
Explainable, Security-Aware and Dependency-Aware Framework for
Intelligent Software Refactoring

by

Chaima Abid

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer & Information Science)

in the University of Michigan-Dearborn
2021

Doctoral Committee:

Associate Professor Marouane Kessentini, Chair
Professor Bruce Maxim
Assistant Professor Alireza Mohammadi
Assistant Professor Zheng Song

© Chaima Abid 2021

All Rights Reserved

ACKNOWLEDGEMENTS

Through the process of researching and writing this thesis, I have received a great deal

of support and assistance.

I would first like to thank my supervisor, Professor Marouane Kessentini, for the countless

hours that he dedicated to this thesis. His expertise in my area of research was invaluable

in formulating the research questions and methodology. Your insightful feedback pushed me

to sharpen my thinking and brought my work to a higher level.

Next, I would like to thank the Department of Computer and Information Science at

the University of Michigan Dearborn for providing the required support that allowed me to

complete my thesis.

In addition, I would like to thank my parents and my sisters Imen, Nour, and Hajer, for

their constant love, their never- ending encouragement and support all through my studies.

You are always there for me.

My appreciation also goes out to my partner Kareem Khalil for his tremendous under-

standing and encouragement in the past few years. Your support has meant more to me

than you could possibly realize.

I am also grateful to my current and former lab mates for their help and a cherished time

spent together in the lab.

Finally, I could not have completed this dissertation without the support of my friends

who provided happy distractions to rest my mind outside of my research.

This dissertation stands as a testament to all your love and encouragement.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . xii

LIST OF ABBREVIATIONS . xv

ABSTRACT . xvii

CHAPTER

I. Introduction . 1

1.1 Research Context . 1

1.2 Problem Statement & Proposed Contributions 2

1.2.1 Problem Statement . 2

1.2.2 Research Contributions . 3

1.3 Publications List . 10

1.4 Organization of the Dissertation . 12

II. State of the Art . 13

2.1 30 Years of Software Refactoring Research: A Systematic Literature

Review . 13

2.1.1 Introduction . 13

2.1.2 Research Methodology . 16

iii

2.1.3 Refactoring Research Platform 26

2.1.4 Results . 27

2.1.5 Future Research Directions 41

2.1.6 Conclusion . 48

2.2 What Refactoring Topics Do Developers Discuss? A Large Scale Em-

pirical Study Using Stack Overflow 50

2.2.1 Introduction . 50

2.2.2 Stack Overflow Data Description 52

2.2.3 Research Method . 53

2.2.4 Results . 59

2.2.5 Implications of this Study 69

2.2.6 Threats to Validity . 72

2.2.7 Conclusion . 72

2.3 Related Work . 74

2.3.1 Systematic Literature Reviews about Refactoring 74

2.3.2 Mining Stack Overflow Posts 75

2.3.3 Detecting Refactoring Opportunities 76

2.3.4 Refactoring Recommendation 84

2.4 Background . 92

2.4.1 Object-Oriented Static Metrics for Software Quality and Se-

curity Assessment . 92

2.4.2 Metrics for Web Services 96

2.4.3 Multi-Objective Refactoring Using NSGA-II 99

III. Improving the Process of Identifying Potential Refactoring Oppor-

tunities . 102

3.1 Understanding the Impact of Code Quality and Security Metrics of

Mobile Apps on User Reviews . 103

iv

3.1.1 Introduction . 103

3.1.2 QS-URec: The Proposed Approach 107

3.1.3 Experiments and Results 114

3.1.4 Threats to Validity . 126

3.1.5 Conclusion . 129

3.2 Early Prediction of Quality of Service Using Interface-level Metrics,

Code-level Metrics, and Antipatterns 130

3.2.1 Introduction . 130

3.2.2 Approach . 133

3.2.3 Experiment and Results . 139

3.2.4 Threats to Validity . 146

3.2.5 Conclusion and Future Work 148

3.3 One Size Does Not Fit All: Customized Benchmark Generation for

Software Quality Assessment . 149

3.3.1 Introduction . 149

3.3.2 Research Methodology . 152

3.3.3 Empirical Validation . 158

3.3.4 Threats to Validity . 170

3.3.5 Conclusion . 172

IV. Improving the Refactoring Recommendation Process 173

4.1 How Does Refactoring Impact Security When Improving Quality? A

Security-Aware Refactoring Approach 174

4.1.1 Introduction . 174

4.1.2 Motivating Example . 176

4.1.3 Security-Aware Multi-Objective Refactoring 178

4.1.4 Experiments and Results 182

4.1.5 Threats to Validity . 201

v

4.1.6 Conclusion . 201

4.2 Prioritizing Refactorings for Security Critical Code 203

4.2.1 Introduction . 203

4.2.2 Motivations and Challenges 204

4.2.3 Approach . 206

4.2.4 Experiment and Results . 212

4.2.5 Threats to Validity . 222

4.2.6 Conclusion . 223

4.3 Intelligent Change Operators for Multi-Objective Refactoring 225

4.3.1 Introduction . 225

4.3.2 Dependency-Aware Refactoring Recommendation System . 227

4.3.3 Empirical Study . 233

4.3.4 Threats to Validity . 243

4.3.5 Conclusion . 246

4.4 X-SBR: On the Use of the History of Refactorings for Explainable

Search-Based Refactoring and Intelligent Change Operators 247

4.4.1 Introduction . 247

4.4.2 X-SBR Approach . 250

4.4.3 Experiment and Results . 257

4.4.4 Threats to Validity . 270

4.4.5 Conclusion . 272

V. Conclusion . 274

5.1 Future Work . 278

BIBLIOGRAPHY . 280

vi

LIST OF FIGURES

Figure

1.1 Overview of the contributions of this thesis. 3

2.1 SLR steps . 18

2.2 Top institutions active in the refactoring field 28

2.3 A screenshot of the authors tab of the refactoring repository Website . . . 30

2.4 A screenshot of the publications tab of the refactoring repository Website . 31

2.5 Dashboard of the refactoring repository website 32

2.6 A screenshot of the refactoring repository dashboard that shows the authors,

their h-index and total number of publications and citations 33

2.7 A screenshot of the authors network graph from the refactoring repository

website . 34

2.8 Distribution of refactoring publications around the world. 35

2.9 Number of publications in the top 10 most active countries in the refactoring

field . 36

2.10 Top 10 Authors with the highest number of publications and citations in the

field of refactoring . 37

2.11 Evolution of the Top 10 Authors during the past 10 years 38

2.12 Trend of publications in the field of refactoring during the last three decades. 39

2.13 Histogram illustrating the percentage of refactoring publications per refac-

toring life-cycle . 40

vii

2.14 Histogram illustrating the percentage of publications dealing with manual,

semi-automatic and automated refactoring 41

2.15 Histogram illustrating the count of refactoring publications per artifact . . 42

2.16 Histogram illustrating the count of refactoring publications per paradigm . 43

2.17 Histogram illustrating the count of publications per refactoring objective . 44

2.18 Histogram illustrating the count of refactoring publications per program-

ming language . 45

2.19 Histogram illustrating the count of refactoring publications per field 46

2.20 Pie chart illustrating the percentage of publications in which the authors

used industrial and/or open source systems in the validation step 47

2.21 Refactoring post found on Stack Overflow 53

2.22 An overview of our Stack Overflow analysis. 55

2.23 Distribution of the number of questions per refactoring topic 61

2.24 The distribution of the number of questions in relation to the probability of

the dominant topic . 62

2.25 The four metrics used to estimate refactoring topics popularity. 64

2.26 The three used metrics to estimate the level of difficulty. 67

2.27 The evolution of the number of questions by topic overtime. 68

3.1 Overview of the QS-URec Approach . 107

3.2 Example reviews related to quality issues 110

3.3 A screenshot of our tool that shows quality/security computation results . 111

3.4 Security keywords used in the security metrics calculations 112

3.5 Boxplot of the evaluation metrics for QS-URec, QS-URec without weights,

and the work of Palomba et al. [1] . 122

3.6 Boxplot of the SecurityOverlap and QualityOverlap of all the apps 123

3.7 Boxplot of the results of the survey conducted with our industrial partner

Under Armour . 127

viii

3.8 Approach Overview . 134

3.9 The average severity score of the different types of antipattern on the QoS

attributes based on our data set of web services 146

3.10 Quality evaluation of a project A using two different benchmarks 150

3.11 Overview of the proposed approach. 152

3.12 QBench dashboard showing quality profile of the selected project. 157

3.13 QBench’s detailed quality report. 158

3.14 A bar-plot that shows the component importance generated by the principal

component analysis . 164

3.15 A grid of boxplots that shows the distributions of repository features across

the clusters generated by the K-means algorithm with K=7 166

3.16 A bubble chart that summarizes the Kolmogorov–Smirnov test results. . . 167

3.17 Distribution of the developers’ answers about the Sensitivity of the quality

metrics. 168

4.1 An example of a security vulnerability from Django REST Registration li-

brary due to refactorings. 177

4.2 A simplified bank account system hierarchy before and after refactoring . . 177

4.3 Security-Aware Multi-Objective Refactorings 178

4.4 Sample of outputs (refactorings) of our Web app on the Open CSV project

to balance quality and security. 180

4.5 Average distribution of the refactoring types among the solutions recom-

mended for the 30 projects that significantly improve the security objective. 191

4.6 Impact of the recommended refactorings on security metrics based on the

30 projects. 191

4.7 Distribution of refactoring solutions based on each pair of quality and secu-

rity metrics for the 30 projects. 193

ix

4.8 Average manually determined correctness of the refactorings on different

open source projects generated by our tool (+Security) and an existing refac-

toring tool (-Security) [2].. 194

4.9 Box plots of the impact of refactoring solutions on the quality attributes

based on 4 open source projects using our tool (+Security) and an existing

refactoring tool (-Security) [2]. The results are statistically significant using

the two-sample t-test at a 95% confidence level (α = 5%) 195

4.10 Distribution of the refactoring solutions using the security objective based

on 4 open source projects comparing our tool (+Security) and an existing

refactoring tool (-Security) [2]. 195

4.11 The important motivations for code refactoring by the participants. 196

4.12 The potential impacts of refactoring on security metrics based on the survey. 197

4.13 The potential impact of different refactoring types on security metrics based

on the survey. 198

4.14 The possible positive impact of improving the security metrics on quality

attributes based on the survey. 199

4.15 Box plots of the impacts of refactoring solutions on both quality and security

objectives based on the 30 projects. 200

4.16 A category in the CVE security bug database [3] that includes security

vulnerabilities related to poor code quality 206

4.17 An example of a security vulnerability from NUUO CMS system due to code

quality issues [4]. 207

4.18 Security-Critical Code Identification: Approach Overview 208

4.19 List of keywords used in our approach . 209

4.20 An example of a security-critical code fragments identified by our approach 210

4.21 An example of a Pareto front of refactoring solutions generated by our tool

for OpenCSV project. 211

x

4.22 The manual evaluation scores (MC@k) on the seven systems with k=3, 5

and 10. 218

4.23 Average execution time, in minutes, on the seven systems. 219

4.24 The severity scores (severity@k) on the seven systems with k=3, 5 and 10. 221

4.25 Sample refactoring recommendations from JDeodorant. 226

4.26 A simplified example of refactorings that depend on each other. 228

4.27 An illustration of the intelligent crossover. 232

4.28 An illustration of the dependency-aware mutation. 233

4.29 Percentage of invalid refactorings across all solutions per generation for

NSGA-II, Dep-NSGA-II, and Intel-NSGA-II. 239

4.30 Percentage of invalid refactorings in refactoring solutions using NSGA-II,

Dep-NSGA-II, and Intel-NSGA-II. 240

4.31 Manual evaluation of refactoring recommendations generated by the existing

multi-objective techniques [5, 6, 7, 8] and the JDeodorant Eclipse plugin [9]). 244

4.32 Approach Overview . 251

4.33 Example of an association rule . 253

4.34 Improved initial population process . 254

4.35 An illustration of X-SBR crossover . 255

4.36 An illustration of X-SBR mutation . 257

4.37 Average execution time (ms) of all algorithms using the four systems . . . 265

4.38 Average number of invalid refactorings in the solutions of all algorithms

using the four systems . 267

4.39 Automated and manual evaluation of refactoring recommendations gener-

ated by the different refactoring tools . 270

4.40 Distribution of the relevance of the explanations according to the survey

results (1=not relevant-5=very relevant) 271

xi

LIST OF TABLES

Table

2.1 Final list of search strings . 19

2.2 PS quality assessment questions [10] . 20

2.3 List of countries and their replacements . 22

2.4 List of keywords used to detect the different categories 24

2.5 Representative references for all categories 29

2.6 Attributes describing a Stack Overflow post 54

2.7 List of candidate tags . 57

2.8 The 6 refactoring related topics with the 10 most important words in each

topic . 60

2.9 Quality attributes and their equations. 92

2.10 QMOOD metrics description. 93

2.11 Security metrics terminology. 94

2.12 Security metrics definition . 95

2.13 Web service metrics [11] . 97

2.14 Refactoring types considered in our study 101

3.1 Summary of the mobile apps considered in our study. 116

3.2 Correlation analysis results between quality attributes and review ratings . 119

3.3 Correlation analysis results between security metrics and user review ratings 120

3.4 Percentage of files that were identified correctly 121

xii

3.5 Evaluation results using p-value and Vargha-Delaney A measure 123

3.6 Precision and recall of running QS-URec on MyFitnessPal 127

3.7 Antipattern Detection rules [12] . 138

3.8 Web services used in our dataset . 140

3.9 Support, confidence and lift of the rules that predict QoS from anti-patterns 144

3.10 Rules to predict QoS from anti-patterns . 145

3.11 Rules to predict QoS . 147

3.12 Support, confidence and lift of the Rules to predict QoS 147

3.13 Overview of the used clustering algorithms. 156

3.14 Selected Developers and eBay projects. 162

3.15 Clustering results. 165

3.16 The sensitivity of the quality metrics . 168

3.17 Participants quality assessment vs QBench. 171

3.18 QBench correctness precision for each of the seven benchmarks. 171

4.1 Studied open source projects. 186

4.2 Correlation results between the average of security metrics and different

refactoring types on the 30 projects. The results are statistically significant

using the 2sample t-test with a 95% confidence level (α = 5%) 190

4.3 The two most common refactoring patterns with the highest impact on the

improvement of the average security measure for the 30 open source projects.190

4.4 Correlation results between the average of security metrics and quality at-

tributes on the 30 projects. The results are statistically significant using the

two-sample t-test at a 95% confidence level (α = 5%) 192

4.5 Demographics of the studied projects. 216

4.6 Selected programmers. 217

4.7 The three operation-variants of the NSGA-II algorithm. 234

4.8 Open-source projects studied. 235

xiii

4.9 Participant details. 239

4.10 Performance indicators results for NSGA-II, Dep-NSGA-II, and Intel-

NSGA-II. 241

4.11 Average quality improvement of the solutions generated by NSGA-II, Dep-

NSGA-II, and Intel-NSGA-II. 242

4.12 Systems considered for validation . 258

4.13 Effect Size values (Eta squared (η2)) for corresponding software project and

metric. 264

4.14 Participants details . 265

4.15 Evaluation metrics and statistics of the rules 265

4.16 Results of the Hypervolume (IHV) and Generational Distance (IGD) indicators268

4.17 Results of the Contributions (IC) metric 269

xiv

LIST OF ABBREVIATIONS

SOA Service-Oriented Architecture

UML Unified Modeling Language

UI User Interface

OCL Object Constraint Language

IDE Integrated Development Environment

SLR Systematic Literature Review

LDA Latent Dirichlet Allocation

QMOOD Quality Metrics for Object Oriented Design

QoS Quality of Service

PS Primary Studies

RQ Research Question

GUI Graphical user interface

NSGA-II Non-dominated Sorting Genetic Algorithm

xv

CI Continuous Integration

SQuaRE Software product Quality Requirements and Evaluation

SQA software quality assurance

CVE Common Vulnerabilities and Exposures

xvi

ABSTRACT

As software systems continue to grow in size and complexity, their maintenance contin-

ues to become more challenging and costly. Even for the most technologically sophisticated

and competent organizations, building and maintaining high-performing software applica-

tions with high-quality-code is an extremely challenging and expensive endeavor. Software

Refactoring is widely recognized as the key component for maintaining high-quality software

by restructuring existing code and reducing technical debt. However, refactoring is difficult

to achieve and often neglected due to several limitations in the existing refactoring tech-

niques that reduce their effectiveness. These limitation include, but not limited to, detecting

refactoring opportunities, recommending specific refactoring activities, and explaining the

recommended changes. Existing techniques are mainly focused on the use of quality metrics

such as coupling, cohesion, and the Quality Metrics for Object Oriented Design (QMOOD).

However, there are many other factors identified in this work to assist and facilitate different

maintenance activities for developers:

1. To structure the refactoring field and existing research results, this dissertation provides

the most scalable and comprehensive systematic literature review analyzing the results

of 3183 research papers on refactoring covering the last three decades. Based on this

survey, we created a taxonomy to classify the existing research, identified research

trends and highlighted gaps in the literature for further research.

2. To draw attention to what should be the current refactoring research focus from the

developers’ perspective, we carried out the first large scale refactoring study on the

xvii

most popular online Q&A forum for developers, Stack Overflow. We collected and

analyzed posts to identify what developers ask about refactoring, the challenges that

practitioners face when refactoring software systems, and what should be the current

refactoring research focus from the developers’ perspective.

3. To improve the detection of refactoring opportunities in terms of quality and security

in the context of mobile apps, we designed a framework that recommends the files to

be refactored based on user reviews. We also considered the detection of refactoring

opportunities in the context of web services. We proposed a machine learning-based

approach that helps service providers and subscribers predict the quality of service

with the least costs. Furthermore, to help developers make an accurate assessment of

the quality of their software systems and decide if the code should be refactored, we

propose a clustering-based approach to automatically identify the preferred benchmark

to use for the quality assessment of a project.

4. Regarding the refactoring generation process, we proposed different techniques to en-

hance the change operators and seeding mechanism by using the history of applied

refactorings and incorporating refactoring dependencies in order to improve the qual-

ity of the refactoring solutions. We also introduced the security aspect when generating

refactoring recommendations, by investigating the possible impact of improving differ-

ent quality attributes on a set of security metrics and finding the best trade-off between

them. In another approach, we recommend refactorings to prioritize fixing quality is-

sues in security-critical files, improve quality attributes and remove code smells.

All the above contributions were validated at the large scale on thousands of open source

and industry projects in collaboration with industry partners and the open source com-

munity. The contributions of this dissertation are integrated in a cloud-based refactoring

framework which is currently used by practitioners.

xviii

CHAPTER I

Introduction

1.1 Research Context

The growing complexity and scale of industrial software systems affects their speed, their

overall performance and present difficult challenges in design, development, and asserting

software quality [13, 14]. Refactoring [15, 16, 17] is a technique that improves the design

structure while preserving the overall functionality and behavior. It is a key practice in

agile development processes and well supported by tools integrated with major Integrated

Development Environments (IDEs). Recently, software industry is becoming more and more

aware of the importance of refactoring for reaching long-term goals, and they encourage their

developers to continuously refactor their code to set a clean foundation for future updates.

A recent study [18] shows that developers are spending considerable time struggling with

existing code (e.g., understanding, restructuring, etc.) rather than creating new code, and

this may have a harmful impact on developer creativity. Various tools for code refactoring

have been proposed during the past two decades ranging from manual support [19, 20, 21]

to fully automated techniques [22, 23, 24, 25, 26, 27, 28, 29, 30, 7]. Despite the promising

results of refactoring techniques on both open-source and industry projects, developers are

still reluctant to use these refactorings tools. This reluctance is due to many limitation in

the existing tools that include poor consideration of the characteristics of the artifact to be

refactored, ignoring the security aspect of the software as well as the dependencies among

1

refactorings, and history of refactorings.

1.2 Problem Statement & Proposed Contributions

1.2.1 Problem Statement

In this thesis, we first identify and synthesize all of the scholarly research on software

refactoring while exploring the experiences and perspectives of both researchers and engi-

neers. Then, we leverage different algorithms to enhance the mechanisms of identifying

refactoring opportunities and generating refactoring recommendation.

• Gain an understanding of the existing research and debates relevant to software refac-

toring, and present that knowledge in the form of a systematic literature review and a

thorough empirical study.

• Design and implement scalable approaches that combine search algorithms with ma-

chine learning for the generation of refactoring recommendation. We utilized for the

first time the knowledge extracted from the history of applied refactorings and the

dependencies between refactoring operations to improve the existing refactoring tools.

• Design and implement approaches to detect refactoring opportunities using static anal-

ysis and machine learning techniques. In this context, we focus on Web services, mobile

apps, and GitHub repositories.

Figure 1.1 represents the different contributions of this thesis. The presented framework

contains three main components. The goal of the first component is to identify, evaluate, and

summarize the findings and challenges of the refactoring field from researchers and developers

perspectives. For that, we submitted two research contributions. The second component

consists of improving the process of identifying potential refactoring opportunities where

we published one contribution (C4) and got two others accepted with major revisions (C3

and C5). The third and last component of this thesis consists of improving the refactoring

2

Identify, Evaluate, and Summarize the Findings and Challenges In The
Refactoring Field

Researchers Engineers

Improving The Process of Identifying Potential Refactoring
Opportunities

Web Services GitHub Repositories Mobile Apps

Improving The Refactoring Recommendation Process

Security-Aware Refactoring Intelligent Refactoring

C6: How Does Refactoring Impact
Security When Improving Quality?
A Security-Aware Refactoring
Approach.

C7: Prioritizing Refactorings for
Security Critical Code. Automated
Software Engineering.

C8: Intelligent Change Operators
for Multi-Objective Refactoring.

C9: X-SBR: On the Use of the
History of Refactorings for
Explainable Search-Based
Refactoring and Intelligent
Change Operators.

C3: Understanding the
Impact of Code Quality
and Security Metrics of
Mobile Apps on User
Reviews.

C4: Early Prediction of
Quality of Service
Using Interface-level
Metrics, Code-level
Metrics, and
Antipatterns.

C5: One Size Does Not
Fit All: Customized
Benchmark Generation
for Software Quality
Assessment.

C1: 30 Years of Software
Refactoring Research: A
Systematic Literature Review.

C2: What Refactoring Topics
Do Developers Discuss? A
Large Scale Empirical Study
Using Stack Overflow.

Figure 1.1: Overview of the contributions of this thesis.

recommendation process. In this context, we were able to publish four contributions all in

top tier journals and conferences.

1.2.2 Research Contributions

In the following, we will summarize the objectives of each contribution. The refactoring

research efforts are fragmented over several research communities, various domains, and

objectives. To structure the field and existing refactoring research results, we have initiated

our dissertation by a systematic literature review on refactoring.

Contribution 1: 30 Years of Software Refactoring Research: A Systematic

Literature Review

Refactoring studies are extensively expanded beyond code-level restructuring to be

applied at different levels (architecture, model, requirements, etc.), adopted in many

domains beyond the object-oriented paradigm (cloud computing, mobile, web, etc.),

used in industrial settings and considered objectives beyond improving the design to

include other non-functional requirements (e.g., improve performance, security, etc.).

3

To understand the current status of the refactoring field, structure it, and identify

potential gaps, we performed a study that provides a large scale systematic literature

review by analyzing the results of 3183 research papers on refactoring covering the last

three decades since 1990. We also created a taxonomy to classify the existing research,

identified research trends, and highlighted gaps in the literature and avenues for further

research.

The increasing demand on refactoring have surpassed the academic and research commu-

nity to spark the interest of software industries as well industries with software departments.

For this reason, we concluded the urgent need for a study that highlights the challenges

that practitioners face when refactoring software systems and what should be the current

refactoring research focus from the developers’ perspective.

Contribution 2: What Refactoring Topics Do Developers Discuss? A

Large Scale Empirical Study Using Stack Overflow

Very few studies focused on the challenges that practitioners face when refactoring

software systems and what should be the current refactoring research focus from the

developers’ perspective. Without such knowledge, tool builders invest in the wrong

direction, and researchers miss many opportunities for improving the practice of refac-

toring. In this study, we collected data from the popular online Q&A site, Stack

Overflow, and analyzed posts to identify what do developers ask about refactoring.

We clustered these questions to find the different refactoring related topics using one

of the most popular topic modeling algorithms, Latent Dirichlet Allocation (LDA).

We found that developers are asking about design patterns, design and user interface

refactoring, web services, parallel programming, and mobile apps. We also identified

what popular refactoring challenges are the most difficult and the current important

topics and questions related to refactoring. Moreover, we discovered gaps between

existing research on refactoring and the challenges developers face.

After grasping the current stage of progress of the refactoring field in the academic

4

research and industry, we tried to address some of the long-standing research problems

related to the identification of refactoring opportunities in mobile apps, web services, and

GitHub projects through the following contributions:

Contribution 3: ”So What?”: Understanding the Impact of Code Quality

and Security Metrics of Mobile Apps on User

The timely detection of emerging quality and security code issues is critical for devel-

opers and managers to efficiently manage software maintenance activities and satisfy

their customer’s needs. Mobile app reviews can highlight important complaints related

to quality and security. Despite the considerable work on classifying and identifying

user review topics, we currently lack understanding of whether and which quality and

security metrics can impact user reviews. Indeed, the current use of app reviews to

identify files to fix is limited to analysis of textual similarities, not complementing them

with source code metric values. In this contribution, we first studied the correlation

between the evolution of user-perceived quality and security of mobile apps and source

code quality and security metrics. Based on the outcomes of this study linking code

quality and security metrics to user reviews, we designed a framework, QS-URec, to

address emerging quality and security issues by analyzing both user reviews and source

code metrics. QS-URec recommends files to be fixed and links them to user reviews.

We evaluated our approach on 50 popular mobile apps from Google Play with 290,000

reviews, along with a large and popular mobile app provided by our industrial partner

that serves millions of users and has received over 400,000 reviews. Our results show

strong correlations between several code metrics and the user ratings from reviews

complaining about security and quality. QS-URec linked security/quality issues in

user reviews to the affected files with higher precision and recall than textual analysis.

Contribution 4: Early Prediction of Quality of Service Using Interface-

level Metrics, Code-level Metrics, and Antipatterns

Context: With the current high trends of deploying and using web services in practice,

5

effective techniques for maintaining high quality of Service are becoming critical for

both service providers and subscribers/users. Service providers want to predict the

quality of service during early stages of development before releasing them to customers.

Service clients consider the quality of service when selecting the best one satisfying

their preferences in terms of price/budget and quality between the services offering

the same features. The majority of existing studies for the prediction of quality of

service are based on clustering algorithms to classify a set of services based on their

collected quality attributes. Then, the user can select the best service based on his

expectations both in terms of quality and features. However, this assumption requires

the deployment of the services before being able to make the prediction and it can be

time-consuming to collect the required data of running web services during a period

of time. Furthermore, the clustering is only based on well-known quality attributes

related to the services performance after deployment. In this contribution, we start

from the hypothesis that the quality of the source code and interface design can be used

as indicators to predict the quality of service attributes without the need to deploy or

run the services by the subscribers. We collected training data of 707 web services

and we used machine learning to generate association rules that predict the quality of

service based on the interface and code quality metrics, and antipatterns. The empirical

validation of our prediction techniques shows that the generated association rules have

strong support and high confidence which confirms our hypothesis that source code and

interface quality metrics/antipatterns are correlated with web service quality attributes

which are response time, availability, throughput, successability, reliability, compliance,

best practices, latency, and documentation.

Contribution 5: One Size Does Not Fit All: Customized Benchmark Gen-

eration for Software Quality Assessment

It is critical that software systems meet high-quality standards to become less costly

and more reliable. Though the research community has proposed various metrics and

6

anti-patterns to detect quality issues as well as refactoring approaches to fix them, it is

still challenging to make an accurate interpretation of the quality metrics and detected

anti-patterns to decide if the code should actually be refactored. It is challenging for

practitioners to understand whether the values of the quality metrics are good or bad

without comparison to an appropriate benchmark of other projects. To address this

gap, we propose a clustering-based approach to automatically identify the preferred

benchmark to use for the quality assessment of a project. We collect 29 repository

features and 20 quality metrics of 54,569 open-source projects. Then, we compare

seven clustering algorithms to find distinct clusters based on repository features. After

identifying the best set of clusters, we investigate the sensitivity of the quality metrics

with respect to the different clusters/benchmarks. Finally, we automatically identify

the best benchmark for a set of industry projects and compare the quality assessment

results with the manual evaluations of programmers. The results show the effectiveness

of the repository features in finding clusters of projects with different characteristics

and that quality metrics are sensitive to the selected cluster/benchmark.

Another area to inspect is the refactoring recommendation process. There are several

gaps that are yet to be addressed in order to improve the refactoring efficiency. For this

reason we propose the following four contributions:

Contribution 6: How Does Refactoring Impact Security When Improving

Quality? A Security-Aware Refactoring Approach

While state of the art of software refactoring research uses various quality attributes

to identify refactoring opportunities and evaluate refactoring recommendations, the

impact of refactoring on the security of software systems when improving other quality

objectives is under-explored. It is critical to understand how a system is resistant to

security risks after refactoring to improve quality metrics. For instance, refactoring

is widely used to improve the reusability of code, however such an improvement may

increase the attack surface due to the created abstractions. Increasing the spread of

7

security-critical classes in the design to improve modularity may result in reducing the

resilience of software systems to attacks. In this contribution, we investigated the possi-

ble impact of improving different quality attributes (e.g. reusability, extendibility, etc.),

from the QMOOD model on a set of 8 security metrics defined in the literature related

to the data access. We also studied the impact of different refactorings on these static

security metrics. Then, we proposed a multi-objective refactoring recommendation

approach to find a balance between quality attributes and security based on the cor-

relation results to guide the search. We evaluated our tool on 30 open source projects.

We also collected the practitioner perceptions on the refactorings recommended by our

tool in terms of the possible impact on both security and other quality attributes. Our

results confirm that developers need to make trade-offs between security and other

qualities when refactoring software systems due to the negative correlations between

them.

Contribution 7: Prioritizing Refactorings for Security Critical Code

It is vitally important to fix quality issues in security-critical code as they may be

sources of vulnerabilities in the future. These quality issues may increase the attack

surface if they are not quickly refactored. In this contribution, we use the history of

vulnerabilities and security bug reports along with a set of keywords to automatically

identify a project’s security-critical files based on its source code, bug reports, pull-

request descriptions and commit messages. After identifying these security-related files,

we estimate their risks using static analysis to check their coupling with other project

components. Then, our approach recommends refactorings to prioritize fixing quality

issues in these security-critical files to improve quality attributes and remove identified

code smells. To find a trade-off between the quality issues and security-critical files,

we adopted a multi-objective search strategy. We evaluated our approach on six open

source projects and one industrial system to check the correctness and relevance of the

refactorings targeting security critical code.

8

Contribution 8: Intelligent Change Operators for Multi-Objective Refac-

toring

In this contribution, we propose intelligent change operators and integrate them into

an evolutionary multi-objective search algorithm to recommend valid refactorings that

address conflicting quality objectives such as understandability and effectiveness. The

proposed intelligent crossover and mutation operators incorporate refactoring depen-

dencies to avoid creating invalid refactorings or invalidating existing refactorings. Fur-

ther, the intelligent crossover operator is augmented to create offspring that improve

solution quality by exchanging blocks of valid refactorings that improve a solution’s

weakest objectives. We used our intelligent change operators to generate refactoring

recommendations for four widely used open-source projects. The results show that our

intelligent change operators improve the diversity of solutions. They also accelerate

solution convergence to a feasible solution that optimizes the trade-off between the con-

flicting quality objectives. Finally, they reduce the number of invalid refactorings by up

to 71.52% compared to existing search-based refactoring approaches, and increase the

quality of the solutions. Our approach outperformed the state-of-the-art search-based

refactoring approaches and an existing deterministic refactoring tool based on manual

validation by developers with an average manual correctness, precision and recall of

0.89, 0.82, and 0.87.

Contribution 9: X-SBR: On the Use of the History of Refactorings for

Explainable Search-Based Refactoring and Intelligent Change Operators

Many of the existing refactoring tools and research are based on search-based tech-

niques to find relevant recommendations by finding trade-offs between different quality

attributes. While these techniques show promising results on open-source and indus-

try projects, they lack explanations of the recommended changes which can impact

their trustworthiness when adopted in practice by developers. Furthermore, most of

the adopted search-based techniques are based on random population generation and

9

random change operators (e.g. crossover and mutation). However, it is critical to un-

derstand which good refactoring patterns may exist when applying change operators

to either keep them or exchange with other solutions rather than destroying them with

random changes. In this contribution, we propose an enhanced knowledge-informed

multi-objective search algorithm, called X-SBR, to provide explanations for refactoring

solutions and improve the generated recommendations. First, we generate association

rules using the Apriori algorithm to find relationships between applied refactorings in

previous commits, their locations, and their rationale (quality improvements). Then,

we use these rules to 1) initialize the population, 2) improve the change operators and

seeding mechanisms of the multi-objective search in order to preserve and exchange

good patterns in the refactoring solutions, and 3) explain how a sequence of refactorings

collaborate in order to improve the quality of the system (e.g. fitness functions).

1.3 Publications List

• Abid, C., Kessentini, M., Alizadeh, V., Dhouadi, M., & Kazman, R. (2020). How

Does Refactoring Impact Security When Improving Quality? A Security-Aware

Refactoring Approach. IEEE Transactions on Software Engineering (TSE). DOI:

10.1109/TSE.2020.3005995. Impact Factor 6.11.

• Abid, C., Kessentini, M., & Wang, H. (2020). Early Prediction of Quality of Service

Using Interface-level Metrics, Code-level Metrics, and Antipatterns. Information and

Software Technology. DOI: 10.1016/j.infsof.2020.106313. Impact factor: 2.92.

• Abid, C., Kessentini, M., Alizadeh, V., Dhouadi, M., & Kazman, R. (2020). Prioritiz-

ing Refactorings for Security Critical Code. Automated Software Engineering. DOI:

10.1007/s10515-021-00281-2. Impact factor: 3.13.

• Abid, C., Rzig, D., Ferreira, T., Kessentini, M.,& Tushar, S. (2021). X-SBR: On

the Use of the History of Refactorings for Explainable Search-Based Refactoring and

10

Intelligent Change Operators. IEEE Transactions on Software Engineering (TSE).

DOI: 10.1109/TSE.2021.3105037. Impact Factor 6.11.

• Abid, C., Ivers, J., Ferreira, T., Kessentini, M., Ben Kahla, F., & Ozkaya, I. Intelligent

Change Operators for Multi-Objective Refactoring. (2021). The 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2021). DOI:

10.7302/3184. Acceptance rate 17%.

• Abid, C., Kessentini, M., Alizadeh, V., Dhouadi, M., & Kazman, R. (2020).How Does

Refactoring Impact Security When Improving Quality? A Security-Aware Refactoring

Approach. FSE 2020 : ACM SIGSOFT International Symposium on Foundations

of Software Engineering. FSE2020, Journal First Track, Accepted. Acceptance rate

18.5%

• Alkhazi, B., Abid, C., Kessentini, M., & Wimmer, M. (2020). On the value of quality

attributes for refactoring ATL model transformations: A multi-objective approach.

Information and Software Technology, 120, 106243. DOI: 10.1016/j.infsof.2019.106243.

Impact factor: 2.92.

• Alkhazi, B., Abid, C., Kessentini, M., Leroy, D., & Wimmer, M. (2020). Multi-criteria

test cases selection for model transformations. Automated Software Engineering, 1-28.

DOI: 10.1007/s10515-020-00271-w. Impact factor: 3.13.

• Alkhazi, B., Abid, C., Kessentini, M., Leroy, D., & Wimmer, M. (2020). Multi-criteria

test cases selection for model transformations. The 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE2020), Journal First Track, Ac-

cepted. DOI: 10.1007/s10515-020-00271-w. Acceptance rate 17%.

• Abid, C., Rzig, D., Ferreira, T., Kessentini, M., Tushar, S., & Palomba, F. (2021).

One Size Does Not Fit All: Customized Benchmark Generation for Software Quality

11

Assessment. Minor Revisions at IEEE Transactions on Software Engineering (TSE).

Impact Factor 6.11.

• Abid, C., Kessentini, M.,& Tushar, S. Understanding the Impact of Code Quality

and Security Metrics of Mobile Apps on User Reviews. (2021). Minor Revisions

at ACM Transactions on Software Engineering and Methodology (TOSEM). Impact

Factor 6.11.

• Abid, C., Alizadeh, V., Kessentini, M., Ferreira, T. D. N., & Dig, D. (2020). 30 Years

of Software Refactoring Research: A Systematic Literature Review. Under review

at IEEE Access. Impact Factor 3.74.

• Abid, C., Alizadeh, V., Kessentini, M. (2021). What Refactoring Topics Do Developers

Discuss? A Large Scale Empirical Study Using Stack Overflow. Under review at

IEEE Access. Impact Factor: 3.74.

1.4 Organization of the Dissertation

This thesis is organized as follows: Chapter II includes a systematic literature review

about the refactoring field, an empirical study about the challenges that developers face when

refactoring software systems, background information needed to understand the research

contributions, and, finally, a summary of the work related to this thesis.

Chapter III presents three techniques to improve the process of identifying refactoring

opportunities. We looked into this problem within the context of mobile apps, web services,

and GitHub projects.

Chapter IV describes four approaches to enhance the process of generating refactoring

recommendations by proposing intelligent change operators and introducing the security

aspect in the refactoring generation.

Finally, a summary and future research directions are presented in Chapter V.

12

CHAPTER II

State of the Art

This chapter is composed of four main parts: 1) a systematic literature review that covers

30 Years of software refactoring research 2) a large scale empirical study using Stack Overflow

to identify what software practitioners ask about refactoring 3) the necessary background

information related to this dissertation 4) an overview of existing studies directly related to

the thesis’ contributions.

2.1 30 Years of Software Refactoring Research: A Systematic Literature Re-

view

2.1.1 Introduction

For decades, code restructuring has been applied in informal ways before it became a

research interest. The research on Refactoring started in the late ’80s, concurrently and

independently at two universities: William Griswold and David Notkin at U. of Washington

were studying refactoring of functional programs in Scheme. William Opdyke and Ralph

Johnson at U. of Illinois were studying the refactoring object-oriented programs, particularly

in the context of reusable frameworks in C++. The first known use of the term Refactoring

in the published literature was in an article written by Opdyke and Johnson in September

1990 [31]. Then followed William Griswold’s Ph.D. dissertation [32], published in 1991. One

year later, William Opdyke published his Ph.D. dissertation [33].

13

In 1999, Martin Fowler with co-authors from U. of Illinois refactoring group published

the first book on refactoring titled Refactoring: Improving the Design of Existing Code [34].

This book popularized the practice of code refactoring, and provided a clear taxonomy and

definitions of refactoring types. Fowler defined Refactoring in his book as a sequence of small

changes - called refactoring operations - made to the internal structure of the code without

altering its external behavior. The goal of these refactoring operations is to improve the

code readability and reusability, as well as reduce its complexity and maintenance costs in

the long run. Since then, a lot has changed in the software development world and in the

academic research, but one thing has remained the same: The need for Refactoring.

The Refactoring area is growing very rapidly, and many advances, challenges, and trends

have lately emerged. Recently, several researchers and practitioners have adopted the use of

refactoring operations at higher degrees of abstraction than source code level (e.g., databases,

Unified Modeling Language (UML) models, Object Constraint Language (OCL) rules, etc.).

As a result, they often had to redefine the principles and guidelines of refactoring according

to the requirements and specifications of their domains. For instance, within User Interface

Refactoring developers make changes to the UI to retain its semantics and consistency for all

users. These refactorings include, but not limited to, Align entry field, Apply common button

size, Apply font, Indicate format, and Increase color contrast. In Database Refactoring,

developers improve the database schema by applying changes such as Rename column, Split

table, Move method, Replace LOB with table, and Introduce column constraint.

Although the different refactoring communities (e.g., software maintenance and evolu-

tion, model-driven engineering, formal methods, search-based software engineering, etc.) are

interdependent in many ways, they remain disconnected, which may create inconsistencies.

For example, when model-level Refactoring does not match the code-level practice, it can

lead to incoherence and technical issues during development. The gap is visible not only

between different refactoring domains but also between practitioners and researchers. The

distance between them primarily originates from the lack of insights into both worlds’ recent

14

findings and needs. For instance, developers tend to use the refactoring features provided

by IDEs due to their accessibility and popularity. Most of the time, they are not informed

of the benefits that can be derived from adopting state-of-the-art advances in academia. All

these challenges call for a need to identify, critically appraise, and summarize the existing

work published across the different domains. Existing systematic literature reviews examine

findings in very specific refactoring sub-areas such as identifying the impact of refactoring on

quality metrics [35] or code smells [36]. To the best of our knowledge, none of the existing

surveys or systematic literature reviews collect and synthesize existing research, tools, and

recent advances made in the refactoring community on a broad scale to summarize the big

picture of the current state of the field.

This study includes the most comprehensive synthesis of theories and principles of refac-

toring intended to help researchers and practitioners make quick advances and avoid rein-

venting or re-implementing research infrastructure from scratch, wasting time and resources.

We also build a refactoring infrastructure [37] that will connect researchers with practitioners

in the industry and provide a bridge between different refactoring communities in order to

advance the field of refactoring research.

This Systematic Literature Review (SLR) follows a defined protocol [38, 39, 40] to

increase the study’s validity and rationality so that the output can be high in quality and

evidence-based. We used various electronic databases and a large number of articles to

comprise all the possible candidate studies and cover more works than existing SLRs.

This SLR contributes to the existing literature in the following ways:

• We identify a set of 3183 studies related to refactoring published until May 2020,

fulfilling the quality assessment criteria. These studies can be used by the research

and industry communities as a reliable basis and help them conduct further research

on Refactoring.

• We present a comprehensive qualitative and quantitative synthesis reflecting the state-

of-the-art in refactoring with data extracted from those 3183 high-rigor studies. Our

15

synthesis covers the following themes: artifacts, refactoring tools, different approaches,

and performance evaluation in refactoring research.

• We provide guidelines and recommendations based on our findings to support further

research in the area.

• We implement a platform [37] that includes the following components: (1) A search-

able repository of refactoring publications based on our proposed taxonomy; (2) A

searchable repository of authors who contributed to the refactoring community; (3)

Analysis and visualization of the refactoring trends and techniques based on the col-

lected papers. The proposed infrastructure will allow researchers and practitioners to

easily report refactoring publications and upload information about active authors in

the field of Refactoring. It will also bridge the different communities to advance the

field of refactoring research and provide opportunities to educate the next refactoring

generation.

2.1.2 Research Methodology

Our literature review follows the guidelines established by Kitchenham and Charters [38],

which decompose a systematic literature review in software engineering into three stages:

planning, conducting, and reporting the review. We have also considered the guidelines

from recent systematic literature reviews in the fields of empirical software engineering [35]

and search-based software engineering [41]. All the steps of our research are documented,

and all the related data are available online for further validation and exploration [37]. This

section details the performed research steps and the protocol of the literature review. First,

section 2.1.2.1 describes the research questions underlying our survey. Second, section 2.1.2.2

details the literature search step. Next, section 2.1.2.3 highlights the inclusion and exclusion

criteria. The data pre-processing step and our proposed taxonomy are described in sections

2.1.2.4 and 2.1.2.5, respectively. The quality assessment criteria are defined in section 2.1.2.6.

16

Finally, Section 2.1.2.7 discusses threats to the validity of our study.

2.1.2.1 Research Questions

The following research questions have been derived based on the objectives described in

the introduction section, which form the basis for the literature review:

• RQ1: What are the refactoring life-cycle activities?

• RQ2: What are the types of artifacts used for refactoring?

• RQ3: Why refactoring is performed?

• RQ4: What are the different refactoring methods and targeted programming lan-

guages?

• RQ5: To what extent refactoring is validated in industry versus open source environ-

ments?

2.1.2.2 Literature Search Strategy

Following existing SLR guidelines, all the papers have been queried from a wide range of

scientific literature sources to make our search as comprehensive as possible:

• Digital libraries: ACM Library, IEEE Xplore, Science- Direct, SpringerLink.

• Citation databases: Web of Science (formerly ISI Web of Knowledge), Scopus.

• Citation search engines: DBLP, Google Scholar.

We first defined a list of terms covering the variety of both application domains and

refactoring techniques. Thus, we checked the title, keywords, and abstracts of the relevant

papers that were already known to us. Synonyms and keywords were derived from this list.

These keywords were combined using logical operators ANDs and ORs to create search terms.

Before start collecting the Primary Studies (PS), we tested the search terms’ effectiveness

17

Figure 2.1: SLR steps

on all the data sources. Then, we refined the queries to avoid getting irrelevant papers. The

string adjustments were agreed on by all authors. The final list of search strings is shown in

Table 2.1. These search strings were modified to suit the specific requirements of different

electronic databases. We conducted our last search on May 31st, 2020, and identified studies

published up until that date to update our database of papers collected and analyzed during

a period of 3 years.

In our systematic review, we followed a multi-stage model to minimize the probability of

missing relevant publications as much as possible. The different stages are shown in figure

2.1 along with the total returned publications at each stage. The first stage consists of

18

executing the search queries on the databases mentioned above; a total of 6158 references

were found. Then, we removed the duplicates, which reduced the list of candidate papers to

3882. Then, we performed a manual examination of titles and abstracts to discard irrelevant

publications based on the inclusion and exclusion criteria. We also looked at the body of the

paper whenever necessary. This decreased the list of candidate papers to 3161 publications.

Next, we used the resulting set as input for the snowballing process, recommended by Wohlin

[39], to identify additional studies. We consulted web profiles of relevant authors and their

networks. We also checked cross-references until no further papers were detected. As a

result, 17 new references were added. After that, we contacted the corresponding authors of

the identified publications to inquire about any missing relevant studies. This led to adding

5 studies.

Table 2.1: Final list of search strings

search strings
(software OR system OR code OR service OR diagram
OR database OR architecture OR Model OR GUI OR
user interface OR UI OR design OR artifact OR de-
veloper OR computer OR programming OR object-
oriented OR implement OR mobile app OR cloud OR
document) AND (refactor OR refactoring)

2.1.2.3 Inclusion and Exclusion Criteria

To filter out the irrelevant articles among those selected in Stage 2 and determine the

Primary studies, we considered the following inclusion and exclusion criteria.

2.1.2.3.1 Inclusion Criteria All of the following criteria must be satisfied in the se-

lected primary studies:

1. The article must have been published in a peer reviewed journal or conference proceed-

ing between the years 1990 and 2020. The main reason for imposing a constraint over

the start year is because the first known use of the term “refactoring” in the published

19

Table 2.2: PS quality assessment questions [10]

Question

Design

Are the applied identification techniques for refactoring opportunities clearly described?
Are the refactoring activities considered clearly stated and defined?
Was the sample size justified?
Are the evaluation measures fully defined?

Conduct Are the data collection methods adequately described?

Analysis

Are the results of applying the identification techniques evaluated?
Are the data sets adequately described? (size, programming languages, source)
Are the study participants or observational units adequately described?
Are the statistical methods described?
Are the statistical methods justified?
Is the purpose of the analysis clear?
Are the scoring systems (performance evaluation) described?

Conclusion

Are all study questions answered?
Are negative findings presented?
Are the results compared with previous reports?
Do the results add to the literature?
Are validity threats discussed?

literature was in a September, 1990 article by William Opdyke and Ralph Johnson

[31]. We included papers up till May 31st 2020.

2. The article must be related to computer science and engineering and propose tech-

niques, methods and tools for refactoring.

3. The paper must be written in English.

4. In case a conference paper has a journal extension, we would include both the confer-

ence and journal publications.

5. The paper must pass the quality assessment criteria that are elaborated in Section

2.1.2.6.

2.1.2.3.2 Exclusion Criteria Papers satisfying any of the exclusion criteria were dis-

carded, as follows:

1. Studies that are not related to the computer science field.

20

2. Studies that investigated the impact of general maintenance on code quality. In this

case, the maintenance tasks were potentially performed due to several reasons and not

limited to refactoring, and therefore, we cannot judge whether the impact was due to

refactoring or to other maintenance tasks such as corrective or adaptive maintenance.

3. Grey Literature

2.1.2.4 Data Preprocessing

A pre-processing technique was applied to improve reliability and precision, as detailed

in the following sub sections.

2.1.2.4.1 Simplifying Author’s Name In general, scientific and bibliographic

databases such as Web of Science (WoS) and Scopus have the following inconsistencies

in authors names:

• Most journals abbreviate the author’s first name to an initial and a dot.

• Most journals use the author name’s special accents.

• WoS uses a comma between the author’s last name and first name initial, but Scopus

does not.

These name-related inconsistencies mean that scientometrics scripts cannot find all of the

similar author’s names. For that reason, we applied the following steps to simplify author’s

name fields:

• Remove dots and coma from author’s name.

• Remove special accents from author’s name

2.1.2.4.2 Fixing Inconsistent Country Names Some authors use different naming to

refer to the same country (such as USA and United States). For that reason, some country

names were replaced based on Table 2.3.

21

Table 2.3: List of countries and their replacements

Country Replacement
Republic of China China
USA United States
England, Scotland and Wales England
U Arab Emirates United Arab Emirates
Russia Russian Federation
Viet Nam Vietnam
Trinid & Tobago Trinidad and Tobago

2.1.2.5 Study Classification

According to the research questions listed in Section 2.1.2.1, we classified the studies into

five dimensions: (1) refactoring life-cycle (related to RQ1), (2) artifacts affected by refactor-

ing (related to RQ2), (3) refactoring objectives (related to RQ3), (4) refactoring techniques

(related to RQ4) and (5) refactoring evaluation (related to RQ5). The determination of the

attributes of each dimension was performed incrementally. For each dimension, we started

with an empty set of attributes. During a period of 3 years (2017-2020), the authors of this

study screened the full texts of the articles one by one, analyzed each reported study based

on the considered dimension, and determined the attributes of that dimension as considered

by each primary study (PS). Table 2.4 outlines the keywords extracted for each category.

It should be pointed out that, most of the time, we remove all of the affixes (i.e., suffixes,

prefixes, etc.) attached to a word in order to keep its lexical base, also known as root or

stem or its dictionary form or lemma. For instance, the word document allows us to detect

the words documentation and documenting. Furthermore, we did not include bi-grams and

tri-grams that can be detected using one uni-gram. For example, Class Diagram, Object

Diagram, Sequence Diagram, and Use Case Diagram can all be detected using the word

Diagram alone.

The screening of the PSs resulted in determining six stages for the refactoring life-cycle

(e.g., detection, prioritization, recommendation, testing, documentation, and prediction).

We also classified the papers according to the level of automation of the proposed technique

22

(e.g., automatic, manual, semi-automatic). The results are described in section 2.1.4.1. For

the second dimension, we identified five artifacts on which the impact of refactoring is stud-

ied by at least one of the PSs. These artifacts are code, architecture, model, GUI, and

database. The classification of PSs based on these artifacts is discussed in detail in Section

2.1.4.2. We subdivided the third dimension into five categories (e.g., External quality, in-

ternal quality, performance, migration, and security) to reflect the refactoring objective and

six categories (e.g., Object-oriented design, Aspect-oriented design, Model-driven engineer-

ing, Documentation, Mobile development, and Cloud computing) to describe the refactoring

paradigms.

The classification of PSs based on these categories is discussed in detail in Section 2.1.4.3.

We divided the fourth dimension into four categories (e.g., data mining, search-based algo-

rithms, formal methods, and fuzzy logic) to reveal the refactoring techniques adopted in

the studies and into twelve categories (e.g., Java, C, C#, Python, Cobol, PHP, Smalltalk,

Ruby, Javascript, MATLAB, and CSS) to show the most common programming languages

used in our PSs. The details of this categorization are reported in section 2.1.4.4. Finally,

for the fifth dimension, we divide the PSs into two categories: open-source and industrial.

The open-source category includes studies that validate their approaches using open source

systems. In contrast, the industrial category consists of the studies that validate their work

on systems of their industrial collaborators. These findings are outlined in Section 2.1.4.5.

2.1.2.6 Study Quality Assessment

To ensure a level of quality of papers, we only included venues that are known for pub-

lishing high-quality software engineering research in general with an h-index of at least 10,

as has been done by [42] . Each of the papers that were published before 2019 has to be cited

at least once. The quality of each primary study was assessed based on a quality checklist

defined by Kitchenham and Charters [38]. This step aims to extract the primary studies with

information suitable for analysis and answering the defined research questions. The quality

23

Table 2.4: List of keywords used to detect the different categories

Category Keywords
Refactoring Life-cycle (RQ1)
Detection detect, opportunity, smell, antipattern, design defect
Prioritization schedul, sequence, priorit
Recommendation recommend, correction, correcting, fixing, suggest
Testing test, regression testing, test case, unit test
Documentation document
Prediction predict, future release, next release, development history, refactoring history
Level of automation (RQ1)
Manual manual
Semi-automatic semi-automat, semi-manual
Automatic automat
Artifact (RQ2)
Code code, java, object orient, smell, antipattern, anti-pattern, object-orient
Model design, model, UML, diagram, Unified Modeling Language
Architecture architecture, hotspot, hierarchy
GUI gui, user interface, UI
Database relational, schema, database, Structured Query Language, SQL
Paradigm (RQ3)
Object-oriented design object orient, object-orient, oo, java, c, ++, python, C sharp, c#, css, Python, R, PHP,

JavaScript, Ruby, Perl, Object Pascal, Objective-C, Dart, Swift, Kotlin, Common Lisp,
MATLAB, Smalltalk

Aspect-oriented design aspect
Model-driven engineering model transform, uml, reverse engineering, diagram, Unified Modeling Language
Documentation document
Mobile development android, mobile, IOS, phone, smartphone, cellphones
Could computing web service, wsdl, restful, cloud, Apache Hadoop, Docker, Middleware, Software-as-a-

Service, SaaS, XaaS, Anything-as-a-Service, Platform-as-a-Service, PaaS, Infrastructure-
as-a-Service, IaaS, AWS, Amazon EC2, Amazon Simple Storage Service, S3

Refactoring Objectives (RQ3)
Internal Quality maintainability, cyclomatic, depth of inheritance, coupling, quality, Flexibility, Portabil-

ity, Re-usability, Readability, Testability, Understandability
Performance performance, parallel, Response Time, Error Rates, Request Rate, availability
External quality analysability, changeability, time behaviour, resource, Correctness, Usability, Efficiency,

Reliability, Integrity, Adaptability, Accuracy, Robustness
Migration migrat
Security secure, safety, Attack surface, virus, hack, vulnerability, vulnerable, spam
Programming languages (RQ4)
Java java
C c, c++
C# c sharp, c#
Python python
CSS css
PHP php
Cobol cobol
Javascript javascript
Ruby ruby
Smalltalk smalltalk
MATLAB matlab
Adopted methods (RQ4)
Search-based algorithms search, search-base, sbse, genetic, fitness, simulated annealing, tabu search, search space,

Hill climbing, Multi-objective evolutionary algorithms, multi objective optimization,
multi-objective programming, vector optimization, multi-criteria optimization, multi-
attribute optimization, Pareto optimization, Evolutionary Multi-objective Optimization,
EMO, Single-Objective Optimization, Many-Objective Optimization, multi objective

Data mining artificial intelligence, ai , machine learning, naive bayes, decision tree, SVM, support vec-
tor machine, Cluster, Classification, classify, Association, Neural networks, deep learning,
random forest, regression, reinforcement learning, learning

Formal methods model check, formal method, B-Method, RAISE, Z notation, SPARK Ada
Fuzzy logic fuzzy
Evaluation method (RQ5)
Open source open source, open-source
Industrial proprietary, industrial, industry, collaborator, collaboration

24

checklist, (described in Table 2.2) were defined by Galster et al. [42]. They are developed

by considering bias and validity problems that can occur at different stages, including the

study design, conduct, analysis, and conclusion. Each question is answered by a ”Yes”,

”Partially”, or ”No”, which correspond to a score of 1, 0.5, or 0, respectively. If a question

does not apply to a study, we do not evaluate the study for that question. The quality

assessment checklist was independently applied to all 3882 studies by two of the authors. All

disagreements on the quality assessment results were discussed, and a consensus was reached

eventually. Few cases where agreement could not be reached were sent to the third author

for further investigation. 154 studies did not meet the quality assessment criteria.

2.1.2.7 Threats to Validity

Several limitations may affect the generalizability and the interpretations of our results.

The first is the possibility of paper selection bias. To ensure that the studies were selected in

an unbiased manner, we followed the well-defined research protocol and guidelines reported

by Kitchenham and Charters[38] instead of proposing nonstandard quality factors. Also, the

final decision on the articles with selection disagreements was performed based on consensus

meetings. The Primary studies were assessed by one researcher and checked by the other,

a technique applied in similar studies [41]. The second threat consists of missing a relevant

study. To overcome this threat, we employed several strategies that we mentioned in Section

2.1.2.2. Few related studies were detected after performing the automatic search, which

indicates that the constructed search strings and the mentioned utilized libraries were com-

prehensive enough to identify most of the relevant articles. Another critical issue is whether

our taxonomy is complete and robust sufficient to analyze and classify the primary studies.

To overcome this problem, we used an iterative content analysis method by going through

the papers one by one and continuously expand the taxonomy for every new encountered

concept. Furthermore, to gather sufficient keywords to detect the different categories, we

followed the same iterative process, and we added synonyms based on the authors’ expertise

25

in the field of refactoring. Another threat is related to the tagging of the papers according

to our taxonomy. To mitigate this problem, we asked 27 graduate students to check the cor-

rectness of the classification results by reading the abstract, the title, and keywords. They

also check the body of the paper whenever necessary.

2.1.3 Refactoring Research Platform

We implemented a large scale platform [43] that collects, manages, and analyzes refactor-

ing related papers to help researchers and practitioners share, report, and discover the latest

advancements in software refactoring research. The first release of the platform is based on

the data collected using the methodology described in the previous section. It includes the

following components:

1. A searchable repository of refactoring publications based on our proposed

taxonomy. Figure 2.4 shows a screenshot of the publications’ tab of the refactoring

repository website. The papers can be searched by author, title, or year of publication.

Each paper has tags that describe its content based on our taxonomy described in sec-

tion 2.1.2.5. The papers can also be filtered using those tags and sorted alphabetically

or chronologically according to the title and year of publication, respectively. The users

can export the publications’ dataset to many formats, including pdf, excel, and CSV.

They can also easily report a new publication by entering its link.

2. A searchable repository of authors who contributed to the refactoring com-

munity. Figure 2.3 shows a screenshot of the authors’ tab of the refactoring repository

website. The authors can be searched and sorted alphabetically by name, affiliation,

or country. They can also be sorted based on the total number of refactoring publica-

tions. The user can also check the Google Scholar and Scopus profiles of the authors if

available. Finally, the user can easily report a new author by entering their information

and their profile. Furthermore, we defined the refactoring h-index, which shows how

26

many papers about refactoring published by the author have been cited proportion-

ately. A refactoring h-index of X means that the author has X papers about refactoring

that have been cited at least X times. Authors can also be sorted according to the

refactoring h-index and the total number of citations (see figure 2.6). Besides, we

created a co-author network and corresponding visualizations (see figure 2.7) to get a

snapshot view of the breadth and depth of an individual’s collaborations in the field of

refactoring research. Finally, we generated a histogram (see figure 2.2) that shows the

number of publications issued by the top institutions active in the refactoring research

by considering the authors’ affiliations.

3. Analysis and visualization of the refactoring trends and techniques based

on the collected papers. Figure 2.5 shows a screenshot of the refactoring repository

dashboard. It contains histograms and pie charts that show the distribution and per-

centages of the categories defined in our taxonomy. It also includes maps that reflect

the spread of refactoring activity across the world.

The proposed infrastructure will enable new researchers in refactoring to perform a fair

comparison between the novelty of their new refactoring approach and state-of-the-art tech-

niques; enable researchers to use refactoring data of large software systems; facilitate collab-

orations between researchers from currently disconnected domains/communities of refactor-

ing (model-driven engineering, service computing, parallelism and performance optimization,

software quality, testing, etc.); enable practitioners and researchers to quickly identify rele-

vant existing research papers and tools for their problems based on the proposed taxonomy

and classification; and enable effective interactions between practitioners and refactoring

researchers to identify relevant problems faced by the software industry.

2.1.4 Results

In this section, we aim to answer the research questions. To provide an overview of

the current state of the art in refactoring and guide the reader towards a specific set of

27

Figure 2.2: Top institutions active in the refactoring field

approaches, tools, and recent advances that are of interest, we classified the 3183 reviewed

papers based on the taxonomy described in Section 2.1.2.5. Table 2.5 contains representative

references for the categories created for each Research Question (RQ). In the table, We

selected a set of 10 representative references per category as we are dealing with a total of

3183 papers. Those papers are the most cited per each category. The complete results of the

classification of all the papers are provided in our repository [43]. The rest of this section

summarizes the observations and insights that can be derived from the classification results.

Figure 2.8 shows the distribution of publications related to refactoring across the globe.

Figure 2.9 reflects the number of publications in the top 10 most active countries in the field

of Refactoring. The United States is on the top of the list of countries with a total of 1604

28

Table 2.5: Representative references for all categories

Category Percentage Papers
Refactoring life-cycle (RQ1)
Detection 28.65% [44, 45, 46, 47, 48, 49, 50, 51, 52, 53]
Prioritization 9.43% [54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
Recommendation 16.18% [54, 64, 46, 55, 65, 66, 67, 68, 69, 70]
Testing 18.44% [71, 72, 73, 47, 49, 50, 51, 74, 75, 56]
Documention 5.22% [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
Prediction 4.818% [87, 88, 89, 90, 91, 92, 93, 94, 95, 96]
Level of automation (RQ1)
Automatic 30.95% [97, 98, 99, 100, 101, 102, 103, 104, 105, 106]
Semi-automatic 1.95% [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118]
Manual 8.67% [119, 120, 121, 122, 123, 124, 125, 126, 127, 112]
Artifact (RQ2)
Code 72.89% [44, 54, 128, 45, 46, 129, 108, 130, 131, 132]
Model 59.25% [71, 44, 72, 46, 133, 108, 130, 132, 134, 135]
Architecture 17.25% [71, 136, 134, 137, 138, 139, 140, 141, 142, 143]
GUI 2.58% [71, 133, 130, 132, 49, 51, 144, 145, 146, 147]
Database 4.12% [108, 148, 70, 143, 149, 79, 150, 151, 152, 153]
Paradigm (RQ3)
Object-oriented design 34.09% [44, 128, 130, 131, 73, 154, 51, 155, 156, 144]
Aspect-oriented 10.87% [157, 131, 158, 144, 159, 139, 160, 145, 161, 146]
Model-driven engineering 7.35% [46, 108, 75, 162, 58, 163, 164, 165, 101, 166]
Mobile apps development 3.55% [130, 138, 155, 167, 66, 142, 168, 169, 170, 130]
Could computing 4.15% [171, 172, 173, 174, 175, 176, 177, 178, 179, 180]
Refactoring Objective (RQ3)
Internal Quality 41.63% [72, 64, 46, 133, 132, 55, 73, 181, 137, 182]
Performance 15.93% [71, 129, 131, 134, 55, 135, 158, 53, 162, 139]
External quality 22.68% [130, 134, 135, 138, 183, 184, 145, 185, 186, 187]
Migration 3.61% [138, 156, 188, 189, 190, 191, 192, 193, 143, 194]
Security 3.11% [156, 195, 196, 197, 198, 199, 200, 201, 202, 203]
Programming language (RQ4)
Java 17.15% [44, 128, 130, 131, 73, 51, 155, 156, 53, 183]
C 4.65% [154, 139, 148, 147, 204, 189, 205, 206, 207, 102]
C# 0.66% [104, 208, 209, 210, 211, 212, 213, 214, 215, 216]
Python 0.53% [217, 218, 219, 220, 221, 222, 223, 224, 225, 226]
CSS 0.5% [227, 228, 229, 230, 231, 232, 233, 234, 190, 235]
PHP 0.35% [236, 237, 238, 212, 239, 240, 241, 242, 243, 244]
Cobol 0.31% [245, 246, 247, 248, 249, 250, 251, 252]
MATLAB 0.28% [253, 254, 255, 256, 257, 258, 259, 260]
Smalltalk 0.79% [261, 262, 263, 264, 265, 266, 267, 268, 269, 270]
Ruby 0.22% [271, 212, 224, 272, 273, 274]
Javascript 0.72% [275, 155, 276, 277, 278, 279, 280, 281, 282, 283, 284]
Scala 4.02% [98, 285, 286, 287, 288, 169, 289, 129, 76, 290]
Adopted Method (RQ4)
Search-based algorithms 25.76% [55, 291, 292, 293, 294, 295, 296, 297, 298, 299]
Data mining 15.49% [300, 45, 228, 150, 301, 125, 302, 303, 304, 305]
Formal methods 2.92% [306, 85, 242, 307, 308, 309, 310, 311, 312]
Fuzzy logic 0.28% [300, 313, 314, 315, 316, 316, 317]
Evaluation method (RQ5)
Open source 16.31% [44, 318, 131, 55, 73, 182, 50, 155, 291, 75]
Industrial 10.4% [163, 319, 55, 158, 52, 59, 320, 190, 30, 321]

29

Figure 2.3: A screenshot of the authors tab of the refactoring repository Website

publications followed by Brazil and China with a total of 770 and 626 publications, respec-

tively. During the last 4 years, the number of published refactoring studies has increased

with an average of 37% in all the top 10 countries. This demonstrates a considerable increase

in interest/need in Refactoring. Based on the above results, refactoring can be among the

fastest-growing software engineering research areas, if not the fastest.

Over 5584 authors contributed to the field of Refactoring. We highlight the most active

authors in Figure 2.10 and 2.11, based on both the number of publications and citations

in the area. Many scholars started research in the refactoring filed prior to 2000. Others

are relatively new to the field and started their contributions after the year 2010. All top

10 authors in the field have a constantly increasing number of publications over the past

10 years. Marouane Kessentini heads the list with a total of 43 publications (51% of them

were published during the past five years) followed by Danny Dig and Steve Counsell with a

total of 39 and 36 publications, respectively. Figure 2.12 is a histogram showing how many

publications were issued each year starting from 1990. The number of published journal

articles, conference papers, and books has increased dramatically during the last decade,

30

Figure 2.4: A screenshot of the publications tab of the refactoring repository Website

reaching a pick of 265 publications in 2016. During just the last four years (2016-2019), over

1026 papers were published in the field, with an average of 256 papers each year.

2.1.4.1 Refactoring Life-cycle

Based on the current studies, the refactoring life-cycle can be decomposed into six stages:

• Refactoring opportunities detection: Identifying refactoring opportunities can

be done by manually inspecting and analyzing an artifact of a system to identify

quality issues. However, this technique is time-consuming and costly. Researchers in

this area typically propose fully or semi-automated techniques to identify refactoring

opportunities using the concepts of code smells, quality metrics, etc.

• Refactoring prioritization: The number of refactoring opportunities usually exceeds

the number of problems that the developer can deal with, particularly when the effort

available for performing refactorings is limited. Moreover, not all refactoring opportu-

nities are equally relevant to the goals of the developers when improving the quality.

31

Figure 2.5: Dashboard of the refactoring repository website

In this stage, the refactorings operations are prioritized using different criteria (e.g.,

maximizing the refactoring of classes with a large number of anti-patterns or with the

previous history of bugs, etc.) according to the needs of developers.

