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Summary—In this paper a description of a certain class of
multiloop systems, called the Standard Multiloop Form, is
introduced. This description is expressed explicitly in terms
of certain scalar subsystems and can be shown to include
many of the common descriptions of multiloop systems. The
stability criteria presented in this paper involve the individual
Nyquist plots of the linear scalar subsystems and a certain
positivity condition on the nonlinear subsystems. The method
allows for relatively convenient computations. The deriva-
tion depends on the hyperstability concept introduced by V.
M. Popov.

1. Introduction

NONLINEAR stability theory has received the attention of
researchers for many years. In 1961 V. M. Popov introduced
a method of stability analysis based on the use of the
frequency domain[1], which greatly simplified the analysis
for systems having a particular structure, namely, systems
having a linear time-invariant ‘plant’, one nonlinear element,
and a single feedback loop. Since the introduction of Popov’s
method and the associated Circle Condition, many resear-
chers have generalized the Popov method to include systems
having multiple nonlinearities and multiple feedback loops,
e.g.[1-6]. It is the purpose of this paper to introduce a method
of analysis which leads to a convenient graphical inter-
pretation in the frequency domain. There have been a few
recent results{7-10] where an attempt has been made to
preserve a graphical interpretation; in these works various
system representations were considered but the difficulty of
handling large-scale multiloop systems remains.

2. System description
Stability criteria will be derived for systems having a
particular structure called the Standard Multiloop Form.
2.1 Definition. A system of equations of the form

x(t) = Axi(t) + bifi(1)

yi(t) = ¢'ix(t)
fi(t) =‘§::‘ d’u[“i(t) -.z:l b (¥s, 1), t]
fori=1,...,n .1

is said to be in the Standard Multiloop Form. The function
x;(t) is an n;-vector, and f(¢) and y,(t) are scalar functions.

The function u,(t) is a scalar input function to the ith
subsystem. The time varying and nonlinear functions ¢, and
¢y are assumed to be continuous functions of their arguments
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with ¢;(0) =0 and ¢,(0) = 0. It shall be assumed throughout
that n > 1.

The transfer function for the ith linear subsystem is given by
by

Y.(s)

Gis)=F )

=ci(sI — A)'b, 2.2)

and a block diagram of the system is shown in Fig. 1. It may
be shown that a great many multiloop feedback systems may
be placed in this form through suitable selection of the
nonlinearities ¢, and ¢, [11, 12].

In this work the stability of the multiloop system is
considered only for zero inputs.

2.2 Definition. The system (2.1) is globally stable with
degree v if, for w(t)=0, i=1,...,n, and for any x(0),
i=1,...,n, there exist numbers K; >0 such that

(=K. e ™ t=0,
i=1,...,n

The definition implies global asymptotic stability in the sense of
Liapunov if y > 0.

3. Stability criteria

The stability criteria are based upon a variation of a
lemma developed by V. M. Popov for single-loop
systems[1, 11).

3.1 Basic lemma. If the linear systems

X(1) = Axi(1) + bfi()

() =cix(t)+df(t),i=1\, ... n
with transfer functions Gi(s) = c'(sI — A)"'b, + d; are each
irreducible, i.e. controllable and observable, and the func-
tions Gi(s) have all poles in Re s <0, and the Nyquist plots

of Gi(s) lie in Re s =0, then there exist u;, >0 and v, >0,
i=1,...,n such that

3 ik + [ 3 s dr G

2 (o <

holds for all ¢t = 0.

v

i#i
[ ._.J'éf'_
11 +

c;I (s)

Y

"
12%,’ ) =l n
j#i
F1G. 1. Block diagram of the ith subsystem of the Standard
Multiloop Form.
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To illustrate the graphical stability criteria, consider the
following special case of (2.1)

%) = Ax, (1) + bfi(1)

yi{t) = cixi(t)
it = —Z Baly(0). 1)
i=1,.... n. (3.2)

3.2 Theorem. The system (3.2) with irreducible transfer
functions (2.2) is globally stable with degree vy if the pair
[A; + vI, b,] is controllable and the pair [A; + v, ¢;] is ob-
servable for i=1,...,n, where I is the n xn, identity
matrix, and:

If Gi(s) has all poles in Re s < —y: One of the following
holds:

(a) The Nyquist locus of G,(s — y) does not encircle nor
enter the closed disk D,, where 0< p,g;; p; < q:;

(b) The Nyquist locus of G.(s — y) is inside the closed disk
D, where p, <0< g;;

(c) The Nyquist locus of G;(s — v) lies in the closed half
plane where Re s = —(1/q,), where 0 =p, < q;;

(d) The Nyquist locus of Gi.(s — ) lies in the closed half
plane where Re s < —(1/p,), where p, < g, =0

If Gi(s) has N;=0 poles in Re s > — y: The Nyquist locus
of Gi(s —vy) encircles the disk D, exactly N, times in the
counterclockwise direction and does not enter the disk:
where 0 < p, <gq.

