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ABSTRACT
A linear perturbation method is employed to determine
the condition for neutral stability in spherical
liquid shells induced by surface tension mechanism.
Three possible boundary conditions are considered:
at least one boundary free or both. The critical
Marangoni numbers for the onset of cellular convec-
tions are found for two types of steady radial
temperature distributions in the spherical shells.
Results are compared with those induced by buoyancy
mechanism. It is concluded that surface tension
forces are much more effective than buoyancy forces
in producing thermal instability and a parabolic
steady temperature distribution is more susceptible
than a linear one to thermal disturbances due to
surface tension forces. Heat transfer between a
free surface and the ambient promotes thermal
stability in liquid shells.

* This work was supported by a National Science Foundation
grant under ID No. ENG 7816972.
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Introduction

Surface tension variations due to temperature gradients
generally induce fluid motion which would not otherwise occur.
Such phenomena are often called the Marangoni effect. Effects
due to temperature gradients are also referred to as thermo-
capillarity. Kenning [1] reviewed the processes by which
surface-tension variations influence two-phase flow. Surface
tension effects may also be the origin of the cellular convection
in thin liquid layers. Block [2] suggested surface tension as
the cause of Benard cells and liquid deformation in a liquid film
Using small perturbation analysis, Pearson [3] demonstrated that
instability due to surface tension would occur at a critical
Marangoni number. Scriven and Sternling [4] extended Pearson's
study to include the effect of surface deformation. Analyzing
the coupling between surface tension and buoyancy, Nield [5]
disclosed that the critical Marangoni number decreased with an
increase in the Rayleigh number. Berg, Boudart, and Acrivos [6]
observed three basic structural forms of flows during the evapo-
ration of liquid less than lcm deep. They found a simple
criterion for distinguishing visual flow patterns as being in-
duced by surface tension, buoyancy or surface contamination.
Scanlon and Segal [7] analyzed finite amplitude cellular can-
vection induced by surface tension. All these studies concern
with thin liquid films on a flat surface.

The present work deals with thermal instability in spherical
liquid shells with at least one free surface. Initially, a
steady temperature of certain profile prevails in the shell.
Conditions for the onset of stationary instability caused by
surface tension effects are determined using a linear pertur-
bation method. Results are compared with those caused by the

buoyancy mechanism in reference 8.
Analysis

Thermal conditions which lead to the onset of cellular con-
vection in spherical liquid shells due to the action of sur-

face tension are to be determined. Let R, and R, be



Vol. 7, No. 5 INSTABILITY IN SPHERICAL LIQUID SHELLS

respectively the inner and outer radii of a liquid shell.
Depending on the nature of the boundary surfaces, free or
rigid, three combinations are considered: a free surface
at R} and a rigid surface at Ry, a free surface at R and a
rigid surface at Ry, and free surfaces at Ryand R,. Steady
radial temperature distribution in a liquid shell may take
two forms: parabolic and linear. A parabolic distribution
in temperature is the base state when the fluid has a constant
heat source per unit volume. The linear dependence of
temperature on r is only valid in the small gap limit.
(i) Parabolic distribution of steady temperature in spherical
shells

A. Rigid inner surface and free outer surface

Consider a quiescent liquid shell whose inner surface

at r Ry lies against a solid sphere, whose outer surface

at r = Ry is in contact with an inviscid fluid. The origin
of (r,9,¢) co-ordinates is fixed at the center of the shell.
At undisturbed, steady state, the temperature gradient in the
liquid shell is a linear function of the r co-ordinate alone,

that is

= -28r

(oA -0
L]

where T, denotes the unperturbed temperature in the liquid

shell and B is a constant.

Next, one superimposes an infinitesimal disturbance and
linearizes the equations of motion and heat transport. Let v
represent the velocity in the r direction; and T' be the
perturbation temperature. The equations of motion and heat

transport become

Gz - wH" v = o (2)
(—g—t - av?) T' = 2Brv (3)

Here t denotes the time; v , kinematic viscosity; and
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a, thermal diffusivity. One writes the surface tension of the
liquid S to vary with the perturbed liquid surface temperature

Tg' as

S =8, - GTg" (4)

where -0 = (3S/ 3T) evaluated at steady surface temperature
Tsoy @and Sy is the surface tension at Tg,. The liquid

temperature T is equal to T' + T,.

The boundary conditions at rigid surface r = Ry are:

v = %% =0, T' = 0 (3)

at free surface r = Rj:

v =0, 5% %;{rzg%) = —ov?Tr, T' = -k %}l (6)
Here
2 1 1 3 . 132
V1 = 22 lg3a9 595 (sin® 39) * s1o2e §$2] (7
and its eigen value 1 is
22 = n(n + 1) (8)
where n is an integer. The boundary conditions at r = Rj

are obvious. At the boundary r = R;, the first expression
states the condition of zero liquid velocity normal to the
interface; the second relation states that the change in
surface tension along the boundary must be balanced by shear
force. The last one states that the continuity of heat

exists at the interface.

