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1. Introduction 

To an anthropologist, questions of historical demography are more than inquiries into 
particular temporal events; they are investigations into basic human biology and the 
evolution of human culture. It is important that we be able not only to describe the 
births and deaths of a specific set of observed individuals, but that we describe the rates 
of birth and death which prevail in the population over a long time period. 

We have two basic kinds of data. There are aged skeletal series from large burial 
sites, and there are censuses from living primitive populations. The former give us direct 
information from past populations, and the latter give us information from living popu- 
lations generally assumed to be representative of cultures during the long period of human 
evolution. Hence, both sources are used to reconstruct human demographic evolution. 

Most populations of these types are small ones which are not literate and do not keep 
records sufficient for demographic analysis. We generally have but a single census 
(or aged skeletal series) and only minor scraps of other information. There is almost 
never any actual data on age-specific rates of mortality, yet these rates are the funda- 
mental parameters of demography and must be known. 

With standard theoretical approaches, it has been shown that the age distribution 
of small groups is unstable from year to year, and may be unreliable as a source from 
which to determine age-specific death rates (e.g., Moore, Swedlund & Armelagos, 
1975; Angel, 1969). It is also known that populations are so subject to extinction, due 
to statistical fluctuations in births and deaths, that they are too transitory and unstable 
for useful study (this is based on statistical theory, which can be found in Bartlett, 1960; 
Pielou, 1969; Keyfitz, 1968). If this is true, then we must avoid the use of typical 
anthropological data, and are to a great extent prevented from gaining a reasonable 
knowledge of past demographic patterns. 

The mathematical models on which these assertions are based use fixed age-specific 
birth and death rates. Yet there is a wealth of biological and anthropological infor- 
mation to show that these vital processes of a population vary according to population 
size or density in a negative-feedback way. A population which becomes crowded 
suffers higher mortality and lowered fertility, and one which is uncrowded enjoys higher 
fertility and lower mortality. These facts must be incorporated into a realistic demo- 
graphic model. 

Joumal of Human Evoh&on ( 1976) 5,59-73 



60 K. M. WEISS AND P. E. SMOUSE 

In this paper we use a density-dependent demographic model to answer two questions : 
How much extinction pressure exists for small populations over moderate time periods ? 
How representative of the underlying demographic patterns is a census from such a 
population? For populations which survive to be observed, we shall show that stochastic 
fluctuations in the vital rates generally do not disturb the census greatly from that pro- 
duced by a comparable deterministic population. 

As anthropology usually relies on a census rather than direct observation of the vital 
rates, we will be examining the relationship between stochastic fluctuations in the vital 
rates and their reflection in the census. A census close to its underlying deterministic 
form is one from which vital rates that are close to their underlying average values may 
be obtained. 

2. Methods 

We have used a stochastic (Monte Carlo) simulation of a density-dependent demographic 
process which is a modification of the standard fixed-rate projection derived first by 
Lewis (1942) and Leslie (1945, 1948). In the standard model, the age-specific birth 
and death rates are all constant over time; we have made them dependent on the size 
and composition of the population at any particular time; details of the method are 
given in the Appendix. 

If the census at time t is divided into m age classes, we represent the number of indivi- 
duals in age class i by n(i, t), and treat the entire census as an m-element vector N(t). 
We use the notation t for time, but really we are speaking of the number of iteration 
steps from some beginning population N(O), each iteration representing the length 
of time included in each age class. 

An individual at age i has a probability Z’(i) of surviving to the next age class and a 
probability F(i) of producing an offspring of the same sex. If these vital rates are fixed, 
then it has long been known that, no matter what the starting population, the population 
will approach a fixed age distribution (proportions in the m age classes) and a size which 
grows at a fixed rate, 1, determined by the set of vital rates P(i) and F(i). Although 
mathematically convenient, such a model allows fractions of individuals to survive 
or to be born and hence is somewhat approximate. 

