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Summary 

The equations which govern thin films of a Newtonian liquid confined be- 
tween deformable solid surfaces are applied to the regions of near contact in 
a concentrated suspension of deformable particles. 

For the case of slightly deformable elastic particles, one obtains the so- 
called “elastohydrodynamic” equations of lubrication theory. 

The appropriate asymptotic solution of these equations yields estimates for 
the viscosity, of a form proposed earlier by Frankel and Acrivos [l] for rigid 
particles, as well as a relaxation time for a suspension of near spheres. The 
present method, which goes beyond the dissipation calculation of Frankel 
and Acrivos to a derivation of the full stress tensor, yields the same form of 
dependence of viscosity on particle concentration. However, there is an as 
yet unexplained difference between the methods in the value of a numerical 
coefficient determined by the assumed packing of the spheres. 

While further work is needed on the kinetic theory for fluid suspensions, 
the methods employed here for the derivation of the stress tensor should have 
direct utility for certain solid dispersions, where it is possible to specify 
a priori the particle-packing in the system. 

1. Introduction 

The present work is motivated by an interest in the rheological behavior of 
suspensions of deformable solid particles or of more general inclusions in a 
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Fig. 1. Illustration of a concentrated particle suspension having ho/R0 << 1. 

viscous liquid. Such suspensions occur in several natural and technological 
settings and include such diverse materials as blood, liquid foams, and emul- 
sions. In many cases of practical interest, the particle concentration is high 
and interactions between particles are strong. However, most existing theo- 
retical treatments of the micro-rheology of dispersions are restricted to the 
classical dilute-suspension regime, with hydrodynamically non-interacting or 
weakly interacting particles, a subject which is discussed, for example, in the 
reviews by Brenner [ 21 and Batchelor [ 31. 

The present work is concerned with the opposite extreme, that of concen- 
trated suspensions, in the limit of nearly-touching partieles. In this limit, we 
shall assume that neighboring particles are physically separated from one 
another at points of near contact only by the intervention of a thin film of 
the interstitial liquid, as illustrated in Fig. 1. In addition to other interparticle 
forces that may be present, it is well known that a thin viscous film can exert 
an appreciable resistance to the deformation and relative motion of adjacent 
bounding surfaces, giving rise to forces of the type encountered in hydrody- 
namic lubrication. 

In an exceedingly interesting previous work, which has also been com- 
mented upon by Batchelor [ 31, Frankel and Acrivos [ 11 have, in effect, em- 
ployed the notion of a lubricated contact zone, in their theoretical treatment 
of the viscosity of highly concentrated suspensions of rigid spheres. In this 
way, they were able to provide an asymptotic, high-concentration theory for 
the classical Einstein problem and, thereby, to account theoretically for the 
experimental observations of an ultimate sharp increase of viscosity with par- 
ticle concentration, an effect which had previously been described only by 
empirical formulae and perhaps attributed erroneously to mechanical contact 
of the particles. 

On the other hand, in the area of solid mechanics, there is some interest in 
the mechanical behavior of deformable granular media, consisting of packed 
beds of solid particles in intimate mechanical contact with one another. 
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Deresiewicz [4] has given an admirable review of this subject, with reference 
to the classical work of Reynolds [ 51 on rigid particles, but devoted primarily 
to the later works of Mindlin [6,7], and others, on elastic particles and the 
allied problem of “Hertzian” contact modified by surface friction. 

The present work is concerned with systems which possess a certain simi- 
larity to both those just discussed. In the present case, we assume that the 
typical nearest distance separating neighboring particles is small but non-zero. 
That is, the minimum thickness of the interstitial liquid phase h, say, is as- 
sumed to be much smaller than the typical linear dimension or the typical 
radius of curvature of the adjacent particle surfaces R, say. Thus, as suggested 
by the work of Frankel and Acrivos [ 11, we shall adopt the classical (Reynolds) 
theory of hydrodynamic lubrication to describe the viscous flow and stress 
generated in the neighborhood of points of near contact, for h/R --f 0. 

Furthermore, it is our hypothesis that, to terms of leading order in h/R, the 
regions of near contact account for all the effect of the interstitial liquid; i.e. 
that for h/R + 0, these regions serve to transmit essentially all the stress 
through the suspension, as it were, from particle to particle, exactly as with 
the points of contact in a “dry” packed bed. 

Although one may formulate certain criticism of the classical lubrication 
approximation to be employed here, it appears, on the basis of works like 
those of Cooley and O’Neill [ 81, and O’Neill and Stewartson [ 91, that this 
approximation can be regarded as the lowest-order term, for h/R + 0, of a 
singular-perturbation theory and, as such, is amenable to higher-order im- 
provements. 

