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ABSTRACT

We give many new results related to the theory of tight closure and its generalizations. Explicitly,
we establish a series of results showing that the Jacobian ideal is contained in the test ideal for tight
closures both in equal characteristic p and equal characteristic 0 for algebras essentially of finite type
over power series rings (they are called semianalytic algebras). We move on to introduce and study
a new closure called wepf in mixed characteristic, and prove that it is a Dietz closure satisfying the
Algebra axiom. This is the first known example of a Dietz closure in mixed characteristic. This is
achieved by proving that the epf closure satisfies what we call the p-colon-capturing property. We
define and study the relationships with properties connected with tight closure. For example, we
show that a persistent closure operation that captures colons automatically captures the plus closure,
i.e., the contraction of the expansion of an ideal to the absolute integral closure of the ring. We
also show that the existence of persistent closure operations between two complete local domains
gives us a weakly functorial version of the existence of big Cohen-Macaulay algebras for them.
We also develop a new numerical notion for ideals called size using the theory of quasilength, and
show that the size of an ideal is always between its height and arithmetic rank. We show under
mild conditions that the size is the same as height for one-dimensional primes in a local ring whose
completion is a domain. We further study the additive property and the asymptotic additive property
of quasilength.
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CHAPTER I

Introduction

1.1 An Overview

We want to explain a little bit about one of the origins of commutative algebra in number theory.
Around 1637, Pierre de Fermat wrote the following in the margin of a copy of an ancient Greek text
on mathematics called “Arithmetica.”

“It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers,

or in general, any power higher than the second, into two like powers. I have discovered a truly

marvelous proof of this, which this margin is too narrow to contain.” – Fermat

This is the famous “Fermat’s Last Theorem,” i.e., that equations of the form an + bn = cn have
no solutions in positive integers if n is an integer greater than 2. Although Fermat claimed to have a
general proof of his conjecture, no proof by him has ever been found. His claim stood unproven for
the next three and a half centuries. By analyzing Fermat’s equation, people realized that it suffices
to show it has no solution when n is an odd prime and n = 4. The case n = 4 was proved by Fermat,
which, interestingly, is the only proof that is found to be written by Fermat. Leonhard Euler proved
the case n = 3 in 1770. In the nineteenth century Adrien Marie Legendre and P.G. Lejeune Dirichlet
independently proved the theorem for n = 5.

It took a long time for people to find a practical way to deal systematically with Fermat’s
equation. In 1847, Gabriel Lamé outlined a proof of Fermat’s Last Theorem based on factoring
the equation xp + yp = zp in the complex numbers for a prime integer p. His proof failed, however,
because it assumed a property called “unique factorization” in a context where the property fails.
Following Lamé’s approach, Ernst Kummer carefully studied the unique factorization property of
certain integer rings of cyclotomic fields and proved Fermat’s Last Theorem in many cases. The
extension of Kummer’s ideas to the general case was accomplished independently by Leopold
Kronecker and Richard Dedekind during the next forty years. Dedekind created the basics of
commutative algebra, i.e., the theory of modules and ideals, which are the main concepts that we
will study in this thesis. Before we dive deeper into the theme of commutative algebra, let us finish
the story of Fermat’s Last Theorem. Around 1955, Japanese mathematicians Goro Shimura and
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Yutaka Taniyama came up with a conjecture addressing a possible link between elliptic curves and
modular forms. In 1986, Kenneth Ribet proved that the Taniyama–Shimura conjecture implies
Fermat’s Last Theorem. Finally, in 1994, Sir Andrew Wiles proved Fermat’s Last Theorem by
proving a form of the Taniyama-Shimura conjecture. A gap was filled by Richard Taylor.

Apart from providing tools for the study of Fermat’s Last Theorem, commutative algebra
flourished on its own over the last century. With contributions from great mathematicians like
David Hilbert, Emmy Noether, Jean-Pierre Serre, Wolfgang Krull, Masayoshi Nagata, Oscar Zariski,
and many more, commutative algebra has become an important and interesting subject of modern
mathematics.

Commutative algebra can be described as the study of commutative rings and their ideals and
modules. A ring is a set with addition, subtraction, and multiplication satisfying certain properties.
Some examples of a ring include the integers Z, the complex numbers C, and the polynomials in
one variable over the real numbers R[x]. Ideals in rings can be thought of as a generalization of the
notion of the set of multiples of a number in the integers. For example, the ideal generated by {xy}
in the ring R[x, y] is the set of all polynomials that are products of xy and some other polynomial.
We usually write it as (xy). There are also ideals generated by two or more generators. For instance,
the ideal (x, y), which consists of polynomials with no constant term, needs two generators. The
study of ideals is also closely related to the study of solution sets to polynomial equations. The
solution sets form geometric objects called algebraic sets (or varieties if they are irreducible). For
the ideal (xy) in R[x, y], the algebraic set is the set of points in the xy-plane satisfying the equation
xy = 0, i.e., the union of the x-axis and the y-axis. Note that there can be many different ideals
corresponding to the same algebraic set. For example, we can take the ideal (x2y2) and still get
the union of the x-axis and the y-axis. This is because solving an equation f(x, y) = 0 in R2 is the
same as solving the equation (f(x, y))2 = 0, or any higher power of f(x, y) equaling to zero. To
remedy this, we can instead consider the radical of an ideal I , i.e., the set of elements that have
some power in I . The procedure of taking the radical of an ideal is a special case of taking a closure
of an ideal. Roughly speaking, taking a closure of an ideal I is a way to produce a new ideal J that
is closely related to I . For example, the radical (closure) of I defines the same algebraic set as I .
By taking the radical in the case of an algebraically closed field, the correspondence between ideals
and algebraic sets becomes one-to-one and therefore makes study easier and cleaner.

In the history of commutative algebra, many closure operations have been defined and studied
by mathematicians. One example is the radical (closure) we mentioned above. Often, the study
of different concepts eventually leads to the study of closure operations. There is a notion called
multiplicity, which, roughly speaking, describes the number of times that a geometric object passes
through a point. The study of multiplicity is closely connected to the study of a closure operation
called integral closure. On the other hand, the further exploration of closure theory produces a great
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many fruitful results that can be applied to problems not directly related to the closure operation.
One of the most famous examples is the application of tight closure to a network of conjectures in
commutative algebra, called the homological conjectures.

1.2 Tight Closure

In commutative algebra, homological conjectures have generated a tremendous amount of
activity in the last 50 years. They concern a number of interrelated (sometimes surprisingly so)
conjectures relating various homological properties of a commutative ring to its internal ring
structure. [Hoc75] gives a nice summary of a list of these conjectures. Many of these conjectures
in positive characteristic are resolved due to the development of tight closure, invented by Mel
Hochster and Craig Huneke in their celebrated paper [HH90]. They also used tight closure to prove
various remarkable results, e.g., the existence of balanced big Cohen-Macaulay algebras for rings
containing a field and a containment theorem for symbolic powers in equal characteristic regular
local rings (cf. [Hoc73, HH92, HH94b, HH94a, ELS01, HH02]). Along with the development of
tight closure, there are several unexpected applications. For example, by using descent techniques

and tight closure, one can show that for n+1 polynomials in n variables f1, . . . , fn+1 ∈ C[x1, . . . , xn],
one has fn1 ⋯fnn+1 ∈ (fn+1

1 , . . . , fn+1
n+1 ). The statement is elementary, but the proof is by no means

obvious, even in the case n = 2.
There are several important developments from tight closure theory. We want to list three of

them that will be relevant to this thesis.

1.2.1 Test element theory

Test ideals were first introduced in the same paper introducing tight closure ([HH90]). Since
their invention, they have found applications far beyond their original scope, including Frobenius
splittings ([MR85, RR85]) and singularity theory ([HH94a, HH89]). For a good survey on this,
we refer to [ST12]. There are various generalizations of test ideals, e.g., to pairs in positive
characteristic ([HY03, HT04]) and to pairs in mixed characteristic ([MS18a, MS18b]). Test ideals
are also closely related to multiplier ideals in equal characteristic 0 ([Smi00, Har01]).

1.2.2 Generalizations to other characteristics

Inspired by the fruitful results of tight closure, Raymond C. Heitmann developed four closure
operations, ep, r1, epf, and r1f, in the mixed characteristic case ([Hei01]). He also proved one of
them, the epf closure, satisfies the (usual) colon-capturing ([Hei02, Theorem 3.7]) for rings of mixed
characteristic of dimension at most 3. Based on this result, he was able to prove the direct summand
conjecture in that case ([Hei02]). Recently, due to the development of perfectoid theory ([Sch12]),
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many homological conjectures in mixed characteristic have been resolved by Yves André, Bhargav
Bhatt, Raymond Heitmann, and Linquan Ma ([And18a, And18b, And20, Bha17b, HM18]). With
the help of perfectoid techniques, Raymond Heitmann and Linquan Ma were able to prove that epf
closure satisfies the (usual) colon-capturing condition ([HM21, Corollary 3.11]).

1.2.3 Axiomatization of closures

Geoffrey Dietz and Rebecca R.G. studied the relation between the existence of balanced big
Cohen-Macaulay algebras (modules) and closure operations. Dietz introduced seven axioms (see
[Die10, Axiom 1.1] and Axiom Set 3.1.4 in Section 3.1). We call a closure operation a Dietz closure

if it satisfies all of Dietz’s axioms. Dietz proved that a local domain R has a Dietz closure if and
only if it has a balanced big Cohen-Macaulay module. In [R.G18], R.G. introduced a new axiom
called the Algebra axiom, and proved that the existence of a Dietz closure satisfying the Algebra
axiom is equivalent to the existence of a balanced big Cohen-Macaulay algebra. Recently, the
existence of balanced big Cohen-Macaulay algebras in mixed characteristic was completely solved
by Yves André using perfectoid techniques ([And18a]).

1.3 Results and Outline

In Chapter II, we aim to extend some results about test ideals in equal characteristic p, and
contribute to the theory of test ideals of tight closures defined in equal characteristic 0 for (semi-
/affine-)analytic algebras ([HH99]).

A key property of test ideals is that they multiply the tight closure of any ideal back into
that ideal. The theory has been generalized to arbitrary closure operations in any characteristic
([ERG19, PG21]).

Some of the main results of Chapter II are summarized in the following theorems. See Def-
inition 2.1.9 for the definition of semianalytic algebras, Definition 2.1.18 for “equiheight,” and
Definition 2.2.7 for “absolute reducedness.”

Theorem 1.3.1 (Theorem 2.3.3). Let R be a semianalytic K-algebra that is the localization of an

absolutely reduced equiheight affine-analytic K-algebra where char(K) = p. Then the Jacobian

ideal J (R/K) is contained in the test ideal of R for K-tight closure, and, hence, the test ideals for

small equational tight closure.

Remark 1.3.2. The result above implies the result of Theorem 2.3.1, where R is assumed to be an
absolutely reduced equidimensional complete K-algebra. However, the proof of Theorem 2.3.3
relies on Theorem 2.3.1.
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Theorem 1.3.3 (Corollary 2.5.11). If R is a semianalytic K-algebra that is the localization of a

reduced equiheight affine-analytic K-algebra, then the Jacobian ideal J (R/K) is contained in

the test ideal. For any flat K-algebra morphism R → R′ with geometrically regular fibers, the

expansion of the Jacobian ideal J (R/K)R′ is contained in the test ideal of R′. Here, both test

ideals are for K-tight closure, which is contained in the test ideals for small equational tight closure.

Remark 1.3.4. The result above implies the case when R is a reduced equidimensional complete
K-algebra (Theorem 2.5.6) and the case when R is a reduced equiheight affine-analytic K-algebra
(Theorem 2.5.7). But the proof of Corollary 2.5.11 relies on Theorem 2.5.6 and Theorem 2.5.7.

The purpose of Chapter III is to develop a new closure operation in mixed characteristic called
wepf (Definition 3.3.1), and prove that

Theorem 1.3.5 (Theorem 3.3.8). The wepf closure is a Dietz closure satisfying the Algebra axiom.

This gives a new proof of the existence of big Cohen-Macaulay algebras, and hence big Cohen-
Macaulay modules. We achieve this by proving a strong property about the epf closure of ideals
generated by part of system of parameters (Theorem 3.2.4), which we call p-colon-capturing

(Definition 3.2.3). This property generalizes some results in [HM21]. We point out that our p-colon-
capturing property can also be used to prove that r1f is a Dietz closure satisfying the Algebra axiom.
So far as we know, the problem of whether epf is a Dietz closure remains open.

We also prove the following result about module-finite extensions. See the discussion right
above Construction 3.4.2 for a brief introduction on the notion of phantom extension.

Theorem 1.3.6 (Theorem 3.4.1). If R → S is a module-finite extension of complete local domains

of mixed characteristic p with an F -finite residue field, then this map is epf-phantom.

This result, together with Heitmann and Ma’s result [HM21, Theorem 3.19], implies the direct
summand conjecture. We make great use of techniques from Yves André’s results in [And18b]
and Bhargav Bhatt’s results in [Bha17b]. We also prove a property (Theorem 3.5.13) similar to
p-colon-capturing in the positive characteristic case. This is a completely new phenomenon in tight
closure theory.

We want to discuss some related results about closure theory in Chapter IV. We first extend
the result [Die18, Theorem 4.8] to a more general setting (Corollary 4.1.10). For this purpose, we
also generalize various notions to the non-domain case. Then we define two more axioms, the
colon-capturing axiom (Axiom 4.2.2) and the persistence axiom (Axiom 4.2.3), and discuss various
related results. In particular, we show the following result.

Theorem 1.3.7 (Theorem 4.2.11). If R → S is a ring map between complete local domains and cl is

a persistent Dietz closure satisfying the Algebra axiom with respect to the category of complete local
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domains, then we obtain a weakly functorial version of the existence of their big Cohen-Macaulay

algebras, i.e., there exists a big Cohen-Macaulay R-algebra B, a big Cohen-Macaulay S-algebra

C, and a map B → C such that

B // C

R //

OO

S

OO

commutes.

Finally, we introduce two more closure operations PBCM and BCM in mixed-characteristic,
and discuss the containment problems among PBCM,BCM, epf, and wepf.

In Chapter V, we develop a new notion called size for an ideal in a ring R (Definition 5.2.1)
based on the notion of quasilength introduced by Mel Hochster and Craig Huneke in their joint paper
[HH09]. We show that the size of an ideal is a quantity invariant up to radicals (Proposition 5.2.4),
and is always between the height and the arithmetic rank of the ideal (Proposition 5.2.5). We
also show that the size of an ideal is unchanged when we kill finitely many nilpotent elements
(Theorem 5.2.8). Moreover, we show that a finitely generated ideal is of size 0 if and only if it is
nilpotent (Proposition 5.2.9). In the case of prime ideals, we have the following result.

Theorem 1.3.8 (Theorem 5.2.10). Let R be a local ring and P a prime ideal of R such that

dimR/P = 1. Suppose that there is some c such that P (cn) ⊆ P n for all n (this holds if the

completion of R is a domain) and R/P is module-finite over a regular local ring A (this holds if

R/P is complete). Then size(P ) = ht(P ).

Many properties of size are hard to study because the notion of size is based on quasilength. One
difficulty with quasilength is that it is not additive, even in the case of the direct sum of two modules
([HZ18, Example 3.5]). We first show additivity of quasilength in a special case (Proposition 5.3.1),
and generalize [HZ18, Example 3.5] in Proposition 5.3.3. Then we study the asymptotic behavior
of the additive property. More precisely, we prove that

Theorem 1.3.9 (Theorem 5.3.15). Suppose that (R,m) is a noetherian local ring of dimension 1.

Then there exists a positive constant C (independent of M and I) such that for any ideal I ⊆ R and

any finitely generated module M , we have

CnLI(M/InM) ⩽ LI((M/InM)⊕n) ⩽ nLI(M/InM)

for any positive integer n.
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1.4 Definitions and Notation

While we have a preliminary section in each chapter to discuss definitions and notation related
to that chapter, it is convenient to fix some notation that will be used throughout this thesis.

• All rings are commutative associative rings with a multiplicative identity element 1.

• p will always be a positive prime integer.

Let R be a ring. An element x ∈ R is called a nonzerodivisor if for any other element y ∈ R such
that xy = 0, we have y = 0. R is called a domain if all nonzero elements of R are nonzerodivisors.
If R is a domain, the fraction field Frac(R) of R is the localization of R at all its nonzero elements,
i.e., Frac(R) = (R − {0})−1R. The absolute integral closure R+ of R is the integral closure of R in
an algebraic closure of its fraction field.

By “a local ring (R,m, k)” we mean a ring in which m is the only maximal ideal of R and k is
the residue field of R, i.e., k = R/m. Sometimes we omit k in the triple if we do not need to refer
to it. Given a d-dimensional noetherian local ring (R,m), by Krull’s height theorem, the maximal
ideal m is a minimal ideal of an ideal generated by d elements x1, . . . , xd, and no fewer. The d
elements are called a system of parameters for the local ring R.

Definition 1.4.1. Let R be a ring and M an R-module. A sequence x1, . . . , xn is called a regular

sequence on M if the following conditions hold:

• x1 is a nonzerodivisor on M .

• xi is a nonzerodivisor on M/(x1, . . . , xi−1)M , where 2 ⩽ i ⩽ n.

• M/(x1, . . . , xn)M ≠ 0.

We can also relate regular sequences to Ext modules: Let R be a noetherian ring and let M
be an R-module. Let x = (x1, . . . , xn) be a regular sequence on M contained in some ideal I ⊆ R.
Then ExtiR(R/I,M) = 0 for 0 ⩽ i ⩽ n. If n is the longest possible length of a regular sequence in I
on M , then ExtnR(R/I,M) ≠ 0.

A d-dimensional noetherian local ring (R,m, k) is Cohen-Macaulay if one (equivalently, every)
system of parameters of R is a regular sequence on R. Equivalently, R is Cohen-Macaulay if
Exti(k,R) = 0 where 1 ⩽ i < d and Extd(k,R) ≠ 0. R is a Gorenstein ring if it is Cohen-Macaulay
and dimk Extd(k,R) = 1. R is a regular local ring if the maximal ideal m is generated by d elements.
Although it is not obvious, regular local rings are Gorenstein, hence, Cohen-Macaulay.

Most rings we study in commutative algebra are not even Cohen-Macaulay. Thus, we have the
following definition.
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Definition 1.4.2. Let (R,m) be a noetherian local ring. An R-module M is a big Cohen-Macaulay

module if some system of parameters for R is a regular sequence on M . It is called a balanced

big Cohen-Macaulay module if every system of parameters of R is a regular sequence on M . An
R-algebra S is a (balanced) big Cohen-Macaulay algebra if it is a (balanced) big Cohen-Macaulay
module over R.

The difference between a balanced and nonbalanced big Cohen-Macaulay module is very minor.
In fact, by a result from [BS83], the m-adic completion of any (nonbalanced) big Cohen-Macaulay
module is a balanced big Cohen-Macaulay module. Hence, from now on, we will omit the word
“balanced.” By “big Cohen-Macaulay algebra/module” we mean that every system of parameters
is a regular sequence on this algebra/module. The terminology “big” here means that we do not
require the algebra/module to be finitely generated. A finitely generated Cohen-Macaulay module
is called a small Cohen-Macaulay module.
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CHAPTER II

Test Elements for Tight Closures in Equal Characteristic

This chapter is organized as follows: we first collect some preliminaries in Section 2.1 and
have a discussion on Jacobian ideals in Section 2.2. Then we prove the new results that the
Jacobian ideal is contained in the test ideal for complete K-algebras (Theorem 2.3.1), and for
reduced semianalytic K-algebras that are localizations of equiheight affine-analytic K-algebras
(Theorem 2.3.3) in characteristic p in Section 2.3. After that, we discuss the definition of tight
closure in equal characteristic 0 and prove that the Jacobian ideal is contained in the test ideal for
affine K-algebras (Theorem 2.4.9) in equal characteristic 0 in Section 2.4. Finally in Section 2.5,
we start to discuss descent techniques and prove similar results for complete local K-algebras
(Theorem 2.5.6). Then we describe a similar descent process and prove similar results for reduced
affine-analytic K-algebras (Theorem 2.5.7). Based on Theorem 2.5.7, we will establish the same
result for reduced semianalytic K-algebras that are localizations of equiheight affine-analytic
K-algebras (Corollary 2.5.11).

2.1 Preliminaries

We discuss some preliminary material about semianalytic algebras, the module of Kähler
differentials and their relation to regularity. Throughout this section, unless otherwise stated, we do
not assume any characteristic constraint. Most material here is covered in [Kun86], but has been
reworded in a way that is better adapted to our needs in this thesis. We start with some notation.

Definition 2.1.1. Let R be a noetherian ring and p ∈ Spec(R) a prime ideal of R. Let M be an
R-module and I ⊆ R an ideal of R.

(i) big ht(I) is the big height of I , i.e., big ht(I) = max{ht(Q) ∣ Q ∈ Min(I)}.

(ii) If I ⊆ p, then the notion htp(I) represents the smallest height of a prime P such that I ⊆ P ⊆ p.
Note that this is equal to ht(IRp) in Rp.

(iii) dimpR is the supremum of the lengths of all chains of prime ideals containing p. We have
dimpR = dimR/p + dimRp.
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(iv) The regularity defect of R at p is defined to be rd p(R) ∶= edim (Rp) − dim(Rp), where
edim (Rp) is the embedded dimension of the noetherian local ring Rp.

(v) The residue field of p is denoted by κp(R) ∶= Rp/pRp.

(vi) µ(M) is the minimal number of generators of M and µp(M) is the minimal number of
generators of the localized module Mp.

(vii) If A is a matrix with entries in R, then rankp(A) represents the determinantal rank of the
matrix A over the residue field κp(R) at prime p.

2.1.1 Test ideals

We will use the following definition for test ideals in this chapter.

Definition 2.1.2. [PG21, Definition 3.1] LetR be a ring and cl be a closure operation onR-modules.
The big test ideal of R associated to cl is defined as

τcl(R) = ⋂
N⊆M

(N ∶ N cl
M)

where the intersection runs over any (not necessarily finitely-generated)R-modulesN,M . Similarly,
we define the finitistic test ideal of R associated to cl as

τ fg
cl (R) = ⋂

N⊆M
M/N finitely generated

(N ∶ N cl
M) .

There are two subtleties when working with this definition:

1. As we see in Definition 2.1.2, there are two kinds of test ideals (the (big) test ideal and the
finitistic test ideal).

2. Test ideals are defined in terms of modules. One can also define them purely in terms of
ideals.

For the first point, these two notions associated to tight closure in characteristic p are conjectured
to be the same ([ST12, Conjecture 5.14]), and proved to be the same in several cases [LS99, LS01].
Since we only work with tight closure of ideals in noetherian rings, we will stick to the notion of
finitistic test ideals. For the second point, test ideals defined in terms of (finitely generated) modules
and in terms of all ideals in the ring coincide when the base ring R is approximately Gorenstein
([Hoc77, Definition-Proposition 1.1, Definition 1.3]). See the remark below.
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Remark 2.1.3. Let cl be a closure operation on R satisfying Semiresiduality and Functoriality (see
Axiom (v) and (iv), see also [PG21, Definition 2.1, 2.2]). If R is approximately Gorenstein ([HH90,
8.6]), then the finitistic test ideal for modules defined in [PG21, Definition 3.1] coincides with
the test ideal for ideals associated with cl, i.e., τ fg

cl (R) = ⋂I⊆R(I ∶ Icl) (The argument in [HH90,
Proposition 8.15] works for any general closure satisfying the Semiresiduality and Functoriality
axioms).

The condition of being approximately Gorenstein is fairly weak, e.g., when R is either reduced
and excellent or when R is of depth 2, R is approximately Gorenstein. In fact, all rings we are
working with in this chapter are excellent and reduced, hence, approximately Gorenstein. So we
make the following convention throughout the chapter.

Convention 2.1.4. By the test ideal, we mean the finitistic test ideal associated to tight closure in the
sense of Definition 2.1.2 in term of ideals (the case of modules follows from the case of ideals by
Remark 2.1.3). We shall also call the elements in the test ideal “test elements.” Note that in the
literature, test elements are elements in the test ideal which avoids all minimal primes of the ring.

2.1.2 Derivations and universal extensions

A good reference here is Chapters 1-3, 11-12, in [Kun86].

Definition 2.1.5. Let R0 be a ring, R an R0-algebra and M an R-module.

(i) A R0-derivation of R in M is an R0-linear map δ ∶ R →M that satisfies the Leibniz rule, i.e.,
for all a, b ∈ R, δ(ab) = aδb + bδa. In the case R0 = Z, Z-derivations of R are simply called
(absolute) derivations of R ([Kun86, 1.1]).

(ii) An R0-derivation d ∶ R →M is called universal if for any R0-derivation δ ∶ R → N there is
one and only one R-linear map ` ∶M → N such that δ = ` ○ d ([Kun86, 1.18]).

(iii) If d ∶ R →M is a universal R0-derivation of R then the R-module M is denoted by ΩR/R0

and is called the module of (Kähler) differentials of R over R0. The universal derivation of R
over R0 is sometimes denoted by dR/R0

([Kun86, 1.20]). It is well-known that the module of
Kähler differentials exists. If we denote the kernel of the canonical map R⊗R0 R → R by I ,
then ΩR/R0

≅ I/I2 ([Kun86, 1.7, 1.21]).

(iv) For an R0-derivation δ ∶ R →M , we shall write RδR for the submodule of M generated by
{δr}r∈R. If d is the universal R0-derivation of R, then RdR = ΩR/R0

([Kun86, 1.21 (b)]).

Chapters 2 and 3 in [Kun86] describe differential algebras and universal extensions of differential
algebras. Here, we work with derivations, which are more relevant to our needs. These two
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languages can be translated to and from one another in most cases. The definition below is [Kun86,
1.24].

Definition 2.1.6. Let R and S be two R0-algebras and ρ ∶ R → S an R0-algebra morphism. Let
δ ∶ R →M be an R0-derivation of R and δ′ ∶ S →M ′ an R0-derivation of S. Then δ′ is called an
extension of δ if there exists an R-linear map ϕ ∶M →M ′ such that

R
ρ //

δ
��

S

δ′

��
M

ϕ //M ′

is commutative. An extension δ′ of δ is called universal if any other extensions ∆ ∶ S → N of δ can
be uniquely written as a specialization of δ′, i.e., there exists a unique S-linear map φ ∶M ′ → N

such that ∆ = φ ○ δ′.

The most important result about universal extensions of an R0-derivation δ ∶ R → RδR is that
they exist [Kun86, 3.20]. From the definition we see that the universal extension δ′ ∶ S →M ′ of δ
is unique up to canonical isomorphism. We write ΩS/δ for M ′ and call ΩS/δ the module of Kähler

differentials of S over δ. If δ is the trivial derivation, i.e., RδR = 0, then ΩS/δ = ΩS/R is the usual
module of Kähler differentials of S over R.

The module of Kähler differentials is finitely generated for affine R0-algebras. Finite generation
is important when we define the Jacobian ideal in Section 2.2. However, modules of Kähler
differentials are not necessarily finitely generated for power series rings over R0 (or more generally,
semianalytic K-algebras, see Definition 2.1.9). So we have the following definitions.

Definition 2.1.7. (i) An R0-derivation δ ∶ R → RδR of R is called finite if RδR is finitely
generated as an R-module.

(ii) d ∶ R →M is called universally finite if d is finite and each finite R0-derivation δ of R factors
through d ∶ R →M with respect to an R-homomorphism ([Kun86, 11.1]). If such d ∶ R →M

exists, then M is unique up to a canonical R-isomorphism. We write Ω̃R/R0
for M and called

it the universally finite module of differentials of R over R0.

(iii) Let ρ ∶ R → S be a homomorphism of R0-algebras and δ ∶ R → RδR a derivation of R/R0.
AnR0-derivation d ∶ S → N of S into an S-moduleN is called a universally finite ρ-extension

of δ, if the following hold:

(a) d is a ρ-extension of δ and finite (i.e., SdS finitely generated)

(b) If ∆ ∶ S → N ′ is an arbitrary finite ρ-extension of δ, then there is exactly one S-linear
map h ∶ N → N ′ with ∆ ∶= h ○ d.
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If the universally finite ρ-extension d ∶ S → N of δ exists, we write N ∶= Ω̃S/δ and call this
the universally finite module of differentials of S/δ. In case δ is the trivial derivation of R we
write Ω̃S/R instead of Ω̃S/δ ([Kun86, 11.4]).

The most important result here is that under mild assumptions, universally finite modules of
differentials exist. Explicitly, we have the following theorem ([Kun86, 12.5]).

Theorem 2.1.8. Let R be an R0-algebra and assume that R is noetherian. Let I be an ideal of R

and (̂−) the completion in the I-topology.

(i) If Ω is a finite module of differentials of R over R0, then Ω̃R̂/R0
exists and Ω̃R̂/R0

= Ω̂.

(ii) If ΩR/R0
is finite, then Ω̃R̂/R0

exists and Ω̃R̂/R0
= Ω̂R/R0

.

2.1.3 Structure of semianalytic algebras

In the definition below, the terminology in the first and the third parts (analytic and semianalytic)
is taken from [Kun86, Chapter 13].

Definition 2.1.9. Let R be a K-algebra where K is a field.

(i) R is called an analytic K-algebra, if there is a power series algebra P =KJx1, . . . , xnK such
that R is module-finite over P .

(ii) R is called an affine-analytic K-algebra, if there is a power series algebra P =KJx1, . . . , xnK
such that R is of finite type over P .

(iii) R is called a semianalytic K-algebra, if there is a power series algebra P = KJx1, . . . , xnK
such that R is essentially of finite type over P .

The key result here is the following proposition.

Proposition 2.1.10. [Kun86, 13.4] Any reduced semianalytic K-algebra R contains a unique

maximal analytic K-algebra A, i.e., all K-subalgebras of R that are analytic K-algebras are

contained in A. If A′ is an arbitrary analytic K-algebra with A′ ⊆ R such that R is essentially of

finite type over A′, then A is the integral closure of A′ in R.

For a reduced semianalytic K-algebra R we denote by A(R) the maximal analytic subalgebra
of R. If R is not reduced, such an algebra need not exist. If R is a domain, then A(R) is a local
domain, because A(R) is always a direct product of local rings. We also have that the K-algebra
maps between reduced semianalytic K-algebras are compatible with taking the maximal analytic
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K-subalgebra. That is, if ϕ ∶ R → S is a homomorphism of reduced semianalytic K-algebras, then
ϕ(A(R)) ⊆ A(S). Hence ϕ induces a K-homomorphism A(ϕ) ∶ A(R) → A(S) ([Kun86, 13.5]).

For each reduced semianalytic K-algebra R, let Ω̃R/K denote the universal R-extension of
Ω̃A(R)/K , the universally finite differential module of A(R) over K, whose existence is guaranteed
by [Kun86, 12.9]. If A′ is an arbitrary analytic K-algebra such that R is essentially of finite type
over A′, then by the transitive law for universal extensions, Ω̃R/K is also the universal R-extension
of Ω̃A′/K .

Remark 2.1.11. In [Kun86], Kunz uses the notion DK(R) to refer to the universal R-extension of
Ω̃A(R)/K . He uses ΩR/δ for any δ ∶ A→ AδA if R is not reduced and R is essentially of finite type
over A (note that in this case A(R) is not well-defined). Since we are only working with reduced
semianalytic algebras, there is no ambiguity in using Ω̃R/K .

We also need the definition of “analytic transcendence degree” of field extensions.

Definition 2.1.12. Let K be a field and X1, . . . ,Xn indeterminates over K. The field F ∶=
KLX1, . . . ,XnM will always denote the fraction field of the power series ring KJX1, . . . ,XnK.
Let L be a field extension of K.

• L is called semianalytic extension field of K, if there is a K-homomorphism F → L such that
L is finitely generated over F . If L is a finite extension of F , we call L an analytic extension

field of K.

• Let L be an analytic field extension of K. Suppose L is finite over F ⊆ L. Then n is called the
analytic transcendence degree of L over K, n ∶= aTr deg(L/K), and {X1, . . . ,Xn} is called
an analytic transcendence basis of L over K. The basis {X1, . . . ,Xn} is called separating,
if L is separable over F . L is called analytically separable over K, if L has a separating
analytic transcendence basis over K ([Kun86, 13.7]). Note that the number n above is an
invariant of the field extension L over K, as it is the Krull dimension of the maximal analytic
algebra A(L).

2.1.4 Primes in affine-analytic algebras

Next we want to analyze the primes in a reduced affine-analytic ring R. There are basically two
types of primes in affine-analytic algebras.

Definition 2.1.13. Let R be a reduced affine-analytic K-algebra. Let A ∶= A(R) and let JRad(A)
denote the Jacobson radical of A. In this chapter, a prime ideal Q in R is called

• special if Q + JRad(A)R is a proper ideal of R;
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• typical if Q + JRad(A)R = R is the whole ring.

Remark 2.1.14. Under the assumption of Definition 2.1.13, since A(R) is module-finite over some
complete local ring, A(R) is a product of several complete local rings, i.e., A(R) = A1 ×⋯ ×As.
Each Ai is a complete local domain and we call its maximal ideal mi. If we have a presentation

R = T /I where T =KJx1, . . . , xnK[z1, . . . , zm],

then each mi is radical of the image of (x1, . . . , xn) inAi. Thus, the Jacobson radical JRad(A(R)) =
m1 × ⋯ × ms is the radical of the image of (x1, . . . , xn) in A(R). Since for any prime ideal Q,
Q + JRad(A(R))R is a proper ideal if and only if Q + (x1, . . . , xn)R is a proper ideal, we may use
(x1, . . . , xn)R to detect the type of a prime ideal of R.

Note that a prime ideal Q is special if it is contained in a special maximal ideal, and special
maximal ideals are those ideals containing mR.

We aim to show that in the ring T = KJx1, . . . , xnK[z1, . . . , zm], special maximal ideals have
height equal to dimT while typical maximal ideals have height one less than dimT . For this
purpose, we need the following lemma.

Lemma 2.1.15. If (R,m) is an equidimensional local ring of dimension n, and f ∈ m is not in any

minimal prime, then Rf has dimension n − 1, and Rf is a Hilbert ring, i.e., every prime (hence,

every radical ideal) is an intersection of maximal ideals.

If in addition R is catenary, then all maximal ideals of Rf have height n − 1.

Proof. We first show that dimRf is of dimension n − 1. Since Rf is a localization of R, the
dimension cannot go up. So dimRf ⩽ dimR. If there is a prime chain of length n in Rf , the
preimage of it will be a prime chain of length n contained in m, which will imply that m has height
n + 1. So we have dimR < n. To see that dimRf = n − 1, extend f to be a system of parameters
f, f1, . . . , fn−1 inR. Let Q be a minimal prime of (f1, . . . , fn−1)R. Then f ∉ Q and QRf has height
n − 1.

To show thatRf is a Hilbert ring, we prove that any prime P inRf is an intersection of maximal
ideals in Rf . Equivalently, we show that the intersection of maximal ideals in Rf/P is zero. Let
P be the preimage of P in R. Then Rf/P = (R/P)f . We replace R by R/P , and then we aim to
show that the intersection of all maximal ideals in Rf is zero when R is a domain.

Let 0 ≠ g ∈ R be a non-unit in Rf . Extend fg to a system of parameters fg, g1, . . . , gn−1 for
R. Choose a minimal prime Q′ of (g1, . . . , gn−1). Then Q′ does not contain fg. Hence R/Q′ has
dimension 1. By the argument above, (R/Q′)f has dimension exactly one less than R/Q′. So
(R/Q′)f is a field. Therefore Rf/Q′Rf is a field. So Q′Rf is maximal, and does not contain g.
Hence, the intersection of all maximal ideals in Rf is zero.
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Given any maximal m′ ideal of Rf , it contains a minimal prime of R expanded to Rf . We can
kill that minimal prime and assume that we are in the domain case. LetM be the preimage of m′ in
R. Then f ≠ 0 in R/M. Hence dimR/M ⩾ 1.M is one of the maximal ideals that do not contain
f , so dimR/M = 1. If R is catenary, then htM= n − 1⇒ htm′ = n − 1.

