or memory values (henceforth values) which draw

provenance from its allocation function’s return value.

Since a heap pointer value cannot appear out-of-thin-air, and all pointers must have a prove-

nance to at least one valid allocation, it is therefore sufficient to track all points-to sets for all

pointers to reconstruct all currently reachable objects.

4.3.2 A Simple Provenance-Based GC

To show how pointer provenance can construct a sound GC, we present a simple, strawman design

of a provenance-based GC.

Terminology: We refer to registers and memory locations simply as location. A pointer refers

to a location whose value is directly or indirectly derived from one or more allocation return values.

The points-to set of a location refers to the set of object allocations from which the pointer is

derived. The points-to set is the complete set of objects that the pointer may be used to access in

the future. A memory location with empty points-to set is not a pointer.

Our strawman GC will naively track the points-to set for every register or memory location

(henceforth location) in an execution by constructing a map from each location to the set of heap

object allocations its value is derived from.

To dynamically track the points-to sets of all pointers, we apply a standard dynamic information

flow (DIFT) policy, treating all heap object allocations as sources and using both data-flow and

implicit-flow taint tracking. More specifically, the program begins with each location’s points-

to set empty. Whenever an allocation function returns, we add that allocation to the destination

location’s points-to set. Thereafter, whenever the program modifies a location, the points-to set of

that location will be updated to contain the union of the points-to sets of any pointers it depends

55

on. We note that for this analysis to be sound, when a location is modified, it must consider not

only data-flow dependencies, but also any implicit control-flow dependencies as well (e.g., when

branch conditions depend on pointers).

A properly constructed DIFT analysis [90, 31] will, by construction, ensure that the points-to

set of each pointer is conservative. That is, if the pointer could be used to dereference an object in

the future, that object will be within that pointer’s points-to set.

In order to avoid scanning memory to locate pointers, we also maintain a pointers-within set

mapping for each allocated heap object. The pointers-within set will logically contain the memory

location of every pointer within the allocated heap object. The pointers-within set for an object can

be trivially maintained by initializing the set to empty when the object is allocated, then adding a

pointer to the set whenever such a pointer is stored to a location within the object.

Once the collection phase of the GC actually begins, our GC only needs to iterate through the

root set of the program (any locations statically reachable - globals, or reachable from any stack

frames and registers), add these locations to a temporary set called the working set. Then, the GC

will iterate through the working set and for each object in the working set identify all pointers

with the object’s pointers-within set. The GC then adds any objects in the points-to sets of those

pointers to both the working set, and a set of live objects. This process iterates until the live set

does not change. Any object not in the set of live objects at the conclusion of the algorithm may

then be reclaimed.

While this straw-man solution provides a sound GC, tracking provenance metadata through all

operations and through implicit flows will typically be very expensive. Fortunately, most instruc-

tions operate on non-pointers. Also, in the common case, pointers stay within object bounds, and

do not propagate pointer data to other locations through control flow. We leverage these properties

to significantly reduce the amount of provenance tracking required to construct a sound GC.

56

4.3.3 Optimizing Explicit Provenance

The strawman system described earlier requires dynamically inserting a monitor (to propagate

points-to set) on nearly every instruction within the program. This would result in very high

overheads [26]. However, we observe that for a significant fraction of instructions, its runtime

monitors do not change their destination operands’ points-to (taint). We use static analysis to elide

these dynamic monitors without losing soundness. This section discusses three optimizations that

elide such redundant monitors: 1) eliding non-pointer tracking, 2) eliding “safe-pointer” tracking,

and 3) eliding monitors for pointers with the same operands.

Non-Pointer Tracking Elision

Within C programs, the vast majority of computation operates on data which is not logically de-

rived from pointer values. If we can statically prove that a location within the program has an

empty points-to set, then that location is a non-pointer, and the dynamic run-time system need

not dynamically track the points-to set of that location. This detection can be accomplished by

using static information flow analysis [54, 36] to compute a sound may points-to set, then eliding

dynamic points-to set operations on locations with an empty may points-to set. For the example in

Fig. 4.2, we can trivially elide any provenance tracking for line 5 since neither of its operands have

data-flow from any pointers, in fact they are constants.

Safe Pointer Tracking Elision

Next, we observe that the vast majority of pointers in C programs (1) have exactly one object in

their points-to sets (singleton set) and (2) have a value within the allocated memory range of that

object (in-bounds). We call these safe pointers.

Safe pointers are handled correctly by value-based GC. Because the pointer value can be used

to dereference only one object, and since the pointer value is in-bounds, we can use its value to

determine its object. For the same reasons, we do not need to track the points-to set of any location

in the program we know is a safe pointer, as we can identify its points-to set from its value at

collection time.

57

1 void explicit_flow() {
2 unsigned int n = 10, o = 1000;
3 obj* A = malloc1(n*sizeof(obj)); //PT (A) = {malloc1}
4 char** B = malloc2(n*sizeof(obj));//PT (B) = {malloc2}
5 long z = o / n; // elided by E1
6 char* p = A; // elided by E2
7 long d = B - A; // PT (d) = {malloc2,malloc1}

...
8 for (unsigned int i = 0; i < n * sizeof(obj); i++) {
9 char* q = p + d; // PT (q) = {malloc1,malloc2}, elided by E2 and line 10

10 *q = p;
11 p = p + 1; // PT (p) = {malloc1}, elided by E3
12 }
13 }

Figure 4.2: Explicit pointer provenance propagation

To perform this optimization, we perform a static data-flow analysis to identify which instruc-

tions in a program must define safe pointers. While statically identifying safe pointers precisely

in a program is hard, we construct a sound but imprecise data-flow analysis as follows. A pointer

defined by the assignment from an allocation function is clearly safe. Assignment from a safe

pointer is also safe. The result of any operation is safe, provided it satisfies two conditions: (1)

the operation has only one pointer operand, and that operand is a safe pointer, and (2) the opera-

tion is guaranteed to not modify the pointer to point outside the bounds of the object it references

(provably in-bounds).

Leveraging Dereferences Our static safe-pointer identification methodology is conservative,

and consequently will falsely identify many safe-pointers as non-safe. It is sound, but potentially

introduces unnecessary dynamic checks. To help identify additional sources of safe pointers, we

observe that any time an address is dereferenced, it must be an in-bounds pointer, otherwise the

program would have undefined behavior (violating spatial memory safety). If we can additionally

prove that the dereferenced pointer’s points-to set is a singleton set, then we know the pointer is a

safe pointer. To accomplish this, we construct another static taint analysis, with the goal of iden-

tifying singleton taint sets. To construct such an analysis, we observe that a points-to set can only

58

propagate from a singleton-set to a non-singleton-set when it depends on multiple pointers. There-

fore, a static analysis can determine pointers that must have singleton points-to sets by checking

if its transitive dependency set contains no operations with multiple pointer dependencies. We

leverage this must-have singleton-points-to sets analysis with our observation about dereferenced

pointers being in-bounds to identify an additional source of safe-pointers: dereferenced pointers

with singleton points-to sets.

Equivalent Points-to Propagation

Our third optimization exploits the fact that many pointer redefinitions do not change the points-to

metadata, and therefore they can be elided. This is trivially true when the source and destination

pointer operands are the same. For the example in Fig. 4.2, the provenance (points-to) of p on

line 11 cannot change. It is possible for arithmetic operation on a pointer to result in an out-of-

bounds value. But in a well-defined (spatially memory safe) program, it cannot be dereferenced

before it is reverted back to be within bounds. We use a static data-flow analysis that elides the

monitor for an instruction when it can be proven that the provenance of its destination operand is

same as its source either directly or transitively through data-flow.

A related optimization is that, if the provenance of a location remains constant within a loop,

our analysis hoists it out of the loop through a loop invariant code motion [91].

In summary, we can elide provenance tracking operations when –

E1 All source operands have empty provenance.

E2 The resultant pointer is safe.

E3 The resultant pointer is assigned to the same identifier as the source operand, directly or via

temporaries.

59

4.3.4 Optimizing Implicit Provenance

Although rare, it is both possible and legal for weakly-typed programs to deconstruct and re-

construct pointers through implicit flow operations, as shown in Fig. 4.3. Traditionally, implicit

information flow DIFT is known to have severe limitations as the majority of locations can get

tainted, and doing so, as proposed in our strawman solution would result in very poor heap ob-

ject collection rates and slow provenance tracking performance. However, recall that the goal of

a sound provenance-based GC is not to ensure that no taint is lost, as a security analysis would,

but rather to ensure that a pointer cannot be reconstructed from any provenance data. In order

for an address range to be reconstructed, there must be enough data about the pointer propagated

implicitly to definitely reconstruct it. We observe that for many comparisons, the binary outcome

of that comparison doesn’t propagate enough information to reconstruct the pointer, even if the

comparison were made many times.

We consider two specific comparison cases for a valid in-bounds pointer ptr1:

I1 == or != NULL

I2 == or != another valid in-bounds pointer ptr2

The outcome of the comparison determines the value of ptr1 from two possible partitions –

S1 = {NULL} or {ptr2} and S2 = the set of all other valid pointers. When in S1 = {NULL},

ptr1 is an invalid pointer. When in S1 = {ptr2}, ptr1’s (or ptr2’s) value cannot be deduced

from their equality alone but must be explicitly carried in ptr1 (or ptr2). When in S2, we have

eliminated only one possible value and still need sufficient information to determine ptr1’s value.

1 long implicit_copy(long ptr) {
2 long hidden_ptr = 0;
3 for (int i = 0; i < sizeof(ptr) * 8; i++ {
4 long mask = 1 << i;
5 if (ptr & mask) {
6 hidden_ptr |= mask; // set bit in hidden_ptr
7 }
8 }
9 return(hidden_ptr);

10 } Figure 4.3: Copying a pointer via implicit flow

60

Sufficient information to recover the pointer must then propagate either via at least one explicit

data flow, or via a series of 264−1 equality comparisons, which are unreasonable to do in any prac-

tical amount of time. So, we can safely elide tracking implicit provenance propagation via these

constrained comparisons. For all other comparisons, our sound GC propagates the provenance set

through implicit operations.

The above condition for in-bounds pointers can be guaranteed statically for safe pointers but

must be checked dynamically for unsafe pointers. Prior work on memory safety has enabled ef-

ficient spatial bounds checking [70, 7], and checks required for pointer comparisons only incur a

fraction of those costs. Note, we cannot assume that the pointers used in comparison are guar-

anteed to be in-bounds. They may be out-of-bounds, and later become in-bounds before being

dereferenced.
1 obj* A = malloc1(n*sizeof(obj)); //PT (A) = {malloc1}
2 char** B = malloc2(n*sizeof(obj));//PT (B) = {malloc2}
3 unsigned int o = 1000;
4 bool flag = false;
5 long x = A + o; // PT (x) = {malloc1}
6 long y = B - o; // PT (y) = {malloc2}
7 char* p = A;
8 if (B != NULL) flag = true; // elided by I1

...
9 if (A == p) flag = true; // elided by I2

...
10 if (x == y) {
11 p = A + 2*o; // PT (p) = PT (A) ∪ PT (x) ∪ PT (y) = {malloc1,malloc2}
12 }

Figure 4.4: Implicit pointer provenance propagation

Consider the example code in Fig. 4.4. After the comparison on line 8, the flag being true

simply indicates that the pointer B is non-NULL which cannot be used to recover a valid pointer

within object B. Similarly after line 9, if flag is true (or false), you still need either (or both)

of A and p to access the object(s). However, line 10 propagates sufficient information to recover a

pointer value. When x == y succeeds, it encodes the distance between objects A and B, so that

even if all pointers to B are discarded, a pointer to B can still be recovered as in line 11. To handle

this information flow, we add the pointer provenance of line 10’s comparison operands, x and y, to

61

the control-dependent line 11’s result p.

4.3.5 Other Points-To Set Propagation Channels

Pointer information can escape the managed address space and leak through external channels,

such as by writing them to the file-system and reading them back. Safely handling such channels

would require elaborate mechanisms to preserve the pointer provenance of such escaping values,

and treat them as always live to exclude from being collected. Such pointer propagation chan-

nels being practically rare, we conservatively disable GC when any value escaping the program’s

address-space has non-empty pointer provenance.

4.3.6 C Standard for Pointers

The C standard [74] places certain restrictions on the possible values of pointers, limiting ac-

ceptable pointer behaviors in correct programs with well defined behaviors on all platforms. The

standard disallows arbitrary manipulations on pointers [§6.5.6], but allows arbitrary, implemen-

tation defined, conversions between integer and pointer types [§6.3.2.3]. As a result, pointer-

typed values may be in one of three states: (1) in-bounds: well defined in-bounds values, (2)

one-past-end: pointing to a location just past the end of an array, and (3) imp-def: an

implementation-defined value converted from an integer, which is unknown in the general case.

We will now show that PROV-GC can leverage these restrictions to expand the set of safe pointers

(§4.3.3) to significantly reduce pointer provenance tracking.

If we ignore the imp-def case for now, then these properties are clearly highly advantageous

to our garbage collector. Because, if all pointer typed values are in-bounds or one past the end of

an array, then all pointer typed values are safe-pointers by definition. Thus, our GC can apply our

optimization discussed in §4.3.3 for all pointer type values.

The imp-def case does not present an instance of an in-bounds pointer, as it allows an ar-

bitrary value to be present in a pointer. Fortunately, however, the lack of definition between con-

version from an integral to pointer-typed value disallows the program from reasoning about any

62

value stored in that pointer, except under very specific conditions covered shortly. As any pointer

in imp-def instance is not defined by the standard, a program cannot portably rely on it to recon-

struct a pointer later, and thus it cannot be used to legally dereference or construct a pointer in the

future, allowing PROV-GC to conservatively treat it as a safe-pointer.

The one exception we referred to is a defined conversion from a pointer value to an integral

value and back as defined in [§7.20.1.4] of the C standard. This conversion applies to intptr_t

values. For these values a void pointer may be converted to an intptr_t type and back. The

conversion is not defined, except when the value stored in intptr_t variable is unchanged. Thus,

any manipulated value of the integer would not have a standard-defined mapping when converted

back to a pointer, and therefore our earlier conclusion for imp-def applies. If the value is un-

changed when it is stored as intptr_t, then when it is converted back to a pointer type, it has to

be either in-bounds or one-past-end.

Note that our example of XOR linked list in Fig. 4.1 complies with the above restrictions

because it only uses intptr_t type to convert pointers into integers, and it recovers the exact

value of the original pointer using XOR operation before converting it back to a valid pointer.

We note that this optimization relies on the programmer writing strictly standard compliant

portable C code. Many implementations of C compilers do define mappings when performing

pointer to integer conversions, and many code-bases do legally (but not portably) rely on these

facets of the compiler [92, 75]. As a result, we provide solutions with and without this optimization.

Programs that strictly adhere to the C standard can take advantage of this optimization.

4.3.7 Cautiously Optimistic Program Analysis

Provenance-based GC relies heavily on dynamic taint tracking [31], and consequently can incur

significant overheads. Fortunately, recent work has shown that dynamic taint tracking can signifi-

cantly benefit from a technique known as optimistic hybrid analysis [36, 1]. Cautiously Optimistic

Program Analysis (COPA) is a method of dynamic analysis optimization based on the insight that

optimization should be done for the common case. Traditional hybrid analyses use a sound static

63

analysis to reason about all possible future executions (and many impossible ones, due to over-

approximation). However, when optimizing a dynamic analysis, the optimization need only care

about the execution that will actually happen. To help approximate this, COPA uses a predicated

static analysis, which takes in a set of assumptions (called likely invariants), and only guarantees

that the static analysis is sound for executions in which these likely invariants actually remain in-

variant. Assuming these invariants allows the static analysis to reason much more effectively about

the analyzed program, dramatically improving its ability to reduce dynamic checks. In this case,

it allows the dynamic taint analysis to be aggressively optimized by eliding taint tracking monitors

along paths that do not propagate taints in the predicated static analysis. A runtime system then

checks the likely invariants at runtime, and falls back to a conservative analysis if the invariants

ever fail.

We leverage COPA to improve our provenance-based GC in two ways: (1) we use it to improve

our static empty points-to analysis in §4.3.3, (2) we assume pointers used in comparisons are in-

bounds, reducing the amount of implicit flow tracking done in §4.3.4. For our first use of COPA,

we simply apply the same optimizations found in the Iodine tool [36] to improve our common-case

identification of empty may-points-to sets. Our second use is slightly more subtle. A conservative

analysis would require that we propagate implicit flow information for any pointer which may be

out-of-bounds during the I1 and I2 implicit flow checks. However, it is very rare for a pointer

used within a comparison to be out-of-bounds, so we assume the invariant that any pointer used

in a comparison is in-bounds. Using this invariant, we can remove any implicit flow taint tracking

that may occur in the common case, so long as we first dynamically verify that all pointers used

in comparisons for branches are in-bounds. If the check fails before the comparison, we soundly

switch to the conservatively optimized analysis that propagates taint through the implicit flow.

64

4.4 PROV-GC Implementation

We present an overview of PROV-GC’s notable features, and its details are presented in [93, §4].

PROV-GC relies on three primary components: (1) a Static Pointer Provenance Analysis (PPA),

(2) a Dynamic Pointer Provenance Tracking (PPT) instrumented on the target program, and (3) a

Provenance-based GC library for use by the target program. Our static analysis, and dynamic

analysis instrumentation is implemented in the LLVM 7.0 compiler infrastructure [37], and the

Provenance-based GC library is a modification of the Boehm-Demers-Weiser GC [73] to use

provenance metadata for GC.

4.4.1 Static Pointer Provenance Analyses

The static analyses classifies all LLVM static single assignment form [94] values in a program

into three partitions– non-pointers, safe-pointers, and unsafe pointers. It uses the same underlying

whole-program context-sensitive data-flow analysis described in §3.4, along with a control-flow

dependence analysis. After creating the predicated program DUG graph, we assign an empty

static points-to set to every value and initialize the set for values defined by pointer sources (e.g.

malloc). It then traverses the whole-program DUG iteratively, accumulating the union of points-

to sets of values that are used in a definition, until all points-to sets reach a fixed point.

