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Ah&act-Nonlinear constitutive equations for saturated sands are proposed. They exhibit the interaction 
of dilatation and shear stress observed in sands in its small strain range. The equations are based on a 
continuum theory derived from a Newtonian approach to a mixture of a nonlinear solid and compressible 
fluid. The determination of the constitutive parameters from common soil mechanics experiments is 
discussed and illustrated by qualitatively valid numerical results. 

I. INTRODUCTION 

THE BEHAVIOR of saturated sands when subjected to shear in the small strain range is a 
fundamental problem in analytical soil mechanics. The observed phenomenon is a change in 
fluid pore pressure and effective solid stresses when the confining overburden is kept 
constant [ l-51. The mechanism suggested to explain this phenomenon is the inherently nonlinear 
material behavior of dry sand. Even in the small strain range dry sand exhibits dilatational 
change when subjected to pure shear stress[l,5]. When the sand is saturated, the low 
compressibility of the water prevents the dilatation with consequent changes in the pore 
pressure and effective stress. 

The purpose of this paper is to obtain constitutive equations for saturated sands which 
exhibit this observed behavior. Continuum mixture theory provides a theoretical framework for 
determining the form of these equations. In the next section a Newtonian approach is used to 
derive the field equations of a two constituent mixture in a form appropriate for the present 
application, The associated constitutive equations are derived in Section 3. For physical 
applications it is necessary, of course, to have numerical values for the constitutive parameters. 
For generalized continua their experimental determination is often a complex task. In the 
present application there are a number of standard tests that are commonly employed in 
experimental Soil Mechanics. In Section 4 these tests are interpreted in the context of 
the proposed theory providing a basis for the determination of the constitutive parameters. 
Finally, numerical results based on qualitative data in the literature are given in Section 5. 

2. THE FIELD EQUATION OF THE MIXTURE 

A formulation of mixture theory has been derived by Green and Naghdi[6, 71. Various 
aspects and applications of the theory have been discussed by Green and Naghdi [B], Green and 
Steel[9] and Steel[lO, 111. A linear theory of fluid-solid mixtures has been discussed by 
Schneider[l2]. Garg et a1.[13, i4] have used various forms of mixture theory to examine wave 
propagation in fluid saturated porous media. Here we are concerned with the application of 
mixture theory to model the behavior of saturated sands. Anticipating future generalization to 
include soil plasticity, the field equations are established from a Newtonian approach for a 
mixture of a nonlinear solid and compressible fluid.. For simplicity attention is restricted to 
chemically inert materials and to the case of zero heat flux through the boundaries. The 
kinematic formulation follows Green and Naghdi[7] and is briefly summarized here. Coor- 
dinates in the undeformed reference configuration of the mixture are Xi for the solid consti- 
tuent and Yi for the fluid constituent. Spatial coordinates in the deformed body are xi and y; for 
the solid and fluid constituents respectively. It is assumed that each point in the mixture is 

simultaneously occupied by both constituents. Thus in an Eulerian representation xi and yi are 
equivalent and may be used interchangeably as the independent spatial variable. 

Denoting the solid and fluid particle velocities by Ui and Vi, respectively, the kinematic 
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variables of interest in the sequel are the rate of deformation and rotation tensors for the solid 
and fluid constituents. They are respectively 

Aij =f(z-2). 

(2) 

(3) 

(4) 

It is necessary to introduce stress quantities prior to obtaining the equations of motion. When 
regarding an element of the mixture, the common definition of stress is used leading to the well 
known symmetry of the total stress tensor. We view the surface tractions per unit area of a 
surface enclosing an arbitrary volume of the mixture as composed of tractions acting on the 
solid constituent ti and tractions acting on the fluid constituent pi. Considering the translational 
motion of an infinitesimal tetrahedron gives 

ti + pi = SijtIj (3 

where nj is the j component of the normal to the surface on which ti and pi are defined, Sij is the 
symmetric total stress tensor and the summation convention holds. Partial stress tensors are 
now introduced through the relations 

tj = (Uij + aij)tIi (6) 

Pj '(Fj +Pij)ni (7) 

where oij is the symmetric part and ai] the antisymmetric part of the solid partial stress tensor. 
Likewise nij and p/j denote the symmetric and antisymmetric part of the fluid partial stress. 
Equations (5) and (6) imply 

Clij + flij = 0 (8) 

tj + pj = (Uij + T;j)fl;. 

