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91. INTRODUCTION AYD PRELIMINARIES 

IT IS easily shown (e.g. cf. [S]) that any two incompressible spanning surfaces for a possibly 

trivial Neuwirth (i.e. fibered) knot are isotopic, contrasting sharply with the fact that some 

knots [2, p. 601 have incompressible spanning surfaces of arbitrarily high genus. In answer to 

a question raised by Alford and Schaufele [I]. Whitten [8] has shown that doubles of certain 

knots have unique isotopy types of minimal (knotted genus one) spanning surfaces. This 

paper generalizes his construction and extends his results in several directions. We establish 

the existence of: 

(i) a class containing knots of every genus greater than one, each nonfibered with all 

of its incompressible spanning surfaces isotopic and knotted; 

(ii) a class containing knots of every genus, each nonfibered with all of its incompres- 

sible spanning surfaces isotopic and unknotted; and 

(iii) an infinite subclass of class (ii), each member of which is simple. 

Our proofs are generally independent of Whitten’s, shorter, and more geometric. 

Our notation and terminology follow [2, 3, 4 and 81. The following lemma follows 

directly from Waldhausen [7]. 

LEMMA 1. If T is a properly embedded incompressible surface in S x I, where S is an 

oriented Z-manifold with connected boundary, if T n (S x {l}) = 0, iy x(T) # 1, and if 

T n ((Bd S) x Z) is connected or empty, then T isparallel, in S x I, to a subset of S x (0). 

We will also have occasion to use the following two technical lemmas, the proofs of which 

are straightforward. 

LEMMA 2. If‘the knot space K contains a properly embedded incompressible and boundary 

incompressible annulus, then K is either a composite knot space or a nontrivial cable knot 

space, and the boundaries of all such annuli are isotopic in Bd K. 

LEMMA 3. lf K is a nontrivial torus knot space containing the properly embedded in- 

compressible and boundary incompressible annulus A, then any bounded, properly embedded 
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incompressible and boundary incompressible surface in K is isotopic either to A or to a fiber 

in K. 

32. THE COSSTRUCTIOX 

Let k’ c S3 be a Neuwirth knot with minimal spanning surface S’ containing an un- 

knotted simple closed curve w which is noncontractible in S3 - k’, and let W’ be the solid 

torus Cl(S3 - IV(~)). Assume that the curves S’ n Bd Lt/’ have winding number n 2 0 

in W’ and that they separate Bd IV’ into annuli A’ and B’. Let z be any (possibly trivial) tame 

knot in S3 with IV = N(z) and Z = CI(S3 - IV), and letf: IV’-+ It/be any homeomorphism. 

Iff(A’) = A,f(B’) = B, andf(k’) = k, then k is a knot in S3 with knot space K = CI(S3 - 

N(k)). and S = (f(S’ n CV) n K) u A is a spanning surface in K. Note that CI(K - (S u Z)) 

has a natural product structure. If z is trivial, let each component of Bd A have winding 

number m 2 0 in the solid torus Z, so that the g.c.d. (m, n) = 1. 

LEMMA 4. The surface S is compressible in K tr m = 0 and z is trivial. In particular, if S 

is compressible, then n = 1 and z is trivial. 

Proof If m = 0 and z is trivial, then each component of Bd A bounds a disk in 

Cl(K - S), so S is compressible. If S is compressible, then, by the usual argument, there 

exists a nonsingular disk D such that D n S = Bd D and Bd D is noncontractible in S. Put 

D in general position with B and assume a minimal number of components in B A D. The 

closure D’ of at least one component of D - B must be a disk. If D’ were contained in W, 

then D’ could be pulled back by f -I to contradict the incompressibility of S’. Hence we may 

assume that D’ c Z. But since the intersection B n D is minimal, this means that D’ must 

be a nonseparating disk in 2, so z is trivial and m = 0. Since (m, n) = 1, the compressibility 

of S implies n = 1. 

LEMMA 5. Assume S is incompressible. Then the knot space K isjbered iffz is trivial and 

m = 1. 

Proof If K is fibered, then CI(K - S) is a product, and by Lemma 1, the annulus B is 

parallel to A. Hence Z is a solid torus, z is trivial, and m = 1. If Z is a solid torus and m = 1, 

then CI(K - S) is a product and K is fibered. 

From this point onward we will be concerned with showing that, under certain cir- 

cumstances, two incompressible spanning surfaces in K are isotopic in K. It then follows 

by Whitten’s argument [S] that this isotopy may be extended to all of S3, leaving k fixed. 

THEOREM 1. Assume S is incompressible and that Z contains no properly embedded 

incompressible and boundary incompressible annuli whose boundary components are isotopic, 

in Bd Z, to components of Bd A. Then any minimal spanning surface T c K is isotopic, in 

K, to S. 

Proof We may clearly assume that initially, and at the end of each isotopy arising 

in the proof, the surface T satisfies the condition (Bd T) n (Bd S) = 0. Our first goal is to 

show that we can move T by an isotopy until T n Z = 0. To do this we put T in general 

position with S, assume that S n T is minimal, and consider two cases. 
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Case 1. S n T # 0. Since T cannot carry any homology of K, there is some component 

of T - S whose closure t meets S only from the side opposite B. Put t in general position 

with B and assume t n B is minimal, so that t n B must consist of points in (Bd t) n (Bd B) 

and simple closed curves in (Int t) n (Int B). If there were no such simple closed curve, 

then, by Lemma 1, t would be parallel to a subset of S and we could reduce S n T, a contra- 

diction. Hence at least one component of T n Bd Z is parallel. in Bd Z, to a component of 

Bd A. However, since T is incompressible, it follows that vve can remove all components of 

T n Bd Z which are contractible in Bd Z, leaving us with each component of T n Bd Z 

isotopic, in Bd Z, to a component of Bd A. Since both A and B are incompressible in Z, 

no component of T n Z is a disk. If x(T n Z) were negative. then we could replace the 

components of T n Z by boundary parallel annuli in Z and obtain a spanning surface of 

genus lower than that of T, another contradiction. Hence x(T n Z) = 0, each component 

of T n Z is an annulus, and our hypotheses assure us that T may be moved by an isotopy 

until T n Z = 0. 

