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A complete stress analysis of a metal-forming process is necessary in order to assess the onset of metal-forming 
defects such as the initiation of internal or surface cracks or the generation of residual stresses. This demands elastic- 
plastic analysis. A program to evaluate complete stress distributions has been developed and applied to the extrusion 
process. Such solutions have not previously been obtained for general two- and threedimensional problems encom- 
passing the technologically important steady state processes. although these solutions are essential for the rational 
assessment of limits on process variables which will ensure a satisfactory metal-forming procedure. The stress fields 
obtained for the extrusion process exhibit features which are consistent with the known development of extrusion 
defects, such as the appearance of surface cracks. 

1. Introduction 

In order to develop a rational basis for determining the limitations on design and operational 
factors for metal-forming processes which will ensure a satisfactory product, it is necessary to 
evaluate the history of the stress and deformation distributions throughout the work-piece. 
Characteristics - termed metal-forming defects - which yield an unsatisfactory product include 
the generation of internal and surface fractures, the onset of local instabilities causing local strain 
peaks, and the production of high residual stresses. In many metal-forming processes, plastic strains 
of the order unity occur, and these completely dominate the elastic strains which are of the order 
the yield stress divided by the elastic modulus, which is of the order 1 Om3. Nevertheless, elastic 
strain increments, particularly on initial loading and unloading, play an essential role in determin- 
ing the stress distribution. The criteria governing the initiation and growth of cracks are commonly 
based on the history of the stress in an element, which thus plays a major role in predicting the 
production of metal-forming defects. Residual stresses, of course, constitute the stress field after 
the work-piece has emerged from the process. 

Consistent with the already stated influence of elastic strains in determining the stress field, the 
plastic-rigid theory (which neglects the elastic strains completely) can only predict stresses in the 
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regions of active plastic flow. The regions of “contained plastic flow” .- in which increments of 
plastic strain are of the order of the elastic strain increments (since deformation there is con- 
strained by the adjacent elastic material) - are considered to be rigid in the context of plastic- 
rigid theory. Hence, no compatibility equations prescribing the consistency of the deformation 
field can be adjoined to the equilibrium equations: thus there are not enough equations available 
to determine the stress field. Elastic-plastic theory must therefore be utilized in the assessment of 
metal-forming processes aimed at prescribing conditions which will eliminate the generation of 
metal-forming defects and so are capable of predicting the formation of a satisfactory product. 

The structure of the equations governing elastic-plastic defo~nation calls for a quite different 
solution procedure from that for plastic-rigid theory. The incremental or rate structure of elastic- 
plastic constitutive relations leads to relations of the type 

where 

(1) 

(2) 

is the velocity strain, E and v are the elastic constants (Young’s modulus and Poisson’s ratio), ojj 
is the stress tensor (the prime indicates the deviator or shear type components), 0 is the current 
yield stress in tension, and h is the tensile tangent modulus or strain-hardening coefficient associ- 
ated with plastic strain in simple tension. The superposed dot indicates the appropriate rate deri- 
vative. The relation ( 1) corresponds to isotropic work hardening, and the variation of the strain- 
hardening coefficient h with strain or yield stress is determined from an experimental stress-strain 
curve in simple tension. In this formulation the velocity strain D,, expressed in terms of the 
velocity gradient a ui/axi, comprises the rate-of-strain term. Stress analysis theory based on (1) 
thus involves the velocity distribution u&x, t) (where x is the current position vector of an element) 
and the stress-rate distribution ii,&, t). Equations to determine these quantities are obtained from 
(1) and (2) together with equilibrium equations for the stress rates and boundary conditions. In 
terms of the velocity and stress-rate distributions at time t the increments of stress and displace- 
ment in the time interval (t, t + At) are obtained which provide the new configuration and stress 
at time t f At. This procedure is repeated sequentially to build up the complete stress and defor- 
mation history of the process. 