Remark 2.1.16. By an example in [Nag75, Appendix A], there is a local domain R of dimension
3 that has a prime Q such that htQ = 1 and dim(R/Q) = 1. This provides a local domain of
dimension 3 with saturated chains of length 2 and of length 3. Thus R has a prime Q′ such that
htQ′ = 2 and dim(R/Q′) = 1. So if f ∈ m − (Q⋃Q′), then Rf has maximal ideals of height one
and of height 2. Therefore the “catenary” condition in Lemma 2.1.15 cannot be omitted.

Now we are ready to characterize the heights of typical and special maximal ideals.

Proposition 2.1.17. Let T = KJx1, . . . , xnK[z1, . . . , zm]. Then special maximal ideals in T have

height n +m = dim(T ), and typical maximal ideals in T have height n +m − 1.

Proof. Let Q be a maximal ideal of T . If Q is special, then we can kill m and Q/m is a maximal
ideal in T /m =K[z1, . . . , zm]. Since T is catenary, we have htQ = ht(Q/m) + htm = n +m.

If Q is typical, then there is some f ∈ m not in Q such that fa+ 1 ∈ Q. Let Q be the preimage of
Q in P . Then T /Q is a field finitely generated over P /Q. By the generalized Noether normalization
theorem, T /Q is module-finite over a polynomial ring over (P /Q)g. Then (P /Q)g must be a field
and T /Q is a finite extension of it. So QPg is a maximal ideal of Pg, which by Lemma 2.1.15, has
height n − 1. By the dimension formula, we have

htQ − htQ = tr deg(Frac(T )/Frac(P )) − tr deg((T /Q)/(PQ/QPQ)).

Since T /Q is finite extension of (P /Q)g, it is also finite extension of PQ/QPQ). Hence the
right-hand side is m − 0. So htQ = htQ+m = n − 1 +m.

Definition 2.1.18. Let R be a reduced affine-analytic K-algebra. Let {qi}1⩽i⩽s be the set of minimal
primes of R. Then R is called equiheight if one of the following conditions occur:

• If only one type of primes occurs (all are special or all are typical, see Definition 2.1.13), then
dimqi R = dimR for 1 ⩽ i ⩽ s.

• If both types of primes occur, then

dimqi(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

dimR if qi special

dimR − 1 if qi typical
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for 1 ⩽ i ⩽ s.

Proposition 2.1.19. Let R be a reduced affine-analytic K-algebra. Then R is equiheight if and

only if for any presentation R = T /I where T =KJx1, . . . , xnK[z1, . . . , zm] and I ⊆ T an ideal, I is

of pure height, i.e., all minimal primes of I have the same height.

Proof. Let {qi}1⩽i⩽s be the set of all minimal primes of R and let {Qi}1⩽i⩽s be the set of primes in
T such that Qi is the preimage of qi. Note that a prime in R is special if and only if its preimage in
T is special by Remark 2.1.14.

IfQi (hence, qi) is special, then it is contained in some special maximal ideal mi of T . Since T is
catenary and ht(mi) = dimT = n+m by Proposition 2.1.17, we have that dimqi R = dimT −htQi =
n +m − htQi.

If Qi is typical, then it is only contained in typical maximal ideals. By Proposition 2.1.17, we
have dimqi R = n +m − 1 − htQi.

Then both directions follow from these two formulas.

Remark 2.1.20. Note that Proposition 2.1.19 also implies that if a reduced affine-analytic K-algebra
R has a presentation T /I where T =KJx1, . . . , xnK[z1, . . . , zm] and I has pure height in T , then for
any other presentation R ≅ T ′/I ′ where T ′ =KJx′1, . . . , x′n′K[z′1, . . . , z′m′] and I ′ ⊆ T ′, the kernel I ′

has pure height in T ′ as well. This statement can also be proved directly by comparing two different
presentations. We can form the larger ring S = T Jx1, . . . , xn, x′1, . . . , x

′
n′K[z1, . . . , zm, z′1, . . . , z

′
m′]

and compare both presentations with the presentation S ↠ R. Then we can form S from T by
adjoining one variable at a time. So we assume that S has one more variable y than T , i.e., either
S =KJx1, . . . , xn, yK[z1, . . . , zm] or S = T [y]. Then since T ↠ R, we can choose f ∈ T such that
it maps to the same image as y. Then the kernel of S ↠ R is generated by (I, y − f)S. Since y − f
is not contained in any minimal prime of I , the new kernel I ′ = (I, y − f) is of pure height (one
larger than the pure height of I).

2.1.5 Height of ideals in regular rings

First we state Serre’s intersection theorem, see [Ser75, Chapitre V, B.6, Théorème 3].

Theorem 2.1.21 (Serre’s intersection theorem). Let A be a regular ring and P,Q be two prime

ideals in A such that P +Q is a proper ideal. Then we have

ht(P ) + ht(Q) ⩾ ht(P +Q).

We immediately see that
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Corollary 2.1.22. Let I, J be two ideals in a regular local ring A. Then we have

ht(I) + ht(J) ⩾ ht(I + J).

Proof. Choose P minimal over I such that ht(P ) = ht(I) and Q minimal over J such that
ht(Q) = ht(J). Since we are in the local case, the sum P +Q is contained in the maximal ideal of A.
By Theorem 2.1.21, ht(P )+ht(Q) ⩾ ht(P+Q). Since P+Q ⊇ I+J , we have ht(P+Q) ⩾ ht(I+J).
So ht(I) + ht(J) ⩾ ht(I + J).

The following theorem, implied by Serre’s complete intersection theorem, is well-known to
experts. Since we cannot find a solid source, we include a proof here.

Theorem 2.1.23. Let R be a noetherian regular ring and let I ⊆ R be an ideal. Let h = big ht(I).

Let R → S be a ring homomorphism between noetherian rings. If IS is a proper ideal, then

ht(IS) ⩽ h.

Before giving the proof of Theorem 2.1.23, we will need the following “Cohen factorization
theorem” ([AFH94, Theorem 1.1]).

Theorem 2.1.24 (Cohen factorization). Let ϕ ∶ R → S be a local ring map between noetherian

local rings. Then there exists a complete local ring T and two local ring maps τ ∶ R → T and

θ ∶ T → S such that

(i) ϕ = θ ○ τ and θ ∶ T ↠ S is a surjection,

(ii) τ is flat and T /mRT is regular where mR is the maximal ideal of R.

Such a decomposition is called a Cohen factorization.

Remark 2.1.25. Since the map τ in the Theorem 2.1.24 is flat and local, it is, in fact, faithfully flat.

Proof of Theorem 2.1.23. Suppose for contradiction that ht(IS) > h. Since IS ⊆ S is proper, there
is a minimal prime Q of IS in S such that ht(Q) = ht(IS). Then ht(ISQ) = ht(IS) = dim(SQ).
Since I will generate a Q-primary ideal in the completion, we see that ht(ISQ) = ht(IŜQ). We can
also kill a minimal prime of ŜQ and still get the same dimension. Then we may assume without
loss of generality that (S,Q) is a complete local domain. The contraction ideal m = Qc of Q in R is
a prime ideal containing I as IS ⊆ Q⇒ I ⊆ (IS)c ⊆ m. So there is a minimal prime P of I lies
in-between, i.e., I ⊆ P ⊆ m. And we have ht(P ) ⩽ h. Localizing at m does not change the height of
P , so we may replace R by Rm and P by PRm and assume without loss of generality that R → S is
a local map between local rings.
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By Theorem 2.1.24, there exists a map R → T ↠ S such that T is also regular and R → T is
faithfully flat. Then ht(PT ) = ht(P ) ⩽ h. Since S is a domain, the kernel of the map T ↠ S is
a prime ideal P ′. Note that the image of PT + P ′ is Q-primary in S. So ht(PT + P ′) − ht(P ′) =
ht(Q) > h. On the other hand, by Theorem 2.1.21, we have ht(PT ) + ht(P ′) ⩾ ht(PT + P ′). So
we have ht(PT ) > h, which contradicts the fact that ht(PT ) ⩽ h.

2.2 Regularity and Jacobian Ideals

2.2.1 Absolute regularity

In [Kun86], Kunz discusses absolute regularity for analytic algebras. Here we extend the notion
to affine-analytic algebras. First we have the following definition.

Definition 2.2.1. Every analytic K-algebra A is a finite extension of a power series algebra
KJX1, . . . ,XdK ⊆ A. We call KJX1, . . . ,XdK↪ A a Noether normalization of A.

The following is a modification of [Kun86, 14.10].

Definition 2.2.2. Let R be a reduced affine-analytic algebra over a field K and let L be a field
extension of K. A constant field extension RL of R with L is an affine-analytic L-algebra RL for
which there is a local K-homomorphism R → RL satisfying the following universal property: if
β ∶ R → S is any local K-homomorphism into an affine-analytic L-algebra S, then there is exactly
one L-homomorphism γ ∶ RL → S such that β = γ ○ α.

The existence is easily shown: Let A ∶= A(R) be the unique maximal analytic K-subalgebra of
R. Then we have a Noether normalization KJX1, . . . ,XdK ↪ A. For any field extension L of K,
then tensor product RL ∶= LJX1, . . . ,XdK⊗KJX1,...,XdK R is the constant field extension of R with L.
Alternatively, since the constant field extension of analytic algebras is constructed in the paragraph
below [Kun86, 14.10], we can form AL and then RL ∶= AL ⊗A R.

We extend results in [Kun86, 14.11] to the case of affine-analytic rings. For this purpose, we
need the following lemma

Lemma 2.2.3. Let D be a domain affine over the complete local domain (C,m,K) where K ⊆ C.

Then

• If mD ≠D, then dim(D) = dim(C) +Tr degFrac(C)(Frac(D));

• if mD =D, then dim(D) = dim(C) +Tr degFrac(C)(Frac(D)) − 1.
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Proof. Throughout the proof, we always let Q be a maximal ideal of C and let P be its contraction
in C. Then by dimension formula,

ht(Q) − ht(P ) = Tr degFrac(C)(Frac(D)) −Tr degκP (C)(κQ(D)). (2.2.1)

Suppose that mD is a proper ideal. Then on the one hand,

(2.2.1)⇒ ht(Q) ⩽ dim(C) +Tr degFrac(C)(Frac(D)).

On the other hand, since mD is a proper ideal, we can choose Q maximal in D containing mD.
Then P = m and ht(P ) = dim(C). Since D/Q is affine over C/P ≅K, the transcendental degree
of κQ(D) over κP (C) is zero. So by (2.2.1), we have ht(Q) = dim(C) +Tr degFrac(C)(Frac(D)).
So the first bullet point is proved.

Now we assume that mD =D. Then we claim that P is of dimension 1, i.e., of height dim(C)−1.
Since mD =D, there is some x in m that extends to a unit in D. So Q avoids this x, which implies
that P avoids it as well. Therefore P ≠ m. By the generalized Noether normalization theorem, D/Q
is module-finite over (C/P )f for some f ∈ C/P . Since D/Q is a field, we deduce that (C/P )f is a
field. But C/P is not a field. Hence, P has height dimC − 1 and the claim is proved.

By (2.2.1), ht(Q) = dim(C) − 1 +Tr degFrac(C)(Frac(D)). This is true for any maximal ideal
in D. Hence dimD = dim(C) − 1 +Tr degFrac(C)(Frac(D)).

Proposition 2.2.4. Let R be a reduced affine-analytic K-algebra and let A ∶= A(R). Let

KJX1, . . . ,XdK↪ A

be a Noether normalization of A, and L/K a field extension.

(i) For any ideal I of R, (R/I)L = RL/IRL.

(ii) RL is faithfully flat over R.

(iii) dimRL = dimR.

(iv) If R is equiheight (Definition 2.1.18), so is RL.

(v) For any q ∈ Spec(R) there is a p ∈ Spec(RL) such that dimpRL ⩾ dimqR.

(vi) Ω̃RL/L ≅ RL ⊗R Ω̃R/K .

Proof. 2.2.4.(i): Let J = I ∩A. Then by [Kun86, 14.11(b)], we have (A/J)L = AL/JAL. Since
A/J = A(R/I), we have

(R/I)L = (A/J)L ⊗A/J (R/I) = (AL/JAL) ⊗A/J (R/I) = AL ⊗A (R/I) = RL/IRL.
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2.2.4.(ii): Since LJX1, . . . ,XdK is faithfully flat over KJX1, . . . ,XdK, the base-changed map
R → RL is faithfully flat as well.

2.2.4.(iii): Let {qi}1⩽i⩽s be the set of minimal primes of R. Then ∩sj=1qj = 0. Hence ∩sj=1qjRL =
0. So the dimension of RL is the supremum of the dimensions of RL/qjRL ≅ (R/qj)L. So we can
base change to R/qi for some i without changing dimR and dimRL. Now we assume that R is
a domain, A0 = KJx1, . . . , xnK ⊆ R and B0 = LJx1, . . . , xnK. Then RL = R ⊗A0 B0. By (2), we
know that R ↪ RL and dimRL ⩾ dimR. So we only need to show that dimRL ⩽ dimR. Note that
nonzerodivisors on R are also nonzerodivisors on RL. Hence RL is R-torsion free. If p is a minimal
prime of RL, then p ∩R = 0. Choose p minimal such that dimRL = dimRL/p. Write R′ = RL/p
and C0 = B0/(p ∩B0). We have R ↪ R′ and A0 ↪ C0. Since R generates RL over B0, it likewise
generates R′ over C0. So we can choose a (finite) set of elements in R which will be a transcendence
basis for Frac(R′) over Frac(C0). Then the same set of elements must be algebraically independent
over Frac(A0). Suppose that this finite set has t elements. Then

dim(R) ⩾ dim(A0) + t − εA0,R (by Lemma 2.2.3)

= dim(B0) + t − εA0,R

⩾ dim(C0) + t − εA0,R

⩾ dim(C0) + t − εC0,R′ = dim(R′)

where εA0,R is 1 if (x1, . . . , xn)R = R and 0 otherwise. Note that if εA0,R = 1 then εC0,R′ = 1. So
this is proved.

2.2.4.(iv): Write R = T /I where T = KJx1, . . . , xnK[z1, . . . , zm]. Then by Proposition 2.1.19,
we assume that I has pure height h. Therefore by Lemma 2.2.5, IT ′ has pure height h as well,
where T ′ = T Jx1, . . . , xnK[z1, . . . , zm]. Since RL = T ′/IT ′, we conclude that RL is equiheight.

2.2.4.(v): Let m be a maximal ideal in R such that dimmR = dimqR. There is a prime ideal m′

in RL lying over m. Since Rm → (RL)m′ is still faithfully flat, we have

dimm′ RL ⩾ dim(RL)m′ ⩾ dimRm = dimmR = dimqR.

2.2.4.(vi): Since the universal finite module of Kähler differentials is calculated as the cokernel
of the Jacobian matrix, the conclusion follows directly.

Lemma 2.2.5. Let T be flat over S and I ⊆ S a proper ideal such that all minimal primes have

height h. If IT ≠ T (this is automatic when S → T is faithfully flat), then all minimal primes of IT

have the same height h.

Proof. Let Q be a minimal prime of IT in T , and let P be its contraction in S. So SP → TQ is a
faithfully flat map. Since Q is minimal over IT , TQ/ITQ has dimension zero. By base change, this
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ring is faithfully flat over SP /ISP . So SP /ISP has dimension zero. Hence, P is minimal over I and
therefore it has height h. Since dim(TQ) = dim(SP ) + dim(TQ/PTQ) and TQ/ITQ ↠ TQ/PTQ
have dimension zero, we conclude that dim(TQ) = dim(SP ) = h.

We generalize the definition of absolute regularity [Kun86, 14.12] to the affine-analytic case.

Definition 2.2.6. An affine-analytic K-algebra R is called absolutely regular at q ∈ Spec(R), if for
any field extension L/K and any p ∈ Spec(RL) with p ∩R = q the local ring (RL)p is regular.

The notion of absolute regularity is equivalent to the notion of regularity when K is of charac-
teristic 0.

We also define absolute reducedness as follows.

Definition 2.2.7. An affine-analytic K-algebra R is called absolutely reduced, if for any field
extension L/K, RL is reduced.

A affine-analytic K-algebra R is absolutely reduced if and only if RP is absolutely regular for
any minimal prime P .

2.2.2 Jacobian ideals

Let R be a ring.

Definition 2.2.8 (Fitting ideals). For any finitely presented R-module M , let Rm
(aij)Ð→ Rn →M be

a presentation of M . The ith fitting ideal is the ideal generated by the minors of size n − i of the
matrix (aij).

The Fitting ideals do not depend on the choice of generators and relations of M . Here, we also
use the convention that the ith fitting ideal is the whole ring R if n − i ⩽ 0, and the zero ideal if
n − i > min{n,m}. For more about Fitting ideals, [Kun86, Appendix D] is a good reference.

Let S be an R-algebra and δ ∶ R → RδR be a derivation such that ΩS/δ is a finitely presented
S-module. We have the following definition.

Definition 2.2.9. [Kun86, 10.1] The ith Fitting ideal of ΩS/δ

Ji(S/δ) ∶= Fi(ΩS/δ)

is called ith Jacobian ideal of S/δ. In case δ is the trivial derivation of R, we write Ji(S/R) for
Ji(S/δ).

Clearly, we have
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Proposition 2.2.10. Under the assumption of the definition above

(i) J0(S/δ) ⊆ J1(S/δ) ⊆ J2(S/δ) ⊆ ⋯.

(ii) Ji(S/δ) = S for i ⩾ µ(ΩS/δ).

Definition 2.2.11. If S is a finitely generated K-algebra where K is a field, then the Jacobian

ideal JR/K is defined to be the first nonzero Fitting ideal of ΩS/K , i.e., JR/K = Jr(R/K) if
J0(R/K) = ⋯ = Jr−1(R/K) = (0) and Jr(R/K) ≠ (0).

Proposition 2.2.12. Let R be an A-algebra that is essentially of finite type over A where A is

noetherian and universally catenary. Suppose that we have a presentation R =W −1(T /I) where

T = A[x1, . . . , xn], I ⊆ T an ideal and W a multiplicatively closed subset of T disjoint from I . For

a prime ideal q ∈ Spec(R), let Q be the preimage of q in T (then, q ∩W = ∅) and q ∶= Q ∩A. We

let JR/A be the Jacobian matrix. Then

(i) (†) ∶ rankq(JR/A) ⩽ htQ(qT + I) − ht(q). R is smooth over A at q if and only if Aq → Rq is

flat and equality holds in (†). In this case, we also have

htQ(qT + I) − ht(q) = rankq(JR/A) = htQ(I) = µQ(I).

(ii) Assume, in addition, that R is reduced, A is regular and I ∩A = (0). Then rankq(JR/A) ⩽
htQ(I). If we assume furthermore that R is generically smooth over A, then JR/A =
Jn−big ht(I)(R/A).

where notation is from Definition 2.1.1.

Proof. Let R′ = T /I and q′ be the preimage of q in R′. Then R′
q′ ≅ Rq, and any statement about Rq

can be proved using the affine A-algebra R′ and the prime ideal q′. Hence, we may replace R by R′

and q by q′ without affecting anything.
2.2.12.(i): Since everything here is local, we can work over the field κq(A). Then [Kun86,

7.14] shows that µq(ΩR/A) ⩾ dimq(κq(A) ⊗A R). Since rankq(JR/A) = n − µq(ΩR/A), we have
rankq(JR/A) ⩽ n − dimq(κq(A) ⊗A R).

Since κq(A) ⊗A R ≅ κA ⊗A T /I(κA ⊗A T ), we have

dimq κq(A) ⊗A R = dimQ κA ⊗A T /I(κA ⊗A T )
= n − htQ(I(κA ⊗A T ))
= n − htQ(I(T /qT ))
= n − htQ(qT + I) + htQ(qT )
= n − htQ(qT + I) + ht(q).
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So rankq(JR/A) ⩽ htQ(qT + I) − ht(q).
By [Kun86, 8.1], we know that R is smooth over A at q if and only if Aq → Rq is flat and

µq(ΩR/A) ⩽ dimqRq/qRq. If any of these equivalent conditions is satisfied, then ITQ is generated
by a TQ-regular sequence of length dim(TQ/qTQ) − dim(Rq/qRq).

We note that dimTQ/qTQ = dimTQ − ht(qTQ) = ht(Q) − htQ(qT ) = ht(Q) − ht(q). Since
Rq/qRq ≅ TQ/(I+pT )TQ, we have dimRq/qRq = dimTQ−ht((qT +I)TQ) = ht(Q)−htQ(qT +I).
So when R is smooth over A at q, we know that µQ(I) = htQ(I) = htQ(qT + I) − ht(q). In this
case, since ITQ is generated by a TQ-regular sequence, we have rankq(JR/A) = htQ(I).

2.2.12.(ii): By 2.2.12.(i), we know that rankq(JR/A) ⩽ htQ(qT + I) − ht(q).
Since A is regular, so is T = A[x1, . . . , xn] and its localization TQ. By Corollary 2.1.22, we have

ht((qT + I)TQ) ⩽ ht(qTQ) + ht(ITQ). Note that qT + I ⊆ Q, so ht((qT + I)TQ) = htQ(qT + I).
Since qT is a prime of T contained in Q, we have ht(qTQ) = htQ(qT ) = ht(qT ) = ht(q). So

htQ(qT + I) ⩽ ht(q) + htQ(I) ⇒ htQ(qT + I) − ht(q) ⩽ htQ(I).

Hence, we have rankq(JR/A) = htQ(qT + I) − ht(q) ⩽ htQ(I).
To prove the second statement, we need to show that the maximal rank, i.e., big ht(I) can be

achieved. Let q be a minimal prime of R such that htQ(I) = big ht(I) = ht(Q) where Q is the
preimage of q in T . Since I is radical, we have ITQ = QTQ. Let q ∶= Q ∩A. Then

qAq = QTQ ∩Aq = ITQ ∩Aq = (I ∩A)Aq = (0).

Since A → R is generically smooth, we know that Aq → Rq is smooth. Hence, in this case,
rankq(JR/A) = htQ(I) = big ht(I). Therefore Jn−big ht(I)(R/A) ≠ (0).

On the other hand, any ith Jacobian ideal with i < n − big ht(I) must be zero. If there is some
i0 < n − big ht(I) such that Ji0(R/A) ≠ (0), then there is some size n − i0 minor nonzero, call
it ∆. Since R is reduced, ∆ is not nilpotent. So there is some minimal prime q′ of R such that
∆ ∉ q′. Then rankq′(JR/A) ⩾ n − i0 > big ht(I) ⩾ htQ′(I) where Q′ is the preimage of q′ in T ,
which violates the first inequality.

Corollary 2.2.13. Let R be a K-algebra that is essentially of finite type over K, where K is a

perfect field. Suppose that we have a presentation R =W −1T /I where T = K[x1, . . . , xn], I ⊆ T
an ideal and W ⊆ T a multiplicatively closed subset. For a prime ideal q ∈ Spec(R), let Q be the

preimage of q in T . We let JR/K be the Jacobian matrix. Then

(i) rankq(JR/K) ⩽ htQ(I) and R is smooth over K if and only if the equality holds.

(ii) R is regular at q if and only if JdimT−htQ(I)(R/K) /⊆ q where Q is the preimage of q in T .
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(iii) The Jacobian ideal is JR/K = JdimT−big ht(I)(R/K). If R is equidimensional, then

big ht(I) = ht(I) and dimR = dimT − ht(I).

So the Jacobian ideal JR/K = JdimR(R/K).

(iv) Let q1, . . . ,qt be the set of all minimal primes of R and let Qi be the preimage of qi in T

(1 ⩽ i ⩽ t). Then

Sing(R) = V (
t

∏
i=1

(JdimT−ht(Qi)(R/K) + qi)) = V (
t

⋂
i=1

(JdimT−ht(Qi)(R/K) + qi)) .

If R is equidimensional, then the right-hand side of the above equality simplifies to V (JR/K),

and we have Sing(R) = V (JR/K).

where notation is from Definition 2.1.1.

Proof. For 2.2.13.(i), let A =K in Proposition 2.2.12. Then q = 0 and the equality follows.
For 2.2.13.(ii), R is smooth at q if and only if rankq(JR/K) = htQ(I) if and only if there is a

size htQ(I) minor of JR/K outside q if and only if Jn−htQ(I)(R/K) /⊆ q.
For 2.2.13.(iii), the first statement follows directly from Proposition 2.2.12.(ii) and the fact that

any field extension of a perfect field is separable, hence, geometrically regular ([Kun86, 5.18, 7.13]).
The second statement follows from the first one.

For 2.2.13.(iv), let p ∈ Sing(R). By 2.2.13.(iii), we have Jn−htP (I)(R/K) ⊆ p where P is the
preimage of p in T . Suppose that qi is the minimal prime of R such that Qi is contained in P and
ht(Qi) = htP (I). Then p contains both qi and Jn−htP (I)(R/K) = Jn−ht(Qi)(R/K), which shows
that qi +Jn−ht(Qi)(R/K) ⊆ p. So ⊆ is shown.

On the other hand, suppose that p is not in the right-hand side of the equality. If p contains a
minimal prime qi, then p cannot contain Jn−ht(Qi)(R/K). This is true for any minimal prime that
p contains. So there is some qi such that ht(Qi) = htP (I) and qi ⊆ p. Then p does not contain
Jn−htP (I)(R/K), so R is regular at p, which shows the ⊇ direction.

The last statement about equidimensional rings comes down to the following computation: let
h = big ht(I) = ht(I), then

t

⋂
i=1

(JdimT−ht(Qi)(R/K) + qi) =
t

⋂
i=1

(Jn−h(R/K) + qi)

= (
t

⋂
i=1

qi) +Jn−h(R/K)

= (0) + JR/K .
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Example 2.2.14. Let R = K[x, y, z]/(xz, yz) as an example. We have T = K[X,Y,Z], I =
(XZ,Y Z) with T → R sending X ↦ x,Y ↦ y,Z ↦ z. We know that ht(I) = ht((z)) =
1,big ht(I) = ht((x, y)) = 2. The Jacobian matrix JR/K is computed to be

⎛
⎝
z 0 y

0 z x

⎞
⎠
.

Let p0 = (x, y)R and P1 = (z)R be the minimal primes of R and let P0 = (X,Y )T , P1 = (Z)T be
their preimages in T respectively. Then we have J3−2(R/K) = (xz, yz, z2)R and J3−1(R/K) =
(x, y, z)R.

The Jacobian ideal, by Corollary 2.2.13.(ii), is J3−2(R/K) = (z2, xz, yz), which does not de-
fine the singular locus because (z) ∈ V (JR/K) butR(z) ≅K(Z) is regular. By Corollary 2.2.13.(iii),
we have

(p0 +J1(R/K)) ∩ (p1 +J2(R/K)) = (x, y, z2) ∩ (x, y, z) = (x, y, z2).

So the singular locus of R is V ((x, y, z2)) = V ((x, y, z)) = {(x, y, z)}.

Remark 2.2.15. In fact, when R defined in Corollary 2.2.13 is not equidimensional, we always have
a proper containment

Sing(R) ⫋ V (JR/K).

The containment part is easy as for any p ∈ Sing(R), by Corollary 2.2.13.(iv), we have

p ⊇
t

⋂
i=1

(JdimT−ht(Pi)(R/K) + pi)

⊇
t

⋂
i=1

(JdimT−big ht(I)(R/K) + pi) =
t

⋂
i=1

(JR/K + pi)

⊇ JR/K .

On the other hand, there is some minimal prime q of R such that ht(Q) < big ht(I) where Q is the
preimage of q in T . Then since R is regular at q, we know that µq(ΩR/K) = dimT − htQ(I) = n −
ht(Q). By [Kun86, 10.6], we have Jn−ht(Q)−1(R/K) ⊆ q and Jn−ht(Q)(R/K) /⊆ q. Since ht(Q) <
big ht(I) ⇒ ht(Q) + 1 ⩽ big ht(I), we have JR/K = Jn−big ht(I)(R/K) ⊆ Jn−ht(Q)−1(R/K). So
q ∈ V (JR/K) but R is regular at q.

We generalize [Kun86, 14.13] to the affine-analytic case.

Theorem 2.2.16. Let R be a reduced affine-analytic K-algebra where K is a field. Suppose that

we have a presentation R = T /I where T = KJx1, . . . , xnK[z1, . . . , zm]. Write A = KJx1, . . . , xnK.
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For a prime ideal q ∈ Spec(R), let Q be the preimage of q in T . We let JR/K be the Jacobian matrix

from Ω̃R/K . Then the following are equivalent:

(i) R is absolutely regular at q.

(ii) (Ω̃R/K)q is a free Rq-module of rank n +m − htQ(I).

(iii) µq(Ω̃R/K) ⩽ n +m − htQ(I).

where notation is from Definition 2.1.1.

Proof. Let R′ = T /I , and let q′ be the preimage of q in R′. Since R′
q′ ≅ Rq. Note that R may not be

reduced. But R is still a finitely generated affine algebra over A. Since both [Kun86, 13.15, 13.16],
which we use in the following proof, work for the setting whenever R is essentially of finite type
over A, we will replace R and q by R′ and q′ respectively and still write them as R and q.

Let q = Q ∩A. We note that R/q ≅ T /Q. Since T /Q is finitely generated over A/q, we know
that A(κq(R)) is module-finite over A/q. Let F ∶= Frac(A(κq(R))). Then aTr deg(F /K) =
dimA/q = n − ht q.

Since T is finitely generated over A, by the dimension formula, we have htQ − ht q = m −
Tr deg(κq(R)/F ) since κq(R) ≅ Frac(T /Q).

So we can write

dim(Rq) + aTr deg(F /K) +Tr deg(κ(q)/F )
= dimRq + (n − ht q) + (m − htQ + ht q)
= n +m + dimRq − htQ

= n +m + (dimTQ − htQ I) − dimTQ

= n +m − htQ(I).

To prove the equivalence, we simply make the following modifications to the proof of [Kun86,
14.13]

• The reference to [Kun86, 14.11] is replaced by references to Proposition 2.2.4.

• The reference to [Kun86, 13.15, 13.16] for computing the rank is replaced by the calculation
above and the rank is replaced by n +m − htQ(I).

and the same proof works.

Corollary 2.2.17. Using the notation and the assumption of Theorem 2.2.16, we have

(i) rankq(JR/K) ⩽ htQ(I) and R is smooth over K if and only if the equality holds.
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(ii) R is regular at q if and only if JdimT−htQ(I)(R/K) /⊆ q where Q is the preimage of q in T .

(iii) The Jacobian ideal JR/K = JdimT−big ht(I)(R/K). If I has pure height h, then big ht(I) =
ht(I) = h. So the Jacobian ideal JR/K = JdimT−h(R/K).

(iv) If I does not have pure height, then AbsSing(R) ⊆ V (JR/K). If I has pure height, then

AbsSing(R) = V (JR/K). Here AbsSing is the “absolute singular locus”, which coincides

with the (usual) singular locus if char(K) = 0.

Proof. The proof is similar to the proof of Corollary 2.2.13 with the reference to Proposition 2.2.12
replaced by Theorem 2.2.16.

2.3 Test Elements in Characteristic p

The purpose of this section is to generalize the following theorem ([HH99, Corollary 1.5.5]) to
the complete case. We aim to prove the following theorem.

Theorem 2.3.1. Let K be a field of characteristic p and let R be a d-dimensional complete K-

algebra that is equidimensional and absolutely reduced over K. Then the Jacobian ideal J (R/K)
is contained in the test ideal of R, and remains so after localization and completion.

Following [HH02, Theorem 3.4], we want to state a more general version of [HH99, Corollary
1.5.4].

Proposition 2.3.2. LetA be a regular domain of characteristic p. LetR be a module-finite extension

of A such that it is torsion-free and generically étale over A . Then every element c of JR/A is such

that cR1/q ⊆ A1/q[R] for all q = pe, and, in particular, cR∞ ⊆ A∞[R]. Thus, if c ∈ JR/A ∩R○, it is a

completely stable test element.

Proof. If we replace the reference to the usual Lipman-Sathaye theorem with the reference to
the “generalized Lipman-Sathaye Jacobian theorem” ([Hoc02b, Theorem 3.1]), the same proof in
[HH99, Corollary 1.5.4] works.

We are ready to prove the main theorem, Theorem 2.3.1.

Proof. Since R is an analytic K-algebra, we assume that R = KJx1, . . . , xnK/(f1, . . . , fr) is a
presentation of R as homomorphic image of a power series ring. Then the (n − d) × (n − d) minors
of the Jacobian matrix (∂fi/∂xj) generate the Jacobian ideal J (R/K).

By Proposition 2.2.4, we may assume without loss of generality that K is infinite and perfect.
(Take, for example, the algebraic closure of K). By Cohen’s structure theorem, we can write
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R =KJX1, . . . ,XnK/I and let xi be the image of Xi in R. The calculation of the Jacobian ideal is
independent of the choice of coordinates, so we are free to let GLn(K) acts on the set of variables.

By the discussion [Kun86, 12.14] we know that the universal finite differential module Ω1
R/K

=
Ω1
KJX1,...,XnK/K/(I,dI). In particular, these dxi generate the differential module. The total quotient

ring Q(R) is a finite product of analytically separable field extensions of K by [Kun86, Theorem
13.10]. By the proof of the same theorem, we can modify the generators dx1, . . . ,dxn to get
a sequence of elements x′1, . . . , x′n such that x′1, . . . , x

′
d form a system of parameters of R and

dx1, . . . ,dxd form a basis for Ω1
R/K

.
Then there is a Zariski dense open subset U of GLn(K) such that if we act on the set of variables

by an element from U and choose any d of the (new) indeterminates, then the two conditions listed
below:

1. The set of d elements form a system of parameters for R.

2. Let A be the complete regular ring generated over K by these d elements. Then R is
generically smooth over A.

By a general position argument we see that there is a Zariski open subset of GLn(K) such that
the first condition is satisfied. The second condition is satisfied since the differential of any linear
combination of x′1, . . . , x′n is the same linear combination of their differentials.

Now suppose that a suitable change of coordinates has been made. For any choice of d of these
elements, say x′1, . . . , x

′
d, let A be the regular local ring KJx′1, . . . , x′dK. Then R is module-finite

over A by the general position argument, and the Jacobian ideal JR/A is generated by the (n − d)
size minors of the remaining n − d variables. Since R is equidimensional and reduced, it is likewise
torsion-free over A. It is generically étale because of the general position of the variables. Then
Proposition 2.3.2 finishes the proof.

Theorem 2.3.3. Let R be a semianalytic K-algebra that is the localization of a reduced equiheight

affine-analytic K-algebra where K is a field of characteristic p. Then the Jacobian ideal J (R/K)
is contained in the test ideal of R.

Proof. We can write R =W −1T /I where T =KJx1, . . . , xnK[z1, . . . , zm] and I is of equiheight in
T . Suppose that we have a counterexample: there is some element u ∈ R and some ideal J ∈ R such
that u ∈ J∗ but δu ∉ J for some δ ∈ J (R/K). We can choose a maximal ideal m of R such that
both u ∈ J∗ and δu ∉ J still hold in Rm. Then we continue to have these two hold in R̂m, the m-adic
completion of Rm.

Since Rm is reduced, equidimensional and excellent, so is R̂m. Let n be the preimage of m
in T . Then IT̂n is of pure height dim T̂n − dim R̂m = dimTn − dimRm. Since ΩRm/K = ΩRm/K[Rp]

is complete. We have ΩR̂m/K = ΩRm/K = (ΩR/K)m. Hence the Jacobian ideal J (Rm/K) =
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J (R/K)Rm expands to the Jacobian ideal J (R̂m/K). So δ ∈ J (R̂m/K). Since we also have
u ∈ (JR̂m)∗, we conclude that δu ∈ JR̂m by Theorem 2.3.1, which is a contradiction!

2.4 Definition of Tight Closure in Equal Characteristic 0

There are several ways to define tight closure in equal characteristic 0. We focus here on K-tight
closure and on small equational tight closure, which is the case when K = Q. The tight closure gets
larger and the test ideal gets smaller if the field K gets larger. These are the simplest notions to
define and there does not appear to be much motivation to use more complicated notions.