• Refactoring recommendation: Several refactoring recommendation tools have been

proposed that dynamically adapt and suggest refactorings to developers. The output

is sequences of refactorings that developers can apply to improve the quality of systems

by fixing, for example, code smells or optimizing security metrics.

32

Figure 2.6: A screenshot of the refactoring repository dashboard that shows the authors, their h-index and
total number of publications and citations

• Refactoring testing: After choosing the refactorings to be applied, test cases need to

be executed to ensure the correctness of artifacts transformations and avoid future bugs.

This step includes checking the pre-and post-conditions of the refactoring operations

and the preservation of the system behavior.

• Refactoring documentation: After applying and testing the refactorings, it is criti-

cal to document the refactorings, their locations, why they have been applied, and the

quality improvements.

• Prediction: It is interesting for developers to know which locations are likely to de-

mand refactoring in future releases of their software products. This step will help them

focus on the relevant artifacts that will undergo changes in the future, prepare them for

further improvements and extensions of functionality, and optimize the management

of limited resources and time. Predicting locations of future refactoring can be, in

general, done using the development history.

Figure 2.13 illustrates the percentage of the papers related to each stage of the refactor-

ing life-cycle. About 33.08% of the papers deal with testing the refactorings. Researchers

33

Figure 2.7: A screenshot of the authors network graph from the refactoring repository website

have invested heavily in testing to ensure the reliability of refactoring because changing the

structure of code can easily introduce bugs in the program and lead to challenging debugging

sessions. Plenty of effort is made towards the automation of the testing process to facilitate

the adoption of refactoring [97, 98, 99]. Detecting refactoring opportunities is also a topic of

interest to researchers. Several approaches have been proposed to detect refactoring opportu-

nities including but not limited to techniques that depend on quality metrics (e.g., cohesion,

coupling, lines of code, etc.), code smells (e.g., feature envy, Blob class, etc.), Clustering

(similarities between one method and other methods, distances between the methods and

attributes, etc.), Graphs (e.g., represent the dependencies among classes, relations between

methods and attributes, etc.), and Dynamic analysis (e.g., analyzing method traces, etc.).

Refactoring documentation is an under-explored area of research. Only 5.22% of the col-

lected papers dived into refactoring documentation. Many studies examined the automation

of the different refactoring stages to reduce the refactoring effort and, therefore, increase its

34

Figure 2.8: Distribution of refactoring publications around the world.

adaption. Figure 2.14 shows the count of publications dealing with manual, semi-automatic,

and automated refactoring. In fact, 30.95% of the papers deal with the automation of refac-

toring. Only 1.95% and 8.67% of the papers used manual and semi-automatic refactoring,

respectively.

2.1.4.2 Artifacts Affected by Refactoring

As we mentioned before, refactoring is not limited to software code. In fact, it can be ap-

plied to any type of software artifacts (e.g., software architectures, database schema, models,

user interfaces, and code). Figure 2.15 shows the percentage of refactoring publications per

artifact. The evidence from this histogram shows that the most popular refactoring artifact

is code (72.89%). Model refactoring has also received considerable attention, with a percent-

age of 59.25%. Graphical user interfaces (GUIs) and Database refactoring have received the

least attention of all with a fraction of only 4.12% and 2.58%, respectively. This might be

due to the fact that database refactoring is conceptually more difficult than code refactoring;

code refactorings only need to maintain behavioral semantics while database refactorings also

35

Figure 2.9: Number of publications in the top 10 most active countries in the refactoring field

must maintain informational semantics. Also, GUI refactoring is very demanding, requiring

the adoption of user interface architectural patterns from the early software design stages.

Future research should explore database and user interface refactoring further as they are

an indispensable part of today’s software.

2.1.4.3 Refactoring Objectives

Five paradigms have been identified from analyzing the primary studies: object-oriented

designs, cloud computing, mobile apps, model-driven, and aspect-oriented. Object-oriented

programming has gained popularity because it matches the way people actually think in the

real world, structuring their code into meaningful objects with relationships that are obvious

and intuitive. The increased popularity of the object-oriented paradigm has also increased

the interest in object-oriented refactoring. This can be observed in figure 2.16 where more

than 34% of the studies related to refactoring focus on object-oriented designs. Less than 5%

of the papers investigated refactoring for cloud computing and mobile app development. For

the refactoring objectives classification of the taxonomy, five subcategories are considered:

36

Figure 2.10: Top 10 Authors with the highest number of publications and citations in the field of refactoring

external quality (e.g. correctness, usability, efficiency, reliability, etc.) , internal quality (e.

g. maintainability, flexibility, portability, re-usability, readability etc.) , performance (e.g.

response time, error rate, request rate, memory use, etc.), migration (e.g. Dispersion in the

Class Hierarchy, number of referenced variables, number of assigned variables etc.), security

(e.g. time needed to resolve vulnerabilities, Number of viruses and spams blocked, Number

of port probes, number of patches applied, Cost per defect, Attack surface etc.). Figure 2.17

is illustrating the reasons why people refactor their systems. Improving the internal quality

takes up the largest portion (41.63%) followed by refactoring to improve the external quality

(22.68%). Although security is a major concern for almost all systems, only 3.11% of the

papers investigated refactorings for security reasons.

37

Figure 2.11: Evolution of the Top 10 Authors during the past 10 years

2.1.4.4 Refactoring Techniques

Object-oriented programming languages have common traits/properties that facilitate

the development of widely automated source code analysis and transformation tools. Many

studies [261] have given sufficient proof that a refactoring tool can be built for almost any

object-oriented language (Python, PHP, Java, and C++). Support for multiple languages in

a refactoring tool is mentioned by [322]. Java is probably the most commercially important

recent object-oriented language with an infrastructure that is designed to support analysis.

It has generic parsing, tree building, pretty printing, tree manipulation, source-to-source

rewriting, attribute grammar evaluations, control, and data flow analysis. This explains

the fact that 17.15% of refactoring studies (see figure 2.18) provided refactoring techniques

and tools that support Java. At the same time, most of the other programming languages

have a fraction of less than 1%. We classified the refactoring techniques into four main

categories: data mining (e.g., Clustering, Classification, Decision trees, Association, Neural

38

Figure 2.12: Trend of publications in the field of refactoring during the last three decades.

networks, etc.), search-based methods (e.g., Genetic algorithms, Hill climbing, Simulated

annealing, Multi-objective evolutionary algorithms, etc.), formal methods (B-Method, the

specification languages used in automated theorem proving, RAISE, the Z notation, SPARK

Ada, etc.), and fuzzy logic. More than 25% of the papers use Search-based techniques

to address refactoring problems (see figure 2.19). This can be explained by the fact that

search-based approaches have been proven to be efficient at finding solutions for complex and

labor-intensive tasks. With the growing complexity of software systems, there’s an infinite

amount of improvement/changes you can make to any piece of artifact. Exact algorithms are

hard to use to solve the refactoring problem within an instance-dependent, finite run-time.

That’s why finding optimal refactoring solutions are sacrificed for the sake of getting perfect

solutions in polynomial time using heuristic methods like search-based algorithms. Data

mining techniques have also received significant attention (17.59%) as they are known to be

39

Figure 2.13: Histogram illustrating the percentage of refactoring publications per refactoring life-cycle

efficient at discovering new information, such as unknown patterns or hidden relationships,

from huge databases like, in our case, large code repositories.

2.1.4.5 Refactoring Evaluation

Open-source software systems are becoming increasingly important these days. 61.1% of

the studies (see figure 2.20) used open-source systems to validate their work compared to

38.9% of studies that validated their work on industrial projects. This result is expected

because of the availability and accessibility of open source systems. However, open-source

software is often developed with a different management style than the industrial ones. Thus,

refactoring techniques and tools must be validated and checked for quality and reliability

using industrial systems. More industrial collaborations are needed to bridge the gap between

academic research and the industry’s research needs, and therefore, produce groundbreaking

research and innovation that solves complex real-world problems.

40

Figure 2.14: Histogram illustrating the percentage of publications dealing with manual, semi-automatic
and automated refactoring

2.1.5 Future Research Directions

In this section, we identified new opportunities for future research directions related

to refactoring based on the outcomes of the systematic literature review. One important

observation from the obtained results of 30 years of refactoring research is that the core

definition of refactoring dramatically changed over time. The recent and future research

directions in the field require relaxing the behavior preservation constraints and going beyond

simply changing the code structure. Thus, we proposed the following new definition of

refactoring out of this systematic literature review that can be aligned as well with the

current and future research directions: Refactoring can be defined as the automation, insight,

testing, and prioritization of changes to the artifacts of software to improve non-functional

requirements which may change part of its intended behavior.

41

Figure 2.15: Histogram illustrating the count of refactoring publications per artifact

2.1.5.1 Refactoring Bots

Many software organizations have moved toward adopting Continuous Integration (CI)

processes, allowing teams to deliver features and detect problems rapidly. These development

processes, such as DevOps, are based on frequent small releases, which change how systems

are built as compared with prior discrete integration processes. While testing in CI has

received much attention, the detection and correction of quality issues in CI lifecycles is not

well-explored especially for embedded software as shown in this SLR study. In particular,

researchers and practitioners lack a clear understanding of how refactoring tools should be

adopted for CI. Existing refactoring tools are challenging to configure and integrate into

development pipelines because they are adopted for discrete integration lifecycles and tend

42

Figure 2.16: Histogram illustrating the count of refactoring publications per paradigm

to disrupt development. Existing refactoring recommendation tools interrupt developers,

who need to review recommended changes frequently, and these changes may be unrelated

to their current focus and interests.

A research agenda in this direction can be (1) to design, implement, and validate usable

artificial assistants for refactoring code and to fix quality issues that interact with developers

in proactive ways, becoming a “real” member of the development team; (2) to make an arti-

ficial assistant for refactoring in CI intelligent by considering the profile and context of the

developer (e.g., knowledge, past experiences, current tasks) when making recommendations

via mining a large history of refactorings data; (3) to evaluate and refine an intelligent refac-

toring bot using a large number of open-source and industrial projects and conducting user

studies and controlled experiments with professional developers. This intelligent refactoring

bot can be built as an extension of existing refactoring tools currently limited to discrete

integration.

2.1.5.2 Interactive Refactoring

In manual refactoring, the developer refactors with no tool support at all, identifying

the parts of the program that require attention and performing all aspects of the code

transformation by hand. Manual refactoring is very limited; several studies have shown that

43

Figure 2.17: Histogram illustrating the count of publications per refactoring objective

manual refactoring is error-prone, time-consuming, not scalable, and not useful for radical

refactoring that requires an extensive application of refactorings to correct unhealthy code.

In fully-automated refactoring, a search-based process is employed to find an entire refac-

toring sequence that improves the program in accordance with the employed fitness function

(involving e.g., code smells, software quality metrics, etc.). This approach is appealing in

that it is a complete solution and requires little developer effort, but it suffers from several

serious drawbacks as well. Firstly, the recommended refactoring sequence may change the

program design radically and this is likely to cause the developer to struggle to understand

the refactored program. Secondly, it lacks flexibility since the developer has to either accept

or reject the entire refactoring solution. Thirdly, it fails to consider the developer’s perspec-

tive, as the developer has no opportunity to provide feedback on the refactoring solution as

it is being created. Furthermore, as development must halt while the refactoring process exe-

cutes, fully-automated refactoring methods are not useful for floss refactoring where the goal

is to maintain good design quality while modifying existing functionality. The developers

have to accept the entire refactoring solution even though they prefer, in general, step-wise

approaches where the process is interactive and they have control of the refactorings being

44

Figure 2.18: Histogram illustrating the count of refactoring publications per programming language

applied.

In light of the discussion above and the current limited work on interactive refactoring,

the next generation of refactoring tools should (1) provide human-centric interaction for

refactoring, (2) enable refactoring and development to proceed in parallel, and (3) collect

information in a non-intrusive manner that can be used to inform dynamically the refactoring

process. We postulate that enabling the developer to interact with the refactoring solution

is essential both to creating a better refactoring solution and creating a solution that the

developer understands and can work with.

Refactoring and development must be allowed to proceed in parallel, as this is part of

test-driven development and the Agile approach to software development in general. Thus,

the developer can continue to extend the program with new functionality or bug fixes while

the refactoring recommendation process executes. Any development carried out can be used

where possible to improve the refactoring recommendations, e.g., the developer is more likely

to value refactorings that affect recently updated code.

2.1.5.3 Refactoring for Software Security

The ISO/IEC-25000 Software product Quality Requirements and Evaluation (SQuaRE)

classifies software quality in a structured set of eight characteristics and sub-characteristics.

In this classification, security is a new characteristic that was created to measure how much

45

Figure 2.19: Histogram illustrating the count of refactoring publications per field

a software is resistant to attacks and risks. Therefore, it is crucial to take this characteristic

into account when improving the quality of the software via refactoring.

Several researchers and practitioners have assumed that improving a quality metric of

software, such as modularity, will have a positive impact on security, making the design more

robust and resilient to attacks. However, this assumption is poorly supported by empirical

validations. Architects and developers may not pay much attention to design fragments

containing data and logic pertinent to security properties, which makes them overexposed

while still improving some quality aspects of their architecture. For instance, a developer

may create a hierarchy in a set of classes to improve the reusability of the code. However,

these actions may expand the attack surface if the superclass contains critical attributes

and methods. Another example that we observed in practice is that improving modularity

may result in spreading dependencies on security-critical files into many other components.

46

Figure 2.20: Pie chart illustrating the percentage of publications in which the authors used industrial
and/or open source systems in the validation step

A security-critical file contains data (e.g., attributes) and logic (e.g., methods) that can

potentially be misused to violate fundamental security properties such as confidentiality,

integrity, or availability of a system.

As shown in this study, most existing refactoring research focuses on handling conflicting

quality attributes. However, the impact of refactoring on security is poorly understood and

under-studied. Recent studies estimate the impact of a few refactoring operations on some

security metrics based on their definitions, but without empirically validating these assump-

tions on real software projects. Thus, it is important that the next generation of refactoring

tools should consider enhancing the resilience of software applications while improving tra-

ditional software quality aspects.

47

2.1.5.4 Refactoring Documentation

The effective understanding and documentation of refactorings can play a critical role in

reducing and monitoring the technical debt by different stakeholders including executives,

managers, and developers. In particular, refactoring documentation can help developers,

managers, and executives keep track of applied refactorings, their rationale, and their impact

on the system.

The commit messages and the pull-requests descriptions are becoming the most common

ways to document code changes, including refactoring. Modern collaborative coding plat-

forms (e.g. GitHub), have advocated for the development of automated recommendation

systems to generate commit and pull-request messages. Thus, several automated techniques

for the generation and recommendation of documentation of diffs and atomic changes have

been recently proposed. However, most of the current development workflows/pipelines in

the industry are lacking tools/steps to document refactorings and quality changes/technical

debt. To the best of our knowledge, there are no standards to document refactorings or any

prior empirical studies about understanding refactoring documentation. The current set of

commonly used tools offer to see and document diff-changes but not dependent on atomic

changes/diffs.

We advocate that a critical and fundamental step in providing efficient support for de-

velopers in documenting refactoring is to discover the specific pieces of information, called

components, that are necessary to include in commit messages to describe introduced refac-

torings.

2.1.6 Conclusion

In this contribution, we have conducted a systematic literature review on refactoring ac-

companied by meta-analysis to answer the defined research questions. After a comprehensive

search that follows a systematic series of steps and assessing the quality of the studies, 3183

publications were identified. Based on these selected papers, we derived a taxonomy focused

48

on five key aspects of Refactoring: refactoring life-cycle, artifacts affected by refactoring,

refactoring objectives, refactoring techniques, and refactoring evaluation. Using this classi-

fication scheme, we analyzed the primary studies and presented the results in a way that

enables researchers to relate their work to the current body of knowledge and identify future

research directions. We also implemented a repository that helps researchers/practitioners

collect and report papers about Refactoring. It also provides visualization charts and graphs

that highlight the analysis results of our selected studies. This infrastructure will bridge

the gap among the different refactoring communities and allow for more effortless knowledge

transfer.

The results of our systematic review will help both researchers and practitioners to un-

derstand the current status of the field, structuring it, and identify potential gaps. Since

we expect this research area to continue to grow in the future, the proposed repository and

taxonomy will continue to be updated by the organizers of this study and the community to

include new approaches, tools and researchers.

49

2.2 What Refactoring Topics Do Developers Discuss? A Large Scale Empirical

Study Using Stack Overflow

2.2.1 Introduction

Given the current growth of refactoring research with more than 3000 peer-reviewed

papers published in the last decade, the gap is growing larger between research and practice.

Is the research community paying attention to the needs of developers? What informs the

design of new refactoring technology? We believe it is crucially important to understand the

current trends in the field, the challenges that developers face when refactoring in the wild,

and the most discussed refactoring topics on developer forums. Without such understanding,

tool builders invest in the wrong direction, and researchers miss many opportunities for

improving the practice of refactoring. We need to understand the new drivers for refactoring

innovation from the practitioners’ vantage point.

In this dissertation, we performed the first large scale refactoring study on the most

popular online Q&A forum for developers, Stack Overflow. Developers use the forum to

seek help and advice from their peers about the technical challenges they face in different

development topics. Stack Overflow moderates millions of posts from developers, with dif-

ferent backgrounds, asking questions about a wide range of topics including refactoring. The

analysis of the discussed topics in this repository could provide various key insights about

the topics of interest to the developers related to refactoring such as the most addressed

quality issues, the domains where refactoring is extensively discussed, the preferred level ab-

stractions, the widely addressed anti-patterns, and patterns. Recent studies analyzed Stack

Overflow posts in several areas including software security [323], mobile apps [324, 325, 326],

and more general programming topics [327, 328] and came up with useful recommendations.

We believe applying a similar approach for studying refactoring needs could be equally useful.

The analysis of Stack Overflow refactoring posts is beneficial to developers, researchers,

and educators in different ways. Developers can educate themselves about the common issues

50

that others have faced so they can learn about the peer-best-practices. Researchers can use

this analysis to understand the real problems faced by programmers in refactoring. Finally,

educators may use the result of these analyses to update their courses and focus on the main

weaknesses in the background of programmers that may need to be addressed. The mapping

between Stack Overflow discussions and existing research topics helps us and others identify

the gap between the practitioners and research communities.

Stack Overflow contains more than 42 million posts and associated attributes such as

questions, answers, tags that are most representative of the post etc [329, 330]. We first

selected the posts related to refactoring by choosing a list of tags such as ”refactoring”,

”anti-patterns”, etc. Then, we used an advanced topic model based on, LDA, to identify the

topics. Using this data, we answer the following five research questions:

• RQ1. What questions and issues related to refactoring are developers dis-

cussing? We found that developers are interested in six main topics related to refactor-

ing which are Creational pattern, Parallel programming, Models Refactor, mobile/UI,

Service-Oriented Architecture (SOA), and Design pattern (Section 2.2.4.1).

• RQ2. What are the most popular topics among the questions related to

refactoring? Our results show that Creational Pattern topic has the largest popularity

while parallel programming, and mobile/user-interface topics have the lowest (Section

2.2.4.2).

• RQ3. Which refactoring-related topics are the most difficult to answer?

Design patterns topic has the lowest rate of questions with unsatisfactory answers. It

also has the lowest average number of views without a relevant answer. The model

refactoring is the topic that was the least answered by developers(Section 2.2.4.3)

• RQ4. How do the interests of developers on refactoring topics change over

time? SOA and Design patterns are the refactoring topics that have the highest

evolution in the number of questions throughout the years (Section 2.2.4.4)

51

• RQ5. What are the implications of our empirical study on practitioners,

educators, and researchers? Our study helps researchers focus on practical refac-

toring problems, practitioners know more about current challenges and build better

refactoring tools, and educators revise curriculum to target current needs on refactoring

(Section 2.2.5).

2.2.2 Stack Overflow Data Description

Stack Overflow is a question and answer website used by beginners as well as professionals

belonging to stack-exchange network. It has the largest community compared to the other

Q&A websites in the Network. Stack Overflow was launched on September 15, 2008 and it

kept growing in popularity. Nowadays more than 17 million questions were posted in Stack

Overflow, and an average of 5956 questions was asked per day in the last four years.

There are currently 54637 tags in Stack Overflow. Among them, the tag ”Javascript”

holds the biggest number of related questions which exceed 1700000 whereas the ”refactoring”

tag helps to identify 6445 questions. Figure 2.21 shows one example of a refactoring question

on Stack Overflow with the title ”Is there a working C++ refactoring tool?”. Two tags are

used for this post: ”refactoring” and ”C++”. Furthermore, several metadata are related to

a post such as the edit date, the number of views, etc.

To easily access Stack Overflow data, one of the best ways is based on Stack-exchange

data-dumps. They represent collections of data archived by the Stack-exchange community.

The data is collected yearly and uploaded on the archive.org website. The data-set is divided

into several XML files which are Posts.xml, Users.xml, Votes.xml, Comments.xml, PostHis-

tory.xml, and PostLinks.xml. In this study, we have used Posts.xml which contains around

42 million posts. There are five types of posts: Question, Answer, Orphaned Tag Wiki, Tag

Wiki Excerpt, and Tag Wiki.

Each type of post can be filtered using the PostTypeID attribute. Besides the Post-

TypeID, each post has 21 defined attributes which could have value or not depending on

52

Figure 2.21: Refactoring post found on Stack Overflow

the type of the post. Table 2.6 shows the different attributes defined in the posts.xml file.

Of course, one of the main attributes is the tag used to classify the question. We will give

details in the next section how we identified the tags related to refactorings to filter the Stack

Overflow posts.

In the future, we are planning to expand our data-set to include all the Stack Overflow

data available in the ”archive.org” website. We will also work on a survey with practitioners

from multiple programming domains to qualitatively evaluate the outcomes of the Stack

Overflow analysis performed in this contribution.

2.2.3 Research Method

The main goal of this study is to identify the main refactoring-related topics discussed by

developers, highlighting the most popular ones and the most difficult ones and understanding

developers’ interest trends. We will describe, in this section, the details of the steps adopted

to achieve the main goals of this study. In the remainder of the contribution, we will use

”document” to refer to a question and ”corpus” to refer to the set of questions.

Figure 2.22 summarizes the different main steps of our Stack Overflow analysis. The first

step consists of identifying the list of tags related to refactoring. The second step filters the

53

Table 2.6: Attributes describing a Stack Overflow post

Attribute Description

Id represent a unique id for posts

PostTypeId Digit that define the type of the post

AcceptedAnswerId If the post is a question and there is accepted Answer to this
question this field will contain the accepted Answer id

ParentId If the post is an answer this field contains the question id of
that answer

CreationDate This field contains the date time creation of the post
eg.:”2008-09-06T08:07:10.730”

DeletionDate it is defined if the post was deleted and it has the same form
as the creation date

Score this is an integer that represents the upvotes giving to the
post. It represents how helpful was the post

ViewCount This is defined for questions, and it represents how many
people viewed the post

Body Text of the posts

OwnerUserId The id of the post owner

OwnerDisplayName the name of the post owner

LastEditorUserId Id of the last user that modified the post

LastEditorDisplayName the name of the user that modified the post

LastEditDate The date of the last post update

LastActivityDate The date of last Activity related to this post

Title The title of the post is not an answer

Tags comma separated strings that list all the tags for the post
(defined only for a question)

AnswerCount defined for a question represent the number of answers re-
lated to this question

CommentCount represent the number of comments for the post it is defined
for the question and answer

FavoriteCount defined only for question post, and it represents the number
of users that liked the post

ClosedDate Defined if moderators of the website closed the post

CommunityOwnedDate the date when the post was converted to community wiki

54

Figure 2.22: An overview of our Stack Overflow analysis.

list of questions using the selected tags. The third main step runs LDA to identify the list

of topics related to refactoring by mining the selected questions and answers. Finally, we

answered several questions about these topics including trends, difficulty, and evolution over

time.

To select the refactoring related documents, we extracted refactoring related tags and

filtered the documents dataset using these tags. Then, we pre-processed each document for

the LDA topic modeling approach by cleaning it and translating it into a vector of features

using the Bag of Words (BOW) representation [331]. We used LDA topic modeling approach

because it was widely used in similar problems [323, 327, 324] and it was proven to be able

to generate topics that are highly interpretable and provide deep insights to the data.

To filter the questions, we used multiple steps. First, we manually defined an initial list

of tags including 10 words: refactoring, design patterns, architecture, anti-patterns, code-

cleanup, software-design, software-quality, code-metrics, automated-refactoring. The manual

definition of tags is limited and may not cover all the relevant refactoring questions. For

instance, some posts are related to refactoring but are not tagged with the refactoring tag

in several cases. In order to extract more tags using the initial set of tags, we extracted all

the tags defined in Stack Overflow, and for each extracted tag, we assessed to what extent

it is relevant and related to the initial tag list. Therefore, we used two heuristics taking

55

inspiration from a similar study [323]. These heuristics are based on a(t) : the number of

questions that contain both tag t and a refactoring related tag (one of the above 10 words),

b(t): number of questions that contains the tag t, and c(t): the number of questions that

contain a refactoring related tag (one of the above 10 words).

• The first heuristic H1 is defined by the ratio of the number of questions that contain

both the tag and a refactoring related tag to the number of questions that contain the

tag t. H1(t) = a(t)/b(t)

• The second heuristic H2 is the ratio of the number of questions that contain both the

tag and a refactoring related tag to the questions identified by the initial set of 10 tags.

H2(t) = a(t)/c(t)

We defined thresholds empirically for both heuristics to select relevant tags by trial and

error: 0.08 for the first heuristic and 0.0004 for the second heuristic. We thus extracted 94

tags shown in the Table 2.7

After inspecting these 94 extracted tags, we removed 5 irrelevant tags. For instance,

OOP(object-oriented programming) was one of the tags that we removed as it had the

largest number of questions which is 46618, most of them not being related to refactoring.

We finally considered 89 tags which we used to extract 105,463 questions for this empirical

study. We checked the relevance of these tags being chosen via validating random samples

from the included documents to make sure they are all relevant.

In order to identify discussed refactoring related topics, we have used a topic modeling

technique: Latent Dirichlet Allocation (LDA) [332]. Topic modeling is an approach aiming

at finding patterns of words in document collections using hierarchical probabilistic models.

Topic modeling may be used to classify the documents of the corpus by discovered latent

topics. It specifies a procedure by which documents can be generated by choosing a distribu-

tion over topics. Each topic is a distribution that defines how likely each word may appear

in a given topic. For more details about LDA, the reader can refer to [332].

56

Table 2.7: List of candidate tags

oop design-
patterns

design architecture singleton refactoring

domain-
driven-
design

microservices decorator repository-
pattern

factory scalability

dao soa mvp dry observer-
pattern

builder

cqrs composition data-access-
layer

dto software-
design

factory-
pattern

unit-of-work class-design abstraction composite solid-
principles

idioms

modularity n-tier business-
logic

strategy-
pattern

code-
duplication

separation-
of-concerns

object-
oriented-
analysis

n-tier-
architecture

code-cleanup legacy-code methodology visitor

anti-patterns ddd-
repositories

service-layer service-
locator

3-tier srp

bridge domain-
model

facade decoupling conceptual automated-
refactoring

command-
pattern

mediator maintainability code-
readability

design-
principles

visitor-
pattern

code-metrics project-
planning

ooad code-smell cyclomatic-
complexity

module-
pattern

application-
design

onion-
architecture

abstract-
factory

business-
logic-layer

loose-
coupling

lsp

factory-
method

cocoa-
design-
patterns

coupling software-
quality

builder-
pattern

revealing-
module-
pattern

clean-
architecture

system-
design

code-design law-of-
demeter

data-
transfer-
objects

open-closed-
principle

chain-of-
responsibility

template-
method-
pattern

multi-tier proxy-
pattern

architectural-
patterns

n-layer

flyweight-
pattern

memento prototype-
pattern

gang-of-four

57

As the LDA model is expecting a frequency-weighted document-term matrix, we per-

formed the following steps:

• First, we aggregated the values from the title, the body and the tag attributes and we

removed all the useless meta-data.

• Second, we removed the code snippets and all the HTML tags.

• Third, we tokenized and removed any useless special characters like punctuation and

characters that do not belong to English alphabet except for ’ ’ and ’-’ which are used

to join two relevant words together.

• Fourth, we removed stop-words: very common words used in the English lan-

guage which are not relevant for the clustering of the documents; for example

(’do’,’like’,’what’, ’I’, ’they’,...). Thus, we used the stop-word list provided by

NLTK [333] and we added other stop-words that are not relevant for the clustering

of refactoring related questions. We also removed words containing less than two char-

acters.

• The fifth step was mainly for normalization based on lemmatization of words which

reduces the noise in the data by removing inflectional endings and to return the base

or dictionary form of a word, which is known as the lemma [334].

• Finally, we used an automated approach to determine the vocabulary words that we

will use as features for BOW (Bag-of-words) representation. The technique consists of

calculating the portion of documents that contain a specific word. Then, based on two

thresholds we eliminated the very rare keyword that appears in less than 1% of the

documents and the very frequent ones that appear in more than 80% of the documents

as used in another similar study [323]. We translated the corpus into a TF-IDF matrix.

The dimension of the matrix is M*N where M is the number of documents (105463),

58

and N is the number of words in the vocabulary (4872). The values in the matrix are

calculated as TF ∗ IDF :

Matrix(d, w) =
frequency(w, d)

number of words(d)
∗ IDF (w) (2.1)

where w is the corresponding word, d is the corresponding document, frequency(w, d) is

frequency of w in d, and number of words(d) is number of words in d.

IDF (w) = log(
of documents

1 + # of documents that contains w
) (2.2)

This TF-IDF matrix was used in the LDA model to cluster the questions into topics.

2.2.4 Results

In this section, we summarize the results of the five research questions.

2.2.4.1 RQ1. What Questions and Issues Related to Refactoring Are Discussed

by Developers ?

The LDA model identified six main topics discussed by developers. A set of keywords

identified each of these topics. To better characterize each topic, we labeled it to match the

set of keywords identified by LDA. Table 2.8 shows the six topics and keywords associated

with them sorted by the relevance score of the LDA model.

Most of the words identified by LDA for the first topic are related to object creation:

”singleton”, ”factory”, ”instance”, ”constructor” and ”create”. For the second topic, most

of the words refer to parallel programming. This topic includes words like message, request,

server, thread and observer. The third topic was related to model refactoring with many

keywords about UML diagrams, requirements, and design issues. The fourth topic includes

android and other words related to user interface. In fact, it is normal that most of the

questions around Android apps are around refactoring the User Interface (UI) since it is

59

the most crucial part in mobile applications. The fifth topic, service-oriented architecture,

includes words like service, user layer, database, and architecture. The high reusability of

services in SOA architecture makes refactoring very important to simplify the code and

makes it easy to understand. It also helps to achieve modularization at the application level.

Finally, the design pattern topic was the last topic with mainly common words like design,

pattern, code, singleton, etc. The questions that fall in this topic deal with code standard

refactoring, specifically the application of general design pattern to achieve high code quality.

Table 2.8: The 6 refactoring related topics with the 10 most important words in each topic

Topic Words
Creational pattern singleton, instance, method, factory, java, constructor,

create, pattern, call, code
Parallel programming message, server, observer, microservice, request, time,

thread, java, client, connection, performance
Models Refactor decorator, visitor, decorate, factory, co-evolution, re-

design, objects, extract, UML
mobile/UI Android, view, button, image, presenter, design, page,

HTML, text, color
SOA service, availability, model, coupling, micro-service,

layer, repository, interface, database, architecture
Design pattern design, pattern, principles, hierarchy, reusability, extend

We may highlight that the creational pattern is a specific type of design pattern similar

to well-known design patterns like observer and decorator patterns. These patterns were

extensively discussed in the refactoring posts on Stack Overflow.

Figure 2.23 shows the number of questions per dominating topic: it includes questions

with a higher probability than 0.5 to belong to a topic based on the LDA output. We notice

that the largest number of questions about refactoring is dedicated to SOA architecture.

The creational patterns also have a high number of questions even if it is only a sub-type

of the design patterns. Although the number of questions about parallel programming was

initially small, there is a massive growth in the number of questions asked during the last

few years about refactoring for parallel programming.

Figure 2.24 shows the distribution of the number of questions per dominant topic.

60

Figure 2.23: Distribution of the number of questions per refactoring topic

61

According to this figure, 79% of the questions have a dominant topic, and more than 25% of

them have 0.8 probability of belonging to their dominating topic. When we have a dominant

topic for a question, it does not mean that the question cannot belong to another topic with

small probability. Some questions without dominating topic are more likely to belong to

more than one topic.

Figure 2.24: The distribution of the number of questions in relation to the probability of the dominant
topic

2.2.4.2 RQ2. What are the Most Popular Topics Among the Questions Related

to Refactoring?

In order to assess popularity, we used four metrics. After collecting all the questions

related to that topic, we computed:

• The average number of views by exploring the ”ViewCount” attribute.

• The average number of comments using the CommentCount attribute.

• The average number of favorites using the FavoriteCount attribute.

62

• The ”Score” attribute which reflects the relevance of a question to Stack Overflow

users, to compute the average score of this set of questions.

It is clear from Figure 2.25 that the creational pattern topic has the largest average

number of views which exceed SOA refactoring despite a large number of questions around

refactoring web services. This observation may lead to the conclusion that several of the

SOA refactoring related questions did not have a considerable number of views meaning not

all questions were relevant or important for refactoring of SOA architecture. However, we

still observed more than 1500 views for several of these questions. We have also observed

in Figure 2.25 that most the topics received the same average of number comments and

favorites which confirms that all of them are important from practitioners’ perspective.

Although the number of questions related to models refactoring is not high, but we clearly

see that these few questions are very relevant to practitioners. For instance, the average

number of views of a question related to models refactoring exceeds 2000 views which is high

compared to the total number of views on the large number of SOA refactoring questions.

However, this observation can be balanced based on the number of questions asked per topic

since the average number of views may decrease when the number of questions per topic are

high (e.g. higher probability for redundancy). Besides, it is clear that refactoring related to

parallel programming, and mobile/user-interface topics have the lower popularity since they

have the smallest average number of views and the smallest average score compared to the

others topics.

2.2.4.3 RQ3. Which Refactoring-related Topics are the Most Difficult to An-

swer?

We included the answers that are related to the selected refactoring questions. These

answers can be tagged as an accepted answer or not. Stack Overflow gives the user who

asked a question the ability to accept only one of the answers. To estimate the difficulty, we

counted the number of users that found an answer useful (based on the score attribute of

63

Figure 2.25: The four metrics used to estimate refactoring topics popularity.

64

the answer) similar to other studies on mining Stack Overflow [323, 335, 326].

We have defined three metrics to estimate difficulty. The first metric is the rate of

questions that do not have a relevant answer. For the second metric, we computed the

average number of views for unanswered questions in the topic. For the third metric, we

calculated the average number of days that are needed to get a relevant answer.

All the results are presented in Figure 2.26. The number of unanswered question is

highly correlated with the number of questions. Thus we presented the ratio of unanswered

questions by the total number of questions to ensure a fair comparison between the different

topics. First, we can see that most of the questions in a topic have a good percentage of

relevant answers. The largest percentage of questions that do not have many relevant answers

belong to the refactoring of parallel programming. It may be explained by the challenges

associated with making programs running on multiple processors, which is not an easy task.

This percentage does not exceed 31% of the questions. We can check from the results that

design patterns have the smallest ratio of questions without a relevant answer with a ratio of

around 18%. The integration of design patterns into existing architectures using refactorings

is not an easy task and requires significant design changes.Thus, it could be challenging and

time-consuming for practitioners to understand and answer these questions.

The same figure shows the average number of views for questions that did not get a

relevant answer. This metrics can give us an insight about the difficulty as well. The

questions that have no relevant answer got on average more than 200 views for all topics.

Thus, it may mean that they are important questions. The ones related to mobile/UI have

on average more than 300 views, but no user was able to give a relevant answer which others

find it useful. We can conclude that even when a large number of developers accessed to

these questions, they find it challenging to answer refactoring questions related to mobile and

user interface or it may be an indication that most of the developers viewing these questions

are not expert and community of Stack Overflow needs to pay more attention to this kind

of topics.

65

Another important aspect is the average number of days to get a relevant answer to a

question. We found that models refactoring have the smallest duration compared to the

other topics with only 6 days based on Figure 2.26. The other values are very similar as

we can see that the topic that take the longer time to answer is refactoring of SOA with an

average of 10 days to get a relevant answer to the question. In addition, it took between 6 to

10 days to get a relevant answer for the other topics. This means that in average developer

does not need to wait very long before getting an answer to their questions. However, 10

days could be a long duration to get an accepted answer for refactoring related questions.

Thus, many developers could have moved on and found another solution or abandon the

refactoring step because of this long time to get a relevant answer.

Finally, we presented the ratio of the average number of answers to the average number

of views. This metrics represents how many answers did the question get compared to the

number of views. When this metric is high, it means that many developers can provide

an answer to that specific question. It is clear that more than 10% of the people viewing

design pattern topic answer that topic. The same observation is valid for SOA architecture.

However, developers seem not very interested in answering questions around the model

refactoring topic.

2.2.4.4 RQ4. How the Interests of Developers on Refactoring Topics Change

Over Time?

For this research question, we investigated the evolution of the number of asked questions

throughout the years. We calculated the number of questions of each topic yearly and the

evolution is presented in Figure 2.27. This evolution is related to different refactoring topics.

It does not reflect the popularity as a question can be viewed much more times in the future

compared to the year where it was asked.

It is clear that throughout the years from 2008 to 2011, refactoring of SOA have seen

a significant evolution in the number of questions throughout the years but then there is a

66

Figure 2.26: The three used metrics to estimate the level of difficulty.

67

very important decrease in the number of asked questions. The same observation goes for

the design patterns. One of the reasons that could lead to this evolution is probably because

developers no longer need to ask questions since they are already found their questions

answered on Stack Overflow. One important observation from this figure is the evolution of

refactoring for parallel programming, and the number of questions is still increasing. Before

2016, the number of yearly asked question for the refactoring of parallel programming was

less than both Mobile/UI and creational pattern. However, we can observe that in 2016

the number of questions asked about refactoring for parallel programming exceeded the

refactoring of mobile app and user interface. In 2017, it exceeded the number of questions

that are asked about creational design patterns. Thus, developers are showing high interest

recently to refactoring for parallel programming.

Figure 2.27: The evolution of the number of questions by topic overtime.

68

2.2.5 Implications of this Study

We summarize, in this section, the main implications out of our study for researchers,

educators and practitioners.

2.2.5.1 Implications for Researchers

Refactoring now expands beyond code-restructuring and targets different artefacts (ar-

chitecture, model, requirements, etc.)[336, 337, 338, 339, 340, 341, 342, 343, 28, 344,

345, 346, 347], is pervasive in many domains beyond the object-oriented paradigm (cloud

computing, mobile, web, etc.) [348, 293, 180, 11, 12, 349, 350, 351, 352, 353], is widely

adopted in industrial settings [354, 355], and the objectives expand beyond improv-

ing design into other non-functional requirements (e.g., improve performance, security,

etc) [356, 357, 358, 359, 360, 28, 25].

It is clear that the focus of the refactoring research community nowadays goes beyond

code transformation to include, but not limited to, scheduling the opportune time to carry

refactoring [19, 361, 362, 363], recommending specific refactoring activities [22, 24, 27, 28,

29, 30, 19, 364, 356, 365], inferring refactorings from the code [340, 181, 366], and testing the

correctness of applied refactorings [367, 368, 369]. Therefore, the refactoring research efforts

are fragmented over several research communities, various domains, and different objectives.

It is clear that there are many intersections between the researchers and practitioner’s

topics especially in emerging fields such as SOA, Mobile apps, model-driven engineering,

and parallel programming. The main surprising outcome is that there are few discussions on

Stack Overflow around refactoring for security purposes while it is a growing research topic

in academia. Another interesting outcome is related to design patterns. While the academic

community is mainly interested in using refactoring to fix anti-patterns, it is clear that

practitioners are interested in integrating patterns using refactoring. The object-oriented

paradigm seems to be still a dominant area for refactoring from both researchers and prac-

titioners perspective especially with the increasing interests for model/design refactorings.

69

This study shows that practitioners are not mainly focusing on JAVA when asking ques-

tions on refactoring. However, the current research trends on refactoring are focusing mainly

on JAVA. The practitioners are asking more questions on Python while there is a little of

tools support and research to refactor Python code. Furthermore, most of existing research

studies on refactoring are focusing on the automation of this process while the majority of

questions on Stack Overflow are not about automated tools for refactoring but around bugs

observed after manually applying refactorings. Thus, the research community may focus

more on providing automated regression testing approaches to increase developers trust on

applied refactorings.

2.2.5.2 Implications for Educators

Based on the large number of questions asked by practitioners on Stack overflow about

refactoring, it is clear that educators need to increase students’ awareness and expertise in

the evolution of software systems. When students graduate and join the software industry

they rarely build software systems from scratch but often spend more time studying and

modifying existing systems. Traditionally, students have had a preconceived notion that

evolution is a secondary concern. In order to better prepare them for the challenges they

will face, we must invest in these curriculum innovations now.

We believe that this study will help educators shift through what’s out there and deter-

mine the current issues in software quality. They will be able to understand the importance

of refactoring and integrating it into education. This makes the students’ education in soft-

ware quality assurance (SQA) in general and in refactoring in particular more efficient and

up to date.

While most of SQA courses focus mainly applying refactorings, this study show that prac-

titioners are facing challenges beyond just the execution of refactorings to manage, detect,

prioritize and test the refactorings. Thus, educator may think about training the current

and next generation of practitioners on the whole refactoring life cycle. Another interesting

70

observation from our study is the large amount of questions about refactoring of Service Ori-

ented Architectures. However, most of existing curricula focuses on JAVA refactoring and

Object Oriented design restructuring in general. Thus, educators may consider introducing

more background and material related to micro-services migration via refactoring.

2.2.5.3 Implications for Practitioners

Due to the growing complexity of software systems, the last ten years have seen a dramatic

increase and industry demand for tools and techniques on software refactoring which is

confirmed in our study by the large number of refactoring questions asked by practitioners

on Stack overflow.

Our study may help developers be more aware of the importance of writing clean code

that follow well defined design patterns. This way, they will be able to prevent the issues

that other developers are facing. In addition, they’ll be able to know the hot topics in

refactoring and therefore what to focus on their self-training efforts. We observed in our

study that practitioners are mainly performing refactorings manually. Thus, it is important

for them to try some recent semi-automated refactoring tools or prototypes offered for several

programming languages rather than spending a lot of energy on the time-consuming and risky

manual refactoring.

Another observation is the important focus of developers on introducing design patterns

which is an area widely explored in refactoring research. Thus, practitioners may identify

some interesting research prototypes that can automated the integration of design patterns.

The lack of a refactoring community infrastructure prevents practitioners from using the

state-of-the-art advances. They are only aware of refactoring tools that are standard in

widely-used IDEs. There is a clear need for an effective communication platform between

practitioners and refactoring researchers to identify relevant problems faced by the industry.

Practitioners can upload a description of refactoring challenges and provide feedback on

existing refactoring tools proposed by researchers.

71

2.2.6 Threats to Validity

Several threats can affect the validity of our results. The first threat is related to the

selection of the tags related to refactoring. In fact, we may miss some important tags, but

we believe that using the current list of tags we were able to generate an extensive list of

questions from Stack Overflow.

The second threat is that not all questions have the appropriate tags since some people

could have easily identified a wrong tag to a specific question. Thus, it is possible that we

collected some irrelevant questions in our study.

In addition, it is possible that our results may not be generalizable. In this study, we

focused on Stack Overflow, which is one of many Q&A websites, therefore, our results may

not generalize to other Q&A websites. In our future work, we’re planning to explore other

development communities like GitHub.

In the experiments, we tried many configurations for the LDA model by tuning the

probability state of the model and the number of topics. However, these parameters may

impact the quality of our results. As for the data cleaning, we can probably introduce more

stop words to reduce the noise in the vocabulary when identifying the refactoring topics.

We believe that the study of the popularity and difficulties of topics is very subjective

giving that there is no way to get this measurement directly from the meta-data of the

questions. Therefore, we tried to use a combination of metrics to answer these questions,

and these metrics could be open to several possible interpretations.

2.2.7 Conclusion

We performed, in this contribution, the first large scale refactoring study on the most

popular online Q&A forums for developers, Stack Overflow. We used 89 tags to extract

105463 questions about refactoring. We used the Latent Dirichlet Allocation (LDA) tech-

nique to generate the discussed topics in this repository. We found 6 main topics which are

”Creational pattern”, ”Parallel programming”, ”Models refactor”, ”Mobile/UI”, ”SOA”,

72

and ”Design pattern”. The analysis of these topics provided various key insights about the

interests of developers related to refactoring such as the most addressed quality issues, the

domains where refactoring is extensively discussed, the widely addressed anti-patterns, and

patterns. We have also investigated how the interests of developers on refactoring topics

change over the years.

73

2.3 Related Work

2.3.1 Systematic Literature Reviews about Refactoring

Mens et al. [247] provided an overview of existing research in the field of software refac-

toring. They compared and discussed different approaches based on different criteria such as

refactoring activities, techniques and formalisms, types of software artifacts that are being

refactored, and the effect of refactoring on the software process. Elish et al. [370] proposed

a classification of refactoring methods based on their measurable effect on software qual-

ity attributes. The investigated software quality attributes are adaptability, completeness,

maintainability, understandability, reusability, and testability. Du Bois et al. [371] pro-

vided an overview of the field of software restructuring and Refactoring. They summarized

Refactoring’s current applications and tool support and discussed the techniques used to

implement refactorings, refactoring scalability, dependencies between refactorings, and ap-

plication of refactorings at higher levels of abstraction. Mens et al. [372] identified emerging

trends in refactoring research (e.g., refactoring activities, techniques, tools, processes, etc.),

and enumerates a list of open questions, from a practical and theoretical point of views. Mis-

bhauddin et al. [373] provide a systematic overview of existing research in the field of model

Refactoring. Al Dallal et al. [10] presented a systematic literature review of existing studies,

published through the end of 2013, identifying opportunities for code refactoring activities.

In another of their work [35], they presented a systematic literature review that summarizes

the impact of refactoring on several internal and external quality attributes. Singh et al.

[36] published a systematic literature review of refactoring concerning code smells. However,

the review of Refactoring is done in a general manner, and the identification of code smells

and anti-patterns is performed in-depth. Abebe et al. [374] conducted a study to reveal

the trends, opportunities, and challenges of software refactor researches using a systematic

literature review. Baqais et al. [375] performed a systematic literature review of papers that

suggest, propose, or implement an automated refactoring process.

74

The different studies mentioned above are mainly about identifying the studies related

to very specific or specialized topics and sub-areas of refactoring. In this dissertation, we

propose a large-scale refactoring systematic literature review by collecting, categorizing, and

summarizing all the papers related to refactoring in general during the last 30 years.

2.3.2 Mining Stack Overflow Posts

Stack Overflow was created to help developers with computer programming, but it is

becoming a useful knowledge repository for researchers. Therefore, several studies have used

Stack Overflow to get an insight into the different questions discussed in practice [376].

Recent studies have focused on mining issues addressed by developers and clustering the

related questions [323, 327, 324]. They all used the LDA topic modeling techniques. Yang

et al. [323] clustered security related questions using a combination of LDA and genetic al-

gorithms. They highlighted the most difficult and most popular security-related questions.

Hassan et al. [327] adopted LDA to analyze the topics that developers talked about in soft-

ware engineering, in general, and highlighted the main popular trends in the field such as

mobile computing. Rosen et al. [324] addressed mobile specific questions and they also used

LDA to understand the main challenges faced by mobile developers. Pinto et al. [377] per-

formed and empirical investigation of the top-250 most popular questions about concurrent

programming on Stack Overflow. They analyzed the text of both questions and answers to

extract the dominant topics of discussion using a qualitative methodology. They observed

that even though some questions are related to practical problems like fixing bugs etc., most

of them are related to understanding basic concepts. Jin et al. [378] presented a study of

how gamification affects online community members tendencies in terms of response time.

They analyzed the distribution gamification-influenced tendencies on Stack Overflow. They

defined metrics related to response time to a question post. Results indicate that most

members do not undertake in such rapid response activities.

In the software design and refactoring domain, Tian et al. [379] conducted a study on

75

developers’ conception of Architecture Smells by collecting and analyzing related posts from

Stack Overflow. They used 14 terms to extract 207 relevant posts. They used Grounded

Theory method to analyze the extracted posts and find out developers’ description of Archi-

tecture Smells and their causes. They also collected the approaches and tools for detecting

and refactoring the different types of Architecture Smells, quality attributes affected by

them, and difficulties in detecting and refactoring Architecture Smells. In another prelimi-

nary study, Choi et al. [335] used Stack Overflow to investigate practitioner’s needs for clone

detection and analysis and find out whether code clone techniques and tools have met the

requirements of programmers. Tahir et al. [380] investigated how developers discuss code

smells and anti-patterns in Stack Overflow in order to understand their perceptions of these

design problems. They applied quantitative and qualitative techniques to analyse posts

containing terms related to code smells and anti-patterns. They found out that developers

use Stack Overflow to ask for general assessments of code smells or anti-patterns, rather

than asking for refactoring solutions. They also noticed that developers usually ask people

to check whether their code contain code smells/anti-patterns or not, and therefore, Stack

Overflow is often used as crowd-based code smell/anti-pattern detector. Finally, Pinto et

al. [381] conducted a qualitative and quantitative study to categorize questions from Stack

Overflow about refactoring tools. They presented flaws and desirable features in refactoring

tools. Even though all the studies mentioned above tried to mine posts from Stack Overflow

to address different problems faced by developers, none of them has looked at the big picture

of refactoring to identify the challenges related to refactoring in general faced by practitioners

and what could be the current refactoring trends from the developers’ perspective.

2.3.3 Detecting Refactoring Opportunities

2.3.3.1 Detecting Refactoring Opportunities in Mobile Apps

In this category, we summarize the main related research in mining user reviews of mobile

apps and linking them to the source code. A comprehensive literature review concerning

76

these topics can be found in the surveys carried out by Martin et al. [382] and Mao et al.

[383].

2.3.3.1.1 Mining User Reviews A large number of studies analyzed the topics and

content of app store reviews [384, 385, 386] and the possible correlation between price,

reviews and ratings [386]. Mcilroy et al. [387] proposed an approach that can automatically

assign multiple labels to user reviews based on different multi-labelling approaches such as

Binary Relevance (BR), Classifier Chains (CC), and Pruned Sets with threshold extension

(PSt).

Panichella et al. [388] manually analyzed users’ review to determine a taxonomy of re-

views categories (i.e., bug fixing, feature adding, etc.). Then, they extracted a set of features

from user reviews data using natural language processing, text analysis, and sentiment anal-

ysis. Finally, the app reviews are classified according to the taxonomy deduced in the first

step using the standard probabilistic naive Bayes classifier, logistic regression, support vector

machines, J48, and the alternating decision tree (ADTree).

Chen et al. [384] designed a framework for app review mining called AR-Miner. It can

extract the most informative reviews and suggest weights on negative sentiment reviews. AR-

Miner used topic modeling to group the informative reviews automatically based on their

semantics similarity. Gao et al. [389] proposed AR-Tracker, a similar tool to AR-Miner

[384], to automatically collect user reviews of apps and rank them in terms of frequency and

importance. Another similar work, based on topic modeling, was proposed by Guzman et

al. [385] to automatically identify application features mentioned in user reviews, as well as

the sentiments and opinions associated to these features.

2.3.3.1.2 Linking User Reviews to Source Code Several techniques have been pro-

posed for tracing documentation such as feature descriptions, emails and forums onto source

code [390, 391, 392, 393]. The majority of these studies are based on lightweight textual anal-

ysis and information retrieval techniques. We will focus in the following mainly on linking

77

mobile user reviews to source code.

Palomba et al. [1] filtered and classified user feedback into the following categories:

information giving, information seeking, feature request, and problem discovery. Then, they

linked the user feedback clusters to source code classes by measuring the asymmetric Dice

similarity coefficient. Ciurumelea et al. [394] extended this work by defining mobile specific

categories (e.g. performance, resources, battery, memory, etc.). A tool, called the User

Request Referencer (urr), is proposed to automatically classify reviews and recommend

the source code files that should be modified for a particular review. The Vector Space

Model (vsm) and information retrieval techniques are used to compute the textual similarity

between user reviews and the source code. Another work of Palomba et al. [395] proposed

the cristal approach that helps developers in keeping track of the informative reviews while

working on a new app release. cristal links user reviews to the corresponding code changes

(i.e., code commits and bug reports) using text similarity.

Grano et al. [396] built a dataset of Android applications to provide an overview of

the types of feedback that users may report. The extracted reviews are labeled based on

topics-related keywords and n-grams used in the surf summarizer tool [397]. In another

related work, Noei et al. [398] studied the relationships between device attributes, such

as the CPU and the display size, and the user perceived quality using linear mixed effect

models. However, the authors did not consider understanding the impact of code quality

and security metrics on user reviews or linking the discussed topics to source code.

2.3.3.2 Detecting Refactoring Opportunities in Web Services

2.3.3.2.1 Quality of Service (QoS) Prediction for QoS-driven Web Services Rec-

ommendation For this category of Web services recommendation, the goal is to predict

the unknown QoS values between different service users and different web services, with

partially available information, as the result, the optimal web service with the best QoS

value can be recommended to the service user for composition [399, 400, 401, 402, 403]. The

78

common approach to recommend web service using QoS prediction is collaborative filtering

which includes two main sets of algorithms: Model-based approaches and memory-based

approaches [404, 297, 405, 295, 294, 406, 293, 292, 407].

In collaborative filtering, the goal is to calculate the similarities between service users to

make prediction for the missing QoS data. Model-based approaches utilize machine learning,

pattern recognition and data mining algorithms in order to predict the unknown QoS values.

In memory-based collaborative filtering the similarity between users or services is calculated

using a user-item rating matrix and then making prediction using a certain algorithm [408].

Shao et al. use [409] collaborative filtering to find the users similarity and predict the

unknown QoS of the web services using the available invocation history for similar users.

Zhang et al. [410] present another collaborative filtering method to rank the web services

using QoS query information. The authors in [411] take an extra step and combine the user-

based approach and item-based approach to propose a hybrid collaborative filtering, called

WSRec, to predict the QoS in order to recommend a web service based on a computed rank

for the QoS values. WSrec has been shown to achieve a good overall prediction accuracy,

however it depends on historical QoS data and can suffer from the sparsity problem.

Some other studies [412, 413, 414, 415] predict the quality of web services to recommend

web services with acceptable throughput or response time. Zhang et al. [416] propose a

fuzzy clustering approach to predict the QoS of a web service in order to make web service

recommendation staisfying the user requirements without sacrificing the quality. The work

in [417] presents an example of model-based QoS prediction that uses a pattern recognition

method. There are also studies focusing on the use of QoS for composing multiple services

[418, 419, 420].

Zhu et al. [399] proposed an approach that takes a set of fixed landmarks as references.

These references monitor QoS values of all the available web services. The approach clusters

all the available services around the references. To predict the QoS value of the users in

one cluster, the algorithm uses the QoS information of the similar landmarks in that cluster.

79

The main shortcoming of the collaborative filtering methods is that they heavily depend

on the historical web service invocation information. Although, in practice, each user only

invokes one or several web services. Therefore, the user-service invocation information is

sparse when the number of services is large.

Most of the existing work focus on predicting web service performance based on other

consumers’ experiences to target the problem of web service recommendation. They use

clustering-based approach to predict the quality of service. Their approach is based on the

assumption that the consumers, who have similar historical experiences on some services,

would have similar experiences on other services which is not always true. They ignore the

large heterogeneity among users’ views on the QoS. Furthermore, the clustering method

presented in their work applies the hard technique that includes the use of a number of

computers, known as landmarks, to perform the gathering of the real time QoS data, which

is different from our mining technique presented in this proposal.

2.3.3.2.2 Prediction of Web Services Evolution Another category of related work in

the area of web services prediction is to predict the evolution of web services. WSDLDiff [421]

is a tool that uses structural and textual similarity metrics to detect the changes between

different versions of a web services interface. VTracker, a tracking tool suggested in [422],

detects changes in WSDL documents using XML differencing techniques. However, these

tools are capable of detecting changes between Web Service releases, they do not provide any

future changes prediction or recommendation on quality of service interface to the users. In

order to address this challenge, [11] proposes a machine learning approach using an Artificial

Neural Network to predict the evolution of web services interface from the history of previous

release’s metric. They utilized these predicted interface metrics to predict and estimate the

risk and the quality of the studied web services.

In the area of code quality, there are some studies focusing on antipattern detection in

Service-Oriented architecture (SOA) and web services. Rotem-Gal-Oz described the symp-

80

toms of a range of SOA antipatterns [423]. Kral et al. [424] listed seven “popular” SOA

antipatterns that violate accepted SOA principles. A number of research works have ad-

dressed the detection of such antipatterns. Moha et al. [425] have proposed a rule-based

approach called SODA for SCA systems (Service Component Architecture). Later, Palma et

al. [426] extended this work for Web service antipatterns in SODA-W using declarative rule

specification based a domain-specific language (DSL) to specify/identify the key symptoms

that characterize an antipattern using a set of WSDL metrics. Rodriguez et al. [427] and

Mateos et al. [428] provided a set of guidelines for service providers to avoid bad practices

while writing WSDLs based on eight bad practices in the writing of WSDL for web services.

Recently, Ouni et al. [12] proposed a search-based approach based on standard GP to find

regularities, from examples of web service antipatterns, to be translated into detection rules.

Mateos et al. [429] as an attempt to provide the developers with some metrics as early

indications of services interfaces with low quality, low maintainability or high complexity

at development time, they have investigated the statistical correlation between complexi-

ty/quality and maintainability related WSDL-level service metrics and traditional code-level

Object Oriented (OO) quality metrics and they confirmed a significant correlation. In their

analysis, for the OO quality metrics they have included Modularity, Adaptability, Reusabil-

ity, Testability, Portability, and Conformity attributes.

To automate the process of predicting the performance of the web services, Li et al.

[430] proposed WebProphet. They extract the dependencies, compute the metrics and then

predict the performance. They infer dependencies between web objects by perturbing the

download times of individual objects. The shortcoming of this techniques is that, it is time

consuming and imprecise.

Tariq et.al. in [431] introduce a tool called What-If Scenario Evaluator (WISE) to predict

the response time based on packet traces from web transactions. However the downside of

their proposed tool is that they’re not taking into account some of the client-side factors

affecting the response time experienced by users.

81

In another study, in order to predict the response time, Chen et al.[432] introduced a

new metric, called Link-Gradients to measure the affect of logical link latency on end-to-end

response time for distributed applications. However to compute this metric, they assume

all the individual changes are independent from each other in the system which can be a

correct assumption in smaller application, but not necessarily applicable to more complex

web services. They use this metric to predict the response time for untested configuration

as well.

To summarize, none of the above studies analyzed the relationships between code/inter-

face metrics/antipatterns and the QoS attributes which is one of the main contributions of

this dissertation.

2.3.3.3 Software Quality Benchmarking

Munaiah et al. [433] described the characteristics of software engineering projects using

eight quality indicators. They proposed a framework, referred to as Reaper, that enables

researchers to select GitHub repositories that fit these characteristics using supervised learn-

ing and a manually labeled dataset. Thakur et al. [434] implemented a platform, referred

to as QScored, that hosts detailed code quality analysis information for a large number of

repositories. QScored computes quality scores and assigns relative ranking of the repositories

based on their architecture, design, and code smells. The platform also allows comparison

between the quality of a user’s project and thousands of open-source projects. Pickerill et

al. [435] developed a method, PHANTOM, to filter a large database of software projects in

a resource-efficient way. This method extracts five measures from Git logs. Each measure is

transformed into a time-series, which is represented as a feature vector for clustering using

the K-means algorithm.

Lochmann et al. [436] proposed a benchmarking-inspired approach to determine thresh-

old values for metrics. They also investigated the influence of the employed benchmarking

base on the result of the software quality assessment. For that, they conducted a quality

82

assessment of a series of test systems for different benchmarking bases and compared the

generated results. They found that 1) the bigger the benchmarking base, the less divergent

are the rankings, and the less is the variance of the results and 2) the size of the systems

contained within a benchmarking base does not influence the results. Chatzigeorgiou et

al. [437] suggested a technique for benchmarking object-oriented designs by transferring a

tool for performance measurement, called Data Envelopment Analysis, that is employed in

economics. They investigated whether libraries exhibit a superior design quality compared

to applications. They computed relative efficiency scores for several open-source libraries

and applications. Benchmarking is performed by comparing each software design to its best-

performing peers rather than to a theoretical baseline. They estimated the efficiency by

considering design principles and the metrics that reflect conformance to these principles en-

abling the comparison of projects with diverse size characteristics. They found that libraries

excel, at least within the context of the study, since their average efficiency score is higher

than that of applications.

Correia et al. [438] proposed a technique for the systematic comparison of the technical

quality of software products. They defined a model composed of three levels: source code

metrics, system properties, and quality sub-characteristics. They collected measurement

data from a wide range of systems into a benchmark repository. They suggested dividing

the systems into groups based on their characteristics. They also suggested several types of

comparisons such as comparison of individual systems to a group average and comparison

of individual systems within a group.

Kalibera et al. [439] suggested a tool, referred to as BEEN, to automate the detection of

performance changes during software evolution in a distributed heterogeneous environment.

This tool gives developers timely feedback on their work. It involves compilation of software

to be benchmarked, compilation of benchmarks, deployment, running the benchmarks and

collecting, evaluating and visualizing the results. The authors base the evaluation of their

still developing tool on its handling of a comparison analysis with the Xampler benchmark

83

from the CORBA benchmarking project.

Moses et al. [440] proposed a simple benchmarking procedure for companies wishing to

develop measures for software quality attributes of software artefacts. They asked experts

to rate the quality metrics of modules. Each proposed measure is expressed as a set of error

rates for measurement on an ordinal scale and these error rates enable simple benchmark-

ing statistics to be derived. These statistics can be used to benchmark subjective direct

measurement of a quality attribute by a company’s software developers.

Gruber et al. [441] presented a methodology to estimate the quality of source code without

involving a quality expert. They first build the benchmark database, Then they calculate

all the metrics of the benchmark suite. After that, the measured values of the assessed

project are compared with the benchmark values. Finally, they aggregate the results to a

quality score. They validated their work on both Java and C# projects. They found that

Java projects provided promising result to use the benchmarking-oriented assessment more

intensively. However, the experiment with C# showed that the results of the automatic

benchmark assessment cannot be trusted blindly.

None of the attempts mentioned above has proposed a methodology to find the right

benchmark that reflects individual characteristics of software systems. The majority of exist-

ing studies propose either standard general purpose benchmark suites or suggest procedures

to compare a release with another.

2.3.4 Refactoring Recommendation

2.3.4.1 Search-Based Refactoring

Many studies have used search-based techniques to automate software refactoring by

optimizing different sets of quality metrics [5, 442, 443, 6, 7, 8]. One interesting observation is

that evolutionary algorithms are the dominant ones in search-based refactoring (e.g. NSGA-

II, NSGA-III, etc.). Thus, we refer to evolutionary techniques when using the term search-

based in this section. The reader can refer to the systematic literature review on search-based

84

refactoring [444].

O’Keeffe and Cinnéide [445] presented the idea of formulating the refactoring task as a

search problem in the space of alternative designs, generated by applying a set of refactoring

operations. The search is guided by a quality evaluation function based on eleven object-

oriented design metrics that reflect refactoring goals.

Ouni et al.[446] presented a multi-objective refactoring formulation that generates solu-

tions that maximize the number of detected defects after applying the proposed refactoring

sequence and minimize the semantics similarity of the elements to be changed by the refactor-

ing. They also tried to find recommendations that tend to maximize the use of refactoring

rules applied in the past to similar contexts from one side, and to minimize semantic er-

rors and the number of defects from another [447]. In another work [448], they focused

on refactoring solutions minimizing the number of bad-smells while maximizing the use of

development history and semantic coherence.

Alizadeh et al.[2] generated refactoring solutions that optimize the QMOOD metrics while

minimizing the deviation from the initial design. In another work [321], they considered

the QMOOD metrics as objectives for their optimization problem. Then, they used an

unsupervised learning algorithm to cluster the different trade-off solutions in order to reduce

the developers’ interaction effort when refactoring systems.

Harman and Tratt [5] were the first to introduce the concept of Pareto optimality to

search-based refactoring. They used it to combine two metrics, namely CBO (Coupling

Between Objects) and SDMPC (Standard Deviation of Methods Per Class), into a fitness

function and showed its superior performance as compared to a mono-objective technique

[5]. Ó Cinnéide et al. [443] proposed as well multi-objective search-based refactoring to con-

duct an empirical investigation to explore relationships between several structural metrics.

They used different search techniques such as Pareto-optimal search and semi-random search

guided by a set of cohesion metrics.

None of the work mentioned has directly addressed the problem of finding refactoring

85

solutions while considering the code quality and security as conflicting objectives. Also,

all the above studies used the traditional random change operators (e.g. 1-point crossover,

random mutation, etc.). These change operators can destroy relevant patterns inside good

refactoring solutions when applied randomly on discrete problems. Furthermore, the existing

search-based refactoring studies are generating the initial population randomly, which may

have a negative impact on the execution time and the quality of the final solutions. With the

large amount of data on GitHub projects about refactorings applied by developers and their

impact, it may be possible to inject good patterns extracted from the history of refactorings

when generating the initial population or designing knowledge-based change operators. This

hypothesis is investigated and tested in this dissertation.

2.3.4.2 Refactoring Dependencies

Chavez et al. [449] investigated how refactoring types affect five quality attributes based

on the version history of 23 open source projects. They found that 94% of refactorings

are applied to code with at least one low quality attribute value, with 65% of refactorings

improving attributes and 35% of all refactorings being neutral on the system. Similarly,

Cinnéide et al. [443] studied the impact of individual refactorings on quality attributes, such

as using Move Method to reduce the coupling of a class. None of these studies considered

the impact of a sequence of refactorings on quality attributes.

Bibiano et al. [450] analyzed batch refactoring characteristics and their effects on code

smells in open and closed source projects and concluded that 57% of batches/patterns are

simple compositions of only two types of refactorings. They highlight lack of tool support

to automatically detect refactoring dependencies as a barrier. However, this study is based

on the assumption that refactorings are only related if applied to the same code location,

which often is not the case for types of refactorings that modify multiple code fragments.

Mens et al. [451] analyzed dependencies at the model-level working with UML. They did

not investigate dependencies at the code-level working directly with transformations on the

86

code rather than on UML models where the type of refactorings are different and simplified

when compared to the code-level refactorings. Overall, existing studies mainly define what

might be better considered similarity relations, such as a collection of refactorings that

have similar effects (fixing a code smell) or similar context (applied by the same developer

or to the same code location) [452, 453]. None of the existing studies rigorously define

refactoring dependencies to integrate them into recommendation tools, including search-

based refactoring.

2.3.4.3 Seeding and Genetic Operators in Search-Based Software Engineering

Search-based software engineering studies proposed few studies on improving the seeding

mechanism and the change operators in order to optimize the performance and convergence

of search algorithms as well as the quality of generated solutions.

Oliveira et al. [454] propose a reformulation of program repair operators such that they

explicitly traverse three subspaces that underlie the search problem (i.e. Operator, Fault

Space, and Fix Space). They implemented new crossover operators that respect the subspace

division.

