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PROGRAM SUMMARY

Title of program: REDUCED SU(3) CFPS
Catalogue number: ABKG
Program obtainable from: CPC Program Library, Queen’s

University of Belfast, N. Ireland. (See application form in
this issue.)

Computer: Installation:
AMDAHL 470V/6 Univ. Michigan, Ann Arbor,
IBM 360; Michigan

Operating System: MTS

Program language used: FORTRAN

High speed storage required: 197k words

No. of bits ina word: 32

Overlay structure: none

No. of magnetic tapes required: none

Other peripherals used: card reader, line printer

No. of cards in combined program and test deck: 3655
Card punching code: EBCDIC

CPC Library data deck used:
Catalogue number: AAC*; Title: DATA FOR ABKG

No. of cards in data deck: 7423

Keywords: Nuclear physics, theoretical methods, CFP, SU(3),
SU(4), shell model, spectroscopic amplitude, a-transfer,
pseudo-SU(3).

* Work supported by the U.S. National Science Foundation.
*#* Block 3 of the program was developed at The Weizmann
Institute, Rehovot, Israel.

Nature of physical problem

Reduced SU(3) x-particle coefficients of fractional paren-
tage (CFP) are calculated, for any nuclear shell and arbitrary
shell model states in an SU(3) X SU(4) or an SU(3) X SU(2)
scheme. These CFP together with the SU(3) coupling coeffi-
cients available with the code of ref. [1] make it possible to
perform standard shell model calculations in the SU(3)
scheme.

Method of solution

Raising and lowering operators of SU(3) and SU(4) are used

to construct explicitly shell model states of good SU(3) X SU(4)
symmetry [2]. These states are written in terms of Fermion
creation operators. Overlaps can then be calculated directly

and lengthy recursion is thus avoided.

Restrictions on the complexity of the problem

Since the size of arrays depends strongly on the nuclear shell
and the number of particles, provision is made for easy adjust-
ment of dimensions. However, the number of components of
a highest weight state in the many-particle basis should not
exceed 200 or else truncation error may accumulate.

Typical running time
It is a critical function of the nuclear shell, the number of
particles, as well as the options selected.

Unusual features of the program

All the large integer arrays which store numbers that are
always less than 256 start with the letter “L”. Therefore in
IBM 360/370 or similar operating systems advantage may be
taken of the statement IMPLICIT INTEGER*2(L) to save up
to 35% of high speed storage.
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LONG WRITE-UP
1. Introduction

We describe below a versatile FORTRAN program
which calculates reduced coefficients of fractional
parentage (CFP’s) in the SU(3) X SU(4) scheme. A
precise definition of these CFP’s (also called triple
barred matrix element) can be found in eq. (7) of ref.
[1]. These reduced CFP’s can be converted to ordi-
nary CFP’s in the angular momentum scheme by
simple multiplication with an SU(3) D R(3) reduced
Wigner coefficient. The reduced CFP’s together with
the SU(3) coupling and recoupling coefficients avail-
able through the code of Akiyama and Draayer [2]
make it possible to perform challenging shell model
calculations in the SU(3) scheme [3]. Spectroscopic
amplitudes for many-particle transfer reactions are
easily obtained from these reduced CFP’s [4].

Because of the non-recursive nature of our formu-
lations (see appendix A of ref. [1]), the program cal-
culates with equal ease one or many-particle CFP both
at the beginning or in the middle of a shell.

The program was written for applications in the
nuclear shell model and it is intended to accommo-
date the needs of a great variety of users. Care has
been exercised to ensure generality.

The program allows calculations to be performed
in:

(1) Any major oscillator shell.

(2) Both neutron—proton formalism (NPF) or full
spin—isospin formalism (FSIF) are acceptable.

(3) Optimization available for the prolate or oblate
limit is obtained by calculating the CFP from
the highest weight state (HWS) or lowest weight
state (LWS) respectively.

(4) No SU(4) coupling coefficients are needed since
both the parent and daughter states can be low-
ered in SU(4) according to the needs of a partic-
ular user.

2. Method of calculation

Our states are classified according to the irreducible
representation (IR) of SU(3) X SU(4). The subgroup
chains used are: SU(3) D SU(2) X U(1) and SU(4) D
SU(2) X SU(2). For the meaning of the quantum num-
bers associated with these chains see refs. [5] and [6].

The availability of the SU(3) D R(3) Wigner coeffi-
cients makes it possible to perform all calculations in
the simpler SU(3) D SU(2) X U(1) scheme; since con-
version to the physically relevant angular momentum
scheme involves only multiplication of a reduced
CFP by an SU(3) D R(3) Wigner coefficient.

Throughout this section we shall assume that the
full spin—isospin formalism (FSIF) is used.

Restriction to the simpler neutron—proton for-
malism (NPF) is obtained by substituting SU(4) by
SU(2) and dropping P/, P', T, My, Mg while replacing
PbyS.