In this section, we briefly introduce the definition of K-tight closure in equal characteristic 0.
We usually omit the reference to K in the definition. We start with affine K-algebras, then we pass
to noetherian K-algebras. In the case K = Q, this is called the small equational tight closure.

2.4.1 Tight closure for affine algebras over fields of characteristic 0

Let R be an affine K-algebra where K is a field of characteristic 0. Let N ⊆ M be finitely
generated R-modules and u ∈M an element in the module. We want to “descend” the data over
R, i.e., the quintuple (K,R,N,M,u), to some finitely generated Z-subalgebra A of K. Roughly
speaking, the descent data for the quintuple from R to A is also a quintuple (A,RA,NA,MA, uA)
such that when tensored with K over A, we recover the original quintuple. The formal definition
below is taken from [HH99, (2.1.2) Descent data].

Definition 2.4.1. Let a quintuple (K,R,M,N,u) be defined as above. By descent data for this
quintuple, we mean a quintuple (A,RA,NA,MA, uA) satisfying the following conditions:

(i) A is a finitely generated Z-subalgebra of K.

(ii) RA is a finitely generated A-subalgebra of R such that the inclusion RA ⊆ R induces an
isomorphism of RK with R. Moreover, RA is A-free.

(iii) MA,NA are finitely generated A-submodules of M,N respectively such that NA ⊆MA and
all of the modules MA,NA,MA/NA are A-free. Moreover, the diagram below

NA
� � //
� _

��

MA� _

��
N �
� //M

⇒ NA ⊗AK �
� //

≅

��

MA ⊗AK
≅

��
N �
� //M

as R-modules.

(iv) The element u ∈M is in MA and u = uA.
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The most important fact is that descent data do exist ([HH99, (2.1.3) Discussion: the existence
of descent data.]), and in fact there are a lot of them. We actually have R = limÐ→B

RB where B runs
through all finitely generated Z-subalgebras with A ⊆ B ⊆K and RB is the descent of R. Similarly
we have M = limÐ→B

MB and N = limÐ→B
NB ([HH99, Proposition 2.1.9]). Let us give an example to

illustrate this definition.

Example 2.4.2. Let R = Q[x, y, z]/(x2/2 + y3/3 + z5/5) and K = Q. Then we can take A to
be Z[1/2,1/3,1/5]. Therefore x2/2 + y3/3 + z5/5 makes sense in A[x, y, z] and we can form
RA = A[x, y, z]/(x2/2 + y3/3 + z5/5). In fact, take B to be any finitely generated A-algebra such
that A ⊆ B ⊆ Q, then RB ∶= RA ⊗A B will be a descent of R to B.

We give the definition of tight closure on a finitely generated Z-algebra A below ([HH99,
(2.2.2)]).

Convention 2.4.3. For a finitely generated Z-algebra A, a property P holds for almost all µ ∈
Max Spec(A) if there is some open dense subset U of Max Spec(A) such that P holds for all µ ∈ U .
Let Q be a class of rings (e.g., all domains). By “for almost all rings in Q that A maps to” we mean
that “there is an element a ∈ A such that for all rings in Q that Aa maps to.”

Definition 2.4.4 (Affine case). Let A be a finitely generated Z-algebra. Let MA be an A-module
and NA ⊆MA a submodule. We say that uA ∈MA is in (NA)∗/AMA if for almost all (Convention 2.4.3)
µ ∈ Max Spec(A), uκ ∈ ⟨Nκ⟩∗Mκ

where κ = A/µ.

Based on the affine case, we define the tight closure for a finitely generated K-algebra R as
follows:

Definition 2.4.5 (Finitely generated K-algebra). Let R be a finitely generated K-algebra and let
N ⊆ M be R-modules. We say that u ∈ M is in the tight closure of N∗K

M if there exists descent
data (A,RA,MA,NA, uA) for (K,R,M,N,u) such that uA ∈ (NA)∗/AMA over RA in the sense of
Definition 2.4.4.

2.4.2 Test elements in the affine case

We want to generalize both Theorem 2.4.9 and Corollary 2.4.10 in [HH99] to the non-domain
case.

Proposition 2.4.6. Let A be a finitely generated Z-domain with fraction field F , and let RA
containing A be a finitely generated A-algebra. Suppose that RA is module-finite over a regular

ring TA and that RF is geometrically reduced. Then the nonzero elements in the Jacobian ideal

J (RA/TA) are universal test elements for A → RA in the sense of [HH99, Definition 2.4.2].
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Proof. Localize at one element of A○ so that A is regular, A → TA is smooth and also so that RA is
A-free. For almost all (Convention 2.4.3) fields L to which A maps, RL is geometrically reduced
([HH99, (2.3.6)b]). If follows that for almost all (Convention 2.4.3) regular domains Λ, RΛ is
geometrically reduced and the extension TΛ ⊆ RΛ is module-finite. Now the result is immediate
from Proposition 2.3.2

Corollary 2.4.7. LetA be a finitely generated Z-domain with fraction fieldF , and letRA containing

A be a finitely generated A-algebra. Suppose that RF is geometrically reduced and d-dimensional.

Then the nonzero elements in the Jacobian ideal J (RA/A) are universal test elements for A → RA

in the sense of [HH99, Definition 2.4.2].

Lemma 2.4.8. Let A be a finitely generated Z-domain and let RA containing A be a finitely

generated A-algebra. Suppose that IA ⊆ RA is an ideal and uA ∈ RA is an element. If uκ ∈ IARκ

for almost all (Convention 2.4.3) κ ∈ Max Spec(A), then uA ∈ IA.

Proof. Assume for contradiction that uA ∉ IA. Consider the RA-module (IA + uA)/IA. By
assumption it is a finitely generated nonzero module. By [HR74, Lemma (8.1)] we can localize at
one element of A to make it free. Hence its rank can be checked by base change to any Aκ. Then
we conclude that it has rank 0, i.e., it is a zero module. So we have uA ∈ IA.

By Convention 2.1.4, in order to show that some element is a test element, we will show that it
multiplies the tight closure of any ideal in the ring back to the ideal.

Theorem 2.4.9. Let R be a reduced finitely generated equidimensional K-algebra of Krull dimen-

sion d. Then J (R/K) is contained in the test ideal.

Proof. We write R =K[x1, . . . , xn]/(f1, . . . , fr). Then (f1, . . . , fr) has pure height n − d, and the
Jacobian ideal J (R/K) is generated by the size (n − d) minors of the Jacobian matrix. Let δ be
one of the minors.

Let I be an ideal of R and let u ∈ I∗K . Let A be the finitely generated Z-subalgebra of K such
that all polynomials of f1, . . . , fr and all size (n − d) minors of the Jacobian matrix are defined in
A[x1, . . . , xn]. Localizing at finitely many nonzero elements (equivalently, one nonzero element)
of A, we can make (A,RA = A[x1, . . . , xn]/(f1, . . . , fr), IA, uA) a descent of (K,R, I, u). We will
write δ ∈ RA by abusing notation. Then clearly δ ∈ J (RA/A) and remains so after any base change
A→ B where A ⊆ B ⊆K.

There are descent data over A0 for (K,R, I, u) such that uA0 ∈ I
∗/A0

A0
. By [HH99, 2.1.6] we can

enlarge A to make RA contain the descent data over A0. Hence, we have uA ∈ I∗/AA . Hence for all
most all µ ∈ Max Spec(A), by Corollary 2.4.7, we know that the image of δ in Rκ is a test element.
So we have, in particular, δuκ ∈ IARκ. By Lemma 2.4.8, we conclude that δuA ∈ IA, which implies
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that δu ∈ I in R. Since δ and u are arbitrarily chosen, we conclude that J (R/K)I∗K ⊆ I for any
ideal I ⊆ R.

2.4.3 Affine progenitors

Let K be a field and let S be a noetherian K-algebra. Note that S may not necessarily be finitely
generated over K. Let N ⊆M be finitely generated S-modules, u a finite sequence of elements of
M . We have the following definition of an affine progenitor ([HH99, Definition 3.1.1]).

Definition 2.4.10. By an affine progenitor for (S,M,N,u) we shall means a septuple M =
(R,MR,NR, uR, h, β, ηR) where

• R is a finitely generated K-algebra.

• h ∶ R → S a K-homomorphism.

• MR is a finitely generatedR-module with anR-linear map β ∶MR →M such that the induced
map β∗ ∶ S ⊗RMR →M is an isomorphism.

• uR is a finite sequence of elements of MR such that β∗ maps uR to u.

• ηR is an R-linear map from NR to MR and the induced map NS →MS →M maps NS onto
N .

We refer to R as the base ring of the affine progenitor.

The data of the affine progenitor is captured by the following diagram.

NR
ηR //

$$
MR

β

$$
N //M

R

OO <<

h // S

OO >>

where the dashed arrow R ⇢M means M is an R-module. Note that we do not require ηR to be
injective, nor do we require that NS be isomorphic to N . Also we do not require R to be a subring
of S.

2.4.4 General noetherian K-algebras

We are ready to define a notion of tight closure, called direct tight closure, for a general
noetherian K-algebra S.
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Definition 2.4.11. Let S be a noetherian K-algebra and N ⊆M be finitely generated S-modules.
Let u ∈M . Then we say that u is in the direct K-tight closure N>∗K of N in M if there exists an
affine progenitor (R,MR,NR, uR) (Definition 2.4.10) for (S,M,N,u) such that uR ∈ ⟨NR⟩∗KMR

as
in Definition 2.4.5.

We also have a notion of tight closure called “formal K-tight closure,” defined below.

Definition 2.4.12. Let R be a noetherian K-algebra. By a complete local domain B (at prime P )
of R we mean R̂P modulo a minimal prime, where P ⊆ R is a prime ideal. We say that u is in the
formal K-tight closure N f∗K of N in M if for every complete local domain B of R, 1⊗ u is in the
direct K-tight closure of ⟨B ⊗R N⟩ in B ⊗RM .

We will use the definition of formal K-tight closure for the actual definition for all cases. This
will not cause any conflicts as we have the following remarkable result.

Theorem 2.4.13. [HH99, Theorem 3.4.1] Let S be a locally excellent noetherian algebra over a

field K of characteristic 0. Let N ⊆M be finitely generated S-modules. Then the following three

conditions on an element u ∈M are equivalent:

(i) u ∈ N>∗K
M .

(ii) For every maximal ideal m of S, if C = Ŝm then uC ∈ ⟨NC⟩>∗KMC
.

(iii) u ∈ N f∗K
M .

In particular, we have N>∗K
M = N f∗K

M .

Consequently, for all three cases we have the following corollary.

Corollary 2.4.14. [HH99, Corollary 3.4.2] Let R be a finitely generated algebra over a field K of

characteristic zero. Let N ⊆M be finitely generated R-modules. Then N∗K
M = N>∗K

M = N f∗K
M .

Finally, we are ready to give the definition of (small) equational tight closure in equal character-
istic 0.

Definition 2.4.15. [HH99, Definition 3.4.3] Let R be a noetherian K-algebra, where K is a field of
characteristic zero, and let N ⊆M be finitely generated R-modules.

(i) We define the K-tight closure N∗K of N in M to be the formal K-tight closure of N in M .

(ii) Every noetherian ring R of equal characteristic zero is (uniquely) a Q-algebra. When K = Q
we shall refer to the direct Q-tight closure of N in M as the direct equational tight closure

of N in M , and denote it N>∗eq
M . we shall refer to the Q-tight closure of N in M as the

equational tight closure of N in M , and denote it N∗eq
M .
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2.5 Test Elements in Characteristic 0

We aim to prove Theorem 2.5.6. Before that, we have to make great use of the Artin-Rotthaus
theorem (Theorem 2.5.1) to discuss a series of descent results ((A1) - (A11)).

2.5.1 Descent data

We need the following Artin-Rotthaus theorem ([AR88]).

Theorem 2.5.1 (Artin-Rotthaus). Let K be a field. Then the power series ring KJx1, . . . , xnK is a

direct limit of smooth K[x1, . . . , xn]-algebras.

The Artin-Rotthaus theorem is also a consequence of Néron-Popescu desingularization (cf.
[Swa98, Theorem 1.1])

Theorem 2.5.2. Let f ∶ A→ B be a ring homomorphism. Then f is flat with geometrically regular

fibers if and only if B is a filtered colimit of smooth A-algebras.

We first note that maps in the Artin-Rotthaus theorem are not necessarily injective. Also the
Krull dimension of the algebras occurring in the direct limit may be arbitrarily large. So in most
cases, we study the height of ideals generated by certain elements, rather than the Krull dimension
of the quotient ring.

We will be able to preserve many properties while passing to a larger algebra, i.e., these
properties will hold for all algebras occurring after a certain index ν.

Let R be a reduced, equidimensional complete local ring of dimension d with coefficients field
K, i.e., R = KJx1, . . . , xnK/(f1, . . . , fm). We write A = K[x1, . . . , xn]. Then Â = KJx1, . . . , xnK,
and fi ∈ Â for each i.

(A1) (Eventually injective) Note that for any element a ∈ Â, there is some ν and some ã ∈ Aν
mapping to a. Note that Aν → Â may not be injective. But the kernel is a finitely generated
ideal and maps to zero in Â, hence it must be zero when we map to a large enough algebra
Aµ. Moreover, the image of Aν in Aµ maps injectively to Â, and remains so mapping to any
Aλ where λ ⩾ µ. Therefore, we will denote the image of ã in these Aλ by a directly.

(A2) (Descent of elements) We shall write “for all µ≫ ν” to mean that “there exists some λ > ν
and for all µ ⩾ λ.” By (A1), for any element a ∈ Â, there exists some ν such that a ∈ Aµ for
all µ≫ ν. Hence, we can say that there exists some µ such that a ∈ Aµ. Of course, for any Aλ
where λ ⩾ µ, we have a ∈ Aλ.

(A3) (Notation) We shall frequently use the following notation:
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• We write m for the maximal ideal of Â and let mν denote the contraction of m in Aν .
Since Aν/mν ↪ Â/m =K, and so must be K. Hence mν is a maximal ideal of Aν .

• Note that any element a in Aν − mν maps to an element in Â − m. So its image is
necessarily a unit, and we actually have (Aν)a → Â. Also, we have such maps for
(Aν)a → Aµ for all µ≫ ν. Moreover, we can do this for finitely many such elements by
localizing at their product.

• By the bullet point above, the localizations we obtained above are cofinal with the direct
system. So we can always assume for each µ≫ ν, a localization is made, if needed, and
we shall indicate this by “for all µ≫loc ν.”

(A4) (Descent of ideals) For any ideal a ⊆ Â, if a is generated by a1, . . . , ak, then there exists a
ν such that all of the ai are in Aν . Therefore we have aµ ∶= (a1, . . . , ak)Aµ for all µ ⩾ ν.
If in addition, we have an element u ∈ a ⊆ Â, we can write u = z1a1 + ⋯ + zkak for some
z1, . . . , zk ∈ Â. By choosing a larger µ we have u, z1, . . . , zk ∈ Aµ. Then the element
u − ∑k

i=1 ziai ∈ Aµ maps to zero in Â. By passing to a larger µ we may assume that this is
honestly zero. Therefore for all µ≫ ν, we have u ∈ aµ.

(A5) (Description of the maximal ideal) Any element in mν is in (x1, . . . , xn)Aµ for all µ≫ ν. Let
ã ∈ mν be an element. This is trivial if ã maps to zero. If ã maps to a nonzero element a in
m = (x1, . . . , xn)Â, by (A4), there exists µ such that a ∈ (x1, . . . , xn)Aµ.

(A6) (Descent of radicals) Let u1, . . . , un ∈ Â be a system of parameters. Then by (A2) and
(A5), there exists some ν such that u1, . . . , un ∈ Aµ and (u1, . . . , un)Aµ ⊆ (x1, . . . , xn)Aµ
for all µ ⩾ ν. Since each xi has some power in (u1, . . . , un)Â, we choose a larger µ such
that each xi also has a power in (u1, . . . , un)Aµ. Then this implies that (u1, . . . , un)Aµ and
(x1, . . . , xn)Aµ have the same radical.

The next proposition says that we can descend regular sequences in Â.

Proposition 2.5.3. If elements u1, . . . , uk in Â form a regular sequence, then there exists ν such

that they form a regular sequence in Aµ for all µ≫loc ν.

Proof. We can extend u1, . . . , uk to a full system of parameters u1, . . . , un ∈ Â. If we can show that
u1, . . . , un form a regular sequence in Aµ for all µ≫loc ν, then the conclusion follows immediately.

By (A6) we can find µ such that (u1, . . . , un)Aµ ⊆ (x1, . . . , xn)Aµ and they have the same
radical. By the construction of Aµ, we know that x1, . . . , xn form a regular sequence on Aµ, which
implies that the Koszul homology Hi(x1, . . . , xn;Aµ) vanishes for each i. Since they have the
same radical, we also have Hi(u1, . . . , un;Aµ) vanish. Then u1, . . . , un form a regular sequence on
(Aµ)mµ .
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The modules
(u1,...,uh)∶Aµuh+1

(u1,...,uh)Aµ
are finitely generated and become zero once we localize at mµ. It

is clear that we can localize at one element r to make all these modules zero. Thus u1, . . . , un form
a regular sequence on (Aµ)r.

Next we observe that we can descend ideals while preserving their heights, see (A7); if the ideal
has pure height, we can preserve that, see (A11). For this purpose, we need the following fact.

Fact 2.5.4. [HH99, Facts 2.3.7] Let R be a noetherian ring and I an ideal of R.

(i) If I is proper then I has height at least h if and only if there is a sequence of elements

x1, . . . , xh in I such that for all i, 0 ⩽ i ⩽ h − 1, xi+1 is not in any minimal prime of

(x1, . . . , xi)R.

(ii) I has height at most h if and only if there exists a proper ideal J containing I and an element

y of R not a zerodivisor on J such that yJ ⊆
√
I and yJ is contained in the radical of an

ideal generated by at most h elements.

Proof. For 2.5.4.(i), since I is not in any minimal prime of (0)R, we can choose x1 ∈ I avoiding all
minimal primes of (0)R. Suppose that x1, . . . , xi are chosen. Since ht(I) ⩾ h > i, it is not contained
in any minimal primes of (x1, . . . , xi)R. Hence, it is not contained in the union of all these minimal
primes. So we can choose xi+1 ∈ I avoiding all minimal primes.

For 2.5.4.(ii), If I ⊆ J , and y is a nonzerodivisor on J , then y avoids all associated primes
of I and J . So we have ht(I) = ht(IRy) and ht(J) = ht(JRy). Note that in Ry, we have
JRy ⊆

√
IRy ⊆

√
JRy. Since JRy is contained in the radical of an ideal generated by at most

h elements, it has height at most h. So ht(I) = ht(IRy) = ht(
√
IRy) ⩽ ht(JRy) ⩽ h. Now

we assume that I has height at most h. Let P be one of the minimal primes of I such that
ht(P ) = ht(I) ⩽ h. Then IRP is PRP -primary. So PRP =

√
IRP . We also know that PRP is the

radical of at most h elements (a system of parameters) in RP . By looking at the generators, we can
localize at one element y ∈ R − P such that PRy ⊆

√
IRy and PRy is contained in the radical of an

ideal generated by at most h elements. Raise y to a power if necessary and let J = P , then we have
yJ ⊆

√
I and yJ is contained in the radical of an ideal generated by at most h elements.

(A7) (Preserving height while descending) For any ideal a = (a1, . . . , an)Â of height h, we have aµ
for all µ≫ ν. On the one hand, let x1, . . . , xh be a maximal regular sequence in a. Then we
have (x1, . . . , xh) ⊆ (a1, . . . , an) in Aµ, and x1, . . . , xh continue to be a regular sequence for
all µ≫loc ν by Proposition 2.5.3. So we have ht(aµ) ⩾ h for all µ≫loc ν. On the other hand,
by Fact 2.5.4, there is some ideal J and an element y in Â such that

• I ⊆ J .

• yJ ⊆
√
I .
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• There is some power l such that (yJ)l ⊆K where K is generated by h elements.

• y is a nonzerodivisor on J .

All these except the last bullet point can be achieved using (A4). The last one is done by
Proposition 2.5.3. Hence for all µ≫loc ν, we also have ht(aµ) ⩾ h.

Next we want to prove some results about descending modules and exact sequences by descend-
ing their presentations.

(A8) (Descent of finitely generated modules and maps in-between) Let M be a finitely generated
Â-module. Since Â is noetherian, we can write M as the cokernel of a matrix α. For large
enough ν, we have all entries of α in Aν , so we can form Mν ∶= Coker(αν). For a map
f ∶M → N between Â-modules M,N , we have lifting of maps

F1
// //

h
��

K �
� //

g∣K
��

F0
// //

g

��

M

f

��
F ′

1
// // K ′ �

� // F ′
0

// // N

where all F1, F0, F ′
1, F

′
0 are free Â-modules. So we have commutative diagram

F1
α //

h
��

F0

g

��
F ′

1

β // F ′
0

.

Choose ν large enough such that all matrices makes sense and the corresponding diagram
commutes. Then we get a map from Mν = Coker(αν) to Nν = Coker(βν), which recovers
M → N once we tensor with Â.

(A9) (Descent of finite free resolutions) A finite free resolution of a module Coker(α) over Â
descends to a finite free resolution over some Aν .

Proof. We need the Buchsbaum-Eisenbud criterion for acyclicity ([BE73]). Let F● = 0 →
Fn → ⋯→ F0 be a complex of finite free Â-modules and let ϕi ∶ Fi → Fi−1 be the maps. We
can descend each map ϕi (as a matrix) to a large enough Aν . Call the descended complex F ′

●

and the corresponding maps ϕ′i. Then after passing to some µ ⩾ ν, we have

• The compositions of consecutive maps are zero.

• The determinantal rank of ϕ′i is the same as over Â. So rank(ϕ′i+1) + rank(ϕ′i) =
rank(F ′

i ).
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• The ideal generated by the rank size minors at ith spot Irank(ϕ′i)
(ϕ′i) is either the whole

ring or contains a regular sequence of length i.

The first and the second bullet points are achieved by (A2) and the facts that ϕi+1 ○ ϕi =
0, Irank(ϕi)+1(ϕi) = 0 over Â. For the third bullet point, the proof splits into two cases:

• If Irank(ϕi)(ϕi) = Â, then Irank(ϕ′i)
(ϕ′i) contains some element that maps to a unit in Â.

Hence this element will become invertible after a suitably large index ν.

• If Irank(ϕi)(ϕi) contains a regular sequence of length at least i in Â, by Proposition 2.5.3
we know that this holds in a suitable localization of Aµ for large enough µ.

So acyclicity follows for µ≫loc ν.

(A10) (Descent of short exact sequences) A short exact sequence of finitely generated modules over
Â descends to a short exact sequence over some Aν .

Proof. We take finite free resolutions of the first and the third modules of the sequence, and
fill in maps for the direct sums of the free modules for a given degree to give a free resolution
of the middle module in the sequence. Then we can descend the whole resolution and the
maps between them by (A9).

Lemma 2.5.5. Let T be a Gorenstein local ring. A finitely generated T -module M has pure

dimension dim(T ) − h if and only if it embeds in a finite direct sum of modules of the form

T /(x1, . . . , xh)T , where each x1, . . . , xh is a regular sequence in T .

Proof. If M embeds into such a direct sum, then M clearly has pure height h. Assume that M has
pure height h, and let P1, . . . , Pn be the set of associated primes of M . Then each Pi has height h
for 1 ⩽ i ⩽ h. Consider the map M → ⊕hi=1MPi . The kernel of this map consists of elements killed
by W = R − ∪ni=1Pi. Since W consists of only nonzerodivisors on M , the map M → ⊕hi=1MPi is
injective. Each MPi is a module of finite length over RPi . So MPi embeds into the direct sum of
finitely many copies of the injective hull Ei of RPi/PiRPi . We can work with the image of MPi in
each copy of the injective hull respectively. So assume without loss of generality that MPi embeds
into one copy of Ei. Let u1, . . . , uh ∈ Pi be part of a system of parameters in R such that they form a
system of parameters in RPi . Then Ei = limÐ→s

R/(xs1, . . . , xsh)R. Note that MPi is finitely generated,
so it maps to some R/(xs1, . . . , xsh)R for some s. Since each R/(xs1, . . . , xsh)R injects into Ei, the
map MPi → R/(xs1, . . . , xsh)R must be injective as well, which proves the claim.

(A11) Let a ⊆ Â be an ideal of pure height h, then for µ≫loc ν, the descent ideal aµ also has pure
height h.
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Proof. This is equivalent to Â/a having pure height h. By Lemma 2.5.5, this is equivalent to
Â/a injecting into a finite direct sum of modules obtained by killing a regular sequence in Â.
By Proposition 2.5.3, (A8) and (A10) we can descend the presentation of Â/a as well as the
injection map. Then aµ will have pure height h as well for all µ≫loc ν.

2.5.2 The complete local case

We would like to prove the following result which is analogous to [HH99, Corollary 2.4.10].

Theorem 2.5.6. Suppose that R is a reduced, equidimensional, complete local ring of dimension d

over K. Then the Jacobian ideal J (R/K) is contained in the test ideal for K-tight closure, and,

hence, the test ideal for small equational tight closure.

Proof. Suppose that we have a presentation R = KJx1, . . . , xnK/(f1, . . . , fr). Then the Jacobian
ideal is generated by (n − d) × (n − d) minors of the Jacobian matrix (∂fi/∂xj).

Write A = K[x1, . . . , xn] and then Â = KJx1, . . . , xnK↠ R. Since R is equidimensional, the
kernel (f1, . . . , fr) has pure height h = n − d. Let δ be an h × h minor of ( ∂fi∂xj

). Let u ∈ I∗ where
I ⊆ R an ideal.

For each positive integer N , we aim to prove that δu ∈ I +mN . Fix an N . Since each fi is a
power series in xi, we can truncate f at degree N , i.e., let f⩽Ni be the sum of terms in fi of degree
at most N and each term in fi − f⩽Ni is divisible by a N + 1 power of xi. So we can write

fi = f⩽Ni +∑
α

xαui,α

where α ∈ Nn with ∣α∣ = N + 1, for some ui,α ∈ Â. Note that each f⩽Ni is in A.
By (A2), We can fix an index ν0 such that for all ν ⩾ ν0, Aν contains the generators of I , u and

all these ui,α. For each ν, consider a presentation A[y1, . . . , ys] ↠ Aν . It has a kernel generated
by G1, . . . ,Gt, i.e., Aν ≅ A[y1, . . . , ys]/(G1, . . . ,Gt). Since all ui,α and xi are in Aν , we can
write Fi = f⩽Ni +∑α x

αui,α. Let Rν = Aν/(F1, . . . , Fr)Aν = A[y1, . . . , ys]/(F1, . . . , Fr,G1, . . . ,Gt).
Since (F1, . . . , Fr) is a descent of the ideal (f1, . . . , fr), by (A11), the ideal (F1, . . . , Fr)Aµ also
has pure height h for µ≫loc ν. Equivalently, Rµ is equidimensional for all µ≫loc ν. Now consider
the Jacobian matrix of Rµ over k. Let h+ s be the height of the ideal (F1, . . . , Fr,G1, . . . ,Gt) in the
ring Aµ. Then the Jacobian ideal J (Rµ/K) is generated by the h+ s minors of the (r + t) × (n+ s)
matrix

⎛
⎜
⎝

(∂Fi∂xj
)
r×n

(∂Fi∂yk
)
r×s

(∂Gl∂xj
)
t×n

(∂Gl∂yk
)
t×s

⎞
⎟
⎠
. (2.5.1)

Since u ∈ (IR)∗K , there is some affine progenitor R′ such that this holds. We can make Aµ large
enough to contain all the generators of R′ over K to get a map A′ → Aµ. Then we also have
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u ∈ (IRµ)∗. By Theorem 2.4.9, the image in Rµ of the elements in J (Rµ/k) multiplies the tight
closure back into the ideal itself. We know that J (Rµ/k)u ⊆ IRµ.

Note that in the matrix (2.5.1), the lower-right corner (∂Gl∂yk
)
t×s

is the Jacobian matrix of Aµ/A.
Since Aµ is smooth over A, the Jacobian ideal is the unit ideal.

For each Fi, we have

∂Fi
∂xj

= ∂f
⩽N
i

∂xj
+mN ,

∂Fi
∂yj

= 0 +∑
α

xα
∂ui,α

∂yk
.

So there is some h × h minor δ̃ of (∂Fi∂xj
)
r×n

such that δ̃ − δ ∈ mN . Thinking of the matrix (2.5.1) in
the ring Rµ/mN

µ where mµ is the image in Rµ of the descent of m to Aµ by (A5), we have

⎛
⎝
J(R/K) 0

∗ Q
⎞
⎠
,

where Q is the image of the Jacobian matrix J(Aµ/A). Hence, the s × s minors of Q generate the
unit ideal. Since the product of any h × h minor of J(R/K) and s × s minor of Q is in J (Rµ/K),
we have

δ ⋅ J (Rµ/K) ⊆ J (Rµ/K)Rµ/mN
µ ⇒ δ̃ ∈ J (Rµ/K)Rµ/mN

µ .

Therefore, we have δ̃u ∈ (I +mN
µ )Rµ, which implies that δu ∈ I +mN in R. Since this is true for

any N , we conclude that δu ∈ ⋂N(I +mN)R = I .

2.5.3 The affine-analytic case

We want to prove

Theorem 2.5.7. Suppose that R is a reduced affine-analytic K-algebra that is equiheight. Then the

Jacobian ideal J (R/K) is contained in the test ideal for K-tight closure, and, hence, the test ideal

for small equational tight closure.

We need to establish results (B1) - (B3) similar to (A1) - (A3). Let us begin with some discussion
on the setup. Let R = T /I where T = KJx1, . . . , xnK[z1, . . . , zm] and I = (f1, . . . , fr)T . Then by
assumption, all minimal primes of I in T are of the same height h. Write z for the sequence of
elements z1, . . . , zm and using the notation from previous section, we write A =K[x1, . . . , xn] and
Â = KJx1, . . . , xnK. Then R = T /I where T = Â[z]. By hypothesis, all minimal primes of I in T
have the same height and I has no embedded primes. Suppose that ht(I) = h and I = (f1, . . . , fr)T .
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Then the complete Jacobian matrix is given by

⎛
⎜⎜⎜
⎝

∂f1

∂x1
⋯ ∂f1

∂xn

∂f1

∂z1
⋯ ∂f1

∂zm

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
∂fr
∂x1

⋯ ∂fr
∂xn

∂fr
∂z1

⋯ ∂fr
∂zm

⎞
⎟⎟⎟
⎠
.

We will prove this using the Artin-Rotthaus theorem to approximate Â and also T . Therefore
we will establish (A1)-(A11) as before for T . We first establish (A1)-(A5), summarized in the
following bullet point.

(B1) Note that any element in Â will be in the image of some Aν and the map is eventually injective
in the sense of (A1), i.e., there exists some µ ⩾ ν such that for all γ ⩾ µ, the image of Aν in
Aγ maps injectively into Â. So any polynomial in T will necessarily be in Tν . In particular,
we can define f1, . . . , fr in Tν ∶= Aν[z] and form Rν = Tν/(f1, . . . , fr).

(B2) The statements in (A4), (A5) and (A6) also hold here: we can descend an ideal by descending
its generators. In particular, we can descend the maximal ideal. We can also descend an ideal
and its radical. We will write m for the maximal ideal of Â and mν for its contraction back to
Aν . Then one is allowed to localize at any elements in Aν −mν for any Tν .

Let us work with a counter-example to Theorem 2.5.7, i.e., there is some ideal J ⊆ R and u ∈ R
such that u ∈ J∗, and some δ ∈ J (R/K) such that δu ∉ J . Let Q be a minimal prime of the proper
ideal J ∶R δu. This continues to be a counterexample in RQ. We will make repeated use of the fact
that we can localize at finitely many elements (in fact, one by localizing at the product of them)
outside Q.

(B3) We will localize at finitely many elements in Tν −QcTν where Qc is the contraction of Q in
Tν . We will use the notation µ≫Q−loc ν to indicate this.

We need the following lemma to deal with preserving height while descending.

Lemma 2.5.8. Let Q ⊆ T be fixed and let I1, . . . , Ik be finitely many ideals contained in Q. Suppose

that J1, . . . , Jk are ideals in Tν such that JiT = Ii, 1 ⩽ i ⩽ k. Then for all µ≫Q−loc ν, all associated

primes of each JiTµ are contained in the contraction of Q, and the height of JiTµ is the same as the

height of IiTQ. If g1, . . . , gh form a regular sequence in QTQ, then for all µ≫Q−loc ν, their images

in Tµ also form a regular sequence.

Proof. There are only finitely many ideals J1, . . . , Jk and each has finitely many associated primes.
For each Ji, we can choose an element in all associated primes not contained in Qc and avoiding
associated primes contained in Qc. Then by localizing at these elements (or their product), we
assume that all associated primes are contained in Qc.
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Let g1, . . . , gh be a regular sequence in QTQ. This implies that all associated primes of
(g1, . . . , gi) contained in Q have height i. For each associated prime P of (g1, . . . , gi)Tν in Tν ,
since the height of PTQ is i by Theorem 2.1.23, P has height at least i. On the other hand, P
cannot have height more than i due to the Krull’s height theorem. So P has height i. Since Tµ is
Cohen-Macaulay, g1, . . . , gh is a regular sequence.

For preservation of height, we start with prime ideals. Let P be a prime ideal in Tν . The height
of P cannot increase when expand to TQ. Choose a maximal regular sequence in PTQ. For all
µ≫Q−loc ν, they will form a regular sequence in Tµ. Hence ht(PTµ) = ht(PTQ).

For general ideal J , we first choose Tµ where µ≫Q−loc ν such that all minimal primes of JTµ
are contained in Qc. We will also replace J by its radical in Tµ, i.e., the intersection of all minimal
primes of J . Let P1, . . . , Pl be all the minimal primes of J . Then

P1TQ ∩⋯ ∩ PlTQ ⊆ JTQ ⊆ PiTQ

for each i. So we have ht(JTQ) ⩽ min{ht(PiTQ}. For any minimal prime of JTQ, it must also
contain some PiTQ. Therefore ht(JTQ) ⩾ min{ht(PiTQ}. Hence, ht(JTQ) = min{ht(PiTQ} =
ht(J).

Proof of Theorem 2.5.7. Write A = K[x1, . . . , xn] and T = Â[z1, . . . , zm]. Then T ↠ R. The
kernel (f1, . . . , fr) has pure height h = n − d. Let δ be a h × h minor of ( ∂fi∂xj

). Let u ∈ J∗ where
J ⊆ R an ideal.

We work with a counterexample as before. Let Q be a prime ideal containing J ∶R δu, then
δu ∉ JRQ and since m ⊆ Q, we have δu ∉ (J +mN)RQ for some N . Fix this N .

We aim to prove that δu ∈ I +mN . Since each fi is a polynomial in z with coefficients being
power series in xi, we can truncate each coefficient of f at degree N , i.e., if

fi(z1, . . . , zm) = ∑
finitely many β∈Nm

cβz
β

where each cβ is in Â, then we can form c⩽Nβ and the difference cβ − c⩽Nβ is in mN+1T . So we can
write

fi(z1, . . . , zm) = ∑
finitely many β∈Nm

c⩽Nβ zβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f⩽Ni

+ r (2.5.2)

for some r ∈ mN+1T . Let f⩽Ni be the summation in (2.5.2). The difference r is the polynomial in
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z1, . . . , zm with coefficients in m. So we can write

fi = f⩽Ni +∑
α

xαui,α(z1, . . . , zm)

where α ∈ Nn with ∣α∣ = N + 1, for some ui,α(z1, . . . , zm) ∈ T . Note that each f⩽Ni is in
A[z1, . . . , zm].

By (B1), We can fix an index ν0 such that for all ν ≫Q−loc ν0, Tν contains the generators of
J , u and all these ui,α. For each ν, consider a presentation A[y1, . . . , ys] ↠ Aν . It has a kernel
generated by G1, . . . ,Gt, i.e., Aν ≅ A[y1, . . . , ys]/(G1, . . . ,Gt), and we have Tν = Aν[z1, . . . , zm] =
A[y1, . . . , ys, z1, . . . , zm]/(G1, . . . ,Gt).

