Int. J. mech. Sci. Pergamon Press. 1975. Vol, 17, pp. 673-675. Printed in Great Britain

SCALE EFFECTS AND CRACK PROPAGATION IN NON-LINEAR
ELASTIC STRUCTURES
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Summary—New scaling laws are proposed for crack propagation in geometrically gimilar
non-linear elastic structures. The stresses to cause cracking in large non-linear elastic
structures are even smaller than those in larger linear structures.

INTRODUCTION

GurNEY AND Huwnt! outlined the laws of
similitude and crack propagation in linear
elastic structures, where the load (X) and the
displacement (u) relationship at constant
crack area (A) is specified by (du/0X) . = u/X.
One of us has applied these laws to the par-
ticular problem of the scaling of ice-breaking
forces as measured in towing tank experi-
ments.»3 Three scaling laws have been
formulated, one relates to the stresses (o) at
corresponding points of a model (m) and a
prototype (p) cracked structure, and the
other two to the fracture load and the
corresponding fracture displacement. Thus,
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where A is the linear scale factor of the proto-
type to the model. It has also been proved
that under similar testing conditions, the
prototype velocity (d,) is always greater than
the model velocity (d,,) and their relation-
ship is given as

d’p/ Gy = \/ A. (2)

There are, however, many practical situa-
tions in which the deformation of cracked
structures, although reversible, is not propor-
tional to the applied load. For such cases,
the scaling laws given in equations (1) and
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(2) would not be applicable. It is the purpose
of the present note, therefore, to develop
new scaling laws which would be appropriate
for describing crack propagation in geo-
metrically similar non-linear elastic struc-
tures.

ANALYSIS

Consider a model cracked structure and a proto-
type cracked structure with a linear scale factor
(A). Let their non-linear load—displacement rela-
tionship at constant crack area be

X = k(4)un, (3)

where k(A) is any mathematical function in 4 and
n is the degree of non-linearity. From the con-
cepts of non-linear elastic fracture mechanics
introduced by Gurney and Ngan,* we have

oy (0(Xu—A)
E= (@A)x B ( o4 )x’ @
where Q and A are the complementary and strain

energy functions, and R is the fracture toughness.
Thus,
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k—(n+l)/n X(n+1)/n’ (5)

where k' = dk/d4, the prime notation is used for
the area derivative. By applying equation (5) to the
model and prototype cracked structures, we

obtain
El’ _ ﬁ(]g_:)(nﬂ)/n (&) (n+1)/n. (6)
R, k,\k X,

Equation (3) gives
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Fia. 1. (a) Variations of o,,/0, with A. (b) Fracture
load ratios X,/X,, vs A. (c) Fracture displacement
ratios wu,/u,, vs A.
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Combining equations (6) and (7), this gives

7 =zl ()
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Now consider stresses and strains at corre-
sponding points in the model and prototype, where

Xr = lggnhz’ X = :Bo'm’
u, = ado,V'"?, U, = aoll",
« and f in the above equation are some constants.
Therefore, using equation (8) in conjunction with

expressions in equation (9), we could derive the
scaling laws for non-linear elastic structures as

(8)
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For situations where the model and prototype
have invariant fracture toughness so that R, = R,,,
equation (10) can be simplified to

u,
»
_® _ )\n/(n-&-l),
um
Oy _ A/ (a4l (11)
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It should be noted that the new scaling laws
thus derived depend explicitly on the degree of
non-linearity of the elastic structures. When
n = 1, i.e. structures become linear elastic, equa-
tion (11) degenerates to those shown in equation
(1) as expected ; and when n is large, i.e. structures
become highly non-linear, both the fracture load
and displacement vary linearly, and the stress
varies inversely with the scale factor. Figs. 1(a)-
(c) show the variations of o,,/0,, X,/X,, and v,/u,,
with A for varying degree of non-linearity (n).

DISCUSSION

A striking conclusion follows from the second of
equation (11), namely, that the stresses to cause
cracking in large non-linear structures are even
smaller than those in large linear elastic structures,
i.e. o, = 0,/A as opposed to 0, = g,/yA. This
observation does not seem to have been presented
previously. The difference in scaling also suggests
that non-linear laboratory test-pieces should dis-
play generalized yielding more readily than linear
test-pieces.

It should also be noted that in the derivation of
equation (10) or (11) for scaling effects in non-
linear elastic cracked structures, we assume geo-
metrical similarity between the model and proto-
type both under loaded and unloaded conditions.
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‘Whether this assumption is realistic or not has to
be experimentally determined but unfortunately
there is practically no published information on
the subject for us to do any evaluation of the
analysis. In some preliminary studies, however,
Ngan® has shown that for splitting of slender beams
by shear forces (see also ref. (4)), the degree of non-
linearity decreases slightly as A increases, which
indicates that the deformed geomsetries of the
model and prototype may have been slightly
dissimilar under loaded conditions. The results for
the variation of X /X, (according to Ngan®) and
Up[t, V8 A are shown in dotted lines in Figs. 1(b)
and (c).

Consider now scale effects on crack velocities in
non-linear elastic structures. For quasi-static
crackingh ¢ in reversible elastic structures to occur,
Gurney and Hunt! have shown that

X du = tR da+dA,

where ¢ is test-piece thickness, a the crack length
and A, strain energy function for the non-linear
elastic structures with load—displacement rela-
tionships defined by equation (3), is given by
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By assuming R to be constant during the whole
fracture process, equations (12) and (13) together
yield the ratio of the crack velocity to the driving
velocity, i.e. crosshead speed of test machine (1), as

nX

@
2 Rin+l)+udX/da’ (14)

From equation (12), we have
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and differentiating it with respect to crack length
a and in conjunction with equation (14), we obtain

kK n+1

¥ ul (16)
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When the crosshead speeds or driving velo-
cities, %, and %, are assumed equal, the ratio of
the corresponding crack velocities in the proto-
type and model is

17)

Since t,./t, = A7, u,fu, = A%(*+D (from the first
of equation (11)) and (k,/k.,) (k. /k}) = A%, equa-
tion (17) is reduced to

apfdn, = Al(n+1)

(18)

It can be seen that, when n = 1 for the linear
elastic case, d,/d,, = JA, which is the same as that
given in equation (2).

We suggest that experimental effort should be
devoted to confirm these non-linear scaling laws,
particularly when they suggest such dangerous
possibilities as easier cracking in large non-linear
structures at lower stresses than cracking in large
linear structures.
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