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PREFACE

For several years the Willow Run Research Center has been Iinterested
in calculating the radar cross-sections of many shapes. Many approximate
answers to composite bodies have been obtained in utilizing the methods of
physical and geometric optics due to R. C. Spencer (Ref. 1, 2, 3). In the
case of a prolate spheroid, answers have been obtained by four different
methods: electromagnetic theory, scalar waves, physical optics and geo-
metric optics (Ref. 4). The radar cross-section of an ogive 1s of partic-
ular interest because 1t is a typical missile shape.

Theoretically, it was expected that the radar cross-section of an
ogive would approximate that of the ogive's tangent cone. Much analysis
has been applied to this problem since 1946. On September 30, 1948, Hansen
and Schiff presented an analytical theory for the scattering by a semi-
infinite cone (Ref. 5). When put to use, this theory requires numerical
golutions to certain functional equations.

Carrus and Treuenfels at Massachusetts Institute of Technology set out
to compute solutions to these functional equations. Their methods of at-
tack and recorded values appeared in an wunput.1lihed Cambridge Research Lab-
oratory report entitled "Tables of Roots and Incomplete Integrals of As-
soclated Legendre Functions of Fractional Orders." These values were then
used by the authors and other investigators to obtain numerical solutions
to this and other scattering problems. This Carrus and Trevenfels report
was recently published (Ref. 6).

A review has been made of our scattering research program, and an at-
tempt was made to find out what additional information was available in
this field. This investigation showed that both theoretical and computa-
tional errors have been made in the published solutions to the cone prob-
lem. These computational errors originated in the Carrus and Treuenfels
report and were copied by other investigators.

This report presents a new method of calculating some of the values of
interest. In the process some limits of mathematical interest are ob-
tained.
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ABSTRACT

This paper derives (by a new method) an equation due to Macdonald for
determining the zeros of the associated Legendre functions of order m and
non-integral degree n when the argument is close to -1 (Ref. 7). A closed
form solution 1s obtained for the values of Qnm (u) and Qn‘m (u) for u
close to 1. Certain observations are made concerning errors in a recently
published article (Ref. 6).
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NOMENCLATURE

Pn"m (p) = the assoclated Legendre function of the first kind of
degree n, order -m and argument u .

Qn-m () = the associated Legendre function of the second kind of
degree n, order -m and argumsnt W .

0 = usual polar coordinate angle

p' = cos (n-9) = cose

M = cos ¢

¢ = an angle such that 0< ¢ < 15°

F(a, B; 7; z) = Riemann hypergeometric function

II = Gaussian operator

IT (x) = x! for positive integral x

1T (x) =[' (x + 1) where I' (x + 1) is the well known Gemma func-
tion

n = a non-integral real number

m = a real number

x = approximately equals

EC = the essential contribution of the function as the

variable u approaches a value close to 1. p differs
from 1 by (1 - cos ¢). This latter value is at most
0.03407 for ¢ = 15°,
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INTRODUCTION

In Part I are stated well-known equations involving the properties
of spherical harmonics and the Riemann hypergeometric function.

In Part II we use these equations to derive the values of Qnm (n) and
Q™ (p ) when p is close to 1.

In Part III we derive, by a new method, a simple formula due to
Macdonald for determining the zeros of either P,™@ ( ') or P, ( u')
when ¢ is sufficlently small, namely:

II (2m + k)
II (m) II (m- 1) II (k)

n~m+k + tanzm(¢/2)

In Part IV we analyze the values obtained in reference 6 and show that
some of these values disagree significantly with the exact values.

vi
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PART T
FORMULAS
For m > O:
-m 1 1-u n/2 l-qp
2w (Th) FCmarniem Y (b
(Ref. 8, p. 4Ok)
For m% 1l, 2, 3, etc.:
m/2
m _ 1 1+ p R, l-4
(Ref. 8, p. 386)
Form=20, 1, 2, 3, etc.:
m _ 1 I (n + m) 2.1m/2 .
Pn (u)_QmII(m)II(n—m)(l-u) F(m'n)n'*'ml"'-l: (3)
1+ m; 5 p')
(Ref. 8, p. 386)
For m an Integer:
m II(n+m _-m
P (u)=—"""=P (n) (La)
n II(n-mn (Ref. 8, p. 205)
and
m 1T + -
Q (u)=EI——E—2—_—II%Qnm(u) (4b)
(Ref. 8, p. 196)
Combining (3) and (4a) we obtain:
-m 1 m/2 l1-u
Pn (u)=——2mH(m)(l-p2) F(m-n,n+m+1;l+m;—2——)
(5)
1
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m m 2 sin (n + m)x m