Suppose that the perturbations v and T' have the forms

o= v YR (8,4)f(n)ePT (9-a)
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T
T = BR2 YR (8,4)g(n)e” (9-b)
in which
_ Vvt _ T _ 9
T——Z,H—R—Z-,P“F (10)
R2

and the spherical harmonics Yﬁ (6,¢) are the eigen function.
h is the liquid-fluid heat transfer coefficient and k denotes
the thermal conductivity of the liquid.

Equations (2) and (3) now become

(D - p) le =0 (11)
(p Pr - Dl) g = f (12)
and
m 2,
1 1 3 . Y 1 22yR 2yl _
72 [5ime 39 (5in® 5™ * 51pze wgz ) * 2 Yn = 0 (13)

Here, the operator D1 is defined as

2

Dy = 7z [ (0§ - 22 (14)

and Pr = v/a 1is the Prandtl number. Equations (11) and (12)
are subject to the boundary conditions

f(d) = £'(d) = 0; g(d) =0 (15)
£(1) = 0; £'(1) = -2x% Ma g(1); g'(1) = -B g(1) (16)
o 8RS hR
where Ma = 5gg~ is the Marangoni number and Bi = —?2 is the

Biot number. d is defined as Ry/R,.
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By setting p = 0 for marginal stability, equations
(11) and (12) reduce to

D;2 £ =0 (17)
Dy g = -f (18)

Solutions to these eqautions must be found subject to the
boundary conditions (15) and (16). For a fixed value of Bi,
Ma is minimized as a function of the wave number A to obtain
the critical Marangoni number for the onset of cellular

convection.

The solutions for f and g are found to be

£ = Cy(nD + AnR+2 4 Bp--1 4 cpontl (19)
+2 - -
and g = - ¢ [51 , Anntd - Bn-n*l | cponvd
2(2n+3) = 4(2n+5) 2(-2n+1)  4(-2n+3)

Dy-n-1 N
T T2asl En® ]

Here, the coefficients are defined as

[-2d-2n-1 4+ (2n+1)d-2 - (2n-1)1/F

>
1

B = [2d2"*] - (2n+1)d? + (2n-1)1/F

¢ = [-2d%™* _ (2n+1)d-2 + (2n+3)]/F
F = 2d4-2n-1 4 (2n+1)d?% - (2n+3)
dn+2 Agn+4 Bd—n+l cq-n+3
P = ozav3y * T(zn+5) © I(-In+D) ' A(-Zn+3)
H = [(Bi-n-1)dn - (Bi+n)d P 1]/(2n+1)
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o
{

[d"Q - (Bi+n)P]/H

(a-m-lq - (Bi-n-1)P]/[H(2n+1)]

22
[

qQ = Bi+n+2 . A(Bi+n+4) _ B(Bi-n+l) . C(Bi-n+3)
2(2n+3) = 4(2n+5) 2(-2n+1) 4(-2n+3)

The subsitutions of the solutions (19) and (20) into the
second expression of equation (16) yields a relation between

Ma, Bi, and n as

Ma =

n(n-1) + A(n+1)(n+2) + B(n+1)(n+2) + Cn(n-1)
C

2n(n+1)[ T, A B D57 (21)
2(2Zn+3) 4(2Zn+5) 2(-2n+1) 4(-2n+3) 2n+1
B. Free inner surface and rigid outer surface
The outer surface of a quiescent liquid shell at r = Ry
lies against a spherical rigid surface, while the inner
surface of the shell is in contact with an inviscid fduid.
The equations governing marginal stability (17) and (18)
are subject to the boundary conditions:
f£(1) = £'(1) = 0; g(1) = 0 (22)
£(d) = 0; f"(d) = -22%Mag(d); g'(d) = -Big(d) (23)

The solutions for f and g take the same form as equations

(19) and (20), respectively, where

A = [(-2n+1)d-n-1 - 24" + (2n+1)d-n+1]/F
B = [-(2n+1)dP + (2n-1)dR*1l 4+ 2g9-n+1]/F
C = [-2d"™-1 _ (2n+1)d"*2 + (2n+3)dn]/F
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N
o

(2n+1)d-n-1 & 2d™*2 . (2n+3)a n*!

