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ABSTRACT
Unsteady heat diffusion in a thick thermal boundary layer over a
spherical surface in radial motion is studied. The boundary layer
is divided into two parts, one towards the outer edge of the layer,
and the other adjacent to the surface. A method of successive ap-
proximations is employed to obtain the solutions appropriate to these
regions. An explicit expression for the temperature distribution is
presented in the zero order when the temperature at infinity and the
temperature gradient at the spherical surface are specified. The
convergence of the approximation procedure and the joining of the
inner and outer solutions are discussed. Results may be applied
to the problems of bubble growth or collapse in a liquid and droplet
evaporation and particle sublimation in a hot environment.

Introduction

Unsteady transport phenomena in a spherically symmetrical system with a
boundary in radial motion are commonly observed in nature and in industry.
Typical examples of such a physical event include the growth and collapse of

a vapor bubble, evaporation of a droplet, and sublimation of a solid particle.

Plesset and Zwick [1] have obtained a solution in successive approxi-
mations for the heat diffusion associated with the dynamics of a vapor bubble
in a liquid. A crucial assumption states that the thermal boundary layer ad-
jacent to the spherical boundary is very thin or equivalently the Fourier

number is small. Their approximate solution has been applied to the growth
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[2,3] and collapse [4] of a spherical vapor bubble in a liquid. In these
bubble dynamics problems, the assumption of the thin thermal boundary layer
is quite reasonable since not only the heat capacity is much greater in the
liquid state than in the vapor state but the thermal diffusivity is also much

smaller. Theory, therefore, agrees very well with experiments.

Due to the restriction of small Fourier numbers, the thin thermal boundary
layer solution is equivalent to the small-time solutionm which is valid over
short time intervals immediately following the introduction of a vapor bubble
into a liquid. In the asymptotic phase after certain time has elapsed, how-
ever, the asymptotic solution to the temperature field can be obtained by means
of a similarity transformation. A thermodynamic equilibrium under the satura-
tion state is assumed to prevail at the spherical boundary R(t) which obeys
the square law, namely R2(t) varies linearly with time. Because of simplicity
in mathematical treatment, numerous articles dealing with the asymptotic be-
havior of the temperature (or concentration in mass diffusion) field have been

published, for example references 5-7.

In the case of droplet evaporation or sublimation of solid particles in
a hot environment, the heat capacity is much smaller in the gas phase than in
the liquid or solid phase while the thermal diffusivity is also much larger.
Consequently, the thermal boundary layer adjacent to the moving spherical
boundary is thicker than the droplet or particle radius. The thin thermal

boundary layer solution is not valid any more.

The present study deals with the unsteady heat diffusion in a thick ther-
mal boundary layer. By means of a method of successive approximations, the
approximate solutions are obtained based on a division of the boundary layer

into two parts.
Analysis

Consider the physical situation in which a spherical particle, either a
liquid droplet or a solid particulate, is suddenly placed in a hot environ-
ment of an infinite extent at temperature To, . As the radius of the particle
changes due to phase transformation, heat flows toward the moving spherical
interface. It is postulated that the gas is inviscid and incompressible,
and that thermal properties remain constant with temperature. Using spherical
coordinates with the origin fixed at the center of the particle, the gas

temperature T satisfies the equation
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with the initial and boundary conditions
T (0,r) = Too 2
) oT(t,R) PAR/
T (t,o0) =T ; Z—= k
00 ’ {4

ar (3)

Here, t denotes the time; ¢, thermal diffusivity; r, radial distance from
the origin; k, thermal conductivity; j), particle density; A , latent heat
of evaporation or sublimation; and h, time derivative of R(t). The tempera-

ture gradient at the spherical boundary in Eq. (3) is specified.