Since all ui,α(z1, . . . , zm) and xi are in Tν , we can form Fi = f⩽Ni + ∑α x
αui,α. Let Rν =

Tν/(F1, . . . , Fr)Tν . Since (F1, . . . , Fr) is a descent of the ideal (f1, . . . , fr), by Lemma 2.5.8, the
ideal (F1, . . . , Fr)Aµ also has pure height h for µ ≫loc ν. Now consider the Jacobian matrix of
Rµ over k. Let h + s be the height of the ideal (F1, . . . , Fr,G1, . . . ,Gt) in the ring Aµ. Then the
Jacobian ideals J (Rµ/K) are generated by the h + s minors of the (r + t) × (n +m + s) matrix

⎛
⎜
⎝

(∂Fi∂xj
)
r×n

(∂Fi
∂zl

)
r×m

(∂Fi∂yk
)
r×s

(∂Gl∂xj
)
t×n

(∂Gl
∂zl

)
t×m

(∂Gl∂yk
)
t×s

⎞
⎟
⎠
. (2.5.3)

Since u ∈ (JR)∗K , there is some affine progenitor R′ such that u ∈ (JR′)∗K holds. We can make
Tµ large enough to contain all the generators of R′ over k to get a map R′ → Tµ. Then we also have
u ∈ (JRµ)∗. By Theorem 2.4.9, the image in Rµ of the elements in J (Rµ/K) multiplies the tight
closure of any ideal back into the ideal. We know that J (Rµ/K)u ⊆ JRµ.

Note that in the matrix (2.5.3), the lower-right corner (∂Gl∂yk
)
t×s

is the Jacobian matrix of Aµ/A.
Since Aµ is smooth over A, the Jacobian ideal is a unit ideal.

For each Fi, we have

∂Fi
∂xj

= ∂f
⩽N
i

∂xj
+mN ,

∂Fi
∂zl

= ∂f
⩽N
i

∂zl
+mN+1,

∂Fi
∂yk

= 0 +∑
α

xα
∂ui,α

∂yk
.

So there is some h × h minor δ̃ of (∂Fi∂xj
)
r×n

such that δ̃ − δ ∈ mN . Thinking of the matrix (2.5.3) in
the ring Rµ/mN

µ where mµ is the image in Rµ of the descent of m to Aµ by (B2), we see that the
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matrix becomes
⎛
⎝
J(R/K) 0

∗ Q
⎞
⎠
,

where Q is the image of the Jacobian matrix J(Aµ/A). Since the product of any s × s minor of Q
and any h × h minor of J(R/K) is in J (Rµ/K). We have

δ̃ ⋅ J (Aµ/A) ⊆ J (Rµ/K)Rµ/mN
µ ⇒ δ̃ ∈ J (Rµ/K)Rµ/mN

µ .

Therefore we have δ̃u ∈ (I + mN
µ )Rµ, which implies that δu ∈ I + mN in R. So we obtain a

contradiction! We conclude that δu ∈ J .

2.5.4 The semianalytic case

We want to show:

Theorem 2.5.9. Suppose that we have a flat map with geometrically regular fibers R → R′ where

R is a reduced affine-analytic equiheight K-algebra. Then the expansion of the Jacobian ideal

J (R/K)R′ is contained in the test ideal of R′ for K-tight closure, and, hence, the test ideal for

small equational tight closure.

Since R is a reduced affine-analytic K-algebra, it is approximately Gorenstein. We need to
show that R′ is also approximately Gorenstein so that Convention 2.1.4 makes sense. Hence, we
prove the following proposition.

Proposition 2.5.10. Let S → T be flat with Gorenstein fibers. If every local ring of S is approxi-

mately Gorenstein (this condition holds, for example, if S is excellent and reduced), then T is also

approximately Gorenstein.

Proof. Let n be a maximal ideal of T and let q be its contraction in S. Then Sq → Tn is local and
flat, with Gorenstein fibers. So we reset the notation and assume that (S,q) → (T,n) is flat local
with Gorenstein fibers. By assumption S is approximately Gorenstein. So there exists a sequence
of irreducible ideals It in S cofinal with powers of q. Let x1, . . . , xh be a system of parameters in
T /qT . We claim that ItT + (xt1, . . . , xth) is a sequence of irreducible ideals in T cofinal with powers
of n.

The “cofinal” part is trivial from the construction. For irreduciblity, note that S/It is Gorenstein.
Hence, T /ItT is Gorenstein as it is flat local over S/It with Gorenstein fibers. By construction,
xt1, . . . , x

t
h is a regular sequence on T /ItT . Hence, T /(ItT + (xt1, . . . , xth)) is Gorenstein, which

implies that ItT + (xt1, . . . , xth) is irreducible.
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Proof of Theorem 2.5.9. By Proposition 2.5.10 we know that R′ is also approximately Gorenstein.
By Theorem 2.5.1, R′ is the filtered direct limit of smooth R-algebras. Since any smooth extension
S of R is an affine-analytic K-algebra, we only need to show that the J (R/K)S ⊆ J (S/K). Then
Theorem 2.5.7 will finish the proof.

Since an element is in an ideal if and only if it is so over each connected component, if Spec(R)
has several connected components, we can deal with each component separately. So we assume that
Spec(R) is connected. Let S be a smooth extension of R. Again if Spec(S) has multiple connected
components, we can deal with each component separately. So we assume that Spec(S) is connected
as well.

We can find finitely many elements gj ∈ R, fj in S such the fjgj generate the unit ideal of S,
the gj generate the unit ideal of R, and each Sfjgj is a special smooth extension of Rgj ., i.e., étale
over a polynomial extension.

Let us deal with each piece Rgi → Sfigi separately. We write Ri, Si for Rgi , Sfigi . Then Si is
standard étale over a polynomial ring Ti over Ri. We can write Si ≅ (Ti[X]/H(X))G where H(X)
is monic in Ti, and G a multiple of H ′(X). If H(X) in any minimal prime of (Ti[X])G, say q, then
p ∶= q∩Ti is also a minimal prime and since p(Ti[X])G is a prime. We conclude that q = p(Ti[X])G.
Then H(X) has all its coefficients in p, which implies that H ′(X) ∈ p(Ti[X])G = q. But this is a
contradiction as H ′(X) is a unit in (Ti[X])G.

If we work with a presentation R = T /I of R where T = KJx1, . . . , xnK[z1, . . . , zm], then
we can assume that I = (f1, . . . , fr) has pure height h in T and S = T [y1, . . . , y`]/I ′ where
I ′ = (f1, . . . , fr, g1, . . . , gs). Since Spec(S) is connected, the above argument shows that all
minimal primes of I ′ in S will have the same height, which we denote by h + t. Then we can write
the Jacobian matrix blockwise as

⎛
⎝

∂fi
∂xj

∂fi
∂zk

0

∗ ∗ ∂gb
∂ya

⎞
⎠
.

The s × s minors of the right bottom block ( ∂gb∂ya
) generate J (S/R), which is the unit ideal. The

Jacobian ideal J (S/K) is generated by h+s minors of this Jacobian matrix. Hence any h×h minor
of the block ( ∂fi∂xj

∂fi
∂zk

), multiplies J (S/K) into the Jacobian ideal J (S/K), which implies that
J (R/K)S ⊆ J (S/K).

Corollary 2.5.11. If R is a semianalytic K-algebra that is the localization of a reduced equiheight

affine-analytic K-algebra, then the Jacobian ideal J (R/K) is contained in the test ideal. For any

flat K-algebra morphism R → R′ with geometrically regular fibers, the expansion of the Jacobian

ideal J (R/K)R′ is contained in the test ideal of R′. Here, all test ideals are for K-tight closure,

which are contained in the corresponding test ideals for small equational tight closure.

Proof. Write R =W −1T /I where T =KJx1, . . . , xnK[z1, . . . , zm], the assumption is that I has pure
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height h in T . Since T /I → R is a flat map with geometrically flat fibers, using Theorem 2.5.9, we
conclude that the Jacobian ideal expanded J ((T /I)/K)R is contained in the test ideal. Since R is
a localization of T /I , we have J (R/K) = J ((T /I)/K)R.

The composition of the maps T /I → R → R′ is still flat. Since Spec(R) is a subset of
Spec(T /I), the composition map T /I → R′ is of geometrically fibers. Hence by Theorem 2.5.9,
the Jacobian ideal expanded J ((T /I)/K)R′ is contained in the test ideal of R′. Since

J ((T /I)/K)R′ = J (R/K)R′,

the conclusion is proved.
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CHAPTER III

WEPF Closure in Mixed-characteristic

This chapter is organized as follows: Section 3.1 collects some preliminaries on basic notations
and techniques. In Section 3.2, we prove the p-colon-capturing property (Definition 3.2.3) using the
perfectoid Abhyankar lemma (Theorem 3.1.11). This is one of our main results (Theorem 3.2.4).
In Section 3.3 we introduce our new closure operation wepf, and prove that it is a Dietz closure
satisfying the Algebra axiom (Theorem 3.3.4, Theorem 3.3.8). In Section 3.4 we show that
module-finite extensions are epf-phantom (Theorem 3.4.1) using techniques different from those
in Section 3.2. Finally, in Section 3.5, we study the behaviour of regular sequences on some non-
noetherian rings (Theorem 3.5.7) and prove results similar to p-colon-capturing (Theorem 3.5.13)
in characteristic p. Theorem 3.5.7 is needed in the proof.

3.1 Preliminaries

A ring of mixed characteristic p is a ring R of characteristic 0 with p in every maximal ideal of
R. We will work with a complete local ring of mixed characteristic p in all sections of this chapter
except Section 3.5. We will also use the following notation.

Notation 3.1.1. Let R be a domain and let R+ be an absolute integral closure of R. For any R-
module M , we write M+ ∶= R+ ⊗RM . For any submodule W ⊆M , we write W + for the tensor
product R+ ⊗RW , and Im(W + →M+) for the image of the map R+ ⊗RW → R+ ⊗RM in M+.

Note that in the literature, the notation I+ means plus closure of I , i.e., IR+ ∩R. Since we are
using neither the plus closure nor the notation I+ in this chapter, there should be no confusion.

3.1.1 Closure operations in mixed characteristic

Let us recall the definition of Heitmann’s two closure operations, epf and r1f, below.

Definition 3.1.2. Let R be an integral domain of mixed characteristic p and let I be an ideal of
R. Then an element x ∈ R is in the (full) extended plus closure of I , i.e., x ∈ Iepf , provided there
exists c ∈ R − {0} such that for every positive rational number ε and every positive integer N ,
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cεx ∈ (I, pN)R+. The element x is in the (full) rank 1 closure of I , i.e., x ∈ I r1f , if for every rank
one valuation ν on R+, every positive integer N , and every positive rational number ε, there exists
d ∈ R+ − {0} with ν(d) < ε such that dx ∈ (I, pN)R+.

From the definition above, we immediately see that the epf closure is always contained in the
r1f closure, i.e., Iepf ⊆ I r1f for any ideal I ⊆ R. We also note that there is a natural generalization of
these definitions to (finitely generated) modules. See also [R.G16, Definition 7.1]. We include the
definition below.

Definition 3.1.3. Let R be an integral domain of mixed characteristic p and let W ⊆M be finitely
generated R-modules. Let M+,W + be the notation in Notation 3.1.1, and let u be an element of M .
Then u ∈M is in the epf closure of W if there is some c ∈ R − {0} such that for any ε ∈ Q+,N ∈ N
we have

cε ⊗ u ∈ Im (W + →M+) + pNM+.

Moreover, u is in the r1f closure of W if for every rank one valuation ν on R+, every positive integer
N , and every positive rational number ε, there exists d ∈ R+ − {0} with ν(d) < ε such that

d⊗ u ∈ Im (W + →M+) + pNM+.

3.1.2 Closure axioms

Here we present the seven axioms defined by Dietz in [Die10], together with the Algebra axiom
defined by R.G. in [R.G18, Axiom 3.1].

Axiom Set 3.1.4. Let (R,m) be a complete local domain possessing a closure operation cl. Let
Q,M and W be arbitrary finitely generated R-modules with Q ⊆M .

(i) (Extension) Qcl
M is a submodule of M containing Q.

(ii) (Idempotence) (Qcl
M)clM = Qcl

M .
(iii) (Order-preservation) If Q ⊆M ⊆W , then Qcl

W ⊆M cl
W .

(iv) (Functoriality) Let f ∶M →W be a homomorphism. Then f(Qcl
M) ⊆ (f(Q))clW .

(v) (Semi-residuality) If Qcl
M = Q, then 0cl

M/Q
= 0.

(vi) (Faithfulness) The maximal ideal m and the zero ideal 0 are closed.
(vii) (Generalized Colon-capturing) Let x1, . . . , xk+1 be a partial system of parameters for R and

let J = (x1, . . . , xk). Suppose that there exists a surjective homomorphism f ∶ M → R/J
such that f(v) = xk+1 + J . Then

(Rv)clM⋂Ker f ⊆ (Jv)clM .
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(viii) (R.G.’s Algebra Axiom) If R
α→M,1 ↦ e1 is cl-phantom, then the map α′ ∶ R → sym2(M)

which sends 1↦ e1 ⊗ e1 is cl-phantom.

The seventh axiom (the generalized colon-capturing axiom) is also equivalent to the following
axiom if the closure operation satisfies the other six Dietz axioms. See [Die10, Lemma 1.3].

Axiom 3.1.5. Let R be a complete local domain possessing a closure operation cl. Assume that
dimR = d. Let x1, . . . , xk+1 be a partial system of parameters for R where 0 ⩽ k < d and let
J = (x1, . . . , xk) (J = 0 if k = 0). Suppose that there exists a homomorphism f ∶M → R/J such
that f(v) = xk+1 + J . Then

(Rv)clM⋂Ker f ⊆ (Jv)clM .

Since both the epf and r1f closures satisfy the first 6 axioms ([R.G16, Section 7]), we have no
trouble using this equivalent form.

The axiom (vii) in Axiom Set 3.1.4 and its alternate form Axiom 3.1.5 are rather subtle in
comparison with the other axioms. It is not even obvious that tight closure satisfies this condition.
Axiom (vii) implies that the closure operation gives closures that are “big enough” without being
“too big”. In particular, they must be big enough to capture colons while being trivial on regular
rings. The notion of “too big” is subtle. Note that integral closure for ideals can be extended to
modules such that it satisfies axioms (i) - (vi) and ordinary colon capturing. This closure is “too big”
in the sense that it does not satisfy the axiom (vii).

However, generalized colon-capturing is most critical in the proof by Dietz that the existence of
a closure operation satisfying axioms (i) - (vii) in Axiom Set 3.1.4 is equivalent to the existence of a
balanced big Cohen-Macaulay module. Dietz also proved that the usual notion of colon-capturing
follows from it ([Die10, Proposition 1.4]).

3.1.3 Phantom extensions

The notion of phantom extensions was first introduced by Hochster and Huneke in [HH94b,
Section 5] in order to produce a new proof for the existence of big Cohen-Macaulay modules. In
the same paper, they also proved that every module-finite extension of a reduced ring of positive
characteristic is a phantom extension ([HH94b, Theorem 5.17]). The generalized notion related to a
closure operation was introduced by Dietz ([Die10, Definition 2.2]), which we record below.

An exact sequence 0 → R
α→ M → Q → 0 determines an element ε in Ext1

R(Q,R) via the
Yoneda correspondence. If P● is a projective resolution of Q consisting of finitely generated
projective modules Pi, then ε is a cocycle element in HomR(P1,R). We call ε cl-phantom if ε is in
Im (HomR(P0,R) → HomR(P1,R))clHomR(P1,R)

.
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Remark 3.1.6. This is different from requiring that ε as an element of Ext1
R(Q,R) is in the cl closure

of 0. Because Ext1
R(Q,R) is a submodule of HomR(P1,R)/ Im (HomR(P0,R) → HomR(P1,R)),

the cl-closure of 0 in the latter one could be potentially larger than the closure in the former one.

We note that this definition is independent of the choice of the resolution of Q. For proofs, see
[Die10, Discussion 2.3].

3.1.4 Almost mathematics

The language of almost mathematics is carefully studied in [GR03]. We will not use the full
strength of that. The setup of almost mathematics is given by a ring A together with an A-flat ideal
I such that I2 = I . The situation where almost mathematics is involved in this thesis usually occurs
over an algebra A with an A-flat ideal I = (c1/p∞)A, where (c1/p∞)A means the ideal generated by
a compatible system of p-power roots of c, i.e., (c1/p, c1/p2

, . . .)A. This situation can be explained
explicitly: let M be an A-module. An element u ∈M is I-almost zero, i.e., u a= 0, if and only if
c1/pku = 0 for any k ∈ N, or, equivalently, Iu = 0. An element u is I-almost in a submodule N of M ,
i.e., u

a∈ N if its image in M/N is almost zero. A submodule N1 is I-almost in N2, i.e., N1

a⊆ N2,
if every element in N1 is I-almost in N2. Two submodules N1,N2 of M are I-almost equal, i.e.,
N1

a= N2, if N1

a⊆ N2 and N2

a⊆ N1. We will usually focus on ideals rather than submodules.

3.1.5 Almost-pro-isomorphisms

Here, we briefly discuss the notion of almost mathematics in the world of pro-objects. See the
detailed discussion in [Bha17a, Section 11.3]. We fix a ring A and an A-flat ideal I such that I2 = I .
Let us consider a simpler setting: all objects are projective systems {Mj}j∈J of A-modules indexed
by the positive integers.

Definition 3.1.7. A pro-A-module {Mj}j∈J of A-modules is almost-pro-zero if for each w ∈ I and
j ∈ J , there exists some k ⩾ j such that the transition map Mk →Mj has its image killed by w; a
map {Mj}j∈J → {Nk}k∈K of pro-A-modules is called an almost-pro-isomorphism if the kernel and
cokernel pro-objects are almost-pro-zero.

In particular, we need the following lemma from [Bha17a, Corollary 11.3.5].

Lemma 3.1.8. Let {Mj}j∈J → {Nk}k∈K be an almost-pro-isomorphism, and let F ∶ ModR →ModR

be an R-linear functor. Then R lim←Ð
j

F (Mj) → R lim←Ð
k

F (Nk) is an almost isomorphism on each

cohomology group.
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3.1.6 Perfectoid algebras

We will freely use the language of perfectoid spaces ([Sch12]). Throughout this chapter we will
always work in the following situation: Let A be a complete unramified regular local ring of mixed
characteristic p that has an F -finite residue field k. By Cohen’s structure theoremA ≅ V Jx2, . . . , xdK
where V is the coefficient ring of A. Let kpc be the perfect closure of k and W (kpc) be the Witt
vectors of kpc. Let A0 be the p-adic completion of A⊗V W (kpc).

Let K○ be the p-adic completion of W (kpc)[p1/p∞] ∶= ∪∞i=1W (kpc)[p1/pi] and K = K○[1
p].

Then K is a perfectoid field with K○ its valuation ring. An element π ∈ K○ that satisfies
∣p∣ ⩽ ∣π∣ < 1 is called a pseudo-uniformizer. All theorems we cite in this section work for any
choice of pseudo-uniformizer (usually we choose π = p). Let A∞,0 be the p-adic completion of
A0[p1/p∞ , x

1/p∞

2 , . . . , x
1/p∞

d ]. Then A∞,0 is an integral perfectoid K○-algebra, and A∞,0[1
p] is a

perfectoid K =K○[1
p]-algebra.

Remark 3.1.9. We note that A∞,0 is also referred to as a perfectoid K○-algebra (without “integral”).
The difference is very technical and will not affect any conclusion in our proofs. Explicitly, a
perfectoid K○-algebra A is a π-adically complete K○-algebra flat over K○, and the map A/π1/p →
A/π is an isomorphism. Let A∗ be the set of elements in A[ 1

π ] that are (π1/p∞)-almost in A,
i.e., A∗ = {a ∈ A[ 1

π ]∣π1/p∞a ∈ A}. By definition we have A a≅ A∗ for any perfectoid K○-algebra
A. An integral perfectoid K○-algebra A is a perfectoid K○-algebra such that A ≅ A∗ (an honest
isomorphism). Since we always work in the π1/p∞-almost world, this difference will not affect
anything.

We next state a result of André ([And18a, Section 2.5]) in a form we need. See also [Bha17b,
Theorem 1.5] or [Bha17a, Theorem 9.4.3].

Theorem 3.1.10. Let A○ be an integral perfectoid K○-algebra and let π be a pseudo-uniformizer of

K○. Let g ∈ A○ be an element. Then there exists a map A○ → B○ of integral perfectoid K○-algebras

that is almost faithfully flat modulo π such that the element g admits a compatible system of p-power

roots g1/pk in B○.

We need this compatible system of p-power roots of g to make use of the following remarkable
result of André, which is referred to as the “Perfectoid Abhyankar Lemma” ([And18b, Theorem
0.3.1]). Again, we rephrase it into a form that suits our objectives. Here, for any perfectoid K-
algebra A, we use A○ to denote its ring of power-bounded elements, i.e., elements whose powers
form a bounded subset in A. The ring A○ is a perfectoid K○-algebra if A is a perfectoid K-algebra.

Theorem 3.1.11. Let A○ be a perfectoid K○-algebra, and A a perfectoid K-algebra. Suppose that

g ∈ A○ is a nonzerodivisor that admits a compatible system of p-power roots of g. Let B′ be a finite

étale A[1
g ]-algebra. Then

52



(i) There exists a larger perfectoid algebra B between A and B′ such that the inclusion A → B is

continuous. We have B[1
g ] = B′, and B○ is contained in the integral closure of A○ and this

inclusion is a (pg)1/p∞-almost isomorphism.

(ii) For any m ∈ N, B○/pm is (pg)1/p∞-almost finite étale over A○/pm.

Typically, one has a complete local domain R module-finite over A. One often starts with R and
chooses A. We can choose g ∈ A to be a discriminant of R over A. Thus Rg is finite étale over Ag.
We apply Theorem 3.1.10 to A∞,0 and g ∈ A to obtain an integral perfectoid K○-algebra A∞ that
contains a compatible system of p-power roots of g. Then R ⊗A∞[1

g ] is finite étale over A∞[1
g ].

The way we use Theorem 3.1.11 is by setting A○ = A∞,A = A∞[1
p],B′ = R⊗A∞[ 1

pg ].

3.2 p-Colon-Capturing

Let R be a d-dimensional complete local domain of mixed characteristic p. We will define the
p-colon-capturing property (Definition 3.2.3) and then start to prove that epf satisfies this property
(Theorem 3.2.4).

Let us discuss the behavior of the epf closure in R+. For any ideal I ⊆ R, the epf closure of IR+

in R+ is the set of elements

{u ∈ R+ ∣ ∃c ∈ R − {0}, cεu ∈ IR+ + pNR+, ∀N ∈ N, ε ∈ Q+} .

Remark 3.2.1. One can also use c ∈ R+ instead of c ∈ R, i.e.,

(IR+)epf = {u ∈ R+ ∣ ∃c ∈ R+ − {0}, cεu ∈ IR+ + pNR+, ∀N ∈ N, ε ∈ Q+} .

Note that if some element c ∈ R+ ∖ {0} works, since c is integral over R, it has a nonzero multiple
cs ∈ R, and r = cs will work as well.

We have an easy observation.

Lemma 3.2.2. Let R be an integral domain of mixed characteristic p. Then for any ideal I ⊆ R, we

have

(IR+)epf = ⋃(IS)epf for all S ⊆ R+ module-finite over R.

Proof. The containment ⊇ is obvious. For the converse direction, suppose u ∈ (IR+)epf . Then
by definition we have cεu ∈ (I, pN)R+ for some c ∈ R. Since u is algebraic over R, there is
some module-finite extension S of R such that u ∈ S, and then Definition 3.1.2 implies that
u ∈ (IS)epf .

We give the definition of our key property, p-colon-capturing.
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Definition 3.2.3. Let R be a d-dimensional complete local domain of mixed characteristic p. Let
x1, . . . , xn be part of a system of parameters ofR. We say that x1, . . . , xn satisfies p-colon-capturing

if there is some fixed positive integer N0 such that for all integers N ⩾ N0 we have

(x1, . . . , xn−1, p
N) ∶R+ xn ⊆ ((x1, . . . , xn−1, p

N−N0)R+)epf .

The main theorem we aim to prove in this section is stated below.

Theorem 3.2.4. LetR be a complete local domain of mixed characteristic p with an F -finite residue

field. Then all systems of parameters in R satisfy p-colon-capturing.

In order to prove the main theorem, we need two lemmas.

Lemma 3.2.5. Let A be a regular complete local domain of mixed characteristic p. Let x1, . . . , xd

be a system of parameters in A. Since A is noetherian, we may choose some N0 such that

(x1, . . . , xn)A ∶A p∞ = (x1, . . . , xn)A ∶A pN0 . Let T be a (pg)1/p∞-almost flat A-algebra. Then for

all N ⩾ N0 and 1 ⩽ n ⩽ d, we have

(x1, . . . , xn−1, p
N)T ∶T xn

a⊆ (x1, . . . , xn−1, p
N−N0)T.

Proof. Since T is (pg)1/p∞-almost flat over A,

(x1, . . . , xn)T ∶T p∞ a= ((x1, . . . , xn)A ∶A p∞)T
= ((x1, . . . , xn)A ∶A pN0)T a= (x1, . . . , xn)T ∶T pN0 .

Let N ⩾ N0 be some arbitrary integer and let u be an arbitrary element in (x1, . . . , xn−1, pN)T ∶T xn.
We have

uxn −wpN ∈ (x1, . . . , xn−1)T (3.2.1)

for some w ∈ T , which implies that w ∈ (x1, . . . , xn)T ∶T pN . Note that since

(x1, . . . , xn)T ∶T pN ⊆ (x1, . . . , xn)T ∶T p∞ a= (x1, . . . , xn)T ∶T pN0 ,

we have
w

a∈ (x1, . . . , xn)T ∶T pN0 . (3.2.2)

Let ε be an arbitrary positive rational number. We rewrite (3.2.1) as

uxn − (wpN0)pN−N0 ∈ (x1, . . . , xn−1)T (3.2.3)

⇒ (pg)ε uxn − ((pg)εwpN0)pN−N0 ∈ (x1, . . . , xn−1)T (3.2.4)
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(3.2.2) shows that for any ε, (pg)εwpN0 ∈ (x1, . . . , xn)T . So for each ε > 0, there is some vε ∈ T
such that (pg)εwpN0 − vεxn ∈ (x1, . . . , xn−1)T . Combining this with (3.2.4), we have

(pg)ε uxn − (vεxn)pN−N0 ∈ (x1, . . . , xn−1)T
⇒ (pg)ε u − vεpN−N0 ∈ (x1, . . . , xn−1)T ∶T xn.

Since T is (pg)1/p∞-almost flat over A, we have ((x1, . . . , xn−1)T ∶T xn)
a⊆ (x1, . . . , xn−1)T . So we

have
∀ε, (pg)ε u a∈ (x1, . . . , xn−1, p

N−N0)T.

Since this is true for all ε, we conclude that u
a∈ (x1, . . . , xn−1, pN−N0)T .

Lemma 3.2.6. Let R be a complete local domain that is module-finite over a regular complete local

domain A, where both R and A are of mixed characteristic p. Let y1, . . . , yn be part of some system

of parameters in R. There exists some positive integer N0 such that for any integer N ⩾ N0 and any

R-algebra T that is (pg)1/p∞-almost flat over A,

(y1, . . . , yn−1, p
N)T ∶T yn

a⊆ (y1, . . . , yn−1, p
N−N0)T.

Proof. Let k be the number of elements in {y1, . . . , yn} that are in A. We prove the lemma by
induction on n and n − k. The base cases n = k for all 1 ⩽ n ⩽ d follow from Lemma 3.2.5 with the
same N0. Let us choose the same N0 from Lemma 3.2.5. We assume that n − k > 0. To simplify the
notation, we write y for the sequence y2, . . . , yn−1.

If yn /∈ A, then we can choose some wn ∈ (y1, y, yn)R ∩A that is not contained in any minimal
prime of (y1, y)R in R, and then y1, y,wn continue to be part of a system of parameters in R. There
is one more element of y1, y,wn in A than of y1, y, yn. By the induction hypothesis on n − k, there
is some N0 such that for any N ⩾ N0 and any R-algebra T that is (pg)1/p∞-almost flat over A,

(y1, y, p
N)T ∶T wn

a⊆ (y1, y, p
N−N0)T. (3.2.5)

Note that we have

(y1, y, p
N)T ∶T yn = (y1, y, p

N)T ∶T (y1, y, yn),
(y1, y, p

N)T ∶T wn = (y1, y, p
N)T ∶T (y1, y,wn),

and
(y1, y, p

N)T ∶T (y1, y, yn) ⊆ (y1, y, p
N)T ∶T (y1, y,wn). (3.2.6)

The result now follows from (3.2.5) and (3.2.6).
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In the remaining case, we can assume that yn ∈ A. Without loss of generality, we assume that
y1 /∈ A. By applying what we have proved above to the sequence y, yn, y1, we know that there is
some N1 such that for all N ⩾ N1 and all R-algebras T that are (pg)1/p∞-almost flat over A,

(y, yn, pN)T ∶T y1

a⊆ (y, yn, pN−N1)T. (3.2.7)

Also, by applying the induction hypothesis on n to the shorter sequence y, yn, there is some N2

such that for all N ⩾ N2 and all R-algebras T that are (pg)1/p∞-almost flat over A,

(y, pN)T ∶T yn
a⊆ (y, pN−N2)T. (3.2.8)

Let N ⩾ N1 +N2 be an integer. For any u ∈ (y1, y, pN)T ∶T yn, we can write

ynu = u1y1 +⋯ + un−1yn−1 + vpN (3.2.9)

for some u1, . . . , un−1, v ∈ T . Then u1y1 ∈ (y, yn, pN)T , which by (3.2.7) implies that

u1

a∈ (y, yn, pN−N1)T.

For any positive rational number ε, we have (pg)ε u1 = b2y2 + ⋯ + bnyn + wpN−N1 for some
b2, . . . , bn,w ∈ T which depend on ε. Multiply (3.2.9) by (pg)ε and make use of the expression of
(pg)ε u1. This yields

(pg)ε ynu = (pg)ε u1y1 +⋯ + (pg)ε un−1yn−1 + (pg)ε vpN

⇒ (pg)ε ynu − bny1yn ∈ (y, pN−N1)T
⇒ (pg)ε u − bny1 ∈ (y, pN−N1)T ∶T yn
⇒ (pg)ε u − bny1

a∈ (y, pN−N1−N2)T (by (3.2.8))

⇒ (pg)ε u a∈ (y1, y, p
N−N1−N2)T,

and this is true for any positive rational number ε and any u ∈ (y1, y, pN)T ∶T yn. Hence, we can
conclude that

(y1, . . . , yn−1, p
N)T ∶T yn

a⊆ (y1, . . . , yn−1, p
N−N1−N2)T.

Next we discuss some perfectoid constructions that will be used in the proof of Theorem 3.2.4.

Construction 3.2.7. Let A→ S, a module-finite map of complete local domains of mixed character-
istic p, be given where A is regular and unramified with an F -finite residue field. We apply the same
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construction as in Section 3.1.6 to obtain A∞,0. Since A → S is generically étale, there is some
element g in A such that (p, g) generates a height 2 ideal and Apg → Spg is finite étale. Let A∞ be
obtained by applying Theorem 3.1.10 to A∞,0 and g. Then by Theorem 3.1.11 (where A = A∞[1

p]
and B′ = A∞[ 1

pg ] ⊗A S), we are able to find an S-algebra B○ satisfying the following properties:

• B○ is (pg)1/p∞-almost flat over A.

• There exists a (pg)1/p∞-almost map from B○ to Spg where Spg is the integral closure of Ŝ+ in
Ŝ+[ 1

pg ], and Ŝ+ is the p-adic completion of S+.

For proofs, see [HM21, Lemma 3.8, Lemma 3.9].

A direct consequence of the construction above is the following lemma.

Lemma 3.2.8. With notation as above, let I ⊆ S be an ideal of S and u ∈ S. If u is (pg)1/p∞-almost

in IB○, then u ∈ Iepf .

Proof. Since B○ maps (pg)1/p∞-almostly to Spg, we have u
a∈ ISpg. By [HM21, Lemma 3.3] we

know that Spg is (pg)1/p∞-almost isomorphic to Ŝ+. Hence u
a∈ IŜ+. Then [HM21, Lemma 3.1]

finishes the proof.

We are ready to prove our main result of this section.

Proof of Theorem 3.2.4. Since R is a complete local domain, by Cohen’s structure theorem, there
is a complete regular local domain A such that A → R is a module-finite extension. So A has an
F -finite residue field. We fix this A for the remainder of the proof.

For any x1, . . . , xn that is part of a system of parameters, we want to prove that there is some N0

such that for all N ⩾ N0,

(y1, . . . , yn−1, p
N)R+ ∶R+ yn ⊆ ((y1, . . . , yn−1, p

N−N0)R+)epf .

We apply Lemma 3.2.6 to the system of parameters y1, . . . , yn. We learn that there is some positive
integer N0 such that for any N ⩾ N0 and any R-algebra T that is (pg)1/p∞-almost flat over A,

(y1, . . . , yn−1, p
N)T ∶T yn

a⊆ (y1, . . . , yn−1, p
N−N0)T. (3.2.10)

Let u be an arbitrary element in (y1, . . . , yn−1, pN)R+ ∶R+ yn. Then we have

ynu = y1u1 +⋯ + yn−1un−1 + vpN (3.2.11)

for some u1, . . . , un−1, v ∈ R+. All elements here are integral over R. Hence, there is some
module-finite extension S of R such that this relation holds in S, i.e., u ∈ (y1, . . . , yn−1, pN)S ∶S yn.
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Applying Construction 3.2.7 to A→ S, we obtain an S-algebra B○ that is (pg)1/p∞-almost flat over
A. B○ is also an R-algebra. So we set T = B○ in (3.2.10) and obtain that

(y1, . . . , yn−1, p
N)B○ ∶B○ yn

a⊆ (y1, . . . , yn−1, p
N−N0)B○ (3.2.12)

for all N ⩾ N0. Since the relation (3.2.11) maps to a relation in B○, we see that u is in the left-
hand side of (3.2.12). Hence it is (pg)1/p∞-almost in the right-hand side of (3.2.12). Then, by
Lemma 3.2.8, we know that u ∈ ((x1, . . . , xn−1, pN−N0)S)epf for all N ⩾ N0. This completes the
proof, by Lemma 3.2.2.

3.3 Weak epf Closure

In this section, we develop a new closure operation, called “weak epf closure”, and denote it by
wepf. We prove that it satisfies not only the generalized colon-capturing property (Theorem 3.3.4),
but also two stronger colon-capturing properties (Proposition 3.3.6). We also show that wepf is a
Dietz closure satisfying the Algebra axiom (Theorem 3.3.8). Let us begin with the definition of
wepf.

Definition 3.3.1. Let R be a complete local domain of mixed characteristic p > 0. Let I ⊆ R be an
ideal. Then the weak epf closure of I , denoted by Iwepf , is defined to be Iwepf ∶= ⋂∞

N=1 (I, pN)epf .
Similarly for finitely generated R-modules W ⊆M , we define Wwepf ∶= ⋂∞

N=1 (W + pNM)epfM .

Remark 3.3.2. It is clear from the definition that Iepf ⊆ Iwepf . So the weak epf closure also satisfies
the usual colon-capturing. It is not hard to see that Iwepf ⊆ I r1f : Let u ∈ Iwepf . For any rank 1
valuation ν on R+, any N ∈ N and any ε ∈ Q+, since u ∈ Iwepf ⊆ (I, pN)epf , there is some c ∈ R such
that cδu ∈ (I, pN)R+ for any δ ∈ Q+. We choose δ small enough such that ν(cδ) < ε. The existence
of such a sequence of cδ implies that u ∈ I r1f .

Since the epf closure on complete regular local domains with F -finite residue fields is trivial by
[HM21, Theorem 3.9], we have

Iwepf =
∞

⋂
N=1

(I, pN)epf =
∞

⋂
N=1

(I, pN) = I.