It is known (e.g. Keyfitz, 1968) that if il is small, that is, if the population’s intrinsic 
growth rate is close to zero, then most small populations will eventually become extinct, 
due solely to the statistical aspects of birth and death. At some time enough individuals 
will die, or will not reproduce, merely due to chance, that the population will diminish 
and disappear. The rate at which this occurs depends on the value of il. An example 
will be given below. 

Real vital rates are not constant. The wealth of studies on animal behavior which 
are now available show that territoriality, aggression, sexual selection, crowding and its 
nutritional and hormonal concomitants, and perhaps most of social behavior directly 
affect the vital rates of the population. These behavioral processes generally operate 
to keep the population close to some equilibrium composition. Primitive populations 
are no exception to this pattern, and while there are exceptional circumstances, it is 
more realistic to model them with negative-feedback in their vital rates than it is to use 
the standard fixed-rate model. 

By assuming that the effect of other individuals in the population on the survival or 
fertility of a given individual is proportional to the frequency with which encounters 
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between them occur (other assumptions will lead to similar results), we can specify a 
form for the age-specific vital rates which has the desired negative-feedback properties. 
The time dependent, age-specific vital rates are expressed as follows: 

where b, and ui, are the damping effects of encounters of individuals in age class i with 
those in age class j, and where Pi and Fi are the density-independent, or maximal, 
vital rates for age class i. The exponential term is a damping factor with a value between 
0 and 1, and hence expresses the fraction of the maximal vital rate which applies to a 
population with composition N(t). The damping coefficients au and b, represent the 
pattern by which crowding is reflected on the vital rates, and for various types of feed- 
back we merely must specify the relative values of these coefficients. To produce a popu- 
lation with any specific total size, one merely needs to adjust all of the coefficients by an 
easily-computed constant factor. 

These density-dependent vital rates will produce a deterministic equilibrium in which 
growth eventually comes to zero. The model contains too many parameters to be of 
empirical use, but it is easy to simplify things by assuming simple patterns in the damping 
coefficients, by which realistic ecologically-stable populations may be modeled. 

The stochastic element in birth and death processes must now be included to make 
the model more realistic. We do this by Monte Carlo methods. At any time t, we know 
the population composition N(t), and using equations (l), we compute P(i, t) and 
F(i, t), Then for each individual in the population, we determine the chance of repro- 
ducing by drawing a random number between 0 and 1. If less than F(i, t), we place an 
infant in the first age class at the next time (n(0, t + 1)). By drawing another random 
number we determine from P(i, t) if the same individual survives to be a member of 
age class i + 1 at time t+ 1. We do this for all individuals alive at time t, and the entire 
process is carried out for 100 iterations (until t = 100). We have used 5 age classes for 
illustrative purposes, but any number can be used; if human fertility ceases at age 50, 
this simulation can be visualized as covering 1000 years. 

The properties of this model are such that the results of any single run for a set of 
starting conditions (N(O), P(i, 0), F(i, 0)) depend on the specific random numbers 
drawn. To understand the general properties of the system the same starting conditions 
must be replicated several times with different random numbers. We tried many cases 
with 100 replicates and found that the essential demographic properties are revealed by 
as few as 25 replicates. Since the computing costs are considerable, the results which 
are given below are based on 25 replicates. 

We are interested in the representativeness of a single census. To look at this, we must 
compare the results of our simulation with the population which would be produced 
deterministically, that is, with the population representing the underlying average 
vital rates, free of the statistical fluctuations whose magnitude we are investigating. For 
all of the demographic patterns to be examined, we have iterated the deterministic 
model 1000 times, so that we know the equilibrium population N(*) (see Appendix) 
to many decimal places of accuracy. 

We have devised two indices to gauge the degree to which a population N(t) is a 
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reflection of the equilibrium N( *). W e need these to determine how well a small popu- 
lation, experiencing statistical fluctuations, represents its underlying equilibrium struc- 
ture. The first measure, the Index of Numerical Convergence, P, is merely the population 
size at equilibrium, minus that at time t, divided by the equilibrium size. It is simply 
the fractional deviation of the actual population from the equilibrium. 

