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AlMru+-A computatiortat scheme is presented for the ~~~~n of the optimal design of trusses. 
Constraints on the desii vi&&es @be cross-sectiomd areas) are considered. I.&ear@ elastic behavior is 
assumed, and opacity criteria are derived, bostd on strain energy ~~~~s. As in nmtkenmtic& 
programming techniques, the optimum is approached tbrougk 8 sequence of designs, each diering slightly 
from its predecessor. The design changes to be made at aech stage of the pruccdure are &term&d by 
application of the optimrdity criteria. Tim formulation is &ciinUy general to permit the soIution of tke 
problem of predicting both optimal member size and member layout-given the loads and the lo&on of the 
joiits. The procedure is illustrated with a number of numerical examples. 

NOTATION 

cross-se&onal area of truss member i 
siack fu~~n 
trial design corresponding to p and sz 
elastic modulus 
x and y components of external Loads 
augment& function 
Iength of member i 
total number of nodes 
total number of truss members 
potent2 energy 
fully-stressed set 
value of lower bound coustr&tt 
specific4 Yokune of mater% 
nod& displacements 
strain of member i 
lagmnge multipliers for arca constraints 
&range multiplier for volume c0Mraint (ah 4tquat to spccilic strain energy of fully-stressed members) 
specitic strain energy of member ik, correspondii to fully-stressed set p and constraint value S, 

~~~~~~~ ~~~~n~ techniques and the use of op~~ty criteria are probably the two 
most widely-used sotution techniques in the field of optimal structural design. Although both 
approaches have their advantages and many diverse applications of each have appeared in the 
technical literature, both also have certain drawbacks. For example, applications of optimality 
criteria tend to be limited to problems with relatively few design constrain&, and even these 
few consents must be rather simple if the mathemati~ form of the 0~~~~ criteria is to he 
tractable. Mathematics pr~rni~ techniques, on the other hand, can treat problems with 
constraints which are both more numerous and more complicated. Unfortunately, however, the 
~go~~rns employed to search for the op~~rn tend to consume co~siderab~ compu~r time as 
the number of design variabies in a problem is increased. 

In the present paper, an algorithm is given which resembles a tech&que of mathematical 
pro~amrn~~ in that it proceeds Qy stages, with an improve design ~ne~~d at each stage, 
Hbwever, in contrast to most mathematical programming methods, the improved design is 
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identified at each stage by the application of optimality criteria. The algorithm is explained and 
illustrated by application to the optimal design of a truss, where member cross-sectional areas 
are taken as the design variables. Dorn et af.[l] have treated a similar problem by linear 
programming. 

A description of the algorithm has been given previously[2], and for completeness that 
description will be given here as well, supplemented by additional explanation at several key 
points. In general, the present work constitutes a more complete and detailed account of the 
theory described in [2], and in addition a number of sign&ant examples are given here. 

2. ENERGY FORMULATION 

Consider the problem of finding the maximum stiffness design of a planar truss, given a 
specified total volume of material to be allocated to the various members of the tnrss, and 
specifying inequality constraints on the truss members cross-sectional areas. The connectivity 
of the truss is unrestricted: however, locations of nodes are specifmd beforehand, and the 
possibility of member buckling is ignored. Taylor [3] and Hiley [4] have shown how a problem of 
the type just described may be formulated by the use of the potential energy function of the 
structure. In the present paper a similar energy formulation will be used. The potential energy 
of the truss may be written 

where 

n = total number of truss members assuming each node conaeeted to all other nodes by a 
member, 

m = total number of nodes of truss, 
A, = cross-sectional area of member i 

f~ = kngth of member i, 
Fj = x and y components of external loads applied at interior nodes and numbered con- 

secutively, 
4 = nodal displacements, numbered corresponding to fi; 

and 1 represents the specific strain energy, de&red by 

qr = E &/2 (2) 

where E is the elastic modulus and 6 is the strain of member i (a linear fun&ion of nodal 
displacements). The volume constraint is 

where V is the specified volume of material. The inequality 

Ai h S 

constraints are 

(3) 

(4) 

where S is the speciiied lower bound constraint. 
It can be shown that the problem of maximum stiffness design is equivalent to that of 

maximizing the potential energy P[3,5]. 
The constraints may be introduced directly into the problem formulation by de&ring the 

slack functions a, by 

A,-a?=S, t=1,2...,n (9 

and introducing w multipliers A and Ai to form the augmented function 

L=P+A(V-~Adi)+~Ai(S-AI+a:). 
i-l i-l 

(6) 
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Requiring the first derivatives of L with respect to Sk, A,, and a, to vanish gives 

Y15 

2 liAig_fi =O 

?p?l,-Al,-A~=O (8) 

AAr = 0. (9) 

while application of the Kuhn-Tucker theorem of non-linear programming gives 

&SO, (10) 

These equations can be shown to be bath necessary and suflicient for optimality [3,6,7]. 
