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Absiract—-A computational scheme is presented for the calculation of the optimal design of trusses.
Constraints on the design variables (the cross-sectional areas) are considered. Linearly elastic behavior is
assumed, and optimality criteria are derived, based on strain energy considerations. As in mathematical
programming techniques, the optimum is approached through a sequence of designs, each differing slightly
from its predecessor. The design changes to be made at each stage of the procedure are determined by
application of the optimality criteria. The formulation is sufficiently general to permit the solution of the
probiem of predicting both optimal member size and member layout-given the loads and the location of the
joints. The procedure is illustrated with a number of numerical examples.

NOTATION

cross-sectional area of truss member i

slack function

trial design corresponding to p and S*

elastic modulus

x and y components of external loads

sugmented function

length of member {

total number of nodes

total number of truss members

potential energy

fully-stressed set

value of fower bound constraint

specified volume of material

nodal displacements

strain of member |

Lagrange multipliers for area constraints

Lagrange multiplier for volume constraint (also equal to specific strain energy of fully-stressed members)
specific strain energy of member &, corresponding to fully-stressed set p and constraint value S.
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{. INTRODUCTION

Mathematical programming technigues and the use of optimality criteria are probably the two
most widely-used solution techniques in the field of optimal structural design. Although both
approaches have their advantages and many diverse applications of each have appeared in the
technical literature, both also have certain drawbacks. For example, applications of optimality
criteria tend to be limited to problems with relatively few design constraints, and even these
few constraints must be rather simple if the mathematical form of the optimality criteria is to be
tractable. Mathematical programming techniques, on the other hand, can treat problems with
constraints which are both more numerous and more complicated. Unfortunately, however, the
algorithms employed to search for the optimum tend to consume considerable computer time as
the number of design variables in a problem is increased.

In the present paper, an algorithm is given which resembles a technique of mathematical
programming in that it proceeds by stages, with an improved design generated at each stage.
However, in contrast to most mathematical programming methods, the improved design is
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identified at each stage by the application of optimality criteria. The algorithm is explained and
illustrated by application to the optimal design of a truss, where member cross-sectional areas
are taken as the design variables. Dorn et al.[1] have treated a similar problem by linear
programming.

A description of the algorithm has been given previously[2], and for completeness that
description will be given here as well, supplemented by additional explanation at several key
points. In general, the present work constitutes a more complete and detailed account of the
theory described in [2], and in addition a number of significant examples are given here.

2. ENERGY FORMULATION

Consider the problem of finding the maximum stiffness design of a planar truss, given a
specified total volume of material to be allocated to the various members of the truss, and
specifying inequality constraints on the truss members cross-sectional areas. The connectivity
of the truss is unrestricted; however, locations of nodes are specified beforehand, and the
possibility of member buckling is ignored. Taylor(3] and Hiley [4] have shown how a problem of
the type just described may be formulated by the use of the potential energy function of the
structure. In the present paper a similar energy formulation will be used. The potential energy
of the truss may be written

n 2m
P=2Mnn-§lm (m

where

n = total number of truss members assuming each node connected to all other nodes by a
member,

m = total number of nodes of truss,

A; = cross-sectional area of member i

I; = length of member i,

Fy=x and y components of external loads applied at interior nodes and numbered con-
secutively,

& = nodal displacements, numbered corresponding to Fj;

and n; represents the specific strain energy, defined by
n=Ee? p)]

where E is the elastic modulus and ¢ is the strain of member i (a linear function of nodal
displacements). The volume constraint is

;ZnM‘= v 3

where V is the specified volume of material. The inequality constraints are
Ai=S 4

where S is the specified lower bound constraint.

It can be shown that the problem of maximum stiffness design is equivalent to that of
maximizing the potential energy P[3, 5.

The constraints may be introduced directly into the problem formulation by defining the
slack functions a, by

A-a’=S, r=12...,n (5)

and introducing Lagrange multipliers A and A; to form the augmented function

L=P+MV-3 Al)+ 2 AS - Ai+ad). ©
i=1

i=1
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Requiring the first derivatives of L with respect to &, A, and 4, to vanish gives

Z. l.A.-‘z—'-’i- F = )
ﬂrlr - l\{r - Ar =0 (8)
Ara, =0. 9)

while application of the Kuhn-Tucker theorem of non-linear programming gives
A, =<0 (10)

These equations can be shown to be both necessary and sufficient for optimality[3, 6, 7].
A basic assumption about the optimal design problem formulated above will now be made.