The second measure, the Index of Angular Convergence, I$, is the angle between the 
population vector (we treat N(t) as an m-dimensional vector) at time t and that at 
equilibrium. This is computed from the standard formula for the cosine of the angle 
between two n-dimensional vectors (e.g. see Schwartz et al., 1960). An angle of 20 
degrees or less is, we feel, a close similarity between two age distributions for the small 
populations in which anthropologists are interested. 

We need to know not only the deviation from equilibrium at any time (and the 
average of these deviations over all replications of the stochastic model), but also some 
measure of the variability of these deviations. Since we know the population toward 
which the model tends, we have computed the variance of these error measures about 
the equilibrium. In the case of the angular measure, we compute only positive values. 
Since the population oscillates around the equilibrium N(*) in m-space, negative values 
would have little meaning. Since all values of 4 are positive (or absolute values), the 
mean value of $ is not expected to be zero. These two indices tell us the degree of repre- 
sentativeness of a census in terms of population size and age composition, which relates 
to the usefulness of censuses from living populations. Many of us are interested in working 
with skeletal series since these are our only source of direct knowledge of man’s demo- 
graphic past. We cannot expect to estimate population size directly from the total num- 
ber of such skeletons, since the length of time of deposition is critical (other methods of 
inference may be used to deal with this under some circumstances; see Ubelaker, 1974), 
but we can use the age distribution to determine whether a skeletal series is a fair repre- 
sentation of the demographic processes which produced it. This is done by determining 
a stationary age distribution from the skeletons (see Weiss, 1973) and by computing of a 
Graves Index G, which is merely the angle between the actual and the expected age dis- 
tribution vectors (a measure comparable to C$ for cemetery populations). This gauges 
the degree of reliability with which survivorship rates and a life table can be reconstructed 
from the data. The “actual” age distribution results from our stochastic simulation and 
the expected distribution is N( *) . The graves index indicates the reliability of the complete 

cemetery at any time t, relative to the start of deposition. Errors caused by incomplete 
sampling must be considered as a separate question which generally must be answered 
separately for each case. Complete cemeteries may occasionally be available (e.g. 
Ubelaker, 1974). 

3. Results 

The demographic properties of a population with density-dependent vital rates are 
functions of the value of A, the growth rate intrinsic to the undamped vital rates, and of 
the damping coefficients (au and 6,). The damping coefficients determine the magnitude 
of the feedback effects at any particular population size. The growth rate I determines 
how fast the population would grow if the damping term were equal to 1 (zero damping 
coefficients), and hence the population were determined only by the maximal vital 
rates Pi and Ft. The undamped growth rate determines what can be thought of as the 
resiliency of the population. In a population where A is close to 1, there is very little 
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potential growth, even in an ideal, undamped environment. If the population becomes 
overcrowded, the damping coefficients can cause it to rapidly return to its equilibrium 
composition, but if it becomes rarefied for any reason, its maximum growth rate, by 
which it returns toward equilibrium, is small. Thus, a stochastic model of such a popu- 
lation should show the maximum degree to which extinction pressure exists. It is easy 
to show that for a population with a low undamped growth potential, the equilibrium 
age distribution is very close to that of a fixed-rate model, no matter what the relative 
values of the damping coefficients. On the other hand, a population with large 1 has 
more marked response to perturbation from equilibrium and the particular pattern 
of the damping coefficients can have a profound effect on the equilibrium age distribu- 
tion. 

We model three types of population here, to illustrate the range of possibilities. Based 
on the value of undamped growth, 1, they are populations with high growth potential 
(1 = 1*95), medium growth potential (A = l-5 l), and low growth potential (A = l-002). 
We have simplified things by setting all undamped vital rates (Pi and Pi) equal, but 
this does not affect the gist of our results. 