Zhu et al. [455] propose two mechanisms to avoid premature convergence of genetic

algorithms: i) dynamic application of crossover and mutation operators; and ii) population

partial re-initialization. They implemented two crossover and two mutation operators and,

dynamically choose one crossover and one mutation operators to apply in each generation,

based on a selection probability that is dependent on average progress. Abido et al. [456]

propose improved crossover and mutation algorithms to directly devise feasible offspring

chromosomes.

Fraser et al. [457] evaluated different strategies to seed the initial population in search-

based techniques as well as techniques to seed values introduced during the search when

generating tests for object-oriented code. They focused on three contexts: the first one is

seeding of constants extracted from source code or bytecode throughout the search (e.g.,

87

initial population, mutation operators). The second one is related to strategies intended to

improve the diversity of the initial population and its suitability for the optimization target.

The last context targets the reuse of previously generated or hand-crafted solutions to seed

the initial population of the search.

However, none of the studies mentioned above addressed the refactoring problem or

designed new change operators and seeding mechanism to deal with the issues of solution

correctness or the impact of randomness on solution quality.

2.3.4.4 Security-Aware Refactoring

2.3.4.4.1 Code Fragments Accessibility Grothoff et al. [458] present a tool called

JAMIT to restrict access modifiers from security perspective. Specifically, the authors an-

alyzed whether a class is confined to the package to which it is declared so the goal is to

guarantee that a reference to a class cannot be obtained outside its package. The validation

focused on reporting the percentage of classes that could be confinable.

Bouillon et al. [459] present a tool that checks for over-exposed methods in Java appli-

cations. Their tool determines the best access modifier by analyzing the references to each

method. Muller [460] uses bytecode analysis to detect those access modifiers of methods and

fields that should be more restrictive.

Steimann and Thies [461] highlight the difficulties of carrying out refactoring in the

presence of non-public classes and methods. The authors formalize accessibility constraints

in order to check the preconditions of a refactoring (e.g., moving a class to another package

requires checking whether the accessibility of the class allows its users to still reference it).

In particular, the authors analyze the cases in which a class or a method is moved between

packages or classes with the goal of adapting their access modifiers to preserve the original

behavior.

Zoller and Schmolitzky [462] present a tool called AccessAnalysis to detect over-exposed

methods and classes by analyzing the references to code elements. Kobori et al. [463] investi-

88

gated the evolution of over-exposed methods and fields for a set of open-source applications.

They reported that the change of access modifiers of methods is not frequent. They also

found that the number of over-exposed methods and fields tends to increase in time.

Vidal et.al., presented two empirical studies on over-exposed methods [464] with the

goal of analyzing their impact on information hiding and the interfaces of classes, and over

exposed classes [465]. In both studies, they analyzed the history of the systems with the goal

of understanding the variations in the over-exposed methods. They expanded and improved

their work on method accessibility to class accessibility in [465] and presented an Eclipse

plugin to make component public interfaces match with the developer’s intent.

To summarize, the goal of this category of work is mainly to use static analysis to identify

over-exposed code fragments whether related to security or not but without recommending

refactorings.

2.3.4.4.2 Software Security Metrics In this category of studies, the main focus is to

measure the security of software components [466, 467, 468, 469, 470, 471, 472, 473].

Chowdhury et. al.,[473] proposed an approach to measure the security of the code using

a set of quality metrics. They proposed metrics that aim to assess how securely a system’s

source code is structured. The metrics are stall ratio, coupling corruption propagation, and

critical element ratio. One shortcoming related to this work is that some of the metric

values are decided based on intuition. For example, finding out the critical elements in a

class depends on the intuition of the data collectors and it should be manually tagged.

Alshammari et.al, presented a set of metrics to measure the security of each class in an

object oriented design projects [468]. To measure the security of each class, they utilized

two properties of object oriented design: the accessibility of, and interactions within, classes.

To measure the security of object oriented design, they defined the metrics based on quality

metric, including composition, coupling, extensibility, inheritance, and design size. In order

to identify if an attribute is critical (i.e. carrying critical information), they assumed that de-

89

velopers/designers have annotated class diagrams such as UMLsec and SPARK’s annotations

with a secrecy tag for each critical attribute in the design.

Agraval and Khan presented in [467] an investigation of how coupling induces vulnerabil-

ity propagation in an object oriented design. They introduce a metric to measure Coupling

Induced Vulnerability Propagation Factor (CIVPF) for an object oriented design. Their

main idea behind this research is that Coupling is one of the means responsible for the vul-

nerability propagation. In order to compute CIVPF, they introduce some characteristics for

an attribute to be vulnerable. Then, they defined the vulnerable method and class based on

their access to vulnerable attributes.

The same authors later studied the role of cohesion for object oriented design security and

proposed security metrics measuring the impact of cohesion on security vulnerability [466].

Highly cohesive classes are more understandable, modifiable and maintainable[466]. Their

work is based on the assumption that in object oriented design, when a vulnerable attribute

is spreading from one class to another it may compromise the whole system. They have

proposed three metrics to measure the vulnerable association of a method in a vulnerable

class, vulnerable association within a class and vulnerable association of an object oriented

design. However they claim that computing these three metrics does not require any type of

documents including Collaboration Diagrams, Sequence Diagram, State Diagram and Class

Hierarchy, but it does require that an attribute should be labeled as vulnerable manually.

2.3.4.4.3 Refactoring for Security Maruyama et al. [474] presented a tool named

Jsart (Java security-aware refactoring tool) that supports two types of refactorings related

to software security, which is built as an Eclipse plug-in. It helps programmers to estimate

the impact of the application of refactorings on security characteristics of the changed files

by detecting the downgrading of the access level of a field variable within the modified code.

Alshammari et al.[475] studied the impact of refactoring rules on the security of an object-

oriented design using the security design metrics [476, 477, 468, 466]. They also introduced

90

new security refactoring rules per analogy to existing ones and distinguished their effects

on classified and non-classified features. They proposed one case study to illustrate how

applying the refactoring rules improves the security of the design. Therefore, their findings

are not general.

Ghaith and Cinnéide [478] presented an approach to automated improvement of software

security based on search-based refactoring using the Code-Imp platform. When this platform

is used to improve software design, the fitness function is a combination of quality metrics. In

their work, they redefined this fitness function based uniquely on security metrics. Therefore,

they neither studied the relationship between security and quality, nor the impact of the

security-aware refactorings on the quality of the system. They also looked at the impact of

certain refactorings on the security metrics, but since they considered just one study case,

their results cannot be generalized.

Ghaith et al. [479] present a search-based approach to automate the refactoring process

while improving software security. They used the search-based refactoring platform, Code-

Imp, to refactor the code. The fitness function used to guide the search is based on a set of

software security metrics they collected from existing work. However, the main objective of

the refactoring process is to improve the security of the system and they did not focus on

the quality of the code and design.

To the best of our knowledge, there is no previous research on the correlations between

security metrics and quality attributes, or that provided a tool to recommend refactorings

based on the preferences of developers from both quality and security perspectives, and the

possible conflicts between them.

91

Table 2.9: Quality attributes and their equations.

Design Metric Design Property Description

Design Size in Classes
(DSC)

Design Size Total number of classes in the design.

Number Of Hierarchies
(NOH)

Hierarchies Total number of ”root” classes in the design
(count(MaxInheritenceTree (class)=0))

Average Number of Ances-
tors (ANA)

Abstraction Average number of classes in the inheritance tree for
each class.

Direct Access Metric
(DAM)

Encapsulation Ratio of the number of private and protected attributes
to the total number of attributes in a class.

Direct Class Coupling
(DCC)

Coupling Number of other classes a class relates to, either through
a shared attribute or a parameter in a method.

Cohesion Among Methods
of class (CAMC)

Cohesion Measure of how related methods are in a class in terms
of used parameters. It can also be computed by: 1 −
LackOfCohesionOfMethods()

Measure Of Aggregation
(MOA)

Composition Count of number of attributes whose type is user de-
fined class(es).

Measure of Functional Ab-
straction (MFA)

Inheritance Ratio of the number of inherited methods per the total
number of methods within a class.

Number of Polymorphic
Methods (NOP)

Polymorphism Any method that can be used by a class and its de-
scendants. Counts of the number of methods in a class
excluding private, static and final ones.

Class Interface Size (CIS) Messaging Number of public methods in class.

Number of Methods
(NOM)

Complexity Number of methods declared in a class.

2.4 Background

2.4.1 Object-Oriented Static Metrics for Software Quality and Security Assess-

ment

2.4.1.1 Software Quality Attributes

QMOOD is a widely used quality model, based on the ISO 9126 product quality model

[480]. QMOOD defines six high-level design quality attributes (reusability, flexibility, under-

standability, functionality, extendibility, and effectiveness) (Table 2.9) that can be calculated

using 11 lower-level design metrics defined in Table 2.10. We selected this model because it

is a widely accepted quality model in industry and it has been validated based on hundreds

of industrial projects[480, 481, 482, 28, 55].

92

Table 2.10: QMOOD metrics description.

Quality attributes
Definition
Computation

Reusability
A design with low coupling and high cohesion is easily reused by
other designs.
0.25 ∗ Coupling + 0.25 ∗ Cohesion + 0.5 ∗ Messaging + 0.5 ∗
DesignSize

Flexibility
The degree of allowance of changes in the design.
0.25∗Encapsulation−0.25∗Coupling+ 0.5∗Composition+ 0.5∗
Polymorphism

Understandability
The degree of understanding and the easiness of learning the design
implementation details.
0.33∗Abstraction+0.33∗Encapsulation−0.33∗Coupling+0.33∗
Cohesion − 0.33 ∗ Polymorphism − 0.33 ∗ Complexity − 0.33 ∗
DesignSize

Functionality
Classes with given functions that are publicly stated in interfaces
to be used by others.
0.12∗Cohesion+0.22∗Polymorphism+0.22∗Messaging+0.22∗
DesignSize + 0.22 ∗Hierarchies

Extendibility
Measurement of a design’s ability to incorporate new functional
requirements.
0.5 ∗ Abstraction − 0.5 ∗ Coupling + 0.5 ∗ Inheritance + 0.5 ∗
Polymorphism

Effectiveness
Design efficiency in fulfilling the required functionality.
0.2∗Abstraction+ 0.2∗Encapsulation+ 0.2∗Composition+ 0.2∗
Inheritance + 0.2 ∗ Polymorphism

93

2.4.1.2 Software Security Metrics

Code elements containing confidential or sensitive information such as userIDs, transac-

tions, credit card, authentication, security constraints, may be security-critical. These code

elements may be attributes, methods, classes, or packages. If these code fragments are over-

exposed, this may result in vulnerabilities that can be exploited. Thus, developers should

ensure that these code fragments are not over-exposed. Several software security metrics

have been defined in the research literature at different levels of abstraction [293]. We focus

in this study on those that are related to the code level and can be measured by static

analyses.

For the selected security metrics, we have adopted the terminology and definitions pro-

posed in existing studies [468, 466]. We consider that classified, confidential, and vulnerable

attributes all refer to attributes that need to be secured. Tables 2.11 and 2.12 summarizes the

definition of these 8 security metrics: Classified Instance Data Accessibility (CIDA), Classi-

fied Class Data Accessibility (CCDA), Classified Operation Accessibility (COA), Classified

Mutator Attribute Interactions (CMAI), Classified Accessor Attribute Interactions (CAAI),

Classified Attributes Interaction Weight (CAIW), Classified Methods Weight (CMW) and

Vulnerable Association within a class (VAClass).

Table 2.11: Security metrics terminology.

Term Definition
Classified Attribute An attribute which is defined in UMLsec [483] as secrecy.
Instance Attribute An attribute which value is stored by each instance of a

class.
Class Attribute An attribute which value is shared by all instances of that

class.
Classified Methods A method which interacts with at least one classified at-

tribute.
Mutator A method that sets the value of an attribute.
Accessor A method that returns the value of an attribute.

94

Table 2.12: Security metrics definition

Metric Definition

Classified Instance Data Ac-
cessibility (CIDA)

consider CA as a set of classified attributes in a class C, CA =
cai, i ∈ {1, 2, . . . , n}, and CIPA its classified public attributes
as CIPA = cipai, i ∈ {1, 2, . . . , n} CIDA(C) = |CIPA|/|CA|

Classified Class Data Accessi-
bility (CCDA)

consider CA as a set of classified attributes in a class C,
CA = cai, i ∈ {1, 2, . . . , n}, and CCPA its classified class pub-
lic attributes as CCPA = ccpai, i ∈ {1, 2, . . . , n, } CCDA(C)
= |CCPA|/|CA|

Classified Operation Accessi-
bility (COA)

consider CM as a set of classified methods in a class C, CM =
cmi, i ∈ {1, 2, . . . , n}, and CPM classified public methods as
CPM = cpmi, i ∈ {1, 2, . . . , n} COA(C) = |CPM|/|CM|

Classified Mutator Attribute
Interactions (CMAI)

consider a set of mutator methods in a class C as MM =
mmi, i ∈ {1, 2, . . . ,mm}, and CA the classified attributes
CA = caj , j ∈ {1, 2, . . . , ca}. Let (CAj) be the number of
mutator methods which may access classified attribute (CAj).
Then, CMAI can be expressed as: CMAI(C) = j=1ĉa (CA j)
/ (|MM|*|CA|)

Classified Accessor Attribute
Interactions (CAAI)

consider a set of accessor methods in a class C as AM =
mmi, i ∈ {1, 2, . . . , am}, and CA the classified attributes
CA = caj , j ∈ {1, 2, . . . , ca}. Let (CAj) be the number of
accessor methods which may access classified attribute (CAj).
Then, CAAI can be expressed as: CAAI(C) = j=1ĉa (CA j)
/ (|AM|*|CA|)

Classified Attributes Interac-
tion Weight (CAIW)

consider a set of classified attributes CA in a class C as CA =
cai, i ∈ {1, 2, . . . , ca}, and A the set of attributes A = aj , j ∈
{1, 2, . . . , a}. Let (CAj) be the number of methods which may
access classified attribute (CAj), and (Ai) be the number of
methods which may access the attribute (Ai), Then, CAIW
can be expressed as: CAIW(C) = j=1ĉa (CA j) / i=1â (A i)

Classified Methods Weight
(CMW)

consider CM as a set of classified methods in a class C, CM =
cmi, i ∈ {1, 2, . . . ,m}, and M the set of all methods as M =
mj , j ∈ {1, 2, . . . , n} COA(C) = |CM|/|M|

Vulnerable Association with
in a class (VAClass)

consider CA as a set of classified attributes in a class C,
CA = cai, i ∈ {1, 2, . . . ,m}, and M the set of all methods
as M = mj , j ∈ {1, 2, . . . , n}, and (Mj) the number of classi-
fied attributes associated with the method mj . Then VAClass
is: VAClass(C) = j=1n̂ (m j) / (|CA|*|M|)

95

2.4.1.3 Code Smells

Code smells violate fundamental design principles and indicate software quality deteri-

oration that makes software hard to maintain [484, 485]. Smells are indicators of deeper

design issues in the software that negatively impact software design quality [485]. We em-

ployed DesigniteJava [486] to detect smells on the three granularities listed below. The tool

has been validated [487] and used in empirical studies [488, 487].

Architecture smells: Cyclic Dependency, Unstable Dependency, Ambiguous Interface,

God Component, Feature Concentration, Scattered Functionality, Dense Structure.

Design smells: Abstraction Design Smells (Duplicate Abstraction, Imperative Abstrac-

tion, Feature Envy, Multifaceted Abstraction, Unnecessary Abstraction, Unutilized Ab-

straction), Encapsulation Design Smells (Deficient Encapsulation, Unexploited Encapsula-

tion), Modularization Design Smells (Broken Modularization, Cyclically-dependent Modu-

larization, Hub-like Modularization, Insufficient Modularization), Hierarchy Design Smell

(Broken Hierarchy, Cyclic Hierarchy, Deep Hierarchy, Missing Hierarchy, Multipath Hier-

archy, Rebellious Hierarchy, Unfactored Hierarchy, Wide Hierarchy).

Implementation smells: Long Method, Complex Method, Long Parameter List, Long

Identifier, Long Statement, Complex Conditional, Virtual Method Call from Constructor,

Empty Catch Block, Magic Number, Duplicate Code, Missing Default.

2.4.2 Metrics for Web Services

2.4.2.1 Interface, Code and Service Metrics

We identified a set of metrics for Web Services that can be divided into three categories:

interface, code and quality of service attributes. Interface level metrics are used to measure

the complexity and the usage of service interfaces (e.g. WSDL files) such as the number of

operations. Code level metrics are more related to measure the quality of the source code

96

of the services using mainly static analysis. It is possible for any web service to extract the

pseudo code of the implementation of the operations in the interface which is enough to get

code level static metrics such as coupling and cohesion.

As Web service technology suggests that the Web service is accessible only through its

WSDL, we use the JavaTM API for XML Web Services (JAX-WS)1 to generate the Java

artifacts of the Web service including: Depth of Inheritance Tree (DIT), Weighted Methods

per Class (WMC), and Coupling Between Objects (CBO). Our approach is based on the

ckjm tool (Chidamber & Kemerer Java Metrics)2. Note that for all code-level metrics were

extracted using our parser implemented in our previous work [348].

Table 2.13 summarizes all the used metrics at different levels.

Table 2.13: Web service metrics [11]

Metric Name Definition Metric Level
NPT Number of port types Interface
NOPT Average number of operations in port types Interface
NBS Number of services Interface
NIPT Number of identical port types Interface
NIOP Number of identical operations Interface
ALPS Average length of port-types signature Interface
AMTO Average meaningful terms in operation names Interface
AMTM Average meaningful terms in message names Interface
AMTMP Average meaningful terms in message parts Interface
AMTP Average meaningful terms in port-type names Interface
NOD Number of operations declared Code
NAOD Number of accessor operations declared Code
ANIPO Average number of input parameters in operations Code
ANOPO Average number of output parameters in operations Code
NOM Number of messages Code
NBE Number of elements of the schemas Code
NCT Number of complex types Code
NST Number of primitive types Code
NBB Number of bindings Code
NPM Number of parts per message Code
COH Cohesion: The degree of the functional relatedness of the operations of the service Code
COU Coupling: A measure of the extent to which inter-dependencies exist between the service modules Code
ALOS Average length of operations signature Code
ALMS Average length of message signature Code
Response Time Time taken to send a request and receive a response QoS
Availability How often is the service available for consumption QoS
Throughput Total Number of invocations for a given period of time QoS
Successability Number of response / number of request messages QoS
Reliability Ratio of the number of error messages to total messages QoS
Compliance The extent to which a WSDL document follows WSDL specification QoS
Best Practices The extent to which a web service follows WS-I Basic Profile QoS
Latency Time taken for the server to process a given request QoS
Documentation Measure of documentation (i.e. description tags) in WSDL QoS

1http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
2http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/

97

2.4.2.2 Service Antipaterns

Service antipatterns are examples of recurrent bad design solutions that designers and

developers use when implementing a service [489]. They initially appear to be appropriate

and effective solutions to a problem, but they end up having bad consequences that outweigh

any benefits. Software engineers often introduce antipatterns unintentionally during the

initial design or during software development due to bad design decisions, ignorance or time

pressure [12]. Antipatterns make the maintenance and the evolution of services hard and

time-consuming. Most of these antipatterns can be detected using the interface and code

quality metrics that were defined in the previous sub-section [12]. We selected the following

types of antipatterns extracted from previous work [12]:

• Multi Service: Also called God object web service, represents a service implementing

a multitude of methods related to different business and technical abstractions. This

service aggregates too many methods into a single service, and it is not easily reusable

because of the low cohesion of its methods and is often unavailable to end-users because

it is overloaded [490]

• Nano Service: Is a too fine-grained service whose overhead (communications, mainte-

nance, and so on) outweighs its utility. This antipattern refers to a small web service

with few operations implementing only a part of an abstraction. It often requires sev-

eral coupled web services to complete an abstraction, resulting in higher development

complexity, reduced usability [490]

• Chatty Service: Represents an antipattern where a high number of operations, typi-

cally attribute-level setters or getters, are required to complete one abstraction. This

antipattern may have many fine-grained operations, which degrades the overall perfor-

mance with higher response time [491, 492]

• Data Service: An antipattern that contains typically accessor operations, i.e., getters

and setters. In a distributed environment, some web services may only perform some

98

simple information retrieval or data access operations. A Data web service usually

deals with very small messages of primitive types and may have high data cohesion

[426]

• Ambiguous Service: Is an antipattern where developers use ambiguous or meaningless

names for denoting the main elements of interface elements (e.g., port-types, opera-

tions, and messages). Ambiguous names are not semantically and syntactically sound

and affect the discoverability and the reusability of a web service [493]

These five antipatterns are the most frequently occurring ones in service based systems

based on recent studies [426, 424, 494].

2.4.3 Multi-Objective Refactoring Using NSGA-II

2.4.3.1 Algorithm Overview

Multi-objective optimization has been widely applied to refactoring problems to find

trade-offs when searching for solutions. Non-Dominated Sorting Genetic Algorithm II

(NSGA-II) [495] (1) is the dominant multi-objective optimization algorithm that has been

used in search-based software engineering, including search-based refactoring [5, 6, 496, 321,

55, 497]. NSGA-II is designed to find a set of non-dominated solutions (a Pareto-front) in

which each solution is a sequence of refactorings that provides a compromise among conflict-

ing objectives (e.g., quality metrics).

Algorithm 1 NSGA-II algorithm.
Input: System to evaluate and list of refactoring types
Output: Non-dominated refactoring solutions
Generate a random population P and evaluate the objectives while the stopping condition is not reached
do

Select individuals M from P using Binary Tournament Selection Apply crossover operation on M to
generate the offspring population O Apply mutation operation on O Update P by combining the
parent and offspring populations

return P

Initially, a starting population P is created using a random procedure. These solutions

then undergo crossover and mutation, producing offspring O, and the process is repeated

99

until the stopping condition is reached (in our case, a maximum number of generations). The

objective values of the solutions are computed and change operators are applied to create the

next generation. In most of existing adaptations the algorithm finds non-dominated solutions

balancing several conflicting objectives (i.e. software metrics). The different objectives can

be normalized if they have different scales. Each objective can be written as follow:

Objectivei =
Mafter

i −M before
i

M before
i

(2.3)

where M before
i and Mafter

i are the values of the Metricsi before and after applying a solution

(or sequence of refactorings), respectively.

The search space explored by NSGA-II consists of different refactoring operations ap-

plied to different code locations where each operation is represented by a refactoring type

(e.g., Move Method) and its parameters (e.g., source class, target class, attributes). In this

dissertation, we selected 18 refactoring types discussed in the next section 2.14. A vector in

which each element represents a refactoring operation is used to represent a solution. Each

refactoring operation must satisfy a set of pre- and post-conditions defined by Opdyke [33]

to maintain the behavior of the system.

2.4.3.2 Refactoring Operations

The refactoring operations considered in the approaches proposed in this thesis cover

18 operations selected from different categories: ”Moving features”, ”Data organizers”,

”Method calls simplifiers”, and ”Generalization modifiers”. These refactorings are listed

in Table 2.14. We selected these refactoring operations because they have the most im-

pact on code quality attributes. Recent empirical studies on refactoring show that these

refactorings are widely used in open-source projects[498, 475, 73].

100

Table 2.14: Refactoring types considered in our study

Refactoring Types Definition
Encapsulate Field Changes the access modifier of public fields to pri-

vate and generates it getter and setter.
Increase Field Security Changes the access modifier of protected fields to

private, and of public fields to protected.
Decrease Field Security Changes the access modifier of protected fields to

public, and of private fields to protected.
Pull Up Field If two subclasses have the same field then this rule

moves this field to their superclass.
Push Down Field If a field is used by only some subclasses then this

rule moves this field to those subclasses.
Move Field Moves a field to another class.
Increase Method Security Changes the access modifier of protected methods

to private, and of public methods to protected.
Decrease Method Security Changes the access modifier of protected methods

to public, and of private methods to protected.
Pull Up Method If two subclasses have the same method then this

rule moves the method to their superclass.
Push Down Method If a method is used by only some subclasses classes

then this rule moves the method to those sub-
classes.

Move Method Moves a method to another class.
Extract Class/Method Creates a new class/method from an existing one.
Extract Superclass If two subclasses have similar features, this rule cre-

ates a superclass and moves these features into it.
Extract Subclass If two superclasses have similar features, this rule

creates a subclass and moves these features into it.
Rename Method/Class/Field Changes the name of a code element.

101

CHAPTER III

Improving the Process of Identifying Potential Refactoring Opportunities

Identifying refactoring opportunities in object-oriented code is an important stage that

precedes the actual refactoring process. Manually inspecting and analyzing the source code

of a system to identify refactoring opportunities is a time-consuming and costly process[499,

500, 501, 298, 502, 297, 296, 503]. Researchers in this area typically propose fully or semi-

automated techniques to identify refactoring opportunities [22, 23, 24, 27, 28, 30, 7]. However,

these techniques are usually common for object-oriented programs and revolve around the use

of quality metrics such as coupling, cohesion, and the QMOOD quality attributes. Existing

work fails to consider the context when finding refactoring opportunities which can make

the identification process less efficient. For example, Web services have their unique design

and components that are different from mobile apps and vice versa. Exploring the unique

characteristics of each artifact is important when performing refactoring because systems

are different from one another, so they should each be refactored differently, too. With the

increasing use of Web services, mobile apps, and GitHub repositories, there is a need to come

up with a process to identify the refactoring opportunities tailored to each project type.

To address this gap, we propose the following contributions:

102

3.1 Understanding the Impact of Code Quality and Security Metrics of Mobile

Apps on User Reviews

3.1.1 Introduction

Current software development practices, such as DevOps [504], are moving away from

traditional processes of releasing versions based on a fixed timeline and towards shorter

development cycles. These cycles feature frequent releases to deliver features, fixes, and

updates in close alignment with business objectives to better address customer needs [505].

In particular, continuous development and frequent release practices are widely used for

mobile apps. Due to the large number of users and the competitive market, developers and

managers strive to respond quickly to user needs, preferences, and complaints.

The timely detection of emerging quality and security issues, especially for mobile apps,

is critical for software development teams to efficiently prioritize software maintenance ac-

tivities and to satisfy their customers [388, 506, 1]. Most marketplaces such as Google Play

Store, Apple Store, and Windows Phone App Store allow end-users to review apps based on

scores of one to five stars, as well as free text that may highlight bugs, feature requests, se-

curity issues and quality challenges such as stability, energy usage, response time, etc. These

reviews can reveal important concerns about quality and security [388, 507]. This feedback

is relevant for developers to understand the impact of their changes and to schedule and

prioritize their maintenance efforts.

Due to the large amount of review data, most of the existing studies have focused on the

analysis and mining of user reviews to automatically classify them into topics (e.g. security,

bugs, features, etc.) using keywords and topic modeling [384, 389, 385, 387, 388]. Recent

related work used textual similarities, e.g., cosine similarity, between the reviews and the

files of the system to identify candidate files to be inspected [1, 394], similar to existing bug

localization techniques [508, 509, 510]. However, textual similarity has several limitations

due to the amount of noise (e.g., misspelled words, non-English words, spam, etc.) in user

103

reviews and the difference between technical vocabulary used by programmers in the source

code and the terms employed in end-user feedback.

Our industrial partner, Under Armour, developed a large mobile app, known as MyFit-

nessPal,1 that tracks diet and exercise to determine optimal caloric intake and nutrients

according to a user’s objectives. This app received 10,347 very low ratings in January and

February 2019 alone which are 73% of all the reviews received by the app in the previous year

(i.e., 2018). Many users removed the app from their phones during that period. The major

complaints were about severe performance issues: the app became very slow after adding a

new feature to provide personalized recommendations and to support many new languages.

This issue was fixed in June 2019. But this was not an isolated event; a similar scenario

happened to the company in March 2018. A new release affected 150 million accounts due

to security problems in MyFitnessPal.2 These critical situations might have been mitigated

more quickly if the issues raised in the reviews were identified earlier. However, the pro-

grammers had a hard time understanding the impact of code security metric changes as they

created new versions, failing to determine if and when they should have fixed their app. For

this reason, we claim that user reviews complement quality and security assessments based

on source code metrics to identify critical quality issues efficiently and in a timely way.

While the detection of code quality and security issues is widely studied in the literature

[55, 321, 511, 512], the majority of existing works identify issues by analyzing the source code

using a set of static analysis metrics. One common response of developers when existing tools

report quality problems (i.e., the values of quality metrics violate the recommended thresh-

old) is ”So what?”. Clearly, developers need to see a connection between quality metrics

and end-user perceived quality to motivate urgent action. In fact, there is a lack of under-

standing of the impact of code quality and security metric changes on customer satisfaction,

which makes risk management, and the management of technical debt, challenging.

In this contribution, we first studied the correlation between user-perceived quality and

1https://www.myfitnesspal.com/
2https://money.cnn.com/2018/03/29/technology/business/myfitnesspal-data-breach-stolen/index.html

104

security of mobile apps based on reviews and code metrics over multiple releases to identify

the relevant metrics that can be used for linking user reviews to source code. To filter quality

and security topics, we reproduced a recent study [513] based on Adaptive Online Latent

Dirichlet Allocation (AOLDA) [514], as this is a common method to cluster and track the

variations of the topics of text streams. Furthermore, AOLDA showed high accuracy based

on an existing large dataset of manually inspected reviews [513]. We analyzed the source

code of each release to extract the QMOOD quality attributes [515], and a set of code

security metrics [472, 466] based on static analysis. We selected these metrics since they can

be calculated by static analysis, and they were widely used and validated in the research

literature (including industrial projects) [55, 321, 516].

Hence, our first contribution is an empirical inquiry into the relationship between mobile

app code quality and security metrics and user reviews. This results in our first research

question (RQ1):

RQ1: Is there a strong correlation between the user-perceived quality and security of

apps and source code quality and security metrics?

Based on the outcomes of this empirical study linking code quality and security metrics

to user reviews, we designed and tuned a framework—QS-URec. This framework is used

to address emerging quality and security issues by analyzing both user reviews and source

code metrics. QS-URec recommends the files to be inspected and links them to specific user

reviews. We identified the files responsible for such significant changes of code quality and

security metrics, validated in RQ1, that may correspond to the highlighted issues in user

reviews.

The second contribution is an approach to automatically link quality attribute change

requests from user reviews to files. The empirical assessment of QS-URec leads to the

formulation of the next two research questions.

RQ2: How effective is our approach, QS-URec, in linking files to security and quality

issues identified in user reviews?

105

RQ3: How does our approach, QS-URec, perform compared to state-of-the-art tech-

niques in linking files to user reviews?

By identifying files that are likely to be problematic, we can help developers prioritize

their efforts, allowing them to find quality and security issues more efficiently. In addition,

alerting developers about these potential problems might help them determine files that are

good candidates for re-architecting. We also conducted an industrial validation of QS-URec

to benefit from the evaluation and insights of the original developers of a popular mobile

app.

To address these research questions, we adapted an existing dataset of 50 popular mobile

apps from Google Play3 with 290,000 reviews [517, 1] to focus only on quality and security

topics. In addition, we analyzed a popular mobile app, MyFitnessPal, provided by our indus-

trial partner, Under Armour.4 The app serves millions of users and has received over 400,000

reviews. Experimental results show strong correlations between several security and quality

metrics and user ratings and reviews. QS-URec identified emerging quality and security app

issues and prioritized the files to be inspected and fixed with higher precision and recall.

Our framework outperforms a state-of-the-art approach relying on textual similarities [1].

A manual analysis of the results with the original app developers emphasizes the efficiency

of QS-URec and the importance of considering user reviews to detect and fix security and

quality issues.

To sum up, the primary contributions of this project are as follows:

1. An empirical study to understand the impact of source code quality and security met-

rics on user feedback and vice-versa;

2. A novel framework, coined QS-URec, that automatically links identified security and

quality related user reviews to the files responsible for these issues;

3https://play.google.com/store
4https://www.underarmour.com/en-us/

106

Figure 3.1: Overview of the QS-URec Approach

3. An empirical validation of this framework on both open-source Android apps and a

large real-world app as well as a comparison with an existing baseline.

3.1.2 QS-URec: The Proposed Approach

The goal of our approach, QS-URec, is to validate possible correlations between user-

perceived quality and security of mobile apps, and the evolution of the code quality and

security of these apps. We aim to identify relevant code quality and security aspects (e.g.

quality/security metrics [480, 468, 466]) that can match the issues identified in the user

reviews. Based on the outcomes of this empirical validation, QS-URec is able to link the

quality and security issues of user reviews to the files to be fixed in the source code. To this

end, QS-URec applies the following steps:

1. Classification and filtering of user reviews (related to security and quality topics) and

static analysis of source code to extract quality and security metrics;

2. Correlation analysis to identify relevant code metrics that reflect user perceived quality

and security issues;

3. Linking user reviews to the files to be fixed.

Figure 3.1 summarizes our approach. It takes a large set of user reviews of mobile apps

as input, along with multiple releases of the corresponding code bases. There is a large body

of work to classify user reviews [518, 388, 519]. We leveraged an existing study [513] that

107

classifies user reviews with high accuracy. We classified user reviews and kept only the ones

related to quality and security issues. We mapped user reviews to the releases of the apps

automatically based on the time dimension (e.g. releases and review dates). For each release,

we analyzed the source code automatically to extract significant security or quality deviation

using qmood quality attributes (refer to Table 2.10), and a set of code security metrics (refer

to Table 2.12). Based on the collected data of user reviews and code metrics, we identified

relevant metrics that can reflect the user-perceived quality and security issues. To do that, we

performed a correlation analysis to prove that there is indeed a relationship between quality

and security metrics and user rating of reviews related to security and quality. We used the

correlation results to identify the files responsible for significant changes in code quality and

security metrics that may correspond to the highlighted issues in the user reviews. Then,

the developer can decide which files to inspect and fix to address the problems identified in

the reviews and therefore improve the app rating for the next releases.

3.1.2.1 Preprocessing

In this step, we aim to prepare the data required for the correlation analysis between

user perceived quality and security, and issues identified in the source code. This phase is

executed whenever new data on mobile apps are collected.

3.1.2.1.1 Online User Reviews. Typically, users provide app reviews via mobile

phones that have small keyboards. Therefore, reviews may contain noisy data including

misspelled and repetitive words, as well as uninformative details such as feelings of the

users. We replicated the steps of a recent study [513] to identify topics from mobile user

reviews. We filtered the identified topics and discarded reviews that were not related to

quality and security.

Extraction and formatting of User Reviews. Users express their overall opinions about

apps through the star-rating mechanism on a scale of one to five. A five-star rating means

108

that the user is very satisfied with the app and a one-star review represents dissatisfaction.

It is common for mobile apps to receive thousands of reviews per week [394].

We first converted all the words in the reviews into lowercase and applied the prepro-

cessing method described by Man et al. [520] for lemmatization. We adopted a well-known

rule-based technique [521, 520] to fix repetitive, misspelled, and non-English words. Then,

we applied filtering to reduce irrelevant words related to emotions and abbreviations using

a list of 78 pre-defined keywords together with the stop words provided by nltk [522] as

detailed by Gao et al. [513].

Topic Identification and User Review Mapping. We used the Adaptive Online Latent

Dirichlet Allocation (aolda) [514] method to cluster and track the variations of topics in

text streams following the work of Gao et al. [513]; aolda identified the following topics:

“Complexity”, “Design UX”, “Use cases”, “Bugs”, “Feature Requests”, “Frequency”, “Up-

date”, “Camera & Photos”, “Video”, “Performance”, “Security Accounts”, “Streaming”,

“Devices”, “Privacy”, “Connectivity”, “Notifications & Alerts”, “Audio”, “Gaming”, “Cus-

tomer Support”, “Location Services”, “Sign Up & Login”, “Advertising”, “Payment”, “Pric-

ing”, “Social & Collaboration”, “Battery”, “Internationalization”, “Operating System”, and

“Import Export”. In this study, we focus on reviews related to quality and security issues

because they are major challenges in mobile app development and can be quantified, in part,

using static analysis of the source code. By software quality, we mean structural quality

which refers to how the code meets non-functional requirements that support the delivery

of the functional requirements. We selected the following tags for security: “Security &

Accounts”, “Privacy”, “Sign Up & Login” and “Payment”, and the following tags for qual-

ity: “Complexity” and “Performance”. We chose to use the unsupervised technique aolda

because of the large number of unlabeled reviews that we are including in our study. It is

also easy to use and various options and parameters can be selected. Then, we manually

checked a large sample of the reviews and kept only the ones related to security and quality

topics as detailed in the validation section. Figure 3.2 shows examples of reviews related to

109

Figure 3.2: Example reviews related to quality issues

quality issues that were identified by our approach. The slowness and unreliability of the

app were linked to the effectiveness and functionality quality metrics.

We do not dwell on the topic identification for three reasons: (1) clustering of topics is

not a contribution of this project—it is an input for QS-URec; (2) we have manually checked

the reviews related to security and quality for accuracy; and (3) we used publicly available

datasets on clustered user reviews [1] in our validation, and aolda was primarily used to

extend the available data with more projects including the industrial system.

We automatically mapped user reviews to the releases of the apps. If the app had only

one release v, then all the reviews collected for that app were assigned to v. If the app had

two or more releases, then for any two consecutive releases vi and vi+1 that were between

the dates di and di+1, we assign all the reviews that were submitted between di and di+1

to vi. We are aware that this automated mechanism might suffer from imprecision in cases

where a user who has the version vi installed on their phone comments the app only after

the release of vi+1, i.e., in these cases, the user review is wrongly associated to the version

vi+1. Nevertheless, previous work has shown that this happens rarely and, in any case, it is

not possible to control for this type of imprecision [523, 395].

3.1.2.1.2 Mobile Apps Source Code Analysis. After collecting the releases of mul-

tiple mobile apps, they were parsed to extract quality and security metrics using static

analysis.

Quality metrics We selected the Quality Model for Object Oriented Design (qmood) to

evaluate code quality (see Table 2.10). The design metrics can be easily computed using

110

Figure 3.3: A screenshot of our tool that shows quality/security computation results

static analysis of the code. We implemented the qmood model, based on the Soot library

[524], to extract metrics at the file level. Figure 3.3 shows a table from the report generated

by our tool for a mobile application. It contains the qmood metrics calculations for each

class of the system as well as the security metrics that we are going to see in the next

subsection.

Security Metric Extraction. To quantify code security, we focused on the security

metrics described in Table 2.12. To compute these security metrics, we needed to identify

the security-sensitive elements. To do that, we took inspiration from existing studies [525,

468, 526, 527] that made use of text mining. We first gathered a set of keywords related to

security [525, 526, 527] and indicators of confidential information from different sources such

as code, release notes, security bugs, vulnerability reports, commit messages, and security

questions/tags on Stack Overflow—Figure 3.4 reports these security keywords. Next, we

computed a textual criticality score, based on cosine similarity, for each file to estimate the

extent to which the file was related to security concerns. The higher the score was the

more likely the file needed to be protected. For that, we preprocessed the source code using

tokenization, lemmatization, stop word filtering, and punctuation removal [526, 527]. Then,

we computed the cosine similarity between each file and the set of keywords. Finally, we

manually validated the top 10 critical files and use their critical attributes (fields that have

names that match one of the keywords from the list we gathered at the beginning) to identify

the critical attributes in all the other files that will be used to compute the security metrics.

111

Figure 3.4: Security keywords used in the security metrics calculations

3.1.2.2 Correlation Analysis

To identify the files that needed to be modified based on the user reviews, we first needed

to confirm the correlation between the quality and security metrics, and the user ratings of

reviews related to quality and security. After collecting data, filtering the reviews, and

mapping them to their releases, we computed the average of quality and security metrics for

each release as well as the average rating of reviews related to security and quality assigned

to that release. Then, we computed the correlation between metrics and user ratings using

the Spearman correlation coefficient (ρ) [528]. We chose this coefficient because the data is

not normally distributed. The Spearman coefficient may take values between +1 to -1. A

value of +1 means that there is a perfect association of ranks, a value of zero means that

there is no association between ranks and a value of -1 means that there is a perfect negative

association of ranks [529].

112

3.1.2.3 Linking User Reviews to Source Code Quality and Security Issues

After confirming that there is a correlation between source code quality and security

metrics and the increase/decrease of ratings, we are going to find the files that are the root

causes of complaints reported in user feedback. The idea can be summarized as follows: if

we notice that there is a considerable number of feedback with low rating that co-occurred or

followed a drop in the security or quality metrics of some of the files, it is safe to conclude that

the complaints in the user reviews are the results of the degradation of the security/quality

metrics in those files. Therefore, the developers need to focus their attention on those files

and try to refactor their code to improve their quality and security. To identify the files

responsible for the highlighted quality and security issues in the user reviews at each release,

we did not consider individual user reviews when linking to files. Instead, we identified if

there is a large enough number of complaints to create a trend of issues in quality or security

between each pair of releases. Then, we computed the change in quality/security metrics

between releases. Next, we multiplied each metric by its corresponding correlation value to

assign it a lighter or heavier importance in reflecting quality/security issues. After that, we

summed up the new values of the security and quality metrics separately per file as defined

in the following two formulas:

RQ =
6∑

n=1

ciQi (3.1)

RS =
8∑

n=1

ciSi (3.2)

Where Qi is a QMOOD metric defined in Table 2.10, Si is a security metric defined

in Table 2.12 and ci is their corresponding correlation coefficient. We ranked the files by

assuming that the ones with the largest decrease in security/quality measures are the ones

responsible for the security/quality deterioration. Finally, we asked developers to manually

check their relevance and correctness.

113

3.1.3 Experiments and Results

This section presents the methodology adopted to address our research questions as well

as the results achieved on the considered set of mobile applications.

3.1.3.1 Study Design

To address each of the three research questions described in the introduction section, we

defined the following metrics and applied them on a dataset, described in the next section,

containing a total of 50 mobile apps.

3.1.3.1.1 Evaluation Metrics For RQ1, we studied the correlation between the evo-

lution of the ratings of the reviews related to quality and security for each release and the

evolution of the code quality and security metrics for the same release. In this context, evo-

lution refers to either an increase or decrease of the ratings and code metrics over time. The

goal of this research question is to check if some code metrics we considered are correlated

with the user-perceived quality and security. Then, we used the results of RQ1 to tune the

weights of our approach, QS-URec, to establish links between files and security/quality issues

identified in the trend of user reviews for each release.

For RQ2, we evaluated the performance of our approach, QS-URec, in linking files to

security and quality issues identified in user reviews. Thus, we defined three measures:

precision, recall, and overlap. Precision and recall for both security and quality recommended

files are computed as:

Precision =
|FQS−URec ∩ FQS|
|FQS−URec|

(3.3)

Recall =
|FQS−URec ∩ FQS|

|FQS|
(3.4)

Where FQS−URec is the set of ranked files related to security or quality issues recommended

by our approach, and FQS is the set of expected files that are responsible for the security

114

or quality issues as identified in an existing dataset [1]—reported in the next section. We

have calculated the precision and recall measures separately for security and quality issues

for each release when the average ratings of identified security/quality reviews decrease by

at least 1. We ranked the files using our approach based on the formulas defined in Section

3.1.2.3 and calculated the precision and recall for the top 10 files. We selected 10 files since

the dataset [1] we used identified a maximum of 10 issues/files per cluster. The Overlap

measure computes a ratio between files correctly recommended by our approach based on

user reviews and the total number of files recommended by our approach. To calculate this

measure, we downloaded the repositories containing all the commits for all the apps used in

our validation and determined the files that were actually changed from one release to the

next one. We checked these files to understand if the changes performed by the developers

were actually addressing quality or security issues. The Overlap measure is defined as follows:

Overlap =
|FQS−URec ∩ F |
|FQS−URec|

(3.5)

Where FQS−URec is the set of files related to security or quality issues recommended by

QS-URec, and F is the set of files modified by the developers as extracted from the commits.

We have also answered RQ2 using an app provided by our industrial partner, Under Armour.

We decided not to combine the results of the open-source apps with those of the industrial

one since the original developers of the Under Armour app were involved in the validation,

unlike the open-source apps.

To answer RQ3, we calculated the quality/security precision and recall of QS-URec as well

as QS-URec without considering the correlation results (e.g., equal weights for all metrics).

We compared the above precision and recall results with the work of Palomba et al. [1]

that is based on textual analysis to link reviews clusters to source code, as discussed in the

related work. We selected these two approaches as our baseline for the following reasons.

The comparison with the equal-weights QS-URec approach can be used to estimate the

benefits of our correlation analysis in selecting the relevant code quality and security metrics.

115

Table 3.1: Summary of the mobile apps considered in our study.

Category Apps Avg releases Avg reviews
Books & Reference 3 9.33 8,199.33
Personalization 4 6 6,889
Tools 16 9.4 3,713
Music & Audio 3 24.66 2524
Photography 3 2 12,962.33
Maps & Navigation 2 3.5 1,269
Lifestyle 1 1 308
Education 1 23 15,693
Productivity 4 8.5 1,366
Video Players & Editors 2 9.5 14,603.5
Board 1 1 302
Communication 2 23 12,233.5
News & Magazines 1 16 701
Puzzle 2 1 3253.5
Travel & Local 2 2.5 10,070.5
Role Playing 1 1 22,337
Social 1 14 4,134
Arcade 1 1 511
Total 50 453 290,330

Furthermore, the comparison with the work of Palomba et al. [1] is useful to validate whether

the use of code quality and security metrics can be more accurate than textual analysis in

linking review issues to source code.

Since we are comparing multiple techniques to our approach on multiple releases of

projects, we used a one-way anova statistical test with a 95% confidence level (α = 5%) to

find out whether the sample results of different approaches are significantly different when

compared to our approach based on each of the evaluation metrics (precision, recall, and

overlap). Since the one-way anova does not report the size of the difference, we used

the Vargha-Delaney A measure [530], which is a non-parametric effect size measure. Given

the different evaluation metrics, the A measure provides the probability that running our

approach yields better performance than running the two other techniques. If the two

algorithms are equivalent, then the measure provides A = 0.5.

116

3.1.3.1.2 Dataset We used and extended an existing dataset [1] with a total of 290,330

reviews and their ratings belonging to 50 android apps of different sizes and categories. Table

3.1 summarizes category-wise information about these apps that we used in our study. We

added new apps to the dataset and classified them. All the reviews, their ratings, and the

detailed list of the apps can be found in our online appendix [517]. All the apps that we

use are written in Java and their source code is available on Github. We used the Adaptive

Online Latent Dirichlet Allocation (aolda) [514] method to cluster the reviews and find the

discussed topics. After that, we manually checked them, filtered the reviews and kept only

the ones related to quality and security. We followed the procedure explained in the study by

Palomba et al. [1] to extend the current dataset. Two of the authors, as inspectors, analyzed

the change requests included in the clusters of reviews and detected the classes that needed

to be fixed. Each inspector performed the task independently. Once the task was completed,

the two different sets of links were compared and the inspectors discussed the differences they

found in order to resolve the disagreement and reach a common decision. This procedure was

performed before running any of the techniques used in these experiments. To avoid possible

bias, our final dataset included mainly apps that are not inspected by the authors, along

with few apps that we added. As an additional evaluation, we also assessed our approach

in collaboration with the original developers of a widely used industrial mobile app without

the intervention of the authors (as detailed later).

Last but not least, we also downloaded the source code of 453 releases of these 50 apps.

We computed the quality and security metrics and we extracted the files that were changed in

the commits of the considered releases. Then, we manually inspected the files related to the

security and quality issues to double-check if the introduced code changes were actually fixing

them. The security/quality issues were actually identified/located within a problematic file

based on the tags and opened issues within the projects.

Replication Package. For the sake of verifiability and reproducibility, all the data,

results, and tools used in these experiments are publicly available in the online appendix

117

[517].

3.1.3.2 Analysis of the Results

We report the results of the study by discussing each research question independently.

3.1.3.2.1 Results for RQ1 Table 3.2 and Table 3.3 summarize the results of correlation

analysis between the evolution of quality/security metrics and the ratings of user reviews

related to quality and security issues. The symbol “++” in the table implies a strong

correlation where the Spearman correlation coefficient has a value greater than 0.7. Similarly,

the symbol “+” refers to a moderate strength of the correlation (0.5 ≤ ρ < 0.7). The symbol

“*” reflects that the correlation coefficient is less than 0.5 and thus a poor correlation. We

combined all the data belonging to different apps when checking the correlation to ensure

that we have enough data to validate our hypotheses.

The results, as shown in Table 3.2, revealed a strong positive correlation between user

ratings and the metrics Extendibility, Reusability, and Functionality. The other metrics of

Effectiveness, Flexibility, and Understandability did not show a strong correlation with the

user ratings. The strong correlation with the Functionality metric implies that changes in

the functionality of the app are consistent with user review ratings. The strongest positive

correlation was observed for the Extendibility metric, with a correlation coefficient of 0.8.

It is clear that several performance issues, such as response time, can be related to the

large number of code clones due to poor modularization of the code. In fact, code clones are

mainly observed within projects that have low abstraction/extendibility and the consequence

is a high number of calls which can impact the performance/response time. Regarding the

absence of correlation with some quality metrics, such as Understandability, this can be

explained by the fact that these metrics are more related to the quality of the code from the

perspective of developers rather than users, who may not notice the short-term impact of

deterioration in these metrics when using the app.

118

Table 3.2: Correlation analysis results between quality attributes and review ratings

QMOOD metrics Spearman correlation coefficient
Effectiveness *(0.037)
Extendibility ++(0.862)
Flexibility *(0.061)
Functionality +(0.574)
Reusability ++(0.768)
Understandability *(0.241)

¤ Key findings: Our analysis reported that all the qmood quality attributes are pos-

itively correlated with the user-perceived quality. Extendibility, Re-usability, and Func-

tionality are strongly correlated with user ratings, while there is no correlation between

Effectiveness, Flexibility, and Understandability and the user ratings.

Table 3.3 shows strong positive correlations between the evolution of the ratings and the

metrics CCDA, COA, VAclass, CIDA, and CAIW. The other metrics of CAAI, CMAI, and

CMW show low or no correlation with the ratings. The highest positive correlations were

observed for the CCDA and COA metrics (0.8 and 0.7, respectively). Both of these metrics

are related to the level of access to classes in the code. When the level of access is high,

an attack or code injection can be carried out relatively easily. The lowest correlation is

observed on the CAAI metric (ρ = 0.1) since this metric is mainly related to the access

for internal attributes within a class. Thus, the impact on the app in terms of security is

limited.

¤ Key findings: All the security metrics used in our study are positively correlated with

the user-perceived security. CCDA, COA, and VAclass metrics are strongly correlated

with the user ratings. CIDA and CAIW are moderatly correlated with the user rating.

There is no correlation between CAAI, CMAI, and CMW and the user ratings.

3.1.3.2.2 Results for RQ2 We evaluated the performance of QS-URec in linking files to

security and quality issues identified in user reviews. QS-URec was able to achieve an average

of 0.835, 0.860, 0.867, 0.864 in PrecisionQ, RecallQ, PrecisionS, and RecallS, respectively.

Figure 3.5 shows a boxplot for each metric calculated over all 50 apps. We decided to

119

Table 3.3: Correlation analysis results between security metrics and user review ratings

Security metrics Spearman correlation coefficient
CCDA ++(0.826)
CIDA +(0.593)
COA ++(0.782)
CAAI *(0.136)
CMAI *(0.223)
CAIW +(0.617)
CMW *(0.024)
VAclass ++(0.738)

calculate the precision and recall scores separately for the clusters of user reviews related

to security and quality. For the cluster of reviews related to quality, the lowest precision

was 0.67 for the Recurrence app, and the lowest recall was 0.73 for the Materialistic app.

For the cluster of reviews related to security, the lowest precision was 0.7 for the Recurrence

app and the lowest recall was 0.72 for Easy-Token. Thus, the Recurrence app had the

lowest precision and recall among all 50 apps. This is likely due to the low number of

reviews related to security and quality for this app; this app has only 292 reviews related

to quality and security, while other apps, such as Pixel Dungeon, have more than 22,000.

Furthermore, the Recurrence app has among the lowest number of releases among the 50

apps. Our approach was able to reach a perfect 1 in at least one of the evaluation metrics for

11 apps. However, we did not find that our approach achieved full correctness (precision)

and coverage (recall) in one app. Surprisingly, we found that our approach achieved either

full correctness or coverage for some apps with large numbers of security and quality reviews.

Thus, clusters with a large number of reviews can help identify important issues so that they

can be efficiently linked to the source code.

We carried out a manual analysis to investigate whether the developers actually fixed

these classes. This investigation evaluated the benefits of our tool in terms of identifying

relevant classes for developers to fix and to better manage their release plans. Figure 3.6

shows the distribution of the SecurityOverlap and QualityOverlap of all the apps. Table 3.4

shows the values of those metrics for each app. For the apps Avare, Open soduku, and Shortyz

120

Table 3.4: Percentage of files that were identified correctly

App Name SecurityOverlap QualityOverlap

Aard dictionary 0.61 0.55
Abstract art 0.3 0.11
AcDisplay 0.87 0.2
AFwallFirewall 0.7 0.26
Amaze File Manager 0.8 0.12
android squeezer 0.84 0.18
AsciiCam 0.7 0.5
avare 1 1
Bart Runner 0.5 0.14
Battery Circle 0 0
Battery Idicator Pro 0.41 0
Bodhi Timer 0.4 0.1
Camera MX 0.21 0
CamTimer 0.5 0.3
Catlog 0.75 0.64
clip stack 0 0
Coin Flip 0 0
color namer 0 0
EasyToken 0.2 0.2
edx 0.85 0.27
FastHub 0.96 0
FB reader 0.2 0.06
FrostWire 0.96 0.41
Hex 0.7 0.14
k-9 mail 0.62 0.18
Materialistic 0.89 0.33
MicDroid 0.2 0
Micopi 0.5 0.5
missed notification reminder 0.18 0.05
MobileOrg 0.98 0.64
MTG familiar 0.77 0.25
Multipicture live wallpaper 0.25 0.07
osmAnd 0.2 0.2
open soduku 1 0.8
path finder open reference 0.74 0.57
Persian Calendar 0.87 0.62
Pixel Dungeon 0.1 0.3
recurrence 0.44 0.44
share via http 0.67 0.67
shortyz crosswords 1 0.6
sls 0.71 0.39
sms backup plus 0.84 0.59
TaskBar 0.45 0.65
Terminal Emulator for android 0.68 0.32
Tinfoil for facebook 0.6 0.6
Trum Hunter 0.75 0.07
Vanilla Music 0.65 0.36
Vector Pinball 0.8 0.67
VX ConnectBot 0 0
wifi fixer 0.41 0.09

Average 0.5552 0.3028

121

Figure 3.5: Boxplot of the evaluation metrics for QS-URec, QS-URec without weights, and the work of
Palomba et al. [1]

crosswords, all the files recommended by QS-URec to solve security issues were actually

modified by the developers in subsequent releases. The apps that have a QualityOverlap and

SecurityOverlap equal to zero are the apps that have only one release, which means that the

repositories were inactive after their first release. There are a few apps, like AsciiCam and

Pixel Dungeon, that also have only one release; their developers submitted many commits

after the first release but they did not release a new version of the app. Figure 3.6 shows

that the average for the SecurityOverlap is larger than QualityOverlap with 0.55 and 0.3

as values, respectively. Developers are more likely to modify the files related to security

issues recommended by our approach compared to the ones related to quality. This might be

explained by the fact that security problems are easier to detect from reviews than quality

problems, which supports the usefulness and the need for our tool QS-URec. For instance,

Camera Mx made frequent releases, but its developers fixed only 21% on average of the files

related to security and none of the files that have quality issues.

122

Figure 3.6: Boxplot of the SecurityOverlap and QualityOverlap of all the apps

Table 3.5: Evaluation results using p-value and Vargha-Delaney A measure

Comparison
Security Precision Security Recall Quality Precision Quality Recall

p-value A measure p-value A measure p-value A measure p-value A measure
QS-URec vs QS-
URec without
weights

6.4E-19 0.78 7.9E-17 0.83 8.40637E-18 0.71 1.87E-19 0.77

QS-URec vs
Palomba et al. [1]

1.39E-22 0.84 8.92E-19 0.92 1.91037E-15 0.79 3.99E-19 0.84

¤ Key findings: QS-URec demonstrates high precision and recall in detecting the files

responsible for quality and security problems discussed in user feedback. We have also

found that developers missed files that are connected to user reviews related to quality or

security issues.

3.1.3.2.3 Results for RQ3 In this section, we compare the precision and recall values

exhibited by QS-URec, QS-URec without considering the correlation results (equal weights),

and the technique of Palomba et al. [1]. Figure 3.5 represents the boxplot of the distribution

of those four metrics for the three approaches. By looking at the figure it is clear that QS-

URec outperforms the other techniques in detecting the files that are responsible for quality

123

and security issues in the user reviews. QS-URec achieved an average of 0.83, 0.86, 0.86, and

0.86 in PrecisionQ, RecallQ, PrecisionS, and RecallS respectively. Without considering the

weights while ranking the files, QS-URec reached an average of 0.74, 0.78, 0.75, and 0.78 for

the same metrics. This difference in performance confirms the importance of our correlation

analysis to tune our approach and eliminate irrelevant metrics. Furthermore, the textual

similarity technique of Palomba et al. [1] was the lowest with an average of 0.71, 0.75, 0.7,

and 0.74, respectively, in PrecisionQ, RecallQ, PrecisionS, and RecallS. The results confirm

that the use of static analysis outperforms the textual analysis when linking user reviews to

source code. In fact, the vocabulary used in the source code is significantly different from

the natural language vocabulary used in user reviews. For instance, the Easy Token app did

not have enough documentation (e.g. comments, release notes, etc.), with a low numbers of

reviews (limited to 35 reviews); thus, the evaluation metrics of precision and recall were less

than 0.7, with 0.5 for the security precision.

Table 3.5 summarizes the p-value and A measure results of comparing QS-URec

with QS-URec without considering the correlation results and the technique of Palomba

et al. [1]. We chose a threshold probability value of p ≤ 0.05 to indicate sta-

tistical significance. The results show that all the p-values computed when compar-

ing QS-URec with the two other techniques are less than 0.05, and therefore we can

conclude that there is a statistically significant difference between our tool and the

other approaches. Similarly for the Vargha-Delaney A measure, we obtained values

larger than 0.5 on all 50 apps when comparing QS-URec with the other two ap-

proaches, which means that our tool outperforms the baseline with a large effect value.

124

¤ Key findings: According to our manual and statistical analysis, QS-URec outper-

formed the baseline techniques in identifying quality and security issues from user reviews.

This confirms that static analysis can provide better results than textual analysis when

linking user reviews of quality and security issues to the source code. We found that the

performed empirical study in RQ1 helped to find the right weights for the code quality

and security metrics.

3.1.3.3 Industrial Validation: MyFitnessPal

To better investigate the performance of our approach (RQ2), we conducted an industrial

validation with Under Armour in collaboration with six original developers of the MyFit-

nessPal app that includes 1283 classes implemented over 10 years. These developers were

selected using the following criteria: they (1) have significantly contributed to all of the last

15 releases of the app, (2) have over 10 years of experience in software development, and

(3) are the most knowledgeable developers working on the app (as indicated by the app’s

product manager).

These developers executed our tool on the 6 latest releases of the MyFitnessPal app based

on a total of 6,473 reviews and their ratings related to quality and security issues identified in

these releases between July and December 2019. Then they analyzed the recommended files

to fix the security and quality issues identified from the reviews for each release to calculate

the precision. The developers did not agree to calculate a recall, since it is almost impossible

to explore over 1,200 classes to look for quality and security issues at each release, especially

with at least 128 classes changed per release. However, we checked the overlap between the

classes correctly linked by our tool based on their feedback and the actual changes introduced

to these classes. Furthermore, we conducted a short survey with these 6 developers of the

app to check the relevance of the results. We asked them the following two questions:

Q1 How useful did you find linking the user reviews of quality and security to the classes

that need to be modified? Please rate your opinion from 1 (not useful at all) to 5 (very

125

useful).

Q2 Do you agree that you must fix the set of classes that need to be changed in order

to satisfy the user requests in security and quality? Please rate your opinion from 1

(strongly disagree) to 5 (strongly agree).

Table 3.6 summarizes the results of the evaluation metrics. The precision for both quality

and security reached up to 1, which means that all the files recommended by our approach

were correct for many releases of MyFitnessPal. The minimum achieved precision was 0.82,

which is also considered to be high. For the overlap, QS-URec reached up to 0.62, which

confirms that many classes still need to be fixed. Thus, the results confirm the need for our

tool in practice, since it can be used to help developers better prioritize and manage their

technical debt.

Figure 3.7 is a boxplot of the developers’ answers for the two previous questions. The

averages of their responses are 4.5 and 4.3 across all releases for the first and second questions,

respectively. They found the files recommended by our tool relevant, and related to the

problems discussed in the reviews. They also said that QS-URec will help them save a lot

of time and improve the quality and security and therefore the ratings of their app. This

confirms the usefulness of QS-URec. However, the developers suggested that we consider

more features, such as fixing bugs, functional requirements, and user interface issues, rather

than just focusing on quality and security issues. We plan to accommodate this request and

extend our approach as part of our future research agenda.

3.1.4 Threats to Validity

A number of threats might have biased our results. This section discusses them as well

as the mitigation strategies we put in place.

Construct validity. Regarding construct validity (the relationship between theory and

observation), one threat can be related to the calculated precision and recall, since it can

126

Figure 3.7: Boxplot of the results of the survey conducted with our industrial partner Under Armour

Table 3.6: Precision and recall of running QS-URec on MyFitnessPal

Release
version

Date OverlapQ PrecisionQ OverlapS PrecisionS

V
19.12.0

December
2019

0 0.92 0.24 0.86

V
19.11.0

November
2019

0.33 0.83 0 0.9

V
19.10.0

October
2019

0.23 1 0.44 0.82

V
19.9.0

September
2019

0.58 0.87 0.32 1

V
19.8.0

August
2019

0.29 1 0 0.94

V
19.7.0

July
2019

0.62 1 0.28 0.86

sometimes be subjective to decide if a file/class is linked to a set of user reviews. To mitigate

this threat, we combined the use of (1) a publicly available dataset, (2) the original developers

of a widely used mobile app, and (3) manual analysis of a few new apps by the authors of this

127

contribution. We found that the results were consistent in the data inspected from all three

of these categories. For the manual inspection performed by the authors, we limited bias by

preparing the oracle before running our tool on the apps. Another threat is related to the

level of subjectivity when linking the identified issues in the user reviews to the recommended

files. To counter this issue, we asked more than one evaluator to inspect the results. For

instance, 6 developers were asked to evaluate the results for the Under Armour mobile app.

They discussed their results whenever they had divergent opinions until they reached a final

decision, but we rarely observed these situations in our experiments (e.g., Figure 3.5).

Internal validity. Threats to internal validity can be related to the relationship between

the coverage of quality and security reviews and the decrease of the ratings. In fact, it is

possible that several reviews can include a combination of functional and quality issues.

For example, an important feature added to a new release may increase the ratings even

when quality and security issues are observed. However, the aim of our first question is to

provide a quantitative correlation analysis rather than showing a cause-effect relationship.

Furthermore, in the industry validation we focused mainly on the reviews that are clearly

related to security and quality issues. Moreover, mapping reviews to releases may pose

another threat to the internal validity of our approach. Unfortunately, there is no way we

can determine in an indisputable way the actual versions of the apps that each user had

reviewed. In fact, a user may not keep his app up to date and submit a review based on an

old version independently of the current version in Google Play.

External validity. External threats concern the generalization of our findings. We

validated our approach on a dataset of reviews from 50 open-source applications and an

industrial mobile app. It is uncertain whether our approach can have similar good results

when applied to other kinds of Android apps (e.g., apps in the Amazon App store) and apps

on other platforms (e.g., iOS). To improve the generalizability of our approach, we selected

apps of different sizes and categories. In addition, we focused on issues relevant to mobile

applications that are not specific to just one platform. Nevertheless, our dataset is relatively

128

small compared to the total number of apps available on Google Play and, therefore, further

replications of our work would be desirable.

3.1.5 Conclusion

In this project, we proposed a novel framework, QS-URec, to detect files responsible for

quality and security issues based on user reviews and source code metrics. We evaluated our

approach on 50 popular mobile apps from Google Play with 290,000 reviews along with a

large and popular mobile app provided by our industrial partner. Our results demonstrate

strong correlations between several security and quality metrics and user ratings. QS-URec

outperforms an existing textual analysis technique in terms of precision and recall when

linking emerging quality and security app issues to relevant files to be fixed or refactored.

We conducted experiments and a brief survey with the original developers of MyFitnessPal

that supported the effectiveness of QS-URec and the importance of considering user reviews

to prioritize and fix security and quality issues.

As part of our future work, we plan to extend our study to consider other types of

quality and security metrics. Furthermore, we are planning to validate our work using a

larger number of apps from different platforms. We will also include paid apps and compare

the results with free apps. Last but not least, we plan to extend our approach to consider

additional features like the treatment of functional requirements, user interface issues, and

more, as suggested by the developers involved in our industrial assessment of QS-URec.

129

3.2 Early Prediction of Quality of Service Using Interface-level Metrics, Code-

level Metrics, and Antipatterns

3.2.1 Introduction

Web services are nowadays increasingly used in most of industrial software systems [531,

532, 533]. Thus, it is critical to maintain high quality standards in terms of reliability,

reusability, extendability etc. when designing and evolving services such as Google, Amazon,

eBay, PayPal, FedEx, etc. The quality of service, related to the code and interface, is

important for both the providers and subscribers/users. The providers may want to ensure

a high quality of service before releasing them to the users. The users/subscribers prefer to

use the service with the best quality of service and reasonable price among those offering

the same features. Large-scale web services run on complex systems, spanning multiple data

centers and distributed networks, with quality of service depending on diverse factors related

to systems, networks, and servers [534]. This dynamic, distributed, and unpredictable nature

of the web services infrastructure makes estimating and predicting the quality of service

(QoS) metrics challenging, time-consuming, and expensive task.

Several studies have been conducted in the literature to predict the quality of web services

based on a set of quality attributes (response time, availability, throughput, successability,

reliability, compliance, best practices, latency, and documentation) [535, 536]. The majority

of existing work help users selecting the best services based on their preferences and expec-

tations [399, 418, 419, 420]. Clustering algorithms were adapted to classify existing services

into multiple preferences then the user can select the cluster of services to investigate based

on his preferred quality attributes. Thus, these studies are not actually dedicated to make

prediction of services before deployment to potential users so they are not useful for ser-

vices providers but mainly beneficial for subscribers. Some other studies are related to the

prediction of the evolution of web services interface from the history of previous releases’

metrics [11]. In another category of work, several approaches have been proposed to detect

130

quality issues such as antipatterns for web services [426, 537, 12]. Antipatterns are defined as

commonly occurring design solutions to problems that lead to negative consequences [489].

Ouni et al. [12] defined a set of rules manually based on a combination of quality metrics

to identify antipatterns. However, to the best of our knowledge, the problem of predicting

the quality of service based on the interface and code quality attributes was not addressed

before this contribution, which represents the main gap of existing literature.

In this project, we start from the hypothesis that source code and interface metrics

and antipatterns are early indicators for the quality of service (QoS). We focused on the

following types of antipatterns: Multi Service, Nano Service, Chatty Service, Data Service

and Ambiguous Service. The source code/interface metrics and antipatterns can be used

as an early detector of potential QoS issues before the service gets deployed on the cloud.

