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GENCAT is a computer program which implements an extremely general methodology for the analysis of multivariate categor- 
ical data. This approach essentially involves the construction of test statistics for hypotheses involving functions of the observed 
proportions which are directed at the relationships under investigation and the estimation of corresponding model parameters via 
weighted least squares computations. Any compounded function of the observed proportions which can be formulated as a se- 
quence of the following transformations of the data vector - linear, logarithmic, exponential, or the addition of a vector of con- 
stants - can be analyzed within this general framework. This algorithm produces minimum modified chi-square statistics which are 
obtained by partitioning the sums of squares as in ANOVA. The input data can be either: (a) frequencies from a multidimensional 
contingency table; (b) a vector of functions with its estimated covariance matrix; and (c) raw data in the form of integer-valued vari- 
ables associated with each subject. The input format is completely flexible for the data as well as for the matrices. 

Multivariate analysis Categorical data Contingency tables Minimum modified chi-square Weighted least squares Linear models 
Computer program Rates and proportions 

1. Introduction 

The analysis of  multivariate categorical data has re- 
ceived considerable attention in recent years. In partic- 
ular, the methodology proposed in Grizzle, Starmer, 
and Koch [1] (hereafter abbreviated GSK) has been 
extended to provide models for a wide variety of  sta- 

tistical problems as discussed in [ 2 - 2 0 ] .  This approach 
essentially involves a two stage procedure: 

(i) the construction of  the appropriate functions of  
the observed proport ions which are directed at the re- 
lationships under investigation by a sequence of ma- 
trix operations, together with logarithmic and exponen- 
tial transformations; 

(ii) the construction of test statistics for hypotheses 
involving these functions and the estimation of corres- 
ponding model parameters via weighted least squares 
computations.  
The basic elements of the theoretical justification for 
this methodology are given in Section 2. 

In principle, any compounded function of the ob- 
served proportions associated with the multidimensional 
contingency table which can be formulated by successive 

transformations - either linear, logarithmic, exponen- 
tial, or addition of  a vector of constants - of  the data 
vector can be analyzed within this framework. On the 
other hand, all the models considered in the original 
GSK paper [1] could be expressed as either linear or 
log-linear functions of  the observed proport ions.  As a 
result, the corresponding computer  programs CATLIN 
and LINCAT discussed in [21] were developed for ana- 
lyzing functions limited to the scope encompassed by 
these two classes. 

Subsequent to these developments, Forthofer  and 
Koch [7] extended the GSK procedure to include two 
more general classes of  compounded functions of  the 
observed proport ions which permit ted the investiga- 
tion of  more complex relationships in the data. Accord- 
ingly, they provided a computer  program MODCAT dis- 
cussed in [22] which can be used to implement models 
involving compounded functions of the types specified 
in [7]. 

Even though these classes of  functions specified in 
[1,7] are quite adequate for a wide range of  statistical 
problems, there are a number of  situations in which the 
functions of  interest cannot be expressed as one of  these 
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standard types. For example, see [8,17,18]. More- 
over, in many large data sets the size of  the underlying 
contingency table is outside the scope of computational 
feasibility for the GSK approach to be applied directly. 
In such situations, specialized computing procedures 
are required to obtain the estimates of  the pertinent 
functions and their estimated covariance matrix from 
the raw data associated with each subject. As discussed 
in [9,20] the same estimators which would need to be 
obtained from the conceptual multidimensional con- 
tingency table can be generated by computing the 
across-subject arithmetic means of appropriately cho- 
sen indicator functions. A summary of these indicator 
function techniques is given in Section 3. 

Consequently, in order to implement the analyses 
of an extremely general class of  compounded functions 
and to provide more flexible options for data input, a 
new computer  program GENCAT has been developed. 
In addition to permitting the analysis of  more general 
functions, this program can handle input data from 
either cards, tape, or disk file in any of the following 
three different forms: 

(i) observed frequencies from a multidimensional 
contingency table; 

(ii) a vector of  functions with its estimated covari- 
ance matrix; 

(iii) raw data in the form of non-negative integer- 
valued variables associated with each subject. 
The format for the data and the linear operator ma- 
trices can be specified separately for each set of  data 
and for each matrix as alternatives to the pre-specified 
default formats. 

Several analyses of  a given data set can be performed 
in the same computer  run by fitting more than one de- 
sign matrix to a particular set of  functions and by test- 
ing several contrast matrices for each model. In addi- 
tion, the user may specify that a vector of  functions 
and its estimated covariance matrix resulting from any 
one (and only one) of  the following steps: 

(a) the original data vector; 
(b) the functions resulting from a particular trans- 

formation; 
(c) the estimated model parameters obtained from 

a particular design matrix; 
(d) the estimated parameters obtained from a partic- 

ular contrast matrix, be saved for reanalysis at a later 
stage in the same run or be written to a file to be used 
in a subsequent computer  run. Finally, multiple sets of  

data can be processed in tile same computer  run by 
simply repeating the appropriate sequence of cards 
described in section 5. 

2. Statistical theory 

Let j = 1,2,  ..,, r index a set of  categories which cor- 
respond to the r response profiles associated with the 
specific dependent variables of  interest. For example, 
in a multidimensional contingency table with two bin- 
ary dependent variables (YI '  Y2 ) '  the r = 4 response 
profiles are (0,0), (0,1), (1,0), (1,1). Similarly, let i = 
1, 2, ..., s index a set of categories which correspond 
to distinct sub-populations as defined in terms of per- 
tinent independent variables. If samples of  size n i where 
i = 1, 2, ..., s are independently selected from the res- 
pective sub-populations, then the resulting data can be 
summarized in an (s × r) contingency table as shown in 
table 1, where nij  denotes the frequency of  response 
category j in the sample from the i-th sub-population. 

Table 1 
Observed contingency table 

Sub-population Response profile categories 

1 2 ... r Total 

1 r i l l  h i 2  ... n l r  n 1 

2 n 2 1  n 2 2  ... n 2 r  n 2 

s n s l  ns2  ... nsr  n s 

? 
The vector n i where n i = (nil ,  ni2 . . . .  , nir ) will be as- 

sumed to follow the multinomial distribution with para- 
meters n i and n [ = (Tril , 7ri2 , ..., rrir), where ¢ri] represents 
the probability that a randomly selected element from the 
i-th sub-population is classified in the ]-th response cate- 
gory. Thus, the relevant product multinomial model is 

r 

4) = i=lh [/ni"]=ll-I [Trqt ' /nij ,  ] } (2.1) 

with the constraints 

r 

7ri; = 1 for i = 1, 2, ..., s. (2.2) 
]=1 • 
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Let Pi = (ni/ni) be the (r × 1) vector of observed pro- 
portions associated with the sample from the i-th sub- 
population and let p be the (sr × 1) compound vector 

F P 

defined by p'  = (Pl '  P'2, "", Ps)" Thus, the vector p is the 
unrestricted maximum likelihood estimator o f f  where n' 

? 

= (n '  l , n 2  .... , ns). A consistent estimator for the covari- 
ance matrix o f p  is given by the (sr × sr) block diagonal 
matrix V(P) with the matrices 

t 

V. (P i) = n- 7 [Dp i - PiPi I (2.3) 
(r x r) 

for i = 1,2 .... , s on the main diagonal, where Dpi is an 
(r X r) diagonal matrix with elements of  the vector Pi 
on the main diagonal. 

Let El (P)  , F2(P) , ..., Fu(P) be a set o f u  functions 
of p which pertain to some aspect of  the relationship 
between the distribution of the response profiles and 
the nature of  the sub-populations. Each of these func- 
tions is assumed to have continuous partial derivatives 
through order two with respect to the elements of  p 
within an open region containing n = E{p}. I f F  = F(P)  
is defined by 

F '  = [F(p)] ' = [Fl(P)  , F2(P) , ..., Fu(P)],  (2.4) 

then a consistent estimator for the covariance matrix 
of  F i s  the (u X u)mat r ix  

V F = H[ V(p)IH',  (2.5) 

where H = [dF(x)/dxlx = p] is the (u × st) matrix of  
first partial derivatives of  the functions F evaluated at p. 
In all applications, the functions comprising F are cho- 
sen so that V F is asymptotically nonsingular. 

The function vector F is a consistent estimator of 
F(F). Hence, the variation among the elements o f F ( F )  
can be investigated by fitting linear regression models 
by the method of weighted least squares. This phase of  
the analysis can be characterized by writing 

E A {F) =- E A (F(p ) )  = F(g)  = Xp ,  (2.6) 

propriate test statistic for the goodness of  fit of the 
model (2.6) is 

Q = Q(X ,F)  = (R F) '  [R VFR']  - I  R F, (2.7) 

where R is any full rank [(u - t) × u] matrix orthogo- 
nal to X. Here Q is approximately distributed according 
to the X 2 distribution with D.F. = (u - t), if the sample 
sizes {ni} are sufficiently large that the elements of  the 
vector F have an approximate multivariate normal dis- 
tribution as a consequence of Central Limit Theory 
(CLT). Test statistics such as Q are known as generalized 
Wald [23] statistics and various aspects of  their applica- 
tion to a broad range of problems involving the analysis 
of multivariate categorical data are discussed in Bhapkar 
and Koch [24,25] and Grizzle et al. [1]. 

However, these test statistics like (2.7) are obtained 
in actual practice by using weighted least squares as a 
computational algorithm which is justified on the  basis 
of the fact that Q of (2.7) is identically equal to 

Q :  ( F -  X b)'  VFI ( F -  X b), (2.8) 

where 

b = ( X  ' VF1 X)  - 1 X '  I / F I E  (2.9) 

is a BAN estimator for I~ based on the linearized modi- 
fied ×2-statistic of  Neyman [26]. In view of this iden- 
tity demonstrated in Bhapkar [27], both Q and b are 
regarded as having reasonable statistical properties in 
samples which are sufficiently large for applying CLT 
to the functions F. As a result, a consistent estimator 
for the covariance matrix of  b is given by 

V b = (X'  VF1 X) - 1 .  (2.10) 

If the model (2.6) does adequately characterize the 
vector F(F), tests of  linear hypotheses pertaining to the 
parameters II can be undertaken by standard multiple 
regression procedures. In particular, for a general hypo- 
thesis of  the form 

where X is a pre-specified (u X t) design (or independent 
variable) matrix of  known coefficients with full rank 
t ~< u, p is an unknown (t X 1) vector of  parameters, 
and "E A "  means "asymptotic expectation." 

As discussed in more detail in Koch et al. [9], an ap- 

H0: C p = O ,  (2.11) 

where C is a known (c X t) matrix of  full rank c ~ t 
and O is a (c × 1) vector of O's, a suitable test statistic 
is 
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Qc = (C b)' [C (X' V F 1 X ) -  1 C'] - 1 C b (2.12) 

which has approximately a ×2-distribution with D.F. 
= c in large samples under H 0 in (2.11). 