Non-Pointers: At the end of this data-flow analysis, all values with empty points-to sets are def-

initely non-pointers, and the rest are may-be pointers. No instrumentation is required for non-

pointers.

Safe Pointers: We further classify may-be pointers into safe and unsafe sets as defined in §4.3.3

by constructing a conservative data-flow analysis identifying must-be safe-pointer operations as

operations which may not pass through unsafe operations. Once we compute this analysis, we

elide points-to set tracking for any safe pointers.

Unsafe Pointers: For the remaining may-be unsafe pointers, we elide equivalent points-to prop-

agations when a manipulated pointer value is assigned back to same source-level identifier as its

65

source operand. This is done by mapping LLVM SSA values to their source-level identifiers and

checking if values are assigned transitively to the same identifier along the define-use chain. Re-

maining unsafe pointer operations require both pointers-in and points-to tracking.

Implicit Flow Optimizations Finally, the static analysis optimizes implicit provenance tracking.

When any branch conditional on an equality or inequality comparison has any pointers in the

comparison, we instrument the spatial safety invariant check for the pointer operands and then

optimistically elide the implicit PPT operations. Any other logical comparison used in conditional

branches are always instrumented for all control-dependent value definitions.

4.4.2 Dynamic Pointer Provenance Tracking Instrumentation

After the static provenance analysis, we instrument the target program for dynamic Pointer Prove-

nance Tracking (PPT) operations. This entails three types of pointer metadata operations, and

COPA invariant checks.

Root-set Pointers: We instrument the main entry function to record the locations of all global

values which may hold pointers. Every function, at entry, adds to this record the locations of all

local pointer values and removes them before returning. This ensures that the GC can always locate

statically identified safe pointer locations, and we only need to track the rest.

Pointer Metadata Creation: Any location that could not be statically identified as a non-pointer

has two pieces of metadata associated with it- A pointer flag indicating that it has a safe pointer

value maintained in a shadow memory, or its dynamic points-to set when it’s unsafe. The points-

to set is kept in a splay-tree [95] indexed by the pointer value location to serve range queries

efficiently.

Pointer Metadata Tracking: The shadow memory taint creations, lookups and transfers are ef-

ficiently handled using LLVM DFSan [38] instrumentation. For explicit propagation of unsafe

pointers, the points-to set metadata is computed as union of the sources. For implicit propagation,

we use Iodine’s recovery mechanism to create two paths, with and without the implicit tracking,

based on the spatial safety invariant.

66

COPA Invariant Checks: In addition to all likely invariants used for static data-flow analysis, our

implicit provenance optimizations add additional spatial bounds checks for pointer comparison

operands.

4.4.3 Garbage Collection

PROV-GC keeps an allocation table of active allocations with their base and bound addresses, in-

dexed by their base address. This is exposed to the provenance tracking mechanism for computing

the dynamic points-to and enforcing the spatial safety invariant checks.

PROV-GC uses the dynamic points-to and taint metadata maintained by PPT to compute the

pointers-in set within an object’s bounds, using the splay tree to efficiently search all unsafe point-

ers, and leveraging the one-to-one mapping of heap locations to taint bits in shadow memory to

efficiently lookup safe pointers using bitwise arithmetic.

Garbage collection begins by pushing the root-set of pointers maintained by our root-set track-

ing into a set known as the GC root-set. Then it queries the allocation table to locate remaining

pointers within the bounds of the global data segment and the current stack to include in the GC

root-set. Then marking continues by transitively performing the range-queries into the bounds

of the objects in their points-to set. The range-based query techniques quickly locate all pointer

values within an object’s bounds, much faster than value-based scanning for large objects. Upon

collecting objects, PROV-GC removes the associated metadata through range-deletion operations.

4.4.4 Source Transformations for GC

Running target programs with GC require some source-level changes to communicate between

the collector and the client program. To convey applications’ allocation requests, we replace all

allocation calls e.g. malloc() with corresponding GC_malloc()’s, and remove all free()’s.

Some applications like redis, need to notified by the GC for special handling of deallocated

objects, for which we use BDW-GC interface to register the application specific finalization code.

67

4.5 Evaluation

We compare the performance of PROV-GCwith state-of-the-art value-based GC BDW-GC[73].

Our evaluation shows the following:

• Dynamic Pointer Provenance Tracking incurs reasonably low overheads, even for memory-

intensive benchmarks.

• PROV-GC reduces scanning overheads so that individual GC invocations run faster compared to

BDW-GC.

• PROV-GC is the only sound garbage collector, and yet improves memory reclamation rates over

value-based GC and yields benefits similar to other unsound GC solutions [88].

Experimental Setup

We evaluate PROV-GC over several real-world applications including the nginx web server,

postfixmail server, redis database server, vim and SPEC C benchmark programs. The profil-

ing methodology and run configurations for the test programs are identical to that used in §3.5. For

each target program, we create 3 versions: (1) base without GC, (2) bdw-gc with value-based

BDW-GC and (3) prov-gcwith our sound PROV-GC. The base versions use glibc 2.26 al-

locator, except for nginx and rediswhich use jemalloc 5.1.0. All programs are compiled

with clang 7.0 at the -O3 optimization level. We use BDW-GC version 7.4.16 with the par-

allel and incremental collection being disabled (GC_MARKERS=1 GC_DISABLE_INCREMENTAL).

The benchmark programs and the configured GC heap limits are listed in Table 4.1. Finally,

prov-gc compiles the programs with our static analysis that instruments them with the prove-

nance tracking mechanism, and run with the PROV-GC allocator using the same configurations.

4.5.1 Provenance Tracking Overheads

To understand how static analysis can significantly reduce the overhead of provenance tracking, we

run PROV-GC configured only to track provenance (i.e. collection disabled), and then selectively

68

Table 4.1: PROV-GC Benchmark configurations

Program base bdw-gc
Peak Memory Heap Limit # Collections

perlbench 580 MB 1024 MB 2
bzip2 856 MB 1024 MB 3
gcc† 940 MB 1024 MB ×
mcf 832 MB 1024 MB 3
gobmk 32 MB 32 MB 2
hmmer 60 MB 48 MB 1
sjeng 180 MB 256 MB 2
libquantum 108 MB 128 MB 2
h264ref 68 MB 48 MB 2
nginx∗ 26 MB 16 MB 2
redis∗ 316 MB 512 MB 3
postfix 588 MB 1024 MB 4
vim 244 MB 512 MB 3

†we’re unable to run gcc with bdw-gc, ∗nginx and redis employ their own custom GC allocators

enable optimizations within PROV-GC. Our results can be found in Fig. 4.5: each benchmark

shows 4 different overheads normalized to base– ‘Cons’ uses the sound static analyses described

in §4.3.3 and §4.3.4 to optimize provenance tracking; ‘Opt’ further optimizes using optimistic

hybrid analysis as described in §4.3.7; the two ‘+C’ versions then use the specific optimization

in §4.3.6 leveraging the C Standard. We find that the overhead of provenance tracking, including

implicit flow tracking, for our benchmarks is actually quite reasonable, with an average overhead

of 16% (11% excluding gcc). This result is actually quite surprising, as this number includes the

cost of implicit flow tracking, which is known for dramatically increasing taint tracking overhead

due to over-tainting. However, with our combination of static analyses, and optimistic hybrid

analyses, we are able to dramatically reduce this result to only 16%. Note that this solution requires

strict adherence to the C standard, which is stronger than spatial memory safety. While spatial

memory safety only checks that pointers are in-bounds when dereferenced, the standard requires

that pointers be in-bounds always for well-defined behavior. Therefore, the design point that does

not assume the C Standard is also quite useful in supporting sound GC for legacy non-portable C

programs that do not follow this strict standard. Programs that violate the standard [92, 75] can

still employ sound GC, although incurring a higher overhead of ∼ 60% (37% excluding gcc).

Note that this cost is still comparable to that of Temporal Memory Safety checking solutions (60%

69

7
.7

2
1

.5
9

1
.4

1
1

.1
6

1

2

4

8

16

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

C
o

n
s

O
p

t

+C
 C

o
n

s
+C

O

p
t

perlbench bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref nginx redis postfix vim MEAN

D
yn

am
ic

 P
o

in
te

r
 P

ro
ve

n
an

ce
 T

ra
ck

in
g

 O
ve

rh
e

ad
(l

o
g

sc
al

e)
Explicit Implicit

Figure 4.5: Result: PROV-GC dynamic pointer provenance tracking overheads

Cons: optimizes dynamic provenance tracking using sound static analyses, Opt: uses optimistic hybrid analysis.
+C: optimizes for C Standard-compliant programs as discussed in §4.3.6.
The solid portions of bars represent the overheads of tracking provenance via explicit flows, and the striped
portions represent that for implicit flows. Execution times are normalized to base, i.e. without GC.

overhead [62]).

gcc is a very large program for which whole program context-sensitive pointer analysis does

not scale, even when predicated using optimistic hybrid analysis. The context-insensitive pointer

analysis for this program results in much less precise may-alias relations. Consequently, non-

pointers can be imprecisely classified as may-be pointers, and safe pointers to be unsafe. This

induces much weaker static optimizations resulting in severe dynamic overheads. The average

overhead of provenance tracking excluding gcc is 11%.

We further study the various sources of our provenance tracking overheads in detail. For ex-

plicit provenance tracking, ∼ 21% of its overhead attributes to the provenance metadata creation–

i.e. when a safe pointer becomes unsafe, we compute the provenance metadata from the value of

the source safe pointer. This substantiates that very few pointer values become tainted as unsafe

and the remainder of the overhead is in tracking their provenance propagation. On the contrary, for

implicit provenance tracking, the overhead is entirely in validating the invariant of spatial bounds

checking for pointer comparisons, as we discussed in §4.3.4, and none of our tested programs

70

ever violate these checks. The framework overheads of checking the other optimistic invariant

assumptions are negligibly low.

Summary : Optimistic hybrid analysis combined with our optimizations in §4.3.3 significantly

elides tracking operations for most non-pointers and safe pointers, and tracks only few unsafe

pointers. Pointer provenances do not propagate implicitly via common pointer comparisons as

we reasoned in §4.3.4, and checking for that involves a subset of spatial memory safety check

overheads. The cost of soundness for GC in our Pointer Provenance Tracking is ∼ 16%. This is

significantly lower than the cost of providing Temporal Memory Safety (∼ 60% [62]).

Note that, to the best of our knowledge, these benchmarks do not exercise unsafe pointer propa-

gations and BDW-GC also works correctly for them. For the programs that exercise unsafe pointer

manipulations, BDW-GC might break, but PROV-GC still works correctly. However, programs

with pathological pointer manipulations may incur higher overheads with PROV-GC. So, PROV-

GC provides soundness in all cases without hurting performance significantly in the common case.

4.5.2 GC Overheads

Next, we show how the presence of dynamic pointer provenance information can be used to achieve

an efficient GC solution. To study this effect, we compare the collection times of a single GC in-

vocation with prov-gc against that of bdw-gc. Since our pointer provenance metadata is main-

tained separately outside the GC managed heap, the first GC invocation of a program happens at the

same execution point under consistent configurations. But, since bdw-gc can reclaim unsoundly

and retain imprecisely, the subsequent GC invocations can happen at different program states. So

for equivalent comparison, we only measure collection statistics upon the first GC invocation and

then terminate the program.

Fig. 4.6 plots the overhead of a GC invocation with prov-gc normalized to that with bdw-gc.

prov-gc generally improves the GC collection times compared to bdw-gc and completes col-

lecting ∼ 13% faster. While bdw-gc performs expensive value-based scanning over large alloca-

71

0
.8

7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
o

lle
ct

io
n

 O
ve

rh
e

ad

Figure 4.6: Result: PROV-GC reduces overhead of a single GC invocation; collection time is
normalized to that of bdw-gc

tions to locate potential pointers for marking, prov-gc can locate values with pointer provenance

using the fast range queries over its metadata. This benefit can compound while marking large

allocations with sparsely located pointers.

We study the effectiveness of provenance-based GC in terms of its memory retention rate, i.e.

the fraction of heap size after and before a GC invocation, once again in our previous single GC

invocation setup. Fig. 4.7 plots the mean memory retention for each program. prov-gc is strictly

more precise than bdw-gc and reclaims as much as 21% more memory in the case of vim, and

∼ 6% more on average. This benefit varies with the programs’ memory usage patterns, and is

low for programs with a stable working set like mcf, hmmer and sjeng. Prior works on Precise

GC [88] for C report better reclamation (up to ∼ 70%) benefits on a different set of applications,

although they do not guarantee that the reclaimed objects will not be used in the future.

0
.5

7
0

.5
3

0.0

0.2

0.4

0.6

0.8

1.0

M
e

m
o

ry
 R

et
e

n
ti

o
n

 R
at

e

bdw-gc prov-gc

Figure 4.7: Result: PROV-GC reclaims more memory per GC invocation

72

4.5.3 GC Heap Size Sensitivity

Finally, we look at the end-to-end performance of prov-gc and its space-time trade-off with

varying heap sizes. Fig. 4.8 shows the execution times of prov-gc and bdw-gc normalized to

that of base for four benchmark programs with varying heap size limits on the x-axes; the labeled

numbers on the plots indicate the number of GC invocations per benchmark configuration. Over-

all, prov-gc runs slower than bdw-gc and the difference between their execution time plots is

attributed to the dynamic Pointer Provenance Tracking overheads. We observe that more frequent

GC invocations at lower heap size limits lead to higher execution time overheads. This behav-

ior is consistent for both bdw-gc and prov-gc although interestingly prov-gc’s improved

reclamation rate results in fewer GC invocations for vim at lower heap limits.

Heap Limit (MB)

7
3 2

7
3 2

1

1.1

1.2

1.3

1.4

1.5

16 24 32

nginx

8
5 4

8
5 4

1

1.1

1.2

1.3

1.4

1.5

512 768 1024

postfix

12

5
3

12

5 3

1

1.1

1.2

1.3

1.4

1.5

256 384 512

redis

5 4 3

6
4 3

1.0

1.1

1.2

1.3

1.4

1.5

256 384 512

vim prov-gc

bdw-gc

N
o

rm
al

iz
e

d
 R

u
n

ti
m

e

Figure 4.8: Result: PROV-GC performance with varying heap limits

4.5.4 Memory Overheads

To evaluate the additional memory overheads of maintaining the pointer metadata, we measure the

sizes of the two metadata structures- shadow memory, and splay tree, at collection time. Programs

running with PROV-GC have 30.8% more memory footprint on average, with perlbench seeing

the highest overhead of 35.1%. Of this memory overhead, ∼ 27.1% is due to the shadow memory

structure, and ∼ 3.6% is occupied by the splay tree structure.

Tracking pointer provenance metadata incurs some additional memory overheads, and hence

may not be suitable for applications with large memory footprints in memory constrained environ-

ments. However, the advantages of sound garbage collection are much prominent in contrast.

73

Limitations

Possible leaks: All GCs are imprecise and can lead to memory leaks. PROV-GC too may suffer

from memory leaks in pathological cases where it finds benign data-flows from pointer values, e.g.

when certain bits of malloc return addresses are checked for bookkeeping purposes. In practice

we do not observe such behavior.

Thread safety: Prov-GC’s implementation currently supports single-threaded programs. Future

work can address this limitation by combining prior work on data-flow analysis for concurrent pro-

grams [96] with our optimistic hybrid analysis techniques to construct a static pointer provenance

analysis for concurrent programs. The C11 standard, by requiring data-race freedom, allows ex-

tending the sequential reasoning of many program analyses to concurrent programs [97]. Note that

the provenance metadata accesses do not introduce any new races, and the per-word taint metadata

is already covered by the program’s existing synchronization for shared objects.

4.6 Related Work

In §4.2, we discussed the limitations of well-known value-based GC for C w.r.t soundness, preci-

sion, and GC performance. Below we relate relevant GC work that address each of these problems

to our work. We also discuss work that relates to the techniques (provenance) we use and the added

benefits of GC (temporal safety).

GC Soundness: Prior work has developed compiler checks to reject C/C++ programs that may vi-

olate soundness of value-based GC. Precise GC solutions check that programs do not store pointer

values into integral types [87, 88] during compilation. Conservative GC [73] checks its assump-

tions (e.g., that integers are not converted to heap pointers), and preserve original pointer values

around compiler optimizations of pointer arithmetic [98, 99]. However, these solutions can reject

legal C/C++ programs, as they essentially make pointer manipulations and casting illegal.

74

GC Efficiency: Traditional mark-sweep collection [73] has been optimized using parallel marking

algorithms [100, 101], by collecting incrementally [102, 103], by treating generations of objects

separately [104, 105], or by organizing the heap into regions and performing mark-region GC

[106, 101]. The fragmentation problem when dealing with ambiguous pointers in uncooperative

environments like C has been addressed by mostly-copying collectors that move heap objects with

no direct references from the root set [107, 108, 105, 109, 110]. These optimizations are orthogonal

to our goal to realize sound GC for C, but they can be integrated into our GC.

GC Precision: Precise GC techniques disambiguate pointers from non-pointers to some degree,

relying on programmer annotations to register live pointers in a shadow stack to be managed by GC

libraries [111, 112, 113], or with cooperation from the compilers [114]. When compiling high-level

languages to C [115, 116, 117], a virtual machine with its own stack and registers convey necessary

type information to the GC, but this complicates code generation and makes systems fragile and

non-portable. As inefficiencies of conservative collection arise mostly due to their conservative

treatment of the root pointers [118], type-accurate GC [87] accurately locate pointers in a shadow

stack through extensive source transformations. Later systems [119, 120, 88] improve upon this by

optimizing metadata storage, and using static liveness analysis assuming the programs obey several

constraints. Such techniques are primarily motivated to solve the leakage and fragmentation issues

by enabling copying collection, although they incur significant additional framework overheads

[87, 88] and their reduced retention and compaction benefits are marginal [121]. But importantly,

these systems are more unsound than conservative GC in assuming that pointer values are only

stored into pointer types.