For example, low cohesion of a web service may induce a high response time and a low

availability due to the large number of calls between operations at multiple web services that

will be generated whenever a request/query is submitted. Another motivation to validate our

hypothesis is that service interface attributes, such as the number of port types or messages,

can be measured relatively easily compared with measuring the QoS attributes that requires

the deployment of the service.

Based on the above hypothesis, we empirically validated that source code and interface

level metrics can be used to predict the quality of service (QoS) attributes. Thus, we proposed

a novel approach for predicting quality of service by mining interface and code level metrics

and antipatterns of 707 services extracted from an existing QoS benchmark [538].

In our approach, we adapted an Apriori clustering algorithm [539] to generate association

rules that link source code and interface level metrics with the quality of service. We con-

sidered a two-step approach. The first step consists of extracting association rules between

interface/code metrics and quality of service attributes. Then, the second step extracts rules

that link antipatterns with interface/code/quality metrics. We divided our approach into

two steps since the types of antipatterns are limited, not often easy to detect due to their

131

subjectivity, and could vary from one service to the other. We made the dataset that we

created to validate all these new hypotheses available in the following link 5 so it can be used

by other researchers and practitioners to answer the following research questions :

• RQ1: To what extent code/interface quality metrics can predict the QoS attributes?

• RQ2: To what extent code/interface can predict the QoS attributes of services with

antitpatterns?

• RQ3: To what extent the severity of different types of antipattern can be estimated

based on their impact on the QoS?

Our contributions are not limited to only a prediction technique but also to validate a

new scientific knowledge to the community about the connections between the code/inter-

face/antipatterns and execution of services. The main contributions of this study can be

summarized as follows:

1. We propose an approach to predict the quality of service based on antipatterns and

code/interface level quality metrics. our approach is based on understanding the re-

lationships between code/interface metrics and quality of services unlike most of the

existing work for QoS prediction which are more based on the clustering of services

based on the quality attributes.

2. Our results confirm that several of the antipatterns and code/interface quality met-

rics are correlated with quality of service attributes based on an extensive empirical

validation over 707 web services.

3. We have also identified in our empirical validation the antipatterns that negatively

affects QoS attributes the most.

5http://kessentini.net/tscdataset.zip

132

3.2.2 Approach

In this section, we present an overview of our approach and then we provide details about

the algorithm used and how we adapted it for the prediction of the quality of web services.

3.2.2.1 Overview

As described in Figure 3.8, our approach has two main outcomes: 1) the association rules

between the code/interface quality metrics and QoS attributes, and 2) the association rules

between the Service antipatterns, and code/interface/QoS attributes. Thus, we generate two

different predictive models. The outcome of the second predictive model is also important

to understand the severity of antipatterns since no prior work investigated it.

To generate these outputs, our approach takes as inputs the set of code/interface/QoS

metrics calculated on a large data-set of web services along with a list of antipatterns detected

on the same data-set using our existing tool [12]. The detection rules used in that tool are

described in Table 3.7. Then, the best association rules are found based on mining the

inputs.

Association rules mining is one of the widely studied techniques of data mining [540,

541, 542, 543]. The generated rules represent possible correlations, causality, and redundant

patterns between the different dimensions of the analyzed data (e.g. web services quality

metrics and antipatterns). In our study, the generated rules take the following template

M ⇒ Q, where M represents either a set of the interface quality metrics or antipatterns, Q

is a set of the performance quality attributes (QoS). Therefore, we have M ∩Q = ∅.

To generate the association rules, the algorithm needs to find, first, the most common

itemsets then these patterns will be formalized as a set of rules. The itemset represents

the set of our input metrics related to the interface and source code. The frequent itemsets

have a high support value which is the percentage of data points in the training data of web

services that contain both M and Q. This support value of frequent itemsets should be above

the threshold defined as minimum support. Once these frequent itemsets are identified, we

133

F
ig
u
re

3
.8
:
A
p
p
ro
a
ch

O
v
er
v
ie
w

134

adopted the k-fold cross validation method for the association rules generation.

We selected an algorithm called Apriori [539] based on the size and type of data ma-

nipulated in our study and the successful application of Apriori to address similar problems

[544, 545, 546]. In the next subsections, we present an overview of this algorithm and describe

its adaptation to our QoS prediction problem.

3.2.2.2 The Apriori Algorithm

The Apriori algorithm was proposed by Agrawal and Srikant in 1994 [539] and has been

widely used for frequent itemset mining and association rules learning in databases. The

name of the algorithm is Apriori, because it uses the prior knowledge of the frequent itemset

properties. It computes the frequent itemsets in the training set through several iterations.

Apriori uses the monotonicity property of the support measure to reduce the search space

especially with the large data-set of quality metrics and services used in this project. This

rule indicates that all subsets of a frequent itemset must be frequent. Consequently, if an

itemset is infrequent then all of its supersets will be infrequent as well. This way, it can

eliminate many of the itemsets that are not able to participate in a frequent itemset; and

therefore, reduces considerably the running time of the algorithm. There are many versions

of Apriori algorithm that improves the performance of association rule mining [547, 541].

The pseudo code for the algorithm is given below for the training set D that consists

of the list of metrics, and a support threshold of ε . The Apriori algorithm iteratively find

frequent item sets with cardinality from 1 to k (k-itemset). In each iteration, k-frequent item

sets are used to find k+1 item sets. For example, we first find the set of frequent 1-itemsets

by scanning the dataset, accumulating the count for each item and keeping only those that

satisfy minimum support. The results is denoted L1. Next, L1 is used to find L2 the set

of frequent 2-itemsets, which is used to find L3, and so on, until no more frequent Then, it

uses the frequent item sets to generate association rules. Ck is the candidate set for level k.

We describe, in the next sub-section, our adaptation of the Apriori algorithm to our

135

Algorithm 2 Pseudo code of the Apriori Algorithm

1: Input: A transaction database D, and a support threshold of ϵ .
2: Output: Association rules of support ≥ ϵ .
3: L1= { large1 - itemsets }
4: k= 2
5: while (Lk−1 ̸= ∅) do
6: Ck = {a ∪ {b}|a ∈ Lk−1 ∧ b /∈ a} − {c|{s|s ⊆ c ∧ |s| = k − 1} ⊈ Lk−1 }
7: for transaction d ∈ D do
8: Dt = {c|c ∈ Ck ∧ c ⊆ t}
9: for candidates c ∈ Dt do
10: count[c] = count[c] + 1
11: end forLk = {c|c ∈ Ck ∧ count[c] ≤ ϵ } k=k+1
12: end for
13: end while

14: return
∞⋃
i=1

Li

problem.

3.2.2.3 Adaptation of the Apriori Algorithm

Figure 3.8 presents an overview of our adaptation of the Apriori Algorithm. The algo-

rithm is executed twice: a first execution to extract the rules between the code/interface

metrics and QoS attributes and a second execution to generate the rules between the an-

tipatterns and QoS attributes. We used Apriori because it is the first proposed algorithm

to mine frequent patterns and has been widely used, studied, and is easily accepted. The

rules generated by this algorithm are easy to understand and apply. We did not need to

use an optimized version of the Apriori because our dataset is relatively small and does not

require special computational power or memory. the goal of this contribution is to validate

the correlations between interface/code metrics and QoS attributes then our plan later is

compare which prediction algorithm could be better.

The first execution takes as input an exhaustive list of QoS attributes, presented in Table

2.13, of a large set of web service releases provided by eBay, Amazon, Yahoo!, etc. and their

code/interface quality metrics as detailed later in the experiments section. The output of

136

this step is association rules that predict the performance of web services (QoS).

The second execution of the Apriori learning algorithm takes as input the same data of

the first execution along with a list of antipatterns detected on a data-set of web services.

The antipatterns are detected using our previous work [12] based on a set of rules presented

in Table 3.7. We selected this detection tool because of the high accuracy and the low false

positive as reported in [12]. The output of this step is a set of association rules that can

predict the QoS attributes based on the detected antipatterns. This output can be used

to understand the severity of different antipattern types on QoS attributes. The two steps

of our approach are independent. The goal of the first step is to extract association rules

between interface/code metrics and quality of service. The goal of the second step is to

generate association rules between antipatterns and quality of service.

Both executions follow almost the same pattern. We took inspiration from an existing

study [548]. In their work, the authors partition the database into two subsets. As a first

step, they choose one of the subsets for training, and leave the other for testing. After that,

they mine frequent itemsets from the training subset and use testing subset to compute

itemsets’ support in whole database. Then, They switch the subsets, so that the previous

training set becomes the test set and vice versa. Again, they mine frequent itemsets from

training subset and use the testing set to compute supports in whole database. We extended

the theorem described in [548] to a more general case by using 5-fold cross-validation based on

the number of dimensions (metrics and antipatterns) in the data considered in this project.

Since we have a relatively small dataset size, we used cross-validation as it was proven

to be a powerful preventative technique against overfitting [549, 550]. Our approach also

guarantees the elimination of the itemsets that are not µ-frequent relative to the whole

data set. The training set D is randomly divided into 5 mutually exclusive subsets (the

folds) D1, D2, . . . , D5 of approximately equal size where D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 =

D. Partitioning the original data in several different ways helps us avoid the possible bias

introduced by relying on any one particular partition into test and train components.

137

Table 3.7: Antipattern Detection rules [12]

After the partitioning step, Apriori algorithm is used to find the set F µ
D/D1

, F µ
D/D2

,

F µ
D/D3

, F µ
D/D4

and F µ
D/D5

. It contains all µ-frequent itemsets relative respectively to

D/D1,D/D2,D/D3,D/D4 and D/D5. It is possible that some of them are not µ-frequent

relative to the whole transaction data set D. Itemsets that are µ-frequent in a subset of the

partitions, but not µ-frequent in T are eliminated in the next step.

For every i ∈ { 1, 2, . . . , 5}, We calculate the support of each itemset from F µ
D/Di

relative to D. Those itemsets that have suppcountD ≥µ are µ-frequent relative to D. They

are stored in F µ
D/Di,Di

. The set F µ
D/Di,Di

, contains all µ-frequent itemsets relative to D that

appear and are also µ-frequent in D / Di. We end up with F µ
D/D1,D1

, F µ
D/D2,D2

, F µ
D/D3,D3

,

F µ
D/D4,D4

and F µ
D/D5,D5

that contain itemsets respectively from F µ
D/D1

, F µ
D/D2

, F µ
D/D3

, F µ
D/D4

and F µ
D/D5

that are also µ-frequent relative to D. Finally, we obtain the set F µ
D = F µ

D/D1,D1

∪ F µ
D/D2,D2

∪ F µ
D/D3,D3

∪ F µ
D/D4,D4

∪ F µ
D/D5,D5

with µ-frequent itemsets in D. Generally, sets

F µ
D/D1,D1

, F µ
D/D2,D2

, F µ
D/D3,D3

, F µ
D/D4,D4

and F µ
D/D5,D5

are not disjoint.

At the end of our process, we obtain our association rules that predict the QoS from the

metrics and the detected quality issues of the web services. The outcome of this research will

help both service clients and providers know more about the quality of their web services with

the least cost based only on interface and code metrics. To the best of our knowledge, this

is the first study aiming to empirically validating the relationships between code/interface

quality metrics (or antipatterns) and QoS attributes.

138

3.2.3 Experiment and Results

In this section, we first define our research questions. Next, we cover the data collection

and experimental settings. Then, we summarize and discuss the obtained results.

3.2.3.1 Research Questions

• RQ1: To what extent code/interface quality metrics can predict the QoS attributes?

• RQ2: To what extent code/interface can predict the QoS attributes of services with

antitpatterns?

• RQ3: To what extent the severity of different types of antipattern can be estimated

based on their impact on the QoS?

3.2.3.2 Data Collection and Evaluation Measures

To answer the different research questions, we built our prediction model for QoS using

a large data-set of 707 releases of web services provided by eBay, Amazon, Yahoo!, etc.

Besides code and interface metrics, the raw data contains antipatterns detection results of

each web service extracted using our previous work as described in the previous section.

An important step in generating the association rules is the pre-processing phase for the

Apriori algorithm. We did the discretization of the data using a combination of strategies:

equal interval width, equal frequency, k-means clustering and categories specifies interval

boundaries. We also removed the outliers whenever necessary. To remove the outliers, we

performed data visualization (box plot, scatter plot, etc.)and we removed points that are

very separate/different from the crowd. Table 3.8 gives a summary of the considered training

set in our experiments that includes a total of 707 services. We selected these 707 active

services by contacting each of the web services from that existing benchmark [538] and we

found that several of them are not active anymore. Since the existing benchmark is limited to

QoS attributes [538], we extended it by calculating the interface/code metrics using a parser

139

that was implemented as part of our previous work [54]. [348]. The new dataset is available

at the link 6. The first file, Dataset1.csv, contains the dataset used to generate association

rules linking the code/interface metrics and different quality of service (QoS) attributes.

The second file, Dataset2.csv, contains the dataset used to generate association rules linking

the code/interface metrics and different quality of service (QoS) attributes for each type

of antipattern. It contains code/interface metrics, quality of service (QoS) attributes and

the antipatterns detection results. we used the “apriori” function from the “arules” library

of R for the apriori algorithm and the “discretize” function from the same library for the

discretization. Thus, the experiments are conducted mainly using the R language.

Table 3.8: Web services used in our dataset

Category #services # antipatterns

Financial 107 126
Science 74 104
Search 63 98
Shipping 73 131
Travel 103 154
Weather 53 109
Media 106 214
Education 49 97
Messaging 38 54
Location 41 93
Total 707 1180

To answer RQ1 and RQ2, we validate, first, the proposed approach using a 5-fold cross

validation [548], to check if there is significant correlations between the metrics/antipatterns

and QoS thus the ability to generate association rules. A small K value for the cross validation

means less variance (more bias) while a large K value means more variance (lower bias). We

tried different values of k in the cross-validation and we found that k=5 gives the best

results in terms of number, meaning and consistency of the rules. The dataset was randomly

partitioned into 5 equal size subsamples, again, to avoid any bias. We did take into account

6http://kessentini.net/tscdataset.zip

140

the metrics values in the pre-processing phase for the Apriori algorithm by performing the

discretization of data. To this end, we used the following evaluation metrics:

Support: Support is the statistical significance of an association rule interpreting as the

ratio (in percentage) of the web services that contain M1 ∪M2 (metrics/antipattern types

with their thresholds) to the total number of web services in the data-set. Therefore, if that

the support of a rule is 5% then it means that 5% of the total web services contain M1∪M2.

In other words,

support(M1⇒M2) = P (M1 ∪M2) (3.6)

, where P(M1) is the probability of cases containing M1.

Confidence: For a specific number of web services in the data-set, confidence is defined

as the ratio of the number of web services that contain M1 ∪M2 to the number of web

services that contain M1. Thus, if we say that a rule has a confidence of 85%, it means that

85% of the covered web services containing M1 also contain M2. In other words,

confidence(M1⇒M2) = P (M2|M1)

=
P (XM1 ∪M2)

P (M1)

(3.7)

, where P(M1) is the probability of cases containing M1. The confidence of a rule indicates

the degree of correlation in the dataset between the different types of metrics/antipatterns

and QoS attributes. The Confidence level is considered as a measure to evaluate the strength

of the rule. A high confidence is required for the selected association rules.

Lift: Another important measure to evaluate the generated association rules is the lift

defined as the confidence of the rule divided by the expected level of confidence. In other

words,

141

lift(M1⇒M2) =
confidence(M1⇒M2)

P (M2)

=
P (M1 ∪M2)

P (M1) ∗ P (M2)

(3.8)

, where P(M1) is the probability of cases containing M1.

In general, we consider a lift value that is higher than 1 as an indication that the oc-

currence of M1 has a positive effect on the occurrence of M2 or it confirms that positive

correlation between M1 and M2.

If the lift score is smaller than 1, it is considered as an indication that M1 and M2 are

not appearing frequently thus the occurrence of M1 has a negative effect on the occurrence

of M2 and M1 is negatively correlated with M2. A lift value almost equal to 1 indicates that

we cannot conclude about the correlation of M1 and M2.

After validating the correlations to be able to generate statistically significant association

rules, we qualitatively validated the rules by identifying the most important interface and

code metrics for each of the quality of service QoS attributes. Since this is the first study to

generate these association rules, we were not able to compare with any existing studies.

To answer RQ3, we evaluated the impact of the 5 different types of antipattern on the

QoS attributes by checking the average severity score on each of the QoS attributes. The

severity score is defined as the average value of the quality attribute in web services of our

data set that did not contain a specific antipattern type divided by the average value of the

quality attribute on the web services of our data set containing that antipattern type. We

normalized all the quality attributes between 0 and 1 using the min-max normalization (to

be minimized). Thus, the highest value is the most severe indication of the impact of an

antipattern on each of the quality of service.

142

3.2.3.3 Results

Results for RQ1. Table 3.11 summarizes the list of the best three association rules

linking the code/interface metrics and three different quality of service (QoS) attributes

related to response time, reliability and compliance. These rules are obtained by using 5 fold

cross validation as described in [548]. We also tried, by trial and error, other values of k for

the cross validation but 5 folds gave us the best results. Our model was able to find positive

correlations mainly with three out of the eight well-know QoS attributes: response time,

availability, throughput, successability, reliability, compliance, latency and documentation.

It is expected that not all these quality attributes can be predicted using code and interface

level metrics. In fact, some quality attributes such as availability may depend more on

hardware requirements but not the quality of the code/interface implementation. Thus, we

believe that the results are consistent.

Table 3.12 contains the average, max and min support, confidence and lift of each rule in

table 3.11. When generating the rules, we used the value 0.6 as a threshold for the support

and confidence.

It is clear that the three rules are confirming the strong correlation between response

time, compliance and reliability; and many of the quality metrics. For instance, a high

response time is correlated with low coupling, an acceptable number of operations per in-

terface (around 12), and high cohesion. Typically, the estimation of these quality of service

requires to deploy and run the service then the values will be calculated during a period of

time. However, the outcomes of RQ1 confirms that it is possible to predict three of the QoS

attributes from the quality of the implementation.

The outcome of the first research question is important for service providers so they can

estimate the impact of the quality of their code/interface on the QoS attributes before ap-

proving new releases for the users. The generated association rules can be used for reviewing

any new pull requests by linking the quality of the code on the QoS attributes.

To summarize, there are strong correlations between three QoS attributes and the quality

143

Table 3.9: Support, confidence and lift of the rules that predict QoS from anti-patterns

Rule ID average support max support min support average confidence max confidence min confidence average lift max lift min lift

4 0.66 0.715 0.6125 0.674493 0.731304 0.626087 1 1.021739 0.98913

5 0.783992 0.922045 0.66232 0.789475 0.922045 0.66232 0.999714 1 0.995068

6 0.726667 0.8 0.633333 0.726667 0.8 0.633333 1 1 1

7 0.811288 0.899159 0.718348 0.893765 0.91536 0.872267 0.998636 1.003929 0.992246

8 0.770913 0.947742 0.613238 0.786026 0.966349 0.625359 1.000092 1.00559 0.997162

9 0.810105 0.831005 0.789204 0.941341 0.96561 0.917072 0.999718 1.000758 0.998679

10 0.815322 0.939007 0.618464 0.840257 0.967647 0.637442 1.001737 1.005185 0.999242

of the code/interface of services.

Results for RQ2. Table 3.10 summarizes our findings. All the different five types of

antipatterns are strongly correlated with different types of QoS attributes. These rules are

obtained using the same fold cross validation to answer RQ1. The table shows the activate

rule for each antipattern and the associated QoS attributes. Ambiguous Service antipatterns

are experiencing, in general, a high response time which is understandable due to the low

reusability and the high coupling in these services. Chatty services and Multi services have

the highest negative impact on quality attributes: response time, latency, availability and

successability. In fact, these two antipatterns are related to large services including high

number of operations and low cohesion which increase the probability of decreasing the

quality. Nano service is also correlated based on three different association rules with low

best practices and latency due to the small size of these services including few operations.

Table 3.9 contains the average, max and min support, confidence and lift of each rule in

Table 3.10. We also used 0.6 as a threshold for the support and confidence when generating

the rules. The way we read the rules in Table 3.10 is the following: when we know we have

one of the antipatterns and one of the left hand sides of the corresponding rules is true,

then the right hand side of that rule is also true. For example, when we know we have

the antipattern Ambiguous Service and we have AMTO in the range of [0,0.6] then we can

conclude that Response Time is in the range of [80.4,368], Successability is within [86.8,100]

and Reliability is in the range of [63.8,76.6].

To conclude, we found that the five types of antipatterns have negative impacts on the

performance of services and can be used to predict the QoS.

144

Table 3.10: Rules to predict QoS from anti-patterns

Rule ID Anti-Pattern QoS Prediction Rules

4 Ambiguous Service AMTO = [0, 0.6)⇒ ResponseT ime = [80.4, 368) & Successability =
[86.8, 100] & Reliability = [63.8, 76.6)

5 Chatty Service (COH = [0.21, 0.42]) OR (NOM = [47, 85]) OR (NCT =
[51, 69]) OR (RAOD = [0.55, 0.74]) OR (NOD =
[23, 42]) OR (NPT = [1, 3])⇒ ResponseT ime =
[55.5, 401) & Latency = [0.33, 58.9) & Compliance =
[86.9, 100] & Successability = [87.7, 100] & Reliability = [63, 75.9)

6 Data Service ANOPO = [5.32, 28.5] OR NOM = [84, 462] OR COH =
[0.36, 0.98] OR NAOD = [18, 141]⇒ Latency =
[1.23, 58.7) & ResponseT ime = [227, 1290) & Successability =
[91.9, 100] & Documentation = [4, 28.3) & Availability =
[90.7, 100]

7 Multi Service NOPT = [7.8, 78] OR NCT = [32, 287] OR COH =
[0.01, 0.43) OR NOD = [17, 231]⇒ ResponseT ime =
[55.5, 574) & Latency = [0.33, 89.7)

8 NST = [0, 8)⇒ Successability = [89.6, 100] & BestPractices =
[79.6, 93] & Latency = [0.33, 227) & ResponseT ime = [46, 635)

9 Nano Service COUP = [0.36, 0.99]⇒ ResponseT ime = [46, 635) & Latency =
[0.33, 227)

10 NPT = [0, 2)⇒ ResponseT ime = [46, 635) & Latency =
[0.33, 227) & BestPractices = [79.6, 93]

Results for RQ3: Table 3.10 shows that the most severe antipattern in terms of re-

sponse time is the Data Service. Among Chatty Service, Data Service, Nano Service and

Multi Service, the most severe antipattern in terms of latency is Nano Service. To bet-

ter investigate the severity of the antipatterns, we compare between the average values of

the quality attributes in web services containing a specific type of antipattern comparing

to the quality attributes average for the ones without antipatterns. Figure 3.9 summarizes

the severity of antipatterns results. It is clear that the response time quality is the main

attribute negatively impacted by most of the antipattern types. Ambiguous services have

145

Figure 3.9: The average severity score of the different types of antipattern on the QoS attributes based on
our data set of web services

a high severity on the reliability comparing to the remaining types of antipattern. Chatty

services decreased all the quality of service attribute based on the obtained results. Response

time, successability and latency are heavily decreased comparing to the remaining quality of

service attributes. The results of RQ3 can be used by the service providers to identify the

types of antipattern to be fixed based on which quality attribute they want to improve.

In summary, data service, chatty service and multi service are among the severest an-

tipattern types on the quality of service attributes.

3.2.4 Threats to Validity

In our experiments, construct validity threats are related to the absence of similar work

based on machine learning to predict the QoS. Thus, we were not able to compare our results

with any of existing studies. A construct threat can also be related to the fact that we had to

manually choose the best discretization method for every metric and train our model based

146

Table 3.11: Rules to predict QoS

Rule ID Right hand side of the rule: Performance Metric Left hand side of the rule: Interface Metrics

1 ResponseT ime = [46, 617) ALMS = [1, 4.24) OR ALOS = [1, 2.77) OR NBB =

1 OR COH = [1.00e− 02, 7.46e− 01) OR NPT =

1 OR NPM = [0.5, 1.58) OR NBE =

[0, 16.1) OR NIOP = [0, 4.62) OR NAOD =

[0, 16.2) OR NOPT = [0.33, 12.59) OR ANIPO =

[0, 4.75) OR NOM = [2, 29.5)

2 Compliance = [86.7, 100] NBB = 1 OR ALMS = [1, 4.24) OR NPT =

1 OR ALOS = [1, 2.77) OR COH =

[1.00e− 02, 7.46e− 01) OR NIOP =

[0, 4.62) OR NPM = [0.5, 1.58) OR NAOD = [0, 16.2)

3 Reliability = [66.1, 89] NBE = [0, 16.1) OR NOPT =

[0.33, 12.59) OR NOM = [2, 29.5) OR NAOD =

[0, 16.2) OR NIOP = [0, 4.62) OR NPM = [0.5, 1.58)

Table 3.12: Support, confidence and lift of the Rules to predict QoS

Rule ID Average
Support

Max
Support

Min Sup-
port

Average
Confi-
dence

Max
Confi-
dence

Min
Confi-
dence

Average
Lift

Max Lift Min Lift

1 0.73063 0.872308 0.647052 0.924195 0.949536 0.901303 1.00808 1.03572 0.98310

2 0.668805 0.713046 0.615475 0.802937 0.875489 0.726074 1.086702 1.18489 0.982685

3 0.694400 0.754661 0.619794 0.861134 0.934675 0.784948 1.13252 1.22924 1.032310

on that.

Internal threats to validity are related to the fact that, in our approach, the prediction

is made for each QoS property separately. This isolated prediction is reasonable when the

QoS properties are independent, but many QoS properties are correlated, such as response

time and latency. The same observation is also valid for the possible combination of mul-

tiple antipattern types to predict some quality of service attributes. For instance, multiple

instances of both Multi-Service and Chatty-Service can be grouped to predict some quality

attributes. We are planning to extend our work to consider such dependencies.

External validity refers to the generalization of our findings. In this study, we performed

our experiments on more than 700 web services. A larger dataset is needed to give more

reliable results. Since existing studies have confirmed that the programming language affects

147

the quality of the software [551, 552], the impact of antipatterns on the quality of the code

might vary from one programming language to another. This can affect the generalization of

our results since all Web services considered in our study are written in Java. In our future

work, we are planning to include Web services written in other programming languages.

3.2.5 Conclusion and Future Work

We propose, in this contribution, a novel approach to predict QoS with the least cost

using code/interface quality metrics and antipatterns. The output of our approach consists

of 10 association rules that predict the performance of web services. We used 5 fold cross

validation to evaluate the rules. The obtained results based on 707 web services confirm the

correlation between both code/interface metrics/antipatterns and the QoS attributes. This

important outcome can be used to understand the severity of antipatterns and predict the

quality of the services based on the current quality of the implementation.

Our results show that data service, chatty service and multi service are the most severe

antipatterns types on the quality of service attributes among the studied antipatterns. All the

QMOOD metrics are affected by antipatterns at different levels. Best practices, availability

and compliance are the quality metrics deteriorated the most by antipatterns.

As part of our future work, we plan to extend our work to consider other types of

antipatterns (such as Redundant PortTypes (RPT), CRUDy Interface (CI) and Maybe It is

Not RPC (MNR) [348]) and metrics (such as Performance, Integrity and Usability [536]).

Furthermore, we are planning to try other machine learning algorithms such as decision trees

for generating association rules and compare their outputs with this work. Finally, we will

extend our work to consider the correlation between metrics when predicting the QoS using

dimensionality reduction techniques.

148

3.3 One Size Does Not Fit All: Customized Benchmark Generation for Software

Quality Assessment

3.3.1 Introduction

Detection of quality issues has received much attention from the research commu-

nity [553]. The majority of these studies are based on quality metrics to detect issues

and anti-patterns using a variety of techniques such as rules [554, 555, 556], search-based

methods [299, 406, 28], machine learning [557, 558, 559], and formal methods [560, 561].

Once the quality issues are identified, the next step is to prioritize them and refactor

them [562, 563, 110]. Extensive refactoring approaches are proposed to improve quality

metrics and to fix anti-patterns [10, 564, 565, 444]. One of the main challenges when adopt-

ing quality metrics is the selection of the thresholds for determining the need for refactoring.

These thresholds are impossible to generalize as they are very dependent on the context.

Though some studies based on machine learning [566, 567] and genetic programming [176]

are proposed to define the thresholds for quality metrics, they are all dependent on the

employed dataset (i.e., benchmark). Currently, the sensitivity of quality metrics w.r.t. the

selected benchmarks is not known and therefore identifying the appropriate benchmark to

determine quality issues has not been explored.

Benchmarking is a common practice to establish baselines, to define best practices, to set

performance expectations, and to identify improvement opportunities. In software develop-

ment, benchmarking allows companies to gain an independent perspective on how well their

software performs from the chosen quality perspective compared to other products. Such

comparisons create a healthy competitive environment within the organization and enable a

culture of continuous improvement. When a wrong benchmark is selected, the correspond-

ing quality model produces inaccurate results and therefore inaccurate understanding of the

relative quality performance. This may lead the organization to pursue the wrong goals,

move the organization in the wrong direction, or at minimum waste valuable resources.

149

Figure 3.10: Quality evaluation of a project A using two different benchmarks

Figure 3.10 shows the quality evaluation of an open-source project, Opencsv7, (shown in

blue) against two different benchmarks created from randomly selected projects that we col-

lected from Github (shown in orange). The figure reveals that the two different benchmarks

give different results and therefore lead to different interpretations and plan of actions. The

presented benchmarks have different quality shapes on the radar charts and thus represent

different quality profiles. For example, benchmark 2 suggests that Opencsv has good quality

values (better than the average values of the benchmark) in all metrics except Extendibility,

Understandability and Hierarchies [515]. Thus, developers may decide to refactor their code

to improve these three metrics. However, benchmark 1 would suggest otherwise. All three of

these metrics have values above those of the benchmark, and the interpretation suggests that

developers need to focus on improving Cohesion, MethodmetricPC, Polymorphism, TypeMet-

ricsFanin, and TypeMetricsFanOut. From this discussion, it is evident that the identification

of the right benchmark is important for an accurate quality assessment. Although existing

work has not directly addressed automated customized benchmarking for software quality, a

few studies provided mechanisms to differentiate small, inactive, or low-quality repositories

from high-quality active ones [433, 435, 434]. Furthermore, some other attempts evaluated

7http://opencsv.sourceforge.net/

150

the quality of different releases of the same software [440, 439].

To address this gap, we start from the observation that an appropriate benchmark for

a project should be based mainly on characteristics such as size, number of contributors,

number of releases, and number of commits along with other repository features to describe

the context. We collect a set of quality and repository metrics of open-source projects of

different sizes and categories. We filter these projects and apply different clustering algo-

rithms to find clusters with distinct characteristics based on the repository features. We

picked the best set of clusters based on well-defined criteria that will be discussed later in

this contribution. Each cluster is considered as a benchmark for projects with similar repos-

itory features. After that, we investigate the sensitivity of quality metrics with different

clusters/benchmarks. Finally, we validate our approach by applying it on several projects

from eBay and compare the obtained quality assessment results with the manual evaluations

of programmers. The results show the effectiveness of repository features in finding clusters

of projects with different characteristics and also show that quality metrics are sensitive to

the selected cluster/benchmark. The validation of our approach with our industrial part-

ner, eBay, confirms the effectiveness of our approach in finding a suitable benchmark and

evaluating software quality.

Finally, our study makes the following contributions to the field:

• A method to create benchmarks for software quality evaluations based on repository

features.

• A demonstration of the usage of clustering algorithms and comparison of their perfor-

mance to find clusters of projects that can be used as benchmarks for evaluating the

quality of software projects.

• An empirical study to understand the impact of the benchmark on the quality assess-

ment results and the sensitivity of quality metrics.

Replication Package. All material and data used in our study are available in our

151

replication package [568].

3.3.2 Research Methodology

Github
Software
projects

Data collection

Extraction of design, quality,
and repository metrics

Data filtering

Phase I - Data Preparation

Filtering of
trivial projects

Phase II - Clustering

PCA Principal Component
Analysis

Clustering based on
repository metrics

Clustering

Mean Shift
DBScan
K-Means
Affinity Propagation
BIRCH
OPTICS
Agglomerative
Clustering

Benchmark
Clusters

Clustering
Similarity

Quality metrics
sensitivity

Github
New
project

Metrics Collection
Extraction of
design, quality, and
repository metrics

Benchmark Selection

Benchmark Assignment

Quality assessment
of the new project

Figure 3.11: Overview of the proposed approach.

Figure 3.11 summarizes our approach. The main goal of the proposed approach is to au-

tomatically identify the most suitable benchmark for a given project to enable an appropriate

and fair assessment of its quality. Intuitively, each benchmark should include projects with

similar characteristics such as the number of commits, number of contributors, size, age,

domain, and language. We analyze a set of filtered projects and extract these repository

metrics using Git api. We created a set of filtered projects to avoid analyzing repositories

that are too small or with one contributor. We included GitHub projects having at least 5K

loc and at least two contributors.

We cluster the projects based on the repository features to find clusters with distinct char-

acteristics. We use different clustering algorithms (K-means, Affinity propagation, BIRCH,

Agglomerative clustering, OPTICS, DBSCAN, and Mean shift) and compared their perfor-

mance. The goal of this step was to validate the hypothesis that software projects can be

grouped together into multiple clusters based on their characteristics to form benchmarks.

We identify the best clustering algorithm balancing the following criteria: number of projects

per cluster, high evaluation metrics, and distinct characteristics per cluster.

After the validation of the first hypothesis, we parse source code of 54, 569 GitHub

152

projects to extract quality attributes, code smells, and repository features. We filtered these

projects based on several criteria such as the number of contributors and the size so we

finally considered 5, 079 projects. We perform principal component analysis [569] to reduce

the dimensions of the feature space. Then, we study the sensitivity of the quality metrics

to the different benchmarks using statistical tests to validate the hypothesis of whether the

quality of projects between clusters are significantly different and to identify which metrics

are more sensitive to the benchmarks. Finally, we validate the usefulness and efficiency of our

approach on industrial projects. The next sections explain each of the above components.

3.3.2.1 Data Collection Phase

Munaiah et al. [433] implemented a framework called Reaper to enable researchers select

GitHub repositories that contain evidence of an engineered software project. They provided

a publicly-accessible dataset composed of 1, 857, 423 GitHub repositories8. We cloned 54, 569

projects from that dataset and extracted design, quality, and repository features as described

in the following subsections.

3.3.2.1.1 Repository Metrics A repository is a basic unit in GitHub that contains

the source code and resource files of a software project. It also stores information related

to the project’s evolution history and high-level features as well as to the persons who

create, contribute, fork, start, and watch it. After collecting the list of repositories, we used

a wrapper9 for the GitHub API to extract 29 repository metrics described in the online

appendix [568] such as the number of commits, age, number of contributors, etc. The

repository features and their detailed definitions are available in the appendix.

3.3.2.1.2 Object-oriented Design Metrics Object-oriented design metrics represent

the structural health of a software system. We used DesigniteJava [486], a software design

8https://reporeapers.github.io/results/1.html
9https://github3py.readthedocs.io/en/master/.

153

quality assessment tool to detect a comprehensive set of metrics. The tool classifies these

metrics into three categories.

Class-level metrics: Number of Fields (NOF), Number of Methods (NOM), Number of

Public Fields (NOPF), Number of Public Methods (NOPM), Lines of Code (C LOC),

Weighted Methods per Class (WMC), Number of Children (NC), Depth of Inheritance

Tree (DIT), Lack of Cohesion of Methods (LCOM), Fan-in (FANIN), Fan-out (FANOUT).

Method-level metrics: Lines of Code (M LOC), Cyclomatic Complexity (CC), Parameter

Count (PC).

Component-level metrics: Lines of Code (C LOC).

3.3.2.1.3 Code Smells In this project, we employed DesigniteJava [486] to detect ar-

chitecture, design, and implementation smells as described in section 2.4.1.3. We aggregated

the code smells detection results by creating four project-level metrics (i.e., Smell Density

(P SMD), Architecture Smell Count (ASC), Design Smell Count (DSC), Implementation

Smell Count (ISC)) and one component-level metric (i.e., Smell Density (C SMD)).

3.3.2.2 Clustering Phase

The goal of the clustering phase is to find categories of projects that can be used as

benchmarks. The idea here is to partition the projects into groups based on the similarity in

their repository attributes. The intuition behind this is that repositories that have similar

characteristics, such as number of contributors, number of lines of code, and number of

classes are likely to represent similar context with one another. Due to the large number

of data points, high dimensional input spaces, and variable noise, we first perform principal

component analysis (PCA) as described in Section 3.3.2.2.1. Then, we use multiple clustering

algorithms to classify the projects and compare their performance.

154

3.3.2.2.1 Principal Component Analysis Principal component analysis (PCA) is a

technique commonly used to reduce the dimensionality of large feature set. The technique

finds a subset of variables while retaining most of the information from the original set.

This method increases interpretability while minimizing information loss. The method takes

a collection of data points in two-, three-, or higher-dimensional space and draws a “best

fitting” line that minimizes the average squared perpendicular distance from a point to the

line. Similarly, the next best-fitting line can be chosen from directions perpendicular to the

first line. Repeating this process leads to an orthogonal basis in which different individual

dimensions of the data are uncorrelated. These basis vectors are referred to as principal

components.

3.3.2.2.2 Clustering Algorithms We compare seven widely used unsupervised learn-

ing algorithms described in Table 3.13 to choose a clustering algorithm best suited for the

dataset at hand. We chose these algorithms because they belong to three different cluster-

ing groups namely, hierarchical clustering algorithms, density-based clustering algorithms,

and Partitioning Clustering algorithms. These are the most popular clustering algorithm

categories and were used in similar studies [321, 291].For each algorithm, we try various

combinations of hyper-parameters that we describe in Section 3.3.3.2.

3.3.2.3 Quality Metrics Sensitivity

The goal of this phase is to investigate the difference in the quality assessment obtained

using different benchmarks. In other words, we study the sensitivity of the quality metrics to

the different benchmarks using statistical tests to validate the hypothesis whether the quality

of projects between clusters are significantly different and identify the metrics that are more

sensitive to benchmarks. For each quality metric Qi and each pair of clusters Cx and Cy, we

perform statistical tests to see whether the distribution of the values of Qi is different within

9https://scikit-learn.org/stable/modules/clustering.html

155

Table 3.13: Overview of the used clustering algorithms.

Algorithm Definition Parameters Use Case Geometry
(metric used)

K-Means It partitions n observations into k
clusters in which each observation be-
longs to the cluster with the nearest
mean (i.e., centroid)

number of
clusters

General-purpose,
even cluster size, flat
geometry, not too
many clusters

Distances be-
tween points

Affinity
Propagation

It creates clusters by sending mes-
sages between pairs of samples until
convergence.

damping,
sample pref-
erence

Many clusters, un-
even cluster size, non-
flat geometry

Graph distance
(e.g. nearest-
neighbor graph)

Mean-shift It aims to discover blobs in a smooth
density of samples.

bandwidth Many clusters, un-
even cluster size, non-
flat geometry

Distances be-
tween points

Agglomerative
Clustering

It uses a bottom-up approach to
build nested clusters by merging or
splitting them successively based on
their similarity.

number of
clusters or
distance
threshold,
linkage type,
distance

Many clusters, pos-
sibly connectivity
constraints, non-
Euclidean distances

Any pairwise dis-
tance

DBSCAN It groups together points that are
close to each other based on a dis-
tance measurement and a minimum
number of points.

neighborhood
size

Non-flat geometry,
uneven cluster sizes

Distances be-
tween nearest
points

OPTICS It can be considered a generalization
of DBSCAN that relaxes the distance
requirement from a single value to a
value range.

minimum
cluster mem-
bership

Non-flat geometry,
uneven cluster sizes,
variable cluster den-
sity

Distances be-
tween points

Birch It uses hierarchical methods to clus-
ter and reduce data. It constructs a
tree data structure with the cluster
centroids being read off the leaf.

branching
factor,
threshold,
optional
global clus-
terer.

Large dataset, outlier
removal, data reduc-
tion.

Euclidean dis-
tance between
points

each cluster. If the distribution is different, it means that Qi is sensitive to the benchmark.

Since the data is not normally distributed and the clusters have different sizes, we used

a non-parametric test—the Kolmogorov–Smirnov test [570]. Developers need to carefully

consider the selected benchmark, especially when evaluating sensitive quality metrics. They

need to target quality metric values better or equal to the selected benchmark values when

generating refactoring recommendations. If the metric is not sensitive to the benchmark,

developers may avoid wasting their time on the benchmarking process as all benchmarks

would reflect a similar ranking of Qi. The details of the statistical tests will be discussed

later in this contribution.

156

3.3.2.4 QBench: A Software Quality Benchmarking Platform

To enable the use of our study for software quality assessment, we implemented a cloud

platform, QBench, that helps developers to select the right benchmark for their projects and

get an evaluation report about the quality issues. Figure 3.12 shows a screenshot of QBench’s

dashboard which provides an overview of the current quality status of the different projects

in the database. The tool also generates a detailed report for each project that provides easy

to understand insights about its quality. The developer starts with providing the link to the

GitHub repository of the project to evaluate. The tool clones the repository and collects all

the required repository features, calculates quality metrics, and detects code smells. Next,

it identifies the most suitable benchmark to assess the quality of that project using our

approach as detailed in the experiments section. The user can then view the detailed report

page for that project as shown in Figure 3.13. The red/green bars indicate by how much

quality metrics are lesser/greater than the average of those metrics in the benchmark. The

user can also change the benchmark manually and can also select the quality metrics on the

radar chart according to his/her individual or organizational needs and preferences.

Figure 3.12: QBench dashboard showing quality profile of the selected project.

157

Figure 3.13: QBench’s detailed quality report.

3.3.3 Empirical Validation

In this section, we first present our research questions and validation methodology. Then,

we discuss the obtained results.

3.3.3.1 Research Questions

In this study, we addressed three main research questions.

RQ1. Benchmarks generation. Do clustering algorithms distinguish between cat-

egories of software projects based on repository features?

RQ2. Quality metrics sensitivity. How sensitive are the quality metrics to the

generated clusters?

RQ3. Industry validation. To what extent can the proposed approach identify

the right benchmark and quality profiles in practice?

Intuitively, developers think about those repository features (i.e., number of contributors,

number of commits, size, etc.) when they decide to compare their projects to others. Thus,

158

RQ1 aims to validate whether projects can be grouped based on similar repository features

behavior. We started by collecting a set of 54, 569 open-source projects (over 1 billion lines of

code) and extracting 29 repository metrics. We then filtered these projects and extracted a

list of non-trivial repositories that satisfy the following criteria to eliminate toy projects: the

repository must be written in Java and must have at least two contributors and 5,000 lines

of codes. We finally considered 5, 079 after the filtering step. We performed the Principal

Component Analysis (PCA) and used the minimum number of components that capture at

least 95% of the total variance in the dataset to eliminate redundant/unnecessary repository

features. After the data cleaning, we applied the following widely used clustering algorithms:

K-means, affinity propagation, BIRCH, Agglomerative clustering, OPTICS, DBSCAN, and

Mean shift. We used different combinations of features and hyper-parameters to compare

their performances and determine the best clustering algorithm for our problem. Since

we do not know the ground truth class assignments, we used the Silhouette coefficient to

evaluate the different clustering results. The Silhouette Coefficient [571] is a measure that

determines how similar an object is to its own cluster (cohesion) compared with other clusters

(separation). It is calculated as follows:

(b− a)

max(a, b)
(3.9)

Where a is the mean intra-cluster distance and b is the mean nearest-cluster distance for

each sample. We chose this metric because it provides a sound mechanism to evaluate the

clustering results and has been extensively used in research studies [572].

After the validation of the first hypothesis, the goal for RQ2 is to validate the second

hypothesis that investigates whether and to what degree quality metrics are sensitive to the

benchmarks. We performed the Kolmogorov–Smirnov test (also referred to as K–S test or

KS test) which is a popular non-parametric test and distribution-free test (i.e., it makes no

assumption about the distribution of data). The KS test can be used to compare a sample

159

with a reference probability distribution, or to compare two samples. We wanted to validate

that the clusters of projects generated by our approach have different quality distributions

and therefore provide a different quality assessment. We chose this test because it can

be applied to unequal sample sizes unlike other statistical tests (e.g. the Silhouette score,

the Student’s t-test, Analysis of Variance Test (ANOVA), Analysis of cluster variability

(ANOCVA) etc.). This condition is necessary because the clusters of projects we obtained

are unequal in size. We set our null hypothesis to be the following.

H0: The distribution of a given quality metric Qi is equal between the two benchmarks

Bx and By.

This means that our alternative hypothesis is as follows.

HA: The distribution of a given quality metric Qi is not equal between the two bench-

marks Bx and By.

We determined the level of significance to be 0.05. A p-value ≤ 0.05 is statistically

significant. It indicates strong evidence against the null hypothesis. In that case, we reject

the null hypothesis and accept the alternative hypothesis. A p-value > 0.05 is not statistically

significant and indicates strong evidence for the null hypothesis. Therefore, we retain the

null hypothesis and reject the alternative hypothesis in that case. After computing the p-

value for each pair of benchmarks, we computed a sensitivity metric SQi
for each quality

metric Qi that we define as follows.

SQi
=

∑
x,y∈Benchmarks δ(x, y)

n(n− 1)/2
,

δ(x, y) =


1, if P-valBx,By ≥ 0.05

0, if P-valBx,By < 0.05

(3.10)

where n is the number of benchmarks, n(n-1)/2 is the total number of unique pairs of

benchmarks, and P-valBx,By is the P-value of the Kolmogorov–Smirnov test applied on the

160

benchmarks Bx and By. SQi
takes values between 0 and 1; 1 means that the Qi has a

different distribution in all pairs of benchmarks. In other words, Qi is very sensitive to the

benchmarks. SQi
= 0 means that we cannot conclude anything about the distribution of

a given quality metric Qi between any pairs of benchmarks. We also assigned labels (i.e.,

high, medium, and low) to each quality metric. High means that SQi
is between 1 and 0.66.

Medium means that SQi
is between 0.66 and 0.33. Low means that SQi

is between 0.33

and 0. This sensitivity measure is useful to understand how severe is the sensitivity of each

quality metric to the benchmarks which can impact the decision of developers to fix the code

or not.

For RQ3, the goal is to evaluate the relevance of this study in practice for the assessment

of the quality of software projects. Thus, we developed a platform, QBench, integrating the

proposed benchmarking approach as detailed in section 3.3.2.4. The best way to validate

the relevance of our study in practice is to perform a manual validation with the active and

original developers of large-scale industrial projects who are truly knowledgeable about

the projects and can make an accurate evaluation of the quality based on their extensive

experience. Thus, we opted to perform a manual evaluation with four developers who are the

main contributors and original developers of the four most critical back-end software projects

of eBay. These projects are very critical from a quality perspective for eBay as poor quality

of code will impact, for example, the response time of their platform. Xoneor is the main

project managing online payment, Relational-data-service manages calls between databases,

Xodbutil enables the data integration from multiple databases, and Picasso analyzes the

profile of users and their history. Since the selection of the right participants (i.e., original and

knowledgeable senior developers) is the key rather than the number of participants, the four

participants were selected using the following criteria as detailed in Table 3.14: (1) number

of commits; (2) number of years working on the project(s); (3) number of modified files;

and (4) their experience in detecting and fixing quality issues. Each participant evaluated

one repository and they were not aware of the goals of our study to avoid any potential

161

bias. We extracted the quality and repository features and predicted the most suitable

benchmark for each industry project using our predictive model selected in the first research

question. Then, for each project, we asked its contributor to rate every quality metric based

on their experience without revealing our benchmarking results. They assigned one of the

following labels: very low, low, medium, high, and very high to each of the quality metrics

for the evaluated project. Moreover, participants were allowed to leave an optional comment

justifying their assessment. After that, we compared the obtained quality assessment results

with the manual evaluation of developers. We finally asked them to give their opinion on a

scale from 1 to 5 about the sensitivity of each quality metric.

Table 3.14: Selected Developers and eBay projects.

Participants
Project KLOC

Exp (Years) Commits Modified files

Xoneor 456 8 327 913

Relational-data-service 703 12.5 281 603

Xodbutil 681 11 331 498

Picasso 642 14 369 703

3.3.3.2 Hyper-parameter Settings

Some of the clustering algorithms (e.g. K-means, Birch, and Agglomerative Clustering)

require specifying the number of clusters up-front; therefore, we tried all cluster numbers

between 2 and 10 following trail-and-error. For the Agglomerative Clustering algorithm, we

tried the different types of distance—Euclidean distance, Manhattan distance, and cosine

similarity as the affinity parameters. For the Affinity propagation algorithm, the Damping

factor should be a value between 0.5 and 1, exclusive; we tried the following damping factors:

0.5, 0.6, 0.7, 0.8, and 0.9. We set the preferences to the median of the input similarities.

For the Mean-shift algorithm, we used the Python sklearn module that offers a function

to estimate the bandwidth based on a nearest-neighbor analysis. The DBSCAN algorithm

requires two parameters: Minimum samples (“MinPts”) which is the minimum number of

points required to form a cluster and ϵ (epsilon or “eps”) which is the maximum distance two

162

points can be from each other while still belonging to the same cluster. There is no automatic

way to determine the MinPts value for DBSCAN. For this reason, we tried all the following

values: 20, 50, 100, 200, 300, 500, and 700. One technique to automatically determine their

optimal ϵ value is described by Rahmah et al. [573]. This technique calculates the average

distance between each point and its k nearest neighbors, where k = the selected MinPts

value. The average k-distances are then plotted in ascending order on a k-distance graph.

The optimal value for ϵ resides at the point of maximum curvature (i.e., where the graph

has the greatest slope). We found that the optimal eps parameters for 20, 50, 100, 200,

300, 500, and 700 are equal to 0.4, 0.5, 0.5, 0.6, 0.7, 0.7 and 0.8, respectively. Finally, for

OPTICS, we used the default value of Max eps which is infinity. This will identify clusters

across all scales. For the Min samples, we used the values 20, 50, 100, 200, 300, 500, and 700.

The online appendix [568] includes the extensive results using all the above configurations

discussed in this section.

3.3.3.3 Results

3.3.3.3.1 Results for RQ1 Figure 3.14 shows the variance percentage of each com-

ponent created by the principal component analysis. To capture at least 95% of the data

variance, we selected the first 18 components that have a cumulative variance of 95.18%.

One advantage of PCA is its ability to deal with highly correlated variables, if any. If a set

of repository variables are highly correlated then they will all show on the same principal

component. The weights of each repository feature in every component can be found in our

online appendix [568].

RQ 3.15 shows the clustering results as well as the Silhouette Coefficients. For each

algorithm, we picked the hyper-parameters that balance the following criteria: number of

projects per cluster, high evaluation metrics, number of unclassified projects, and distinct

characteristics per cluster. The detailed results with the different hyper-parameters can be

found in our online appendix [568]. The algorithm that has the best Silhouette score is

163

K-means with K=7. K-means also has relatively balanced clusters with a minimum size

of 279 projects and a maximum size of 1356 projects. DBSCAN and OPTICS have high

numbers of unclassified projects. Affinity propagation generated 104 clusters. Most clusters

contain a very small number of projects. Thus, we can conclude that K-means provides the

best clustering results among all 7 algorithms based on the different clustering evaluation

metrics.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

95.57%

%
 V

ar
ia

nc
e

Component

% Variance
Cummulated

Figure 3.14: A bar-plot that shows the component importance generated by the principal component
analysis

To better understand the main differences between the generated clusters of the best

algorithm (K-means), Figure 3.15 summarizes grid of boxplots that shows the distributions

of repository features across the clusters generated by the K-means algorithm with K=7.

Clusters 0, 2 and 6 have the lowest max, min, and median in network count, number of com-

ments, subscribers count, number of releases, number of contributors, open issues, stargazers

count, and total number of commits. According to the metrics Project component count,

project LOC, project method count, and project type count, clusters 0, 2, and 6 contain small

projects compared to the other clusters. Clusters 4 and 5 have the maximum max, min, and

median in network count, number of comments, subscribers count, stargazers count, number

164

Table 3.15: Clustering results.

Algorithm
of
Clusters

Clusters
Size

Unclassified
Elements

Silhouette
Score

K-means 7 1356, 998, 989, 590, 497,
370, 279

0 0.35

DBSCAN 4 1849, 1512, 512, 318 888 0.35

Agglomerative
Clustering

7 1309, 1243, 653, 569, 535,
444, 326

0 0.34

OPTICS 6 1866, 1512, 535, 324, 155,
106

581 0.32

Birch 7 3622, 555, 441, 168, 147, 77,
69

0 0.18

Mean Shift 6 4246, 321, 255, 164, 67, 26 0 0.12

Affinity
Propagation

104 Max: 638, Min: 2 0 0.00

of contributors, and number of releases. Based on the obtained results, we can confirm that

the repository features can be used to automatically generate clusters of projects sharing

similar characteristics. These clusters are evaluated in the next RQ to see if they could be

used as benchmarks for software quality to simulate the way how developers intuitively select

the best benchmark for quality assessment.

¤ Key findings: Software projects can be grouped together into multiple clusters

based on their repository features.

3.3.3.3.2 Results for RQ2 Figure 3.16 summarizes the p-value results of the Kol-

mogorov–Smirnov test for all pairs of benchmarks. The x-axis contains all possible pairs

of benchmarks. The y-axis contains the quality metrics. The bubbles in the intersection

between a quality metric Qi and a pair of benchmarks (Bx, By) means that Bx and By are

significantly different in Qi (i.e., p-value < 0.05). We notice that ASC and DSC have the

highest number of bubbles which means that they have significant differences across almost

all pairs of benchmarks which can lead to completely different quality assessment based on

the selected benchmark. In other words, if developers change the benchmark when evaluat-

ing ASC or DSC, they will most likely get a completely different interpretation of the quality

metrics value. On the other hand, PC, FANIN and, FANOUT have the least number of

165

Figure 3.15: A grid of boxplots that shows the distributions of repository features across the clusters
generated by the K-means algorithm with K=7

bubbles. However, that number is still considerable.

To have a clearer idea about the sensitivity of the quality metrics, we present the values of

SQi
for all quality metrics as well as their corresponding labels in RQ RQ2. We notice that all

metrics have either high or medium sensitivity to the benchmarks with the predominant label

being high. As we mentioned before, ASC and DSC have the highest sensitivity with a value

of 0.95. This observation can be explained by the fact that these anti-patterns are dependent

on the history and structure of the projects. Meanwhile, this is an important outcome for

the software maintenance and evolution community to carefully consider the benchmark use

when deciding about anti-patterns to fix. The class metrics FANIN and FANOUT and PC

have the lowest sensitivity with a value of 0.52. However, it is still be considered at least

as a medium sensitivity level to the benchmark. We believe that the main outcomes of

166

P_SMD
ASC
DSC
ISC

C_LOC
C_SMD

CC
M_LOC

PC
DIT

FANOUT
FANIN
LCOM

C_LOC
NC

NOF
NOM
NOPF
NOPM
WMC

B0
 vs

 B
1

B0
 vs

 B
2

B0
 vs

 B
3

B0
 vs

 B
4

B0
 vs

 B
5

B0
 vs

 B
6

B1
 vs

 B
2

B1
 vs

 B
3

B1
 vs

 B
4

B1
 vs

 B
5

B1
 vs

 B
6

B2
 vs

 B
3

B2
 vs

 B
4

B2
 vs

 B
5

B2
 vs

 B
6

B3
 vs

 B
4

B3
 vs

 B
5

B3
 vs

 B
6

B4
 vs

 B
5

B4
 vs

 B
6

B5
 vs

 B
6

Figure 3.16: A bubble chart that summarizes the Kolmogorov–Smirnov test results.

this research question are very important to the communities of practitioners and software

maintenance: Quality metrics are sensitive to the selected benchmark thus developers and

researchers should carefully select the right benchmark to get the right interpretation of the

quality assessments.

¤ Key findings: All the quality metrics used in our study are sensitive to the bench-

marks. This outcome suggests that the appropriate selection of the benchmark is critical

for an accurate assessment of the quality of software systems.

3.3.3.3.3 Results for RQ3 Table 3.17 summarizes the results of the comparison be-

tween the quality evaluation of QBench and the ones conducted manually by the senior

developers from eBay. For each quality metric Qi, the eBay participants labeled each of the

quality metric values as very low, low, medium, high, and very high based on their experience

and knowledge of the projects. To reduce the subjectivity of this process, we asked the par-

ticipants to evaluate all the four projects quality metrics since they are knowledgeable about

167

Table 3.16: The sensitivity of the quality metrics

Quality
Metrics

QBench SQi Label Survey SQi

P SMD 16/21=0.76 high 0.95

ASC 20/21=0.95 high 0.95

DSC 20/21=0.95 high 0.95

ISC 15/21=0.71 high 0.95

C LOC 14/21=0.67 high 0.7

C SMD 16/21=0.76 high 0.95

CC 13/21=0.61 medium 0.6

M LOC 18/21=0.86 high 0.55

PC 11/21=0.52 medium 0.65

DIT 12/21=0.62 medium 0.6

FANIN 11/21=0.52 medium 0.55

FANOUT 11/21=0.52 medium 0.6

LCOM 16/21=0.76 high 0.9

C LOC 17/21=0.81 high 0.85

NC 14/21=0.67 high 0.8

NOF 18/21=0.86 high 0.95

NOM 17/21=0.81 high 0.95

NOPF 18/21=0.86 high 0.95

NOPM 15/21=0.71 high 0.9

WMC 16/21=0.76 high 0.85

 1

 2

 3

 4

 5

 6

P_
SM

D
AS

C
DSC IS

C

C_
LO

C

C_
SM

D CC

M_L
OC PC DIT

FA
NIN

FA
NOUT

LC
OM

C_
LO

C NC
NOF

NOM
NOPF

NOPM
W

MC

D
ev

el
op

er
's

 F
ee

db
ac

k

Figure 3.17: Distribution of the developers’ answers about the Sensitivity of the quality metrics.

all of them and the results were the same for all projects and metrics (Cohen’s Kappa score of

1.0). We extracted the necessary repository features for each eBay project. The evaluation of

QBench is based on the preferred cluster for each project from the 7 clusters identified in the

168

previous research question using K-means. Then, QBench labeled automatically the qual-

ity metrics based on the ranking of their values in the preferred cluster: 0-20% (very low),

20%-40% (low), 40%-60% (medium), 60%-80% (high), and 80%-100% (very high). Then,

the developer can make the interpretation of the assessment based on the type of the metric

(to maximize or to minimize). We notice that our approach provided a correct assessment

for all quality metrics except for four. QBench was also able to provide an accurate quality

assessment for the projects Relational data service and Picasso. Xodbutil has a divergence

in the quality evaluation mainly in the metrics related to code smells. However, all the

differences are slight deviations of the assessment such as high vs. very high which may not

impact significantly the overall assessment by the developers.

Table 3.18 shows the precision of the quality assessment of each project using all seven

benchmarks. We used the assessment provided by the participants as our ground-truth

(expected evaluation). Then, we computed the precision of QBench assessment for each

benchmark/cluster by calculating the size of the intersection between the expected assess-

ments of developers and those of QBench divided by the total number of quality metrics for

each project. The preferred benchmarks predicted by our approach for Xoneor, Relational

Data Service, Xodbutil, and Picasso are benchmarks 2, 4, 1, and 2, respectively. For the

projects Xoneor and Picasso, the preferred cluster detected by QBench was able to provide

the best quality assessment (i.e., The highest precision compared to the ground truth) which

confirms the similarity between the selected cluster/benchmark of QBench and the opinions

of developers.

Finally, Table 3.16 shows the average sensitivity judged by all the participants for each

quality metric which is consistent with our approach. Figure 3.17 also shows the distribution

of the developers’ opinion. According to the developers, all metrics are sensitive to the

benchmark. The lower sensitivity is indicated in the metrics FANIN, FANOUT, DIT PC, CC

and M LOC. This outcome confirms our results where our approach demonstrates medium

sensitivity in five of those six metrics.

169

The current version of QBench is integrated within eBay’s development pipeline, as part

of the quality gates, for specific critical projects/services running in the backend of ebay.com.

When the developers are pushing pull-requests for merging, QBench estimates its impact on

the project metrics based on the most appropriate benchmark and highlights the quality

metrics that may need to be improved before merging the pull-request. QBench is also

currently used by managers and executives to estimate the amount of accumulated technical

debt compared to the identified benchmark before shipping a new release. Basically, QBench

is used in two scenarios by developers. First, within the continuous integration process

where QBench provides an impact summary of the code changes in the pull-request from

the quality perspective compared to an automatically identified benchmark. Depending

on the differences with the benchmark, QBench (quality gate) may generate a warning

that the pull-request cannot be merged until some issues get refactored or another code

reviewer/manager approves bypassing the quality gate of QBench. The second scenario is

during major refactoring phases where the amount of accumulated issues (technical debt)

becomes high compared to other benchmarks. However, we have seen more activities and

interests for the first scenario during this pilot.

¤ Key findings: QBench demonstrates high effectiveness in automatically finding a

suitable benchmark when evaluating the quality of software projects in practice.

3.3.4 Threats to Validity

Internal validity. The first threat to our approach is the selection of an appropriate

clustering algorithm and its corresponding hyper-parameters. Clustering algorithms have

many parameters, and finding the best combination of parameters is not easy. To mitigate

this problem, we tried many combinations of parameters from different ranges. We also

used heuristics such as the elbow and k nearest neighbors methods as well as the scikit-learn

function for mean-shift bandwidth selection.

Construct validity. In our experiments, these threats are related to the absence of

similar works that automatically identifies customized benchmarks to evaluate the quality of

170

Table 3.17: Participants quality assessment vs QBench.

QBench /
Develop.
Opinion

Xoneor Relational Data
Service

Xodbutil Picasso

P SMD Medium/Medium Low/Low Medium/High High/High

ASC Medium/Medium Low/Low Medium/Medium Very High/Very High

DSC High/High Low/Low Low/Medium High/High

ISC Medium/Medium Low/Low Medium/High High/High

C LOC Medium/Medium Medium/Medium High/High High/High

C SMD High/Medium Low/Low Medium/Medium High/High

CC Medium/Medium Medium/Medium High/Very High High/High

M LOC Medium/Medium Low/Low High/High Medium/Medium

PC Medium/Medium Medium/Medium Medium/Medium Medium/Medium

DIT Low/Low High/High Low/Low Low/Low

FANIN High/High Low/Low Medium/Medium High/High

FANOUT Medium/Medium Low/Low Medium/Medium High/High

LCOM Medium/Medium Low/Low High/High Very High/Very High

C LOC Medium/Medium Medium/Medium Medium/Medium High/High

NC Low/Low High/High Medium/Medium Low/Low

NOF Medium/Medium Medium/Medium Low/Low Medium/Medium

NOM Medium/Medium Low/Low High/High Very High/Very High

NOPF Medium/Medium Medium/Medium Medium/Medium High/High

NOPM Medium/Medium Low/Low Medium/Medium High/High

WMC High/High Low/Low High/High High/High

Table 3.18: QBench correctness precision for each of the seven benchmarks.

Bench

Projects/ Pref Bench. 1 2 3 4 5 6 7

Xoneor (Benchmark 2) 64% 95% 51% 63% 53% 55% 39%

Relational data service
(Benchmark 4)

48% 68% 42% 44% 100% 63% 23%

Xodbutil (Benchmark 1) 80% 56% 71% 52% 66% 84% 47%

Picasso (Benchmark 2) 52% 100% 39% 74% 38% 48% 61%

software systems. Thus, we were not able to compare our results with any existing studies.

A construct threat can also be related to the fact that we had to manually choose the best

clustering results to be considered as our benchmarks. Further work needs to investigate

how the results would change in cases in which we choose other clustering results.

External threats. External threats concern the generalization of our findings. We

included only projects written in Java to create the benchmarks. To mitigate this threat, we

made sure that we used projects of different sizes and domains. We filtered trivial projects

and kept only the ones that had more than two contributors and more than 5000 lines of

code. Moreover, we included only 29 repository metrics and 20 quality measures. We are

171

planning to include more quality and repository features and consider other programming

languages to extend our empirical validation. Another threat is related to the validation

of our approach. We validated our approach on only 4 industry projects with 4 senior

developers. The reason is that we wanted to have relevant feedback from mainly the original

developers of the projects.

3.3.5 Conclusion

In this study, we propose a novel approach that aims at finding the most suitable bench-

mark to evaluate the quality of a software project in a fair and unbiased way. We first

showed that clustering algorithms are efficient in finding clusters of projects with distinct

characteristics based on repository features. We then performed statistical analysis to com-

pare the different clusters and to check the sensitivity of each quality metric. We finally

validated our approach with developers from eBay. The results provide strong evidence that

our approach helps developers automate and effectively manage the benchmarking process

for software quality assessment.

172

CHAPTER IV

Improving the Refactoring Recommendation Process

Refactorings constitute an effective means to improve quality and maintainability of

evolving object-oriented programs. Search-based techniques have shown promising results

in finding sequences of behavior-preserving program transformations that maximize code

quality metrics, minimize the number of code smells and minimize the number of changes.

However, we identified two major research gaps that received little or no attention so far

in the refactoring generation process. The first gap consists of the impact of refactorings

on extra-functional properties like security. Security is an important software quality aspect

that reflects the ability of a system to prevent data exposure and loss of information. A basic

aim of secure software is to prevent unauthorized access and modification of information. The

fulfillment of security requirements at the design and implementation level is imperative to

minimize the cost of addressing this issue at later stages of development and maintenance.

Similar to other quality attributes, it is important to perform refactoring operations to

improve the security of software. The second gap consists of the random application of

change operators and seeding mechanism in search-based refactoring techniques. Failing

to understand the good/bad patterns in a refactoring sequence or the dependency between

the refactoring operations can simply destroy them, deteriorate the quality, and delay the

convergence towards good solutions.

To address these two gaps, we propose the following contributions:

173

4.1 How Does Refactoring Impact Security When Improving Quality? A

Security-Aware Refactoring Approach

4.1.1 Introduction

The National Institute of Standards and Technology (NIST) estimates that the US econ-

omy loses an average of $60 billion per year by either implementing patches to fix security

vulnerabilities or the impact of these security issues [574, 575]. These vulnerabilities depend

on how a system is designed and implemented. At the same time, code quality is also critical:

it impacts programmer productivity and may cause project failure as maintenance consumes

over 70% of the lifetime budget of a typical software project.

The ISO/IEC-25000 SQuaRE (Software product Quality Requirements and Evalua-

tion) [576] classifies software quality in a structured set of eight characteristics and sub-

characteristics. In this classification, security is a new characteristic that was created to

measure how much a software is resistant to attacks and risks. Therefore, it is crucial to

take this characteristic into account when improving the quality of the software.

Several researchers and practitioners have assumed that improving a quality metric of

software, such as modularity, will have a positive impact on security, making the design more

robust and resilient to attacks [577, 578, 292] . However, this assumption is poorly supported

by empirical validations. Architects and developers may not pay much attention to design

fragments containing data and logic pertinent to security properties, which makes them

overexposed while still improving some quality aspects of their architecture. For instance,

a developer may create a hierarchy in a set of classes to improve the reusability of the

code. However, these actions may expand the attack surface if the superclass contains

critical attributes and methods. Another example that we observed in practice is that

improving modularity may result in spreading dependencies on security-critical files into

many other components. A security-critical file contains data (e.g., attributes) and logic

(e.g., methods) that can potentially be misused to violate fundamental security properties

174

such as confidentiality, integrity, or availability of a system.