Within the framework of the lowest-order terms, i.e. the classical lubrica- 
tion theory, we shall be concerned here with the deformation of the sus- 
pended particles under the combined action of an applied macroscopic de- 
formation of the suspension and the viscous forces of the intervening liquid 
films. Because of the assumed deformability of the particles, we encounter 
then a problem involving the hydrodynamic lubrication of compliant surfaces, 
a problem which arises in several other contexts and which for the case of 
Hookean elastic bodies is governed by the so-called “elastohydrodynamic” 
equations (cf. Christensen [ lo] ) . 

Our objective here is to consider the simplest formulation of this kind of 
problem, in the context of our idealized suspension model and, further, to 
consider certain parametric limits and the implications for suspension rhe- 
ology. To this end, we shall treat only the most elementary case, that of 
equal-sized Hookean solid spheres suspended in an incompressible Newtonian 
liquid, with interparticle force fields, buoyancy forces and inertial effects all 
being negligible. 

2. Equations for the near-contact region 

Here, we wish to set down the relations which will be assumed to govern 
the shape of the deformable particle surfaces and the stresses developed in the 
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region of near contact, under the action of a macroscopic deformation of the 
suspension. 

Given any representative pair of adjacent particles having an initially spher- 
ical shape, we assume that their relative motion and deformation under an ap- 
plied macroscopic velocity gradient k!, = (D u)T will consist of a systematic or 
“mean” homogeneous motion, representative of the suspension as a whole, 
plus a “local” non-homogeneous deformation and motion, to some extent 
random, and representative of the local arrangement and interaction of par- 
ticles. 

The systematic motion is assumed to consist of the following constituent 
motions: (1) a relative motion of the centers of the spheres, given by the ap- 
plied velocity gradient as 

Av=vr -v2 

with 
. 

vl=L*xl,v2 =L-x2 (1) 

and with x1, ~1, ~2,212 denoting the position and velocity vectors of the re- 
spective sphere centers; and (2) a homogeneous deformation of the spheres, 
identical for each, and representative of the mean displacement gradient L, 
or the associated velocity gradient i, of the solid phase. This corresponds to 
velocity fields of the form 

V = t, l X + Vi, i = 1,2 (2) 

inside spheres 1 and 2, respectively, where ~1~) v2 are given by eqn. (1). In the 
case of rigid particles treated by Frankel and Acrivos [ 11, L, + l!,T vanishes 
identically. 

The local deformation and motion referred to above consist, then, of the 
remaining material motion. This includes particle deformations which are non- 
homogeneous, owing to the localized nature of contact forces, and which are 
random, to the extent that the spatial distribution of contact zones is random; 
and it includes relative motions of neighboring particle centers, which differ 
from the postulated mean motion, because of particle interactions. 

It is, of course, precisely this localized particle motion and interaction that 
makes for difficulty in the kinetic theory of the suspension, an aspect of the 
subject that is common to molecular kinetic theories of dense phases. In ad- 
dressing this problem the best we can do, short of attempting a comprehensive 
statistical mechanics, is to limit our attention to the mean motion and the 
associated local particle deformation resulting from some assumed arrange- 
ment of neighboring particles (cf. the discussion of Batchelor [ 33 and Frankel 
and Acrivos [l]), a point which we shall reconsider in Sections 3 and 4 below. 

As for the mean motions, one sees that the combined action of (1) and (2) 
would in general produce from a pair of neighboring spherical surfaces a pair 
of congruent, identically oriented, and possibly intersecting ellipsoidal sur- 
faces, as ~lustrated in Fig. 2, While we shall presently employ such configura- 
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Fig. 2. Pair of ellipsoidal surfaces and produced from a pair of neighboring spheres by a 
relative translation of their centers, together with an identical deformation of each. An 
edge of the midplane 3’normal to the line of extremal approach a is denoted by 3’. (i) 
For no intersection, a denotes the minimum distance of separation and (ii) for intersection, 
a denotes the maximal distance of separation inside the region of intersection. 

tions to define a local system of coordinates in the contact zone, we anticipate 
an associated local particle deformation, referred to in the last paragraph, 
which serves to prevent actual physical contact as illustrated in Fig. 3. At any 
rate, all the solid strains arising from the above deformations are assumed to 
be infinitesimal in keeping with the assumption of Hookean elasticity, al- 
though the associated particle rotations may be finite. 

