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The thin-grating decomposition method of thick grating analysis is used to analyze guiding effects in thick phase 
gratings having sinusoidal refractive index modulation. 

Interferometrically-produced phase gratings can 
be used as wave-guiding Structures, as demonstrated 

by Rosenberg and Chandross [ 11. Rosenberg gives an 
analysis of this phenomenon by ray tracing methods 
[2]. We note that the structure that produces Bragg 
diffraction is the same one that produces guiding, ex- 
cept that for guiding to be manifested, both the thick- 
ness and index modulation must be relatively large. 
We also note that the basic Bragg diffractiqn equation 
and the basic equation describing guiding in a slab 
waveguide are similar. We have therefore sought a 
single analysis, preferably a grating analysis based on 
physical optics, that describes both phenomena, and 
that will give insight into the transition region, when, 
with increasing refractive index modulation, the Bragg 
diffraction process produces confinement. 

In the diffraction process, a plane wave impinges 
on the thick grating at the Bragg angle (fig. 1). When 
the wave enters the structure, a diffracted wave is 
formed; as the two waves propagate through the 
structure, there is a continuing exchange of energy 
between them. Continuing with this heuristic ap 
preach, we expect that when most or all of the ener- 
gy in a plane wave is reflected from the first Bragg 
plane encountered, energy initially contained between 
two Bragg planes is confined between these planes 
until the wave emerges from the structure. Unfortu- 
nately, the usual analyses for diffraction from thick 
gratings assume uniform plane waves. The analyses 
predict the intensity of the emerging waves, but give 
no insight into the paths that the light traveled. In 
addition, the closed-form solutions are restrictive; 

Fig. 1. Sinusoidal 
fracted waves. 

thick grating, showing incident and dif- 

d I3 
Fig. 2. Spatial light pulse incident on grating surface. 

Kogelnik’s coupled wave analysis [3], for example, 
allows for only two plane waves, and these must each 
be at or near the Bragg angles. We require an analysis 
that enables us to propagate a small spot of light (a 
spatial pulse) through the structure. 

Alferness [4) has described an extremely general 
method, which allows the plane waves to be incident 
at any angle. It is, however, a plane-wave analysis, 
but it can be modified for our requirement. This 
method is called the thin grating decomposition meth. 
od, and is conceptually quite simple, yet in all tests 
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that have been made, both by way of experiment 
and by comparison with special cases that can be 
analysed by other methods, the Alfemess method 
has proved accurate. The method involves decom- 
posing a thick grating into a stack of thin gratings, 
each of which is sufficiently thin that thin grating 
theory holds. Each thin grating diffracts the incident 
plane waves into various orders, depending on the 
grating structure. These diffracted waves are the in- 
put for the next thin layer. Typically, the decom- 
position involves about 30 to 100 thin gratings; thus, 
the analysis requires a computer. 

In our procedure (fig. 2), a spatial pulse impinges 
on the source-side surface of the grating. The pulse 
is Fourier-decomposed into a spectrum of plane 
waves at various angles. The Alferness theory per- 
mits us to propagate each one through the structure, 
and to combine all of the emerging waves, both 
direct and diffracted, to find the resultant intensity 
distribution. 

Since for calculational purposes we are restricted 
to a finite number of plane waves, we should choose 
an amplitude profile for the pulse which is not only 
realistic, but which can also be described without 
an excessive number of components. A suitable 
waveform is 

f(x) = (a + $ cos 2nx/d) rect x/d , (1) 

where d is the grating period, and rect x/d = 1 for 
1x1 < t d, and is zero otherwise. This waveform has 
the advantage that not only is it confined between 
the limits Ix] = i d, but also that its spatial-frequen- 
cy spectrum 

FCf,) = $ d sine df, t i d sine dcf; t l/d) 

+$dsincdCf,-l/d) (2) 

is very nearly confined between the values f, = 2/d. 
[Note that sine x = (sin nx)/ax] . 

We sample this spectrum at intervals 1 /Pd, giving 
4P- 1 samples between the limits +2/d (fig. 3), 
giving a sampled spectrum 

F,cf,) = Fcf,) comb Pdf, , (3) 

where comb af, = Z 6 (fx - n/u) and 6 is the Dirac 
delta function. The sampling results in a modified 
input function 
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Fig. 3. Spatial frequency spectrum of pulse. Only the 
envelope is shown; 63 discrete frequencies reside under the 
envelope. 

f,(x) = [(f + i cos 2nx/d) rect x/d] * comb x/Pd 

(4) 

This function, being composed of a finite number of 
harmonically-related spatial frequencies, thus physi- 
cally corresponds to a set of 4P- 1 plane waves, with 
incidence angles 0 = sin-l h/d. These we propagate 
through the grating structure, using the Alferness 
method. Some of these components satisfy nearly or 
exactly the Bragg condition and produce diffracted 
waves at the output; others do not. At the output 
plane, or exiting surface, all incident components, 
along with the new components generated by diffrac- 
tion, are combined, thus forming the output wave- 
form. 

Some precautions should be observed in designing 
the experiment. The sampling process forms a periodic 
function fs from the single pulse f; thus, the input is 
a sequence of pulses of the form f, separated by inter- 
vals Pd. We should choose P sufficiently large, i.e., 
take sufficient samples, that, over the propagation 
distance, the pulse spreading due to diffraction does 
not result in an overlap of adjacent pulses. The greater 
the number of samples, 4P- 1, the greater the separa- 
tion distance between pulses. 

The calculated results are shown in fig. 4. We have 
assumed a grating with a sinusoidal variation of re- 
fractive index, with index variation along the x direc- 
tion only (the unslanted fringe case). The pertinent 
parameters are: grating spacing d 6 l/l00 mm, grating 
thickness = 0.54 mm, wavelength A = 6328 W, and a 
refractive index of 1.50. The program broke this into 
18 thin gratings of thickness 0.03 mm; such gratings 
satisfy Kogelnik’s Q-factor criterion for a thin grating 
[3]. The output pulse is shown in a to d for various 
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Fig. 4. Intensity distribution at output surface, for various values of tin: (a) An = 0 (no grating);(b) An = 104;(c) An = 2 X 104; 
(d) An = 6 X 104; (e) pulse incident at input surface. 

index variations. Curve e shows, for comparison, the 
incident pulse. Curve a shows the output pulse for 
An = 0; this is just the diffraction spreading that 
occurs in the absence of a grating. Curve b, c, and d 
show the output for increasing values of An; as An 
increases, the pulse becomes increasingly confined. 
However, the greatest confinement appears to be of 
the energy that, in the absence of the grating struc- 
ture, falls in the middle regions of the spread-out 
pulse. The energy in the outer portions, corresponding 
to the most oblique plane wave components, shows a. 
lesser tendency to confinement. 

The plane waves satisfying the Bragg condition are 
represented by the spatial frequency components 
* 1/2d, which is only $ of the maximum spatial fre- 
quency 2/d. Also, we note that the value of An re- 
ported by Rosenberg and Chandross in their experi- 
ments was 6.4 X 10e4 ; this is close to the value of 
An (6 X 1 0m4) for which our curves show nearly 
complete wave confinement. Finally, we observe 

that thinner structures, such as dichromated gelatin, 
produce refractive index changes up to two orders of 
magnitude greater than those considered here. Thus, 
when spatial frequencies on the order of a few hun- 
dred cycles/mm are recorded, the guiding conditions 
are generally satisfied, even though the guiding effects 
are not observable, since the propagation distances 
are too short to reveal this phenomenon. 
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