Refactoring to improve the design structure while preserving behavior is widely used to

enhance the quality of software systems [579]. Most existing refactoring research focuses

on handling conflicting quality attributes [446, 2, 448, 321, 447]. However, the impact of

refactoring on security is poorly understood and under-studied. Recent studies estimate the

impact of a few refactoring operations on some security metrics based on their definitions,

but without empirically validating these assumptions on real software projects [580, 581, 475,

478]. To the best of our knowledge, there is no previous research on the correlations between

security metrics and quality attributes, or that provided a tool to recommend refactorings

based on the preferences of developers from both quality and security perspectives, and the

possible conflicts between them.

In this contribution, we investigate the possible correlations between the Quality Model

for Object-Oriented Design (QMOOD) quality attributes[515] and a set of security metrics

extracted from source code widely used in the current literature and practice [466, 468]. We

also empirically validated the impact of different refactoring types on 8 code security metrics

that are primarily related to data access.

We analyzed a total of 30 open-source projects and, based on the outcomes of these

analyses showing the conflicting nature of the studies security and quality metrics, we propose

a security-aware multi-objective refactoring approach to find a balance between code qualities

and security metrics. We formulated the different quality and security objectives as fitness

functions to guide the search for relevant refactorings and find trade-offs between them using

Non-dominated Sorting Genetic Algorithm (NSGA-II) [495].

We evaluated our tool on this set of 30 projects. Furthermore, we compared our results

with an existing multi-objective refactoring tool [2] that only considers code quality, to

understand the sacrifice in security measures when improving code quality and vice-versa.

The comparison shows that our security-aware approach performed better than the existing

approach when it comes to improving the security of systems, and with low cost in terms of

175

sacrificing code quality. Our survey of 15 practitioners confirmed the efficiency of our tool

and the importance of considering security while improving other qualities. More details

about the surveys, experiments and tool can be found in the online appendix [3].

The primary contributions are as follows:

1. The study introduces one of the first empirical studies to understand the impact of

source code refactoring on both quality and security metrics and the correlations be-

tween them.

2. The creation of a framework to recommend refactorings to find trade-offs between

quality and security objectives considering the correlation results between them.

3. A validation of this framework on open source systems. The survey with practitioners

shows the potential of our work in improving refactoring recommendations by taking

into account both security and quality.

4.1.2 Motivating Example

In this section, we describe a motivating example related to the possible negative impact

of refactoring on security.

By mining the well-known Common Vulnerabilities and Exposures (CVE) security bug

database, we found a total of 269 security vulnerabilities that were introduced by code

refactorings. These 269 vulnerabilities were manually identified by the authors out of 681

reports containing the keyword ”refactor”. Figure 4.1 shows an example of a vulnerability,

CVE-2019-131771, from Django REST Registration library due to refactorings resulted in

allowing remote attackers to trick the verification process. This security bug impacted the

confidentially of Django REST Registration library in several releases before 0.5.0. Thus, it

is essential to evaluate the impact of the recommended refactorings on the security of the

application.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13177

176

Figure 4.1: An example of a security vulnerability from Django REST Registration library due to refac-
torings.

Figure 4.2: A simplified bank account system hierarchy before and after refactoring

We introduce, in the following, another motivating example to show how refactoring

may improve code quality while making the design weaker from a security perspective. The

design fragment in Figure 4.2 is responsible for storing information about customer accounts,

which, by definition, requires careful attention in terms of security to access those classes.

A bank account can be either a debit or credit account. The interestRateConstant is an

attribute that stores the value of the interest rate of the credit account. Thus, it is only used

by the creditAccount class. The deposit and withdraw operations have duplicated code that

performs the transactions. This code can be extracted to a new separate method that can

be used by both operations. Both accountNumber and creditCardNum are sensitive and are

meant to be kept confidential.

The developer applied the refactoring “push down field” by moving the interestRateCon-

stant from the BankAccount class to its subclass CreditAccount as well as the refactoring

“extract method” by moving the duplicated code to a separate new method called perform-

Transaction and replacing the old code with a call to this new method. These refactorings

improved cohesion and messaging [498], which results in increasing the following quality

attributes: Understandability, Functionality, and Reusability [582]. However, these trans-

177

formations might increase the security metrics CMAI, CAAI, CMW, and CAIW [475] which

will reduce the security of the design due to the fact that the classes are becoming more

exposed and easier to access than before. This example motivates our research to investigate

further the impact of refactorings on security when improving code quality.

4.1.3 Security-Aware Multi-Objective Refactoring

4.1.3.1 Overview

Figure 4.3: Security-Aware Multi-Objective Refactorings

Our approach, as sketched in Figure 4.3, takes as input the source code (or GitHub link)

of a project to be analyzed and generates a list of refactoring recommendations that balance

code quality and security based on developer preferences.

178

The first component parses the code to calculate the security metrics and quality at-

tributes defined in the background section of this dissertation (Tables 2.10 and 2.12). Then,

the collected data is used to analyze the correlation between the different quality and security

metrics (without the need for refactoring at this point).

For the second component, we adapted a multi-objective search algorithm, based on

NSGA-II [495], used in our previous work [2] to integrate the security and quality objec-

tives. We selected this algorithm due to its ability to find trade-offs between independent

or conflicting objectives, and it has previously been applied for various software engineering

problems [446, 2, 448, 321, 447]. Our goal is to find a set of non-dominated refactoring

solutions capable of improving both the quality and security of the project taken as input.

A code refactoring activity may be focused on quality improvements, and the developers

care less about security (e.g., the component is used internally and never exposed to at-

tacks). In this case, users of the tool may want to assign higher weights to quality metrics.

In another scenario, it could be the opposite, especially for critical code fragments. In our

multi-objective formulation, the developer is not required to enter any weights to the objec-

tives since the output of the algorithm is a Pareto-front of a diverse set of solutions that the

user can select one of them based on their preferences. Finally, a user can interact with our

tool to accept or reject the refactoring recommendations. A detailed demo can be found in

[3]. In the remainder of this section, we will explain the steps of the approach.

4.1.3.2 Computing the Security Metrics

We adopted the Soot parser [524], based on static analysis, to calculated these metrics

including the automated identification of classified versus non-classified code elements, as

shown in the video of our tool [3].

We chose the 8 security metrics described in Table 2.12 among the ones available in the

literature specifically because their definition is clear and relatively easy to implement. We

also wanted to highlight that our parser is based on Soot [524] for static analysis–we did not

179

Figure 4.4: Sample of outputs (refactorings) of our Web app on the Open CSV project to balance quality
and security.

create a custom parser from scratch. The source code is analyzed to extract the relevant

code elements such as classes, methods, attributes, etc. and the relationships between them.

Each code element has several attributes that describe its level of access/visibility, whether

it is considered to be classified or not.

We describe in the following the different steps to identify the security sensitive attributes

by taking inspiration from existing studies [527, 472, 526, 525] based on text similarities/min-

ing. We first use a set of keywords [527, 526, 525] related to security and indicators of sensitive

information extracted from multiple sources such as source codes, comments, security bugs,

vulnerability reports, commit messages, and security questions/tags on Stack Overflow. We

included these keywords in the online appendix associated with this submission. Second, we

calculated a textual criticality score, based on cosine similarity, for each file to estimate the

extent to which the file is related to security concerns. The higher the score is the more likely

the file needs to be protected. We pre-processed the source code using tokenization, lemma-

tization, stop words filtering and punctuation removal [527, 526]. Then, we computed the

cosine similarity between each file and the set of keywords. Finally, we manually validated

the top 10 critical files and use their critical attributes (fields that have names that match

180

one of the keywords from the list we gathered at the beginning) to identify the critical at-

tributes in all the other files that will be used to compute the security metrics. This process,

including security metrics calculation, is not time-consuming since it takes a few seconds to

minutes to extract the security-critical attributes and compute the metrics, depending on

the size of the project to be analyzed. We note that the identification of code elements as

security sensitive is not a core contribution of this dissertation since we leveraged the use of

existing work for this step.

4.1.3.3 Algorithm Adaptation

The search space is composed of the different refactoring operations as well as an ex-

haustive combination of code locations, attributes, and methods. The algorithm is executed

for some iterations to find non-dominated solutions balancing the 7 objectives of improving

the 6 QMOOD quality metrics, and the last objective of minimizing the security objective

(aggregating the 8 security metrics) in the proposed solutions. The output of this step is

a set of Pareto-equivalent refactoring solutions that optimize the above objectives. These

solutions are not dominated with respect to each other. A refactoring solution is represented

by an ordered vector of refactoring operations as shown in Figure 4.4 and described in the

background section 2.4.3.2 of this dissertation .

Our approach takes into consideration seven objectives: the first six are the relative

changes of the 6 QMOOD attributes [515] after applying a refactoring solution. Each objec-

tive can be written as follow:

QualityObjectivei =
Qafter

i −Qbefore
i

Qbefore
i

(4.1)

where Qbefore
i and Qafter

i are the values of the qualityAttributei before and after applying a

refactoring solution, respectively.

Since all metrics in the table 2.12 are at the class level, we consider the corresponding

181

system-level metrics as the average of all class level metrics. For instance, AvgCCDA is

defined as the ratio of the sum of the CCDA values of all classes of the system to the number of

classes in that system. In a similar manner, we define the other system-level security metrics

AvgCIDA, AvgCOA, AvgCAAI, AvgCMAI, AvgCMW, AvgCAIW and AvgVA. Therefore,

the seventh objective, which is the security objective, corresponds to the relative change

in the average of the average of all eight security metrics in the table 2.12 after applying

a refactoring solution. We can represent the fitness function of the security objective as

follows:

SecurityObjective =
Safter − Sbefore

Sbefore
(4.2)

where S= (AvgCCDA + AvgCIDA + AvgCOA + AvgCAAI + AvgCMAI + AvgCMW +

AvgCAIW + AvgVA) / 8

Unlike the quality objectives, we decided to aggregate the security metrics into one

objective since they are not conflicting to each other based on our analysis of the data

on the open-source systems detailed later in our experiments. Furthermore, the performance

of the multi-objective algorithm will decrease when the number of objectives becomes large.

4.1.4 Experiments and Results

We used a set of 30 open source projects to study the possible correlations between 1)

the quality and security metrics and 2) refactoring types and security metrics. To evaluate

the ability of our security-aware multi-objective refactoring tool to generate good refactoring

recommendations that balance both quality and security, we conducted a set of experiments

based on 4 out of the 30 open source systems. The obtained results are subsequently statisti-

cally analyzed with the aim of comparing our proposal with a variety of existing approaches.

182

The relevant data related to our experiments and a demo about the main features of the tool

can be found in [3]. We have also conducted a survey with practitioners to manually evaluate

the refactoring recommendations and the obtained correlations between quality, refactoring

types and security.

In this section, we first present our research questions and validation methodology fol-

lowed by the experimental setup. Then we describe and discuss the obtained results.

4.1.4.1 Research Questions

In this study, we defined four main research questions:

• RQ1: Impact of refactoring on code security. Can automated refactoring have

a significant impact on security metrics?

• RQ2: Impact of improving quality on security and vice-versa. Are there strong

correlations between code quality attributes, as measured by the QMOOD metrics, and

code security metrics?

• RQ3: Comparison with an existing work for refactoring recommendation

How does our security-aware refactoring tool perform compared to refactoring ap-

proaches that only focus on improving quality (and not security)?

• RQ4: Insights. Do professional programmers highly value considering security while

improving quality?

To answer RQ1, we collected a dataset of refactorings applied on 30 medium to large-

size open-source systems, listed in Table 4.1, to understand the impact of the refactoring

types on 8 different security metrics. We selected these systems based on their domains,

size and large history of evolution (e.g. commits). We did not extract refactorings from

previous commits due to the challenges related to differentiating between functional and non-

functional changes and the limited number of refactorings that developers apply manually.

183

Instead, we obtained the data by running the refactoring recommendation tool of Alizadeh et

al. [2] on these projects, selecting the obtained refactoring solution and recording its impact

on the security metrics. We selected the tool based on its high accuracy in recommending

relevant refactorings that significantly improve the quality. Then, we statistically analyzed

the impact of these refactoring types on code security metrics for the 30 projects.

To answer RQ2, we used a procedure similar to the one used for RQ1: we collected data

from the execution of our tool on the 30 projects by recording the impact of the refactorings

on both the QMOOD quality attributes and the 8 code security metrics. Unlike the impact

of QMOOD on quality, we note that the security level increases when the security metrics

decrease. Finally, we ran statistical tests to understand the correlations between the different

metrics using the Pearson correlation coefficient [583] (chosen due to the normal distribution

of the data).

To answer RQ3, we compared our approach with an existing technique that considers

only the QMOOD attributes [2] as objectives using 4 projects, as described later. Since

meta-heuristic algorithms are stochastic optimizers, they can provide different results for

the same problem instance from one run to another. For this reason, our study is based

on 30 independent simulation runs for each problem instance to make sure that the results

were statistically significant. The goal of this research question is to understand the cost of

improving code quality on security and vice-versa. We selected the work of Alizadeh et al.

[2] since it is the closest to our proposed approach and outperformed most of the existing

refactoring tools based on the same systems used in this evaluation. We only considered five

systems in this comparison due to the very time-consuming task to run the different heuristic

algorithms 30 times to check if the results are statistically significant. Furthermore, it is

difficult to find knowledgeable participants who can manually evaluate the results on all 30

open source projects. Thus this part of our evaluation poses a threat to validity.

To answer RQ4, we used a post-study questionnaire to collect the opinions of developers

regarding our tool and the relevance of considering security when refactoring. Furthermore,

184

the participants manually evaluated the refactoring recommendations of our approach. We

asked the developers about their opinions on the possible correlations between 1) quality and

security metrics; and 2) refactoring types and security. The survey allowed us to compare the

quantitative results obtained in our experiments with developer opinions. The full details of

our extensive validation, including a demo of our tool and the survey details, can be found

at [3].

4.1.4.2 Software Projects and Experimental Setting

4.1.4.2.1 Studied Projects We used a set of 30 well-known open-source Java projects

as detailed in Table 4.1. We selected these systems for our validation because they range

from medium to large-sized and have been actively developed in recent years. Table 4.1 also

provides some descriptive statistics about these programs.

4.1.4.2.2 Subjects Our qualitative study involved 15 software developers. All partici-

pants were volunteers who were knowledgeable in software security, Java, refactoring, and

quality assurance. They were all hired from our former and current industry partners of

refactoring projects.

Participants were first asked to fill out a pre-study questionnaire. The questionnaire

helped to collect background information such as their role within the company, their pro-

gramming experience, and their familiarity with software security, quality, and refactoring.

They all had a minimum of 2 years of experience as programmers and 5 out of 15 have over

5 years of experience. 12 participants were working on software assurance tasks as part of

their regular duties, which was one of the main criteria used to solicit their participation,

based on our previous collaborations and contacts. The other criteria were related to their

level of expertise in refactoring and security, and also their familiarity with the five selected

open source systems. The pre-study survey shows that the majority of the developers (11

out 15) have high experience and are knowledge about software refactoring and security. A

185

Table 4.1: Studied open source projects.

System Release #lasses KLOC GitHub Link

jFreeChart v1.0.9 521 170 jfree/jfreechart.git

ArgoUML v0.3 1358 114 marcusvnac/argouml-spl.git

atomix v3.0.11 2719 188 atomix/atomix.git

JHotDraw v7.5.1 585 25 wumpz/jhotdraw.git

GanttProject v1.10.2 241 48 bardsoftware/ganttproject.git

Apache Ant v1.8.2 1191 112 apache/ant.git

moshi v1.8.0 289 27 square/moshi.git

opencsv v1.7 50 7 jlawrie/opencsv.git

zerocell v0.3.2 39 3 creditdatamw/zerocell.git

gson v2.8.5 691 69 google/gson.git

jolt v0.1.1 370 31 bazaarvoice/jolt.git

Hystrix v1.5.18 1117 85 Netflix/Hystrix.git

btm v2.1.3 375 40 bitronix/btm.git

packr v1.2 8 3 libgdx/packr.git

tracer v2.0.0 33 3 zalando/tracer.git

JSAT v0.0.9 1171 185 EdwardRaff/JSAT.git

smile v1.5.2 1206 8316 haifengl/smile.git

dkpro-core v1.10.0 1269 1323 dkpro/dkpro-core.git

Erdos v1.0 128 7 Erdos-Graph-Framework/Erdos.git

jgrapht v1.3.0 1257 171 jgrapht/jgrapht.git

mockito v2.27.3 1880 94 mockito/mockito.git

tablesaw v0.32.7 583 714 lwhite1/tablesaw.git

bazel v0.25.0 11267 2753 bazelbuild/bazel.git

spotbugs v4.0.0 5207 389 spotbugs/spotbugs.git

FreeBuilder v2.3.0 1636 58 google/FreeBuilder.git

async-http v2.8.1 602 52 AsyncHttpClient/async-http-client.git

javaparser v3.13.10 1414 251 javaparser/javaparser.git

vavr v0.10.0 838 135 vavr-io/vavr.git

javamelody v1.77.0 662 109 javamelody/javamelody.git

commons-cli v1.4 63 10 apache/commons-cli.git

186

minimum of 12 of 15 participants per system have medium or above expertise regarding the

evaluated open source systems. The full details of our pre-study survey results can be found

at [3].

Each participant was asked then to complete an evaluation form to evaluate 5 refac-

toring solutions that had different impacts on quality and security on 4 different systems:

JHotDraw, Gantt, Apache Ant and JFreeChart. The participants were asked to evaluate

the refactorings on all the systems; we did not divide them into groups. After that, each

participant was given a post-study survey. This second survey was more general as it col-

lected the practitioners’ opinions on the relevance of the outcomes and their perception of

the importance of considering security when refactoring their code.

4.1.4.2.3 Parameter Tuning and Statistical Tests Parameter setting significantly

influences the performance of a search algorithm on a problem. For this reason, for each

algorithm and for each system, we performed a set of experiments using several population

sizes: 50, 100, 200, 300 and 500. The stopping criterion was set to 10,000 evaluations for all

algorithms to ensure fairness of comparison. The other parameter values were fixed by trial

and error and are as follows: crossover probability = 0.8 and mutation probability = 0.5

where the probability of gene modification is 0.3. We also limited the size of the refactoring

solutions to no more than 30 operations.

To have significant results, for each pair (algorithm, system), we used one of the most

efficient and popular approaches for parameter setting of evolutionary algorithms which is

Design of Experiments (DoE) [584]. Each parameter was uniformly discretized in some

intervals. Values from each interval have been tested for our application. Finally, we picked

the best values for all parameters. Hence, a reasonable set of parameter values were applied.

The following statistical tests show that all the comparisons performed between our

approach and existing ones are statistically significant based on all the metrics and the

systems considered in our experiments. We used a 2-sample t-test with a 95% confidence

187

level (α = 5%) to find out whether our sample results of different approaches are significantly

different. We also calculated the Pearson coefficient to study the various correlations.

4.1.4.3 Results

Results for RQ1. Table 4.2 summarizes the correlations between the different types of

refactorings and averaged security metrics considered in our experiments by analyzing the

refactoring recommendations generated by our tool on the 30 projects. The results show

either a positive or negative correlation based on the Pearson Correlation Coefficient except

for the Move Field refactoring. The symbol ”++” (strong positive correlation) means that

the Pearson correlation coefficient has a value higher than 0.5 while ”–” (Strong negative

correlation) means the opposite (lower than -0.5). The symbol ”+” means that the Pearson

correlation coefficient is between 0.1 and 0.5 and ”-” means the opposite (between -0.1 and

-0.5). The symbol ”*” reflects that the correlation coefficient is around 0 (between -0.1 and

0.1) and there is no statistically significant correlation. For each refactoring type, we filtered

the solutions to keep only the ones containing that type and counted its occurrence within

the solution. Then, we checked the correlation between the appearance of the refactoring

type and its impact on the security metric.

Increase Field Security refactoring has the strongest positive correlation with the average

of the 8 security metrics. It is expected that the frequent use of this refactoring type will

reduce access to the attributes which may reduce their visibility and reduce the attack surface

when a set of classes are exposed to malicious code. The same observation is also valid for

Increase Method Security which also has a positive correlation with security improvements.

Encapsulate Field, Push Down Field, and Push Down Method refactorings have also positive

correlations with the security average measure. It is clear that all these refactoring types

reduce the level of abstraction of classes which may increase the protection of the fields and

methods.

Decrease Field Security, Decrease Method Security, and Extract Superclass have a strong

188

negative correlation with the security measure since the Pearson Correlation Coefficient is

lower than -0.6. All these refactorings can either make the fields and methods overexposed

or increase the abstraction of the code which may have a negative impact on security. The

Encapsulate Field refactoring increases the ability to conceal object data. Otherwise, all

objects would be public and other objects could get and modify the object’s data without

any constraints. Furthermore, the encapsulate field refactoring can help in bringing data

and behaviors closer together which will reduce unnecessary access and public visibility of

attributes. Thus, the security metrics should be improved after application of Encapsulate

Field refactorings.

Table 4.2 also shows that Extract Superclass is negatively correlated with the security

metrics. One of the main explanations of this outcome is the fact that creating superclasses

may expose all the child classes under the created superclass. Thus, the attack surface could

be rapidly expanded when this refactoring type is extensively used. In fact, someone who has

access to a superclass can affect its subclasses’ behavior by modifying the implementation

of an inherited method that is not overridden. If a subclass overrides all inherited methods,

a superclass can still affect subclass behavior by introducing new methods.

Figure 4.5 and Table 4.3 show the most frequent refactorings and patterns in the solutions

that significantly increased the security measure. In this study, a refactoring pattern is an

ordered sequence of refactoring operations. We found that the most frequent refactoring

types are the ones making the methods and fields less exposed and accessed, which confirms

the correlation results. Figure 4.6 describes the impact of refactorings generated by our tool

on the 8 security metrics aggregated into one objective. The results show that none of the

metrics are conflicting with other security metrics since they were all minimized using the

refactoring solutions. This observation confirms our choice to aggregate them rather than

considering them as separate objectives. All the security metrics are normalized in the range

of [0,1].

To summarize, refactoring can impact code security metrics both positively and nega-

189

Table 4.2: Correlation results between the average of security metrics and different refactoring types on
the 30 projects. The results are statistically significant using the 2sample t-test with a 95% confidence level
(α = 5%)

Pearson Correlation Coefficient

Encapsulate Field + (0.237)

Increase Field Security ++ (0.728)

Decrease Field Security - - (-0.624)

Pull Up Field - (0.361)

Push Down Field + (0.471)

Move Field * (0.026)

Increase Method Security + (0.358)

Decrease Method Security - - (-0.681)

Pull Up Method - (-0.316)

Push Down Method + (0.247)

Move Method - (-0.235)

Extract Class - (-0.437)

Extract Superclass - - (-0.694)

Extract Subclass - (-0.424)

Extract method - (- 0.472)

Table 4.3: The two most common refactoring patterns with the highest impact on the improvement of the
average security measure for the 30 open source projects.

Refactoring patterns Average Security Im-
provement

Encapsulate Field, Increase Field Security, Increase Method Se-
curity, Push Down Field, Move Method

0.42

Increase Field Security, Increase Method Security, Move Field,
Push Down Method

0.34

tively based on our analysis of the refactoring solutions proposed for 30 open source projects.

¤ Key findings: Encapsulate Field, Increase Field Security, Push Down Field, Increase

Method Security, Push Down Method are all positively correlated with the avg security

metrics. Decrease Field Security, Pull Up Field, Decrease Method Security, Pull Up

Method, Move Method, Extract Class, Extract Superclass, Extract method and Extract

Subclass are all negatively correlated with the avg security metrics. There is no statis-

tically significant correlation between the Move Field refactoring and the avg security

metrics.

Results for RQ2. Table 4.4 confirms the conflicting nature between several of the

quality attributes and most of the security metrics by analyzing the impact of the refactoring

190

Figure 4.5: Average distribution of the refactoring types among the solutions recommended for the 30
projects that significantly improve the security objective.

Figure 4.6: Impact of the recommended refactorings on security metrics based on the 30 projects.

191

Table 4.4: Correlation results between the average of security metrics and quality attributes on the 30
projects. The results are statistically significant using the two-sample t-test at a 95% confidence level (α =
5%)

Understandability Reusability Functionality Flexibility Extendibility Effectiveness
CIDA - (-0.237) - - (-0.617) - (-0.184) - (-0.318) - (-0.391) + (0.116)
CCDA - (-0.224) - (-0.382) - (-0.137) + (0.281) - (-0.232) + + (0.589)
COA + (0.192) - (-0.373) - (-0.183) + (0.219) - - (-0.619) + (0.314)
CMAI - (-0.217) - (-0.387) - (-0.120) + (0.113) - (-0.382) + (0.221)
CAAI + (0.114) - (-0.234) + (0.131) ++ (0.612) - (-0.224) - (-0.122)
CAIW - (-0.213) - (-0.346) - (-0.114) + (0.116) - - (0.563) + (0.138)
CMW + (0.194) - (-0.213) - (-0.233) + (0.221) - (0.241) + (0.187)

VA - (-0.226) - (-0.362) - (-0.341) + (0.412) - (-0.268) + (0.224)
AvgSecurity - (-0.382) - - (-0.731) - (- 0.114) + (0.183) - - (-0.618) + (0.213)

solutions generated by our tool on the 30 open source projects. Four of the quality attributes

were negatively correlated with the security metrics except Flexibility and Effectiveness.

Reusability and Extendibility are negatively correlated with most of the security metrics

which confirms the results of RQ1. In fact, these quality attributes can be improved using

the extract super/sub class and pull-up method/field refactoring types that were already

negatively correlated with security metrics.

Figure 4.7 presents more details related to the distribution of the refactoring solutions on

the 30 open source projects based on each pair of quality and security metrics (all the metrics

are to minimize based on our formulation). The distribution of the solutions is consistent

with the correlation results reported in Table 4.4. For instance, the refactoring solutions

with good reusability (low values) have the worst security impacts (high values) on the open

source projects.

Since it is not enough to check the ability of our refactoring solutions to improve the qual-

ity and security objectives, we asked the 15 selected participants to evaluate the generated

refactorings for 5 of the 30 open source projects using our tool (+Security) and an existing

refactoring tool (-Security) [2]. The average manual correctness on the five systems is 86% for

our approach compared to 73% for [2] (without the consideration of security objective) as de-

scribed in Figure 4.8. Thus, it is clear that refactoring solutions addressing both quality and

security issues were preferred compared to only improving the quality metrics. We presented

the refactorings in a random way (not on the same code locations) to the participants and

192

Figure 4.7: Distribution of refactoring solutions based on each pair of quality and security metrics for the
30 projects.

they were not aware of which tool is used to generate them. The refactorings recommended

for the Gantt project were all considered relevant by the participants. The obtained results

confirm that the combination of both quality and security objectives reasonably match the

preferences of the participants.

¤ Key findings: Understandability, Reusability, Functionality and Extendibility are

all negatively correlated with the avg security metric. Flexibility and Effectiveness are

positively correlated with the avg security metric. Reusability and Extendibility are

negatively correlated with all of the eight security metrics.

Results for RQ3. Figure 4.9 summarizes the comparison of our tool with the work of

Alizadeh et al. [2], not considering the security objective. The goal is to understand the

sacrifice in quality when improving the security objective using the generated refactoring

solutions. While Alizedeh et al.’s tool [2] improved the quality attributes more than our tool,

the improvements are very similar to our security-aware approach for almost all the quality

metrics. The major difference is for the extendibility measure, which is understandable based

193

Figure 4.8: Average manually determined correctness of the refactorings on different open source projects
generated by our tool (+Security) and an existing refactoring tool (-Security) [2]..

on the results of RQ1 and RQ2, and the difference is rather small.

Figure 4.10 shows that the multi-objective security-aware approach was able to generate

a diverse set of refactoring solutions in terms of security improvements. The tool of Alizadeh

et al. [2] was not able to generate any refactoring solution that can have a security objective

value lower than 0.183 while our approach was able to improve better the security metric to

reach lower than 0.175. While the deviation in terms of value may look small, the formulation

of the security objective actually requires significant code changes to slightly improve security

values.

¤ Key findings: The sacrifice, by our approach, in terms of quality improvements is

very limited when enhancing code security comparing to an existing work only based on

quality [2].

Results for RQ4. We asked participants to rate their agreement on a Likert scale from

1 (complete disagreement) to 5 (complete agreement) with the following questions:

• The security-aware refactoring recommendations are a desirable feature in integrated

development environments to improve code security while enhancing quality.

194

Figure 4.9: Box plots of the impact of refactoring solutions on the quality attributes based on 4 open
source projects using our tool (+Security) and an existing refactoring tool (-Security) [2]. The results are
statistically significant using the two-sample t-test at a 95% confidence level (α = 5%)

Figure 4.10: Distribution of the refactoring solutions using the security objective based on 4 open source
projects comparing our tool (+Security) and an existing refactoring tool (-Security) [2].

195

Figure 4.11: The important motivations for code refactoring by the participants.

• The security-aware refactoring web app is easy to use compared to fully-automated or

manual refactoring tools that you used in the past.

The post-study questionnaire results show the average agreement of the participants

was 3.96 and 4.12 based on a Likert scale for the first and second statements, respectively.

This confirms both the relevance and usability of our security-aware tool to find a trade-off

between code security and quality metrics. More details can be found in our appendix [3]

showing the simple steps developers can follow to evaluate and fix both the quality and

security issues of their projects.

We also asked the participants about the most important reasons to refactor their code.

Figure 4.11 shows, surprisingly, that most of the participants considered security as the

most critical reason for refactoring, even compared to improving quality metrics which is

the second most important motivation for refactoring. Bug likelihood and code smells were

also considered important by some participants. The outcomes of this question on why

196

Figure 4.12: The potential impacts of refactoring on security metrics based on the survey.

to refactor the code are aligned with the motivations of this contribution advocating for

considering both security and quality metrics when recommending refactorings.

The next questions asked the respondents about the impact of refactoring on the code

security metrics. Figure 4.12 shows that the developers think that refactoring can improve

and positively impact most of the security metrics considered in our experiments. This

confirms our selection of the security metrics and the outcomes of RQ1 obtained by analyzing

the code. The developers think that the CCDA metric is the one that can be most improved

by refactoring. The CCDA metric measures the direct access of classified class attributes of

a class. It aims to protect the internal representations of a class, i.e. class attributes, from

direct access. In fact, the accessibility of class attributes is one of the most critical entry

points for security attacks to the architecture, and so the use of refactorings such as Increase

Field Security can improve this metric. Figure 4.13 describes more detailed results on the

possible impact of each refactoring type on the various static code security metrics. It is

clear that Encapsulate field can have the most positive impact on several security metrics

197

Figure 4.13: The potential impact of different refactoring types on security metrics based on the survey.

based on the developers’ feedback. They also suggested that Extract Superclass will impact

the security metrics, but in a negative way. The participants found as well that Push down

method refactoring can improve several security metrics since it will reduce accessibility to

the methods after refactoring. The results of these questions also confirm the results obtained

in RQ1 about the impact of different refactoring types on security when we analyzed the

code before and after refactoring.

Figure 4.14 shows the opinion of developers on whether improving the security met-

rics will positively impact some quality attributes. The results show that effectiveness and

functionally quality attributes can be improved if the refactorings improved security. The

developers also suggested that improving security will have a negative impact on both un-

derstandability and extendibility since they have the least support from developers (around

2.7 out of 5). These outcomes are also partially consistent with the results found in RQ2

when we analyzed the correlation between the security metrics and quality attributes based

on the code level information before and after refactoring.

198

Figure 4.14: The possible positive impact of improving the security metrics on quality attributes based on
the survey.

Figure 4.15 shows that our approach based on multi-objective search can find good trade-

offs between the various quality and security objectives. The box plots describe the diversity

of the refactoring solutions generated by our multi-objective approach where the developer

can find solutions that impact both quality and security at different levels. This aspect is

important since a developer can select solutions that impact their specific quality or security

objectives based on their preferences.

The impact of the refactorings on the different quality and security metrics is calculated

based on the differences between their values before and applying the refactorings. Thus, we

just measured the difference of these metric values before and after applying the refactorings

to estimate the improvements. The box plots show that the generated refactorings can im-

prove the majority of the quality and security objectives with varying levels of improvement,

but sometimes it is possible to deteriorate (or sacrifice) some of the metric values/improve-

ments due to their conflicting nature. However, Figure 4.15 shows that the multi-objective

199

Figure 4.15: Box plots of the impacts of refactoring solutions on both quality and security objectives based
on the 30 projects.

algorithm was able to generate solutions improving the objectives at different levels with lit-

tle deterioration. Thus, we conclude that the tool was successful in finding trade-offs rather

than merely improving one or two specific objectives.

To summarize, the participants found the tool unique in terms of enabling them to

understand the impact of refactoring on both security and quality. They highlighted that

it is one of the first tools in their opinion that enables the identification of refactoring

solutions to offer trade-offs between quality and security. The developers found the tool

flexible as it provides multiple options to select a solution based on their preferences. A

suggested improvement is to use visualization techniques to evaluate the impact of applying

a refactoring sequence on the different security and quality metrics.

¤ Key findings: The evaluation of our tool by 15 developers confirmed its efficiency

in helping to understand the impact of refactoring on both security and quality and

generating refactoring solutions that find a trade-offs between quality and security.

200

4.1.5 Threats to Validity

The parameter tuning of the NSGA-II optimization algorithm used in our experiments is

the first internal threat since these values were found by trial-and-error[585]. Since we used

a limited number of evaluated systems and participants, the generalizability of our results

is threatened. Besides, we only considered 14 refactoring types in our study. Furthermore,

for the manual validation and comparison with an existing refactoring study, we used a

selected subset of projects rather than the full 30 systems. Therefore, we estimate that a

potential replication of our work is necessary to validate our results completely. We are also

planning to consider more security and quality metrics to extend our empirical validation.

The opinions of the practitioners involved in our study may be divergent when it comes to

the recommended refactorings, and they might have different priorities for the security of

the system which could have an impact on our results. Furthermore, our security metrics

are limited to 8 measures thus we may need to include further metrics in our future studies

and not only the easiest ones to implement.

Another potential threat is related to the identification of security sensitive attributes

which can impact the calculation of the security metrics. To mitigate this threat, we manually

validated the top 10 critical files and use their critical attributes (fields that have names that

match one of the keywords from the list we gathered at the beginning) to identify the critical

attributes in all the other files that will be used to compute the security metrics.

Finally, there is a possible threat due to experimenter bias in the surveys as the subjects

had some prior contact with the researchers.

4.1.6 Conclusion

We have presented an empirical study to validate the correlations between the QMOOD

quality attributes [515] and a set of security metrics [466, 468] and to understand the cor-

relations between refactoring types and security metrics. Based on the outcomes of these

studies, we proposed a security-aware multi-objective refactoring approach to find a balance

201

between quality and security goals. We evaluated our tool on the same projects used for the

empirical validations. Furthermore, we compared our results to an existing refactoring work

not considering security to understand the sacrifice in security measures when improving

the quality. The comparison shows that our security-aware approach performed significantly

better than the existing approach when it comes to preserving and improving the security

of the system but with low cost in terms of sacrificing quality. The survey with the 15

practitioners confirmed the efficiency of our tool and the importance of considering security

while improving several quality attributes.

We are planning as part of our future work to expand the set of supported security

metrics to include design-level metrics [476, 477, 586] as well, in a similar study. We are

also planning to study the correlation between security metrics and the impact of improving

one on the other. We are planning to expand our set of refactorings by those that can

change the relationship between classes, such as Replace Inheritance with Delegation. It

is an accepted principle in industry that a delegation relationship should be preferred to

inheritance, particularly in the context of inversion of control containers such as Spring.

Thus, we are planning to study the impact of these new types of refactoring on security

and quality then check their acceptability by developers. Another research direction would

be to generate refactoring recommendations that include third-party libraries [587, 588] in

order to understand their impact on the security of JAVA apps. Finally, we are planning to

perform a survey with developers to investigate the importance of considering security as a

goal/motivation for refactoring.

202

4.2 Prioritizing Refactorings for Security Critical Code

4.2.1 Introduction

The National Institute of Standards and Technology (NIST) estimates that the US econ-

omy loses an average of $60 billion per year as a cost of either implementing patches to fix

security bugs and vulnerabilities or the actual impact of these security issues [589]. Vulner-

ability is defined as a property of system security requirements, design, implementation, or

operation that could be accidentally or intentionally exploited to create a security failure

[590]. These vulnerabilities heavily depend on the way how the system is designed and im-

plemented. For instance, many software companies use third-party code and libraries [591]

and many vulnerabilities are introduced through these external components [592]. Thus,

it is critical to identify the security-critical code fragments when integrating new modules

or to locate them in internally developed code to protect the system against possible at-

tacks. Security-critical code refers to code fragments that contain data (e.g., attributes) and

logic (e.g., methods) that can potentially be misused to violate security properties such as

confidentiality, integrity, or availability of a system in production.

Several studies on the detection and fixing of vulnerabilities and security bugs [593, 594]

show that poor quality indicators are one of the main sources of vulnerabilities, as also

emphasized by CWE (CWE-398) [595]. However, existing refactoring research is mainly

focused on improving quality attributes and fixing code smells [447, 496, 292, 596, 497]. For

instance, a developer may create a hierarchy in a set of classes to improve the reusability

quality attribute. However, these actions may expand the attack surface if the super class

contains security-critical attributes and methods. Furthermore, the few existing studies on

the prioritization of refactorings mainly focus on the identified quality issues but without

considering security as one of the criteria, despite its importance and relevance in practice

[597, 598, 110].

In this project, we used the history of vulnerabilities and security bug reports along with

203

a set keywords (defined in the literature [468, 472]) to automatically identify security-critical

files in a project based on source code, bug reports, pull-request descriptions and commit

messages. After identifying these security-related files, we estimated their risk based on

static analysis to check their coupling with other components of the project. For instance,

a highly coupled class which contains security-critical code fragments may contribute to

compromising the whole system if an attacker takes advantage of the code to inject malicious

payloads. Then, our approach recommends refactorings to prioritize fixing quality issues in

these security-critical files to improve quality attributes and remove identified code smells.

To find a trade-off between the quality issues and security-critical files, we adopted a multi-

objective search [495] approach.

We evaluated our approach on six open source projects and one industrial system to

check the relevance of our refactoring recommendations. The results confirm the effectiveness

of our approach comparing to existing refactoring studies based on quality attributes and

ranking the recommendations only based on their code smells and quality severity [7, 599].

Our survey with practitioners who used our tool supports our hypothesis that quality and

security need to be considered together to provide relevant refactoring recommendations and

to rank them.

4.2.2 Motivations and Challenges

Security-critical code fragments in a software project can represent code elements (e.g.

classes, methods, files, etc.) containing confidential or sensitive information such as IDs,

transactions, credit card data, authentication information, security constraints, etc. If these

code fragments are over-exposed then they may result in vulnerabilities that may be exploited

in violating security properties. Code fragments are frequently cited in security bug reports,

vulnerability reports, or Stack Overflow posts which suggests that they are at the heart of

many security problems. We will show, in our experiments, that we identified some heavily

discussed libraries as origins of several vulnerabilities, and our approach proposed refactoring

204

these libraries. And often vulnerable code fragments, identified during code reviews, are

analyzed to ensure that they are carefully designed so as to reduce the attack surface in case

of potential attacks in the future.

The identification of security-relevant code in a software project is critical (1) for designers

to be careful when they are designing or maintaining a system. For instance, they have to

make sure that coupling is low in these security-related fragments to reduce the attack

surface; (2) for developers to ensure that these code fragments are not over-exposed; (3) for

reviewers to pay a lot of attention when reviewing these files; and (4) for the organization

to evaluate the use of third-party code from a security perspective before any adoption or

integration work. However, most existing research tools for refactoring recommendation and

prioritization [447, 496, 292, 596, 497] do not consider the security aspect but focus more on

general quality improvements and removal of code smells when ranking and recommending

refactorings.

Nowadays, maintaining both quality and security of software systems is not optional.

Many contemporary applications are cloud-based and therefore potentially exposed to mali-

cious attacks. Developers are under increasing pressure to deliver clean and reliable software

systems that generate the intended outputs while making sure that sensitive customers data

is secure.

One of the main challenges when integrating both code quality and security concerns

into a single refactoring tool is that they may be conflicting. For example, improving the

reusability of the code may increase the attack surface due to newly created abstractions.

Also, increasing the spread of classes that contain sensitive information in the design to

improve modularity may reduce the resilience of the system to attacks.

The Common Vulnerabilities and Exposures (CVE) database is a large, publicly available

source of vulnerability reports [600]. It aims to provide common names for publicly known

problems. As described in Figure 4.16, one of the main CVE categories is ”Indicator of

Poor Code Quality” (CWE-398) providing additional evidence that code quality issues are

205

Figure 4.16: A category in the CVE security bug database [3] that includes security vulnerabilities related
to poor code quality

frequently responsible for security issues. The description of this category highlights that

when the code is complex and not well-maintained it is more likely to cause security problems

and weaknesses.

Figure 4.17 shows an example of one detected vulnerability in the CWE-398 category on

the NUUO Intelligent Surveillance software system [4] due to the use of multiple outdated

software components that needed to be refactored. Whenever developers introduced changes

to the system, they faced challenges to make those changes consistently across classes; thus

introducing refactoring to fix this quality issue was critical. This vulnerability had a score

of 7.5 which is considered to be high and urgent to fix.

To overcome such challenges, in the next section we propose an approach to prioritize

and recommend refactorings to target the classes that have both quality and security issues.

If successful, this will enable developers to spend less effort on refactoring non-critical issues

and make systems more secure while maintaining high code quality.

4.2.3 Approach

The structure of our approach is sketched in Figure 4.18. The first component consists

of identifying a project’s security-critical files, to evaluate and refactor, based on a list of

keywords, along with the history of security bugs and vulnerabilities detected in the analyzed

system. The list of keywords are the most common security-related words that developers

may use in naming code elements, writing comments, security bugs and vulnerabilities re-

ports, commits messages, and security questions/tags on Stack Overflow 2. The full list of

2https://stackoverflow.com/

206

Figure 4.17: An example of a security vulnerability from NUUO CMS system due to code quality issues
[4].

keywords used in our approach can be found in Figure 4.19. Figure 4.20 shows an example

of security-critical code in Apache Tomcat identified automatically by our approach. We

have also implemented a parser that can find all the files involved in previous security bug,

vulnerability reports and pull-requests with security tags.

After identifying the list of security-critical files, we used a multi-objective genetic al-

gorithm, based on NSGA-II [495], to generate refactoring solutions that prioritize and fix

the files associated with quality and security issues. The quality objectives are based on

code smells detected using a set of rules [601] and the potential improvements in QMOOD

quality measures [480] defined in table 2.10. We considered code smells and QMOOD as

separate objectives since developers may want to understand the impact of fixing the code

smells on the quality attributes to reason about the relevance of recommended refactorings.

The second objective estimates the importance of the refactored security-critical files based

on a combination of textual, history and static analysis measures. The textual analysis is

based on matching scores between the keywords and the source code files (e.g. names of code

elements, comments, etc.). The static analysis calculates a class’s coupling score with other

classes in the project: the most severe security-critical code fragments are the ones that are

highly coupled. The third measure counts the number of occurrences of the security-critical

207

Figure 4.18: Security-Critical Code Identification: Approach Overview

files in previous security bugs, vulnerability reports, and pull-requests with security tags to

evaluate and refactor. Thus, the second objective will favor refactoring solutions targeting

important security-critical files.

In the next sub-sections, we give details about each of these two major components.

4.2.3.1 Security-critical File Detection

To detect security-critical files, we combined three different measures of textual, static

and history analyses. All three measures are normalized to values between 0 and 1. We then

calculated their average score to rank the security-critical files.

With the chosen set of keywords, we calculated a textual security-critically-score for each

file to estimate the extent to which the file is related to security concerns and hence needs to

be protected. The higher the score is the more likely the file is security-critical. We compute

the textual security-criticality-score based on cosine similarity between each file and the set

of keywords. Let n be the number of files in the source code and W an array containing the

set of keywords. After pre-processing the source code including tokenization, lemmatization,

stop words filtering and punctuation removal, we calculate the tf-idf score considering the

file fi, i ∈ {1, 2, . . . , n, } and W as corpus. Cosine similarity is then calculated as follows:

208

Figure 4.19: List of keywords used in our approach

sim(fi,W) = tf − idf(fi,W) ∗ transpose(tf − idf(fi,W)) (4.3)

A file with security-critical code may spread its vulnerability to its connected files in the

system. Therefore, we parse the source code and compute a coupling metric as a second

measure for all classes in each file. The coupling metric for each file is then equal to the

average of the coupling metrics of all of its classes.

We define coupling of a class as the number of Call-Ins Call-Outs from that class [8].

Let m be the number of classes in file fi, C = {c1, c2, . . . , cm} the set of classes in fi and cpj

the coupling metric for class cj, the coupling metric for file fi is :

cpi =

∑m
j=1 cpj

m
(4.4)

which is the average of the coupling of the classes contained in file fi.

209

Figure 4.20: An example of a security-critical code fragments identified by our approach

The third history-based measure simply counts the number of occurrences of the source

code files in previous security bugs, vulnerability reports and pull-requests of code reviews

with security tags.

Thus, if a file with high cosine similarity score is highly coupled and appeared in previous

security bugs or vulnerability reports, then it is considered as critical and should be refactored

if the confidential data it contains is accessible or could be compromised. If a file with high

cosine similarity score is not highly coupled and was not vulnerable before, then it is not

urgent to be refactored. The average score of all the three measures reflect these intuitions.

4.2.3.2 Refactoring Prioritization for Identified Security-critical Code

We adapted a multi-objective search algorithm, based on NSGA-II [495], to optimize

three objectives that take into account both the security and the quality of the software

system. We chose this algorithm because it was used before in similar software engineering

problems [30, 447, 448] and was proven to be able to balance independent or even conflicting

objectives.

The algorithm is executed to find a set of non-dominated solutions balancing the ob-

jectives of security, code smells and quality attributes. With our multi-objective tool, the

developer does not have to assign weights to the objectives. The user can select a solution

210

Figure 4.21: An example of a Pareto front of refactoring solutions generated by our tool for OpenCSV
project.

from the Pareto-front of non-dominated solutions based on his needs and priorities as shown

in Figure 4.21. The developer can also interact with our tool and give feedback by accepting

or rejecting the refactoring recommendations.

Our approach takes into consideration 3 objectives: the first one is the sum of the relative

changes of the 6 QMOOD attributes after applying a refactoring solution. This objective

can be written as follow:

6∑
n=1

Qafter
i −Qbefore

i

Qbefore
i

(4.5)

where Qbefore
i and Qafter

i are the values of the QualityAttributei before and after applying a

refactoring solution, respectively.

Most code anti-patterns can be detected using interface and code quality metrics. In our

study, we used an existing antipattern detection tool based on rules [601] that can detect 11

types of antipatterns defined in Section 2.4.2.2. We have chosen this tool because of its high

accuracy. Using this measure we have defined the second fitness function as the value of the

211

anti-patterns ”fixed” by the refactoring solution. This objective can be written as follow:

FS∑
i=1

antipatternsi (4.6)

Where FS is the total number of files in the system and antipatternsi is the number of fixed

antipatterns in the file i by the refactorings solution.

In the third fitness function, we maximize the number of critical files to refactor. This

objective can be written as follows:

F∑
i=1

Severityi (4.7)

Where F is the total number of selected critical files and severityi is the severity score of file

i selected for refactoring. This severity score is the average of the three textual, history and

static measures described previously.

4.2.4 Experiment and Results

In this section, we first present our research questions and validation methodology fol-

lowed by our experimental setup and our results.

4.2.4.1 Research Questions

We defined three main research questions to measure the relevance and benefits of our

approach comparing to the state of the art [7, 599] based on several practical scenarios.

It is important to evaluate, first, the manual correctness of the recommended refactorings.

Since it is not sufficient to make correct recommendations, we evaluated the ranking of

the of these refactorings in terms of importance to developers. In practice, they are not

interested to check and apply all the correct refactorings due to limited resources but they

focus on the most important ones before the release deadline. We have also used post-study

questionnaires to evaluate the benefits of our approach and the relevance of our results.

212

The three research questions are as follows:

• RQ1: relevance and comparison to existing refactoring techniques. To what

extent are the refactorings recommended by our approach relevant, compared to exist-

ing refactoring techniques based on improving quality measures [7, 599]?

• RQ2: Ranking evaluation. To what extent can our approach efficiently rank

recommended refactorings compared to existing techniques [7, 599] ?

• RQ3: Insights. How do programmers evaluate the usefulness of our approach?

To answer RQ1, we validated our approach on six medium to large-size open-source

systems and one industrial project to manually evaluate the relevance of the recommended

refactorings based on both quality and security. To this end, we used the Manual Correct-

ness (MC@k) precision metric. MC@k denotes the number of correct refactorings in the

top k recommended refactorings by the solution divided by k. It is unrealistic to calculate the

recall since it requires the inspection of the entire system. We further address RQ1 by inter-

viewing the participants who analyzed the output of our approach on the industrial project,

who are among the original developers of that system (as detailed in the next section).

We asked a group of 32 participants to manually evaluate the relevance of the top k

refactorings that they selected using the different tools. We compared our approach to two

fully-automated refactoring tools: Ouni et al. [7] and JDeodorant [599]. Ouni et al. [7] pro-

posed a multi-objective refactoring formulation based on NSGA-II that generates a solution

to maximize treatment of several quality attributes and antipatterns. JDeodorant [599] is

an Eclipse plugin to detect antipatterns and recommended refactorings based on a set of

templates. As JDeodorant supports a lower number of refactoring types with respect to the

ones considered by our tool, we restrict our comparison with it to just these refactorings.

Furthermore, we implemented a sanity check approach where we used our multi-objective

algorithm with only the quality and antipatterns objectives and then ranked the recom-

mended refactorings based on the security severity measure. Thus, we can evaluate the

213

benefits of considering maximizing the refactoring of security-critical files with quality issues

as a separate objective rather than using that function to rank the recommended refactor-

ings. Finally, we compared our work with a mono-objective genetic algorithm combining all

the three objectives into one function with equal weights so we can evaluate whether the

various objectives are conflicting.

We note that the mono-objective approach and JDeodorant only provide one refactor-

ing solution while the other algorithms generate sets of non-dominated solutions. To make

meaningful comparisons, we selected the best solution for the multi-objective algorithms

using a knee-point strategy. The knee point corresponds to the solution with the maximal

trade-off between the objectives. Thus, we selected the knee point from the Pareto approx-

imation having the median hyper-volume IHV value. By that strategy, we ensure fairness

when making comparisons against the mono-objective and deterministic techniques.

We preferred not to use the antipatterns and internal quality indicators as proxies for

estimating the refactoring relevance since the developers’ manual evaluation already includes

a review of the impact of suggested changes on quality. We also wanted to avoid any bias

in our experiments since antipatterns and quality attributes are considered in the fitness

functions of our approach. Furthermore, not all the refactorings that improve a quality

attribute are relevant to the developers. The only fair way to evaluate the relevance of our

tool is thus manual evaluation of the results by active developers.

To answer RQ2, we evaluated the ranking of the refactorings by asking the participants

to manually rate their importance: high, medium, or low. Then, the evaluation metric

importance@k calculates the number of refactorings rated “high” in the top k, divided by

k. Of course, this measure is applied in the order of refactorings generated by the various

approaches.

To answer RQ3, we used a post-study questionnaire that collected the opinions of devel-

opers on our tool and the relevance of refactoring security-critical files on software projects.

214

4.2.4.2 Software Projects and Experimental Setting

4.2.4.2.1 Studied Projects We used a set of well-known open-source and one system

from our industrial partner, a software company with a focus on e-commerce and web de-

velopment. We applied our approach to six open-source Java projects: tink, pac4j, atomix,

securitybuilder, rest.li and firefly. Tink provides a simple and misuse-proof API for common

cryptographic tasks. Pac4j is a security engine system. Atomix is an event-driven frame-

work for coordinating fault-tolerant distributed systems. Securitybuilder is a fluent builder

API for JCA and JSSE classes and especially X.509 certificates. Rest.li is a framework for

building scalable RESTful architectures. Firefly is an asynchronous framework for rapid

development of high-performance web application. Among the 6 systems, there are only 2

security projects that we selected intentionally to check if our approach can propose similar

results to non-security projects.

To get feedback from the original developers of a system, we ran our experiment on a large

industrial project, called DAS, provided by our industrial partner. The analyzed project can

collect, analyze and synthesize a variety of data and sources related to online customers such

as their shopping behavior. It was implemented over a period of 9 years, frequently changed

over time, and had experienced several vulnerabilities.

We selected these systems for our validation because they range from medium to large-

sized and have been actively developed over several years, they are widely used by companies

as third party code and several previous vulnerabilities were detected on them. The data

collected on these systems included the history of bug reports, vulnerability reports and

pull-requests to identify ones with security tags. Table 4.5 provides some demographic data

on these systems.

4.2.4.2.2 Subjects Our study involved 30 graduate students and 2 software developers

from the industrial partner. Participants included 24 Master’s students in Software Engineer-

ing, 6 Ph.D. students in Software Engineering and 2 software developers. All participants

215

Table 4.5: Demographics of the studied projects.

System Release #Classes KLOC GitHub Link

tink v1.2.2 590 185 google/tink.git

pac4j v3.6.1 975 67 pac4j/pac4j.git

atomix v3.0.11 2719 188 atomix/atomix.git

securitybuilder v1.0.0 313 81 tersesystems/securitybuilder.git

rest.li v15.0.3 4185 478 linkedin/rest.li.git

firefly v4.9.5 2188 154 hypercube1024/firefly.git

DAS v7.6.1 973 326 N.A.

were volunteers who were familiar with software security, refactoring, Java and quality assur-

ance. All the Master’s students were working full-time in industry as developers, managers,

or architects. They average 6 years of experience in industry and 16 out of the 24 have

worked on either fixing security bugs or patching vulnerabilities.

Participants were first asked to fill out a pre-study questionnaire containing six ques-

tions. The questionnaire helped to collect background information such as their role within

the company, their programming experience, and their familiarity with software refactoring

and security. Although the vast majority of participants were already familiar with refac-

toring, all the participants attended one lecture of two hours on software refactoring by the

organizers of the experiments. The details of the selected participants can be found in Table

4.6, including their programming experience (years) and level of familiarity with refactoring.

Each participant was asked to assess the meaningfulness of the refactorings recommended

after using one of the five tools on one system to avoid a training threat. The participants

did not only evaluate the suggested refactorings but were asked to configure, run and in-

teract with the tools on the different systems. The only exceptions were related to the two

participants from the industrial partner where they agreed to evaluate only their industrial

software. We assigned tasks to participants according to the studied systems, the techniques

to be tested and developers’ experience.

216

Table 4.6: Selected programmers.

System #Subjects Avg. Prog. Exp. Avg. Refactoring Exp.
tink 5 6.5 Very High
pac4j 5 7.5 High
atomix 5 9 High
securitybuilder 5 8 Very High
rest.li 5 8 Very High
firefly 5 9 High
DAS 2 12.5 Very High

4.2.4.2.3 Experimental Setting For each algorithm and for each system, we performed

a set of experiments using several population sizes: 50, 100, 150 and 200. Then, we spec-

ified the maximum chromosome length (maximum number of refactorings). The resulting

vector length is proportional to the size of the program to refactor. Thus, the upper and

lower bounds on the chromosome length were set to 10 and 100, respectively. The stopping

criterion was set to 10,000 fitness evaluations for all algorithms to ensure fairness. To have

significant results, for each pair (algorithm, system), we used a trial and error method [602]

for parameter configuration. Trial and error is a fundamental method of problem solving. It

is characterized by repeated and varied attempts of algorithm configurations.

4.2.4.3 Results

Results for RQ1. The results of Figures 4.22-4.23 confirm the efficiency of our ap-

proach to identify relevant refactorings among the top recommendations on the six open

source systems and the industrial project. Figure 4.22 shows the average manual correctness

(MC@k) results of our technique on the different seven systems, with k ranging from 3 to

10. For example, all the recommended refactorings in the top 3 are considered relevant by

the participants. Most of the refactorings recommended by our Multi-Objective refactoring

search (MORS) approach in the top 5 (k=5) are relevant with an average MC@5 of 92%.

The lowest average of manual correctness is 70% for k=10 which is still acceptable since it

means that just 3 recommendations out of the 10 are not relevant (even if they are correct).

For instance, the refactoring recommendations on the DAS (industrial) system, evaluated by

217

Figure 4.22: The manual evaluation scores (MC@k) on the seven systems with k=3, 5 and 10.

the original developers, are considered all correct for k=3 and k=5 and only two refactorings

were not relevant for k=10. It is normal that some refactorings related to security-critical

files may not be considered relevant for several reasons such as the risk

to break the code versus their benefits. However, our results suggest that developers are

interested to refactor security-critical files, particularly considering that the participants were

not aware of the goals of the study (e.g., security). Figure 4.23 summarizes the execution

times of our approach on the different systems. The average execution time is 11 minutes.

The highest execution time was observed on the industrial system (14 minutes). It is normal

that execution time is correlated with the size of the analyzed systems since the tool has

to parse the files to identify the most security-critical ones, and then run NSGA-II with

the different three objectives. We consider the execution times reasonable since we are not

addressing a real-time problem. Furthermore, execution times can be reduced further during

subsequent executions of the tool since we may only focus on recently modified, instead of

218

Figure 4.23: Average execution time, in minutes, on the seven systems.

running the algorithms on the entire system.

In terms of comparison with existing refactoring techniques, it is clear from the results

that our Multi-Objective refactoring search (MORS) approach generated more relevant refac-

torings as compared to the tools of Ouni et al., JDeodorant, the mono-objective search, and

a multi-objective search based on two quality objectives combined with a ranking of refac-

torings based on the security measure (NSGA-II+Ranking). When manually comparing the

results of the different tools, we found that the remaining automated refactorings generated

a lot of refactorings comparing to our approach. In fact, the participants were not interested

to blindly change anything in the code just to improve quality attribute measures. The

mono-objective search performed worse than the different multi-objective approaches on all

the systems which confirms the conflicting nature of the different objectives.

In terms of execution time, we found that our performance was worse than existing

techniques, due to the higher number of objectives, parsing the files to identify the critical

219

ones, etc. JDeodorant has the best execution time of approximately 2 minutes per project.

To conclude, the execution time is still reasonable for all the studied approaches, especially

considering that there are no hard time constraints when performing refactoring.

To answer RQ1, our results for the six open source systems and the industrial system

using the different evaluation metrics of relevance and execution time clearly validate the

hypothesis that our approach can efficiently refactor security-critical files.

Results for RQ2. To evaluate the efficiency of our approach in ranking the refactoring

operations based on the combination of quality and security objectives, we used the impor-

tance@k measure to evaluate the importance of recommended refactorings. The participants

only considered refactorings that were evaluated as relevant in RQ1. Thus, the goal is to

validate the hypothesis that the refactorings related to security-critical files are the most

important ones, from the developers’ perspectives, by comparing the proposed ranking to

existing approaches that ranking primarily on code quality measures.

Figure 4.24 confirms that the use of the three objectives of code quality and security to

find and rank the refactorings based on NSGA-II was efficient. The majority of the identified

refactorings located in the top 3, 5 and 10 were rated high in terms of importance by the

participants. An average of 100%, 91%, and 83% of importance@k scores are achieved for k =

3, 5, and 10 respectively on all the systems. It is clear from the figure as well that our MORS

approach outperforms all the other techniques including the ranking of the refactorings

based on the security measure after running NSGA-II on only the two quality objectives

(NSGA-II+Ranking). This confirms the relevance of our choice to integrate security as a

separate objective to help the algorithm converge on refactorings targeting security-critical

files. However, the NSGA-II+Ranking approach outperformed all the existing refactoring

approaches based only on quality measures to rank the recommended refactorings.

Results for RQ3. We summarize in the following the feedback of the developers based

on the post-study questionnaire.

All participants agreed on the benefits of refactoring security-critical code. They men-

220

Figure 4.24: The severity scores (severity@k) on the seven systems with k=3, 5 and 10.

tioned a number of advantages such as the early identification and prevention of vulnerabil-

ities, the reduction of security breaches as well as the maintenance effort and prioritizing of

files that should be carefully reviewed and refactored before approving new commits or re-

leases. Some participants highlighted the benefit of catching test credentials that developers

forgot to remove via some refactorings, which is a common mistake among developers. The

misuse of these hard-coded credentials is actually an example of the Broken Authentication

vulnerability, which is ranked second among the OWASP-TOP 10 Vulnerabilities in web

applications in 2018.

The participants emphasized the relevance of refactoring security-critical code fragments

for the potential increase in code quality and avoiding confidential data exposure which may

result in less cost and better reputation for the organization. Two developers also mentioned

the benefit of predicting and avoiding security issues when integrating third party code. For

instance several companies are concerned about vulnerabilities when integrating open source

projects. These libraries can easily be more loosely coupled with the other parts of the

code via refactorings. Several comments mentioned the potential use of our tool at different

stages of the software life cycle, whether during the development stage where developers are

alarmed that they are dealing with critical-code, or during code reviews before releases when

221

reviewers focus on the changes made on that portion of code, or even during documentation

where all these alerts are recorded for developers in the future. The participants see our tool

as relevant for existing continuous integration (CI) and continuous delivery (CD) tools.

Finally, all developers confirmed that they have never used or heard of a tool that lever-

ages this technique for automated refactoring of security-critical code. The practitioners

from the industrial partner confirmed that they are not aware of a similar tool. Currently

security-critical code fragments are manually identified and refactored during code reviews

and a lot of them are missed during that process. And the proposed tool has subsequently

been licensed to this partner (in collaboration with the university technology transfer office

of the authors).

4.2.5 Threats to Validity

In our experiments, construct validity threats are related to the absence of similar work

that prioritize refactoring for both security and quality purposes. For that reason, we com-

pared our proposal mainly with existing studies that focus on improving quality via refac-

toring. A construct threat can also be related to the corpus of data used in our experiments

since it may introduce some noise to the quality of our results especially with the subjective

nature of refactoring. Since we used a variety of computational search and machine learning

algorithms, the parameter tuning used in our experiments creates an internal threat that

we need to evaluate in our future work. The parameters’ values used in our experiments

are found by trial-and-error. However, it would be an interesting perspective to design an

adaptive parameter tuning strategy for our approach so that parameters are updated during

the execution in order to provide the best possible performance.

The variation of correctness and speed between the different participants when using our

approach and other tools can be one internal threat. Our approach may not be the only

reason for the superior performance because the participants have different programming

skills and familiarity with refactoring tools. To counteract this, we assigned the developers

222

to different systems according to their programming experience so as to reduce the gap

between the different groups, and we also adopted a counter-balanced design. Regarding the

selected participants, we have taken precautions to ensure that our participants represent a

diverse set of software developers with experience in refactoring, and also that the groups

formed had, in some sense, a similar average skill set in the refactoring area.

Also, the fact that we did not ask all the participants to evaluate all the systems using

all the tools can be considered another threat to the validity of our work. The reason is that

it is not reasonable to ask programmers to evaluate more than 30 executions per algorithm

to perform the statistical tests. We sacrificed a bit the rigorous of the analysis to have our

research validated by practitioners and get meaningful results.

External validity refers to the generalization of our findings. In this study, we performed

our experiments on 6 different widely-used open-source systems belonging to the different

domains and with different sizes and one industrial project. We considered a mix of security

and non-security projects to evaluate the performance of our approach. However, we cannot

assert that our results can be generalized to other applications, to programming languages

other than JAVA, and to other developers than the 32 participants of our experiments.

4.2.6 Conclusion

We have presented an approach to recommend refactorings for security critical files while

concurrently improving the code quality of a software project. We used the history of

vulnerabilities and security bug reports along with a selected set of keywords [468, 472] to

automatically identify security-critical files in a project based on source code, bug reports,

pull-request descriptions and commit messages. After identifying these security-related files

we estimated their risk based on static analysis to check their coupling with other components

of the project. Then, our approach recommended refactorings to prioritize fixing quality

issues in these security-critical files to improve code quality measures and remove code smells

using multi-objective search. We evaluated our approach on six open source projects and one

223

industrial system to check the relevance of our refactoring recommendations. Our results

confirm the effectiveness of our approach as compared to existing refactoring approaches.

We are planning, as part of our future work, to extend our validation with a larger set of

systems and data sets and to study the potential correlations between security and code

quality metrics during the refactoring process.

224

4.3 Intelligent Change Operators for Multi-Objective Refactoring

4.3.1 Introduction

Existing refactoring recommendation tools, including those that use non-search-based ap-

proaches, routinely generate solutions that include invalid refactorings because they do not

account for dependencies among refactorings. Manually applying a sequence of refactorings

is common practice in existing tools [450, 603, 604], however these tools treat each refactoring

in the sequence in isolation. For instance, Cinnéide et al. [443] investigated the impact only

of individual refactorings on quality attribute metrics, such as using Move Method to reduce

the coupling of a class, without studying the impact of a sequence of refactorings. Figure 4.25

shows an example of the refactoring recommendations generated by JDeodorant [605] where,

similar to other refactoring recommendation tools, the dependencies between the refactor-

ings are not apparent, thus leaving the challenging task of dealing with invalid refactorings

to developers. Consequently, developers often prefer manually applying refactorings to using

such tools. A key contributor to this problem is that search-based refactoring approaches

employ random change operators (e.g., crossover and mutation) to evolve solutions without

considering the dependencies among refactorings. Without detecting which refactoring de-

pendencies exist, the change operators used by algorithms routinely invalidate solutions by

breaking refactoring dependencies or introducing refactorings whose dependencies are not

satisfied. Furthermore, refactoring dependencies provide clues that could be exploited in

more intelligent crossover operations to improve decisions on which part(s) of solutions to

exchange to produce higher quality offspring.

In this study, we propose intelligent change operators and integrate them into a multi-

objective search algorithm, based on NSGA-II [495], to recommend valid refactorings that

address conflicting quality objectives such as Reusability, understandability, and effective-

ness. The proposed intelligent crossover and mutation operators use: i) the dependencies

detected among refactorings to decompose a solution into blocks of refactorings; and ii)

225

Figure 4.25: Sample refactoring recommendations from JDeodorant.

the effects of these blocks on objectives to identify good genes from parents to generate

high-quality offspring. A refactoring dependency exists when one refactoring cannot be suc-

cessfully applied without first applying another. Partitioning refactorings into blocks such

that no dependencies span blocks allows change operators to use blocks as the unit of change

to avoid invalidating refactorings. Our tool calculates the effect of each block within a solu-

tion on the objectives and uses this data to select which blocks to exchange between solutions

to improve the first solution’s weaknesses (e.g. the objective with smallest values).

We applied our intelligent change operators to generate refactoring recommendations for

four widely used open-source projects and compared this approach to five existing refactoring

techniques in terms of the diversity of the solutions, number of invalid refactorings, and the

quality of generated solutions. We also conducted a survey with 14 developers to evaluate

the correctness and relevance of the refactorings generated by the different algorithms for

these projects.

The results show that our technique performed significantly better than the four existing

search-based refactoring approaches [8, 5, 6, 7] and an existing refactoring tool not based

on heuristic search, JDeodorant [9], with an average manual correctness, precision and re-

call of 0.89, 0.82, and 0.87, respectively. We used these five refactoring tools and open

source projects because: i) they are representative of automated multi-objective search-

226

based refactoring recommendation techniques; ii) they are publicly available (including the

non search-based tool); and iii) the familiarity of the participants with these open source

systems.