In this framework, the test statistic Qc reflects the 
amount by which the goodness of fit statistic (2.8) 
would increase if the model (2.6) were simplified (or 
reduced) by substitutions based on the additional con- 
straints implied by (2.11). Thus, these methods per- 
mit the total variation within F(n) to be partitioned 
into specific sources and hence represent a statistically 
valid analysis of variance for the corresponding estima- 
tor functions F. 

Predicted values for F(n) based on the model (2.6) 
can be calculated from 

~'= X b = X (X' VF1 X) - 1 X '  VF1F.  (2.13) 

Thus, consistent estimators for the variances of the ele- 
ments of P can be obtained from the diagonal elements 
of 

V~ = X (X' VF1 X) - 1 X ' .  (2.14) 

The predicted values F not only have the advantage 
of characterizing essentially all the important features 
of the variation in F(n), but also represent better esti- 
mators than the original function statistics F since they 
are based on the data from the entire sample as opposed 
to its component parts. Moreover, they are descriptive- 
ly advantageous in the sense that they make trends 
more apparent and permit a clearer interpretation of 
the relationship between F(n) and the variables com- 
prising the columns of X. 

Although the formulation o fF(p )can  be quite gen- 
eral, Grizzle et al. [1] and Forthofer and Koch [7] 
demonstrated that a wide range of problems in cate- 
gorical data analysis could be considered within the 
framework of a few specified classes of compounded 
logarithmic, exponential, and linear functions. How- 
ever, these functions are all special cases of a broad 
class of functions which can be expressed in terms of 
repeated applications of any sequence of the following 
matrix operations: 

(i) linear transformation of the type 

FI(P)  = A l P  = a l ,  (2.15) 

where A 1 is a matrix of known constants; 
(ii) logarithmic transformations of the type 

F 2(p) = log e(p) = a2, (2.16) 

where log e transforms a vector to the corresponding 
vector of natural logarithms; 

(iii) exponential transformations of the type 

F 3 (p) = exp (p) = a3, (2.17) 

where exp transforms a vector to the corresponding 
vector of exponential functions, i.e., of anti-logarithms. 
Then the linearized Tay.lor-series-based estimate of the 
covariance matrix o f F  k for k = 1,2, 3, is given by 
(2.5), where the corresponding H k matrix operator is 

H 1 =A1; (2.18) 

= D p l ;  (2.19) H 2 

H3 = Da 3' (2.20) 

where Dy is a diagonal matrix with elements of the vec- 
tor y on the main diagonal. As a result, an extremely 
general class of functions of the observed proportions 
can be formulated by successively compounding trans- 
formations of the types in (2.15)-(2.17)in any desired 
order. Moreover, the linearized Taylor-series-based esti- 
mate of the cov~riance matrix associated with a given 
set of compounded functions can be obtained by re- 
peated application of the chain rule for matrix differ- 
entiation. Examples of the types of compounded func- 
tions which are useful in specific statistical applications 
are discussed in Section 4. 

3. Data input 

The data input options for GENCAT are quite flex- 
ible, permitting the data set to be read in from any in- 
put device such as cards, tape, or disk files. If the data 
are already in the form of a contingency table having 
r response profiles within each of s sub-populations as 
shown in table 1, the observed frequencies can be 
handled in one of two slightly different ways, depend- 
ing on the size o f r  * s. (In either case, thougta, the re- 
quirement is r ~< 80, p ~< 80). 
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3.1. Frequency data: CASE 1 

I f r  • s ~< 80, the observed frequencies in the format 
of table 1 are entered in row order. As a result, the data 
vector p is of dimension r * s and consists of the r pro- 
portions within each of the s sub-populations. This com- 
pound vector p can then be analyzed directly with the 
usual constraint that the final set of functions F(p) 
must have a non-singular covariance matrix V F. This 
input mode is similar to that of the previous programs 
CATLIN [21] and MODCAT [22]. 

3.2. Frequency data: CASE 2 

If r * s ~ 80, the observed frequencies in the format 
of table 1 are also entered in row order with the con- 
dition that the same linear functions are to be formed 
within each sub-population at the initial step so that 
the total number of functions does not exceed 80. As 
a result, the data vector p is of dimension r '  * s ~< 80, 
where r '  is the number of linear combinations of the 
proportions associated with the r response profiles used 
to form the reduced number of functions within each 
sub-population. This compound vector p can then be 
analyzed directly with the usual constraint that the 
final set of functions F(p)  must have a non-singular 
covariance matrix F F. This input mode is similar to 
that of the previous program Lincat [21] which re- 
quired a block diagonal A matrix at the initial stage 
of function formulation. 

If r * s > 80 and the first set of functions of the 
underlying proportions cannot be obtained by using 
a block diagonal linear operator matrix with the same 
block for each sub-population, then the current fixed 
dimension of the program must be increased to ac- 
commodate the larger number of functions. Changing 
the dimensions of the program is not difficult. Instruc- 
tions are included in the distribution package (see 
Section 9). 

3.3. Direct input o f  function vector 

In some situations the observed frequencies cannot 
be assumed to follow the multinomial distribution 
specified in (2.1). Consequently, the estimate of the 
covariance matrix in (2.3) may not be appropriate. 
For example, the analysis of data from sample surveys 
as discussed in [11,13] requires estimates of the covari- 

ance matrix which are consistent with more complex 
sampling schemes and may need to be computed via 
alternative procedures such as balanced repeated repli- 
cation. Also, for modularized analyses involving pre- 
liminary estimates of functions within each module 
as discussed in [15,16] the covariance structure of the 
functions may be estimated by iterative procedures as- 
sociated with maximum likelihood estimation. For such 
cases, the input data are already in the form of a vector 
of functions and its estimated covariance matrix. Ac- 
cordingly, these data can be entered directly for the 
vector F(p) and its corresponding covariance matrix 
V F. Thus, subsequent analyses of these functions can 
be performed directly. 

3.4. Raw data 

If the size of the underlying multidimensional con- 
tingency table in the format of table 1 is outside the 
scope of computational feasibility for a specific prob- 
lem, the data can be analyzed in an alternative mode 
which effectively bypasses the construction of a con- 
tingency table. In such instances the raw data associa- 
ted with each subject or observational unit can be en- 
tered in the form of categorical variables which are 
classified as either independent or dependent. The in- 
dependent variables are used to specify the s sub-popu- 
lations, whereas the dependent variables are used to 
form the u response functions within each sub-popula- 
tion. Weights are assigned to each of u indicator vari- 
ables so that the across-subject arithmetic means of 
these variables provide the required estimators. In par- 
ticular, let the response functions selected for analysis 
be indexed by k = 1, 2, ..., u. These functions are ex- 
pressed in terms of combinations of specified levels of 
the dependent variables. For this purpose, let the u in- 
dicator variables be defined by 

Zik I = 

wk(t3, if the l-th subject in the sample from 
the i-th sub-population is classified in- 
to response profile/" 

O, otherwise, (3.1) 

for /= l, 2, ..., s;j  = l , 2 , . . . , r ; k  = 1 , 2  .... , u ; l  =1 ,2 ,  
..., ni, where wk(1) is the weight assigned to the j-th 
response profile for the k-th function. Thus, the mean 
scores for the u functions within the s sub-populations 
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can be obtained directly from (3.1) as 

ni 

_ 1 ~ Zikl" Zik = n i  1=1 
(3.2) 

For notational convenience, these indicator functions 
can be summarized in vector notation by letting 

t 

Zil = (Zill,  Zi2l , . . . ,Ziul);  (3.3) 

Z'I = (Z-il' Zi2 .... ' 3iu);  (3.4) 

3 '  = (g ' t '  3 '  - '  2' "" 'Zs)"  (3.5) 

Thus, a consistent estimate of  the covariance matrix 
of g in (3.5) can be obtained from (3.3) and (3.4) by 
computing 

ni 
_ , 

V ( z i )  n2 = (Zil -- Zi) (Zil -- Zi)  (3.6) 

for i = 1, 2, ..., s, and then constructing a block diago- 
nal matrix V(3) with the matrices in (3.6) as the cor- 
responding blocks on the main diagonal. 

In this computer  program all the variables must be 
categorical with non-negative integer-valued codes, 
e.g., 0, 1, 2, ..., L. If the data are not already expressed 
in this form, a general purpose statistical package such 
as SPSS [28] can be used to recode the data prior to 
using GENCAT. When using the raw data input mode, 
all the computations in (3.2) and (3.6) are automatical- 
ly performed for the specified indicator functions in 
(3.1). Then the vector 3 in (3.5) and its estimated co- 
variance matrix V(g) obtained from (3.6) are used for 
F and V F in the original GSK framework. Specific ap- 
plications of these alternative techniques involving in- 
dicator variables are discussed further in [9,18,20]. 

4. Formulation of functions 

Since the GSK approach to the analysis of  multi- 
variate categorical data is extremely general, the user 
must specify the set of  functions aimed at the relation- 
ships under investigation. Depending on the type of in- 
put data, these functions are derived either from the 
vector of  observed proportions associated with con- 
tingency table frequencies, the vector of  direct input 

functions, or from the raw data associated with each 
subject. These functions are formed by successive ap- 
plications of  linear operator matrices A 1' A 2' ""' A m 1 
and transformations T1,7"2, ..., Tin2 , where T m trans- 
forms each element of  a vector via logarithms or expo- 
nentiation as shown in (2.16) and (2.17), or by the ad- 
dition of a vector of constants. In general, these com- 
pounded functions of  the observed proportions can be 
expressed as 

F ( p )  = T m 2 ( A m l  * ... * T2(A 2 * TI(A 1 *p)) . . . ) ,  (4.1) 

where p is the vector of  proportions created at the ini- 
tial stage of data input. 

The estimation of these compounded functions can 
sometimes lead to computational difficulties. For ex- 
ample, the logarithmic transformation can be applied 
only to function vectors in which all the elements are 
positive. Furthermore, the linear operator matrices and 
the transformations must be chosen in such a way that 
the estimated covariance matrix associated with the 

final set of  functions in non-singular. In this regard, the 
presence of zero cells in the underlying multidimensional 
contingency table may cause a problem for some appli- 
cations. For these cases, such zero frequencies can oc- 
casionally be replaced by (1/2) in the computations as 
proposed in [1 ] without adversely affecting the validity 
of the analysis, provided that the total number of such 
adjustments is relatively small. Otherwise, some linear 
functions such as mean scores or first-order marginal 
sums are obtained by combining observed proportions 
across categories, and thus individual zero cells are not 
necessarily troublesome unless they induce functional 
dependence among certain elements of F(p).  Finally, 
a more detailed discussion of the impact of  zero cells 
is given in [9,17]. 

Although F(p)  in (4.1) includes a wide range of pos- 
sible functions, many of the relationships commonly 
investigated for multivariate categorical data involve 
functions which can be expressed in one of the follow- 
ing classes. 