This procedure differs fundamentally, for example from the well-known slip-line field theory of 
rigid-ideally plastic analysis of deformation in plane strain. With no elastic strain components to 
incorporate, stress-velocity relations arise, and direct determination of the stress field rather than 
the stress-rate field yields the solutions. Although this situation is modified if strain hardening is 
considered, when elastic strain components are neglected the rates of stress invariants onle appear 
in the equations which provide a simplification over elastic-plastic theory. The need to utilize 
stress-rate variables in the analysis of elastic-plastic theory introduces considerable complexity, 
since tensor-rate variables are more sensitive to convection effects and nonlinear geometrical in- 
fluences than are the tensors themselves. This demands the use of extra care in satisfying the re- 
quirements of finite deformation continuum theory, and the influence of this on metal-forming 
analysis is summarized in the following section. 
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2. Basic elastic-plastic theory 

The stress-rate term in a constitutive relation must clearly be a derivative of the stress at a 
material particle, since it is the stress history at a particle which determines the deformation there. 
Rice pointed out [ 1 ] that the component of this rate associated with the motion of the material 
particle - the convected component - is of the same order as that due to the partial derivative of 
the stress at a fixed position in space when the tangent modulus associated with the constitutive 
relation is of the order of the stress. This is the case for the strain-hardening coefficient for many 
metals in plastic flow. This contrasts with the situation in classical elasticity for which the ratios 
of elastic moduli to stress are about 1 03. Thus, in classical elasticity, convected terms are insignifi- 
cant, and in the analysis there is no need to differentiate between the deformed and undeformed 
configurations. 

Thus, for many plasticity problems, convected terms must be included in the analysis, and this 
involves extending the classical plasticity theory and variational principles in order to have a 
correct formulation. Such a generalized theory was developed by Hill [2] in studying the unique- 
ness of elastic-plastic solutions, bifurcation of solutions and the stability problem. For such studies 
meticulous care is needed in formulating rate definitions and the influence of noninfinitesimal dis- 
placements in order to achieve a correct analysis. It turns out that for general metal-forming prob- 
lems the same care is also needed. A means of avoiding these difficulties in overt form is to express 
the deformation equations in terms of the reference geometry - for example the initial configura- 
tion of the body if Lagrange coordinates are used. This approach has been formulated for finite 
element calculations by McMeeking and Rice [ 31. An analysis of this development has been given 
in [4], and our finite element elastic-plastic code has been modified accordingly. The advantage of 
using the reference configuration to supply the position variables with which to express the equa- 
tions of deformation is that the reference configuration remains tixed so that partial derivatives 
with respect to time refer to variations at a specified material point, and variational principles 
comprise integrals over a fixed volume with no boundary motions. 

Whereas referential variables are convenient for expressing the equations of motion, the laws of 
plasticity are incremental in nature, or of flow type, involving stress and strain rates, as in (l), 
defined relative to the current geometry. Experimentally, the plasticity laws of the yield condition 
and the flow relation involve true stress and increments of natural strain, both defined with respect 
to the current configuration. Corresponding expressions based on the reference geometry would 
be more involved. In order to avoid this complexity, the configuration at time t is taken as the 
reference configuration for deformation increments in the time interval (t, t + At). In this way we 
can take advantage of the use of not only referential coordinates for the equations of motion but 
also current coordinates for the plasticity laws. The details of this structure are presented in [4] 
and are incorporated in our computing program. Included in this structure is the correct influence 
of the rate of rotation of material elements. It turns out that this has the same order of influence 
on the theory as do the convected terms, and use of the spin-invariant Jaumann derivative for the 
rate of stress expression in (1) yields the correct equations of motion in conjunction with the 
classical form of plasticity law. 

As developed for treating the elastic-plastic stability problem, the boundary conditions on the 
surface of the body were limited to prescribed particle velocities on part of the boundary and to a 
prescribed rate of traction based on the reference geometry on the remaining boundary surface. 
The sliding of the work-piece over a die surface present a more general boundary value problem 
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prescription since neither velocity nor traction are independently prescribed. A modification of 
the previously developed variational principle is used to generate the finite element relations 
which incorporate this condition for smooth boundaries and is given in the following section. 

