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Abstract

Aim: To evaluate the microbial colonization in different dentition phases on

individuals from 0 to 18 years of age belonging to families with a history of periodon-

titis compared to descendants of periodontally healthy parents.

Materials and Methods: The offspring of subjects with periodontitis (‘Perio’ group)
and the offspring of periodontally healthy subjects (‘Healthy’ group), matched for

gender and age, were included in this cross-sectional study and divided according to

the dentition phase: pre-dentate, primary, mixed and permanent. The patients were

clinically assessed, and their saliva was collected. DNA was extracted, and V1–V3

and V4–V5 regions of the 16S rRNA gene were sequenced.

Results: Fifty children of parents with periodontitis and 50 from healthy parents

were included in the study and divided according to the dentition phase: pre-

dentate (n = 5/group), primary dentition (n = 15/group), mixed dentition

(n = 15/group) and permanent dentition (n = 15/group) in each group. The

microbiome composition was different between dentitions for both groups. Chil-

dren of the Perio group presented a microbial diversity different from that of the

Healthy group in mixed and permanent dentitions. The more intense shift in the

community occurred between primary and mixed dentition in the Perio group,

while the transition between mixed and permanent dentition was the period with

greater changes in the microbiome for the Healthy group. Furthermore, a

pathogen-rich environment—higher prevalence and abundance of periodontitis-

associated species such as Prevotella spp., Selenomonas spp., Leptotrichia

spp., Filifactor alocis, Prevotella intermedia, Treponema denticola and Tannerella

forsythia— was observed in the Perio group.

Conclusions: The parents' periodontal status significantly affects the microbiome

composition of their offspring from an early age. The mixed dentition was the phase

associated with establishing a dysbiotic and pathogen-rich microbiome in descen-

dants of parents with periodontitis.

K E YWORD S

grade C periodontitis, microbiome, oral, teeth eruption, vertical transmission

Received: 1 March 2022 Revised: 24 March 2023 Accepted: 27 March 2023

DOI: 10.1111/jcpe.13815

890 © 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. J Clin Periodontol. 2023;50:890–904.wileyonlinelibrary.com/journal/jcpe

https://orcid.org/0000-0001-9333-4349
https://orcid.org/0000-0001-7592-7538
https://orcid.org/0000-0001-5844-1341
https://orcid.org/0000-0003-1743-5855
mailto:rcasarin@unicamp.br
http://wileyonlinelibrary.com/journal/jcpe


Clinical Relevance

Scientific rationale for study: Subgingival microbiota in children at the mixed-dentition phase can

be modulated by the parents' periodontal conditions, probably acting as a source of pathobionts

during early ages. However, it is unclear at which dentition phase the microbiome alterations

can be initially detected.

Principal findings: From early ages (pre-dentate and primary dentition), children from

periodontitis-affected parents presented a different abundance of some species, and at later

ages (mixed and permanent dentitions) a dysbiotic microbial community is established.

Practical implications: Parental periodontal health should be included as a factor that affects the

microbial establishment in the oral cavity of their children, and an early preventive approach can

be prioritized for this population.

1 | INTRODUCTION

The oral cavity is a virtually sterile niche before birth (Perez-Muñoz

et al., 2017) but is sequentially colonized by different microorganisms

over time (Mason et al., 2018; Schulz et al., 2019). However, a new

concept of oral colonization has been considered, describing that the

human microbiome commences earlier than birth (Chen et al., 2020).

Some studies have described unique microbial colonization in the

amniotic fluid in up to 70% of pregnant women (Prince et al., 2015).

Interestingly, several oral microorganisms, such as those belonging to

the gerera Streptococcus, Fusobacterium, Neisseria, Prevotella, Veillo-

nella and Porphyromonas, are found to be present in the placental

niche (Aagaard et al., 2014; Bearfield et al., 2002; Gomez-Arango

et al., 2017).

Initially presenting only shedding mucosae in a pre-dentate phase,

the oral niche undergoes a substantial modification after primary

teeth eruption in early infancy and, subsequently, with permanent

dentition, modulating the oral microbiome that evolves into a complex

and diverse community (Escapa et al., 2018; Kennedy et al., 2019; Lif

Holgerson et al., 2020; Mason et al., 2018). Several aspects can drive

the colonization process and be responsible for determining the oral

microbiota composition, such as the neonate's immunity (Wu

et al., 2014; Yu et al., 2018), maternal transmission during childbirth,

parental exposures, diet and horizontal transmission from caregivers

and peers (Nelson-Filho et al., 2013; Sulyanto et al., 2019; Ward

et al., 2018). These factors shape the oral microbiota and, conse-

quently, the human host immune functions and physiological develop-

ment, which influence future health (White et al., 2013; Xiao

et al., 2020; Yatsunenko et al., 2012).

Recently, parental periodontitis has been presented as another

factor altering their offspring's oral colonization. Toddlers and adoles-

cents (6–12 years) who are descendants of younger grade C

periodontitis-affected parents harbour a dysbiotic microbiome com-

pared to periodontally healthy parents' descendants (Monteiro

et al., 2021). Indeed, grade C periodontitis affecting systemically

healthy youngsters (previously called aggressive periodontitis) is an

immuno-inflammatory disease of the periodontium, occurring at

an early age in systemically healthy individuals who present an accu-

mulation of cases within the family, with descendants of a

periodontitis-affected individual being 50% more likely to develop

this disease than a non-related child (Michalowicz et al., 2000).

Because of the periodontitis severity and potential for extensive

destruction at a very young age, along with familial aggregation of

their cases, the knowledge of sequential colonization of this higher

risk population and the comprehension of when oral dysbiosis is

established could lead to a more predictable preventive therapy.