Given, then, any pair of slightly deformed spheres in near contact, we con- 
sider the mid-plane normal to a line segment defining the distance of extremal 
approach, not for the actual particle surfaces but for the ellipsoidal surfaces 
resulting from the motions (1) and (2) above. In the case of non-intersecting 
ellipsoids, this line segment represents the distance of closest approach of the 
surfaces, whereas in the case of intersection it represents the maximum dis- 
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Fig. 3. Illustration of neighboring particles, showing the actual particle surfaces 6, the 
hypothetical ellipsoidal surfaces t, the corresponding separation distances h(r) and h(r) 
the midplane of separation 3 with normal e and associated Cartesian coordinates z and 
r = xi + yj. 

tance between the surfaces inside the region of intersection. 
Such a line segment can be chosen as the z-axis of a locally defined cartesian 

system with, say, z = 0 defining the mid-plane, which we shall call the “con- 
tact plane”. Then 

r = xi + yj (3) 

denotes the position vector in the contact plane, with z1 (r, t) z2 (Y, t) defining 
the nearby particle surfaces, and 

h = h(r, t) = IZr(Y, t) - 22 (r, t) I (4) 

representing the thickness of the liquid film. 
Figure 3 illustrates schematically the actual particle surfaces and film thick- 

ness, together with those corresponding to the states of particle motion and 
deformation discussed above. We are interested here in the region of near con- 
tact, where the gap widths corresponding to the initial state and to the mean 
motion are given respectively by 

he = a, + bor2 + O(bgr4) 

and 

&r, t) = a(t) + Y l B(t) - I + O(b3r4) 

= a(t) + bllx2 + 2 b12xy + b22y2 + 0(b3r4). 

(5) 
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Here, the a’s denote the corresponding extremal distances of approach and 
the b’s are related to the local geometric curvature of the particle surfaces. In 
particular, 

b. = l/R0 (6) 

where R. is the radius of the undeformed sphere, whereas 

(7) 

so that 

det B = bllbzz 
1 1 

-bf2=1/R1R2, and trB-b,,+b,,=?i- +- 
1 R2 

are the Gaussian curvature and twice the mean curvature, expressed in terms 
of R,(t) an! R2(t), the principal curvatures associated with the mathematical 
surface 2 = h(r, t). 

In terms of the parameters in (5), the present analysis is based on the as- 
sumption that quantities like 

E = a0 b,-, = ao/Ro (8) 

are much smaller than unity. The corresponding time-dependent parameters 
a and b in the expression of (5) for film thickness, which take on the values 

a=ao, bir = bz2 = bo, b12 = 0 (9) 

at the initial state t = 0, are in principle determined for t > 0 by the associated 
macroscopic and homogeneous deformations of the suspension and the neigh- 
boring particle surfaces. Indeed, by means of (1) and (2) together with the 
assumption of small particle strain and some straightforward geometric con- 
siderations, relating to the geometry of the relevant ellipsoidal surfaces, one 
can obtain the following explicit differential equation for 6: 

z = a(t) + P(W, 

where 

LY(t)=e* (i-i,). (X2 -Xi) (10) 

= 2 Roe * (ii+&). e{l + O(E) + O(E,) + O([i -is] l Es)} 

and 

/3=ee$.e 

with e denoting the unit normal to the plane of contact. Here, as in the fol- 
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lowing we denote, respectively, by expressions like 

E=E(t)=i (L+P), B=E(t)=i (i+S), (11) 

the (infinitesimal) strains and the rate of deformation derived from the macro- 
scopic gradients L and L, or L and L,. Then, the unit vector e and d = (xi - 
x2)/ Ix1 - x2 I are determined by 

e={Z+2(2-dd)*E,+O@)}.d 

and 

$ (Xi -X2) =i l (x1 -xp) 

(12) 

Of interest here is the actual particle deformation and the associated film 
thickness h of (4), or, equivalently, the increment+ particle deformation and 
the corresponding incremental film thickness h -- h . The latter quantities are 
attributed in the present context to fluid stress in the regions of near contact 
over and above that required to produce the mean macroscopic particle strain 
E,. 

It is proposed here to employ the equations of hydrodynamic-lubrication 
theory, to determine the Mean stress in the particle arising from the mean 
macroscopic motions and the action of the lubricated contact zones, as well 
as the incremental particle stress and strain in the vicinity of the individual 
contact zones. 

Thus, we assume that in a representative particle the homogeneous strain 
corresponding to the macroscopic gradient i,, is sustained by a set of points 
of near-contact, distributed over the surface of the particle in a statistically 
representative way. The general formula 

(13) 

(cf. Brenner [ 21, Goddard and Miller [ 111) gives the volume average stress in 
an inertialless, body-force free medium of volume V, in terms of the “dyadic” 
spatial moment of surface traction n - T over its bounding surface. Then, for 
one of our representative particles, (13) can be reduced to a finite summation 
over a discrete set of contact points, having the form 

Ts = + cfixiC1 + o(z/R,)} . (14) 
I 

Here, fi represents the total force acting over a small region of near-contact, I, 
to be defined further below, is a typical linear dimension of this region, which 
we call a “contact zone”, and Xi is a position vector representing the location 
of this region. In the case of slightly deformed spheres, eqn. (14) can be fur- 
ther reduced to 



Fig. 4. Illustration of contact zones for a typical particle, showing the associated midplanes 
pi, a midpiane normal ei, a position vector xi and a resultant force vector fi. 