3. Boundary conditions on smooth die and driving piston surfaces 

The boundary conditions stated in [ 21 and [3] are prescribed nominal traction rate over 
part of the surface in the reference con~guration and prescribed velocity over the rest. In this, 
our first solution of an extrusion problem, we shall consider frictionless curved dies and a friction- 
less driving piston for the direct extrusion of a strip in plane strain. This calls for mixed boundary 
conditions of zero shear traction at the metal-die interface and zero normal velocity component. 
For the driving piston the shear traction is zero and the normal velocity component is prescribed. 
The unknown normal tractions and tangential velocities are to be determined. We proceed as de- 
scribed in the previous section by sequentially building on the already evaluated solution at time t 

by adding increments of stress and displacement corresponding to the time increment At. These 
are determined by a finite element analysis for the stress rates and velocities. A modification of 
the variational principle given by Hill [2] is needed to obtain the finite element formulation with 
the modified boundary conditions. The principle governs the unsymmetric nominal stress rate (or 
Piola-Kirchhoff I stress rate) iii and involves integration over the reference state, which is taken to 
be the contiguration at time t for the determination of stress rates and velocities at that instant. 
These are then used to determine the solution at time t -t At, with At sufficiently small for first- 
order increments to be accurate: 

a(t + At> = o(t) + iAt , xft + At) =x(t) -I- vAt , 

where a is the Cauchy or true stress, x is the position coordinate, and Y is the velocity. 
Elastic-plastic theory determines a rate potential form for the nominal stress rate iti [ 2-41: 

(3) 

where E is a known quadratic rate potential function. The velocity and stress rate distributions 
can then be determined from a variational principle for the velocity field: 

J.4, S(auj/axi> dV - j$ 6vj dS = 0 , 

the d, being expressed by (3); I/ is the volume and S the surface ?f the body at time t. This princi- 
ple differs from that used in [ 21 since the nominal traction rate Fj is not necessarily prescribed 
when &uj # 0 but must be determined; hence the S cannot apply to the whole surface integral in 
the last term of (4). 

By the usual divergence theorem manipulation eq. (4) can be shown to be equivalent to the 
equilibrium equation for stress rates 

aiij/axi = 0 (5) 
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and the traction rate boundary condition 

kj = niBij , (6) 

where ni is the unit surface normal at time t. Thus, if we select the unknown components of fij to 
satisfy (6), the variational principle will yield the required solution determining stresses in static 
equilibrium. 

For convenience, consider tangential and normal axes (x,,, x,,) at the boundaries as shown in 
fig. 1 and express i, in terms of the Kirchhoff stress rij [3,4] : 

~ij = CD’Tlj/CDt - (UikDjk + UkjDik) + ~ik aVj/ax, , (7) 

where the first term on the right-hand side is the Jaumann derivative of the Kirchhoff stress ex- 
pressed in Cartesian coordinates, and D is the velocity strain 

Dij = 4 @@xi + avj/axi) . (8) 

Then at the boundary interfaces with the fixed smooth die (fig. la) and smooth driving piston 
with prescribed driving velocity v,, (fig. 1 b), 6v,, = 0 to avoid separation and r1,2, = 0 because 
there is no friction and [2-41 

~ij = JOij ) (9) 

where J is the Jacobian density ratio p,,/p. Moreover 

wr,t,$?u = 0 (10) 

smce 71p 2p = 0 and the rotation of the boundary axes (x r,, x2,> following a particle is the same as 
the average rotation involved in the Jaumann derivative. This is so because the boundary surface 

r Piston 

Fig. 1. (a) The die interface geometry, (b) the piston billet interface geometry. 
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has been a principal direction of stress, and hence of strain rate, throughout the motion, which 
incidentally causes D,+,, to be zero; thus 

np = (0, 1) (11) 

so that the contribution to the surface integral in (4) is 

Now av,,/ax,, is the angular velocity of the boundary, since the normal is also a principal direction 
of strain rate, and (12) becomes 

