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ABSTRACT 
Unsteady heat diffusion in a thick thermal boundary layer over a 
spherical surface in radial motion is studied. The boundary layer 
is divided into two parts, one towards the outer edge of the layer, 
and the other adjacent to the surface. A method of successive ap- 
proximations is employed to obtain the solutions appropriate to these 
regions. An explicit expression for the temperature distribution is 
presented in the zero order when the temperature at infinity and the 
temperature gradient at the spherical surface are specified. The 
convergence of the approximation procedure and the joining of the 
inner and outer solutions are discussed. Results may be applied 
to the problems of bubble growth or collapse in a liquid and droplet 
evaporation and particle sublimation in a hot environment. 

Introduction 

Unsteady transport phenomena in a spherically symmetrical system with a 

boundary in radial motion are commonly observed in nature and in industry. 

Typical examples of such a physical event include the growth and collapse of 

a vapor bubble, evaporation of a droplet, and sublimation of a solid particle. 

Plesset and Zwick [I] have obtained a solution in successive approxi- 

mations for the heat diffusion associated with the dynamics of a vapor bubble 

in a liquid. A crucial assumption states that the thermal boundary layer ad- 

jacent to the spherical boundary is very thin or equivalently the Fourier 

number is small. Their approximate solution has been applied to the growth 
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[2,3] and c o l l a p s e  [4] o f  a s p h e r i c a l  vapor  bubble in  a l i q u i d .  In t he se  

bubble dynamics problems,  the  assumption of  the  t h i n  thermal  boundary l a y e r  

i s  q u i t e  r e a s o n a b l e  s i n c e  not  only the  hea t  c a p a c i t y  i s  much g r e a t e r  in  the  

l i q u i d  s t a t e  than in  the  vapor  s t a t e  but  the  thermal  d i f f u s i v i t y  i s  a l s o  much 

s m a l l e r .  Theory,  t h e r e f o r e ,  ag rees  v e r y  wel l  wi th  exper iments .  

Due to  the r e s t r i c t i o n  of  small  F o u r i e r  numbers, the t h i n  thermal  boundary 

l a y e r  s o l u t i o n  i s  e q u i v a l e n t  to  the  s m a l l - t i m e  s o l u t i o n  which i s  v a l i d  over  

s h o r t  t ime i n t e r v a l s  immedia te ly  f o l l o w i n g  the  i n t r o d u c t i o n  of  a vapor  bubble  

i n t o  a l i q u i d .  In the a sympto t i c  phase a f t e r  c e r t a i n  t ime has e l a p s e d ,  how- 

eve r ,  the asympto t i c  s o l u t i o n  to  the  t empera tu re  f i e l d  can be ob ta ined  by means 

of  a s i m i l a r i t y  t r a n s f o r m a t i o n .  A thermodynamic e q u i l i b r i u m  under the  s a t u r a -  

t i o n  s t a t e  i s  assumed to  p r e v a i l  a t  the  s p h e r i c a l  boundary R(t )  which obeys 

the  square  law, namely R2(t)  v a r i e s  l i n e a r l y  wi th  t ime.  Because o f  s i m p l i c i t y  

in  mathemat ica l  t r e a t m e n t ,  numerous a r t i c l e s  d e a l i n g  with  the  a sympto t i c  be-  

h a v i n r  of  the  t empera tu re  (or c o n c e n t r a t i o n  in  mass d i f f u s i o n )  f i e l d  have been 

pub l i shed ,  f o r  example r e f e r e n c e s  5-7. 

In the  case  of  d r o p l e t  e v a p o r a t i o n  or  s u b l i m a t i o n  of  s o l i d  p a r t i c l e s  in  

a hot  envi ronment ,  the  hea t  c a p a c i t y  i s  much sm a l l e r  in  the  gas phase than in  

the  l i q u i d  or s o l i d  phase whi le  the  thermal  d i f f u s i v i t y  i s  a l s o  much l a r g e r .  

Consequen t ly ,  the  thermal  boundary l a y e r  a d j a c e n t  to  the  moving s p h e r i c a l  

boundary i s  t h i c k e r  than the  d r o p l e t  or p a r t i c l e  r a d i u s .  The t h i n  thermal  

boundary l a y e r  s o l u t i o n  i s  not  v a l i d  any more. 