Moreover, a significant part of the oral microbiome's maturation

occurs during the first 2 years of life, and this development may be

influenced by early life circumstances (Kennedy et al., 2019).

Therefore, this investigation aimed to examine the oral micro-

biome in each dentition cohort—pre-dentate, primary dentition, mixed

dentition and permanent dentition—in a cross-sectional clinical study,

comparing the descendants of periodontitis-affected parents with

those of periodontally healthy ones.

2 | MATERIALS AND METHODS

2.1 | Study design

It is an age- and gender-matched cross-sectional study to assess the

oral colonization in the different dentition phases of individuals from fam-

ilies with a history of periodontitis compared to children/adolescents of

periodontally healthy parents. The study was approved by the University

of Campinas Ethics Committee (70816017.6.000.5418) and was carried

out from March 2017 to November 2018. The patients were recruited

and evaluated at Piracicaba Dental School (Piracicaba, São Paulo, Brazil).

The study inclusion criteria were different for each group:

Periodontitis-descendants (Perio) group: Subjects aged between

0 and 18 years, with at least one parent (father or mother) presenting

grade C, stage III-IV, periodontitis (Papapanou et al., 2018). For the

disease diagnosis of parents, individuals should be less than 35 years

old at the time of diagnosis, have at least eight teeth with probing

depth (PD) and clinical attachment loss (CAL) >5 mm (confirmed at

radiographical exams), have at least 20 remaining teeth in the oral cav-

ity and present good systemic health. At the time of examination, all

parents with periodontitis should present periodontal pockets ≥5 mm

associated with bleeding on probing (BoP), indicating still active
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disease and need for periodontal treatment, in spite of previous

treatment.

Healthy descendants (Healthy) group: Subjects aged between

0 and 18 years, with both parents (father and mother) periodontally

healthy. Periodontally healthy individuals did not present any site with

periodontal probing depth (PPD) ≥3 mm with BoP, absence of radio-

graphic proximal bone loss, at least 20 remaining teeth and good sys-

temic health.

Parents and their offspring with chronic disease, smokers or for-

mer smokers, pregnant or lactating women, antibiotic use within

3 months before the study and had received periodontal treatment

within 6 months before the study were excluded from the study

(Monteiro et al., 2014).

All children were segregated according to their dentition state

into pre-dentate, primary, mixed and permanent dentition in each

group. The sample size was based on previous studies from our group

demonstrating sufficient power to identify differences in β-diversity

and differential abundance of bacteria in periodontitis-associated

microbiome using 16S sequencing (Mason et al., 2013; Paropkari

et al., 2016; Queiroz et al., 2017).

Oral clinical exams were performed for all children when the gen-

der and age information was collected. Then, the dmft (number of

deciduous teeth decayed, missing or restored) and DMFT (number

of permanent teeth decayed, missing or restored) were examined,

as previously described (Díaz-Cárdenas & González-Martínez,

2010). The examination was performed by a single calibrated

examiner (MFM). The examiner measured the dmft/DMFT of

13 children with different caries activities in four periods, obtain-

ing an agreement of κ = 0.86. The same examiner who performed

the children's clinical examination (MFM) examined the parents'

periodontal status. This examiner was calibrated for the periodon-

tal examination with an intra-class correlation of 92% for PPD.

Parents' periodontal data were used only to evaluate the inclusion

in the study but not included in the analysis. Children with mixed

and permanent dentition were screened for periodontitis only to

confirm the absence of active disease.

2.2 | Sample collection and DNA isolation

From each subject, unstimulated saliva was collected in Eppendorf

microtubes (AXYGEN, USA); from pre-dentate subjects, saliva sam-

ples were collected using sterile swabs because of their inability to

collect unstimulated saliva. The samples were collected between

7 AM and 9 AM and before the patients ate and brushed

their teeth in the morning. After collection, all samples were

stored in microtubes and frozen at �80�C until DNA isolation

using the Qiagen MiniAmp kit (Valencia, CA) according to the man-

ufacturer's instructions. DNA isolation was performed using 1 mL

of saliva as input. DNA concentration was measured following the

manufacturer's instructions (Qubit dsDNA HS Assay Kit; Life Tech-

nologies), and between 4.0 and 94.8 ng/μL of DNA was obtained

per sample.

2.3 | Sequencing and bioinformatic analysis

The V1–V3 and V4–V5 regions of the 16S rRNA gene were

sequenced using the Illumina Miseq platform, with 10 ng of DNA used

per sequencing run. The raw sequences were deposited in the

Sequence Read Archive (SRA) database under registration number

PRJNA780174 (ncbi.nlm.nih.gov/sra). The sample processing protocol,

library preparation and sequencing protocol have been described in a

previous study (Monteiro et al., 2021). Analyses were conducted

using QIIME (Caporaso et al., 2010) and PhyloToAST (Dabdoub

et al., 2016). The Shannon method (Shannon, 1997) was used as an

α-diversity estimator, and differences between α-diversities group-

wise were measured using the one-way ANOVA test with the Tukey

HSD test for multiple comparisons. The unweighted UniFrac distance

was used to evaluate the β-diversity, and the differences between

groups were analysed using principal coordinate analysis (PCoA) and

tested using the Adonis test. Differences in the dispersion of samples

between groups were tested using the PERMDISP test. The core spe-

cies were characterized using Qiime's script (core_microbiome.py)

when species were present in at least 75% of the patients in each

group and visualized using PhyloToAST. The Bioconductor package

for R, analysis of compositions of microbiomes with bias correction

(ANCOM-BC) (Lin & Peddada, 2020), was used to perform differential

analysis of the annotated taxa. This function estimates the unknown

sampling fractions and corrects the bias induced by the differences

among samples. The absolute abundance data are modelled using a

linear regression framework. p-Values were adjusted for multiple test-

ing (false discovery rate [FDR] <0.05, the Holm–Bonferroni method).