To test the effect of equilibrium population size on stochastic stability of the census, 
we simulate populations with N(*) = 50 and 100 individuals. The degree of stability 
of any stochastic process will increase with larger size, so if these populations produce 
reliable censuses, so will larger ones. 

We use three types of density feedback, to isolate effects which can occur. In the 
first, only fertility rates respond to crowding, with survival rates unaffected (6, = 0, 
ai, = c). We use the same value for all of the fertility damping coefficients to simplify 
our results, but we can show that this causes no loss of generality of important information. 
This pattern may be thought of as a damping only on infant survival rates. It is similar 
to the feedback now found in industrial nations, which rely largely on fertility control. 
The second type of feedback is that in which fertility is not damped, but all survival 
rates are damped ; here again, we use a constant damping coefficient (ui, = 0, b,, = c) ; 
crowding affects the survival rate of every segment in the population. The third damping 
regime we study is one in which only post-infant survivals are damped (ai, = b,,i = 0; 
bij = c, i # 0). Damping of infant survival is a common and effective means of popu- 
lation regulation, but is covered by the first (fertility damping) case. This third pattern 
tests the effectiveness of damping on the rest of the population instead. 

In all, we test 9 populations, using combinations of the types just enumerated; Table 1 
gives the details of these models. In addition to these density-dependent cases, we have 
simulated case number lb, with no density dependent damping. This is a fixed-rate 
model for a population of size 50 with virtually zero growth. Such a population should 
be as sensitive to demographic fluctuation as any we are testing with the density model, 
and further, since 1 M 1, the expected age distribution is like that of cases 3, 6, and 9, 
and provides a standard of reference. Table 2 gives the equilibrium age distributions 
of all 9 cases. 

The undamped case is shown on the last lines of Table 6. Twenty-five replicates of 
100 iterations were run (unless extinction occurred before t = 100). The starting 
population, N(O), was the equilibrium population, rounded to the nearest whole indi- 
viduals in each class. The means of the three indices of convergence and their variance 
are given for 3 steps in the simulations to show the progress of the populations over time. 
The variance is computed for the first 25 populations which survived to the time given. 
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Table 1 Cases run 

Damping coefficients 

Case Fi, Pi Qf b Of b,, 
IlO. NC*) all i Damping type all i, j allj i21; allj 

la 
2a 
3a 
4a 
5a 
6a 
7a 
8a 
9a 

lb 

50 0.99 all fertility 0.0316 
50 0.75 all fertility 0.01655 
50 0.51 all fertility 0~0001 
50 0.99 all survivorship 0 
50 0.75 all survivorship 0 
50 0.51 all survivorship 0 
50 o-99 post-infant survivorship 0 
50 0.75 post-infant survivorship 0 
50 0.51 post-infant survivorship 0 

100 0.99 all fertility 0.0158 
100 o-75 all fertility 0.002875 
100 0.51 all fertility 0.4895 x 1O-4 
100 0.99 all survivorship 0 
100 0.75 all survivorship 0 
100 0.51 all survivorship 0 
100 0.99 post-infant survivorship 0 
100 0.75 post-infant survivorship 0 
100 0.51 post-infant survivorship 0 

50 0.51 no damping 0 

0 0 

0 0 
0 0 
0.01332 0.01332 
09077654 0.0077654 
0.0000546 0~0000546 
0 0.0919 
0 0.02192 
0 0.000118 

0 
0 
0 
0.00666 
0.00388 

0.2627 x 1O-4 
0 
0 
0 

0 

0 
0 
0 
0.00666 
0.00388 

0.2627 x IO-’ 
oGS595 
0.01096 

0.56945 x lo-’ 

0 

N(*) = equilibrium population size. Cases for 0.99 = F,,P, are high 
growth type (1 = 1.95), 0.75 is medium growth (A = 1.51), and 0.51 is 
low growth potential (2 = 1.002). Case 1 b has 1 = 1. 

aif are damping coefficients for fertility, b,f are damping coefficients for 
infant survival, bif (i >_ 1) are post-infant survival damping coefficients. 