Case 2. S n T = 0. Put T in general position with B, maintaining S n T = 0, 

If T n B = 0, then S is isotopic to T by Lemma 1. If T n B # 0, we will have T n Bd B = 

“0 = T n Bd A and we can proceed as in Case 1. (Note that the final isotopy there might 

destroy the condition S n T = 0.) 

Now assume S n T is again minimal, this time subject to T n Z = 0. If S n T f 0, 

then there exists, as before, a component of T - S whose closure t meets S only from the side 

opposite B. This time, however, we have T n B = 0, so by Lemma 1, t is parallel to a subset 

of S, and this subset contains A, because if not, we could reduce S n T. Without loss of 

generality we can assume t is an outermost such component in CI(K - (S u Z)). Similarly, 

there exists an outermost component of T - S whose closure ~1 meets (S - A) u B only 

from th.e side opposite A and which is parallel to a subset of (S - A) u B containing B. 

But this means that t u u separates K, and since t u II c T, we have a contradiction. Hence 

SnT=0=TnZZ,soTn(SuZ)=0,andbyLemma1,TisisotopictoS. 

COROLLARY 1. I. The knot k has a unique isotopy type of minimal spanning surface if one 

of the following hold: 

(4 n> 1; 

(b) n = 1 and z is a nontricial, noncable knot; or 

(4 n = 0 and z is prime. 

Proof: If Z contains a properly embedded incompressible and boundary incompressible 

annulus with boundary components isotopic, in Bd Z, to components of Bd A, then by 

Lemma 2, z is either a nontrivial cable knot or a composite knot. In the first case, n = 1; and 

in the second, n = 0. 

Note from Whitten’s figure [8] that the curve K, may be moved by an isotopy in S3 - K, 

until it lies in the surface spanning K, Hence his construction is a special case of ours, 

with n = 1, and his main theorem follows from Corollary 1.1 b. 

THEOREM 2. Assume S is incompressible and that Z contains no properly embedded 

incompressible and boundary incompressible bounded surface whose boundary components are 
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isotopic, in Bd Z, to components of Bd A. Then any incompressible spanning surface T c K is 

isotopic to S. 

Proof. Proceed exactly as in the proof of Theorem 1 to the point where each com- 

ponent of T n Bd Z is isotopic, in Bd Z, to a component of Bd A. Our hypotheses then 

guarantee that we can eliminate all of T n Z, and the proof again proceeds exactly as that 

of Theorem 1. 

COROLLARY 2.1. The knot k has a unique isotopy type of incompressible spanning sztrface 

ifeither of the following hold: 

(a) n # 1 and z is a (possibly trivial) torus knot; or 

(b) z is tric;ial and m > 0. 

Proof. If z is nontrivial, the hypotheses (a) combine with Lemmas 3 and 4 to satisfy the 

the hypotheses of Theorem 2. If z is trivial and n # 1 or m > 0, then Lemma 4 assures us of 

satisfying the hypotheses of Theorem 2. Note that Corollary 2.la generalizes our result 

in [3]. 

$3. EXAhIPLES 

Whitten’s construction involved a nonseparatin, 0 iv, with n = 1 twist, in a trefoil knot 

surface, and in [3] we exhibited a nonseparating KJ, with n = 0 twists, in a surface spanning a 

genus two Neuwirth knot. Thus given integers 0 5 n I g where g > 0 and II # 0 if g = 1, 

we can take an appropriate direct sum of these knots to obtain a Neuwirth knot of genus g 

whose fiber contains a nonseparating w with n twists. 

If we apply our construction in any situation where n # 1 and z is a nontrivial torus 

knot, then Corollary 2.la appiles. Moreover, since the incompressible spanning surfaces 

all may be moved by an isotopy until they miss Z, they are all knotted and class (i) is estab- 

lished. 

If we apply our construction in any situation where n = 1, w is nonseparating, and z is 

trivial, the map f may be chosen so that m > 1. Hence Corollary 2.1 b applies and the result- 

ing knots are nonfibered by Lemma 5. In this case, CI(K - S) is homeomorphic to 

C1(S3 - S’) with a solid torus sewn along kv’, one of the two copies of \v. Since C1(S3 - S’) 

has a product structure and bv doesn’t separate S’, w’ represents a primitive element in the 

free fundamental group of CI(S3 - S’). Thus the fundamental group of CI(K - S), being 

free with a root adjoined along a primitive element, is also free, so S is unknotted and class 

(ii) is established. 

If we apply our construction to Whitten’s link, with z trivial, the resulting knots are the 

p-twist knots (see [.5, pp. 226f] for example) with m = j p 1. (Compare the figure in [8] with 

Fig. 4.1 in [5, p. 2271.) Hence, if 1 p / > 1, the p-twist knot is in class (ii). Since Schubert 

[6, Satz 4, p. 2421 has shown the twist knots to be simple, class (iii) is established. 
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