The bacterial network correlations were determined significantly pair-

wise using the SparCC (Pylro et al., 2014) pipeline (p < .01, r > 0.75),

and network graphs were drawn in Python (Networkx package) and

visualized in Gephi (Bastian et al. 2009).

2.4 | Demographic and clinical analysis

Demographic and clinical data of children from Perio and Healthy

groups were compared considering the dentition phase. Initially, the

Shapiro–Wilk test was used to check for normalization of data distri-

bution, the Chi-square test to evaluate the gender frequency in each

group and the Student's t-test for age and dmft/DMFT comparisons.

All analyses were done on the SIGMA plot program (Systat Software

Inc., Microsoft), with a significance level of 5%.

3 | RESULTS

Table 1 shows the clinical and demographic data of all participants in

the study. One hundred patients were included in the study, with

50 (5 pre-dentate, 15 in the primary dentition, 15 in the mixed denti-

tion and 15 in the permanent dentition) in each group. None had peri-

odontitis. The epidemiological indexes dmft for the primary, mixed

and DMFT dentition for permanent dentition were applied. There was
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no statistically significant difference between groups concerning clini-

cal and demographic data.

Figure 1 shows the overall characteristic of the included patients'

salivary microbiome, highlighting the differences in the microbial

diversity and the core microbiome for the Health and Perio groups in

the pre-dentate, primary, mixed and permanent dentitions. Figure 1a

shows the β-diversity represented in the PCoA of unweighted UniFrac

distance. The microbial maturation process is seen as a curved line in

the β-diversity graph, with the dentition status representing the most

significant difference in PC1 for both groups (Figure 1a). However,

the family history of periodontitis seems to modulate this process.

More intense changes are observed from the mixed dentition in the

Perio group when those samples were closely clustered to the Health

group's permanent dentition. There was no statistically significant dif-

ference between the Perio and Health groups in the pre-dentate

(Adonis, p = .404; PERMDISP, p = .544) or the primary dentition

(Adonis, p = .699; PERMDISP, p = .735). In the mixed dentition, a dif-

ferent microbial diversity was observed between groups (Adonis,

p = .003; PERMDISP, p = .279), which was also found in the perma-

nent dentition (Adonis, p = .007; PERMDISP, p = .884). Regarding

α-diversity, a similar trend of changes was also observed (Figure 1a)

for both groups and all dentitions. No differences were observed

between groups at pre-dentate and primary dentition (Student's

t-test, p > .05), while in the mixed dentition a statistical difference

was found between groups (Student's t-test, p = .008). Moreover, no

statistical difference was identified in the permanent dentition

(Student's t-test, p = .56). An increase in bacterial richness was dem-

onstrated over dentition. However, the group differentially impacts

the diversity increase, with the mixed dentition being similar to the

primary dentition in the Healthy group (Anova/Tukey test, p = .955)

and similar to the permanent dentition in the Perio group (Anova/

Tukey test, p = .964). Furthermore, a similar trend of proximity

between Perio mixed dentition and Health permanent dentition is also

described for α-diversity (Figure 1a). Additionally, the colonization

process was also described in the core microbiome (Figure 1c), which

increased over dentition, with a more intense shift in the Perio group.

3.1 | Impact of dentition on the salivary
microbiome

Figures 2 and 3 show the microbiome's differences according to dis-

tinct dentitions within groups. A statistical difference in the β-diversity

between pre-dentate-primary (Figure 2a and 3a), primary-mixed

(Figures 2b and 3b) and mixed-permanent (Figure 2c,f) was noted in

both groups (Adonis, p < .05; PERMDISP, p > .05). Differential abun-

dance analysis revealed an increase in the microbiome's complexity

for both groups as the dentition transition occured. The more

advanced the dentition stage, the higher the abundance of genera

such as Prevotella, Selenomonas, Capnocytophaga and Leptotrichia and

the species Fusobacterium nucleatum. However, differential abun-

dance analysis also showed that this change occurred differently in

each group, with a more intense shift in the Perio group and an

increase in abundance of Treponema, Tannerella, TM7, Mogibacterium

and Peptostreptococcaceae. Interestingly, the smallest difference

between dentitions for diversity and differential abundance metrics in

the Health group was the primary � mixed dentition comparison. In

contrast, this comparison describes the most remarkable differences

between dentition in the Perio group.

3.2 | Impact of familial periodontal status on the
salivary microbiome

Figure 4 shows the differences in microbiome in the Perio and Health

groups in the different stages of dentition. In pre-dentate, no signifi-

cant statistical difference in the β-diversity (Adonis, p = .404) was

seen between the groups (Figure 4a). Additionally, small species were

differentially abundant between groups (Figure 4b). Similarly, in decid-

uous dentition, no difference was observed in the β-diversity

(Figure 4c) (Adonis, p = .699), and a small number of species were dif-

ferentially abundant between groups (Figure 4d).

The differences between Health and Perio are more remarkable

in the mixed and permanent dentitions. The groups presented a differ-

ent β-diversity (Figure 4e) (Adonis, p = .003), and 100 species were

differentially abundant between groups (Figure 4f). The differences

were maintained in the permanent dentition, and the groups pre-

sented different β-diversities (Adonis, p = .007) (Figure 4g) and 89

differentially abundant species (Figure 4h).

TABLE 1 Clinical and demographic data of all participants in the
study.