Replication Package. All material and data used in our study are available in our

replication package [606].

4.3.2 Dependency-Aware Refactoring Recommendation System

The most common change operators used in search-based refactoring approaches are

the random crossover and mutation operators. In these operators, refactorings are selected

randomly from solutions for exchange or replacement with others, which can generate in-

valid refactorings or invalidate other refactorings (e.g., by removing a refactoring another

one depends on). We developed three components to improve the change operators used in

the NSGA-II algorithm: i) a refactoring dependency detection algorithm; ii) an intelligent

crossover that factors in dependency correctness and the implications of collections of refac-

torings on fitness functions; and iii) a dependency-aware mutation. Finally, we note that the

proposed approach, as described later, can be integrated for both NSGA-II and NSGA-III

as they are using the same change operators. The difference between them is that NSGA-III

uses a set of reference directions (identified via a nitching function), while NSGA-II uses a

more adaptive scheme through its crowding distance operator for the same purpose. This

difference does not affect our goal of comparing the impact of our intelligent change operators

on the final Pareto-front.

4.3.2.1 Refactoring Dependency Theory

Our dependency-aware refactoring recommendation technique relies on an ordering de-

pendency between pairs of refactorings. Specifically, an ordering dependency (rf2 7→ rf1)

between two refactorings (rf1 and rf2) exists when rf2 can only be successfully applied after

rf1 has been applied. That is, rf1 makes a change to code that is necessary in order to apply

227

rf2. This condition can be evaluated based on the combination of pre- and post-conditions

of the types of refactorings involved and the parameters of each refactoring. For example, to

apply Move Method (a type of refactoring) to move method m1 from class c1 to class c2 (m1,

c1, and c2 being the parameters of the refactoring), several pre-conditions must hold (e.g.,

m1, c1, and c2 must all exist and m1 must be defined on c1). The pre- and post-conditions

of each type of refactoring are described in our online appendix [606] and were extensively

validated for correctness and completeness in current literature [607, 608, 609, 452].

#1
MoveField
username
BooleanList

[b]
[]

#3
MoveField

Client
EventObject

[fieldDelimiter]
[]

#4
PullUpField
CreditCard

Client
[textDelimiter]

[]

#5
PullUpMethod
CreditCard

Client
[]

[readCategoryDataset]

#2
ExtractSubClass

CreditCard
Client

[fieldDelimiter]
[extractRowKeyAndData]

Refactoring

Dependency

Figure 4.26: A simplified example of refactorings that depend on each other.

Figure 4.26 shows a simplified example of a refactoring solution that is composed of

refactoring operations that depend on each other. Three of the refactorings (#3, #4, #5)

depend on another refactoring (#2) because the Extract Super Class refactoring (#2) creates

a new class (Client), on which refactorings #3, #4, and #5 operate. If the new class is not

created first, then refactorings #3, #4, and #5 will fail. Thus, there exists an ordering

dependency from each of #3, #4, #5 to #2.

Refactoring solutions have traditionally been represented as a sequence, likely originating

with the common vector representation used in many genetic algorithms. In some cases, a

solution could be appropriately represented as a set of sequences, but only if the refactoring

graphs are simplistic enough. A refactoring graph is a weakly connected directed acyclic

graph composed of refactoring vertices and ordering dependency edges. In practice, there

228

are many examples where a sequence vs. graph representation is misleading. For example,

if two refactorings (rf2 and rf3) both depend on a common refactoring (rf1), we have a

graph for which a sequence representation would be misleading. rf1 must precede rf2 and

rf3, but there is no dependency between rf2 and rf3. <rf1, rf2, rf3> would be as acceptable

as <rf1, rf3, rf2>. A sequence representation indicates an ordering, and the choice of a

graph over a sequence allows us to unambiguously indicate only “real” dependencies. As

for the initial refactoring sequence, it is true that the order in that sequence does shape the

original graphs. However, the initial sequence is generated randomly for each solution in the

population, much as if random graphs were generated.

Using the ordering dependencies as the basis for forming refactoring graphs, algorithm 3

results in a set of graphs with the following traits:

• Each refactoring in a solution is an element of exactly one refactoring graph.

• Some graphs contain a single refactoring because that refactoring is independent of all

others. We call these trivial graphs .

• The remaining graphs contain multiple refactorings, each of which is part of one or

more dependencies. We call these non-trivial graphs .

• Each refactoring graph is independent of every other graph in the solution.

The dependencies, as described in the algorithm 3, are detected based on comparisons

between pre- and post-conditions of refactorings. The algorithm takes a list of refactorings

as input and generates a set of refactoring graphs as output.

Line 1 initializes the lists of refactorings (nodes, V) and refactoring dependencies (edges,

E). Then, the post-conditions of each refactoring of the solution C (collection of refactorings)

are evaluated for matching with the remaining refactorings in C (Lines 2–12). Specifically,

the algorithm looks for any match between predicates of pre- and post-conditions. That is,

if any predicate of the post-condition of one refactoring (any element of P) matches any

229

Algorithm 3 Dependency Detection Algorithm.
Input: Refactoring solution C = {r1, r2, r3, . . . , rn}
Output: Set of refactoring graphs F = {f1, f2, f3, . . . , fm}
V ← ∅, E ← ∅ foreach ri ∈ C do

V ← V ∪ ri P ← post conditions(ri) foreach rj ∈ C — j > i do
Q ← pre conditions(rj) M ← P ∩ Q if —M— ̸= 0 then

E ← E ∪ {rj , ri}

G← (V,E) F ← partition(G) return F

predicate of the pre-condition of another refactoring (any element of Q), then a dependency

has been detected and an edge is added to the graph between those refactorings (Lines 4–11).

We repeat this process until all the refactorings have been visited.

4.3.2.2 Proposed Intelligent Change Operators

4.3.2.2.1 Dependency-aware Crossover We developed a baseline dependency-aware

crossover that only preserves the dependencies among refactorings (e.g., without fixing the

weaknesses of refactoring solutions). This version, as shown in the algorithm 4, reduces the

occurrence of invalid refactorings in solutions because it preserves refactoring dependencies.

Algorithm 4 Dependency-Aware Crossover Algorithm.
Input: population S = {s1, s2, s3, . . . , sn} and a probability P
Output: offspring population S

′
= {s′

1, s
′

2, s
′

3, . . . , s
′

n}
S

′ ← ∅ for i← 1 to |S|/2 do
{sa, sb} ← select random solutions from S if random number ≤ P then

Ba ← group refactorings of sa into blocks Bb ← group refactorings of sb into blocks {s′

a, s
′

b} ←
apply single point crossover on {Ba, Bb} S

′ ← S
′ ⋃{s′

a, s
′

b}
else

S
′ ← S

′ ⋃{sa, sb}
return S

′

We start by randomly selecting two solutions, sa and sb, as parents for new offspring

(Line 3). Then, we group the refactorings of sa and sb into blocks (Lines 5–6) based on

the dependencies detected by the algorithm 3. Each block contains a single trivial or non-

trivial graph. We then perform a single-point crossover (Line 7) that exchanges blocks

of refactorings rather than individual refactorings, which avoids invalidating refactorings

because all dependencies are isolated within blocks. This results in two offspring, each with

230

genetic information from both parents.

4.3.2.2.2 Intelligent Crossover Our intelligent crossover operator is an improvement

over random crossover in two ways: it uses refactoring dependencies to reduce the occurrence

of invalid refactorings and it chooses blocks of refactorings for exchange that will improve a

solution’s weaknesses, producing higher quality offspring. The pseudo-code of our proposed

intelligent crossover operator is presented in the algorithm 5.

Algorithm 5 Intelligent Crossover Algorithm.
Input: Population S = {s1, s2, s3, . . . , sn} and a probability P
Output: Offspring population S

′
= {s′

1, s
′

2, s
′

3, . . . , s
′

n}
S

′ ← ∅ for i← 1 to |S|/2 do
{sa, sb} ← select random solutions from S if random number ≤ P then

sbest ← higher quality solution of sa and sb sworst ← lower quality solution of sa and sb Bbest ←
group refactorings of sbest into blocks Bworst ← group refactorings of sworst into blocks Wbest ←
get all weaknesses of sbest if Wbest = ∅ then

Wbest ← get the objective that improves the least with sbest
I ← sort the blocks of Bworst based on potential improvement to Sbest I ′ ← select the blocks from
I that improve Sbest n← select random number between 0 and |I ′| {s′

best, s
′

worst} ← apply single

point crossover, exchanging n blocks between Bbest and I S
′ ← S

′ ⋃{s′

best, s
′

worst}
else

S
′ ← S

′ ⋃{sa, sb}
return S

′

In essence, the intelligent crossover operator mixes the best genes of the weaker solution

with random genes of the better solution. First, we randomly select two solutions, sa and sb

(Line 3). We then determine the better solution by computing how much each solution im-

proves the objectives (using a weighted sum) of the project to be refactored (Lines 5–6). As

before, we group refactorings of both solutions into blocks (Lines 7–8) to preserve refactor-

ing dependencies during crossover. We then determine which objectives are considered the

weaknesses of the better solution Sbest (Lines 9–12) (part a in Figure 4.27). Any objectives

that are worse after applying the better solution are considered weaknesses (e.g. objective 2

in Figure4.27 part a). If no objectives are worse after applying the better solution, we select

the objective that improves the least after applying the solution as the sole weakness. Then,

we sort the blocks of the weaker solution Bworst based on how each would impact the objec-

tives (using a weighted sum) of the better solution Sbest (Line 13) (part b in Figure 4.27). In

231

part c of algorithm 5, We pick a random number between 1 and the number of blocks in the

weaker solution that would improve the better solution (Line 15) to determine the number

of blocks for crossover. Finally, we create two offspring using single point crossover (Line

16) that moves the n blocks from the weaker solution with the best impact on the stronger

solution’s objectives to the stronger solution and n random blocks from the stronger solution

to the weaker solution.

Sbest

Detect refactoring dependencies

Part a: Preprocessing to improve Sbest Part b: Preprocessing Sworst

B C D E F G HA I

G

A

B
D

H

IF

E

C

S U Y R V Z WT X

Refactoring graphs

Bbest

Group refactorings into blocks

B F G C D H IA E

Objective 2 Objective 3Objective 1

Calculate weaknesses; in this case
only objective 2 is a weakness

Sworst

Detect refactoring dependencies

S T U V W X YR Z

Z R

X
S

U

YV

W

T

Refactoring graphs

Bworst

Group refactorings into blocks

S U Y R V Z WT X

Sort blocks based on each block’s
potential to improve objective 2 in Sbest

Bbest

Perform single
point crossover

of n blocks

Part c: The intelligent crossover

B F G C D H IA E

S U Y R V Z WT X

I

B F G C V Z WA X

S U Y R D H IT E

S’best

S’worst

Pick a random
number between 1
and the number of

blocks of I’;
2 in this case

I

I’

Figure 4.27: An illustration of the intelligent crossover.

4.3.2.2.3 Dependency-aware Mutation Our proposed dependency-aware mutation

operator is defined in algorithm 6 and illustrated in Figure 4.28. We modified the random

mutation operator to preserve refactoring dependencies. For each solution S, we randomly

select a floating-point value. If this value is less than the mutation probability (Line 1), we

detect refactoring dependencies (Part a in Figure 4.28) and identify mutable refactorings

(Line 2) (Part b in Figure 4.28). A mutable refactoring must satisfy at least one of the

following:

• It does not participate in any dependencies (e.g., E and C in Figure 4.28).

• It is part of a non-trivial graph, but no other refactorings depend on it (e.g., G, I and

H in Figure 4.28).

• It is part of a non-trivial graph, but it has an unsatisfied pre-condition and is already

invalid (e.g., A in Figure 4.28).

232

Then, we chose a random number between 1 and the number of mutable refactorings (Line

3). This number represents the number of refactorings that we will mutate in refactoring

solution S. Finally, we replace N refactorings in S with random refactoring operations and

parameters (Line 4–7) (Part c in Figure 4.28).

Algorithm 6 Dependency-aware Mutation Algorithm.
Input: Solution S = {r1, r2, r3, . . . , rn} and a probability P
Output: Mutated solution S
if random number ≤ P then

M ← detect mutable refactorings from S N ← random number between 1 and |M | for i ← 0 to N 1
do

rj ← random refactoring from M replace rj in S with a random refactoring

return S

S

Part a: Detect refactoring dependencies

B C D E F G HA I

G

A

B

D

H

IF

C

E

Refactoring graphs

Refactoring graphs

Part b: Detect mutable refactorings

G

A

B

D

H

IF

C

E

B C D E F G HA I

S

Invalid refactoring

S

Randomly select N mutable
refactorings (3 in this

illustration) and mutate them

Part c: Mutate random mutable refactorings

Mutated S

B C D J F K HA L

Depends on

B C D E F G HA I

Mutable
refactorings (M)

Mutable
refactorings (M)

Figure 4.28: An illustration of the dependency-aware mutation.

4.3.3 Empirical Study

4.3.3.1 Research Questions

The following research questions guide the evaluation of our proposed approach:

RQ1. Correctness. To what extent can our approach reduce the number of invalid

refactorings compared to other multi-objective refactoring recommendation

techniques?

RQ2. Quality. To what extent can our approach generate refactoring solutions

with better diversity, convergence, and quality improvement compared to other

multi-objective refactoring techniques?

233

RQ3. Relevance. How do developers evaluate the impact of our approach in prac-

tice?

To answer RQ 1, we chose the algorithm proposed by Mkaouer et al. [8] based on NSGA-

III, because it outperforms the existing multi-objective techniques [5, 6, 7] that use random

change operators. Please note that NSGA-II and NSGA-III are using the same change

operators as explained in the previous section. We also considered two operation-variants of

NSGA-II that optimize the same quality objectives as summarized in Table 4.7.

Table 4.7: The three operation-variants of the NSGA-II algorithm.

Algorithm Definition

NSGA-II
NSGA-II with random Single Point
crossover and Bit Flip mutation
(Mkaouer et al. [8])

Dep-NSGA-II
NSGA-II with dependency-aware
change operators (Sections 4.3.2.2.1
and 4.3.2.2.3)

Intel-NSGA-II
NSGA-II with intelligent crossover and
dependency-aware mutation (Sections
4.3.2.2.2 and 4.3.2.2.3)

We selected four open-source Java projects (show in Table 4.8) that were used in the

work of Mkaouer et al. [8]. These projects are from different domains and have different

sizes along with a significant number of contributors over more than 10 years. Furthermore,

the selected projects are widely used and extensively involved over time which may justify

the need for refactoring.

Also, we checked the validity of pre- and post-conditions of all refactorings in all solutions

in each generation for all three algorithms on the four projects. We measured the total

number of conflicts for each generation as the percentage of invalid refactorings among all

refactorings in all solutions in that generation. We also measured the percentage of invalid

refactorings per solution in each generation to see the distribution of invalid refactorings

across solutions.

To answer RQ 2, we compared the three algorithms in terms of execution time, perfor-

mance indicators, and improvement in quality metrics of the Pareto-front solutions. Due to

234

Table 4.8: Open-source projects studied.

System Release # of Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25

GanttProject v1.11.1 245 49
Apache Ant v1.8.2 1191 112

the stochastic and non-deterministic nature of meta-heuristic algorithms, different runs of

the same algorithm solving the same problem typically give different outcomes. For this rea-

son, we performed 30 runs for each algorithm on each project to make sure that the results

are statistically significant.

Finally, to answer RQ 3, we conducted a survey with a group of 14 active developers to

identify and manually evaluate the relevance of the refactorings generated by our approach.

At the top of the criteria mentioned above, the projects used for answering RQ 1 were

selected since the participants are familiar with them so they can provide relevant feedback

given their knowledge.

4.3.3.2 Evaluation Metrics

We validate our results using the following metrics.

For RQ 1, we want to estimate the correctness of the solutions generated by the three

algorithms. For that, we compute the percentage of invalid refactorings in each generation

by inspecting the validity of pre- and post-conditions of each refactoring operation. These

conditions are discussed by Opdyke et al. [33]. The exhaustive list can be found in the online

appendix [606]. We also computed the percentage of invalid refactorings per refactoring

solution generated by the three algorithms at each generation.

For RQ 2, we use the following three metrics as performance indicators to evaluate the

quality of solutions generated by the three algorithms:

• Contributions (IC) [610] measures the proportion of solutions that lie on the reference

front (RS) [611]. The higher this proportion, the better the quality of solutions.

235

• Inverted Generational Distance (IGD) [612] is a convergence measure that corresponds

to the average Euclidean distance between the approximate Pareto-front provided by

an algorithm and the reference Pareto-front. Small values are desirable.

• Hypervolume (IHV) [613] measures the volume covered by members of a Pareto-front

in objective space delimited by a reference point. An important feature of this metric

is its ability to capture diversity and convergence of solutions. A higher hypervolume

value is desirable.

We also calculated another metric based on QMOOD that estimates the quality improve-

ment for the project by comparing the quality before and after refactorings generated by the

three algorithms. For each refactoring solution S, the quality improvement after applying S

is estimated as:

QS =
6∑

i=1

Qqi where Qqi = q′i − qi (4.8)

where qi and q′i represent the value of QMOOD quality attribute i before and after applying

S, respectively. For each algorithm, we average the normalized quality improvements across

solutions in the Pareto-front generated by each algorithm and we compare them. In addition,

we compute the execution time of each generation using the three algorithms.

Finally, for RQ 3, we validated the generated refactoring solutions quantitatively and

qualitatively. For qualitative assessment, we compared our solutions to a baseline of solu-

tions generated by other multi-objective techniques [5, 6, 7, 8] and by JDeodorant [9], a

tool not based on heuristic search. All the search-based refactoring techniques are based

on multi-objective search, but each uses different objectives and solution representations.

All use the same random change operators, which helps to confirm whether good recom-

mendations result from using our intelligent change operators. The current Eclipse plug-in

version of JDeodorant identifies some types of design defects using quality metrics and pro-

poses a list of refactorings to fix them. For the comparison with JDeodorant, we limited the

236

comparison to the same refactoring types supported by both our approach and JDeodorant.

For the quantitative assessment, we calculated precision and recall scores by comparing the

refactorings recommended by each of the multi-objective algorithms and JDeodorant with

those refactoring manually suggested by the participants (the expected refactorings).

Precision =
Recommended Refactorings ∩ Expected Refactorings

Recommended Refactorings
(4.9)

Recall =
Recommended Refactorings ∩ Expected Refactorings

Expected Refactorings
(4.10)

After the developers manually suggested refactorings for the projects, we asked them to

evaluate the tools’ recommendations since their suggestions may not be the only reasonable

solution. We asked the participants to assign 0 or 1 to every refactoring solutions generated

by the multi-objective algorithms and JDeodorant. A 0 means that the refactoring is not

relevant or invalid, and 1 means that the refactoring is meaningful and relevant.

We computed manual correctness as the number of meaningful refactorings divided by

the total number of recommended refactorings. Meaningful refactorings were identified by

considering the majority opinion across participants for each refactoring.

Manual Correctness =
|Meaningful Refactorings|
|Recommended Refactorings|

(4.11)

4.3.3.3 Parameters Tuning

In order to fairly compare the results among the three algorithms in Table 4.7 and the

multi-objective algorithms used in our survey [5, 6, 7, 8], we performed the same number

of evaluations per run (3k) and used the same initial population size (100). We used the

maximum number of evaluations as our stopping criterion. The crossover and mutation

probabilities are set to 0.95 and 0.02 respectively. The minimum and maximum number of

refactorings per solutions are set to 100 and 200, respectively.

237

4.3.3.4 Subjects

We evaluated our approach with 14 active industry developers who volunteered to par-

ticipate in our survey as part of an industry-sponsored research collaboration. We selected

individuals with extensive experience applying refactorings in industry and using the se-

lected open source projects in their work. Each filled out a pre-study survey that collects

background information, such as their programming experience and their role within their

companies.

We divided the participants into four groups balancing skill level and familiarity with

the open source projects. The details of the participants and the projects they evaluated

are found in Table 4.9. We gave participants a two-hour lecture about software quality

assessment and refactoring. During the two-hour lecture, we did not reveal to the participants

which refactorings were generated by which app to avoid any possible bias. We provided

general knowledge regarding refactoring and showed them how to read and interpret the

refactoring solutions and focused on explaining the required steps to complete the survey.

We assessed their knowledge on the open source projects and their performance in eval-

uating and suggesting refactoring solutions. The participants were asked to assess the

correctness and relevance of the refactorings recommended by the multi-objective algo-

rithms [5, 6, 7, 8] and JDeodorant [9] on all four projects. They were shown refactoring

recommendations per project without knowing where the recommendations came from.

Since the multi-objective algorithms generate many refactoring solutions in the Pareto-

front, it was not feasible to ask the participants to evaluate all the solutions. Therefore,

to perform meaningful and fair comparisons for each project and algorithm, we selected

the solution using a knee-point strategy [614]. The knee point corresponds to the solution

with the maximal trade-off among the objectives, which could be seen as the mono-objective

solution with equally weighted objectives if the objectives do not conflict. Thus, we selected

the solution with the median hypervolume IHV value. The average number of refactorings

evaluated by each participant is 58. We ensured that each refactoring was evaluated by

238

two developers, and we considered it relevant if both agreed (the overall Cohen’s kappa was

0.91).

Table 4.9: Participant details.

System # of Subjects
Avg. Prog.

Experience (Years)
Refactoring
Experience

ArgoUML 4 10 High
JHotDraw 3 11.5 Very High
GanttProject 3 10.5 High
Apache Ant 4 12 Very High

4.3.3.5 Results

4.3.3.5.1 RQ1: Correctness Figure 4.29 shows the percentage of invalid refactorings

across all solutions in each generation for each algorithm for each open source project. All

algorithms have 100 non-dominated solutions in the final Pareto-front.

Figure 4.29: Percentage of invalid refactorings across all solutions per generation for NSGA-II, Dep-NSGA-
II, and Intel-NSGA-II.

The highest percentages of invalid refactorings for all projects was produced by NSGA-

II, though it does reduce the percentage of invalid refactorings by a negligible amount as

generations progress. Dep-NSGA-II reduces the percentage of invalid refactorings compared

239

Figure 4.30: Percentage of invalid refactorings in refactoring solutions using NSGA-II, Dep-NSGA-II, and
Intel-NSGA-II.

to regular NSGA-II [8] by 44.34%, 34.42%, 39.77%, and 37.29% for Ant, ArgoUML, Gantt,

and JHotDraw, respectively. Intel-NSGA-II, however, outperformed the other algorithms

and reduces the percentage of invalid refactorings compared to NSGA-II [8] by 71.52%,

61.15%, 67.43%, and 61.95% for Ant, ArgoUML, Gantt, and JHotDraw, respectively. Intel-

NSGA-II also reduces the percentage of invalid refactorings more quickly than the other

algorithms at the population level.

Also, Figure 4.29 reveals that NSGA-II generates a roughly constant percentage of invalid

refactorings equal to or greater than 25%. By introducing the dependency-aware change op-

erators, Dep-NSGA-II reduced the number of invalid refactorings to roughly 15% in the 30th

generation. Figure 4.29 also reveals a major decrease in the number of invalid refactorings

caused by Intel-NSGA-II in the first 12 generations; then it becomes roughly constant and

equal to less than 10%. Thus, the number of generations to reach a stable fraction of invalid

refactorings is almost the same per algorithm independently from the evaluated project.

Finally, we examined the impact of our proposed change operators at the solution level.

240

Figure 4.30 shows the distribution of the percentage of invalid refactorings within solutions.

Intel-NSGA-II achieves the lowest percentage of invalid refactorings in solutions across all

generations for all projects followed by Dep-NSGA-II and NSGA-II, respectively.

¤ Key findings: Intel-NSGA-II reduces the percentage of invalid refactorings in the

population and refactoring solutions by an average of 65.51% and 43.71% compared to

NSGA-II [8] and Dep-NSGA-II, respectively.

Table 4.10: Performance indicators results for NSGA-II, Dep-NSGA-II, and Intel-NSGA-II.

System Algorithm IC IGD IHV

ArgoUML

NSGA-II 0.0172 0.0343 ± 0.0342 0.0222 ± 0.0205

Dep-NSGA-II 0.3172 0.0303 ± 0.0081 0.0349 ± 0.0186

Intel-NSGA-II 0.6655 0.0262 ± 0.0078 0.0801 ± 0.0855

Ant

NSGA-II 0.0041 0.0242 ± 0.0049 0.0176 ± 0.0205

Dep-NSGA-II 0.1632 0.0205 ± 0.0047 0.0329 ± 0.0119

Intel-NSGA-II 0.8326 0.0122 ± 0.0035 0.1080 ± 0.0555

GanttProject

NSGA-II 0.0036 0.0205 ± 0.0027 0.0218 ±0.0111
Dep-NSGA-II 0.1749 0.0193 ±0.0037 0.0302 ± 0.0209

Intel-NSGA-II 0.8215 0.0103 ± 0.0024 0.1191 ± 0.0536

JHotDraw

NSGA-II 0.1044 0.0253 ± 0.0050 0.0266 ± 0.0214

Dep-NSGA-II 0.0413 0.0225 ± 0.0040 0.0349 ± 0.0175

Intel-NSGA-II 0.8544 0.0136 ± 0.0036 0.1341 ± 0.0635

4.3.3.5.2 RQ2: Quality Table 4.10 shows the average IC , IGD, and IHV of the 30 runs

of the three algorithms. The values in bold are the best values achieved for each performance

indicator per project. Intel-NSGA-II achieved the highest IHV and IC and the lowest IGD for

all projects. Dep-NSGA-II was able to improve the IHV , IC , IGD compared to NSGA-II by

up to 86.93%, 4758.33%, and 15.28%, respectively. Intel-NSGA-II was able to improve the

IHV , IC , IGD compared to NSGA-II by up to 513.63%, 22719.44%, and 49.75%, respectively.

This shows that Intel-NSGA-II produces better convergence and diversity than the other

algorithms.

Table 4.11 shows the average quality improvement of solutions, as well as their standard

deviations. The bold values are the best values obtained for each metric for each project.

Intel-NSGA-II produced the best quality improvement in almost all cases. NSGA-II pro-

241

Table 4.11: Average quality improvement of the solutions generated by NSGA-II, Dep-NSGA-II, and Intel-
NSGA-II.

System Algorithm Effectiveness Extendibility Flexibility Functionality Reusability Understandability

ArgoUML
NSGA-II 0.0557 ± 0.0147 0.1484 ± 0.0335 0.0077 ± 0.0077 0.0077 ± 0.0042 0.0130± 0.0051 0.0260± 0.0099

Dep-NSGA-II 0.0615 ± 0.0112 0.1639 ± 0.0297 0.0109 ± 0.0084 0.0082 ± 0.0045 0.0129 ± 0.0054 0.0255 ± 0.0098
Intel-NSGA-II 0.0646 ± 0.0174 0.1798 ± 0.0332 0.0094 ± 0.0104 0.0115 ± 0.0045 0.0206 ± 0.0035 0.0302 ± 0.0095

Apache Ant
NSGA-II 0.0177 ± 0.0049 0.0296 ± 0.0112 0.0073 ± 0.0088 0.0070 ± 0.0046 0.0086 ± 0.0021 0.0125 ± 0.0074

Dep-NSGA-II 0.0214 ± 0.0050 0.0362 ± 0.0098 0.0086 ± 0.0085 0.0083 ± 0.0046 0.0099 ± 0.0020 0.0136 ± 0.0072
Intel-NSGA-II 0.0230 ± 0.0054 0.0338 ± 0.0098 0.0164 ± 0.0111 0.0123 ± 0.0055 0.0139 ± 0.0022 0.0119 ± 0.0083

GanttProject
NSGA-II 0.0285 ± 0.0077 0.0677 ± 0.0168 0.0045 ± 0.0093 0.0059 ± 0.0048 0.0080 ± 0.0029 0.0098 ± 0.0080

Dep-NSGA-II 0.0340 ± 0.0077 0.0775 ± 0.0166 0.0046 ± 0.0107 0.0067 ± 0.0052 0.0094 ± 0.0026 0.0124 ± 0.0095
Intel-NSGA-II 0.0335 ± 0.0097 0.0710 ± 0.0195 0.0120 ± 0.0153 0.0123 ± 0.0073 0.0147 ± 0.0033 0.0093 ± 0.0124

JHotDraw
NSGA-II 0.0451 ± 0.0074 0.1028 ± 0.0175 0.0138 ± 0.0109 0.0122 ± 0.0047 0.0141 ± 0.0028 0.0126 ± 0.0117

Dep-NSGA-II 0.0463 ± 0.0079 0.1058 ± 0.0191 0.0084 ± 0.0102 0.0085 ± 0.0054 0.0109 ± 0.0040 0.0132 ± 0.0084
Intel-NSGA-II 0.0487 ± 0.0111 0.1062 ± 0.0193 0.0169 ± 0.0176 0.0154 ± 0.0084 0.0180 ± 0.0041 0.0136 ± 0.0137

duced the lowest quality improvement in 18 out of 24 cases. Dep-NSGA-II was able to

improve the Effectiveness, Extendibility, Flexibility, Functionality, Reusability, and Under-

standability compared to NSGA-II by an average of 13.31%, 51.89%, 5.61%, 2.07%, 2.28%,

9.54%, respectively. Intel-NSGA-II was able to improve the Effectiveness, Extendibility,

Flexibility, Functionality, Reusability, and Understandability compared to NSGA-II by an

average of 17.86%, 46.94%, 83.96%, 64.94%, 57.87%, and 3.54%, respectively. This demon-

strates that our intelligent crossover strategy that targets fixing a solution’s weaknesses

leads to higher quality solutions in the final Pareto-front. There is, however, a performance

penalty for the extra work performed by intelligent change operators; on average, execution

time doubled. In most cases, this is a more than acceptable trade-off for higher quality

refactoring recommendations.

We noticed that NSGA-II never produced the best quality improvement in any cases,

which means that the dependency-aware change operators play a significant role in improving

the quality of the Pareto-front. In addition, whenever Intel-NSGA-II does not produce “the

best quality improvement”, the difference between the quality values of Intel-NSGA-II and

Dep-NSGA-II is very small. Indeed, the quality improvements rate depends on the number of

code smells, size and evolution of the analyzed projects. In our future work, we are planning

to validate our approach using more projects to have a clearer understanding of when and

why Intel-NSGA-II does not produce “the best quality improvement”.

242

¤ Key findings: Intel-NSGA-II outperforms the other algorithms in terms of diversity,

convergence, and quality improvement of the Pareto-front using the different evaluation

metrics IC , IGD, and IHV by at least 50% with a modest sacrifice in execution time.

4.3.3.5.3 RQ3: Relevance Figure 4.31 presents the results of manual correctness, pre-

cision, and recall for our Intel-NSGA-II algorithm and state of the art refactoring techniques.

The detailed responses of the 14 participants can be found in our appendix [606]. Intel-

NSGA-II achieved better manual evaluation scores than [8] and existing approaches in all

the metrics for all projects. Indeed, the average manual correctness, precision and recall of

our algorithm compared to that of Mkaouer et al. [8] are 0.89, 0.82, and 0.87 to 0.67, 0.56, and

0.67 respectively and much better than the remaining tools. Thus, the participants found

our refactoring recommendations applicable and consistent with the source code and their

design issues. All participants agreed on the benefits of considering dependencies among

refactorings when generating refactoring solutions. They mentioned that Intel-NSGA-II in-

creases their trust in refactoring tools and would save them time and effort on filtering out

invalid refactorings.

¤ Key findings: Intel-NSGA-II provided more relevant and meaningful refactorings

than state of the art refactoring recommendation techniques based on manual evaluation

of recommended refactorings.

4.3.4 Threats to Validity

Conclusion validity. We used Design of Experiments (DoE) [615] to mitigate the threat

related to parameter tuning. DoE is a methodology for systematically applying statistics

to experimentation and is one of the most efficient techniques for tuning parameter settings

of evolutionary algorithms. Each parameter has been uniformly discretized in intervals. To

mitigate the stochastic nature of the search algorithms, we performed 30 runs per project

and algorithm and analyzed the mean results along with the appropriate statistical tests

using the Wilcoxon test with a 95% confidence level (α < 5%).

243

MC-Intel-NSGA-II

MC-Mkaouer et al.

MC-Harman et al.

MC-Ouni et al.

MC-Mel et al.

MC-JDeodorant

PR-Intel-NSGA-II

PR-Mkaouer et al.

PR-Harman et al.

PR-Ouni et al.

PR-Mel et al.

PR-JDeodorant

RC-Intel-NSGA-II

RC-Mkaouer et al.

RC-Harman et al.

RC-Ouni et al.

RC-Mel et al.

RC-JDeodorant

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

ArgoUML

JHotDraw

GanttProject

Apache Ant

Figure 4.31: Manual evaluation of refactoring recommendations generated by the existing multi-objective
techniques [5, 6, 7, 8] and the JDeodorant Eclipse plugin [9]).

Internal validity. Validation exercise participants had different programming skills and

familiarity with refactoring tools. To counter this, we assigned developers to groups according

to their experience to reduce the gap between the groups and we adopted a counter-balanced

244

design. Asking the participants to evaluate the refactoring recommendations for all projects

would be too much work for them and would reduce the quality of the survey responses. For

this reason, we divided the participants into four groups balancing skill level and familiarity

with the open-source projects and we asked each one of them to evaluate a single project.

We grouped the participants based on their familiarity with the projects to be evaluated.

Indeed, it is critical that the participants are knowledgeable about the code of the evaluated

projects so they can make accurate judgment about the recommended refactorings. Also,

the relatively small number of participants could also be considered a threat to validity. We

selected 14 developers to participate in our validation, targeting developers with knowledge

of the studied projects. In-depth interviews with a relatively small number of developers

familiar with the studied projects yields deep, quality insights that are more useful than

those extracted using an online survey with random participants who are not familiar with

the studied projects.

Construct validity. Developers might have different opinions about the relevance of

recommended refactorings, which may impact our results. Some might think that it is

important to refactor, while others might think otherwise. To mitigate this threat, we

ensured that each refactoring was evaluated by two developers, and we considered it relevant

if both agreed. The overall Cohen’s kappa was 0.91 which confirms that there is a significant

consensus among developers.

External threats. External threats concern the generalization of our findings. Our

validation includes only four projects. One reason for this is to attract more quality responses

from survey participants. The more tedious the task that participants must complete, the

lower the quality of their responses. The second reason is that running all of the algorithms

on all of the projects 30 times takes considerable time.

245

4.3.5 Conclusion

To improve the correctness and quality of refactoring recommendations and increase de-

veloper trust in search-based refactoring recommendation tools, we proposed a dependency-

aware multi-objective refactoring approach with intelligent change operators that find a

balance among quality objectives while reducing the number of invalid refactorings. We

evaluated this approach on four open-source projects. We compared our results to existing

refactoring techniques that use random change operators, as well as to a dependency-aware

technique, to understand the impact of considering refactoring dependencies and fixing qual-

ity weaknesses in refactoring solutions. The comparisons show that our proposed approach

performs significantly better than the baselines in terms of convergence, diversity, and cor-

rectness with a reasonable cost in terms of increased execution time. The survey with 14

practitioners confirmed the relevance of our approach.

246

4.4 X-SBR: On the Use of the History of Refactorings for Explainable Search-

Based Refactoring and Intelligent Change Operators

4.4.1 Introduction

A wide range of work has been done on finding refactoring recommendations using a va-

riety of techniques including template/rule-based tools [616, 617], static and lexical analysis,

and search-based software engineering [444]. Recent surveys show that search-based soft-

ware engineering is widely adopted to find refactoring recommendations [618, 444] due to the

conflicting nature of many quality metrics and the large search space of potential refactoring

strategies that can be useful depending on the context. For instance, O’Keeffe et al. [6]

compared the ability of different local search-based algorithms such as hill climbing and sim-

ulated annealing to generate refactoring recommendations that improve the QMOOD [480].

Harman et al. proposed to use multi-objective search for refactoring to improve coupling

and reduce cohesion [5]. Ouni et al. [496] and Mkaouer et al. [497] proposed multi-objective

and many-objective techniques to balance different conflicting quality metrics when finding

refactoring recommendations. Hall et al.[619] and Alizadeh et al. [55] improved the state-of-

the-art of search-based refactoring by enabling interaction with the developers and learning

their preferences. More detailed descriptions of existing search-based refactoring studies can

be found in the following surveys [444, 618].

Despite the promising results of search-based refactoring on both open-source and indus-

try projects, several limitations can still be addressed in order to improve their efficiency.

These limitations can apply, in general, to most of the existing search-based software engi-

neering studies [620, 442, 537] but we focus only on search-based refactoring in this contribu-

tion. First, the random generation of the initial population can have a significant impact on

the execution time and the quality of final solutions [621, 622]. Despite the large amount of

data of the history of commits about applied refactorings, existing search-based refactoring

studies are still generating the initial population of solutions randomly without exploiting

247

the prior knowledge of what could construct a good refactoring solution. Second, most of

software engineering problems, including refactoring, are discrete. However, the majority of

existing studies are using regular change operators such as the random one-point crossover

that is more adequate for continuous problems [623]. In fact, a random application of change

operators without understanding the good/bad patterns in a refactoring sequence of the so-

lution can simply destroy them, deteriorate the quality, and delay the convergence towards

good solutions. Third, current search-based refactoring techniques generate a large sequence

of refactorings as one solution without explaining to developers how the different opera-

tions in the solution are depending to each other in terms of fixing specific quality issues

or improving the fitness functions which can impact their trustworthiness by developers in

practice. Finally, the recommendation of refactorings is highly dependent to the developers

interest and preferences such as files owned or targeted quality goals. Thus, refactoring rec-

ommendations should be customized to the needs of the developers after understanding and

learning their behavior and preferences.

In this project, we propose an approach for refactoring recommendations based on a novel

knowledge-informed multi-objective optimization algorithm to guide the generation of the

initial population, define intelligent genetic operators and explain the generated refactoring

solutions (also called the Pareto front). The proposed approach is a combination of an Apriori

algorithm and multi-objective search. The first component of our approach is based on an

Apriori algorithm [539] to generate association rules using the refactoring history and quality

analysis of 18 projects of different sizes and categories. We used RMiner [624] to detect the

refactoring operations performed between the commits. These association rules represent

patterns linking a combination of refactoring types with their location, characterized using

structural metrics, to their impact on improving the quality attributes/fitness functions (e.g.

extendibility, functionality, flexibility etc.). Thus, these patterns were used to 1) initialize

the first population of solutions, 2) select which refactorings of a solution to replace during

crossover and mutation in order to avoid destroying good patterns and 3) explain the obtained

248

refactoring sequence per solution to the developers by decomposing it to sub-sequences with

their potential impact on quality improvements.

We evaluated the execution time, quality of refactoring recommendations and identified

refactoring patterns using different evaluation metrics. Statistical analysis of our experiments

based on 4 open source systems showed that our proposal performed significantly better than

four existing search-based refactoring approaches [8, 5, 6, 7] and an existing refactoring tool

not based on heuristic search, JDeodorant [9], in terms of improving the quality and enhance

the trustworthiness to apply the recommended refactorings. We used these 5 refactoring tools

and the 4 open source projects because 1) they are representative of existing automated

multi-objective search-based refactoring techniques, 2) they are publicly available including

the non search-based tool and 3) the familiarity of the participants with the open source

systems that already part of an existing benchmark not constructed by the authors of this

project to avoid any potential bias [55]. We did not compare with manual and interactive

refactoring techniques to ensure a fair comparison and focus on the scope of the contributions

of this project.

Replication Package. All material and data used in our study are available in our

replication package [625].

249

4.4.2 X-SBR Approach

4.4.2.1 Overview

The goals of this study are to 1) develop a knowledge-informed NSGA-II [495] by de-

signing operators that prevent the destruction of good patterns in a solution 2) explain the

decision made by the algorithm and give justifications to the users about why a refactoring

solution can improve specific quality objectives by extracting the relevant patterns and 3)

improve the population initialization by using the knowledge from the history of refactor-

ings to create the individuals of the first generation rather than randomly generating them.

To reach the stated goals, our approach takes as input the source code of several commits

from different developers and projects and generates as output a Pareto front of refactor-

ing solutions along with their explanations presented in a user friendly graphical interface.

A refactoring solution is an ordered sequence of refactoring operations. The steps of our

approach are as follows:

• Step 1: Detect the refactoring history using Rminer [624] and compute quality metrics

(described in Tables 2.10 and 2.9).

• Step 2: Generation of association rules to link the quality metrics with refactoring

operations collected in Step 1.

• Step 3: Design of a knowledge-informed NSGA-II including the population generation

and change operators based on the rules extracted in Step 2.

We note that only Step 3 needs to be executed on a new system to generate refactoring

recommendations. Figure 4.32 summarizes our approach. It takes multiple commits of

different systems that the developer worked on as input. For each commit, we analyze the

source code automatically to extract low- and high-level quality metrics (refer to Tables 2.10

and 2.9) and we extracted the refactoring using RMiner [624]. Based on the collected data,

we applied the Apriori algorithm to find association rules to link low-level quality metrics and

250

refactoring operations with high-level quality metrics. The rules are composed by two sides.

The left-hand side includes only item-sets with elements belonging to the design properties

(structure of the code) AND applied refactoring operations. The right-hand side needs to

include only item-sets with elements belonging to the QMOOD metrics. The association

rules were used to 1) initialize the first population of solutions, 2) select which refactorings

of a solution to replace during crossover and mutation in order to avoid destroying good

patterns and 3) explain the obtained refactoring sequence per solution to the developers

by decomposing it to sub-sequences with their potential impact on quality improvements.

Then, we designed and implemented a knowledge-informed NSGA-II to efficiently generate

the initial population and perform change operators as detailed later. Finally, our approach

can identify the specific refactoring patterns in each solution responsible for the fitness values

of each solution improvement or deterioration in the Pareto front.

Figure 4.32: Approach Overview

4.4.2.2 Training Data

4.4.2.2.1 Extracting History of Refactorings In this study, we used RMiner, a tool

proposed by Tsantalis et al. [624], to extract the refactoring operations performed between

Git commits. RMiner detects a total of 28 refactoring types at multiple granularity levels—

Package, Type, Method, and Field. These types are the following: change package, extract

and move method, extract class, extract interface, extract method, extract subclass, extract

superclass, extract variable, inline method, inline variable, move and rename attribute, move

and rename class, move attribute, move class, move method, move source folder, parame-

terize variable, pull up attribute, pull up method, push down attribute, push down method,

251

rename attribute, rename class, rename method, rename parameter, rename variable, replace

attribute, and replace variable with attribute.

We selected RMiner since it achieved accurate results in detecting refactorings compared

to the state of-the-art tools, with a precision of 98% and recall of 87%. We provide in the

validation section the details of the collected data related to refactorings and quality metrics

on open source projects.

4.4.2.3 Association Rule Mining

Apriori is an algorithm for frequent item-set mining and association rule learning that

was first defined by Agrawal et al. [539]. A frequent item-set is a set of items appearing

together in a database meeting a user-specified threshold. The algorithm starts by finding

the frequent individual items in a database and expand them to larger and larger item-sets

as long as the appearance of those item-sets is larger than the threshold set by the user.

The frequent item-sets found by Apriori can be used to generate association rules which

highlight general trends in the database. The pseudo code of the Apriori algorithm can be

found in the online appendix [625]. In our study, the transaction database D consists of the

list of classes of all commits, their QMOOD/design metrics after discretization, and applied

refactoring operations. The support threshold we considered was equal to 0.936. We defined

three types of constraints on the generation of the rules:

• The left-hand side needs to include only item-sets with elements belonging to the design

properties AND applied refactoring operations.

• The right-hand side needs to include only item-sets with elements belonging to the

QMOOD metrics.

• The left-hand side needs to have at least 4 elements from the design properties item-set.

We included both the design metrics and the refactoring operations in the left-hand

side of the rules to have a more relevant association of the refactoring operations with

252

Figure 4.33: Example of an association rule

the high-level metrics. For example, we tend to apply the refactoring operator Increase

field Security when the Direct Access Metric—ratio of the number of private and protected

attributes to the total number of attributes in a class—is low. Figure 4.33 represents an

example of one of the rules generated by the Apriori algorithm. The items in blue, red,

and green are respectively the refactoring operations, design metrics, and QMOOD metrics,

respectively. The rule can be interpreted as follows: when developers have applied the

refactoring types Extract and move method and Inline Variable in a class that has the

design metric CIS, MOA, NOH and NOM within the intervals of (−2.484, 496.8], (−0.042,

8.4], (−0.0002, 0.0002], and (−2.485, 497.0] respectively, then the change (as the difference

between before and after refactoring) in extendibility and flexibility will be in the range

of (−0.2, 0.5], (−0.2, 0.5] respectively. We designed a user-friendly interface in our web-

app supporting the implementation of the approach proposed in this project so the users can

easily understand the explanations rather than reading mined association rules. For example,

the UI highlighted the metrics contributing to the recommendation of the refactoring and

so on.

4.4.2.4 Knowledge-Informed and Explainable NSGA-II for Search-Based Refac-

toring

We detail in the following three main components that we design to improve the regular

NSGA-II algorithm: 1) the population generation; 2) change operators and 3) the explana-

tions for the selected solution from the Pareto front.

4.4.2.4.1 Initial Population The initial population strategy is one of the important

factors that affect the performance of search algorithms. The initial population has a key

253

Figure 4.34: Improved initial population process

impact on the execution time and the quality of the generated Pareto front. Figure 4.34

summarizes the steps of the improved seeding mechanism. We first start by looking for all

the rules, generated by the Apriori algorithm from the refactoring history, that can be applied

to the classes of the system to be refactored. In other words, we look for the rules where

there exist at least one class, from the system we are trying to refactor, with design metric

values that satisfy/match the left-hand side of the rules. Then, we add all the refactoring

operations of those rules in one unified pool. We note that we keep the refactorings of each

rule as a group—also referred to as pattern—in a way that they are used together as a sub-

sequence in the refactoring solution vector. The reason behind this grouping is that each

group of refactorings tend to occur together according to the frequent item-set principle and

the refactoring history of developers. Therefore, suggesting them together in a refactoring

solution provides more personalized and practical recommendations. To create an initial

population of size N, we randomly choose groups of refactorings from the pool we formed

until we fill N ordered vectors.

4.4.2.4.2 Crossover Figure 4.35 is a simplified illustration of how our improved

crossover works. We first start by randomly picking two parents, S1 and S2, from the current

population. S1 and S2 are vectors where each dimension represents a refactoring operation

to apply. Then, we create cloning copies of the parents for the new pair of offspring S’1 and

254

S’2. Next, we extract the Apriori rules that satisfy the following two conditions:

• The refactoring pattern in the left-hand side of the rule exists in S1

• The design metric intervals in the left-hand side of the rule contain the values of the

source class design metrics in the refactoring operations of S1.

We do the same for the second parent S2. We end up having two rule sets R1 and R2 related

to S1 and S2 respectively. Let O1 and O2 be the objectives (e.g. the QMOOD metrics) in

the right-hand side of the rules in R1 and R2 respectively. Now, we compute the fitness

function of S1 and S2 for all the objectives in O1∩O2 and we compare them. Let us consider

that S1 has a higher reusability than S2. Thus, the algorithm will look for the rule R in R1

that contains reusability in its right-hand side. We extract the refactoring operations from

S1 that match the refactoring pattern contained in R and transfer it to S’2. We replace the

genes of S2 in S’2 that are not used by any patterns contained in S’2 for other objectives for

which S2 has a higher value in comparison to S1. We do the same for all the objectives in

O1 ∩ O2. This crossover strategy allows us to keep the strengths and fix the weaknesses of

the parents in the next generation while conserving the personalization aspect and practical

abilities of the solutions.

Rule 1

A BRule 2 Targeting Objective #2

D J E K F

Parent S1

A H C I B

Crossover

Graphical Representation of Rules Graphical Representation of XSBR Crossover

Parent S2

D A E B F

Child S’1

A D E F B

Child S’2

S1 is better at objective 1 and contains
members of Rule 1

S2 is better at objective 2 and contains
members of Rule 2

D E Targeting Objective #1F

D D

Schema Key:

Type D refactoring in Purple
Group, without any Actors

Type D refactoring in Purple
Group, with actors defined

Figure 4.35: An illustration of X-SBR crossover

4.4.2.4.3 Mutation Mutation is a genetic operator used to preserve genetic diversity

from one generation to the next in a genetic algorithm. Mutation involves a change in

255

chromosome structure by altering one or more genes in a chromosome. It occurs according

to a user-definable mutation probability. In our study, we set this probability to 0.1 . Figure

4.36 is a simplified illustration of how our improved mutation works. For each solution S,

we randomly select a floating-point value. If this value is less than the mutation probability,

we follow the steps below:

• We use the Apriori rules to find the refactoring patterns in S that improve one or more

objectives. For example, in Figure 4.36, Rule 2 improves Objective 2.

• We deduce the refactorings that are not associated with any pattern. In figure 4.36,

the refactorings that are not associated with any objective are K, O, and L.

• We look for the rules that improve the weakest objective of S (i.e., the objective with

the worst value). In figure 4.36, the weakest objective is Objective 1 which can be

improved using Rule 1.

• We choose the refactoring pattern that modifies the maximum number of refactorings

that are not associated with any objective and we add it to S. In figure 4.36, Rule 1

is composed of three refactorings that can replace the three refactorings that are not

associated with any pattern (e.g. K, O, and L)

• If no rules are found, we choose a random number N between 1 and half the size of S

and we randomly modify N refactorings in S from the possible refactoring operations

that the tool supports.

4.4.2.4.4 Explanations Generation The implemented tool includes several features

to understand the explanations. First, the impact of the refactoring on the quality can be

visualized to the developers via bar charts by showing the delta between before and after

refactorings. Second, the extracted refactoring patterns are represented as dependencies

tree to the developer and s/he can visualize the impact of each of the refactorings in the

256

A K O L B

Parent S

A K O L B

Objective #1 (Weak)
Objective #2 (Strong)

Find Rules in S targeting
Objective #2 A B

Rule 2

Targeting
Objective #2

A K O L B

Parent S

A D E F B

Find Rules that improves
Objective #1 with 3

Refactorings Max
D E

Rule 1

Targeting Objective #1

F

Identification of Good Patterns in Parent Identification of new Patterns in Parent

MutantMutant

Figure 4.36: An illustration of X-SBR mutation

tree on the quality improvements or deteriorations. Third, the user can select any of the

refactorings in the sequence and can get the pattern (other dependent refactorings with a

significant impact on some of the quality metrics) associated with it to explain the relevance

of that refactoring.

4.4.3 Experiment and Results

4.4.3.1 Research Questions

In this study, we defined three main research questions.

RQ1: To what extent can X-SBR generate good refactoring solutions compared to multi-

objective refactoring techniques?

RQ2: To what extent can X-SBR reduce the number of invalid refactorings compared to

multi-objective refactoring techniques?

RQ3: To what extent can X-SBR provide relevant solutions and explanations compared to

the state of the art refactoring techniques?

To answer RQ1, we collected the source code of 711 commits from 18 open-source sys-

tems. We performed static analysis on the code to compute low- and high-level code quality

metrics. Then, we used RMiner [624] to detect the refactoring operations performed be-

tween the commits. Our dataset can be found in the appendix website [625]. After that,

257

we used the Apriori algorithm [539] to generate association rules that link design metrics

and refactoring operations with the QMOOD quality metrics. Then, we used these rules to

choose strategically the initial population and improve the change operators of the tradi-

tional NSGA-II [8]. The rules are used to favor good patterns of the solutions and penalize

bad ones.

To evaluate the efficiency of our algorithm, we selected four systems described in Table

4.12 since they are used in existing refactoring benchmark [8] and the participants of our

study are familiar with them (RQ3). We compared four NSGA-II variations that optimize

the same quality objectives: (1) traditional NSGA-II (Mkaouer et al.[8]), (2) NSGA-II with

an improved initial population strategy, (3) NSGA-II with improved change operators, and

(4) NSGA-II with improved change operators and initial population strategy (X-SBR). To

ensure a fair comparison, we only limited the baseline to these four techniques since our

proposal is a variation of the work of Mkaouer et al.[8]. However, we extended our baseline

in RQ3 when evaluating the relevance of the refactoring recommendations.

Table 4.12: Systems considered for validation

System Release # of Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.11.1 245 49
Apache Ant v1.8.2 1191 112

To answer RQ2, we computed the number of conflicts in the solutions generated by the

four algorithms mentioned above (RQ1) on the four systems listed in Table 4.12. For that,

we calculated the number of invalid refactorings in each solution of the Pareto fronts by

checking the validity of pre-and post-conditions of each refactoring operation.

To answer RQ3, we present to developers those association rules that lead to the genera-

tion of each refactoring solution in the Pareto front and their frequencies. Sine the association

rules are hard to understand if they are presented as the explanation for the recommended

refactorings, we implemented a user-friendly interface in our refactoring webapp that can

258

highlight the code locations and metrics associated with the recommended refactorings. To

validate the usefulness of our explanations, we conducted a survey with a group of 14 active

programmers to identify and manually evaluate the relevance of the refactorings that they

found using X-SBR.

Since the manual validation is limited to 14 participants, we considered another evaluation

which is based on the percentage of fixed code smells (NF) by the refactoring solution. The

detection of code smells after applying a refactoring solution is performed using the detection

rules of [601]. The detection of code smells is subjective and some developers prefer not to

fix some smells because the code is stable or some of them are not important to fix. To this

end, we considered another metric based on QMOOD that estimates the quality improvement

of the system by comparing the quality before and after refactoring independently from the

number of fixed design defects. Based on the two above metrics, we can evaluate the different

approaches without the need of developers evaluation. The baseline to answer RQ3 includes

the different existing multi-objective techniques [5, 6, 7, 8] and also a tool, called JDeodorant

[9], not based on heursitic search. All the selected search-based refactoring techniques for

the baseline of RQ2 are based on multi-objective search but using different fitness functions

and solution representation which may confirm if good refactoring recommendations are

actually due our knwoledge-based component and not the design of the algorithm. The

current version of JDeodorant is implemented as an Eclipse plug-in that identifies some

types of design defects using quality metrics and then proposes a list of refactoring strategies

to fix them. For the comparison with JDeodorant, we limited the comparison to the same

refactoring types supported by both X-SBR and JDeodorant.

4.4.3.2 Evaluation Metrics

To address the three research questions described in the introduction section, we defined

the following metrics and applied them on a data set, described in the next subsection. For

RQ1, we generated association rules that link design metrics and refactoring operations with

259

QMOOD metrics. To evaluate these rules, we computed support, confidence, and lift [626].

Support: Support reflects how frequently the item set appears in the dataset. In our

problem, it is defined as the ratio of the classes that contain D ∪R∪Q to the total number

of classes in the dataset where D is a set of design metrics intervals, R is a set of refactoring

operations and Q is a set of QMOOD intervals.

support(D,R⇒ Q) = P (D ∪R ∪Q) (4.12)

where P(D ∪ R ∪ Q) is the probability of cases containing D, R and Q all in the same

transaction.

Confidence: Confidence reveals how often the rule has been considered to be correct.

In our approach, confidence is defined as the ratio of the number of classes that contain

D ∪ R ∪ Q to the number of classes that contain D ∪ R. It evaluates the strength of a

rule. The higher the confidence the more likely it is for Q to be present in transactions that

contain D ∪R.

confidence(D,R⇒ Q) = P (Q|D ∪R)

= P (D ∪R ∪Q)P (D ∪R)

(4.13)

Lift: Lift is defined as the confidence of the rule divided by the expected level of confi-

dence. A lift value higher than 1 means that there is a positive correlation between D ∪ R

and Q. If the lift is smaller than 1, it means that D ∪ R is negatively correlated with Q.

A lift value almost equal to 1 means that we cannot say anything about the correlation of

D ∪R and Q.

lift(D,R⇒ Q) = confidence(D,R⇒ Q)P (Q)

= P (D ∪R ∪Q)P (D ∪R) ∗ P (Q)

(4.14)

260

To evaluate the quality of solution sets obtained by all four algorithms mentioned above,

we used the following three metrics as performance indicators:

• Contributions (IC) [610]: It measures the proportion of solutions that lie on the ref-

erence front RS (i.e., best know approximation set, computed as the non-dominated

elements of all known solutions) [611]. The higher this proportion the better is the

quality of the solutions.

• Hypervolume (IHV) [613]: It computes the volume covered by members of a non-

dominated set of solutions in the objective space. A higher value of hypervolume is

desirable, as it demonstrates better spread and convergence of solutions.

• Inverted Generational Distance (IGD) [612]: It computes the average Euclidean dis-

tance in the objective space between each solution in the Pareto front and its closest

point in the reference front RS. Small values are desirable.

For RQ2, we want to estimate the feasibility of the solutions generated by the four

algorithms. For that, we compute the number of invalid refactorings in each solution of

the Pareto fronts by checking the validity of pre-and post-conditions of each refactoring

operation. These conditions are discussed by Opdyke et al. [33].

For RQ3, the goal is to validate the refactoring solutions generated by X-SBR from

both quantitative and qualitative perspectives and compare them with those generated with

baseline. For the quantitative validation, we calculated precision and recall scores to compare

between refactorings suggested by X-SBR and those expected based on the participants

assessment. We also did the same using the tools of the baseline.

Precision =
X-SBR solutions ∩ Expected Refactorings

X-SBR solutions
(4.15)

Recall =
X-SBR solutions ∩ Expected Refactorings

Expected Refactorings
(4.16)

261

For the qualitative validation, we asked the participants to assign 0 or 1 to every refac-

toring of the solutions generated by both tools. A 0 means that the refactoring is not

applicable and inconsistent with the source code; 1 means that the refactoring is meaningful

and relevant. We computed manual correctness which is defined as the number of meaningful

refactorings divided by the total number of recommended refactorings.

Manual Correctness =
|Meaningful Refactorings|
|Recommended Refactorings|

(4.17)

We have also calculate the number of code smells fixed by the recommended refactorings.

Formally, NF is defined as:

NF =
#fixed code smells

#code smells
∈ [0, 1] (4.18)

The gain for each of the considered QMOOD quality attributes and the average total

gain in quality after refactoring can be easily estimated as:

G =

6∑
i=1

Gqi

6
and Gqi = q′i − qi (4.19)

where q′i and qi represents the value of the QMOOD quality attribute i after and before

refactoring, respectively.

We finally asked the participants to evaluate the rules that are intended to explain the

creation of the Pareto front solutions. For that, we randomly picked between 2 and 5

refactoring solutions per system and their explanations. Then, we asked them to assign a

grade on a Likert scale of 1-5, 1 being the lowest (not relevant), 5 being the highest (very

relevant) to every rule to indicate how helpful it is in explaining the creation and relevance

of the refactoring solution.

262

4.4.3.3 Parameters Tuning

Parameters setting plays an important role in the performance of a search-based algo-

rithm. We have used one of the most efficient and popular approach for parameter setting

of evolutionary algorithms which is Design of Experiments (DoE) [627]. Each parameter has

been uniformly discretized in some intervals. Values from each interval have been tested for

our application. Finally we pick the best values for all parameters. Hence, a reasonable set of

parameter values have been experimented. We picked the combination based on the number

of evaluations without improvement and convergence of the population. We tried to find

a balance between wide exploration and deep exploitation during the evolutionary process.

In order to ensure a fair comparison of the results of the four algorithms, we performed the

same number of evaluations per run and used the same sizes for the initial population. We

ended up by choosing 100 for the initial population and 10 000 for the maximum number

of evaluations (the stopping criterion). We did not chose the execution time as a stopping

criterion because it is known in the computational intelligence field that execution time is

not suitable to ensure a fair comparison as it is very sensitive to the used hardware resources.

The crossover and mutation probabilities are set to 0.8 and 0.1 respectively.

Because of the stochastic nature of the used meta-heuristic algorithms, different runs of

the same algorithm solving the same problem typically lead to different results. For this

reason, we performed 30 runs for each algorithm and each project to make sure that the

results are statistically significant. For each evaluation metric, we used the Wilcoxon rank

sum test [628] in a pairwise fashion in order to detect significant performance differences

between the algorithms (X-SBR vs each of the competitors) under comparison based on 30

independent runs as recommended by existing guidelines [602].

We found that all the results based on the different measures were statistically significant

on 30 independent runs using the Wilcoxon test with a 95% confidence level (α < 5%). The

p-values of the pairwise analysis were lower than 0.01 in all cases. We have also calculated

Eta squared (η2) [629] which is a measure of the effect size (strength of association) and it

263

estimates the degree of association between the independent factor and dependent variable

for the sample. Eta squared is the proportion of the total variance that is attributed to

a factor (the “refactoring methods” in this study). Table 4.13 reports Eta squared values

for each pair of software projects and metrics. These values shows to what extent different

algorithms are the cause of variability of the metrics.

Table 4.13: Effect Size values (Eta squared (η2)) for corresponding software project and metric.

System G NF MC PR RC

ApacheAnt 0.898 0.919 0.924 0.936 0.924

GanttProject 0.873 0.902 0.946 0.931 0.962

JHotDraw 0.826 0.903 0.918 0.836 0.962

ArgoUML 0.813 0.842 0.931 0.901 0.951

4.4.3.4 Subjects

We selected 14 participants to evaluate X-SBR on the 4 systems described in Table 4.12.

We carefully selected them to make sure that they extensively applied refactorings during

their previous experiences in development and also used the open source systems extensively

in their previous and current projects in industry. They had to fill a pre-study survey

that collects background information on them such as their programming experience, their

role within their companies etc. The details of the selected participants and the projects

they evaluated can be found in Table 4.14 (the depicted values averages across the four

participants in each row). To improve the survey outcome, we organized a two-hour lecture

about software quality assessment in general and refactoring in particular. We also presented

a demo for X-SBR and gave them enough time to explore and test the tool themselves. We

tested the trustfulness of participants and their knowledge on both the open source systems

and refactoring beforehand by asking them to pass ten tests to evaluate their performance

in evaluating and suggesting refactoring solutions. Each participant was asked to assess the

meaningfulness and relevance of the refactorings recommended using our tool and all the four

systems. The participants were shown recommendations created by the authors’ approach

as well as by the baseline, but without knowing which recommendations came from which

264

approach.

Table 4.14: Participants details

System #Subjects Avg. prog. experience
(years)

Refactoring ex-
perience

ArgoUML 4 10 High
JHotDraw 4 11.5 Very High
GanttProject 4 10.5 High
Apache Ant 4 12 Very High

4.4.3.5 Results

Figure 4.37: Average execution time (ms) of all algorithms using the four systems

Table 4.15: Evaluation metrics and statistics of the rules

Evaluation Metric Mean Max Min
Support 0.945 0.986 0.935
Confidence 0.986 0.992 0.959
Lift 1.000 1.002 0.999

4.4.3.5.1 Results for RQ1 We generated a total of 3097 association rules that link the

design metrics and refactoring operations with the QMOOD quality metrics. Figure 4.33

shows an example of a rule created by the Apriori algorithm. The complete list can be

found in our online appendix [606]. Table 4.15 contains the average, max and min support,

confidence and lift of all the rules. The minimum support, confidence and lift are 0.935,

0.959 and 0.999, respectively. This confirms the strong correlation between design metrics,

265

refactoring operations and the QMOOD metrics. After that, we compared the execution time

of the four algorithms: (1) traditional NSGA-II (Mkaouer et al.[8]), (2) NSGA-II with an

improved initial population strategy, (3) NSGA-II with improved change operators, and (4)

NSGA-II with improved change operators and initial population strategy (X-SBR). Figure

4.37 shows the average time spent to run the four systems 30 times. In small systems

(e.g. Gantt and JhotDraw), the four algorithms have almost the same execution time.

X-SBR outperforms the other variations with a slight difference. However, when dealing

with large systems (e.g. Apache Ant and ArgoUML), the traditional NSGA-II [8] has the

highest execution time which is expected since both, the initialization and change operators,

are done randomly without any guidance. This confirms the usefulness of our strategy

of guiding the creation of solutions towards the construction of good refactoring patterns.

The other three variations performed clearly better than the the traditional NSGA-II [8].

The difference in performance is more noticeable in large systems than in small systems

because the execution time of the improved algorithms include the running time of the

Apriori algorithm. Thus, the running time of the Apriori algorithm is compensated when we

are dealing with a large number of classes by removing excessive diversity from the search

space. Table 4.16 shows the mean, min and max of the Hypervolume (IHV) and Generational

Distance (IGD) Indicators of all algorithms using the four systems. Table 4.17 contains the

results of the Contribution (IC) metric of the three modified algorithms compared to the

traditional NSGA-II [8]. For each performance indicator, we highlighted in bold the best

min/max/average values. Please note that the Contributions (IC) and the Hypervolume

(IHV) are to be maximized and the Generational Distance (IGD) is to be minimized. All

these indicators show that the traditional NSGA-II exhibits more diversity in the solutions

than other algorithms. This observation is expected as the traditional NSGA-II relies on

randomness when generating the solutions, unlike the modified versions where the creation

of solutions is guided towards the construction of good refactoring patterns based on the

Apriori rules. It is important to note that excessive diversity can diverge the algorithm

266

from generating good quality solutions due to the large search space and infinite number

of possible combinations. In other words, we can end up having a diverse Pareto front but

with many infeasible refactoring solutions. Therefore, it is necessary to have a strategy to

push the algorithm towards creating correct solutions. However, guiding the algorithm too

much might also hurt the exploration. Maintaining diversity is one important aim of multi-

objective optimization. When clear user preferences are not available, it is highly desirable

that a large number of solutions can be obtained that uniformly spread over the whole

Pareto front and are as diverse as possible. However, we want to stay away from excessive

diversity that leads the algorithm to diverge from generating good quality solutions due to

the large search space and infinite number of possible combinations. On the other hand,

selection pressure pushes the algorithm to focus more and more on the already discovered

better performing regions in the search space and as a result population diversity declines,

gradually reaching a homogeneous state. Through our approach, we are trying to maintain

an optimal level of diversity in the population to ensure that progress of the search algorithm

is unhindered by premature convergence to suboptimal solutions.

¤ Key findings: The variants of NSGA-II with random initialization and/or genetic

operators demonstrate higher diversity than X-SBR but the difference is small. X-SBR

outperforms the other variations in terms of execution time, especially with large systems.

Figure 4.38: Average number of invalid refactorings in the solutions of all algorithms using the four systems

267

4.4.3.5.2 Results for RQ2 Figure 4.38 shows the average number of invalid refactor-

ings in the solutions of the Pareto front in all four systems using the different algorithms. We

would like to point out that all algorithms have the same number of non-dominated solutions

in the final Pareto front which is equal to 100. The traditional NSGA-II and NSGA-II with

random initialization and improved change operators had the largest number of invalid refac-

torings in their Pareto front with values exceeding 15 invalid refactorings. The lowest number

of invalid refactorings was achieved by X-SBR. The latter algorithms had less than four in-

valid refactorings in their Pareto fronts. The reason why the combination of the random

initialization and the random or improved crossover produce a significant number of invalid

refactorings is that the new crossover and mutation operators care more about improving the

QMOOD quality metrics rather than checking the correctness of refactorings. However, this

problem is mitigated by initializing the gene pool with valid chromosomes based on mining

the refactoring history of several projects. This can be observed by the reduced number of

infeasible refactorings in the solutions generated by the improved initialization method when

combined with either the random or improved change operators.