Therefore we have

Corollary 3.3.3. The wepf closure is trivial on complete regular local domains of mixed character-

istic with F -finite residue fields.

Next we want to show that the wepf closure satisfies the generalized colon-capturing axiom
using p-colon-capturing.
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Theorem 3.3.4. LetR be a complete local domain of mixed characteristic p with an F -finite residue

field. Then the wepf closure on R satisfies the generalized colon-capturing axiom.

Proof. Let M be an R-module and let x1, . . . , xn+1 be a partial system of parameters of R. Let
f ∶ M → R/I be a morphism of R-modules where I = (x1, . . . , xn)R and f(v) = x̄n+1in R/I .
Suppose that u ∈ (Rv)wepfM ∩Ker f . We want to show that u ∈ (Iv)wepfM .

If we apply p-colon-capturing (Theorem 3.2.4) to the system of parameters x1, . . . , xn+1, we
learn that there is some N0 such that for any N ⩾ N0 we have

(x1, . . . , xn, p
N)R+ ∶R+ xn+1 ⊆ ((x1, . . . , xn, p

N−N0)R+)epf . (3.3.1)

Since u ∈ (Rv)wepfM , we have u ∈ ⋂∞
N=1(Rv + pNM)epfM , i.e., u ∈ (Rv + pNM)epfM for all positive

integers N or equivalently all N ⩾ N0. Fix N = N1 ⩾ N0. We know that there is some nonzero
element c ∈ R such that for any ε ∈ Q+, we have cε⊗u ∈ Im(R+⊗R v →M+)+pN1M+, where M+ =
R+ ⊗RM as in Notation 3.1.1. So there is some a ∈ R+ and µ ∈M+ such that cε ⊗ u = a⊗ v + pN1µ.
We apply 1 ⊗R f and note that u ∈ Ker f . Hence, axn+1 + pN1(1 ⊗R f)(µ) ∈ IR+, which gives
us a ∈ (x1, . . . , xn, pN1)R+ ∶R+ xn+1. By (3.3.1), we have a ∈ ((x1, . . . , xn, pN1−N0)R+)epf . Hence,
there is some c′ (depending on N1 −N0) such that

(c′)εa ∈ (x1, . . . , xn)R+ + pN1−N0R+.

Now everything on the right-hand side of (c′c)ε ⊗ u = (c′)εa⊗ v + (c′)εpN1µ is in

Im(IR+ ⊗R v →M+) + pN1−N0M+.

We have
(c′c)ε ⊗ u ∈ Im(IR+ ⊗R v →M+) + pN1−N0M+.

Therefore, u ∈ (Iv, pN1−N0)epfM for all N1 ⩾ N0. We conclude that u ∈ (Iv)wepfM .

Remark 3.3.5. In the proof above, the element c′ depends on N1 −N0. Hence, we can not use the
same c′ when N1 changes. Therefore, we do not have an obvious way to prove that epf closure
satisfies the generalized colon-capturing axiom. So far as we know, this is an open question.

We also prove that the wepf closure satisfies some strong colon-capturing conditions (both
versions A and B) defined in [R.G16, Definition 3.9].

Proposition 3.3.6. Let x1, . . . , xk be a partial system of parameters in a complete local ring R of

mixed characteristic p with an F -finite residue field. Let t, a be two positive integers. Then

(i) ((xt1, x2, . . . , xk)R)wepf ∶R xa1 ⊆ ((xt−a1 , x2, . . . , xk)R)wepf for all a < t;
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(ii) ((x1, . . . , xk)R)wepf ∶R xk+1 ⊆ ((x1, . . . , xk)R)wepf .

Proof. 3.3.6.(i): For the first containment, consider an element u ∈ ((xt1, x2, . . . , xk)R)wepf ∶R xa1.
Then

uxa1 ∈ ((xt1, x2, . . . , xk)R)wepf .

For any N there is some cN ∈ R such that for any ε we have cεNux
a
1 ∈ (xt1, x2, . . . , xk, pN)R+. So

there is some v ∈ R+ such that cεNx
a
1u − xt1v ∈ (x2, . . . , xk, pN)R+. Then we have

cεNu − xt−a1 v ∈ (x2, . . . , xk, p
N)R+ ∶R+ xa1.

By Theorem 3.2.4 there is some N0 such that for any N ⩾ N0 we have

cεNu − xt−a1 v ∈ ((x2, . . . , xk, p
N−N0)R+)epf .

So there is another element dN−N0 ∈ R+ such that for any positive rational number δ, we have

dδN−N0
(cεNu − xt−a1 v) ∈ (x2, . . . , xk, p

N−N0)R+

⇒ dδN−N0
cεNu ∈ (xt−a1 , x2, . . . , xk, p

N−N0)R+.

We can choose δ = ε. Hence, we conclude that u ∈ ((xt−a1 , x2, . . . , xk, pN−N0)R)epf . Since this is
true for all N ⩾ N0, we conclude that u ∈ ((xt−a1 , x2, . . . , xk)R)wepf .

3.3.6.(ii): For the second containment, the proof is similar.
For any u ∈ ((x1, x2, . . . , xk)R)wepf ∶R xk+1, we have uxk+1 ∈ ((x1, x2, . . . , xk)R)wepf . So for

any N there is some cN such that for all ε we have

cεNxk+1u ∈ (x1, x2, . . . , xk, p
N)R+.

So we have cεNu ∈ (x1, x2, . . . , xk, pN)R+ ∶R+ xk+1. Again, by Theorem 3.2.4, we have some N0

such that for all N ⩾ N0, cεNu ∈ ((x1, x2, . . . , xk, pN−N0)R+)epf .
So there is another element dN−N0 such that for any positive rational δ, we have

dδN−N0
cεNu ∈ (x1, x2, . . . , xk, p

N−N0)R+.

For the same reason as in the end of the proof of (1), we conclude that u ∈ ((x1, x2, . . . , xk)R)wepf .

Remark 3.3.7. We point out that the same arguments in both Theorem 3.3.4 and Proposition 3.3.6
work for the r1f closure. Interested readers can work out the details of the proof.
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Next, we prove that wepf satisfies all of Dietz’s and R.G.’s axioms (Axiom Set 3.1.4). This gives
a new proof of the existence of big Cohen-Macaulay algebras. The results in this section are not
used in Section 3.4 and Section 3.5.

In [R.G16, Proposition 7.2] R.G. proved that the usual epf closure satisfies the first six axioms.
Next we prove

Theorem 3.3.8. The wepf closure satisfies all axioms in Axiom Set 3.1.4.

Proof. (i) Since (Q + pNM)epfM is a submodule containing Q for each positive integer N , we
conclude that the intersection, that is the wepf closure of Q, is a submodule of M containing Q.

(ii) Since the ambient module is always M here, we omit the subscript and write Qwepf for
Qwepf
M . We need to show that Qwepf is a wepf closed submodule, i.e., (Qwepf)wepf = Qwepf . Let

u ∈ (Qwepf)wepf . Then, by definition, for each N there is some cN ∈ R such that for any ε ∈ Q+ we
have

cεN ⊗ u ∈ Im((Qwepf)+ →M+) + pNM+.

So there exist some elements r1, . . . , rn ∈ R+, q1, . . . , qn ∈ Qwepf , and v ∈M+ such that

cεN ⊗ u =
n

∑
i=1

ri ⊗ qi + pNv.

Look at one qi. For each positive integer Ni, there is some ci,Ni ∈ R+ such that for any εi ∈ Q+ we
have cεii,Niqi ∈ Im(Q+ →M+) + pNiM+. Choose Ni to be N , and we have

(
n

∏
i=1

cεii,N)cεN ⊗ u ∈ Im(Q+ →M+) + pNM+.

Choose εi to be ε, this implies that u ∈ (Q + pNM)epf . Since this is true for any N , we conclude
that u ∈ Qwepf .

(iii) This is true for epf closure, and hence we have (Q + pNW )epfW ⊆ (M + pNW )epfW for all
positive integer N . Hence ⋂N(Q + pNW )epfW ⊆ ⋂N(M + pNW )epfW , i.e., Qwepf

W ⊆Mwepf
W .

(iv) Note that

f(Qwepf
M ) = f (⋂

N

(Q + pNM)epfM ) ⊆ ⋂
N

f ((Q + pNM)epfM ) .

For each term we have

f ((Q + pNM)epfM ) ⊆ ((f(Q) + pNf(M))epfW ) ⊆ ((f(Q) + pNW )epfW ) .
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We conclude that
f(Qwepf

M ) ⊆ ⋂
N

((f(Q) + pNW )epfW ) = (f(Q))wepfW .

(v) Again, we omit the subscript as the ambient module is always M . Assume that Q is
wepf-closed. Let u be an element in 0wepf

M/Q
. We want to show that u = 0. For each N we

have cεNu ∈ pN(M/Q)+. Since we have (M/Q)+ ≃ M+/ Im(Q+ → M+), we conclude that
cεNu ∈ Im(Q+ →M+) + pNM+ for any u that is a preimage of u in M . Therefore, u ∈ Qwepf

M = Q.
Hence u = 0 in M/Q.

(vi) Note that R is of mixed characteristic p. So p ∈ m and hence m + pNR = m ⇒ mwepf =
mepf = m. We prove that 0wepf = 0 by citing known results. The same argument in the last part of
the proof of [R.G16, Proposition 7.2] works directly for wepf. This argument also works for r1f
closure, i.e., 0r1f = 0, which implies that 0wepf = 0. Dietz pointed out that 0cl = 0 follows from the
other 5 axioms and generalized colon-capturing in [Die18, Lemma 1.3(e)]. Thus, for the case where
the complete local ring has a F -finite residue field, we have an alternate proof of 0wepf = 0 using the
generalized colon-capturing property Theorem 3.3.4.

(vii) See Theorem 3.3.4.
(viii) We also point out that similar arguments to those in [R.G18, Proposition 3.19] work for

wepf closure and therefore, wepf also satisfies the Algebra axiom.

Remark 3.3.9. Note that if a closure operation satisfies both the functoriality axiom (axiom (iv))
and the semi-residuality axiom (axiom (v)) in Axiom Set 3.1.4, then the statement in the semi-
residuality axiom can be improved to Qcl

M = Q if and only if 0cl
M/Q

= 0. The “only if” direction is
the semi-residuality axiom. The “if” direction comes from the functoriality axiom: consider the
map f ∶M →M/Q, we have f(Qcl

M) ⊆ (f(Q))clM/Q = 0cl
M/Q

= 0. So f(Qcl
M) ⊆ Ker(f) = Q.

The following proposition is proved by using standard techniques of reducing the closure
problem for submodules to the case of ideals. The proof we include here is basically the same as
the proof of [HH90, Proposition 8.7].

Proposition 3.3.10. Let (R,m) be a complete regular local domain of mixed characteristic with

F -finite residue fields. Then every submodule W of a finitely generated module M is wepf-closed.

Proof. We want to show that for any u ∈M not in W , we have u ∉Wwepf . We may replace W by a
submodule of M maximal with respect to not containing u, and we may replace M,W , and u by
M/W,0, and u+W . Then u is in every nonzero submodule of M . We claim that M is now of finite
length, i.e., M has only one associated prime m.

Suppose that M has two associated primes P,Q. Let v1, v2 ∈ M be elements such that
AnnR(v1) = P and AnnR(v2) = Q. Then Rv1 ⊆ M is isomorphic to R/P . So every element
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in Rv1 has annihilator P . Similarly, every element in Rv2 has annihilator Q. Then P = Q as u is in
both submodules. Thus Ass(M) consists of only one prime P .

Next we show that P must be the maximal ideal m. If not, then the image of (mn + P )/P in
R/P ↪M contains u for every positive integer n. But ⋂∞

n=1(mn + P ) = P as R is noetherian. This
is impossible, and we have Ass(M) = {m}.

Since u is in every nonzero submodule of M , u spans the socle in M , and M is an essential
extension of K = R/m ≅ Ru. Since R is regular, there exists an irreducible m-primary ideal
J ⊆ AnnR(M). The Artin ring R/J is self-injective, and M is an essential extension of K as an
R/J-module. It follows that M can be embedded in R/J . It will then suffice to show that 0 is wepf
closed in R/J , i.e., that J is wepf closed in R by Remark 3.3.9. Then Corollary 3.3.3 finishes the
proof.

Corollary 3.3.11. Let R be a complete regular local domain of mixed characteristic with F -finite

residue field. Then every submodule W of a finitely generated module M is epf-closed.

Proof. We have that W epf ⊆Wwepf =W .

3.4 Phantom Extensions

In [HH94b, Theorem 5.13], Mel Hochster and Craig Huneke proved that in characteristic p, all
module-finite extensions of complete local rings are phantom in the tight closure sense (this notion
is discussed in detail below). We prove a similar result, namely any module-finite extension of a
complete local ring of mixed characteristic p with an F -finite residue field is epf-phantom (hence
wepf- and r1f-phantom).

Theorem 3.4.1. If R → S is a module-finite extension of complete local domains of mixed charac-

teristic p with an F -finite residue field, then this map is epf-phantom.

Let us discuss the definition of phantom extension and introduce some notions. See also [Die10,
Discussion 2.4].

Suppose that (R,m) is a complete local domain. Let S be a module-finite extension of R.
Then S/R is a finitely generated module over R. So it has a minimal R basis e1, . . . , en0 . The set
of column vectors of the n0 × n0 identity matrix form an R basis for R⊕n0 , which we denote by
f1, . . . , fn0 . We can map a free module R⊕n0 onto S/R by fi ↦ ei. This map has a finitely generated
kernel. Suppose that it is minimally generated by n1 elements. Then we have a minimal resolution
of S/R:

R⊕n1 → R⊕n0 → S/R.

Suppose that the map R⊕n1 → R⊕n0 is represented by a n0 × n1 matrix ν with all entries in m.
Comparing this resolution with the original exact sequence 0 → R → S → S/R → 0, we have the
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following commutative diagram:

0 // R // S // S/R // 0

R⊕n1
ν
//

φ

OO

R⊕n0 //

OO

S/R //

OO

0

,

where φ is a 1 × n1 matrix with entries in m. Applying HomR(−,R) to the left square, and using
the identification HomR(R⊕l,R) ≅ R⊕l where l is some finite positive integer, we get

R

φ∨

��

HomR(S,R)oo

��
R⊕n1 R⊕n0

ν∨
oo

.

We write (ν∨)R⊕n1 for the submodule generated by the set of column vectors of ν∨. The extension
R → S is epf-phantom if φ∨ ∈ ((ν∨)R⊕n1)epf ([Die10, Lemma 2.10]). Note that our diagrams here
do not completely match those in [Die10, Discussion 2.4]. However, since whether an element in
Ext1

R(S/R,R) is phantom or not is independent of the choice of the resolution of S/R ([Die10,
Discussion 2.3]), the test given here is also valid.

Next we discuss some perfectoid constructions we need.

Construction 3.4.2. Let K be a perfectoid field and let (T [1
t ], T ) be a perfectoid affinoid K-algebra,

where t ∈K○ is some uniformizer that lifts to K○ ♭, i.e., it admits a compatible system of p-power
roots in K○. Suppose that g ∈ T lifts to T ♭. Let X denote the adic spectrum attached to the

pair (T [1
t ], T ), i.e., X = Spa(T [1

t ], T ). Let Un be the rational subset X (t
n

g
). Then O+

X(Un) is

t1/p
∞-almost isomorphic to the t-adic completion of T [(t

n

g
)

1/p∞

]. See also [Sch12, Lemma 6.4].

We also need a corollary of the quantitative form of Scholze’s Hebbarkeitssatz (the Riemann
extension theorem) for perfectoid spaces. First we state the theorem. See [Bha17b, Theorem 4.2],
or an alternative description in [Bha17a, Theorem 11.2.1].

Theorem 3.4.3. Let (T [1
t ], T ), g ∈ T,X,Un be as above. For each m ⩾ 0, assume that g ∈ T is a

nonzerodivisor in T /tmT . Then the projective system of natural maps

{fn ∶ T /gm → O+
X(Un)/gm}

is an almost-pro-isomorphism. In fact, we have the following more precise pair of assertions:

(i) The kernels Ker(fn) are almost 0 for each n ⩾ 0.
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(ii) For each k ⩾ 0 and c ⩾ pkm, the transition map Coker(fn+c) → Coker(fn) has image almost

annihilated by g1/pk .

What we really need is the following corollary:

Corollary 3.4.4. [Bha17a, Corollary 11.2.2] Let (T [1
t ], T ), g ∈ T,X,Un be as above. Assume that

g ∈ T is a nonzerodivisor in T /tmT for any m. Then for any T -complex Q, any integer m ⩾ 0 and

any integer i, the natural map

ExtiT (Q,T /tmT ) → lim←Ð
n

ExtiT (Q,O+
X(Un)/tmO+

X(Un))

has kernel and cokernel annihilated by (tg)1/p∞ .

The proof uses Theorem 3.4.3 above and Lemma 3.1.8 from Section 3.1.
We are ready to prove the main theorem of this section.

Proof of Theorem 3.4.1. Let α ∈ Ext1
R(S/R,R) be the obstruction to split R → S. For any R-

algebra T , we shall write αT ∈ Ext1
T ((S/R) ⊗R T,T ) for the corresponding obstruction to splitting

the induced map T → T ⊗R S.
We know that R is a complete local domain of mixed characteristic p with an F -finite residue

field. By Cohen’s structure theorem, we have a module-finite extension A→ R for some unramified
complete regular local ring A. Since all maps in A → R → S are module-finite extensions, and
fraction fields have characteristic 0, there is some g ∈ A such that Apg → Rpg → Spg are all finite
étale extensions.

Let A∞,0 be constructed as in Section 3.1.6 and let A∞ be an integral perfectoid algebra
containing a system of compatible p-power roots of g, which exists by Theorem 3.1.10. Since R̂+ is
an integral perfectoid K○-algebra admitting a compatible system of p-power roots of g, there is a
map A∞ → R̂+ of perfectoid K○-algebras.

Since A∞ is a perfectoid K-algebra, we may apply Construction 3.4.2 to

XA ∶= Spa(A∞[1

p
],A∞)

and write An ∶= O+
XA

(XA(p
n

g )). Similarly, we may apply the construction to Y ∶= Spa(R̂+[1
p], R̂+)

and write Rn ∶= O+
Y (Y (png )). Since A∞ → R̂+, we have an induced map Y → XA, which in turn

induces maps An →Rn of perfectoid K○-algebras.
Fix an integer n. Since Apg → Rpg is a finite étale extension, the base change map An[ 1

pg ] →
An ⊗Apg Rpg is also a finite étale extension. Note that g is already inverted in An[1

p]. So An[1
p] →

An ⊗Ap R[1
p] is finite étale. By the almost purity theorem ([Sch12, Theorem 7.9 (iii)]), the integral

65



closure of An ⊗A R in An ⊗Ap R[1
p], denoted Bn, is almost finite étale over An. Bn is an R-algebra.

Since both An and R[1
p] map to Rn[1

p], their tensor product over A also maps to Rn[1
p]. This

induces a map between power-bounded elements, that is, Bn →Rn. By the same argument applied
to Rpg → Spg, the map Bn[1

p] → Bn ⊗R S[1
p] is a finite étale extension. Thus, by the almost purity

theorem, there is an S-algebra Cn almost finite étale over Bn that almost splits. Therefore, the map
Bn → Bn ⊗R S → Cn almost splits.

Hence Bn → Bn ⊗R S almost splits modulo pm for any m. In particular, αBn/pmBn is almost
zero for all n and m. Since we have a p1/p∞-almost map Bn →Rn, we also have that αRn/pmRn is
(p2g)1/p∞-almost zero, hence, (pg)1/p∞-almost zero. By Corollary 3.4.4, we learn that αR̂+/pmR̂+ is
annihilated by (pg)1/p∞ for all m.

Consider the construction discussed above:

0 // R // S // S/R // 0

R⊕n1
ν //

φ

OO

R⊕n0 //

OO

S/R //

OO

0

where φ is a 1 × n1 matrix with entries in m and ν is a n0 × n1 matrix with entries in m. Then the
image of φ∨ in (R̂+/pmR̂+)⊕n1 is (pg)1/p∞-almost in the image of ν∨(R̂+/pmR̂+)⊕n1 . Noting that
R̂+/pmR̂+ ≅ R+/pmR+, we have

(pg)1/p∞φ∨ ∈ (ν∨)(R+)⊕n1 + pm(R+)⊕n1

for any m. By the definition of epf closure (Definition 3.1.3), we have φ∨ ∈ ((ν∨)R⊕n1)epf . Hence,
R → S is epf-phantom by [Die10, Lemma 2.10].

3.5 The Positive Characteristic Case

In this section, we discuss an analogue of Theorem 3.2.4 in positive characteristic. Since p = 0,
the situation is slightly different. We will use an arbitrary element instead, and the proof techniques
are quite different. The main result is Theorem 3.5.13.

3.5.1 Intersection of ideals and regular sequences

We begin by investigating the behaviour of intersections of finitely generated ideals in some
non-noetherian rings.

Proposition 3.5.1. Let (R,m) be an excellent local domain of prime characteristic p. Let R+ be

its absolute integral closure. Suppose that x1, . . . , xd is a system of parameters of R. Then for any

66



proper finitely generated ideal J in R+ and x1, . . . , xn, part of a system of parameters, we have

∞

⋂
N=1

((x1, . . . , xn) + JN)R+ = (x1, . . . , xn)R+.

Proof. Suppose J is generated by r1, . . . , rh. For any u ∈ ⋂∞
N=1((x1, . . . , xn) + JN)R+, let S ⊆

R+ be a module-finite extension domain of R containing x1, . . . , xn, r1, . . . , rh and u. Then S

is also excellent. Let J0 = (r1, . . . , rh)S. Then u ∈ ((x1, . . . , xn)S + JN0 S)
+ for any N . So

u ∈ ((x1, . . . , xn)S + JN0 S)
∗. By a well-known result ([HH94a, Theorem 6.1]), we can find a test

element c such that for any q = pe, where e is any positive integer,

cuq ∈ (xq1, . . . , xqn)S + (JN0 )[q]S.

Fix q. Since we know that S/(xq1, . . . , x
q
n) is J0-adically separated, we have

∞

⋂
N=1

((xq1, . . . , xqn)S + (JN0 )[q] S) ⊆ (xq1, . . . , xqn)S.

So we have
cuq ∈ (xq1, . . . , xqn)S,

which shows that u ∈ ((x1, . . . , xn)S)∗. But ((x1, . . . , xn)S)∗ = ((x1, . . . , xn)S)+ by [Smi94,
Theorem 5.1]. So u ∈ (x1, . . . , xn)S+ = (x1, . . . , xn)R+.

In order to have enough different regular sequences, we need to adjoin new variables to R and
R+. Hence, we introduce the following notation. Let Λ be a possibly infinite index set and let
{tλ ∶ λ ∈ Λ} be a set of new variables. For any quasilocal ring (T,mT ), the notion T (tλ ∶ λ ∈ Λ)
means the localization of the polynomial ring T [tλ ∶ λ ∈ Λ] at the ideal mTT [tλ ∶ λ ∈ Λ]. The natural
map T → T (tλ ∶ λ ∈ Λ) is faithfully flat. Next, we prove a stronger version of Proposition 3.5.1.

Proposition 3.5.2. Suppose (R,m) is a complete local domain of prime characteristic p. Let

(R+,mR+) be its absolute integral closure. Suppose that x1, . . . , xd is a system of parameters of R.

Then for any index set Λ and the set of new variables {tλ ∶ λ ∈ Λ}, any proper finitely generated

ideal J in R+ and x1, . . . , xn, part of system of parameters, we have

∞

⋂
N=1

((x1, . . . , xn) + JN)T = (x1, . . . , xn)T,

where T = R+(tλ ∶ λ ∈ Λ).

Proof. Write aN for the ideal ((x1, . . . , xn) + JN)R+. Let u be an element in ⋂∞
N=1 aNT . Then

u is a rational function in tλ’s. Clear the denominator and assume that u is a polynomial in
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R+[tλ ∶ λ ∈ Λ]. For each N , we know that u ∈ aNT , and, again by clearing denominators,
there is some polynomial gN ∈ R+[tλ ∶ λ ∈ Λ] such that gNu ∈ aNR+[tλ ∶ λ ∈ Λ]. We also
know that gN is a unit in T . Hence gN /∈ mR+R+[tλ ∶ λ ∈ Λ], which means that at least one
coefficient of gN is not in mR+R+, i.e., is a unit in R+. Since aN ⊆ mR+ , that coefficient continues
to be a unit in R+[tλ ∶ λ ∈ Λ]/aNR+[tλ ∶ λ ∈ Λ]. Hence gN is actually a nonzerodivisor on
R+[tλ ∶ λ ∈ Λ]/aNR+[tλ ∶ λ ∈ Λ]. Therefore, we conclude that u ∈ aNR+[tλ ∶ λ ∈ Λ]. Since
we are now in the polynomial case, this is equivalent to saying that each coefficient of u is in
aNR+. Therefore, each coefficient of u is in ∩∞N=1aNR

+ ⊆ (x1, . . . , xn)R+ (Proposition 3.5.1). So
u ∈ (x1, . . . , xn)R+[tλ ∶ λ ∈ Λ] ⇒ u ∈ (x1, . . . , xn)T .

For the proof of the main theorem of this section, we need to study the intersection of ideals
containing elements of the form xn − tλnxn+1 where xn, xn+1 are part of a system of parameters.

Proposition 3.5.3. Let (B,mB) be a quasilocal ring, x, y ∈ mB a permutable regular sequence on

B and t an indeterminate. Then for any positive integer N , we have

(i) (x − yt, yN)B(t) ∩B[t] = (x − yt, yN)B[t];
(ii) (x − yt, yN)B[t] ∩B = (x, y)NB.

Proof. For 3.5.3.(i), note that (x − yt, y)B(t) = (x, y)B(t). Any polynomial g(t) ∈ B[t] that
is invertible in B(t) has a nonzero coefficient that is a unit. Hence g(t) is a nonzerodivisor on
B[t]/(x, y)B[t]. So y, x − yt, g(t) form a regular sequence on B[t], which implies that yN , x −
yt, g(t) form a regular sequence on B[t]. Suppose that p(t) ∈ (x−yt, yN)B(t)∩B[t]; then we can
clear the denominators to get p(t)g(t) = a(t)yN +b(t)(x−yt) for some a(t), b(t), g(t) ∈ B[t] with
g(t) invertible in B(t). Then since yN , x − yt, g(t) form a regular sequence on B[t], we conclude
that p(t) ∈ (x − yt, yN)B[t]. The converse containment is obvious.

For 3.5.3.(ii), suppose that b ∈ (x − yt, yN)B[t] ∩B. Then b = α(t)(x − yt) + β(t)yN for some
polynomial α(t), β(t) ∈ B[t]. Assume that α(t) = chth +⋯ + c0 for elements c0, c1, . . . , ch ∈ B. By
comparing the coefficients of b = α(t)(x − yt) + β(t)yN , we have

−chy ∈ (yN)B, (3.5.1)

−ci−1y + cix ∈ (yN)B, 1 ⩽ i ⩽ h, (3.5.2)

b − c0x ∈ (yN)B. (3.5.3)

Claim. For each coefficient, we have ch−i ∈ (x, y)N−1B for 0 ⩽ i ⩽ h.

We prove this by induction on i. As we have ch ∈ (yN−1)B from (3.5.1) as y is, by assumption,
a nonzerodivisor on B, the case i = 0 is obvious.
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Assume that the claim is true for ch−i+1, i.e., ch−i+1 ∈ (x, y)N−1B. So we write

ch−i+1 = γN−1x
N−1 + γN−2x

N−2y +⋯ + γ0y
N−1

for some γ0, γ1, . . . , γN−1 ∈ B.
By (3.5.2) we have

−ch−iy + ch−i+1x = yNµ,

for some µ ∈ B. Hence we have

ch−iy = γN−1x
N + γN−2x

N−1y +⋯ + γ0xy
N−1 − µyN

⇒ (ch−i + µyN−1 − γ0xy
N−2 − γ1x

2yN−3 −⋯ − γN−2x
N−1) y ∈ (xN)B.

Using the assumption that y is a nonzerodivisor on B/(xN)B, we conclude that

ch−i ∈ (xN , xN−1, xN−2y,⋯, xyN−2, yN−1)B = (yN−1, xyN−2, ..., xN−1)B = (x, y)N−1B.

Therefore, the claim is proved.
By the claim above, we have c0 ∈ (x, y)N−1B ⇒ c0x ∈ (x, y)NB. So (3.5.3) implies that

b ∈ (x, y)NB.
Conversely, it is trivial that yN ∈ (x − yt, yN)B[t]. If xkyN−k ∈ (x − yt, yN)B[t] for some

0 ⩽ k ⩽ N , then xk+1yN−k−1 = (x − yt)xkyN−k−1 + xkyN−kt ∈ (x − yt, yN)B[t]. So inductively we
have (x, y)N ⊆ (x − yt, yN)B[t]. Hence they are equal.

We next observe that

Lemma 3.5.4. Let (R,m,K) be a d-dimensional complete local domain of prime characteristic

p. Let R+ be its absolute integral closure. Let Λ be an index set and let {tλ ∶ λ ∈ Λ} be a set of

variables. Let x1, . . . , xd be a system of parameters of R. Then x1, . . . , xn, where 1 ⩽ n ⩽ d, is a

regular sequence on T = R+(tλ ∶ λ ∈ Λ).

Proof. We know thatR+ is a big Cohen-MacaulayR-algebra, so that x1, . . . , xd is a regular sequence
on R+. Since R+ → T is faithfully flat, we know that x1 is a nonzerodivisor in T and

(x1, . . . , xn−1)T ∶T xn = ((x1, . . . , xn−1)R+ ∶R+ xn)T = (x1, . . . , xn−1)T.

Therefore, x1, . . . , xd is a regular sequence on T .

The following results are standard facts about regular sequences.

69



Lemma 3.5.5. Let B be a ring and x, y ∈ B be a regular sequence on B. If y is a nonzerodivisor

on B, then y, x is also a regular sequence.

Proof. The only thing that needs a proof is that x is a nonzerodivisor on B/(y)B. Suppose that
αx = βy for some α,β ∈ B. Then by assumption β ∈ (x)B. So we can write β = xβ′ for some
β′ ∈ B. Then x(α − β′y) = 0 and x is a nonzerodivisor. So α = β′y⇒ α ∈ (y)B.

Corollary 3.5.6. Let B be a ring and y, x1, . . . , xn be elements of B. If both x1, . . . , xn and

y, x1, . . . , xn are regular sequences on B, then so is x1, . . . , xk, y, xk+1, . . . , xn where 0 ⩽ k ⩽ n. In

particular, when k = n, x1, . . . , xn, y form a regular sequence on B.

Proof. We prove this by induction on k. The base case k = 0 is one of the assumptions. Now
assume that x1, . . . , xk, y, xk+1, . . . , xn is a regular sequence on B. Let A = B/(x1, . . . , xk). We
know that y, xk+1 form a regular sequence, and xk+1 is a nonzerodivisor on A. By Lemma 3.5.5,
xk+1, y also form a regular sequence on A. It is obvious that xk+2, . . . , xn continue to be a regular
sequence on A/(xk+1, y). Therefore x1, . . . , xk+1, y, xk+2, . . . , xn is a regular sequence on B.

The main result we want to prove is about elements of the form xn − tλnxn+1 in the ring T . In
the theorem below, if the index set for a variable is empty, then the variable does not occur.

Theorem 3.5.7. Let (R,m,K) be a d-dimensional complete local domain of prime characteristic

p. Let R+ be its absolute integral closure. Let Λ be an index set and let {tλ ∶ λ ∈ Λ} be a set of

variables. Let T = R+(tλ ∶ λ ∈ Λ). For any system of parameters x1, . . . , xd of R, let zi = xi− tλixi+1

for some tλi ∈ {tλ ∶ λ ∈ Λ} (λi ≠ λj if i ≠ j and 1 ⩽ i < d) and {y1, . . . , yh},{w1, . . . ,wl} be two

subsets of Xn ∶= {xn+2, xn+3, ..., xd} where 0 ⩽ h, l ⩽ d − n − 1. Then we have

(i) y1, . . . , yh, z1, . . . , zn, xn+1 form a regular sequence on T , and

(ii) ⋂∞
N=1 ((y1, . . . , yh, z1, . . . , zn) + (xn+1,w1, . . . ,wl)N)T = (y1, . . . , yh, z1, . . . , zn)T

for any 0 ⩽ n ⩽ d − 1.

Proof. We prove both claims at the same time by induction on n. The base case n = 0 is trivial:
when n = 0, (1) is the conclusion of Lemma 3.5.4 and (2) is the conclusion of Proposition 3.5.2.

Assume that both claims are true for n. We want to prove the case of n + 1. So we let
both {y1, . . . , yh} and {w1, . . . ,wl} be subsets of Xn+1. We first prove (1). Note that Xn+1 ⊆
Xn. So y1, . . . , yh, z1, . . . , zn, xn+1 is a regular sequence by the induction hypothesis. Since
(z1, . . . , zn, xn+1)T = (x1, . . . , xn+1)T , it is trivial that y1, . . . , yh, z1, . . . , zn, xn+1, xn+2 form a
regular sequence on T . Let S = T /(y1, . . . , yh, z1, . . . , zn)T . If there is some α ∈ S such
that αzn+1 = 0, then modulo xn+1 we see that αtn+1xn+2 = 0. Hence α = xn+1β. Since xn+1
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is a nonzerodivisor and βxn+1zn+1 = 0, we have βzn+1 = 0. Repeating this argument we get
α ∈ (y1, . . . , yh, z1, . . . , zn, xNn+1)T for all N . The induction hypothesis (2) shows that

α ∈ (y1, . . . , yh, z1, . . . , zn)T.

Hence zn+1 is a nonzerodivisor on S.
Let T ′ = T /(y1, . . . , yh)T . Since xn+2 ∈ Xn, the induction hypothesis shows that both

xn+2, z1, . . . , zn and z1, . . . , zn are regular sequences on T ′. By Corollary 3.5.6, z1, . . . , zn, xn+2 also
form a regular sequence on T ′. From the previous paragraph, we know that z1, . . . , zn, xn+1, xn+2

is a regular sequence on T ′, and, again by Corollary 3.5.6, z1, . . . , zn, xn+2, xn+1 form a regular
sequence on T ′. So z1, . . . , zn, xn+2, xn+1 − tn+1xn+2 is a regular sequence on T ′. Again, from
the previous paragraph, z1, . . . , zn, zn+1 is already a regular sequence on T ′. We conclude that
y1, . . . , yh, z1, . . . , zn, zn+1, xn+2 form a regular sequence on T by Corollary 3.5.6. This proves (1).

For (2), let Q = R+(tµ ∶ µ ∈ Λ, µ ≠ λn+1). Then T = Q(tλn+1). Since (xNn+2,w
N
1 , . . . ,w

N
l )Q is

cofinal with (xn+2,w1, . . . ,wl)NQ, it suffices to show that

∞

⋂
N=1

((y1, . . . , yn, z1, . . . , zn+1) + (xNn+2,w
N
1 , ...,w

N
l ))Q(tλn+1) ⊆ (y1, . . . , yh, z1, . . . , zn+1)Q(tλn+1).

Since {w1, . . . ,wl} ∪ {y1, . . . , yh} ⊆ Xn+1, the ideal (y1, . . . , yh,wN1 , . . . ,w
N
l ) ⊆ (xn+3, . . . , xd) is

generated by part of a system of parameters of R. Hence xn+1, xn+2 form a permutable regular
sequence on the quotient ring P = Q/(y1, . . . , yh,wN1 , . . . ,w

N
l , z1, . . . , zn)Q. Applying Proposi-

tion 3.5.3 to B = P,x = xn+1, y = xn+2, we get

(y1, . . . , yh,w
N
1 , . . . ,w

N
l ,z1, . . . , zn, xn+1 − tλn+1xn+2, x

N
n+2)T ∩Q

= (y1, . . . , yh,w
N
1 , . . . ,w

N
l , z1, . . . , zn)Q + (xn+1, xn+2)NQ.