P = 1 + A + B + ¢
2(2n+3)  4(2n+5) 2(-2n+1) 4(-2n+3)

q - (n+2)d®*14BidP*2  A[(n+4)d"*3+Bidn*4)

2(2n+3) ¥ 4(2n+5)
. B[(—n+1)d‘n+Bid'n+1] . C[(-n+3)d'n+2+Bid‘“+3]
2(-2n+1) 4(-2n+3)
D = (2n+1)[Q-(nd"‘1+Bid“)p]

nd™"1l+BidN+(n+1)d-n-2.Bid~""-!

Q+[(n+1)d""-2-Big-n-17p
ndM-13BidN+(n+1)d N~ 4-Bid-n-1

E =

The critical Marangoni number is then

Ma - n(n-1)d""2+A(n+1) (n+2)dP+B(n+1) (n+2)d-=3+Cn(n-1)a™" 1
BRI CTS DT LA Y LA T B LN Wbl T LS
3(2n+3) T4(2n+5) 2(-2n+1) "4 (-2n+3)  2n+l 'F

(24)

C. Free inner and outer surface

Equations (17) and (18) are solved subject to the boundary
conditions

£(1) = 0; £'(1) = -212% Mayg(l); g'(1) = -Bipg(l) (25)

£(d) = 0; £" = -2x2 Ma,g(d); g'(d) = -Pi,g(d) (26)

o1 BR O28R : hR . _ haR
where Ma = —E%;i, Ma 5, = *Fﬁai’ Bi; = —%?2 and Bi, = _%;L_

The subscript 1 refers to the fluid enclosed within the shell,

while the subscript 2 indicates the fluid enclosing the shell.

The solutions are found to be
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-n- -n+l +2 -n-1 -n+l
£ = cy(n™ A ™ v Bn ™ e o™ AT T By T ) (27

nn+2 Aln-n+ll Bln-n+3 Dln—n—l

= - -+ + + n
g = -Clyrmrayt2ozne ) 4 C-2av 3y Zarl E1n ]

n+4 -n+1 -n+3 -n-1
n AN wB2h" "2 Don . n
G2 sy T (S 2nr 1) (200 3) ~ onrl P20 | (28)

Here, j = 1,2

d2-g2n+l d2_d2n+3 d2n+1_1 d2n+3_1
Ay = Yogz— A2—1-gz 5 Bl = Ty—gr— B2 = 73—
Dj = [Pj(nd™ 1+Biyd®) - Qj(n+Bip)1/F
_n- . -n-1 <
_ =(n+1)d-N-24Bj,q"" . q=n-1+Bij]
Ej pJ[ 2n+1 ] QJ[ 2n+1 1 /F
F = (-n-14Biy) (ndP-1+Biyd™)-(n+Bi;) [(-n-1)d P-2+Bi,d P 11 /(2n+1)
P: = n+2j+Biy + Aj(-n+1+Bij) | Bj (-n+3+Bi
J 2j(2n+2j+1) 2(-2n+1) -Zn+
o (n+23)d" 237 1ipspg™* 2 Aj[(-n+1)d-D+Bipg P!
Qj = T D Z(-2n+1)

Bi[(-n+3)d "*24pj g n*3
4(-2n+3)

+

Through the substitution 0f equations (27) and (28) into the
second expressions of equations (25) and (26), one gets the
equation relating the critical Marangoni numbers and the Biot

numbers

L1(d)-2 A2MapJd;(d)_ La(d)-222 MapJ2(d)
L1(1)-2 X2Ma;J3 (1) Lp(1)-2x% MajJda(1)

(29)

wherein both Lj and Jj are a function of 4 as defined by
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Lj(d) = (n+2j-2)(n+2j-3)dn+2j-4*Aj(n+1)(n+2)d_n—3+Bj(n—1)nd-n_l
‘ B dn+2j Aid'n*l Bid““+3 D1'd'n'1 n

T3 = ey * 22Dy T a(-2nvs) © el Fjd

for j = 1,2.

(ii) Linear distribution of steady temperature in spherical
shells

Another interesting case is that the temperature distri-

bution in the liquid shell at steady state takes a linear

form, instead of equation (1). That is
dT *
Slo0 - _
dr B (30)

where g8* is a constant. Equation (2) remains unchanged,

while 28r on the RHS of equation (3) should be replaced by

B*. Both equations are subject to the same boundary conditions
(5) and (6). 1In the solutions, r on the LHS of equation

(9-a) must be replaced by R, and BRZ on the RHS of equation
(9-b) becomes B*R. 2Ma in the second expression of equation
(16) reduces to Ma* = 2%1%3. The critical Marangoni number

for the onset of cellular convection then reads
*
Ma = 2Ma (31)

for all three boundary conditions. This indicates that under
the same values of n, d, and Bi, a linear steady temperature

profile is twice more stable than a parabolic one.

