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Abstract-A two-degree-of-freedom lumped-mass model is used to gain understanding of the 
equilibrium and stability of a circularly towed cable. Particular cases considered are those of no drag, 
viscous drag, and viscous drag with a crosswind. 

1. INTRODUCTION 

The problem of the equilibrium shape of a circularly towed cable has been of interest for 
several centuries. The linear eigenvalue problem for a cable spun in a vacuum about its own 
axis (zero tow radius) was first studied by D. Bernoulli (1700-1782) and L. Euler (1707-1783). 
The problem was then abandoned until 1955 when Kolodner [l] studied the non-linear 
eigenvalue problem. The first attempt to study the non-linear forced response (nonzero tow 
radius) was by Caughey [2]. Since then there have been many investigators, including the 
present authors [3], who have used various numerical methods to obtain solutions to the 
continuous system using specific values of the governing parameters. Very little progress has 
been made toward understanding the general behavior of this system. 

The present work is a portion of an overall effort [4] which successfully employed the finite 
element method to obtain solutions to the problem of a continuous whirling cable subjected 
to aerodynamic drag. Because of the highly non-linear nature of the problem, a priori 
knowledge of the nature of the solutions is necessary. This study provided the information 
and predicted other phenomena which could occur and might not otherwise have been found 
in a purely numerical study. 

To gain insight into this complex system, the simplest model exhibiting the qualitative 
behavior of the actual system is examined. This model is an inextensible massless rod with a 
lumped mass attached at the tip. The geometry and associated coordinate systems are shown 
in Fig. 1. 

Fig. 1. Single lumped mass system 
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The non-linear eigenvalue and response equilibrium positions for the case of a vacuum are 
found and their stability determined using the perturbed equations of motion. A viscous drag 
law is then utilized to examine the effects of drag without introducing the complexity of 
aerodynamic drag. Once more equilibrium positions are found and their stability de- 
termined. A linearized model is then employed to investigate the effects of a crosswind on the 
motion of the model. 

2. EQUATIONS OF MOTION 

The XYZ Cartesian coordinate system is an inertial reference system, while the xyz 
coordinate system rotates with an angular velocity w about the z axis. The mass M is 
attached to a massless-inextensible rod of length L which is in turn attached to the tow point 
T with a frictionless ball-joint connection. The tow point is a distance R along the x axis. The 

angular velocity o of the tow bar OT is constant. The elevation angle f3 and lag angle C/I are 
generalized coordinates describing the position of the tip mass. 

External forces acting on the system are gravity, directed in the E, direction, and viscous 
drag on the sphere. The drag force is proportional to the magnitude of the velocity of the 
sphere relative to the fluid and is directed opposite to the relative velocity. The relative 
velocity, v, is the vector difference of the absolute velocities of the tip mass and crosswind, 
hence the viscous drag force F, is given by 

F, = -cv, (2.1) 

where c is the viscous drag coefficient. If the crosswind is assumed to have a constant 
magnitude u, and to have a constant direction a (where r is the angle the wind vector makes 
with the X axis and is positive by the right hand rule about the positive Y axis), the 
nondimensional equations of motion are obtained from Lagrange’s equation as 

RZ[~-~cos~cos~-(~-1)2sinUcos~]+Q~[~-.scosCIsin~] 

+ sin 8 = - p[cos SI cos 6 cos(z - 4) - sin N sin f3] 

R2[sin2 f@+2(&,- 1)~sinHcos 0+8sinOsin~] 

+ 0[[(4 - 1) sin2 8 - ssinOcos4] = -pcosccsinosin(r+4) (2.2) 

where (‘) = d( )/dz and the following parameters have been defined: 

R, the nondimensional rotational velocity 

fi=(jj L J 9 

E, the nondimensional tow radius 

R 
c=- 

L 

c, the nondimensional drag coefficient 

(2.3a) 

(2.3b) 