It is clear that the threat of extinction, and demographic instability, are significant for a 
population of 50 with approximately zero growth. Seven of 25 populations reached 
extinction before 100 iterations. The population size is within 10 percent of its equili- 
brium value for about 30 iterations, although with high variability; by the end of 100 
iterations, however, we can only expect numeric convergence to 80 percent, and a varia- 
tion so large that any single population can have virtually any size deviation. We cannot 
have confidence in an observed census size. The age distribution is generally within 
10’ to 12’ of the equilibrium, but its variance is considerable (see below). The graves 

Table 2 Equilibrium age distributions* of cases run 

Age class 

Case no. 1 2 3 4 5 

1 0.204 0.202 0.200 0.198 0.196 
2 0.328 0.246 0.184 0.138 0.104 
3 0.508 0.258 0.132 0.067 0.034 
4 0.509 0.259 0.132 0.067 0.034 
5 0,509 0.259 0.132 0.067 0.034 
6 0.509 0.259 0.132 0.067 0.034 
7 0.990 0.010 0~0001 0~00000 1 0~0000000 1 
8 0.750 0.188 0.047 0.012 0.003 
9 0.510 0.259 0.131 0.066 0.034 

* This is independent of equilibrium population size; values rounded 
to nearest 0.1%. 



DEMOGRAPHIC STABILITY 65 

index shows that the net results of stochastic fluctuations have very little effect on the 
age distribution which can be reconstructed from a complete burial series; compensating 
fluctuations are sufficient to guarantee virtually perfect accuracy. This shows that with- 
out density damping, one has cause for suspicion of a single census taken from a small 
anthropological population. Smaller populations than 50 will have considerably more 
problems, unless several tribal subpopulations can be aggregated. 

The results for the fertility damping cases are listed in Table 3. The numeric indices 
become more variable as the growth rate (A) decreases. For iz = 1.002, the population 
size is highly variable among replicates. In all cases, the variance is less for N( *) = 100 
than for N(*) = 50, as expected. The angular index 4 presents the opposite tendency. 
As 1 decreases, so does the average value of c$, as well as its variance. This is due to the 
fact that the equilibrium age distribution becomes progressively steeper as 1 is decreased. 
This narrows the range of achievable age-distributions, and reduced 4(t). The graves 
index G follows the same pattern as the numeric index P. The reason for this is not 
entirely clear. 

The results for general survival damping are shown in Table 4. The numeric index 
P is more variable for small 1, as before. Neither the angular index C$ nor the graves 
index G is responsive to growth rate, since the equilibrium age distribution is the same in 
all cases. As before, the variance of all measures decreases as N( *) increases from 50 
to 100. 

The results for post-infant survival damping are shown in Table 5. Again, the numeric 
index P varies more for low growth than for high growth populations. This time, both 
the angular index 4 and the graves index G become more variable as A is decreased, 
since the age distribution becomes progressively flatter as I? is decreased. Again, large 
populations are less variable than small ones, as precited. 

In general, low growth-low damping populations are most variable. One may com- 
pare such cases with the zero growth (no damping) case, as is shown in Table 6. As can 
be seen, cases 3, 6, 9 and lb are essentially interchangeable, as far as the indices are 
concerned. The zero growth case (lb) experiences more frequent extinctions, but for 
those populations surviving, there is little to choose among them, as predicted. 

The important point is that density damping and high growth potential are counter- 
acting pressures which maintain the population close to the equilibrium structure. For 
populations of size 100, this stability is quite pronounced, and only low growth cases are 
quite unstable. For populations of larger size, stability should be considerable. 

