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1. INTRODUCTION 

The notion of a difference set in a general finite group was introduced 
in [l] and has been extensively studied in the case where the group is 
abelian. In [2] we have generalized this concept to that of a loop difference 
set and discussed its relation to certain types of block systems and designs. 
The present paper discusses certain cases of the existence of these 
combinatorial structures in loops which are the additive structures of 
special cyclic neofields. More precisely, if (-& and (-& are the right 
and left negatives of the element din an additive loop L of order V, then a 
(L), k, A> right (left) loop difference set is a k-subset D = {dl , d2 ,..., d&j 
of Q with the property that each element of O- - {OJ occurs exactly A times 
among the differences di + (-dJR((-d& + &, and 0 < A < k < v - 1. 
By an easy counting argument it is readily seen that here the parameters 
satisfy the equation 

(v - l)A = k(k - I). (1.1) 

We remark that, in contrast to the situation for groups, a right loop 
difference set need not, in general, be a left loop difference set. However, 
if L is a loop in which D is a right loop difference set then the anti- 
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isomorphic copy of IL is a loop in which D is a left loop difference set, and 
conversely. Thus, we shall without loss of generality, restrict our attention 
to* loops which admit right loop difference sets. 

Fundamental to the present approach is the introduction of further 
structure into the loops under consideration, and this is done by restricting 
our attention to loops which represent the additive structures of cyclic 
neofields of order U. We discuss the conditions under which the eth powers 
or the eth powers plus zero, e 1 u - 1, form a right loop difference set in 
these structures. These conditions are, in fact, an extension of Lehmer’s 
criterion [4] to cyclic neofields. It is found that for e = 2 the squares and 
the squares plus zero form right loop difference sets in every cyclic neofield 
of order u = 3 (mod 4). 

Essential to the successful application of Lehmer’s criterion is the 
development of a workable cyclotomic theory for the structures under 
consideration. In Section 3 we construct a special family of right inverse 
property (RlP) cyclic neofields for every order 0 > 5 for which, unlike 
the situation for the finite field, the problem of cyclotomy is completely 
solved. Here the analysis yields the neofield analogue of residue difference 
sets for e = 2 for every set of Hadamard parameters 0, k = (0 - 1)/2, 
A = (u - 3)/4, and complementary Hadamard parameters u, kc = 
(0 + 1)/2, & = cu + 1)/4, with u = 3 (mod 4). In the last section we 
turn our attention to a special class [3] of commutative inverse-property, 
cyclic (CIP) neofields of prime-power order, where the problem of 
cyclotomy is solved if and only if it is solved for the corresponding field. 
Residue difference sets are investigated for the values e = 2, 3,4, 6, and 8, 
With respect to the situation in the field, no new residue difference sets 
are obtained in the constructed neofields for e = 2, 3,4, and 8. However, 
for e = 6 the sextic residues and the sextic residues plus zero are found 
to form difference sets in certain classes of these constructed neofields. 
This does not happen in the fields. 

2. PRELIMINARIES 

For the terminology and notation concerning neofields the reader is 
referred to Section 2 of [3]. Let N,,+, .) be a cyclic neofield of order u with 
presentation given by NV = {O, 1, a, a2 ,..., av-2}, au-l = I, and the 
presentation function 7’(x) = I + x for all x G I’& . We introduce a 
cyclotomic structure into NV in a manner analogous to that for finite fields 
(see [6] for details). For any proper divisor e of u - 1, 1 < e < 0 - 1, 
we write u - 1 = ef and define the cyclotomic classes in N ~ by 

Ci =z {&s+t 1 s = 0, I ,..., j”- l], i = 0, l,..., e - 1. WI 
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Note that the cyclotomic classes are pairwise disjoint, of the same 
cardinality, and that their union is NV*. If b is a fixed element in NV*, 
let (C , b; Cj) denote the number of ordered pairs (z~ , zJ E C6 x Cj 
such that Z~ + b = z, , and (!J, Ci ; CJ denote the number of ordered pairs 
(z~ , zJ E CS x Cj such that b + Z~ = z3 . Noting that in a cyclic neofield 
every element x has a unique two-sided negative -x, where -x = (- 1)x, 
we define the four types of cyclotomic numbers 

@I GJXi = CG , 1; G), @I W&i = ((3 , -1; G), c2e2j 

Ccl GA = 0, G ; Gl, (4 GJ~~ = C-1, Ci ; Cd, 

whereO~i,j~e-l.Weshallalsowritez+(-l)asz-l.Notethat 
-1 = 1 if u is even and that -1 = LZ(*-~)~~ if ZJ is odd [5]. Now, the 
cyclotomic class to which - 1 belongs is given by 

(2.3) 

The following lemma gives the elementary relations for the ez cyclotomic 
numbers of each type for a fixed cyclic neofield Fuji of order v and fixed 
proper divisor e [ u - 1. 