Y 
C t 

4=G Y J- 
fi, the nondimensional crosswind coefficient 

(2.3~) 

z, the nondimensional time 

5 = wt. (2.3e) 

The equilibrium equations may then be obtained from (2.2) by setting the time derivatives 
and wind coefficient /I equal to zero, yielding 

sin e,( 1 - Q2 cos 0,) - 0’~ cos 0, cos & - C&F cos 0, sin 40 = 0 

[(sin B0 + E cos f$()) - QZE sin f$O = 0 (2.4) 

where B0 and &, are the equilibrium values of 0 and C/I respectively. 
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A convenient variable which characterizes the behavior of the system is the non- 
dimensional tip radius rp defined as R,/L. 

rp = (e2 + 25 sin 8, cos t$, + sin2 @O)1’2 . (2.5) 

This variable allows construction of amplitude rp vs frequency Sr plots as in vibration 
problems. 

The stability of an equilibrium position must be determined using a dynamic stability 
criterion since the system is nonconservative. Perturbing the equations of motion (2.2) about 
the equilibrium values B, and 4, yields linearized equations of motion in the neighborhood 
of the equilib~um position. 

pm +CCl(S> +[Kl(rf = (01 (2.6) 
where {t) is the column vector of the perturbed coordinates. The inertial matrix [M] is given 

while the “damping” matrix is 

and the stiffness matrix is 

(2.7) 

L.q=[_ ni R2 sin 2(10 

fz2 sm 2& f25 sin’ S, 1 
(2.9) 

where 

k, 1 = R’[.s sin B, cos #, - cos B,] -t- h1& sin OO sin & + cos &$ 
- /?[cos c( sin 8” cos(z - &) + sin 01 cos 8,] 

k, 2 = e[Q2 cos tlo sin &, -s2< cos fIO cos & t fl cos M cos 8, sin(T - $)] 

k, t = &[St2 cos B. sin #bo - Qi cos U, cos &] - 85 sin 28, + p cos ol cos 8, sin@ -f- 4,) t22.1~) 

kz2 = 8 Q2 sin GO cos & + Stir: sin 8, sin Qi, -F @ cos a sin BO cos(t + #& 

The coefficient matrices [I@ [Cl, and [K] reveal a great deal about the nature of the 
stability problem. The inertial matrix [M] is diagonal, symmetric, and positive definite for all 
II,, as expected. 

The “damping” matrix [C] can be decomposed into a symmetric dissipative damping 
matrix [C,] and a skew-symmetric gyroscopic matrix [CJ, where 

[C,]=f22sin28, _f o . [ 1 

(2.11) 

The de~mposition of the stiffness matrix [Kj afso contains skew symmetric terms due to 
the nonconservative position-dependent forces created by drag and wind. The stiffness 
matrix also has elements which are periodic in time due to the crosswind, thus creating a 
coupled pair of Hill equations containing damping, gyroscopic, and nonconservative effects. 

Bolotin [5] has shown for a nonconservative system that a diagonal damping matrix is 
destabilizing for slight damping when the diagonal elements of the dissipative damping 
matrix are not equal, However, for sufficiently large values of the drag coefficient <, damping 
can once more have a stabilizing effect. 

The problem at hand, neglecting wind, adds two important features: (1) a possible 
stabilizing effect due to gyroscopic forces, and (2) a destabilizing effect due to the 
nonconservative forces which vary linearly with the drag coetffcient. Thus, nonconservative 
drag forces can cancel the stabilizing effects of the damping matrix for even farge values of c. 
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Assuming exponential motion 

leads to the eigenvalue problem 

ln*[M] +A[C] + [K]I = 0 

which upon expansion yields 

(2.12) 

(2.13) 

(2.14) 

where 

p0 = R4 sin* 0, 

p1 = 2!F13c sin’ 8, 

p2 = Clz[5* sin* f3e +R* sin* 20, +(k, I sin* 8, + k,,)] 

p3 = R<[(k, 1 sin* B,, + k,,) + R* sin’ 2&] 

~4 = k,,k22-bkn. 

