
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Interactive Decision and Objective Space
Exploration for Search Based Refactoring
Soumaya Rebai, Vahid Alizadeh, Marouane Kessentini, Houcem Fehri and Rick Kazman

Abstract—Due to the conflicting nature of quality measures, there are always multiple refactoring options to fix quality issues. Thus,
interaction with developers is critical to inject their preferences. While several interactive techniques have been proposed, developers
still need to examine large numbers of possible refactorings, which makes the interaction time-consuming. Furthermore, existing
interactive tools are limited to the ”objective space” to show developers the impacts of refactorings on quality attributes. However, the
“decision space” is also important since developers may want to focus on specific code locations. In this paper, we propose an
interactive approach that enables developers to pinpoint their preference simultaneously in the objective (quality metrics) and decision
(code location) spaces. Developers may be interested in looking at refactoring strategies that can improve a specific quality attribute,
such as extendibility (objective space), but such strategies may be related to different code locations (decision space). A plethora of
solutions is generated at first using multi-objective search that tries to find the possible trade-offs between quality objectives. Then, an
unsupervised learning algorithm clusters the trade-off solutions based on their quality metrics, and another clustering algorithm is
applied within each cluster of the objective space to identify solutions related to different code locations. The objective and decision
spaces can now be explored more efficiently by the developer, who can give feedback on a smaller number of solutions. This feedback
is then used to generate constraints for the optimization process, to focus on the developer’s regions of interest in both the decision
and objective spaces. A manual validation of selected refactoring solutions by developers confirms that our approach outperforms state
of the art refactoring techniques.

Index Terms—Search based software engineering, refactoring, multi-objective search, clustering

F

1 INTRODUCTION

W ITH the ever-growing size and complexity of software
projects, there is a high demand for efficient refactor-

ing [1] tools to improve software quality, reduce technical
debt, and increase developer productivity. However, refac-
toring software systems can be complex, expensive, and
risky [2], [3], [4]. A recent study [5] shows that developers
are spending considerable time struggling with existing
code (e.g., understanding, restructuring, etc.) rather than
creating new code, and this may have a harmful impact on
developer creativity.

Various tools for code refactoring have been proposed
during the past two decades ranging from manual support
[6], [7], [8] to fully automated techniques [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18]. While these tools are successful
in generating correct code refactorings, developers are still
reluctant to adopt these refactorings. This reluctance is due
to the tools’ poor consideration of context and developer
preferences when finding refactorings [11], [19], [20], [21].
In fact, the preferences of developers ranging from quality
improvements to code locations, are still not well supported
by existing tools and a large number of refactorings are
recommended, in general, to fix the majority of the quality
issues in the system.

In our recent survey, supported by an NSF I-Corps

• Soumaya Rebai,Vahid Alizadeh,Marouane Kessentini and Houcem Fehri
are with the Department of Computer and Information Science, University
of Michigan-Dearborn.
E-mail: firstname@umich.edu

• Rick Kazman is a Professor at the University of Hawaii and a Principal
Researcher at the Software Engineering Institute of Carnegie Mellon
University.

Manuscript received on November 2019

project, with 127 experienced developers in software main-
tenance at 38 medium and large companies (Google, eBay,
IBM, Amazon, etc.) [22], [23], 84% of face-to-face intervie-
wees confirmed that most of the existing automated refac-
toring tools detect and recommend hundreds of code-level
issues (e.g., antipatterns and low quality metrics/attributes)
and refactorings. However, these tools do not specify where
to start or how they relate to a developer’s context (e.g., the
recently changed files) and preferences in terms of quality
targets. This observation is consistent with another recent
study [24]. Furthermore, refactoring is a human activity
that cannot be fully automated and requires a developer’s
insight to accept, modify, or reject recommendations because
developers understand their problem domain and may have
a clear target design in mind. Several studies reveal that
automated refactoring does not always lead to the desired
architecture even when quality issues are properly detected,
due to the subjective nature of software design choices [15],
[17], [18], [20], [25], [26], [27]. However, manual refactoring
is often error-prone and time-consuming [28], [29].

Several studies have been proposed recently to have
developers interactively evaluate refactoring recommenda-
tions [22], [23], [24], [30], [31]. The developers provide
feedback about the refactored code and may introduce
manual changes to some of the recommendations. However,
this interactive process can be expensive since developers
must evaluate a large number of possible refactorings and
eliminate irrelevant ones. Both interactive and automated
refactoring approaches have to deal with the challenge of
considering many quality attributes for the generation of
refactoring solutions. One of the most commonly used qual-
ity attributes are the ones of the QMOOD model including

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

reusablitiy, extensibility, effectiveness, etc [32]. QMOOD
was empirically validated by many studies, based on hun-
dreds of open source and industry projects, to ensure that
they are associated with the qualities they are supposed to
measure and that they are also conflicting [25], [33], [34].

Refactoring studies have either aggregated these quality
metrics to evaluate possible code changes or treated them
separately to find trade-offs [15], [18], [24], [25], [26], [27],
[31], [35]. However, it is challenging to define weights up-
front for the quality objectives since developers are often un-
able to express them. Furthermore, the number of possible
trade-offs between quality objectives is large, which makes
developers reluctant to look at many refactoring solutions—
a time-consuming and confusing process. The closest work
to this study of Alizadeh et al. [22], [23] shows that even
the clustering of non-dominated refactoring solutions based
on quality metrics will still generate a considerable number
of refactorings to explore. Developers, in practice, combine
the use of quality metrics and code locations/files to tar-
get when deciding which refactoring to apply. However,
existing refactoring tools are not enabling the interactive ex-
ploration of both quality metrics and code locations during
the refactoring process. The search is beyond just filtering
the refactorings but how can the algorithm find better
recommendations after understanding the preferences of
the users and giving them a good understanding on how
the refactorings are distributed if they are interested in
improving specific quality objectives.

In this paper, we propose an interactive approach that
combines multi-objective search, interactive optimization,
and unsupervised learning to reduce developer effort in
exploring both objective spaces (quality attributes) and de-
cision spaces (files). As a first step, a multi-objective search
algorithm, based on NSGA-II [36], is executed to find a com-
promise between the multiple conflicting quality objectives
and generates a set of non-dominated refactoring solutions.
Then, an unsupervised clustering algorithm clusters the
different trade-off solutions based on their quality metrics.
Finally, another clustering algorithm is applied within each
cluster of the objective space based on the code locations
where the refactorings are recommended to help developers
explore the impact of quality attributes while choosing the
code fragments to refactor. The input for the second clus-
tering is generated from the first clustering step, hence both
algorithms are hierarchical. In other words, the developer
can interact with our tool by exploring both the decision
and objective spaces to identify relevant refactorings based
on their preferences quickly. Thus, the developers can focus
on their regions of interest in both the objective and decision
spaces. The developers are, in general, first concerned about
improving specific quality attributes then they will look for
the refactorings that best target the files related to their
current interests and ownership [20], [37]. Therefore, we
followed this pattern in our approach by clustering first
the objective space then we showed the developers the
distribution of the refactorings into different decision space
clusters for their preferred objective space cluster.

Our approach takes advantage of multi-objective search,
clustering, and interactive computational intelligence.
Multi-objective algorithms are powerful in terms of di-
versifying solutions and finding trade-offs between many

objectives but generate many solutions. The clustering and
interactive algorithms are useful in terms of extracting de-
velopers’ knowledge and preferences. Existing interactive
search-based software refactoring techniques are mainly
limited to objective space exploration without considering
the decision space.

To evaluate our approach, we selected active developers
to manually evaluate the effectiveness of our tool on 6
open source projects and one industrial system. Our results
show that the participants found their desired refactorings
faster and more accurately than the current state of the art
of refactoring tools. This confirms our hypothesis that the
second level of clustering (decision space) can help devel-
opers to quickly find relevant refactorings based on their
preferences in terms of both quality objectives to improve
and the location of these changes. A video demo of our
interactive refactoring tool can be found at [38].

The main contributions of this paper can be summarized
as follows:

1) To the best of our knowledge, the paper introduces
one of the first search-based software engineering
techniques that enables the interactive exploration
of the objective and decision spaces while existing
work focus only on either the objective space or the
decision space and they often lack user interaction
in the decision space. Our approach is not about
a simple filtering of the refactorings based on the
locations/files or a clustering of the Pareto front
based on the locations. We enabled programmers to
interactively navigate between both objective and
decision spaces to understand how the refactorings
are distributed if they are interested to improve
specific quality objectives. Then, our approach can
generate even more relevant suggestions after ex-
tracting that knowledge from the exploration of the
Pareto front.

2) Our contribution is beyond the adoption of an ex-
isting metaheuristic technique to refactoring. The
proposed approach includes a novel algorithm to
enable the exploration of both decision and objective
spaces by combining two level of clustering algo-
rithms with multi-objective search.

3) We implemented and validated our framework on
a variety of open source and industrial projects. The
results support the hypothesis that the combination
of both the objective and decision spaces signifi-
cantly improved the refactoring recommendations.

The remainder of this paper is structured as follows.
Section 2 presents the relevant background details. Section
3 describes our approach, while the results obtained from
our experiments are presented and discussed in Section 4.
Threats to validity are discussed in Section 5. Section 6
provides an account of related work. Finally, in Section 7,
we summarize our conclusions and present some ideas for
future work.

2 INTERACTIVE REFACTORING CHALLENGES

Refactoring is a human activity that is hard to automate due
to its subjective nature and the high dependency on context.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

While successful tools for refactoring have been created,
several challenges are still to be addressed to expand the
adoption of refactoring tools in practice. To investigate the
challenges associated with current refactoring tools, we con-
ducted a survey, as part of an NSF I-Corps project, with 127
professional developers at 38 medium and large companies
including eBay, Amazon, Google, IBM, and others [22],
[23]. All these developers had a minimum of 11 years of
experience in software maintenance tasks and especially
refactoring. 112 face-to-face meetings were conducted based
on semi-structured interviews to understand the challenges
that developers are facing with existing refactoring tools.

From these interviews and our extensive industry col-
laboration, we learned that architects usually have a desired
design in mind as a refactoring target, and developers need
to conduct a series of low-level refactorings to achieve
this target. Without guiding developers, such refactoring
tasks can be demanding: it took one software company
several weeks to refactor the architecture of a medium-
size project (40K LOC) [23], [39]. Several books [1], [2],
[40] on refactoring legacy code and workshops on technical
debt [41] present the substantial costs and risks of large-scale
refactorings. For example, Tokuda and Batory [42] proposed
different case studies with over 800 applied refactorings,
estimated to take more than 2 weeks.

