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Abstract

Aim: To evaluate the microbial colonization in different dentition phases on
individuals from O to 18 years of age belonging to families with a history of periodon-
titis compared to descendants of periodontally healthy parents.

Materials and Methods: The offspring of subjects with periodontitis (‘Perio’ group)
and the offspring of periodontally healthy subjects (‘Healthy’ group), matched for
gender and age, were included in this cross-sectional study and divided according to
the dentition phase: pre-dentate, primary, mixed and permanent. The patients were
clinically assessed, and their saliva was collected. DNA was extracted, and V1-V3
and V4-V5 regions of the 16S rRNA gene were sequenced.

Results: Fifty children of parents with periodontitis and 50 from healthy parents
were included in the study and divided according to the dentition phase: pre-
dentate (n = 5/group), primary dentition (n = 15/group), mixed dentition
(n = 15/group) and permanent dentition (n = 15/group) in each group. The
microbiome composition was different between dentitions for both groups. Chil-
dren of the Perio group presented a microbial diversity different from that of the
Healthy group in mixed and permanent dentitions. The more intense shift in the
community occurred between primary and mixed dentition in the Perio group,
while the transition between mixed and permanent dentition was the period with
greater changes in the microbiome for the Healthy group. Furthermore, a
pathogen-rich environment—higher prevalence and abundance of periodontitis-
associated species such as Prevotella spp., Selenomonas spp., Leptotrichia
spp., Filifactor alocis, Prevotella intermedia, Treponema denticola and Tannerella
forsythia— was observed in the Perio group.

Conclusions: The parents' periodontal status significantly affects the microbiome
composition of their offspring from an early age. The mixed dentition was the phase
associated with establishing a dysbiotic and pathogen-rich microbiome in descen-

dants of parents with periodontitis.
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Scientific rationale for study: Subgingival microbiota in children at the mixed-dentition phase can
be modulated by the parents' periodontal conditions, probably acting as a source of pathobionts

during early ages. However, it is unclear at which dentition phase the microbiome alterations

Principal findings: From early ages (pre-dentate and primary dentition), children from
periodontitis-affected parents presented a different abundance of some species, and at later
ages (mixed and permanent dentitions) a dysbiotic microbial community is established.

Practical implications: Parental periodontal health should be included as a factor that affects the

microbial establishment in the oral cavity of their children, and an early preventive approach can
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Clinical Relevance

can be initially detected.

be prioritized for this population.
1 | INTRODUCTION

The oral cavity is a virtually sterile niche before birth (Perez-Mufoz
et al., 2017) but is sequentially colonized by different microorganisms
over time (Mason et al., 2018; Schulz et al., 2019). However, a new
concept of oral colonization has been considered, describing that the
human microbiome commences earlier than birth (Chen et al., 2020).
Some studies have described unique microbial colonization in the
amniotic fluid in up to 70% of pregnant women (Prince et al., 2015).
Interestingly, several oral microorganisms, such as those belonging to
the gerera Streptococcus, Fusobacterium, Neisseria, Prevotella, Veillo-
nella and Porphyromonas, are found to be present in the placental
niche (Aagaard et al., 2014; Bearfield et al., 2002; Gomez-Arango
et al., 2017).

Initially presenting only shedding mucosae in a pre-dentate phase,
the oral niche undergoes a substantial modification after primary
teeth eruption in early infancy and, subsequently, with permanent
dentition, modulating the oral microbiome that evolves into a complex
and diverse community (Escapa et al., 2018; Kennedy et al., 2019; Lif
Holgerson et al., 2020; Mason et al., 2018). Several aspects can drive
the colonization process and be responsible for determining the oral
microbiota composition, such as the neonate's immunity (Wu
et al, 2014; Yu et al., 2018), maternal transmission during childbirth,
parental exposures, diet and horizontal transmission from caregivers
and peers (Nelson-Filho et al., 2013; Sulyanto et al., 2019; Ward
et al., 2018). These factors shape the oral microbiota and, conse-
quently, the human host immune functions and physiological develop-
ment, which influence future health (White et al., 2013; Xiao
et al., 2020; Yatsunenko et al., 2012).