In dealing with a diffusion problem with moving boundaries, it is ad-
vantageous to transform Eqs. (1) through (3) from Eulerian to Lagrangian

coordinates. With Lagrange coordinates of

x = (r-B2(£))/3 (4-a)
t =t (4-b)
Eq. (1) reduces to
T 3 yoT .
— =0—(r —) (5)
ot Ix gx
One sets
au
L (6)
ax
so that
X
u =fo (T-T,,) ax + a(t) (7)
where a(t) is the integration constant. Equation (5) can be rewritten as
3 OSu 462u
—(— -Or > ) =0
ax 9t dx
so that upon an integration with respect to x, one gets
ou y azu
— -0r —5 = b(t) ®)
ot ax

in which b(t) is an arbitrary function of time. With the incorporation of

Eq. (2), we can select the function a(t) so that

U(O,X) =0 )
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and b(t)=0. Equation (8) now becomes

2
Ju 3~u
S, e (10)
ot x2
The boundary conditions (3) can be rewritten as
du(t,o00)
—=0 (11)
ox
2
u
Q—E = f(t) (12)
ox
where
AR 1 aT(t,R)
£(t) =ﬁL——-=-—§ = (13)

k R R° or
The boundary layer is divided into two parts: one adjacent to the spher-

ical boundary and the other towards the outer edge of the layer. Then, the

inner and outer solutions appropriate to these regions are sought.

For the outer region x >> R3(t), one can write Eq. (4-a) in the form of

i R’ 4/3
e 0 (1 —
X
which may be expanded into a serieg as
4 4/3 4 r3
ro= 31 [14—() teees ) (14-a)
3 3x
The series expansion of Eq. (4-a) appropriate to the inner region x<< R3(1)
is
4 3x
r‘*=RL’(1+——§) terend) (14-b)
3R

As a routine procedure in successive approximation, let
u=uo +€u1 teeoes ’ TtTO +€T1 +eeeecces (15)

Here, the subscript indicates the order of the approximation in power of the
perturbation parameter € which has the same order of magnitude as R3/x in

the outer region or x/R3 in the inner region.

A. Inner Solution

It is convenient to introduce in Eq. (10) a new time variable T defined

as

E o
T=fo R'(t) at . a6

With the substitution of Eqs. (14-b), (15) and (16), one finds that the zero-

order approximation, Uy is determined by
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subject to the conditions (9) and (12). By taking the Laplace transform on
the variable 7, Eqs. (17) and (12) become

25
_ 4a<u
o0 —x 2o =0 (18)
d 9 dx
an dZUO(p,O) _( )
—_ = F P
ax2 (19)

respectively, where p represents the Laplace variable of T and ﬁo and F are
the Laplace transformed functions of u, and f respectively. The general

solution of Eq. (18) reads

Up(p,x) = Cl(p)eXp(ﬁxHCz(p)eXP(-ﬁJ& x) (20)
Since a small value of T corresponds to a large value of P, the positive ex-
ponential term must vanish for the temperature to be finite at small times:
C1=0. The combination of Eqs. (18), (19) and (20) at x=0 produces

C,(p) = (@/p)F(p)
so that Eq. (20) becomes

U, (p,x) = (p)exp(-[p/ex) Fip) (21)

An inverse Laplace transform on the first derivative of Eq. (21), dUo/dx,

leads to 2
t b d
o ( 8(t')exp(~—)
T,(t,x) = T, = -j—ﬁ: 173 40X gt (22)
wherein Y
1) = Re(+1 (23)
g(t') = B%(t )(eT/ar)r=R(t,)
t
Y = R*(y) ay (24)
tl
One finds from Eq. (22) the boundary temperature
t glt")
- =~ [ = (25)
To(£,0) - T Trgo mvld
and the temperature gradient 2
2 t X
9T, (t,x) R (t):lc/zg g(t')exp(-lwlx)dt' (26)
dr 2 (7o) y3/2
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Upon the transformation of

X
§ = (27)
2(0v) /2
Eqs. (25) and (26) can be reduced to
x OO (STEr) it
T(t,x)-T =~ r=R(t')e-2eyp(-£2)a
o 00 7I1/2[ R2(0") $ §7)dS (28)
and
9T (t,x) 2 20 (@1/or)
o == R r=R(t') AT
== R“(t) exp(-§)d (29)
ar T fx R (t") PR
respectively, where
X
- = 1/2 (30)
X 2[0((8 Rl*(y)dyll/2 L/F,
The Fourier number Fo in the inner region is defined as
L
Fo =bof R (y)ay /x2 (31)

0
It is important to note that the inner solution (22) is identical to the

thin thermal boundary layer solution of reference 1 in which C1 is made zero
through imposing the boundary condition at infinity (11). In the present
study, the inner solution is valid only at the spherical boundary and its im-

mediate vicinity.