The p r e s e n t  s tudy dea l s  wi th  the  uns teady  hea t  d i f f u s i o n  in  a t h i c k  t h e r -  

mal boundary l a y e r .  By means of  a method of  s u c c e s s i v e  approx ima t ions ,  the 

approximate  s o l u t i o n s  are  ob ta ined  based on a d i v i s i o n  of the  boundary l aye r  

into two parts. 

Analysis 

Consider the physical situation in which a spherical particle, either a 

liquid droplet or a solid particulate, is suddenly placed in a hot environ- 

ment of an infinite extent at temperature Too. As the radius of the particle 

changes due to phase transformation, heat flows toward the moving spherical 

interface. It is postulated that the gas is inviscid and incompressible, 

and that thermal properties remain constant with temperature. Using spherical 

coordinates with the origin fixed at the center of the particle, the gas 

temperature T satisfies the equation 
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c~T = -'2"r~ ~ ( r 2 0 T  
. . . . . .  

Ot r ~r Or 
with the initial and boundary conditions 

T (O,r) = Too 

T (t,oo) = Too 

LAYI~ WITH S~ERICAL SYMMETRY 

(i) 

(2) 

OT(t,R) 

~ r  (3) 

Here, t denotes the time; O(, thermal diffusivity; r, radial distance from 

the origin; k, thermal conductivity; ~, particle density; A , latent heat 

of evaporation or sublimation; and R, time derivative of R(t). The tempera- 

ture gradient at the spherical boundary in Eq. (3) is specified. 

In dealing with a diffusion problem with moving boundaries, it is ad- 

vantageous to transform Eqs. (1) through (3) from Eulerian to Lagrangian 

coordinates. With Lagrange coordinates of 

x = ( r3-R 3 (t))/3 (4-a) 

77 

t = t (4-b) 

Eq. (1) reduces  to  
OT = ( ~ ( r  48T) 
~t ax a x  

One sets 

so t h a t  

~ u  

= T-Too 
8 x  

(s) 

(6) 

where a(t) is the integration constant. 
__ 8( OU 4 02u 

-C~r ' ) = 0 
Ox 8 t Ox 2 

so that upon an integration with respect to x, one gets 
Ou 02u 

- (~r 4 b(t) 
@t Ox 2 - 

in which b(t) is an arbitrary function of time. 

Eq. (2), we can select the function a(t) so that 

(7) 

Equation (S) can be r e w r i t t e n  as 

(8) 

With the incorporation of 

u(O,x) = 0 (9) 
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and b(t)=O. Equation (8) now becomes 

8u 4 02u 
- O(r - O (i0) 

Ot @x 2 
The boundary conditions (3) can be rewritten as 

8u(t,oo) 
- 0 (11) 

Ox 

82u 
Ox 2 - f(t) (12) 

where 

f ( t )  = -- -'~A~ 1 8T(t ,R) (13) 
k R 2 - R 2 ~ r 

The boundary layer is divided into two parts: one adjacent to the spher- 

ical boundary and the other towards the outer edge of the layer. Then, the 

inner and outer solutions appropriate to these regions are sought. 

For the outer region x >> RS(t),~one can write Eq. (4-a) in the form of 
R ~ 4/3 

4 3x)4/3 r : (  (1 + ) 
3x 

which may be expanded into a series as 

4 4/3 4 R3 
r : ~3x) [ i  * - ( - - )  * . . . .  ] (14-a) 

3 3x 
The series expansion of Eq. (4-a) appropriate to the inner region x<< R3(t) 

is 
4 3x r4 = R4 C I+-~(~'~) + . . . . .  ] ( 1 4 - b )  

As a r o u t i n e  p r o c e d u r e  i n  s u c c e s s i v e  a p p r o x i m a t i o n ,  l e t  

u : u o +Eu I + ..... , T = T O +£T 1 + ........ (15) 

Here, the subscript indicates the order of the approximation in power of the 

perturbation parameter E which has the same order of magnitude as R3/x in 

the outer region or x/R 3 in the inner region. 