Perio group Healthy group

Pre-dentate (n = 5) (n = 5)

Age mean (SD) (months) 2 (1) 1.6 (1.3)

Gender (%) M/F 66.6/33.3 80.0/20.0

Primary dentition (n = 15) (n = 15)

Age mean (SD) (years) 2.9 (1.1) 3.2 (1.3)

Gender (%) M/F 50.0/50.0 50.0/50.0

dmft (median) 0.5 0.8

Mixed dentition (n = 15) (n = 15)

Age mean (SD) (years) 9.6 (1.8) 9.6 (1.6)

Gender (%) M/F) 40.0/60.0 40.0/60.0

DMFT (median) 0.9 0

dmft (median) 0 0

Permanent dentition (n = 15) (n = 15)

Age mean (SD) (years) 15.7 (1.6) 15.2 (1.5)

Gender (%) M/F) 26.7/73.3 30.8/69.2

DMFT 0.3 0

Note: The epidemiological indexes dmft for the primary, mixed and DMFT

dentition for permanent dentition were applied. There was no statistically

significant difference between groups concerning clinical and demographic

data. No difference between groups (p > .05).

Abbreviation: SD, standard deviation.
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Although no significant statistical difference was observed in the

β-diversity of the pre-dentate and primary phases, differential abun-

dance analysis showed that some species already differed. Prevotella

spp. guided the differences in pre-dentate, and Fusobacterium and

Leptotrichia genera, for example, were already more abundant in the

primary dentition of the Perio group. The differences between the

groups increased as the phases evolved. In the mixed dentition, a

more pathogenic microbiome was observed in descendants of peri-

odontitis patients, with species belonging to the genera Prevotella,

Selenomonas, TM7, Treponema, Leptotrichia and Tannerella increased in

the Perio group. In the permanent dentition, those differences were

maintained, and many species related to periodontal destruction, such

as Prevotella intermedia, Treponema denticola and Fretibacterium spp.,

were identified as more abundant in the Perio group, while Streptococ-

cus spp., Actinomyces spp. and Neisseria spp. were more abundant in

the Health group.

Besides microbial composition, substantial species–species co-

occurrence network alteration was seen in the Perio group in the dif-

ferent dentition phases (Figure 5). An increase in the correlation

number between species is observed in Health (Figure 5a) and

Perio (Figure 5b) groups over time. However, the most intense

increase in correlation number occurred from primary (42) to

mixed (129) dentition in the Perio group and from mixed (68) to

permanent (128) dentition in the Health group. The increase in

correlation numbers is accompanied by the formation of complex

hubs associated with higher inter-generic connections. Further-

more, the species members involved in each correlation were also

descriptive for each group. The genera Streptococcus and Actino-

myces were highly representative of all dentitions and groups,

while Mogibacterium and Oribacterium assume protagonism in the

Health group and Fusobacterium, Veillonella and Prevotella in the

Perio group over dentition (Figure 5).

4 | DISCUSSION

Microbiota in the newborn undergoes rapid changes in composition

during infancy, in a highly dynamic mode, towards a stable adult-like

structure at each microbial community and a specific body site (Xiao

et al., 2020; Yatsunenko et al., 2012), which is driven by several intrin-

sic and extrinsic factors. The present study, assessing the oral micro-

biome from pre-dentate to permanent dentition, confirmed the

weight of parental periodontal diagnosis on the early alterations in the

microbiome of their offspring, even during deciduous dentition.

The oral cavity is an environment abundant in bacteria, and colo-

nization starts 8–16 h after birth. The primary transmission sources

are diet, digital suction and vertical transmission (Mason et al., 2018),

with saliva being the main contamination route (van Winkelhoff &

Boutaga, 2005). Recently, our group demonstrated that oral condition,

that is, periodontitis diagnosis of parents, drove the subgingival

colonization of their offspring aged 6–12 years, introducing a

higher number of dysbiotic-associated periodontal species to the

subgingival environment in the mixed dentition (Monteiro

et al., 2021). However, up to now, there has been little information

Perio Predentate
Perio Primary Dentition
Perio Mixed Dentition
Perio Permanent Dentition
Health Predentate
Health Primary Dentition
Health Mixed Dentition
Health Permanent Dentition

(a)
Perio Predentate
Perio Primary Dentition
Perio Mixed Dentition
Perio Permanent Dentition
Health Predentate
Health Primary Dentition
Health Mixed Dentition
Health Permanent Dentition

(b)

Perio Predentate
Perio Primary 

Perio Mixed 
Perio Permanent 

Health Predentate
Health Primary 

Health Mixed 
Health Permanent 

(c)

F IGURE 1 (a) β-diversity: PCoA of the unweighted unifrac distance for both groups and dentitions. (b) α-diversity: Shannon index for both
groups and dentitions. (c) Core microbiome, considering species presented in at least 75% of the samples from a group.
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0 1 2 3 4

Health: Predentate X Primary
Abiotrophia  defectiva

 Actinobaculum  sp._oral_taxon_848
 Actinomyces  dentalis

 Actinomyces  gerencseriae
 Actinomyces  graevenitzii

 Actinomyces  johnsonii
 Actinomyces  lingnae_[NVP]

 Actinomyces  massiliensis
 Actinomyces  naeslundii

 Actinomyces oris
 Actinomyces  sp._oral_taxon_169
 Actinomyces  sp._oral_taxon_172
 Actinomyces  sp._oral_taxon_877
 Aggregatibacter  paraphrophilus