Reference Counting: In contrast to above reachability-based tracing collectors, Reference Count-

ing keeps count of incoming references to each object [122] and reclaims an object when its ref-

erence count falls to zero. This is natively supported in many languages like- Objective-C, Perl,

PHP, and Swift, and also in C++ via ‘smart pointers’. This requires the compiler to identify all

pointer updates and account reference counts which can become expensive; so it is deferred and

performed periodically and incrementally [102]. Reference counting is inefficient compared to pre-

75

cise GC [84, 85], and moreover cannot collect cyclic garbage requiring separate cycle collectors

[123, 124] or forbidding cycles altogether [125]. Importantly, they inherently rely on type safety

and cannot handle pointer information flowing into non-pointers. Our dynamic pointer provenance

could be used to maintain reference counts to objects, and thereby realize a sound reference-count

based GC for C.

Taint and Provenance Analysis: There is a significant body of work on static and dynamic

information-flow analysis by tracking taints. They have been largely used to ensure that private

data do not leak through untrusted channels [16]. Static analysis [54] has also been used to reduce

the overhead of dynamic-taint tracking. Our COPA-based static analysis elides runtime monitors

by leveraging optimistic assumptions, and by taking advantage of special properties of the C lan-

guage standards that are beneficial in the context of dynamic pointer provenance. Also, unlike

classical taint solutions, we show how implicit-flow tracking is necessary and feasible to track in

our context.

Recent work has introduced static pointer provenance for C [71] in order to improve static

alias analysis. This static analysis was used by C compilers to improve compiler optimizations.

In contrast, we discuss dynamic pointer provenance, and optimistic hybrid analysis to optimize

it. Recent work used dynamic pointer provenance for implementing capability checks [126] to

improve security. In contrast, we use dynamic pointer provenance to construct sound GC for

weakly typed languages, and optimize that using optimistic hybrid analysis.

Memory Safety: Temporal memory safety ensures that programs access only allocated memory,

and Spatial memory safety ensure that all accesses are within allocated object bounds. Spatial MS

is ensured by dynamically checking that intermediate pointer arithmetic do not cross valid object

boundaries [127], and further tracking their intended objects for out-of-bounds pointers [128].

This approach has been improved by allocating memory in pools and storing object bounds more

efficiently [65], by restricting memory allocation sizes and layout to efficiently compute bounds

checks [129], eliminating redundant checks through static analysis [130, 7], and hybrid solutions

combining static analysis with hardware support [70]. Temporal MS requires tracking liveness of

76

objects and checking for erroneous uses of uninitialized objects and dangling pointers (use-after-

free, double-free), which has also been heavily optimized using static analysis [6, 7, 62].

Another approach to MS, adopted by Cyclone [131], CCured [3], SafeCode [65], Checked C

[132], and Managed C++ [133], is to enforce constraints through a strong type system and then

perform sound analysis to check for memory errors, but the language becomes much restricted than

C, making porting programs hard. A contrasting approach is to combine heuristics, programmer

annotations, and unsound analyses in designing tools [134, 135, 136, 137, 138, 139] that detect

most memory usage errors in practice.

Our sound GC guarantees temporal MS for legacy C/C++ code by automatically collecting safe

garbage that cannot be accessed later, and we show this can be done more efficiently.

Dynamic Type Inference: Types can be inferred from binaries during execution [140, 141], op-

tionally aided with static analysis [142], for many applications including- decompilation, binary

rewriting, vulnerability detection, memory forensics, etc. The typed binary can be executed with

dynamic type-safety checks [143]. Our dynamic tracking infers more than pointer types, as it also

tracks the pointer provenance when type-safety is violated.

Summary

Traditionally, Garbage Collectors have relied only on values to identify pointers in uncooperative

environments like C. C being weakly typed, this is unsound for several legal pointer manipulations.

We show that tracking pointer provenances using Dynamic Information Flow Tracking can soundly

identify all pointer information, even those hidden by their values, and a Provenance-based GC will

therefore safely collect only objects which cannot be accessed later.

To realize a practical Pointer Provenance Tracking solution, we leverage Optimistic Hybrid

Analysis, and identify properties that allow us to elide tracking for most common pointer oper-

ations. Our tool PROV-GC tracks pointer information propagations with only ∼ 16% overhead,

even via implicit control-flows, and also improves the overhead and effectiveness of collection.

77

CHAPTER 5

OPT-SC: Efficient Sequential Consistency for Java

Modern concurrent languages such as C++/Java guarantee sequential consistency (SC) for data-

race-free programs. Data-races, however, are a common form of programmer error. For programs

with such data-races, their memory model guarantees are either undefined (C++) or too esoteric

for most programmers (Java).

A practically viable solution for guaranteeing language-level SC for all programs (SC-for-all),

even those with data-races, remains elusive. Current solutions are either too expensive, requires

custom SC hardware or imposes significant language-level restrictions.

We address this need for a low-cost SC-for-all solution by using a precise static data-race de-

tector, so that only a small set of potentially racy instructions need to be guarded by the costly

fence operations. Conventional sound static data-race detectors, however, are too imprecise and/or

do not scale to large programs. We address this problem using a new Cautiously Optimistic Pro-

gram Analysis (COPA) that induces a significantly more precise and scalable whole-program static

analysis by assuming likely program invariants. By checking likely invariants at runtime, and re-

covering when any of them fails, SC is guaranteed for all executions. We realize language-level

SC for Java on commodity x86 hardware at only ∼ 5% overhead for Spark.

5.1 Enforcing Strong Concurrency Semantics is Challenging

A memory consistency model defines the semantics of a concurrent programming language by

specifying the order in which one thread’s accesses to shared memory objects become visible to

other threads in the program. Sequential consistency (SC) [144] provides an intuitive memory

model by ensuring that the program’s instructions (appear to) execute in a global total order con-

78

sistent with the per-thread program order. While programmers would benefit from such a simple

memory model with strong guarantees about the behavior of their programs, it can significantly

reduce the scope of compilers and the underlying hardware from performing optimizations. The

popular data-race-free-0 (DRF0) model [89] attempts to strike a balance between simplicity for

programmers and flexibility for compilers and hardware performance. In the DRF0 model, pro-

grammers explicitly annotate synchronized accesses (e.g. using volatile in Java and atomic

in C++) and the compiler and hardware limits in their optimizations to respect the semantics of

synchronized accesses declared by the programmer. The DRF0 model guarantees SC for correctly

synchronized programs that are free of data races, but leaves the semantics undefined for pro-

grams with data-races. The current memory model for C++ [145] is based on the DRF0 model and

its undefined semantics in the presence of data races complicates debugging tasks and reasoning

for program safety. The Java memory model [146] provides semantics for racy programs, but is

weaker than SC. However, this weaker semantics is too complex, and reasoning the correctness of

programs and various compiler and hardware optimizations remains challenging [147, 148].

The goal of our work is to make SC-for-all practical, i.e. all programs with or without data

races are guaranteed sequential consistency. Providing language-level SC semantics, however, re-

mains prohibitively expensive. In order to execute a given program under strict SC semantics, all

transformations or optimizations made by the compiler and the underlying hardware must preserve

the natural SC orderings of the source program. Existing SC-preserving compilers [149] ensure

the SC behavior of the source program is preserved by restricting certain compiler transforma-

tions while retaining much of the performance gains of the optimizing compiler. However, modern

commodity hardware (x86, ARM, PowerPC) that aggressively optimize memory accesses do not

guarantee SC behavior at runtime. So, systems requiring SC guarantees must additionally emit

expensive hardware fence operations around all shared-memory accesses to restrict hardware op-

timizations and re-orderings that can potentially violate SC. This naive approach is very expensive

and shared-memory concurrent programs thus perform poorly under the SC model on commodity

hardware.

79

Providing SC semantics, however, does not require all shared-memory accesses to be guarded

via expensive fences. If shared memory accesses can be proven to be data-race-free statically,

then fences around such operations can be safely omitted. Since data-races are rare in production

software, a precise static data-race detector would be able to eliminate almost all the fences, thereby

resulting in near-zero overhead for SC.

However, a precise and scalable static data-race detection analysis remains elusive. Statically

proving memory accesses to be data-race-free is hard. Static race detection tools used in practice

often resort to unsound heuristics [150], do not reason about pointers altogether [151], or use

an imprecise context- and field-insensitive pointer analysis [152]. Recently proposed volatile-

by-default (VBD) semantics for Java [153] can provide SC, while allowing limited optimizations

using function-local static analyses and speculative compilation[154]. But, the cost of providing

SC remains quite high (24% on average and 64% maximum overhead for Spark).

In this work, we leverage Cautiously Optimistic Program Analysis (COPA) [1] to construct a

precise whole program static data-race-detector, which in turn allows us to realize, a practically

viable, low-overhead SC-for-all solution on commodity hardware.

COPA is a powerful technique that learns likely program invariants from profiled dynamic

behaviors, and then predicates the static analysis state space assuming such learned invariants

to induce a significantly more precise analysis. A COPA-induced static data-race detector is far

better at identifying non-racing shared-memory accesses than prior techniques. Our SC-compiler

optimistically compiles with fences only around memory accesses identified by this analysis as

potentially racy. The programs execute with additional lightweight runtime checks that validate

the assumed invariants. In the rare event that an invariant fails during a dynamic execution, we

leverage the JVM’s just-in-time compilation features to soundly recover the execution to a program

version that is conservatively optimized without the likely invariants.

Our work presents the first low-overhead SC-for-all solution for Java on commodity hardware,

that works for legacy programs without incurring language restrictions or requiring programmer

annotations, using a significantly precise static data-race detection analysis. Our optimistic static

80

data-race analysis eliminates about 85% of false data-races compared to conventional static data-

race analysis. Our SC-compiler can then elide fences for these accesses, irrespective of underlying

hardware’s memory model (x86 or ARM). This allows us to realize SC-for-all for Java on x86 for

just 5% overhead on average and 13% maximum overhead for Spark.

5.2 Memory Consistency Models

Our goal is to provide SC for all programs at the language-level on commodity hardware. This

section presents the necessary background on the challenges with current memory models and in

providing language-level SC for all programs.

5.2.1 Data-Race-Free Memory Model and Its Limitations

A memory consistency model, or simply memory model, defines the semantics of a concurrent

programming language by specifying the order in which one thread’s accesses to shared mem-

ory objects become visible to other threads in the program. A data-race-free (DRF) memory

model requires programmers to explicitly annotate synchronization variables that can race (us-

ing volatile in Java, atomic in C++). There exists a data-race between any two data accesses

to a memory location, if they are from different threads, at least one of them is a write, and if they

are unordered by synchronization accesses.

For data-race-free programs, DRF languages provide sequential consistency (SC). Sequential

consistency (SC) [144] guarantees that a program’s instructions (appear to) execute in a global

total order consistent with the per-thread program order. This intuitive memory model is easily

understood and has well known benefits [89].

DRF, however, treats programs with data races in one of two ways– (Strict) treats data races as

errors leading to undefined behavior (C++[145, 155]), or (Weak) defines feasible program execu-

tion semantics, but they are too complex for programmers to reason about (Java[146]).

While it is naturally desirable to write data-race-free programs, many programs unfortunately

81

contain data-races, sometimes rather intentionally [156] and they are present across a wide range of

Java applications [153]. It is challenging for programmers to reason about these program behaviors

in the presence of data-races and debug them. Java’s semantics for data races are so complex that

even building correct compilers can be challenging [147, 148, 157].

5.2.2 Sequential Consistency For All

SC is easily understood and has well known benefits [89]. It is therefore desirable to guarantee SC

semantics at the language-level for all programs, even those with data-races.

However, in spite of its well understood benefits, SC is not supported in practice, due to its

prohibitively high performance overhead. To preserve SC at the language-level, we must ensure

that the observable ordering of memory accesses is preserved both at the compiler level and at the

hardware level. Prior work has constructed a SC-preserving compiler [149] that ensures the SC

behavior of the source program while retaining much of the performance gains of the optimizing

compiler (less than 2% overhead).

However, efficiently guaranteeing SC at the hardware level remains challenging since com-

modity hardware (x86, ARM) perform several memory reordering optimizations that violate SC.

To guarantee SC behavior on such modern commodity hardware, the compilers, in addition to be-

ing SC-preserving, need to insert expensive memory ordering operations, most commonly in the

form of fence operations, to restrict the hardware from reordering shared-memory accesses around

them. This severely restricts hardware optimizations, leading to high performance overhead.

Not all shared-memory accesses, however, need to be guarded by expensive fence operations.

If a memory access can be statically proven to be data-race-free by the compiler, the compiler can

safely elide the unnecessary fence for that access. Fewer the fences, lower the SC overhead.

Proving data-race-freedom statically is, however, challenging. The only prior work that comes

close to eliminating a vast majority of fences using advanced concurrency analysis require signif-

icant language restrictions on a dialect of Java [158]. These techniques do not translate to current

C++ and Java language standards, and therefore practical SC for all programs remains a challenge.

82

Volatile-by-default (VBD) semantics

VBD is a recent solution [153] that treats all shared variables as volatile unless explicitly

marked as otherwise (data-race-free) by the programmer. VBD guarantees SC for programs with

correct annotations of data-race-free accesses. Memory accesses that are incorrectly annotated

would have weaker guarantees as data-races in Java.

VBD also conservatively provides SC for programs with no annotations. It uses function-local

static analysis to conservatively prove a subset of thread-local accesses to be data-race-free. Recent

work [154] improved this solution by speculatively assuming all accesses are thread-local, and then

dynamically recompiling the program as shared memory accesses are discovered. The resulting

system is currently the state-of-the-art SC-for-all solution (assuming no annotation). Its overhead

for x86 hardware is still too prohibitive for practical adoption: ∼ 24% on average, and maximum

65% for Spark.

5.2.3 SC-for-all Using Precise Datarace Detection

In most correct programs, a large fraction of accesses to shared-memory locations are in fact data-

race-free. A precise data-race detection analysis can identify memory accesses that can potentially

be racy and the SC-compiler can then selectively apply fences only around such operations.

A scalable and precise sound static data-race detection analysis, which in turn relies on sound

memory alias analysis, is challenging as it must reason about all possible executions. Static data-

race detection tools used in practice therefore often resort to heuristics [150], do not reason about

pointers altogether [151], or use a weaker context- and field-insensitive pointer analysis [152].

Next, we describe how our Optimistic Hybrid Analysis approach solves these fundamental limita-

tions of traditional sound static data-race analyses to realize SC at a low-overhead.

83

5.3 Precise Predicated Static Datarace Detection

Conventional sound static data-race detectors are imprecise and/or not scalable to large programs.

They report a large number of potential data-races, which we refer to as may-race accesses, most

of which are actually data-race-free in practice. Since all may-race accesses need to be guarded

with fence, lower the precision, higher the overhead for SC.

We use predicated static data-race analysis [1], which allows us to classify a large fraction

of may-race accesses into likely-race-free memory accesses. This is achieved by restricting the

program states analyzed by an otherwise sound static analysis to a set wherein likely invariants

hold. These likely invariants are properties that are likely to remain true for almost all executions,

but are hard to prove. They can be learnt through profiling representative program executions. The

predicated static analysis guarantees that the likely-race-free accesses are race-free for program

executions, as long as the likely invariants hold true.

In the next section §5.4, we discuss our COPA-SC compiler that optimistically elides fences

for these likely-race-free accesses in addition to the provably race-free accesses determined by a

conservative static analysis. A program execution, however, can violate a likely invariant. There-

fore, a key challenge is in safely recovering and guaranteeing SC, even in the presence of likely

invariant violations. Our OPT-SC solution, discussed later in §5.4, addresses this key problem.

In this section, we first present an overview of traditional static data-race analyses and motivate

the challenges. Then we present the design of our significantly more precise predicated static

data-race analysis.

5.3.1 Conventional Conservative Data-race Analysis

A static data-race detector computes the pairs of program instructions that may lead to data-races

in an execution. Typically, a static race detector works in two phases:

May-Happen-in-Parallel (MHP) analysis [159] statically determines whether two instruc-

tions (or two instances of the same instruction) in a program may execute in parallel or not. The

84

MHP analysis uses a whole-program context-insensitive flow-sensitive analysis to compute the set

of all load and store instructions that can dynamically happen in parallel [160, 161]. A whole-

program context-insensitive pointer-alias analysis is then performed to identify pointers in the pro-

gram that may be used to access the same memory locations. The MHP analyses then combines

this information to further identify those instruction pairs that may concurrently read and write to

the same memory location. These determine the set of all potentially racy memory accesses.

Lockset-based pruning then excludes potentially racy instruction pairs from the above set that

are correctly synchronized. It uses the pointer analysis information to compute the lockset for each

memory access, i.e. the set of lock variables that alias with the lock that guards the memory access.

It then excludes those pairs of racy memory accesses that are guarded by the same locks.

Challenges

Statically proving memory accesses to be data-race-free remains intractable in practice. The MHP

analysis and underlying pointer analysis use whole-program data-flow analyses that are funda-

mentally imprecise and unscalable for reasonably large concurrent programs, because they must

be overly conservative to be sound in the presence of dynamic features such as dynamic class

loading, class redefinitions, etc. Moreover during the lockset-based pruning phase, the weaker

may-alias relations cannot be effectively used to prune racy instructions guarded by a common

lock which requires a stronger must-alias reasoning [160]. So, they are unable to prove many

memory accesses as data-race-free. Using call- and object-sensitive analysis instead can improve

precision [161], but such analyses do not scale for large programs as distinguishing the contexts

leads to the state-space explosion problem. Traditional static data-race analyses either do not scale

to large programs, or are too imprecise. Consequently as seen in Fig. 5.1, traditional static race

detectors can identify only a small set of provably race-free accesses and conservatively treat that

majority of accesses may-race, leaving behind fences for a large number of memory accesses that

never actually encounter a race during any execution.