3 T, = - cfiei {I+ O(I/Ro) + O(E,)}, 
~KR$ i 

(15) 

where ej denotes the unit normal to the contact plane for the ith region of 
near-contact. The symmetry of the tensors given by any of the expressions 
(13)-(15) follows from the condition of vanishing couple on the solid. This 
condition, as applied to (15), and the condition of vanishing force on the par- 
ticle take on the forms: 

CfiXe,=O and cfi=O. (16) 
i i 

Associated with the expression (15), then, we have the mean particle strain 
E,, related to T, by the Hookean-elastic constitutive relation, together with 
the expression for the local surface traction n l . T,. 

The ‘“contact” forces fi in (14)-(16) are to be obtained here by the ap- 
propriate equations of el~tohydrodyn~ics. The first of these is a “Reynolds” 
equation, which connects the pressure distribution pfr, t) in the lubricated 
contact zone, to the thickness of the fluid film h(t; t): 

& Qe l (h3V,,p) = !$ + Vo * (ii+), (17) 

where 71 is the (constant) viscosity of the fluid and Q, and Fe are two-dimen- 
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sional vectors, defined in the plane of contact by: 

vo = .a .a 
‘ax ‘lay 

and (18) 

Ijo =iiio +jCo, 

where v. represents the arithmetic-average velocity tangent to the fluid film, 
of the bounding solid surfaces, at z = zl(t; t), z = zs(r t), respectively (cf. 
Christensen [lo]). 

In addition to (17), we have for the fluid shear stress exerted on the upper 
and lower bounding surfaces in a direction tangential to the film, the vector 

r. = f hvop + nAvo/h, (19) 

where the f signs correspond, respectively, to the lower or upper (‘2) surfaces 
of the liquid film and Au0 denotes the difference in velocities, again tangential 
to the film, of the upper and lower bounding surfaces. The first term is asso- 
ciated with a pressure-driven (“Hele-Shaw”) flow and the second with a 
simple shear. 

For the present application, we shall simply neglect the convection or “en- 
trainment” term V. * (Eoh) in (17), on the grounds that a non-vanishing ve- 
locity V. involves either a mean translation of neighboring spheres or else in- 
volves terms O(h) which result from particle deformation, both of which are 
presumed small in their effect compared to the term ah/at in (17). (Cf. 
Frankel and Acrivos [ 11, who effectively adopt the same condition.) 

The second set of equations connectingp and h are those customarily ob- 
tained by considering the local elastic deformation and, in particular, the nor- 
mal displacements of the solid surface resulting from the boundary tractions 
exerted by the adjacent fluid. Within the usual elastohydrodynamic approxi- 
mation, as in the analogous Hertzian contact problem (Timoshenko and 
Goodier [ 121, Love [ 131, Lubkin [ 14]), this problem is treated as an elasto- 
static boundary-value problem on the semiinfinite half-space, of the type 
solved by Boussinesq [ 151 for normal tractions specified on the bounding 
plane. 

However, it appears that in the usual applications to lubrication problems 
the effect of any shearing tractions on the normal displacement is entirely 
neglected (Christensen [lo], Bell and Kannel [ 16]), in distinct contrast to the 
treatments of solid contact with friction (Deresiewicz [ 4,19,20], Mindlin [6], 
Lubkin [7]). It seems, to this author, that for all but the special case of in- 
compressible solids, for which there is no coupling between shearing and nor- 
mal displacements, the neglect of such terms is subject to considerable criti- 
cism. While the terms in question can be rigorously incorporated into the 
usual elastohydrodynamic problem, by employing the expression for traction 
in (19), it appears that this would add considerably more difficulty to its 
treatment. Therefore, for the present analysis, attention will be restricted to 
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the case of an incompressible Hookean solid. 
The normal displacement of the boundary (z = 0) of an elastic half space 

(z > 0) subject to the normal pressure p(r, t) on that boundary is given by 

1 - - wo (r) = * aCc’ .U p@*) dA(r*), 
P 

A 

with 

p = 0, r*) = Ir - r*1 = J(* -,*p + (y - y*p (20) 
and 

p’ = 
4(1E_ V2) = 2(1! V) ’ 

where E = 2(1 + Y)P, /J, and v denote, respectively, the Young’s modulus, 
Lame shear modulus and Poisson’s ratio for the solid. As indicated above, 
eqn. (20) is valid for a surface free from shearing traction or, otherwise, for 
an incompressible solid, in which case v = l/2 and /.I’ = p, as is assumed here. 