(13) 

where K is the curvature of the boundary. The stress is known for each step of the calculation 
determining increments in the time intervals (t, t + At) so that ( 13) introduces into the variational 
expression a term that is bilinear in the unknot vi, and the known oZr2 t. Combined with the 
volume integral terms from (4), this modifies the coefficients in the equations for velocities and 
retains matrix symmetry. This procedure eliminates the unknown boundary traction-rate terms. 
In effect this formulation introduces stress dependent stiffness terms in the composite incremental 
stiffness matrix. The possibility of terms of this type is mentioned in [ 3 1. Nonzero contributions 
of this form arise for curved dies, but for the flat driving piston the curvature fc and hence the con- 
tribution are zero. 

In practice it is simpler to express the boundary condition (@‘directly in terms of nodal forces 
in the finite element formulation, and this approach is mentioned in the following section. 

4. Finite element formulation 

The elastic-plastic theory used for the analysis of this extrusion problem involves isotropic 
work-hardening based on a measured tensile stress-strain curve. A section reduction to 75% of the 
initial cross-section is considered which leads to the development of strains of the order unity. 
Thus material nonlinea~ty is introduced through the stress-strain curve, and geometrical nonlinear- 
ity is introduced by the finite deformations that occur. These features added to the complexity of 
elastic-plastic analysis indicate that numerical evaluation of the solution is mandatory. A finite 
element approach has been adopted because of the convenience it provides for discretizing the 
analysis of a problem posed by a variational principle and for satisfying boundary conditions on 
curved boundaries. 

A finite element mesh is selected on the initial configuration of the workpiece to be extruded, 
and the deformation of these elements and the stresses generated in them are evaluated through- 
out the motion. Thus a convected network is utilized which deforms with the material. The initial 
configuration of a quadrilateral net in the undeformed state and after extrusion are shown in 
fig. 2. 
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Fig. 2. The 6 x 36 quadrilateral finite element mesh shown before and after extrusion. 

The steady state process, in which the extrusion has continued until an invariant pattern of defor- 
mation has developed relative to the die, is of major interest for applications since this is a common 
mode of process operation. For a convected mesh which initially consisted of a uniform distribution 
of undeformed elements, as shown in fig. 2, such a steady state would generate a residual pattern 
of deformation in the extruded sheet which exhibits a translational invariance along its length 
except for transient regions adjacent to the free end of the sheet and in the neighborhood of the 
die. This is so since the material which has left the die is subjected to no surface tractions, and 
each congruent cross-section has been subjected to the same history of deformation followed by 
unloading to zero resultant load and zero traction on the lateral surfaces. In such a region the 
equations of equilibrium and the conditions of steady extrusion through symmetric dies prescribe 
that the residual stresses comprise a distribution of longitudinal stress uX &> which is even in y 
and self-equilibrating: 

b 

s qJv> dy = 0 > (14) 
0 

where 2b is the thickness of the extrudate. For such a stress field, which exhibits translational 
invariance in the x direction with zero surface tractions on y = *b, equilibrium demands that 

ffyy = uxy = 0. (15) 

This deduction assumes a restriction of the nature of St. Venant’s principle in elasticity. The 
transient region adjacent to the free end involves the generation of shearing stresses to transform 
the longitudinal residual stress pattern o,,(u) to zero surface traction on the free end. 