For any u ∈ ∩∞N=1(y1, . . . , yh,wN1 , . . . ,w
N
l , z1, . . . , zn, xn+1 − tλn+1xn+2, xNn+2)T , clear the denom-

inators and assume that u is a polynomial in tλn+1 of degree h. Then xhn+2u can be considered as a
polynomial in tλn+1xn+2 of degree h. Therefore, we can divide xhn+2u by the “monic” polynomial
tλn+1xn+2−xn+1 inQ[tλn+1] and get a remainder b of degree 0 in tλn+1 . So xhn+2u−b ∈ (zn+1)Q[tλn+1]
and

b ∈
∞

⋂
N=1

(y1, . . . , yh,w
N
1 , . . . ,w

N
l , z1, . . . , zn+1, x

N
n+2)T ∩Q

⇒ b ∈
∞

⋂
N=1

((y1, . . . , yh,w
N
1 , . . . ,w

N
l , z1, . . . , zn) + (xn+1, xn+2)N)Q,
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which implies that b ∈ (y1, . . . , yh, z1, . . . , zn)Q by the induction hypothesis. Therefore,

xhn+2u ∈ (y1, . . . , yh, z1, . . . , zn+1)Q[tλn+1] ⇒ xhn+2u ∈ (y1, . . . , yh, z1, . . . , zn+1)T.

Note that y1, . . . , yh, z1, . . . , zn+1, xhn+2 is a regular sequence on T by our proof of (1) above. Hence,
we do not need the factor of xhn+2 and we have u ∈ (y1, . . . , yh, z1, . . . , zn+1)T .

3.5.2 Stabilization of colon ideals

We say that the colon ideal (x1, . . . , xn)R+ ∶R+ y∞ stabilizes at a positive integer N if

(x1, . . . , xn)R+ ∶R+ y∞ = (x1, . . . , xn)R+ ∶R+ yN .

The next few results deal with the stability of colon ideals in non-noetherian rings.

Lemma 3.5.8. Let (R,m) be a d-dimensional local domain of prime characteristic p and T an

R-algebra. Let x1, . . . , xd be a system of parameters of R. Suppose that xd is a nonzerodivisor on

T /(x1, . . . , xd−1)T . Then for any element y ∈ R and n = d, d − 1, there is some N0 such that

(x1, . . . , xn)T ∶T y∞ = (x1, . . . , xn)T ∶T yN0 .

Proof. The conclusion is trivial if y is a unit. So we assume that y ∈ m. For n = d, since m is
nilpotent on (x1, . . . , xd)R, and y ∈ m, there is some N0 such that yN0 ∈ (x1, . . . , xd)R. This N0

will suffice.
Look at n = d − 1 and consider the ring A = (R/(x1, . . . , xd−1)R)xd . It is an artinian ring,

and, hence, it is a product of artinian local rings, i.e., A = A1 × ⋯ ×Ah. The image of y in each
component Ai is either a unit or a nilpotent, i.e., ȳ = (y1, . . . , yh) where, without loss of generality,
y1, . . . , yk are nilpotents and yk+1, . . . , yh are units. So there is some positive power N0 such that
ȳN0 = (0,0, . . . ,0, yN0

k+1, . . . , y
N0

h ). There is some a ∈ A such that

ȳN0 = aȳ2N0 . (3.5.4)

Since T is an R-algebra, we have a map A → B = (T /(x1, . . . , xd−1)T )xd . The relation (3.5.4) of
ȳN0 and ȳ2N0 maps to a relation

ȳN0 = bȳ2N0 (3.5.5)

for some b ∈ B and the same N0. We claim that (x1, . . . , xd−1)Txd ∶Txd y∞ = (x1, . . . , xd−1)Txd ∶Txd
yN0 . Take any u ∈ (x1, . . . , xd−1)Txd ∶Txd y∞. Then the image ū of u in B = (T /(x1, . . . , xd−1)T )xd
is in 0 ∶B ȳ∞. So there is some N such that ȳN ū = 0 in B. It is obvious that any higher power of
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ȳ will kill ū. Hence we may assume without loss of generality that N = mN0 and m ⩾ 2. Then
ȳmN0ū = 0. Making use of the relation (3.5.5), we have

bȳ2N0 ȳ(m−2)N0ū = 0

⇒ ȳN0 ȳ(m−2)N0ū = 0

⇒ ȳ(m−1)N0ū = 0.

We can repeat this argument until m reaches 1. So ȳN0ū = 0 in B implies that yN0u ∈
(x1, . . . , xd−1)Txd , which in turn implies that u ∈ (x1, . . . , xd−1)Txd ∶Txd yN0 . So we have

(x1, . . . , xd−1)Txd ∶Txd y
∞ = (x1, . . . , xd−1)Txd ∶Txd y

N0 .

But we also know that xd is a nonzerodivisor on T /(x1, . . . , xd−1)T . So we have

(x1, . . . , xd−1)T ∶T y∞ = (x1, . . . , xd−1)T ∶T yN0

as well.

Theorem 3.5.9. Suppose (R,m,K) is a d-dimensional complete local domain of prime characteris-

tic p. Let R+ be its absolute integral closure. Let Λ be an uncountable index set and let {tλ ∶ λ ∈ Λ}
be a set of variables. Suppose x1, . . . , xd is a system of parameters of R. Then for any 1 ⩽ n ⩽ d
and any y ∈ R, there is some N0 such that

(x1, . . . , xn)T ∶T y∞ = (x1, . . . , xn)T ∶T yN0

where T = R(tλ ∶ λ ∈ Λ).

Proof. By Lemma 3.5.8, the conclusion is true for n = d, d − 1. We assume that n ⩽ d − 2.
We also assume that y ∈ m. Let zi = xi − tλixi+1 (1 ⩽ i ⩽ d − 1). Consider the sequence
x1, . . . , xn, zn+1, . . . , zd−1, xd. It is easy to see that

(x1, . . . , xn, zn+1, . . . , zd−1, xd)R(tλn+1 , . . . , tλd−1
) = (x1, . . . , xd)R(tλn+1 , . . . , tλd−1

).

So by Lemma 3.5.8, for any choice of λn+1, . . . , λd−1, there is some N0 such that

(x1, . . . , xn, zn+1, . . . , zd−1)T ∶T y∞ = (x1, . . . , xn, zn+1, . . . , zd−1)T ∶T yN0 .
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We want to show that

(x1, . . . , xn, zn+1, . . . , zk)T ∶T y∞ = (x1, . . . , xn, zn+1, . . . , zk)T ∶T yN0

for k ⩾ n. We prove this by reverse induction on k. The base case k = d − 1 is done. Now suppose
that this is true for k + 1. Look at ideals (x1, . . . , xn, zn+1, . . . , zk, xk+1 − tµxk+2)T ∶T y∞. The
induction hypothesis shows that each ideal stabilizes at some N . There are uncountably many µ ∈ Λ.
So we can find some N0 such that

(x1, . . . , xn, zn+1, . . . , zk, xk+1 − tµxk+2)T ∶T y∞ = (x1, . . . , xn, zn+1, . . . , zk, xk+1 − tµxk+2)T ∶T yN0

(3.5.6)
holds for infinitely many choices of µ. In particular, there are countably many µ1, µ2, . . . avoiding
all λn+1, . . . , λk such that (3.5.6) holds.

For any u ∈ (x1, . . . , xn, zn+1, . . . , zk)T ∶T y∞, there is some N such that

yNu ∈ (x1, . . . , xn, zn+1, . . . , zk)T.

So

yNu ∈ (x1, . . . , xn, zn+1, . . . , zk, xk+1 − tµixk+2)T
⇒yN0u ∈ (x1, . . . , xn, zn+1, . . . , zk, xk+1 − tµixk+2)T

for all choices of µi.
Hence for any l, we have

yN0u ∈
l

⋂
i=1

(x1, . . . , xn, zn+1, . . . , zk, xk+1 − tµixk+2)T.

Let ai = xk+1 − tµixk+2 and S = T /(x1, . . . , xn, zn+1, . . . , zk)T . We claim that

l

⋂
i=1

(ai)S =
l

∏
i=1

(ai)S (3.5.7)

for any l.
We first notice that any two elements ai and aj where i ≠ j ∈ N form a regular sequence in

S: because (ai, aj)S = (xn+1, xn+2)S, they form a regular sequence on S. We prove (3.5.7) by
induction on l. The case l = 1 is trivial. Suppose that u ∈ (∩li=1(ai)S) ∩ (al+1)S = (∏l

i=1(ai)S) ∩
(al+1)S. Write cl = ∏l

i=1 ai. Then u = αcl = βal+1 for some α,β ∈ S. Since al+1, ai (i ≠ l) form a
regular sequence, so do al+1, cl. Hence α ∈ (al+1)S ⇒ u ∈ (al+1cl)S and (3.5.7) is proved.
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So for any l, we have

yN0u ∈ (x1, . . . , xn, zn+1, . . . , zk)T +
l

∏
i=1

(xk+1 − tµixk+2)T.

Since

∞

⋂
l=1

((x1, . . . , xn, zn+1, . . . , zk)T +
l

∏
i=1

(xk+1 − tµixk+2)T)

⊆
∞

⋂
l=1

((x1, . . . , xn, zn+1, . . . , zk)T + ((xk+1, xk+2)T )l) ,

we may apply Proposition 3.5.2 to see that the right-hand side is in (x1, . . . , xn, zn+1, . . . , zk)T . We
conclude that

yN0 ∈ (x1, . . . , xn, zn+1, . . . , zk)T.

So we have

(x1, . . . , xn, zn+1, . . . , zk)T ∶T y∞ = (x1, . . . , xn, zn+1, . . . , zk)T ∶T yN0 .

The case k = n is the conclusion of the theorem.

Remark 3.5.10. In Theorem 3.5.9, one can assume that Λ is a countably infinite index set. The
proof still works if we make the following modification: we observe that for two different variables
tλ and tµ, the map swapping tλ and tµ is an automorphism of T = R(tλ ∶ λ ∈ Λ). Hence, if we have

(x1, . . . , xn, zn+1, . . . , zk, xk+1 − tλxk+2)T ∶T y∞ = (x1, . . . , xn, zn+1, . . . , zk, xk+1 − tλxk+2)T ∶T yN0

for some N0, then by applying the automorphism we just described, we have

(x1, . . . , xn, zn+1, . . . , zk, xk+1− tµxk+2)T ∶T y∞ = (x1, . . . , xn, zn+1, . . . , zk, xk+1− tµxk+2)T ∶T yN0 .

So the proof where we show that there are countably many µ such that (3.5.6) holds can be modified
as follows: Look at ideals (x1, . . . , xn, zn+1, . . . , zk, xk+1−tµxk+2)T ∶T y∞. The induction hypothesis
shows that each ideal stabilizes at some N . If one such ideal stabilizes at some integer N0, then by
permuting the variables tµ we see that all such ideals stabilize at the same N0.

Corollary 3.5.11. Suppose (R,m,K) is a d-dimensional complete local domain of prime charac-

teristic p. Let R+ be its absolute integral closure. Suppose x1, . . . , xd is a system of parameters of
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R. Then for any 1 ⩽ n ⩽ d and any y ∈ R, there is some N0 such that

(x1, . . . , xn)R+ ∶R+ y∞ = (x1, . . . , xn)R+ ∶R+ yN0 .

Proof. Let Λ be an uncountable index set and {tλ ∶ λ ∈ Λ} a set of new variables. Then by
Theorem 3.5.9, there is some N0 such that

(x1, . . . , xn)R+(tλ ∶ λ ∈ Λ) ∶R+(tλ∶λ∈Λ) y
∞ = (x1, . . . , xn)R+(tλ ∶ λ ∈ Λ) ∶R+(tλ∶λ∈Λ) y

N0 .

For any element u ∈ (x1, . . . , xn)R+ ∶R+ y∞, there is some N such that yNu ∈ (x1, . . . , xn)R+. So
it is also in (x1, . . . , xn)R+(tλ ∶ λ ∈ Λ). We have yN0u ∈ (x1, . . . , xn)R+(tλ ∶ λ ∈ Λ) by equality
above. So we have

yN0u ∈ (x1, . . . , xn)R+(tλ ∶ λ ∈ Λ) ∩R+⇒ yN0u ∈ (x1, . . . , xn)R+

as the mapR+ → R+(tλ ∶ λ ∈ Λ) is faithfully flat. Hence u ∈ (x1, . . . , xn)R+ ∶R+ yN0 , as desired.

3.5.3 The main theorem

We are almost ready to prove our main theorem of this section. Before that, let us derive a useful
corollary from the results on the stability of colon ideals.

Corollary 3.5.12. Suppose (R,m) is a d-dimensional complete local domain of prime characteristic

p. Let R+ be its absolute integral closure. Suppose x1, . . . , xd is a system of parameters of R. Then

for any 1 ⩽ n ⩽ d and any y ∈ R, there is some N0 such that (x1, . . . , xn)R+ = a ∩ b where

a = (x1, . . . , xn, yN0)R+ and b = (x1, . . . , xn) ∶R+ yN0 .

Proof. By Corollary 3.5.11, there is some N0 such that

(x1, . . . , xn)R+ ∶R+ y∞ = (x1, . . . , xn)R+ ∶R+ yN0 .

Let a = (x1, . . . , xn, yN0)R+ and b = (x1, . . . , xn)R+ ∶R+ yN0 . Then we have b = (x1, . . . , xn)R+ ∶R+
y∞. For any u ∈ a ∩ b, we can write u = a1x1 + ⋯ + anxn + byN0 and we know that yN0u ∈
(x1, . . . , xn)R+. So we have by2N0 ∈ (x1, . . . , xn)R+ ⇒ b ∈ b ⇒ byN0 ∈ (x1, . . . , xn)R+. So
u ∈ (x1, . . . , xn)R+. The reverse inclusion is trivial.

Now we prove the main theorem.

Theorem 3.5.13. Suppose (R,m) is a d-dimensional complete local domain of prime characteristic

p. Let R+ be its absolute integral closure. Suppose x1, . . . , xd is a system of parameters of R. Then
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for any 1 ⩽ n ⩽ d and any y ∈ R, there is some positive integer N0 such that for all N ⩾ N0,

(x1, . . . , xn, y
N)R+ ∶R+ xn+1 ⊆ (x1, . . . , xn, y

N−N0)R+.

Proof. By applying Corollary 3.5.12 to the system of parameters x1, . . . , xn+1 and y, we know that
there is someN0 such that if we write a = (x1, . . . ., xn+1, yN0)R+ and b = (x1, . . . ., xn+1)R+ ∶R+ yN0 ,
then we have (x1, . . . , xn+1)R+ = a ∩ b. For any u ∈ (x1, . . . , xn, yN)R+ ∶R+ xn+1, we have
uxn+1 = u1x1 +⋯ + unxn + vyN for some u1, . . . , un, v ∈ R+. Therefore,

v ∈ (x1, . . . , xn+1)R+ ∶R+ yN ⊆ b = (x1, . . . , xn+1)R+ ∶R+ yN0 .

So we can write vyN0 = v1x1 +⋯ + vn+1xn+1 for some v1, . . . , vn+1 ∈ R+. Hence,

(u − vn+1y
N−N0)xn+1 = (u1 + v1y

N−N0)x1 +⋯ + (un + vnyN−N0)xn
⇒ u − vn+1y

N−N0 ∈ (x1, . . . , xn)R+ ∶R+ xn+1.

Since R+ is a big Cohen-Macaulay algebra of R, we have u − vn+1yN−N0 ∈ (x1, . . . , xn)R+. There-
fore, we have u ∈ (x1, . . . , xn, yN−N0)R+.

Remark 3.5.14. Since R is complete local, by Cohen’s structure theorem, R is module-finite over
some complete regular local domain A of characteristic p with respect to the system of parameters
x1, . . . , xd. If the element y happens to be inA, then the same proof (i.e., the proof of Theorem 3.2.4)
as in the mixed characteristic case also works.
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CHAPTER IV

Behavior of Analogues of Tight Closure

This chapter is organized as follows: in Section 4.1 we extend the result [Die18, Theorem 4.8]
to a more general setting (Corollary 4.1.10). For this purpose, we need to generalize several notions
to the non-domain case. In Section 4.2, we add two more axioms to the set of axioms for closure
operations and discuss various related results. We show that the persistence axiom, together with
Dietz’s axioms and the Algebra axiom, imply a weak functorial version of the existence of big
Cohen-Macaulay algebras (Theorem 4.2.11). Finally, we introduce three more closure operations
in mixed-characteristic case in Section 4.3, and discuss the containment problem between these
closure operations in Section 4.4.

4.1 Dietz’s Axioms in Non-domain Cases

Dietz defined 7 axioms in [Die10] for finitely generated modules over noetherian domains, and
generalized them to non-finitely generated modules in [Die18]. Here we further generalize them to
non-domain cases.

Construction 4.1.1. Given a closure operation dcl (d for domain) defined only for rings that are
domains, there is a natural way to generalize this closure operation to non-domain local rings. Let
R be a noetherian local ring and N ⊆ M be R-modules. We let the new closure operation cl to
be defined as u ∈ N cl

M if and only if x ∈ ⟨N⟩dcl
M/PM

for any minimal prime P , where ⟨N⟩M/PM is
the image of N in M/PM . In the case of an ideal I , the closure cl of I is the intersection of all
preimages of (IR/P )dcl in R where P runs through all minimal primes of R.

Remark 4.1.2. One may also want to generalize to the non-local case by requiring that x ∈ Icl iff
x ∈ (IRm)cl for any maximal ideal m. We know that this is true for tight closure. However, as
pointed out in [Hei01, Remark 2.4], we do not know this for epf closure in complete generality.

We want to investigate the generalization of Dietz’s axioms under the Construction 4.1.1. Let
(R,m) be a noetherian local ring. All modules here are arbitrary R-modules. The first six axioms
require no modification. We also note that all proofs in [Die10, Lemma 1.2] work in this generality.
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In order to generalize the “generalized colon-capturing” axiom, we introduce the notion of
strong system of parameters.

Definition 4.1.3. A (partial) strong system of parameters is a system of parameters of R and
continues to be a (partial) system of parameters modulo every minimal prime.

Now we change the generalized colon-capturing to following:

Axiom 4.1.4 (Generalized colon-capturing in non-domain case). Let x1, . . . , xk+1 be a partial
strong system of parameters for R and let J = (x1, . . . , xk). Suppose that there exists a surjective
homomorphism f ∶M → R/J and v ∈M such that f(v) = xk+1 + J . Then

(Rv)clM ∩Ker f ⊆ (Jv)clM .

4.1.1 Some discussion on strong systems of parameters

Suppose that (R,m) is a d-dimensional noetherian local ring, and I ⊆ R is an ideal. By the
nonstandard terminology “truly minimal prime,” we mean a minimal prime P of R such that
dimR/P = d. A truly minimal prime of I corresponds to a truly minimal prime of (0) in R/I .

In an equidimensional local ring, a truly minimal prime is the same as a minimal prime. However,
in general, the set of truly minimal primes is a subset of the set of minimal primes. To obtain a
system of parameters of R in the usual sense, we start with x1 that avoids all truly minimal primes.
Because when one avoids all truly minimal primes, the dimension goes down at least by one, but
the dimension goes down by at most 1 by Krull’s height theorem (choose y1, . . . , ys in R/x1R to
be a system of parameters where s = dim(R/x1R), then m is nilpotent over (y1, . . . , ys, x1) which
implies that d ⩽ s+ 1). Next, we choose x2 avoiding all truly minimal primes of (x1)R and minimal
primes of R, and so on. However, in choosing a strong system of parameters, we have to avoid all
minimal primes.

Example 4.1.5. Let S = kJx, y, zK/(xz, yz) and m = (x, y, z). Let R = Sm and mR is the unique
maximal ideal, we have three saturated chains:

(z) ⊆ (y, z) ⊆ m,

(z) ⊆ (x, z) ⊆ m,

(x, y) ⊆ m.

So (z) is a truly minimal prime while (x, y) is a (usual) minimal prime. We can choose a (usual)
system of parameters to be x, y + z, which avoids (z), but not (x, y). In this case, there is no full
strong system of parameters. One partial strong system of parameter is just x + z.
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4.1.2 Solidity and phantom extensions

We aim to extend the result [Die18, Theorem 4.8] to a more general setting. Specifically, we
want to remove the “F -finite” and “domain” assumptions in the theorem.

We first note that the notion of “phantom extension” extends to the non-domain case directly,
i.e., [Die18, Definition 2.3] works in this generality. All of the results proved in [Die18, Section 2]
do not use the domain condition anywhere. Next, we want to extend the notion of “solid algebra” to
the non-domain case.

Definition 4.1.6. An R-algebra S is a solid R-algebra if there is a R-module map γ ∶ S → R such
that γ(1) is a nonzerodivisor in R.

We first remove the assumption of “F -finiteness,” which answers a question in [Die18, Section
5, Question (2)], i.e., we want to show that solid algebra maps α ∶ R → S are always phantom
extensions without the F -finite condition in characteristic p. For this purpose, we need to discuss
briefly the notion of the Γ-construction. Let k be a field of characteristic p. A p-base Λ for k is a
subset of k such that {dλ ∶ λ ∈ Λ} form a basis of the module of Kähler differentials Ωk/kp . For any
n elements λ1, . . . , λn ∈ Λ, the field k[λ1/pe

1 , . . . , λ
1/pe

n ] has degree pne over k. If R is a noetherian
complete local domain of characteristic p, by Cohen’s structure theorem, R is module-finite over
A = kJx1, . . . , xnK. In the sequel, we will fix a p-base Λ of k, and let Γ be a subset of Λ, usually
cofinite in Λ, i.e., a subset such that Λ∖Γ is finite. Let kΓ

e denote the field extension k[γ1/pe ∶ γ ∈ Γ].
Let AΓ

e ∶= kΓ
e Jx1, . . . , xnK, and RΓ

e ∶= R ⊗A AΓ
e . By a Γ-construction of R we mean the R-algebra

RΓ ∶= ∪eRΓ
e . See [HH94a, 6.11 Discussion and Notation], [HJ21, Subsection 5.1], and [Mur21,

Construction 3.1] for a more detailed discussion. The most important fact here is that RΓ is a
faithfully flat purely inseparable extension of R, which is F -finite ([HJ21, Theorem 5.3 (1)]).
Moreover, the maximal ideal of R extends to the maximal ideal of RΓ.

Lemma 4.1.7. Let R be a noetherian complete local domain and R → RΓ a Γ-construction of R.

Let M be an R-module, H a submodule of M , and u an element of M . Suppose that MΓ,HΓ, uΓ

are images of M,H,u under the base change map R → RΓ respectively. Then uΓ ∈ (HΓ)∗
MΓ implies

that u ∈H∗
M .

Proof. Since R is noetherian complete local, there is some c ≠ 0 such that Rc is regular. We also
have that RΓ

c is regular. Then c3 serves as a big test element for both rings. Then uΓ ∈ (HΓ)∗
MΓ ⇒

c3uΓ ∈HΓ. Since RΓ is faithfully flat, we must have c3u ∈H as well. Then u ∈H∗
M .

Proposition 4.1.8. Let R be a noetherian complete local domain of characteristic p and S a solid

R-algebra. Then S is a phantom extension of R via tight closure.
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Proof. Since R is a noetherian complete local domain of characteristic p, it has a faithfully flat
local map R → RΓ, where RΓ is a local, F -finite algebra. We can base change to RΓ and get a solid
RΓ-algebra RΓ ⊗R S (it is still solid because of faithful flatness). We use [Die18, Theorem 4.8] to
conclude that RΓ ⊗R S is a phantom extension of RΓ.

Next we make use of the diagram in [Die18, (2.2)]:

0 // R
α // S // S/R // 0

G

ν̃

OO

ν // F

OO

// S/R //

id

OO

0

where G,F are free presentation of S/R. Since RΓ is flat, this stays as the same diagram over RΓ:

0 // RΓ α // S ⊗R RΓ // (S/R) ⊗R RΓ // 0

GΓ

ν̃Γ

OO

νΓ
// F Γ

OO

// (S/R) ⊗R RΓ //

id

OO

0

where νΓ, ν̃Γ are the images of the representing matrix of ν, ν̃ in RΓ respectively. By definition
([Die18, Definition 2.3]), we learn that ν̃Γ ∈ (Im (νΓ)∨)∗

(GΓ)∨
. Finally by Lemma 4.1.7, we conclude

that ν̃ ∈ (Imν∨)∗G∨ .

Next we want to remove the domain condition by first dealing with the complete case, then
passing to the non-complete case.

Corollary 4.1.9. Let R be a noetherian complete local ring of characteristic p and S a solid

R-algebra. Then S is a phantom extension of R via tight closure.

Proof. Suppose that P1, . . . , Pn are minimal primes of R. By the argument above what we need
to show is ν̃ ∈ (Imν∨)∗G∨ . We can apply base change to R/Pi to the diagram for each i, and
S ⊗R R/Pi = S/PiS is still solid because of our definition. Hence, by Proposition 4.1.8, we know
that each S/PiS is a phantom extension of R/Pi. So ν̃ ∈ (Imν∨)∗G∨ is true if we use base change to
any R/Pi. By a well-known result of tight closure theory, we can conclude that ν̃ ∈ (Imν∨)∗G∨ .

Corollary 4.1.10. Let R be a noetherian local ring of prime characteristic p. Suppose that R is

reduced and essentially of finite type over an excellent local ring. If S is a solid R-algebra, then S

is a phantom extension of R.

Proof. There exists a nonzerodivisor c such that Rc is regular and c has a power that is a completely
stable big test element. Hence there is some power, say cN , of c that serves as big test element for
both R and R̂. Since the map S → R sends 1 to a nonzerodivisor and R̂ is faithfully flat over R, the
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image of 1 remains a nonzerodivisor after base change to R̂. Therefore, S ⊗R R̂ is a solid R̂-algebra.
Hence, it is a phantom extension of R̂. We want to prove that ν̃ ∈ (Imν∨)∗G∨ . Apply base change to
R̂ to this diagram. We learn that ν̃ ∈ (Imν∨)∗ in Ĝ∨. So cN ν̃ ∈ (Imν∨) in Ĝ∨. Again, by faithful
flatness, we conclude that cN ν̃ ∈ (Imν∨)G∨ ⇒ ν̃ ∈ (Imν∨)∗G∨ . Hence, S is a phantom extension of
R.

4.2 Properties of Closure Operations

4.2.1 More closure axioms

We define two more axioms for closure operations on noetherian rings without requiring the
local condition. Let R be a noetherian ring, cl a closure operation on R.

Definition 4.2.1. A sequence of elements x1, . . . , xn in R is a partial strong system of parameters

if x1, . . . , xn form a partial strong system of parameters in RP for any prime ideal P containing
x1, . . . , xn.

The closure operation is said to satisfy the colon-capturing property if the following axiom
holds.

Axiom 4.2.2 (Colon-capturing Axiom). Let cl be a closure operation on R. If x1, . . . , xn is a partial
strong system of parameters in R, then (x1, . . . , xn−1) ∶R xn ⊆ (x1, . . . , xn−1)cl.

Axiom 4.2.3 (Persistence Axiom). Suppose that C is a collections of rings and homomorphisms
among them. Let cl be a closure defined on each ring in C. If for any homomorphism R → S in C
and any R-module M and a submodule N , we have

Im(S ⊗R N cl
M → S ⊗RM) ⊆ (Im(S ⊗R N → S ⊗RM))clS⊗RM ,

then we say that cl is a persistent closure with respect to C.

By a “persistent closure operation” we mean a closure operation satisfying Axiom 4.2.3 with
respect to some collection. We want to point out that the tight closure satisfies both axioms under
mild hypothesis on the rings.

Definition 4.2.4. [HH93, Definition 5.1] Let N ⊆M be arbitrary modules over a noetherian ring
R. We shall say that x ∈M is in the regular closure of N in M , which we denote N reg

M , or simply,
N reg, if for every homomorphism of R to a regular ring S which maps R○ into S○, the image of x in
S ⊗RM is in the image of S ⊗R N in S ⊗RM .
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If a closure operation cl is persistent and trivial in regular rings, then for every ideal I , Icl ⊆ I reg.
By the result [HH93, Proposition 5.3], one only needs to check regular closure for all maps from
R to regular rings with kernel a minimal prime of R. In [HH93, Discussion and example 5.6],
Hochster and Huneke proved that in the ring R = k[x, y, z]/(x3 + y3 + z3) where char(k) ≠ 3,
z ∈ (x, y)Rreg and z /∈ (x, y)R∗. Therefore regular closure is strictly larger than tight closure.

4.2.2 Persistent colon-capturing closure operations

Definition 4.2.5. Let R be a noetherian domain. Let R+ be the absolute integral closure of R. Then
for any ideal I , the plus closure I+ of I is defined to be the contraction of the expansion IR+ back
to R.

Suppose that Λ is a noetherian domain. Let C be some collection of Λ-algebras containing all of
the finitely generated Λ-algebras. Let cl be a persistent closure operation defined on C that satisfies
the colon-capturing axiom (Axiom 4.2.2). We want to show that cl contains the plus closure.

Theorem 4.2.6. Let R be a local domain in C as above and I = (f1, . . . , fn) a proper ideal in R.

Let cl be a persistent colon-capturing closure operation on R. Then I+ ⊆ Icl.

Proof. If b ∈ I+, then b = ∑n
i=1 uifi where the ui ∈ R+ are integral over R. Each ui satisfies a monic

equation gi(X) =Xni − zi,1Xni−1 −⋯ − zi,ni of degree ni with coefficients in R for some ni.
Let T0 = Λ[Zi,j, Ui ∶ 1 ⩽ i ⩽ n,1 ⩽ j ⩽ ni]/(gi(Ui) ∶ 1 ⩽ i ⩽ n) where Uj, Zi,j are inde-

terminates. Then T0 is a polynomial ring since we may use the ith equation to solve for Zi,ni .
We set T = T0[F1, . . . , Fn] where Fi are indeterminates. Then T is a domain as well. Let
S = Λ[Fi, Zi,j,B, Y,U1Y,⋯, UnY ] be a subring of T where B ∶= ∑n

i=1UiFi. We want to show
that F1, . . . , Fn, Y form a partial strong system of parameters in S.

First of all, we note that m elements in a domain form a (automatically strong) partial system
of parameters if and only if they generate an ideal of height m: suppose that y1, . . . , ym generate
an ideal of height m in the domain A. If P is a prime ideal of A containing y1, . . . , ym, then
(y1, . . . , ym)AP also has height m. Therefore, since S is a domain, it is equivalent to show that
F1, . . . , Fn, Y generate an ideal of height n + 1. For this purpose, let us consider another ring
S0 = Λ[Fi, Zi,j, Y ]. Since B,UiY are all algebraic over S0, S is module-finite over S0. In S0,
F1, . . . , Fn, Y generates an ideal of height n + 1. Since S0 is normal, we have the going down
theorem for S0 → S. Hence, (F1, . . . , Fn, Y )S also has height n + 1.

Since Y B = ∑n
i=1(UiY )Fi ∈ (F1, . . . , Fn)S, we conclude that B ∈ (F1, . . . , Fn)Scl. We have a

map T → R sending Fi ↦ fi, Zij ↦ zij and Ui ↦ ui. Hence, we can restrict the map T → R to get a
map S → R. Then, by Axiom 4.2.3, we have b ∈ (f1, . . . , fn)Rcl = Icl in R.

Remark 4.2.7. In equal characteristic, we usually take Λ to be Q or Z/pZ.
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4.2.3 Persistence and weak functoriality

Consider a Dietz closure operation cl satisfying the Algebra axiom defined on a collection of
noetherian complete local domains. Assume that cl is persistent with respect to this collection. We
want to show a weakly functorial version of the existence of big Cohen-Macaulay algebras of rings
in this collection.

Proposition 4.2.8. Let M be a finitely generated R-module, and S an R-algebra. Suppose that

cl is a closure operation defined for both R and S and persistent for R → S. If α ∶ R → M is a

clR-phantom extension, then S →M ⊗R S is an clS-phantom extension.

Before giving the proof, we need a lemma.

Lemma 4.2.9. Using the same notation as in Proposition 4.2.8, if α ⊗ idS stays injective, then

α⊗ idS is clS-phantom.

Proof. Using the same construction as [Die10, (2.8)], we have

0 // R
α //M // Q // 0

Rm

φ

OO

ν // Rn

OO

// Q

OO

// 0

. (4.2.1)

Then α is cl-phantom if and only if φ∨ ∈ N cl
Rn where N is the submodule spanned by column vectors

of ν∨. See [Die10, Lemma 2.10].
Base changed to S preserves right exactness and surjections. It also takes free R-modules to

free S-modules. Since by assumption the injectivity of α is also preserved, we conclude that after
tensoring the diagram (4.2.1) with S everything is preserved. Since cl is persistent, we conclude
that α⊗ idS is cl-phantom as well.

Proof of Proposition 4.2.8. We can always factor a map R → S as R ↠ R/P ↪ S. The proof
breaks down to two steps. First we show that the induced map R/P →M ⊗RR/P is clR/P -phantom.
Then we show that the same is true for the injection map R/P ↪ S.

Step 1: Write m for the maximal ideal of R and u = α(1) ∈M . Using [Die10, Lemma 2.11] and
the assumption that α is clR-phantom, we know that u /∈ mM . So {u} can be expanded to a minimal
generating set of M , say {u,u1, ..., uk}. We claim that

Ru ∩ PM = Pu.

It is clear that the right-hand side is always contained in the left-hand side. Suppose that there
are elements r ∈ R − P and p, p1, ..., pk ∈ P such that ru = pu + p1u1 + ⋯ + pkuk. Passing to
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M ⊗R Frac(R/P ), we see that ru = 0. Since r is invertible in Frac(R/P ), we have u = 0. Let
W = R−P , thenW −1R is a flatR-algebra. So α⊗ idW−1R is an injection. By Lemma 4.2.9 we know
that α⊗ idW−1R is cl-phantom. So u is not in PW −1M . Hence u is not zero in M ⊗ Frac(R/P ), a
contradiction!

Next we claim that α⊗ idR/P is still injective. For any r ∈ R/P such that ru = 0 in M/PM , we
have ru ∈ PM . Passing to M ⊗R Frac(R/P ), we have ru = 0. Since u ≠ 0, we have r = 0. But this
shows that r ∈ P , i.e., r = 0 in R/P . Hence, α ⊗ idR/P is injective and, therefore, cl-phantom by
Lemma 4.2.9.

Step 2: Write T = R/P , N for M ⊗R/P , and β for the map idT ⊗α. We are in the case where
T → S is an injection of noetherian complete local domains. We would like to show that S → N⊗T S
is still injection. Since Frac(T ) is flat over T , we have injection Frac(T ) → N ⊗T Frac(T ). Let
W = T − {0} ⊆ S be the multiplicative set of nonzero elements of T in S. Then W −1S is a
Frac(T )-algebra. Hence it is free over Frac(T ). So in turn we have injection W −1S →W −1S⊗T N .
Let v = β(1), and 1⊗ v be the image of 1 ∈ S in S ⊗T N . Let I = AnnS(1⊗ v) be the annihilator of
1⊗ v in S. Then we know that IW −1S = 0. But S is a domain, so S ↪W −1S and I = 0. Hence,
idS ⊗β is injective. Again, by Lemma 4.2.9, the proof is complete.

For this purpose, we need to discuss some material on modifications.

Discussion 4.2.10. Let (R,m) be a noetherian complete local domain and let x1, . . . , xn be a system
of parameters for R. Let M be a finitely generated R-module. By a finite sequence of mixed

modifications of M over R, we mean a finite sequence of R-modules

M =M0 →M1 →M2 → ⋯→Mk

such that each map Mi →Mi+1 falls into one of the following two cases:

• There is a relation xl+1ul+1 + xlul + ⋯ + x1u1 = 0 for some elements u1, . . . , ul in Mi and
Mi →Mi+1 is trivializing this relation, i.e.,

Mi+1 ∶=
Mi ⊕RU1 ⊕⋯⊕RUl
R ⋅ (ul+1, x1U1,⋯, xlUl)

where U1, . . . , Ul are indeterminates. The map Mi →Mi+1 is defined by sending elements in
Mi to the first copy in Mi+1.