2.1. Single particle levels

For any given major oscillator shell we introduce a
single particle index j which is used to number the
single particle orbits. See eq. (A.2) of ref. [1]. This is
illustrated in fig. 1 for the sd-shell. A one particle state
is then written as:

I]')Ea:A.MAMsMTMEIO)’ (1)
where |0) is the vacuum (i.e., closed shell) and a* is a
Fermion creation operator. Note that we have dropped
for the one particle states the SU(3) label since it is
implied by the nuclear shell in consideration. Similarly
we have dropped the SU(4) label since it is implied by
the permutation symmetry {1].

Acting on these single particle states with an SU(3)
or SU(4) raising (lowering) operator we obtain another
state times a normalization coefficient, for example:

Az 6)=+/212), (2a)
A;x118)=0, (2b)
where A4, is the SU(3) raising operator that lifts a

(€2an20M,)

(-22-2) 2l 22 23 24
(-22 0) 17 18 19 20
(22 2) 13 14 15 16
(11 -n 9 10 1 12
[ 5 6 7 8
(4 0 O ! 2 3 4

(i U=t-1) (-0 (I=1 1) (2%Mg 2%M, 2oM)

Fig. 1. Numbering of the single particle levels for the sd-shell.
The single particle index j runs from 1 to 24.
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quantum from the x-direction into the z-direction.
This numbering and the explicit construction of
these operators is done in SUBROUTINE LEVELS.

2.2. Construction of the many-particle basis

In this section we introduce a many-particle basis
in terms of which states of good SU(3) X SU(4) sym-
metry can be expanded.

We use the fact that the quantum numbers €, M, ,
Mg, My and Mg are additive to define as our n-par-
ticle basis all those states which have a definite value
of total €, M5, Mg, M1 and Mg, that is, all those
states of the form

IneMAMsMrMEg)=|j1) j3) .. 1jn? =
=af a;.
T CeyMp Mg, M1\ ME, €2MA2MS2MT2ME2
+
aenMAnMSnMTnMEnl())’ (3)

such that

n

n n
€=E€i; MA=Z>MA,-; MS'_'EMS,';
i=1 i i=1

i=1

n n
M= El M;; Mg =25 M. 4)
'= 1=

Since we write our many-particle states explicitly
in terms of Fermion creation operators they become
automatically antisymmetric.

This many-particle basis is constructed in SUB-
ROUTINE BASIS.

2.3. Construction of highest weight states

A state of highest weight in SU(3) X SU(4) is
written as:

InQw) & (PPP")) gy » ()

where n = number of particles, (\u) = SU(3) irreducible
representation, a = inner multiplicity label for SU(3),
needed to distinguish multiple occurrences of (A) in
a given space symmetry;a= 1,2, ..., Qpax., PPP") =
supermultiplet labels.

The labels (PP'P") together with n determine
uniquely the spin—isospin symmetry [f], and since
the states are totally antisymmetric they determine as
well the space symmetry [f] conjugate to [f].

This HWS can be expressed as a linear combination
of our many-particle basis states which have a definite
value of total e, My, Mg, My and Mg, ie.:

m
In(\2) & (PPP" Yoy =i=21 GjineMAMsMTMg),, ©

with € =2\ + u, My =uf2, Mg =P,My =P, Mg = P".
The expansion coefficients C; are determined by
solving the system of linear equations:

(Azx + Ay + Ay +Eyg +Egy +Eqq +E 1 S,
+T:) IH(M)‘X(PPT’))Hw =0, ™

where 4,4, A,y and A, are the SU(3) raising operators
and Eq, Eg1, E11, Ey—1, S+ and T, are the SU(4)
raising operators (in the notation of ref. [6]).

The number of linearly independent solutions of
this homogeneous system of equations is equal to
Omax - These solutions are orthogonal but otherwise
arbitrary. The overall phase of these HWS (in SU(3)
and SU(4) is fixed by using the prescriptions given in
appendix A of ref. [1]. It should be noted, however,
that only non-zero components are considered. The
user may compare our phase convention with any
other by setting IPRST =1 in card 1 of the input
data, thus obtaining the explicit form of our HWS.

The system of linear equations is set up in SUB-
ROUTINE RISE.

In the SUBROUTINE TRIANG linearly dependent
equations are deleted, and the coefficient matrix is
triangularized. In SUBROUTINE HOMEQ a set of
linearly independent states is constructed. In SUB-
ROUTINE ORTHO this set of ay,,, states is ortho-
normalized.

2.4. States of lower weight in SU{)

Since no SU(4) D SU(2) X SU(2) Wigner coeffi-
cients are available we cannot restrict ourselves to
HWS in SU(4). Therefore, we need to construct states
which have any of the allowed values of S and T'in a
given supermultiplet.