There are two major strategies for refactoring in practice:
(a) root-canal refactoring and (b) incremental refactoring.
The root-canal refactoring is when project owners decide
to heavily refactor their system, since some major issues
were observed such as the inability to add new features
without introducing clones. While root-canal refactoring is
less frequent than incremental refactoring, it is still very
important in practice. It is currently a major challenge in
the software industry, especially with legacy systems such
as the ones that we observed at Ford, eBay and so on.

The majority of the interviewees emphasized that root-
canal refactoring to restructure the whole system is rare
and they are mainly interested in refactoring files that they
own rather than files owned by their peers. Refactoring is
a complex problem and there are many reasons for why
developers may adopt recommended refactorings, among
them ownership and code metrics. Note that ownership
does not mean a lot in the context of root-canal refactor-
ing (unlike incremental refactoring) since developers may
refactor code even though they do not own it. Most existing
refactoring tools do not offer a capability of integrating
developers’ preferences, in terms of which files they may
want to refactor, and purely rely on potential quality im-
provements. Fully automated refactoring usually do not
lead to the desired architecture, and a designer’s feedback
should be considered. Moreover, prior work [43] shows
that even some semi-automated tools are underutilized by
developers. Over 77% of our interviewees reported that
the refactorings they perform do not match the capabilities
of low-level transformations supported by existing tools,
and 86% of developers confirmed that they need better
design guidance during refactoring: ”We need better solutions
of refactoring tasks that can reduce the current time-consuming
manual work. Automated tools provide refactoring solutions that
are hard and costly to repair because they did not consider our
design needs.”

Fig. 1. The output of a multi-objective refactoring tool [22] finding trade-
offs between QMOOD quality attributes on ganttproject v1.10.2 with
clustering only in the objective space.

Based on our previous experience on licensing refac-
toring research prototypes to industry, developers always
have difficulties and concerns about expressing their prefer-
ences up-front as an input to guide refactoring suggestions.
They prefer to get insights from some generated refactoring
solutions then decide which quality attributes they want
to improve. For instance, the number of code smells that
are detected for systems is in the hundreds and we have
seen reluctance about up-front selection of code smells for
refactoring since it is hard for developers to understand
the benefits of fixing these smells. Even worse, developer’s
preferences are not limited to just the quality metrics and
their improvements but also where these refactorings will
be applied. Our goal is to reduce the need for these up-
front developer preferences since they are hard to define in
practice by integrating the user’s feedback within the dif-
ferent components of multi-objective algorithm for its next
run, as described in section 3.5. If the developers are clear
about their preferences up-front then they can adjust the
fitness functions to target them. Many existing refactoring
tools fail to consider the developer perspective, and the
developer has no opportunity to provide feedback on the
refactoring solution being recommended. Furthermore, as
development must halt while the refactoring process exe-
cutes, fully-automated refactoring methods are not useful
for floss refactoring where the goal is to maintain good
design quality while modifying existing functionality. The
developers have to accept the entire refactoring solution
even though they prefer, in general, step-wise approaches
where the process is interactive, and they have control of
the refactorings being applied. Step-wise approaches, unlike
the fully automated ones, involve the developers in the
loop so they can accept and reject refactoring solutions and
express their preferences, thus they have more flexibility
in choosing the final set of refactoring to be applied to
the system. Determining which quality attribute should be
improved, and how, is never a purely technical problem
in practice. Instead, high-level refactoring decisions have
to take into account the trade-offs between code quality,
available resources, project schedule, time-to-market, and
management support.

Based on our survey, it is challenging to aggregate
quality objectives into one evaluation function to find good
refactoring solutions since developers are not able, in gen-
eral, to express their preferences upfront. While recent ad-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Fig. 2. Overview of our proposed approach: DOIMR

vances on refactoring proposed tools support multiple pref-
erences of developers based on multi-objective search, these
tools still require the user to navigate through many solu-
tions. Figure 1 shows an example of a Pareto front of non-
dominated refactoring solutions improving the QMOOD
[26] quality attributes of a Gantt Project generated using an
existing tool [22]. QMOOD is a widely accepted software
quality model, based on our collaborations with industry
and existing studies [22], [23], [25], [30], [44], [45], [46].
While developers were interested in giving feedback for
some refactoring solutions, they still find the interaction
process time-consuming. Even when refactoring solutions
are clustered based on the quality objectives, as shown
in Figure 1, the number of solutions to be checked by
developers can be substantial. Thus, they want to know
how different the solutions are within the same objective
space. It may be possible to find more than one refactoring
solution that offers the same level of quality improvements
but by refactoring different code locations/files. In fact, the
objective space clustering is important for developers to
understand which refactorings could help them to achieve
their goals of improving specific quality attributes. How-
ever, each cluster will still include a considerable number
of solutions since each solution contains a good number
of refactorings. Thus, the objective space clustering is nec-
essary and the decision space clustering is complemen-
tary to the first phase. Existing refactoring techniques do
not, however, enable developer interaction based on both
the decision space and objective space; that is the main
challenge of this paper. For instance, the objective space
exploration can help developers focusing on their targeted
design quality improvements then the decision space can
help them to focus on files they are owning or related to
their current tasks or interests.

3 APPROACH DESCRIPTION

Figure 2 describes our proposed approach which is com-
posed of four major steps. In the first step, a multi-objective
search algorithm is executed to find a set of non-dominated
solutions between different conflicting quality objectives of
QMOOD [47]. Then, the second step clusters these solutions
based on these quality attributes. We call this procedure ”ob-
jective space clustering”. The third step takes, as input, ev-

ery cluster identified from the user’s choice in the objective
space and execute another unsupervised learning algorithm
to cluster the solutions based on their code locations. Hence,
we call this ”decision space clustering”. Finally, developers
can interactively choose among the clustered solutions to
find a compromise that suits their preferences in both the
decision and objective spaces. For instance, developers may
select a cluster (from the objective space clustering) that cor-
responds to their quality improvement preferences. Then,
the second clustering will show them how the solutions
in the preferred objective space cluster are different in the
decision space. For example, the user can easily avoid look-
ing at many solutions that are similar in the decision space
(modifying almost the same code locations) based on the
second clustering. Note that our algorithm is hierarchical,
thus the input of the second clustering algorithm (decision
space) is the set of clusters generated by the first clustering
algorithm (objective space) that are selected as preferred
ones by the user. The multi-objective search algorithm runs
for a number of iterations to finally generate refactoring
solutions to the user. If the developer is not satisfied with the
solutions that are recommended from these iterations, s/he
can explore the clustering results and express their prefer-
ences and needs; then another run of the multi-objective
algorithm will take place for a number of iterations taking
into consideration the developer’s preferences (more details
are presented in the next sections). This process is iterative
until the user is satisfied with a final set of refactoring
solutions that is aligned with his preferences.

The next sections will explain in further detail the steps
of our methodology.

3.1 Phase 1: Multi-Objective Refactoring

The search for a refactoring solution requires the exploration
of a large search space to find trade-offs between 6 different
quality objectives. The multi-objective optimization problem
can be formulated mathematically in this manner:

Minimize F (x) = (f1(x), f2(x), ..., fM (x)),

Subject to x ∈ S,
S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0};

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

where S is the set of inequality and equality constraints,
g and h are real valued functions defined on S, x is an N vec-
tor of decision variables, and the functions fi are objective or
fitness functions. In multi-objective optimization, the quality
of an optimal solution is determined by dominance. The set
of feasible solutions that are not dominated with respect to
each other is called Pareto-optimal or Non-dominated set.

In the following subsections, we briefly summarize the
adaptation of multi-objective search to the software refac-
toring problem.

3.1.1 Solution Representation
We encode a refactoring solution as an ordered vec-
tor of multiple refactoring operations. Each operation is
defined by an action (e.g., move method, extract class,
etc.) and its specific controlling parameters (e.g., source
and target classes, attributes, methods, etc.) as described
in Table 3. We considered a set of the most important
and widely used refactorings in our experiments: Extract
Class/SubClass/SuperClass/Method, Move Method/Field,
PullUp Field/Method, PushDown Field/Method, Encap-
sulate Field and Increase/Decrease Field/Method Security.
We selected these refactoring operations because they have
the most impact on QMOOD quality attributes [48]. Dur-
ing the process of population initialization or a mutation
operation of the algorithm, the refactoring operation and
its parameters are formed randomly. Due to the random
nature of this process, it is crucial to evaluate the feasibility
of a solution meaning to preserve the software behavior
without breaking it. This evaluation is based on a set of
specific pre- and post-conditions for each refactoring oper-
ation as described in [49]. Figure 3 shows an example of a
concrete refactoring solution proposed by our approach for
GanttProject v1.10.2, including several refactorings applied
to different code locations.

3.1.2 Fitness Functions
We used the Quality Model for Object-Oriented Design
(QMOOD) [32] as a means of estimating the effect of a
refactoring operation on the quality of the software. This
model is developed based on the international standard for
software product quality measurement and is widely used
in the industry. QMOOD is a comprehensive way to assess
software quality and includes four levels. Using the first two
levels—Object-oriented Design Properties and Design Quality
Attributes—as fitness functions, we formulated the problem
as discovering refactorings to improve the design quality
of a software system. The fitness functions we calculate are
Understandability, Functionality, Reusability, Effectiveness
Flexibility, Extendibility, Complexity, Cohesion, and Cou-
pling. We measured the relative change of these quality
attributes after applying a refactoring solution as follows:

FitnessFunctioni =
Qafter

i −Qbefore
i

Qbefore
i

(1)

where Qbefore
i and Qafter

i are the value of the quality
metric i before and after applying a refactoring solution,
respectively.

Table 1 and 2 describe the QMOOD metrics and their
computation formulas used in our optimization approach.

TABLE 1
QMOOD metrics and their computation formulas.

QMOOD Metrics Definition / Computation

Reusability −0.25 ∗ Coupling + 0.25 ∗ Cohesion + 0.5 ∗
Messaging + 0.5 ∗DesignSize

Flexibility 0.25∗Encapsulation−0.25∗Coupling+0.5∗
Composition+ 0.5 ∗ Polymorphism

Understandability −0.33∗Abstraction+0.33∗Encapsulation−
0.33 ∗ Coupling + 0.33 ∗ Cohesion − 0.33 ∗
Polymorphism− 0.33 ∗Complexity− 0.33 ∗
DesignSize

Functionality 0.12 ∗ Cohesion + 0.22 ∗ Polymorphism +
0.22∗Messaging+0.22∗DesignSize+0.22∗
Hierarchies

Extendibility 0.5 ∗ Abstraction − 0.5 ∗ Coupling + 0.5 ∗
Inheritance+ 0.5 ∗ Polymorphism

Effectiveness 0.2 ∗ Abstraction + 0.2 ∗ Encapsulation +
0.2∗Composition+0.2∗Inheritance+0.2∗
Polymorphism

TABLE 2
Design metrics description.