85

likely-
race-free

may-
race

Fences needed with:

Conservative analysis

Predicated analysis
race-
free

Figure 5.1: Benefits of predicated over conservative data-race analysis: While conservative anal-
ysis can identify only few race-free accesses thus emitting fences for the remaining majority of
may-race accesses, predicated analysis can additionally identify a large number of likely-race-free
accesses and then speculatively elide fences around them.

5.3.2 Precise Predicated Data-race Analysis

In order to tackle the fundamental problem of imprecision of static analyses, predicated static

analysis [1] uses likely program invariants to predicate the static analysis to induce a significantly

more precise reasoning as follows.

Likely Guarding Locks invariants dynamically identify the set of objects locked at each lock

site and infers a must-hold-same-lock relation for pairs of lock sites that always only lock the same

object. These relations inferred from the invariants enable the lockset-based pruning phase of the

datarace detection to exclude many pairs of correctly synchronized memory accesses that are oth-

erwise treated as potentially racy. In a conservative analysis without this dynamic information,

the lockset-based pruning phase cannot remove many racy pairs since it cannot derive the required

must-hold-same-lock relations from the weaker may-alias relations of a conventional pointer anal-

ysis.

Likely Singleton Thread invariants identify thread creation sites that only ever create a single

instance of a thread. These singleton-thread instances greatly benefit the MHP analysis, since by

assuming this behavior, the MHP analysis can reason that all memory accesses within the singleton

thread are ordered thus allowing it to prune memory access pairs for singleton threads.

86

1 class Data { int data = 0; }
2 class Clazz extends Thread {
3 static Data global = new Data();
4 public void run() {
5 Data local = new Data();
6 try {
7 helper(local);
8 } catch (Exception e) {
9 // executes rarely

10 helper(global);
11 }
12 }
13 static void helper(Data arg) {
14 arg.data++; // add fence
15 }
16 }

(a) Conservative Static Analysis

1 class Data { int data = 0; }
2 class Clazz extends Thread {
3 static Data global = new Data();
4 public void run() {
5 Data local = new Data();
6 try {
7 helper(local);
8 } catch (Exception e) {
9 copa_check_recover();

10 helper(global); // likely unreachable
11 }
12 }
13 static void helper(Data arg) {
14 arg.data++; // elide fence
15 }
16 }

(b) Predicated Static Analysis

Figure 5.2: Example Java program benefiting from predicated data-race analysis: (5.2a) Conserva-
tive analysis must add fence on line 14 for the rare case when global is passed to the helper()
function on line 10. (5.2b) Optimistic analysis elides the fence on line 14 assuming the exception
handler on line 10 is never called, and adds copa_check_recover() just before line 10 to detect
and recover when this assumption is violated.

Example of COPA enhanced static data-race analysis

Consider the example program in Fig. 5.2a: multiple running threads operate on their thread-local

data by passing local to the helper() function on line 7 during the normal execution, and only

87

operate on the shared data global on line 10 during an exception. The conservative sound anal-

ysis reasons that since on line 14, arg may indeed update the shared global data, it may race in

some execution, and must be guarded by a fence. As a result, line 14 is always dynamically pro-

tected by the expensive fence even though it operates on the local data during normal execution,

unnecessarily slowing down the execution. On the other hand, COPA in Fig. 5.2b is able to infer

that line 10 is likely unreachable code just by observing few dynamic executions. Assuming this

invariant, the predicated analysis reasons that since at line 14, only the local data reaches the

update, it cannot race and need not be guarded by the fence. This reasoning holds for all correct

executions of the program. However, during an exceptional execution on line 9, COPA is able to

first detect and recover the execution before helper() is actually called with the global data.

5.4 COPA for Efficient Sequential Consistency

OPT-SC uses Cautiously Optimistic Program Analysis (COPA) to guarantee SC-for-all. As we

discussed so far, our offline predicated static data-race detector can identify many more likely-race-

free memory accesses in addition to those proven race-free using conservative analysis. Next, our

OPT-SC compiler optimistically elides fences for these likely-race-free accesses and only emits

fences for the remaining few may-race accesses. During most program executions when the as-

sumed likely invariants hold, then the likely-race-free accesses are guaranteed to be data-race-free

for that execution, and so it entails an SC execution. If these invariants fail, OPT-SC will safely

add additional fences to guarantee SC. This speculative optimization allows OPT-SC to provide

language-level sequential consistency for Java at only ∼ 5% overhead on commodity x86 hard-

ware.

Fig. 5.3 illustrates the complete workflow of our system. In §5.3.2, we already covered how we

identified strong invariants through profiling to induce a more precise predicated data-race analysis.

In the remainder of the section, we elaborate on how OPT-SC uses the precise predicated data-race

detector to construct a compiler and runtime system that enforces SC behavior at runtime at a low

88

SC Compiler

Profiler

Inputs + Program

Predicated Static
Analysis

Pointer Analysis

MHP Analysis

Datarace Analysis

likely
invariants

assumed
invariants

racy
accesses

Invariant
Checks

Fences

SC Runtime
invariant

failure

+Dynamic barrier

Pause threads at
SafePoints

Recovery

add fences

conservatively

Program

+ fences
+ invariant

checks

Figure 5.3: Workflow of OPT-SC

cost. The OPT-SC compiler enforces SC behavior by adding required fences, and the runtime

system detects and recovers the execution to soundly provide SC in the rare event of a likely

invariant violation.

5.4.1 OPT-SC Soundness For SC Guarantees

The key to the soundness of our system is guaranteeing that the program is data-race free. That

is, we require an ordering fence operation between two accesses to the same memory location by

different threads if at least one access is a write. If our system can guarantee a fence is placed

between all such memory accesses, it guarantees memory access ordering, and the DRF0 system

that it is built on top of will provide sequential consistency.

Most systems which use this model to provide SC-for-all simply elide fences around operations

they can prove are data-race free. This trivially results in a well ordered operation, as any non-

provably racy operation has a fence. However, OPT-SC removes fences speculatively, depending

on the observed execution states. Consequently, for some executions one set of fences is sufficient,

and for others another set may be required. We now discuss how OPT-SC guarantees orderings in

all executions.

Trivially, predicated analysis promises that race-free memory accesses and likely-race-free ac-

cesses cannot cause races in executions for which likely invariants hold. OPT-SC can safely elide

their fences for these execution.

89

When a likely invariant fails, OPT-SC recovers by transitioning the execution to a conserva-

tively optimized program, by re-inserting fences at any likely-race-free memory access that were

previously elided. Once these fences are added, all memory operations will be totally ordered

under all conditions, guaranteeing safety. However, this transition must be handled with care to

ensure data race freedom.

In summary, OPT-SC ensures correct SC behavior under all executions as follows:

• Predicated Analysis identifies likely invariants to prove many more memory accesses to be

likely-race-free, and then speculatively elides fences around such memory accesses. The result-

ing execution is guaranteed to be SC when the assumed invariants hold.

• If an invariant ever fails, all accesses before the invariant failure are strictly ordered with all

accesses after the invariant failure as follows:

• Eager Invariant Checks detect an execution outside of those analyzed in the predicated anal-

ysis just before an invariant is actually violated.

• Ordered Transition ensures that memory accesses from before the transition are strictly or-

dered before those from the conservatively recovered execution. This is achieved by inserting

a dynamic barrier at the invariant check failure path and waiting for all threads to pause at

SafePoints.

• Recovery then switches the program to a version that conservatively re-inserts the elided

fences, thereafter ensuring correct SC behavior.

5.4.2 OPT-SC Compiler

OPT-SC’s design is based on the guarantees already provided by a language with the popular DRF0

memory model [89]. Additionally, we rely on some modern language features– particularly, we use

dynamic de-optimization provided by Just-in-time compiled languages for constructing the COPA

recovery, and use the notion of SafePoints in managed garbage-collected languages to reason for

its correctness. We present OPT-SC’s design for the Java language, although our system can be

90

extended for other managed languages like C#, Ruby, etc., however, our system’s overheads and

overall benefits may vary.

Once our predicated static data-race detection analysis has determined the set of memory ac-

cesses that can potentially race, our modified SC-compiler must satisfy two requirements–

First, it must insert fence operations only around the remaining may-race accesses, and spec-

ulatively elide fences for the likely-race-free accesses. To this end, we adapt the existing Java

JIT compiler framework to identify the potentially racy instructions and selectively only emit the

platform-specific hardware fence operations, as we describe later in §5.5.

Secondly, the compiler must respect the additionally imposed ordering constraints throughout

all optimization passes. During the JVM compilation phase, Java bytecode is translated to a graph-

based intermediate representation called the Ideal Graph. We modify the Ideal graph construction

phase to create special memory-barrier nodes around the statically determined set of may-race

memory accesses. All downstream compiler optimizations respect the semantics of the memory-

barrier nodes and do not reorder memory accesses around them, thus ensuring SC at the compiler

level.

5.4.3 Runtime Invariant Checks

Although the static datarace detection analysis elides fences assuming likely program invariants,

this reasoning holds for the vast majority of dynamic executions that do not violate the assumed

invariants. The invariants may, however, be invalidated in a rare execution. A key advantage

of COPA is that even though an invariant violation renders the predicated static analysis to be

unsound, the soundness of the final dynamic execution can still be recovered as long as the invariant

violation is detected immediately and the dynamic execution is then recovered. So, the OPT-SC

compiler additionally inserts checks that validate the likely invariants at runtime to ensure that the

dynamic execution is within the set of executions that were statically analyzed in the predicated

static analysis.

91

Our COPA invariants satisfy the property in O2 as they are simple enough to be checked dy-

namically at a very low cost: violations of likely unreachable code blocks are discovered as soon as

the code block is visited; validating likely guarding locks require the aliasing lock-sites to perform

a quick check that they lock the same dynamic object; likely singleton thread creation sites require

an inexpensive check on the number of spawned threads.

The other key property of our invariants as stated in O4 is that– the invariant checks detect

before the invariants are violated. This is critical to guarantee the soundness of our system upon

recovery. All of our invariant checks satisfy this property by construction. A violation of likely

unreachable code invariant is detected immediately upon entering the code block and before the

code block is actually executed. A dynamic check for aliasing locks detects violations of likely

guarding locks invariant before the locks are actually acquired. A simple check on the dynamic

number of spawning threads at thread creation sites detects a violation of likely singleton thread

invariant before the threads are actually invoked. Consequently, when a likely invariant violation

is detected during execution, the dynamic program state is one where the violation is just about to

occur. So, we detect invariant violations immediately before they take affect.

5.4.4 Recovering SC Upon Likely Invariant Violation

When an invariant fails during a rare execution scenario, it implies that the dynamic execution

is about to exit from the set of states for which the predicated static analysis holds sound. Note

that the execution state so far is one that satisfies the COPA predicates, and so adheres to SC

even using the optimistic reasoning. However, future execution may violate SC as the predicated

reasoning is no longer guaranteed to be correct. To ensure sound SC behavior, it is therefore

necessary that the execution be recovered to a version that ensures SC by conservatively guarding

memory accesses with fences without assuming the COPA invariants. Furthermore, it is essential

that the SC orderings are adhered during the recovery process itself when the program threads are

switching to the conservative version. We elaborate below how the recovery process satisfies this

safety requirement in O5.

92

We introduce a dynamic barrier during the program recovery to ensure SC behavior while

the program threads are undergoing the recovery to their conservative versions. Unlike a regu-

lar barrier which always enforces program threads to be synchronized and prevents operations

from being reordered across, the dynamic barrier provides this synchronization semantic only on-

demand when invoked by the OPT-SC recovery. This dynamic barrier effectively prevents memory

accesses from being reordered by the compiler in the instance of an invariant violation. First, the

offending thread that detects the invariant violation invokes a special recovery function that waits

until all other threads are paused at SafePoints. Managed languages provide the notion of a VM

SafePoint [162] where the state of the VM is well-defined so that threads can be safely paused and

resumed. We extend the SafePoints construct to additionally require that invariant check violations

are also SafePoints. This ensures the offending thread can be stopped safely and immediately.

Additionally, all other running threads are paused at their nearest SafePoints; loop back-edges also

being SafePoints [163], all threads pause quickly.

The recovery process is safe and preserves SC due to two reasons – Firstly, compilers pre-

vent several unsafe optimizations including memory reordering across such SafePoints in order

to preserve program semantics in the presence of dynamic language features such as code de-

optimization, instrumentation, etc. And secondly, since the offending thread is paused and the

invariant has not yet been violated, the existing fences instrumented using the COPA-induced pred-

icated reasoning suffice to enforce the required SC orderings during the recovery itself. Moreover,

the recovery process is deadlock-free, since any wait operation is also a SafePoint.

Once all threads are safely paused, the program needs to re-insert all optimistically elided

fences. This can be achieved using a static compilation technique that maintains two separate code

versions [36]. However for efficient recovery, we leverage the just-in-time compilation framework

to iteratively invalidate all previously cached compiled code. All subsequent code invocations

compile using a conservative approach for SC behavior that inserts fences around all shared mem-

ory accesses. This is a one-time recovery, and we do not switch back to the program version with

optimistically inserted fences.

93

In summary, OPT-SC ensures SC behavior throughout program executions in all cases. When

invariants hold, the fences induced using its precise predicated data-race analysis suffice to ensure

SC. When an invariant rarely fails, it is detected before the invariant violation has taken effect,

so that all threads can be safely paused and recovered to a version that ensures SC behavior by

conservatively inserting fences.

5.4.5 Likely Invariant Violations Are Rare

Naturally, there is a strong dependency between the quality of profiling and the rate of invariant

violations. Poor profiling would induce unstable invariants that fail often and thus would invalidate

the benefits of COPA. In practice, our invariants meet the stability property in O3 and are violated

extremely rarely.

We leverage the extensive test suites that often ship with mature production software systems

for the purpose of profiling for COPA invariants. These test suites are carefully designed to exer-

cise a wide range of program behaviors, including representative common-case inputs as well as

possible erroneous and anomalous behaviors. As such, violations of COPA invariants inferred on

such test suites would indicate weaknesses in the software testing methodology and would make

the case for improving these test suites. Failed invariants can even provide useful hints for gener-

ating better test cases. Profiling on existing test suites is thus adequate, and invariant failures are

quite rare in practice.

One resulting design choice was not to recover the execution upon invariant failure to a conser-

vatively optimized version as in prior COPA works [36], i.e. a program version with fences added

to those potentially racy instructions as determined using a traditional sound data-race analysis

without assuming the COPA invariants. Instead, we recover by switching to the volatile-by-

default semantics [153] which conservatively guards all shared memory accesses with necessary

fences, and further reduce the runtime costs associated with this recovery by leveraging the just-

in-time compilation features of the modern JVM, which we further elaborate later in §5.5. This

design choice not only simplifies the implementation, but is further justified as the large analysis

94

time spent in a conservative static analysis does not yield significant performance advantage com-

pared to the conservative VBD version in our experience. Moreover, since invariant failures are

rare in practice, we do not further optimize the associated cost of COPA recovery.

5.5 OPT-SC Implementation

In this section, we discuss the implementation of OPT-SC which primarily consists of two com-

ponents: (1) the COPA static data-race analysis framework, and (2) the SC-compiler within the

JVM. Our COPA analysis is implemented in the Chord analysis framework [160, 161], and the

SC-compiler modifies Oracle’s HotSpot JVM [164] to instrument and preserve necessary fences

as well as perform COPA recovery if needed. Our SC-compiler is closely based on the VBD-

HotSpot [153] that introduces the volatile-by-default semantics for Java, and we later compare

against this VBD-HotSpot baseline in our evaluation.

5.5.1 Static Data-race Analysis

The target Java program is first compiled using the OpenJDK javac compiler and the resulting

Java bytecode is used for analyses in Chord, which further uses the Joeq compiler [165] to convert

the bytecode into a suitable intermediate representation for ease of analysis.

Profiling Likely Invariants The first step of COPA gathers likely invariants by observing pro-

filing executions of the program. Here we use Chord’s bytecode manipulation framework to log

the necessary dynamic information for inferring our invariants in §5.3.2 by instrumenting profiling

code into the original program at relevant program locations such as basic block entries, lock sites

and thread creation sites. The instrumented program is then run on a set of profiling inputs and

the dynamic information is recorded. In addition to profiling COPA invariants, the dynamic infor-

mation collected from these executions are also used for Reflection Resolution [166]. We use this

dynamic reflection resolution in subsequent analyses, as we find Chord’s internal static reflection

analysis to be unsound.

95

Predicated Data-race Analysis Chord facilitates easy extension of existing and new analyses

via an interface that describes analysis operations using a declarative logic-programming language

called Datalog. The datalog analyses represent various program domains, e.g. the set of all fields in

the program, and each analysis induces relations among multiple program domains. For example,

a typical pointer analysis computes a relation on the tuple of program variables or fields to heap

memory locations. An analysis specifies rules that conditionally apply on a set of input relations

to compute the output relations. Chord then iteratively applies these rules to compute the analyses

relations using an efficient BDD representation-based solver.

Our predicated data-race analysis extends the default context-insensitive lockset-based data-

race detector in Chord [160] as follows. First, the profiled dynamic information is imported as

relations to infer the COPA likely invariants discussed in §5.3.2. Then Chord’s context-insensitive

pointer analysis is predicated to assume the COPA likely unused code invariants, thereby making it

much more precise. The MHP analysis is then enhanced to use the precise pointer analysis results

and additionally exclude false race pairs by assuming the likely singleton thread invariants. The

datarace analysis then assumes the likely guarding lock invariants to deduce must-aliasing lock-

sets relations that remove well-synchronized memory accesses. The resulting COPA-optimized

data-race detection analysis produces a significantly more precise list of potentially racy memory

accesses. The list of such memory accesses are then passed to our SC-compiler which emits the

necessary fences around them to enforce SC behavior at runtime.