Pn (-p) =cos (n+m)x P (u) - Qn (n) (6)

(Ref. 8, p. 407)

07 ) e (5 ) e e RETR R O] (@

(Ref. 8, p. 230)

lim F (a, b; c; 2z)
z-+0

1=EC F(a, bjc; 1l-¢) (8)

Ifa+b-c¢c <0
I (c)l (c-a-b) II(c-1)II(c-a-5b-1)
F(c-a)T(c-b) II(c-a-1)II (c-b-1)

(9)
(Ref. 9, p.8)

lim F (a, b; c;u)
(Vg

=EC Fla, b5 c;p)

For m > 0, from (1) and (8):
m/2

-m 1 1-u
BP0 mm (1+u) (10)

Form # 1, 2, 3, etc., from (2) and (8)

m/2

B P " (n) = (““) (108)

n IT(-m) (1-pu
Form= 0, 1, 2, 3, etc., from (3) and (8)
m/z

m 1 II (n + m)

2
EC Pn (u)zzmII(m) II (n - m) (1 - ")
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Form = 0, 1, 2, 3, etc., from (5) and (8):

-m 1
n (“)=2mII(m)(

1- uz)m/z

(Ref. 9, p. 1)
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PART IT

FORMULAS FOR Qn-m(p,) ANDQnm(p) DERIVED WHEN m IS AN INTEGER,

n IS NOT AN INTEGER AND u IS CLOSE TO 1

In this section, m will be considered an Integer.

Replacing m by -m in (6) we obtain:

- o gin (n - -
PP (cu) =cos (m-mw 2 () - SR BG (s
Simplifying,
m
-m _ m -m 2 (-1) sinnx -m
P (-u) = (- 1) cos e BT () - Q. ™ (k) (19)
Replacing p by -u in equation (1) we obtain:
m/2
-m _ 1 1 +u . . 1l +u
P (u) = (m)(l_u) F(-n,n+11+m —) (16)
Using equation (9)
m/2
-m fl+u II (m - 1)
P (-p)‘(l-u) II(m+n) II (m-n - 1) (17)
Combining (15, (17) end (10) we obtain
1 m/2
II (m'l)(l-u) cos nn(l-u)m/z
- -n - I 1+4
5 Q m(u)= IIém+n) If (m=-n l)+ I im)
" —n-(- 1" T gin nx < oin nn
(18)

*This equation appears incorrectly in reference 7.
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We observe that the second term is small compared to the first term.

-m x II (m - 1) cot® (4/2)
Therefore, Q (W)~ 7 G in) I (m-n-1) (-1)8*F lelnnx
(19)
Using the equation (13), equation (19) becomes
-m -1 ' (m-1)II(@-1)II(-n) .m
Q (b)) ST s T (a-n- D) cot (6/2) (20)
Now using (4b) we have
m -1t ' @-1) (-1 I(-0) m
q (H)= ST (n-m I (m-n- 1) cot (¢/2) (21)
Noting from (13) that
sin (m - n)x = T (m-n _’;_) T (o - m) = (- l)m+ ' sin (nx)
in _ b1
and 8in o " II(n-1) II (- n)
m+ 1
and finally Qnm (n) =~ %—'ﬂ cot" (8/2) (23)
By using equation (4b)
o (TR T D o) (2
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PART IIT

-m
A, THEZEROSOFPn (p') WHEN ' IS CLOSE TO - 1 AND m IS AN INTEGER

Rewriting equation (1k4) and replacing -p by p' we obtain

P (cw) =B ™ (u) = oos (a-m)x 2T (w) ~Stn (n-m w7 ()