Design Metric Design Property Description
Design Size in
Classes (DSC)

Design Size Total number of classes in the design.

Number Of Hierar-
chies (NOH)

Hierarchies Total number of ”root” classes in the de-
sign (count(MaxInheritenceTree (class)=0))

Average Number of
Ancestors (ANA)

Abstraction Average number of classes in the inheri-
tance tree for each class.

Direct Access Metric
(DAM)

Encapsulation Ratio of the number of private and pro-
tected attributes to the total number of
attributes in a class.

Direct Class
Coupling (DCC)

Coupling Number of other classes a class relates
to, either through a shared attribute or a
parameter in a method.

Cohesion Among
Methods of class
(CAMC)

Cohesion Measure of how related methods are in
a class in terms of used parameters. It
can also be computed by: 1 − LackOfCo-
hesionOfMethods()

Measure Of Aggre-
gation (MOA)

Composition Count of number of attributes whose type
is user defined class(es).

Measure of Func-
tional Abstraction
(MFA)

Inheritance Ratio of the number of inherited methods
per the total number of methods within a
class.

Number of
Polymorphic
Methods (NOP)

Polymorphism Any method that can be used by a class
and its descendants. Counts of the number
of methods in a class excluding private,
static and final ones.

Class Interface Size
(CIS)

Messaging Number of public methods in class.

Number of Methods
(NOM)

Complexity Number of methods declared in a class.

3.2 Phase 2: Objective Space Clustering

One of the most challenging and tedious tasks for a user
during any multi-objective optimization process is decision
making. Since many Pareto-optimal solutions are offered,
it is up to the user to select among them, which requires
exploration and evaluation of the Pareto-front solutions.

The goal of this step is to cluster and categorize solu-
tions based on their similarity in the objective space. These
clusters of solutions help give the user an overview of
the options. Therefore, this technique gives the users more
explicit initial exploration steps where they can initiate the
interaction by evaluating each cluster center or represen-
tative member. Based on our previous refactoring collabo-
rations with industry, developers are always highlighting
the time-consuming and confusing process to deal with the
large population of Pareto-front solutions: ”where should

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Fig. 3. Example of a refactoring solution proposed by our tool for GanttProject v1.10.2.

I start to find my preferred solution?”. This observation is
valid for many Search-based software engineering (SBSE)
applications using multi-objective search [23].

Clustering is an unsupervised learning method to dis-
cover meaningful underlying structures and patterns among
a set of unlabelled data. It puts the data into groups where
the similarity of the data points within each group is maxi-
mized while minimizing the similarity between groups.

Determining the optimal number of clusters is a fun-
damental issue in clustering techniques. One method to
overcome this issue is to optimize a criterion where we
try to minimize or maximize a measure for the different
number of clusters formed on the data set. For this purpose,
we used the Calinski Harabasz (CH) Index, which is an
internal clustering validation measure based on two criteria:
compactness and separation [50]. We selected the CH index
due to the small size of the number of solutions to cluster
(our data), and it is known to provide quick clustering
solutions with acceptable quality for similar problems. CH
assesses the clustering outcomes based on the average sum
of squares between individual clusters and within clus-
ters. Therefore, we execute the clustering algorithm on the
Pareto-front solutions with various numbers of components
as input. The CH score is calculated for each execution, and
the result with the highest CH score is recognized as the
optimal clustering.

After determining the best number of clusters, we
employ a probabilistic model-based clustering algorithm
called ”Gaussian Mixture Model” (GMM). GMM is a soft-
clustering method using a combination of Gaussian distri-
butions with different parameters fitted on the data and
more details about this algorithm can be found in [51].
The parameters are the number of distributions, Mean,
Co-variance, and Mixing coefficient. The optimal values
for these parameters are estimated using the Expectation-
Maximization (EM) algorithm [52]. EM trains the variables
through a two-step iterative process.

After the convergence of EM, the membership degree
of each solution to a fitted Gaussian or cluster is kept
for the preference extraction step. Furthermore, to find a
representative member of each cluster, we measure the cor-
responding density for each solution and select the solution
with the highest density.

To calculate the probability distribution function of dif-
ferent Gaussian components, we compute the Mahalanobis
distance between data points and its estimated mean vector
for all clusters. We allow to choose full covariance matrices
in order to model each cluster as an ellipsoid with arbitrary
orientation and stretch. In practice, using full covariance
matrices improves the performance of the GMM.

3.3 Phase 3: Decision Space Clustering

Our approach gives developers the ability to pinpoint their
preferences in a different space than the optimization space
related to the location of refactorings. In the exploration of
the decision space, user preferences are defined for the set
of controlling parameters (mainly code elements to be refac-
tored) that each refactoring has (see Table 3). After selecting
a preferred objective space cluster, the developer may want
to see “the distribution of the solutions within that region of
interest”. In other words, the clustering in the decision space
will show developers the refactoring solutions that improve
the quality at the same level (within the same objective space
cluster) but targeting different parts of the systems. To do
this, we group the solutions by their similarity in the deci-
sion space and present them to the developer as depicted in
Figure 4 where only two clusters were found in the decision
space. In each of these two clusters, the solutions composing
it are introducing refactorings into similar locations with
comparable impact on the different quality attributes. These
solutions in the decision space are clustered based on the
refactoring locations and their frequency. In fact, Figure 4
shows the projection on the objective space of the solutions
clustered based on the criteria of the decision space (each
color is one decision space cluster); a user can click on the
preferred solution to see the criteria of the decision space
including the code locations. The developer can combine
both kinds of information together (impact of the solution
on quality and the code locations) to decide which solution
to explore further.

To get an optimal grouping of solutions in the decision
space of where refactorings are applied, we use a procedure
similar to the one used in the objective space with addi-
tional pre-processing steps to project the solutions on the
decision space. We define a projection operator based on the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Fig. 4. Clustering based on code locations (decision space) of the refactoring solutions of one region of interest in the objective space of GanttProject
v1.10.2.

TABLE 3
Refactoring operations with their controlling parameters.

Refactorings Controlling parameters
Move Method (sourceClass, targetClass, method)
Move Field (sourceClass,targetClass,field)
Pull Up Field (sourceClass,targetClass,field)
Pull Up Method (sourceClass,targetClass,method)
Push Down Field (sourceClass,targetClass,field)
Push Down Method (sourceClass,targetClass,method)
Inline Class (sourceClass,targetClass)
Inline Method (sourceClass,sourceMethod,targetClass,targetMethod)
Extract Method (sourceClass,sourceMethod,targetClass,extractedMethod)
Extract Class (sourceClass,newClass)

frequency of changes to the classes by the refactorings and
their locations (refactored files). Since refactoring operations
affect classes differently, where some make changes only at
the same class level while others have a source class and
a target class, we only count source classes in our work
to have a consistent representation for all vectors and to
create a new representation for the refactoring vector in
the decision space. In this new domain space, the solutions
are represented as vectors of integers where the refactored
classes are the dimensions of the space, and the values are
the number of refactoring operations for that class. The
projection operator is used for the entire Pareto-front and
enables having two different representations of the same
solution set. Note that the number of refactored classes de-
pends on the size of the refactoring solutions. Since we con-
sidered the same minimum and maximum size thresholds
of refactoring solutions for all executions of the algorithm,
the time to generate the clusters is similar even for larger
projects since the size is not based on all code elements
of the project but just those in the refactoring solutions. A
larger set of modified code elements may generate more
clusters to explore, which can make the interaction more
time-consuming. Additionally, the decision space clustering
heavily depends on how many code elements are refactored
within each solution. If the majority of the solutions in
the Pareto front are refactoring almost the same code ele-
ments (for instance, one class) then mainly one big cluster
will be generated in the decision space. It is true that a
large refactoring solution may have a higher probability to

modify larger code elements than a smaller one but it is
more accurate to estimate the number of possible clusters
in the decision space based on the code elements that are
refactored by the solutions in the Pareto front.

The main contribution of our work is enabling the ex-
ploration of a diverse set of refactoring solutions within
the same objectives space. This amounts to having multi-
ple solutions that are neighbors in the objective space but
completely different in the decision space. To do this, we go
through all the clusters determined in the previous step and
then use the GMM clustering algorithm with the same steps
described above to group similar solutions in the decision
space. Thus, developers can improve the code toward their
preferred objectives while only refactoring the parts of the
code that interest them.

Figure 5 shows an example of our approach (DOIMR)
where after generating the Pareto-front for the effectiveness
and extendibility objectives, the developer can select a clus-
ter in the objective space for further exploration. Then, a
developer can explore the clusters and observe that within
this cluster, there are three different clusters in the decision
space. The region of interest can be highlighted, and the de-
veloper can select solutions that correspond to their interest
to create further preferences that can be integrated in the
optimization process to converge to the desired optimum.
For better visualization of the clustered solutions, our tool
offers a feature for two-dimensional views.

3.4 Phase 4: Developer Feedback and Preference Ex-
traction

The results of the Bi-Space clustering algorithm are pre-
sented to developers in the form of an interactive chart
where they can visualize the cluster of their choice in the
objective and decision spaces. This presentation helps them
get a complete picture of the diversity of the refactoring
solutions and the various compromises they may offer. Our
goal is to minimize the effort spent by developers to interact
with the system and select a final set of refactorings.

Looking at the solutions, developers can evaluate every
solution based on their preferences. The granularity offered

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Fig. 5. Illustration of the clustered solutions in the objective space and the decision space

by our representation enables developers to make evalua-
tions at the cluster level (selecting one or more clusters in the
objective space), solution level (selecting solutions within a
chosen cluster) and refactoring level (choosing to accept,
reject, or modifying some refactorings within the chosen
solution as shown in Figure 3.). The score obtained reflects
developer preferences and serves to determine their region
of interest.

At the solution level, the developer is capable of in-
specting every refactoring and modifying it. Refactoring
operations can be added, deleted, modified, or re-ordered.
The information collected afterward is used to calculate a
score at the solution level by averaging the scores for every
refactoring, and at the cluster levels by averaging the scores
of the solutions. The user can reorder the refactorings during
the interaction process to fix those that become invalid, due
to the violation of pre-conditions, after removing or modi-
fying other refactorings in the sequence. As described in the
solution representation section, these conditions are checked
when generating new solutions including the application
of change operators. It is possible that the order need to
be changed again by the user during the new interactions
phase with new solutions since the purpose of reordering
is not mainly related to the quality improvements or lo-
cations but more to keep the refactoring sequence valid if
removing/modifying some refactorings require to change
the order again.