4.1. L inear  f u n c t i o n s  

In many situations, the hypotheses of interest are 
expressed in terms of constraints on the observed cell 
probabilities, on the first or higher-order marginal dis- 
tributions, or on mean scores associated with the res- 
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ponse variables. For example, most of the relevant 
hypotheses involving marginal distributions and/or 
mean scores in repeated measurement designs, hypo- 
theses involving main effects and interactions in facto- 
rial designs, and hypotheses involving incomplete data 
and supplemented margins can all be expressed in terms 
of linear functions of the observed proportions as 

F(p) = A 1 *p. 

For further details, see [1-3,5,9,18]. 

(4.2) 

4.2. Log-linear functions 

Whereas the previous hypotheses were formulated 
in terms of linear functions of the observed propor- 
tions, hypotheses concerned with the analysis of multi- 
variate relationships are sometimes expressed in terms 
of log-linear models, such as those discussed in Bishop 
et al. [29]. In particular, hypotheses of "no interaction" 
in the overall table or in selected marginal distributions 
discussed in [24,25,30] can all be formulated in terms 
of functions of the type 

F(p) =A 2 *log(A 1 *p). (4.3) 

For further details, see Grizzle and Williams [4]. Other 
applications of functions in the class of (4.3) include 
the survival curve analysis of life table data as discus- 
sed in Koch, Johnson and Tolley [6] and the analysis 
of data from paired choice experiments as discussed 
in Imrey, Koch, and Johnson [12]. 

4.3. Compounded functions: fixed pattern o f  trans- 
formations 

As discussed in Forthofer and Koch [7,22] there 
are a number of situations in which functions more 
complex than either (4.2) or (4.3) are required. 
Among these are the analysis of rank correlation co- 
efficients as discussed in Goodman and Kruskal [31-  
33] or Davis and Quade [34], the analysis of "ridits" 
as discussed by Bross [35] or Williams and Grizzle [36], 
and the analysis of partial association as discussed by 
Mantel and Haenszel [37] and Mantel [38]. For this 
purpose, Forthofer and Koch [7] indicated that two 
general classes of compounded functions could be used 
to formulate the relevant estimators. They are given as 

F(p) =A 3 * exp(A 2 *log(A 1 *p)) (4.4) 

F(p) = A 4 *log(A 3 *exp(A 2 *log(A 1 *p))). (4.5) 

Specific applications of functions of the type in (4.4) 
and (4.5) are given in [7,22]. 

4.4. Completely general compounded functions 

Although certain patterns of association in square 
contingency tables can be investigated via functions in 
(4.5) as discussed in [7,22], there are additional quan- 
tities such as complex ratio estimators which cannot 
be formulated as one of the standard types given in 
(4.2)-(4.5). For example, the measurement of agree- 
ment in multidimensional tables resulting from observer 
variability studies involves generalized kappa-type sta- 
tistics of the form 

F(P) = A 5 *exp(A 4 *log(A 3 *exp(A 2 *log(A 1 *p)))) 

(4.6) 

as discussed in Landis [18] and Landis and Koch [19]. 
Other recent developments utilizing more general forms 
of compounded functions include the following: 

(i) the analysis of life table data using Weibull models 
as discussed in Freeman, Freeman and Koch [8] using 
functions of the form 

F(p) = log(A 2 * log(A 1 *P)); (4.7) 

(ii) the use of maximum likelihood estimates in fit- 
ting hierarchical and non-hierarchical log-linear models 
by weighted least squares as discussed in Koch, Freeman, 
Imrey and Tolley [17] using functions of the form 

F(p) = A 4 *exp(A 3 *log(A 2 *exp(A 1 *p))). (4.8) 

5. Use of GENCAT 

The following sets of cards are used to enter the data 
and the parameters which determine the type of analysis 
to be performed: 

(0) JOB CONTROL CARDS 
(1) BASIC PARAMETER CARD 
(2) DATA INPUT CARDS 
(3) FUNCTION FORMULATION CARDS 
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(4) DESIGN MATRIX CARDS 
(5) CONTRAST MATRIX CARDS. 

Several analyses of  a given data set can be performed 
in the same computer run by fitting more than one 
design matrix to a particular set of  functions and by 
testing more than one contrast matrix for a particular 
design. This can be accomplished by simply repeating 
as many sets of  cards (4 ) - (5 )  as desired. In addition, 
the user may specify that a vector and its estimated 
covariance matrix be saved for reanalysis at the next 
step. At the reanalysis stage, the saved data are treated 
as direct input, so that new functions may be defined 
and analyzed. Within a given sequence of  cards ( 1 ) -  
(5), one (and only one) of  the following forms of  data 
may be saved for re-analysis - the vector and its esti- 
mated covariance matrix corresponding to: 

(a) the original data; 
(b) the functions resulting from a particular trans- 

formation; 
(c) the estimated parameters obtained from a given 

design matrix; 
(d) the estimated parameters obtained from a given 

contrast matrix. 

(0) JOB CONTROL CARDS 

These cards are necessary to access and to execute 
the load module of  GENCAT. Because they will vary 
from one computer system to another, the user will 
need to determine the specific commands which are 
required at his/her computer installation. For example, 
under MTS at the University of  Michigan, the required 
card is as follows: $RUN SGCD:GENCAT 1 = *SOURCE* 
3 = *SINK* 8 = - T E M P  

Otherwise, at the Trinagle Universities Computation 
Center, Research Triangle Park, N.C., the required cards 
for executing the program from a load module stored in 
UNC.B.F2336.LANDIS.MODKAT are as follows: 

//GENCAT JOB UNC.B.XXXXX, USER, T = (,29), 
M = 1, REGION = 200K 

//JOBLIB DD DSN = UNC.B.F2336.LANDIS.MODKAT 
// EXEC PGM = GENCAT 
//FT08F001 DD DSN =&&TEMP2, DISP = NEW, 
// UNIT = SYSDA, SPACE = (TRK,(1,2)), 
// DCB = (RECFM = VBS, BLKSIZE = 3000) 
//FTO3F001 DD SYSOUT = A 
//FT02FO01 DD SYSOUT = B 
//FT01FO01 DD * 

Furthermore, within the same sequence of  cards ( 1 ) -  
(5), one (and only one) set of  data from (a)- (d)  can 
be punched onto cards (or written to a disk or tape 
file) to be used in a subsequent computer run. Finally, 
multiple sets of  data can be processed in the same run 
by simply repeating the appropriate sequence of  cards 
(1 ) - (5 )  for each data set. 

5.1. Description o f  the cards 

Since the program is written in FORTRAN, all in- 
teger-valued parameters must be right-justified in their 
fields on the input cards. All FORMAT statements 
must be enclosed in parentheses and should be left- 
justified in their fields. Moreover, the input data and 
matrices must be read according to floating-point spe- 
cifications involving F or E, (e.g., 8FlO.0, 6E13.5). 
Fixed-point specifications involving I are not  permis- 
sible. 

(1) BASIC PARAMETER CARD 

Columns 

5 

10 

14-15  

Information contained 

Status of  data set: 
5 = new data; 
6 = reanalysis of  data saved from pre- 

vious step. 

Type of input data (skip if column 5 ¢ 5): 
1 = Frequencies from a contingency table: 

CASE 1 (See Section 3.1); 
2 = Frequencies from a contingency table: 

CASE 2 (See Section 3.2); 
3 = Direct input of  a function vector and 

its covariance matrix (See Section 3.3); 
4 = Raw data associated with each subject 

(See Section 3.4). 

Device number from which input data are 
to be read (skip if column 5 4= 5). [e.g., 
01 = card reader; do notiase 02, 03, or 
081. 
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Columns 

25 
(optional) 

30 
(optional) 

33 -80  
(optional) 

Information contained 

Print options: 
(or blank) = Print resulting covariance 

matrix; 
1 = Suppress printing of resulting co- 

variance matrix. 

Save options: 
(or blank) = Do not save initial vector 

and its covariance matrix 
for reanalysis; 

1 = Save initial vector and its covariance 
matrix for subsequent analysis in the 
same run; 

2 = Write initial vector and its covariance 
matrix to unit 2 (typically punched 
cards). 

Title to be printed on first page of ana- 
lysis. 

Columns 

33-80  
(optional) 

Information contained 

Format by which each row of the con- 
tingency table will be read [Default = 
(8F10.0)I. 

(ii) PARAMETER CARD FOR BLOCK MATRIX 
(CASE 2 ONLY) 

Colums 

1-5  

33-80  

(optional) 

Information contained 

Number of rows (r ')  in the basic block 
of the block diagonal matrix [Be sure 
r '  * s ~< 80]. 

Format by which each row of the basic 
block matrix will be read [Default = 
(16F5.1)]. 

(iii) BASIC BLOCK OPERATOR MATRIX (CASE 2 
ONLY) 

(2) DATA INPUT CARDS (Skip if column 5 ~ 5 on 
(1) BASIC PARAMETER CARD) 

The next set of parameter cards is chosen from 
either (2a), (2b), or (2c) depending on the type of 
input data indicated in column 10 of the (1) BASIC 
PARAMETER CARD. 

(2a) CONTINGENCY TABLE INPUT CARDS 

The cards in this section pertain to input data from 
contingency tables. Thus, if column 10 v~ 1 or 2 on the 
(1) BASIC PARAMETER CARD, skip this section. In 
CASE 2 the basic block of the diagonal linear operator 
matrix is read prior to the frequency data. This per- 
mits a reduced number of linear functions to be used 
as the initial vector of proportions. In CASE 1, skip 
the cards associated with (ii) and (iii). 

(i) PARAMETER CARD FOR FREQUENCY DATA 
(CASE 1 OR 2) 

Columns Information contained 

1-5  Number of sub-populations (s). 

6 - 1 0  Number of response profiles (r). 

The matrix is entered with each row beginning on a 
new card according to the format specified either by 
default or in columns 33-80  of the preceding card (ii). 

(iv) FREQUENCY DATA (CASE 1 OR 2) 

Regardless of the input device, the contingency table 
frequencies are entered with each sub-population begin- 
ning on a new record according to the format specified 
either by the default or in columns 33-80  of the (i) 
PARAMETER CARD FOR FREQUENCY DATA. 

(2b) DIRECT INPUT CARDS 

The cards in this section pertain to input data in the 
form of a vector of functions F and its estimated co- 
variance matrix V F. Thus, if column 10 4:3 on the 
(1) BASIC PARAMETER CARD, skip this section. 

(i) PARAMETER CARD FOR FUNCTIONS (F) 

Columns 

1-5  

33-80  
(optional) 

Information contained 

Dimensions of function vector 

Format by which the function vector 
will be read [Default = (5E15.5)]. 
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(ii) VECTOR OF FUNCTIONS (F) 

Regardless of the input device, the functions are 
entered as one compound vector (which can usually 
be partitioned into s sub-vectors of dimension r) ac- 
cording to the format specified either by the default 
or in columns 33-80  of the (i) PARAMETER CARD 
FOR FUNCTIONS (F). 