Recently, parental periodontitis has been presented as another
factor altering their offspring's oral colonization. Toddlers and adoles-
cents (6-12 years) who are descendants of younger grade C
periodontitis-affected parents harbour a dysbiotic microbiome com-
pared to periodontally healthy parents' descendants (Monteiro
et al., 2021). Indeed, grade C periodontitis affecting systemically
healthy youngsters (previously called aggressive periodontitis) is an
immuno-inflammatory disease of the periodontium, occurring at
an early age in systemically healthy individuals who present an accu-

mulation of cases within the family, with descendants of a

periodontitis-affected individual being 50% more likely to develop
this disease than a non-related child (Michalowicz et al., 2000).
Because of the periodontitis severity and potential for extensive
destruction at a very young age, along with familial aggregation of
their cases, the knowledge of sequential colonization of this higher
risk population and the comprehension of when oral dysbiosis is
established could lead to a more predictable preventive therapy.
Moreover, a significant part of the oral microbiome's maturation
occurs during the first 2 years of life, and this development may be
influenced by early life circumstances (Kennedy et al., 2019).
Therefore, this investigation aimed to examine the oral micro-
biome in each dentition cohort—pre-dentate, primary dentition, mixed
dentition and permanent dentition—in a cross-sectional clinical study,
comparing the descendants of periodontitis-affected parents with

those of periodontally healthy ones.

2 | MATERIALS AND METHODS

21 | Study design
It is an age- and gender-matched cross-sectional study to assess the
oral colonization in the different dentition phases of individuals from fam-
ilies with a history of periodontitis compared to children/adolescents of
periodontally healthy parents. The study was approved by the University
of Campinas Ethics Committee (70816017.6.000.5418) and was carried
out from March 2017 to November 2018. The patients were recruited
and evaluated at Piracicaba Dental School (Piracicaba, Sdo Paulo, Brazil).
The study inclusion criteria were different for each group:
Periodontitis-descendants (Perio) group: Subjects aged between
0 and 18 years, with at least one parent (father or mother) presenting
grade C, stage Ill-IV, periodontitis (Papapanou et al., 2018). For the
disease diagnosis of parents, individuals should be less than 35 years
old at the time of diagnosis, have at least eight teeth with probing
depth (PD) and clinical attachment loss (CAL) >5 mm (confirmed at
radiographical exams), have at least 20 remaining teeth in the oral cav-
ity and present good systemic health. At the time of examination, all
parents with periodontitis should present periodontal pockets =5 mm

associated with bleeding on probing (BoP), indicating still active
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disease and need for periodontal treatment, in spite of previous
treatment.

Healthy descendants (Healthy) group: Subjects aged between
0 and 18 years, with both parents (father and mother) periodontally
healthy. Periodontally healthy individuals did not present any site with
periodontal probing depth (PPD) 23 mm with BoP, absence of radio-
graphic proximal bone loss, at least 20 remaining teeth and good sys-
temic health.

Parents and their offspring with chronic disease, smokers or for-
mer smokers, pregnant or lactating women, antibiotic use within
3 months before the study and had received periodontal treatment
within 6 months before the study were excluded from the study
(Monteiro et al., 2014).

All children were segregated according to their dentition state
into pre-dentate, primary, mixed and permanent dentition in each
group. The sample size was based on previous studies from our group
demonstrating sufficient power to identify differences in B-diversity
and differential abundance of bacteria in periodontitis-associated
microbiome using 16S sequencing (Mason et al., 2013; Paropkari
et al.,, 2016; Queiroz et al., 2017).

Oral clinical exams were performed for all children when the gen-
der and age information was collected. Then, the dmft (number of
deciduous teeth decayed, missing or restored) and DMFT (number
of permanent teeth decayed, missing or restored) were examined,
as previously described (Diaz-Cardenas & Gonzalez-Martinez,
2010). The examination was performed by a single calibrated
examiner (MFM). The examiner measured the dmft/DMFT of
13 children with different caries activities in four periods, obtain-
ing an agreement of k = 0.86. The same examiner who performed
the children's clinical examination (MFM) examined the parents'
periodontal status. This examiner was calibrated for the periodon-
tal examination with an intra-class correlation of 92% for PPD.
Parents' periodontal data were used only to evaluate the inclusion
in the study but not included in the analysis. Children with mixed
and permanent dentition were screened for periodontitis only to

confirm the absence of active disease.

2.2 | Sample collection and DNA isolation

From each subject, unstimulated saliva was collected in Eppendorf
microtubes (AXYGEN, USA); from pre-dentate subjects, saliva sam-
ples were collected using sterile swabs because of their inability to
collect unstimulated saliva. The samples were collected between
7AM and 9 AM and before the patients ate and brushed
their teeth in the morning. After collection, all samples were
stored in microtubes and frozen at —80°C until DNA isolation
using the Qiagen MiniAmp kit (Valencia, CA) according to the man-
ufacturer's instructions. DNA isolation was performed using 1 mL
of saliva as input. DNA concentration was measured following the
manufacturer's instructions (Qubit dsDNA HS Assay Kit; Life Tech-
nologies), and between 4.0 and 94.8 ng/uL of DNA was obtained
per sample.