We calculate the score of a solution and a cluster after
the developer interacts with the solutions and provides
his feedback in terms of rejecting, accepting, deleting and
reordering the solutions. Thus, the scores are extracted from

the developer during every interaction independently. If the
new population contains some exact same solutions from
the previous interaction then the solution already has the
score calculated from the previous interaction.

In this way, we can characterize the developer’s region
of interest as the cluster with the highest score. Information
about the preferred classes, refactorings, and quality metrics
is extracted and used to create preferences that can be
considered in the optimization process. Therefore, the search
becomes guided in both the decision and the objective
spaces, and we can converge on a developer’s preferred
solution faster.

For this purpose, we compute the weighted probability
of refactoring operations (RWP) and target classes of the
source code (CWP) as follow:

RWPp =

∑
si∈cj γij × (|rp ∈ si|)∑

rm∈Ref

∑
si∈cj γij × (|rm ∈ si|)

(2)

CWPq =

∑
si∈cj γij × (|clq ∈ si|)∑

clm∈Cls

∑
si∈cj γij × (|clm ∈ si|)

(3)

where j is the index of selected cluster, si is the so-
lution vector, γij is the membership weight of solution i
to the cluster j, r is refactoring action, Ref is the set of
all refactoring operations, and Cls is the set of all classes
in the source code. For every interaction, we compute the
probabilities RWP and CWP again without considering
previous values because the preferences are already con-
sidered when generating the new solutions and we are
interested in knowing the developer’s feedback about the
new solutions thus the new clusters.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

3.5 Integrating Developer’s Feedback

If the user decides to continue the search process, then the
generation and selection of the solutions in the next iteration
of the multi-objective search is based on (1) the probability
formulas of both refactorings and their locations extracted
from the preferred decision and objective clusters which are
used in the selection step and change operators; and (2) the
initial population of the next iteration of the search algo-
rithm which is seeded from the solutions of the preferred
cluster. These are the two key factors to integrate user’s
preferences. More details about the different components of
multi-objective optimization are described in the following:

• Preference-based initial population: The solutions from
preferred clusters will make up the initial population
of next iteration as a means of customized search
starting point. In this way, we initiate the search from
the region of interest rather than randomly. New
solutions need to be generated to fill and achieve
the pre-defined population size. Instead of random
creation of the refactoring operations (refactoring
action and target class) based on a unify probabil-
ity distribution, we utilize RWP and CWP as a
probability distribution. In other words, we copy the
solutions from the preferred cluster of the previous
round and we randomly create new solutions using
the probability distributions to reach the expected
population size.

• Preference-based mutation: We use a bit flip mutation
with mutation probability fixed to 0.4. For every
solution that is selected to be mutated, instead of
randomly selecting refactoring operations and con-
trolling parameters from equally probabilities distri-
bution, we considered preferred refactoring opera-
tions which have higherRWP and CWP . The refac-
torings with higher RWP are the first candidates to
be considered for replacing selected refactorings by
the mutation operator and the locations with higher
CWP are selected for the controlling parameters to
be changed for the selected refactorings.

• Preference-based selection: the selection operator tends
to filter the population and assign higher chance
to the more valuable ones based on their fitness
values. In order to consider the user preferences in
this process, we adjusted this operator to include
closeness to the reference solution as an added mea-
sure of being a valuable individual of the population.
That means the chance of selection is related to both
fitness values and distance to the region of interest
as:

Chance(si) ∝
1

dist(si, CRj)
, F itness(si) (4)

where dist() indicates Euclidean distance andCRj is
the representative solution of cluster j. The represen-
tative solution is the centroid of the preferred cluster.
All the of the six used fitness functions are aggre-
gated in Fitness(si) by calculating the average. The
selection operator is computed on the final region of
interest of the developer which includes the results of
both decision and objective space clusterings. Since

the two clustering algorithms are hierarchical, the
cluster j is the user’s preferred decision space cluster.

The above-mentioned customized operators aid to keep the
stochastic nature of the optimization process and at the same
time take the user preferred refactoring and target code
locations (classes) into account.

Our proposed approach will help the developer to un-
derstand the diversity of the refactoring solutions when
visualizing the clusters thus it will help the user to locate
her/his region of interest in both the objective and decision
spaces. The goal of the interactions and clustering is to
gradually reduce the number of refactoring solutions to
be explored by the users based on their preferences. If the
developer is still interested to apply more refactorings after
selecting the final solution, the tool can be re-executed on
the new system after refactoring to find other potential
solutions.

4 EVALUATION

4.1 Research Questions
We defined three main research questions to measure
the correctness, relevance, and benefits of our decision
and objective space interactive clustering-based refactoring
(DOIMR) tool comparing to existing approaches that are
based on interactive clustering-based refactoring only in
the objectives space (Alizadeh et al.) [23], interactive multi-
objective search (Mkaouer et al.) [22], [30], fully automated
multi-objective search (Ouni et al.) [53] and fully automated
deterministic tool not based on heuristic search (JDeodor-
ant) [54]. A tool demo of our tool and supplementary ap-
pendix materials (questionnaire, setup of the experiments,
statistical analyses, and detailed results) can be found in our
study’s website 1.

The research questions are as follows:

• RQ1: Does our approach make more relevant recom-
mendations for developers, as compared to existing
refactoring techniques?

• RQ2: Does our approach significantly reduce the
number of relevant refactoring recommendations
and the user interaction effort, as compared to ex-
isting interactive refactoring approaches?

• RQ3: Qualitative Analysis. To what extent are the
user preferences, interaction and identified region of
interest similar?

4.2 Experimental Setup
We considered a total of seven systems, summarized in
Table 4, to address the above research questions. We selected
these seven systems because they are of reasonable size,
have been actively developed over the past 10 years, and
have been extensively analyzed by the other tools consid-
ered in this work. UTest2 is a project of our industrial partner
used for identifying, reporting, and fixing bugs. We selected
that system for our experiments since five developers of that
system agreed to participate in the experiments, and they

1. A demo and supplementary appendix materials can be found at
the following link: https://sites.google.com/view/tse2020decision

2. SEMA Inc.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 4
Statistics of the studied systems.

System Release #Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.10.2 241 48
UTest v7.9 357 74
Apache Ant v1.8.2 1191 112
Azureus v2.3.0.6 1449 117
JFreeChart v1.0.9 521 170

are very knowledgeable about refactoring—they are part of
the maintenance team. Table 4 provides information about
the size of the subject systems (in terms of number of classes
and KLOC).

To answer RQ1, we asked a group of 35 participants to
manually evaluate the relevance of the refactoring solutions
that they selected using four other tools. The first tool of
Alizadeh et al. is an approach based on only objective
clustering of the Pareto front [23], using the interactive
multi-objective search. The second tool is an interactive
multi-objective refactoring approach proposed by Mkaouer
et al. et al. [22], [30], but the interactions were limited to the
refactorings (accept/reject) and there is no clustering of the
Pareto front or learning mechanisms from the interaction
data. Thus, the comparison with these tools will help us
to evaluate our main contribution that is built on the top
of existing multi-objective refactoring algorithms: the com-
bined use of decision and objective space exploration for
interactive refactoring. We have also compared our DOIMR
approach to two fully-automated refactoring tools: Ouni et
al. [53] and JDeodorant [54]. Ouni et al. [53] proposed a
multi-objective refactoring formulation based on NSGA-II
that generates a solution to maximize the design coherence
and refactoring reuse from previous releases. JDeodorant
[54] is an Eclipse plugin to detect bad smells and apply
refactorings. As JDeodorant supports a lower number of
refactoring types with respect to the ones considered by our
tool, we restrict our comparison with it to those refactorings.
We used these two tools to evaluate the relative benefits of
our interactive features in helping developers identifying
relevant refactorings.

We preferred not to use measures such as anti-patterns
or internal quality indicators as proxies for estimating the
relevance of refactorings since the developers’ manual eval-
uation already includes a review of the impact of suggested
changes on the quality. Furthermore, not all the refactorings
that improve quality attributes are relevant to the develop-
ers, which is one of the main motivations of this work. The
only rigorous way to evaluate the relevance of our tool is
the manual evaluation of the results by active developers.
This manual evaluation score, MC, consists of the number
of relevant refactorings identified by the developers over the
total number of refactorings in the selected solution. Due
to the subjective nature of refactoring and the large size of
considered systems, it is almost impossible to estimate the
recall. There is no unique solution to refactor a code/design;
thus, it is challenging to construct a gold-standard for large-
systems, which makes calculating the recall very challeng-
ing.

Participants were first asked to fill out a pre-study ques-

tionnaire containing six questions. The questionnaire helped
to collect background information such as their role within
the company, their programming experience, and their fa-
miliarity with software refactoring. The list of questions
of all the questionnaires and the obtained results can be
found in the online appendix. Although the vast majority of
participants were already familiar with refactoring as part of
their jobs and graduate studies, all the participants attended
a two-hour lecture on refactoring by the organizers of the
experiments. The details of the selected participants can be
found in Table 5, including their programming experience
in years, familiarity with refactoring, etc. These participants
were recruited based on our networks and previous collab-
orations with 4 industrial partners. They all had a minimum
of 6 years experience post-graduation and were working as
active programmers with strong backgrounds in refactoring,
Java, and software quality metrics.

Each participant was asked to assess the meaningfulness
of the refactorings recommended after using the five tools
on distinct 5 systems (one tool per system), to avoid a
training threat to validity. In this case, none of the partic-
ipants get more familiar with a specific system or a tool
during the validation. We have also randomized the order
of evaluated tools between the participants to ensure a
fair comparison. The participants not only evaluated the
suggested refactorings but were asked to configure, run,
and interact with the tools on the different systems. The
only exceptions were related to the five participants from the
industrial partner, where they agreed to evaluate only their
industrial software. We assigned tasks to the participants
according to the studied systems, the techniques to be tested
and developers’ experience. Each of the five tools has been
evaluated 5 times on each of the seven systems. Thus,
the total number of manual evaluations is 175 among all
the 7 projects and 5 tools. Our aim is to find a trade-off
between the statistical power and reducing the training and
fatigue threats. Thus, we asked each participant to evaluate
5 distinct tools on 5 different projects to avoid that their
performances will be impacted by the training effect of the
system or/and refactoring tool.