For the nonlinear functions

tb..(y.

atps——=f;+p =q,
i=1,..., n
_ ﬁ“ d’u(YI < B"’ l?é] (33)

and also for i#j

1 ( 1 ) B:
— ol -——— By ———"—=0
n-1 a - p.B q; — p;

[ 5m) -5
X [n : 1 a"( B") —2;}

where a; =0fori=1,...,n

Proof. Let Y,(s) and Yi(s) denote the Laplace transform
of yi(¢) and y.(1), etc., and note that Y.(s — vy) is the Laplace
transform of ey(t). Define the following variables for
i=1,...,n

Fi(s)2 F(s~y)+p.Yi(s —v)

_ s 1 .
Y(5)=Y(s—-v+ Fi(s).
(s) (s—v) a=p (s)

Then

?i(s) — Gi(s — Y) + 1
F(s) 1+pG(s—v) a-p

A

G.(s).

Now define X.-(s)éx,-(s—y), where X.(s) is the Laplace

transform of x;(t). Now

Xi(s) = (sl - A) 'b;F(s)

and
X(s)= (s = A, — yD) 'bF(s — y).
Thus
(sI = A, = yDXi(s) = bF(s) — pbic’ Xi(s)
and

Xi(s) = (sI = A, + pibic’, — y1) ' BE(s)

and Y(s) = ¢/ X:(s) +{(1/q. — p)1F.(s). which has a realization

% = (A - pbc’ + yDE + b,
1 -
yi = ¢k + is 35
Y qi —Pi f ( )
i=1..., n

which is minimal by hypothesis. The conditions imposed on
Gi(s) by the theorem ensure, by the Nyquist condition, that
the poles of G(s) are in Res <0 for i=1,..., n. After
some simplification

1+aGi(s —y)(1+pGi(s — 7))}

Re Gi(s) =Re { (g — p)1+pGi(s — )P

where the bar denotes complex conjugate. In cases (a) and
(b):

Diq:
“»Pi)“ +p:Gi(s — 7)'2

a+ pz‘ [q.— - p.]’}
Gi(s —y)+ ==
{ 5=y 2pq: 2p.q.
The requirements on the Nyquist locus of G,(s) guarantee

that Re G,(jw) > 0 for all w, making the standard allowances
for poles s, such that Re s, = y. For case (c):

Re Gi(s) = @

Re Gi(s) = Re Gi(s — v) +$,
so that Re C'},-(jw)z 0 for all w; and for case (d):

-1 1
“ + pri(s - Y)P Re{Gi(s - ‘Y) * E}

Re G-;(s) =
so that again Re Gi(jw) =0 for all by hypothesis. There-
fore, the functions Gi(s), i =1, ..., n, satisfy the conditions
of Lemma 3.1. It follows that there exist numbers u; > 0 and
y; > 0 such that

3, s ol = 3, sl + [ 3 fnsin ds

°E #tlln(t)llzsg vz O + | 2:1 f(D5(r)dr
2 s OF <e ™ 3wl O +e g fm)3() dr.
for all t = 0.
Now

2 e i = 2 p‘(‘ “a —p,)y‘2

+Z(l+ )y.Z ®i(y)
- 2:‘ e {E &y(y;) }
2 Q)
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Define
(5-1()’1) = ¢u(yi) — P¥i
4;11()’1) =), i#]

then

- 2 1 L
=33 vbn-2 =5 {2 b}

i=lj=

2

Now

5 1 - 1 - - -
Qy)= 5_:,‘ ,2,. {*‘ yidi + a1 Yiby + yiby + y,-d>,-.-}

n—1
1 b2 4 - + 2
A
+2qudiat e+ 2u + e F 2¢in-1Bun}-

-2 2 el

qi — P:

1 1. -
+ ;!TI d)” [y, - E‘__—pi d’u] + yl¢il + YI¢IE

1 ) 1 T2 & 1 s }
—— P —— i -2 .
q4i—Di i q;— P; é kzl gx — Px Pubr

Consider the term
[n- =4
({1 i qi — p‘ (K
If y, =0, then any terms involving y, vanish and cannot
lessen the value of the expression; therefore, let y. # 0 for all
i. By hypothesis,

¢H

;Sﬁﬁ +pi=q;
thus

<_bi‘ - - —

v Bi=4q—p.
It follows that

0<ay, EQHSBH =q — Db
Yi
and
é [Y 1 d;u] = i [)’.2 —— ym;u
g i q— P

since B, < q; — p.

Now consider the term Gu(y.)du(y,). If .y, >0, then
Sudy _
V¥ == yiy!Bk-Bkr

J’kid;ki =YY,
If y,y; <0, then

Sty = — Y¥BuBu

so in all cases

ud = BubBulyiyl-

Note finally

by = — Bulyil

and
435 = By’

It follows that

oaw=3 3 {-Lya1-2 ]y

=1 =i _qi_pl

1
+mau[1 —E%p—‘] 7 = Bulyyil - Balywil

Blzl 2 Blzl 2 N Bklﬂkl }
——t eyt — ey _2
‘li_l?iyl q;— D Y «Zn Qx — Px Lyl

1 S BuBu]
=18 42y e
+2[B"+B" 221 G« — P«
k=1 Gx — Px

Yi]
i - B ] __Bi Vi
n—1 " q-pi a-p

§ i 4 i

The + signs are taken due to the |yy,| terms. The inequalities
(3.4) guarantee that each matrix is non-negative definite.
Q.E.D.

The conditions of Theorem 3.2 require that the Nyquist
locus for each Gi(s —v) remain outside of a “forbidden”
region in the complex plane. This forbidden region is either
the inside or outside of a critical disk. In the special
situation where p, = 0 or g, =0, the disk degenerates into a
half plane. This condition is in the familiar form of the
Circle Criterion used in the analysis of single-loop nonlinear
systems.

In theorem 3.2 the inequalities (3.3) require that the graph
of each of the nonlinearities ¢, lie in certain sectors which
are illustrated in Fig. 2. The inequalities require that 0=<
a; <P for i=1,..., n but the number p,, taken from the
Nyquist plot of Gi(s — ), may be positive or negative and
has the effect of “rotating” the sector for ¢, Consequently
¢u(y;) may lie in any of the four quadrants.

A close examination of Theorem 3.2 in this case reveals
that the uncoupled subsystems (i.e., if ¢;(v;)=0, i#j) are

t%[ﬁii+Bli+2§": _Bnﬂ—k)] [

®ii 4

FiG. 2. Sector conditions for nonlinearities.
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necessarily globally stable. [t can be showni{l!t] that there
always exist nontrivial gain sectors for the interconnection
nonlinearities ¢;(y;), i#j, such that the interconnected
system is globally stable. In particular. under the stated
assumptions, if n globally stable subsystems are intercon-
nected the multiloop system will be globally stable for
sufficiently small interconnections. As one might expect, the
stable sectors for the interconnections necessarily become
smaller as the number of loops increases.

4. Conclusion

This paper has focused on a multiloop system as an
interconnection of scalar subsystems. This viewpoint has
made it possible to obtain conditions for global stability
which involve the Nyquist plot for each of the scalar linear
subsystems separately; a certain inequality involving the
nonlinearities must also be satisfied. As a special case,
conditions where the constraints on the nonlinearities can be
expressed in terms of sector conditions were also con-
sidered. The main advantage of the method is that the
results are explicitly expressed in terms of the properties of
the scalar subsystems which define the particular intercon-
nection; most methods, e.g. in[1-6], do not focus on the
scalar subsystems explicitly.

In addition, the following points might be noted:

(1) The frequency response criteria may be interpreted
graphically.

(7) The frequency conditions can easily be satisfied first
by proper choice of the parameters p, and ¢,. i =1,...,n;
the positivity inequality (3.4) then constitutes the required
condition for global stability.

(3) Conditions involving controllability and observability
apply individually to each linear subsystem, not to the
interconnection.

Extensions of the work described here should be men-
tioned. Stability conditions for more general forms of (2.1)
can be developed[11, 12], and bounded-input bounded-state
stability can be inferred from the same graphical
criteria[11].
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