A basic assumption about the optimal design problem formulated above will now be made. 

ft is assumed that for every value of S in the interval O-C S 5 V/( i &) an optimal design exists. 
i-l 

That is, the optimal design is assumed to be a function of S. Furthermore, this function is 
assumed continuous. 

It is of interest to note that at least one optimal design can always be found easily for the 
value of the lower bound constraint given by 

For by qn (4) ah admissible designs must satisfy 

However the strict inequality in qn (12) cannot apply for any j since this would violate the 
volume constraint in eqn (3). Thus the optimal design for the value of S in qn (11) must be the 
“equally-sized” design 

4 = V,/(g h), j= 13,. . . , n. 

3. OBSERVATIONS ON THE GOVERNING EQUATIONS 

Inspection of the preceding set of governing qns (3HlO) leads to several observations of 
later use in this paper. First note that when a member area A, in the optimai design is strictiy 
greater than the lower bound constraint value S, then the corresponding slack function a,# 0 by 
eqn (5) and A, = 0 by qn (9), but then eqn (8) yields 

?Jr = A. (13) 

Thus all members with areas greater than 5 are stressed to the same level. 
Note that by eqn (2), eqn (13) may be written as a linear equation in the strain r, and hence 

linear in the nodal displacements: 

l r = 1: t/WE. (14) 

Next consider a member t in the optimal design which is stressed below the level A (qns (8) 
and (10) exclude the possibility that an element in the optimal design is stressed above the level 
A.): 

qt <A. (15) 
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Then by eqn (8) hc # 0 and so eqns (9) and (5) imply 

A, = S. (16) 

The implication of eqns (14) and (16) may be summarized by saying that the members of the 
optimal design may be divided into two groups: fully-stressed members (n, = A and A, > S) and 
members at the constraint (7, <A and A, = S). As shah be discussed later, under certain 
conditions borderline cases exist where a member is both fully-stressed and at the constraint. 

A second observation about the governing equations for the optimal design problem can be 
made with the help of the fully-stressed condition, eqn (14). Introducing eqns (14) and (2) into 
the equilibrium relations (eqn 7) yields 

(17) 

where the 6rst summation is over the set of fully-stressed members, and the second summation 
over the set of members at the constraint (hence areas equal S). e, is the sign associated with 
member r (compression or tension). 

Equations (14) and (17) have been formulated for the problem of maximum stiffness design 
for a fixed volume of material V. The maximum specific strain energy A is found as part of the 
solution. However, this problem may be shown[8] to be equivalent to the probkm of minimum 
volume design for specified A. From now on in this paper it will be assumed that a value of A is 
specified. The solution corresponding to this value of A may later be made to correspond to 
some specifkd volume of material by multiplying all results by a common factor. 

With A speci&d, eqns (14) and (17) become linear equations in the remaining unknowns & 
and A, Thus once it has been determined which members are to be fully-stressed in the optimal 
design, the areas and nodal displacements may be calculated by solving a linear system of 
equations. 

4. FULLY-STRESSEDSET ANDTRIALDESIGN 

The priucipk di5kulty then in &ding OR optimal design lies in determining which members 
are fuIIy-stressed. In view of this situation and for convenience in the discussion to foUow, the 
following definitions will be made. 

Suppose that a subset of the n members of the truss have specific strain energy A, as well as 
specified signs, and do not violate nodal displacement compatibility. These members will be 
called a “fully-stressed set”. 

Suppose that a fully-stressed set p has been designated and a value of the lower bound 
constraint specified, S = S*. In general, it is not known beforehand if p corresponds to an 
optimal design for S = S*. However, knowing p and S*, we can neverthekss determine a 
corresponding set of areas and displacements by writing eqns (17) and (14) for the fully-stressed 
set p and then solviag these equations. 

The set of areas and displacements found in this way will be written D(p,S*) and will be 
called the “trial design corresponding to p and S*.” Note that by assumption the trial design is 
a continuous function of the lower bound constraint, for a fixed p. 

Once a triai design Dfp, S*) has been calculated, eqns (IO) and (4) may be used to determine 
if the trial design is also an optimal design. If D(p,S*) is optimal, then p will be calkd the 
“optimal fully-stressed set corresponding to S+.” 

5. BASIS FOR ALGORITHM 

Using the definitions just introduced, we can now discuss the basis for an algorithm for 
finding the optimal design. 

Starting with a fully-stressed set r and a value of S = S* such that D(r,S*) is optimal 
(finding such a starting design presents no dit%ulties, as was observed earlier), S is repeatedly 
reduced and D(r,S) recalculated until a value of S is found for which D(r,S) is non-optimal. 