LEMMA 2.1, The four types of cyclotomic numbers, where (i, j) is a 
generic notation for any one of the four, satisfy the following elementary 
relations for a given NV and e. 

(i) (i + me, j + ne) = (i, j) for all integers m and n. 

(ii) vqj and 8i are defined by 

.i = 0, 
otherwise, 

vf even and i = 0, 
uf odd and i = e/2, 
otherwise, 

then 

64x/8/1-8 
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(e) vf odd. 

(f) (i,j)z = (e - i, j - i); . 

vf even, 
vf odd. 

ProoJ (i) follows since NV*(.) is cyclic. From the first four relations 
in (ii) we prove (c). The other three will follow in similar fashion. The 
expression 

counts the total number of elements of the cyclotomic class Ci that are 
followed additively by an element of some other cyclotomic class. Now 
1 Ci 1 = f and the only element of Ci not followed by an element from 
another cyclotomic class would be -1 when - 1 E Cc . By (2.3), - 1 E Ci 
either when vf is even and i = 0 or when vf is odd and i = e/2. Thus, this 
first expression in (c) equalsf - 13~ . By virtually the same argument, the 
second expression in (c) also equals f - 0i . Relations (e), (f), and (g) 
follow algebraically from the definitions of the cyclotomic numbers and 
(2.3). 

In the special case e = 2, the distribution of squares and nonsquares 
in the rows and columns of the addition table kJV for a cyclic neofield 
iV V provides just enough additional information to combinatorially 
determine all of the cyclotomic numbers. We demonstrate this by exhibiting 
the numbers (0, O)i for all cyclic neofields of order v = 2f + I. 

LEMMA 2.2. For any cyclic neojield &I,, of order v = 2f + 1, 

CD - 3)/4 = cf - o/2, 
(OS OLi = l(v - 5)/4 = (f - 2)/2, 

f v=3(mod4), 
if v = 1 (mod 4). 

The relations of Lemma 2.1 now st@ice to determine all cyclotomic numbers 
for NV with e = 2. 

ProoJ Let v = 3 (mod 4). Here f is odd and the relations of Lemma 2.1 
imply that (0, O)i = (1, l& = x and (0, l)i + 1 = (I, 0); = y, where 
x + y = $ Now, there are x squares in the set Q0 = {a2i + (- 1) 10 < 
i <f - l}, and since 0 E Q0 there are f - 1 - x nonsquares in Q0 . 
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Since - 1 is a nonsquare, there are f - 1 - (f - 1 - x) = x nonsquares 
in the set Q1 = {u zi+l + (- 1) \ 0 < i <f - 11. Consider the number of 
elements z E IYI~ such that - 1 + z is a nonsquare. One of these is z = 0. 
Suppose z # 0. Then the remaining number is the number of z o &* 
such that either z-l + (- 1) is a square when z-l is a square or z-l + (- 1) 
is a nonsquare when z-l is a nonsquare. By the above this number is 2x; 
hence, the total number of nonsquares in { - I + .z 1 z E &I is 2x + 1. 
Since this number must be f we have x = (f - 1)/2, as asserted. The 
proof for a = 1 (mod 4) is entirely similar. 

If the cyclic neofield, in addition, has the right inverse property (RIP) 
then further relations are obtained. 

LEMMA 2.3. If NW is an RIP cyclic neojield, then the following relations 
hold in addition to those of Lemma 2.1. 

vf odd. 

(ii) (j,,j); = (j, $ . 

ProoJ We first prove (ii). Now (zJ& is the number of pairs (r, s) 
such that 

p+i + (-1) = &a+$; 0 <r,s <f- I. 

By the RIP this is the number of pairs (r, 3) such that 

p+i + 1 = p+i, 

which is (J i): . Now (i) follows from (ii) and Lemma 2.l(ii)e. 
Further relations are also obtained when the cyclic neofield is (additively) 

commutative. 

LEMMA 2.4. If NO is a commutative cyclic neojield, then the following 
relations hold in addition to those of Lemma 2. I. 

(i) (j, j): = (j, j); = (e - j,,j - i)i . 

(ii) 
vf odd. 

ProoJ The first equations of(i) and (ii) are easy. The second equations 
follow by Lemma 2.l(ii)f and e, 

When the cyclic neofield has both commutative and RIP addition, i.e.9 
is a CIP neofield, then the content of Lemmas 2.1, 2.3, and 2.4 reduces to 
the elementary relations for the fields (cf. [6, p, 25J). 
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We now establish Lehmer’s criterion for the existence of eth power right 
loop diEerence sets in cyclic neofields. 