Likely Invariant Checks Since COPA assumes likely invariants to induce a more precise static

analysis, these assumptions must be validated at runtime. So, we use the ASM bytecode manipula-

tion framework [167] to instrument checks that dynamically validate our likely invariant assump-

tions. Since the bytecode is modified here, we adjust the bytecode index (BCI) accordingly in the

static analysis results that are used to convey potentially racy instructions to the SC-compiler. The

predicated static analysis is sound as long as the invariant checks hold and guarantees SC behavior.

When an invariant rarely fails, the execution is recovered to a conservative SC approach as we

describe later.

96

5.5.2 OPT-SC JVM Compiler

Our SC-compiler modifies the Oracle HotSpot JVM in two ways to ensure the program’s SC be-

havior at runtime.

Instrumenting Fences Although OPT-SC operates at the Java bytecode level, the widely used

OpenJDK javac compiler [164] that compiles Java source code to bytecode performs no op-

timizations that effectively reorder memory accesses [153]. So, compiling a Java program with

javac and then executing with OPT-SC provides SC semantics for the source program at the Java

language level.

The Java Virtual Machine typically executes new code in the interpreted mode. The interpreter

executing one operation at a time naturally preserves SC at the compiler level, and we instrument

fences to further ensure that the underlying hardware respects SC semantics. Moreover, bytecode-

rewriting optimizations performed by the JVM interpreter never reorder memory accesses, and

Java intrinsic functions never write to shared memory [153], thus ensuring SC.

Once the JVM identifies a ‘hot spot’ in the code, it is compiled to native code. During this com-

pilation phase, we modify the JVM c2 (server) compiler to load the results of our static analysis

and identify all potentially racy instructions. The compiler then adds the special memory-barrier

nodes around them after constructing the Ideal Graph representation. This prevents subsequent op-

timizations from reordering memory accesses across the memory-barrier nodes. The code genera-

tion then emits the platform-specific hardware fence instructions to enforce the necessary ordering

constraints during the actual execution. Enforcing this on the x86 total store order (TSO) seman-

tics [168] requires no additional fences for load operations and requires a StoreLoad barrier after

store operations that may potentially race to ensure that the store commits before any subsequent

loads [169]. For simplicity, we only modify the c2 server compiler and invoke the JVM with the

-XX:-TieredCompilation flag to disable tiered compilation and skip the c1 client compiler.

97

Recovery Using JVM De-optimization In rare execution scenarios, a COPA invariant may be

violated, requiring that the execution be recovered to a conservative version adding back the fences

that were removed using the optimistic reasoning. The recovery process mainly provides two

functions– (1) it implements the dynamic barrier discussed in §5.4.4 that ensures ordering re-

quirements are maintained during the recovery itself, and (2) it implements the mechanism that

re-inserts the fences conservatively into the program.

The dynamic barrier implementation leverages the semantics of JVM’s SafePoints [163]. Func-

tion call boundaries being SafePoints, the invocation of our recovery function acts as a barrier that

the compiler cannot reorder memory accesses around in order to preserve the SafePoint state. The

recovery mechanism is implemented as a “VM operation” which causes all running threads to be

paused at JVM SafePoints before proceeding with the recovery.

Next, we switch the program version to one with conservatively inserted fences. As discussed

earlier in §5.4.5, we choose to recover by switching to the volatile-by-default semantics [153].

To do so, we leverage the HotSpot JVM’s existing de-optimization mechanism [170, §6.2]. Since

we use a whole-program static analysis, the scope of our COPA optimizations is not limited, and

consequently we must recover by switching the entire program to the conservative VBD seman-

tics, which simplifies the recovery. The JVM de-optimization mechanism is invoked iteratively for

each remaining class, which invalidates the compiled code cache. A global flag is set to indicate

the switch to conservative mode. And all subsequent invocations as well as newly loaded classes

compile conservatively with the VBD semantics. Once the de-optimization is complete, execu-

tion can resume safely since the program semantics remains unchanged and the JVM safepoints

preserve the mapping from the bytecode level to the JVM execution state.

5.6 Evaluation

In this section, we show that OPT-SC can significantly reduce the performance cost of providing

SC for a wide range of Java server applications. We measure the performance overheads of OPT-

98

SC over the unmodified JVM on several benchmark applications. Then we compare its overheads

to that of VBD-Hotspot [153], a JVM compiler that enforces the volatile-by-default semantics,

and S-VBD-HotSpot [154] that additionally improves this cost using speculative compilation. Our

evaluation shows that-

• OPT-SC provides SC to a wide range of Java applications at only marginal overheads- avg. 9%

and 5% for Dacapo benchmarks and Spark applications respectively compared to 31% and 28%

respectively with VBD.

• The performance benefits of OPT-SC stem from the significantly more precise static datarace

analysis using Optimistic Hybrid Analysis, which removes guarding fences from 84% more

memory accesses compared to a conservative datarace analysis.

• The benefits of Optimistic Hybrid Analysis are realized with a reasonable effort in profiling, and

the application performance does not suffer from invariant violations.

All experiments are run on 8 cores of an Intel Xeon E5-2620 v4 processor with hyper-threading,

which provides total 16 processing units, sharing 64GB RAM and running Linux 4.18.

5.6.1 Runtime Overheads of Providing SC

Dacapo Benchmarks

We first evaluate the effectiveness of OPT-SC on the Dacapo [171] benchmark suite, a set of open-

source Java applications from a wide range of application domains that is widely used to evaluate

Java performance. We run our experiments on multi-threaded applications from the benchmarks

suite which are compatible with the underlying Chord [160] static analysis framework.

The Optimistic hybrid analysis [1] requires a profiling phase to learn invariants. To this end,

we construct a corpus of profiling and test sets, each consisting 64 inputs for each benchmark, by

using the following large input sets:

• sunflow – curated inputs by sweeping the parameter space (e.g. input size, number of threads,

pseudo-random seed).

99

• lusearch – Search novels from Project Gutenberg[172].

• pmd – Run the pmd source code analysis tool across source files in our benchmarks.

• luindex – Index novels from Project Gutenberg[172].

• xalan – Convert xhtml versions of pydoc 2.7 Webpages to XSL-FO files.

We run OPT-SC as a programmer would typically on a large set of regression tests. We first

increasingly profile more executions, until the number of learned program invariants stabilizes.

The static analysis is then predicated to assume the learned invariants from the profiling phase.

The performance evaluations then run the default workload for each benchmark along with all

inputs in our testing set. We run 10 JVM invocations for each benchmark and report the average

of the 10 invocations. Upon each JVM invocation, we first run each benchmark for 5 warm-up

iterations, and calculate the average runtime for the next 5 iterations.

Note that our implementation, as well as the VBD-HotSpot that we compare against, adapts

only the JVM server compiler. Consequently, we disable JVM’s tiered compilation feature (using

-XX:-TieredCompilation flag), and all experiments use this configuration. The runtime

overhead numbers are normalized to that of the unmodified JVM also disabling tiered compilation.

Fig. 5.4a presents the relative execution times normalized over that using the baseline unmodi-

fied HotSpot JVM. For each benchmark program, the group of bars in left-to-right order represents

the overhead of the naive VBD compiler [153], the improved VBD compiler using speculative

compilation optimization [154], and our OPT-SC. The naive VBD compiler incurs an average 31%

overhead and upto a maximum of 78% overhead. The speculative compilation technique only

brings this overhead to an average 21% and still upto 42% overhead. OPT-SC significantly reduces

the overhead of enforcing SC to only 9% on average. Excluding the luindex benchmark for

which OPT-SC incurs a slowdown of 31%, the average overhead is only ∼ 4%. We suspect this

program sees limited benefits due to its frequent array accesses which present to be challenging

to our static analysis. Furthermore, we observe that while S-VBD’s speculative compilation only

marginally benefits all benchmarks (∼ 1.4× speedup over VBD), OPT-SC’s benefits are signifi-

cantly higher (∼ 4.4× speedup over VBD).

100

Spark Benchmarks

Next, we evaluate OPT-SC on Apache Spark [173], a widely used framework for big-data analytics

and machine-learning tasks. Note that Spark is written in the Scala language but it compiles to the

Java bytecode. So, our analysis can also be applied to such systems to extend SC guarantees.

We run OPT-SC on the spark-tests benchmarks provided by Databricks representing several

big-data analytics applications. We run Spark in standalone mode on a single machine, i.e. the

driver and executors all run locally as separate processes communicating through specific ports.

The spark-perf benchmarking framework runs a benchmark multiple times and reports the median

execution time. We run spark-perf framework for 10 invocations and report the average of the

median execution times.

Fig. 5.4b presents the relative execution times for the spark-tests benchmarks normalized

over that with the baseline HotSpot JVM disabling tiered compilation using three JVM configurations-

VBD, S-VBD, and OPT-SC respectively from left-to-right. Once again, OPT-SC significantly im-

proves upon VBD and S-VBD bringing down the runtime overheads from an average 28% with

VBD down to only 5%.

Interestingly, when comparing S-VBD over naive VBD, we note that the performance benefits

of S-VBD are much less pronounced for the long-running Spark benchmarks (∼ 1.2× speedup

over VBD), while OPT-SC still yields significant performance (∼ 5× speedup over VBD). S-VBD

is ineffective since its speculation at the class level only pays off initially and quickly diminishes

for large parts of multi-threaded programs over the course of the execution. On the other hand,

OPT-SC’s fine-grained invariants rarely fail and the programs enjoy the benefits of COPA during

steady-state execution.

5.6.2 Precision of Static Data-race Detection

Next, to understand the sources of COPA’s efficiency, we investigate how COPA’s predicated anal-

yses assuming the likely invariants affect the precision of results throughout the various phases of

static data-race detection. Table 5.1 reports the total time spent in static data-race detection, the

101

1
.3

7

1
.3

1

1
.0

6

1
.7

8

1
.1

4

1
.3
1

1
.2

8

1
.1

9

1
.0

6

1
.4

2

1
.1

2 1
.2
1

1
.0

5

1
.0

2

1
.0

2

1
.3

1

1
.0

7

1
.0
9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

sunflow lusearch pmd luindex xalan GeoMeanN
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
O

ve
rh

ea
d

VBD S-VBD OPT-SC

(a) DaCapo benchmarks

1
.7

3

1
.1

4

1
.1

2

1
.2

0

1
.4

9 1
.5

3

1
.0

8 1
.1

1

1
.2
8

1
.6

4

1
.1

2

1
.1

0 1
.1

6

1
.3

9

1
.4

2

1
.0

7 1
.1

0

1
.2
4

1
.1

3

1
.0

2

1
.0

3

1
.0

4 1
.0

8

1
.0

7

1
.0

2

1
.0

4

1
.0
5

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
O

ve
rh

ea
d

VBD S-VBD OPT-SC

(b) spark-tests

Figure 5.4: Result: OPT-SC reduces execution time overhead compared to VBD and S-VBD

size of the analyses result sets for the underlying pointer and MHP analyses, and the final num-

ber of potential races for each benchmark program using two configurations– the baseline Cons

version uses the conservative analyses, and the COPA version predicates each analyses using the

102

Table 5.1: COPA improved precision of intermediate static analyses and data-race detection

Benchmark
Static Analysis Pointer Analysis MHP Analysis Datarace Analysis

Time #pointer aliasing pairs #unordered instruction pairs #racy instructions
Cons COPA Cons COPA Cons COPA Cons COPA

sunflow 3m 01s 4m 07s 47.2K 3.9K 91.6% 43.1M 140.3K 99.7% 15,440 1,589 89.7%
lusearch 1m 19s 1m 57s 26.8K 3.0K 88.8% 9.1M 56.1K 99.4% 8,369 867 89.6%
pmd 1m 08s 2m 24s 31.3K 7.2K 76.8% 7.5M 116.2K 98.4% 10,309 2,142 79.2%
luindex 1m 12s 2m 03s 26.9K 4.8K 82.3% 9.1M 1.0M 88.8% 9,029 3,189 64.7%
xalan 1m 02s 1m 30s 23.9K 3.5K 85.3% 8.8M 28.8K 99.7% 7,023 68 99.0%
Apache Spark 3m 49s 3m 13s 42.1K 2.9K 92.9% 65.0M 118.2K 99.8% 9,098 1,162 87.2%
GeoMean 86.1% 97.6% 84.2%

COPA invariant assumptions. The right columns (highlighted in blue) for the three results is a

measure of COPA’s precision over conservative analyses indicating the percentage reduction in the

analysis result sets. We see that COPA’s predicated analyses significantly improves the precision

at each stage of the static data-race detection: by an average 86% for the pointer analysis, by 98%

for the MHP analysis, and by 84% for the number of identified races. This explains the reason for

COPA’s improved efficiency in ensuring SC, as the precise reasoning using the COPA invariants

requires 84% fewer memory accesses to be dynamically guarded by fences.

5.6.3 COPA Framework Overheads

Invariant Checking Overhead The runtime overhead incurred in checking COPA invariants is

only 0.8% relative to the baseline execution on average, having virtually no effect on the perfor-

mance. The likely unreachable code invariants are checked at no cost as their violations are de-

tected upon visiting these code blocks dynamically, and checking likely singleton thread invariants

incur a rather inexpensive check upon thread creation. Checks for likely guarding locks are slightly

more involved but are invoked relatively infrequently upon programmer written synchronization

code.

Recovery Overhead The overhead of recovering the program to conservative SC version via

the JIT de-optimization mechanism is only incurred upon a rare scenario that violates an COPA

invariant. In fact, none of our test programs ever violated an invariant after adequate profiling

103

during any dynamic execution. This indicates that our profiling methodology effectively captures

the common-case dynamic execution behaviors of the programs. Furthermore, even if a one-time

recovery occurs during an execution, the recovery cost gets amortized over the entire length of

execution time and the performance can be no worse than that of the best available conservative

SC approach.

5.6.4 Profiling Effort

COPA incurs an additional cost of profiling to learn its program invariants during the offline static

analysis phase. Profiling time depends largely on the number of executions needed to profile stable

invariants and the programs’ typical execution times. Our test programs require profiling times

ranging from 16 minutes to about 2 hours. This profiling is a one-time cost, and is part of the

rigorous software testing efforts as we explained in §5.4.5 and employed for evaluating Apache

Spark. Fig. 5.5 shows how the profiling phase affects the overall benefits of OPT-SC for Spark by

plotting its overall runtime overhead and invariant violation rates after varying stages of profiling.

1.13

1.11

1.06 1.05

0.38

0.13
0 0.0

0.2

0.4

0.6

0.8

1.0

1.00

1.04

1.08

1.12

1.16

1.20

0 1800 3600 5400

In
va

ri
an

t
V

io
la

ti
o

n
 R

at
e

Ex
e

cu
ti

o
n

 T
im

e
 O

ve
rh

e
ad

Profiling Time

Overhead %Violation

Figure 5.5: Result: OPT-SC benefits for Spark with profiling using its test suite: We divide the
mllib-tests inputs into several batches and profile incrementally over each test input batch
with the X axis showing cumulative time spent in profiling. At the end of each batch, we invoke
OPT-SC with all profiled invariants. The blue line along the left vertical axis plots the normalized
execution time overhead; the orange line along the right vertical axis plots the fraction of execu-
tions that encounter an invariant violation. More profiles infer stable invariants, reducing invariant
violation rates, and thereby improving OPT-SC’s runtime overheads.

104

We observe that the invariant violation rate is quite high in the beginning but quickly diminishes

to zero after 36 minutes of profiling. This drop in invariant violation means that the program

spends most or all of its execution time in the optimized version with optimistically elided fences.

This results in a significant reduction in runtime overheads starting from 13% after 6 minutes of

profiling down to only 5% in the steady-state when no invariants are violated.

Discussion

OPT-SC vs. volatile-by-default for Java Our work differs from the recent proposal of VBD

semantics for Java [153, 154] in two distinct ways.

First, VBD ensures SC using a conservative safe-by-default approach which incurs a high per-

formance overhead of∼ 30%. We bring down the cost of providing SC using static whole-program

data-flow analyses. While such heavyweight analyses notoriously do not scale well for large con-

current programs using traditional static analyses techniques, we enable this using Optimistic Hy-

brid Analysis thereby inducing much stronger optimizations for providing SC.

Second, the performance overheads of VBD were improved recently using a speculative com-

pilation technique [154]. This approach first elides the fences based on a temporary assumption

that object instances of a given class will not be accessed from multiple threads, and then falls

back to the program version with fences added as soon as any object belonging to the class sees an

access from a different thread. This saves on the synchronization costs for objects of those classes

that are always accessed from a single thread. While VBD speculates at the JVM level, OHA, on

the other hand, optimizes in an offline static analysis framework by assuming a much richer set of

likely program invariants to improve the static reasoning in datarace detection. Although the scope

and cost of OHA recovery is much higher compared to the just-in-time re-compilation for VBD,

an OHA-optimized program execution rarely encounters invariant violations in the steady-state,

whereas every execution of a speculatively compiled program with VBD typically sees several

re-compilations in a multi-threaded execution.

105

5.7 Related Work

Language-Level Sequential Consistency

Recent work has demonstrated the overhead of providing SC semantics for the Haskell program-

ming language to be negligible on commodity hardware [174]. A purely functional programming

language naturally restricts conflicting memory accesses among threads and therefore supporting

and reasoning for SC does not incur high overheads. The results and techniques however do not

extend to imperative languages like Java.

Prior work has achieved end-to-end SC guarantees for Java [175, 176] and C [149, 177] with

high efficiency by combining a cooperative compiler and specialized hardware support. Our work

aims to provide SC at low costs on off-the-shelf commodity hardware by using advanced whole-

program static analysis.

SC compilers for Java [178] and C [179] previously used whole-program delay-set analysis

[180] to determine the required barriers to guarantee SC for a given program, but the performance

overheads remained high. The technique achieved good performance, nearly that of a relaxed

consistency model, when applied to a parallel dialect of Java called Titanium [158] which induces

several language restrictions in order to simplify the reasoning in statically proving data-race-

freedom for many memory accesses. However, the solution is not viable for the vast majority of

programs that do not adhere to the additional language restrictions. Our work brings down the cost

of providing SC for legacy and standard-compliant Java programs without inducing any language

restrictions.