This is accomplished by operating on the HWS
with the step down operators O.5 as defined in ref.

f6].
In(\u) o« (PP'PYBST)
= 0y1810y,5, + OygsIn(u) @ (PP,P”)>HW’ 3)
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with

k k
S=P+21v; and T=P+2, 5,
i=1

i=1
B=1,2,.., Bmax-

Bmax is the number of linearly independent states with
S and T that are contained in the supermultiplet
(PP'P"). (See eqs. 2831 of ref. [7].) The choice of
operators Oy, in (8) is not unique, however, if

Bmax = 1, different choices (paths) will lead to the
same state except for an overall normalization con-
stant. If B,,¢ > 1 it is necessary to select at least ;.4
different “‘paths” in order to obtain fp,,, linearly
independent solutions. This is illustrated in fig. 2.

The phase of the state [n(Au) @ (PP'P") BST) is
determined by the phase of the HWS and the phase
of the operators O, . Again, as before, this phase
can be ascertained by setting IPRST = 1 card 1.

Bmax is calculated in FUNCTION IBETA. The
different possible “paths” are found in SUBROU-
TINE PATHS. The application of the O, operators
is performed in SUBROUTINE OXYLOW.

2.5. The x-particle operator

Since it is simplest to use HWS for both parent and
daughter states, the x-particle operator which con-
nects them can have arbitrary weight and x-particle
operators of arbitrary weight must be constructed.

If we write these operators in terms of Fermion
creation operators we may take advantage of the fact

S as10 (PP'P")=(320)

H

Do (8T, 21320

| [e]e] \éjo——‘—‘é’
OO—I
& PN 5 | ]
| 2 3 4 5 T

Fig. 2. Three different “paths” that can be taken from the
HWS to reach the state with (S, 7) = (1, 2) by using only
lowering operators.

that our states were written in a similar fashion and
then the same procedure may be used. Explicitly
these operators are:

AM A(PP P")BSMgTM
[a{az...a;]w)ae Al YBSMgTM

=N, p,q,r) SETL A, 0,A%,
X [a}as ... ] (W« (PPP)OST ©)

See ref. [8] for details. Eq. (9) is consistent with the
SU(3) D SU(2) X U(1) phase convention of Akiyama
and Draayer [2].

For a given oscillator shell and permutation sym-
metry we have calculated once and for all the lower
weight operators as given in eq. (9).

These different sets of operators are supplied with
the program and should be used as input data.

In the FSIF the set of operators is specified by
[x,2P, 2P, 2P", N] while in the NPF they are speci-
fied by [x, 2S, N], where (PP'P") = supermultiplet
symmetry of the set, N = oscillator shell, S = spin.

The set of operators we supply and their SU(3)
content is summarized in table 1 {9].

2.6. Calculation of the reduced CFP

We first evaluate the overlap:
OA ={n +x0\r/~‘r) ar(PrP;P;',) BrSrTrl

X[a’{a; a;] (A)aeAM A (PPP")BSMgTM T

X InQctic) 0c PePP)BS T, (10)

with € = 20 + pp — 20e — e, Mp = (U — 1c)/2,
Ms =P1- —PC,MT=P|,- ——Pé

If the row and column states are highest weight in
SU(3), the total number of admissible values of A, is
equal to pp,y , the number of times (A u,) is contained
in the Kronecker product (A.ue) X (Aw).

The overlap in (10) is easily evaluated since both
the HWS and the x-particle operator are expressed in
terms of the same set of Fermion creation operators.
The reduced CFP is then obtained by solving the sys-
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Table 1

The x-particle operator set in the FSIF and NPF

x-particle SU@3) SU(2) X SU(2) First card * Last card *
operator content content

[x2P2P'2P"N] () (282T)

FSIF

[11111] 10) an 1 13
[22001] (20) (20) (02) 14 44
[22221] (01) (22) (00) 45 74
[311-11] (30) 11) 75 121
[40001) (40) (00) 122 150
[11112] (20) (11) 151 172
[22002] (40) (02) (20) (02) 173 310
[22222] (21) (22) (00) 311 451
[311-12} (60) (22) (00) (11) 452 967
[40002] (80) (42) (00) 968 1875
[11113] 30) an 1876 1908
[22003] (60) (22) (20) (02) 1909 2363
[22223] (41) (03) (22) (00) 2364 2881
[311-13) 90) (11) 2882 3769
[40003] (120) (00) 3770 6044
NPF

[x2SN] A

[111] (10) 6045 6056
[201] (20) 6057 6068
[221] (01) 6069 6081
[112] (20) 6082 6094
[202] (40) (02) 6095 6123
[222] (21) 6124 6164
[113] (30) 6165 6186
[203] (60) (22) 6187 6259
[223] (41) (03) 6260 6389

* The card numbers refer to the sequence numbers in deck AAC#

tem of linear equations:

Pmax

Or= 21 (ctic) eche; (DN uitr)er ), (1)
-

(AcAAM A AcA){(ScSSM| S, S,)

(T T IM7i T, T;)(n +x0‘rﬂr)ar(PrP;Pc)ﬁrsrTr|

I [a';a; a;](M)a(PP P") ﬁSTP”

(nQctte) e PePePe) BeSc Te) »

where €. = 2A; + Uc, Ac = Ue/2, € = 200 + Uy, Ap = 14:/2,
p=1,2, .., Pmax-

The triple barred quantity in eq. (11) is the reduced
CFP. This reduced CFP is multiplied by three ordinary
SU(2) Wigner coefficients and a reduced SU(3) D
SU(2) X U(1) Wigner.