A. I n n e r  S o l u t i o n  

I t  i s  c o n v e n i e n t  t o  i n t r o d u c e  i n  Eq. ( i 0 )  a new t i m e  v a r i a b l e  ~ d e f i n e d  

as  
t 

:~ R4(t) dt 06) 0 
With the  s u b s t i t u t i o n  o f  Eqs, ( 1 4 - b ) ,  (15) and (16 ) ,  one f i n d s  t h a t  t he  z e r o -  

order approximation, Uo, is determined by 
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U 0 ~U 0 -(~-~..~ = 0 (i7) 
d 

subject  to the condi t ions  (9) and (12). By taking the Laplace transform on 

the var iab le  ~ , Eqs. (17) and (12) become 

d2Uo (18) 
PUo-ad-- ~ -  = 0 

and 
d2Uo (p, 0 ) 
dx 2 - F(P) (19) 

respectively, where p represents the Laplace variable of ~ and Uo and F are 

the Laplace transformed functions of u ° and f respectively. The general 

solution of Eq. (18) reads 

Uo(P ,X)  = C l ( p ) e x p (  pip~x)+C2(P)exp(-Jp/ (x  x) (20) 

Since a small value oft corresponds to a large value of P, the positive ex- 

ponential term must vanish for the temperature to be finite at small times: 

CI=0. The combination of Eqs. (18), (19) and (20) at x=0 produces 

C2(P) = ( (Y/p)F(p)  
so that  Eq. (20) becomes 

[ /o (P ,X)  = ( C V p ) e x p ( - ~ p - ~ x ) F ( p )  

An inverse Laplace transform on the f i r s t  de r iva t ive  of Eq. 

leads to t x 2 

_~I g(t')exp(- ) 
T°(t'x) - Too = 1/2 4~Ydt' 

wherein 0 Y 

(21) 

(21), dUo/dx , 

(22) 

g ( t ' )  = R2( t  ' ) (c~T/o~r)r=R(t ,  ) 

t 
Y =I R4(y) dy 

t' 
One finds from Eq. (22) the boundary temperature 

(23) 

(24) 

~it g(t' ) 
To(t,0) - Too=- 0 Y I/2dt' 

and the temperature gradient 
x 2 

~To(t,x) H2(t)x i t g(t')exp(-~-~) 

r 2 (2[(~) i/2 y3/2 at 
0 

(2s) 

(26) 
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Upon the transformation of 
X 

-- (27) 
._~Y ) 1 / 2 2 

Eqs. (25) and (26) can be reduced  to  
x O0 (c~T~r) r=R ( 

T°(t ' x)-T°°" - ~1~ JX ~ 3  t' )~,_2exp (_~2)dC (28) 

and 

0T°(t'X)~r =~R2(t ) 2  f :  (OT/@r)r=R(t'R2(t,) )exp(-~2)dC (29) 

respectively, where 
=, X 

2 R4(y)dy 1/2 i/Fol/2 (30) 

The Fourier number F in the inner region is defined as 
t ° 

F o =451 R4(y)dy /x 2 (31) 

0 
It is important to note that the inner solution (22) is identical to the 

thin thermal boundary layer solution of reference 1 in which C 1 is made zero 

through imposing the boundary condition at infinity (ii). In the present 

study, the inner solution is valid only at the spherical boundary and its im- 

mediate vicinity. 

B. Outer Solution 

With the  a i d  o f  Eqs. (14-a)  and (15) ,  the  z e r o - o r d e r  app rox ima t ion  i s  

governed by 
8Uo 

-G(3x) 4/3 @2u 0 (32) 
8t Ox 2° = 

with the boundary conditions (9) and (ii). The Laplace transform on t yields 
d2U o s 
dx 2 - ~(3x)-4/3U O =0 (33) 

and 
dUo(S,OO) 