In lieu of applying (20) to the total deformation and stress for the solid 
particles, we may equally well apply it to the incremental deformation and 
stress, over and above that of the mean macroscopic deformation of (2). Thus, 
by considering the incremental displacement of both the upper and lower 
solid surfaces bounding the liquid film, we obtain, as a variation on the usual 
elastohydrodynamic equation for the film thickness h(r, t), 

- * 
h(r, t) = I+, t) + -.A- jjp@*9 t, pp(’ ’ t) u, 

2 w 
A 

(21) 

where i(r, t) is identical with the film thickness of (5) and (10) resulting from 
the homogeneous particle deformation (2), while I; is to be taken equal to the 
arithmetic average of the corresponding elastic normal pressure at the adjacent 
particle boundaries. 

In the case of the Hookean solid at hand, the boundary pressure associated 
with the homogeneous deformation (2) is given by 

ps(r, t) = -n l T, - n = -2 pn 8 E, - n, (22) 

where n(r, t) denotes the unit normal at the boundary point in question. In 
principle, the specification of n for both of the particle surfaces bounding our 
liquid film would require a knowledge of the individual surface shapes zi(r, e), 
z2(r, t), and not just of h(r, t) alone. However, it appears consistent with the 
approximation of the flat boundary in (19) and (21) to take n = +e, at the 
lower and upper surfaces respectively, with e denoting, as above, the normal 
to the contact plane. In this case, 6 can be taken simply to have the uniform 
value 

fi=--e* T,*e=--2pe.E, we (23) 



independent of r in the region of near contact. 
In any event, given an assumed set ?f homogeneous deformations in (1) 

and (Z), and the associated functions h(r, t) fi (1, t), we are interested in solu- 
tions h(~, t), p(r, t) to the elastohydrodynamic equations (17) and (21) which 
will exhibit an appropriate behavior at the periphery of the near-contact re- 
gion. 

Owing to its method of derivation, we may expect (17) to be valid only in 
a region r = IrKO(I) for e + 0, where 

ao<<l<<R, (24) 

and, based on the previous works of O’Neill et al. [8,9], we expect further 
that Z/R,, = O(C?/~). Whatever the magnitude of the characteristic length 1, we 
can introduce a characteristic magnitude of the macroscopic deformation rate, 
say c! i and upon employing dimensionless variables 

r/l, h/a,-,, lp/a,-,p, i+t (25) 

which we shall denote by the same symbols as their dimensional counterparts, 
we may express the elastohydrodynamic equations (17), with @e = 0, and (21) 
in the dimensionless form 

ah vo -(h3Vo~)=Qp 
(26) 

h _ h^ = & JlP(r*> t) -;“*, t) d-4, 

A 

where 

The parameter A will be seen to represent a characteristic “relaxation” time 
for the suspension, which is rendered dimensionless by d. 

We are interested here in solutions h, p to (26) such that 

p-Ij+Oandh-i+O,forr+c=. (27) 

Given a gene;al solution to (26), one could obtain a solution for the macro- 
scopic particle stress T8 corresponding to a set of assumed gradients L, L, as 
follows: First, one can cast (13) into the form 

T,+T.:x’$ Jl[-(p--p,)n+~]xdA 
A 

(28) 

where ps is given by (22), the shear stress on the particle surface by 

r=(Z-nn)* Ten 

and x is a fourth-rank tensor defined by 
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X = $ ~+YWI x dA. 
A 

Then, employing relations like those of (14), (15), and (23), one obtains 

Ts + T, : x = C {-Pieie, + Tiei ) 
i 

(29) 

where 

3 
X=G JJ nnnn dA (1 + O(E,)} 

A’ 

and 

with A’ and Ai denoting, respectively, integrals over the unit sphere and over 
the ith contact plane. The quantity ri represents the shear stress contribution 
from the ith contact plane and involves an integral of the form 

Ti = 3 
4 ?rR; ss 70 dA, 

Ai 

(39) 

where 7. has the form (19). Here, we expect the first term in (19), involving 
Vop, to give a finite contribution to the integral (30), when taken over an in- 
finite contact plane Ai, and whenever p -+ I;, a constant, for r + 00. On the 
other hand, we expect the second term in (19) Avo/h to involve a logarithm- 
ically divergent integral, since h 2~ r2 for r + 00. This, however, does not repre- 
sent a fundamental singularity, for, as mentioned earlier, the lubrication ap- 
proximation on which (30) is based is valid only in a region 0 < r < O(l) and 
must be replaced by an appropriate “outer” approximation for r + 00. 