The motion of a material element of the total mixture is governed by Newton’s second law of 
motion. It is 

1 (t,+pj)dA,+] 
A0 “0 

(p,F,+p2Gj)dVn=$f”O(plUI+p:uj)dVo (9) 

where Fj and Gj are body forces per unit mass of the solid and fluid, respectively, A0 is the 
surface enclosing the arbitrary volume element of the mixture VO, and p,, pz are the mass 
densities of the solid and fluid constituents. 

Through (8) and the divergence theorem, eqn (9) for small deformations and chemically inert 
materials reduces to 

(uij++ij),;+pIFj+pzGj=plOj+p?tii (10) 

where a comma denotes a partial space derivative, and a dot denotes a partial time derivative. 
In (10) wj denotes the displacement of the solid constituent, i.e. 

Wj = Xj - Xj. (11) 
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We next consider the motion of the mass of each constituent separately. The solid equation of 
motion is 

(12) 

where @j’ is the additional body force exerted on the solid constituent due to the presence of 
the fluid. The fluid equation of motion is 

(13) 

where @j* is the additional body force exerted on the fluid constituent due to the presence of 
the solid. 

As in (9) above, eqns (12) and (13) reduce to 

(Uij+aij),;+plFj+~j’=p,~j (14) 

For (10) to be compatible with (14) and (IS) it follows that 

cPj’+@f=O. (16) 

Thus the constituent interaction can be represented by a unique body force term 

tJrlj = -q’ = cq. (17) 

With this the equations of motion are 

(U;j+a;j),i+plFj-~j==p,~j (18) 

This form is analogous to Green and Naghdi’s [7] equations of motion, the main difference being 
the way apparent partial stresses and interaction forces are introduced. In [7] the nonsymmetric 
partial stresses are denoted by oij and rij. The diffusive force term wj introduced in [7] 
coincides with @j for chemically inert materials. 

To the equations of motion it is necessary to add the fluid continuity equation since the 
fluid’s constitutive eqns (Section 2) are expressed as functions of the density change. According 
to Green and Naghdi, the continuity equation for small density changes reduces to 

f) + piiU,,i = 0 (20) 

where n is the change of the fluid’s density from its initial value pq to its current value p2. 

3. CONSTITUTIVE RELATIONS 

TO complete the formulation constitutive relations are necessary for oii, rijrii, “ii, pij and @j as 
functions of displacement, change of density and velocity fields. As discussed above, the two 
constituents considered are an elastic nonlinear solid and a compressible viscous fluid. Inter- 
actions are assumed to be of viscous and friction type, i.e. coupling terms in the constitutive 
equations depend (1) upon rates of deformation of the other constituent, (2) upon differences in 
the velocities, and (3) upon differences in the rotation rates. Thus, the assumed form of the 
constitutive equations is 

uij = Aij + Aij,fis (21) 
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Tj = Bij + Bijrs.frs + Cijrdm (22) 

“ij = -fiij = Kleijk(Uk - Uk) + LI(Tij - Aij) + Eijkbk (23) 

@j = Kij(Ui - Vi) + LZEjki(rki - Aki) + Uj/Jki + aj (24) 

where d,,, I’ij, frs and Aij are defined in (l)-(4) and eijk is the permutation tensor. All the 
coefficients are in general functions of the displacement gradient field axi/aXi, the fluid density 
field pi, and initial composition of the mixture. 

The functional dependence of the constitutive coefficients on the displacement and density 
fields is obtained from thermodynamic considerations. According to Green and Naghdi[7], the 
entropy inequality when no heat sources are present reduces to 

05) 

where U is the internal energy, A is the Helmholtz free energy, S is the entropy, all per unit 
mass of the mixture, and T is the absolute temperature field. The material derivative for the 
mixture is defined in [7] as 

D D”’ D’2’ 

P&=PIDt+pzK (26) 

where D”‘/Dt and D”‘/Dt are the material derivatives for the solid and fluid constituents 
resoectively. 