The computer program used was a plane strain, elastic-plastic, finite element code, valid for 
small strains and employing constant strain triangle elements, modified in accordance with [ 31 
and [4] in order to make it valid for large strains and to conform with the sequentially updated 
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Lagrangian scheme described in section 2. By appropriately reinterpreting the original program. 
only two major changes were required: (1) introduction of initial stress stiffness terms, reqilired 
by the variational principle, into the ~ornpLltatioi1 of each triangular element stiffness matrix con- 
tribution and (2) introduction of dilatation and rotation terms into the computations updating 
stress at the end of each increment in order to properly convert Jaumann increments of Kirchhoff 

stress into material increments of Cauchy stress. 
Symmetry of the die about the center line of the billet permitted the solution to be carried out 

on half the billet only on one side of the center-line. This symmetry determined the boundary con- 
ditions on the center line to require zero shear stress and zero normal velocity. On the basis of the 
discussion of boundary conditions in the previous section, those on the center line will make no 
contribution to the surface integral of the variational principle since this boundary is straight. For 
the curved boundary at the metal-die interface, the contribution to the surface integral, eq. ( 13 ), 
can most easily be introduced in terms of nodal forces acting on the boundary nodes. The surface 
integral contains the tangential compone~lt of the traction rate nl~~ltiplied by 6u,, the tangential 
velocity variation. The incremental contribution of each nodal force at the boundary during the 
time At is the product of the force magnitude, the angle between the nortnals after and before 
the increment of motion, and the variation 6u,+. In order to make the boundary nodes follow the 
curved boundary accurate.ly, a predicted displacement increment is used to establish the direction 
of the nodal velocity vector so that during each incretnent the boundary node follows a chord, 
and thus the average normal velocity is zero during an increment. The ailgles between the normals 
at the ends of the chord comprise the curvature term ~u,,Ar in the surface integral. 

At the exit from the die the boundary conditions change discontinuously from sliding contact 
against a rigid boundary to the condition of a traction-free surface. As a boundary node emerges 
from the reduction region the direction of the nodal velocity is no longer prescribed. Instead, 
during the period of time extending until the next boundary node emerges, we reduced the normal 
reaction force incrementally to zero, and thereafter maintained it at zero. The second boundary 
condition for each node is simply the zero shear traction condition. 

In the numerical evaluation of the incretnents of stress and velocity in a time step At. such 

increments are in practice calculated directly by multiplying eq. (4) throughout by At. For each 
time step the stress and strain increments AC and AC: for each of the constant strain elements used 

must follow the stress-strain relation. This causes some computational difficulty, particularly when 
plastic flow first sets in, since the gradient drops rapidly by a factor of order 10eW3 from the elastic 
modulus to the work-hardening modulus. Initially the stress-strain point for each element moves 
up the elastic line and is so extrapolated for each time step. It thus leaves the stress-strain curve 
when the yield stress is exceeded. The computer program a~~tonlati~ally selects time steps so that 
this initial departure from the stress-strain curve cannot exceed a preset limit, typically a 4% devia- 
tion in stress. In subsequent steps the direction of the stress increment-strain increment vector for 
each element is selected in such a way that the stress-strain point approaches the stress-strain curve 
while maintaining a good approximation to the incremental tangent modulus. In practice the initial 
deviation from the stress-strain curve approaches the above-nlentioned limit for only one or two 
of the elements which are becoming plastic for the first time. The measured stress-strain curve is 
followed much more closely for most elements for almost all of the time. A similar difficulty 
occurs on unloading after plastic flow and reloading into the plastic region; however, this applies 
to very few elements. The time steps so selected are small so that about 20 time steps occur while a 
single element at the surface exits from the die. This fact has a bearing on the already discussed 
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discontinuous change to a traction-free boundary condition as the extrudate exits from the die. 
As mentioned in the first paragraph of section 2, convection terms become particularly signifi- 

cant for materials with small strain-hardening coefficients. Although such terms are properly ac- 
counted for in the variational formulation, extra care must also be exercised in the selection of the 
finite element discretization. The difficulty arises as a result of the fact that a plastically flowing 
material becomes more nearly incompressible for small strain-hardening coefficients. In such 
situations the deformation degrees of freedom of many common finite elements are “used up” in 
satisfying the near-incompressibility constraint with the result that the aggregate of elements be- 
comes “locked up” and acts more stiffly than the continuum it is supposed to represent. Of the 
several possible remedies for this problem described by Nagtegaal, Parks and Rice [ 51 we chose to 
adopt patterns of triangular elements which form quadrilaterals having straight diagonals. It is 
shown in [ 51 that when three of the four triangles forming such a quadrilateral satisfy the incom- 
pressibility condition, the fourth triangle does so automatically, and thus sufficient degrees of 
freedom become available to permit the variational principle to generate an accurate solution. 
Thus the finite element mesh utilized consisted of the quadrilaterals shown in fig. 2, each com- 
posed of four constant-strain triangles formed by its diagonals. 