(2.15) 

Rather than solving for the roots of (2.14). it is advantageous to use the Routh-Hurwitz 
criteria when drag is present. These criteria state that necessary and sufficient conditions for 
asymptotic stability are 

Pl ‘0 (2.16a) 

P1Pz-POP3 ’ 0 (2.16b) 

(PlPz-PoP3)P3-P:P4'0 (2.16~) 

P4>0. (2.16d) 

Note that the static instability (A = 0) is given when the fourth condition is violated, i.e. p4 
< 0. As long as drag exists p1 > 0, hence conditions (b) and (c) represent dynamic stability 
criteria. 

In the case of no drag (i = 0) only orbital stability can be shown and (2.14) can be used 
directly since p1 = p3 = 0 thus reducing it to a quadratic in A*. 

The equilibrium and stability of the system with and without viscous drag as well as the 
behavior of the system with wind are now considered. 

3. THE RESPONSE PROBLEM IN A VACUUM 

Solving the equilibrium equations (2.4) for the case of no drag yields 

4. = 0 or cbo = 71 

and 

(3.1) 

sin 13,( 1 -Q* cos 0,) = *E Q* cos e. (3.2) 

where + E corresponds to 4. = 0 and-s to 4. = n. 
The non-linear eigenvalue problem obtained by setting E = 0 in (3.2) is found in many texts 

(See Greenwood [6]) and will not be covered here. 
From (3.2), the solution to the response problem (E # 0) may be written in the form 

(3.3) 

Bearing in mind that this model is used to represent a cable, only solutions to (3.3) below 
the tow plane are considered. From (3.3), equilibrium solutions for which Q is real exist only 
for 8 in the ranges (0, n/2) for $. = 0 and (sin-’ E, n/2) for 4. = rc. The out-of-phase solution 
4. = rc does not exist for E > 1 since the tow radius is greater than the rod length thus making 
it impossible for the mass to cross the spin axis. Amplitude-frequency plots using (3.3) and 
(2.5) for E = 0.1 and E = 0.3 are shown in Fig. 2. These plots are very similar to those obtained 
for the forced response, amplitude vs driving frequency plots for a mass-hardening spring 
system with no damping. 
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.25 

Fig. 2. Tip radius vs angular velocity for non-linear response in vacuum. 

Once all drag-dependent terms are set to zero the stiffness matrix is symmetric and the 
“damping” matrix is purely gyroscopic. This problem has the same form then as that of a 
rotating shaft problem with no damping. One important difference exists in that the stiffness 
of the shaft is always positive while the “stiffnesses” of the rotating bar are geometry 
dependent and can be negative. Setting [ = 0 and dividing (2.14) through by p0 yields the 
characteristic equation 

A4 + [of -t (0; + 62]P + cti:o; = 0 (3.4) 

where 

0; = 
sin3 0, f E fc 

= d2 = 4 sin B0 02 2 + sm B0 cos2 80 (3.5) 

The dependence on Q2 has been removed by using the equilibrium equation (3.3). The 
characteristic equation is easily solved for A2 and the following stability criteria obtained, i.e. 
the solution is orbitally stable if and only if 

02fB2 > 0 1 2 (3.6a) 

o:+w:+62 > 0 (3.6b) 

(of+o:+62)2-4W:CU: > 0 (3.6~) 

holds simultaneously. 