• Mi+1 is the second symmetric power of Mi, i.e., Mi+1 = Sym2(Mi).

We will call this sequence bad if M = R and the image of 1 goes into mMk under the consecutive
maps.
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Let (R,m) → (S,n) be a local homomorphism between noetherian complete local domains.
Let M be a finitely generated R-module. By a finite double sequence of mixed modifications, we
mean a finite sequence of R-modules and S-modules

M =M0 →M1 →M2 → ⋯→Mk →Mk ⊗R S(=∶ N0) → N1 → ⋯→ Nh

where M0 → ⋯→Mk is a finite sequence of mixed modifications of M over R and N0 → ⋯→ Nh

a finite sequence of mixed modifications of S ⊗Mk over S. We call this sequence bad if M = R
and the image of 1 in R goes into nNh under the consecutive maps.

We are ready to prove the following main theorem of this section.

Theorem 4.2.11. If R → S is a ring map between noetherian complete local domains and cl is a

persistent Dietz closure satisfying the Algebra axiom with respect to the collection of noetherian

complete local domains and ring maps between them, then we obtain a weakly functorial version

of the existence of their big Cohen-Macaulay algebras, i.e., there exists a big Cohen-Macaulay

R-algebra B and a big Cohen-Macaulay S-algebra C such that

B // C

R //

OO

S

OO

commutes.

Proof. We follow the same construction in the proof of [R.G18, Theorem 3.3]. Explicitly, we first
construct a big Cohen-Macaulay module B1 of R and then we take the Sym(B1)/(1−e1)Sym(B1)
as in [R.G18, Remark 3.2]. We iterate these two steps infinitely many times and take the limit B.
Then B is a big Cohen-Macaulay R-algebra. Then we perform the same operation for the S-algebra
B ⊗R S and get an S-algebra C. If C is not a big Cohen-Macaulay S-algebra, then by [HH95,
Section 3] we know that there is a bad finite double sequence of mixed modifications

R =M0 →M1 →M2 → ⋯→Mk →Mk ⊗R S(=∶ N0) → N1 → ⋯→ Nh.

Since cl is a Dietz closure satisfying the Algebra axiom, by [Die10, Lemma 2.11] and [Die10,
Propsition 3.15], we know that each modification in R = M0 → M1 → M2 → ⋯ → Mk is an
cl-phantom extension. By Proposition 4.2.8, the cl-phantomness is preserved after base changed to
S, so this sequence cannot go bad and we get a contradiction.

Remark 4.2.12. If we have a persistent Dietz closure cl not necessarily satisfying the Algebra axiom,
then we can show a weak functorial version of the existence of big Cohen-Macaulay modules over
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R → S. Explicitly, Proposition 4.2.8 stills holds. We can modify the argument in [Hoc02a, Theorem
4.2] to give a similar result for a double sequence of module modifications. Then the same argument
in Theorem 4.2.11 works.

4.3 Big Cohen-Macaulay Algebra Closures

We define two new closure operations.

Definition 4.3.1. Let (R,m) be a noetherian local ring and I ⊆ R a proper ideal of R. The big

Cohen-Macaulay algebra closure IBCM of I is the smallest ideal J ⊇ I such that for every big
Cohen-Macaulay R+-algebra S, we have JS ∩R = J . If R is a noetherian complete local domain
of mixed characteristic, then the perfectoid big Cohen-Macaulay algebra closure IPBCM of I is
defined to be the smallest ideal J ⊇ I such that for every integral perfectoid big Cohen-Macaulay
R+-algebra S, we have JS ∩R = J .

From the definition, we immediately see that

Proposition 4.3.2. If R is a noetherian complete local domain of mixed characteristic, then for any

ideal I ⊆ R, we have IPBCM ⊆ IBCM.

It is easy to see that BCM (PBCM) is a closure operation. In fact, we have the following
characterizations.

Lemma 4.3.3. Let R be a noetherian local domain (resp., a noetherian complete local domain of

mixed characteristic). For any element u ∈ R, if there is a big Cohen-Macaulay algebra (resp.,

integral perfectoid big Cohen-Macaulay algebra) B such that u ∈ IB, then u ∈ IBCM (resp.,

u ∈ IPBCM).

Proof. Let J = IBCM, then JB ∩R = J . Since u ∈ IB ⊆ JB, we have u ∈ JB ∩R ⇒ u ∈ J . The
proof for PBCM is similar.

In order to get a more precise description for BCM, we need a temporary definition.

Definition 4.3.4. Let R be a noetherian local domain, and let I ⊆ R be an ideal. The notion
IBCL denotes the ideal generated by IB ∩ R for all big Cohen-Macaulay R+-algebras B, i.e.,
IBCL = (IB ∩R ∶ B)R.

Lemma 4.3.5. Let R be a noetherian local domain. For any proper ideal I ⊆ R, let J0 = I and

Ji+1 = JBCL
i . Then J0 ⊆ J1 ⊆ J2 ⊆ ⋯ is an ascending sequence of ideals. Hence, it stabilizes at some

JN . Then JN = IBCM.

87



Proof. For each big Cohen-Macaulay R+-algebra B, if Ji ⊆ IBCM, then (JiB∩R)R ⊆ IBCMB∩R =
IBCM. Hence, Ji+1 = JBCL

i = (JiB ∩R ∶ B)R ⊆ IBCM. Therefore, we have that Ji ⊆ Ji+1 ⊆ IBCM.
Suppose that this sequence stabilizes at N , i.e., JN+1 = JN . Then, we have JN = (JNB ∩R ∶ B)R.
For each big Cohen-Macaulay R+-algebra B, we have JN ⊆ JNB ∩R ⊆ (JNB ∩R ∶ B)R = JN ,
which shows that JN = JNB ∩R. By the definition of IBCM, we know that IBCM = JN .

The same proof of Lemma 4.3.5 works for PBCM. In fact, we have a much simpler description.
First, we need a definition similar to Definition 4.3.4.

Definition 4.3.6. Let R be a noetherian complete local domain of mixed characteristic, and let
I ⊆ R be an ideal. We let IPBCL be the set

IPBCL = {u ∈ R ∣ ∃ an integral perfectoid big Cohen-Macaulay R+-algebra B such that u ∈ IB}.

Lemma 4.3.7. Let R be a noetherian complete local domain of mixed characteristic, and let

I ⊆ R be an ideal. The set IPBCL is in fact an ideal and there is some integral perfectoid big

Cohen-Macaulay algebra C such that IPBCLC = IC.

Proof. Let u1, u2 ∈ IPBCL. There are two integral perfectoid big Cohen-Macaulay R+-algebras
B1,B2 such that u1 ∈ IB1, u2 ∈ IB2. There exists a third integral perfectoid big Cohen-Macaulay
R+-algebra B dominates B1 and B2 by [MS18b, Theorem 4.9]. We have u1, u2 both in IB and so
is their sum. Hence u1 + u2 ∈ IPBCL.

Since R is noetherian, IPBCL is generated by finitely many elements, say, f1, . . . , fn. For each fi,
there is some perfectoid big Cohen-Macaulay R+-algebra Bi such that fi ∈ IBi. Take a perfectoid
big Cohen-Macaulay R+-algebra C that dominates all Bi. Then IPBCLC ⊆ IC ⊆ IPBCLC.

Proposition 4.3.8. Let R be a noetherian complete local domain of mixed characteristic. For any

ideal I ⊆ R, IPBCL = IPBCM.

Proof. By Lemma 4.3.3, we know that IPBCL ⊆ IPBCM. On the other hand, let J = IPBCL. We need
to verify that JB ∩R = J for any integral perfectoid big Cohen-Macaulay R+-algebra B. Let D be
an integral perfectoid big Cohen-Macaulay R+-algebra that dominates both B and C by [MS18b,
Theorem 4.9]. Since JC = IC, we have JD = ID. Therefore, we have

J ⊆ JB ∩R ⊆ JD ∩R = ID ∩R ⊆ J.

Then by the definition of PBCM, we conclude that J = IPBCM.

A nice property of both PBCM and BCM is that they naturally capture colons.
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4.4 Comparison of Closures

We prove some comparison theorems about BCM,PBCM, epf and wepf for ideals in noetherian
complete local domains with F -finite residue field.

Since both BCM and PBCM are closely related to big Cohen-Macaulay algebras, it is convenient
to have the following definition to simplify our arguments (cf. [Die07, Definition 3.1], [MS18b,
Definition 4.7]).

Definition 4.4.1. Let (R,m) be a local noetherian ring (resp., a noetherian complete local domain
of mixed characteristic). An R-algebra S is called a seed (resp., perfectoid seed) over R if S maps
to a big Cohen-Macaulay R-algebra (resp., an integral perfectoid big Cohen-Macaulay R-algebra).

We also want to discuss the notion of algebra modifications.

Discussion 4.4.2. Let (R,m) be a noetherian local ring and B an R-algebra. By a sequence of

algebra modification of B we mean a sequence of R-algebras

B = B0 → B1 → ⋯→ Bk

such that each Bi+1 is constructed to be Bi+1 = Bi[Z1, . . . , Zn]/(zn+1 − x1Z1 − ⋯ − xnZn) for a
relationship z1x1 + ⋯ + zn+1xn+1 = 0 in Bi where Z1, . . . , Zn are n indeterminates over Bi and
x1, . . . , xn are part of a system of parameters for R. We also say that the map Bi → Bi+1 is
trivializing the relation u1x1 + ⋯ + un+1xn+1 = 0. This sequence is called a bad sequence of
modifications if for some index t, 1 maps to mBt. It is shown in [HH95, Section 3] that B can be
mapped to a balanced big Cohen–Macaulay algebra for R, i.e., B is a seed over R, if and only if B
does not possess a bad sequence of modifications.

Lemma 4.4.3. Let (R,m) be a noetherian complete local domain of mixed characteristic. Let I be

an ideal of R. We have ⋂N(I +mN)PBCM ⊆ IBCM.

Proof. For any a ∈ ⋂N(I +mN)PBCM, there is a big enough perfectoid big Cohen-Macaulay B such
that a ∈ (I +mN)B for any positive integer N . Then we have a ∈ IB/mNB for any N . Suppose

that I is generated by f1, . . . , fh. If S = B[X1, . . . ,Xh]
u − f1X1 −⋯ − fhXh

, then there is a well-defined map

S → B/mNB for anyN . Suppose that x1, . . . , xn is a system of parameters inR. Since mN is cofinal
with (xN1

1 , ..., xNnn )R, we also have maps S → B/(xN1
1 , ..., xNnn )B for any (N1, . . . ,Nn) ∈ Nn.

By Discussion 4.4.2, we want to show that S does not possess a bad sequence of modifications,
which will imply that S is a seed. Suppose for contradiction that we have a bad sequence of
algebra modifications S → S1 → ⋯ → St such that 1 ↦ mSt. Then we show that each Si maps
to a certain quotient of B, and we get a contradiction from there. Let N = t + 1. We have a map
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α0 ∶ S → B/(xN1 , . . . , xNn )B. Suppose that we have a map αi ∶ Si → B/(xN1
1 , xN2

2 , . . . , xNnn ). Let
Si+1 be an algebra modification of Si trivializing the following relation:

xk+1s = x1s1 +⋯ + xksk.

This relation also holds in B/(xN1
1 , xN2

2 , . . . , xNnn ). Hence, we have

xk+1s ∈ (x1, ..., xk)B/(xN1
1 , xN2

2 , . . . , xNnn )
⇒ xk+1s ∈ (x1, . . . , xk, x

Nk+1

k+1 , . . . , x
Nn
n )B

⇒ s ∈ (x1, . . . , xk, x
Nk+1−1
k+1 , xNk+2

k+2 , ..., x
Nn
n )B.

Therefore, we have s = x1b1 + ⋯ + xkbk in B/(xN1
1 , ..., xNkk , xNk+1−1

k+1 , xNk+2

k+2 , ..., x
Nn
n )B. We can

construct a map

αi+1 ∶ Si+1 ∶=
Si[Y1, . . . , Yk]

s − Y1x1 −⋯ − Ykxk
→ B/(xN1

1 , ..., xNkk , xNk+1−1
k+1 , xNk+2

k+2 , ..., x
Nn
n )B

where we map the polynomial in Si[Y1, . . . , Yk] by applying αi to its coefficients and send-
ing Yi ↦ bi. If this is a bad sequence of modifications, then 1 ∈ mSt, which implies that
1 ∈ mB/(xN

′

1
1 , x

N ′

2
2 , . . . , x

N ′

n
n )B. This is equivalent to 1 ∈ mB, which is a contradiction!

Next we show that Iepf ⊆ IBCM. First we give a proof using a trick due to Ofer Gabber. Then we
present a proof using the p-colon-capturing property (Theorem 3.2.4).

Remark 4.4.4 (Gabber’s trick). Let (R,m) be a noetherian complete local domain, I ⊆ R an ideal,
and u ∈ R an element. Suppose that there exists some nonzero element c ∈ R such that cεu ∈ IB for
any ε ∈ Q+, where B is a perfectoid big Cohen-Macaulay R+-algebra. Let B = ∏NB and let Sc be
the multiplicatively closed set given by {(cε1 , cε2 ,⋯)} where εi → 0 as i→∞. Then S−1

c (∏NB) is
a big Cohen-Macaulay algebra and its m-adic completion B̃ is a perfectoid big Cohen-Macaulay
algebra. In particular, we have u ∈ IB̃. In short, whenever we have an “almost” membership, we
can make it an honest membership by passing to a bigger perfectoid big Cohen-Macaulay algebra.

Proposition 4.4.5. Let (R,m) be a noetherian complete local domain of mixed characteristic p

with F -finite residue field. If I ⊆ R is a proper ideal, then Iepf ⊆ IBCM.

Proof. Suppose that u ∈ Iepf . There exists some c ∈ R − {0} such that cεu ∈ (I, pN)R+. Let B be
an integral perfectoid big Cohen-Macaulay R+-algebra. Then cεu ∈ (I, pN)B. By Remark 4.4.4,
there exists an integral perfectoid big Cohen-Macaulay R+-algebra B̃ such that u ∈ (I, pN)B̃ for all
N . Hence, u ∈ ∩N (I, pN)PBCM ⊆ IBCM by Lemma 4.4.3.

90



Next, we show that there is a different proof. For this purpose, we need do discuss the notion of
partial algebra modifications (cf. [Hoc02a, Definition 4.1]).

Discussion 4.4.6 (Partial algebra modifications). Let (R,m) be a noetherian local ring. Let M be
an R-module. A partial algebra modification of M is a map M →M ′ where M ′ is an R-module
obtained as follows: if x1, . . . , xk+1 are part of a system of parameters for R, and we have a relation
x1u1+⋯+xkuk +xk+1uk+1 = 0 where ui ∈M for some integer k ⩾ 0, then we choose indeterminates
U1, . . . , Uk and an integer N ⩾ 1, and let

M ′ =M[U1, . . . , Uk]⩽N/FM[U1, . . . , Uk]⩽N−1

where F = uk+1 − x1U1 −⋯ − xkUk. This makes sense because F has degree 1 in the Uj . We will
refer to the integer N as the degree bound of the partial algebra modification. Note that if B is an
R-algebra and one takes the direct limit over N of the B for fixed k, x1, . . . , xk+1, U1, . . . , Uk and F ,
one obtains an algebra modification of B. We can define a sequence of partial algebra modifications
of an R-module B as in in Discussion 4.4.2, and, when B is an R-algebra, we call the sequence bad

precisely if the image of 1 ∈ B in Mt is in mMt for some t ⩾ 0. [Hoc02a, Theorem 4.2] shows that
T is a seed if and only if T does not possess a bad sequence of partial algebra modifications.

Proposition 4.4.7. Let (R,m) be a noetherian complete local domain of mixed characteristic p

with F -finite residue field. If I ⊆ R is a proper ideal, then Iepf ⊆ IBCM.

Proof. Suppose that a ∈ Iepf . Then there is an element c0 ∈ R such that cε00 a ∈ (I, pN0)R+ for
any positive integer N0 and any positive rational number ε0 ∈ Q+. Suppose that I is generated by
f1, . . . , fh in R.

Let T0 = R[X1, . . . ,Xh]⩽D0/(a −X1f1 − ⋯ − fhXh)R[X1, . . . ,Xh]⩽D0−1 be a partial algebra
modification of R. Then we want to show that T0 is a seed, i.e., T0 maps to a big Cohen-Macaulay
algebra B. Then a ∈ IT0 ⇒ a ∈ IB.

We first note that T0 maps to R+
c0/pN0R+

c0:

cε00 a ∈ (I, pN0)R+

⇒ cε00 a = f1a1 +⋯ + fhah + pN0b

⇒ a = f1(c−ε00 a1) +⋯ + fh(c−ε00 )ah ∈ R+
c0/pN0R+

c0

where a1, . . . , ah, b ∈ R+. Call this map α0. Then Im(α0) ⊆ c−D0ε0
0 R+/pN0R+.

By Discussion 4.4.6, suppose for contradiction that there is a bad sequence of partial algebra
modifications of T0:

T0 → T1 → T2 → ⋯→ Tt
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such that each partial algebra modification Ti has degree bound Di and 1 ∈ T0 maps to some element
in mTt. Let N0,N1, . . . ,Nt be a sequence of decreasing positive integers (which we will specify
later). We want to construct following R-module maps:

R+
c0/pN0R+

c0
// R+

c0c1/pN1R+
c0c1

// R+
c0c1⋯ct−1

/pNt−1R+
c0c1⋯ct−1

// R+
c0c1⋯ct/pNtR+

c0c1⋯ct

T0
//

α0

OO

T1
//

α1

OO

Tt−1
//

αt−1

OO

Tt

αt

OO

such that the image of αi is contained in (cνi,ii ⋯cν1,i

1 c
ν0,i

0 )−1R+/pNi where νj,i = (εjDj)∏i
k=j+1(Dk+

1). Let α0 be the map we constructed above. We will inductively construct the diagram above. Let
us assume that

• The map αi has been constructed.

• Ti → Ti+1 is trivializing the relation xk+1uk+1 = x1u1 +⋯ + xkuk where u1, . . . , uk, uk+1 ∈ Ti
and x1, . . . , xk+1 is part of a system of parameters in R, i.e.,

Ti+1 =
Ti[e1,⋯, ek]⩽Di

(uk+1 − x1e1 −⋯ − xkek)Ti[e1,⋯, ek]⩽Di−1

.

Since αi has been constructed, in R+
c0c1⋯ci

/PNiR+
c0c1⋯ci

we have

xk+1αi(uk+1) = x1fi(u1) +⋯ + xkfi(uk).

The image is in (cνi,ii ⋯cν1,i

1 c
ν0,i

0 )−1R+/pNi , so we have that

c
νi,i
i ⋯cν1,i

1 c
ν0,i

0 xk+1αi(uk+1) ∈ (x1,⋯, xk)R+/pNiR+.

Since cνi,ii ⋯cν1,i

1 c
ν0,i

0 αi(uk+1) ∈ R+/pNiR+, we can choose some vk+1 ∈ R+ that maps to it. Then
xk+1vk+1 ∈ (x1, . . . , xk, pNi)R+. By p-colon-capturing (Theorem 3.2.4), we have

vk+1 ∈ (x1, . . . , xk, p
Ni) ∶R+ xk+1 ⊆ ((x1, . . . , xk, p

Ni−N
′

i)R+)epf .

We know that there is some N ′
i ∈ N such that there exists some ci+1 such that for any εi+1 ∈ Q+,

we have cεi+1

i+1 vk+1 ∈ (x1, . . . , xk, pNi−N
′

i)R+. Let Ni+1 = Ni −N ′
i . Then we have

cεi+1

i+1 c
νi,i
i ⋯cν1,i

1 c
ν0,i

0 αi(uk+1) ∈ (x1, . . . , xk)R+/pNi+1R+,

as vk+1 and cνi,ii ⋯cν1,i

1 c
ν0,i

0 αi(uk+1) map to the same element in a further quotient. There are elements
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v1, . . . , vk ∈ R+/pNi+1R+ such that

cεi+1

i+1 c
νi,i
i ⋯cν1,i

1 c
ν0,i

0 αi(uk+1) = x1v1 +⋯ + xkvk.

So the map ei to (cεi+1

i+1 c
νi,i
i ⋯cν1,i

1 c
ν0,i

0 )−1vi extends αi and gives us a map

αi+1 ∶ Ti+1 → R+
c0⋯ci+1

/pNi+1R+
c0⋯ci+1

.

Then the worst denominator one can get from αi+1 is (cεi+1

i+1 c
νi,i
i ⋯cν1,i

1 c
ν0,i

0 )Di+1 ⋅ cνi,ii ⋯cν1,i

1 c
ν0,i

0 =
c
νi+1,i+1

i+1 ⋯cν1,i+1

1 c
ν0,i+1

0 . Hence the image of αi+1 is contained in (cνi+1,i+1

i+1 ⋯cν1,i+1

1 c
ν0,i+1

0 )−1R+/pNi+1R+.
We also note that each N ′

i only depends on the all xi in the relation trivialized at that step. Hence, it
is determined before constructing all αi. We can choose N0 larger than the sum of all N ′

i . Then we
have Nt > 0.

Since this sequence of modifications is bad, 1 ∈ R maps to mTt, i.e.,

αt(1) ∈ (cνt,tt ⋯cν1,t

1 c
ν0,t

0 )−1mR+/pNtR+.

Therefore we have cνt,tt ⋯cν1,t

1 c
ν0,t

0 ∈ mR+/pNtR+ which implies that

c
νt,t
t ⋯cν1,t

1 c
ν0,t

0 ∈ mR+.

Finally, we observe that Di are determined by the sequence Ti and we are allowed to choose any
εi ∈ Q+. So each νj,i is a constant multiplied by an arbitrarily small rational number. Therefore, we
get a sequence of elements of arbitrarily small values in mR+. But this is a contradiction, as mR+ is
finitely generated.

If the ideal I = (x1, . . . , xn)R happens to be generated by a partial system of parameters in R,
where R is a noetherian complete local domain with F -finite residue field. We would like to show
that Iepf ⊆ IPBCM and Iwepf ⊆ IBCM. We first need a lemma.

Lemma 4.4.8. Let I = (x1, . . . , xn)R be an ideal generated by partial system of parameters in

R, where R is a noetherian complete local domain with F -finite residue field. Then there exists

N1, . . . ,Nn such that for any u1, . . . , un ∈ R+ with

n

∑
i=1

xiui ∈ pNR+

where N is some integer, we have the following:

there exists c1, . . . , cn such that for any ε we have v(i)j ∈ R+ such that
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⎛
⎝

n

∏
j=k

cj
⎞
⎠

ε

uk −
k−1

∑
i=1

v
(k)
i xi +

⎛
⎝

n

∑
i=k+1

⎛
⎝
i−1

∏
j=k

cj
⎞
⎠

ε

v
(i)
k xi

⎞
⎠
∈ pN−∑ni=k+1NiR+, (4.4.1)

k

∑
i=1

⎛
⎝
⎛
⎝

n

∏
j=k+1

cj
⎞
⎠

ε

ui +
n

∑
j=k+1

(
j−1

∏
l=k+1

cj)
ε

v
(j)
i xj

⎞
⎠
xi ∈ pN−∑

n
i=k+1NiR+. (4.4.2)

In particular, if we let N ′ = ∑n
i=1Ni, then both are in pN−N ′

R+. Thus we can re-write (4.4.1) as

⎛
⎝

n

∏
j=k

cj
⎞
⎠

ε

uk =
k−1

∑
i=1

v
(k)
i xi −

⎛
⎝

n

∑
i=k+1

⎛
⎝
i−1

∏
j=k

cj
⎞
⎠

ε

v
(i)
k xi

⎞
⎠
+ pN−N ′

wk

for some w1, . . . ,wn ∈ R+. If we multiply ∑n
i=1 uixi ∈ pN−N

′

R+ by (∏n
j=1 cj)

ε
, then we get

(
n

∏
j=1

cj)
ε

(
n

∑
i=1

uixi) =
n

∑
k=1

(
k−1

∏
j=1

cj)
ε

pN−N
′

wkxk ∈ (pN−N ′

x1, . . . , p
N−N ′

xn)R+.

Proof. We will use (4.4.1)m, (4.4.2)m to refer to the case k =m in (4.4.1), (4.4.2), respectively. We
will prove these two statements simultaneously by induction on k. Note that (4.4.1)n is true, i.e.,

∑n
i=1 uixi ∈ pNR+.

Define

V (i, k, n) =
⎛
⎝

n

∏
j=k+1

cj
⎞
⎠

ε

ui +
n

∑
j=k+1

(
j−1

∏
l=k+1

cj)
ε

v
(j)
i xj.

Now assume that (4.4.2)k is true, we will show that this implies both (4.4.2)k−1 and (4.4.1)k.
Rewrite (4.4.2)k:

k−1

∑
i=1

V (i, k, n)xi + V (k, k, n)xk ∈ pN−∑
n
i=k+1NiR+

⇒ V (k, k, n) ∈ (x1, . . . , xk−1, p
N−∑ni=k+1Ni) ∶R+ xk.

By Theorem 3.2.4, we can find an Nk such that there is some ck such that for any δ we have

cδkV (k, k, n) ∈ (x1, . . . , xk−1, p
N−∑ni=k+1Ni−Nk)R+.

So we can write

cδkV (k, k, n) − (
k−1

∑
j=1

v
(k)
j xj) ∈ pN−∑

n
i=kNiR+. (4.4.3)
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Choose δ = ε, then,

cεk
⎛
⎝
⎛
⎝

n

∏
j=k+1

cj
⎞
⎠

ε

uk +
n

∑
j=k+1

(
j−1

∏
l=k+1

cj)
ε

v
(j)
k xj

⎞
⎠
− (

k−1

∑
j=1

v
(k)
j xj) ∈ pN−∑

n
i=kNiR+,

which is
⎛
⎝

n

∏
j=k

cj
⎞
⎠

ε

uk − (
k−1

∑
j=1

v
(k)
j xj) +

n

∑
j=k+1

(
j−1

∏
l=k

cj)
ε

v
(j)
k xj ∈ pN−∑

n
i=kNiR+,

and this proves (4.4.1)k.
On the other hand, by (4.4.3) we have

k−1

∑
i=1

cεkV (i, k, n)xi + (
k−1

∑
i=1

v
(k)
i xi)xk ∈ pN−∑

n
i=kNiR+

⇒
k−1

∑
i=1

(cεkV (i, k, n) + v(k)i xk)xi ∈ pN−∑
n
i=kNiR+

⇒
k−1

∑
i=1

V (i, k − 1, n)xi ∈ pN−∑
n
i=kNiR+,

which proves (4.4.2)k−1.

Lemma 4.4.9. Let I = (x1, . . . , xn)R be an ideal generated by partial system of parameters in R,

where R is a noetherian complete local domain with F -finite residue field. If u ∈ ∩∞N=1(I, pN)R+,

then there exists an integral perfectoid big Cohen-Macaulay algebra B such that u ∈ IB.

Proof. Suppose that u ∈ ⋂∞
N=1(I, pN)R+, we have

u = x1u1,1 +⋯ + xnu1,n + pv1

for u1,1, . . . , u1,n ∈ R+, v1 ∈ R+. Then we have pv1 ∈ ⋂∞
N=1(I, pN)R+, so we write

pv1 = x1u2,1 +⋯ + xnu2,n + p2v2.

Inductively we can write

pk−1vk−1 = x1uk,1 +⋯ + xnuk,n + pkvk

with each ∑n
i=1 xiuk,i ∈ pk−1R+.

Choose N ′ from Lemma 4.4.8 and let k ⩾ N ′. Apply Lemma 4.4.8 to see that for each such k,
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there exists c such that for any ε, we have

cε
n

∑
i=1

xiuki ∈ (pk−N ′

x1, . . . , p
k−N ′

xn)R+.

By Remark 4.4.4, we can find an integral perfectoid big Cohen-Macaulay algebra Bk such that

n

∑
i=1

xiuki ∈ (pk−N ′

x1, . . . , p
k−N ′

xn)Bk.

By [MS18b, Theorem 4.9], we can choose an integral perfectoid big Cohen-Macaulay algebra B
that dominates all these Bk. Then we have

n

∑
i=1

xiuki ∈ (pk−N ′

x1, . . . , p
k−N ′

xn)B.

In B, we have u = ∑∞
i=1∑n

j=1 xju
′
i,j where u′i,j ∈ pi−N

′

B for all i ⩾ N ′. So the right-hand side
converges in B, as B is p-adically complete. Therefore, u ∈ IB.

Theorem 4.4.10. Let I = (x1, . . . , xn)R be an ideal generated by partial system of parameters in

R, where R is a noetherian complete local domain with F -finite residue field. Then

(i) Iepf ⊆ IPBCM;

(ii) Iwepf ⊆ IBCM.

Proof. For 4.4.10.(i), if u ∈ Iepf , then there is some c ∈ R ∖ {0} such that for any ε and any N
such that cεu ∈ ∩N(I, pN)R+. There exists an integral perfectoid big Cohen-Macaulay algebra B
such that cεu ∈ IB by Lemma 4.4.9. By Remark 4.4.4 again, we conclude that there is an integral
perfectoid big Cohen-Macaulay algebra C such that u ∈ IC. So u ∈ IPBCM.

For 4.4.10.(ii), we have

Iwepf = ⋂
N

(I, pN)epf ⊆ ⋂
N

(I, pN)PBCM ⊆ IBCM.
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CHAPTER V

Size and Quasilength

The notion of quasilength was introduced by Mel Hochster and Craig Huneke in their joint
paper [HH09]. They used quasilength to define two nonnegative real numbers that are intended
heuristically as “measures” of the top local cohomology module H

dim(R)

I (R) ([HH09, Section 2]).
We develop a new notion called size for an ideal in a ring R (Definition 5.2.1) based on the

notion of quasilength in Section 5.2. It is a quantity invariant up to radicals (Proposition 5.2.4), and
is always between the height and the arithmetic rank of the ideal (Proposition 5.2.5). We show that
the size of an ideal is unchanged when we kill finitely many nilpotent elements (Theorem 5.2.8). We
also show that a finitely generated ideal is of size 0 if and only if it is nilpotent (Proposition 5.2.9).
Finally, we show that under mild hypothesis, if R is a local domain and P is a prime of dimension
1, then size(P ) = ht(P ).

In Section 5.3, we first show additivity of quasilength for direct sums of two modules in a
special case Proposition 5.3.1, and then generalize an example where the additivity property fails
for quasilength in Proposition 5.3.3. After that, we proceed to study the asymptotic bounds for
quasilength of large direct sums. In Theorem 5.3.15, we give a result of this type in dimension 1.

5.1 Preliminaries

We first recall the definition of quasilength from [HH09].

Definition 5.1.1. Let R be a ring, M an R-module, and I a finitely generated ideal of R. If there is
a finite length h filtration of M in which the factors are cyclic modules killed by I , then we say that
M has finite I-quasilength at most h. We define LI(M) = h if h is the minimum number of factors
in such a filtration. If there is no such filtration, then we say LI(M) = +∞.

From the definition above, we see that the notion of quasilength is very similar to the notion
of length. It recovers the definition of length if I happens to be a maximal ideal. However,
quasilength, unlike length, is in general not additive over direct sums. See [HZ18, Example 3.5] for
the counterexample and a discussion on it in Section 5.3.2.

However, we have the following proposition ([HH09, Proposition 1.1]).
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Proposition 5.1.2. Let R be a ring, I a finitely generated ideal of R and M an R-module.

(i) M has finite I-quasilength if and only if M is finitely generated and killed by a power of I .

In fact, ν(M) ⩽ LI(M), and ILI(M) kills M .

(ii) Assume that 0→M ′ →M →M ′′ → 0 is exact. If M ′ and M ′′ have finite I-quasilength then

so does M , and LI(M) ⩽ LI(M ′) + LI(M ′′). If M has finite I-quasilength then M ′′ does

as well, and LI(M ′′) ⩽ LI(M).

(iii) If S is an R-algebra then LSIS(S ⊗RM) ⩽ LRI (M).

We also need the following property from [HH09, Proposition 1.2].

Proposition 5.1.3. Let R be a ring, I a finitely generated ideal of R and M an R-module. Suppose

that I = (x1, . . . , xd). Let A be an ideal generated by a set of monomials in x1, . . . , xd containing a

power of every xj , and suppose that the number of monomials in the xj not formally in A is a. Let

B be another such ideal such that the number of monomials not formally in B is b. Suppose that

every generator if B is formally in A. Then LI(AM/BM) ⩽ (b − a)ν(M/IM).

It follows from the property above that if I has n generators, then LI(R/I t+1) ⩽ (n+t
t
). Here,

for any real number n and any nonnegative integer t, the notation (n+t
t
) means (n+t)(n+t−1)⋯(n+1)

t! . In
fact, we have (n+t

t
) = 1

(n+t−1)B(n+1,t+1) where B(−,−) is the beta function. When t is large enough,
we have B(n+ 1, t+ 1) ∼ Γ(n+ 1) ⋅ (t+ 1)−(n+1). Therefore (n+t

t
) ∼ tn+1

n+t−1 ∼ tn. All of the following
lemmas could be proved using these equivalences, but we provide a more elementary proof.

Lemma 5.1.4. Suppose that (at), (bt), (ct) are sequences of positive numbers.

(i) If 0 ⩽ r < s, then lim
t→∞

(s+t
t
)/(r+tt ) = ∞.

(ii) Suppose (at), (bt), (ct) are positive sequences. If lim sup
t→∞

at
bt

is finite and lim
t→∞

bt
ct
= 0, then

lim sup
t→∞

at
ct
= 0.

(iii) Suppose (at) is a positive sequence. If lim sup
t→∞

at
(
r+t
t
)

is finite, then lim sup
t→∞

at
(
s+t
t
)
= 0 for any

s > r.
(iv) Suppose (at), (bt), (ct) are positive sequences. If lim sup

t→∞

at
bt

is a nonzero finite number and

lim
t→∞

bt
ct
= ∞, then lim sup

t→∞

at
ct
= ∞.

(v) Suppose (at) is a positive sequence. If lim sup
t→∞

at
(
r+t
t
)

is a nonzero finite number, then

lim sup
t→∞

at

(s+t
t
)
= ∞

for any s < r.
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Proof. Proof of 5.1.4.(i). We have

lim
t→∞

(s + t
t

)/(r + t
t

) = lim
t→∞

(s + t)(s + t − 1)⋯(s + 1)
(r + t)(r + t − 1)⋯(r + 1)

= lim
t→∞

t

∏
i=1

(1 + s − r
r + i )

= exp(
∞

∑
i=1

ln(1 + s − r
r + i )).

Since ln(1+x) > x
1+x for any x > 0, we have ln(1+ s−r

r+i ) > ( s−rr+i )/(1+ s−r
r+i ) = s−r

s+i . So the summation
in the exponent is growing like the harmonic series, hence it diverges to ∞.

Proof of 5.1.4.(ii). If the lim sup is finite, then it is bounded. The rest follows from a straightfor-
ward argument.

Proof of 5.1.4.(iii). This follows from 5.1.4.(ii).
Proof of 5.1.4.(iv). Suppose that lim sup

t→∞

at
bt
=M > 0. Then there is a subsequence atk

btk
converges

to it. In particular, there is some N such that for any k ⩾ N we have atk
btk

> M/2. But btk
ctk

can be
arbitrarily large. Therefore the limit of atk

ctk
is infinite, which shows that the lim sup is infinite.

Proof of 5.1.4.(v). This follows from 5.1.4.(iv).

5.2 Size

5.2.1 The definition

We are ready to give the definition of the size of an ideal.

Definition 5.2.1. We define the size of I to be

sizeR(I) = inf{n ∣ lim sup
t→∞

LI(R/I t)
tn

< ∞}.

We also write size(I) = sizeR(I) if the ambient ring R is clear in the context.

Since LI(R/I t) ⩽ (n+t−1
t−1

) ∼ (t − 1)n, we know that the size is bounded above by the number
of generators of I , i.e., size(I) ⩽ ν(I). Also, because of Proposition 5.1.2.(iii), we know that
LR(R/I t) ⩾ LIS(S/I tS) ⇒ sizeR(I) ⩾ sizeS(IS), for every R-algebra S.