The functional form of U is obtained from the conservation of energy equation 

Through the divergence theorem, eqns (l4), (15) and (7) and the definitions of the rate of 
deformation and rotation tensors, it reduces to 

p g = @i(ui - Vi) + rijdij + Tiifii + aij(rij - Aij). 

The basic assumptiont for a mixture of solid and fluid is 

A = A(eij, PZ, T) (2% 

where 

S = S(eij, Pz, T) (30) 

(31) 

is the strain tensor and 6ij is the Kroneker Delta. 
Substituting (28)-(30) and the constitutive eqns (2l)-(24) into (25) yields 

+ Ui-pl- ( dA a& 
apz aXi 

+P2 $2 (Ui - Vi)+ Kij(Ui - Oi)(Uj - uj) 
P4 1 > 

-I- Qijkbk(rij - Aij) + Ll(rij - &j)(rij - Aij) 

+ (Aij,s + C,ij)dijrs + (Lz + Kl)cjki(Uj - Uj)(rki - Aki) + ajkifki(uj - uj) ?O. 

See, e.g. [9]. 
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At a given state of deformation (eii and p2 specified), the system may have arbitrary rate of 
deformation velocities and values of DT/Dt. The inequality (32) has to hold for all possible 
choices of these fields. It follows that the coefficients of the linear terms must vanish. Thus, 

l?A aA 
ai =P1-p2.i -Pzae,,epq,i 

8P2 

(33) 

(34) 

(35) 

(36) 

b; = 0. (37) 

With this the left hand side of (32) reduces to a quadratic form in the elements of the kinematic 
variables. The elements of dii appear only in the term dij,,y. Consequently, the coefficient of this 
term must vanish giving 

Some additional restrictions on the constitutive parameters could be obtained by further 
analysis of the quadratic form. Here, however, we restrict ourselves to an isotropic mixture. 
Requiring that the form of (21)-(24) be invariant under arbitrary orthogonal transformations 
leads to 

Bijn = A&j&s + /J(Wjs + &s&J (39) 

Lz=K,=O (41) 

Kij = K26ij (42) 

aijk = 0 (43) 

where A, CL, y3, y4 and K2 are constants. With this it is readily verified that the inequality (32) is 
satisfied. 

The above results imply that for an isotropic mixture the antisymmetric part of the partial 
stress tensors depend only on the relative rotation rate (Iii - Aii) whereas @j is independent 
of this quantity. For simplicity in the present application we suppress dependence on the 
rotation rate by choosing L, = 0 with the consequence that the antisymmetric partial stresses 
vanish. 

The Helmholtz free energy function A is equivalent to the strain energy function[9]. The 
choice of its functional form determines uniquely the elastic properties of the mixture. The 
properties of saturated sand are inherently nonlinear. The characteristic feature is dilatation 
under shear. Including cubic terms involving the solid strains eij and fluid density change 77 in 
the free energy A is sufficient to model this nonlinear behavior. Thus we choose 

A = a3emm + aqemmenn + aSq2 + a6emmq + alenmemleln + aSq3 + a9q2enn 

+ alOqemmenn + al rqemnenm + a12emmenneb + a~3emmedeh 

where a3, a4 , . . .a13 are material constants still to be determined. 
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Introducing the above results into the constitutive eqns (21)-(24) yields the general form of 
the nonlinear stress-strain relations. They are 

Uij = (2a4emm +a677 +~~$+2a~0?7e~~ + 3a I?emmenn + a I%@/~ Pi, 

+ 2a@;j + (4X4 + 2a13k;jemm + (2C% + 2a1 Ikij77 

+(h3+ h7)eise.,j + o(e3) + Y3fmm&j + 2')'4.f;,, 

+O(e’))}&j + AfmmSij + 2/Lfij - Y3dmm&, - 2y4& (46) 

aij = -pii = 0 

(45) 

(47) 

mm + a6q) enn.i + O(e3) (48) 

where O(e’) stands for terms of third order or higher in eij and b and p’, p? and pp are the initial 
densities. 

