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The nine-point second-order difference method of Arakawa for the two-dimensional 
stream function-vorticity equations of incompressible fluid flow comes from bilinear 
finite elements in rectangles. Furthermore, any nine-point second-order method obeying 
the conservation laws is a linear combination of two finite-element schemes, bilinear 
elements in rectangles and linear elements in triangles. 

1. INTRODUCTION 

This note is concerned with two-dimensional incompressible fluid flow. Through- 
out, boundaries will be ignored. If 5 denotes vorticity and 1,4 is the stream function, 
the equations of motion may be written as 

?i-/at = mlww/?Y> - wi/w(w/w = a, $9, 

A# = 5. 

The following conservation laws are satisfied by 5 and #. 

(1) 

(2) 

g&=0 (conservation of mean vorticity), (3) 

$ JJ 5” = 0 ( conservation of mean-square vorticity), (4) 

(conservation of kinetic energy). (5) 

Numerical methods for solving (l)-(2) are subject to nonlinear instabilities, in 
particular aliasing error [3], unless the numerical method obeys the discrete analog 
of the conservation laws (3)-(5). The only well-known difference methods for 
(l)-(2) which obey all the conservation laws (3~(5) are due to Arakawa [l]. On 
the other hand, semidiscrete finite-element approximations to (l)-(2) automatically 
satisfy the conservation laws, as shown in [2]. It is thus natural to ask if Arakawa’s 
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methods are related to finite-element methods. The object of this note is to 
announce the answer is yes, in the following sense. The nine-point second-order 
accurate difference scheme of Arakawa (Eq. (45) of [l]) is identical to that obtained 
by using bilinear finite elements in rectangles. Furthermore, any nine-point second- 
order scheme which obeys the conservation laws can be written as a linear com- 
bination of two finite-element schemes, one bilinear in rectangles, the other linear 
in triangles. 

2. SEMIDISCRETE FINITE-ELEMENT SCHEMES 

The crucial part of any difference method for (1.1)-(1.2) is the approximation 
to J([, I+%). Let us consider the semidiscrete finite-element approximation to (1.1) 
[2]. With nodes {zii = (i dx, j dy)} and basis functions (#&x, u)} we write 

In what follows the basis functions will be standard “hill” functions: &(z,,J = 1 
if i = m and j = n, otherwise &(zmn) = 0 (see [4] or [5]). With this choice of 
basis, cii(t) = ch(i dx, j dy, t). We then convert (1.1) to the weak or Galerkin form 

and obtain a system of ordinary differential equations 

Mth = KC+) Th, 
where 

K($l(~,j)(i’.j*) = sf J(+i,/ 3 $J”> #ii = i;e #i*df> JJ J(di,jf 3 hje> dij . 
The generic equation of the above system is 

C M(i.j)(i’,j’)gi’j’ = C K(~)(i,j)(i’.j’)5i,j~ . (1) 
i’.j’ i’ j’ 

The term on the left is equal to dx dY(<ij + 0(dx2) + 0(dy2)). (Note that some 
loss of accuracy will result if M is replaced by 1, the identity matrix; see [6]). The 
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right-hand side is more interesting, as it is the approximation to dx dy J(<, 4). The 
coefficients are 

Suppose we use a uniform rectangular grid and index the nodes as follows: 

%-1,i+1 zi,i+1 zi+1.j+1 

zi-1,i Zi.j Zi+1,i 
-- 

t 
AY 
4 

%1+-l Z&i-l Zif1.G1 
-- 

If we use bilinear elements, those of the form a + bx + cy + dxy in each rectangle, 
the term K(i,i)(i,,jt) is zero unless .qi’ is a neighbor of zij , i.e., 1 i - i’ 1 < 1 and 
I j - j’ 1 < 1. There are essentially two cases: connections with corners (i f 1, 
j A l), and horizontal or vertical connections (i, j + 1) and (i & l,,j). The pattern 
for the former is established by a straightforward computation which yields 

&,~)(i+l,~+l) = ($k,r+1 - ~i+1,W. 

We represent this by Fig. 1, the other corner connections are represented in Fig. 2. 
For example, &,j)(i-l.i+l) = <Lj - ~L+d/12. 

