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ON THE NON-LINEAR DISTORTION OF WAVES GENERATED BY FLAT PLATES 
UNDER HARMONIC EXCITATIONS 

Non-linear waves generated in an acoustic medium by flat plates under harmonic 
excitations were investigated first by Ginsberg [l] using the method of renormalization. 
However, since the method was applied to the velocity potential rather than to physical 
primitive quantities such as, for example, the velocity perturbations, the results obtained 
were not uniformly valid [2,3]. Uniformly valid solutions were derived independently by 
Nayfeh and Kelly [4] and Ginsberg [5]. Re-examining the results obtained, Ginsberg [6] 
showed that the solution for the complete wave field can be split into two parts, each of 
which is very similar to the solution for an outgoing simple wave. Nevertheless, essential 
differences seemed to remain which were interpreted as being due to a mutual interaction 
of both wave families. 

It is the aim of the present communication to show that by introducing a different set of 
co-ordinates, which arises naturally from application of the analytical method of charac- 
teristics (see, e.g., references [7,8]), the complete solution can indeed be obtained as the 
superposition of two simple wave solutions and no mutual interaction terms exist. 

For simplicity the notation adopted by Ginsberg [S] is used in what follows. Thus r/a 
and Lx, Lz denote the physical time and Cartesian’co-ordinates parallel and perpendicular 
to an infinite flat plate located at z = 0. The half space z > 0 contains an ideal gas of 
constant specific heats. Expressing the transverse displacement of the plate in the form 

w = EL cos (t) sin (N7rx) + O(E*), (1) 

where E << 1 characterizes the small amplitude of the vibration and assuming expansions 
for the velocity disturbances and the speed of sound (non-dimensionalized by LO) of the 
form 

0, = &Or, + O(E2), u* = &Urz + O(E2), c=ciJ+ECr+O(E2), (2) 

one obtains, as the first order results, 

Vlx = -(Ah/k) cos (t - kz) cos (Ah), 

Vlr = -sin (t - kz) sin (Akx), 

cl = -l(r - l)(f/k) sin (t - kx) sin (Mrx). (3) 

The parameter k is related to the speed of sound in the unperturbed medium and the 
reduced frequency f through the relationship 

k = (f2-N2,r2)“2, f = l/co. (4) 

However, the expressions for v’r = (v lx, ~1~) and cl can also be dast into the form 

Cl = ,Y) + #Jr Cl = c:l, + c:=, (5) 
where 

01 -(r) = .-&f/k)ii”’ cos [r --f(x sin 8 + z cos e)], ~(11’ = $(r - l)u’:” . C’“, (6) 

Ul 
42) = $(f/k)n”*’ 

cos [t -f(-x sin B + 2 cos f3)], c\*) = $(r - l)o’:” . iP’ (7) 
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describe the propagation of two planar simple waves in the directions characterized by the 
unit normal vectors 

n -(i) = (sin 8, cos e), n”” = (-sin 8, cos e), 8 = tan-’ (Ah/k). (8) 

In order to render the first order solution of the straightforward expansion (2) uniformly 
valid the analytical method of characteristics will be applied. To this end x and z are 
expanded in the forms 

x = x0 + &X1(& VI, t) + O(E Y, 

r = zo+ EZl(& 77, t) + 0(E2), (9) 

where 6 = const. and 77 = const. are the characteristic surfaces 

6 = t -f(xo sin 0 + z. cos e), 7j =t--f(--x0 sin e+~~cos e), (10) 

associated with the two families (6) and (7) of outgoing waves. Insertion of the expansions 
(9) into the exact slope conditions for characteristic surfaces (see, e.g., reference [9]) 
yields, to first order, 

xlsine+zlcOse= 
I 

’ (Cl . fi(‘)+cl) dt, 
b 

I 
f 

-xlsine+zlcose= (Cl. Z’*‘+ci) dt, (11) 
b 

where the integration has to be carried out along bicharacteristics which generate the 
characteristic surfaces 6 = const. and n = const., respectively, 

6 = const: dxo:dzo:dt=sine:cos8:f, 

71 = const: dxo:dzo:dt=-sine:cose:f, (12) 

and t, = t - (fzo/cos 0) denotes the time at which the bicharacteristics through the point of 
consideration no, zo, t, intersect with the plane z = zo = 0. According to equations (6) and 
(7), r$i’ is constant along the bicharacteristics generating characteristic surfaces 5 = const. 
while r$*’ . C(l) is a periodic function of t. Therefore, 