The incremental stiffness equations deduced from the variational principle, which must be 
solved for each incremental step, are linear algebraic equations with a symmetric coefficient matrix 
(the composite incremental stiffness matrix) which is banded. By appropriately ordering the un- 
known nodal velocities, the bandwidth is minimized and the number of operations required for 
solution is correspondingly reduced. To minimize computer storage requirements, a compressed 
storage scheme is used which simply involves storing only the nonzero diagonals of the lower tri- 
angular part of the incremental stiffness matrix. A modified Cholesky solution procedure is used 
to solve the stiffness equations. Many modifications have been made in the program to improve 
efficiency, accuracy and flexibility. These range from the introduction of automatic finite element 
mesh and time increment step size generating procedures to the development of restart and data 
retrieval capabilities. 

5. Plane strain extrusion of an aluminum billet 

The stress and deformation fielc& for the extrusion of an aluminum billet were evaluated using 
the program already discussed. An aluminum slab of finite length in an initially stress-free state 
was forced into a symmetrical die after sliding between smooth rigid plates which simulated a 
cylinder in the analogous axisymmetric case. Fig. 2 shows the initial configuration in which the 
billet was assumed to have been machined to fit the die. Also shown is the configuration after 
most of the billet had been extruded through the die. A rigid smooth piston pressing against the 
rear face of the slab and moving with prescribed velocity provided the driving force. As mentioned 
in the previous section, each of the quadrilaterals shown in fig. 2 contained four triangular finite 
elements. 

Isotropic work-hardening was assumed with the Mises yield condition. The hardening function 
was selected to fit a measured tensile stress-strain curve, corresponding to the stress-strain curve 
in octahedral shear shown in fig. 3. Some stress components in a metal-forming process such as 
extrusion can easily reach magnitudes of six times the yield stress in shear, which is seen to be al- 
most equal to the hardening modulus, so that for correct analysis it is necessary to include convec- 
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Fig. 3. The stress-strain relation in octahedral shear for an aluminum alloy. 

tion terms as discussed in section 2 and as included in the program used. 
The die considered in this study produced a 25% thickness reduction over a distance of 1.27, 

where a is half of the original sheet thickness, and was shaped in the form of a 5th order poly- 
nomial curve with zero curvature and slope at both ends. A network of 6 X 36 = 216 quadrilateral 
elements was employed, and the resulting composite incremental stiffness matrix was symmetric, 
of order 5 18 and half-bandwidth 18, after elimination by static condensation of 432 degrees of 

freedom corresponding to quadrilateral centroid nodes. The extrusion calculation was continued 
until steady state had been achieved as indicated by the appearance of a uniform region of residual 
stress in the extrudate. The resulting total displacement of the driving piston was 5.59~ (in a com- 
putation requiring 522 incremental steps). 

It may appear from fig. 2 that the extrudate emerges as a rigid body; nevertheless, unloading 
strains of the order of elastic strains do occur but are not apparent at the scale of that figure. How- 
ever, they are crucial in generating the redistribution of stress leading to the distribution of uni- 
form longitudinal residual stress discussed in the previous section. The plastic shear accompanying 
the section reduction associated with extrusion through the die is evident in the deformed con- 
figuration of fig. 2. This is associated with the “lost work” in this process since the shearing ab- 
sorbs energy but does not contribute to the section reduction. The pattern of distortion of the 
finite element mesh shown in fig. 2 is clearly within acceptable limits for computational accuracy. 