Conditions (3.6a) and (3.6b) represent static stability criteria while condition (3.6~) 
represents a dynamic stability criterion. It is instructive to suppress the role of the driving 
frequency and view the problem in terms ofgeometrical variables. The conditions (3.6) can be 
rewritten in terms of the equilibrium elevation angle 0, and the tow radius using (3.5). The 
criteria of (3.6) then become 

E*sin3 B0 > 0 

4sin%,-3sin3%,f2E > 0 

(3.7a) 

(3.7b) 

cos2 e, 
sin4 B0 + 8 sin2 %,, cos2 B0 + 16 cos4 B0 k 16~ ___ 

sin %0 
> 0. (3.7c) 

For the case of the in-phase solution 40 = 0, conditions (3.7) are satisfied for all BO, hence 
all in-phase equilibrium solutions are orbitally stable. Rewriting the stability criteria for the 
out-of-phase solution 40 = 7~ and solving for F yields 

E > sin3 B0 

E < +(4 sin B0 - 3 sin3 0,) 

(3.8a) 

(3.8b) 

1 sin B0 
EC-------- 

16 cos2 8, 
[3 cos2 %, + 112. (3.k) 
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Fig. 3. Stability diagram in the i:- O,, plane for the out of phase solution, cbo = X. 

Fig. 4. Stability diagram for out of phase equilibrium positions. 

The relevant stability boundaries using (3.8) are shown in Fig. 3. Stable out-of-phase 
solutions exist only for E < Em where .sL is the common intersection of all the criteria of (3.8) 
and is given by 

FL = (4/5)3’” = 0.7155. (3.9) 

These results can be interpreted in terms of the frequency by referring to Figs. 3 and 4 and 
considering c < Ed. As the mass moves from position A (asymptotic solution rP = 0 for 
fi2 --f XI) to position D (asymptotic solution I’, = 1 -E for $2’ + ‘x), a dynamically unstable 
region AB is passed through first, then a stable region BC, and then a statically unstable 
region CD. It can easily be shown that the static stability criterion (3.8a) coincides with the 
“vertical tangency” point of the out-of-phase solution of the frequency-response curve. An 
equilibrium stability plot for E = 0.45 is shown in Fig. 5. 

The eigenvalues obtained from (3.4) could be used to generate eigenvectors in the standard 
manner. But since the only question was one of stability, that will not be done here. However, 
it is interesting to note that when it is done, the resulting motions are uncoupled in the case of 
the static instability, but coupled through gyroscopic effects for the dynamic instability. 
Therefore, even though the equilibrium solutions lie in the &,, = 0, rr plane, the perturbed 
motion does not; and any stability analysis which attempted to treat the system as a single 
degree-of-freedom system would fail. 
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-- -- Static@lly Unstable 

-...- Dynamically Unstable 

c, = f 

------------k 

c 

yL_ 
B 

A 
...I..._... 

0 1.0 2.0 3.0 4.0 

Angular Velocity Sl 

Fig. 5. Stability of equilibrium for non-linear response in a vacuum. 

If the gyroscopic effects are neglected, it can be shown that the out-of-phase solution is 
always statically unstable; therefore, by adding these effects a portion of the lower branch of 
the curve is stable and the nature of the instability is changed from static to dynamic for the 
remainder. 

Once again the analogy between the response of the rotating pendulum and the forced 
response of the hardening spring-mass system described by Duffing’s equation is evident. The 
amplitude-frequency plots and static instabilities are very similar, but two new features are 
added by the rotating pendulum. The first is that of a “cut olY value (E 3 1) of the forcing 
mechanism for which the out-of-phase solution disappears. The second is that of the dynamic 
instability caused by the interaction of gyroscopic and negative geometric stiffness effects. 

4. THE RESPONSE PROBLEM WITH VISCOUS DRAG 

The effects of viscous drag will now be considered by solving the equilibrium equations for 
[ # 0 and E # 0. These equations are coupled transcendental equations and would be, in 
general, very difficult to solve. Sotutions can be obtained, however, by noting that the system 
is linear in sin &, and cos &,. Solving (2.4) as a set of nonhomogeneous linear algebraic 
equations in the unknowns sin & and cos &, yields 

[tan 6, 
sin cbo = C(fl2 + 12) 

tan Go - (Q2 + c2) sin 0, 
cos i$, = - 

r(s22 +52) . 