LEMMA 2.5. C,, is u (v, (v - 1)/e, (v - 1 - e)/ez) right loop d@zrence 
set in the cyclic neojield NV lj’and only $ 

(0, i); = A = (v - I - e)/e2 

for all i = 0, l,..., e - 1. 

ProoJ Foreachuandi,O<u<f--l,O<i<e-1,thenumber 
of pairs (s, t) 0 < s, t < f - 1, for which 

is the same as the number for which 

which is (0, i)i , Hence, C0 is a {v, k, A) right loop diEerence set if and 
only if (0, i); = A for all i = 0, l,..., e - 1. Since k = f = (v - 1)/e we 
have by (1.1) that A = (v - 1 - e)/ez. 

COROLLARY 2.6. The set of squares is a {v, (v - 1)/2, (v - 3)/4) right 
loop d@erence set in every cyclic neofield of order v = 3 (mod 4). 

ProoJ By Lemmas 2,5 and 2.2. 
As in the case of the kite fields, there is an immediate criterion for the 

eth powers plus zero to be a right loop difference set in a cyclic neofield. 

LEMMA 2.7. C0 u {O] is a <v, (v - 1 + e)/e, (v - 1 + e)/e2) right loop 
d@‘erence set in the cyclic neojield N,, gund onZy g 

(i) for vf even, (0,O); + 2 = (0, i); = (v - 1 + e)/e2 for alZ i, 
1 <i<e--I. 

(ii) for vfodd, (0, O)i + 1 = (0, e/2); + 1 = (0, i); = (v - 1 + e)/e2 
for all i # 0, ,e/2. 

ProojI Similar to the proof of Lemma 2.5. Here we have the additional 
merences aep - 0 = aeT and 0 - aer = -@, 0 < r < f - 1. These 
represent each element in C,, twice if - 1 E C,, , i.e., vf is even, and represent 
each element in C0 and in CeIe once if - 1 E Ca,z , i.e., vf is odd. Hence the 
lemma. 
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COROLLARY 2.8. The set of squaresplus zero is a {u, (v + 1)/2, (u + 1)/4) 
right loop dzBrence set in every cyclic rzeojield of order v = 3 (mod 4). 

Proof By Lemma 2.2 and part (ii) of Lemma 2.7. 

COROLLARY 2.9. If f’$ is an RIP cyclic neojieid then 

(i) C0 is a <u, (0 - 1)/e, (0 - 1 - e)/e2) right Zoop diflerence set in NV 
if and only if(i, 0): = (21 - 1 - e)/e2 for all i = 0, l,..., e - 1. 

(ii) C,, u {O] is a <u, (u - I + e)/e, (u - I + e)/eZ) right Zoop dzfirence 
set in NV if and only if 

(a) for vf even, (0, 0): + 2 = (i, 0): = {z) - 1 + e)/e2 for a21 
i,l &i<e--I, 

(b) for vf odd, (0, 0): + 1 = (e/2,0): + I = (i, 0): = (v-l +e)/ez 
for all i # 0, e/2. 

Proof Lemmas 2.5, 2.7, and part (ii) of Lemma 2.3. 

LEMMA 2.10. If C,, or C0 u {0} is a right loop difirence set in a cyclic 
neofield I+J* , then 2 f gcd(e, f). 

ProoJ If v is even then e must be odd; while for v odd, (f - 1)/e or 
(f + 1)/e (i.e., A) an integer implies that e and f cannot both be even. 

The following result, which is used implicitly in the last section, follows 
directly from the work of Lehmer [4]. 

LEMMA 2.11. If NV is a commutative cyclic neofield of odd order v, 
then exactly one of the cyclotomic numbers (0, h); is odd. 

Proof Suppose z,, + 1 = Z~ where z0 E C,, and Z~ E C$ . Then 
z;’ + 1 = 1 + 2;’ = (zO + 1) z;’ = ,z~.z;~ where z;’ E C,, and z~z;’ E Ci . 
These solutions z0 , 2;’ pair up except when .a0 = zil or z,, = &l. Since 
- 1 + 1 = 0 $ Cd , z0 = -1 is ruled out, and since 1 + -1 when v is 
odd we are left with 1 + 1 = .z~ + 0 for some h. Here z,, = 1 is unpaired, 
whence (0, h); must be odd. 

In the subsequent sections we shall be concerned only with RIP cyclic 
neofields and right loop difference sets therein. We therefore restrict our 
attention to the cyclotomic numbers (&j)z for these structures, and 
henceforth simply write the more usual (i, j) for them. 