2.3 | Sequencing and bioinformatic analysis

The V1-V3 and V4-V5 regions of the 16S rRNA gene were
sequenced using the lllumina Miseq platform, with 10 ng of DNA used
per sequencing run. The raw sequences were deposited in the
Sequence Read Archive (SRA) database under registration number
PRINA780174 (ncbi.nlm.nih.gov/sra). The sample processing protocol,
library preparation and sequencing protocol have been described in a
previous study (Monteiro et al., 2021). Analyses were conducted
using QIIME (Caporaso et al, 2010) and PhyloToAST (Dabdoub
et al, 2016). The Shannon method (Shannon, 1997) was used as an
a-diversity estimator, and differences between o-diversities group-
wise were measured using the one-way ANOVA test with the Tukey
HSD test for multiple comparisons. The unweighted UniFrac distance
was used to evaluate the p-diversity, and the differences between
groups were analysed using principal coordinate analysis (PCoA) and
tested using the Adonis test. Differences in the dispersion of samples
between groups were tested using the PERMDISP test. The core spe-
cies were characterized using Qiime's script (core_microbiome.py)
when species were present in at least 75% of the patients in each
group and visualized using PhyloToAST. The Bioconductor package
for R, analysis of compositions of microbiomes with bias correction
(ANCOM-BC) (Lin & Peddada, 2020), was used to perform differential
analysis of the annotated taxa. This function estimates the unknown
sampling fractions and corrects the bias induced by the differences
among samples. The absolute abundance data are modelled using a
linear regression framework. p-Values were adjusted for multiple test-
ing (false discovery rate [FDR] <0.05, the Holm-Bonferroni method).
The bacterial network correlations were determined significantly pair-
wise using the SparCC (Pylro et al., 2014) pipeline (p < .01, r > 0.75),
and network graphs were drawn in Python (Networkx package) and
visualized in Gephi (Bastian et al. 2009).

24 | Demographic and clinical analysis

Demographic and clinical data of children from Perio and Healthy
groups were compared considering the dentition phase. Initially, the
Shapiro-Wilk test was used to check for normalization of data distri-
bution, the Chi-square test to evaluate the gender frequency in each
group and the Student's t-test for age and dmft/DMFT comparisons.
All analyses were done on the SIGMA plot program (Systat Software

Inc., Microsoft), with a significance level of 5%.

3 | RESULTS

Table 1 shows the clinical and demographic data of all participants in
the study. One hundred patients were included in the study, with
50 (5 pre-dentate, 15 in the primary dentition, 15 in the mixed denti-
tion and 15 in the permanent dentition) in each group. None had peri-
odontitis. The epidemiological indexes dmft for the primary, mixed

and DMFT dentition for permanent dentition were applied. There was
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TABLE 1 Clinical and demographic data of all participants in the (Student's t-test, p = .56). An increase in bacterial richness was dem-
study. onstrated over dentition. However, the group differentially impacts
Perio group Healthy group the diversity increase, with the mixed dentition being similar to the
Pre-dentate (n=15) (n=5) primary dentition in the Healthy group (Anova/Tukey test, p = .955)
Age mean (SD) (months) 2(1) 1.6 (1.3) and similar to the permanent dentition in the Perio group (Anova/
Gender (%) M/F 66.6/33.3 80.0/20.0 Tukey test, p =.964). Furthermore, a similar trend of proximity
Primary dentition (n = 15) (n = 15) between Perio mixed dentition and Health permanent dentition is also
Age mean (SD) (years) 29 (1.1) 32 (1.3) described for a-diversity (Figure 1a). Additionally, the colonization
process was also described in the core microbiome (Figure 1c), which
Gender (%) M/F 50.0/50.0 50.0/50.0
increased over dentition, with a more intense shift in the Perio group.
dmft (median) 0.5 0.8
Mixed dentition (n = 15) (n = 15)
Age mean (SD) (years) 9.6 (1.8) 9.6 (1.6) 3.1 | Impact of dentition on the salivary
Gender (%) M/F) 40.0/60.0 40.0/60.0 microbiome
DMFT (median) 0.9 0
dmft (median) 0 0 Figures 2 and 3 show the microbiome's differences according to dis-
Permanent dentition (n = 15) (n = 15) tinct dentitions within groups. A statistical difference in the p-diversity
Age mean (SD) (years) 15.7 (1.6) 15.2 (1.5) between pre-dentate-primary (Figure 2a and 3a), primary-mixed
Gender (%) M/F) 26.7/73.3 30.8/69.2 (Figures 2b and 3b) and mixed-permanent (Figure 2c,f) was noted in
DMFT 03 o both groups (Adonis, p < .05; PERMDISP, p > .05). Differential abun-

Note: The epidemiological indexes dmft for the primary, mixed and DMFT
dentition for permanent dentition were applied. There was no statistically
significant difference between groups concerning clinical and demographic
data. No difference between groups (p > .05).