3. Structure of the program

The program is divided into five blocks as shown in
fig. 3. Each block performs a logically different func-
tion and contains several subroutines. Communication
between these subroutines is established through
labeled COMMON blocks.

All the input to the program is read in the MAIN
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_____________ BLOCK 4 |

e

e

Fig. 3. Flow diagram for program Reduced SU(3) CFPS.

ROUTINE which is the only one contained in BLOCK
1 (see sec. 4).

In BLOCK 2 the HWS are constructed following
the method outlined in sec. 2.

In BLOCK 3 the stepping down in SU(4) is done.
This block is needed if and only if the FSIF is used
and furthermore the states of interest are not highest
weight in SU(4). Appreciable saving in storage is
gained if this block is deleted for calculations involv-
ing only the NPF.

In BLOCK 4 the reduced CFP’s are calculated and
printed out at the end of SUBROUTINE OVLAP.

BLOCK 5 contains the subroutines needed to cal-
culate the reduced SU(3) D SU(2) X U(1) Wigners as
well as the SU(2) Wigners. These subroutines are
taken without change from PART 1 of the SU(3)
PACKAGE of ref. [2].

4. Input/output

The input to the program is of two types. Fig. 4
illustrates the structure of the input data deck.

4.1. Input of type I

Input of this type is provided in a separate data
deck, catalogue number AAC*, and allows the user
to select a particular use of the program. By using
different data sets of the type I the user may calcu-
late -1 particle CFP, 2 particle CFP, 3 particle CFP,
or 4 particle CFP (alpha transfer) in either the p, sd,
or fp shells, in the FSIF or NPF.

Input of type I consists of two blocks of input

CARD 4-7 (OPTIONAL )

( CARD 3

CARD 2
(CARDI

( DATA BLOCK FROM SET B

/

DATA BLOCK FROM SET A

Fig. 4. Structure of the input data deck.

data, the first block to be selected from set A and
the second block from set B. Combinations which
are not allowed are detected by the program and a
relevant message printed.

4.1.1. Data set A
Data blocks of set A contain all the information
needed to fully describe the x -particle operator.
We explain below the meaning of all quantities
read in for set A.

MPOPX = value of x in [x, 2P, 2P, 2P", N]
or [x,2S,N].

IOPMX = total number of x -particle operators
with symmetry (PP'P").

MULARN = number of SU(3) IR considered
times dimSU(4) [r1.

NCFMX = total number of components of all
the different x -particle operators.

NSHELL =N+1.

NEUPRO =1 for NPF.

=2 for FSIF.

MULAMN(I) = sequence number assigned to the
first x -particle operator which has
SU(3) symmetry number I (reading
from left to right in the second
column of table 1).

NXOPMN(I) = starting address for the x -particle
operator of sequence number I in
array CFOPX.

= ¢ of x -particle operator with sequenc
no. I.

LEPXOP(I)
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LAMXOP(I) = A of x-particle operator with
sequence no. I.

LMMXOP(I) =M, ofx-particle operator with
sequence no. I.

LSXOP(I) = § of x-particle operator with sequence
no. L.

LTXOP(I) = T of x-particle operator with sequence
no. L.

LSMXOP(I) = Mg of x-particle operator with
sequence no. I.

LTMXOP(I) = My of x-particle operator with
sequence no. [.

LCXOP(I)  =stores the components of the x-par-
ticle operator.

CFOPX(I) - = stores the coefficient of each compo-

nent of the x-particle operator.
4.1.2. Data set B

Data blocks of set B contain a table for the reduc-
tion U(n) D SU(3) where n = NSHELL * (NSHELL
+1)/2. Only those IR of U(#n) up to half full shell and
which have not more than four columns are tabulated.
For the fp shell we include only those SU(3) IR which
have oy a¢ < 10. This is summarized in table 2. The
same data block is used for the FSIF and NPF. We
explain below the meaning of the quantities which are
read in.

ISAYRD = NSHELL » (NSHELL + 1)/2.

NUNTOT = number of U(n) IR.

NSUTOT = number of SU(3) IR.

LPARMN(I) = starting address in array LUNREP of
U(n) IR with I boxes.

LUNREP = stores the number of boxes in each
column of the tableaux of U(n).

Table 2

Data blocks of set B. For the fp shell only those SU(3) IR
which have an, < 10 is included.

Space Restrictions First Last
symmetry on SU(3) card * card *
Un) content

U(3) None 6390 6399
u(6) None 6400 6525
U(10) amax < 10 6526 7423

* The card numbers refer to the sequence numbers in deck
AACH*.

LSU3MN(I) = starting address for the SU(3) con-
tent of U(n) IR number I in LSU3CF
and LSU3RP.