(1k)
‘We wish to find the values of n such that

Pn'm(u')=o

Upon division, equation (14) becomes

2 ()
tan (n - m) x =£-'L——u—

) Qn-m ( “) (25)

To find the value of the above expression when p' is close to - 1,
(i.e., u close to 1) and when m is an integer, we may make use of equa-
tions (10) and (2k), ylelding:

i m/2
ﬂ IIl(m) (i + ﬁ)

ten (n - m) * = T T (m - 1) o (0/2) (26)
II (n + m)
and
~ 1 n II (n +m) tan 2m(‘t>/2)
n&m+ k4 -arctan { T (a-m II (@ I (- 1)} (27)

vhere k = 0, 1, 2, 3, etc.
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o

But since the argument of the arctangent is small, we may write
nm+k (28a)
and: arctan (x) 2= x (28b)

Using (28a) and (28b), equation (27) now becomes:

IT (2m + k) tan (6 /2)

RER K AT T (a - 1) 1T (m)

(29)

Equation (29) 1s Macdonald's formula as derived here for m an integer.

We will now follow references 7 and 8 in deriving Macdonald's formula
for non-integral m.

THE ZEROS OF Pn..m (u') WHEN p' IS CLOSE TO-1 AND m IS NOT AN INTEGER

Using equations (6a) and (14) we obtain

) m
tan (n - m)nt = sinmx Py (n) . (30)*
IT (n - m) Pm(u) - o8 W an(u)

When p 1s close to 1, by using equations (10) and (1Oa), equation
(30) becomes:

shnn s (Lon) ™

II (n - m) (l+u m/2 cosmn (1 -p m/2
II (n + m) II (- m) 1-;1,) T II (m) (1+u

tan (n - m) ® ~

(31)

*It should be pointed out that equation (30) appears incorrectly in
reference 8. Ourp appears as - in this reference.
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The second term in the denominator is small while the first term is
large. Thus,

sinmn II (n 4+ m) II (- m)

ta - T~ tan 20
Using equation (13) then
2m .
T +
tan (n - m)x IT (n + m) tan = (¢/2)
IT (m - 1) II (m) IT (n - m) (33)
and
1 2II (m + n) tan 2 (¢/2)
nom+ k +— t
o x  oreen {II (m- 1) II (m) II (n - m) (34)
But the arctangent term is small when ¢ is small, therefore
n~m+k (358)
arctan (x) ~ x (35D)
and finally
IT (em + k) tan =" (¢/2)
v + k + 6
e T (m - 1) IT (m) II (k) (36)
Thus we have derived Macdonald's formule (without the use of
Lagrange's theorem as suggested by references 7 and 8) for all m.
It should be pointed out that for integral m
il II (m +n) _ -m
P vy o —— A ! L,
n(“) ITI(n-m n (u') (he)
+
and that since H(m—n)has no zeros that the zeros of P (u') co-
IT (n - m) n

-1
incide with the zeros of Pn (p".
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PART IV

APPLICATION OF MACDONALD'S FORMULA

Macdoneld's formula,

I (2m + k)
II (m) II (m - 1) IT (k)

noem+ k + tan #™ (¢ /2) (29)

as we have seen, is approximate.

It is of major interest in the back scattering from a cone to find
the zeros of Pﬁ (H?'). We will use a cone angle of 30° as the greatest
angle to be treated by equation (29). If we analyze the case of axially
symmetric back scattering, the angle ¢ will be one-half the cone angle.

Since the zeros of the associated Legendre functions for positive
and negative integer m's coincide, we may use equation (29) to determine
the zeros of either P,;™@ (p ') or Py (u').

The zeros of P; (p?') for a 30° cone are given by (29) as
n®1+k+ (k+2) (k+1) tan” (7.5°) (38)
where k = 0, 1, 2, 3, etc.

The first zero would occur when k = O. Thus by equation (38) we have

n; 2 1.03466 (29)

Reference 6 states this value to be

n; & 1.053 (40)

The exact value of n; lies between 1.03%21 and 1.0316.