Abbreviation: SD, standard deviation.

no statistically significant difference between groups concerning clini-
cal and demographic data.

Figure 1 shows the overall characteristic of the included patients'
salivary microbiome, highlighting the differences in the microbial
diversity and the core microbiome for the Health and Perio groups in
the pre-dentate, primary, mixed and permanent dentitions. Figure 1a
shows the B-diversity represented in the PCoA of unweighted UniFrac
distance. The microbial maturation process is seen as a curved line in
the p-diversity graph, with the dentition status representing the most
significant difference in PC1 for both groups (Figure 1a). However,
the family history of periodontitis seems to modulate this process.
More intense changes are observed from the mixed dentition in the
Perio group when those samples were closely clustered to the Health
group's permanent dentition. There was no statistically significant dif-
ference between the Perio and Health groups in the pre-dentate
(Adonis, p = .404; PERMDISP, p = .544) or the primary dentition
(Adonis, p = .699; PERMDISP, p = .735). In the mixed dentition, a dif-
ferent microbial diversity was observed between groups (Adonis,
p = .003; PERMDISP, p = .279), which was also found in the perma-
nent dentition (Adonis, p = .007; PERMDISP, p = .884). Regarding
a-diversity, a similar trend of changes was also observed (Figure 1a)
for both groups and all dentitions. No differences were observed
between groups at pre-dentate and primary dentition (Student's
t-test, p > .05), while in the mixed dentition a statistical difference
was found between groups (Student's t-test, p = .008). Moreover, no

statistical difference was identified in the permanent dentition

dance analysis revealed an increase in the microbiome's complexity
for both groups as the dentition transition occured. The more
advanced the dentition stage, the higher the abundance of genera
such as Prevotella, Selenomonas, Capnocytophaga and Leptotrichia and
the species Fusobacterium nucleatum. However, differential abun-
dance analysis also showed that this change occurred differently in
each group, with a more intense shift in the Perio group and an
increase in abundance of Treponema, Tannerella, TM7, Mogibacterium
and Peptostreptococcaceae. Interestingly, the smallest difference
between dentitions for diversity and differential abundance metrics in
the Health group was the primary x mixed dentition comparison. In
contrast, this comparison describes the most remarkable differences

between dentition in the Perio group.

3.2 | Impact of familial periodontal status on the
salivary microbiome

Figure 4 shows the differences in microbiome in the Perio and Health
groups in the different stages of dentition. In pre-dentate, no signifi-
cant statistical difference in the p-diversity (Adonis, p =.404) was
seen between the groups (Figure 4a). Additionally, small species were
differentially abundant between groups (Figure 4b). Similarly, in decid-
uous dentition, no difference was observed in the B-diversity
(Figure 4c) (Adonis, p = .699), and a small number of species were dif-
ferentially abundant between groups (Figure 4d).

The differences between Health and Perio are more remarkable
in the mixed and permanent dentitions. The groups presented a differ-
ent B-diversity (Figure 4e) (Adonis, p = .003), and 100 species were
differentially abundant between groups (Figure 4f). The differences
were maintained in the permanent dentition, and the groups pre-
sented different B-diversities (Adonis, p = .007) (Figure 4g) and 89
differentially abundant species (Figure 4h).
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FIGURE 1

Although no significant statistical difference was observed in the
B-diversity of the pre-dentate and primary phases, differential abun-
dance analysis showed that some species already differed. Prevotella
spp. guided the differences in pre-dentate, and Fusobacterium and
Leptotrichia genera, for example, were already more abundant in the
primary dentition of the Perio group. The differences between the
groups increased as the phases evolved. In the mixed dentition, a
more pathogenic microbiome was observed in descendants of peri-
odontitis patients, with species belonging to the genera Prevotella,
Selenomonas, TM7, Treponema, Leptotrichia and Tannerella increased in
the Perio group. In the permanent dentition, those differences were
maintained, and many species related to periodontal destruction, such
as Prevotella intermedia, Treponema denticola and Fretibacterium spp.,
were identified as more abundant in the Perio group, while Streptococ-
cus spp., Actinomyces spp. and Neisseria spp. were more abundant in
the Health group.