Thus, in effect, the integral in (29) should be taken over a region bounded 
by a circle r = O(l). As evident from the previous works of Frankel and Acrivos 
[1] and O’Neill et al. [ 8,9], we expect that this will give rise to shear stress 
contributions of, at most, O(log E), for E + 0, and that these will be of a smal- 
ler order in E than the pressure contribution Pi in (29). 

Then, making use of known formulae (Brenner and Condiff [ 171) such as 

1 
4-G /I- ninj dA = 4 6, 

A’ 

and 

1 
- JJ 4n ninjnkn, dA = & (6ijSkl + 6ik~jl + ~il~jh), 

A’ 

(31) 
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in particular the latter to evaluate the integral in (29), we may express (29) 
in the deviatoric form 

which is the only relevant stress for the case of the incompressible solid. In 
addition to error terms of the kind indicated in conjunction with (29), eqn. 
(32) will also involve a relative error O((l/P) log E), where P denotes a quan- 
tity which is O(Pi) for E -+ 0. As will be established below, for the case of 
slightly deformable particles at hand Pi = 0(1/e) and, hence, this error term is 
O(E log E) for E + 0. 

Within the framework of the preceding approximation, the condition of 
vanishing couple in (16) is satisfied and the condition of vanishing force in 
(16) becomes 

C Pif?i = 0. 
i 

(33) 

To the order of terms considered in (32) and (33) we should like, then, to 
have solutions of (26), to permit evaluation of thqnormal force contribution 
Pi from the ith contact zone. Since the functions h, fi in (26) depend on the 
particle deformation (or deformation rate) and stress, so does Pi; therefore 
eqn. (32) provides a relation between the macroscopic deformation of the sus- 
pension and the particle stress or strain. 

The strong non-linearity in (26) appears to rule out all but the most special 
analytical solutions t. Therefore, it is worthwhile to consider asymptotic solu- 
tions of (28) for extreme values of the parameter X. Here, we shall focus at- 
tention on the limit of the nearly rigid particle, h + 0. 

3. Nearly rigid particles and suspension mechanics 

The limit X + 0 is, strictly speaking, the appropriate one for the present dis- 
cussion, where we have alre?dy assumed a small particle deformation. In the 
limit X + 0, we assume the solution to (26) can be represented as the perturba- 
tion series 

h = i + X h(l) + 0(X2) 

p =I; + hp’l’+ O(P) 

taking6 to be an arbitrary constant, as is appropriate to the rigid particle 
limit, where particle stress is rheologically indeterminate. 

(34) 

* In this regard, we note that Christensen [lo] has resorted to numerical methods to 
treat a related “elastohydrodynamic squeeze-film” problem. 



Then, it follows that h(l) and p(l) satisfy 

and 
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(35) 

(36) 

In principje, one can solve the first of these relations, eqn. (35), for p(l), in 
terms of h , before proceeding to the second, for h(l), with a similar kind of 
scheme being evident for higher-order terms. For the problem at hand, 6 is 
given by (5) and (lo), which, when expressed in terms of dimensionless vari- 
ables consistent with (25), take on similar forms, but now with 

a6 CY 

at-e --+& 

or (37) 

*=a -+@, g=flB,etc. 
dt E 

The variables appearing here are defined in terms of their dimensional counter- 
parts by (25) and by the additional expressions 

ala,, l2 bij/ao, c~/;Ro, /3/i . (33) 

It will now be shown that one may obtain an exact solution to (35) for p(l) 
whenever 6 is given by (5), with u(t) and B(t) being arbitrary functions of 
time. 

Thus, as a variant of the related lubrication formula of Kapitza [ 181, we 
have the following Zenma: A particular solution p to (35), when i is given by 
the quadratic form in (5), with tr B = bll + b22 > 0, is 

p = (b + r l A l r)/i’, (3% 

where 

A = --+ (lj + EB) l K, 

b = --i (ci + &)/tr B, 

with 

E= 
tr(B l K) 

1 - tr(B - K)’ 

K = [B + (tr B)Zo]-‘, 

and 

B = dB/dt, ci = da/dt, I,, = ii + jj 
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the idemfactor Ia and the other tensor quantities A, K being defined, as with 
B, on the two-dimensional vector space of the contact plane. This result may 
be verified directly by substitution of (39) into (35). We recall that the quan- 
tity tr B is the dimensionless form of the curvature in eqn. (7). 