(iii) PARAMETER CARD FOR COVARIANCE 
MATRIX (VF) 

Columns 

1-5  

33 -80  
(optional) 

Information contained 

Input mode for covariance matrix 
1 = Entire matrix V F will be read in by 

rows (each row beginning on a new 
record); 

2 = Upper triangle of V F will be read in 
row order as a single vector (each 
row beginning with the diagonal 
element of that row); 

3 = Diagonal matrix V F will be read as 
vector of the diagonal elements. 

Format by which V F will be read [De- 
fault = (5El 5.5)]. 

Columns 

6 - 1 0  

11-15 

16-20 

33-80  
(optional) 

Information contained 

Number of sub-populations (s) to be 
created on the basis of the (q) inde- 
pendent variables. 

Number of dependent variables (d). 

Number of functions (r) to be created 
from the (d) dependent variables within 
each sub-population. 

Format by which the raw data for each 
subject will be read [Default = 16F5.0)]. 

(ii) SUB-POPULATION CARDS 

Columns 

1-6  

7 -80  

Information contained 

S(JJ) =, where JJ is the sub-population 
number ( I f J J  is only a single digit, this 
field ends in column 5 and the next one 
begins in column 6). 

Statement indicating how the JJ-th sub- 
population is to be formed from the q 
independent variables expressed in terms 
of operations involving G(gl, ..., gq). 
(See Section 5.2). 

(iv) COVARIANCE MATRIX (VF) (iii) INDICATOR FUNCTION CARDS 

Regardless of the input device, the matrix is entered 
according to the format specified either by the default 
or in columns 33-80  of the (iii) PARAMETER CARD 
FOR COVARIANCE MATRIX (VF). 

(2c) RAW DATA INPUT CARDS 

The cards in this section pertain to input in the form 
of categorical data variables associated with each sub- 
ject (See Section 3.4). Thus, if column 10 4:4 on the 
(1) BASIC PARAMETER CARD, skip this section. 
(See additional details in Section 5.2). 

(i) PARAMETER CARD FOR RAW DATA 

Columns Information contained 

1-5  Number of independent variables (q). 

Columns 

1-6  

7 -80  

Information contained 

F(JJ) =, where JJ is the function number 
( I f J J  in only a single digit, this field ends 
in column 5 and the next one begins in 
column 6). 

Statement indicating how the JJ.th indi- 
cator function is to be formed from the 
d dependent variables expressed in terms 
of operations involving the G(g 1 .... , gd) 
and the W(wjj). (See Section 5.2). 

(iv) VARIABLE ORDER CARD 

This card indicates the order in which the q inde- 
pendent (/) and d dependent (D) variables are arranged 
on the raw data input records. For example, if q = 2 
and d = 3 and the independent variables are in the first 
and third data fields, this alignment can be denoted by 
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ORDER = (I,D,I,D,D) 

(NOTE: BLANKS ARE NOT PERMITTED WITHIN 
THE STATEMENT). 

Columns 

1 - 6  

7 - 8 0  

Information contained 

ORDER = 

Statement of  the form ( I ,D~,I  ..... D) 
which indicates the order of  the q + d 
variables on the input records. 

(v) DATA CARDS 

Regardless of  the input device, the data associated 
with each subject are entered on a new record accord- 
ing to the format specified either by the default or in 
columns 3 3 - 8 0  of  the (i) PARAMETER CARD FOR 
RAW DATA. 

(fi) END OF DATA CARD 

The end of  the raw input data is indicated by an 
additional data record which contains a negative in- 
teger (e.g., - 1 )  in the first data field. 

(3) FUNCTION FORMULATION CARDS 

The cards in this section pertain to the formulation 
of functions from the vector of  proportions which was 
either generated from a contingency table, entered as 
direct input, calculated from raw data, or saved from 
a previous step in this same run. These functions are 
obtained by repeated application of: 

(a) linear transformations 
(b) logarithmic transformations 
(c) exponential transformations 
(d) adding a vector of  constants. 

These transforms can be applied in any order to form 
the desired compounded functions of  the proportions. 
This is indicated by a series of  transformation cards 
which are ordered according to the particular sequence 
of application. 

(i) TRANSFORMATION CARD 

Columns 

5 

10 

11-15  

1 6 - 2 0  

25 
(optional) 

Information contained 

Type of  transformation: 
1 = Linear; 
2 = Logarithmic; 
3 = Exponential; 
4 = Addition of  a vector of constants. 

Input mode for linear operator matrix. 
(Skip if column 5 :~ 1): 
1 = Entire matrix will be read in by rows; 
2 = Basic block of  a block diagonal ma- 

trix (with identical blocks) will be 
read in by rows; 

3 = Main diagonal of  a diagonal matrix 
will be read in as a vector. 

Number of  rows of  the linear operator 
matrix (including all blocks if column 
10 = 2). (Skip if column 5 :P 1). 

Number of  rows in the basic block of  
the block diagonal matrix. (Skip if 
column 10 :/: 2). 

Print options: 
(or blank) = Print resulting covariance 

matrix; 
1 = Suppress printing of  resulting co- 

variance matrix. 

30 
(optional) 

33 - 8 0  
(optional) 

Save options: 
0 (or blank) = Do not save resulting 

vector and its covari- 
ance matrix; 

1 = Save resulting vector and its covari- 
ance matrix for subsequent analysis 
in the same run; 

2 = Write resulting vector and its covari- 
ance matrix to unit 2 (typically 
punched cards). 

Format by which each row of the opera- 
tor matrix (or the corresponding vector 
if column 5 = 4 or column 10 = 3) will 
be read [Default = (16F5.1)]. 
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(ii) OPERATOR MATRIX 

The cards in this section pertain to the input of a 
linear operator matrix. Thus, if column 5 4:1 on the 
(i) TRANSFORMATION CARD, skip this section. 
The matrix is entered according to the input mode 
specified in column 10, with each row beginning on 
a new card according to the format specified either by 
default or in columns 33-80.  

(iii) VECTOR OF CONSTANTS 

The cards in this section pertain to the input of a 
vector of constants. Thus, if column 5 4:4 on the 
(i) TRANSFORMATION CARD, skip this section. 
The vector of constants is entered according to the 
format specified either by default or in columns 3 3 -  
80. 

(4) DESIGN MATRIX CARDS 

The cards in this section pertain to a design (or in- 
dependent variable) matrix X used to investigate the 
variation among the elements of the function vector 
F by fitting linear regression models via weighted least 
squares. This routine will function properly only when 
the specified set of functions has a non-singular covari- 
ance matrix. In addition, the design matrix X must be 
of full column rank. If  a linear model analysis is not de- 
sired, skip both sections (4) and (5). Otherwise, the fol- 
lowing cards indicate a specific design to be fit to the 
functions. Any number of design matrices can be fit 
to a given set of functions (without using the SAVE 
option) by successively repeating control cards from 
Sections (4) and (5). 

(i) PARAMETER CARD FOR DESIGN MATRIX 

Columns 

5 

10 

Information contained 

7 

Input mode for design matrix: 
1 = Entire matrix will be read in by 

columns; 
2 = Basic block of a block diagonal ma- 

trix (with identical blocks) will be 
read in by columns; 

Columns 

11-15 

16-20 

25 
(optional) 

30 
(optional) 

33-48  
(optional) 

49 -80  
(optional) 

Information contained 

3 = Main diagonal of a diagonal matrix 
will be read in as a vector; 

4 = Identity matrix. 

Rank (number of columns) of the de- 
sign matrix. 

Number of columns in the basic block 
of the block diagonal matrix. (Skip if 
column 10 4: 2.) 

Print options: 
0 (or blank) = Print resulting covariance 

matrix; 
1 = Suppress printing of resulting covari- 

ance matrix. 

Save options: 
(or blank) = Do not save resulting vec- 

tor and its covariance ma- 
trix for reanalysis; 

1 = Save resulting parameter vector and 
its covariance matrix for subsequent 
analysis in the same run; 

2 = Write resulting parameter vector and 
its covariance matrix to unit 2 (typical- 
ly punched cards). 

Format by which each column of the de- 
sign matrix (or the corresponding vector, 
if column 10 = 3) will be read. [Default 
= (16F5.1)]. 

Title for design matrix. 

(ii) DESIGN MATRIX (Skip if column 10 = 4) 

The design matrix X is entered according to the in- 
put mode specified in column 10 of the preceding 
(i) PARAMETER CARD with each column beginning 
on a new card according to the format specified either 
by default or in columns 33--48. 

(5) CONTRAST MATRIX CARDS 

The cards in this section pertain to contrast matrices 
associated with the preceding design matrix specified in 
Section (4). If  no hypotheses involving the parameters 
in the model are to be tested, skip this section. Other- 
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wise, the following cards are used to test hypotheses 
of the form C[I = O for each contrast matrix C, where 

is the vector of  model parameters. Any number of  
hypotheses associated with a particular model can be 
tested (without using the SAVE option) by successively 
repeating control cards from this section before fitting 
another design matrix to the functions. 

(i) PARAMETER CARD FOR CONTRAST MATRIX 

Columns 

5 

10 

11-15  

1 6 - 2 0  

30 
(optional) 

3 3 - 4 8  
(optional) 

4 9 - 8 0  
(optional) 

Information contained 

8 

Input mode for contrast matrix: 
1 = Entire matrix will be read in by rows; 
2 = Basic block of  a block diagonal ma- 

trix (with identical blocks) will be 
read in by rows; 

3 = Main diagonal of  a diagonal matrix 
will be read in as a vector; 

4 = Identity matrix. 

Number of  rows of  the contrast matrix. 

Number of rows in the basic block of  
the block diagonal matrix. (Skip if col- 
umn 10 :~ 2.) 

Save options: 
0 (or blank) = Do not save resulting vec- 
tor and its covariance matrix; 
1 = Save resulting parameter vector and 

its covariance matrix for subsequent 
analysis in the same run; 

2 = Write resulting parameter vector and 
its covariance matrix to unit 2 (typi- 
cally punched cards). 

Format by which each row of  the con- 
trast matrix (or the corresponding vec- 
tor, if column 10 = 3)will be read. 
[Default = (16F5.1)]. 

Title for contrast matrix. 

(ii) CONTRAST MATRIX (Skip if column 10 = 4) 

The contrast matrix C is entered according to the 
input mode specified in column 10 of  the preceding 

(i) PARAMETER CARD with each row beginning on a 
new card according to the format specified either by 
default or in columns 33 -48 .  

5.Z Detailed description of  raw data control cards 

Because the input mode involving raw data is more 
complex than the other modes discussed in Section 3, 
this section contains details for the formation of  the 
sub-populations and indicator functions from raw data. 
The control card instructions presented here are used 
for (2c) in Section 5.1, only when a particular analysis 
utilizes raw data. Thus, this section can be bypassed 
for other modes of  data input. 