1.0321 > n; > 1.0316 (k1)
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One of these values was obtained by summing the first 50 terms of the
hypergeometric series i w.:ivted with P-%‘Qggl (cos 165°) and comparing
the remainder with two geometric progressions. One of these progressions
was larger than the remainder, and one was less than the remainder. In
this way we found for n = 1.0321

1 - cos 165°
2

- 0.000043 > F (- 1.0321, 2.0%21; 2; ) > - 0.00027 (42)

We also computed the lypergsometric series for n = 1.0316 for 60 terms
before summing and found that

1 - cos 165°

. ) < 0.000125 (43)

+ 0,00000369 <F (- 1.0316, 2.0316; 2;

Since we have established a change in sign, we have proven a root
exists between n = 1.0%321 and n = 1.0316. This is the way in which equa-
tion (L41) was obtained (for details of this computation see Appendix).

Comparing equations (39), (40) and (41) we observe that Macdonald's
formula yields a better result for the first zero than the Carrus and
Treuvenfels report.

It should be pointed out that Macdonald's formula cannot be used to
find all the zeros, even for angles between %% T and n . This arises
from the fact that in the derivation we replaced arctan x by x; this is

only a good approximation when x2<< 1.
That is,

nIT (2m + k) tan 2 (6/2)
IT (m) IT (m - 1) IT (k)

<<1

Working with m = 1 as previously, we find that

1
(k+2) (k+1)<K——
n tan® (6 /2) (k)

For the case previously under consideration, i.e., ¢ = 15°,

(k +2) (k + 1) << 18.737

10
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Thus, in this case we are permitted to use Macdonald's formula for at
most the first three zeros.

When x° >> 1, the following series may be used for the arctangent:

M|

wmm(ﬂ=%-

1
+§3- ces ()-l-ﬁ)

It is also possible by improving upon many of the approximations in the
derivation of the Macdonald formula to produce even better results.

11
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OBSERVATIONS ON THE ARTICLE, "TABLES OF ROOTS AND INCOMPLETE INTEGRALS

OF ASSOCIATED LEGENDRE FUNCTIONS OF FRACTIONAL ORDERS", BY P, A. CARRUS

C. G. TREUENFELS (Ref. 6)

Tables of Differences of Table 1, page 292, reference 6

Table 1
Zero No. o, = 165 o, = 170 6, =115
2 -1 1.0%0 0.99 1.01
3 -2 1.067 1.03 1.02
L -3 1.075 1.04 1.01
5 -4 1.079 1.046 1.04
6 -5 1.081 1.049 1.00
7 -6 1.082 1.051 1.00
8 -7 1.085 1.050 1.02
9 -8 1.085 1.053 1.022
10 - 9 1.087 1.053 1.025
11 - 10 1.087 1.054 1.024
12 - 11 1.088 1.055 1.024
13 - 12 1.089 1.055 1.024
14 - 13 1.088 1.055 1.024
15 - 14 1.089 1.056 1.025
16 - 15 1.089 1.057 1.025
17 - 16 1.090 1.056 1.025
18 - 17 1.089 1.057 1.025
19 - 18 1.090 1.057 1.025
20 - 19 1.090 1.057 1.026
21 - 20 1.090 1.057 1.026
22 - 21 1.090 1.058 1.026
23 - 22 1.090 1.057 1.026
2 - 23 1.090 1.058 1.027
25 - 24 1.090 1.058 1.027
26 - 25 1.090 1.058 1.026

12
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Table 1 (Continued)

Zero No. o, = 165 o = 170 6 =175
27 - 26 1.091 1.058 1.027
28 - 27 1.090 1.058 1.027
29 - 28 1.090 1.058 1.027
30 - 29 1.091 1.058 1.027
31 - 30 1.090 1.058 1.027
32 - 31 1.091 1.058 1.028
33 - 32 1.090 1.058 1.027
34 - 33 1.091 1.058 1.028
35 - 34 1.090 1.059 1.027
36 - 35 1.091 1.058 1.028
37 - 36 1.090 1.058 1.027
38 - 37 1.091 1.059 1.028
39 - 38 1.091 1.058 1.028
40 - 39 1.090 1.058 1.027
41 - 40 1.091 1.059 1.029
b2 - 41 1.090 1.058 1.027
43 - 42 1.091 1.059 1.028
4 - 43 1.091 1.058 1.028
45 - Li 1.090 1.059 1.028
46 - 45 1.091 1.058 1.028
W7 - 46 1.091 1.059 1.028
48 - 47 1.091 1.058 1.027
L9 - 48 1.090 1.059 1.029
50 - 49 1.091 1.058 1.028

13
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We had previously observed in equation (41) that the exact value of
the first zero for 6 = 165° was lower than is indicated in reference 6.