To answer RQ2, we measured the time (T) that devel-
opers spent to identify the best refactoring strategies based
on their preferences and the number of refactorings (NR).
Furthermore, we evaluated the number of interactions (NI)
required on the Pareto front for all interactive refactoring
approaches. This evaluation will help to understand if we
efficiently reduced the interaction effort. For this research
question, we decided to limit the comparison to only the
interactive multi-objective work of Mkaouer et al. [22], [30]
and Alizadeh et al. [23] since they are the only ones offering
interaction with the users, and it will help us understand the
real impact of the decision space exploration (not supported
by existing studies) on the refactoring recommendations
and interaction effort. However, for the execution time, we
compared our tool with non-interactive approaches as well.

TO answer RQ3, our experiments involved the 35 partic-
ipants where each of the 7 projects is evaluated using the 5
tools however only two of these tools can generate regions
of interests (clusters). Thus, we evaluated if the participants
selected the same regions of interests on the 7 projects using
the two clustering-based interactive tools. We considered

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 5
Selected Participants.

System #Subjects Prog. Exp. Avg. Refactoring Exp.
(Years)[Avg-Min-Max]

ArgoUML 5 [7.5 - 6 - 8.5] Very High
JHotDraw 5 [8 - 6.5 - 9] Very High
Azureus 5 [9.5 - 7.5 - 11.5] High
GanttProject 5 [7 - 6 - 8.5] High
UTest 5 [15.5 - 13 - 19.5] Very High
Apache Ant 5 [9 - 6 - 12.5] Very High
JFreeChart 5 [7 - 6 - 9.5] Very High

two regions of interests are similar/overlapping if the co-
ordinates of their centroid is almost same by calculating the
euclidean distance. We have also evaluated the frequency of
common refactorings among the selected final solutions by
the users to identify any common patterns.

4.3 Parameter Setting
It is well known that many parameters compose computa-
tional search and machine learning algorithms. Parameter
setting is one of the longest standing grand challenges
of the field. We have used one of the most efficient and
popular approaches for parameter setting of evolutionary
algorithms, which is Design of Experiments (DoE). Each
parameter has been uniformly discretized in some intervals.
Values from each interval have been tested for our appli-
cation. Finally, we pick the best values for all parameters.
Hence, a reasonable set of parameter’s values have been
experimented. This process is done for each of the studied
algorithms while the interactive module is disabled.

The stopping criterion was set to 100,000 evaluations for
all optimization and search algorithms to ensure fairness
of comparison (without counting the number of interactions
since it is part of the users’ decision to reach the best solution
based on their preferences).

The parameters of the multi-objective algorithm are as
follows: Single point crossover probability = 0.7; Bit flip
mutation probability = 0.4, where the probability of gene
modification is 0.5 and stopping criterion was set to 100,000
evaluations. We also set the initial population size to 100
and utilized Binary selection operator. The minimum and
maximum length of solution vectors are limited to 10 and
30, respectively.

Furthermore, we used the maximum number of itera-
tions = 1000 and convergence threshold = 0.0001 for the
GMM clustering phase. We calculated these parameters
using the same DoE approach in a way to make sure that
log likelihood function is converged for all studied systems.
For instance we picked the minimum number of iterations
that guarantees the convergence of clustering algorithm for
all systems.

4.4 Results
Results for RQ1. Figure 6 summarizes the manual vali-
dation results of our DOIMR approach compared to the
state of the art, as evaluated by the participants. It is clear
from the results that interactive approaches generated much
more relevant refactorings, as compared with the automated
tools of Ouni et al. and JDeodorant. Among the interac-
tive approaches, DOIMR outperformed the other interactive

approaches of Mkaouer et al. and Alizadeh et al. which
supports the idea that information that the developer used
from the decision space, such the code locations where refac-
torings were applied and the refactorings frequency, was
helpful. On average, for all of our seven studied projects,
91% of the proposed refactoring operations were considered
to be useful by the subjects. The remaining approaches
have an average of 83%, 71%, 67%, and 56% respectively
for Alizadeh et al. (interactive with objective space cluster-
ing), Mkaouer et al. (interactive multi-objective approach),
Ouni et al. (fully automated multi-objective approach) and
JDeodorant (deterministic non-search-based approach). The
highest MC score is 100% for the Azureus and Gantt
projects, and the lowest score is 91% for the industrial
system UTest. This lowest score can be explained by the
fact that the participants are very knowledgeable about the
evaluated system. The participants were not guided on how
to interact with the systems, and they mainly looked at
the source code to understand the impact of recommended
refactorings.

We found that automated refactorings generate a lot of
false positives. Both the Ouni et al. and JDeodorant tools
recommended a large number of refactorings compared to
the interactive tools, and many of them are not interesting
for the context of the developers, and so the developers
reject these refactorings, even though they may be correct.
For instance, the developers of the industrial partner re-
jected several recommendations from these automated tools
simply because they were related to stable code or code
fragments outside of their interests. The majority of them
will not change code out of their ownership as well. Further-
more, they were not interested to blindly change anything in
the code just to improve quality attributes. Compared to the
remaining interactive approaches, we found that some of
the refactoring solutions of DOIMR will never be proposed
by Mkaouer et al. or Alizadeh et al. since they are selected
because of their extensive refactoring on specific code frag-
ments that developers may found essential to improve their
quality based on the features included in these classes. In
fact, one of the main challenges of multi-objective search
is the noise introduced by sacrificing some objectives and
trying to diversify the solutions. Thus, the decision space
exploration can help the developers know the most diverse
refactoring solutions among one preferred cluster in the
objective space. Thus, developers did not waste time on
evaluating refactoring solutions that are similar but related
to entirely different code files.

To better investigate the comparison of our approach to
the closest work of Alizadeh et al. based only on the objec-
tives space exploration, we qualitatively evaluated the role
of the decision space exploration to increase the relevance
of refactoring recommendations. Based on the participants
feedback during the post study interviews, 26 of the in-
terviewees highlighted that the final step of the decision
space exploration helped them to understand differences
between the refactoring solutions targeting their goals such
as improving specific quality attributes. It was not prac-
tical for them to check all the solutions of the preferred
objective space cluster. Thus, the decision space highlighted
the solutions that are truly different (modifying different
code locations) but still achieving the same levels of quality

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Fig. 6. Median manual evaluations, MC, on the 7 systems.

Fig. 7. The median number of recommended refactorings, NR, of the
selected solution on the 7 systems.

improvements. For instance, some developers preferred so-
lutions that modified a minimum number of code locations
but still reached the same level of quality improvements.
Others preferred solutions that modified the files that they
owned. Still other developers found the refactorings ad-
dressing diverse code locations, including long refactorings
sequences, are best since they want to make major changes
independently of the cost. And other developers selected
solutions that can be associated with recent pull-requests
or those under review. Thus, the main advantage of the
decision space clustering is to help the users understand,
with low effort, which refactoring strategy may help them
achieve their goal based on their context. For most cases,
it was sufficient to look at the center of the clusters to
understand the differences between solutions that can target
the same objectives.

To conclude, our DOIMR approach outperformed the
four other refactoring approaches in terms of recommend-
ing relevant refactoring solutions for developers (RQ1).

Results for RQ2. Figures 7, 8, and 9 give an overview of
the number of refactorings for the selected solution, number
of required interactions, and the time, in minutes, using
our tool, the interactive clustering approach of Alizadeh et
al., and the interactive multi-objective approach of Mkaouer
et al. However, for the execution time, we compared our
tool with non-interactive approaches as well. Based on the
results of Figure 7, it is transparent that our approach

significantly reduced the number of recommended refac-
torings compared to the other interactive approaches while
increasing the manual correctness as described in RQ1.
The highest number of refactorings was observed on the
industrial system with 32 refactorings using DOIMR, 48
using Alizadeh et al. and 72 refactorings using Mkaouer et
al. This result may be explained by the size and the quality
of this system along with the fact that it was evaluated by
some of the original developers of UTest. The lower number
of recommended refactorings using DOIMR, compared to
the other interactive approaches, is related to the elimination
of the noise in multi-objective search not only in terms of
objectives but the relevant code locations to be refactored
(decision space). It is normal to see fewer refactorings when
the search space is reduced to a smaller number of files,
which was the case of DOIMR.

Figure 8 shows that DOIMR required far fewer devel-
oper interactions than the other interactive approaches. For
instance, only 13 interactions were required to modify, reject
and select refactorings on Azureus using our approach,
while 23 and 38 interactions respectively were needed for
Alizadeh et al. and Mkaouer et al. The reduction of the
number of interactions is mainly due to the smaller number
of solutions to explore, after the selection of a preferred
cluster in both the objective and decision spaces.

The participants also spent less time to find the most
relevant refactorings on the various systems compared to
the other interactive and non-interactive approaches, as
described in Figure 9. The execution time of our approach
includes the execution of the multi-objective search, both
clusterings, and the different phases of interaction until the
developer is satisfied with a specific solution. The execution
time of Alizadeh et al. included all the steps of multi-
objective search, the objective space clustering, and the in-
teractions while Mkaouer et al. included the multi-objective
search and the user interactions. Thus, it is natural that the
main differences in the execution time can be observed in
the interaction effort. The average time of our approach is
reduced by over 40 minutes (70%) compared to Mkaouer et
al. for the case of JHotDraw. The reduction of the execution
time is mainly explained by the rapid exploration of fewer
solutions after looking mainly to the most diverse (different)
solutions in the decision space of the preferred cluster in
the objective space. In fact, our DOIMR tool has more com-
ponents (clustering at both objective and decision spaces)
than Alizadeh et al. and Mkaouer et al. but the clustering at
both spaces significantly reduced the most time-consuming
step (user interactions) since the clusterings, and multi-
objective search algorithms are quick and executed in few
minutes (between 2 and 4 minutes). The execution time is
mainly affected by the developer’s interaction effort. The
developer’s interaction effort is not only affected by the
number of recommended refactorings, but it is also affected
by the solutions that they need to explore and check man-
ually. The decision space clustering of the preferred cluster
from the objective space dramatically reduced the number of
solutions to check which resulted in fewer interactions. For
instance, a user can easily avoid checking many solutions
within the same decision space cluster (modifying similar
elements) that have similar impacts on the objectives. We
note that the execution times included the interaction with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Fig. 8. The median number of required interactions (ac-
cept/reject/modify/selection), NI, on the 7 systems.