= number of times that SU(3) IR num-
ber I is contained in the IR of U(n)
connected by LSU3MN.

LSU3RP(I, J) = (M) of SU(3) IR number I.

J =1 gives A.
J =2 gives u.

LSU3CE()

4.2. Input of type II

This data must be provided by the user. In its sim-
plest form it contains only three cards. Seven cards is
the maximum.

Card I1: IPRST, IPRLVL, IPRTSK FORMAT (1614)

The variables in Card 1 control only the extent of
the printing performed. Its use is spelled out in com-
ment statements in SUBROUTINES OVLAP. Leaving
Card 1 blank simply prints the reduced CFP’s calcu-
lated.

Card 2: IREPMN, IREPMX, LOHI FORMAT (1614)

IREPMN and IREPMX define the first and last
SU(3) symmetry (in the order of table 1) of the x-par-
ticle operator to be used.

LOHI determines whether the overlap is to be cal-
culated from HSW or LWS in SU(3). For prolate defor-
mations (A = u) use LOHI = 0 while for oblate defor-
mations (A < u) use LOHI =1,

Card 3: {[LINBUF(1,J),1=1,IMAX],J =1, 2}
FORMAT (1614)

IMAX = 4 for NPF.

IMAX = 8 for FSIF.

J =1 for row (bra) states.

J =2 for column (ket) states.

This card defines the range of the calculation. The
meaning and allowed values for LINBUF are summar-
ized in table 3.

In order to achieve the maximum of versatility
some of the elements of the array LINBUF can be
given some reserved values which will give to the asso-
ciated variable not a specific value but rather a set of
values.

Reserved value —111: If given to an element of LIN-
BUF the associated variable is allowed to take all pos-
sible values consistent with the other quantum num-
bers, e.g., LINBUF(2,1) = —111 specifies that all the
allowed values of € = 2\ + y will be considered.
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Table 3

{[LINBUF(1,N,1=1,8],/=1,2}

I 1 2 3 4 5 8
Associated number 2N+ A2u 2p* 2P’ 2p” 28 2T
variable of part.

integer Yes Yes Yes Yes Yes Yes Yes Yes
Reserved No Yes Yes Yes Yes Yes Yes Yes
value —111

Reserved No Yes Yes No No No No No
value —222

Reserved No No No No No No Yes Yes
value —333

This is only needed for FSIF

* In the NPF 2P should be understood to be 28S.

Reserved value —222: If given to an element of LIN-
BUF the associated variable must be defined in cards
4—7. This is useful if one wishes to consider only a
set of very specific values for the associated variable.
Reserved value —333: Can be given only to LINBUF
(7,J) and LINBUF(8, J). It gives to the associated
variable the highest weight value consistent with
(PP'P"). This is useful if the reserved value —111 was
given to another element of LINBUF.

Card 4-7: FORMAT (1614) Are needed only if in
card 3 the reserved value —222 was used. The number
of cards needed is equal to the number of times —222
appeared in card 3.

Cards 4—7 refer to the associated variable con-
nected respectively with the first, second, third and
fourth appearances of —222 in card 3 (reading from
left to right).

The first integer on these indicates the number of
different values to be assigned to the associated vari-
able. The rest of the card must then contain the values
of the associated variable.

4.3. Output

The output is controlled by the value of the vari-
ables in Card 1. It should be noted that for all the
quantum numbers which can take half-integer values,
twice its magnitude is printed.

Table 4

Parameters of the size of arrays in the shell model

Common Param-  Oscillator shell
block eter
p sd fp
CLVL NS1 12 24 40
CPRT NS2 5 17 33
NP1 50 100 200
CUSU NS3 36 452 2108
NS4 8 16 24
NS5 20 114 528
NS6 20 1220 9564
CSHM NP2 100 150 150
NP3 80 100 100
CINP NP4 20 20 20
NP5 100 100 100
cXop NP6 112 3852 4004
NP7 44 228 452
CBAS NP9 8000 15000 15000
NP10 100 200 200
NP11 1000 2000 3000
CROW NP12 20 20 20
NP13 500 500 500
NP14 5000 5000 5000
COXY NP15 50 100 200
NP16 1000 2000 4000
CPAT NP17 100 100 100
NP18 1000 1000 1000
CLOW NP19 100 100 200
NP20 1000 1000 2000
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5. Program modifications

A complicating feature of the shell model is that
the size of the calculations increases very rapidly
from one shell to the next; and within a shell with
increasing particle number.

Therefore, the size of the arrays should be fixed
by the user in accordance with particular needs.

Arrays whose size need to be modified are dimen-
sioned in COMMON blocks. Their size is determined
by the parameters in table 4 and comment statements
relevant to the COMMON blocks.

Parameters which begin with “NS> get values
which depend only on the oscillator shell under con-
sideration.

Parameters which begin with “NP” should be
given a tentative value (suggested in table 4). In the
event that the dimension is not large enough, a rele-
vant message will be printed and the user asked to
increase its value.