n
It is assumed that for every value of § in the interval 0 < S = V/(Z [) an optimal design exists.
im]
That is, the optimal design is assumed to be a function of S. Furthermore, this function is
assumed continuous.
It is of interest to note that at least one optimal design can always be found easily for the
value of the lower bound constraint given by

S= V/(m 4. an

For by eqn (4) all admissible designs must satisfy

A;zS"‘sV/(z W, i=12..m (12)

i}

However the strict inequality in eqn (12) cannot apply for any j since this would violate the
volume constraint in eqn (3). Thus the optimal design for the value of S in eqn (11) must be the
“equally-sized” design

A= V/(E B i=12..,m
il

3. OBSERVATIONS ON THE GOVERNING EQUATIONS
Inspection of the preceding set of governing eqns (3)-(10) leads to several observations of
later use in this paper. First note that when a member area A, in the optimal design is strictly
greater than the lower bound constraint value S, then the corresponding slack function a,# 0 by
eqn (5) and A, =0 by eqn (9), but then eqgn (8) yields

Nr = A (13)
Thus all members with areas greater than S are stressed to the same level.
Note that by eqn (2), eqn (13) may be written as a linear equation in the strain €, and hence
linear in the nodal displacements:
€& = £+\/2A/E. (14)
Next consider a member ¢ in the optimal design which is stressed below the level A (eqns (8)
and (10) exclude the possibility that an element in the optimal design is stressed above the level

A):

'ﬂg <A. (15)
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Then by eqn (8) A.# 0 and so eqns (9) and (5) imply

A= S. (16)

The implication of eqns (14) and (16) may be summarized by saying that the members of the
optimal design may be divided into two groups: fully-stressed members (n, = A and A, > S) and
members at the constraint (n: <A and A, =S). As shall be discussed later, under certain
conditions borderline cases exist where a member is both fully-stressed and at the constraint.

A second observation about the governing equations for the optimal design problem can be
made with the help of the fully-stressed condition, eqn (14). Introducing eqns (14) and (2) into
the equilibrium relations (eqn 7) yields

—_— d€, ﬂ__ -
vaEZeJ,A,a&+s$l.a& F=0 amn

where the first summation is over the set of fully-stressed members, and the second summation
over the set of members at the constraint (hence areas equal S). ¢, is the sign associated with
member r (compression or tension).

Equations (14) and (17) have been formulated for the problem of maximum stiffness design
for a fixed volume of material V. The maximum specific strain energy A is found as part of the
solution. However, this problem may be shown[8] to be equivaient to the problem of minimum
volume design for specified A. From now on in this paper it will be assumed that a value of A is
specified. The solution corresponding to this value of A may later be made to correspond to
some specified volume of material by multiplying all results by a common factor.

With A specified, eqns (14) and (17) become linear equations in the remaining unknowns 8
and A, Thus once it has been determined which members are to be fully-stressed in the optimal
design, the areas and nodal displacements may be calculated by solving a linear system of
equations.

4, FULLY-STRESSED SET AND TRIAL DESIGN

The principle difficulty then in finding an optimal design lies in determining which members
are fully-stressed. In view of this situation and for convenience in the discussion to follow, the
following definitions will be made.

Suppose that a subset of the n members of the truss have specific strain energy A, as well as
specified signs, and do not violate nodal displacement compatibility. These members will be
called a “fully-stressed set”.

Suppose that a fully-stressed set p has been designated and a value of the lower bound
constraint specified, $ = §*. In general, it is not known beforehand if p corresponds to an
optimal design for S =S*. However, knowing p and S*, we can nevertheless determine a
corresponding set of areas and displacements by writing eqns (17) and (14) for the fully-stressed
set p and then solving these equations.

The set of areas and displacements found in this way will be written D(p, S*) and will be
called the “trial design corresponding to p and S*.” Note that by assumption the trial design is
a continuous function of the lower bound constraint, for a fixed p.

Once a trial design D{p, S*) has been calculated, eqns (10) and (4) may be used to determine
if the trial design is also an optimal design. If D(p,S*) is optimal, then p will be called the
“optimal fully-stressed set corresponding to S$*.”

5. BASIS FOR ALGORITHM

Using the definitions just introduced, we can now discuss the basis for an algorithm for
finding the optimal design.