-- 0 (34) 
dx 

Here, s signifies the Laplace variable of t and Uo(s,x ) corresponds to the 

Laplace transformed function of Uo(t,x). Equation (32) has the general solu- 

tion [8,9] (3S) 

u o (s ,x)=C 3 (s)x112Z~l 2 [(3x) I13 (~) i12} +c4( s )xII2K31z [(3x) i13 (~) tl2J 
wherein I3/2 is known as the modified Bessel function of the first kind, of 
o r d e r  3/2 and KS/2 o f  the  second k ind .  The boundary c o n d i t i o n  ($4) r e q u i r e s  
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that C3(s ) must vanish. One then has 

U (s ,x)  = C4(s)xlI2K312 {(3x)I/3(S/CX) 1/2] (36) 
o 

Now, C 4 is to be determined by the joining of the inner and outer solu- 

tions at the junctions of these regions: x = +0. There, the inner solution 

(21) can be rewritten in the Laplace domain of s as 

Uo(S,+O) = O ( Y ( s ) / s  (37) 

where 
Y(s) = LCf(t)~4(t)] 

On equating (37) to the outer solut ion (36) at  the junct ion,  one gets [10] 

C 4 ( s ) = (6/zr) 1/2 (a'/s) 1/4y (s) 

Equation (36) can now be written as 

U o ( s, x )= (61~) I12x112 (Ols) i14y( s )K312_ [( 3x ) 113 (sis) 112] (38) 

so tha t  
dU o _ Y(s) 

_ i/~exp [_ (3x) i/3 (s/(X) i/2j F 1 (39) 
dx (3x) "~ 

An inverse Laplace transform on Eq. (59) followed by the substitution of Eq. 

(13) gives 

1 t g(t') (3x)  2/3" 

T°(t'x)-T°°=-2--~IO (t-t')3/2exp[ 40~t-t') Jdt' (40) 

Upon performing the transformation of 
3x) I/3 

~" = 2[O((t_~,)}1/2 (41) 
Eq. (40) reduces to 

2 1 oo 2 (3x) 2/3" 

To(t'x):-']~-L (3X) l /3IzeXp(-~'  ) g [ t -  4C'X(~ 2 ]de *To< ) (42) 

in which 

(3x)  1 /3  1 /2  (43) 
Z- - I/F o 

2 (st) i /2 
The Fourier number in the outer region is defined as 

F = @O(t/(3x) 2/3 (44) 
o 

The temperature gradient can be found from Eq. (42) to_h~ 
4 1 oo (3x)Z/3 ~To(t,x) 

~r 9[(3x)213J ~'2e×p(-C2)g[t- 4.~ 2 ]dC (45) 
Z 
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At l a rge  va lues  of Fo, 

approach t .  Equat ions  (42) and (45) can then be s i m p l i f i e d  as 
g ( t )  

To(t,x) - Too= -(3x)~ 

and 
dTo(t,x) g(t) 

r (3x) 2/3 

respectively. 

Z approaches zero and the variable of the g function 

(46) 

(47) 

I f  the cu rva tu r e  of the boundary r=R(t )  i s  n e g l e c t e d ,  the use of Lagrange 

c o o r d i n a t e s  

x = r - ~(t), t : t (48) 

leads to the plane approximation 

i T°(g'x)-T°°=-(g (t-t)i/2[x+R(t' )] 4(X(t-t' 

The solution is valid for the entire boundary layer. 

Results and Discussion 

For estimating the behavior of the convergence of the approximation theory, 

it is necessary to examine the first-order correction to the solution. The 

first-order correction u I is determined by 

1 8u I ~2u I 4x 8u ° (50-a) 

CX ~ t Ox 2 - R 3 Ox 2 
in the inner region and 

1 c)Ul <92ui 4R 3 ~u o 
- (SO-b) 

~(3x)4/3~ Ox 2 9x ox ~ 
in the outer region. The initial and boundary conditions are 

(%ul(t, oo) 82ui (t,O) 
ul(O,x) - : - 0 (51) 