Although the general solution to (35) involv_es an additive solution to the 
homogeneous equation, obtained by setting a h/a t = 0, it appears that the 
particular solution (39) suffices for the present application, since it satisfies 
the boundary condition (27). Furthermore, in the special case of interest here, 
where (37) holds as well, one can further reduce the form of (39). Thus, for 
E -+ 0, such that the term (Y/E dominates in (37), one obtains 

’ = - 4(tr B)&2 [I + O(e)3 (40) 

The terms denoted by O(e) in (40) involve coefficients which behave like r2 
for large r, so that (40) may be considered valid only in a region r2 = 0(1/c) 
for E + 0. Moreover, when it comes to evaluation of the normal stress Pi in 
(29), the terms denoted by O(e) in (40) would give rise to logarithmically 
divergent integrals, since 

r2 
1 

y X r dr N con&. * 
h2 i 

for r + 00 and 6 + 00. This is precisely the type of singularity associated with 
the shear stress ri, arising from (19) together with (30), and, once again, in- 
dicates the non-uniform asymptotic character of the lubrication approxima- 
tion at the periphery of the lubrication zone. However, the terms denoted by 
O(e) in (40), like the term ri in (30), will give rise to contributions O(E In e) 
which are negligible compared to the leading terms retained here for E -+ 0. 

For the nearly rigid particle X + 0 we obtain, then, from (40), (34), (29) 
and (25), that 

Pi=4nRg -&!- (y) Xssp(” dA(1 + O(X)} 

=j$ (&)‘(T)$ jJ E$$ {l+O(elne)+O(X)} 
-ca 

where the integral is understood to be express_ed in terms of dimensionless 
geometric variables, according to (25). Since h has the form (lo), we may 
make use of the formula 

+- 

JJ C.IX dy +detB)-l/“, 
-ca (a + Y - B * Y)~ a 

the preceding relation, and the geometric relations (7) to conclude that, with 
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relative error O(h) + O(e log e), 

(41) 

which has been recast here in terms of dimensional quantities associated with 
the ith point of contact. Thus, Pi is 0(1/e) for E + 0, indicating that the shear 
stress terms ri in (29) are O(E log E) relative to the normal stress Pi. 

By means of (41), (32) and (33) can be expressed as 

CBiej l (k-k~) l eiei = 0 (42) 
i 

and 

(43) 

where 

Again, the subscript i refers to the ith point of contact, with 8i denoting a 
characteristic time parameter. 

We recall that (42) represents a force balance, while (43) provides a relation 
between the mean particle strain and the imposed macroscopic strain rate. 
These relations are complicated by their dependence on the distribution of 
points of near contact, that is the distribution of the unit vectors ei, and by 
dependence of the time parameter on the particle strain and the position of 
neighbors through R,(t), R2(t), a(t), which are in turn governed by (36). Con- 
sistent with our ~sumption of small particle strain, or small X, the curvature 
terms R,, R2 may be replaced by Re which gives, in lieu of the co~esponding 
relation in (42), 

(44) 

with a relative error O(E,) or O(X). However, this relation still involves ai( 
which is to be determined from 

dai 
x=2Roei* (&-fi8)*ei (45) 

derived from (37) and (10). 
The de~rmination of mean particle strain E,(t) according to (43), (44) and 

(45) requires a specification of the number of contact points and the associat- 
ed directions ei(t), which should be regarded as random variables described by 
an appropriate joint probability distribution. By means of (45), this distribu- 
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tion would lead to a joint distribution of the ei and the spacings ai. 
In principle, these distributions are governed by the suspension dynamics 

and are subject not only to equations like (42), describing nearest neighbor 
forces, but also to longer-range effects. Given the general status of other ki- 
netic theories of concentrated phases, we should not expect to make much 
progress on the exact determination of the distribution functions. 

This difficulty is evident in the previous analysis of Frankel and Acrivos 
[l] and, as they have done, we might choose to regard the number of nearest 
neighbors of a representative particle, the analogue of the “coordination 
number” in molecular theories, to be given and determined mainly by particle 
concentration. Then it will be noted that eqns. (43) and (45) merely require 
for their treatment the marginal probability distribution of individual contact 
directions ei. Thus, (45) leads to a joint distribution f(e, a, t), giving in the 
usual way the probability density of finding a point of near contact in a region 
d2e(t) da, where d2e denotes a differential solid angle. Denoting averages 
with respect to this distribution by brackets ( >, we may express the averaged 
form of (43) as 

E, = - $ [ I(Bee> - 3(8eeee)] : (I? - Es), (47) 

where N denotes the number of nearest neighbors of a representative particle, 
and where 0 = Bi is defined in terms of a = ai as in (44). 

Again, an exact determination of the distribution function required in (47) 
is not expected to be readily forthcoming, although certain reasonable ap- 
proximations may suggest themselves. 

For example, one might assume that 8(a) in (47) can be replaced by the 
constant 

where (a) is governed by the averaged form of (46) 

g= 2 R,(ee) : (I?-&) 

The resulting averages (ee) and (eeee> in (47) and (48) can then be evaluated 
by means of an assumed distribution. 