 Aggregatibacter  segnis
 Aggregatibacter  sp._oral_taxon_898

 Alloprevotella  sp._oral_taxon_473
Atopobium  parvulum

Bergeyella sp._oral_taxon_322
 Butyrivibrio  sp._oral_taxon_455

 Campylobacter  concisus
 Capnocytophaga  gingivalis

 Capnocytophaga  granulosa 
 Capnocytophaga  leadbetteri
 Capnocytophaga  sputigena

 Cardiobacterium  hominis
 Cardiobacterium  valvarum

 Catonella  morbi
 Centipeda  periodontii

 Corynebacterium  durum
 Corynebacterium  matruchotii

 Eikenella  corrodens
 Enterococcus  faecalis 
 Enterococcus  italicus

 Fusobacterium  naviforme
 Fusobacterium  nucleatum_subsp._animalis

 Fusobacterium  nucleatum_subsp._polymorphum
 Fusobacterium  nucleatum_subsp._vincentii

 Fusobacterium  periodonticum
 Fusobacterium  sp._HOT_204

 Fusobacterium  sp._oral_taxon_203
 Fusobacterium  sp._oral_taxon_370

 Gemella  morbillorum
 Granulicatella  elegans

 Haemophilus  parahaemolyticus
 Haemophilus  parainfluenzae

 Haemophilus  paraphrohaemolyticus
 Haemophilus  pittmaniae
 Haemophilus  sputorum

 Kingella  denitrificans
 Kingella  oralis

 Kingella  sp._oral_taxon_012
 Lachnoanaerobaculum orale

 Lachnoanaerobaculum  saburreum
 Lachnoanaerobaculum  umeaense

 Lachnospiraceae_[G-2]  sp._oral_taxon_088
 Lachnospiraceae_[G-2]  sp._oral_taxon_096 
 Lachnospiraceae_[G-3]  sp._oral_taxon_100

 Lautropia  mirabilis
 Leptotrichia  goodfellowii

 Leptotrichia  hofstadii
 Leptotrichia  hongkongensis

 Leptotrichia  shahii
 Leptotrichia  sp._oral_taxon_212
 Leptotrichia  sp._oral_taxon_215
 Leptotrichia  sp._oral_taxon_217
 Leptotrichia  sp._oral_taxon_218
 Leptotrichia  sp._oral_taxon_219
 Leptotrichia  sp._oral_taxon_221
 Leptotrichia  sp._oral_taxon_225
 Leptotrichia  sp._oral_taxon_392
 Leptotrichia  sp._oral_taxon_417

 Leptotrichia  wadei
 Mogibacterium  diversum
 Mogibacterium  pumilum

 Neisseria  elongata
 Neisseria  flavescens

 Neisseria  mucosa
 Neisseria  oralis

 Neisseria  sp._oral_taxon_018
 Neisseria  subflava

 Oribacterium  asaccharolyticum
 Oribacterium  parvum 

 Oribacterium  sinus
 Oribacterium  sp._oral_taxon_078
Peptococcus  sp._oral_taxon_168

Peptostreptococcaceae_[XI][G-1]  [Eubacterium]_sulci
Peptostreptococcaceae_[XI][G-7]  [Eubacterium]_yurii_subsps._yurii_&_margaretiae

Peptostreptococcaceae_[XI][G-9]  [Eubacterium]_brachy
Peptostreptococcus  stomatis

Porphyromonas  catoniae
Porphyromonas  pasteri

Porphyromonas  sp._oral_taxon_930
 Prevotella  histicola

 Prevotella  loescheii
 Prevotella  melaninogenica

 Prevotella  nanceiensis
 Prevotella  oris

 Prevotella  pallens
 Prevotella  salivae
 Prevotella  scopos

 Prevotella  sp._oral_taxon_306
 Prevotella  sp._oral_taxon_309
 Prevotella  sp._oral_taxon_313
 Propionibacterium  propionicum

Rothia  aeria
Rothia  dentocariosa

Ruminococcaceae_[G-1]  sp._oral_taxon_075
Ruminococcaceae_[G-2]  sp._oral_taxon_085

 Selenomonas  noxia
 Selenomonas  sp._oral_taxon_137
 Selenomonas  sp._oral_taxon_478

 Solobacterium  moorei
 SR1_[G-1]  sp._oral_taxon_874
 SR1_[G-1]  sp._oral_taxon_875

 Stomatobaculum  longum
 Stomatobaculum  sp._oral_taxon_097

 Streptococcus  australis
 Streptococcus  intermedius

 Streptococcus  mutans
 Streptococcus  sanguinis

 Streptococcus  sp._oral_taxon_056
 Streptococcus  sp._oral_taxon_057
 Streptococcus  sp._oral_taxon_058 
 Streptococcus  sp._oral_taxon_061
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about how oral colonization occurs at early ages in families with

periodontally affected parents.

4.1 | Different colonization was observed across
the dentition stages

As expected, our study confirmed that salivary microbial characteriza-

tion from pre-dentate to permanent dentition was highly impacted by

teething. Previous studies have shown a natural and sequential alter-

ation in the microbiota through ageing and oral development

(Kennedy et al., 2019; Lif Holgerson et al., 2020; Mason et al., 2018).

Lif Holgerson et al. (2020) longitudinally assessed the salivary micro-

biome from infants aged 2 days to 5 years, identifying an increase in

genera across ageing, increasing α-diversity and changes in β-diversity,

similar to previous studies (Chu et al., 2017; Mason et al., 2018). Their

study found that the first colonization was dominated by Streptococ-

cus spp. and Gemella spp., in particular S. mitis and G. haemolysans,

when two-day-old babies were assessed. Moreover, while Streptococ-

cus spp. were characteristic for 3 months, the genera Capnocytophaga,

Neisseria, Porphyromonas, Haemophilus and Fusobacterium were the

most representative of the 18-month community (Lif Holgerson

et al., 2020), as was also seen in Dzidic et al. (2018) study. This time-

frame also presented the greatest expansion of the predicted KO

(2.028 additional Kegg Orthology from 3 to 18 months, while only

227 between 3 and 5 years), most of them associated with energy

metabolism, cell motility, xenobiotic biodegradation and glycan bio-

synthesis. Our findings for the Healthy group (i.e., children from peri-

odontally healthy parents) agree with those of previous studies when

82 OTUs were highly detected in primary dentition than in pre-den-

tate, around 20% of them being Actinomyces spp., Fusobacterium spp.