Besides microbial composition, substantial species-species co-
occurrence network alteration was seen in the Perio group in the dif-
ferent dentition phases (Figure 5). An increase in the correlation
number between species is observed in Health (Figure 5a) and
Perio (Figure 5b) groups over time. However, the most intense
increase in correlation number occurred from primary (42) to
mixed (129) dentition in the Perio group and from mixed (68) to
permanent (128) dentition in the Health group. The increase in
correlation numbers is accompanied by the formation of complex
hubs associated with higher inter-generic connections. Further-

more, the species members involved in each correlation were also

spEEm §
EEEEEEEEE]

o
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(a) p-diversity: PCoA of the unweighted unifrac distance for both groups and dentitions. (b) a-diversity: Shannon index for both
groups and dentitions. (c) Core microbiome, considering species presented in at least 75% of the samples from a group.

descriptive for each group. The genera Streptococcus and Actino-
myces were highly representative of all dentitions and groups,
while Mogibacterium and Oribacterium assume protagonism in the
Health group and Fusobacterium, Veillonella and Prevotella in the
Perio group over dentition (Figure 5).

4 | DISCUSSION

Microbiota in the newborn undergoes rapid changes in composition
during infancy, in a highly dynamic mode, towards a stable adult-like
structure at each microbial community and a specific body site (Xiao
et al., 2020; Yatsunenko et al., 2012), which is driven by several intrin-
sic and extrinsic factors. The present study, assessing the oral micro-
biome from pre-dentate to permanent dentition, confirmed the
weight of parental periodontal diagnosis on the early alterations in the
microbiome of their offspring, even during deciduous dentition.

The oral cavity is an environment abundant in bacteria, and colo-
nization starts 8-16 h after birth. The primary transmission sources
are diet, digital suction and vertical transmission (Mason et al., 2018),
with saliva being the main contamination route (van Winkelhoff &
Boutaga, 2005). Recently, our group demonstrated that oral condition,
that is, periodontitis diagnosis of parents, drove the subgingival
colonization of their offspring aged 6-12 years, introducing a
higher number of dysbiotic-associated periodontal species to the
subgingival environment in the mixed dentition (Monteiro

et al., 2021). However, up to now, there has been little information
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about how oral colonization occurs at early ages in families with

periodontally affected parents.

4.1 | Different colonization was observed across
the dentition stages

As expected, our study confirmed that salivary microbial characteriza-
tion from pre-dentate to permanent dentition was highly impacted by
teething. Previous studies have shown a natural and sequential alter-
ation in the microbiota through ageing and oral development
(Kennedy et al., 2019; Lif Holgerson et al., 2020; Mason et al., 2018).
Lif Holgerson et al. (2020) longitudinally assessed the salivary micro-
biome from infants aged 2 days to 5 years, identifying an increase in
genera across ageing, increasing a-diversity and changes in p-diversity,
similar to previous studies (Chu et al., 2017; Mason et al., 2018). Their
study found that the first colonization was dominated by Streptococ-
cus spp. and Gemella spp., in particular S. mitis and G. haemolysans,
when two-day-old babies were assessed. Moreover, while Streptococ-
cus spp. were characteristic for 3 months, the genera Capnocytophaga,
Neisseria, Porphyromonas, Haemophilus and Fusobacterium were the
most representative of the 18-month community (Lif Holgerson
et al., 2020), as was also seen in Dzidic et al. (2018) study. This time-
frame also presented the greatest expansion of the predicted KO
(2.028 additional Kegg Orthology from 3 to 18 months, while only
227 between 3 and 5 years), most of them associated with energy
metabolism, cell motility, xenobiotic biodegradation and glycan bio-
synthesis. Our findings for the Healthy group (i.e., children from peri-
odontally healthy parents) agree with those of previous studies when
82 OTUs were highly detected in primary dentition than in pre-den-
tate, around 20% of them being Actinomyces spp., Fusobacterium spp.
(including F. nucleatum), Gemella spp. and Streptococcus spp.
(as S. mutans, S. sanguinis and S. infantis). Interestingly, a dominant hub
of the species-species networks already composed mainly of these
genera (Streptococcus, Actinomyces, Gemella and Mogibacterium) char-
acterizes the mixed dentition in the Healthy group. In contrast, a mas-
sive increase in species-species correlation and additional hubs
composed of Fusobacterium, Prevotella and Oribacterium could be seen
in permanent-dentition subjects.

However, although teething appears as the main stressor for oral
microbial changes in the present (when a- and B-diversity were signifi-
cantly changed and a huge increase in the core microbiome was seen)
and previous studies (Kennedy et al., 2019; Lif Holgerson et al., 2020;
Mason et al., 2018), other factors also impact on oral microbiome

acquisition (Lif Holgerson et al., 2020; Ramadugu et al., 2021). Based

on the vertical transmission phenomenon, the role of mother/
caregivers in colonization is also well accepted and confirmed by pre-
vious studies, and the role of periodontal conditions of parents carry-
ing a dysbiotic-associated microbiota has been recently considered
(Monteiro et al., 2021).