For application to soils we must determine numerical values of the constitutive parameters. 
This is a formidable task for the general form of eqns (45), (46) and (48). Here we reduce the 
number of parameters by requiring the coefficients of assumed negligible terms to vanish. For 
example assuming that the pure fluid is a linear compressible material leads to the choice 

1 
as-p”o5=0. (49) 

In a similar manner the number of parameters necessary to account for solid-fluid interaction is 
reduced to one static and one dynamic coefficient, In the fluid partial stresses we neglect 
nonlinear terms in the solid dilatation and fluid density change (emmen” and e,,,,,,n). The latter 
term is also neglected in the solid partial stresses as is the term eije,,. The latter assumption 
confines the coupling of longitudinal and shear strain with shear stress in the solid to one term 
governed by the parameter (4a3 + 3o,). Consequently, we choose 

(50) 

Finally, for application to soils the fluid considered is water. Moreover, interest is primarily- 
focused on the effect of shear deformation and the fluid partial normal stresses. Thus, for the 
present study we neglect viscosity, i.e. 

A = /.L = y3= y4=0. (51) 

With this the final form of the constitutive equations proposed for a saturated sand is 

Uij = ( 2ff4emm + a67 +%q’+ 2$qe,, + 3a12emmenn - a4em,en, 
2P" > 

Sij 

+ (4~x3 + 3a7)eimemj + 2a3eij (52) 

7Tij = 

[ 

- 2p%571- p4a6emm + PZ o(~+%)Gdh],ii (53) 
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Characteristic features of these equations are illustrated by several simple deformation cases. 
An imposed normal strain produces normal solid stresses and hydrostatic fluid stress but no 
shear stress. Likewise, only normal stresses are produced by compressing the fluid constituent. 
Pure shear deformation, however, generates normal stresses in both constituents in addition to 
shear stresses in the solid. The normal stresses depend upon the square of the shear strain, thus 
being unaffected by the shear direction. 

Finally, the field equations in terms of solid displacements and fluid velocities and density 
change are obtained by substituting (52~(54) into (18)~(20). They are 

+I ( 2@a3-2a4 W 
2 P0 > m.nWm.ni + $4a3 + 3a7)(Wn.mWm.in + Wm.nWm.in 

SW w. n.m r.mn + W,,,Wi,mn + Wn,mnWm.i + Wm.nnWm,i + Wn.mnWi.m + Wm.iv8Wi.m I= O. (53 

6 + p2Ui.i = 0. (57) 

4. ESTABLISHING THE CONSTITUTIVE COEFFICIENTS FROM COMMON SOIL MECHANICS 
EXPERIMENTS 

in the constitutive relations developed for a saturated sand mixture seven constitutive 
parameters are involved. Six of them (oj, ad, ok, ah, a7, a,~) are associated with static 
deformations; the seventh (Kz) is associated with the relative velocities. Of the first group five 
parameters fa3, a4, as, a7, a12) relate to the behavior of the single materials in the absence of 
the other; the other parameter (ag) relates to the static coupling between the two constituents. 

In this section we briefly describe a number of common soil mechanics experiments which 
permit determination of the parameters for the proposed mixture theory. The quantities a3, ad, 
a7 and a12 are obtained from dry sand test rest&s, and a5 is obtained from the compressib~ity of the 
fluid. The parameter a6 is derived by considering the influence of one constituent’s static 
deformations on the partial stresses of both, i.e. drained test results, and K2 is derived from the 
permeability test. The mathematical representation implied by the proposed theory is given below 
for a number of standard tests: 

(a) Hydrostatic compression test of dry sand (pq = 0) 
Under ideal test conditions 

1 
et1 = e22 = e33 = -jeO 

UES Vol. 16. No. 12-B 

(58) 
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where e. is the compressional dilatation. The stresses are 

CT11 = CT22 = CT33 = -po 

where PO is the hydrostatic pressure applied to the specimen. 
Using (52), (58) and (59) it follows that 

(59) 

(b) Confined compression test of dry sand (pq = 0) 

The specimen is restrained from lateral movement. The strain components are given by 

ell = -ei 

eij = 0 for if I or j# 1. (61) 

The applied compressive stress q is related to the stress components by 

UII = -4. (62) 

By (52) the relation of q to el is 

q = 2(03 + a4)el - (3a,? + 4c~) + 3a7 - c~&f (63) 

(c) Undrained confined compression test of saturated sand 

Under quasistatic load conditions the continuity eqn (57) yields by integration 

7) = -p!e,. (64) 

The external pressure q is applied to both constituents simultaneously, i.e. 