B. Outer Solution

With the aid of Eqs. (14-a) and (15), the zero-order approximation is

governed by

3 4
2 ~a(3x) /3 Q—;o =0 (32)
X
with the boundary conditions (9) and (11). The Laplace transform on t yields
a“u_ s )
2. —(3x)"*/ 3y, =0 (33)
dx O
and
au,(s,00)
—_— =0 (34)
ax

Here, s signifies the Laplace variable of t and Uy(s,x) corresponds to the
Laplace transformed function of ug(t,x). Equation (32) has the general solu-

tion [8,9] (35)

1/2 1 1/2
UO(S ,X)=CB(S)X1/2I3/2 [(3)()1/3(%')1/2] +C4(S)X / K3/2 [(BX) /3(%) / ]
wherein Iz/2 is known as the modified Bessel function of the first kind, of

order 3/2 and K3/7 of the second kind. The boundary condition (34) requires
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that C3(s) must vanish. One then has

U (s,x) = Cu(s)xl/ZKB/z[(3x)1/3(SA1)1/2J (36)

Now, C4 is to be determined by the joining of the inner and outer solu-
tions at the junctions of these regions: x = +0. There, the inner solution

(21) can be rewritten in the Laplace domain of s as
Uy(s,+0) =x¥(s)/s (37)
where

Y(s) = L[f‘(t)Bu(t)]

On equating (37) to the outer solution (36) at the junction, one gets [10]
o (s) = (6/m) 2 (0ys)t %y (s)

Equation (36) can now be written as

Uy (s,x)=(6/0 1222 2 (o) *y(s)k, ,, ((3x) Y/ 3 (s o) }/?) B

3/2
so thath ‘(s)
]
_o _ 1/3 1/2
= - ——73exp (- (30)1/3(s/00) /2] (39)
ax (3x)1/3 C
An inverse Laplace transform on Eq. (39) followed by the substitution of Eq.
(13) gives
s 1 St g(t") ( (3x)2/3J .
x)=T _ =- exp |- ————|dt (40)
O oo (61032 Ugixpat)
Upon performing the transformation of
. 3x)1/3
= — 73 (41)
2AX(t-t"))
Eq. (40) reduces to
2 1 oo 2 - (3x)
T, (t, X)'jr )1/3f exp(-§ )g (t- ]d( +Tog (42)
in which n
o2 1/2 )
T 2@p)/2 HFo
The Fourier number in the outer region is defined as
Fo = Wt/ (3x) 2/3 (44)
The temperature gradient can be found from Eq. (42) toZ?%
ST (t,x) 4 1 0o

fry7) oot e o
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At large values of F,, Z approaches zero and the variable of the g function

approach t. Equations (42) and (45) can then be simplified as

g(t)
To(t,x) - TOO= -—17-5 (46)
(3x)
and
oT (t,x) gl(t)
= (47)
or (3x)2/3
respectively.
If the curvature of the boundary r=R(t) is neglected, the use of Lagrange
coordinates

x = r - R(t), t =t (48)
leads to the plane approximation
R(E')(BT/Or) g (g1) x
(t-t)1/2 (x+R(t")) [-m

The solution is valid for the entire boundary layer.