As provided by us the program has dimensions suf-
ficient for the fp-shell.

Considerable saving of high speed storage (up to
35%) can be achieved by using half-length words for
all the integer arrays which begin with the letter “L”.
In IBM or similar machines this is done by including
as the first statement of each subroutine IMPLICIT
INTEGER=*2(L).

6. Test run

Because of the versatility of the code we cannot
reproduce here sample outputs for all the options.
We have selected the case of symmetrically coupled
two particle CFP’s in the fp shell within the FSIF.
The daughter state chosen is

ln=6(\u)=(120) (PP'P"y=(100)S=1T=0).

All the (2X + u) = 18 parent states are calculated.
Below we give the input deck required for this run:

DATA SET A: [22003]
DATA SET B: U(10) > SU(3)
CARD 1: 111

CARD 2: 11

CARD 3:

FORMAT(1614)

FORMAT(1614)
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CARDS 1909--2363 of data deck AAC*

CARDS 6526—-7423 of data deck AAC*

62412 2 0 0 2 0 4 18-111-111-111-111-111-111 FORMAT(1614)
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TEST RUN OUTPUT

EPS=-3 LEADTW=13 LMLDTW=~3
EPS=-~3 LADTW=3 LELDTW=-1
EPS=-3 LADTW=3 LMLDTHE= 1
EPS=-3 LMDTN=13 LNLDTH= 3
EPS= 0 LADIN=2 LELDTW=-2
EPS= O LMDTRW=2 LMLDTW= ©
BPS= 0 LMDTW=2 LMLDTH= 2
EPS= 3 LADTU=1 IMLDTH=-1
EPS= 3 LMDTIH=1 LMLDTH= 1
EPS= 6 LMDTW=0 LMLDTW= O

HEBBEBRAER

FOR (PS= 2 PT= 0 PE= 9) AND
2012 0)

)

o
"

-

LABNDA=12 HU= 0 A
-0.57733e-01
-0.28869E-01
0.28866E-01
0.288692-01
~0.288682-01
-0.57734E-01
0.866028-01
0.86603E-01
-0.86604E-01
-0.866032~-01
-0.866022-01
-0.86602E~01
0.866012-01
0.866048-01
=-0.17321E+00
0.30000R+00
-0.10C002+00
=0.21213E+00
0.70713E-01
0. 10000E+00
0.21213E+00
-0,70711E-01
-0.70711E-0 1
0.70711E-01
0.30000E+00
=0.100002+00
0.100002+00
-0.30000E+00
0.999998-91
0.21213E+0C
~0.70711E-01
-0, 10000E+00
=0.21213E+00
0.70711E-01
0.707T11E-M1
-0.70711E-01
-0.300002+00
0. 100002+00
-0.10000E+00
0.20000R+00
-0. 14142E+00
0.141428+00
0.648208-7
0.20000E8+00
-0.200002+00
~0.83447E-07
0. 141422400
=0.14142E+00
~0.20000B+00

PO RIAI N b b b b b oh b wb b b b A oh b ) b D b ed D e A A WR RN N b b bk s bk ko
WWWWWWWWWWNRNRNRNRONRNRONNNNNNRNOMNNNRONNNE S EWWE SWWONNNRNN
E R F P P R E P P E P E PP PFEEFFLUWWWWWWWWWWWINVLINMAM MO I RGN NN

(5,T)=

-
"

-

-
VONNNOARINVO VN IITNANVNNNDIOVVOEPARANANNMNRTARAIODRDD®ID® AN N

--=-37

----33

----29

----25

----21

—een17

a3

-9

-5

--es 1

2=

1M 12
10 12
1 11
e 12
9 N
9 10
10 12
9 1C
10 1
9

9

9

9

9

S

6

8 1z
1¢

12

8

S

12

E

1 17
¢ 16
12 1
12 12
6 23
7 22
10 18
11 18
7z
9 19
117
s 18
0 17
10 18
11 14
1113
6 22
10 18
9 18
10 M
10 1
6 21
9 18
ic 17
9 17
10 13

SCOPE
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E)

1) e 38
RS 34
1) —mmeee 30
1) =me-e- 26
1) mmme-- 22
1) =meme- 18
1) wemee- 1
1) =mmeme 10
1) =-m--- 6
1) mmmee- 2

BETA= 1

1-1-1) =-=--m 31
1=1=1) —-m-me 27
1=1=1) —em-n- 23
1=1=1) ==mma- 19
1-1=1) =wmea- 15
1-1=1) =-memn 11
1=1=1) ==mam- 7

{121-1) ~==cnue 3

OF THE CALCULATION FOR DAUGHTER

2 1= 0

STATES

(STE)

1=1) =mmme- 40

------ 36
1-1) —mmmem 32
1=1) —emem- 28

LEEET IS T T
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0.0 1 2 3 4 13 22
0.0 1 2 k) @ 1w N
0.0 1 2 3 & 17 18
0.0 1 2 3 8 5 3
0.0 1 2 3 4 6 33
0.0 1 2 3 & 9 30
0.0 1 2 3 & 10 29