Language-Level Region Serializability

Region serializability provides a stronger memory consistency semantics than SC, whereby the

program is partitioned into disjoint regions, each of which is guaranteed to execute atomically. Re-

gion serializability for C has achieved good performance, however with special-purpose hardware

support [181, 182, 183]. Several works have explored region serializability for Java [184, 185, 186,

106

187] achieving good performance, also optimizing using a whole-program static data-race detector

[185]. But these techniques incur high implementation complexity requiring code transformations

to guarantee safe restarts in the event of a deadlock. In contrast, the OHA recovery is rare and fully

leverages the just-in-time compilation features of the JVM.

Summary

We realize an efficient solution to enforcing language-level SC semantics for all programs, even

ones with data-races, without imposing any language-level restrictions. Our approach relies on a

precise static data-race detector to identify the potentially racy instructions and only guard them

via hardware fence operations. Designing a precise static data-race detector remained challenging

due to the fundamental imprecision of traditional static analysis. We address this problem using

a new Cautiously Optimistic Program Analysis (COPA) that induces a significantly more precise

static analysis by assuming likely program invariants. With reasonable profiling effort, the assumed

invariants hold almost during all executions, and the execution can be recovered to a conservative

SC version in the rare instances when they fail. Using this technique, we design a significantly

more precise data-race detector which our OPT-SC compiler for Java uses to enforce SC during

runtime at only ∼ 5% overhead.

107

CHAPTER 6

Conclusion

With our critical infrastructures increasingly being modernized, it is essential that the underlying

computer systems provide strong security and reliability guarantees. Well-known dynamic analy-

ses techniques can enforce these security and reliability properties, but the additional work in doing

so often incur prohibitively high performance overheads. So today, most of the industrial software

systems run with relaxed security and reliability guarantees. As software systems grow in scope

and complexity, the need for strong guarantees is over-shadowed by its performance demands.

However, performance is not necessarily at odds with security and reliability guarantees. In

fact, well-behaved software in their correct executions will satisfy all security and safety prop-

erties. Such correct executions should then not require much additional work to check for these

properties. So, the compiler or the language runtime should be able to remove much of the unnec-

essary work. Unfortunately, today’s program analyses techniques are fundamentally conservative

in their reasoning, as they reason for all possible execution states, correct and erroneous alike,

along with many infeasible and rare execution states. This imprecise reasoning means that they

cannot effectively optimize the dynamic analyses overheads.

This dissertation addresses this problem by combining static and dynamic program analyses

in a novel construction of Cautiously Optimistic Program Analysis (COPA). It is founded on two

principles:

Optimistic Analysis leverages assumptions about programs’ dynamic behaviors to significantly

improve the precision of static analyses and thereby reduce the overheads of dynamic analyses.

108

It first gathers likely program invariants from dynamic observations, which are properties that

almost always hold in useful dynamic executions but are hard to prove statically. These likely

invariants are then assumed in a predicated static analysis which reasons much more precisely,

thereby identifying and eliding many more unnecessary runtime monitors from the final optimized

dynamic analysis. The resulting system is fast and ensures the correct analysis guarantees in all

executions where the assumed invariants hold true.

Cautious Reasoning additionally ensures analysis soundness in the rare event that an assumed

likely invariant is violated during an execution. The precise results of the predicated static analysis

are carefully used to induce only safe elision optimizations that do not change the analysis metadata

state. Consequently, as long as the invariants hold, the optimized analysis still holds the exact

analysis metadata state as in a conservative analysis. Another important property of the likely

invariants is that their violations can be detected eagerly before they actually take effect. The

analysis state is thus guaranteed to be correct when an invariant violation is detected early, so that

the analysis can recover by simply switching to a conservative analysis and continue forward.

We design a simple forward recovery mechanism for the C language that statically instruments

both the optimistic and conservative analyses versions in separate control flow domains. Later, we

improve this mechanism for Java to leverage just-in-time compilation features.

We demonstrated the utility of COPA in three key results–

• Live Information Flow-based Security Monitoring : Continuous runtime monitoring of informa-

tion flow can enforce several security and privacy policies. However their use is limited to offline

post-mortem analysis due to the prohibitive runtime overheads (> 500% for web/email servers)

of information flow tracking. COPA dramatically reduces this cost (to ∼ 9%) and eliminates the

possibility of rollbacks to make it practical for online security analyses on live software.

• Sound Garbage Collection (GC) for C : Prior GCs for C only work correctly for well-behaved

programs belonging to a subset of the C language, and can incorrectly reclaim memory objects

that are still reachable. We design the first sound GC for C by explicitly tracking provenance of

all pointer information during runtime. The runtime costs of tracking pointers in this manner is

109

greatly reduced using COPA. Our PROV-GC tool provides sound GC at only ∼ 16% overhead

for standard-compliant C programs.

• Sequential Consistency (SC) for Java : Current language standards provide weak or no semantics

to a vast majority of concurrent programs with data-races. This severely complicates reasoning

for correctness of programs and compilers leading to obscure bugs. The runtime cost of en-

forcing strong SC semantics however remained high. We leverage COPA to construct a precise

static data-race detector which identifies many likely race-free memory accesses, and our OPT-

SC system applying fences only around the remaining memory accesses incurs a modest ∼ 5%

runtime overhead on x86 hardware.

Future Directions

COPA makes an important contribution– it enables optimistic dynamic analysis without ever in-

curring a rollback. For well-tested software, invariants should rarely fail as profiles would have

captured the common-case program states. However for moderately large software with diverse

features, optimistically gathered invariants may eventually fail when the program encounters un-

profiled behavior. If this happens, COPA incurs a one-way switch to a conservative hybrid analysis.

So, even in the worst case, COPA is still as fast as the best available conservative hybrid technique.

We envision the following strategies to tackle the remaining challenges in deploying COPA.

Continuous Profiling : Although we demonstrate that most of COPA’s benefits can be achieved

from adequate profiling on regression test suites, that may not be viable in many industrial settings.

Moreover, production behaviors may be very different from that explored during in-house testing.

To address these constraints, COPA may be deployed in an active feedback-loop, starting with a

minimal ‘boot-strapping’ process of initial invariants learnt from light-weight profiling. Thereafter,

invariant violations in production can trigger a ‘learning’ phase to include the new behavior and

re-analyze the program. Such a setup removes the need for an extensive a priori profiling phase

and opens the possibility to actively learn new invariants and re-optimize the analysis.

110

Incremental Re-analysis : Upon an invariant-failure, instead of switching to the most conser-

vatively optimized analysis, COPA can switch to a less aggressive optimistic analysis that excludes

the failing invariant. If COPA could map assumed invariants to the set of induced optimizations,

it could selectively disable only those optimizations induced by the violated invariant, essentially

re-instrumenting the monitors that were elided by assuming that invariant. However, computing

and then succinctly encoding this invariant-to-optimization mapping is challenging.

Another approach to gracefully handle invariant violations could re-analyze the program with-

out the offending invariant. At first, it would appear to be impractical to recompile for live execu-

tions given the long time spent in static whole-program analysis for complex programs. However,

for many useful static analyses, this can be done incrementally rather than redoing from scratch

[188, 189]. For a dataflow analysis, this boils down to adding new nodes and edges to the pro-

grams’ definition-use graph, and recomputing the transitive closure. Recent work has used incre-

mental pointer analysis to scale whole-program analysis in the context of program modifications

[190], e.g. with dynamic class loading, and this has also been applied to improve performance of

an incremental data-race detector [191]. We believe our COPA analyses can similarly leverage an

incremental construction in the context of invariant failures. And this re-compilation process can

continue in the background while the monitored program runs slowly. Upon completion of the re-

compilation process, the program can switch to the newly optimized analysis at a pre-determined

safe program point. This would enable fast incremental re-analysis of the program upon an invari-

ant violation, so the execution can be recovered to a newly optimized optimistic version instead of

falling back to a conservative version.

Cautiously Optimistic Program Analysis provides a way to realize useful dynamic analyses at

significantly lower overheads without sacrificing analyses’ correctness. Applying this technique

and building upon it in the future can realize practical tools that improve security, reliability and

semantic guarantees for the rapidly growing software systems.

111

BIBLIOGRAPHY

[1] D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy, “Optimistic hybrid analysis:
Accelerating dynamic analysis through predicated static analysis,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018
(X. Shen, J. Tuck, R. Bianchini, and V. Sarkar, eds.), pp. 348–362, ACM, 2018.

[2] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B. E. Chang, S. Z.
Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis, “In defense of soundiness: a mani-
festo,” Commun. ACM, vol. 58, no. 2, pp. 44–46, 2015.

[3] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: type-safe retrofitting of legacy code,” in
Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, OR, USA, January 16-18, 2002, pp. 128–139, 2002.

[4] D. Rhodes, C. Flanagan, and S. N. Freund, “Bigfoot: static check placement for dynamic
race detection,” in Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017
(A. Cohen and M. T. Vechev, eds.), pp. 141–156, ACM, 2017.

[5] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security enforcement using
dynamic data flow analysis,” in Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008
(P. Ning, P. F. Syverson, and S. Jha, eds.), pp. 39–50, ACM, 2008.

[6] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “CETS: compiler enforced
temporal safety for C,” in Proceedings of the 9th International Symposium on Memory Man-
agement, ISMM 2010, Toronto, Ontario, Canada, June 5-6, 2010, pp. 31–40, 2010.

[7] M. S. Simpson and R. Barua, “Memsafe: ensuring the spatial and temporal memory safety
of C at runtime,” Softw., Pract. Exper., vol. 43, no. 1, pp. 93–128, 2013.

[8] B. Dufour, B. G. Ryder, and G. Sevitsky, “Blended analysis for performance understanding
of framework-based applications,” in Proceedings of the ACM/SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2007, London, UK, July 9-12, 2007 (D. S.
Rosenblum and S. G. Elbaum, eds.), pp. 118–128, ACM, 2007.

[9] B. Dufour, B. G. Ryder, and G. Sevitsky, “A scalable technique for characterizing the usage
of temporaries in framework-intensive java applications,” in Proceedings of the 16th ACM

112

SIGSOFT International Symposium on Foundations of Software Engineering, 2008, Atlanta,
Georgia, USA, November 9-14, 2008 (M. J. Harrold and G. C. Murphy, eds.), pp. 59–70,
ACM, 2008.

[10] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers, “Improving program slicing
with dynamic points-to data,” in Proceedings of the Tenth ACM SIGSOFT Symposium on
Foundations of Software Engineering 2002, Charleston, South Carolina, USA, November
18-22, 2002, pp. 71–80, ACM, 2002.

[11] S. Wei and B. G. Ryder, “Practical blended taint analysis for javascript,” in International
Symposium on Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20,
2013 (M. Pezzè and M. Harman, eds.), pp. 336–346, ACM, 2013.

[12] S. Hangal and M. S. Lam, “Tracking down software bugs using automatic anomaly detec-
tion,” in Proceedings of the 24th International Conference on Software Engineering, ICSE
2002, 19-25 May 2002, Orlando, Florida, USA (W. Tracz, M. Young, and J. Magee, eds.),
pp. 291–301, ACM, 2002.

[13] C. Csallner, Y. Smaragdakis, and T. Xie, “Dsd-crasher: A hybrid analysis tool for bug find-
ing,” ACM Trans. Softw. Eng. Methodol., vol. 17, no. 2, pp. 8:1–8:37, 2008.

[14] S. Moore and S. Chong, “Static analysis for efficient hybrid information-flow control,”
in Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011,
Cernay-la-Ville, France, 27-29 June, 2011, pp. 146–160, 2011.

[15] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program execution via dynamic in-
formation flow tracking,” in Proceedings of the 11th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS 2004, Boston,
MA, USA, October 7-13, 2004, pp. 85–96, 2004.

[16] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, analysis, and
signaturegeneration of exploits on commodity software,” in Proceedings of the Network and
Distributed System Security Symposium, NDSS 2005, San Diego, California, USA, 2005.

[17] J. Kong, C. C. Zou, and H. Zhou, “Improving software security via runtime instruction-level
taint checking,” in Proceedings of the 1st Workshop on Architectural and System Support
for Improving Software Dependability, ASID 2006, San Jose, California, USA, October 21,
2006, pp. 18–24, 2006.

[18] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “LIFT: A low-overhead practical
information flow tracking system for detecting security attacks,” in 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-39 2006), 9-13 December 2006,
Orlando, Florida, USA, pp. 135–148, 2006.

[19] W. G. J. Halfond, A. Orso, and P. Manolios, “Using positive tainting and syntax-aware
evaluation to counter SQL injection attacks,” in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2006, Portland,
Oregon, USA, November 5-11, 2006, pp. 175–185, 2006.

113

[20] T. Pietraszek and C. V. Berghe, “Defending against injection attacks through context-
sensitive string evaluation,” in Recent Advances in Intrusion Detection, 8th International
Symposium, RAID 2005, Seattle, WA, USA, September 7-9, 2005, Revised Papers, pp. 124–
145, 2005.

[21] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans, “Automatically hard-
ening web applications using precise tainting,” in Security and Privacy in the Age of Ubiq-
uitous Computing, IFIP TC11 20th International Conference on Information Security (SEC
2005), May 30 - June 1, 2005, Chiba, Japan, pp. 295–308, 2005.

[22] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for java,” in 21st Annual
Computer Security Applications Conference (ACSAC 2005), 5-9 December 2005, Tucson,
AZ, USA, pp. 303–311, 2005.

[23] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and A. Sheth, “Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones,” in
9th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2010,
October 4-6, 2010, Vancouver, BC, Canada, Proceedings, pp. 393–407, 2010.

[24] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis,
M. Vachharajani, and D. I. August, “RIFLE: an architectural framework for user-centric
information-flow security,” in 37th Annual International Symposium on Microarchitecture
(MICRO-37 2004), 4-8 December 2004, Portland, OR, USA, pp. 243–254, 2004.

[25] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser: protecting sensitive
data leaks using application-level taint tracking,” Operating Systems Review, vol. 45, no. 1,
pp. 142–154, 2011.

[26] J. A. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis framework,”
in Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2007, London, UK, July 9-12, 2007, pp. 196–206, 2007.

[27] H. Yin, D. X. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing system-
wide information flow for malware detection and analysis,” in Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia,
USA, October 28-31, 2007, pp. 116–127, 2007.

[28] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis, “Shadowreplica: efficient par-
allelization of dynamic data flow tracking,” in 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pp. 235–
246, 2013.

[29] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu, “Straighttaint: decoupled offline symbolic
taint analysis,” in Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pp. 308–319,
2016.

114

[30] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s fastest taint tracker,” in Pro-
ceedings of the 14th International Symposium on Recent Advances in Intrusion Detection
RAID 2011, 2011.

[31] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might have been afraid to ask),” in 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA, pp. 317–331, 2010.

[32] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum, “Understanding data
lifetime via whole system simulation (awarded best paper!),” in Proceedings of the 13th
USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA, pp. 321–336, 2004.

[33] T. Leek, G. Baker, R. Brown, M. Zhivich, and R. Lippmann, “Coverage maximization using
dynamic taint tracing,” Tech. Rep. TR-1112, MIT Lincoln Laboratory, 2007.

[34] W. Masri, A. Podgurski, and D. Leon, “Detecting and debugging insecure information
flows,” in 15th International Symposium on Software Reliability Engineering (ISSRE 2004),
2-5 November 2004, Saint-Malo, Bretagne, France, pp. 198–209, 2004.

[35] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot - A technique
for cheap recovery,” in 6th Symposium on Operating System Design and Implementation
(OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pp. 31–44, 2004.

[36] S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy, “Iodine: Fast dynamic taint
tracking using rollback-free optimistic hybrid analysis,” in 2019 IEEE Symposium on Secu-
rity and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pp. 490–504, IEEE,
2019.

[37] C. Lattner and V. S. Adve, “LLVM: A compilation framework for lifelong program analysis
& transformation,” in 2nd IEEE / ACM International Symposium on Code Generation and
Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA, pp. 75–88, 2004.

[38] “DFSan. Clang DataFlowSanitizer.” http://clang.llvm.org/docs/
DataFlowSanitizer.html.

[39] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis. Springer, 1999.

[40] “Google desktop - privacy policy.” http://desktop.google.com/en/
privacypolicy.html.

[41] “VRoom.” https://github.com/google/vroom.

[42] “Run Vim Tests.” https://github.com/inkarkat/runVimTests.

[43] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient flow tracing with dy-
namic binary rewriting,” in Proceedings of the 11th IEEE Symposium on Computers and
Communications (ISCC 2006), 26-29 June 2006, Cagliari, Sardinia, Italy, pp. 749–754,
2006.

115

http://clang.llvm.org/docs/DataFlowSanitizer.html
http://clang.llvm.org/docs/DataFlowSanitizer.html
http://desktop.google.com/en/privacypolicy.html
http://desktop.google.com/en/privacypolicy.html
https://github.com/google/vroom
https://github.com/inkarkat/runVimTests

[44] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and W. Lee, “RAIN:
refinable attack investigation with on-demand inter-process information flow tracking,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pp. 377–390, 2017.

[45] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft: practical dynamic data
flow tracking for commodity systems,” in Proceedings of the 8th International Conference
on Virtual Execution Environments, VEE 2012, London, UK, March 3-4, 2012 (co-located
with ASPLOS 2012), pp. 121–132, 2012.

[46] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta, “Dynamic information flow tracking on
multicores,” in Proceedings of the 2008 Workshop on Interaction between Compilers and
Computer Architectures, 2008.

[47] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D. Keromytis, “A
general approach for efficiently accelerating software-based dynamic data flow tracking on
commodity hardware,” in 19th Annual Network and Distributed System Security Sympo-
sium, NDSS 2012, San Diego, California, USA, February 5-8, 2012, 2012.