(including F. nucleatum), Gemella spp. and Streptococcus spp.

(as S. mutans, S. sanguinis and S. infantis). Interestingly, a dominant hub

of the species–species networks already composed mainly of these

genera (Streptococcus, Actinomyces, Gemella and Mogibacterium) char-

acterizes the mixed dentition in the Healthy group. In contrast, a mas-

sive increase in species–species correlation and additional hubs

composed of Fusobacterium, Prevotella and Oribacterium could be seen

in permanent-dentition subjects.

However, although teething appears as the main stressor for oral

microbial changes in the present (when α- and β-diversity were signifi-

cantly changed and a huge increase in the core microbiome was seen)

and previous studies (Kennedy et al., 2019; Lif Holgerson et al., 2020;

Mason et al., 2018), other factors also impact on oral microbiome

acquisition (Lif Holgerson et al., 2020; Ramadugu et al., 2021). Based

on the vertical transmission phenomenon, the role of mother/

caregivers in colonization is also well accepted and confirmed by pre-

vious studies, and the role of periodontal conditions of parents carry-

ing a dysbiotic-associated microbiota has been recently considered

(Monteiro et al., 2021).

4.2 | Periodontitis diagnosis of parents is
associated with colonization of periodontitis-
associated pathobionts and changes the colonization
dynamics

Periodontitis is characterized by a marked taxonomical and functional

change in the microbiome (Dabdoub et al., 2016; Duran-Pinedo, 2021;

Reis et al., 2021). An increase in genera such as Fusobacterium, Prevo-

tella, Porphyromonas and Treponema (Abusleme et al., 2013; Duran-

Pinedo, 2021; Griffen et al., 2012; Kumar et al., 2011), along with

functional changes, is mainly linked to the highly abundant patho-

bionts P. gingivalis, Tannerella forsythia, T. denticola and Filifactor alocis

(Dabdoub et al., 2016; Duran-Pinedo, 2021; Hajishengallis, 2014). In

young and systemically healthy subjects affected by periodontitis with

rapid progression, previous studies have confirmed the role of those

species (Schulz et al., 2019), along with Aggregatibacter actinomyce-

temcomitans (Casarin et al., 2010; Monteiro et al., 2021; Teles

et al., 2010; Velsko et al., 2020), some Selenomonas spp. (Faveri

et al., 2009), Treponema lecithinolyticum (Velsko et al., 2020) and Del-

taproteobacteria (Amado et al., 2020). Thus, considering the presence

of a complex dysbiotic community in the parents' oral cavity, there is

an expected trend in vertically transmitting them to their offspring, as

we have already shown in 6–12-year-old children (Monteiro

et al., 2015, 2021). This precocious transmission of commensals

and pathogenic species has also been described in other parent–

children dyad studies (Drell et al., 2017; Jo et al., 2021; Monteiro

et al., 2014; Ramadugu et al., 2021). The present study, enrolling

from pre-dentate babies to adults with permanent dentition, also

confirmed a pathogen-enriched community in the descendants from

periodontitis-affected parents. Although this suggests a vertical trans-

mission of bacteria, it cannot be confirmed in the present study

because of the absence of microbiological data from periodontitis par-

ents. This limitation should be evaluated in future studies focused on

determining vertical transmission and other oral colonization aspects.

Meanwhile, it is important to highlight that the present study is the

first age-wise analysis showing that the disease-associated species

(F. alocis, P. gingivalis, A. actinomycetemcomitans, Streptococcus para-

sanguinis, F. nucleatum and several species belonging to the genus

F IGURE 2 Microbial differences between dentitions in the Healthy group. β-Diversity: PCoA of the unweighted unifrac distances between
pre-dentate � primary dentition (a); primary � mixed dentition (b); mixed � permanent dentitions (c). The ellipse of the 95% confidence interval is
represented in the PCoA graphs. Differential abundance of species, tested with ANCOM-BC, comparing pre-dentate versus primary dentition (d),
primary � Mixed dentition (e) and mixed � permanent dentitions (f ). The bar size represents the fold change for each comparison, and the bar
colour indicates the dentition in which the species are more abundant. Only species differentially abundant between groups were included in the
graphs.
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Selenomonas) consecutively colonize the oral microbiome of children,

from pre-dentate stage to permanent dentition, when a parent is

affected by periodontitis.

In the present study, as expected and previously discussed, the

most abundant genera in pre-dentate babies were Streptococcus and

Lactobacillus. However, even before teething, some Prevotella spp.

were more abundant in babies from parents affected by periodontitis.