UII + 7rll = -4. (65) 

From (58) and (59) this yields 

4 =(2a3+244-2pPa6+2p?a~)el- 3a12+ 4+~ a3 
[ ( pn> 

- 1+24 ar+3a7+pI(l+$)as]ei. 
( > 

(d) Drained confined compression test of saturated sand 

Drained conditions are simulated by the requirement that no partial stresses are generated in 
the fluid, i.e. 

‘rrij = 0 (67) 

From (58) and (60) it follows that 

q = 301?+4a3+3a7-a4 

e:+O(e:) 

(68) 
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(e) ~ri~i~~ shear teft of dry sand @P = 0) 
This is a pure shear test in the sense that the first stress invariant (mmr is kept constant, 

whereas the octahedral shear stress is varied. 
For an initial hydrostatic compression state with initial dilatation of - eo and pressure PO the 

additional strains are Ae,. From (52) and (60) it follows that during loading 

ha4 + 2a3 - teo(4aJ + 3a7 - 3a4 + 27~~12) 
I 

AeRm + 9ffizAeim 

+ (4a3+3a7- 3a4)(Ae:l +Ae&+A&)=O. (69) 

(gf Triaxial compression test of dry sand (~4 = 0) 
This test starts from a hydros~tic compression state with eo and PO as above. Loading is 

then performed along one axis’s0 that 

Aa22 = Aujg = 0 6) 

where Avii are the additional stresses and Acr is the loading stress afong the axis. 
Using (52), (60) and (70) yields 

Au= 6a4 + 2a3 - ieo(4a, + 3~17 - 3~ + 27ad 
I 

de,, 

+9ai2Ae~,+(4a3+3a7-3a4)(Ae:,+2Ae:2), 171) 

Au= 2aj 
c 

- 5eo(4a~ + 3a7) 
I 

(bell - Aez2) + (4a, -t 3aT)(Ae:, - Ae&). (72) 

(h) hydrostatic compression of a pure aced (~9 = 0) 
The hydrostatic stress p causes a fluid dilatation of E. The bulk modulus K, of the pure fluid 

is defined by 

fi p=K,r=K, V (73) w 

where A V,. is the change from the initial fluid volume VW. Here p is defined per unit area of the 
fluid cross-section, whereas the definition of partial stresses used in the present formulation is 
per total area of the mixture. This yields the relation 

~?@I, = 3BP (74) 

where /3 is the porosity factor defined as the ratio of fluid area to total area in a cross-section of 
the mixture. 

Integration of the continuity eqn (57) yields 

.AVw AV, V, _ 
li =-Pz y. -- -PwVw VW v. (75) 

where pNS is the specific mass of the fluid and VO is the initial volume of the mixture. Introducing 
the approximation j3 = V,/VO for an isotropic mixture, it follows from (73) to (74) that 

This implies that the coefficient of 71 in eqn (53) is a constant for all solid fluid mixtures with the 
same fluid constituent. 
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(i) Pe~e~bili~y test of a su?u~a~e~ sand 
Flow of the fluid constituent is generated in one direction relative to the solid. The velocity 

of the fluid UI is related to the head gradient IH by Darcy’s Law. It is 

VI = k&j (77) 

where kD is Darcy’s coefficient. 
Assuming that at the steady state stage the solid strain field is uniform, eqns (19) and (54) 

yield 

Trl,,, - K?V, =o. (78) 

The relation between the partial fluid stress gradient and the total stress in the fluid just outside 
of the mixture is 

q-J.,,., = po-pL -. 
L B 

where PO- Pr is the pressure loss along L. The head gradient for water is 

z -PO--PL 
H -- 

LPd 

where g is the gravity acceleration. From (77) and (80) it follows that 

K, - P,.@ 
kD ’ 

(79) 

(80) 

5. NUMERICAL APPLICATION 

The coefficients a~, KZ have been directly related to commonly known fluid properties. The 
remaining parameters must be determined from the standard soil mechanics experiments 
described above. 