I ‘(a,. i"'+cl)dt=+l". +-&z,,+O(l). (13) 
L 

Here the first term on the right side is unbounded as zo+ a0 and accounts for the 
cumulative effect of the wave amplitude associated with the velocity disturbances r$’ on 
the distortion of characteristic surfaces in the x, z, t-space. Additional terms occur due to 
the mutual interaction of both wave families. However, since they are bounded, they are 
non-cumulative and can thus be neglected to leading order. Similar considerations hold for 
the second of equations (11) and, introducing the notation 

ii = (x1, Zi), 

one therefore obtains 
-0) _ 1. Zt . n -*(y + l)(f/cos 8)# . tPzo+ O(l), 

ii . ii'2'=f(r+i)(f/~~~ e)t7:*). n'(*)~~+o(i). 

(14) 

(15) 

(16) 



LETTERS TO THE EDITOR 603 

Evaluation of equations (15) and (16), taking into account equation (3), yields 

x = xc+& + l)(p/kAW)zlJvX(xo, 20, t>+ O(E2), 

2 = zo+%y + 1)(~/k3)zou,(xo, 20, r) + O(e2), (17) 

in full agreement with the results given by Nayfeh and Kelly [4] and Ginsberg [5]. 
Inspection of the second of equations (17) shows that ](r -zo)/zo] = O(E). Therefore zo 

may be replaced by z in equations (15) and (16) to first order: 

il . n -‘l’=$(y+ l)(f/cos B)u’(l”(Xo, zo, t) . Pz + O(l), (18) 

2, . n -(*) = f(y + l)(f/ cos e)u’;*‘(xo, zo, t) . iiC2)z + O(1). (19) 

An alternative but to first order equivalent form of the expressions (17) is thus given by 

x = xo+$(y + 1)(p/N2~*)zvX(x0, zo, t) + O(E2), 

z = zo+& + 1)(P/k3)zv,(xo, zo, t) + O(E2). (20) 

Equation (18) determines the component of x’l in the direction of 6”’ only. However, any 
amount of lateral straining will leave the structure of the wave motion associated with the 
characteristic surfaces 6 = const. unchanged. Consequently, equations (18) and (19) 
describe the propagation of simple planar waves in the direction of c(l) and cc*), 
respectively. Furthermore, the complete wave pattern is obtained through linear super- 
position of both wave trains. 

It should be noted that the above considerations lead to a generalization of results 
obtained by Kruskal and Zabusky [lo], and by Mortell and Varley [ 111, who studied 
one-dimensional wave propagation phenomena in closed tubes. In this particular case the 
two wave families propagate in opposite directions (n’“’ = -$*)) and the minor importance 
of wave interactions inside the gas column was first observed experimentally by Saenger 
and Hudson [:12]. 

It is obvious that the considerations above are not restricted to the case of planar waves. 
Non-linear acoustic waves induced by a cylinder vibrating harmonically in a mode having a 
circumferential wave number have been calculated by Ginsberg [13] and by Nayfeh and 
Kelly [14], while non-linear waves induced by a sphere undergoing general harmonic 
pulsations have been investigated by Kelly and Nayfeh [15]. Again these solutions can be 
interpreted as the linear superposition of non-linear progressive wave trains which do not 
interact. 
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AUTHOR’S REPLY 

Kluwick’s analysis [l] of the non-linear distortion of non-uniform planar waves by means 
of the method of characteristics represents an interesting alternative to the perturbation 
method of renormalization that had been employed earlier [2,3] to study the same 
problem. Kluwick’s work clearly demonstrates that the wave motion is a superposition of 
two sets of uniform planar waves. This author arrived at the same conclusion in a previous 
paper [4] by manipulating algebraically the perturbation solution. The superposition 
concept led there to enhanced understanding of the physics involved in the formation of 
shocks. 

One basic disagreement between Kluwick’s conclusions and those in reference [4] is 
whether the solution is a linear superposition. In Kluwick’s notation, x0 and z. denote 
strained co-ordinates corresponding to the Cartesian co-ordinates x and z parallel and 
perpendicular to the planar boundary. The straining functions for each are denoted as x1 
and zl, and so the straining transformation has the form 

x=xo+&X1+’ * *, 2 =zo+&Z1+. * * . (1) 

Earnshaw’s exact solution for a non-linear planar wave which is uniform perpendicular 
to its propagation direction G”) may be written, in the case of a small signal, as 

V 
49 = EG(i) 

gi(t -fp”‘) , (2) 

where gi( ) denotes an arbitrary function, and 
n”” . (xe’, + &) = p(i) [ 1 + +<y + l)fv”” - r-p]. (3) 