As their parents presented a higher level of these microorganisms

(Do�gan et al., 2008; Monteiro et al., 2014), a precocious transmission

and colonization may be suggested (Drell et al., 2017). However, dif-

ferently from S. mutans, which presented transient colonization in the

absence of non-shedding surfaces (Lif Holgerson et al., 2020), the

transmission of Prevotella early in life could open an infection window

for future colonizers. Prevotella spp. are gram-negative microorgan-

isms able to co-aggregate by their protein or glycoprotein with carbo-

hydrates or carbohydrate-containing molecules on the surface of the

Actinomyces strains (Nesbitt et al., 1992), which is a common genus

during this age. Indeed, the analysis of the inter-species network of

pre-dentate babies from the Perio group was dominated by a central

hub composed of Prevotella melaninogenica, P. scopos and P._sp_oral_

taxon_313 significantly correlated to Actinomyces oris and A. odontoly-

ticus. Additionally, after colonizing the oral niches, Prevotella spp.

could escape from the natural host response and alter the environ-

ment. Previous studies have observed that the Fc-binding activity of

P. intermedia and P. nigrescens acts as an additional virulence factor by

reducing IgG reactions with the bacterial cell (Jansen et al., 1995;

Labbé & Grenier, 1995), which may explain their association with

polymicrobial oral diseases. Meanwhile, it impacts not only Prevotella

maintenance in the mouth but, as shown by Guentsch et al. (2013),

cleavage of IgG1 may suppress antibody-dependent antibacterial

activity in subgingival biofilms, instigating the colonization by patho-

bionts such as P. gingivalis. Although interesting, those results regard-

ing pre-dentate stage should be seen with caution because of the

small sample size included for this group. Pre-dentate babies are a

hard-to-reach population, and future studies should include more sub-

jects to confirm our results. However, these results highlight how

maternal oral dysbiosis precociously impacts infants after and also

before teething.

After teething, additional niches increase the dissimilarity

between children from different parents' backgrounds. At primary

dentition, children of parents with periodontitis remain with higher

colonization of Prevotella spp., and the microbiome maturation was

characterized by a higher abundance of Tannerella spp., Neisseria flava,

Campylobacter gracilis, Parvimonas micra and Leptotrichia spp. in the

Perio group than in the Health group. This remarkable result indicates

an initial alteration in these subjects that could favour microbial suc-

cession and supports the establishment of later colonizers. However,

the inter-species network was still driven by Streptococcus and Actino-

myces hubs. Other pathobionts (such as Treponema spp., Rothia spp.

and Fusobacterium spp.) only alter the co-occurrence network of the

mixed and permanent dentition of the Perio group, suggesting the

importance of this microorganism in the establishment of the commu-

nity and the temporal effect of this initial colonization. This event was

also associated with an abrupt microbial change between primary and

mixed dentition in the Perio group (but did not occur in the Health

group) and an increase in the differences in diversity, abundance and

prevalence of species between Perio and Health from the mixed

dentition.

In the present study, children from parents with periodontitis of

mixed dentition, aged 9.6 years, presented a significantly different

β-diversity and a higher abundance of disease-associated species

compared to the Health group. Important inter-species network hubs

of TM7 genera, Streptococcus spp. and Haemophilus-Mogibacterium-

Prevotella spp. were observed. Moreover, there was higher coloniza-

tion of Selenomonas spp., Leptotrichia spp., F. alocis, T. forsythia,

P. nigrescens, T. denticola, P. intermedia and P. gingivalis, all of which

were found to be associated with periodontal breakdown previously

(Hashim et al., 2017; Oliveira et al., 2016). As seen here and in our

previous study enrolling youngers in mixed dentition (Monteiro

et al., 2021), this cohort dentition phase is crucial for developing and

maturing a more pathogenic biofilm (Fine et al., 2013; Mason

et al., 2018; Umeda et al., 2004). Although the plaque index was not

measured (though the dmft and DMFT scores were similar), several

studies have indicated this phase as the one with a hard-to-control

biofilm. Studies have listed some factors that can help understand this

increase in plaque accumulation during this phase, such as mal-

occlusion and positioning of teeth due to permanent eruption and the

reduction in parental attention. Previous studies have shown that at

this age, the parents stop assisting their children with toothbrushinng

once they grow up and are presumably self-efficient. Although this

does not mean the absence of brushing, its efficacy is reduced, thus

increasing plaque accumulation (Gurunathan & Shanmugaavel, 2016;

Lourenço et al., 2013). Meanwhile, the early acquired microbiome

appears resilient to a shift in plaque and bleeding indexes. Monteiro

et al. (2021) devised a strict oral hygiene programme for 3 months,

and, unexpectedly, no significant changes in biofilm diversity were

noted despite improvements in oral conditions. Indeed, in spite of

using a chemical adjuvant in the toothpaste, children's microbiota

appeared to be resilient to the shift, retaining most of their species

and core (Monteiro et al., 2020, 2021).

F IGURE 3 Microbial differences between dentitions in the Perio group. β-Diversity: PCoA of the unweighted unifrac distances between pre-
dentate � Primary dentition (a), primary � mixed dentition (b) and mixed x permanent dentitions (c). The ellipse of the 95% confidence interval is
shown in the PCoA graphs. Differential abundance of species, tested with ANCOM-BC, comparing pre-dentate � primary dentition (d), primary �
mixed dentition (e) and mixed � permanent dentitions (f). The bar size represents the fold change for each comparison, and the bar colour
indicates the dentition in which the species is more abundant. Only species differentially abundant between groups were included in the graphs.
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At the end of permanent teeth eruption and the establishment of

complete permanent dentition, complex oral colonization is expected.

Even though all subjects from periodontitis-affected parents did not

present periodontitis and presented a DMFT score similar to that of

the healthy group, a higher abundance of Fretibacterium fastidious,

P. micra, Campylobacter rectus, T. denticola and several Prevotella spp.

and members of the family Veillonellaceae were found in the Perio

permanent-dentition group compared to the mixed-dentition group.