LANDA=12 HNU= 0 ALPA= 2 P2= 0 P3=0 BETA= 1 S=2 T=0
2

~0.808268~01 " 1
«0.204112-01 10 12
0.204132-01 10 N
0.204102-01 9 12
-0.208112-01 9 11
-0.808252-01 9 10
0.61237E-01 0 12
0.612378-01 9 10
~0.612362-01 0 1"
~0.612378-01 g 10
=0,612378-01 9 12
-0.612378-01 9 10
0,612378-01 9 N
0.612378-01 9 10
=0.122488+00 $ 10
=0.235718-01 6 2u
0. 168998+00 8 22
0.166688-01 10 20
~0, 1166 78+00 12 18
0. 164998+00 8 21
0. 166698-01 g 20
0, 116678+00 12 17
0, 1166 78400 9 18
=0.116678+00 10 17
=-0,235718-01 10 16
0. 160992400
=0, 164992400 1 12 13
0.235718-01 6 23
=0, 164992+00 7 22
«0.166682-01 10 19
0. 116678400 11 18

0. 164992+00
0. 16668E-01
~0.116678+00

=0. 116672400 g 18
0.116678+00 10 17
0.235708-01 10 15

~0.164992+00 11 1

-
EBEEEPEE g INNORAINVNOVD T AR ARPANANNO GV ORRRARARARSRADASRDADONOINN
-
~
-
3

0. 164998400
0. 181422400
=0.999992-01
0. 100008+00
0.11884E~06
0. 131422+00
=0. 181828+00

b b ke ed mh o 1) RO RIRI RND b ah b bk b b h b b b ok b b b b b of b b o D h h d b od h A LN NI R b b B b D e b b b
DNRNNUNN GWWWWWLWWRWNRNNNNRNURNNNUVOONRONNNRNONNONEE R WL R S WWwONONRON N

Pi1=
s
S
s
6
6
7
£
[
]
]
H
5
]
5
$
3
k]
3
3
3
3
3
3
3
3
3
3
8
4
4
4
L]
L]
4
[
4
4
4
4
[
4
4
[]
4
4
4
4
4
4
3
3
3
3
3
3
3

-0.229348-06 9 18
0.100008+00 1 17
-0.10000E+00 9 1
=0, 141428+00 10 13
0. 408258400 13 22
-0.408252+00 1w 21
=0, 408258+00 17 18
0.0 5 34
0.0 6 33
0.0 9 30
0.0 10 29

$9%ssusass SCOP? OF THE CALCULATION FOR PARENT STATES #esassssss

FOR (PS= 0 PT= O PE= 0) AND {§,T)= ( C 0)
108 2

FOR (PS= 2 PT= 2 PE= C) AN (8,T)s (2 2) (20) (¢ 2)
118 2)

POR (PS= & PT= Q PE= 0) ANL (S,T)= (4 %) (22) (C & (00
182

LAMDA= 8 MO= 2 ALFA= 1 P1= 90 P2=( P3= % BETA= 1 S=0 T= A
~0, 17408E+00 1 2 ? e
0,174082+00 1 3 6 8
=0, 1740828+00 1 4 6 7
=0, 174088+¢00 2 3 5 8
9. 17408E+00 2 4 5 7
=0.174082+00 3 4 S 6
0.452278+00 1 2 3 16
~0.45227E+00 1 2 4 15
0. 45227E+0C 1 3 4 14
~0.45227p+00 2 3 4 13
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LAMDA= B8 MU= 2 ALFA= 1 P1= 2 P2= 2 P3=0 BETA= 1 5= 2 T= 2
0.44721E+00 1 2 5 7
-0, 464721E+00 1 3 ] €
C. 7TU6CE+00 1 2 3 13
LAMDA= 8 MU= 2 ALFA= 1 P1= 2z P2= 2 P3= 06 BETA=1 5= 2 T=20
0, 31623E+0C 1 2 6 7
-0, 31623E+00 1 2 S 8
-0.316238+400 2 3 S 6
G. 31623E+00 1 4 s €
~0.54772E+00 1 2 4 13
0.56772E+00 1 2 3 14
LAMDA= 8 M0= 2 ALFA= 1 B1= 2 P2= : P3=0 BETA=1 5=0 T=2
-0, 316238400 2 3 S 7
=0.31623E+00 1 4 5 7
0.31623E+00 1 3 6 7
C.31623E+00 1 3 5 8
0.54772E+00 1 3 4 13
0.54772E+0C 1 2 3 15