The coefficients obtained from dry sand tests are established in the following manner: 
I. From hydrostatic compression test results (6~ + 2a~) and (27a,~ + 4a3S 3a7 - 3c.x,) are 

obtained by a parabolic least square fit. 
2. With this the parameter au is found from a linear least square fit of (69) for the triaxial 

shear test. 
3. Finally, triaxial compression test results may be used to establish the individu~ values of 

a3 and a7. if test results are available for both axial and lateral strains, this may be done 
directly by fitting (72) to the data. Equation (71) then becomes a check on the validity of the 
established coefficients. If lateral strain data is not available, eqn (71) is used to numerically 
eliminate Ae::. 

The value of o6 is now established by fitting (68) to quasistatic drained confined compression 
test results. We note, however, that the load deformation relations of the dry and drained tests 
differ only in terms that have a6 as a factor. According to Lambe and Whitman [5], drained tests 
provide the same final load deformation relations as dry tests. It is thus concluded that for a 
saturated sand 

To carry out the above procedure requires that each of the postulated experiments be 
conducted on a particular sand at a given void ratio. At the present time such a consistent set of 
data is not readily available for any one sand, For the purpose of illustration here we use the 
above procedure to obtain the constitutive parameters for a hypothetical sand at three different 
void ratios using a qualitatively correct data set based on actual and extrapolated soil data 
reported in Refs.[l, 51. The results are given in Table 1. The resulting load deformation 
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Table I. Numerical data 

Sand type Loose 

Void Ratio (V.R.)t 0.60 0.55 0.485 
Porosity (8) 0.375 0.35 0.33 
Solid Density @P) 1.56x W4 I .62 x IO-’ 1.67x W4 
Fluid Density @‘?) 0.35 x lo-’ 0.33 x lo-’ 0.3 I x w 

K? 7.5 7.0 6.5 
2pFas 3.3 x IO9 3.3 x 109 3.3 x IO’ 

2a4 0.9 x IO’ 1.2x to’ 1.5x IO’ 
a3 2.2 X 10’ 2.6x 10’ 3.2 x Id 
at? -1.5x IO0 -1.8X 106 -2.0x IO” 
a7 2.0x 10” 1.5x 105 3.0x lo” 

Medium Dense Units 

psi sec’/in.’ 
psi sec’/in.’ 
psi sec/ik2 
in.*/sec’ 
psi 
psi 
psi 
psi 

tThe void ratios refer to the values used by Ko[l]. 

LOO 

300 

200 

o-DENSE SAND 
'-MEDIUM SAND 
.-LOOSE SAND 

AG , 
(Psi) 

50 - 

0.2 0.4 0.6 0.8 1.0 e0 (%) 0.2 0.L 0.6 0.8 1.0 AC,,(%) 

Fig. I. Fig. 2. 

Fig. I. Generated data for hydrostatic test of dry sands according to parameters represented in Table I 
(stress vs strain). 

Fig. 2. Generated data for triaxial compression test of dry sands (deviator stress vs axial strain). 

0.10 

0.08 

0.06 

0.04 

0.02 

0.2 0.4 0.6 0.8 1.0 At?,,P/., 

Fig. 3. 

Fig. 3. Generated data for triaxial compression test of dry sands (dilatation vs axial strain). 

AfZmm 
(%) 

0.12 t 
I 

0.10 - / 
0.08 - 

0.0 6 - 

c 
0.2 0.L 0.6 0.8 1.0 Ae,,(%) 

Fii. 4. 

Fig. 4. Generated data for triaxial shear test of dry sands (dilatation vs strain). 

behavior for the various test conditions is shown in Figs. 14 demonstrating the relative effect 
of void ratio on stress-strain behavior. The characteristic behavior illustrated is in accordance 
with typical experimental results [ 1, 51. 
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