Fig. 9. The median execution time, T, in minutes on the 7 systems.

the user.
Results for RQ3. Our experiments involved 35 partici-

pants where each of the 7 projects is evaluated using the 5
tools however only two of these tools can generate regions
of interests (clusters). Thus, we evaluated if the participants
selected the same regions of interests on the 7 projects using
the two clustering-based interactive tools as shown in Figure
10. Note that the minimum number of iterations is 2 for
JHotdraw and the maximum is 9 for ArgoUML using our
approach where feedback/interactions with the user are
recorded. In each of these iterations, the user interacted with
the proposed solutions to reject/modify/accept/reorder
refactorings. The regions of interests can be only compared
in the two tools for the objective space since only our ap-
proach generates clusters in the decision space. The overlap
measure is calculated based on the number of common
clusters that are selected by the participants divided by the
total number of selected clusters by the participants. In fact,
the overlap measure is the number of the clusters that are
selected by multiple users similarity between the clusters
for each participant and thus to understand the differences
in the developers’ preferences. We applied this measure
separately on both the decision and objective spaces. The
results show that an average of 61% of the selected regions
of interests are the same which confirms that the decision
space clustering helped developers to select their preferred
solution since better refactoring solutions were observed
using our approach even when the selected region of inter-
est is the same in the objective space. Another interesting
observation is that almost half of the selected region of
interest in the objective space are different which means that

Fig. 10. region of interest at the objective and decision space levels.

developers may have different preferences when refactoring
systems as explained in the previous comments. We have
also checked if multiple participants select the same region
of interest in the decision space by looking only at the
results of our approach on the 7 projects (5 selected solutions
per project using our tool by the participants since each of
the 35 participants evaluated 5 distinct tools on 5 different
projects). It is interesting to note that the overlap average in
the regions of interests at the decision space is higher than
the objective space with an average of 71% which can be
explained by the fact that the diversity of solutions within
a preferred cluster in the objective space is less than the
diversity of solutions in the objective space.

Since the execution of the two clustering algorithms is
hierarchical, the final results are actually the combination
of two clustering steps. We recorded in our tool all the
interactions with the user and we found that all participants
used both the objective and decision space clusters before
selecting a final solution. In the post-study feedback, par-
ticipants emphasized that both the decision and objective
space interactions helped them to find a relevant solution.
The common pattern was to establish their goals from
refactoring the code and then they used the decision space to
find a solution that matched their context (e.g. code reviews,
root-canal refactoring, etc.).

To further investigate the preferences of the participants,
Figure 11 summarizes the distribution of the refactoring
types among the final selected refactoring solutions by the
participants. It is clear that the preferred solutions mainly
included Extract Class (22%), Move Method (19%) and
Extract Method (17%). In fact, the impact of these refactoring
types can be positive on many quality attributes such as
extendability, reusability, etc.

Since the above results based on the medians are maybe
more useful to compare the different interactive approaches,
we present and discuss in the following the results per
participant for the number of refactorings in the selected
solution, number of required interactions and time spent to
find a relevant solution. The box plots of Figure 12 shows
that the size of the refactoring solutions selected by the
participants tend to be similar for our approach (between
25 and 35 refactorings) on the different projects. However,
the deviation is high for the approach of Mkaouer et al. but
they tend to be larger than the clustering-based approaches
which shows the value of using the clusters to better under-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

Fig. 11. Refactoring types distribution among the solutions selected by
the user

Fig. 12. Distribution of the number of refactorings in the selected solu-
tions for the 35 participants.

stand the preferences and guide the search towards relevant
refactorings. The same observations apply for the time spent
by developers and the number of interactions as described
in Figures 13 and 14. In fact, a higher number of interactions
will lead to higher time spent by the participants to find
relevant refactoring solutions. While the time spent by the
participants for using the tool of Mkaouer et al. is diverse,
all of them spent more time than our approach for all the
projects and participants.

Although the results show the outperformance of inter-
active approaches compared to automated ones based on
different metrics, there are also some limitations related
to the use of interactive approaches such as the fatigue
despite that our approach significantly reduced the number
of iterations with the decision space clustering. It is pos-
sible that users can be confused and provide inconsistent
feedback which can negatively impact the behavior of the
search in the next iterations. The visualization support is
also critical to enable relevant feedback from developers to
understand the impacts of the recommended refactorings.
Another limitation of the interactivity is the difficulty to
backtrack some interaction decisions provided to the search
algorithm. Finally, the total execution time of interactive
approaches is higher than automated ones as described in

Fig. 13. Distribution of the time spent to find a relevant solution for the
35 participants.

Fig. 14. Distribution of the number of required interactions for the 35
participants.

Figure 9.
Statistical Analysis Since meta-heuristic algorithms are

stochastic optimizers, they can provide different results for
the same problem instance from one run to another. We
utilized statistical analysis to perform a comparison between
several metaheuristic approaches in this study and to deter-
mine the reliability of the results obtained. The following
statistical tests show that all the comparisons performed
between our approach and existing ones are statistically
significant based on all the metrics considered in our ex-
periments.

We used one-way ANOVA statistical test with a 95%
confidence level (α = 5% to find out whether our sample
results of different approached are different significantly.
Since one-way ANOVA is an omnibus test, a statistically
significant result determines whether three or more group
means differ in some undisclosed way in the population.
One-way ANOVA is conducted for the results obtained
from various studied metaheuristic algorithm (independent
variable - groups) to investigate and compare each perfor-
mance metric (dependent variable) on each subject system
(software project). We test the null hypothesis (H0) that
population means of each metric is equal for all methods
(µmetric

M1 = µmetric
M2 = µmetric

M3 = µmetric
M4 where metric ∈

{T,NI,NR,MC} against the alternative (H1) that they are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

not all equal and at least one method population mean is
different.

There are some assumptions for one-way ANOVA test
which we assessed before applying the test on the data:

Normal Distribution: Some of the dependent variables
were not normally distributed for each method, as assessed
by Shapiro-Wilk’s test. However, the one-way ANOVA is
fairly robust to deviation from normality. Since the sample
size is more than 15 and the sample sizes are equal for all
groups (balanced), non-normality is not an issue and does
not affect Type I error.

Homogeneity of variances: The one-way ANOVA assumes
that the population variances of the dependent variables
are equal for all groups of the independent variable. If
the variances are unequal, this can affect the Type I error
rate. There was homogeneity of variances, as assessed by
Levene’s test for equality of variances (p > 0.05).

We have also checked the assumption of IID data within
each group. In fact, the residuals from the model are approx-
imately normal since the values are approximately similar.
Intuitively, data values are IID if they are not related to each
other and if they have the same probability distribution.
Thus, the assumption of IID data is verified.

The results of one-way ANOVA tests indicates that
The group means were statistically significantly different
(p < .0005) and, therefore, we can reject the null hypothesis
and accept the alternative hypothesis which says there is
difference in population means between at least two groups.

The obtained value of F-statistics for each metric are as
follows: FT = 99.18, FNI = 327.41, FNR = 40.96, and
FMC = 102.84. In one-way ANOVA, the F-statistic is the ra-
tio of variation between sample means over variation within
the samples. The larger value of F-statistics represents the
group means are further apart from each other and are
significantly different. Also, it shows that the observation
within each group are close to the group mean with a
low variance within samples. Therefore, a large F-value is
required to reject the null hypothesis that the group means
are equal. Our obtained F-statistics results are correspond to
very small p-values.

Since one-way ANOVA does not indicate the difference
size, we also calculated the ”Vargha-Delaney A” measure
[55]. This measure clarifies the effect size (strength of associ-
ation) and it estimates the degree of association between the
independent factor and dependent variable for the sample.
the A measure is a value between 0 and 1. When it is exactly
0.5, then the two methods achieve equal performance. When
A is less than 0.5, the first method is worse, and when A is
more than 0.5, the second method is worse. The closer to 0.5,
the smaller the difference between the techniques, and the
farther from 0.5, the larger the difference.

Table 6 shows the ”Vargha-Delaney A” results for dif-
ferent metrics between our method and others on each
subject system. Since Ouni et al. (M4) is a fully automated
multi-objective search without the interactive component,
it is only considered for MC metrics. Table 6 shows that
our approach is better than all the other algorithms with
an A effect size that is at least higher than 0.81 for all
the 7 systems and the 4 considered metrics (T, NI, NR,
MC). For instance, considering the execution time T, we
find that our approach (M1) has an A effect size that is

higher than 0.91 for ArgoUML,GanttProject, Azureus and
UTest; and an A effect size higher than 0.83 for JHotDraw,
JFreeChart and Apache Ant. This confirms our findings in
RQ2 that the clustering at both spaces significantly reduced
the execution time. Same observations apply to reduction of
the number of recommended refactorings (NR) and number
of interactions (NI). Overall, the high A effect size values
for all the metrics and the 7 systems show that the DOIMR
outperforms the state of the art refactoring techniques and
the outperformance is significant.

5 THREATS TO VALIDITY

Conclusion validity. The parameter tuning used in our
experiments creates an internal threat that we need to
evaluate in our future work. We have used one of the most
efficient and popular approaches for parameter setting of
evolutionary algorithms, which is Design of Experiments
(DoE). Each parameter has been uniformly discretized in
some intervals. Values from each interval have been tested
for our application. Finally, we chose the best values for
all parameters. Hence, a reasonable set of parameter values
have been studied. Another conclusion threat is the number
of interactions with the developers since we did not force
them to use the same maximum number of interactions
which may sometimes explain the out-performance of our
approach. Moreover, the developers interacted with the dif-
ferent tools using their offered original graphical interfaces
(UIs) which may represent another threat. In fact, develop-
ers may perform better with a given tool because it has a
better user friendly graphical interface to understand the
impact of the refactorings. However, the participants were
given the same amount of time to use the tool (limited to
three hours).

Internal validity. The variation of correctness and speed
between the different groups when using our approach and
other tools can be an internal threat since the participants
have different levels of experience. To counteract this, we
assigned the developers to different groups according to
their programming experience to reduce the gap between
the groups, and we also adopted a counter-balanced design.
Regarding the selected participants, we took precautions
to ensure that our participants represented a diverse set
of software developers with experience in refactoring, and
also that the groups formed had similar average skill sets
in terms of refactoring area. To mitigate the training threat,
we ensured that the participants (1) did not evaluate the
same tool more than one time (even on different projects),
(2) did not evaluate the same project more than one time,
and (3) we used a random order between the participants for
the sequence of tools to be evaluated on different systems.
To mitigate the fatigue threat, we allowed participants to
perform the experiments in multiple sessions (at least one
tool per session).

Construct validity. The developers involved in our ex-
periments may have had divergent opinions about the rel-
evance of the recommended refactorings, which may im-
pact our results. However, some of the participants are the
original programmers of the industrial system, which may
reduce the impact of this threat. Unlike fixing bugs, refactor-
ing is a subjective process, and there is no unique refactor

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 6
Vargha-Delaney A measure for different metrics between our method(M1) and others.