Because we have only computed age distribution convergence in terms of positive 
angles, it being rather academic whether the angle between two m-dimensional vectors 
is positive or negative, it is somewhat difficult to appraise the variance of angular con- 
vergence. This is in most cases about equal to the square of the mean of 4. Since the popu- 
lations average 4 degrees out of equilibrium and also have mean square deviations of 
p, this implies that most angular deviations are very cIose to the mean error in magnitude. 
Although the direction of the angle would actually change as the population oscillates 
about its equilibrium (i.e. if we computed the sign of the angle, keeping iV( *) as the refer- 
ence vector), the magnitude of the error changes little. The population’s age distribu- 
tion may be thought of as moving in a tightly-constrained cone about the equilibrium 
vector, generally being $ degrees out of equilibrium. Most populations will be very 
close to that degree of error. This is as close as we can come to specifying confidence 
limits for the angular convergence measures. 
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In general, feedback based on fertility damping is slower-acting than that based on 
mortality, since disequilibrium effects in production of new individuals can only be 
introduced by way of age class 1, whence they must ‘(age” their way along the census 
vector. This is why, with zero-growth fertility rates at present, the United States must 
still grow for several decades to come. With mortality damping, the survivorship of 
those left alive can decrease to restore population faster toward equilibrium. Hence with 
fertility-damping feedback, reaction is slower and errors are somewhat larger. With 
post-infant survival damping, feedback is fast, since infants are produced in large num- 
bers from undamped reproduction, per parent, and mortality can cull these parents at 
all age classes when the population is crowded, and can allow them to survive-and hence 
reproduce-better when population size is down. Real situations will have combinations 
of these density reactions, of course, and will generally converge very rapidly and main- 
tain close equilibrium. The pure damping strategies we have used merely illustrate 
their different effects when applied in isolation. 

4. Discussion 

We have found that a population with low growth potential is an unreliable source for 
single-census-based demographic statistics, because stochastic aspects of vital processes 
cannot be overcome by density-dependence. Populations with greater growth potential 
are demographically reliable to levels of accuracy to which anthropologists can aspire. 
Extinction is rare over a period of many generations, and the age distribution is not 
likely to deviate too far from its equilibrium form. Complete burial series are almost 
totally unaffected by stochastic processes. All of these results confirm the preliminary 
nonstochastic study by Weiss (1975) along these lines, where it was shown that even 
epidemics, wars, and so on, do not necessarily distort the age distribution for very long 
tim e periods. 

These conclusions must be qualified to stress that (a) one must not attempt to re- 
construct equilibrium vital rates from a census when there is evidence that systematic 
disruptions have recently occurred, (b) the basic demographic patterns must have 
prevailed for several decades prior to census, (c) the group must be in a viable state at 
the time of observation and of size at least 50 and preferably closer to 100 or more, 
(d) the census must be complete, and (e) one must be willing to accept the occasional 
severely distorted population, or out-lier, in the usual statistical sense. 

It is obvious that recently disturbed populations should not be used to estimate general 
prevailing demographic rates, and that an incomplete census or a census for which many 
peoples’ ages are doubtful must be dealt with carefully. We have shown that stochastic 
processes by themselves do not constitute a prohibitive disturbing force. This finding is 
somewhat corroborated by the general similarity of censuses from widespread anthropo- 
logical populations (e.g. see Acddi & Nemesk&ri, 1970; Salzano, 1972; Weiss, 1973). 
This is true of some subpopulation census data as well: age distributions appear very 
similar to each other; this has been observed, for example, among Yanomama and in 
Micronesian data (personally examined by K.M.W.). 

It seems well-established from our results that stochastic processes of life and death 
do not provide any substantial problem to the analysis of skeletal demographic data, 
if deposition has accumulated over a few generations. The overwhelmingly more 
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important problems with such data involve the proper exhumation of juveniles, correct 
aging of skeletons, and the representativeness of the cemetery. Often, with care, these 
can be overcome (e.g. see Ubelaker, 1974). 