[48] J. Lee, I. Heo, Y. Lee, and Y. Paek, “Efficient dynamic information flow tracking on a
processor with core debug interface,” in Proceedings of the 52nd Annual Design Automation
Conference, San Francisco, CA, USA, June 7-11, 2015, pp. 79:1–79:6, 2015.

[49] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran, S. Chen, M. Kozuch, and M. P.
Ryan, “Parallelizing dynamic information flow tracking,” in SPAA 2008: Proceedings of
the 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, June 14-16, 2008, pp. 35–45, 2008.

[50] A. Quinn, D. Devecsery, P. M. Chen, and J. Flinn, “Jetstream: Cluster-scale parallelization
of information flow queries,” in 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pp. 451–466,
2016.

[51] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn, “Parallelizing security checks on
commodity hardware,” in Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA,
USA, March 1-5, 2008, pp. 308–318, 2008.

[52] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards practical provenance tracing by alternat-
ing between logging and tainting,” in 23nd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, 2016.

[53] A. C. Myers, “Jflow: Practical mostly-static information flow control,” in POPL ’99, Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20-22, 1999, pp. 228–241, 1999.

[54] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal
on Selected Areas in Communications, vol. 21, no. 1, pp. 5–19, 2003.

116

[55] M. D. Ernst, “Static and dynamic analysis: synergy and duality,” in ICSE WORKSHOP ON
DYNAMIC ANALYSIS (WODA 2003), pp. 24–27, 2003.

[56] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “Taintpipe: Pipelined symbolic taint analysis,”
in 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015., pp. 65–80, 2015.

[57] B. Calder, P. Feller, and A. Eustace, “Value profiling,” in Proceedings of the Thirtieth Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 30, Research Triangle
Park, North Carolina, USA, December 1-3, 1997, pp. 259–269, 1997.

[58] M. Mock, M. Das, C. Chambers, and S. J. Eggers, “Dynamic points-to sets: a compari-
son with static analyses and potential applications in program understanding and optimiza-
tion,” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
For Software Tools and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19, 2001,
pp. 66–72, 2001.

[59] M. G. Burke, J. Choi, S. J. Fink, D. Grove, M. Hind, V. Sarkar, M. J. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley, “The jalapeño dynamic optimizing compiler for java,” in Java
Grande, pp. 129–141, 1999.

[60] C. Chambers and D. Ungar, “Customization: Optimizing compiler technology for self,
A dynamically-typed object-oriented programming language,” in Proceedings of the ACM
SIGPLAN’89 Conference on Programming Language Design and Implementation (PLDI),
Portland, Oregon, USA, June 21-23, 1989, pp. 146–160, 1989.

[61] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle: Early detection of dangling
pointers in use-after-free and double-free vulnerabilities,” in Proceedings of the 2012 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2012, pp. 133–143, 2012.

[62] T. Zhang, D. Lee, and C. Jung, “Bogo: Buy spatial memory safety, get temporal mem-
ory safety (almost) free,” in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19,
(New York, NY, USA), pp. 631–644, ACM, 2019.

[63] J. Vilk and E. D. Berger, “Bleak: automatically debugging memory leaks in web applica-
tions,” in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pp. 15–
29, 2018.

[64] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and access errors,” in In
Proc. of the Winter 1992 USENIX Conference, pp. 125–138, 1991.

[65] D. Dhurjati, S. Kowshik, V. S. Adve, and C. Lattner, “Memory safety without runtime
checks or garbage collection,” in Proceedings of the 2003 Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES’03). San Diego, California, USA, June
11-13, 2003, pp. 69–80, 2003.

117

[66] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety for unsafe languages,”
in Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, (New York, NY, USA), pp. 158–168, ACM, 2006.

[67] D. Dhurjati and V. S. Adve, “Efficiently detecting all dangling pointer uses in production
servers,” in 2006 International Conference on Dependable Systems and Networks (DSN
2006), 25-28 June 2006, Philadelphia, Pennsylvania, USA, Proceedings, pp. 269–280,
2006.

[68] J. Cohen, “Garbage collection of linked data structures,” ACM Comput. Surv., vol. 13,
pp. 341–367, Sept. 1981.

[69] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and S. Smith, “Java without the
coffee breaks: A nonintrusive multiprocessor garbage collector,” in Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and Implementation, PLDI
’01, pp. 92–103, 2001.

[70] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “Softbound: highly compatible
and complete spatial memory safety for c,” in Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2009, Dublin,
Ireland, June 15-21, 2009, pp. 245–258, 2009.

[71] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M. Watson, and
P. Sewell, “Exploring c semantics and pointer provenance,” Proc. ACM Program. Lang.,
vol. 3, pp. 67:1–67:32, Jan. 2019.

[72] H. Boehm, “Space efficient conservative garbage collection,” in Proceedings of the ACM
SIGPLAN’93 Conference on Programming Language Design and Implementation (PLDI),
Albuquerque, New Mexico, USA, June 23-25, 1993, pp. 197–206, 1993.

[73] H. Boehm, “Space efficient conservative garbage collection,” SIGPLAN Not., vol. 39,
pp. 490–501, April 2004.

[74] C. S. C. (WG14), “Programming languages — c (iso/iec 9899:201x),” Tech. Rep. N2310,
International Organization for Standardization, Geneva, Switzerland, 2018.

[75] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. M. Watson, and
P. Sewell, “Into the depths of C: elaborating the de facto standards,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016 (C. Krintz and E. Berger, eds.),
pp. 1–15, ACM, 2016.

[76] M. Rudafshani and P. A. S. Ward, “Leakspot: detection and diagnosis of memory leaks in
javascript applications,” Softw., Pract. Exper., vol. 47, no. 1, pp. 97–123, 2017.

[77] G. H. Xu, M. D. Bond, F. Qin, and A. Rountev, “Leakchaser: helping programmers narrow
down causes of memory leaks,” in Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011, pp. 270–282, 2011.

118

[78] J. Clause and A. Orso, “Leakpoint: Pinpointing the causes of memory leaks,” in Proceed-
ings of the 32Nd ACM/IEEE International Conference on Software Engineering - Volume 1,
ICSE ’10, (New York, NY, USA), pp. 515–524, ACM, 2010.

[79] G. Novark, E. D. Berger, and B. G. Zorn, “Efficiently and precisely locating memory leaks
and bloat,” in Proceedings of the 2009 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pp. 397–
407, 2009.

[80] M. Jump and K. S. McKinley, “Cork: Dynamic memory leak detection for garbage-collected
languages,” in Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’07, (New York, NY, USA), pp. 31–38, ACM,
2007.

[81] M. D. Bond and K. S. McKinley, “Bell: bit-encoding online memory leak detection,” in Pro-
ceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25,
2006, pp. 61–72, 2006.

[82] M. Hauswirth and T. M. Chilimbi, “Low-overhead memory leak detection using adaptive
statistical profiling,” in Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2004, Boston, MA,
USA, October 7-13, 2004, pp. 156–164, 2004.

[83] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel MPX Explained:
A Cross-layer Analysis of the Intel MPX System Stack,” Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 2018.

[84] R. Shahriyar, S. M. Blackburn, and D. Frampton, “Down for the count? getting reference
counting back in the ring,” in International Symposium on Memory Management, ISMM
’12, Beijing, China, June 15-16, 2012, pp. 73–84, 2012.

[85] R. Shahriyar, S. M. Blackburn, X. Yang, and K. S. McKinley, “Taking off the gloves with
reference counting immix,” in Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, pp. 93–110,
2013.

[86] “A memory-efficient doubly linked list.” https://www.linuxjournal.com/
article/6828, 2004.

[87] F. Henderson, “Accurate garbage collection in an uncooperative environment,” in Proceed-
ings of The Workshop on Memory Systems Performance (MSP 2002), June 16, 2002 and The
International Symposium on Memory Management (ISMM 2002), June 20-21, 2002, Berlin,
Germany, pp. 256–263, 2002.

[88] J. Rafkind, A. Wick, J. Regehr, and M. Flatt, “Precise garbage collection for C,” in Proceed-
ings of the 8th International Symposium on Memory Management, ISMM 2009, Dublin,
Ireland, June 19-20, 2009, pp. 39–48, 2009.

119

https://www.linuxjournal.com/article/6828
https://www.linuxjournal.com/article/6828

[89] S. V. Adve and M. D. Hill, “Weak ordering - A new definition,” in Proceedings of the 17th
Annual International Symposium on Computer Architecture, Seattle, WA, USA, June 1990
(J. Baer, L. Snyder, and J. R. Goodman, eds.), pp. 2–14, ACM, 1990.

[90] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information flow analysis,” in Pro-
ceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis
for Security, PLAS ’09, pp. 113–124, 2009.

[91] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools (2Nd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2006.

[92] D. Chisnall, C. Rothwell, R. N. M. Watson, J. Woodruff, M. Vadera, S. W. Moore, M. Roe,
B. Davis, and P. G. Neumann, “Beyond the PDP-11: architectural support for a memory-safe
C abstract machine,” in Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’15, Istanbul,
Turkey, March 14-18, 2015 (Ö. Özturk, K. Ebcioglu, and S. Dwarkadas, eds.), pp. 117–130,
ACM, 2015.

[93] S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy, “Sound garbage collection for
C using pointer provenance,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, pp. 176:1–
176:28, 2020.

[94] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of variables in programs,”
in Conference Record of the Fifteenth Annual ACM Symposium on Principles of Program-
ming Languages, San Diego, California, USA, January 10-13, 1988, pp. 1–11, 1988.

[95] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” J. ACM, vol. 32,
pp. 652–686, July 1985.

[96] R. Chugh, J. W. Voung, R. Jhala, and S. Lerner, “Dataflow analysis for concurrent pro-
grams using datarace detection,” in Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008
(R. Gupta and S. P. Amarasinghe, eds.), pp. 316–326, ACM, 2008.

[97] L. Effinger-Dean, H. Boehm, D. R. Chakrabarti, and P. G. Joisha, “Extended sequential rea-
soning for data-race-free programs,” in Proceedings of the 2011 ACM SIGPLAN workshop
on Memory Systems Performance and Correctness: held in conjunction with PLDI ’11, San
Jose, CA, USA, June 5, 2011 (J. S. Vetter, M. Musuvathi, and X. Shen, eds.), pp. 22–29,
ACM, 2011.

[98] H. Boehm and D. Chase, “A proposal for garbage-collector-safe c compilation,” The Journal
of C Language Translation, vol. 4, pp. 126–141, December 1992.

[99] H. Boehm, “Simple garbage-collector-safety,” in Proceedings of the ACM SIGPLAN’96
Conference on Programming Language Design and Implementation (PLDI), Philadephia,
Pennsylvania, USA, May 21-24, 1996, pp. 89–98, 1996.

120

[100] H. Boehm, A. J. Demers, and S. Shenker, “Mostly parallel garbage collection,” in Proceed-
ings of the ACM SIGPLAN’91 Conference on Programming Language Design and Imple-
mentation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, pp. 157–164, 1991.

[101] T. Endo, K. Taura, and A. Yonezawa, “A scalable mark-sweep garbage collector on large-
scale shared-memory machines,” in Proceedings of the ACM/IEEE Conference on Super-
computing, SC 1997, November 15-21, 1997, San Jose, CA, USA, p. 48, 1997.

[102] L. P. Deutsch and D. G. Bobrow, “An efficient, incremental, automatic garbage collector,”
Commun. ACM, vol. 19, no. 9, pp. 522–526, 1976.

[103] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection of processes,” in Pro-
ceedings of the 1977 Symposium on Artificial Intelligence and Programming Languages,
pp. 55–59, 1977.

[104] D. M. Ungar, “Generation scavenging: A non-disruptive high performance storage recla-
mation algorithm,” in Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Pittsburgh, Pennsylvania,
USA, April 23-25, 1984, pp. 157–167, 1984.

[105] G. M. Yip, “Incremental, generational mostly-copying garbage collection in uncoopera-
tive environment,” Tech. Rep. Technical Report 91/8, Western Research Laboratory, Digital
Equipment Corporation, Palo Alto, CA, June 1991.

[106] S. M. Blackburn and K. S. McKinley, “Immix: a mark-region garbage collector with space
efficiency, fast collection, and mutator performance,” in Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, pp. 22–32, 2008.

[107] J. F. Bartlett, “Compacting garbage collection with ambiguous roots,” SIGPLAN Lisp Point-
ers, vol. 1, pp. 3–12, Apr. 1988.

[108] J. F. Bartlett, “Mostly-copying garbage collection picks up generations and C++,” Tech. Rep.
Technical Note TN. 12, Western Research Laboratory, Digital Equipment Corporation, Palo
Alto, CA, October 1989.

[109] F. Smith and J. G. Morrisett, “Comparing mostly-copying and mark-sweep conservative
collection,” in International Symposium on Memory Management, ISMM ’98, Vancouver,
British Columbia, Canada, 17-19 October, 1998, Conference Proceedings, pp. 68–78, 1998.

[110] A. L. Hosking, “Portable, mostly-concurrent, mostly-copying garbage collection for multi-
processors,” in Proceedings of the 5th International Symposium on Memory Management,
ISMM 2006, Ottawa, Ontario, Canada, June 10-11, 2006, pp. 40–51, 2006.

[111] D. R. Edelson, “Dynamic storage reclamation in C++,” Tech. Rep. Technical Report UCSC-
CRL-90-19, UCSC, June 1990.

[112] D. R. Edelson and I. Pohl, “A copying collector for C++,” in Proceedings of the C++ Con-
ference. Washington, D.C., USA, April 1991, pp. 85–102, 1991.

121

[113] W. Schreiner, “RT++ – higher order threads for C++, tutorial and reference manual,” Tech.
Rep. Technical Report 96-9, RISC-Linz, 1996.

[114] S. L. Peyton Jones, N. Ramsey, and F. Reig, “C–: A portable assembly language that sup-
ports garbage collection,” in Principles and Practice of Declarative Programming, Interna-
tional Conference PPDP’99, Paris, France, September 29 - October 1, 1999, Proceedings,
pp. 1–28, 1999.

[115] D. Tarditi, P. Lee, and A. Acharya, “No assembly required: Compiling standard ML to C,”
LOPLAS, vol. 1, no. 2, pp. 161–177, 1992.

[116] S. L. Peyton Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler, “The glasgow haskell
compiler: a technical overview,” in Proceedings of Joint Framework for Information Tech-
nology Technical Conference, Keele, pp. 249–257, March 1993.

[117] F. Henderson, Z. Somogyi, and T. Conway, “Compiling logic programs to c using gnu c as a
portable assembler,” in Proceedings of The ILPS’95 Postconference Workshop on Sequential
Implementation Technologies for Logic Programming Languages, Portland, Oregon, 1995.

[118] M. Hirzel, A. Diwan, and J. Henkel, “On the usefulness of type and liveness accuracy for
garbage collection and leak detection,” ACM Trans. Program. Lang. Syst., vol. 24, no. 6,
pp. 593–624, 2002.

[119] D. Jung, S. Bae, J. Lee, S. Moon, and J. K. Park, “Supporting precise garbage collection
in java bytecode-to-c ahead-of-time compiler for embedded systems,” in Proceedings of the
2006 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, CASES 2006, Seoul, Korea, October 22-25, 2006, pp. 35–42, 2006.

[120] J. Baker, A. Cunei, F. Pizlo, and J. Vitek, “Accurate garbage collection in uncooperative
environments with lazy pointer stacks,” in Compiler Construction, 16th International Con-
ference, CC 2007, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2007, Braga, Portugal, March 26-30, 2007, Proceedings, pp. 64–79,
2007.

[121] R. Shahriyar, S. M. Blackburn, and K. S. McKinley, “Fast conservative garbage collection,”
in Proceedings of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland,
OR, USA, October 20-24, 2014, pp. 121–139, 2014.

[122] G. E. Collins, “A method for overlapping and erasure of lists,” Commun. ACM, vol. 3, no. 12,
pp. 655–657, 1960.

[123] R. D. Lins, “Cyclic reference counting with lazy mark-scan,” Inf. Process. Lett., vol. 44,
no. 4, pp. 215–220, 1992.

[124] D. F. Bacon and V. T. Rajan, “Concurrent cycle collection in reference counted systems,”
in ECOOP 2001 - Object-Oriented Programming, 15th European Conference, Budapest,
Hungary, June 18-22, 2001, Proceedings, pp. 207–235, 2001.

122

[125] Apple, “Transitioning to ARC release notes.” https://
developer.apple.com/library/archive/releasenotes/ObjectiveC/
RN-TransitioningToARC, 2013.

[126] B. Davis, R. N. M. Watson, A. Richardson, P. G. Neumann, S. W. Moore, J. Baldwin,
D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka, A. Joannou, B. Laurie, A. T. Markettos,
J. E. Maste, A. Mazzinghi, E. T. Napierala, R. M. Norton, M. Roe, P. Sewell, S. D. Son, and
J. Woodruff, “Cheriabi: Enforcing valid pointer provenance and minimizing pointer priv-
ilege in the POSIX C run-time environment,” in Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, pp. 379–393, 2019.

[127] R. W. M. Jones and P. H. J. Kelly, “Backwards-compatible bounds checking for arrays and
pointers in C programs,” in AADEBUG, pp. 13–26, 1997.

[128] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow detector,” in Proceed-
ings of the Network and Distributed System Security Symposium, NDSS 2004, San Diego,
California, USA, 2004.

[129] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors,” in 18th USENIX Security
Symposium, Montreal, Canada, August 10-14, 2009, Proceedings, pp. 51–66, 2009.

[130] R. Bodı́k, R. Gupta, and V. Sarkar, “ABCD: eliminating array bounds checks on demand,”
in Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), Vancouver, Britith Columbia, Canada, June 18-21, 2000,
pp. 321–333, 2000.

[131] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang, “Cyclone: A
safe dialect of C,” in Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, June 10-15, 2002, Monterey, California, USA, pp. 275–288, 2002.

[132] D. Tarditi, A. S. Elliott, A. Ruef, and M. Hicks, “Checked c: Making c safe by extension,”
in IEEE Cybersecurity Development Conference 2018, pp. 53–60, IEEE, September 2018.