2

ob
T (t,%)-Ty = (O‘)l/f ]d€(49)

Results and Discussion

For estimating the behavior of the convergence of the approximation theory,
it is necessary to examine the first-order correction to the solution. The

first-order correction uj; is determined by
1 3u 2u bx 3u
Z9om g™ -_...‘?__ZQ (50-a)
a3t ox° B ax

in the inner region and

1 dul @zul 4R3 572“0

= (50-b)
A(3x) Y35 33t 3x%  9x axz
in the outer region. The initial and boundary conditions are
Gul(t,OO) Szu]_(tyo)
u, (0,x) = = =0 (51)

Ox <9x

Following the procedure taken in the zero-order approximation, the first-
order temperature correction in the inner region can be determined by solving
Eq. (50-a) and the first and third expressions of Eq. (51) together with the
requirement for finite uj at small times. The solution is identical with that
obtained by the thin thermal boundary layer approximation [1]. It gives the

first- order temperature correctlgn at the boundary r=R(t) bound by
RBS £(CHACE T (T, 0)/—“3( £(g)ac (52)

where Ro=R(0). The requirements for rapid convergence of the approximation
solution as indicated by the bounds (52) are satisfied for the particular

problem of the growth or collapse of a spherical vapor bubble in a liquid [1-4].
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Since the lifetime of an evaporating droplet [11] or a sublimating particle
in a hot environment is about the same order of magnitude as that of a vapor
bubble collapsing in a subcooled liquid [2,4], the zero-order approximation
as given by Eqs. (22) and (25) are sufficient. This conclusion is believed to
hold also for the outer solution (40) or (42) as it has been derived through
matching with the inner solution.

One example is given below to demonstrate the joining of the inner and
outer solutions: The boundary R and its radial velocity R must be known so
that the boundary condition (3) is specified. So, let the time history of the

boundary be

. n-1
R =at"™ so that R = ant (s3)
where both a and n are constant. a is dependent upon physical properties.

Equation (25) and (46) for high F, are then reduced to

T(t*,0)-T_  J a*(t%)? /2 1/2
-—————)=~j= —————-J (sin x) dx (54)
Ts - Too n 2
and 30
T*,x*)-T  nd(a%))(t*)3n-1
= - (55)
Ts - Toe x*
respectively, where Tg denotes the saturation temperature and
2n-1
aR t
J=_PL_A__.; AT=T T ; ak=—== . t*=9(— (56)
PCPAT 8 o0 n ! RZ
o

An examination of Egqs. (54) and (55) has disclosed that the value of n is not
arbitrary but subject to some physical constraints. In case of bubble growth
for example, a faster temperature change in the inner region than in the
outer region requires that the exponent of t* in Eq. (54) be greater or equal
to that of t* in Eq. (55). The upper bound of n is thus found to be n ¢ 1/2.
On the other hand, the exponent of t* in Eq. (55) must be greater than zero
for To(t,x)} in the outer region to be a monotonic increasing function of time.

It yields the lower bound as n > 1/3. Thus, one gets
1/23n>1/3 (57)

The n range is in good agreement with the square law (the square of bubble,
droplet or particle diameter varies linearly with time) observed in the asymp-
totic stage of bubble growth [2,3,5-7] or droplet evaporation [11, with nega-

tive a] which gives n = 1/2.
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The ratio of the inner to outer solutions is obtained from Egqs. (54) and
(55) as 2 1.2
T{t*,0)-T,, 2nf{a*)“(t*) ~“Mx#
=7 58
'Igt*,x*)-T00 S /2 (sin x)l/zdx (58)
0

A smooth joining of the outer solution to the inner solution represented by the

surface temperature is warranted.
Conclusions

A method of successive approximations is employed to solve the problem
of unsteady heat diffusion in a thick thermal boundary layer over a spherical
boundary in radial motion. The approximate solutions are obtained based on a
division of the boundary layer into the inner and outer regions. The zero-
order approximation is sufficient to represent the temperature field. A
smooth joining of the inner and outer solutions is warranted. The Fourier
numbers appropriate to the regions are defined. The approximate solutions
are valid in all ranges of the Fourier numbers. The boundary temperature is

identical with that obtained by the thin thermal boundary layer approximation.
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