In a special case for d = 0 which corresponds to a

liquid sphere, one obtains

* _ (2n+1) (2n+3) (2n+5) (n+B1i)

Ma n(n+1)
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Results and Discussion

The Biot number Bi is a measure of relative importance
between surface conductance and internal conductance of a
thermal system in contact with its ambient., It has two
limiting values: zero and infinity., Bi = 0, referred to as
"insulating'", signifies an adiabatic free surface, The opposite
situation Bi = » is called "conducting'", meaning no thermal

resistance between a free surface and its ambient.

For convenience, case C with Ma; = Map; = Ma and Bij = Bij
= Bi is employed for comparison. Equations (21), (24), and
(29) for Bi = 0 are graphically illustrated in figures 1-a,
1-b, and 1l-c, respectively, to exhibit the dependence of Ma
on n and on the boundary conditions. d is Rj/Rp, while (1-d)
signifies a dimensionless shell thickness (Rz-Rl)/Rz. d of
unity corresponds to zero shell thickness and zero value of d
refers to a liquid sphere. 1In the figures, higher values
of Ma mean more stability, requiring larger surface tension
forces to induce cellular convection., At a given d, case B
is the most stable, case A comes next, and case C is the
most susceptible to thermal instability among the three
possible boundary conditions. Each curve has a minimum
value of Ma, called the critical Marangoni number for the
onset of instability, Ma,. From figures l-a to l-c ,
it is apparent that as the tﬁickness of the shell decreases,
the pattern of the convection which manifests itself at
marginal stability shifts progressively to harmonics of the
higher orders.

Figure 2 is a plot of Ma, against d for Bi = 0. It is
seen that as shell thickness increases, the value of Ma .
decreases monotonically in case A, while case B has a
minimum Ma of about 0.55 at d. The Ma.-d relationéhip in

case C is quite complex.

It is interesting to compare the role of buoyancy and
surface tension forces on the onset of cellular motion. As

Ma is relevant for the surface tension mechanism; the Rayleigh
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number
5
_ 2BYgR2
Ra_—.v—a___

is relevant for the density-dependent mechanism, where g is the
gravitational acceleration and Y denotes the coefficient of
thermal expansion of the liquid. The dependence of Ra on n

[8] is superimposed in figures 1l-a through 1l-c for each
corresponding case. Obviously, surface tension forces are more
effective than buoyancy forces in producing thermal instability
(for the same value of d) in all three cases. The critical
Rayleigh number for the onset of marginal stability Ra. is
plotted against d in figure 2. A comparison of Ma_. and Ra .
yields the conclusions that (i) The degree of stability follows
the order of cases B,A, and C in both mechanisms; (ii) The
onset of cellular motion could be attributed to surface tension
rather than buoyancy. These conclusions may be extended to

non-zero values of Bj.

Next is a quantitative comparison of the two mechanisms,
From the definition of Ma and Ri, one gets a critical radius of

the outer spherical boundary

Ry = (govayd

for surface tension mechanism and a radius

Ra va 4

R = (5537)

for buoyancy effect. They will be equal for a value Rgp given by

2 9 Ra
RSE* 7z5vMa

(33)
Equation (33) is plotted in figure 3 for case A with zero Bi
using the physical properties of water-air system. When a

radius of the outer shell surface is less than Rgp, corresponding
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to the region below the curves, surface tension forces would be
more effective than buoyancy forces in producing instability.

On the other hand, the region above the curves signifies buoyancy
mechanism controlling the onset of cellular convection, It is
observed in the figure that the value of Rgp reduces with an
increase in Bi, indicating buoyancy forces become more important
in causing thermal instability as heat transfer between the

free surface and the ambient increases. At Bi = 5, the curves

for different modes converge at large values of d.

Finally, the effect of Bi on Ma is illustrated in figure
4 for case A. It is seen that heat transfer between the free
surface and the ambient results in an upward shift of marginal
stability curves, indicating more stability to thermal

disturbances.
Conclusions

The criteria for marginal stability in spherical liquid
shells induced by surface tension mechanism are determined for
three possible boundary conditions: case A for a free outer
surface and a rigid inner surface, case B for a rigid outer
surface and a free inner surface, and case C for free inner
and outer surfaces . Parabolic and linear temperatures at
steady state are considered. The Marangoni number is found
to be functions of the wave number n, the ratio of inner and
outer radii d, and the Biot number Bi. The effects of n,d, and
Bi on the neutral stability are determined. It is concluded
that a linear steady temperature profile in a liquid shell
is twice more stable than a parabolic one. Marginal stability
decreases in the order of cases B, A, and C. The onset of
cellular convection in spherical shells could be attributed
to surface tension forces rather than buoyancy forces. An
increase in Bi results in higher Ma, promoting thermal

stability.
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