Fig. 4 shows the variation of driving force required per square inch of piston area. The curve 
with smaller oscillations, marked “6 X 36 network”, corresponds to the configuration described 
above and shown in fig. 2, where there are six quadrilateral finite elements across the half-width of 
the slab. As will be described later, a coarser network was also considered with four elements 
across the half-width, which yields the curve with more pronounced oscillations. 

It is clear from fig. 4 that apart from the oscillation the driving force settles down to a steady 
state value after a piston motion of just over the half-width of the slab, which is close to the die 
length of 1.2~. For the early displacement increments the deformation is primarily elastic. As 
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Fig. 4. The variation of driving force for the extrusion process. 

plastic flow sets in, a more gradual increase in force occurs, which then settles down, on the aver- 
age, to a steady state value. The oscillation is associated with the fact that the curved boundary 
is approximated as the polygonal line formed by the straight edges of the triangular finite elements 
adjacent to the boundary, but since the elements move, the polygonal approximation varies. In 
fact the polygonal line assumes the same shape each time the finite element mesh advances by one 
mesh spacing - this explains the periodicity and establishes the wave length of the oscillation. Al- 
though the oscillation is much more pronounced for the coarser mesh, the average force magnitude 
agrees very well with the result for the finer mesh - this suggests that the latter provides a satis- 
factory model for the continuum. 

The fact that the driving force does settle quickly to a steady state value indicates that the 
procedure of using patterns of triangular elements which form quadrilaterals with diagonals 
- termed crossed-triangles - does overcome the constraint of near-incompressibility at large plastic 
flow as discussed by Nagtegaal, Parks and Rice [ 51. Experience with other patterns of triangular 
elements indicates that with their use the deduced driving force would have continued to increase 
with displacement. 

Fig. 5 shows the extent of the active plastic elements in the steady state mode after a displace- 
ment of 4.56a, which corresponds to the deformed state in fig. 2. The current plastic flow is essen- 
tially limited to a single region. The separated plastic triangles in the extrudate are essentially hover- 
ing on the borderline of unloading, and one or two of them may load and unload several times be- 
fore settling into the unloaded condition. Thus a single triangle of four in a quadrilateral, separated 
from the continuous plastic region, exhibits current plasticity; this fact is associated with the use 
of the crossed triangles. There can be an appreciable discrepancy in the magnitudes of stress com- 
ponents in the four triangles, although the average values yield a smooth stress distribution in the 
work-piece. The yield stress values in the separate triangles are much closer however. In plotting 
stress distributions we use averages for the quadrilaterals. 

Fig. 6 gives a plot of the distribution of longitudinal stress components-each curve represents 
the stress variation along a line passing through a different row of 36 quadrilateral centroids. The 
initial distance of the row from the center line, labelled “lateral station”, is indicated for each 
stress curve. The region between x = 8.5~ and x = 1 la is clearly a region in which the longitudinal 
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Fig. 5. The configuration of the plastic region in the steady state. 

stress has no longitudinal variation and thus represents a steady state residual stress pattern. The 
longitudinal stress does exhibit a lateral variation in this region which ranges from compression at 
the midplane to tension at the free lateral surfaces. 

The state of stress in the uniform residual stress region was discussed in the previous section, 
where it was shown (15) that the lateral stress uYY and the shear stress u,), are zero there due to 
the requirements of equilibrium. As a check on the calculation fig. 7 shows the distribution of 
shear stress along the same rows of quadrilateral centroids. Virtually zero shear does occur for all 
rows in the residual stress region. The shear distribution required to transform the residual stress 

u..~ (ksi) 

Fig. 6. The distribution of longitudinal stress oxx at steady state 
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Fig. 7. The distribution of shear stress oxY at steady state. 

pattern to zero surface traction at the free end is evident for x > 1 la as well as the large shear 
components at emergence from the die. 