O) Specification of sub-populations 
The cards in this section specify how the q inde- 

pendent variables S 1, S 2, ..., Sq are used to form the 
s sub-populations. For this purpose, the function 
G(gl' g2' ""'gq) will be used to define the group con- 
sisting of  those subjects for which S i = gi for i = 1,2, ..., q 
(S t is the first independent variable on the raw data in- 
put cards; S 2 is the second; etc.). These groups must be 
formed in such a way that each subject fits into exactly 
one of  the sub-population profiles. For example, if q 
= 2 and S i = 1,2, then the sub-populations determined 
by the four independent variable combinations can be 
denoted by 

S(1) = G(1,1) 
S(2) = G(1,2) 
S(3) = G(2,1) 
S(4) = G(2,2). 

Moreover, subgroups can be formed on the basis of  
fewer than the q variables by placing a "."  in the posi- 
tions to be ignored. Thus, S 1 can be used to form two 
sub-populations by setting 

S(1) = G(1,.) 
s(2)  = c(2,.) .  

if all the subjects are to be considered as a random 
sample from the same sub-population, the grouping 
array G can be written as 

S(1) = G(.,.). 

Sub-populations can also be formed by using "+" 
to combine various subgroups. For example, if sub- 
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population 1 consists of subjects for which either (S 1 
= 1 and S 2 = 2) or (S 1 = 2 and S 2 = 1), this can be de- 
noted by 

S(1) = G(1,2) + G(2,1). 

Each of the s sub-population definitions must begin 
on a new card. However, the statement can extend to 
more than one card by simply continuing onto column 1 
of the next card. (NOTE: BLANKS ARE NOT PER- 
MITTED WITHIN A STATEMENT). 

(ii) Specification o f  indicator functions 
The cards in this section specify how the d depen- 

dent variables YI '  Y2' "'" Yd will be used to form the 
u indicator variables. For this purpose, the function 
G(gl'  g2' ""' gd) will be used to denote the response 
profile in which Yi = gi for i --- 1, 2, ..., d (Y1 is the first 
dependent variable on the raw data input cards; Y2 is 
the second; etc.). Furthermore, the weight function 
W(Wk) will be used to assign the weight w k to the k-th 
indicator variable. The default weight function is w k 
= 1.0, if none is specified. 

For example, i fd  = 2 and Yi = 1, 2, 3, then the under- 
lying two-way contingency table proportions can be gen- 
erated from the following indicator variables (assuming 
that w k = 1.0 for k = 2 .... , g): 

F ( 1 )  = G(1,1)  
F ( 2 )  = G(1,2)  
F ( 3 )  = a ( 1 , 3 )  
F ( 4 )  = G(2,1)  
F ( 5 )  = G(2,2)  
F (6 )  = G(2,3)  
F (7 )  = G(3,1)  
F ( 8 )  = G(3,2)  
F(9) = G(3,3)  

an alternative set of indicator functions which can then 
be used to generate mean scores is given by: 

F ( 1 )  = 6 (1 , . )  = W(1.0) 
/7(2) = G(2, . )  = I4'(2.0) 

F ( 3 )  = 6 (3 , . )  = W(3.0) 
F ( 4 )  = G(. ,1)  = W(1.0) 
F ( 5 )  ,= G(. ,2)  = I4/(2.0) 
F (6 )  = G(. ,3)  = 14/(3.0) 

In addition, indicator functions corresponding to sums 
of the underlying proportions can be specified by using 
"+", as illustrated by the following main diagonal and 
first off-diagonal sums which are assigned different 
weights: 

F ( 1 )  = C ( 1 , I )  + C(2 ,2)  + C(3 ,3)  = W(1.0) 
F ( 2 )  = G(1 ,2)  + G(2 ,3)  = W(0.5) 
F ( 3 )  = G(2,1)  + G(3 ,2)  = W(0.5) 

Each of the u function definitions must begin on a 
new card. However, the statement can extend to more 
than one card by simply continuing onto column 1 of 
the next card. (NOTE: BLANKS ARE NOT PERMIT- 
TED WITHIN A STATEMENT.) 

6. Examples and sample input cards 

In this section we will present several examples of 
the use of GENCAT with primary attention directed 
at the preparation of control cards discussed in Section 5. 
Further details concerning the choice of the appropriate 
functions and the relevant hypotheses to be tested can 
be found in the papers cited in the corresponding sec- 
tions. 

If the first order margins are to be estimated, they can 
be formed by setting: 

F ( 1 )  = C(1, . )  
F ( 2 )  = C(2, . )  
F ( 3 )  = C(3, . )  
F ( 4 )  = G(. ,1)  
F ( 5 )  = G(. ,2)  
F ( 6 )  = G(. ,3)  

If these categories are ordinally scaled, an example of 

6.1. A log-linear model example 

This example is based on a research project under- 
taken at the University of North Carolina Highway 
Safety Research Center by Stewart [39] for the pur- 
pose of studying the relationship between the severity 
of driver injury in automobile accidents and selected 
variables characterizing the accident environment with 
respect to crash configurations, location, time, and 
weather conditions, automobile type, and driver demo- 
graphic status. In this regard, the data in table 2 are from 
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a specific, isolated modular component  of  that investi- 
gation which involved the accident sub-population 
with 

Crash configuration = Single vehicle, 
medium speed 

Location = Open country 
Driver demographic status = Non-drinking (When 

accident occurred), 
male 

Calendar year of  occurrence = 1966 or 1968-1972 

(6.1) 

and its further partition into more refined sub-popula- 
tions corresponding to the cross-classification of  
Weather (Good vs. Bad), Time (Day vs. Night), and 
Model Year (Before 1966 vs. 1967-1969,  vs. 1970 -  
1973). The attribute under study is whether or not 
the driver experienced "severe" injury where "severe" 
means either an "A"-injury (serious visible injury - 
a bleeding wound, distorted member,  or any injury 
that requires the victim to be carried from the scene) 
or a "Fatal"-injury (an injury that results in death 
within 12 months of  the accident). Given this frame- 
work, the questions of  primary statistical interest per- 
tain to the relationship between the conditional proba- 
bility of  "severe" injury and the "Weather," "Time,"  
and "Model Year" characteristics of  the accident. For 
this purpose, one approach of interest is to fit multiple 
population logistic models to the functions 

F = F(p )  = A 2 * log (A  1 *p) ,  (6.2) 

where 

A1 =I24; 
A 2 = [1 -1 ]  ® I12 , (6.3) 

and where ® denotes Kronecker product of  matrices 
and I m is the m X m identity matrix. 

Since preliminary analysis of  the data in Table 2 
suggested that the second and third order interactions 
for "Weather", "Time",  and "Model Year" were un- 
important,  the GSK procedure is used to fit the "main 
effect" model: 

X =  

f i  1 1 1 0 ]  
1 1 0 1 
1 1 - 1  - 1  

1 1 - 1  1 0 4  
1 1 - 1  0 1 
1 1 - 1  - 1  - 1  
1 - 1  1 1 0 

i 

I1  - 1  1 0 1 
11 - 1  1 - 1  - 1  

I 1 - 1  1 0 
- 1  - 1  0 1 
- 1  - 1  - 1  - 1  

(6.4) 

to the logit functions F by weighted least squares. 
Since the goodness of  fit statistic Q = 1.98 with D.F. 

= 7 is non-significant (ct = 0.25), the model X provides 
a suitable characterization for these data. In this regard, 
the estimated parameter vector b and its estimated co- 
variance matrix V b are: 

Table 2 
Tabulation of driver injury by weather, time of day, and model 
year for 1966, 1968-1972 North Carolina, single vehicle acci- 
dents involving non-drinking males and occurring at medium 
speed in an open country location 

Sub-population Observed frequencies 
for driver injury 

Weather Time Model Year Not severe Severe 

Good Day -1966 5633 898 
Good Day 1967-1969 2371 259 
Good Day 1970-1973 1022 100 
Good Night -1966 7583 1526 
Good Night 1967-1969 3314 451 
Good Night 1970-1973 1308 168 
Bad Day -1966 3915 428 
Bad Day 1967-1969 2006 149 
Bad Day 1970-1973 700 43 
Bad Night -1966 3793 504 
Bad Night 1967-1969 1924 166 
Bad N~ht 1970-1973 718 51 
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[- 2.2190"] 
[ - 0 . 2 0 7 5 [  

b = / 0.1086[; 
[ -0 .2983  / 
[_ 0.0949_1 

vb = 

5.5506 
1.1858 2.9461 
0.3979 0.2279 2.5355 
3.8139 --0.0141 --0.0049 
1.4226 0.1466 0.0067 

X 10 -4  • 

(Symmetric) 

6.1373 
0.2028 8.6008 

(6.5) 

Table 3 
Test :'atistics for log-linear model effects 

Source of variation D.F. GSK test 
statistic 

Cx : Weather 
C 2 : Time 
Ca : Model year 
C4: Model year: -1966 vs. 1967-1969 
Cs: Model year: -1966 vs. 1970-1973 
C6: Model year: 1967-1969 vs. 1970-1973 

Residual lack of fit 

1 146.10"* 
1 46.52** 
2 157.79"* 
1 107.91"* 
1 74.12"* 
1 2.84 

7 1.98 

** means significant at a = 0.01 

Corresponding Qc-statistics for testing hypotheses per- 
taining to b are obtained by using the following C ma- 
trices: 

C 1 = [0 1 0 0 0]; (6.6) 

C 2 = [ 0  0 1 0 0]; (6.7) 

C3 = 0 0 0 ; (6.8) 

C 4 = [ 0  0 0 1 - 1 ] ;  (6.9) 

C 5 = [ 0  0 0 2 11; (6.10) 

C 6 = [ 0  0 0 1 2]. (6.11) 

The sources of variation which correspond to these C 
matrices and the resulting test statistics are given in 
table 3. Finally, predicted values ~t S for the conditional 
probabilities of severe injury based on b can be formu- 
lated in terms of compounded functions as 

~t S = 7ts(b ) = A 4 * e x p ( A  3 * log(A  2 * e x p ( A  1 * b))) ,  

(6.12) 
where 

ox;  

A 3 = [ 1  - 1 ]  ®I12;  A 4 = I 1 2 '  (6.13) 

with the corresponding estimated covariance matrix 
being determined via (2.5)in conjunction with (2.18)-  
(2.20). The estimators nS based on this approach and 
their corresponding estimated standard errors are given 
in the last two columns of table 4. Thus it can be noted 
that the predicted proportions ~S are very similar to the 

original observed proportions (as would be anticipated 
in view of the acceptable goodness of fit statistic Q) 
but have substantially smaller estimated standard errors. 
This gain in statistical efficiency is one of the major ad- 
vantages of the modeling process. 