3. A CLASS OF CYCLIC RIP NEOFIELDS 

In this section we construct a special infinite family of cyclic RIP 
neofields and show that here, unlike the case for the finite field, the problem 
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of cyclotomy (and hence the existence of eth power difference sets) is 
completely solvable. Let NV = {0, 1, a, az,..., u~-~> be the set of elements 
written in terms of the multiplicative generator a, aV--l = 1, where 
0 * x = x .O = 0 for all x E NV . For u > 5 we construct the presentation 
function T: N9 -+ NV as follows: 

(1) If 0 is even 

1, x = 0, 
T(x) = 0, x = 1, 

a2j 2 x=aiandl <j<v-2. 

(2) If v is odd 

L x = 0, 
T(x) = ;25+1T x = aj and 0 < j < (u - 3)/2, 

, x z -1 = &-u/2, 

a2j 9 x=u~and(v+l)/2<j<z~-2. 

The addition in N* is introduced by 0 + x = x + 0 = x and 1 + x = Z(x) 
for all x E I$, and is extended to all of NV by distributivity. Clearly the 
function T is onto. It is easy to verify that for no X, JJ E NV , x # I, do 
we have xT( y) = T(xy), whence &,(+) is a loop and thus NV(+, *) is 
a cyclic neofield. It remains to be shown that these neofields have the RIP. 

LEMMA 3.1. The neojields NV constructed above huve the RIP. 

ProoJ Since N+,*(q) is cyclic and both distributive laws hold, it suffices 
to prove that for all j, 0 < j < v - 2, we have 

(d + 1) + (-1) = d. 

We give details for the (more difficult) case where v is odd; the analysis 
for even v being entirely similar. For j = 0 we have, by construction 

For 1 < j < v - 2 we use the relation uj + 1 = ujT(a-j), whence 

(p-~-l 2 1 <.i<@-W, 
d + 1 = 0, j = (v - 1)/2, 

av-j , (v + I)/2 < j < v - 2, 
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and then 

(d -j- 1) + (-1) = 
I 

&-1~/2(&+1~/2-~ + I), 1 <j < (v - 3)/2, 
u(+uP, j = (u - 1)/2, 
u(~-1)/2(~(~-l)/2-j+l + l), (G + 1)/2 <j < z? - 2, 

= aj. 

The additive class structure for this collection of neofields is completely 
determined by the following theorem. 

THEOREM 3.2. Let u = ef + 1 > 5, u& Zet NW be the cycZic RIP 
neojield of order v constructed above. Then, the nonzero cyclotomic numbers 
(i,j),O<i,j<e-l,forN,,andeuregivenby 

6) v even: 

(O,O)+l==(k,e-k)=f for k=l,2 ,..., e-l. 

(ii) v odd 

(a) Iff is even, 

1 + (0,O) = (0, 1) = (k, e - k) 

=(k,e-k+l)=f/2 for k= 1,2 ,..., e-l. 

(b) If f is odd, 

W2, f-42) = (& 42 + 1) = (f - 1)/Z 

and 

(k, e - k) = (k, e - k + I) + 1 
=(f+l)/2 for k= 1,2 ,..., (e-2)/2, 

while 

(k, e - k) + 1 = (k, e - k + 1) = (f + 1)/2 
for k = (e + 2)/2, (e + 4)/2 ,..., e - 1, e. 

Proof. We present the proof for v odd, the proof for v even being 
similar. By construction, 0 + 1 = I, 1 + I = a, and 

I 

&I-j-1 , 1 <j < (v - 3)/Z 
uj+1= 0, j = (v - 1)/2, 

p-j , (u + 1)/2 <j < 0 - 2, 
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Now, a+l=av--z~C~~I since V-2=ef+l-2z-I (mode), 
whence, for 1 < 1 + ke < (0 - 3)/2, 

also. Now 

al+ke + 1 = aW2-ke E Ceel 

where 

(u - 3)/2 = [fl2]e - 1 + +e& 

Sf = 
I 
yp f even, 
, f odd, 

whence, iffis even, there are (f - 2)/2 complete residue systems modulo e 
plus the residues I, 2,..., e - 1 among the exponentsj, 1 G j < (a - 3)/2, 
while, if f is odd, there are (f - 1)/2 complete residue systems module e 
plus the residues I, 2,..., (e - 2)/2 among these exponents. 

Similarly, 

u - 2 - (u + 1)/2 + 1 = (ZI - 3)/2 = [f/2]e - 1 + $esf 

and 

I 1 (mod e), 
b + 1)/2 = ef/2 + ’ = el2 + l (mod e), f even, 

f odd, 

whence 

acv+l)/2 + 1 = a(v-l)/2 E 
I 

C 0' f even, 
C e12 3 fodd. 

Thus, if f is even there are again (f - 2)/2 complete residue systems mod e 
plus the residues 1, 2,..., e - 1 among the exponents j, while if f is odd, 
there are (f - 1)/2 complete residue systems mod e plus the residues 
e/2 + 1, e/2 + 2,..., e - I among these exponents. Collecting these results 
yields the theorem. 