Since the cause of the non-optimality must lie in the incorrect choice of fully-stressed members, 
a method is needed for identifying those members which must be added to or deleted from the 
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optimal fully-stressed set as D decreases. Such a method may be derived from a close 
examination of the optimal designs in the neighborhood of a point where the optimal fully- 
stressed set changes. 

Consider the particular case where a single member, j say, is to be added to the optimal 
fully-stressed set. In Fig. 1, S = S, is the value of the lower bound constraint for which qj first 
equals the constraint value A as S is decreased from a value S2 slightly above S, to a value SI 
slightly below S, Note that, for S = S,, member j is an example of a “borderline” case referred 
to earlier (Aj = S, and qj = A). We specifically exclude from consideration the possibility that 
more than one borderline element exists at S = S,. This restriction will be discussed later in this 
paper. 

LOWER SCUND CaVSTRAlNT UWE, S 

Fii. I. Member j to be added to optimal fully-stressed set. 

If p denotes the full-stressed set for which D(p, S) is optimal for S, B S 2 S, then D(p, S) is 
non-optimal for S, > Sr S,, since by hypothesis p lacks the fully-stressed member j. 

Denote by q the fully-stressed set obtained from p by adding member j and consider a 
member, k say, which belongs to neither p nor q. By hypothesis, 

‘dsc) = qk(q,sc) <A. 

Furthermore since T&,S) and qk(q,S) are continuous functions of S, it follows that 

W(P, S) < A and w(q, S) < A 

for St I S < S,. For the same range of S, it must also be true that 

since D(p,S) has been assumed to be non-optimal. Thus the member to be added to the 
fully-stressed set p to form the optimal fully-stressed set q (for St s S < S,) may be determined 
by examining the non-optimal design D(p, S+-the member to be added is that member with 
specific strain energy exceeding A. The sign associated with the member j to be added is 
identical to the sign of member j in D(q, SI), as may be established by a continuity argument 
similar to that given above. 

The preceding discussion dealt with the procedure for identifying the member to be added to 
the optimal fully-stressed set as S decreases. An analogous procedure can be developed for 
identifying the member to be deleted from the optimal fully-stressed set. Proceeding as in the 
previous paragraphs, it can be shown that the members of the optimal fully-stressed set can be 
identified by inspection of a non-optimal design D(p, &)-the criterion being that the member 
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in p whose area is less than SC is to be deleted from p to form the optimal fuhy-stressed set. 
The arguments of the preceding paragraphs depend in an essential way on knowledge of the 

approximate location of a point such as S = SC where a change occurs in the optimal 
fully-stressed set. This information can be provided through application of a modified version 
of an interval-halving algorithm such as the one given in Fig. 2. The algorithm starts with a 
fully-sissy set p and two values of S, St and SZ say (SE < SZ), such that Lyp, 5’1) is 
non-optimal and Z&J, &) is optimal. Then, for a specified number e > 0, the algorithm produces 
two new values of S, S3 and & say (SI s S3 c S4 s SZ), such that D(p, S3) is non-optimal, D(p, 
S4) is optimal, and 

s4-s3<e 

To summa&e what has been accomplished thus far, we can say that a method has been 
developed for finding the optimal fully-stressed set for decreasing values of the lower bound 
constraint S. This method may be applied for decreasing S until S approaches some specified 
limit S** or S approaches zero-the layout problem. A flow chart of the entire optimal truss 
design algorithm showing the major compu~~ blocks and logical brat&q is given in Fig. 
3. Note that the fully-stressed set p is mod&d one member at a time and checked for 
optima&y after each mod&&on. The value of S is reduced only when the optimality 
conditions are sat&&d. 

A final remark on the algorithm should be added here. In developing the method for adding 
or dekting fuiiy-stressed members, the assumption was mada that only one akment at a time 
could be both fuIIy&essed and have area equal to the constraint vahre. In certain probkms, 
especially where a high dqgee of sag is present, this aeon may be violated. The 
argument presented above for identifying additions or dektions to the optimal fully-stressed set 
is no longer generally valid. However, the algo&hm developad above will still succeed, if the 
behavior of the specifk strain energks is as shown in Fi 4 Inspection of the non-optimal trial 
design Dfp, St) indicates that both members k and j are to be ad&d to the fully-stressed set, since 
bothotesbnsscdabovethevalt#A.~~o~~,~~~s~~~~.Swill~tof~~e 
Ofthe~iPince~~~dD@,SII)~~(~)tbstB~jistobeBdidod 

BEGIN Q 

Fig. 2. Algorithm for locating points where optional fully-stressed set changes. 
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Fe. 3. Algorithm for optimal truss design. 