Otherwise, a more complete discussion of the applica- 
tion of weighted least squares methods for fitting logistic 
and other types of log-linear models is given in Grizzle 
et al. [1], Grizzle and Williams [4] and Koch et al. [17]. 

The card preparation necessary for applying GENCAT 
to example 6.1 is described in the following paragraphs. 
The input data are frequencies from a contingency table. 

(1) BASIC PARAMETER CARD 

There are r = 2 response profiles within each of s 
= 12 sub-populations, so that r * s = 24 ~< 80, which 
allows the data to be entered according to input mode 1. 
The required parameters and the given run title are shown 
in fig. 1. 

(2) CONTINGENCY TABLE INPUT CARDS 

The r = 2 frequencies for each sub-population are 
entered on separate cards according to the default for- 
mat (8F10.0). Therefore, only the number of sub-popu- 
lations and the number of response profiles are entered 
on the parameter card for frequency data which is shown 
in fig. 1. The twelve data cards containing the observed 
frequencies from table 2 are entered immediately after 
the parameter cards shown in fig. 1. 
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Table 4 
Observed and log-linear model predicted proportions of drivers with severe injury for North Carolina data and corresponding 
standard errors 

Weather Time Model year Observed Estimated GSK log-linear predicted Estimated 
proportion S.E. proportion severe injury S.E. 
severe injury 

Good Day -1966 0.1375 0.0043 0.1392 0.0035 
Good Day 1967-1969 0.0985 0.0058 0.0984 0.0035 
Good Day 1970-1973 0.0891 0.0085 0.0892 0.0048 
Good Night -1966 0.1675 0.0039 0.1673 0.0034 
Good Night 1967-1969 0.1198 0.0053 0.1194 0.0039 
Good Night 1970-1973 0.1138 0.0083 0.1085 0.0055 
Bad Day -1966 0.0985 0.0045 0.0965 0.0031 
Bad Day 1967-1969 0.0691 0.0055 0.0672 0.0027 
Bad Day 1970-1973 0.0579 0.0086 0.0607 0.0036 
Bad Night -1966 0.1173 0.0049 0.1172 0.0035 
Bad Night 1967-1969 0.0794 0.0059 0.0822 0.0032 
Bad Night 1970-1973 0.0663 0.0090 0.0744 0.0043 

(3) FUNCTION FORMULATION CARDS 

The sequence of  transformations needed to generate 
the log-linear function statistics in (6.2) are shown in 
fig. 2. The logarithmic function is the first to be ap- 
plied to the proportion vector since the A 1 matrix 
(6.3) is the identity matrix and therefore has no ef- 
fect on the functions. The A 2 matrix is a block diago- 
nal matrix and the input mode is specified by a "2"  
in column 10 of the linear transformation card. The 
basic block of  the A 2 matrix is entered following the 
corresponding transformation card according to the 
alternate format of  (2F2.0). 

(4) DESIGN MATRIX CARDS 

The five columns of the design matrix are entered 
by column as specified by the design matrix param- 
eter card shown in fig. 3. In order that the resulting 
parameter vector and its covariance matrix be saved 
for further analysis in the same run, a "1"  is placed 
in column 30 of  the parameter card. Each column of 
the design matrix is entered on a separate card accord- 
ing to the default format (16F5.0). The design ma- 
trix follows the parameter card in fig. 3. 

(5) CONTRAST MATRIX CARDS 

The six contrast matrices given in (6.6)-(6.11)  are 
shown in fig. 4. In each case the matrix is read in by 
rows according to a format other than the default for- 
mat. The format specifications begin in column 33 of  
each contrast matrix parameter card. 

(6) REANALYSIS 

To obtain predicted values nS for the conditional 
probabilities based on b, the parameter vector saved 
from step (4) is accessed for reanalysis by a second 
basic parameter card. This card is shown in fig. 5. 

(7) FUNCTION FORMULATION CARDS FOR 
REANALYSIS 

The sequence of  transformations required to gener- 
ate the predicted values~ S in (6.12) are shown in 
figs. 5 - 7 .  The linear transformation card and the A 1 
matrix follow the basic parameter card in fig. 5; the 
exponential transformation card followed by the 
linear transformation card and the A 2 matrix are shown 
in fig. 6; the logarithmic transformation card, the linear 
transformation card, and the A 3 matrix followed by 
the fmal exponential transformation card appear in 
fig. 7. Since the A 4 matrix is an identity matrix, it 
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need not  be entered. Note that the A 2 and A 3 matri- 
ces are entered by means of  a basic block of  a block 
diagonal matrix, which is indicated by a "2"  in column 
10 of  the corresponding linear transformation param- 
eter cards. The format according to which each linear 
operator matrix is entered is shown on the respective 
linear transformation cards (beginning in column 33). 

6.2. An observer agreement example 

Let us consider the data arising from the diagnosis 
of  multiple sclerosis reported in Westlund and Kufland 
[40]. Among other things, the investigators were in- 
terested in comparing patient groups to study possible 
differences in the geographical distributions of  the dis- 
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ease. For  this purpose, a series of  patients in Winnipeg, 
Manitoba and a separate series of  patients in New 
Orleans, Louisiana were selected and were examined 
by a neurologist in their respective locations. After the 

completion of  all the examinations each neurologist 
was requested to review all the records without  seeing 
his earlier summary and diagnosis, and to classify them 
into one of  the following diagnostic classes: 
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Table 5 
Diagnostic classification regarding multiple sclerosis 

215 

Sub-population Winnipeg patients (1) 

Observer Winnipeg neurologist (2) 

Diagnostic class 1 2 3 4 Total Proportion 

1 38 5 0 1 44 0.295 New Orleans 
2 33 11 3 0 47 0.315 

Neurologist 3 10 14 5 6 35 0.235 
(1) 4 3 7 3 10 23 0.154 

Total 84 37 11 17 149 

Proportion 0.564 0.248 0.074 0.114 

Sub-population New Orleans patients (2) 

Observer Winnipeg neurologist (2) 

Diagnostic class 1 2 3 4 Total Proportion 

1 5 3 0 0 8 0.116 
New Orleans 2 3 11 4 0 18 0.261 
Neurologist 3 2 13 3 4 22 0.319 
(1) 4 1 2 4 14 21 0.304 

Total 11 29 11 18 69 

Proportion 0.159 0.420 0.159 0.261 

1. Certain multiple sclerosis; 
2. Probable multiple sclerosis; 
3. Possible multiplesclerosis (odds 50: 50); 
4. Doubtful, unlikely, or definitely not multiple 

sclerosis. 
In order to evaluate agreement between the diagnos- 
ticians, the Winnipeg neurologist then reviewed and 
classified each of  the New Orleans patient records, 
and vice versa. The data resulting from these review 
diagnoses are presented in table 5. 

Although several extensive analyses of  these data 
are discussed in Landis and Koch [19], we ~,ill con- 
sider only one representative analysis here. Specifical- 
ly, in order to illustrate the contingency table input 
mode and the formulation of  functions slightly more 
complex than those illustrated previously in [21,22] 
we will investigate selected measures of  overall agree- 

ment between the neurologists. Several questions of 
interest involve the extent to which the two neuro- 
logists classify individual patients into the same diag- 
nostic category. In particular, 

(1) Is there any difference between the two patient 
populations with respect to the overall agreement of  
the two neurologists on the specific diagnosis of  indi- 
vidual patients? 

(2) Is the agreement of  the two neurologists on the 
specific diagnosis of  individual patients significantly 
different from chance agreement based on their overall 
crude distributions of  diagnoses? 
As stated in [ 19], these issues can be investigated via 
kappa-type statistics of  the form 

^ 

Xik -- "Yik 
" - ^ , ( 6 . 1 4 )  
gik  1 --  "Yik 
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Table 6 
Preliminary weights for overall agreement measures 

Weights W 1 q)  w2q ) 

Observer 2 2 AI = 
20× 32 

Diagnostic 
class 1 2 3 4 1 .2 3 4 

Observer 1 

1 1 0 0 0 1 1/2 1/4 0 
2 0 1 0 0 1/2 1 1/2 1/4 
3 0 0 1 0 1/4 1]2 1 1/2 
4 0 0 0 1 0 1/4 1/2 1 

-1 
0 
0 
0 

1 
1 

where ~ik is an estimate of the observational probability 
of agreement associated with the k-th set of weights in 
the i-th sub-population and  "~ik is the corresponding ex- 
pected proportion of agreement under the baseline con- 
straints of total independence of observer classifications. 
For this purpose, the weights in table 6 will be used to 
create preliminary estimates of agreement between the 
two neurologists. Here Wl(l) represents a set of weights 
selected to generate a measure of perfect agreement, 
and w20 ) corresponds to a set of weights which assign 
varying degrees of partial credit to the off-diagonal cells 
depending on the extent of the disagreement. The esti- 
mates of these agreement measures within each of the 
two patient populations can be expressed in the formu- 
lation of (4.6) by choosing: 

A 2 = 
36 X 20 

1 1 1 0 0 0  0 
0 0 0  1 1 1  1 
0 0 0  0 0 0  0 
0 0 0  0 0 0  0 

0 0 0  1 0 0  0 
1 0 0  0 1 0  0 
0 1 0  0 0 1  0 
0 0 1  0 0 0  1 

0 0 0  0 1 0  0 
1 /21 /401 /211 /21 /4  

1 0 0 0 1 0 0 0  
1 0 0 0 0 1 0 0  
1 0 0 0 0 0 1 0  
1 0 0 0 0 0 0 1  

0 1 0 0 1 0 0 0  
0 1 0 0 0 1 0 0  
0 1 0 0 0 0 1 0  
0 1 0 0 0 0 0 1  

0 0 1 0 1 0 0 0  
0 0 1 0 0 1 0 0  
0 0 1 0 0 0 1 0  
0 0 1 0 0 0 0 1  

0 0 0 1 1 0 0 0  
0 0 0 1 0 1 0 0  
0 0 0 1 0 0 1 0  
0 0 0 1 0 0 0 1  

0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

0 0 0 0  0 0  0 0 -  
0 0 0 0  0 0  0 0  
1 1 1 1 0 0  0 0  
0 0 0 0  1 1 1 1 

1 0 0 0  1 0  0 0  
0 1 0 0  0 1  0 0  
0 0 1 0 0 0  1 0  
0 0 0 1  0 0  0 1  

0 0 1 0  0 0  0 1  
1 /41 /211 /201 /41 /21  

0 0 -  
0 0  
0 0  
0 0  

0 0  
0 0  
0 0  
0 0  

0 0  
0 0  ®12; 

0 0  
0 0  

0 0  
0 0  
0 0  
0 0  

10 
01A 

® 12; 

(6.15) 

(6.16) 

A 3 = 
8 X 3 6  

-EolO oo O-lO o o o _ 1 o o o  o_11Ool 
- 1 / 2 - 1 / 4 0  - 1 / 2 - 1 - 1 / 2 - 1 / 4  - 1 / 4 - 1 / 2 - 1 - 1 / 2  0 - 1 / 4 - 1 / 2 - 1  0 