The cyclotomic matrix for NV and e is defined to be the e x e matrix Ce 
whose i, j entry is the cyclotomic number (&j), 0 < i, j < e - I. As 
illustrative examples, we exhibit the matrices Ce for ZJ odd and e = 2, 3,4. 

e = 2: 

v-5 v-l -- 
4 4 q -- V-l v-l -- 
4 4 

f even f odd 
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e = 4: 

,/ even 

u-9 #-I ~~ 
8 8 ’ ’ 

~~-- 
U-l v-l 

8 
0 07 

---- 
u-l V-l 

0 077 

---- 

v- 1 V-1 
0 T-g-- 0 

f even ,f odd 

rheorem 3.2 and Corollary 2.9 give immediate necessary and sufficient 
conditions for the &h-powers or the eth-powers plus 0 to form a right loop 
difference set in the above cyclic RIP neofields. 

THEORBM 3.3. The set of eth-powers and the set of eth-powers plus 0 
in the special class of cyclic RIP neofields N v (u > 5) constructed above form 
a right loop difference set lyand only $e = 2 and v ZE 3 (mod 4), in which 
case the parameters of the d@erence set are v, k = (v - 1)/2, A = (V - 3)/4 
and v, k = (v + 1)/2, A = (ZJ + 1)/4, respectively. 

We remark that for v = 7 we have 

Co = {l, a2, a4}, 

1 + CD = {a, a2, a5), 

u + Co == {O, a4, a5}, 

d + co = {fz, u3, d}, 

a3 + Co = {O, 1, a}, 

a4 + Co = { 1, a3, a5j, 

a5 + Co = {O, a2, c?}, 
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which is a (7, 3, I) block design, by inspection; we also have the (7,4, 2) 
block design {x + I)} for LI = C,, u {0} and x E NW . For u # 7, however, 
we have 

l+CO={aj:l <j<v-2andjz=l,2(mod4)}, 
u2 + C,, = {Us: 3 < i < v - 3 and i = 0, 3 (mod 4)} u {a}, 

and 

whence 

and A = (0 - 3)/4 > 1 implies that C,, is not the initial block of a 
{u, (0 - 1)/2, (u - 3)/4) right loop design. Further, 

(1 + G u FW n (~2 + G t-J &%) = @, 4 

and A = (v + 1)/4 > 2 implies that C0 u {0} is not the initial block of a 
<q (0 + 1)/2, (v + 1)/4> right loop design. Nevertheless, by Theorem 3.2 
of [2], we have that 

I cdW+ GA = A for all x E NW , x # 0, 

whenever C,, is a right loop difference set in a cyclic neofield with the RIP. 

4. CYCLOTOM~ IN A FAMILY OF CIP NEOFIELDS 

Let Eu( +, 0) be a finite field of order v = ef + 1 > 11 with presentation 
given by FV = {O, I, a, a2 ,..., u~-~} and the presentation function T(x) = 
1 + x, x E iFV . Define T0 on EV by 

x = 0, -1, 
otherwise, 

and T’ by 
Tyx) = -1 + x, XEiFv. 

Let S = {x E Fti 1 T’T,,(x) # xj, and for x E S define the orbit 0(x) of x by 

‘44 = h, T’ToW, V’Td2Wl. 

The following theorem was proved in [3]. 
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THEOREM 4.1. Let FJ+, .) be ajeId of order v > 11 with presentation 
function T, and let T* be any mapping on Fv satisfying 

(a) T* :& T and T* ~6 T,, on F?,, 

(b) for each x E ff V, either T*(x) = T(x) or T*(x) = T,,(x), 

(c) if T% agrees with T (or TO) at .x E S, then T* agrees with T (or T,,) 
on O(x) U &x-l). 

Then T* is the presentation function for a CIP neo$eld N J@J, .) where N t,( a) 
is identical to FJ.). 

In order to discuss the cyclotomic structure of the neofields NV 
constructed by Theorem 4.1, we assume that the cyclotomic structure for 
ffq3 and e is known. For x E S we have 

6(x) u 0(x-l) = {x, -l/T(x), -T(x)/x, l/x, -x/T(x), -T(x)], 

which reduces to a triple 

precisely when x E O( 1). If T* is the presentation function of a fixed 
neofield Nq constructed by Theorem 4.1, and if x E S - O(1) is an element 
of NO for which T*(x) = TO(x), then the cyclotomic relations for EV and e 
are altered in a regular manner depending upon the cyclotomic classes 
to which x and I”(x) belong. For x E C< and T(x) E Cj , we have Table I. 

TABLE I 

e(x) u e(+) T{&x) u &x-l)} T@(x) u &x-y} 

(C ufeven 
- T’x’ ’ i Ce,z+j vf odd 
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Hence, replacement of T by TO on O(x) u &x-l) effects the changes in the 
cyclotomic relations for FV and e as shown in Table Il. 