5.2.2 Upper bounds

Next we show that the size of an ideal is in fact an invariant of ideals up to radicals.

Proposition 5.2.2. Let I, J,K ⊆ R be ideals. Then
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(i) If J has the same radical of I , we have

size(I) = inf{n ∣ lim sup
t→∞

LJ(R/I t)
tn

< ∞}.

(ii) If I ⊆ J , then size(I) ⩾ size(J).

(iii) For any ideal I , we have size(Ih) = size(I) for any h ∈ N.

(iv) If I ⊆ J ⊆K are three ideals in R and size(I) = size(K), then size(J) = size(I) = size(K).

Proof. 5.2.2.(i) is a corollary of Lemma 5.3.5.
Proof of 5.2.2.(ii). We have I t ⊆ J t and, hence, R/I t surjects onto R/J t. So

LI(R/I t) ⩾ LI(R/J t) ⇒ lim sup
t→∞

LI(R/I t)
tn

⩾ lim sup
t→∞

LI(R/J t)
tn

.

Since the right-hand side is finite whenever the left-hand side is, we conclude that size(J) ⩽ size(I).
Proof of 5.2.2.(iii). Clearly we have size(Ih) ⩾ size(I) by Proposition 5.2.2.(ii). When n =

size(I), the limit lim sup
t→∞

LI(R/Iht)
(ht)n = 1

hn lim sup
t→∞

LI(R/Iht)
tn is finite. We conclude that size(Ih) ⩽

size(I).
5.2.2.(iv) follows from the fact that I t ⊆ J t ⊆Kt.

Remark 5.2.3. For any ideal I = (x1, ..., xk) with specified generators, write It = (xt1, ..., xtk)R. By
Proposition 5.2.2.(iii), we have Ikt ⊆ Ik(t−1)+1 ⊆ It ⊆ I t. Therefore we see that we can use It to
calculate the size of I .

Now we are ready to prove

Proposition 5.2.4. Let R be a noetherian ring and let I ⊆ R be an ideal. The size of I is invariant

up to radicals. Hence, the size of an ideal is at most the arithmetic rank, i.e., size(I) ⩽ ara(I).

Proof. If
√
I =K, it suffices to show that size(I) = size(K). Note that Kh ⊆ I ⊆K for some h. By

Proposition 5.2.2, we have size(Kh) ⩾ size(I) ⩾ size(K) and size(Kh) = size(K). Therefore, the
equality holds. The last statement follows directly.

5.2.3 Lower bounds and nilpotents

Proposition 5.2.5. Let R be a noetherian ring and let I ⊆ R be an ideal. If P is a minimal prime of

I with height h, then size(I) ⩾ h.

Proof. Consider IRP as an ideal of RP . We know that size(I) ⩾ size(IRP ). But in RP , I is
PRP -primary ideal. Hence by Proposition 5.2.2.(i), we can calculate the size of IRP using its
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radical ideal PRP . But then the function t↦ LPRP (RP /I tRP ) is the Hilbert function of I , which
grows as a polynomial of degree h. Hence size(IRP ) = h.

The superheight, superht(I), of an ideal I is defined to be the largest height of IS in any
R-algebra S such that IS is proper. Clearly we have size(I) ⩾ superht(I). Next we show that the
size of I does not change if we kill a nilpotent element.

Lemma 5.2.6. Let f be a nilpotent element in R and let I ⊆ R be an ideal. Write R for R/fR and

I for IR. Then sizeR(I) = sizeR(I).

Proof. Clearly we have sizeR(I) ⩾ sizeR(I). Let n = sizeRI and we only need to show that
sizeR(I) ⩽ n. Let us fix some notations. Suppose that fh = 0 for some positive integer k. Suppose
that R/I t has a filtration of minimal length at, i.e., there are at elements r1, ..., rat in R/I t such that
if J i is the ideal generated by first i elements, then 0 = J0 ⊆ J1 ⊆ ⋯ ⊆ Jat = R/I t is the desired
filtration.

Let ri be an arbitrary lift of ri in R/I t for each i. Without loss of generality we assume that
rat = 1 and rat = 1. Again, write Ji for the ideal generated by first i elements of r1, ..., rat . Then
we have J0 = 0 and Jat = R/I t. Since in R each factor J i/J i−1 is killed by I , we have that
IJi ⊆ Ji−1 + fR/I t. Let Jk,l = (f l+1)R/I t + f lJk where 0 ⩽ k ⩽ at,0 ⩽ l < h. Then by definition we
have J0,l = (f l+1)R/I t = Jat,l+1. Since

IJk,l = If l+1R + If lJk ⊆ f l+1R + f l(Jk−1 + fR) = f l+1R + f lJk−1 = Jk−1,l,

we conclude that 0 = J0,h−1 ⊆ J1,h−1 ⊆ ⋯ ⊆ Jat,h−1 = J0,h−2 ⊆ J1,h−2 ⊆ ⋯ ⊆ Jat,0 = R/I t is a filtration
of R/I t with factors that are cyclic (R/I)-modules. Hence, we have LI(R/I t) ⩽ ath. Therefore,
lim sup
t→∞

LI(R/It)
tn ⩽ lim sup

t→∞

ath
tn is finite. We have sizeR(I) ⩽ n as desired.

Remark 5.2.7. The factors in the filtration constructed in the proof are actually R/(I, f)R-modules.

Theorem 5.2.8. Let R be a noetherian ring. Then for any ideal I , the size of I does not change

when passing to the reduced ring of R.

Proof. LetN ⊆ R be the nilradical. ThenN is generated by f1, ..., fk. LetRh = R/(f1, ..., fh)R,1 ⩽
h ⩽ k. By applying Lemma 5.2.6 repeatedly, we have sizeR(I) = sizeR1(IR1) = ⋯ = sizeRk(IRk).

From Theorem 5.2.8, the size of a nilpotent ideal is necessarily zero. Because when passing to
the reduced ring, the nilpotent ideal becomes the zero ideal, which has size 0. Next, we show that
an ideal I has size 0 if and only if I is a finitely generated nilpotent ideal.
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Proposition 5.2.9. Let I ⊆ R be a finitely generated ideal. Then I has size 0 if and only if I is

nilpotent.

Proof. If I is nilpotent, by the discussion above we see that I has size 0. Now suppose that
I has size 0, which implies that LI(R/In) is bounded. Let P be a minimal ideal of R, then
LIS(S/InS) ⩽ LI(R/In) is bounded where S = R/P . If IS is not zero, then let Q be a minimal
prime of I in S, and consider ISQ. Again LISQ(SQ/InSQ) ⩾ `(SQ/InSQ) is bounded. But
`(SQ/InSQ) cannot be bounded unless InSQ = 0. Since S is a domain, we conclude that IS = 0.
Therefore I is contained in the intersection of all minimal primes of R. So I is nilpotent.

5.2.4 Lower dimensional cases

Let R be a noetherian local ring and P a prime ideal of R. As long as the P -adic topology
coincides with the P (n) symbolic power topology, we have a linear containment, i.e., there exists
some c such that P (cn) ⊆ P n for all n ([Swa00]). This is true if the completion of R is a domain
and dimR/P = 1 ([Har70, Theorem 7.1]).

We want to prove the following theorem.

Theorem 5.2.10. Let R be a noetherian local ring and P a prime ideal of R such that dimR/P = 1.

Suppose that there is some c such that P (cn) ⊆ P n for all n (this holds if the completion of R is a

domain) and R/P is module-finite over a regular local ring A (this holds if R/P is complete). Then

size(P ) = ht(P ).

Proof. We always have size(P ) ⩾ ht(P ). To show the converse, we need to construct a filtration of
R/P n for n≫ 0. Since P (cn) ⊆ P n. We first consider the obvious filtration of R/P (cn):

0 ⊆ P (cn−1)/P (cn) ⊆ ⋯ ⊆ P (2)/P (cn) ⊆ P /P (cn) ⊆ R/P (cn).

Since each factor is a torsion-free (R/P )-module, we can refine the filtration so that each factor
is a cyclic (R/P )-module, such that there are at most ∑cn

k=1 νR/P (P (k−1)/P (k)) factors. If M is
a torsion-free (R/P )-module, then νR/P (M) ⩽ rankA(M). Hence, the filtration has at most

∑cn
k=1 rankA(P (k−1)/P (k)) factors. Each factor is in fact a free A-module as A is a discrete valuation

ring. Hence, the number of free copies does not change when we tensor with the fraction field K
of A. Since R/P is module-finite over A, (R/P ) ⊗AK is the fraction field L of R/P . Therefore,
after tensoring with K, the number of factors is [L ∶ K]`RP /PRP (RP /P cnRP ). This bounds
LP (R/P (cn)) from above and it grows as (cn)ht(P ). So LP (R/P n) grows as most fast as nht(P ),
which shows that size(P ) ⩽ ht(P ).

To see that the size of an ideal can be strictly smaller than its arithmetic rank, consider the
calculation in [HZ18, Section 4]. Let R = A[x, y, u, v], where A is any noetherian commutative
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ring. The ideal I = (xu, yv, xv + yu) ⊆ R has size 2. From their calculation, we have size(I) ⩽ 2.
But on the other hand, IR[ 1

x] = (u, v)R[ 1
x] has height 2. So size(I) = 2. It is shown in [HZ18] that

H3
I(R) ≠ 0. Hence, the arithmetic rank of I is 3.

5.3 Additivity of Quasilength

In Proposition 5.1.2.(ii), we usually do not have equalities. In fact, quasilength is not additive for
short exact sequences even if the exact sequence splits. Before diving more into the counterexample
to additivity, we want to show that in a special case, additivity does hold for quasilength.

5.3.1 Additivity in a special case

Proposition 5.3.1. Let P be a prime ideal of R such that R/P is a principal ideal domain. Assume

that M is a finitely generated P -torsion module, i.e., there is a power P n which kills M . Assume

also that H0
m(M) = 0 for any maximal ideal m of R. Then LP (M) = LPRP (MP ) = `RP (MP ), and

`RP is additive.

Proof. Clearly we have LP (M) ⩾ LPRP (MP ). So we only need to show the converse. If N =
AnnP M , then N is a torsion-free (R/P )-module, hence, free. So we have LPRP (NP ) = ν(NP ) =
ν(N).

Note that LP (M) ⩽ LP (N) + LP (M/N). Since LP (N) ⩽ ν(N) = ν(NP ) = LPRP (N) =
`(NP ), we have LP (M) ⩽ `(NP ) + LP (M/N). M/N is again finitely generated and P -torsion.
If x ∈ H0

m(M/N), then mkx ∈ N ⇒ mkIx = 0 ⇒ Ix = 0 ⇒ x = 0 in M/N , so H0
m(M/N) = 0.

By noetherian induction and the additive property of `, we conclude that L(M) ⩽ LPRP (MP ) =
`(MP ).

5.3.2 Generalization of a counterexample

In this subsection, we always require R to be a local ring as, otherwise, even the function ν
of minimal number of generators of a module is not additive. Note that ν is the quasilength with
respect to the zero ideal. We have the following example. Let R = R[x, y, z]/(x2 + y2 − 1) and
M = (x, y − 1)R. Then M ⊕M ≅ R⊕R. So ν(M ⊕M) = 2 < 2ν(M) = 4.

A counterexample to additivity in the local case can be found in [HZ18, Example 3.5]. We
briefly record it here. Let R = kJxK, I = (x2)R,M = R/(x)R and N = R/(x3)R. Then LI(M) =
1,LI(N) = 2 but LI(M ⊕N) = 2 ≠ 1 + 2. We will generalize this example in Proposition 5.3.3,
where we also give a positive result about additivity. We first note:

Lemma 5.3.2. Let R = kJxK,m = (x)R, I = (xd)R where d is some positive integer. If M is a

finitely generated R-module of finite I-quasilength, then M is of finite length and `(M) ⩽ d ⋅LI(M).
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Proof. Since I is m-primary, M is of finite length. Each factor in the filtration of M has length at
most `(R/I) = d. Therefore `(M) ⩽ d ⋅ LI(M).

Suppose that M = R/(xa)R for some nonnegative integer a. Then the length of M is `(M) = a.
Therefore LI(M) ⩾ ⌈ad⌉. On the other hand, the sequence x(⌈a

d
⌉−1)d,⋯, x2d, xd,1 clearly generates a

filtration for M with ⌈ad⌉ factors. Hence LI(M) = ⌈ad⌉.

Proposition 5.3.3. Let R = kJxK,m = (x)R, I = (xd)R where d is some positive integer. Let

M = R/(xa)R and N = R/(xb)R where a, b are nonnegative integers. Assume without loss of

generality that a ⩾ b. Write a = a0 + a1 ⋅ d, b = b0 + b1 ⋅ d where 0 < a0 ⩽ d,0 < b0 ⩽ d.

• If a0 + b0 > d, then LI(M ⊕N) = LI(M) + LI(N).

• If a0 + b0 ⩽ d, assume that a1 > b1, then LI(M ⊕N) = LI(M) + LI(N) − 1.

Proof. We always have LI(M ⊕N) ⩽ LI(M)+LI(N). By the discussion above we have LI(M) =
⌈ad⌉ = a1 + 1 and LI(N) = ⌈ bd⌉ = b1 + 1. So LI(M ⊕N) ⩽ a1 + b1 + 2. By Lemma 5.3.2 we have
LI(M ⊕N) ⩾ ⌈ `(M)+`(N)

d ⌉ = a1 + b1 + ⌈a0+b0
d ⌉. Since 2 ⩽ a0 + b0 ⩽ 2d, LI(M ⊕N) ⩾ a1 + b1 + 1.

Therefore, LI(M ⊕N) is either LI(M) + LI(N) or LI(M) + LI(N) − 1.
If a0+b0 > d, then by the inequality above we immediately have LI(M ⊕N) = LI(M)+LI(N).

Therefore for the remaining cases, we assume that a0 + b0 ⩽ d and a1 > b1. In this case, the equality
LI(M ⊕N) = LI(M) + LI(N) − 1 is proved by constructing an explicit filtration:

Let ui = (xid+a0 , xid) ∈M ⊕N for 0 ⩽ i ⩽ a1 ∈M ⊕N , and vj = (xjd,0) for 0 ⩽ j ⩽ b1. Let Qi

be the submodule of M ⊕N generated by ui, then we have

0 = Qa1 ⊆ Qa1−1 ⊆ ⋯ ⊆ Q1 ⊆ Q0

where Qi/Qi+1 are I-cyclic modules. Here Q0 = 0 because we have a1 > b1 ⇒ a1d ⩾ b1d + d ⩾ b.
We let Pj be the submodule generated by Q0 and vj in M ⊕N . Then

Q0 ⊆ Pb1 ⊆ Pb1−1 ⊆ ⋯ ⊆ P1 ⊆ P0 =M ⊕N

where Pj/Pj−1 are I-cyclic modules. Note that b1d + d − a0 ⩾ b1d + b0 = b since a0 + b0 ⩽ d. So
we have xb1d+d−a0u0 = xb1d+d−a0(xa0 ,1) = (xb1d+d,0) = xdvb1 . Hence, xdPb1 = xdvb1 ⊕ xdQ0 ⊆ Q0.
Finally, P0 =M ⊕N because it contains u0 = (xa0 ,1) and v0 = (1,0).

There are a1 + b1 + 1 factors. So we have LI(M ⊕N) = LI(M) + LI(N) − 1.

Conjecture 5.3.4. Under the same hypothesis as in Proposition 5.3.3, the case when we have

a1 = b1 and a0 ⩾ b0 is unknown. We conjecture that LI(M ⊕ N) = LI(M) + LI(N) in this

case. In other words, we conjecture that the conclusion of Proposition 5.3.3 is the following:
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If a1 > b1 and a0 + b0 ⩽ d, then LI(M ⊕ N) = LI(M) + LI(N) − 1, and otherwise we have

LI(M ⊕N) = LI(M) + LI(N).

As seen in Proposition 5.3.3, the strict additive property fails quite often. However, it is not far
off the sum. In our case, it can only be off by 1. So we want to investigate the asymptotic behavior
of quasilength.

5.3.3 Asymptotic behaviour

We want to study in the case of a noetherian ring, the asymptotic behavior of the quasilength
of the direct sum of n copies of a module M when n goes to infinity. Since we always have
LI(M⊕n) ⩽ nLI(M), we ask whether there exists a nonzero constant C that may depend on I but
not on M such that LI(M⊕n) ⩾ CnLI(M).

If R is a noetherian local ring, we can easily find a constant C that depends on M . For example,
we can take C = ν(M)

LI(M)
. Then

LI(M⊕n) ⩾ ν(M⊕n) = n ⋅ ν(M) ⩾ ν(M)
LI(M) ⋅ n ⋅ LI(M) = Cn ⋅ LI(M).

The following lemma implies that the asymptotic behavior of quasilength is invariant up to
radicals.

Lemma 5.3.5. Let R be a noetherian ring. Suppose that two ideals I and J of R have the same

radical ideal, i.e.,
√
I =

√
J . Then there exist positive constants C1,C2 depending on I and J but

independent of M such that for any module M of finite I-quasilength, we have

C1LI(M) ⩽ LJ(M) ⩽ C2LI(M).

Proof. Let K =
√
I , then we have Kn ⊆ I ⊆K. Hence M has finite I-quasilength if and only if it

has finite K-quasilength. And we clearly have LI(M) ⩽ LK(M) for the inclusion of I ⊆ K. On
the other hand, if we have a finite filtration of M with cyclic (R/I)-module factors, each factor is
also an (R/Kn)- cyclic module. Hence each factor has a length D1 = LK(R/Kn) filtration. So
LK(M) ⩽D1LI(M). The conclusion follows from symmetry.

More generally, for any finitely generated module M (not necessarily of finite I-quasilength),
we want to ask

Question 5.3.6. Let R be a noetherian ring, I an ideal of R, and M an R-module. Do we have

LI((M/InM)⊕n) ⩾ CnLI(M/InM) (5.3.1)

105



for some constant C independent of n? Here C may depend on the ring R, the ideal I and the
module M .

Let M be finitely generated R-module and I ⊆ R a proper ideal. First of all, we note that
in Question 5.3.6 we can use any ideal up to radicals by Lemma 5.3.5. In fact, we can give this
question an affirmative answer when R is of dimension 1 (Theorem 5.3.15).

5.3.3.1 Discussion of possible reductions

In order to prove the inequality (5.3.1) in dimension one, we develop several reductions that can
be used in greater generality. To simplify our language, we adopt the following commonly used
notation.

Definition 5.3.7 (Big O and Big Theta). Let f(n), g(n) be two positive real functions defined for
positive integers. One writes f(n) = O(g(n)) if f(n) is at most a positive constant multiple of
g(n) for all sufficiently large values of n. Equivalently, f(n) = O(g(n)) if there exists a positive
real number M such that f(n) ⩽M ⋅g(n) for all positive integers n. If f(n) and g(n) are bounding
each other up to a multiple for all sufficiently large n, i.e., f(n) = O(g(n)) and g(n) = O(f(n)),
then we write f(n) = Θ(g(n)) (or, equivalently, g(n) = Θ(f(n))).

We will temporarily use following notations and definitions to simplify our arguments.

Definition 5.3.8. Let R be a noetherian ring and let I be an ideal of R. Suppose that M,N are two
R-modules. We write ψn(M) = LI(M/InM) and Ψn(M) = LI((M/InM)⊕n). We say that M
and N are equivalent with respect to I , denoted by M ∼I N , if we have ψn(M) = Θ(ψn(N)) and
Ψn(M) = Θ(Ψn(N)). We usually omit I and write M ∼ N if the ideal I is clear from the context.

Proposition 5.3.9. Let R be a noetherian ring and I an ideal of R. Suppose that M,N,M1,M2

are R-modules. We have

(i) If N ⊆M is killed by a power of I , then M is equivalent to M/N .

(ii) If M1 ⊆M2 are such that some power of I kills N =M2/M1, i.e., Im ⊆ a = Ann(N), then

M1 ∼M2.

Proof. For 5.3.9.(i), it is generally true that ψn(M) ⩾ ψn(M/N) and Ψn(M) ⩾ Ψn(M/N).
Consider the right exact sequences

N/InN →M/InM → (M/N)/In(M/N) → 0,

(N/InN)⊕n → (M/InM)⊕n → ((M/N)/In(M/N))⊕n → 0.
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By Proposition 5.1.2.(ii), we have ψn(M) ⩽ ψn(N)+ψn(M/N) and Ψn(M) ⩽ Ψn(N)+Ψn(M/N).
Since N is killed by a power of I , we have N/InN = N when n is large enough. Therefore ψn(N)
is a constant and Ψn(N) grows at most linearly. But Ψn(M/N) grows at least linearly by counting
generators. Hence ψn(M) ⩽ C1ψn(M/N) and Ψn(M) ⩽ C2Ψn(M/N). Hence M is equivalent to
M/N .

For 5.3.9.(ii), if a has k generators, then we have a surjection M⊕k
2 ↠ aM2. Write

aM2 →M1 →M1/aM2 → 0.

Let W =M1/aM2. Then In kills W for some integer n > 0. So we also have

aM2/InaM2 →M1/InM1 →W /InW =W → 0

for all sufficiently large n.
Hence,

LI(M1/InM1) ⩽ LI(aM2/InaM2) + LI(W )
⩽ LI(M⊕k

2 /InM⊕k
2 ) + LI(W )

⩽ kLI(M2/InM2) + LI(W )
⇒ LI((M1/InM1)⊕n) ⩽ kLI((M2/InM2)⊕n) + LI(W⊕n).

So we have

LI(M2/InM2) ⩽ LI(M1/InM1) + LI(N),
LI((M2/InM2)⊕n) ⩽ LI((M1/InM1)⊕n) + LI(N⊕n),
LI(M1/InM1) ⩽ kLI(M2/InM2) + LI(W ),

LI((M1/InM1)⊕n) ⩽ kLI((M2/InM2)⊕n) + LI(W⊕n),

where both N and W are killed by a. Since LI(N) is a constant and LI(N⊕n) grows at most
linearly in n, both are controlled by the other term by choosing a large enough coefficient. Hence
M1 ∼M2.

Proposition 5.3.10. Let R be a noetherian ring and I an ideal of R. Suppose that M1,M2 are R-

modules. Then ψn(M1⊕M2) = O(ψn(M1)+ψn(M2)) and Ψn(M1⊕M2) = O(Ψn(M1)+Ψn(M2)).

Proof. Write M3 = M1 ⊕M2. Then both M2 and M1 are holomorphic image of M3. Therefore
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ψn(M3) ⩾ ψn(M1) and ψn(M3) ⩾ ψn(M2). So we have

2LI((M3/InM3)⊕n) ⩾ LI((M2/InM2)⊕n) + LI((M1/InM1)⊕n)
⩾ C2 ⋅ n ⋅ LI(M2/InM2) +C1 ⋅ n ⋅ LI(M1/InM1)
⩾ C ⋅ n(LI(M1/InM1) + LI(M2/InM2))
⩾ C ⋅ n ⋅ LI(M3/InM3)

where C = min{C1,C2}.

Next we show that we can kill nilpotent elements in the ring R without affecting the behavior of
∼I .

Proposition 5.3.11. Let R be a noetherian ring and I an ideal of R. Suppose that M is an

R-module. If u ∈ R is a nilpotent element, then M ∼I M/uM . Moreover, we have M ∼I M ⊗RRred.

Proof. It reduces to show this for u such that u2 = 0. Because if uk is zero, then M ∼M/u⌈k/2⌉ ∼
⋯ ∼M/u2M ∼M/uM . Hence, we assume without loss of generality that u2 = 0.

On the one hand, we have ψn(M) ⩾ ψn(M/uM) and Ψn(M) ⩾ Ψn(M/uM). On the other
hand, we have

ψn(M) ⩽ ψn(M/uM) + ψn(uM) ⩽ 2ψn(M/uM),
Ψn(M) ⩽ Ψn(M/uM) +Ψn(uM) ⩽ 2Ψn(M/uM),

due to the exact sequence
0→ uM ↪M ↠M/uM → 0

and the fact that M/uM ⋅u↠ uM is a surjection.
Since R is noetherian, the nilradical of R is generated by finitely many elements u1, . . . , uk. By

what we have proved above, we have

M ∼I M/u1M ∼I M/(u1, u2)M ∼I ⋯ ∼I M/(u1, . . . , ukM) =M ⊗R Rred.

Next we want to discuss this for finite products of rings.

Lemma 5.3.12. Let R be a noetherian ring, I an ideal of R, and M an R-module. Suppose that

R = R1 ×R2. Then M = M1 ×M2 and I = I1 × I2 where Mi is an Ri-module and Ii ⊆ Ri is an

ideal. Assume that both I1 and I2 are proper. If (5.3.1) holds for (R1, I1,M1) and (R2, I2,M2)
respectively, then it holds for (R, I,M).
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Proof. For any I filtration of M , each factor is a cyclic R/I ≃ R1/I1 ×R2/I2 module. If we take
the sequence of elements generating the filtration and projects onto Mi, then it will generate a
Ii filtration on Mi of the same length. On the other hand, any two filtrations for M1,M2 can
be made into a filtration of M . So we have ψn(M) = max(ψn(M1), ψn(M2)) and Ψn(M) =
max(Ψn(M1),Ψn(M2)).

Let us discuss a little bit about the module-finite base changes.

Proposition 5.3.13. Let R be a noetherian ring and let R → S be a module-finite extension. Let

a be the ideal generated by the image of the map S ⊗HomR(S,R) → R. Let I be an ideal of R

such that I has some power contained in a. Then for any finitely generated R-module M , we have

M ∼I S ⊗M .

Proof. Since S is finitely generated and R is noetherian, HomR(S,R) is finitely generated. Let k
be the least number of generators of HomR(S,R) and let f1, . . . , fk be a set of generators. Then we
have a map

(S ⊗M)⊕k →M

where (∑ s(1) ⊗m(1),∑ s(2) ⊗m(2),⋯,∑ s(k) ⊗m(k)) ↦∑∑ fi(s(i))m(i).

Let a be the image of the map S ⊗ HomR(S,R) → R. Then the image of above map is aM .
If I has some power in a, then by Proposition 5.3.9.(ii) we know M ∼ aM . Hence, ψn(M) ⩽
C1ψn((S ⊗M)⊕k) and Ψn(M) ⩽ C2Ψn((S ⊗M)⊕k).

On the other hand, we have R⊕l↠ S because S is module-finite over R. Hence M⊕l↠ S ⊗M .
So ψn(M⊕l) ⩾ C ′

1ψn(S ⊗M) and Ψn(M⊕l) ⩾ C ′
2Ψn(S ⊗M).

Finally, by Proposition 5.3.10, we know that M ∼ S ⊗M .

We also want to discuss Question 5.3.6 when we restrict scalars.

Proposition 5.3.14. Let R,A be two noetherian rings. Suppose that R is module-finite over A.

Suppose that I ⊆ A is an ideal and J ⊆ R has the same radical as IR. Suppose that M is a

R-module. Then M is an A-module via restriction of scalars, and M has finite I-quasilength if and

only if it has finite J-quasilength. Furthermore, there are some positive numbers C1,C2 depending

on I, J but not depending on M such that

C1LI(M) ⩽ LJ(M) ⩽ C2LI(M).

Proof. Since
√
IR =

√
J . M has finite J-quasilength if and only it has finite IR-quasilength.

By Lemma 5.3.5, we know that there is some C1,C2 such that C1LIR(M) ⩽ LJ(M) ⩽
C2LIR(M). Suppose that M has finite (IR)-quasilength. It suffices to show this for I (over
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A) and IR (over R). If there is a A/I cyclic filtration of M , suppose that there is a sequence
u1, . . . , un such that {Mi = Au1 +⋯+Aui} gives the filtration, then {M ′

i = Ru1 +⋯+Rui} gives a
R/IR cyclic filtration of M . Hence, LI(M) ⩾ LIR(M), and M has finite I-quasilength.

Next we assume that M has finite I-quasilength. Suppose that R is generated by θ1, . . . , θl

over A as an A-module. If M0 ⊆ ⋯ ⊆ Mn = M is a filtration of M over R, then each factor
is a homomorphic image of R/IR. Let θ1, . . . , θl be the image of θ1, . . . , θl in R/IR. Then
R/IR = (A/I)θ1 +⋯+ (A/I)θl. Therefore, we can refine each factor by giving it a length at most l
filtration over A. Hence, one has a filtration of length nl over A. Therefore l ⋅ LIR(M) ⩾ LI(M),
and M has finite IR-quasilength.

Hence, we have
LIR(M) ⩽ LI(M) ⩽ l ⋅ LI(M)

as desired.

5.3.3.2 One-dimensional case

Now we are ready to prove the following main theorem

Theorem 5.3.15. Suppose that (R,m) is a noetherian local ring of dimension 1. Then there exists

a positive constant C (independent of M and I) such that for any ideal I ⊆ R and any finitely

generated module M , we have

CnLI(M/InM) ⩽ LI((M/InM)⊕n) ⩽ nLI(M/InM)

for every positive integer n.

Proof. We can assume that R is reduced by Proposition 5.3.11. Let P1, . . . , Pn be the collection
of minimal primes of R. Then we have R ↪ R

P1
× ⋯ × R

Pn
. Look at the ideal a generated by the

sum of images of all possible R-linear maps from R
P1
×⋯ × R

Pn
back to R. We claim that a contains

all elements in P1 ∩ ⋯ ∩ Pk−1 ∩ Pk+1 ∩ ⋯ ∩ Pn for k = 1, ..., n. This is because the intersection
P1 ∩⋯ ∩ Pk−1 ∩ Pk+1 ∩⋯ ∩ Pn is killed by Pk. Let u be an element in this intersection. We have a
map from R/Pk to Ru. Then we have R

P1
×⋯ × R

Pn
→ R/Pk → Ru ⊆ R with image containing u. a

cannot be contained in any minimal prime of R by prime avoidance. Since dim(R) = 1, a must be
m-primary. Hence any ideal I will have some power in a. By Proposition 5.3.13, we can work with
M ⊗ ( RP1

×⋯ × R
Pn

). Then by Lemma 5.3.12, we can work with each component individually.
Therefore we can assume without loss of generality that R is a local complete domain of

dimension 1 and M is a finitely generated module. Then any ideal in R is either 0 or m-primary,
and in both cases we can find a C for (5.3.1).
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CHAPTER VI

Questions and Conjectures

Throughout the research process of this thesis, while many results are proved, many questions
remain unsolved. We want to record them here for future references.

6.1 Test Elements, Tight Closure and Its Analogues

In Chapter II, we studied the test elements for tight closure. If char(R) > 0, an important feature
is that under mild assumptions any nonzero element c in R such that Rc is regular has a power that
is a test element for tight closure. Similar phenomenon happens for epf closure. We can modify the
proof of [MST+20, Corollary 4.2] to get the following result.

Corollary 6.1.1. Let (R,m) be a complete normal local domain of residue characteristic p > 0 and

of dimension d. Let J be the defining ideal of the singular locus of R. Then there exists an integer

N such that JNIepf ⊆ I and JNIwepf ⊆ I for all I ⊆ R .

Proof. From the proof of [MST+20, Corollary 4.2], we have

• Iepf ⊆ (I, pn)B ∩R for some fixed perfectoid big Cohen-Macaulay R+-algebra B and every
n;

• There exists some N such that JN ⊆ Im(HomR(B,R) → R).

Then the last paragraph of the proof of [MST+20, Corollary 4.2] works through with Ih replaced by
Iepf . Explicitly, for every r ∈ JN , there exists φ ∈ HomR(B,R) such that φ(1) = r. Applying φ to
Iepf ⊆ (I, pn)B ∩R we get rIepf ⊆ (I, pn)R for every n. Hence JNIepf ⊆ ∩n(I, pn)R = I .

The second conclusion comes from the calculation that

JNIwepf = ⋂
N⩾0

JN(I, pN)epf ⊆ ⋂
N⩾0

JN(I, pN) = JNI.
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Remark 6.1.2. In fact, the same calculation in the last line of the proof above shows that epf closure
and wepf closure have the same test ideal.

We want to ask the following question.

Question 6.1.3. LetR be a noetherian local ring. Let cl be a closure operation onR. What conditions
should we impose on cl to make sure that if Rc is regular, then there is some power of c that is a test
element for cl?

6.1.1 More variations of epf closure

Instead of considering one closure operation, we can consider a family of closure operations
as follows. Let (R,m) be a complete local domain of mixed characteristic p and R+ its absolute
integral closure. Fix an ideal J that contains p and is contained in m. An element u ∈ R is in the
closure of I ⊆ R if there is some nonzero element c ∈ R such that for any N ∈ N, ε ∈ Q+, we have

cεu ∈ IR+ + JNR+.

In particular, if we choose J to be pR, then we recover the usual epf closure.
All these closure operations are potentially larger than the epf closure. So they all satisfy the

usual colon-capturing property. Moreover, the proof that the epf closure is trivial on regular local
rings ([HM21, Theorem 3.9]) works for this family of closures. Therefore, they are trivial on regular
local rings. However, we do not know whether any of these closure operations (including the epf

closure) satisfy the generalized colon-capturing axiom (Axiom Set (vii)), so we ask:

Question 6.1.4. Do any of the closure operations described above satisfy the generalized colon-
capturing axiom?

6.1.2 Persistence

It is also important to know if any of these closure operations we considered so far is persistent,
i.e., it satisfies the Axiom 4.2.3. We do not know whether any closure operation (including
r1f,wepf,PBCM,BCM closures) satisfies the persistence axiom for local morphisms between
mixed-characteristic complete local domains. One can also ask the same question when the target
ring is a complete local domain of characteristic p.

A related question is the following:

Question 6.1.5. Let cl be a closure operation on R,S that is persistent for R → S and let R → S be
faithfully flat. What conditions do we need to ensure (IS)cl ∩R = Icl where I ⊆ R is a proper ideal?
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6.2 Size and Quasilength

6.2.1 Fundamental questions about size

Given the studies of size in Chapter V, there are a lot of fundamental mysteries about this notion
remain unsolved. For example, we want to ask

• Is the size of any ideal always an integer?

• Is the size of an ideal unchanged by localizing at some maximal ideal?

• Is the size of an ideal over a local ring unchanged when passing to its completion at the
maximal ideal?

• Does there exist an example of an ideal I such that size(I) > superht(I)?

• If R/P has isolated singularities, can we find some R-algebra S such that PS has the same
size as P ?

• Suppose we know the sizes of two prime ideals P and Q. What can we say about the size of
P ∩Q?

• For a finitely generated k-algebra R, suppose that I → k[x1, . . . , xn] → R is the defining
equation ofR. Then is size(I)−ht(I) an invariant ofR? Explicitly, for a different presentation
of R, say J → k[y1, . . . , ym] → R, do we have size(I)−ht(I) = size(J)−ht(J)? This comes
down to comparing the size of an ideal I in R with the size of (I, x) in R[x] where x is an
indeterminate.

Since quasilength is notoriously hard to compute, so is size. We want to ask the following
concrete seemingly computable questions

• What is the size of the ideal generated by the t × t minors of r × s matrix of indeterminates,
where r ⩾ s ⩾ t? We do not know the answer even when r = 2, s = 3 and t = 2. The height of
the ideal generated by 2 × 2 minors is 2 and the arithmetic rank of this ideal is 3.

6.2.2 Conjectures related to results

Given the result of Theorem 5.2.10, it is natural to conjecture that

Conjecture 6.2.1. In a regular local ring R, any prime ideal P has size(P ) = ht(P ).
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In the regular local case, we have ht(P ) = superht(P ) for any prime ideal P . If the regular
local ring R has Krull dimension d, then Conjecture 6.2.1 is true for primes of height d − 1 by
Theorem 5.2.10. It is also true for primes of height 1 (because they are principal). So the first
unknown case is a height 2 prime in a dimension 4 ring. We can also ask whether Conjecture 6.2.1
holds if we only assume that R regular.

Given Theorem 5.3.15, we conjecture that:

Conjecture 6.2.2. Let R be a noetherian local ring. If M is an R-module of finite I-quasilength

where I is an ideal of R, then

LI(M⊕n) = nLI(M).

We do not know if this is true even if n = 2.
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127(1):71–93, jun 2018.
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