Many different sets of age-specific birth and death rates can produce the same age 
distribution. However, if growth has been zero, or at least constant, for several decades, 
one can reconstruct death rates from a census. If we can further assume (or determine) 
a pattern of relative age-specific fertilities (Talwar, 1970; Weiss, 1973), then we can 
estimate the actual fertility rates as well, and can compute most demographic measures 
which are of interest to us. 

Although we can reconstruct the details of the equilibrium population, we cannot 
infer the density-dependent process by which it is brought about. This is because we 
reconstruct only the values of P(i, *) and F(i, *), but the density factors are combined 
inseparably within these rates. Reasonable assumptions on the pattern of feedback 
might be made in some ethnological cases, however. 

This model has instantaneous density feedback. Real populations will experience 
some lag time in response, although this must be limited, since if it were too great the 
feedback system would not be adaptive. Lag times are unlikely to affect the results we 
have found in any important way, but should increase the magnitude of the variance 
in all measures. Our experimental work with this model has been extensive, and we have 
had difficulty even contriving deviant cases. Our results depend only to the extent of 
fine detail on the particular type of density feedback used, which may affect the age 
distribution at equilibrium greatly, but has little effect on stability or stochastic 
resilience, 

We cannot deal here with the question of the existence of biological equilibria in the 
first place. If the time period is long enough for largescale disturbances to be smoothed 
out, and short enough not be be affected by major ecological changes (such as climate, 
food sources, etc.), then it seems clear that a population will be constrained to a great 
extent in terms of size and age distribution. The similarity of anthropological populations 
in this regard is strong support for this statement. We have sought to estimate prevailing 
equilibrium rates. From the standpoint of many questions about human populations, 
it is the approximating of these general prevailing rates which is important. Their fine 
detail, and specific aspects of their fluctuations, are useful questions in their own right, 
but we are here interested in the average rates rather than in the variances. If anthropo- 
logical data do not supply adequate information on average underlying equilibrium 
conditions, then surely we have no hope of analyzing the fluctuations about these averages. 
We have found that the data may be sufficiently reliable for the equilibrium vital rates 
to be inferred. 

Appendix 

We let the census at time t, grouped into m age classes of equal length, be represented 
by the vector N(t) with elements n(i, t), the census count for the ith age class. The proba- 
bility that an individual in age class i at time t survives to age class i + 1 at time t + 1 
is P(i, t), and similarly, the chance that individual produces an offspring of the same sex 
is F(i, t). 

If we represent the transition of the population from N(t) to N(t + 1) in the standard 
matrix way (e.g. see Keyfitz, 1968), then with M(t) the density-dependent transition 
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matrix, we have 

or 

N(t + 1) = 

N(t + 1) = M(t)N(tj 

P(0, t)F(l, t) P(O,4F(2, t) . * 

P(1, tj 0 

0 P(2, t) * . 

0 . 

. . 

0 . . 

1 0 P(m - 1,t) 0 

(AlI 

N(t)* b42) 

P(i, t) and F(i, t) are the functions of N(t) given in equations (1) of the text. Since 
M(t) varies with N(t), it is not generally true that N(t + k) = M(t)kN(O), as is funda- 
mental to the approach to equilibrium of the fixed-rate model. In that model, the fixed 
matrix M has dominant eigen value il, and eventually the population approaches an 
age-distribution equilibrium and a growth rate of il. Hence, eventually N(t) = PN(O), 
taking as the zero point, a time when the age distribution has converged close to its 
equilibrium. 

At any time t, our model has dominant eigen value A(t), which converges to a stationary 
value of A( *) = 1. Using (*) to represent the fact that the system is no longer changing 
we can say that 

N(*) = M*N(*), (A3) 
and then the equilibrium age-specific vital rates, P(& *) and F(i, *), are fixed. The 
details of this model, including a discussion of its stability, are given in Smouse & Weiss 
(1975). We have slightly modified the indices of convergences here since we know N( *) . 
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