4.2 | Periodontitis diagnosis of parents is
associated with colonization of periodontitis-
associated pathobionts and changes the colonization
dynamics

Periodontitis is characterized by a marked taxonomical and functional
change in the microbiome (Dabdoub et al., 2016; Duran-Pinedo, 2021,
Reis et al., 2021). An increase in genera such as Fusobacterium, Prevo-
tella, Porphyromonas and Treponema (Abusleme et al., 2013; Duran-
Pinedo, 2021; Griffen et al., 2012; Kumar et al., 2011), along with
functional changes, is mainly linked to the highly abundant patho-
bionts P. gingivalis, Tannerella forsythia, T. denticola and Filifactor alocis
(Dabdoub et al., 2016; Duran-Pinedo, 2021; Hajishengallis, 2014). In
young and systemically healthy subjects affected by periodontitis with
rapid progression, previous studies have confirmed the role of those
species (Schulz et al., 2019), along with Aggregatibacter actinomyce-
temcomitans (Casarin et al, 2010; Monteiro et al., 2021; Teles
et al, 2010; Velsko et al, 2020), some Selenomonas spp. (Faveri
et al., 2009), Treponema lecithinolyticum (Velsko et al., 2020) and Del-
taproteobacteria (Amado et al., 2020). Thus, considering the presence
of a complex dysbiotic community in the parents' oral cavity, there is
an expected trend in vertically transmitting them to their offspring, as
we have already shown in 6-12-year-old children (Monteiro
et al., 2015, 2021). This precocious transmission of commensals
and pathogenic species has also been described in other parent-
children dyad studies (Drell et al., 2017; Jo et al., 2021; Monteiro
et al., 2014; Ramadugu et al., 2021). The present study, enrolling
from pre-dentate babies to adults with permanent dentition, also
confirmed a pathogen-enriched community in the descendants from
periodontitis-affected parents. Although this suggests a vertical trans-
mission of bacteria, it cannot be confirmed in the present study
because of the absence of microbiological data from periodontitis par-
ents. This limitation should be evaluated in future studies focused on
determining vertical transmission and other oral colonization aspects.
Meanwhile, it is important to highlight that the present study is the
first age-wise analysis showing that the disease-associated species
(F. alocis, P. gingivalis, A. actinomycetemcomitans, Streptococcus para-

sanguinis, F. nucleatum and several species belonging to the genus

FIGURE 2 Microbial differences between dentitions in the Healthy group. p-Diversity: PCoA of the unweighted unifrac distances between
pre-dentate x primary dentition (a); primary x mixed dentition (b); mixed x permanent dentitions (c). The ellipse of the 95% confidence interval is
represented in the PCoA graphs. Differential abundance of species, tested with ANCOM-BC, comparing pre-dentate versus primary dentition (d),
primary x Mixed dentition (e) and mixed x permanent dentitions (f). The bar size represents the fold change for each comparison, and the bar
colour indicates the dentition in which the species are more abundant. Only species differentially abundant between groups were included in the

graphs.
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Selenomonas) consecutively colonize the oral microbiome of children,
from pre-dentate stage to permanent dentition, when a parent is
affected by periodontitis.

In the present study, as expected and previously discussed, the
most abundant genera in pre-dentate babies were Streptococcus and
Lactobacillus. However, even before teething, some Prevotella spp.
were more abundant in babies from parents affected by periodontitis.
As their parents presented a higher level of these microorganisms
(Dogan et al., 2008; Monteiro et al., 2014), a precocious transmission
and colonization may be suggested (Drell et al., 2017). However, dif-
ferently from S. mutans, which presented transient colonization in the
absence of non-shedding surfaces (Lif Holgerson et al., 2020), the
transmission of Prevotella early in life could open an infection window
for future colonizers. Prevotella spp. are gram-negative microorgan-
isms able to co-aggregate by their protein or glycoprotein with carbo-
hydrates or carbohydrate-containing molecules on the surface of the
Actinomyces strains (Nesbitt et al., 1992), which is a common genus
during this age. Indeed, the analysis of the inter-species network of
pre-dentate babies from the Perio group was dominated by a central
hub composed of Prevotella melaninogenica, P. scopos and P._sp_oral_
taxon_313 significantly correlated to Actinomyces oris and A. odontoly-
ticus. Additionally, after colonizing the oral niches, Prevotella spp.
could escape from the natural host response and alter the environ-
ment. Previous studies have observed that the Fc-binding activity of
P. intermedia and P. nigrescens acts as an additional virulence factor by
reducing IgG reactions with the bacterial cell (Jansen et al., 1995;
Labbé & Grenier, 1995), which may explain their association with
polymicrobial oral diseases. Meanwhile, it impacts not only Prevotella
maintenance in the mouth but, as shown by Guentsch et al. (2013),
cleavage of IgG1l may suppress antibody-dependent antibacterial
activity in subgingival biofilms, instigating the colonization by patho-
bionts such as P. gingivalis. Although interesting, those results regard-
ing pre-dentate stage should be seen with caution because of the
small sample size included for this group. Pre-dentate babies are a
hard-to-reach population, and future studies should include more sub-
jects to confirm our results. However, these results highlight how
maternal oral dysbiosis precociously impacts infants after and also
before teething.