TABLE II 

vf even vf odd 

decrease by 1 increase by 1 decrease by 1 increase by 1 

ti,i) 

(e-j,i-j) 

(j - i, e - i) 

(e-i,.i-i) 

(i-j,e-j) 

0,4 

(i, i - j) (4 A 

(e - j, e - i) 
f 

e 
--j,i-j 

2 1 

Ci - iA i 
++j-i,$.-i 

1 

(e - i, e - j) (e-i,j-i) 

(i - j, i) 
t 

5-ki-j,e-j 
1 

CM - 0 
C 

:+j,++i 
1 

(i, i - j) 

t 

e 
-.---j,+-i 

2 1 

c 
;+j-i,j 

J 

(e - i, e - j) 

f 
+-l-i-j,+-+i 

1 

t 
++j,j-i 

) 

If we now denote by @(i,j) the orbit of the cyclotomic number (i,j) 
under the elementary cyclotomic relationships for commutative IP 
neofields 

(a) (i, j) = (e - i, j - i), 

we find 

(i, j) + ’ + (e - i, j - i) hi) A (e - i, j - i) 

b 
1 1 

b b 
1 t 

b 

CL il (j - i, e - i) (: + j, : + i) (g + j - i, i - i) 

a 
1 ! 

0 

(e-j,i-j)A(i-j,e-j) 

vf even vf odd 
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Direct comparison shows that @(&j) and @(e - i, e - j) comprise the 
entries under “decrease by 1” and “increase by 1,” respectively, in the 
above table; thus the orbits @(&j) and 8(x) u 6(x-l) are intimately 
connected. We remark that the orbits under @ are {(O, 0)) for vf even, 
‘((0, e/2)) for vf odd; {(e/3, 2e/3), (2e/3, e/3)] for vf even, {(e/3, e/6), 
(2e/3, 5e/6)} for vf odd, when e = 0 (mod 3); {(i, O), (e - i, e - Q, (O! i)} 
for v~even, {(& e/2), (e - i, e/2 - i), (0, e/2 + i)} for vf odd, when i + 0 
(mod e); and the proper sextuples @(i, j) otherwise. In the first two cases 
we have @(& j) = @(e - i, e - j), whence the choice T* = To on the 
corresponding sextuples leaves the cyclotomic numbers for the parent 
field structure unaltered. In the third case we have @(& j) = @(e - i, e - j) 
if and only if e is even and i = e/2, while if @(i,,j) is a proper sextuple 
we find @(i, j) = @(e - i, e - ,j) for exactly the schemes 

@k jl 

(2i, i) t-4 (e - 2i, e -- i) (2i, i) +-A (e - 2i, e - i) 

! 
+ 
4 ! 1 

(i, 2i) (e - i, e - 29 (; + i, ; + 2ij (; - i, ; - 2ij 

1 t ! 1 
(e - i, i) t--+ (i, e - i) (; - i, ij +-----+ (i + i, e - ij 

vf even vf odd 

where neither i nor Zi = 0 (mod e). In every remaining case the choice 
T* = To on the relevant sextuple O(X) U 6(a+) alters the field cyclotomic 
numbers by &2 or Al depending on whether or not 8(&j) is a triple or 
a sextuple; the (inequivalent) cyclotomic numbers affected are the represen- 
tatives of @(i, j) and @(e - i, e - j), respectively. Finally, if T(1) = 2 E C9 , 
then the choice T* = To on 0(l) effects the change as shown by Table III, 

TABLE III 

vf even vf odd 
~~ ~ ~~~ -~~-~ 

decrease by 1 increase by 1 decrease by 1 increase by 1 
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which leaves the cyclotomic numbers for the field unaltered if and only if 
j = 0 where 1 @(O, O)/ = 1 orj = e/2 where 1 @(O, e/2)1 = 3 for vf even; 
j=Owhere/@(O,O)i =3 or j = e/2 where 1 @(O, e/2)1 = 1 for VI odd. 
We remark that, for small values of e, the eth power character of T(l) = 2 
is known, and thusj is explicitly determined by u (see [6], for example). 

Combination of the preceding remarks shows that the cyclotomic 
structure of any neofield NV constructed from the field LFV by Theorem 4.1 
is determined by the corresponding structure in ffV ; in fact we have proved 
the following theorem. 

THEOREM 4.2. Let IW,, be a3xed neojield constructed from the$eld IFV 
of order v = pa = ef + I by Theorem 4.1, let X = {x1 , x2 ,..., x,J be an 
ordered system of representatives for the orbit pairs e(x) u t9(x-l) from 5’ 
on which T* = TO, and let 1 Xi,f 1 be the number of elements xk E X, 
& $ e(l) for which Xk’ E cc and T(xk’) E cj for SOme xk’ G e(xk) u e(Xiy. 