to p to form the o@naI fey-sassy set corresponding to S = St. Note that the faiIure of the 
a$gorithm in this instance is caused by the existence of a member which is fu&Mressed only for a 
singIe value of $2, rather than over a tinite interval. 

In the examples considered in the course of this study, several instanas were observed 
where more than one member were fully-stressed and also at the cons~int for the same vahte 
of S. Rowever, the aigorithm had no difhcuity in these instances and found the optimaI 
fey-s~s~d set. The i~o~a~~ gamed by ex~ining the non~pti~ design in the vicinity 
of a change in the fully-stressed set was a reliable guide in determining the elements to be 
added or deleted. Thus the lack of theoretical justification for the algorithm in this situation 
does not appear to be serious. ~~~0~ &ihue of the agony to produce an optimal 
design for some value of the lower bound constraint is easily recognized mtd an appropriate 
warning produced by the computer program. The troublesome example can then be examined 
more closely and the members causing the di~c~ty.a~~ or deleted one at a time and in 
several different orders until an optimal design is found. 
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LOWER BCiJW CONSTRAINT VAWE, S 

Fig. 4. Members k and j to be added to optimal fully-stressed set. 

LO+Et? BOUND CONSTRAINT VAWE, S 

Fis. 5. Member j belongs to optimal fully-stressed set at a single point (S = S,) only. 

6. EXAMPLE PROBLEMS 

in o&r to ilhtstrate the results of the preceding paragraphs, several example problems were 
SOlVed. 

The first example, shown in Fii. 6, was chosen to demonstrate the behavior of the optimal 
design as the lower bod con&mint varies, since this is the basis for the algorithm de&bed 
above. In the ligure, twelve support nodes are located along a vertical wail, and the siugie 
interior node is loaded with horizontal and vertical forces of nondimensional maguitudes 0.65 
and 0.75. All twelve possible truss members are also shown in the figure. 

In Fii. 7, the nondimensional areas of the elements of the optimal fully-stressed set are 
plotted as a function of the lower bound constraint. Note that as the lower bound constraint 
decreases, the optimal fully-stressed set consists of, successively. member I1 alone, members I1 
and 12, member 12 alone, and finally members 12 and I. The optimal design for S = 0 consists 
of members 12 and I alone, with all other members vanishing. It is interesting that even in this 
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Fi. 6. Truss members to be considered for optimal design problem with one kded node and twelve 
soppolt nodes. 

AREAS, Aj /fV/if, fi) 
= 

7- 

6- 
MEMBER II 

5- 

4- 

3’ 

2- 
RETRAIN 

______--u-c- 
__-_ 

0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 la 

LOWER BOUND CONSTRAINT VALlE 8 S/IV ({fi) * 

Fig. 7. Areas of fully-stressed elements versus lower bound value. 

s~ai~~o~~d example both editions to and a deletion from the optima fully-s~essed set are 
necessary. 

Another example is given in Fii. 8, where a total of eight interior nodes are loaded as 
indicated by the vectors and accompanying numbers. Two support nodes located far from the 
interior nodes are not shown in the figure. These supports are not needed in the final result, 
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Fii 8. Sclf~Wtcd trtm,‘wit4t eig4t interior nodes. 

Fig. 10. Optimal truss, with twelve interior nodes and nine support nodes. 
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since the optimal design (S = 0) found by the algorithm and given in the figure is self- 
equilibrated. Note that to be practical, the optimal design would require the addition of 
secondary members to prevent kinematic instability. 

Two additional optimal design (S = 0) examples are given in Figs. 9 and 10. In both these 
examples, nine of the twelve interior nodes are unloaded and three loaded with horizontal 
forces of unit magnitude. Note that the optimal design of Fig. 9 makes use of four unloaded 
nodes to transmit the applied load to the supports at the wall. However, in Fig. 10 the support 
nodes are closer to the points of application of the applied loads, and the optimal design 
transmits the force through members going directly to the supports and ignoring the unloaded 
nodes. 

Finally, in Fig. 11, seven internal and four support nodes are specified, and a single applied 
load is to be carried by the truss. The optimum design (S = 0) is found to contain ten members 
and is reminiscent of a Michell truss[9]. 

Fig. It. Optimal truss, with seven interior nodes and four support nodes. 

7. CONCLUSIONS 

As the example problems show, the algorithm can be used successfully to predict optimal 
truss designs including as a special case optimal layout. Examination of changes in member 
strain energy as the area constraint is decreased appears to be a reliable guide in deciding which 
members are to remain fully-stressed and which are not. This examination must, however, be 
made specifically in the neighborhood of a point where the fully-stressed set changes mem- 
bership. The primary computational burden of the algorithm stems from attempting to locate 
such neighborhoods. The development of an extrapolation technique which predicts their 
location would be a useful extension of the present work. 
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