w
n
=
=]
[
o

LAMDA= 8 MU= 2 ALPA= 1 Pt= 4 P2=( P3={ BETAS
0.10C00F+N 1 1 2 S 3

LAMDA= 8 MU= 2 ALFaA= 1 Pt= 4 PpP2=C P3= 9 BETA= 1 S= 2 7T= 2

€.70711E400 1t 3 5 6

€.70711E400 1 2 5 7

LAMDA= 8 MU= 2 ALFA= 1 P1= 4 Pp2=( ©P3= 0 BETA= 1 S= & T= U

6.10000%401 1 3 5 7

LAMDA= 8 MU= 2 BALFA= 1 P1= 4 P2= ( P3= 0 BETA= 1 s=0 TI=0

-0.40B25E450 3 4 5 6

-0,40825B40¢ 1 3 6 8

-0.40825B40C 2 4 5 7

~0.u0825E40C 1 2 7 8

0.408258400 2 '3 6 7

0.0 148 6 7

0.0 2 3 5 8

C.u0825840¢ 1 4 £ €

< N (LA MU) ALPA ( PS FT FE ) BETKA S T ITI (LA M) S T PO ILII N-& (LA MU) ALFA ( PS PT PB ) BETA S T > = CFP ( CPPs»2

< 6 (12 00 1 ( 2 0 C) 1 ZCIII (6 0 201 III 4 (8 2 1 ( 0 0 0) 1 060>= 1,0956 (1.20003)
< 6 {12 6) 1 ( 2 6 C) 1 ZzZOTIITI (6 0 2351 IIT G4 (8 2) 1 ( 2 2 0) 1 2¢>=-0.36182 (0.13391)
< 6 (12 0) 1 ( 2 € €) 1 2CIIT (€ 0 231 III & (8 2) 1 ( & 06 0) 1 4 0>= 0.73855 ( 2.54545)
< 6 (12 0) 1 ( 2 € €) 1 G IIT (6 d) 201 IIT & (8 2) 1 ( 4 & 0) 1 00 >=-0.23355 ( 0.05455)
< 6 {12 &) 1 (2 € €) 1 ZCIII (6 0 €21 III & (8 2y 1 ( 2 2 3) 1 22>= 0,84313 ( 0.19636)
< 6 (12 0) 1 ( 2 9 €C) 1 ZCIITI (6 0 N21 IIT & (8 2) 1 ( & N 0) 1 22>=-0,70065 (0.49091)
< 612 ¢ t (2 ¢€ €C) 1 2€1IIT(2 2 2&1 IIT & (8 2) 1 ( O 0 0) 1 00>=-0.60554 { 0.36668)
< 6412 €) 1 (2 € C) 1 ZOIIT (2 2 261 IIT & (8 2) 1 ( 2 2 05) 1 20>=-0.20000 ( 0.04000)
< 6 (12 0) 1 ¢ 2 € €) 1 ZOIII (2 2y 21 III & (8 2) 1 ( & 0 0) 1 &0 >= 0.81649 ( 0.66666)
< 6 (12 8 1 ( 2 € C) 1 ZC€IIT (2 2 201 IIT 4 (8 2) 1 ( 4 0 0) 1 00 >=-0.25820 ( 0.06667)
< 6 (12 0) 1 (2 0 C) 1 207IIT (2 2) 021 III & (8 2 1 ( 2 2 0) 1 225>= 0.20495 ( 0.06000)
< 6(12 0) 1 ( 2 € €) 1 I CIII (2 2 021 III 4 (8 2 1 ( & 0 06) 1 22>-=-0,77459 ( 0.59999)
< 612 % 2 (206 C) 1 ZOIIT{(6 0 201 IIT & (8 2) 1 ( 0 0 0) 1 00 >=-0.25820 (0.06667)
< 6 (12 ¢) 2 ( 2 6 €) 1 Z0IIT (6 0) 201 III & (8 20 1 ( 2 2 0) 1 20 >=-0.25585 ( 0.06546)
< 6(12 € 2 ( 2 0 0) 1 ZOIII (6 J) 251 III 4 (8 2 1 ( & 0 0) 1 40 >=-0.17408 ( 0.03631)
< 6(12 0) 2 ( 2 € C) 1 ZOIIXI (6 O 201 III 4« (8 2 1 ( & 0 0) 1 00 >= 0,0555 (0.00303)
< 612 €) 2 (2 ¢ C) 1 20III (6 0 621 IIIT 4 (8 2) 1+ ( 2 2 0) 1 22>= 0.3133¢ { 0.09818)
< 612 00 2 (2 ¢ €) 1 ZCIII (6 0 021 III 4 (8 2) 1 ( & 0 0) 1 22>= 0,16515 ( 0.02727)
<€ 612 8) 2 (2 0 €) 1 ZOIII (2 2 201 III &« (8 2 1 ( 0 0 0) 1 00 >=-0.70065 ( 0.49¢37)
< 6 (12 0 2 ( 2 0 €C) 1 207III (2 2 291 III & (8 2) 1 ( 2 2 0) 1 20>=-0.84853 ( 0.72000)
< 612 0) 2 ( 2 6 G) 1 207IIT (2 2) 021 IIT 4 (8 2 1 ( 2 2 0) 1 22>= 1.03923 ( 1.08000)
EXECUTION TERMINATED $13.53 7T=19.359