(4.1) 

The phase angle (p,, can be eliminated using 

cos2 4. + sir? & = 1 (4.2) 

thus giving a quadratic equation in Qz 

[cos’ ~*(sin’ B0 -aZ)]R4 + [i2(sin2 H, -c2) cos’ B0 

- 2 sin’ B, cos t?,]Q2 +sin’ o0 = 0. (4.3) 

The solution to this equation is 

where 
A = (Sin2 80 -Ed) COS’ 8, 

(4.4) 

B = t2A-2 sin’ 8, cos 8, (4.5) 

C = sin’ 8,. 
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Fig. 6. Tip radius vs angular velocity for non-linear response with viscous drag. 

Once again it can be shown that only one solution branch exists for E 3 1; therefore, the 
case of E < 1 will be the one studied in detail. 

The amplitude-frequency plot shown in Fig. 6 was constructed using the equilibrium 
equation (4.4) and the definition of the tip radius (2.5). If [ is chosen such that it is slightly 
greater than zero, the curve does not change qualitatively from the case of zero drag. This 
differs from the damped hardening-spring analogy in that if a slight amount of damping is 
added, the in-phase and out-of-phase solutions merge and the resulting vertical tangency 
point moves in from 0 = cc as the damping is increased. 

As [ is increased the in-phase and out-of-phase solutions neck down until at a critical value 
of [ a separatrix is formed. As [ is increased still further the two branches break apart. At high 
values of damping [, the low-amplitude portion of the in-phase solution is joined to the low- 
amplitude portion of the out-of-phase solution. The corresponding large amplitude solutions 
of the in- and out-of-phase solutions form the separated upper branch. 

Stability of the equilibrium solutions as determined from the Routh-Hurwitz criteria 
(2.16) is shown in the amplitude-frequency plot of Fig. 7 for E = 0.1 and c = 0.10 and i 
= 0.165. An analysis of the asymptotic positions (1) 8, = n/2, &, = 0, (2) B, = 7r/2, & = rr, 
and (3) Go = sin-’ E, $J~ = rr shows that position (1) is stable, (2) is statically unstable, and (3) 
is dynamically unstable regardless of the values of e or <. 

Therefore, from Fig. 7 the effects of viscous drag are most dramatic for [ > cGri,. If [ is close 
to &,, the system has the possibility of three non-linear jumps. The first occurs at A where the 
system jumps from the large tip radius solution at A to the small amplitude solution at B as Q 
is increased. If Q is now decreased, a second jump will occur at C where the jump will be from 
a small tip radius to a larger one at D. If the bar can be made to assume a position on the 
stable portion of the upper branch and Sz then decreased, a jump will occur at E from a large 
tip radius to a small one at F. These jump instabilities are static in nature. The dynamic 
instability boundary does not appear in Fig. 7 since the small value of e necessary to illustrate 
the jump phenomena causes the dynamic instability boundary to appear only at extremely 
large values of a. 

- St&la 
- - - - Statically Unstable 

A-r B. R increa*ing 

C - D. n dewearing 

E - F. CI decreasing 

G-r H. Cl deaearing 

1.0 2.0 3.0 4.0 

Angular Velocity Cl 

Fig. 7. Stability of equilibrium for non-linear response with viscous drag, 
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5. CROSSWIND EFFECTS 

The effects of crosswind for small crosswind coefficients p, are investigated by considering 
the perturbed equations of motion (2.6). These are first simplified to the case of a horizontal 
crosswind LY = 0. The stiffness coefficients are: 

k, 1 = Q’[E sin 8, cos & - cos 2&J + Q&s sin 8, sin f& +cos 19~ - p sin 8, cos(r - &J 

k, 2 = E[LP cos 8, sin do - Qg cos 8, cos 4,] + p cos B. sin(r - c$,,) 

kzl = E[@ cos B,, sin C#I~ - Q[ cos B,, cos &] - Qc sin 2eo +/I cos &, sin(r + &,) 
(5.1) 

kz2 = cR2 sin 8, cos & + W’s sin B,, sin &, + p sin B. COS(T + c&~). 