After teething, additional niches increase the dissimilarity
between children from different parents' backgrounds. At primary
dentition, children of parents with periodontitis remain with higher
colonization of Prevotella spp., and the microbiome maturation was
characterized by a higher abundance of Tannerella spp., Neisseria flava,
Campylobacter gracilis, Parvimonas micra and Leptotrichia spp. in the

Perio group than in the Health group. This remarkable result indicates

an initial alteration in these subjects that could favour microbial suc-
cession and supports the establishment of later colonizers. However,
the inter-species network was still driven by Streptococcus and Actino-
myces hubs. Other pathobionts (such as Treponema spp., Rothia spp.
and Fusobacterium spp.) only alter the co-occurrence network of the
mixed and permanent dentition of the Perio group, suggesting the
importance of this microorganism in the establishment of the commu-
nity and the temporal effect of this initial colonization. This event was
also associated with an abrupt microbial change between primary and
mixed dentition in the Perio group (but did not occur in the Health
group) and an increase in the differences in diversity, abundance and
prevalence of species between Perio and Health from the mixed
dentition.

In the present study, children from parents with periodontitis of
mixed dentition, aged 9.6 years, presented a significantly different
B-diversity and a higher abundance of disease-associated species
compared to the Health group. Important inter-species network hubs
of TM7 genera, Streptococcus spp. and Haemophilus-Mogibacterium-
Prevotella spp. were observed. Moreover, there was higher coloniza-
tion of Selenomonas spp., Leptotrichia spp., F. alocis, T. forsythia,
P. nigrescens, T. denticola, P. intermedia and P. gingivalis, all of which
were found to be associated with periodontal breakdown previously
(Hashim et al., 2017; Oliveira et al., 2016). As seen here and in our
previous study enrolling youngers in mixed dentition (Monteiro
et al., 2021), this cohort dentition phase is crucial for developing and
maturing a more pathogenic biofilm (Fine et al., 2013; Mason
et al,, 2018; Umeda et al., 2004). Although the plaque index was not
measured (though the dmft and DMFT scores were similar), several
studies have indicated this phase as the one with a hard-to-control
biofilm. Studies have listed some factors that can help understand this
increase in plague accumulation during this phase, such as mal-
occlusion and positioning of teeth due to permanent eruption and the
reduction in parental attention. Previous studies have shown that at
this age, the parents stop assisting their children with toothbrushinng
once they grow up and are presumably self-efficient. Although this
does not mean the absence of brushing, its efficacy is reduced, thus
increasing plaque accumulation (Gurunathan & Shanmugaavel, 2016;
Lourenco et al., 2013). Meanwhile, the early acquired microbiome
appears resilient to a shift in plaque and bleeding indexes. Monteiro
et al. (2021) devised a strict oral hygiene programme for 3 months,
and, unexpectedly, no significant changes in biofilm diversity were
noted despite improvements in oral conditions. Indeed, in spite of
using a chemical adjuvant in the toothpaste, children's microbiota
appeared to be resilient to the shift, retaining most of their species
and core (Monteiro et al., 2020, 2021).

FIGURE 3 Microbial differences between dentitions in the Perio group. p-Diversity: PCoA of the unweighted unifrac distances between pre-
dentate x Primary dentition (a), primary x mixed dentition (b) and mixed x permanent dentitions (c). The ellipse of the 95% confidence interval is
shown in the PCoA graphs. Differential abundance of species, tested with ANCOM-BC, comparing pre-dentate x primary dentition (d), primary x
mixed dentition (e) and mixed x permanent dentitions (f). The bar size represents the fold change for each comparison, and the bar colour
indicates the dentition in which the species is more abundant. Only species differentially abundant between groups were included in the graphs.
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At the end of permanent teeth eruption and the establishment of P. micra, Campylobacter rectus, T. denticola and several Prevotella spp.