@x @x 2 
Following the procedure taken in the zero-order approximation, the first- 

order temperature correction in the inner region can be determined by solving 

Eq. (50-a) and the first and third expressions of Eq. (51) together with the 

requirement for finite u I at small times. The solution is identical with that 

obtained by the thin thermal boundary layer approximation [I]. It gives the 

first-order temperature correction at the boundary r=R(t) bound by 

~i~f(~,)dC,Z_ T 1 ~(X ,~ ( ~ '  0 ) ~ I 3 ) f ( L '  )di[' (52) 
3R o 0 

where Ro=R(0 ) . The requirements for rapid convergence of the approximation 

solution as indicated by the bounds (52) are satisfied for the particular 

problem of the growth or collapse of a spherical vapor bubble in a liquid [1-4]. 
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Since  the  l i f e t i m e  of  an e v a p o r a t i n g  d r o p l e t  [11] or  a sub l ima t ing  p a r t i c l e  

in  a hot  environment  i s  about  the same order  o f  magnitude as t h a t  of  a vapor  

bubble  c o l l a p s i n g  in  a subcooled l i q u i d  [2 ,4 ] ,  the z e r o - o r d e r  approximat ion  

as g iven  by Eqs. (22) and (25) a re  s u f f i c i e n t .  This c o n c l u s i o n  i s  b e l i e v e d  to 

hold a l s o  f o r  the  ou t e r  s o l u t i o n  (40) or  (42) as i t  has been d e r i v e d  through 

matching wi th  the inne r  s o l u t i o n .  

One example i s  g iven  below to  demons t ra te  the j o i n i n g  o f  the inne r  and 

o u t e r  s o l u t i o n s :  The boundary R and i t s  r a d i a l  v e l o c i t y  R must be known so 

t h a t  the  boundary c o n d i t i o n  (3) i s  s p e c i f i e d .  So, l e t  the t ime h i s t o r y  o f  the  

boundary be 

R = at n so that ~ = ant n-I (53) 

where both a and n are constant, a is dependent upon physical properties. 

Equation (25) and (46) for high F o are then reduced to 

T~t. O)_To~) j a.(t.)n E/~ 1/2 
=- { (sin x) dx (54) 

T s - Too ~ 2 J 
and O 

T~t*,x*)-Too nJ(a*)3(t*)3 n-I 
= - ( s s )  

T s - Toe x* 
respectively, where T s denotes the saturation temperature and 

2n-i 
j= ~ )~ aRo__q__ - C~ t 

n 2 PCp~T ;&T=Ts-T°° ; a*= ; t*= (56) 
R o 

An examination of Eqs. (54) and (55) has disclosed that the value of n is not 

arbitrary but subject to some physical constraints. In case of bubble growth 

for example, a faster temperature change in the inner region than in the 

outer region requires that the exponent of t* in Eq. (54) be greater or equal 

to that of t* in Eq. (55). The upper bound of n is thus found to be n ~ I/2. 

On the other hand, the exponent of t* in Eq. (55) must be greater than zero 

for To(t,x ) in the outer region to be a monotonic increasing function of time. 

It yields the lower bound as n > i/3. Thus, one gets 

1/2 ~ n > i / 3  (57) 

The n range is in good agreement with the square law (the square of bubble, 

droplet or particle diameter varies linearly with time) observed in the asymp- 

totic stage of bubble growth [2,3,5-7] or droplet evaporation [ii, with nega- 

tive a] which gives n = 1/2. 
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The r a t i o  o f  t h e  i n n e r  t o  o u t e r  s o l u t i o n s  i s  o b t a i n e d  f rom Eqs.  (54)  and  

(55) as 

T~t*,O)-Too 2ng(a*)2(t*)l-2nx * 

T~t*,x*)-Too=~ ~/2 (sin x)i/2dx (58) 
~0 

A smooth joining of the outer solution to the inner solution represented by the 

surface temperature is warranted. 

Conclusions 

A method of successive approximations is employed to solve the problem 

of unsteady heat diffusion in a thick thermal boundary layer over a spherical 

boundary in radial motion. The approximate solutions are obtained based on a 

division of the boundary layer into the inner and outer regions. The zero- 

order approximation is sufficient to represent the temperature field. A 

smooth joining of the inner and outer solutions is warranted. The Fourier 

numbers appropriate to the regions are defined. The approximate solutions 

are valid in all ranges of the Fourier numbers. The boundary temperature is 

identical with that obtained by the thin thermal boundary layer approximation. 
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