The stress distribution is determined from the variational principle (4) for the velocity distribu- 
tion. The latter gives the strain-rate history from (2), and the stress is then determined from the 
elastic-plastic constitutive relation. Some inaccuracy in the stresses can therefore be expected, 
and a good check is to test for equilibrium. In the residual stress region the resultant longitudinal 
traction across a section is zero since no tractions are applied to the extruded material. That no 
traction is transmitted across the free surface at the forward end of the extrudate can be checked 
by summing the nodal forces there, and this sum per unit area is down by a factor of lo-’ from 
the residual stress levels. Integrating the residual stress levels across the section by Simpson’s rule 
yields an average stress of magnitude 5% of the maximum residual stress. This result suggests that 
the accuracy of the stress determination is of this order. 

Features of the stress distribution which are of technological interest can be seen in fig. 6. For 
example, the tensile peak which occurs at the surfaces shortly after emergence from the die (at 
x = 7.2~) corresponds to an extrusion defect sometimes observed, namely the appearance of sur- 
face cracks. Modification of die geometry at the exit can eliminate this problem, and it might be 
possible to investigate this condition numerically with the present program. Tensile stresses along 
the center-line inside the die are also a potentially significant feature. 

As mentioned in connection with the driving force variation in fig. 4, the solution was evaluated 
for a coarser finite element mesh of four quadrilaterals across the half-width of the entering billet. 
The corresponding longitudinal stress distributions are shown in fig. 8. These are simi!ar to the 
more accurate results in fig. 6 and show the main features exhibited there. For quantitative com- 
parison fig. 9 shows the distribution of residual stress across the section taken from the two sets 
of results. They exhibit the same general trend with the coarser network determining stresses 
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Fig. 8. The distribution of longitudinal stress deduced from a coarser finite element network. 
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Fig. 9. Comparison of residual stress distributions using two finite element networks. 
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reduced by somewhat less than 20%. This could be consistent with the 5% error suggested by 
checking equilibrium for the more accurate solution. 

The die contour considered in the calculation was determined by a fifth order polynomial with 
zero curvature at each end. This provided a smooth variation of curvature which gave a smooth 
variation of the boundary traction term (13). However, in a localized region at the die entrance, 
tensile tractions were deduced across the billet-die interface. This indicates that separation would 
occur and that the traction would remain zero until contact was re-established. We plan to modify 
the program to permit separation, but since this is a highly localized change in traction, we do not 
expect it to alter appreciably the rest of the solution; hence, local tensile tractions were permitted 
in the present solution but restricted to the immediate neighborhood of the die entrance. 

Although the variation of only two stress components has been illustrated in this paper, the 
solution provides complete information on the history of the stress distribution throughout the 
process. The stress history in a material element tends to be quite complicated and far removed 
from proportional loading and unloading. This has a bearing on the adequacy of the elastic-plastic 
constitutive relation that is used. In spite of the complexity of the solution the care exercised in 
devising an efficient numerical solution procedure and computer program led to a running time of 
only about 15 minutes on the IBM 370/l 68 computer at the Stanford Center for Information 
Processing. 

6. Discussion 

The solution we have presented comes at the beginning of a project to analyze metal-forming 
processes. It thus comprises a simple first attempt on such problems, and it is expected that more 
general boundary conditions and constitutive relations will be incorporated and also schemes to 
reduce the time and hence cost of computation. For example, if analysis of the steady state solu- 
tion is of primary interest, the selection of an initial stress field much closer to the final field than 
the unstressed state might lead to appreciable computational savings. Direct attack on the steady 
state case might also be possible without the need to evaluate the transient solution as in the 
present approach. On the other hand, more involved constitutive laws might be necessary which 
will complicate the computational problem. For example, adoption of an isotropic work-hardening 
law does not permit the inclusion of a Bauschinger effect. Since unloading and reverse loading 
often occur when the work-piece leaves the metal-forming region of the equipment, the maintained 
elastic stiffness of the body under reversed loading probably leads to excessive residual-stress levels. 
In some cases it may be important to reduce this source of error. 
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