complete permanent dentition, complex oral colonization is expected. and members of the family Veillonellaceae were found in the Perio
Even though all subjects from periodontitis-affected parents did not permanent-dentition group compared to the mixed-dentition group.
present periodontitis and presented a DMFT score similar to that of Moreover, at the same time, a reduced abundance of Streptococcus

the healthy group, a higher abundance of Fretibacterium fastidious, spp., Gemmella spp. and Leptotricha spp. was seen in this group. This
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FIGURE 5 Network co-occurrence analysis. The graphs describe the SparCC correlations between the species abundance (r > 0.75, p < .01)
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difference in community results in a robust difference between the differences in the groups' microbial communities. Children from peri-
Perio and Healthy groups in permanent dentition. Besides the com- odontitis parents showed an increase in the number of correlations of

munity composition, the species-species network also highlights the the gerera Fusobacterium, Veillonella and Prevotella since mixed
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dentition also presented an intense inter-generic hub formation. On
the other hand, less complex structures modulated for Streptococcus,
Actinomyces, Mogibacterium and Oribacterium were descriptive in chil-
dren from periodontally healthy patients. Altogether, it emphasizes
that when severe grade C periodontitis affects a parent, their children
seem to develop a dysbiotic oral community precociously (Herrero
et al., 2018; Nibali et al., 2008). This community can stimulate a host
response, which could initiate gingival inflammation and possibly start
disease occurrence (Nibali, 2015). Meanwhile, it is important to con-
sider that this trial assessed saliva samples and not the subgingival
biofilm. Once pre-dentate babies were included, only saliva could be
the sample for comparison between different ages. Saliva collection
requires less time and participant burden and can be done remotely
(Marotz et al., 2022). Some recent findings indicate that saliva could
be an essential tool for detecting periodontitis (Belstram et al., 2017;
Ma et al, 2021), presenting a significant correlation to subgingival
niche for some microbial targets (Marotz et al., 2022). However, sub-
gingival plaque is more diverse than saliva. Thus, although saliva is a
major route for vertical transmission (Asikainen et al., 1997), future
studies should also consider the assessment of subgingival niches

along different dentitions.

4.3 | Early acquirement of oral species and
systemic impacts

The recognition of early colonization and the impact of parental peri-
odontal condition is more than one piece of the puzzle of microbiome
acquisition. Recently, the concept of intra-uterine colonization has
been introduced. Gomez-Arango et al. (2017) examined pregnant
women's gut, oral and placental microbiome and found only three
genera (i.e., Prevotella, Streptococcus and Veillonella) in all gut, oral and
placenta samples. Although the placental microbiome does not har-
bour a unique core, indicating multiple sources of microorganisms, the
placental microbiome resembles the oral microbiome of pregnant
women (Aagaard et al., 2014).

One of the most critical implications of children's oral microbiome
is oral disease occurrence and systemic health. Celiac disease, asthma,
autism, paediatric inflammatory bowel disease and sleep alterations
are systemic diseases linked to oral dysbiosis (Dzidic et al., 2018; Xiao
et al, 2020). Higher levels of Rothia, Porphyromonas endodontalis,
S. sanguinis and others, all commonly found in periodontitis samples,
were linked to celiac disease and auto-immune diseases that alter gut
barriers (Derrien et al., 2010). Hence, the confirmation of the impact
of the parental oral condition on oral microbiome from very early
ages, as well as the impact of local and systemic disease, sheds new
light on the importance of controlling the oral microbiota during the
gestational period and early colonization in childhood. Modulating the
course of primary colonization should be a new focus of action for
paediatricians and periodontists.

Significant results about oral colonization in descendants of
periodontitis-affected individuals were presented in this study; how-

ever, some aspects of the study design and the clinical and

periodontology. TAMA 1B S M

microbiological data limited some wider conclusions. This study is a
case-control study, with patients in different dentition stages and
with a cross-sectional design; thus, temporal conclusions regarding
the colonization process and a sequential increment of species in a
patient during dentition stages are limited. These answers should be
reached in a task force with long-term longitudinal trials including a
large number of individuals and also periodontal clinical examination
across dentitions, which was not possible in the present study
because of the young ages of the children. Moreover, pre-dentate
children included only very young babies prior to the first teeth erup-
tion, around 3 months, making this population hard to reach. So, the
limited size of this population should be considered. Additionally,
another limitation is the absence of the parents' microbial analysis.
Even though the present study was aimed at identifying the impact of
parental periodontal disease on their offspring's microbiome across
different dentitions, no parent-children comparison was performed,
thus not allowing conclusions on vertical transmission of the microbial
community. Thus, this aspect should be taken into account and evalu-
ated in future studies to more deeply understand the clinical conse-
quences of dysbiosis and identify factors related to periodontal
breakdown. In spite of these limitations, the present results emphasize
that the parent periodontal status is associated with a disease-
associated microbiome in descendants of periodontitis-affected
parents.

5 | CONCLUSIONS

In conclusion, parental periodontal condition impacts the oral micro-
biome from a very early age. The early colonization by pathobionts is
initiated at pre-dentate and primary dentition. A dysbiotic-associated
community could be seen already in mixed dentition and sustained at

permanent dentition in children from periodontitis-affected parents.
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