Finally, let 

and 

U = {Ai,j 1 Ai,$ a representative of @(i, j)} 

U’ = {A& 1 A& a representative of @(i, j)] 

be the inequivalent cyclotomic numbers for FW , e and NV , e respectively. 
Then we have 

A;,j = Ai,, 

gv 

(11 I @WI -c 3, 

(2) I WWI = 3 and (e/2,0) E @(i,j), 

(3) 1 @(i, j)\ = 6 and for some i’, (2i’, i’) E @(i, j). 

Otherwise, 

where 

if e(l) n X # D’ and 2 E Cj, 
for some (0,j’) E @(i, j), j’ # 0, e/2, 

if&l) n X # .n and 2 E C#+f 
for some (0, j’) E @(i, j), j’ # 0, e/2, 

otherwise. 
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We now apply Theorem 4.2 to the neofields NV and those e, namely 
e = 2, 3,4, 6, and 8, which have proven themselves interesting com- 
binatorially in the case of the fields FV . We then discuss the resulting 
combinatorial structures in N ,, and their relationship to the corresponding 
field structures in these cases. We have, in the following corollaries, 
used the known cyclotomic structure for FV and e (as in [6]). 

COROLLARY 4.3. When e = 2, the cycIotomic matrices for the neo$eIds 
NV have the forms 

A B A B 
~~ ~~ 

B B A A 

vf even vf odd 

and the inequivalent cyclotomic numbers are given by 

4A = v - 5, 4A = v - 3, 

4B=v-1, 4B=v-+-1, 

.f even f odd. 

COROLLARY 4.4. When e = 3, the cyclotomic numbers for N,, are given 
by the matrix 

and the relations 

9A=v-8+c, 

18B = 2v - 4 - c - 9d - 18~, 

1% = 2v - 4 - c + 9d + 186, 

9D=v+l+c, 
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where 
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and 4p” = cz + 27dz with c = 1 (mod 3); the sign of d is ambiguousIy 
determined. 

We remark that, using the cubic character of 2 E FV , we have 

i 

1, for@(l)nX# 0 andc+d=O(mod4), 
&L1= -1, for Q(l) n X # 0 and c - d = 0 (mod 4), 

07 otherwise. 

COROLLARY 4.5. When e = 4, the cyclotomic numbers for NV are given 
by the matrices 

vf even 

and the relations 

16A=v-11-6x, 

16B = v - 3 + 2x + 8y + 16q 

16C = v - 3 + 2x, 

16D = v - 3 + 2x - 8y - 16q 

16E= v+ 1 -2x, 

where 

vf odd 

16A=v-7+2x, 

16B = v + I + 2x - 8y + 16q 

16C = v + 1 - 6x, 

16D = v + 1 + 2x + 8y - 16~: 

16E= v-3-2x, 

and v = pm = x2 + 4y2 with x = 1 (mod 4); the sign of y is ambiguously 
determined. 
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In the cases e = 6 and 8 below, we present the results only for the 
combinatorially interesting case ZJ~ odd (cf. Lemma 2.10); the analysis 
for vf even is entirely similar. 

COROLLARY 4.6. When e = 6 and vf is odd, the cyclotomic numbers 
for No are given by the matrix 

A B C D 
-- -- 

G H I E 
---~ 

H J G F 
---- 

A G H A 
-~-~ 

G F I B 
--~-- 

H I E C 

and the numbers (i, 0) = {A, G, H} are given by 

36A = v- 11 +4C, 72A = 2v - 22 - c - 9d, 

36G = v - 5 - 2c -+ 9d +- 366, 72G = 2v - 10 + 5c + 9d + 72~, 

36H = v - 5 - 2c - 9d - 36~, 72H = 2v - IO - 4c - 72q 

$2cC00rCS if2E CS or C5 

where 

72A = 2v - 22 - c +- 9d, 

72G = 2v - 10 - 4c + 72~, 

72H = 2v - 10 + 5c - 9d - 72~, 

$2e Cl or Cb 

and v = pa, where 4p” = cz + 27d2 with c = 1 (mod 3); the sign of d is 
ambiguously determined. 
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COROLLARY 4.7. When e = 8 and vf is odd, the cyclotomic numbers 
for I& are given by the matrix 