Starting with a fully-stressed set r and a value of S =S* such that D(r,S*) is optimal
(finding such a starting design presents no difficulties, as was observed earlier), S is repeatedly
reduced and D(r, S) recalculated until a value of S is found for which D(r,S) is non-optimal.
Since the cause of the non-optimality must lie in the incorrect choice of fully-stressed members,
a method is needed for identifying those members which must be added to or deleted from the



Optimal truss design based on an algorithm using optimality criteria 917

optimal fully-stressed set as D decreases. Such a method may be derived from a close
examination of the optimal designs in the neighborhood of a point where the optimal fully-
stressed set changes.

Consider the particular case where a single member, j say, is to be added to the optimal
fully-stressed set. In Fig. 1, S = S, is the value of the lower bound constraint for which #; first
equals the constraint value A as S is decreased from a value S; slightly above S. to a value S,
slightly below S.. Note that, for S = S, member j is an example of a “borderline” case referred
to earlier (A; = S. and n; = A). We specifically exclude from consideration the possibility that
more than one borderline element exists at S = S;. This restriction will be discussed later in this
paper.

~
~
~

A n-(p,s)
nser S

A— >

 (@s)

SPECIFIC STRAIN ENERGY

T -'_\;_><<(p.s)

LOWER BOUND CONSTRAINT WALUE, S

Fig. 1. Member j to be added to optimal fully-stressed set.

If p denotes the full-stressed set for which D(p, S) is optimal for S, = S = S, then D(p, S) is
non-optimal for S, > S = S,, since by hypothesis p lacks the fully-stressed member j.

Denote by q the fully-stressed set obtained from p by adding member j and consider a
member, k say, which belongs to neither p nor q. By hypothesis,

(P, Sc) = n(q, Sc) <A.
Furthermore since m(p,S) and n«(q, S) are continuous functions of S, it follows that
7(p,S) <A and m(q,S) <A

for S =8 < S.. For the same range of S, it must also be true that

P, 8)>A

since D(p,S) has been assumed to be non-optimal. Thus the member to be added to the
fully-stressed set p to form the optimal fully-stressed set g (for $; < S < S.) may be determined
by examining the non-optimal design D(p, S;)—the member to be added is that member with
specific strain energy exceeding A. The sign associated with the member j to be added is
identical to the sign of member j in D(q, S1), as may be established by a continuity argument
similar to that given above.

The preceding discussion dealt with the procedure for identifying the member to be added to
the optimal fully-stressed set as S decreases. An analogous procedure can be developed for
identifying the member to be deleted from the optimal fully-stressed set. Proceeding as in the
previous paragraphs, it can be shown that the members of the optimal fully-stressed set can be
identified by inspection of a non-optimal design D(p, Si)—the criterion being that the member
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in p whose area is less than S is to be deleted from p to form the optimal fully-stressed set.

The arguments of the preceding paragraphs depend in an essential way on knowledge of the
approximate location of a point such as §=S. where a change occurs in the optimal
fully-stressed set. This information can be provided through application of a modified version
of an interval-halving algorithm such as the one given in Fig. 2. The algorithm starts with a
fully-stressed set p and two values of S, S and S, say (5, < Sy), such that D(p, S)) is
non-optimal and D(p, S,) is optimal. Then, for a specified number € >0, the algorithm produces
two new values of S, Sy and S. say (5 < S; <S¢ 8»), such that D(p, Ss) is non-optimal, D(p,
S4) is optimal, and

Si-S3<e

To summarize what has been accomplished thus far, we can say that a method has been
developed for finding the optimal fully-stressed set for decreasing values of the lower bound
constraint S. This method may be applied for decreasing S until S approaches some specified
limit $** or S approaches zero-the layout problem. A flow chart of the entire optimal truss
design algorithm showing the major computational blocks and logical branching is given in Fig.
3. Note that the fully-stressed set p is modified one member at a time and checked for
optimality after each modification. The value of S is reduced only when the optimality
conditions are satisfied.