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 
1/2 3/4 1 1/2 0 1/2 3/4 3/4 1/2 0 1/2 1 3/4 1/2 0 0 

® 12; (6.17) 

A 4 =  [ 1  0 - 1  0 ]  
4X 8 0 1 0 -1  ®12; 

(6.18) 
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C7 =[1 0 
~_0 1 

A5 =/4" (6.19) 
4 × 4  

In this context, the A 1 matrix forms the first-order 
marginal proportions and the weighted sums of ob- 
served agreement; the A 2 matrix forms the expected 
cell proportions by multiplying the appropriate pairs 
of the observed margins on the log e scale, the A~ ma- 
trix forms the corresponding n u m e r a t o r ,  Xik - 7ik' 
and the denominator, 1 - ~ik' for each of the kappa 
statistics; the A 4 matrix forms the division on the log e 
scale and A 5 selects the required statistics on the anti- 
log e scale. For the data in table 5, these estimates are 
given by: 

F =  ~12 
K21 
/¢22 

[0.2087 
= [0.315[ 

/0.297 / ' 
[_0.4071 

(6.20) 
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C s = [ l  0 -1  0];  (6.29) 

C 9 = [ 0  1 0 - 1 ] .  (6.30) 

The hypothesis which corresponds to each of these C 
matrices and the resulting test statistic are given in 
table 7. These results imply that the perfect agreement 
measures are not significantly different (a = 0.25) and 
that the weighted agreement measures are not signifi- 
cantly different (a = 0.25) in the two groups of pa- 
tients. Moreover, the various tests of Kik = 0 indicate 
that agreement is significantly (a = 0.01) greater than 
expected under total independence within both groups 
of patients. However, when compared with each other, 
the weighted kappa measures are significantly different 
(a = 0.01) from the perfect agreement measures in both 
sub-populations. This result suggests that the disagree- 
ment patterns tended to fall close to the main diagonal 
(perfect agreement) cells. 

where the [/~il  ] estimate the perfect agreement measure 
and t h e  [t2i2 ] estimate the partial credit weighted agree- 
ment measure between the two neurologists in the two 
patient populations. Using the results in (2.5), the esti- 
mated covariance matrix for the estimators in (6.20) is 
given by 

I 0.2546 0.2377 0.0 0.0 ] 
0.2377 0.2499 0.0 0.0 × 10 -2.  

VF = | 0.0 0.0 0.6163 0.5622 

L 0.0 0.0 0.5623 0.55071 

(6.21) 

The hypotheses associated with questions 1 and 2 
can be tested in the linear models phase of the analysis 
by setting X = 14 and testing each of the following con- 
trast matrices: 

C 1 = [1 0 0 0l; (6.22) 

C 2 = [0 1 0 01; (6.23) 

C 3 = [1 -1  0 0l; (6.24) 

C 4 = [0 0 1 01; (6.25) 

C5=[0  0 0 l l ;  (6.26) 

C 6 = [ 0  0 1 - l l ;  (6.27) 

Table 7 
Statistical tests for agreement statistics using weights from 
table 6 

Hypothesis D.F. QC 

Winnipeg patients 
Cl: Kll = 0 1 16.99"* 
C2; KI2 = 0 1 39.70** 
C3" Kl l  = /~12 1 39 .54**  

New Orleans patients 
C4:~21 = 0 1 14.27'* 
C 5" K22 = 0 1 30 .07**  

C 6 : ~ 2 1  = t~22 1 28 .76**  

Between sub-populations 
C7: Kl l  = K21;K12 = K22 2 1.07 
Ca: Kll = K21 1 0.90 
(79:K12=K22 1 1.06 

**means significant at a = 0.01 

The following paragraphs contain a detailed des- 
cription of the card preparation for using GENCAT for 
this example. 

(1) BASIC PARAMETER CARD 

Since these data involve r = 16 response profiles 
within each of s = 2 sub-populations, r * s = 32 ~< 80, 
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and thus the data can be entered according to input 
mode 1. The required parameters and an appropriate 
run title are shown on the first card in fig. 8. 

(2) CONTINGENCY TABLE INPUT CARDS 

For this example, the r = 16 frequencies for a given 
sub-population can be entered on one card by using 
five-column fields. Because the default format is 
(8F10.0), the alternative format (16F5.0), must be 
specified. This parameter card followed by the data 
cards are also shown in fig. 8. 

ponential transformation card are shown in fig. 12. Note 
that all the linear transformation cards have a "2" in 
column 10 to indicate that the matrices are block dia- 
gonal. 

(4) DESIGN MATRIX CARDS 

Because the design matrix is set equal to the identity 
matrix, this can be indicated by one card, which is shown 
as the first card in fig. 13. 

(5) CONTRAST MATRIX CARDS 

(3) FUNCTION FORMULATION CARDS 

The sequence of transformations required to generate 
the kappa statistics in (6.20) in the formulation of (4.6) 
are shown in figs. 9 -12 .  In particular, the linear trans- 
formation card and the block matrix for A 1 are shown 
in fig. 9; the logarithmic transformation card followed 
by the linear transformation card and the block matrix 
for A 2 are shown in fig. 10; the exponential transforma- 
tion card followed by the linear transformation card and 
the block matrix for A 3 are shown in fig. 1 I; the loga- 
rithmic transformation card, the linear transformation 
card, the block matrix for A 4 followed by the final ex- 

The contrast matrices given in (6.22)-(6.30) and 
their corresponding labels are shown in fig. 13. 

6.3. A raw data example 

This example is based on the pathology data re- 
ported in [41 ] which has received extensive analysis 
recently in Landis and Koch [20]. In order to investi- 
gate the variability in the classification of carcinoma 
in situ of the uterine cervix, seven pathologists were 
requested to evaluate and to classify 118 slides into 
one of the following five categories based on the most 
involve d lesion: 
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Table 8 (continued) 

Slide Pathologist Slide 
No. A B C D E F G No. A 

Pathologist 

B C D E F G 

54 3 3 2 2 4* 2 3* 116 
55 3 3 3* 3 3 2* 3 117 
56 2 2* 2 1 2* 2 2* 118 
57 2 3 2 2 3 I t  3* 119 
58 1 1 1 1 I t  I t  I 120 
59 3* 3 3* 3 3 3 3* 121 
60 1 1 2 1 I t  I t  1 122 
61 1 3* 2 1 2 I t  1 123 
62 4* 3 3 3* 3 2 3 124 
63 1 3 2 2 2 I t  2 126 

1 1 1 1 2 i t  1 
3 3 3 2 3 2 3 
3* 3* 2* 2 3* I t  3* 
1 1 1 1 2 I t  1 
1 1" 1 1 1 I t  1 
2 2* 1 1 2 I t  2 
5* 3* 4 2 3 4* 3 
4 3 4 2 4* I t  3 
1 1 1 1 2 I t  1 
2 3* 1 1 2* I t  2 

* Indicates doubtful classification. 
t Indicates no statement of confidence. 

1. Negative; 
2. Atypical squamous hyperplasia;  
3. Carcinoma in situ; 
4. Squamous carcinoma with early stromal invasion; 
5. Invasive carcinoma. 
This particular design involves s = 1 sub-population,  
d = 7 observers, and L = 5 response categories which 
produces r = L d = 78, 125 possible response profiles. 
Obviously, with only n = 118 slides most of  the cor- 
responding cell frequencies in the underlying multi- 
dimensional contingency table are zero. Furthermore,  
the sizes of  the operator  matrices associated with the 
direct GSK approach to the analysis of  these data are 
outside the scope of  computat ional  feasibility. How- 
ever, indicator functions of  the raw data in table 8 can 
be formulated to investigate the relationships of  interest 
as discussed in Section 3.4. 

Although several statistical issues in these data are 
investigated in [20], we will consider only one repre- 
sentative analysis here to illustrate the raw data input  
mode and the util ization of  indicator functions. In par- 

ticular, the question concerning interobserver bias in 
the overall usage of  the diagnostic scale can be addressed 
in terms of  hypotheses of  first-order marginal homo- 

geneity. If  these diagnostic categories are indexed by 
]g = 1, 2, ..., 5 for each of  the pathologists indexed by 
g = 1, 2, ..., 7, then the indicator variables which can 
be used to estimate the corresponding marginal pro- 
babilities can be denoted by 

1, if  the k-th pathologist  classifies the / - th  
slide into the g-th category 

Zkg I = 

0, otherwise. 

(6.31 ) 
Thus, these functions can be expressed in the notat ion 
of  (3.3) by letting 

f 

z l 
1 × 35 = (zl ll, "", z15/, z211, "", z251, "", z711, "", Z75l) (6.32) 

As a result, the estimates of  the marginal probabilit ies 
for the diagnostic classes "1" ,  "2" ,  "3" ,  "4" ,  "5"  for 

each of  the seven pathologists can be obtained as across- 
slide arithmetic means via (3.2). These estimates are dis- 
played in table 9. 

Table 9 
First-order margins of seven pathologists classifying 118 slides 
according to most involved histological lesion 

Pathologist Response category 

1 2 3 ! 4 5 

A 0.220 0.220 0.322 0.186 0.051 
B 0.229 0.102 0.585 0.059 0.025 
C 0.263 0.356 0.314 0.051 0.017 
D 0.322 0.407 0.195 0.068 0.008 
E 0.136 0.263 0.449 0.119 0.034 
F 0.525 0.263 0.169 0.008 0.034 
G 0.271 0.169 0.517 0.025 0.017 
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Table 10 
Combined classes for two-point scale 

Class Original classification 

Cl 1, 2 
C2 3,4, 5 

In view of  substantial differences reflected in these 
marginal distributions in table 9 the diagnostic criteria 
for the five point scale do not appear to be sufficiently 
precise to ensure a high level of  interobserver agree- 
ment. Consequently, the effects of  a reduction in the 
scale shown in table 10 will be investigated. This dichot- 
omous classification is of  considerable clinical impor- 
tance, since different types of  follow-up may be pres- 
cribed for patients diagnosed as C 1 than for those diag- 
nosed as C 2. In this situation, the marginal proportions 
corresponding to C 1 for each pathologist could be gen- 
erated from the vector of  means associated with (6.32) 
by letting 

A1 = [1 1 0 0 01 ® 17 . (6.33) 
7x 35 

Nevertheless, in order to illustrate the derivation of  
these functions directly from the raw data, let 

1, if the/-th slide is classified as C 1 by 

Zkl = pathologist k 

0, otherwise. 
(6.34) 

Then the mean vector associated with (6.34) for the 
data in table 8 is given by 

0.441 I 

0 . 3 3 1 1  

0 .6 ] .91  

F = ~- = 0 . 7 2 9  I 

0.3981 
0.788 

_0.441A 

(6.35) 

which contains the estimates of  the probability of  as- 
signment to C 1 by each pathologist. The pairwise 
hypotheses of  marginal homogeneity can be tested by 
letting X = 17 and by using C matrices of  the form 

Table 11 
Statistical tests of marginal homogeneity using two-point scale 

QC Values for pairwise tests between pathologists (d.f. = 1) 

Pathologist A B C D E F G 

A - 9.62 25.55 47.76 1 .49  62.83 0.00 
B - 44.12 78.11 4.76 99.56 12.46 
C - 7.17 33.35 16.25 25.55 
D - 54.19 2.64 47.76 
E - 75.39 2.32 
F - 62.83 
G 

Chh, = [Cl,C2, C3,C4, C5,C6,C7] , 

where 

(6.36) 

1, i f k = h  

c k=  - 1 ,  i f k = h  ' 

0, otherwise. 