ABCDEFGH ABCDEFGH 
----- ----- --- --- 

I I JKLFDLM JKLFDLM 
---~---- ---~---- 

NONMGLCK NONMGLCK 
-------- -------- 

J J OOZHMKB OOZHMKB 
-~-- -~-- --~- --~- 

A A I N J A I N J A I N J I N J 
----- ----- --- --- 

ZHMKBJOO ZHMKBJOO 
----~--- ----~--- 

NMGL NMGL CKNO CKNO 
--~ --~ ------ ------ 

JKLFDLMZ JKLFDLMZ 

and the numbers (i, 0) = {A, I, N, J} are given by 

64A=v-15--2x, 64A = v - 15 - 10x - Sa, 

64Z = v - 7 + 2x + 4a + 64~, 64Z = v - 7 + 2x + 4a + 16y + 646, 

64J = v - 7 + 2x + 4a - 64~, 64J = v - 7 + 2x + 4a - 16y - 64e, 

64N = v - 7 - 2x - Sa, 64N = v - 7 + 6x, 

$2eC00r C* JY2$G,G 

and v = p” = x2 + 4y2 = a2 + 2b2 with x = a = I (mod 4); the signs 
of y and b are ambiguously determined. 

The Lehmer criterion (Corollary 2.9), in conjunction with Theorem 4.2, 
gives immediate necessary and sufficient conditions on the order v that the 
set of eth-powers or eth-powers plus 0 for e = 2,3,4,6, and 8 form a 
right (and left) loop difference set in the commutative IP neofields NW 
constructed from Theorem 4. I. 
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THEOREM 4.8. Thp neo$elds No with v = p@ = ef + 1 arising from 
Theorem 4.1 a&it the e&powers or the eth-powers plus 0 as right (and lefi) 
loop d@erence sets for e = 2, 3,4,6, and 8 as follows: 

(I) e=2;v==p~=3(mod4)andallN0. 

(2) e = 3: C,, + {O} is a diJi?rence set in ffIG only. 

(3) e = 4; Zf C,, or C0 + {0} is a difirence set in the field IF V , then it is 
a loop d@erence set in every neofield NV arising from Theorem 4.1 and 
conversely. Explicitly, C,, is a d@erence set for v = pa = 1 + 4tz 
with t odd and C0 + {0} for v = p% = 9 + 4t2 with t odd. 

(4) e = 6; C,, is a loop d@rence set in NV when v = p* = 
108~~ + 367 + 7 and A = 3qz + q; C0 + {O] is when v = pa = 
108~~ + 1087 + 175 and A = 3q2 + 5~ + 5, where q = &c and 
2 $ Co or CS . 

(5) e = 8; If Co or C0 + {Oj is a d@erence set in the$eld Fu, then it is 
a loop difference set in every neojield NV arising from Theorem 4.1 
for which e = 0, and conversely. Explicitly, C,, is a dl@rence set 
for v = pa = 9 + 64y2 = I + 8b2 wifh y, b odd, and C,, + {O] for 
~~p~~ 441 + 64y2 = 49 + 8b2 with y, b odd. 

ProoJ We first note that when e is even, v and f are both odd, and 
when e is odd, v is even and f is odd. Then (I) is trivial and (2) follows 
from Corollary 4.4 and inspection of the field and neofield tables. For (3) 
note in Corollary 4.5 that A and E are invariant under the neofield 
constructions of Theorem 4.1. There are no 6th power difference sets in 
the fields FU ; here, in (4) from Corollary 4.6 for C0 we have for 2 E CI 
or C4: A = G and A = H if and only if c +- 3d = 4 + 24~ and 
-c + 3d = 2 - 12~, respectively. Hence c = 1 + 18~ = 1 (mod 3) and 
d = 1 + 2~ implies 4p” = (1 + 18~)~ + 27( 1 + 2~)~, or pe = 108~~ + 
36~ + 7, and by Corollary 2.9, A = 3~~ + E. Similarly for C0 u {0} where 
we take 2 E C2 or Cs . Case (5) follows the analysis for the field. 

The cases (l), (3), and (5) of the theorem, being direct analogues of the 
fields, are not very interesting combinatorially since the difference sets 
in the fields are already (v, k, A) designs. In case (2) for e = 3, the single 
example is for the field GF(l6) (see [6, p. 361) and there is no corresponding 
loop difference set in the proper commutative IP neofield I& . In case (4), 
however, for e = 6, many new examples occur, the smallest for the 
6th-powers in the 3.2l” w 211 distinct neofields tV,s . A computer search 
has revealed, however, that C,, and its translates do not form a design 
in any of these neofields. 

As a final remark, since 122 + 12 + 1 = 157 and 152 + 15 + 1 = 241 
are primes, and lE? + 18 + I = 343 = 73, we have examined the 
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commutative IP neofields of these orders obtained by Theorem 4.1, and 
have found that the 12th-powers, the 16th-powers plus 0, and the 18th- 
powers, respectively, form loop difYerence sets in none of these. The 
method is thus too restrictive to attack the problem of the existence of 
projective planes of orders 12, 15, and 18. 
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