A final remark on the algorithm should be added here. In developing the method for adding
or deleting fully-stressed members, the assumption was made that only one element at a time
could be both fully-stressed and have area equal to the constraint value. In certain problems,
especially where a high degree of symmetry is present, this assumption may be violated. The
argument presented above for identifying additions or deletions to the optimal fully-stressed set
is no longer generally valid. However, the algorithm developed above will still succeed, if the
behavior of the specific strain energies is as shown in Fig. 4 Inspection of the non-optimal trial
design D(p, §,) indicates that both members & and j are to be added to the fully-stressed set, since
bothare stressed above the value A. On the other hand, the situation shown in Fig. 5 will lead to failure
of the algorithm since inspection of D(p, S:) would indicate (incorrectly) that member j is to be added

(=

8,38,
S4—S2

[ cacuuate op.9 |

Dip, s) is OPTIMAL
T F
¥

Fig. 2. Algorithm for locating points where optimal fully-stressed set changes.
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Fig. 3. Algorithm for optimal truss design.

to p to form the optimal fully-stressed set corresponding to S = Si. Note that the failure of the
algorithm in this instance is caused by the existence of a member which is fully-stressed only fora
single value of S, rather than over a finite interval,

In the examples considered in the course of this study, several instances were observed
where more than one member were fully-stressed and also at the constraint for the same value
of S. However, the algorithm had no difficulty in these instances and found the optimal
fully-stressed set. The information gained by examining the non-optimal design in the vicinity
of a change in the fully-stressed set was a reliable guide in determining the elements to be
added or deleted. Thus the lack of theoretical justification for the algorithm in this situation
does not appear to be serious. Furthermore failure of the algorithm to produce an optimal
design for some value of the lower bound constraint is easily recognized and an appropriate
warning produced by the computer program. The troublesome example can then be examined
more closely and the members causing the difficulty .added or deleted one at a time and in
several different orders until an optimal design is found.
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Fig. 4. Members k and j to be added to optimal fully-stressed set.
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Fig. 5. Member j belongs to optimal fully-stressed set at a single point (S = S,) only.

6. EXAMPLE PROBLEMS

In order to illustrate the results of the preceding paragraphs, several example problems were
solved.

The first example, shown in Fig. 6, was chosen to demonstrate the behavior of the optimal
design as the lower bound constraint varies, since this is the basis for the algorithm described
above. In the figure, twelve support nodes are located along a vertical wall, and the single
interior node is loaded with horizontal and vertical forces of nondimensional magnitudes 0.65
and 0.75. All twelve possible truss members are also shown in the figure.

In Fig. 7, the nondimensional areas of the elements of the optimal fully-stressed set are
plotted as a function of the lower bound constraint. Note that as the lower bound constraint
decreases, the optimal fully-stressed set consists of, successively, member 11 alone, members 11
and 12, member 12 alone, and finally members {2 and 1. The optimal design for S = 0 consists
of members 12 and 1 alone, with all other members vanishing. It is interesting that even in this
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Fig. 7. Areas of fully-stressed elements versus lower bound value.

straightforward example both additions to and a deletion from the optimal fully-stressed set are
necessary.

Another example is given in Fig. 8, where a total of eight interior nodes are loaded as
indicated by the vectors and accompanying numbers. Two support nodes located far from the
interior nodes are not shown in the figure. These supports are not needed in the final result,
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.

Fig. 8. Self-equilibrated truss, with eight interior nodes.

Fig. 10. Optimal truss, with twelve interior nodes and nine support nodes.
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since the optimal design (S=0) found by the algorithm and given in the figure is self-
equilibrated. Note that to be practical, the optimal design would require the addition of
secondary members to prevent kinematic instability.

Two additional optimal design (S = 0) examples are given in Figs. 9 and 10. In both these
examples, nine of the twelve interior nodes are unloaded and three loaded with horizontal
forces of unit magnitude. Note that the optimal design of Fig. 9 makes use of four unloaded
nodes to transmit the applied load to the supports at the wall. However, in Fig. 10 the support
nodes are closer to the points of application of the applied loads, and the optimal design
transmits the force through members going directly to the supports and ignoring the unloaded
nodes.

Finally, in Fig. 11, seven internal and four support nodes are specified, and a single applied
load is to be carried by the truss. The optimum design (S = 0) is found to contain ten members
and is reminiscent .of a Michell truss(9].

Fig. 11. Optimal truss, with seven interior nodes and four support nodes.

7. CONCLUSIONS

As the example problems show, the algorithm can be used successfully to predict optimal
truss designs including as a special case optimal layout. Examination of changes in member
strain energy as the area constraint is decreased appears to be a reliable guide in deciding which
members are to remain fully-stressed and which are not. This examination must, however, be
made specifically in the neighborhood of a point where the fully-stressed set changes mem-
bership. The primary computational burden of the algorithm stems from attempting to locate
such neighborhoods. The development of an extrapolation technique which predicts their
location would be a useful extension of the present work.
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