[133] Microsoft, “Managed Extensions for C++.” https://docs.microsoft.com/en-us/
cpp/build/reference/microsoft-extensions-to-c-and-cpp, 2004.

[134] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of all pointer and array access
errors,” in Proceedings of the ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation (PLDI), Orlando, Florida, USA, June 20-24, 1994, pp. 290–
301, 1994.

[135] J. Sparud, “Fixing some space leaks without a garbage collector,” in Proceedings of the
conference on Functional programming languages and computer architecture, FPCA 1993,
Copenhagen, Denmark, June 9-11, 1993, pp. 117–124, 1993.

123

https://developer.apple.com/library/archive/releasenotes/ObjectiveC/RN-TransitioningToARC
https://developer.apple.com/library/archive/releasenotes/ObjectiveC/RN-TransitioningToARC
https://developer.apple.com/library/archive/releasenotes/ObjectiveC/RN-TransitioningToARC
https://docs.microsoft.com/en-us/cpp/build/reference/microsoft-extensions-to-c-and-cpp
https://docs.microsoft.com/en-us/cpp/build/reference/microsoft-extensions-to-c-and-cpp

[136] D. E. Evans, “Static detection of dynamic memory errors,” in Proceedings of the ACM
SIGPLAN’96 Conference on Programming Language Design and Implementation (PLDI),
Philadephia, Pennsylvania, USA, May 21-24, 1996, pp. 44–53, 1996.

[137] N. Dor, M. Rodeh, and S. Sagiv, “Detecting memory errors via static pointer analysis (pre-
liminary experience),” in Proceedings of the SIGPLAN/SIGSOFT Workshop on Program
Analysis For Software Tools and Engineering, PASTE ’98, Montreal, Canada, June 16,
1998, pp. 27–34, 1998.

[138] C. Ding and Y. Zhong, “Compiler-directed run-time monitoring of program data access,”
in Proceedings of The Workshop on Memory Systems Performance (MSP 2002), June 16,
2002 and The International Symposium on Memory Management (ISMM 2002), June 20-21,
2002, Berlin, Germany, pp. 1–12, 2002.

[139] D. L. Heine and M. S. Lam, “A practical flow-sensitive and context-sensitive C and C++
memory leak detector,” in Proceedings of the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation 2003, San Diego, California, USA, June
9-11, 2003, pp. 168–181, 2003.

[140] J. Lee, T. Avgerinos, and D. Brumley, “TIE: principled reverse engineering of types in bi-
nary programs,” in Proceedings of the Network and Distributed System Security Symposium,
NDSS 2011, San Diego, California, USA, 6th February - 9th February 2011, 2011.

[141] J. Caballero and Z. Lin, “Type inference on executables,” ACM Comput. Surv., vol. 48, no. 4,
pp. 65:1–65:35, 2016.

[142] K. Elwazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua, “Scalable variable and data
type detection in a binary rewriter,” in ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pp. 51–
60, 2013.

[143] M. Burrows, S. N. Freund, and J. L. Wiener, “Run-time type checking for binary programs,”
in Compiler Construction, 12th International Conference, CC 2003, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings, pp. 90–105, 2003.

[144] L. Lamport, “How to make a multiprocessor computer that correctly executes multiprocess
programs,” IEEE Trans. Computers, vol. 28, no. 9, pp. 690–691, 1979.

[145] H. Boehm and S. V. Adve, “Foundations of the C++ concurrency memory model,” in Pro-
ceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation, Tucson, AZ, USA, June 7-13, 2008 (R. Gupta and S. P. Amarasinghe, eds.),
pp. 68–78, ACM, 2008.

[146] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,” in Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, January 12-14, 2005 (J. Palsberg and M. Abadi, eds.),
pp. 378–391, ACM, 2005.

124

[147] W. Pugh, “Fixing the java memory model,” in Proceedings of the ACM 1999 Conference
on Java Grande, JAVA ’99, San Francisco, CA, USA, June 12-14, 1999 (G. C. Fox, K. E.
Schauser, and M. Snir, eds.), pp. 89–98, ACM, 1999.

[148] W. Pugh, “The java memory model is fatally flawed,” Concurr. Pract. Exp., vol. 12, no. 6,
pp. 445–455, 2000.

[149] D. Marino, A. Singh, T. D. Millstein, M. Musuvathi, and S. Narayanasamy, “A case for
an sc-preserving compiler,” in Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011 (M. W. Hall and D. A. Padua, eds.), pp. 199–210, ACM, 2011.

[150] D. R. Engler and K. Ashcraft, “Racerx: effective, static detection of race conditions and
deadlocks,” in Proceedings of the 19th ACM Symposium on Operating Systems Principles
2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003 (M. L. Scott and L. L.
Peterson, eds.), pp. 237–252, ACM, 2003.

[151] S. Blackshear, N. Gorogiannis, P. W. O’Hearn, and I. Sergey, “Racerd: compositional static
race detection,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp. 144:1–144:28, 2018.

[152] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: static race detection on millions of lines
of code,” in Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007 (I. Crnkovic and A. Bertolino,
eds.), pp. 205–214, ACM, 2007.

[153] L. Liu, T. D. Millstein, and M. Musuvathi, “A volatile-by-default JVM for server applica-
tions,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp. 49:1–49:25, 2017.

[154] L. Liu, T. D. Millstein, and M. Musuvathi, “Accelerating sequential consistency for java
with speculative compilation,” in Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019 (K. S. McKinley and K. Fisher, eds.), pp. 16–30, ACM, 2019.

[155] C. S. C. (WG21), “Programming languages — c++,” Tech. Rep. N4849, International Or-
ganization for Standardization, Geneva, Switzerland, 2020.

[156] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder, “Automatically classi-
fying benign and harmful data races using replay analysis,” in Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation, San
Diego, California, USA, June 10-13, 2007 (J. Ferrante and K. S. McKinley, eds.), pp. 22–
31, ACM, 2007.

[157] H. Boehm, “How to miscompile programs with ”benign” data races,” in 3rd USENIX
Workshop on Hot Topics in Parallelism, HotPar’11, Berkeley, CA, USA, May 26-27, 2011
(M. McCool and M. Rosenblum, eds.), USENIX Association, 2011.

125

[158] A. Kamil, J. Su, and K. A. Yelick, “Making sequential consistency practical in titanium,” in
Proceedings of the ACM/IEEE SC2005 Conference on High Performance Networking and
Computing, November 12-18, 2005, Seattle, WA, USA, CD-Rom, p. 15, IEEE Computer
Society, 2005.

[159] E. Duesterwald and M. L. Soffa, “Concurrency analysis in the presence of procedures using
a data-flow framework,” in Proceedings of the Symposium on Testing, Analysis, and Verifi-
cation, TAV 1991, Victoria, British Columbia, Canada, October 8-10, 1991 (W. E. Howden,
ed.), pp. 36–48, ACM, 1991.

[160] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for java,” in Proceedings
of the ACM SIGPLAN 2006 Conference on Programming Language Design and Implemen-
tation, Ottawa, Ontario, Canada, June 11-14, 2006 (M. I. Schwartzbach and T. Ball, eds.),
pp. 308–319, ACM, 2006.

[161] M. Naik and A. Aiken, “Conditional must not aliasing for static race detection,” in Proceed-
ings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2007, Nice, France, January 17-19, 2007 (M. Hofmann and M. Felleisen,
eds.), pp. 327–338, ACM, 2007.

[162] A. Ragozin, “Safepoints in HotSpot JVM.” http://blog.ragozin.info/2012/10/
safepoints-in-hotspot-jvm.html, 2012.

[163] A. Gupta, “Under the hood JVM: Safepoints.” https://medium.com/
software-under-the-hood/under-the-hood-java-peak-safepoints-
dd45af07d766, 2017.

[164] “OpenJDK.” http://openjdk.java.net, .

[165] “Joeq Java compiler framework.” http://joeq.sourceforge.net, .

[166] V. B. Livshits, J. Whaley, and M. S. Lam, “Reflection analysis for java,” in Programming
Languages and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, Novem-
ber 2-5, 2005, Proceedings (K. Yi, ed.), vol. 3780 of Lecture Notes in Computer Science,
pp. 139–160, Springer, 2005.

[167] “ASM Java bytecode manipulation and analysis framework.” https://asm.ow2.io, .

[168] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: x86-tso,” in Theo-
rem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Mu-
nich, Germany, August 17-20, 2009. Proceedings (S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, eds.), vol. 5674 of Lecture Notes in Computer Science, pp. 391–407, Springer,
2009.

[169] “The JSR-133 Cookbook for Compiler Writers.” http://gee.cs.oswego.edu/dl/
jmm/cookbook.html, .

[170] T. Kotzmann, Escape Analysis in the Context of Dynamic Compilation and Deoptimization.
PhD thesis, Johannes Kepler University Linz, 10 2005.

126

http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html
http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html
https://medium.com/software-under-the-hood/under-the-hood-java-peak-safepoints-dd45af07d766
https://medium.com/software-under-the-hood/under-the-hood-java-peak-safepoints-dd45af07d766
https://medium.com/software-under-the-hood/under-the-hood-java-peak-safepoints-dd45af07d766
http://openjdk.java.net
http://joeq.sourceforge.net
https://asm.ow2.io
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/jmm/cookbook.html

[171] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley, R. Bentzur, A. Di-
wan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B.
Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The dacapo benchmarks: java benchmarking development and analysis,”
in Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA (P. L. Tarr and W. R. Cook, eds.), pp. 169–190, ACM, 2006.

[172] “Project Gutenberg.” http://www.gutenberg.org, .

[173] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, “Apache
spark: a unified engine for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65,
2016.

[174] M. Vollmer, R. G. Scott, M. Musuvathi, and R. R. Newton, “Sc-haskell: Sequential consis-
tency in languages that minimize mutable shared heap,” in Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Austin, TX,
USA, February 4-8, 2017 (V. Sarkar and L. Rauchwerger, eds.), pp. 283–298, ACM, 2017.

[175] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: bulk enforcement of sequential
consistency,” in 34th International Symposium on Computer Architecture (ISCA 2007), June
9-13, 2007, San Diego, California, USA (D. M. Tullsen and B. Calder, eds.), pp. 278–289,
ACM, 2007.

[176] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J. Lee, X. Fang, S. P. Midkiff, and D. C. Wong,
“Bulkcompiler: high-performance sequential consistency through cooperative compiler and
hardware support,” in 42st Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-42 2009), December 12-16, 2009, New York, New York, USA (D. H. Albonesi,
M. Martonosi, D. I. August, and J. F. Martı́nez, eds.), pp. 133–144, ACM, 2009.

[177] A. Singh, S. Narayanasamy, D. Marino, T. D. Millstein, and M. Musuvathi, “End-to-end
sequential consistency,” in 39th International Symposium on Computer Architecture (ISCA
2012), June 9-13, 2012, Portland, OR, USA, pp. 524–535, IEEE Computer Society, 2012.

[178] Z. Sura, X. Fang, C. Wong, S. P. Midkiff, J. Lee, and D. A. Padua, “Compiler techniques
for high performance sequentially consistent java programs,” in Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP 2005,
June 15-17, 2005, Chicago, IL, USA (K. Pingali, K. A. Yelick, and A. S. Grimshaw, eds.),
pp. 2–13, ACM, 2005.

[179] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t sit on the fence - A static analysis
approach to automatic fence insertion,” in Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings (A. Biere and R. Bloem, eds.), vol. 8559 of Lecture
Notes in Computer Science, pp. 508–524, Springer, 2014.

127

http://www.gutenberg.org

[180] D. E. Shasha and M. Snir, “Efficient and correct execution of parallel programs that share
memory,” ACM Trans. Program. Lang. Syst., vol. 10, no. 2, pp. 282–312, 1988.

[181] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H. Boehm, “Conflict exceptions: simplifying
concurrent language semantics with precise hardware exceptions for data-races,” in 37th
International Symposium on Computer Architecture (ISCA 2010), June 19-23, 2010, Saint-
Malo, France (A. Seznec, U. C. Weiser, and R. Ronen, eds.), pp. 210–221, ACM, 2010.

[182] D. Marino, A. Singh, T. D. Millstein, M. Musuvathi, and S. Narayanasamy, “DRFX: a sim-
ple and efficient memory model for concurrent programming languages,” in Proceedings of
the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010 (B. G. Zorn and A. Aiken,
eds.), pp. 351–362, ACM, 2010.

[183] A. Singh, D. Marino, S. Narayanasamy, T. D. Millstein, and M. Musuvathi, “Efficient pro-
cessor support for drfx, a memory model with exceptions,” in Proceedings of the 16th Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11, 2011 (R. Gupta and T. C.
Mowry, eds.), pp. 53–66, ACM, 2011.

[184] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia, “Valor: efficient, software-only region
conflict exceptions,” in Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015 (J. Aldrich and P. Eugster,
eds.), pp. 241–259, ACM, 2015.

[185] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni, “Hybrid static: Dynamic
analysis for statically bounded region serializability,” in Proceedings of the Twentieth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015 (Ö. Özturk, K. Ebcioglu, and
S. Dwarkadas, eds.), pp. 561–575, ACM, 2015.

[186] A. Sengupta, M. Cao, M. D. Bond, and M. Kulkarni, “Toward efficient strong memory
model support for the java platform via hybrid synchronization,” in Proceedings of the Prin-
ciples and Practices of Programming on The Java Platform, PPPJ 2015, Melbourne, FL,
USA, September 8-11, 2015 (R. Stansifer and A. Krall, eds.), pp. 65–75, ACM, 2015.

[187] M. Zhang, S. Biswas, and M. D. Bond, “Avoiding consistency exceptions under strong
memory models,” in Proceedings of the 2017 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2017, Barcelona, Spain, June 18, 2017 (C. M. Kirsch and
B. L. Titzer, eds.), pp. 115–127, ACM, 2017.

[188] B. G. Ryder, “Incremental data flow analysis,” in Conference Record of the Tenth Annual
ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January
1983 (J. R. Wright, L. Landweber, A. J. Demers, and T. Teitelbaum, eds.), pp. 167–176,
ACM Press, 1983.

128

[189] M. G. Burke, “An interval-based approach to exhaustive and incremental interprocedural
data-flow analysis,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3, pp. 341–395, 1990.

[190] B. Liu, J. Huang, and L. Rauchwerger, “Rethinking incremental and parallel pointer analy-
sis,” ACM Trans. Program. Lang. Syst., vol. 41, no. 1, pp. 6:1–6:31, 2019.

[191] Y. Li, B. Liu, and J. Huang, “SWORD: a scalable whole program race detector for java,”
in Proceedings of the 41st International Conference on Software Engineering: Companion
Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019 (J. M. Atlee, T. Bultan,
and J. Whittle, eds.), pp. 75–78, IEEE / ACM, 2019.

129

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Need for Secure & Reliable Software
	Traditional Program Analyses Landscape
	Motivation and Contribution

	Cautiously Optimistic Program Analysis
	Conservative Hybrid Analysis
	Optimistic Hybrid Analysis
	Problem: Rollback Recovery in OHA

	Cautious Recovery with Safe Elisions
	Soundness Proof
	Notations and Notions
	Axioms
	Soundness of Rollback-free COPA
	Insight Summary

	Iodine: Live Information-flow Security Monitoring
	Introduction: Live Information-flow Tracking is Challenging
	Background: Information Flow Analyses
	Design: Cautiously Optimistic Program Analysis for Fast DIFT
	Conservative Hybrid Taint Analysis
	Optimistic Hybrid Taint Analysis
	Safe Elisions of noop Monitors
	Rollback-Free Cautiously Optimistic Taint Analysis

	Iodine Implementation
	Evaluation: Precise Static & Fast Dynamic IFT
	IFT Security Policies
	Generic Information-Flow Policies
	Memory Overheads
	Iodine's Framework Overheads
	Precise and Scalable Static Analysis
	Profiling During Regression Testing Is Effective
	Sensitivity to Fraction of Tainted Data

	Related Work

	Prov-GC: Provenance-based Sound Garbage Collection for C
	Introduction: Enforcing Memory Safety is Challenging
	Background: Garbage Collection for C/C++
	Why GC for C/C++?
	GC and its Pointer Data Requirements
	Value-based GCs for C/C++ is Unsound
	Need for Sound GCs

	Design: Provenance-Based Garbage Collection
	The Soundness of Provenance-Based GC
	A Simple Provenance-Based GC
	Optimizing Explicit Provenance
	Optimizing Implicit Provenance
	Other Points-To Set Propagation Channels
	C Standard for Pointers
	Cautiously Optimistic Program Analysis

	Prov-GC Implementation
	Static Pointer Provenance Analyses
	Dynamic Pointer Provenance Tracking Instrumentation
	Garbage Collection
	Source Transformations for GC

	Evaluation: Sound & Efficient GC for C
	Provenance Tracking Overheads
	GC Overheads
	GC Heap Size Sensitivity
	Memory Overheads

	Related Work

	Opt-SC: Efficient Sequential Consistency for Java
	Introduction: Enforcing Strong Concurrency Semantics is Challenging
	Background: Memory Consistency Models
	Data-Race-Free Memory Model and Its Limitations
	Sequential Consistency For All
	SC-for-all Using Precise Datarace Detection

	Design: Precise Predicated Static Datarace Detection
	Conventional Conservative Data-race Analysis
	Precise Predicated Data-race Analysis

	Design: COPA for Efficient Sequential Consistency
	Opt-SC Soundness For SC Guarantees
	Opt-SC Compiler
	Runtime Invariant Checks
	Recovering SC Upon Likely Invariant Violation
	Likely Invariant Violations Are Rare

	Opt-SC Implementation
	Static Data-race Analysis
	Opt-SC JVM Compiler

	Evaluation: Precise Data-race Detection & Efficient SC
	Runtime Overheads of Providing SC
	Precision of Static Data-race Detection
	COPA Framework Overheads
	Profiling Effort

	Related Work

	Conclusion
	Bibliography