¤ Key findings: Based on the results of RQ1 and RQ2, X-SBR was able to achieve a

better quality of solutions in comparison to the traditional NSGA-II with small sacrifices

in terms of diversity and execution time.

Table 4.16: Results of the Hypervolume (IHV) and Generational Distance (IGD) indicators

Hypervolume (IHV) Generational Distance (IGD)
System Algorithm Average Min Max Average Min Max
Apache Ant Improved Initialization + Random Crossover And Mutation 0.680742 0.432318 0.935184 0.015524 0.010209 0.020846
Apache Ant Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.693186 0.398396 1.117279 0.031465 0.00819 0.051153
Apache Ant Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.499433 0.293363 1.124596 0.064079 0.002978 0.093633
Apache Ant Random Initialization+Improved Crossover And Mutation 0.809312 0.485615 1.085356 0.019873 0.008611 0.037001
ArgoUML Improved Initialization + Random Crossover And Mutation 0.642199 0.404763 0.857439 0.024575 0.00818 0.034475
ArgoUML Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.777583 0.52648 1.112845 0.03008 0.002679 0.047454
ArgoUML Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.641947 0.444483 1.136336 0.044481 0.002322 0.057297
ArgoUML Random Initialization+Improved Crossover And Mutation 0.690078 0.444543 1.141642 0.041118 0.005496 0.055032
GanttProject Improved Initialization + Random Crossover And Mutation 0.68693 0.566786 0.907115 0.021973 0.012951 0.029777
GanttProject Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.861142 0.666087 1.133707 0.022668 0.002095 0.032585
GanttProject Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.782098 0.626555 0.978024 0.022406 0.011344 0.02651
GanttProject Random Initialization+Improved Crossover And Mutation 0.776723 0.655532 1.242082 0.022349 0.006756 0.029976
JhotDraw Improved Initialization + Random Crossover And Mutation 0.771315 0.588192 1.33879 0.04945 0.000903 0.071506
JhotDraw Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.933738 0.555179 1.281501 0.026886 0.007105 0.056431
JhotDraw Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.564916 0.393056 1.083154 0.08246 0.024441 0.20624
JhotDraw Random Initialization+Improved Crossover And Mutation 0.756657 0.592614 1.217705 0.052932 0.006605 0.072263

268

Table 4.17: Results of the Contributions (IC) metric

Algorithms Contribution value
Contribution of NSGA-II with random initialization +
improved change operators to traditional NSGA-II

0.34030526

Contribution of NSGA-II with improved initialization
+ random change operators to traditional NSGA-II

0.247601151

Contribution of NSGA-II with improved initialization
+ improved change operators to traditional NSGA-II

0.241613462

4.4.3.5.3 Results for RQ3 We summarize in the following the feedback of the develop-

ers based on the survey. Figure 4.39 contains the results of the manual correctness, precision

and recall of both our tool (X-SBR) and the state of the refactoring techniques. X-SBR

was able to achieve better scores than [8] and existing approaches in all the previous metrics

for all systems. The average manual correctness, precision and recall of our tool compared

to that of Mkaouer et al. [8] are 0.839, 0.795, and 0.83 to 0.67, 0.56, and 0.67 respectively

and much better than the remaining tools. The participants also found our refactoring

recommendations applicable and consistent with the source codes and their design issues.

Figure 4.40 summarizes what the participants think about the explanations provided by

X-SBR. For all the four systems, more than 85% of the rules are judged relevant (score 4)

and very relevant (score 5). Only less than 3% of the rules were judged not relevant (score

1). They mentioned that X-SBR provided trust, clarity and understanding compared to

existing refactoring tools. They highlighted that the black-box nature of existing refactoring

tools, giving results without a reason, is hindering them from adopting their refactoring

recommendations. According to them, this obstacle is alleviated by our proposed approach.

¤ Key findings: X-SBR provided more relevant and meaningful refactorings than the

state of the art refactoring techniques and helped the participants understand why and

how the solutions are generated which boosted their trust in the refactoring tool.

269

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

X-S
BR M

C

X-S
BR P

R

X-S
BR R

C

X-S
BR N

F

X-S
BR G

Mka
ou

er
et

al.
 N

F

Mka
ou

er
et

al.
 G

Mka
ou

er
et

al.

Mka
ou

er
et

al.
 P

R

Mka
ou

er
et

al.

Harm
an

 et
 al

. N
F

Harm
an

 et
 al

. G

Harm
an

 et
 al

. M
C

Harm
an

 et
 al

. P
R

Harm
an

 et
 al

. R
C

Oun
i e

t a
l. N

F

Oun
i e

t a
l. G

Oun
i e

t a
l. M

C

Oun
i e

t a
l. P

R

Oun
i e

t a
l. R

C

Mel
et

al.
 N

F

Mel
et

al.
 G

Mel
et

al.
 M

C

Mel
et

al.
 P

R

Mel
et

al.
 R

C

JD
eo

do
ran

t N
F

Jd
eo

do
ran

t G

JD
eo

do
ran

t M
C

JD
eo

do
ran

t P
R

JD
eo

do
ran

t R
C

ArgoUML JHotDraw GanttProject Apache Ant

Figure 4.39: Automated and manual evaluation of refactoring recommendations generated by the different
refactoring tools

4.4.4 Threats to Validity

Conclusion validity. The parameter tuning of the different search-based algorithms

used in our experiments creates an internal threat that needs to be evaluated in our future

work. The parameters’ values used in our experiments were found by trial-and-error [630].

Internal validity. The variation of correctness and speed between the different groups when

using our approach and other tools is one potential internal threat. In fact, our approach may

not be the only reason for the superior performance because the participants have different

programming skills and familiarity with refactoring tools. To counteract this, we assigned

the developers to different groups according to their programming experience so as to reduce

the gap between the different groups and we also adapted a counter-balanced design.

Construct validity. The different developers involved in our experiments may have diver-

gent opinions about the recommended refactorings in terms of relevance which may impact

our results. Almost all of our industrial collaborators in the refactoring area are selecting

major refactoring strategies based on discussions between the architects to adopt the best

alternative. For the selection threat, the participant diversity in terms of experience could

affect the results of our study. We addressed the selection threat by giving a lecture and

270

Figure 4.40: Distribution of the relevance of the explanations according to the survey results (1=not
relevant-5=very relevant)

271

tests.

External threats. We used 18 projects to generate the association rules. To mitigate these

threats, we used projects of different sizes and domains. Moreover, we only included four

projects in our validation. The reason behind that is, first, to attract the most amount of

responses with good quality from participants in our survey. The more tedious the task that

the participant must complete the less the quality of their input is. The second reason is the

long execution time due to running all of the four algorithms on all of the systems 30 times.

4.4.5 Conclusion

Existing refactoring tools lack adaptability and explainability towards the developers.

As a result, developers seem to be more inclined to abandon them and make changes by

hand. We propose in this study, X-SBR, an enhanced knowledge-informed multi-objective

search algorithm to provide personalized and relevant refactoring recommendations. X-

SBR implements new initial population and change operators methods using the refactoring

and quality history of 18 projects and provides explanations regarding why and how the

solutions are formed and impacted the fitness functions. Based on our quantitative and

qualitative validation using four open-source systems, our tool was able to achieve more

relevant refactoring solutions than existing refactoring techniques with a small sacrifice in

terms of diversity and execution time. The results of the survey conducted with 14 software

developers provide strong evidence that our tool improves the quality of refactoring solutions

and helps developers understand, appropriately trust, and effectively manage the refactoring

process.

There are multiple ways within which this work can be expanded upon. First, we believe

it’s a natural step to validate our work with additional programming languages, developers,

projects, and quality metrics in order to draw conclusions about the general applicability of

our methodology. Second, we intend to try out other algorithms for frequent item-set mining,

beyond the Apriori Algorithm, to extend our empirical validation. Third, we think that

272

adding support for more quality metrics and other fine-grained refactoring operations, such as

Decompose Conditional, Replace Conditional with Polymorphism, and Replace Type Code

with State/Strategy can prove an interesting addition and extension of our work. Fourth,

we are planning to validate the change operators with other evolutionary algorithms such as

a many-objective variant of MOEA/D, Global WASF-GA, and/or RVEA. We clarified this

in the conclusion section. Last but not least, using code smell history and bug reports in

addition to or in place of Low Level metrics when generating association rules can be an

interesting future research direction

273

CHAPTER V

Conclusion

The features and improvements that were delivered in this dissertation and the results

that were achieved are summarized in this chapter. In addition, the suggested possible

improvements to the proposed contributions are discussed.

Summary

In Chapter I and Chapter II, we defined the research context and the challenges, the

contributions of this thesis, required background, and state-of-the-art and related works to

our approaches.

In Chapter II Section 2.1, we have conducted a systematic literature review on refac-

toring accompanied by meta-analysis to answer the defined research questions. After a

comprehensive search that follows a systematic series of steps and assessing the quality of

the studies, 3183 publications were identified. Based on these selected papers, we derived a

taxonomy focused on five key aspects of Refactoring: refactoring life-cycle, artifacts affected

by refactoring, refactoring objectives, refactoring techniques, and refactoring evaluation. Us-

ing this classification scheme, we analyzed the primary studies and presented the results in

a way that enables researchers to relate their work to the current body of knowledge and

identify future research directions. We also implemented a repository that helps researcher-

s/practitioners collect and report papers about Refactoring. It also provides visualization

charts and graphs that highlight the analysis results of our selected studies. This infras-

tructure will bridge the gap among the different refactoring communities and allow for more

274

effortless knowledge transfer. The results of our systematic review will help both researchers

and practitioners to understand the current status of the field, structuring it, and identify

potential gaps. Since we expect this research area to continue to grow in the future, the

proposed repository and taxonomy will continue to be updated by the organizers of this

study and the community to include new approaches, tools and researchers.

In Chapter II Section 2.2 , we performed the first large scale refactoring study on

the most popular online Q&A forums for developers, Stack Overflow. We used 89 tags to

extract 105463 questions about refactoring. We used the Latent Dirichlet Allocation (LDA)

technique to generate the discussed topics in this repository. We found 6 main topics which

are ”Creational pattern”, ”Parallel programming”, ”Models refactor”, ”Mobile/UI”, ”SOA”,

and ”Design pattern”. The analysis of these topics provided various key insights about the

interests of developers related to refactoring such as the most addressed quality issues, the

domains where refactoring is extensively discussed, the widely addressed anti-patterns, and

patterns. We have also investigated how the interests of developers on refactoring topics

change over the years.

In the context of improving the identification of potential refactoring opportunities, we

proposed, in Chapter III Section 3.1, a novel framework, QS-URec, to detect files re-

sponsible for quality and security issues based on user reviews and source code metrics. We

evaluated our approach on 50 popular mobile apps from Google Play with 290,000 reviews

along with a large and popular mobile app provided by our industrial partner. Our results

demonstrate strong correlations between several security and quality metrics and user rat-

ings. QS-URec outperforms an existing textual analysis technique in terms of precision and

recall when linking emerging quality and security app issues to relevant files to be fixed or

refactored. We conducted experiments and a brief survey with the original developers of My-

FitnessPal that supported the effectiveness of QS-URec and the importance of considering

user reviews to prioritize and fix security and quality issues.

In Chapter III Section 3.2, we propose, in this paper, a novel approach to predict QoS

275

with the least cost using code/interface quality metrics and antipatterns. The output of our

approach consists of 10 association rules that predict the performance of web services. We

used 5 fold cross validation to evaluate the rules. The obtained results based on 707 web ser-

vices confirm the correlation between both code/interface metrics/antipatterns and the QoS

attributes. This important outcome can be used to understand the severity of antipatterns

and predict the quality of the services based on the current quality of the implementation.

Our results show that data service, chatty service and multi service are the most severe an-

tipatterns types on the quality of service attributes among the studied antipatterns. All the

QMOOD metrics are affected by antipatterns at different levels. Best practices, availability

and compliance are the quality metrics deteriorated the most by antipatterns.

In Section 3.3 of the same Chapter, we propose a novel approach that aims at finding

the most suitable benchmark to evaluate the quality of a software project in a fair and

unbiased way. We first showed that clustering algorithms are efficient in finding clusters

of projects with distinct characteristics based on repository features. We then performed

statistical analysis to compare the different clusters and to check the sensitivity of each

quality metric. We finally validated our approach with developers from eBay. The results

provide strong evidence that our approach helps developers automate and effectively manage

the benchmarking process for software quality assessment.

Regarding improving the generation of refactoring recommendations, we propose, in

Chapter IV Section 4.1, an empirical study to validate the correlations between the

QMOOD quality attributes [515] and a set of security metrics [466, 468] and to understand

the correlations between refactoring types and security metrics. Based on the outcomes of

these studies, we proposed a security-aware multi-objective refactoring approach to find a

balance between quality and security goals. We evaluated our tool on the same projects used

for the empirical validations. Furthermore, we compared our results to an existing refactor-

ing work not considering security to understand the sacrifice in security measures when

improving the quality. The comparison shows that our security-aware approach performed

276

significantly better than the existing approach when it comes to preserving and improving

the security of the system but with low cost in terms of sacrificing quality. The survey with

the 15 practitioners confirmed the efficiency of our tool and the importance of considering

security while improving several quality attributes.

In Chapter IV Section 4.2, we presented an approach to recommend refactorings for

security critical files while concurrently improving the code quality of a software project.

We used the history of vulnerabilities and security bug reports along with a selected set of

keywords [468, 472] to automatically identify security-critical files in a project based on source

code, bug reports, pull-request descriptions and commit messages. After identifying these

security-related files we estimated their risk based on static analysis to check their coupling

with other components of the project. Then, our approach recommended refactorings to

prioritize fixing quality issues in these security-critical files to improve code quality measures

and remove code smells using multi-objective search. We evaluated our approach on six

open source projects and one industrial system to check the relevance of our refactoring

recommendations. Our results confirm the effectiveness of our approach as compared to

existing refactoring approaches.

To improve the correctness and quality of refactoring recommendations and increase

developer trust in search-based refactoring recommendation tools, we proposed, in Chapter

IV Section 4.3, a dependency-aware multi-objective refactoring approach with intelligent

change operators that find a balance among quality objectives while reducing the number of

invalid refactorings. We evaluated this approach on four open-source projects. We compared

our results to existing refactoring techniques that use random change operators, as well

as to a dependency-aware technique, to understand the impact of considering refactoring

dependencies and fixing quality weaknesses in refactoring solutions. The comparisons show

that our proposed approach performs significantly better than the baselines in terms of

convergence, diversity, and correctness with a reasonable cost in terms of increased execution

time. The survey with 14 practitioners confirmed the relevance of our approach.

277

Finally, in Chapter IV Section 4.4, we propose, X-SBR, an enhanced knowledge-

informed multi-objective search algorithm to provide personalized and relevant refactoring

recommendations. X-SBR implements new initial population and change operators methods

using the refactoring and quality history of 18 projects and provides explanations regarding

why and how the solutions are formed and impacted the fitness functions. Based on our

quantitative and qualitative validation using four open-source systems, our tool was able

to achieve more relevant refactoring solutions than existing refactoring techniques with a

small sacrifice in terms of diversity and execution time. The results of the survey conducted

with 14 software developers provide strong evidence that our tool improves the quality of

refactoring solutions and helps developers understand, appropriately trust, and effectively

manage the refactoring process.

5.1 Future Work

In the context of refactoring recommendation, we plan to investigate how many refac-

toring operations actually depend on each other and how many operations can be executed

independently. We are also planning to explore further techniques to implement the change

operators and compare them with each other. In fact, there are multiple ways of how we

choose the refactorings that participate in the mutation and the crossover processes as well

as how we perform the change operators. There is a practical balance to study between

smarter mutations (more expensive, but more reliable) vs. simpler, more error prone muta-

tions (faster, but not guaranteed). This operation shows benefits from introducing modest

constraints in the selection of mutable refactorings. There are certainly other variants that

explore different trade-offs between speed and error reduction and that is just for mutating

a single refactoring at a time.

In the context of benchmarking GitHub repositories, even when considering systems with

similar repository metrics (number of contributors, number of classes, number of commits,

etc.), they may still have very different quality profiles. In other words, developers may have

278

different possible quality targets based on the used benchmark of similar projects. These

targets might be clearly associated with different refactoring costs as well to reach them.

Therefore, it could be interesting to investigate the quality profiles (e.g. possible common

quality patterns) included in each of the repository clusters by performing another clustering

inside each of the repository clusters but this time based on quality metrics. Furthermore,

we can implement a search-based refactoring technique that estimates the refactoring cost

needed to move from one quality profile to another by finding the refactorings sequence.

279

BIBLIOGRAPHY

[1] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci, and A. De Lu-
cia, “Recommending and localizing change requests for mobile apps based on user re-
views,” in Proceedings of the 39th international conference on software engineering,
pp. 106–117, IEEE Press, 2017.

[2] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and Y. Cai, “An
interactive and dynamic search-based approach to software refactoring recommenda-
tions,” IEEE Transactions on Software Engineering, 2018.

[3] TSE, “Online appendix for this publication,” 2020. https://doi.org/10.7302/0bgn-
vt27.

[4] “Nuuo cms.” https://www.cvedetails.com/cve/CVE-2018-17890/.

[5] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the design level,”
in Proceedings of the 9th annual conference on Genetic and evolutionary computation,
pp. 1106–1113, 2007.

[6] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software maintenance,”
Journal of Systems and Software, vol. 81, no. 4, pp. 502–516, 2008.

[7] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code refac-
toring using search-based software engineering: An industrial case study,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 25, no. 3, pp. 1–53,
2016.

[8] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide, and K. Deb, “On the use
of many quality attributes for software refactoring: a many-objective search-based soft-
ware engineering approach,” Empirical Software Engineering, vol. 21, no. 6, pp. 2503–
2545, 2016.

[9] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identification and
removal of type-checking bad smells,” in 2008 12th European Conference on Software
Maintenance and Reengineering, pp. 329–331, IEEE, 2008.

[10] J. Al Dallal, “Identifying refactoring opportunities in object-oriented code: A system-
atic literature review,” Information and software Technology, vol. 58, pp. 231–249,
2015.

280

[11] H. Wang, M. Kessentini, and A. Ouni, “Prediction of web services evolution,” in
International Conference on Service-Oriented Computing, pp. 282–297, Springer, 2016.

[12] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, “Web service antipatterns
detection using genetic programming,” in Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pp. 1351–1358, ACM, 2015.

[13] G. Huang, H. Mei, and Q.-x. Wang, “Towards software architecture at runtime,” ACM
SIGSOFT Software Engineering Notes, vol. 28, no. 2, p. 8, 2003.

[14] S. Das, W. G. Lutters, and C. B. Seaman, “Understanding documentation value in
software maintenance,” in Proceedings of the 2007 Symposium on Computer human
interaction for the management of information technology, pp. 2–es, 2007.

[15] M. Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

[16] W. F. Opdyke, Refactoring Object-oriented Frameworks. PhD thesis, Champaign, IL,
USA, 1992.

[17] W. G. Griswold, Program Restructuring As an Aid to Software Maintenance. PhD
thesis, Seattle, WA, USA, 1992.

[18] “The developer coefficient.” URL: https://stripe.com/reports/
developer-coefficient-2018.

[19] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving coupling and cohesion
of existing code,” in 11th working conference on reverse engineering, pp. 144–151,
IEEE, 2004.

[20] S. R. Foster, W. G. Griswold, and S. Lerner, “Witchdoctor: Ide support for real-time
auto-completion of refactorings,” in 2012 34th International Conference on Software
Engineering (ICSE), pp. 222–232, IEEE, 2012.

[21] X. Ge and E. Murphy-Hill, “Benefactor: a flexible refactoring tool for eclipse,” in
Proceedings of the ACM International Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications Companion, pp. 19–20, 2011.

[22] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a refactoring recon-
struction tool based on logic query templates,” in Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineering, pp. 371–
372, ACM, 2010.

[23] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,”
in 20th IEEE International Conference on Software Maintenance, 2004. Proceedings.,
pp. 350–359, IEEE, 2004.

[24] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know it,”
IEEE Transactions on Software Engineering, vol. 38, no. 1, pp. 5–18, 2011.

281

[25] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated detection of refac-
torings in evolving components,” in European Conference on Object-Oriented Program-
ming, pp. 404–428, Springer, 2006.

[26] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement,” IEEE
Transactions on Software Engineering, vol. 30, no. 6, pp. 355–371, 2004.

[27] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving refactoring speed by 10x,”
in 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE),
pp. 1145–1156, IEEE, 2016.

[28] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni, “A cooperative
parallel search-based software engineering approach for code-smells detection,” IEEE
Transactions on Software Engineering, vol. 40, no. 9, pp. 841–861, 2014.

[29] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintainability defects de-
tection and correction: a multi-objective approach,” Automated Software Engineering,
vol. 20, no. 1, pp. 47–79, 2013.

[30] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, “Recom-
mendation system for software refactoring using innovization and interactive dynamic
optimization,” in Proceedings of the 29th ACM/IEEE international conference on Au-
tomated software engineering, pp. 331–336, 2014.

[31] W. F. Opdyke, “Refactoring: An aid in designing application frameworks and evolv-
ing object-oriented systems,” in Proc. SOOPPA’90: Symposium on Object-Oriented
Programming Emphasizing Practical Applications, 1990.

[32] W. G. Griswold, “Program restructuring as an aid to software maintenance.,” PhD
thesis, University of Washington, Seattle, WA, USA, 1992.

[33] W. F. Opdyke, “Refactoring object-oriented frameworks,” PhD thesis, University of
Illinois at Urbana-Champaign Champaign, IL, USA, 1992.

[34] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring: Improving
the Design of Existing Code,” Xtemp01, pp. 1–337, 1999.

[35] J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-oriented code
refactoring on quality attributes: A systematic literature review,” IEEE Transactions
on Software Engineering, vol. 44, no. 1, pp. 44–69, 2017.

[36] S. Singh and S. Kaur, “A systematic literature review: Refactoring for disclosing code
smells in object oriented software,” Ain Shams Engineering Journal, vol. 9, no. 4,
pp. 2129–2151, 2018.

[37] “Slr website,” 2020. URL: https://slr.iselab.us/.

[38] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature re-
views in software engineering,” Vol. 5. Technical report, Ver. 2.3 EBSE Technical
Report. EBSE, 2007.

282

[39] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replica-
tion in software engineering,” in Proceedings of the 18th international conference on
evaluation and assessment in software engineering, pp. 1–10, 2014.

[40] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering–a systematic literature review,”
Information and software technology, vol. 51, no. 1, pp. 7–15, 2009.

[41] A. Ramirez, J. R. Romero, and C. L. Simons, “A systematic review of interaction
in search-based software engineering,” IEEE Transactions on Software Engineering,
vol. 45, no. 8, pp. 760–781, 2018.

[42] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou, “Variability in software
systems—a systematic literature review,” IEEE Transactions on Software Engineering,
vol. 40, no. 3, pp. 282–306, 2013.

[43] “Slr website,” 2020. URL: https://slr.iselab.us/.

[44] H. Sajnani, V. Saini, and C. V. Lopes, “A comparative study of bug patterns in java
cloned and non-cloned code,” in 2014 IEEE 14th International Working Conference
on Source Code Analysis and Manipulation, pp. 21–30, IEEE, 2014.

[45] J. Ghofrani, M. Mohseni, and A. Bozorgmehr, “A conceptual framework for clone
detection using machine learning,” in 2017 IEEE 4th International Conference on
Knowledge-Based Engineering and Innovation (KBEI), pp. 0810–0817, IEEE, 2017.

[46] I. Verebi, “A model-based approach to software refactoring,” in 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pp. 606–609,
IEEE, 2015.

[47] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “An empirical investigation into the nature of test smells,” in Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software En-
gineering, pp. 4–15, 2016.

[48] B. Zhang, G. Huang, Z. Zheng, J. Ren, and C. Hu, “Approach to mine the modularity
of software network based on the most vital nodes,” IEEE Access, vol. 6, pp. 32543–
32553, 2018.

[49] G. Balogh, T. Gergely, Á. Beszédes, and T. Gyimóthy, “Are my unit tests in the
right package?,” in 2016 IEEE 16th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pp. 137–146, IEEE, 2016.

[50] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the refactorability of soft-
ware clones,” IEEE Transactions on Software Engineering, vol. 41, no. 11, pp. 1055–
1090, 2015.

283

[51] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing of refactoring
engines,” IEEE Transactions on Software Engineering, vol. 39, no. 2, pp. 147–162,
2012.

[52] J. Zhang, S. Han, D. Hao, L. Zhang, and D. Zhang, “Automated refactoring of nested-if
formulae in spreadsheets,” in Proceedings of the 2018 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 833–838, 2018.

[53] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin, “Automated support for
program refactoring using invariants,” in Proceedings IEEE International Conference
on Software Maintenance. ICSM 2001, pp. 736–743, IEEE, 2001.

[54] M. Mondal, C. K. Roy, and K. A. Schneider, “A comparative study on the bug-
proneness of different types of code clones,” in 2015 IEEE International conference on
software maintenance and evolution (ICSME), pp. 91–100, IEEE, 2015.

[55] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and Y. Cai, “An
interactive and dynamic search-based approach to software refactoring recommenda-
tions,” IEEE Transactions on Software Engineering, 2018.

[56] W. Snipes, B. Robinson, and E. Murphy-Hill, “Code hot spot: A tool for extraction
and analysis of code change history,” in 2011 27th IEEE International Conference on
Software Maintenance (ICSM), pp. 392–401, IEEE, 2011.

[57] H. Liu, Q. Liu, Z. Niu, and Y. Liu, “Dynamic and automatic feedback-based threshold
adaptation for code smell detection,” IEEE Transactions on Software Engineering,
vol. 42, no. 6, pp. 544–558, 2015.

[58] V. Cosentino, S. Duenas, A. Zerouali, G. Robles, and J. M. González-Barahona,
“Graal: The quest for source code knowledge,” In 2018 IEEE 18th International Work-
ing Conference on Source Code Analysis and Manipulation (SCAM). IEEE, pp. 123–
128, 2018.

[59] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis, and P. Avgeriou,
“Identifying extract method refactoring opportunities based on functional relevance,”
IEEE Transactions on Software Engineering, vol. 43, no. 10, pp. 954–974, 2016.

[60] A. Rani and J. K. Chhabra, “Prioritization of smelly classes: A two phase approach
(reducing refactoring efforts),” in 2017 3rd International Conference on Computational
Intelligence & Communication Technology (CICT), pp. 1–6, IEEE, 2017.

[61] P. Rachow, “Refactoring decision support for developers and architects based on ar-
chitectural impact,” in 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), pp. 262–266, IEEE, 2019.

[62] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of bad smell detection and resolution:
A new way to save effort,” IEEE transactions on Software Engineering, vol. 38, no. 1,
pp. 220–235, 2011.

284

[63] J. Kim, D. Batory, and D. Dig, “Scripting parametric refactorings in java to retrofit
design patterns,” in 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 211–220, IEEE, 2015.

[64] M. A. Parande and G. Koru, “A longitudinal analysis of the dependency concentration
in smaller modules for open-source software products,” in 2010 IEEE International
Conference on Software Maintenance, pp. 1–5, IEEE, 2010.

[65] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
pp. 385–396, 2018.

[66] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol, “Earmo: An energy-
aware refactoring approach for mobile apps,” IEEE Transactions on Software Engi-
neering, vol. 44, no. 12, pp. 1176–1206, 2017.

[67] H. Liu, L. Yang, Z. Niu, Z. Ma, and W. Shao, “Facilitating software refactoring with
appropriate resolution order of bad smells,” in Proceedings of the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pp. 265–268, 2009.

[68] H. Liu, Q. Liu, Y. Liu, and Z. Wang, “Identifying renaming opportunities by expanding
conducted rename refactorings,” IEEE Transactions on Software Engineering, vol. 41,
no. 9, pp. 887–900, 2015.

[69] B. Lin, S. Scalabrino, A. Mocci, R. Oliveto, G. Bavota, and M. Lanza, “Investigat-
ing the use of code analysis and nlp to promote a consistent usage of identifiers,”
in 2017 IEEE 17th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pp. 81–90, IEEE, 2017.

[70] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “Methodbook:
Recommending move method refactorings via relational topic models,” IEEE Trans-
actions on Software Engineering, vol. 40, no. 7, pp. 671–694, 2013.

[71] C. Hinds-Charles, J. Adames, Y. Yang, Y. Shen, and Y. Wang, “A longitude anal-
ysis on bitcoin issue repository,” in 2018 1st IEEE International Conference on Hot
Information-Centric Networking (HotICN), pp. 212–217, IEEE, 2018.

[72] T. D. Oyetoyan, D. S. Cruzes, and C. Thurmann-Nielsen, “A decision support system
to refactor class cycles,” in 2015 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 231–240, IEEE, 2015.

[73] N. Rachatasumrit and M. Kim, “An empirical investigation into the impact of refac-
toring on regression testing,” in 2012 28th Ieee International Conference on Software
Maintenance (Icsm), pp. 357–366, IEEE, 2012.

[74] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Automatically repairing test cases for
evolving method declarations,” in 2010 IEEE International Conference on Software
Maintenance, pp. 1–5, IEEE, 2010.

285

[75] B. Van Rompaey, B. Du Bois, and S. Demeyer, “Characterizing the relative significance
of a test smell,” in 2006 22nd IEEE International Conference on Software Maintenance,
pp. 391–400, IEEE, 2006.

[76] A. Sherwany, N. Zaza, and N. Nystrom, “A refactoring library for scala compiler ex-
tensions,” in International Conference on Compiler Construction, pp. 31–48, Springer,
2015.

[77] S. Paydar and M. Kahani, “A semantic web based approach for design pattern detection
from source code,” in 2012 2nd International eConference on Computer and Knowledge
Engineering (ICCKE), pp. 289–294, IEEE, 2012.

[78] T. Haendler, “A card game for learning software-refactoring principles,” Proceedings of
the 3rd International Symposium of Gamification and Games for Learning (GamiLearn
’19), 2019.

[79] C. Kastner, S. Apel, and D. Batory, “A case study implementing features using as-
pectj,” in 11th International Software Product Line Conference (SPLC 2007), pp. 223–
232, IEEE, 2007.

[80] T. Viana, “A catalog of bad smells in design-by-contract methodologies with java
modeling language,” Journal of Computing Science and Engineering, vol. 7, no. 4,
pp. 251–262, 2013.

[81] D. Foetsch and E. Pulvermueller, “A concept and implementation of higher-level xml
transformation languages,” Knowledge-Based Systems, vol. 22, no. 3, pp. 186–194,
2009.

[82] J. Reutelshoefer, J. Baumeister, and F. Puppe, “A data structure for the refactoring of
multimodal knowledge,” in Proceedings of the 5th Workshop on Knowledge Engineering
and Software Engineering, pp. 33–45, 2009.

[83] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A measurement framework for object-
oriented software testability,” Information and software technology, vol. 47, no. 15,
pp. 979–997, 2005.

[84] I. Cassol and G. Arévalo, “A methodology to infer and refactor an object-oriented
model from c applications,” Software: Practice and Experience, vol. 48, no. 3, pp. 550–
577, 2018.

[85] G. De Ruvo and A. Santone, “A novel methodology based on formal methods for anal-
ysis and verification of wikis,” in 2014 IEEE 23rd International WETICE Conference,
pp. 411–416, IEEE, 2014.

[86] S. Rebai, O. B. Sghaier, V. Alizadeh, M. Kessentini, and M. Chater, “Interactive
refactoring documentation bot,” in 2019 19th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pp. 152–162, IEEE, 2019.

286

[87] J. Krinke, “Mining execution relations for crosscutting concerns,” IET software, vol. 2,
no. 2, pp. 65–78, 2008.

[88] D. Bowes, D. Randall, and T. Hall, “The inconsistent measurement of message chains,”
in 2013 4th International Workshop on Emerging Trends in Software Metrics (WET-
SoM), pp. 62–68, IEEE, 2013.

[89] J. Liu, “Feature interactions and software derivatives.,” Journal of Object Technology,
vol. 4, no. 3, pp. 13–19, 2004.

[90] A. Swidan, F. Hermans, and R. Koesoemowidjojo, “Improving the performance of a
large scale spreadsheet: a case study,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 673–677, IEEE,
2016.

[91] H. Li, S. Thompson, and T. Arts, “Extracting properties from test cases by refactor-
ing,” in 2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, pp. 472–473, IEEE, 2011.

[92] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black, “Traits: A mechanism
for fine-grained reuse,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 28, no. 2, pp. 331–388, 2006.

[93] R. Ramos, J. Castro, J. Araújo, F. Alencar, and R. Penteado, “Divide and conquer
refactoring: dealing with the large, scattering or tangling use case model,” in Pro-
ceedings of the 8th Latin American Conference on Pattern Languages of Programs,
pp. 1–11, 2010.

[94] E. Murphy-Hill, A. P. Black, D. Dig, and C. Parnin, “Gathering refactoring data:
a comparison of four methods,” in Proceedings of the 2nd Workshop on Refactoring
Tools, pp. 1–5, 2008.

[95] A. Derezińska, “A structure-driven process of automated refactoring to design pat-
terns,” in International Conference on Information Systems Architecture and Technol-
ogy, pp. 39–48, Springer, 2017.

[96] E. Selim, Y. Ghanam, C. Burns, T. Seyed, and F. Maurer, “A test-driven approach
for extracting libraries of reusable components from existing applications,” in Interna-
tional Conference on Agile Software Development, pp. 238–252, Springer, 2011.

[97] Y. Zhang, S. Dong, X. Zhang, H. Liu, and D. Zhang, “Automated refactoring for
stampedlock,” IEEE Access, vol. 7, pp. 104900–104911, 2019.

[98] H. Xue, S. Sun, G. Venkataramani, and T. Lan, “Machine learning-based analysis of
program binaries: A comprehensive study,” IEEE Access, vol. 7, pp. 65889–65912,
2019.

287

[99] Y. Zhang, S. Shao, H. Liu, J. Qiu, D. Zhang, and G. Zhang, “Refactoring java pro-
grams for customizable locks based on bytecode transformation,” IEEE Access, vol. 7,
pp. 66292–66303, 2019.

[100] M. F. Dolz, D. D. R. Astorga, J. Fernández, J. D. Garćıa, and J. Carretero, “Towards
automatic parallelization of stream processing applications,” IEEE Access, vol. 6,
pp. 39944–39961, 2018.

[101] B. K. Sidhu, K. Singh, and N. Sharma, “A catalogue of model smells and refactoring
operations for object-oriented software,” in 2018 Second International Conference on
Inventive Communication and Computational Technologies (ICICCT), pp. 313–319,
IEEE, 2018.

[102] F. Medeiros, M. Ribeiro, R. Gheyi, and B. F. dos Santos Neto, “A catalogue of refac-
torings to remove incomplete annotations.,” J. UCS, vol. 20, no. 5, pp. 746–771, 2014.

[103] P. Ma, Y. Bian, and X. Su, “A clustering method for pruning false positive of clonde
code detection,” in Proceedings 2013 International Conference on Mechatronic Sci-
ences, Electric Engineering and Computer (MEC), pp. 1917–1920, IEEE, 2013.

[104] G.-S. Cojocar and A.-M. Guran, “A comparative analysis of monitoring concerns im-
plementation in object oriented systems,” in 2018 IEEE 12th International Symposium
on Applied Computational Intelligence and Informatics (SACI), pp. 000355–000360,
IEEE, 2018.

[105] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A comparative study
of manual and automated refactorings,” in European Conference on Object-Oriented
Programming, pp. 552–576, Springer, 2013.

[106] T. Chen and C. He, “A comparison of approaches to legacy system crosscutting con-
cerns mining,” in 2013 International Conference on Computer Sciences and Applica-
tions, pp. 813–816, IEEE, 2013.

[107] A. Martini, E. Sikander, and N. Madlani, “A semi-automated framework for the iden-
tification and estimation of architectural technical debt: A comparative case-study on
the modularization of a software component,” Information and Software Technology,
vol. 93, pp. 264–279, 2018.

[108] M. T. Valente, V. Borges, and L. Passos, “A semi-automatic approach for extracting
software product lines,” IEEE Transactions on Software Engineering, vol. 38, no. 4,
pp. 737–754, 2011.

[109] K. Garcés, J. M. Vara, F. Jouault, and E. Marcos, “Adapting transformations to
metamodel changes via external transformation composition,” Software & Systems
Modeling, vol. 13, no. 2, pp. 789–806, 2014.

[110] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach to prioritize code smells
for refactoring,” Automated Software Engineering, vol. 23, no. 3, pp. 501–532, 2016.

288

[111] C. Brown, H. Li, and S. Thompson, “An expression processor: a case study in refac-
toring haskell programs,” in International Symposium on Trends in Functional Pro-
gramming, pp. 31–49, Springer, 2010.

[112] M. Marin, A. van Deursen, L. Moonen, and R. van der Rijst, “An integrated cross-
cutting concern migration strategy and its semi-automated application to jhotdraw,”
Automated Software Engineering, vol. 16, no. 2, pp. 323–356, 2009.

[113] A. O’Riordan, “Aspect-oriented reengineering of an object-oriented library in a short
iteration agile process,” Informatica, vol. 35, no. 4, 2011.

[114] K. Fujiwara, K. Fushida, N. Yoshida, and H. Iida, “Assessing refactoring instances and
the maintainability benefits of them from version archives,” in International Conference
on Product Focused Software Process Improvement, pp. 313–323, Springer, 2013.

[115] B. Alkhazi, T. Ruas, M. Kessentini, M. Wimmer, and W. I. Grosky, “Automated refac-
toring of atl model transformations: a search-based approach,” in Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems, pp. 295–304, 2016.

[116] M. Tanhaei, J. Habibi, and S.-H. Mirian-Hosseinabadi, “Automating feature model
refactoring: A model transformation approach,” Information and Software Technology,
vol. 80, pp. 138–157, 2016.

[117] V. Alizadeh, H. Fehri, and M. Kessentini, “Less is more: From multi-objective to mono-
objective refactoring via developer’s knowledge extraction,” in 2019 19th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pp. 181–192,
IEEE, 2019.

[118] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, “Refbot: intelligent software
refactoring bot,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 823–834, IEEE, 2019.

[119] Z. Mushtaq, G. Rasool, and B. Shehzad, “Multilingual source code analysis: A sys-
tematic literature review,” IEEE Access, vol. 5, pp. 11307–11336, 2017.

[120] F. Schmidt, S. G. MacDonell, and A. M. Connor, “An automatic architecture recon-
struction and refactoring framework,” in Software Engineering Research, Management
and Applications 2011, pp. 95–111, Springer, 2012.

[121] G. Cong, H. Wen, I.-h. Chung, D. Klepacki, H. Murata, and Y. Negishi, “An effi-
cient framework for multi-dimensional tuning of high performance computing applica-
tions,” in 2012 IEEE 26th International Parallel and Distributed Processing Sympo-
sium, pp. 1376–1387, IEEE, 2012.

[122] J. Park, M. Kim, and D.-H. Bae, “An empirical study of supplementary patches in
open source projects,” Empirical Software Engineering, vol. 22, no. 1, pp. 436–473,
2017.

289

[123] T. L. Nguyen, A. Fish, and M. Song, “An empirical study on similar changes in evolving
software,” in 2018 IEEE International Conference on Electro/Information Technology
(EIT), pp. 0560–0563, IEEE, 2018.

[124] M. Bruntink, A. Van Deursen, T. Tourwe, and R. van Engelen, “An evaluation of clone
detection techniques for crosscutting concerns,” in 20th IEEE International Conference
on Software Maintenance, 2004. Proceedings., pp. 200–209, IEEE, 2004.

[125] Y. Kosker, B. Turhan, and A. Bener, “An expert system for determining candidate
software classes for refactoring,” Expert Systems with Applications, vol. 36, no. 6,
pp. 10000–10003, 2009.

[126] B. L. Sousa, M. A. Bigonha, and K. A. Ferreira, “An exploratory study on cooccurrence
of design patterns and bad smells using software metrics,” Software: Practice and
Experience, vol. 49, no. 7, pp. 1079–1113, 2019.

[127] O. Mehani, G. Jourjon, T. Rakotoarivelo, and M. Ott, “An instrumentation frame-
work for the critical task of measurement collection in the future internet,” Computer
Networks, vol. 63, pp. 68–83, 2014.

[128] M. Schäfer, A. Thies, F. Steimann, and F. Tip, “A comprehensive approach to nam-
ing and accessibility in refactoring java programs,” IEEE Transactions on Software
Engineering, vol. 38, no. 6, pp. 1233–1257, 2012.

[129] D. Dig, “A practical tutorial on refactoring for parallelism,” in 2010 IEEE International
Conference on Software Maintenance, pp. 1–2, IEEE, 2010.

[130] X. Li and J. P. Gallagher, “A source-level energy optimization framework for mobile
applications,” in 2016 IEEE 16th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pp. 31–40, IEEE, 2016.

[131] R. Khatchadourian, Y. Tang, M. Bagherzadeh, and S. Ahmed, “[engineering paper] a
tool for optimizing java 8 stream software via automated refactoring,” in 2018 IEEE
18th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 34–39, IEEE, 2018.

[132] Z. Xing and E. Stroulia, “Api-evolution support with diff-catchup,” IEEE Transactions
on Software Engineering, vol. 33, no. 12, pp. 818–836, 2007.

[133] R. Gheyi, T. Massoni, and P. Borba, “A rigorous approach for proving model refactor-
ings,” in Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pp. 372–375, 2005.

[134] B. Cyganek, “Adding parallelism to the hybrid image processing library in multi-
threading and multi-core systems,” in 2011 IEEE 2nd International Conference on
Networked Embedded Systems for Enterprise Applications, pp. 1–8, IEEE, 2011.

290

[135] R. Hardt and E. V. Munson, “An empirical evaluation of ant build maintenance us-
ing formiga,” in 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 201–210, IEEE, 2015.

[136] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, “A case study in refactoring a
legacy component for reuse in a product line,” in 21st IEEE International Conference
on Software Maintenance (ICSM’05), pp. 369–378, IEEE, 2005.

[137] D. Strein, R. Lincke, J. Lundberg, and W. Löwe, “An extensible meta-model for pro-
gram analysis,” IEEE Transactions on Software Engineering, vol. 33, no. 9, pp. 592–
607, 2007.

[138] Y.-W. Kwon, “Automated s/w reengineering for fault-tolerant and energy-efficient dis-
tributed execution,” in 2013 IEEE International Conference on Software Maintenance,
pp. 582–585, IEEE, 2013.

[139] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design recovery and
maintenance of build systems,” in 2007 IEEE International Conference on Software
Maintenance, pp. 114–123, IEEE, 2007.

[140] R. Bahsoon and W. Emmerich, “Evaluating architectural stability with real options
theory,” in 20th IEEE International Conference on Software Maintenance, 2004. Pro-
ceedings., pp. 443–447, IEEE, 2004.

[141] J. O’neal, K. Weide, and A. Dubey, “Experience report: refactoring the mesh interface
in flash, a multiphysics software,” in 2018 IEEE 14th International Conference on
e-Science (e-Science), pp. 1–6, IEEE, 2018.

[142] M. A. Khan and H. Tembine, “Meta-learning for realizing self-x management of future
networks,” IEEE Access, vol. 5, pp. 19072–19083, 2017.

[143] A. Cleve, “Program analysis and transformation for data-intensive system evolution,”
in 2010 IEEE International Conference on Software Maintenance, pp. 1–6, IEEE, 2010.

[144] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella, “Automated refactor-
ing of object oriented code into aspects,” in 21st IEEE International Conference on
Software Maintenance (ICSM’05), pp. 27–36, IEEE, 2005.

[145] F. Castor Filho, A. Garcia, and C. M. F. Rubira, “Extracting error handling to as-
pects: A cookbook,” in 2007 IEEE International Conference on Software Maintenance,
pp. 134–143, IEEE, 2007.

[146] M. Bajammal, D. Mazinanian, and A. Mesbah, “Generating reusable web components
from mockups,” in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 601–611, 2018.

[147] N. A. Kraft, E. B. Duffy, and B. A. Malloy, “Grammar recovery from parse trees and
metrics-guided grammar refactoring,” IEEE Transactions on Software Engineering,
vol. 35, no. 6, pp. 780–794, 2009.

291

[148] D. Spinellis, “Global analysis and transformations in preprocessed languages,” IEEE
Transactions on Software Engineering, vol. 29, no. 11, pp. 1019–1030, 2003.

[149] C. Noguera, A. Kellens, C. De Roover, and V. Jonckers, “Refactoring in the presence of
annotations,” in 2012 28th IEEE International Conference on Software Maintenance
(ICSM), pp. 337–346, IEEE, 2012.

[150] S. Rongrong, Z. Liping, and Z. Fengrong, “A method for identifying and recommend-
ing reconstructed clones,” in Proceedings of the 2019 3rd International Conference on
Management Engineering, Software Engineering and Service Sciences, pp. 39–44, 2019.

[151] Y. Khan and M. El-Attar, “A model transformation approach towards refactoring
use case models based on antipatterns,” in 21st International Conference on Software
Engineering and Data Engineering (SEDE’12), Los Angeles, California, USA, pp. 49–
54, 2012.

[152] K. Grolinger and M. A. Capretz, “A unit test approach for database schema evolution,”
Information and Software Technology, vol. 53, no. 2, pp. 159–170, 2011.

[153] O. Febbraro, K. Reale, and F. Ricca, “Aspide: Integrated development environment
for answer set programming,” in International Conference on Logic Programming and
Nonmonotonic Reasoning, pp. 317–330, Springer, 2011.

[154] A. Garrido and R. Johnson, “Analyzing multiple configurations of a c program,” in
21st IEEE International Conference on Software Maintenance (ICSM’05), pp. 379–
388, IEEE, 2005.

[155] A. Paltoglou, V. E. Zafeiris, E. A. Giakoumakis, and N. Diamantidis, “Automated
refactoring of client-side javascript code to es6 modules,” in 2018 IEEE 25th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 402–412, IEEE, 2018.

[156] R. Khatchadourian, J. Sawin, and A. Rountev, “Automated refactoring of legacy java
software to enumerated types,” in 2007 IEEE International Conference on Software
Maintenance, pp. 224–233, IEEE, 2007.

[157] M. Marin, L. Moonen, and A. van Deursen, “A classification of crosscutting concerns,”
in 21st IEEE International Conference on Software Maintenance (ICSM’05), pp. 673–
676, IEEE, 2005.

[158] M. Mortensen, S. Ghosh, and J. Bieman, “Aspect-oriented refactoring of legacy appli-
cations: An evaluation,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 118–140, 2010.

[159] M. Mondal, C. K. Roy, and K. A. Schneider, “Automatic identification of important
clones for refactoring and tracking,” in 2014 IEEE 14th International Working Con-
ference on Source Code Analysis and Manipulation, pp. 11–20, IEEE, 2014.

292

[160] A. Kellens, K. De Schutter, T. D’Hondt, V. Jonckers, and H. Doggen, “Experiences in
modularizing business rules into aspects,” in 2008 IEEE International Conference on
Software Maintenance, pp. 448–451, IEEE, 2008.

[161] R. Stoiber, S. Fricker, M. Jehle, and M. Glinz, “Feature unweaving: Refactoring soft-
ware requirements specifications into software product lines,” in 2010 18th IEEE In-
ternational Requirements Engineering Conference, pp. 403–404, IEEE, 2010.

[162] G. Zhao and J. Huang, “Deepsim: deep learning code functional similarity,” in Proceed-
ings of the 2018 26th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pp. 141–151, 2018.

[163] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Object-oriented reengineering: patterns
and techniques,” in 21st IEEE International Conference on Software Maintenance
(ICSM’05), pp. 723–724, IEEE, 2005.

[164] P. Hegedus, “Revealing the effect of coding practices on software maintainability,” in
2013 IEEE International Conference on Software Maintenance, pp. 578–581, IEEE,
2013.

[165] T. Feng, J. Zhang, H. Wang, and X. Wang, “Software design improvement through
anti-patterns identification,” in 20th IEEE International Conference on Software Main-
tenance, 2004. Proceedings., p. 524, IEEE, 2004.

[166] S. Meng and L. S. Barbosa, “A coalgebraic semantic framework for reasoning about
uml sequence diagrams,” in 2008 The Eighth International Conference on Quality
Software, pp. 17–26, IEEE, 2008.

[167] P. Mayer and A. Schroeder, “Cross-language code analysis and refactoring,” in 2012
IEEE 12th International Working Conference on Source Code Analysis and Manipu-
lation, pp. 94–103, IEEE, 2012.

[168] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, “A case study on the
impact of refactoring on quality and productivity in an agile team,” in IFIP Central and
East European Conference on Software Engineering Techniques, pp. 252–266, Springer,
2007.

[169] A. L. Cândido, F. A. Trinta, L. S. Rocha, P. A. Rego, N. C. Mendonça, and V. C.
Garcia, “A microservice based architecture to support offloading in mobile cloud com-
puting,” in Proceedings of the XIII Brazilian Symposium on Software Components,
Architectures, and Reuse, pp. 93–102, 2019.

[170] A. Peruma, “A preliminary study of android refactorings,” in 2019 IEEE/ACM 6th
International Conference on Mobile Software Engineering and Systems (MOBILESoft),
pp. 148–149, IEEE, 2019.

[171] M. Mascheroni and E. Irrazábal, “A design pattern approach for restful tests: A case
study,” in IEEE 12th Colombian Computing Congress, 2018.

293

[172] D. Kermek, T. Jakupić, and N. Vrček, “A model of heterogeneous distributed system
for foreign exchange portfolio analysis,” Journal of Information and Organizational
Sciences, vol. 30, no. 1, pp. 83–92, 2006.

[173] G. Rodriguez, A. Teyseyre, Á. Soria, and L. Berdun, “A visualization tool to detect
refactoring opportunities in soa applications,” in 2017 XLIII Latin American Computer
Conference (CLEI), pp. 1–10, IEEE, 2017.

[174] H. Li, S. Thompson, P. Lamela Seijas, and M. A. Francisco, “Automating property-
based testing of evolving web services,” in Proceedings of the ACM SIGPLAN 2014
Workshop on Partial Evaluation and Program Manipulation, pp. 169–180, 2014.

[175] D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny, and P. Vassiliadis, “Cohesion-
driven decomposition of service interfaces without access to source code,” IEEE Trans-
actions on Services Computing, vol. 8, no. 4, pp. 550–562, 2014.

[176] M. Kessentini and H. Wang, “Detecting refactorings among multiple web service re-
leases: A heuristic-based approach,” in 2017 IEEE International Conference on Web
Services (ICWS), pp. 365–372, IEEE, 2017.

[177] F. Wei, C. Ouyang, and A. Barros, “Discovering behavioural interfaces for overloaded
web services,” in 2015 IEEE World Congress on Services, pp. 286–293, IEEE, 2015.

[178] K. Fekete, A. Pelle, and K. Csorba, “Energy efficient code optimization in mobile en-
vironment,” in 2014 IEEE 36th International Telecommunications Energy Conference
(INTELEC), pp. 1–6, IEEE, 2014.

[179] W. B. Langdon, “Genetic improvement of programs,” in 2014 16th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 14–19,
IEEE, 2014.

[180] H. Wang, A. Ouni, M. Kessentini, B. Maxim, and W. I. Grosky, “Identification of
web service refactoring opportunities as a multi-objective problem,” in 2016 IEEE
International Conference on Web Services (ICWS), pp. 586–593, IEEE, 2016.

[181] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of refactoringchal-
lenges and benefits at microsoft,” IEEE Transactions on Software Engineering, vol. 40,
no. 7, pp. 633–649, 2014.

[182] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg, “Are all code smells harmful? a study
of god classes and brain classes in the evolution of three open source systems,” in 2010
IEEE International Conference on Software Maintenance, pp. 1–10, IEEE, 2010.

[183] P. S. Kochhar, F. Thung, and D. Lo, “Automatic fine-grained issue report reclassifi-
cation,” in 2014 19th International Conference on Engineering of Complex Computer
Systems, pp. 126–135, IEEE, 2014.

294

[184] G. Bastide, A. Seriai, and M. Oussalah, “Dynamic adaptation of software component
structures,” in 2006 IEEE International Conference on Information Reuse & Integra-
tion, pp. 404–409, IEEE, 2006.

[185] G. Zhang, L. Shen, X. Peng, Z. Xing, and W. Zhao, “Incremental and iterative reengi-
neering towards software product line: An industrial case study,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM), pp. 418–427, IEEE, 2011.

[186] G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol, and Y.-G. Gueheneuc, “Playing with
refactoring: Identifying extract class opportunities through game theory,” in 2010
IEEE International Conference on Software Maintenance, pp. 1–5, IEEE, 2010.

[187] P. S. Kochhar, Y. Tian, and D. Lo, “Potential biases in bug localization: Do they mat-
ter?,” in Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pp. 803–814, 2014.

[188] R. Khatchadourian and H. Masuhara, “Defaultification refactoring: A tool for auto-
matically converting java methods to default,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 984–989, IEEE, 2017.

[189] H. K. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan, “Large-scale automated
refactoring using clangmr,” in 2013 IEEE International Conference on Software Main-
tenance, pp. 548–551, IEEE, 2013.

[190] D. Mazinanian and N. Tsantalis, “Migrating cascading style sheets to preprocessors by
introducing mixins,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pp. 672–683, 2016.

[191] P. Tonella and M. Ceccato, “Migrating interface implementations to aspects,” in 20th
IEEE International Conference on Software Maintenance, 2004. Proceedings., pp. 220–
229, IEEE, 2004.

[192] M. Ceccato, “Migrating object oriented code to aspect oriented programming,” 2006.

[193] D. Majumdar, “Migration from procedural programming to aspect oriented paradigm,”
in 2009 IEEE/ACM International Conference on Automated Software Engineering,
pp. 712–715, IEEE, 2009.

[194] C. Marcos, S. Vidal, E. Abait, M. Arroqui, and S. Sampaoli, “Refactoring of a beef-
cattle farm simulator,” IEEE Latin America Transactions, vol. 9, no. 7, pp. 1099–1104,
2011.

[195] R. Khatchadourian and B. Muskalla, “Enumeration refactoring: a tool for automati-
cally converting java constants to enumerated types,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering, pp. 181–182, 2010.

[196] E. L. Alves, M. Song, T. Massoni, P. D. Machado, and M. Kim, “Refactoring inspection
support for manual refactoring edits,” IEEE Transactions on Software Engineering,
vol. 44, no. 4, pp. 365–383, 2017.

295

[197] Y. Yu, J. Jurjens, and J. Mylopoulos, “Traceability for the maintenance of secure
software,” in 2008 IEEE International Conference on Software Maintenance, pp. 297–
306, IEEE, 2008.

[198] C. Kulkarni, “Notice of violation of ieee publication principles a qualitative approach
for refactoring of code clone opportunities using graph and tree methods,” in 2016
International Conference on Information Technology (InCITe)-The Next Generation
IT Summit on the Theme-Internet of Things: Connect your Worlds, pp. 154–159,
IEEE, 2016.

[199] A. F. Tappenden, T. Huynh, J. Miller, A. Geras, and M. Smith, “Agile development of
secure web-based applications,” International Journal of Information Technology and
Web Engineering (IJITWE), vol. 1, no. 2, pp. 1–24, 2006.

[200] P. M. Cousot, R. Cousot, F. Logozzo, and M. Barnett, “An abstract interpretation
framework for refactoring with application to extract methods with contracts,” in Pro-
ceedings of the ACM international conference on Object oriented programming systems
languages and applications, pp. 213–232, 2012.

[201] P. Borba, “An introduction to software product line refactoring,” in International Sum-
mer School on Generative and Transformational Techniques in Software Engineering,
pp. 1–26, Springer, 2009.

[202] O. Macek and K. Richta, “Application and relational database co-refactoring,” Com-
puter Science and Information Systems, vol. 11, no. 2, pp. 503–524, 2014.

[203] M. S. Feather and L. Z. Markosian, “Architecting and generalizing a safety case for
critical condition detection software an experience report,” in 2013 1st International
Workshop on Assurance Cases for Software-Intensive Systems (ASSURE), pp. 29–33,
IEEE, 2013.

[204] P. Muntean, M. Monperrus, H. Sun, J. Grossklags, and C. Eckert, “Intrepair: Informed
repairing of integer overflows,” IEEE Transactions on Software Engineering, 2019.

[205] S. Demeyer, “Refactor conditionals into polymorphism: what’s the performance cost of
introducing virtual calls?,” in 21st IEEE International Conference on Software Main-
tenance (ICSM’05), pp. 627–630, IEEE, 2005.

[206] A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating c++ programs through
demacrofication,” in 2012 28th IEEE International Conference on Software Mainte-
nance (ICSM), pp. 98–107, IEEE, 2012.

[207] A. Kumar, A. Sutton, and B. Stroustrup, “The demacrofier,” in 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pp. 658–661, IEEE, 2012.

[208] I. Sora, “A meta-model for representing language-independent primary dependency
structures.,” in ENASE, pp. 65–74, 2012.

296

[209] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy, “Analyzing and fore-
casting near-miss clones in evolving software: An empirical study,” in 2011 16th IEEE
International Conference on Engineering of Complex Computer Systems, pp. 295–304,
IEEE, 2011.

[210] R. Rolim, “Automating repetitive code changes using examples,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 1063–1065, 2016.

[211] W. S. Evans, C. W. Fraser, and F. Ma, “Clone detection via structural abstraction,”
Software Quality Journal, vol. 17, no. 4, pp. 309–330, 2009.

[212] A. Khan, H. A. Basit, S. M. Sarwar, and M. M. Yousaf, “Cloning in popular server
side technologies using agile development: An empirical study,” Pakistan Journal of
Engineering and Applied Sciences, no. 1, 2018.

[213] T. D. Oyetoyan, R. Conradi, and D. S. Cruzes, “Criticality of defects in cyclic depen-
dent components,” in 2013 IEEE 13th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pp. 21–30, IEEE, 2013.

[214] M. Gatrell, S. Counsell, and T. Hall, “Empirical support for two refactoring studies
using commercial c# software,” in 13th International Conference on Evaluation and
Assessment in Software Engineering (EASE) 13, pp. 1–10, 2009.

[215] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A. Schneider, “Evalu-
ating code clone genealogies at release level: An empirical study,” in 2010 10th IEEE
Working Conference on Source Code Analysis and Manipulation, pp. 87–96, IEEE,
2010.

[216] A. Derezińska and M. Byczkowski, “Evaluation of design pattern utilization and soft-
ware metrics in c# programs,” in International Conference on Dependability and Com-
plex Systems, pp. 132–142, Springer, 2019.

[217] Y. A. Liu, M. Gorbovitski, and S. D. Stoller, “A language and framework for invariant-
driven transformations,” ACM Sigplan Notices, vol. 45, no. 2, pp. 55–64, 2009.

[218] I. Lanc, P. Bui, D. Thain, and S. Emrich, “Adapting bioinformatics applications for
heterogeneous systems: a case study,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 4, pp. 866–877, 2014.

[219] L. E. d. S. Amorim, M. J. Steindorfer, S. Erdweg, and E. Visser, “Declarative spec-
ification of indentation rules: a tooling perspective on parsing and pretty-printing
layout-sensitive languages,” in Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering, pp. 3–15, 2018.

[220] Z. Chen, L. Chen, W. Ma, and B. Xu, “Detecting code smells in python programs,” in
2016 International Conference on Software Analysis, Testing and Evolution (SATE),
pp. 18–23, IEEE, 2016.

297

[221] C. Chapman and K. T. Stolee, “Exploring regular expression usage and context in
python,” in Proceedings of the 25th International Symposium on Software Testing and
Analysis, pp. 282–293, 2016.

[222] J. B. Cabral, B. Sánchez, F. Ramos, S. Gurovich, P. M. Granitto, and J. Vanderplas,
“From fats to feets: Further improvements to an astronomical feature extraction tool
based on machine learning,” Astronomy and computing, vol. 25, pp. 213–220, 2018.

[223] M. Zhu, F. McKenna, and M. H. Scott, “Openseespy: Python library for the opensees
finite element framework,” SoftwareX, vol. 7, pp. 6–11, 2018.

[224] M. Furr, J.-h. An, and J. S. Foster, “Profile-guided static typing for dynamic scripting
languages,” in Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pp. 283–300, 2009.

[225] Z. W. Bell, G. G. Davidson, T. M. D’Azevedo, W. Joubert, J. K. Munro Jr, D. R.
Patlolla, and B. Vacaliuc, “Python for development of openmp and cuda kernels for
multidimensional data,” in Symposium on Application Accelerators in HPC, 2011.

[226] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury, “Re-factoring
based program repair applied to programming assignments,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 388–398,
IEEE, 2019.

[227] C. Wang, S. Hirasawa, H. Takizawa, and H. Kobayashi, “A platform-specific code smell
alert system for high performance computing applications,” in 2014 IEEE International
Parallel & Distributed Processing Symposium Workshops, pp. 652–661, IEEE, 2014.

[228] Ç. Biray and F. Buzluca, “A learning-based method for detecting defective classes in
object-oriented systems,” in 2015 IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 1–8, IEEE, 2015.

[229] W. Hasanain, Y. Labiche, and S. Eldh, “An analysis of complex industrial test code
using clone analysis,” in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pp. 482–489, IEEE, 2018.

[230] D. Mazinanian and N. Tsantalis, “An empirical study on the use of css preprocessors,”
in 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, pp. 168–178, IEEE, 2016.

[231] D. Mazinanian and N. Tsantalis, “Cssdev: refactoring duplication in cascading style
sheets,” in 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pp. 63–66, IEEE, 2017.

[232] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Discovering refactoring opportunities
in cascading style sheets,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 496–506, 2014.

298

[233] D. D. Perez and W. Le, “Generating predicate callback summaries for the android
framework,” in 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pp. 68–78, IEEE, 2017.

[234] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig, “Is it dangerous to use
version control histories to study source code evolution?,” in European Conference on
Object-Oriented Programming, pp. 79–103, Springer, 2012.

[235] M. Bosch, P. Genevès, and N. Layäıda, “Reasoning with style,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[236] H. A. Nguyen, H. V. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Output-oriented
refactoring in php-based dynamic web applications,” in 2013 IEEE International Con-
ference on Software Maintenance, pp. 150–159, IEEE, 2013.

[237] B. Chen, Z. M. Jiang, P. Matos, and M. Lacaria, “An industrial experience report
on performance-aware refactoring on a database-centric web application,” in 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 653–664, IEEE, 2019.

[238] L. Eshkevari, F. Dos Santos, J. R. Cordy, and G. Antoniol, “Are php applications
ready for hack?,” in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pp. 63–72, IEEE, 2015.

[239] J. L. Overbey and R. E. Johnson, “Differential precondition checking: A lightweight,
reusable analysis for refactoring tools,” in 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2011), pp. 303–312, IEEE, 2011.

[240] J. L. Overbey, R. E. Johnson, and M. Hafiz, “Differential precondition checking: a
language-independent, reusable analysis for refactoring engines,” Automated Software
Engineering, vol. 23, no. 1, pp. 77–104, 2016.

[241] M. Hills, P. Klint, and J. J. Vinju, “Enabling php software engineering research in
rascal,” Science of Computer Programming, vol. 134, pp. 37–46, 2017.

[242] F. Gauthier, D. Letarte, T. Lavoie, and E. Merlo, “Extraction and comprehension of
moodle’s access control model: A case study,” in 2011 Ninth Annual International
Conference on Privacy, Security and Trust, pp. 44–51, IEEE, 2011.

[243] M. Hills and P. Klint, “Php air: Analyzing php systems with rascal,” in 2014 Soft-
ware Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE), pp. 454–457, IEEE, 2014.

[244] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and J. C. S.
do Prado Leite, “Reverse engineering goal models from legacy code,” in 13th IEEE
International Conference on Requirements Engineering (RE’05), pp. 363–372, IEEE,
2005.

299

[245] R. Lämmel and J. Visser, “A strafunski application letter,” in International Symposium
on Practical Aspects of Declarative Languages, pp. 357–375, Springer, 2003.

[246] G. M. Rama, “A desiderata for refactoring-based software modularity improvement,”
in Proceedings of the 3rd India software engineering conference, pp. 93–102, 2010.

[247] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Transactions on
software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[248] A. Abadi, R. Ettinger, and Y. A. Feldman, “Fine slicing,” in International Conference
on Fundamental Approaches to Software Engineering, pp. 471–485, Springer, 2012.

[249] M. Lillack, C. Bucholdt, and D. Schilling, “Detection of code clones in software gener-
ators,” in Proceedings of the 6th International Workshop on Feature-Oriented Software
Development, pp. 37–44, 2014.

[250] H. M. Sneed and K. Erdoes, “Migrating as400-cobol to java: a report from the field,” in
2013 17th European Conference on Software Maintenance and Reengineering, pp. 231–
240, IEEE, 2013.

[251] M. K. Smith and T. Laszewski, “Modernization case study: Italian ministry of instruc-
tion, university, and research,” in Information Systems Transformation, pp. 171–191,
Elsevier, 2010.

[252] T. Hatano and A. Matsuo, “Removing code clones from industrial systems using com-
piler directives,” in 2017 IEEE/ACM 25th International Conference on Program Com-
prehension (ICPC), pp. 336–345, IEEE, 2017.

[253] T. Gerlitz, Q. M. Tran, and C. Dziobek, “Detection and handling of model smells for
matlab/simulink models.,” in MASE@ MoDELS, pp. 13–22, 2015.

[254] Z. Zhao, X. Li, L. He, C. Wu, and J. K. Hedrick, “Estimation of torques transmitted by
twin-clutch of dry dual-clutch transmission during vehicle’s launching process,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 6, pp. 4727–4741, 2016.

[255] K. Aishwarya, R. Ramesh, P. M. Sobarad, and V. Singh, “Lossy image compression
using svd coding algorithm,” in 2016 International Conference on Wireless Communi-
cations, Signal Processing and Networking (WiSPNET), pp. 1384–1389, IEEE, 2016.

[256] S. Schlesinger, P. Herber, T. Göthel, and S. Glesner, “Proving correctness of refac-
torings for hybrid simulink models with control flow,” in International Workshop on
Design, Modeling, and Evaluation of Cyber Physical Systems, pp. 71–86, Springer,
2016.

[257] S. Makka and B. Sagar, “Simulation of a model for refactoring approach for parallelism
using parallel computing tool box,” in Proceedings of First International Conference
on Information and Communication Technology for Intelligent Systems: Volume 2,
pp. 77–84, Springer, 2016.

300

[258] V. Pantelic, S. Postma, M. Lawford, M. Jaskolka, B. Mackenzie, A. Korobkine, M. Ben-
der, J. Ong, G. Marks, and A. Wassyng, “Software engineering practices and simulink:
bridging the gap,” International Journal on Software Tools for Technology Transfer,
vol. 20, no. 1, pp. 95–117, 2018.

[259] H. Zhu, Y. Yu, W. Qi, S. Liu, Y. Weng, T. Yuan, and H. Li, “The research on
fault restoration and refactoring for active distribution network,” in 2019 Chinese
Automation Congress (CAC), pp. 4470–4474, IEEE, 2019.

[260] V. N. Leonenko, N. V. Pertsev, and M. Artzrouni, “Using high performance algorithms
for the hybrid simulation of disease dynamics on cpu and gpu.,” in ICCS, pp. 150–159,
2015.

[261] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A meta-model for language-
independent refactoring,” in Proceedings International Symposium on Principles of
Software Evolution, pp. 154–164, IEEE, 2000.