Label of the methods: M1 DOIMR (Our approach), M2=Alizadeh et al. [23], M3=Mkaouer et al. [22], [30], M4=Ouni et al. [53]

T NI NR MC
Comparison M1-M2 M1-M3 M1-M2 M1-M3 M1-M2 M1-M3 M1-M2 M1-M3 M1-M4

ArgoUML 0.94 0.89 0.91 0.86 0.93 0.87 0.91 0.86 0.86
JHotDraw 0.88 0.9 0.84 0.89 0.88 0.91 0.88 0.89 0.88

GanttProject 0.91 0.92 0.87 0.82 0.91 0.94 0.85 0.92 0.86
UTest 0.93 0.84 0.83 0.9 0.93 0.88 0.94 0.84 0.9

Apache Ant 0.89 0.88 0.88 0.81 0.86 0.82 0.9 0.86 0.83
Azureus 0.93 0.82 0.9 0.86 0.83 0.93 0.83 0.91 0.81

JFreeChart 0.83 0.91 0.92 0.83 0.86 0.86 0.92 0.94 0.92

solution; thus, it is difficult to construct a gold-standard for
large systems which makes calculating recall challenging.
Does the deviation from an expected refactoring solution
mean that the recommendation is wrong or simply another
way to refactor the code?

External validity. The first threat is the limited num-
ber of participants and evaluated systems, which threatens
the generalizability of our results. Besides, our study was
limited to the use of specific refactoring types and quality
attributes. Furthermore, we mainly evaluated our approach
using classical algorithms such as NSGA-II, but other exist-
ing metaheuristics can be used. Future replications of this
study are necessary to confirm our findings.

6 RELATED WORK

6.1 Preference-based SBSE
The field of search-based software refactoring has consid-
erably grown in the last years, and an extensive summary
of the existing work can be found in [56], [57], [58] which
provide a systematic review of the field.

Search-based techniques [59] are widely studied to auto-
mate software refactoring to improve the design quality of
software projects using a set of software metrics. Several of
existing studies combine these metrics into a single fitness
function to find the best sequence of refactorings. Seng et al.
[60] have proposed a single-objective optimization approach
using a genetic algorithm to suggest a list of refactorings to
improve software quality.

The majority of existing multi-objective refactoring tech-
niques [25], [35], [39], [53], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70] propose as output a set of non-dominated
refactoring solutions (the Pareto front) that find a good
trade-off between the considered maintainability objectives.
This leaves it to the software developers to select the best
solution from a set of possible refactoring solutions, which
can be a challenging task as it is not natural for developers
to express their preferences in terms of a fitness functions
value. Thus, the exploration of the Pareto front is still
performed manually.

The problems of search space reduction and contextual-
ization to developer’s regions of interest during refactoring
recommendation process have been treated in several pa-
pers [71], [72], [73]. Han et al. proposed in [73] an approach
to enable the interactions with the user in the objective space
then a Delta Table can select quickly the next refactoring

to improve a specific objective without calculating a fitness
function at each iteration. Morales et al. in [71] proposed an
algorithm to remove redundant refactoring solutions that
may have the same refactorings with a different order in the
sequence but the final design is the same. Finally, the work
in [72] presents a filter to the refactoring recommendations
based on the recently introduced code changes by devel-
opers. The previously two mentioned studies demonstrated
the importance of search space reduction. However, there
was no interaction with the users.

To the best our knowledge, all existing Search-Based
Software refactoring studies are mainly focusing on the
objective space to evaluate the solutions and interact with
the developers. There are some studies [74], [75] in SBSE
field not related to refactoring which provide interactions
in the decision space. Ferrira et al. in [74] have proposed
an interactive model for the next release problem using
ant colony optimization, where the user can define which
requirements he/she would like to include or not in the
next release. The proposed approach generates solutions
that have more than 80% of the developer’s preferences and
it the obtained results show an improvement compared to a
solution with no human intervention. Additionally, Ramı́rez
et al. proposed in [75] an interactive approach to discover
software architectures using developer’s feedback to guide
a multi-objective evolutionary algorithm. The user’s feed-
back is incorporated into the fitness function. The authors
reported that the interaction effectively guided the search
towards the regions of the search space that are of real
interest to the expert.

In summary, these works provide interactions in the
decision space by integrating the developer’s feedback into
the fitness functions and they demonstrate that preference-
based SBSE can effectively improve the search results. In
this paper, we got inspired by these studies to incorporate
the developers preference with some differences. In fact,
we are proposing we are proposing a novel multi-objective
approach which enables interaction with developers in both
decision and objective spaces leading to a better understand-
ing of the diversity of the recommended refactoring solu-
tions and quick identification of the preferred solution. The
developer’s feedback was not only integrated in the fitness
function but also in all the other different components of
the evolutionary algorithm. Our results are aligned with the
existing studies which show the importance of integrating
the developer’s preferences to guide the search space.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

6.2 Interactive Refactoring
A recent work [76] presents a systematic review of interac-
tion in Search-Based Software Engineering which provides
a classification scheme for the existing studies in the inter-
active SBSE subfield.

Dig [77] proposes an interactive refactoring technique
to improve the parallelism of software systems. However,
the proposed approach did not consider learning from the
developers’ feedback and focused on making programs
more parallel.

Bavota et al. [31] presented the adoption of single
objective interactive genetic algorithms in software re-
modularization process. The main idea is to incorporate the
user in the evaluation of the generated re-modularizations.
Interactive Genetic Algorithms (IGAs) extend the classic
Genetic Algorithms (GAs) by partially or entirely involv-
ing the user in the determination of the solution’s fitness
function. The basic idea of the Interactive GA (IGA) is to
periodically add a constraint to the GA such that some
specific components shall be put in a given cluster among
those created so far.

Some recent studies [22], [23], [24] extended a previ-
ous work of [30] to propose an interactive search-based
approach for refactoring recommendations. The developers
have to specify a desired design at the architecture level;
then the proposed approach tries to find the relevant refac-
torings that can generate a similar design to the expected
one. In our work, we do not consider the use of a desired
design. Thus developers are not required to manually mod-
ify the current architecture of the system to get refactoring
recommendations. Furthermore, developers may be inter-
ested to change the architecture mainly when they want to
introduce an extensive number of refactorings that radically
change the architecture to support new features. Finally, all
existing interactive search-based refactoring studies are still
generating a large number of solutions that the developers
need to explore.

7 CONCLUSION

In this paper, we presented a novel way to enable inter-
active refactoring by combining the exploration of quality
improvements (objective space) and refactoring locations
(decision space). Our approach helped developers to quickly
explore the Pareto front of refactoring solutions that can
be generated using multi-objective search. The clustering of
the decision space helped the developers identify the most
diverse refactoring solutions among ones located within
the same cluster in the objective space, improving some
desired quality attributes. To evaluate the effectiveness of
our tool, we conducted an evaluation with human subjects
who evaluated the tool and compared it with the state-of-
the-art refactoring techniques. Our evaluation results pro-
vide evidence that the insights from both the decision and
objective spaces helped developers to quickly express their
preferences and converge towards relevant refactorings that
met the developers’ expectations.

In our future work, we are planning to automatically
learn from user interactions for fast convergence to good
refactoring solutions. Besides we plan to expand our exper-
iments with more systems and participants.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[2] J. Kerievsky, Refactoring to patterns. Pearson Deutschland GmbH,
2005.

[3] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka, “A case study in locating the architectural
roots of technical debt,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 179–188.

[4] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework
for making architectural decisions in a business context,” in 2010
ACM/IEEE 32nd International Conference on Software Engineering,
vol. 2. IEEE, 2010, pp. 149–157.

[5] “The developer Coefficient.” [Online]. Available: https://stripe.
com/reports/developer-coefficient-2018

[6] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving
coupling and cohesion of existing code,” in 11th working conference
on reverse engineering. IEEE, 2004, pp. 144–151.

[7] S. R. Foster, W. G. Griswold, and S. Lerner, “Witchdoctor: Ide
support for real-time auto-completion of refactorings,” in 2012
34th International Conference on Software Engineering (ICSE). IEEE,
2012, pp. 222–232.

[8] X. Ge and E. Murphy-Hill, “Benefactor: a flexible refactoring
tool for eclipse,” in Proceedings of the ACM international conference
companion on Object oriented programming systems languages and
applications companion, 2011, pp. 19–20.

[9] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a
refactoring reconstruction tool based on logic query templates,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 2010, pp. 371–372.

[10] R. Marinescu, “Detection strategies: Metrics-based rules for detect-
ing design flaws,” in 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings. IEEE, 2004, pp. 350–359.

[11] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 5–18, 2011.

[12] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in European
Conference on Object-Oriented Programming. Springer, 2006, pp.
404–428.

[13] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Transactions on Software Engineering, vol. 30,
no. 6, pp. 355–371, 2004.

[14] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving refactoring
speed by 10x,” in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, 2016, pp. 1145–1156.

[15] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering ap-
proach for code-smells detection,” IEEE Transactions on Software
Engineering, vol. 40, no. 9, pp. 841–861, 2014.

[16] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Main-
tainability defects detection and correction: a multi-objective ap-
proach,” Automated Software Engineering, vol. 20, no. 1, pp. 47–79,
2013.

[17] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. Ó Cinnéide, “Recommendation system for software refactoring
using innovization and interactive dynamic optimization,” in Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering. ACM, 2014, pp. 331–336.

[18] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering:
An industrial case study,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

[19] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in European
Conference on Object-Oriented Programming. Springer, 2006, pp.
404–428.

[20] M. Kessentini, T. J. Dea, and A. Ouni, “A context-based refactoring
recommendation approach using simulated annealing: two indus-
trial case studies,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2017, pp. 1303–1310.

[21] Y. Cai and K. Sullivan, “A formal model for automated software
modularity and evolvability analysis,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), vol. 21, no. 4, p. 21,
2012.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

[22] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach
to software refactoring recommendations,” IEEE Transactions on
Software Engineering, 2018.

[23] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring
effort via clustering-based multi-objective search,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 464–474.

[24] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive
and guided architectural refactoring with search-based recommen-
dation,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp.
535–546.

[25] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh,
K. Deb, and A. Ouni, “Many-objective software remodulariza-
tion using nsga-iii,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 3, p. 17, 2015.

[26] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide, and
K. Deb, “On the use of many quality attributes for software
refactoring: a many-objective search-based software engineering
approach,” Empirical Software Engineering, vol. 21, no. 6, pp. 2503–
2545, 2016.

[27] I. H. Moghadam and M. O. Cinneide, “Automated refactoring
using design differencing,” in 2012 16th European Conference on
Software Maintenance and Reengineering. IEEE, 2012, pp. 43–52.

[28] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 5–18, 2011.