1.0321 > n; > 1.0316 (41)

Now 1t should be pointed out that for 16505 6 < 180° the value of n;
should decrease with increasing 6 (proven in reference 7). As a result,
we observe that the first zero for © = 170° cannot be correct, for it is
greater than 1.0321 (Ref. 6, Table 1). We also note that one difference
is less than an integer; this is impossible. In one case, the successive
difference for ® = constant decreases for increasing k by more than 1

in the last significant figure. This, too, is incorrect as it implies an
error other than a mere rounding-off error.

References 7 and 8 show that when n is large, the zeros of Pn'm'(cos 9)
are given by:

( +30 -2 - x(ae+ L (46)

n
k+ 1

Successive differences in n are then given by:

Doy, e T (47)
8
Table 2
© nk +2 nk + 1
165° 1.0909
170° 1.0588
175° 1.0286

It should be pointed out that equation (46) should not be used when
© is very close to =n., Althoughk, if it is used, one obtains Table 2.
This table predicts most of the differences, obtained from reference 6
and listed in Table 1 of this report, to two decimal places.

1L
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Thus, if one wants to extend Table 1 of reference 6, he has merely to
add to each successive zero the values listed in Table 2 on the preceding

page.

One may also note that the correct integer values for the associated
functions may be obtained by observing the change in sign in the =assuciated
Legendre polynomials. An analysis of the associated Legendre polynomials,
given in reference 10 for © values from o° to 90° in intervals of five
degrees, makes it possible (after multiplying through by (- l)k) to check
all the values listed in Table 1 (Ref. 6) fromn = 1 to n = 24 (the extent
of the table in reference 10).

Thus, any errors that exist in reference 6 should occur to the right
of the decimal point, for one could know the exact integer values by exam-
ination of the signs of the polynomials.

*Example :
1 N oy
STn 160 PIs (cos 165°) =2 6.50140
L Pl (cos 165°) - .86%7
sin 165° ~** ’
_1 Pls (cos 165°) =z - 5.23851
gin 165° ~%° :

Thus, one would expect a zero of Pé (cos 165°) to occur between n = 13
and n = 14, but none between n = 14 and n = 15 for 6 = 16509,

15
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APPENDIX

The hypergeometric series F ("1’1,‘!’“’1; 2; x) may be written in the

form A°+A1x+A,_x2+ ... where A =1, A1= —Tlg‘t*i]-.l) .

Then:
n(n+1)
Ak _ (k"ﬂ"l)(k“"n) = 1_ k+ - 1"P
Ak-l— k(k+1) k(k+12 k
2
k . m .
Let Sk=z A;xt RK=Z Ajxt
i=0 i=k+l
Then:
- w+1[7, Awsz Ak+3
Ry= At X0+ A k04 = Ay gty |

- K+l Ak+2 Az Agse k+1
=A% [1+Akﬂ 2 vw Amx + - ] A x" A

Since lim Pk—o and hm Ay =1 we have for k> n
k=00 K—>o0 Ak 1

Avz  Aypes A
0< k+3 < Jk+d |1 Tt follows that
Agst < Atz Aye3 <
d hence R lies between two specific
1- AK+2
Rjs1 ©

16
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values which are determined by the sums of the two infinite geometric
series. Hence, we show that 5= 5 + Ry satisfies the relation @ > S> B

where @ and B are positive when n = 1.0316, and o and B are negative for
n = 1.0321.

On the next page we show a few lines of the form used in the actual
computation for the case n = 1.0316.

_ 1 - cos 165°

x >

= ,98296291

17
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