[262] T. Mens, T. Tourwe, and F. Munoz, “Beyond the refactoring browser: advanced tool
support for software refactoring,” in Sixth International Workshop on Principles of
Software Evolution, 2003. Proceedings., pp. 39–44, 2003.

[263] A. Garrido and R. Johnson, “Challenges of refactoring c programs,” in Proceedings of
the international workshop on Principles of software evolution, pp. 6–14, 2002.

[264] K. Mens and T. Tourwé, “Delving source code with formal concept analysis,” Computer
Languages, Systems & Structures, vol. 31, no. 3-4, pp. 183–197, 2005.

[265] Y. Y. Lee, N. Chen, and R. E. Johnson, “Drag-and-drop refactoring: intuitive and
efficient program transformation,” in 2013 35th International Conference on Software
Engineering (ICSE), pp. 23–32, IEEE, 2013.

[266] V. U. Gómez, A. Kellens, K. Gybels, and T. D’Hondt, “Experiments with pro-
active declarative meta-programming,” in Proceedings of the International Workshop
on Smalltalk Technologies, pp. 68–76, 2009.

[267] M. Unterholzner, “Improving refactoring tools in smalltalk using static type inference,”
Science of Computer Programming, vol. 96, pp. 70–83, 2014.

[268] D. Vainsencher, “Mudpie: layers in the ball of mud,” Computer Languages, Systems
& Structures, vol. 30, no. 1-2, pp. 5–19, 2004.

[269] O. Callaú, R. Robbes, É. Tanter, D. Röthlisberger, and A. Bergel, “On the use of type
predicates in object-oriented software: The case of smalltalk,” in Proceedings of the
10th ACM Symposium on Dynamic languages, pp. 135–146, 2014.

[270] P. Tesone, G. Polito, L. Fabresse, N. Bouraqadi, and S. Ducasse, “Preserving instance
state during refactorings in live environments,” Future Generation Computer Systems,
2020.

301

[271] V. Arnaoudova and C. Constantinides, “Adaptation of refactoring strategies to multi-
ple axes of modularity: characteristics and criteria,” in 2008 Sixth International Con-
ference on Software Engineering Research, Management and Applications, pp. 105–114,
IEEE, 2008.

[272] E. Rodrigues Jr, R. S. Durelli, R. W. de Bettio, L. Montecchi, and R. Terra, “Refactor-
ings for replacing dynamic instructions with static ones: the case of ruby,” in Proceed-
ings of the XXII Brazilian Symposium on Programming Languages, pp. 59–66, 2018.

[273] P. Sommerlad, G. Zgraggen, T. Corbat, and L. Felber, “Retaining comments when
refactoring code,” in Companion to the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and applications, pp. 653–662, 2008.

[274] T. Corbat, L. Felber, M. Stocker, and P. Sommerlad, “Ruby refactoring plug-in for
eclipse,” in Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pp. 779–780, 2007.

[275] R. Chen and H. Miao, “A selenium based approach to automatic test script generation
for refactoring javascript code,” in 2013 IEEE/ACIS 12th International Conference on
Computer and Information Science (ICIS), pp. 341–346, IEEE, 2013.

[276] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Babelref: detection
and renaming tool for cross-language program entities in dynamic web applications,” in
2012 34th International Conference on Software Engineering (ICSE), pp. 1391–1394,
IEEE, 2012.

[277] K. An and E. Tilevich, “D-goldilocks: Automatic redistribution of remote functional-
ities for performance and efficiency,” in 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 251–260, IEEE, 2020.

[278] C.-Y. Hsieh, C. Le My, K. T. Ho, and Y. C. Cheng, “Identification and refactoring of
exception handling code smells in javascript,” Journal of Internet Technology, vol. 18,
no. 6, pp. 1461–1471, 2017.

[279] T. Mendes, M. T. Valente, and A. Hora, “Identifying utility functions in java and
javascript,” in 2016 X Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), pp. 121–130, IEEE, 2016.

[280] N. Van Es, Q. Stievenart, J. Nicolay, T. D’Hondt, and C. De Roover, “Implementing a
performant scheme interpreter for the web in asm. js,” Computer Languages, Systems
& Structures, vol. 49, pp. 62–81, 2017.

[281] L. Gong, M. Pradel, and K. Sen, “Jitprof: pinpointing jit-unfriendly javascript code,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pp. 357–368, 2015.

[282] A. M. Fard and A. Mesbah, “Jsnose: Detecting javascript code smells,” in 2013 IEEE
13th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 116–125, IEEE, 2013.

302

[283] C. Schuster, T. Disney, and C. Flanagan, “Macrofication: Refactoring by reverse macro
expansion,” in European Symposium on Programming, pp. 644–671, Springer, 2016.

[284] J. Portner, J. Kerr, and B. Chu, “Moving target defense against cross-site scripting
attacks (position paper),” in International Symposium on Foundations and Practice of
Security, pp. 85–91, Springer, 2014.

[285] G. Ortiz, J. A. Caravaca, A. Garćıa-de Prado, J. Boubeta-Puig, et al., “Real-time
context-aware microservice architecture for predictive analytics and smart decision-
making,” IEEE Access, vol. 7, pp. 183177–183194, 2019.

[286] M. U. Khan, M. Z. Iqbal, and S. Ali, “A heuristic-based approach to refactor cross-
cutting behaviors in uml state machines,” in 2014 IEEE International Conference on
Software Maintenance and Evolution, pp. 557–560, IEEE, 2014.

[287] R. Terra, M. T. Valente, and N. Anquetil, “A lightweight remodularization process
based on structural similarity,” in 2016 X Brazilian Symposium on Software Compo-
nents, Architectures and Reuse (SBCARS), pp. 111–120, IEEE, 2016.

[288] M. Bialy, M. Lawford, V. Pantelic, and A. Wassyng, “A methodology for the simplifi-
cation of tabular designs in model-based development,” in 2015 IEEE/ACM 3rd FME
Workshop on Formal Methods in Software Engineering, pp. 47–53, IEEE, 2015.

[289] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdörfer, M. Seidl, K. Wieland, and
G. Kappel, “A posteriori operation detection in evolving software models,” Journal of
Systems and Software, vol. 86, no. 2, pp. 551–566, 2013.

[290] A. T. Sampson, J. M. Bjorndalen, and P. S. Andrews, “Birds on the wall: Distributing
a process-oriented simulation,” in 2009 IEEE Congress on Evolutionary Computation,
pp. 225–231, IEEE, 2009.

[291] Y. Wang, H. Yu, Z. Zhu, W. Zhang, and Y. Zhao, “Automatic software refactoring
via weighted clustering in method-level networks,” IEEE Transactions on Software
Engineering, vol. 44, no. 3, pp. 202–236, 2017.

[292] A. Ouni, M. Kessentini, M. Ó Cinnéide, H. Sahraoui, K. Deb, and K. Inoue, “More: A
multi-objective refactoring recommendation approach to introducing design patterns
and fixing code smells,” Journal of Software: Evolution and Process, vol. 29, no. 5,
p. e1843, 2017.

[293] H. Wang, M. Kessentini, and A. Ouni, “Bi-level identification of web service defects,”
in International Conference on Service-Oriented Computing, pp. 352–368, Springer,
Cham, 2016.

[294] A. Ghannem, G. El Boussaidi, and M. Kessentini, “On the use of design defect ex-
amples to detect model refactoring opportunities,” Software Quality Journal, vol. 24,
no. 4, pp. 947–965, 2016.

303

[295] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said, “On the use of machine
learning and search-based software engineering for ill-defined fitness function: a case
study on software refactoring,” in International Symposium on Search Based Software
Engineering, pp. 31–45, Springer, Cham, 2014.

[296] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh, “Search-based meta-
model matching with structural and syntactic measures,” Journal of Systems and Soft-
ware, vol. 97, pp. 1–14, 2014.

[297] M. Kessentini, R. Mahaouachi, and K. Ghedira, “What you like in design use to correct
bad-smells,” Software Quality Journal, vol. 21, no. 4, pp. 551–571, 2013.

[298] A. Ghannem, M. Kessentini, and G. El Boussaidi, “Detecting model refactoring oppor-
tunities using heuristic search,” in Proceedings of the 2011 Conference of the Center
for Advanced Studies on Collaborative Research, pp. 175–187, 2011.

[299] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. B. Chikha, “Competitive
coevolutionary code-smells detection,” in International Symposium on Search Based
Software Engineering, pp. 50–65, Springer, Berlin, Heidelberg, 2013.

[300] E. Erturk and E. A. Sezer, “A comparison of some soft computing methods for software
fault prediction,” Expert systems with applications, vol. 42, no. 4, pp. 1872–1879, 2015.

[301] C. S. Melo, M. M. L. da Cruz, A. D. F. Martins, T. Matos, J. M. da Silva Mon-
teiro Filho, and J. de Castro Machado, “A practical guide to support change-proneness
prediction,” Proceedings of the 21st International Conference on Enterprise Systems,
pp. 269–276, 2019.

[302] L. Kumar, S. M. Satapathy, and A. Krishna, “Application of smote and lssvm with
various kernels for predicting refactoring at method level,” in International Conference
on Neural Information Processing, pp. 150–161, Springer, 2018.

[303] R. Hill and J. Rideout, “Automatic method completion,” in Proceedings. 19th Inter-
national Conference on Automated Software Engineering, 2004., pp. 228–235, IEEE,
2004.

[304] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Menzies, “Auto-
matic query reformulations for text retrieval in software engineering,” in 2013 35th
International Conference on Software Engineering (ICSE), pp. 842–851, IEEE, 2013.

[305] G. M. Ubayawardana and D. D. Karunaratna, “Bug prediction model using code
smells,” in 2018 18th International Conference on Advances in ICT for Emerging Re-
gions (ICTer), pp. 70–77, IEEE, 2018.

[306] Z. Aliyu, L. A. Rahim, and E. E. Mustapha, “A combine usability framework for imcat
evaluation,” in 2014 International Conference on Computer and Information Sciences
(ICCOINS), pp. 1–5, IEEE, 2014.

304

[307] A. Herranz and J. J. Moreno-Navarro, “Formal extreme (and extremely formal) pro-
gramming,” in International Conference on Extreme Programming and Agile Processes
in Software Engineering, pp. 88–96, Springer, 2003.

[308] L. Quan, Q. Zongyan, and Z. Liu, “Formal use of design patterns and refactoring,” in
International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, pp. 323–338, Springer, 2008.

[309] J. W. Ko and Y. J. Song, “Graph based model transformation verification using map-
ping patterns and graph comparison algorithm,” International Journal of Advance-
ments in Computing Technology, vol. 4, no. 8, 2012.

[310] T. Ruhroth and H. Wehrheim, “Model evolution and refinement,” Science of Computer
Programming, vol. 77, no. 3, pp. 270–289, 2012.

[311] S. Stepney, F. Polack, and I. Toyn, “Patterns to guide practical refactoring: examples
targetting promotion in z,” in International Conference of B and Z Users, pp. 20–39,
Springer, 2003.

[312] T. v. Enckevort, “Refactoring uml models: using openarchitectureware to measure
uml model quality and perform pattern matching on uml models with ocl queries,”
in Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications, pp. 635–646, 2009.

[313] D. Luciv, D. Koznov, H. A. Basit, and A. N. Terekhov, “On fuzzy repetitions detection
in documentation reuse,” Programming and Computer Software, vol. 42, no. 4, pp. 216–
224, 2016.

[314] D. Arcelli, V. Cortellessa, and C. Trubiani, “Performance-based software model refac-
toring in fuzzy contexts,” in International Conference on Fundamental Approaches to
Software Engineering, pp. 149–164, Springer, 2015.

[315] C. Wang and S. Kang, “Adfl: An improved algorithm for american fuzzy lop in fuzz
testing,” in International Conference on Cloud Computing and Security, pp. 27–36,
Springer, 2018.

[316] P. Lerthathairat and N. Prompoon, “An approach for source code classification using
software metrics and fuzzy logic to improve code quality with refactoring techniques,”
in International Conference on Software Engineering and Computer Systems, pp. 478–
492, Springer, 2011.

[317] Z. Avdagic, D. Boskovic, and A. Delic, “Code evaluation using fuzzy logic,” in Pro-
ceedings of the 9th WSEAS International Conference on Fuzzy Systems, pp. 20–25,
World Scientific and Engineering Academy and Society (WSEAS), 2008.

[318] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based code smell
detection,” IEEE Transactions on Software Engineering, 2019.

305

[319] Y. Wang, “What motivate software engineers to refactor source code? evidences from
professional developers,” in 2009 IEEE International Conference on Software Mainte-
nance, pp. 413–416, IEEE, 2009.

[320] J. Grigera, A. Garrido, and G. Rossi, “Kobold: web usability as a service,” in
2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 990–995, IEEE, 2017.

[321] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort via clustering-
based multi-objective search,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 464–474, 2018.

[322] M. Ó. Cinnéide and P. Nixon, “A methodology for the automated introduction of design
patterns,” in Proceedings IEEE International Conference on Software Maintenance-
1999 (ICSM’99).’Software Maintenance for Business Change’(Cat. No. 99CB36360),
pp. 463–472, IEEE, 1999.

[323] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security questions do
developers ask? a large-scale study of stack overflow posts,” Journal of Computer
Science and Technology, vol. 31, no. 5, pp. 910–924, 2016.

[324] C. Rosen and E. Shihab, “What are mobile developers asking about? a large scale
study using stack overflow,” Empirical Software Engineering, vol. 21, no. 3, pp. 1192–
1223, 2016.

[325] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory analysis of mobile
development issues using stack overflow,” in 2013 10th Working Conference on Mining
Software Repositories (MSR), pp. 93–96, IEEE, 2013.

[326] S. Beyer and M. Pinzger, “A manual categorization of android app development issues
on stack overflow,” in 2014 IEEE International Conference on Software Maintenance
and Evolution, pp. 531–535, IEEE, 2014.

[327] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking about?
an analysis of topics and trends in stack overflow,” Empirical Software Engineering,
vol. 19, no. 3, pp. 619–654, 2014.

[328] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documentation: Ex-
ploring the coverage and the dynamics of api discussions on stack overflow,” Georgia
Institute of Technology, Tech. Rep, 2012.

[329] “Stack exchange creative commons data now hosted by
the internet archive.” https://stackoverflow.blog/2014/01/23/
stack-exchange-cc-data-now-hosted-by-the-internet-archive/. Accessed: 2019-04-
05.

[330] “Stack exchange data dump.” https://archive.org/details/stackexchange. Accessed:
2019-04-05.

306

[331] Y. Liu, Z. Liu, T.-S. Chua, and M. Sun, “Topical word embeddings,” in Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[332] R. Alghamdi and K. Alfalqi, “A survey of topic modeling in text mining,” Int. J. Adv.
Comput. Sci. Appl.(IJACSA), vol. 6, no. 1, 2015.

[333] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint cs/0205028,
2002.

[334] V. Balakrishnan and E. Lloyd-Yemoh, “Stemming and lemmatization: a comparison
of retrieval performances,” 2014.

[335] E. Choi, N. Yoshida, R. G. Kula, and K. Inoue, “What do practitioners ask about
code clone? a preliminary investigation of stack overflow.,” in IWSC, pp. 49–50, 2015.

[336] M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley Pro-
fessional, 2018.

[337] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using
abstract syntax trees,” in Proceedings. International Conference on Software Mainte-
nance (Cat. No. 98CB36272), pp. 368–377, IEEE, 1998.

[338] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based on product
release history,” in Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272), pp. 190–198, IEEE, 1998.

[339] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study of code clone
genealogies,” in Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 187–196, 2005.

[340] S. Kim and M. D. Ernst, “Prioritizing warning categories by analyzing software his-
tory,” in Fourth International Workshop on Mining Software Repositories (MSR’07:
ICSE Workshops 2007), pp. 27–27, IEEE, 2007.

[341] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic token-based code
clone detection system for large scale source code,” IEEE Transactions on Software
Engineering, vol. 28, no. 7, pp. 654–670, 2002.

[342] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR: A method
for the specification and detection of code and design smells,” IEEE Transactions on
Software Engineering, vol. 36, no. 1, pp. 20–36, 2009.

[343] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from perfection is a better
criterion than closeness to evil when identifying risky code,” in 25th International
Conference on Automated Software engineering (ASE), pp. 113–122, 2010.

[344] R. L. Bocchino Jr, V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli,
J. Overbey, P. Simmons, H. Sung, and M. Vakilian, “A type and effect system for
deterministic parallel java,” in ACM Sigplan Notices, vol. 44, pp. 97–116, ACM, 2009.

307

[345] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated detection of refac-
torings in evolving components,” in European Conference on Object-Oriented Program-
ming, pp. 404–428, Springer, 2006.

[346] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-based refactoring using recorded
code changes,” in 17th European Conference on Software Maintenance and Reengi-
neering (CSMR), pp. 221–230, 2013.

[347] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring op-
portunities,” IEEE Transactions on Software Engineering, vol. 35, no. 3, pp. 347–367,
2009.

[348] A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, “Search-based web service
antipatterns detection,” IEEE Transactions on Services Computing, 2015.

[349] M. K. M. M. G. Marwa Daagi, Ali Ouni and S. Bouktif, “Web service interface decom-
position using formal concept analysis,” in International Conference on Web Services
ICWS2017, pp. 171–180, IEEE, 2017.

[350] T. H. Hanzhang Wang, Marouane Kessentini and A. Ouni, “On the value of quality of
service attributes for detecting bad design practices,” in International Conference on
Web Services ICWS2017, pp. 242–251, IEEE, 2017.

[351] M. Kessentini and H. Wang, “Detecting refactorings among multiple web service re-
leases: A heuristic-based approach,” in International Conference on Web Services
ICWS2017, pp. 263–272, IEEE, 2017.

[352] M. K. S. B. Ali Ouni, Marwa Daagi and M. M. Gammoudi, “A machine learning-based
approach to detect web service design defects,” in International Conference on Web
Services ICWS2017, pp. 382–391, IEEE, 2017.

[353] J. D. Marouane Kessentini, Hanzhang Wang and A. Ouni, “Improving web services
desing quality using heuristic search and machine learning,” in International Confer-
ence on Web Services ICWS2017, pp. 410–419, IEEE, 2017.

[354] J. Kerievsky, Refactoring to Patterns. Pearson Deutschland GmbH, 2005.

[355] M. Feathers, Working Effectively with Legacy Code: WORK EFFECT LEG CODE
p1. Prentice Hall Professional, 2004.

[356] D. Dig, “A refactoring approach to parallelism,” IEEE software, vol. 28, no. 1, pp. 17–
22, 2010.

[357] M. Kim and D. Notkin, “Discovering and representing systematic code changes,” in
Proceedings of the 31st International Conference on Software Engineering, pp. 309–319,
IEEE Computer Society, 2009.

[358] Y. Cai, R. Kazman, C. Jaspan, and J. Aldrich, “Introducing tool-supported architec-
ture review into software design education,” in 2013 26th International Conference on
Software Engineering Education and Training (CSEE&T), pp. 70–79, IEEE, 2013.

308

[359] A. Yamashita and L. Moonen, “Do developers care about code smells? an exploratory
survey,” in 20th Working Conference on Reverse Engineering (WCRE), pp. 242–251,
IEEE, 2013.

[360] A. Telea and L. Voinea, “Visual software analytics for the build optimization of large-
scale software systems,” Computational Statistics, vol. 26, no. 4, pp. 635–654, 2011.

[361] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell detection as a bilevel
problem,” ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 24, no. 1, p. 6, 2014.

[362] L. Xiao, Y. Cai, and R. Kazman, “Titan: A toolset that connects software architec-
ture with quality analysis,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 763–766, 2014.

[363] Y. Lin and D. Dig, “A study and toolkit of CHECK-THEN-ACT idioms of java con-
current collections,” Softw. Test., Verif. Reliab., vol. 25, no. 4, pp. 397–425, 2015.

[364] A. OUNI, M. KESSENTINI, H. SAHRAOUI, K. INOUE, and K. DEB, “Multi-criteria
code refactoring using search-based software engineering: An industrial case study,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 25, no. 3,
pp. 1–53, 2016.

[365] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design flaws on software
defects,” in Quality Software (QSIC), 2010 10th International Conference on, pp. 23–
31, IEEE, 2010.

[366] E. resource for C# parallel programmers. July’14, http://learnparallelism.net.

[367] M. Ó. Cinnéide, D. Boyle, and I. H. Moghadam, “Automated refactoring for testa-
bility,” in Software Testing, Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on, pp. 437–443, IEEE, 2011.

[368] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know it,”
in Proceedings of the International Conference on Software Engineering, pp. 287–297,
2009.

[369] Y. Lin and D. Dig, “CHECK-THEN-ACT Misuse of Java Concurrent Collections,”
in International Conference on Software Testing, Verification and Validation (ICST),
pp. 164–173, 2013.

[370] K. O. Elish and M. Alshayeb, “A classification of refactoring methods based on soft-
ware quality attributes,” Arabian Journal for Science and Engineering, vol. 36, no. 7,
pp. 1253–1267, 2011.

[371] B. Du Bois, P. Van Gorp, A. Amsel, N. Van Eetvelde, H. Stenten, S. Demeyer, and
T. Mens, “A discussion of refactoring in research and practice,” Reporte Técnico.
Universidad de Antwerpen, Bélgica, 2004.

309

[372] T. Mens, A. Van Deursen, et al., “Refactoring: Emerging trends and open problems,”
in Proceedings First International Workshop on REFactoring: Achievements, Chal-
lenges, Effects (REFACE). University of Waterloo, 2003.

[373] M. Misbhauddin and M. Alshayeb, “Uml model refactoring: a systematic literature
review,” Empirical Software Engineering, vol. 20, no. 1, pp. 206–251, 2015.

[374] M. Abebe and C.-J. Yoo, “Trends, opportunities and challenges of software refactoring:
A systematic literature review,” International Journal of Software Engineering and Its
Applications, vol. 8, no. 6, pp. 299–318, 2014.

[375] A. A. B. Baqais and M. Alshayeb, “Automatic software refactoring: a systematic
literature review,” Software Quality Journal, pp. 1–44, 2019.

[376] A. K. Saha, R. K. Saha, and K. A. Schneider, “A discriminative model approach for
suggesting tags automatically for stack overflow questions,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, pp. 73–76, IEEE Press, 2013.

[377] G. Pinto, W. Torres, and F. Castor, “A study on the most popular questions about
concurrent programming,” in Proceedings of the 6th Workshop on Evaluation and Us-
ability of Programming Languages and Tools, pp. 39–46, 2015.

[378] Y. Jin, X. Yang, R. G. Kula, E. Choi, K. Inoue, and H. Iida, “Quick trigger on stack
overflow: a study of gamification-influenced member tendencies,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories, pp. 434–437, IEEE, 2015.

[379] F. Tian, P. Liang, and M. A. Babar, “How developers discuss architecture smells?
an exploratory study on stack overflow,” in 2019 IEEE International Conference on
Software Architecture (ICSA), pp. 91–100, IEEE, 2019.

[380] A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, and S. Counsell, “Can you tell me if
it smells? a study on how developers discuss code smells and anti-patterns in stack
overflow,” in Proceedings of the 22nd International Conference on Evaluation and As-
sessment in Software Engineering 2018, pp. 68–78, 2018.

[381] G. H. Pinto and F. Kamei, “What programmers say about refactoring tools? an
empirical investigation of stack overflow,” in Proceedings of the 2013 ACM workshop
on Workshop on refactoring tools, pp. 33–36, 2013.

[382] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app store analysis
for software engineering,” IEEE transactions on software engineering, vol. 43, no. 9,
pp. 817–847, 2016.

[383] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of crowdsourcing in
software engineering,” Journal of Systems and Software, vol. 126, pp. 57–84, 2017.

[384] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining informative
reviews for developers from mobile app marketplace,” in Proceedings of the 36th In-
ternational Conference on Software Engineering, pp. 767–778, ACM, 2014.

310

[385] E. Guzman and W. Maalej, “How do users like this feature? a fine grained sentiment
analysis of app reviews,” in 2014 IEEE 22nd international requirements engineering
conference (RE), pp. 153–162, IEEE, 2014.

[386] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature requests
from online reviews,” in 2013 10th working conference on mining software repositories
(MSR), pp. 41–44, IEEE, 2013.

[387] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and automatically labelling
the types of user issues that are raised in mobile app reviews,” Empirical Software
Engineering, vol. 21, no. 3, pp. 1067–1106, 2016.

[388] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall,
“How can i improve my app? classifying user reviews for software maintenance and
evolution,” in 2015 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), pp. 281–290, IEEE, 2015.

[389] C. Gao, H. Xu, J. Hu, and Y. Zhou, “Ar-tracker: Track the dynamics of mobile
apps via user review mining,” in 2015 IEEE Symposium on Service-Oriented System
Engineering, pp. 284–290, IEEE, 2015.

[390] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source code arti-
facts,” in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pp. 375–384, 2010.

[391] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and D. Poshyvanyk, “Enhancing soft-
ware traceability by automatically expanding corpora with relevant documentation,”
in 2013 IEEE International Conference on Software Maintenance, pp. 320–329, IEEE,
2013.

[392] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk, “Mining energy-greedy api usage patterns in android apps: an em-
pirical study,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, pp. 2–11, 2014.

[393] Y. Zhang and D. Hou, “Extracting problematic api features from forum discussions,” in
2013 21st International Conference on Program Comprehension (ICPC), pp. 142–151,
IEEE, 2013.

[394] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H. C. Gall, “Analyzing reviews
and code of mobile apps for better release planning,” in 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 91–102,
IEEE, 2017.

[395] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta, D. Poshyvanyk,
and A. De Lucia, “Crowdsourcing user reviews to support the evolution of mobile
apps,” Journal of Systems and Software, vol. 137, pp. 143–162, 2018.

311

[396] G. Grano, A. Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora, and S. Panichella,
“Android apps and user feedback: a dataset for software evolution and quality im-
provement,” in Proceedings of the 2nd ACM SIGSOFT International Workshop on
App Market Analytics, pp. 8–11, ACM, 2017.

[397] A. Di Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio, and G. Canfora, “Surf:
summarizer of user reviews feedback,” in 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering Companion (ICSE-C), pp. 55–58, IEEE, 2017.

[398] E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo, “A study of the relation
of mobile device attributes with the user-perceived quality of android apps,” Empirical
Software Engineering, vol. 22, no. 6, pp. 3088–3116, 2017.

[399] J. Zhu, Y. Kang, Z. Zheng, and M. R. Lyu, “A clustering-based qos prediction approach
for web service recommendation,” in Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2012 15th IEEE International Sympo-
sium on, pp. 93–98, IEEE, 2012.

[400] M. Silic, G. Delac, I. Krka, and S. Srbljic, “Scalable and accurate prediction of avail-
ability of atomic web services,” IEEE Transactions on Services Computing, vol. 7,
no. 2, pp. 252–264, 2013.

[401] J. Zhu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Carp: Context-aware reliability
prediction of black-box web services,” in 2017 IEEE International Conference on Web
Services (ICWS), pp. 17–24, IEEE, 2017.

[402] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware web service recommendation
by collaborative filtering,” IEEE Transactions on services computing, vol. 4, no. 2,
pp. 140–152, 2010.

[403] M. Silic, G. Delac, and S. Srbljic, “Prediction of atomic web services reliability for
qos-aware recommendation,” IEEE Transactions on services Computing, vol. 8, no. 3,
pp. 425–438, 2014.

[404] M. Kessentini, P. Langer, and M. Wimmer, “Searching models, modeling search: On
the synergies of sbse and mde,” in 2013 1st International Workshop on Combining
Modelling and Search-Based Software Engineering (CMSBSE), pp. 51–54, IEEE, 2013.

[405] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui, “Prioritizing code-smells cor-
rection tasks using chemical reaction optimization,” Software Quality Journal, vol. 23,
no. 2, pp. 323–361, 2015.

[406] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective code-smells
detection using good and bad design examples,” Software Quality Journal, vol. 25,
no. 2, pp. 529–552, 2017.

[407] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi, “Model transformation
modularization as a many-objective optimization problem,” IEEE Transactions on
Software Engineering, vol. 43, no. 11, pp. 1009–1032, 2017.

312

[408] Q. Xie, K. Wu, J. Xu, P. He, and M. Chen, “Personalized context-aware qos predic-
tion for web services based on collaborative filtering,” in International Conference on
Advanced Data Mining and Applications, pp. 368–375, Springer, 2010.

[409] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, “Personalized qos prediction
forweb services via collaborative filtering,” in Web Services, 2007. ICWS 2007. IEEE
International Conference on, pp. 439–446, IEEE, 2007.

[410] Q. Zhang, C. Ding, and C.-H. Chi, “Collaborative filtering based service ranking using
invocation histories,” in Web Services (ICWS), 2011 IEEE International Conference
on, pp. 195–202, IEEE, 2011.

[411] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Wsrec: A collaborative filtering based web
service recommender system,” in Web Services, 2009. ICWS 2009. IEEE International
Conference on, pp. 437–444, IEEE, 2009.

[412] L. Li, M. Rong, and G. Zhang, “A web service qos prediction approach based on multi-
dimension qos,” in Computer Science & Education (ICCSE), 2011 6th International
Conference on, pp. 1319–1322, IEEE, 2011.

[413] L. Chen, Y. Feng, J. Wu, and Z. Zheng, “An enhanced qos prediction approach for
service selection,” in Services Computing (SCC), 2011 IEEE International Conference
on, pp. 727–728, IEEE, 2011.

[414] Y. Jiang, J. Liu, M. Tang, and X. F. Liu, “An effective web service recommendation
method based on personalized collaborative filtering,” in 2011 IEEE International
Conference on Web Services, pp. 211–218, IEEE, 2011.

[415] X. Chen, X. Liu, Z. Huang, and H. Sun, “Regionknn: A scalable hybrid collaborative
filtering algorithm for personalized web service recommendation,” in Web Services
(ICWS), 2010 IEEE International Conference on, pp. 9–16, IEEE, 2010.

[416] M. Zhang, X. Liu, R. Zhang, and H. Sun, “A web service recommendation approach
based on qos prediction using fuzzy clustering,” in Services Computing (SCC), 2012
IEEE Ninth International Conference on, pp. 138–145, IEEE, 2012.

[417] J. Ge, Z. Chen, J. Peng, T. Li, and L. Zhang, “Web service recommendation based on
qos prediction method,” in Cognitive Informatics (ICCI), 2010 9th IEEE International
Conference on, pp. 109–112, IEEE, 2010.

[418] V. Cardellini, E. Casalicchio, V. Grassi, and F. L. Presti, “Flow-based service selection
for web service composition supporting multiple qos classes,” in Web Services, 2007.
ICWS 2007. IEEE International Conference on, pp. 743–750, IEEE, 2007.

[419] J. El Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz, “Qos-driven selection of
web services for transactional composition,” in 2008 IEEE International Conference
on Web Services, pp. 653–660, IEEE, 2008.

313

[420] Z. Zheng and M. R. Lyu, “A distributed replication strategy evaluation and selection
framework for fault tolerant web services,” in Web Services, 2008. ICWS’08. IEEE
International Conference on, pp. 145–152, IEEE, 2008.

[421] D. Romano and M. Pinzger, “Analyzing the evolution of web services using fine-grained
changes,” in Web Services (ICWS), 2012 IEEE 19th International Conference on,
pp. 392–399, IEEE, 2012.

[422] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An empirical study on
web service evolution,” in Web Services (ICWS), 2011 IEEE International Conference
on, pp. 49–56, IEEE, 2011.

[423] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Automatically detecting
opportunities for web service descriptions improvement,” in Conference on e-Business,
e-Services and e-Society, pp. 139–150, Springer, 2010.

[424] J. Král and M. Zemlicka, “Popular SOA Antipatterns,” in Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, pp. 271–
276, 2009.

[425] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc, B. Baudry, and
J.-M. Jézéquel, “Specification and detection of soa antipatterns,” in Service-Oriented
Computing, pp. 1–16, Springer, 2012.

[426] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, “Specification and detection
of soa antipatterns in web services,” in European Conference on Software Architecture,
pp. 58–73, Springer, 2014.

[427] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best practices for describing,
consuming, and discovering web services: a comprehensive toolset,” Software: Practice
and Experience, vol. 43, no. 6, pp. 613–639, 2013.

[428] C. Mateos, J. M. Rodriguez, and A. Zunino, “A tool to improve code-first web services
discoverability through text mining techniques,” Software: Practice and Experience,
vol. 45, no. 7, pp. 925–948, 2015.

[429] C. Mateos, A. Zunino, S. Misra, D. Anabalon, and A. Flores, “Keeping web service
interface complexity low using an oo metric-based early approach,” in 2016 XLII Latin
American Computing Conference (CLEI), pp. 1–12, IEEE, 2016.

[430] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y.-M. Wang, “Webprophet:
Automating performance prediction for web services.,” in NSDI, vol. 10, pp. 143–158,
2010.

[431] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar, “Answering what-if
deployment and configuration questions with wise,” in ACM SIGCOMM Computer
Communication Review, vol. 38, pp. 99–110, ACM, 2008.

314

[432] S. Chen, K. R. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D. Schlichting, “Link
gradients: Predicting the impact of network latency on multitier applications,” in
INFOCOM 2009, IEEE, pp. 2258–2266, IEEE, 2009.

[433] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for engineered
software projects,” Empirical Software Engineering, vol. 22, no. 6, pp. 3219–3253, 2017.

[434] V. Thakur, M. Kessentini, and T. Sharma, “Qscored: An open platform for code
quality ranking and visualization,” in 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 818–821, 2020.

[435] P. Pickerill, J. H. Joshua, O. Miros law, M. Micha l, and S. Miroslaw, “Phantom: Cu-
rating github for engineered software projects using time-series clustering,” Empirical
Software Engineering, vol. 25, no. 4, pp. 2897–2929, 2020.

[436] K. Lochmann, “A benchmarking-inspired approach to determine threshold values for
metrics,” ACM SIGSOFT Software Engineering Notes, vol. 37, no. 6, pp. 1–8, 2012.

[437] A. Chatzigeorgiou and E. Stiakakis, “Benchmarking library and application software
with data envelopment analysis,” Software Quality Journal, vol. 19, no. 3, pp. 553–578,
2011.

[438] J. P. Correia and J. Visser, “Benchmarking technical quality of software products,” in
2008 15th Working Conference on Reverse Engineering, pp. 297–300, IEEE, 2008.

[439] T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi, A. Tomecek, P. Tuma,
and J. Urban, “Automated benchmarking and analysis tool,” in Proceedings of the 1st
international conference on Performance evaluation methodolgies and tools, pp. 5–es,
2006.

[440] J. Moses, “Benchmarking quality measurement,” Software Quality Journal, vol. 15,
no. 4, pp. 449–462, 2007.

[441] H. Gruber, R. Plösch, and M. Saft, “On the validity of benchmarking for evaluating
code quality,” IWSM/MENSURA, vol. 10, 2010.

[442] M. Harman and P. McMinn, “A theoretical and empirical study of search-based testing:
Local, global, and hybrid search,” IEEE Transactions on Software Engineering, vol. 36,
no. 2, pp. 226–247, 2009.

[443] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. Hemati Moghadam, “Exper-
imental assessment of software metrics using automated refactoring,” in Proceedings
of the ACM-IEEE international symposium on Empirical software engineering and
measurement, pp. 49–58, 2012.

[444] T. Mariani and S. R. Vergilio, “A systematic review on search-based refactoring,”
Information and Software Technology, vol. 83, pp. 14–34, 2017.

315

[445] M. O’Keeffe and M. Ó. Cinnéide, “A stochastic approach to automated design improve-
ment,” in Proceedings of the 2nd international conference on Principles and practice
of programming in Java, pp. 59–62, Computer Science Press, Inc., 2003.

[446] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “Search-based refactoring: To-
wards semantics preservation,” in 2012 28th IEEE International Conference on Soft-
ware Maintenance (ICSM), pp. 347–356, IEEE, 2012.

[447] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-based refactoring using recorded
code changes,” in 2013 17th European Conference on Software Maintenance and
Reengineering, pp. 221–230, IEEE, 2013.

[448] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The use of development
history in software refactoring using a multi-objective evolutionary algorithm,” in
Proceedings of the 15th annual conference on Genetic and evolutionary computation,
pp. 1461–1468, ACM, 2013.

[449] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, “How does refac-
toring affect internal quality attributes? a multi-project study,” in Proceedings of the
31st Brazilian Symposium on Software Engineering (SBES ’17), (Fortaleza, Brazil),
pp. 74—-83, ACM, 2017.

[450] A. C. Bibiano, E. Fernandes, D. Oliveira, A. Garcia, M. Kalinowski, B. Fonseca,
R. Oliveira, A. Oliveira, and D. Cedrim, “A quantitative study on characteristics
and effect of batch refactoring on code smells,” in Proceedings of 13th the ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM
’19), (Porto de Galinhas, Brazil), pp. 1–11, IEEE, 2019.

[451] T. Mens, G. Taentzer, and O. Runge, “Detecting structural refactoring conflicts using
critical pair analysis,” Electronic Notes in Theoretical Computer Science, vol. 127,
no. 3, pp. 113–128, 2005.

[452] H. Melton and E. Tempero, “Identifying refactoring opportunities by identifying depen-
dency cycles,” in Proceedings of the 29th Australasian Computer Science Conference
(ACSC ’06), (Australia), pp. 35–41, ACM, 2006.

[453] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “On refactoring support
based on code clone dependency relation,” in Proceedings of the 11th IEEE Interna-
tional Software Metrics Symposium (METRICS ’05), (Como, Italy), pp. 10–pp, IEEE,
2005.

[454] V. P. L. Oliveira, E. F. Souza, C. Le Goues, and C. G. Camilo-Junior, “Improved
crossover operators for genetic programming for program repair,” in International
Symposium on Search Based Software Engineering, pp. 112–127, Springer, 2016.

[455] F.-l. Zhu, H.-w. Deng, F. Li, and S.-g. Cheng, “Improved crossover operators and
mutation operators to prevent premature convergence,” Sci Technol Eng, vol. 10, no. 6,
pp. 1540–1542, 2010.

316

[456] M. A. Abido and A. Elazouni, “Improved crossover and mutation operators for genetic-
algorithm project scheduling,” in 2009 IEEE Congress on Evolutionary Computation,
pp. 1865–1872, IEEE, 2009.

[457] G. Fraser and A. Arcuri, “The seed is strong: Seeding strategies in search-based soft-
ware testing,” in 2012 IEEE Fifth International Conference on Software Testing, Ver-
ification and Validation, pp. 121–130, IEEE, 2012.

[458] C. Grothoff, J. Palsberg, and J. Vitek, “Encapsulating objects with confined types,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 29, no. 6,
p. 32, 2007.

[459] P. Bouillon, E. Großkinsky, and F. Steimann, “Controlling accessibility in agile projects
with the access modifier modifier,” in International Conference on Objects, Compo-
nents, Models and Patterns, pp. 41–59, Springer, 2008.

[460] A. Müller, “Bytecode analysis for checking java access modifiers,” in Work in Progress
and Poster Session, 8th Int. Conf. on Principles and Practice of Programming in Java
(PPPJ 2010), Vienna, Austria, 2010.

[461] F. Steimann and A. Thies, “From public to private to absent: Refactoring java pro-
grams under constrained accessibility,” in European Conference on Object-Oriented
Programming, pp. 419–443, Springer, 2009.

[462] C. Zoller and A. Schmolitzky, “Measuring inappropriate generosity with access mod-
ifiers in java systems,” in 2012 Joint Conference of the 22nd International Workshop
on Software Measurement and the 2012 Seventh International Conference on Software
Process and Product Measurement, pp. 43–52, IEEE, 2012.

[463] K. Kobori, M. Matsushita, and K. Inoue, “Evolution analysis for accessibility exces-
siveness in java,” in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pp. 83–90, IEEE, 2015.

[464] S. A. Vidal, A. Bergel, C. Marcos, and J. A. Dı́az-Pace, “Understanding and address-
ing exhibitionism in java empirical research about method accessibility,” Empirical
Software Engineering, vol. 21, no. 2, pp. 483–516, 2016.

[465] S. Vidal, A. Bergel, J. A. Dı́az-Pace, and C. Marcos, “Over-exposed classes in java:
An empirical study,” Computer Languages, Systems & Structures, vol. 46, pp. 1–19,
2016.

[466] A. Agrawal and R. Khan, “Assessing impact of cohesion on security-an object oriented
design perspective,” Pensee, vol. 76, no. 2, 2014.

[467] A. Agrawal and R. Khan, “Role of coupling in vulnerability propagation,” Software
Engineering, vol. 2, no. 1, pp. 60–68, 2012.

317

[468] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for object-oriented class de-
signs,” in 2009 Ninth International Conference on Quality Software, pp. 11–20, IEEE,
2009.

[469] W. Wang, K. R. Mahakala, A. Gupta, N. Hussein, and Y. Wang, “A linear classifier
based approach for identifying security requirements in open source software develop-
ment,” Journal of Industrial Information Integration, 2018.

[470] J. L. Wright, M. McQueen, and L. Wellman, “Analyses of two end-user software vulner-
ability exposure metrics (extended version),” Information Security Technical Report,
vol. 17, no. 4, pp. 173–184, 2013.

[471] A. K. Srivastava and S. Kumar, “An effective computational technique for taxonomic
position of security vulnerability in software development,” Journal of Computational
Science, vol. 25, pp. 388–396, 2018.

[472] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for object-oriented class de-
signs,” in 2009 Ninth International Conference on Quality Software, pp. 11–20, IEEE,
2009.

[473] I. Chowdhury, B. Chan, and M. Zulkernine, “Security metrics for source code struc-
tures,” in Proceedings of the fourth international workshop on Software engineering for
secure systems, pp. 57–64, ACM, 2008.

[474] K. Maruyama and T. Omori, “A security-aware refactoring tool for java programs,” in
Proceedings of the 4th Workshop on Refactoring Tools, pp. 22–28, ACM, 2011.

[475] B. Alshammari, C. Fidge, and D. Corney, “Assessing the impact of refactoring on
security-critical object-oriented designs,” in 2010 Asia Pacific Software Engineering
Conference, pp. 186–195, Nov 2010.

[476] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for object-oriented class
designs,” in 2009 Ninth International Conference on Quality Software, pp. 11–20, Aug
2009.

[477] G. McGraw and E. W. Felten, Securing Java: Getting Down to Business with Mobile
Code. New York, NY, USA: John Wiley & Sons, Inc., 1999.

[478] S. Ghaith and M. Ó Cinnéide, “Improving software security using search-based refac-
toring,” in Search Based Software Engineering (G. Fraser and J. Teixeira de Souza,
eds.), (Berlin, Heidelberg), pp. 121–135, Springer Berlin Heidelberg, 2012.

[479] S. Ghaith and M. Ó. Cinnéide, “Improving software security using search-based refac-
toring,” in International Symposium on Search Based Software Engineering, pp. 121–
135, Springer, 2012.

[480] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality
assessment,” IEEE Transactions on Software Engineering, vol. 28, no. 1, pp. 4–17,
2002.

318

[481] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring: An empirical study,”
Journal of Software Maintenance and Evolution, vol. 20, no. 5, pp. 345–364, 2008.

[482] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. Hemati Moghadam, “Exper-
imental assessment of software metrics using automated refactoring,” in Proceedings
of the ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 49–58, ACM, 2012.

[483] J. Jürjens, Secure systems development with UML. Springer Science & Business Media,
2005.

[484] M. Fowler, Refactoring: Improving the Design of Existing Programs. Addison-Wesley
Professional, 1 ed., 1999.

[485] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for software design
smells: managing technical debt. Morgan Kaufmann, 2014.

[486] T. Sharma, “Designitejava (enterprise),” Sept. 2019. http://www.designite-
tools.com/designitejava.

[487] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on the relationship
between design and architecture smells,” Empirical Software Engineering (EMSE),
Aug. 2020.

[488] T. Sharma, M. Fragkoulis, and D. Spinellis, “House of cards: Code smells in open-
source c# repositories,” in 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 424–429, 2017.

[489] W. H. Brown, R. C. Malveau, and T. J. Mowbray, “Antipatterns: refactoring software,
architectures, and projects in crisis,” John Wiley and Sons, 1998.

[490] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns.
John Wiley; Sons, Inc., 2003.

[491] J. L. Ordiales Coscia, C. M. Mateos Diaz, M. P. Crasso, and A. O. Zunino Suarez,
“Anti-pattern free code-first web services for state-of-the-art java wsdl generation
tools,” International Journal of Web and Grid Services, vol. 9, no. 2, pp. 107–126,
2013.

[492] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, “Detecting wsdl bad practices
in code-first web services,” International Journal of Web and Grid Services, vol. 7,
no. 4, p. 357, 2011.

[493] J. L. O. Coscia, C. Mateos, M. Crasso, and A. Zunino, “Refactoring code-first web ser-
vices for early avoiding wsdl anti-patterns: Approach and comprehensive assessment,”
Science of Computer Programming, vol. 89, pp. 374–407, 2014.

[494] J. Kral and M. Zemlicka, “The most important service-oriented antipatterns,” in Soft-
ware Engineering Advances, 2007. ICSEA 2007. International Conference on, pp. 29–
29, IEEE, 2007.

319

[495] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6,
no. 2, pp. 182–197, 2002.

[496] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi, “Improving multi-
objective code-smells correction using development history,” Journal of Systems and
Software, vol. 105, pp. 18–39, 2015.

[497] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and K. Deb, “A robust
multi-objective approach to balance severity and importance of refactoring opportuni-
ties,” Empirical Software Engineering, vol. 22, no. 2, pp. 894–927, 2017.

[498] R. Shatnawi and W. Li, “An empirical assessment of refactoring impact on software
quality using a hierarchical quality model,” International Journal of Software Engi-
neering and Its Applications, vol. 5, no. 4, pp. 127–149, 2011.

[499] J. Kerievsky, Refactoring to patterns. Pearson Deutschland GmbH, 2005.

[500] M. Kessentini, H. Sahraoui, and M. Boukadoum, “Example-based model-
transformation testing,” Automated Software Engineering, vol. 18, no. 2, pp. 199–224,
2011.

[501] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum, “Generating trans-
formation rules from examples for behavioral models,” in Proceedings of the Second
International Workshop on Behaviour Modelling: Foundation and Applications, p. 2,
ACM, 2010.

[502] S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said, “Preference-based many-
objective evolutionary testing generates harder test cases for autonomous agents,”
in International Symposium on Search Based Software Engineering, pp. 245–250,
Springer, Berlin, Heidelberg, 2013.

[503] U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh, and K. Deb, “Momm:
Multi-objective model merging,” Journal of Systems and Software, vol. 103, pp. 423–
439, 2015.

[504] M. Hüttermann, “Beginning devops for developers,” in DevOps for Developers, pp. 3–
13, Springer, 2012.

[505] G. G. Claps, R. B. Svensson, and A. Aurum, “On the journey to continuous de-
ployment: Technical and social challenges along the way,” Information and Software
technology, vol. 57, pp. 21–31, 2015.

[506] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release planning of
mobile apps based on user reviews,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 14–24, IEEE, 2016.

320

[507] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio, G. Canfora,
and H. C. Gall, “What would users change in my app? summarizing app reviews
for recommending software changes,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 499–510, ACM,
2016.

[508] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug localization using
structured information retrieval,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 345–355, IEEE, 2013.

[509] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug localization with
combination of deep learning and information retrieval,” in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC), pp. 218–229, IEEE,
2017.

[510] T.-D. B. Le, F. Thung, and D. Lo, “Will this localization tool be effective for this bug?
mitigating the impact of unreliability of information retrieval based bug localization
tools,” Empirical Software Engineering, vol. 22, no. 4, pp. 2237–2279, 2017.

[511] J.-E. J. Tevis and J. A. Hamilton, “Methods for the prevention, detection and removal
of software security vulnerabilities,” in Proceedings of the 42nd annual Southeast re-
gional conference, pp. 197–202, ACM, 2004.

[512] D. M. Chess, “Security issues in mobile code systems,” in Mobile agents and security,
pp. 1–14, Springer, 1998.

[513] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for identify-
ing emerging issues,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, (New York, NY, USA), pp. 48–58, ACM, 2018.

[514] L. AlSumait, D. Barbará, and C. Domeniconi, “On-line lda: Adaptive topic models for
mining text streams with applications to topic detection and tracking,” in 2008 eighth
IEEE international conference on data mining, pp. 3–12, IEEE, 2008.

[515] P. K. Goyal and G. Joshi, “Qmood metric sets to assess quality of java program,”
in 2014 International Conference on Issues and Challenges in Intelligent Computing
Techniques (ICICT), pp. 520–533, IEEE, 2014.

[516] J. Bayuk and A. Mostashari, “Measuring systems security,” Systems Engineering,
vol. 16, no. 1, pp. 1–14, 2013.

[517] C. Abid, S. T. Kessentini, Marouane, and K. Rick, “Study appendix,” 2021. URL:
https://sites.google.com/view/tosem2021.

[518] M. Lu and P. Liang, “Automatic classification of non-functional requirements from
augmented app user reviews,” in Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering, pp. 344–353, 2017.

321

[519] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall,
“Ardoc: App reviews development oriented classifier,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 1023–1027, 2016.

[520] Y. Man, C. Gao, M. R. Lyu, and J. Jiang, “Experience report: Understanding cross-
platform app issues from user reviews,” in 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE), pp. 138–149, IEEE, 2016.

[521] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining user opinions
in mobile app reviews: A keyword-based approach (t),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 749–759,
IEEE, 2015.

[522] S. Bird, E. Loper, and E. Klein, Natural Language Processing with Python. O’Reilly
Media Inc., 2009. URL: http://www.nltk.org. , last accessed on 2020-02-25.

[523] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical study,” in
2013 21st IEEE international requirements engineering conference (RE), pp. 125–134,
IEEE, 2013.

[524] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework for java pro-
gram analysis: a retrospective,” in Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), vol. 15, p. 35, 2011.

[525] Y. Tang, F. Zhao, Y. Yang, H. Lu, Y. Zhou, and B. Xu, “Predicting vulnerable com-
ponents via text mining or software metrics? an effort-aware perspective,” in 2015
IEEE International Conference on Software Quality, Reliability and Security, pp. 27–
36, IEEE, 2015.

[526] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting vulnerable
software components via text mining,” IEEE Transactions on Software Engineering,
vol. 40, no. 10, pp. 993–1006, 2014.

[527] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable components:
Software metrics vs text mining,” in 2014 IEEE 25th international symposium on
software reliability engineering, pp. 23–33, IEEE, 2014.

[528] R. Artusi, P. Verderio, and E. Marubini, “Bravais-pearson and spearman correlation
coefficients: meaning, test of hypothesis and confidence interval,” The International
journal of biological markers, vol. 17, no. 2, pp. 148–151, 2002.

[529] H. Akoglu, “User’s guide to correlation coefficients,” Turkish journal of emergency
medicine, vol. 18, no. 3, pp. 91–93, 2018.

[530] A. Vargha and H. D. Delaney, “A critique and improvement of the cl common language
effect size statistics of mcgraw and wong,” Journal of Educational and Behavioral
Statistics, vol. 25, no. 2, pp. 101–132, 2000.

322

[531] P. Guo, R. Peterson, P. Paukstelis, and J. Wang, “Cloud-based life sciences manu-
facturing system: Integrated experiment management and data analysis via amazon
web services,” in INFORMS International Conference on Service Science, pp. 149–159,
Springer, 2019.

[532] A. P. Kalogeras, J. Gialelis, C. Alexakos, M. Georgoudakis, and S. Koubias, “Vertical
integration of enterprise industrial systems utilizing web services,” in IEEE Interna-
tional Workshop on Factory Communication Systems, 2004. Proceedings., pp. 187–192,
IEEE, 2004.

[533] J. Jung, B. Song, K. Watson, and T. Usländer, “Design of smart factory web ser-
vices based on the industrial internet of things,” in Proceedings of the 50th Hawaii
International Conference on System Sciences, 2017.

[534] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research
problems in data center networks,” ACM SIGCOMM computer communication review,
vol. 39, no. 1, pp. 68–73, 2008.

[535] A. Nasridinov, J.-Y. Byun, and Y.-H. Park, “A qos-aware performance prediction for
self-healing web service composition,” in 2012 Second International Conference on
Cloud and Green Computing, pp. 799–803, IEEE, 2012.

[536] R. Mohanty, V. Ravi, and M. R. Patra, “Web-services classification using intelligent
techniques,” Expert Systems with Applications, vol. 37, no. 7, pp. 5484–5490, 2010.

[537] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and K. Inoue, “Search-
based software library recommendation using multi-objective optimization,” Informa-
tion and Software Technology, vol. 83, pp. 55–75, 2017.

[538] E. Al-Masri and Q. H. Mahmoud, “The QWS dataset.” URL: https://qwsdata.github.
io.

[539] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association rules,” in Proc.
20th int. conf. very large data bases, VLDB, vol. 1215, pp. 487–499, 1994.

[540] S. Brin, R. Motwani, and C. Silverstein, “Beyond market baskets: Generalizing asso-
ciation rules to correlations,” Acm Sigmod Record, vol. 26, no. 2, pp. 265–276, 1997.

[541] H. Toivonen et al., “Sampling large databases for association rules,” in VLDB, vol. 96,
pp. 134–145, 1996.

[542] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel algorithms for discovery
of association rules,” Data mining and knowledge discovery, vol. 1, no. 4, pp. 343–373,
1997.

[543] W. L. J. H. J. Pei et al., “Cmar: Accurate and efficient classification based on multiple
class-association rules,” ICDM-2004, 2001.

323

[544] M. Ilayaraja and T. Meyyappan, “Mining medical data to identify frequent diseases
using apriori algorithm,” in 2013 International Conference on Pattern Recognition,
Informatics and Mobile Engineering, pp. 194–199, IEEE, 2013.

[545] S. Sathyadevan, S. Gangadharan, et al., “Crime analysis and prediction using data
mining,” in 2014 First International Conference on Networks & Soft Computing (IC-
NSC2014), pp. 406–412, IEEE, 2014.

[546] A. Methaila, P. Kansal, H. Arya, P. Kumar, et al., “Early heart disease prediction
using data mining techniques,” Computer Science & Information Technology Journal,
pp. 53–59, 2014.

[547] A. Savasere, E. R. Omiecinski, and S. B. Navathe, “An efficient algorithm for mining
association rules in large databases,” tech. rep., Georgia Institute of Technology, 1995.

[548] S. Tomović and P. Stanǐsić, “Cross validation method in frequent itemset mining,” in
CECIIS-2011, 2011.

[549] D. F. Ransohoff, “Rules of evidence for cancer molecular-marker discovery and valida-
tion,” Nature Reviews Cancer, vol. 4, no. 4, p. 309, 2004.

[550] P. D. Adams, N. S. Pannu, R. J. Read, and A. T. Brünger, “Cross-validated maximum
likelihood enhances crystallographic simulated annealing refinement,” Proceedings of
the National Academy of Sciences, vol. 94, no. 10, pp. 5018–5023, 1997.

[551] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of programming
languages and code quality in github,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 155–165, 2014.

[552] L. Prechelt, “An empirical comparison of seven programming languages,” Computer,
vol. 33, no. 10, pp. 23–29, 2000.

[553] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of Systems and
Software, vol. 138, pp. 158–173, 2018.

[554] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A method for the
specification and detection of code and design smells,” IEEE Transactions on Software
Engineering, vol. 36, no. 1, pp. 20–36, 2009.

[555] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman, “A textual-based
technique for smell detection,” in 2016 IEEE 24th international conference on program
comprehension (ICPC), pp. 1–10, IEEE, 2016.

[556] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia,
“Mining version histories for detecting code smells,” IEEE Transactions on Software
Engineering, vol. 41, no. 5, pp. 462–489, 2014.

324

[557] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia, “De-
tecting code smells using machine learning techniques: are we there yet?,” in 2018
ieee 25th international conference on software analysis, evolution and reengineering
(saner), pp. 612–621, IEEE, 2018.

[558] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing heuristic and ma-
chine learning approaches for metric-based code smell detection,” in 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC), pp. 93–104, IEEE,
2019.

[559] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “A large empirical assessment
of the role of data balancing in machine-learning-based code smell detection,” Journal
of Systems and Software, vol. 169, p. 110693, 2020.

[560] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal definition
and automatic detection of architecture smells,” in 2015 12th Working IEEE/IFIP
Conference on Software Architecture, pp. 51–60, IEEE, 2015.

[561] A. J. Mooij, J. Ketema, S. Klusener, and M. Schuts, “Reducing code complexity
through code refactoring and model-based rejuvenation,” in 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 617–621, IEEE, 2020.

[562] F. Pecorelli, F. Palomba, F. Khomh, and A. De Lucia, “Developer-driven code smell
prioritization,” in Proceedings of the 17th International Conference on Mining Software
Repositories, pp. 220–231, 2020.

[563] N. Sae-Lim, S. Hayashi, and M. Saeki, “Context-based code smells prioritization for
prefactoring,” in 2016 IEEE 24th International Conference on Program Comprehension
(ICPC), pp. 1–10, IEEE, 2016.

[564] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning techniques for code
smell detection: A systematic literature review and meta-analysis,” Information and
Software Technology, vol. 108, pp. 115–138, 2019.

[565] E. V. de Paulo Sobrinho, A. De Lucia, and M. de Almeida Maia, “A systematic litera-
ture review on bad smells—5 w’s: which, when, what, who, where,” IEEE Transactions
on Software Engineering, 2018.

[566] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita, “Automatic metric thresholds
derivation for code smell detection,” in 2015 IEEE/ACM 6th International Workshop
on Emerging Trends in Software Metrics, pp. 44–53, IEEE, 2015.

[567] F. A. Fontana and M. Zanoni, “Code smell severity classification using machine learn-
ing techniques,” Knowledge-Based Systems, vol. 128, pp. 43–58, 2017.

[568] M. K. T. S. F. P. Chaima Abid, Thiago do Nascimento Ferreira, “Study appendix,”
2021. URL: https://sites.google.com/view/tse2021benchmarking/home.

325

[569] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics
and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[570] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,” Journal of the
American statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

[571] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–
65, 1987.

[572] L. Zhu, B. Ma, and X. Zhao, “Clustering validity analysis based on silhouette coefficient
[j],” Journal of Computer Applications, vol. 30, no. 2, pp. 139–141, 2010.

[573] N. Rahmah and I. S. Sitanggang, “Determination of optimal epsilon (eps) value on db-
scan algorithm to clustering data on peatland hotspots in sumatra,” in IOP conference
series: earth and environmental science, vol. 31, p. 012012, IOP Publishing, 2016.

[574] Nist and E. Aroms, NIST Special Publication 800-53 Revision 3 Recommended Secu-
rity Controls for Federal Information Systems and Organizations. Paramount, CA:
CreateSpace, 2012.

[575] S. Planning, “The economic impacts of inadequate infrastructure for software testing,”
National Institute of Standards and Technology, 2002.

[576] W. Suryn, A. Abran, and A. April, “Iso/iec square. the second generation of stan-
dards for software product quality,” IASTED International Conference on Software
Engineering and Applications SEA, 2003.

[577] T. A. Linden, “Operating system structures to support security and reliable software,”
ACM Computing Surveys (CSUR), vol. 8, no. 4, pp. 409–445, 1976.

[578] A. Adewumi, S. Misra, and N. Omoregbe, “Evaluating open source software quality
models against iso 25010,” in 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 872–
877, IEEE, 2015.

[579] M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley Pro-
fessional, 2018.

[580] K. Maruyama and K. Tokoda, “Security-aware refactoring alerting its impact on code
vulnerabilities,” in 2008 15th Asia-Pacific Software Engineering Conference, pp. 445–
452, Dec 2008.

[581] K. Maruyama and T. Omori, “A security-aware refactoring tool for java programs,”
Proceedings of the 4th Workshop on Refactoring Tools, pp. 22–28, 2011.

[582] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality
assessment,” IEEE Transactions on software engineering, vol. 28, no. 1, pp. 4–17, 2002.

326

[583] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in
Noise reduction in speech processing, pp. 1–4, Springer, 2009.

[584] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil, “Using experimental design
to find effective parameter settings for heuristics,” Journal of Heuristics, vol. 7, no. 1,
pp. 77–97, 2001.

[585] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering:
Trends, techniques and applications,” ACM Comput. Surv., vol. 45, pp. 11:1–11:61,
Dec. 2012.

[586] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: a new met-
ric for architectural maintenance complexity,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp. 499–510, IEEE, 2016.

[587] M. Reif, M. Eichberg, B. Hermann, and M. Mezini, “Hermes: assessment and creation
of effective test corpora,” in Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, pp. 43–48, 2017.

[588] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini, “Call graph construc-
tion for java libraries,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 474–486, 2016.

[589] M. A. Cusumano, “Who is liable for bugs and security flaws in software?,” Communi-
cations of the ACM, vol. 47, no. 3, pp. 25–27, 2004.

[590] I. V. Krsul, Software vulnerability analysis. Purdue University West Lafayette, IN,
1998.

[591] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna, “You are what you include: Large-scale evaluation of remote
javascript inclusions,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pp. 736–747, ACM, 2012.

[592] J. Han and Y. Zheng, “Security characterisation and integrity assurance for soft-
ware components and component-based systems,” in Proceedings of 1998 Australasian
Workshop on Software Architectures, Melbourne, pp. 83–89, 1998.

[593] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java applications with
static analysis,” in Proceedings of the 14th Conference on USENIX Security Symposium
- Volume 14, SSYM’05, pp. 18–18, USENIX Association, 2005.

[594] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for java,” in Pro-
ceedings of the 21st Annual Computer Security Applications Conference, ACSAC ’05,
pp. 303–311, IEEE Computer Society, 2005.

[595] K. Huang, J. Zhang, W. Tan, and Z. Feng, “Shifting to mobile: Network-based empiri-
cal study of mobile vulnerability market,” IEEE Transactions on Services Computing,
2016.

327

[596] M. W. Mkaouer, M. Kessentini, S. Bechikh, and M. Ó. Cinnéide, “A robust multi-
objective approach for software refactoring under uncertainty,” in International Sym-
posium on Search Based Software Engineering, pp. 168–183, Springer, Cham, 2014.

[597] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactoring suggestions based on his-
torical volatility,” in 2011 15th European Conference on Software Maintenance and
Reengineering, pp. 25–34, IEEE, 2011.

[598] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt investment opportu-
nities,” in Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 39–42,
ACM, 2011.

[599] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodorant: identifica-
tion and application of extract class refactorings,” in 2011 33rd International Confer-
ence on Software Engineering (ICSE), pp. 1037–1039, IEEE, 2011.

[600] “Cve vulnerability data.” https://www.cvedetails.com/.

[601] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design
defects detection and correction by example,” in 2011 IEEE 19th International Con-
ference on Program Comprehension, pp. 81–90, IEEE, 2011.

[602] A. Arcuri and L. Briand, “A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering,” in 2011 33rd International Conference
on Software Engineering (ICSE), pp. 1–10, IEEE, 2011.

[603] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know it,”
IEEE Transactions on Software Engineering, vol. 38, no. 1, pp. 5–18, 2012.

[604] G. Bavota, A. D. Lucia, M. D. Penta, R. Oliveto, and F. Palomba, “An experimental
investigation on the innate relationship between quality and refactoring,” Journal of
Systems and Software, vol. 107, pp. 1–14, 2015.

[605] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring op-
portunities,” IEEE Transactions on Software Engineering, vol. 35, no. 3, pp. 347–367,
2009.

[606] Anonymous Authors(s), “Study appendix,” 2021. https://sites.google.com/view/
asedependency.

[607] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code
refactoring using search-based software engineering: an industrial case study,” ACM
Transactions on Software Engineering and Methodology, vol. 25, no. 3, p. 23, 2016.

[608] M. O’Keeffe and M. O. Cinnéide, “A stochastic approach to automated design improve-
ment,” in Proceedings of the 2nd International Conference on Principles and Practice
of Programming in Java (PPPJ ’03), (Kilkenny City, Ireland), pp. 59–62, ACM, 2003.

328

[609] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[610] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this anymore:
multi-objective overtime planning for software engineering projects,” in 2013 35th In-
ternational Conference on Software Engineering (ICSE), pp. 462–471, IEEE, 2013.

[611] H. Meunier, E.-G. Talbi, and P. Reininger, “A multiobjective genetic algorithm for
radio network optimization,” in Proceedings of the 2000 Congress on Evolutionary
Computation. CEC00 (Cat. No. 00TH8512), vol. 1, pp. 317–324, IEEE, 2000.

[612] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithm re-
search: A history and analysis,” tech. rep., Citeseer, 1998.

[613] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach,” IEEE transactions on Evolutionary Compu-
tation, vol. 3, no. 4, pp. 257–271, 1999.

[614] X. Zhang, Y. Tian, and Y. Jin, “A knee point-driven evolutionary algorithm for many-
objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 6, pp. 761–776, 2014.

[615] J. Koehler and A. Owen, “’computer experiments’,” Handbook of Statistics, vol. 13,
pp. 261–308, 1996.

[616] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, “Recommending refactor-
ings to reverse software architecture erosion,” in 2012 16th European Conference on
Software Maintenance and Reengineering, pp. 335–340, IEEE, 2012.

[617] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk,
“Detecting bad smells in source code using change history information,” in 2013
28th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 268–278, IEEE, 2013.

[618] M. Mohan and D. Greer, “A survey of search-based refactoring for software mainte-
nance,” Journal of Software Engineering Research and Development, vol. 6, no. 1, p. 3,
2018.

[619] M. Hall, N. Walkinshaw, and P. McMinn, “Supervised software modularisation,” in
2012 28th IEEE International Conference on Software Maintenance (ICSM), pp. 472–
481, IEEE, 2012.

[620] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based testing for
non-functional system properties,” Information and Software Technology, vol. 51, no. 6,
pp. 957–976, 2009.

[621] V. Toğan and A. T. Daloğlu, “An improved genetic algorithm with initial population
strategy and self-adaptive member grouping,” Computers & Structures, vol. 86, no. 11-
12, pp. 1204–1218, 2008.

329

[622] Y. Deng, Y. Liu, and D. Zhou, “An improved genetic algorithm with initial population
strategy for symmetric tsp,” Mathematical Problems in Engineering, vol. 2015, 2015.

[623] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Ga with a new multi-parent crossover
for solving ieee-cec2011 competition problems,” in 2011 IEEE congress of evolutionary
computation (CEC), pp. 1034–1040, IEEE, 2011.

[624] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig, “Accurate and
efficient refactoring detection in commit history,” in 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE), pp. 483–494, IEEE, 2018.

[625] A. authors, “Study appendix,” 2020. URL: https://sites.google.com/view/
tse2020xsbr.

[626] P. D. McNicholas, T. B. Murphy, and M. O’Regan, “Standardising the lift of an associ-
ation rule,” Computational Statistics & Data Analysis, vol. 52, no. 10, pp. 4712–4721,
2008.

[627] E.-G. Talbi, Metaheuristics: from design to implementation, vol. 74. John Wiley &
Sons, 2009.

[628] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and probability levels for
the wilcoxon rank sum test and the wilcoxon signed rank test,” Selected tables in
mathematical statistics, vol. 1, pp. 171–259, 1970.

[629] J. T. Richardson, “Eta squared and partial eta squared as measures of effect size in
educational research,” Educational Research Review, vol. 6, no. 2, pp. 135–147, 2011.

[630] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering:
Trends, techniques and applications,” ACM Computing Surveys (CSUR), vol. 45, no. 1,
pp. 1–61, 2012.

330