(6.37) 

The resulting test statistics associated with these con- 
trast matrices are given in table 11. Otherwise, a more 
complete discussion of  the analysis of  these data is 
given in [20]. 

The card preparation necessary for using GENCAT 
to obtain the analyses of  the data in table 8 is given in 
the following paragraphs. 

(1) BASIC PARAMETER CARD 

Since there are d = 7 dependent variables and q = 1 
independent variable (here the entire sample is con- 
sidered as s = 1 sub-population) in the form of integer- 
valued variables, these data are entered according to in- 
put mode 4. The required parameters and the given run 
title are shown on the first card in fig. 14. 

(2) RAW DATA INPUT CARDS 

(i) PARAMETER CARD FOR RAW DATA 

The required parameters to generate the u = 35 in- 
dicator functions in (6.31) and the appropriate format 
statement are shown on the second card in fig. 14. 
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(ii) SUB-POPULATION CARD 

Since there is only one sub-population, i.e., the en- 
tire sample is assumed to be from the same population, 
a "dummy"  independent variable is read from a blank 
field on each card to create S 1 = 0 for each slide. Thus, 
the appropriate statement to indicate that all the slides 
are from the same sub-population is shown on the third 
card in fig. 14. 

(iii) INDICATOR FUNCTION CARDS 

The u = 35 indicator variables specified in (6.31) can 

be generated by corresponding function cards shown in 
fig. 14. Since these functions involve first-order mar- 
gins, the sums over the other variables are indicated by 
a "."  in the appropriate positions of the grouping func- 
tion G as discussed in Section 5.2. 

(iv) VARIABLE ORDER CARD 

The card indicating the order of  the d = 7 depen- 
dent and q = 1 independent variables on the data cards 
is shown in fig. 14 immediately after the indicator func- 
tion cards. 
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(v) DATA CARDS 

The data for each slide in table 8 was punched on a 
separate card according to the format shown in fig. 15. 
For illustrative purposes only the first and last five cards 
of this data file are given here. 

(vi) END OF DATA CARD 

The appropriate card to indicate the end of the in- 
put data t'de is shown as the last card in fig. 15. 

Thus, these cards shown in figs. 14 and 15 are suf- 
ficient to generate the marginal distributions shown 
in table 9. Moreover the estimated covariance matrix 
for these functions is also computed, so that the fur- 
ther modeling and hypotheses testing discussed in [20] 
can be performed in the usual GSK framework. 

However, attention is now directed at the additional 
analysis of these data utilizing the two-point scale pre- 

sented in table 10. Accordingly, the appropriate cards 
used to generate the r = 7 indicator functions in (6.34) 
in a separate computer run are shown in fig. 16. These 
cards are then followed by the same input data cards 
shown in fig. 15. Since the function vector F in (6.35) 
is to be analyzed directly, no cards from the Section 
(3) FUNCTION FORMULATION CARDS are required. 
Thus, these cards in figs. 16 and 15 are followed imme- 
diately by the design and contrast matrix cards. 

(4) DESIGN MATRIX CARDS 

Because the design matrix is set equal to the iden- 
tity matrix, this can be indicated by one card, which 
is shown as the first card in fig. 17. 

(5) CONTRAST MATRIX CARDS 

The contrast matrices specified in (6.36) and (6.37) 
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and their corresponding labels are shown in fig. 17. 

7. D e s c r i p t i o n  o f  error messages 

1. "THE NUMBER OF FUNCTIONS EXCEEDS 
(R - 1) * S = - - , - - -  IN THIS CASE INDUCING 

A SINGULAR COVARIANCE MATRIX. YOU WILL 
NEED A LINEAR OPERATOR WITH ~ ROWS 

OR LESS. PROGRAM TERMINATING." 

This message is printed if the user has input fre- 

quency data and has more than (r - 1) * s functions 
when he is done with the transformation stage of the 
program (note that there is a maximum of (r - 1) * s 

linearly independent functions of the original r * s pro- 
portions). 

2. "CANNOT REANALYZE DATA - - - NOTHING 
SAVED. PROGRAM ENDING." 

This message is printed if the user has specified re- 

analysis of the same data but  did not  save any data 
with a "save option".  
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3. "ERROR IN DATA - - - PROGRAM TERMINATED." 

This message is printed if  the user specifies an invalid 
numeric code - -" for example, a "4"  on the save option,  
or an "8"  on the suppress-print option. 

4. "RANK OF BASIC BLOCK MUST BE POSITIVE - - -  
PROGRAM ENDING." 

This is printed if  rank (A *) < 1 and the user has in- 
put  frequency data, case 2. 

5. "THE NUMBER OF ROWS (COLUMNS) OF THE 
ENTIRE MATRIX MUST BE GREATER THAN 
THE NUMBER OF ROWS (COLUMNS) OF THE 
BASIC BLOCK. IF  EQUALITY HOLDS, THERE 
IS ONLY ONE BLOCK IN THE MATRIX, IN 
WHICH CASE THERE SHOULD BE A 1 IN COL- 
UMN 10 OF THE PARAMETER CARD DESCRIB- 
ING THIS MATRIX. PROGRAM TERMINATING." 

6. "TOO MANY SUBPOPULATION CARDS - - - 
PROGRAM TERMINATING." 

In the raw data option,  the user specifies on the 
parameter card the number of  sub-populations to be 
formed. This message is printed if  the number of  sub- 
population cards exceeds this specification. 

7. "NOT ENOUGH SUB-POPULATION CARDS - - - 
PROGRAM TERMINATING." 

This message is printed if  the number of  sub-popu- 
lation cards is less than the number specified on the 
parameter card. 

9. " INVALID INPUT. PROGRAM TERMINATING. 
FAULTY CARD: " ." 

This message is printed (when using the raw data 
option) if  input  is invalid - - -  either because of what 
is on the card, or because of  the placement of  the card 
within the deck. 

10. " INVALID INPUT IN RAW DATA PARAMETER 
CARD - - - PROGRAM ENDING." 

An example of invalid input  would be a negative 
number of  sub-populations. 

11. "ERROR -" - THE NUMBER OF VALUES IN- 
SIDE THE PARENTHESES SHOULD BE - -  
THE NUMBER FOUND WAS . INVALID 
INPUT. PROGRAM TERMINATING. FAULTY 
CARD: ." 

For sub-population cards (in the raw data option) 
the number of  values inside the grouping parentheses 
[G(1, 2, 1)] should be q - - -  the number of  indepen- 
dent variables. For function cards, the number should 
be d - -  - the number of  dependent variables. This mes- 
sage is printed if  there is an incorrect number of  vari- 
ables within the grouping parentheses. 

12. "ERROR - - -  INCORRECT NUMBER OF FUNC- 
TION CARDS - - - THERE SHOULD BE - -  
PROGRAM TERMINATING." 

This message is printed (when using the raw data op- 
tion) if  the number of  function cards does not  agree 
with the number of  functions specified on the raw data 
parameter card. 

8. "ERROR - - - K'TH SUB-POPULATION (OR FUNC- 
TION) CARD IS NOT LABELED AS SUCH. PLEASE 
RELABEL. PROGRAM TERMINATING. FAULTY 
CARD:" ." 

This message is printed when the user fails to com- 
ply with the arbitrary restriction that the K ' th  sub- 
population (or function) card begin with "S(K) = " 
("F(K)= "). 

13. "ERROR - - - SUB-POPULATION PROFILE NOT 
FOUND FOR THE FOLLOWING DATA VECTOR:"  

A sub-population profile is the set of  q-tuples (cor- 
responding to the values of  the q independent  variables) 
such that  i f  a subject has a raw data vector matching one 
of  the q-tuples in this set, then it is placed in that  sub- 
population.  (The purpose of  each sub-population card 
is to define its profile.) This error message is printed 
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when a data vector is found for which there is no match- 
ing sub-population profile. 

14. "WARNING: YOU SPECIFIED THAT THE PRE- 
CEDING VECTOR AND ITS COVARIANCE MA- 
TRIX BE SAVED. IT IS NOT SAVED BECAUSE 
THERE IS A PREVIOUS ENTRY IN THE SAVE 
AREA FOR THIS PASS." 

A "pass" is defined to start with a basic parameter 
card and to end with the next basic parameter card. 
Within each pass, one vector and covariance matrix 
may be saved internally and one may be punched (or 
written to an appropriate file). This warning is printed 
if there is an attempt to save more than one internally 
or to write more than one to an appropriate f'de, within 
one pass. 

interactions. Implementing this capability will involve 
adding one additional subroutine to the existing source 
code. Persons on the mailing list will be notified when 
such revisions are available for distribution. 

10. Disclaimer 

Although GENCAT has received extensive testing, 
no warranty, expressed or implied, is made to the 
accuracy and functioning of the program. No respon- 
sibility is assumed by the authors. However, if specific 
questions or problems do arise, contact the first author 
at the Department of Biostatistics, School of Public 
Health, University of Michigan, Ann Arbor, Michigan, 
48109, U.S.A. 

8. Hardware specifications 

This computer program is written in double precision 
in IBM System 360/370 FORTRAN IV which incorpo- 
rates a few extensions to American National Standard 
(ANS) FORTRAN. As a result, minor modifications of 
the source code may be required in order to use this 
program on other machines. However, a revised version 
of GENCAT is currently being prepared which will per- 
mit the program to run on a wide range of machines. 

9. Program availability 

The source deck for both the batch and time-shar- 
ing versions of GENCAT, together with the corres- 
ponding listings, may be obtained for a nominal cost 
from the Department of Biostatistics, School of Pub- 
lic Health, University of Michigan, Ann Arbor, 
Michigan, 48109, U.S.A. A current version of the docu- 
mentation and running instructions is included with 
the initial purchase of the computer program. 

Purchasers may choose to keep their names on an 
active mailing list to receive information concerning 
updating and further modifications of the program. 
For instance, work is currently underway to develop 
an additional option which automatically creates stan- 
dard design and contrast matrices associated with the 
usual ANOVA parameterizations of main effects and 
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