Even with this simplification, the motion is described by a coupled pair of Hill equations. 
Therefore, to simplify even further, the perturbed 4 motion is constrained such that 4. = 0. 
The elevation angle 8, is correspondingly redefined such that (- 7r/2 < & < 7r/2). The 8 
perturbed equation of motion is 

where 

C~S 8, k= [&sine,-cos28,] +.,-Pcosr 
(5.3) 

and 

j = B sin 0, 
7’ 

The expressions for i and B are next written as a function of t& using the equilibrium 
equation (3.2). 

i= w: -/?cos r (5.4) 
j = p cos B,(sin e. + E) 

where 0: was defined previously as 

w2 = 
sin3 e. + E 

1 sine0 * 
(5.5) 

Substitution of i (5.4) into (5.2) yields 

~+~8+(w:-~cosz)o = 0 (5.6) 

which is a dampea Mathieu equation. Bolotin [5] has shown that the Strutt diagram for the 
undamped Mathieu is modified by damping as shown in Fig. 8. 

Fig. 8. Stability diagram for the constrained system with crosswind. 
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Therefore, as long as W: > 0 (which is the case for 0 3 B0 d n/2) the system is stable for no 
crosswind. This is in agreement with the results of Section 2. It is clear from Fig. 8 that for a 
given equilibrium position there is a value of the crosswind velocity parameter b which will 
cause unstable motion. 

Generalization from the results of the out-of-phase solution for the more complex system 
should not be made from this highly simplified model, because the single degree-of-freedom 
assumption eliminates the possibility of Coriolis stabilization. Therefore, the resulting 

interaction with the negative stiffnesses which cause the dynamic instability could not occur. 
Thus it has been shown that even under simplifying assumptions, the rotating rod-mass 

system with crosswind results in a problem of parametric excitation dependent both on the 
magnitude of the crosswind velocity and the angular velocity of the system. 

6. CONCLUSION 

This study has considered the simplest model which will illustrate the qualitative behavior 
of a circularly towed cable, that of an inextensible massless rod with an attached tip mass. 
Equilibrium positions in the rotating reference frame were found and plotted using tip 
amplitude-frequency plots for the cases of no drag and viscous drag. The analogies between 
these plots and those for a hardening-spring system with and without damping were shown. 
A new feature not present in the damped hardening-spring system, the detached upper 
branch, was shown to exist. 

Stability of the equilibrium solutions was determined using the perturbed equations of 
motion. A dynamic instability in the out-of-phase solution was found for the case of no drag. 
This instability was dynamic in nature even though nonconservative forces were not present 
and is caused by an interaction of stabilizing effects due to gyroscopic terms and destabilizing 
effects due to centripetal acceleration terms. Addition of viscous drag further complicates the 
stability by adding dissipative damping and nonconservative stiffness. Neither can be 
considered separately since both are linearly dependent on the drag coefficient. Both of these 
effects may cause further destabilization depending on the amount of drag present. 

The presence of dynamic instabilities caused by wind-induced parametric excitation was 
demonstrated even after very restrictive simplifying assumptions were made. 
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Resume 

On utilise un modele de masse concentree a deux degres de 
liberti pour comprendre l'e'qulibre et la stabilite d'un 
ctble tit-6 circulairement. Les cas particuliers consider& 
sont ceux sans trainee, avec trainee visqueuse et trainee 
visqueuse avec un vent transverse. 

Zusamnenfassunq: 

Ein Model mit Ersatzmassen und zwei Freiheitsgraden wird 
zur Untersuchunp des Gleichgewichts und der StabilitB't 
eines im Kreise gezogenen Kabels benutzt. Als besonders 
Fille werden Ziehen ohne Widerstand, mit Reibungswider- 
stand und mit Reibungswiderstand unter Uuerwind behandelt. 
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