[29] A. Ouni, M. Kessentini, M. Ó Cinnéide, H. Sahraoui, K. Deb, and
K. Inoue, “More: A multi-objective refactoring recommendation
approach to introducing design patterns and fixing code smells,”
Journal of Software: Evolution and Process, vol. 29, no. 5, p. e1843,
2017.

[30] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. Ó Cinnéide, “Recommendation system for software refactoring
using innovization and interactive dynamic optimization,” in Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering. ACM, 2014, pp. 331–336.

[31] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba,
“Supporting extract class refactoring in eclipse: The aries project,”
in Proceedings of the 34th International Conference on Software Engi-
neering. IEEE Press, 2012, pp. 1419–1422.

[32] J. Bansiya and C. G. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Transactions on software
engineering, vol. 28, no. 1, pp. 4–17, 2002.

[33] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and
K. Deb, “A robust multi-objective approach to balance severity
and importance of refactoring opportunities,” Empirical Software
Engineering, vol. 22, no. 2, pp. 894–927, 2017.

[34] M. O’Keeffe and M. Ó. Cinnéide, “Search-based refactoring: an
empirical study,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 20, no. 5, pp. 345–364, 2008.

[35] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and
I. Hemati Moghadam, “Experimental assessment of software met-
rics using automated refactoring,” in Proceedings of the ACM-
IEEE international symposium on Empirical software engineering and
measurement. ACM, 2012, pp. 49–58.

[36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions
on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[37] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential java
code for concurrency via concurrent libraries,” in Proceedings of
the 31st International Conference on Software Engineering. IEEE
Computer Society, 2009, pp. 397–407.

[38] “The proposed refactoring tool.” [Online]. Available: https:
//sites.google.com/view/tse2020decision

[39] A. Ghannem, M. Kessentini, and G. El Boussaidi, “Detecting
model refactoring opportunities using heuristic search,” in Pro-
ceedings of the 2011 Conference of the Center for Advanced Studies on
Collaborative Research, 2011, pp. 175–187.

[40] M. Feathers, Working Effectively with Legacy Code: WORK EFFECT
LEG CODE p1. Prentice Hall Professional, 2004.

[41] “The Seventh International Workshop on Managing Technical
Debt,” http://www.sei.cmu.edu/community/td2015/.

[42] L. Tokuda and D. Batory, “Evolving object-oriented designs with
refactorings,” Automated Software Engineering, vol. 8, no. 1, pp. 89–
120, 2001.

[43] E. R. Murphy-Hill and A. P. Black, “Why don’t people use refac-
toring tools?” in WRT, 2007, pp. 60–61.

[44] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying
and quantifying architectural debt,” in Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016, pp.
488–498.

[45] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 181–190.

[46] L. C. Briand, J. Wust, S. V. Ikonomovski, and H. Lounis, “Investi-
gating quality factors in object-oriented designs: an industrial case
study,” in Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No. 99CB37002). IEEE, 1999, pp. 345–354.

[47] J. Bansiya and C. G. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Transactions on software
engineering, vol. 28, no. 1, pp. 4–17, 2002.

[48] R. Shatnawi and W. Li, “An empirical assessment of refactoring
impact on software quality using a hierarchical quality model,”
International Journal of Software Engineering and Its Applications,
vol. 5, no. 4, pp. 127–149, 2011.

[49] W. F. Opdyke, “Refactoring object-oriented frameworks,” 1992.
[50] T. Caliński and J. Harabasz, “A dendrite method for cluster

analysis,” Communications in Statistics-theory and Methods, vol. 3,
no. 1, pp. 1–27, 1974.

[51] G. Xuan, W. Zhang, and P. Chai, “Em algorithms of gaussian
mixture model and hidden markov model,” in Proceedings 2001
International Conference on Image Processing (Cat. No. 01CH37205),
vol. 1. IEEE, 2001, pp. 145–148.

[52] R. A. Redner and H. F. Walker, “Mixture densities, maximum
likelihood and the em algorithm,” SIAM review, vol. 26, no. 2, pp.
195–239, 1984.

[53] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering:
An industrial case study,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

[54] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
“Jdeodorant: identification and application of extract class refac-
torings,” in 2011 33rd International Conference on Software Engineer-
ing (ICSE). IEEE, 2011, pp. 1037–1039.

[55] A. Vargha and H. D. Delaney, “A critique and improvement of the
CL common language effect size statistics of McGraw and Wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[56] T. Mariani and S. R. Vergilio, “A systematic review on search-
based refactoring,” Information and Software Technology, vol. 83, pp.
14–34, 2017.

[57] A. Ghannem, G. El Boussaidi, and M. Kessentini, “On the use of
design defect examples to detect model refactoring opportunities,”
Software Quality Journal, vol. 24, no. 4, pp. 947–965, 2016.

[58] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said, “On
the use of machine learning and search-based software engi-
neering for ill-defined fitness function: a case study on software
refactoring,” in International Symposium on Search Based Software
Engineering. Springer, Cham, 2014, pp. 31–45.

[59] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[60] O. Seng, J. Stammel, and D. Burkhart, “Search-based determina-
tion of refactorings for improving the class structure of object-
oriented systems,” in Proceedings of the 8th annual conference on
Genetic and evolutionary computation. ACM, 2006, pp. 1909–1916.

[61] M. Harman and L. Tratt, “Pareto optimal search based refactoring
at the design level,” in Proceedings of the 9th annual conference on
Genetic and evolutionary computation. ACM, 2007, pp. 1106–1113.

[62] M. Kessentini, H. Sahraoui, and M. Boukadoum, “Example-based
model-transformation testing,” Automated Software Engineering,
vol. 18, no. 2, pp. 199–224, 2011.

[63] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum,
“Generating transformation rules from examples for behavioral
models,” in Proceedings of the Second International Workshop on
Behaviour Modelling: Foundation and Applications, 2010, pp. 1–7.

[64] S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said, “Preference-
based many-objective evolutionary testing generates harder test
cases for autonomous agents,” in International Symposium on Search
Based Software Engineering. Springer, Berlin, Heidelberg, 2013, pp.
245–250.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

[65] A. Ghannem, G. El Boussaidi, and M. Kessentini, “Model refactor-
ing using examples: a search-based approach,” Journal of Software:
Evolution and Process, vol. 26, no. 7, pp. 692–713, 2014.

[66] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh,
“Search-based metamodel matching with structural and syntactic
measures,” Journal of Systems and Software, vol. 97, pp. 1–14, 2014.

[67] U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh,
and K. Deb, “Momm: Multi-objective model merging,” Journal of
Systems and Software, vol. 103, pp. 423–439, 2015.

[68] R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni, “Recom-
mending relevant classes for bug reports using multi-objective
search,” in 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2016, pp. 286–295.

[69] M. Kessentini and A. Ouni, “Detecting android smells using
multi-objective genetic programming,” in 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 2017, pp. 122–132.

[70] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “On
the impact of refactoring on the relationship between quality at-
tributes and design metrics,” in 2019 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM).
IEEE, 2019, pp. 1–11.

[71] R. Morales, F. Chicano, F. Khomh, and G. Antoniol, “Efficient
refactoring scheduling based on partial order reduction,” Journal
of Systems and Software, vol. 145, pp. 25–51, 2018.

[72] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, “On the
use of developers’ context for automatic refactoring of software
anti-patterns,” Journal of systems and software, vol. 128, pp. 236–251,
2017.

[73] A.-R. Han and S. Cha, “Two-phase assessment approach to im-
prove the efficiency of refactoring identification,” IEEE Transac-
tions on Software Engineering, vol. 44, no. 10, pp. 1001–1023, 2017.

[74] T. do Nascimento Ferreira, A. A. Araújo, A. D. B. Neto, and
J. T. de Souza, “Incorporating user preferences in ant colony
optimization for the next release problem,” Applied Soft Computing,
vol. 49, pp. 1283–1296, 2016.

[75] A. Ramirez, J. R. Romero, and S. Ventura, “Interactive multi-
objective evolutionary optimization of software architectures,”
Information Sciences, vol. 463, pp. 92–109, 2018.

[76] A. Ramirez, J. R. Romero, and C. L. Simons, “A systematic review
of interaction in search-based software engineering,” IEEE Trans-
actions on Software Engineering, vol. 45, no. 8, pp. 760–781, 2018.

[77] D. Dig, “A refactoring approach to parallelism,” IEEE software,
vol. 28, no. 1, pp. 17–22, 2010.

Soumaya Rebai is a Ph.D. student in the intelli-
gent Software Engineering group at the Univer-
sity of Michigan. Her primary research interests
are Search-Based Software Engineering, docu-
mentation generation, refactoring and services
computing.

Vahid Alizadeh is currently a Ph.D. student in
the intelligent Software Engineering group at the
University of Michigan. His Ph.D. project is con-
cerned with the application of intelligent search
and machine learning in different software engi-
neering areas such as refactoring, testing, and
documentation. His current research interests
are Search-Based Software Engineering, Refac-
toring, Artificial Intelligence, data analytics and
software quality.

Marouane Kessentini is a recipient of the pres-
tigious 2018 President of Tunisia distinguished
research award, the University distinguished
teaching award, the University distinguished dig-
ital education award, the College of Engineering
and Computer Science distinguished research
award, 4 best paper awards, and his AI-based
software refactoring invention, licensed and de-
ployed by industrial partners, is selected as one
of the Top 8 inventions at the University of Michi-
gan for 2018 (including the three campuses),

among over 500 inventions, by the UM Technology Transfer Office. He
is currently a tenured associate professor and leading a research group
on Software Engineering Intelligence. Prior to joining UM in 2013, He
received his Ph.D. from the University of Montreal in Canada in 2012.
He received several grants from both industry and federal agencies and
published over 110 papers in top journals and conferences. He has
several collaborations with industry on the use of computational search,
machine learning and evolutionary algorithms to address software engi-
neering and services computing problems.

Houcem Fehri is currently a Ph.D. student in
the intelligent Software Engineering group at the
University of Michigan. His primary research in-
terests are Search-Based Software Engineering,
Optimization, and refactoring.

Rick Kazman is a Professor at the University of
Hawaii and a Principal Researcher at the Soft-
ware Engineering Institute of Carnegie Mellon
University. His primary research interests are
software architecture, design and analysis tools,
software visualization, and software engineer-
ing economics. He also has interests in human-
computer interaction and information retrieval.
Kazman has created several highly influential
methods and tools for architecture analysis, in-
cluding the SAAM (Software Architecture Anal-

ysis Method), the ATAM (Architecture Tradeoff Analysis Method), the
CBAM (Cost-Benefit Analysis Method) and the Dali architecture reverse
engineering tool.