Moreover, at the same time, a reduced abundance of Streptococcus

spp., Gemmella spp. and Leptotricha spp. was seen in this group. This

(a) (e) (g)

(h)(f)(b)

(c)

(d)

F IGURE 4 Microbial differences between groups in each dentition. β-Diversity: PCoA of the unweighted unifrac distances in pre-dentate
(a) primary dentition (c), mixed dentition (e), and permanent dentitions (g). The ellipse of the 95% confidence interval is represented in the PCoA
graphs. Differential abundance of species, tested with ANCOM-BC, in pre-dentate (b), primary dentition (d), mixed dentition (f) and permanent
dentitions (h). The bar size represents the fold change for each comparison and the bar colour indicates the group in which the species is more
abundant. Only species differentially abundant between groups were included in the graphs.
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difference in community results in a robust difference between the

Perio and Healthy groups in permanent dentition. Besides the com-

munity composition, the species–species network also highlights the

differences in the groups' microbial communities. Children from peri-

odontitis parents showed an increase in the number of correlations of

the gerera Fusobacterium, Veillonella and Prevotella since mixed
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F IGURE 5 Network co-occurrence analysis. The graphs describe the SparCC correlations between the species abundance (r > 0.75, p < .01)
in different dentition stages for the Healthy (a) and Perio (b) groups. The green edges represent a positive correlation, and the red edges

represent a negative correlation between the two nodes. Each node represents one bacterium, the node size is proportional to the number of
correlations and the node colour corresponds to the colour assigned for each group the in the previous graphs.
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dentition also presented an intense inter-generic hub formation. On

the other hand, less complex structures modulated for Streptococcus,

Actinomyces, Mogibacterium and Oribacterium were descriptive in chil-

dren from periodontally healthy patients. Altogether, it emphasizes

that when severe grade C periodontitis affects a parent, their children

seem to develop a dysbiotic oral community precociously (Herrero

et al., 2018; Nibali et al., 2008). This community can stimulate a host

response, which could initiate gingival inflammation and possibly start

disease occurrence (Nibali, 2015). Meanwhile, it is important to con-

sider that this trial assessed saliva samples and not the subgingival

biofilm. Once pre-dentate babies were included, only saliva could be

the sample for comparison between different ages. Saliva collection

requires less time and participant burden and can be done remotely

(Marotz et al., 2022). Some recent findings indicate that saliva could

be an essential tool for detecting periodontitis (Belstrøm et al., 2017;

Ma et al., 2021), presenting a significant correlation to subgingival

niche for some microbial targets (Marotz et al., 2022). However, sub-

gingival plaque is more diverse than saliva. Thus, although saliva is a

major route for vertical transmission (Asikainen et al., 1997), future

studies should also consider the assessment of subgingival niches

along different dentitions.

4.3 | Early acquirement of oral species and
systemic impacts

The recognition of early colonization and the impact of parental peri-

odontal condition is more than one piece of the puzzle of microbiome

acquisition. Recently, the concept of intra-uterine colonization has

been introduced. Gomez-Arango et al. (2017) examined pregnant

women's gut, oral and placental microbiome and found only three

genera (i.e., Prevotella, Streptococcus and Veillonella) in all gut, oral and

placenta samples. Although the placental microbiome does not har-

bour a unique core, indicating multiple sources of microorganisms, the

placental microbiome resembles the oral microbiome of pregnant

women (Aagaard et al., 2014).

One of the most critical implications of children's oral microbiome

is oral disease occurrence and systemic health. Celiac disease, asthma,

autism, paediatric inflammatory bowel disease and sleep alterations

are systemic diseases linked to oral dysbiosis (Dzidic et al., 2018; Xiao

et al., 2020). Higher levels of Rothia, Porphyromonas endodontalis,

S. sanguinis and others, all commonly found in periodontitis samples,

were linked to celiac disease and auto-immune diseases that alter gut

barriers (Derrien et al., 2010). Hence, the confirmation of the impact

of the parental oral condition on oral microbiome from very early

ages, as well as the impact of local and systemic disease, sheds new

light on the importance of controlling the oral microbiota during the

gestational period and early colonization in childhood. Modulating the

course of primary colonization should be a new focus of action for

paediatricians and periodontists.

Significant results about oral colonization in descendants of

periodontitis-affected individuals were presented in this study; how-

ever, some aspects of the study design and the clinical and

microbiological data limited some wider conclusions. This study is a

case–control study, with patients in different dentition stages and

with a cross-sectional design; thus, temporal conclusions regarding

the colonization process and a sequential increment of species in a

patient during dentition stages are limited. These answers should be

reached in a task force with long-term longitudinal trials including a

large number of individuals and also periodontal clinical examination

across dentitions, which was not possible in the present study

because of the young ages of the children. Moreover, pre-dentate

children included only very young babies prior to the first teeth erup-

tion, around 3 months, making this population hard to reach. So, the

limited size of this population should be considered. Additionally,

another limitation is the absence of the parents' microbial analysis.

Even though the present study was aimed at identifying the impact of

parental periodontal disease on their offspring's microbiome across

different dentitions, no parent–children comparison was performed,

thus not allowing conclusions on vertical transmission of the microbial

community. Thus, this aspect should be taken into account and evalu-

ated in future studies to more deeply understand the clinical conse-

quences of dysbiosis and identify factors related to periodontal

breakdown. In spite of these limitations, the present results emphasize

that the parent periodontal status is associated with a disease-

associated microbiome in descendants of periodontitis-affected

parents.

5 | CONCLUSIONS

In conclusion, parental periodontal condition impacts the oral micro-

biome from a very early age. The early colonization by pathobionts is

initiated at pre-dentate and primary dentition. A dysbiotic-associated

community could be seen already in mixed dentition and sustained at

permanent dentition in children from periodontitis-affected parents.
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