FIGURE 1 

+ R” liliil+ -Fl + 
FIGURE 2 
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Another straightforward computation establishes that 

which can be represented by Fig. 3. The other connections are represented in 
Fig. 4. Finally, the diagonal term K(,,j)(i,j) is zero. 

+ + 

- 

- - 

FIGURE 3 

+ + 

FIGURE 4 

To be explicit, Eq. (1) becomes 

The right-hand side of this equation is identical to Arakawa’s first second-order 
approximation, though his derivation was altogether different. 

If instead of a rectangular grid we use a triangular grid (see Fig. 5), we can then 
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FIGURE 5 

use linear elements, those of the form a + bx + cy in each triangle. In this case, 
(1) becomes 

The right-hand side of this equation is a conservative seven-point second-order 
approximation to J(c, #) which seems to be new. It may be computationally more 
attractive than (2) as fewer multiplications are involved. 

3. NINE-POINT CONSERVATIVE SCHEMES 

The object of this section is to extend the analysis of Arakawa [l] and derive all 
possible conservative nine-point approximations to the jacobian J([, I,!J). Begin 
by considering, as in [l], a general finite-difference approximation which is con- 
venient to write as (where for simplicity we take dx = dy = h) 

(1) 

The crucial point is that c$ is independent of i and j. 
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In [I] the following conditions for such a scheme to obey the conservation laws 
are derived (see Eqs. (18), (20), (34), and (35) of [l]). 

c a@ _ -a.-a a--r,&8 Y8 - -Cy-a.843 = --C-,.-8 2 for all 01, /3, y, 6. 

From (3) we get the following chain of equalities, 

(3) 

4 - CY8 -or,+ --V.-s Y8 - -Cy-a,&fl = c,-,,fl-8 = --c,, = c-,.-B r-o1,6-8 = -cc”YLE-8 Y* 6 - (4) 

Consider now only nine-point schemes; thus cy, /3, y, 6 take on the values -1, 0, 1, 
so there are 8 1 unknowns c$ . The constraints (3)-(4) force many of these unknowns 
tobezero.Forexample,ify = -1andol = 1,orify = landol = --1,then(4) 
plus the restriction to nine-point schemes force c$ = 0, and similarly for p and 8. 
Also, if 01 = p = 0, or if y = 6 = 0, then (4) implies c$ = 0. Again, if (II = y 
and /I = 6, then (4) plus the previous remark imply c$ = -c;!;>cB = 0. In this 
way 57 of the 81 unknowns c$ turn out to be zero. The remaining 24 divide into 
four groups of six each under (4), leaving only four unknowns free. Perhaps a 
diagram would make things clearer (see Fig. 6). The four free unknowns have been 
taken to be cy: , c:y , cy: , and c$l. 

FIGURE 6 

Equation (2) implies COI,4;y,S c$&+~.~+~ = 0 and hence, since # is arbitrary, 
c Ir,B c$ = 0 for each pair (y, S). This places further constraints on the c$ ; we see 
c1o - 

11 - 
-cOl”and ,+.-I = +,A- 

1lL 10 10 . 
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The condition that (1) be a second-order approximation to J(<, #)ij has yet to 
be imposed. Setting (1) equal to 

yields many additional equations which the c$ must satisfy. If we expand (1) in 
a formal Taylor series we get 

and hence, 

(5) 

(6) 

for all other m, n, p, q such that m + n + p + q < 3. (7) 

Equation (6) follows from (5), since C&c;~ = -C CL&$ = -C /3rc$ . 
Equation (5) in conjunction with the previous work yields c:y - c!t = 2. The 
conditions (2)-(4) ensure that (7) is satisfied. Thus there is a one-parameter family 
of possible difference schemes. The choice c!i = - 1 yields the rectangular bilinear 
scheme (call it JR) of Section 2, while the choice cyt = 0 gives the triangular linear 
scheme (call it JT) of Section 2, and any other nine-point conservative difference 
method is a linear combination (AJ, + (1 - A) JT for any real number A) of these 
two methods. Notice further that the finite element AbR + (1 - A) ~$r gives rise 
to the jacobian XJ, + (1 - A) Jr . 
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