By way of illustration, if one assumes the (time-independent) isotropic 
distribution f(e) = l/4 K, then, with the aid of (31), eqn. (48) becomes 

the second equality following from the assumed incompressibility of the 
medium. Therefore, 

(a)=a ande=e 0 0 ~E11Ro 
8 P a0 ’ 
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so that, again with the aid of (31), (48) becomes 

a&+EE,=8&, 

where 

which represents the generally desired type of relation for the macroscopic 
solid strain in terms of the macroscopic deformation rate. Incidentally, we 
note that the force balance (42) is satisfied identically by the approximations 
used here, since (eee) vanishes. 

While other, more desirable approximations might have been introduced, 
eqn. (49) nevertheless serves to suggest a plausible type of constitutive equa- 
tion for the suspension as well as an important relation between material pa- 
rameters involved. In particular, we recall that the proper definition of macro- 
scopic stress in a suspension is the volume average (Batchelor [ 3], Brenner 
[Z]), so that for the concentrated suspensions at hand, eqn. (49) suggests a 
viscoelastic constitutive equation of the (M~well) form, 

T+W=2& (51) 

where 

is an effective viscosity for the suspension, r#~ denoting the volume fraction of 
the solid particles. Here, (b is near to its “maximum” value tp, , which corre- 
sponds to E = ao/Ro --f 0 and depends on the assumed type of nearest neighbor 
arrangement, or packing. 

In the limit E + 0, eqns. (50) and (51) suggest a Maxwell fluid, nearly New- 
tonian and having large viscosity q as well as a large relaxation time 6. In view 
of the assumption of nearly rigid spheres on which (51) is based, this is en- 
tirely plausible, and one might expect the indicated relation between ?j and e 
to be approximately valid for more general circumstances than we have con- 
sidered here. 

Although criticized by Batchelor [ 3] as not allowing for sustained flow, 
the type of rigid-sphere model of Frankel and Acrivos [I], or the variant con- 
sidered here, may nevertheless be considered applicable to the initial suspen- 
sion behavior near a state of rest, and also might serve to describe the small- 
amplitude oscillatory behavior of concentrated suspensions, In that regard, we 
recall that, based on various “cage” or “cell” models of the nearest neighbor 
configuration, Frankel and Acrivos [l] have taken 

(52) 

for (b -+ #, . Then, by their method of averaging the dissipation function for 
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nearly touching spheres, they further obtain an effective viscosity 

9 (WJ, P3 
q’q=81_(($,@ )1/3 

m 

(53) 

for rigid sphere suspensions with a simple cubical packing and, hence, N = 6 
nearest neighbors. 

The equivalent result of the present work is given by (50) and (51) as 

(54) 

which for the simple-cubic array with N = 6, $, = 7r/6 gives a factor N4, /8 = 
7r/8 instead of the factor 9/8 in (53). On the other hand, for a cubical or 
hexagonal closest-packed array with N = 12,@, & 3/4, one has N&,/8 & 918 
in accordance with (53), which, as shown by Frankel and Acrivos, is supported 
by experimental data. However, at this juncture it is not clear why the differ- 
ent methods of averaging yield such different results for the same packing of 
particles. 

4. Conclusions 

In summary, we have seen how the theory of elastohydrodynamics for the 
lubricated compliant contact can be adapted to the mechanics of concentrated 
suspensions, as an extension of the theory of Frankel and Acrivos [ 11. For the 
case of slightly deformable Hookean spheres this leads, not surprisingly per- 
haps, to a constitutive equation of the Maxwell variety. However, one can ex- 
tract quantitative predictions for the viscosity and relaxation time, which ex- 
hibit a similar dependence on particle concentration and a strong increase in 
the limit of touching particles, like that found by Frankel and Acrivos [ 11. 

The present analysis indicates a way in which one may derive the complete 
stress tensor for such a system. For reasons which are as yet unclear to the 
author, this leads to a somewhat different estimate of viscosity than that of 
Frankel and Acrivos [ 11. 

Neither analysis provides more than a cursory treatment of the statistical 
mechanics of the suspension, a subject which bears further study, to provide 
a more rigorous footing and perhaps to elucidate the discrepancies between 
the results. Furthermore, it would be interesting to consider the case of highly 
compliant solid particles, the opposite extreme of that considered here. 

While it is questionable whether the present idealized model would be 
directly applicable to the most commonly found, real systems with a deform- 
able microstructure, the analysis may point to a convenient way of describing 
the mechanics of particle interaction and deformation in such interesting real 
systems as emulsions and foams. Furthermore, in the case of solid dispersions, 
where the statistics of the particle arrangement can be specified in a more de- 
finite way, the techniques developed here may find extensive application. 
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